THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2016 Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface ix

Changes to this Document ix

Obtaining Documentation and Submitting a Service Request ix

CHAPTER 1 New and Changed Information 1

New and Changed Information 1

CHAPTER 2 Implementing Multicast Routing on Cisco IOS XR Software 3

Prerequisites for Implementing Multicast Routing 4

Information About Implementing Multicast Routing 5

Key Protocols and Features Supported in the Cisco IOS XR Software Multicast Routing Implementation 5

Multicast Routing Functional Overview 6

Multicast Routing Implementation 6

PIM-SM, PIM-SSM, and PIM-BIDIR 7

PIM-SM Operations 7

PIM-SSM Operations 8

PIM-Bidirectional Operations 8

Restrictions for PIM-SM and PIM-SSM, and PIM BIDIR 8

Internet Group Management Protocol and Multicast Listener Discovery 9

IGMP and MLD Versions 9

IGMP Routing Example 10

Protocol Independent Multicast 10

PIM-Sparse Mode 11

PIM-Source Specific Multicast 11

PIM-Bidirectional Mode 12

PIM Shared Tree and Source Tree (Shortest Path Tree) 13
Multicast-Intact 14
Designated Routers 15
Rendezvous Points 16
Auto-RP 17
PIM Bootstrap Router 18
Reverse-Path Forwarding 18
Multicast VPN 18
 Multicast VPN Routing and Forwarding 19
 Multicast Distribution Tree Tunnels 20
 InterAS Support on Multicast VPN 20
 BGP Requirements 21
Multitopology Routing 22
Multicast VPN Extranet Routing 22
 Information About Extranets 22
 Information About the Extranet MVPN Routing Topology 23
 RPF Policies in an Extranet 25
Multicast VPN Hub and Spoke Topology 26
 Realizing the Hub and Spoke Topology 26
Label Switched Multicast (LSM) Multicast Label Distribution Protocol (mLDP) based
 Multicast VPN (mVPN) Support 27
 Benefits of LSM mLDP based MVPN 27
 Configuring mLDP MVPN 27
 P2MP and MP2MP Label Switched Paths 28
 Packet Flow in mLDP-based Multicast VPN 29
 Realizing a mLDP-based Multicast VPN 29
 Characteristics of mLDP Profiles 29
 Configuration rules for profiles 35
 mLDP inband signaling 36
 Summary of Supported MVPN Profiles 36
 Configuration Process for mLDP MVPN (Intranet) 37
Next-Generation Multicast VPN 39
Multicast Source Discovery Protocol 40
 VRF-aware MSDP 41
Multicast Nonstop Forwarding 41
Multicast Configuration Subnodes 42
Contents

Interconnecting PIM-SM Domains with MSDP 78
Controlling Source Information on MSDP Peer Routers 81
Configuring MSDP MD5 Password Authentication 83
Configuring VRF for MSDP 84
Multicast only fast reroute (MoFRR) 85
Operating Modes of MoFRR 85
Configuring MoFRR 86
RIB-based MoFRR 86
Configuring Route Policy for Static RPF 87
Point-to-Multipoint Traffic Engineering Label-Switched Multicast 88
Point to Multipoint LSP(P2MP) 88
Multicast Routing Protocol support for P2MP 89
Enabling Multicast Forwarding Over Tunnel Interface (at Ingress Node) 89
P2MP configurations at egress node and bud node 90
Configuring Static Reverse Path Forwarding (RPF) 90
Configuring Core Tree Protocol 91
Configuration Examples for Implementing Multicast Routing on Software 92
MSDP Anycast RP Configuration on Cisco IOS XR Software: Example 92
Bidir-PIM Configuration on Software: Example 93
Calculating Rates per Route: Example 94
Preventing Auto-RP Messages from Being Forwarded on Software: Example 95
Inheritance in MSDP on Software: Example 95
MSDP-VRF: Example 96
Configuring Route Policy for Static RPF: Example 96
Configuring IPv4 Multicast VPN: Example 96
 Configuring MVPN to Advertise Routes Between the CE and the PE Using OSPF: Example 97
 Configuring MVPN to Advertise Routes Between the CE and the PE Using BGP: Example 101
Configuration Examples for MVPN Profiles 105
 Configuration Examples for Inband mLDP profiles 105
 Configuration Examples for P2MP-TE profiles 106
 Configuration examples for Partitioned mLDP profiles 108
 Configuration Examples for Rosen-mGRE profiles 110
 Configuration Examples for Rosen mLDP profiles 112
Configuring Multitopology Routing: Example 115
Configuring MVPN Extranet Routing: Example 116
 Configuring the Source MVRF on the Receiver PE Router: Example 116
 Configuring the Receiver MVRF on the Source PE Router: Example 118
Configuring Multicast Hub and Spoke Topology: Example 121
 Hub and Spoke Non-Turnaround Configuration: Example 121
 Hub and Spoke with Turnaround: Example 130
Configuring LSM based MLDP: Examples 136
Additional References 146

CHAPTER 3
Implementing Automatic Multicast Routing: 149
 Automatic Multicast Tunneling 149
 Advantages of AMT 149
 Prerequisites for configuring AMT 150
 Restrictions for AMT 150
 Implementing AMT 151
 AMT Message Exchanges 151
 AMT Tunnel and Traffic Types 152
 Out of Resource mode 152
 Enabling AMT 152
 Configuring AMT 153
 Configuration Examples for Implementing AMT 154
 Enabling AMT: Example 155
 AMT Maximum Gateway Configuration: Example 155
 AMT MTU Configuration: Example 155
 AMT TOS Configuration: Example 155
Preface

The preface contains these sections:

- Changes to this Document, page ix
- Obtaining Documentation and Submitting a Service Request, page ix

Changes to this Document

This table lists the technical changes made to this document since it was first printed.

Table 1: For CRS Router

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL-28407-02</td>
<td>May 2013</td>
<td>Republished with documentation updates for Release 4.3.1.</td>
</tr>
<tr>
<td>OL-28407-01</td>
<td>December 2012</td>
<td>Initial release of this document.</td>
</tr>
</tbody>
</table>

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see What's New in Cisco Product Documentation.

To receive new and revised Cisco technical content directly to your desktop, you can subscribe to the What's New in Cisco Product Documentation RSS feed. RSS feeds are a free service.
New and Changed Information

This table summarizes the new and changed information for the Cisco IOS XR Multicast Configuration Guide for the Cisco CRS Router.

- New and Changed Information, page 1

New and Changed Information

Table 2: New and Changed Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Multicast Tunneling</td>
<td>This feature was introduced.</td>
<td>Release 4.3.1</td>
<td>Automatic Multicast Tunneling, on page 149 For AMT commands, refer the AMT commands chapter in the Cisco IOS XR Multicast Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Multicast VPN</td>
<td>This feature was modified; the next-generation MVPN details were added.</td>
<td>Release 4.3.0</td>
<td>Next-Generation Multicast VPN, on page 39</td>
</tr>
</tbody>
</table>
Implementing Multicast Routing on Cisco IOS XR Software

Multicast routing is a bandwidth-conserving technology that reduces traffic by simultaneously delivering a single stream of information to potentially thousands of corporate recipients and homes. Applications that take advantage of multicast routing include video conferencing, corporate communications, distance learning, and distribution of software, stock quotes, and news.

This document assumes that you are familiar with IPv4 and IPv6 multicast routing configuration tasks and concepts for Cisco IOS XR Software.

Multicast routing allows a host to send packets to a subset of all hosts as a group transmission rather than to a single host, as in unicast transmission, or to all hosts, as in broadcast transmission. The subset of hosts is known as group members and are identified by a single multicast group address that falls under the IP Class D address range from 224.0.0.0 through 239.255.255.255.

For detailed conceptual information about multicast routing and complete descriptions of the multicast routing commands listed in this module, you can refer to the Related Documents, on page 146.

Feature History for Configuring Multicast Routing on the Cisco CRS Routers

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.2</td>
<td>Support was added for the IPv6 routing protocol and for the bootstrap router (BSR) feature.</td>
</tr>
<tr>
<td>Release 3.5.0</td>
<td>Multicast VPNv4 was supported.</td>
</tr>
<tr>
<td>Release 3.7.0</td>
<td>The following new features or functionality were added:</td>
</tr>
<tr>
<td></td>
<td>• Support was added for multilocation routing within a default VRF table.</td>
</tr>
<tr>
<td></td>
<td>• A new configuration procedure was added for calculating rate per route.</td>
</tr>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>Support was added for these features:</td>
</tr>
<tr>
<td></td>
<td>• Multicast-only fast reroutes (MoFRR).</td>
</tr>
<tr>
<td></td>
<td>• Point-to-multipoint MPLS label-switched multicast routing.</td>
</tr>
<tr>
<td>Release 4.0.0</td>
<td>Support for Auto-RPLite and MVPN Hub and Spoke Topology were added.</td>
</tr>
<tr>
<td>Release 4.1.1</td>
<td>Support for Label Switched Multicast (LSM) Multicast Label Distribution Protocol (mLDP) based Multicast VPN (mVPN) was added.</td>
</tr>
<tr>
<td>Release 4.2.1</td>
<td>Support was added for these features:</td>
</tr>
<tr>
<td></td>
<td>• IPv4 Multicast over v4GRE</td>
</tr>
<tr>
<td></td>
<td>• MVPN v4 over v4GRE</td>
</tr>
<tr>
<td></td>
<td>• InterAS Support on Multicast VPN.</td>
</tr>
<tr>
<td>Release 6.1.2</td>
<td>MVPN IPv6 over IPv4 GRE feature was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Multicast Routing, page 4
- Information About Implementing Multicast Routing, page 5
- How to Implement Multicast Routing, page 45
- Multicast only fast reroute (MoFRR), page 85
- Configuring Route Policy for Static RPF, page 87
- Point-to-Multipoint Traffic Engineering Label-Switched Multicast, page 88
- Configuration Examples for Implementing Multicast Routing on Software, page 92
- Additional References, page 146

Prerequisites for Implementing Multicast Routing

- You must install and activate the multicast pie.
- For detailed information about optional PIE installation, see *Cisco IOS XR Getting Started Guide for the Cisco CRS Router*
- For MLDP, an MPLS PIE has to be installed.
- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
• You must be familiar with IPv4 and IPv6 multicast routing configuration tasks and concepts.
• Unicast routing must be operational.
• To enable multicast VPN, you must configure a VPN routing and forwarding (VRF) instance.

Information About Implementing Multicast Routing

Key Protocols and Features Supported in the Cisco IOS XR Software Multicast Routing Implementation

Table 3: Supported Features for IPv4 and IPv6 on Cisco CRS Routers

<table>
<thead>
<tr>
<th>Feature</th>
<th>IPv4 Support</th>
<th>IPv6 Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic host registration</td>
<td>Yes (IGMP v1/2/3)</td>
<td>Yes (MLD v1/2)</td>
</tr>
<tr>
<td>Explicit tracking of hosts, groups, and channels</td>
<td>Yes (IGMP v3)</td>
<td>Yes (MLD v2)</td>
</tr>
<tr>
<td>PIM-SM<sup>1</sup></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PIM-SSM<sup>2</sup></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PIM-Bidir<sup>3</sup></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Auto-RP</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Multicast VPN</td>
<td>Yes</td>
<td>Yes<sup>4</sup></td>
</tr>
<tr>
<td>BSR<sup>5</sup></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MSDP<sup>6</sup></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>BGP<sup>2</sup></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Multicast NSF<sup>8</sup></td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>OOR handling<sup>2</sup></td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

1 Protocol Independent Multicast in sparse mode
2 Protocol Independent Multicast in Source-Specific Multicast
3 Protocol Independent Multicast Bidirectional
4 IPv6 support on Cisco XR 12000 Series Router only
5 PIM bootstrap router
6 Multicast Source Discovery Protocol
Multicast Routing Functional Overview

Traditional IP communication allows a host to send packets to a single host (unicast transmission) or to all hosts (broadcast transmission). Multicast provides a third scheme, allowing a host to send a single data stream to a subset of all hosts (group transmission) at about the same time. IP hosts are known as group members.

Packets delivered to group members are identified by a single multicast group address. Multicast packets are delivered to a group using best-effort reliability, just like IP unicast packets.

The multicast environment consists of senders and receivers. Any host, regardless of whether it is a member of a group, can send to a group. However, only the members of a group receive the message.

A multicast address is chosen for the receivers in a multicast group. Senders use that group address as the destination address of a datagram to reach all members of the group.

Membership in a multicast group is dynamic; hosts can join and leave at any time. There is no restriction on the location or number of members in a multicast group. A host can be a member of more than one multicast group at a time.

How active a multicast group is and what members it has can vary from group to group and from time to time. A multicast group can be active for a long time, or it may be very short-lived. Membership in a group can change constantly. A group that has members may have no activity.

Routers use the Internet Group Management Protocol (IGMP) (IPv4) and Multicast Listener Discovery (MLD) (IPv6) to learn whether members of a group are present on their directly attached subnets. Hosts join multicast groups by sending IGMP or MLD report messages.

Many multimedia applications involve multiple participants. Multicast is naturally suitable for this communication paradigm.

Multicast Routing Implementation

Cisco IOS XR Software supports the following protocols to implement multicast routing:

- IGMP and MLD are used (depending on the IP protocol) between hosts on a LAN and the routers on that LAN to track the multicast groups of which hosts are members.

- Protocol Independent Multicast in sparse mode (PIM-SM) is used between routers so that they can track which multicast packets to forward to each other and to their directly connected LANs.

- Protocol Independent Multicast in Source-Specific Multicast (PIM-SSM) is similar to PIM-SM with the additional ability to report interest in receiving packets from specific source addresses (or from all but the specific source addresses), to an IP multicast address.

- PIM-SSM is made possible by IGMPv3 and MLDv2. Hosts can now indicate interest in specific sources using IGMPv3 and MLDv2. SSM does not require a rendezvous point (RP) to operate.

- PIM Bidirectional is a variant of the Protocol Independent Multicast suite of routing protocols for IP multicast. PIM-BIDIR is designed to be used for many-to-many applications within individual PIM domains.
This image shows IGMP/MLD and PIM-SM operating in a multicast environment.

Figure 1: Multicast Routing Protocols

PIM-SM, PIM-SSM, and PIM-BIDIR

Protocol Independent Multicast (PIM) is a multicast routing protocol used to create multicast distribution trees, which are used to forward multicast data packets. PIM is an efficient IP routing protocol that is “independent” of a routing table, unlike other multicast protocols such as Multicast Open Shortest Path First (MOSPF) or Distance Vector Multicast Routing Protocol (DVMRP).

Cisco IOS XR Software supports Protocol Independent Multicast in sparse mode (PIM-SM), Protocol Independent Multicast in Source-Specific Multicast (PIM-SSM), and Protocol Independent Multicast in Bi-directional mode (BIDIR) permitting these modes to operate on your router at the same time.

PIM-SM and PIM-SSM supports one-to-many applications by greatly simplifying the protocol mechanics for deployment ease. Bidir PIM helps deploy emerging communication and financial applications that rely on a many-to-many applications model. BIDIR PIM enables these applications by allowing them to easily scale to a very large number of groups and sources by eliminating the maintenance of source state.

PIM-SM Operations

PIM in sparse mode operation is used in a multicast network when relatively few routers are involved in each multicast and these routers do not forward multicast packets for a group, unless there is an explicit request for the traffic.

For more information about PIM-SM, see the PIM-Sparse Mode, on page 11.
PIM-SSM Operations

PIM in Source-Specific Multicast operation uses information found on source addresses for a multicast group provided by receivers and performs source filtering on traffic.

- By default, PIM-SSM operates in the 232.0.0.0/8 multicast group range for IPv4 and ff3x::/32 (where x is any valid scope) in IPv6. To configure these values, use the `ssm range` command.
- If SSM is deployed in a network already configured for PIM-SM, only the last-hop routers must be upgraded with Cisco IOS XR Software that supports the SSM feature.
- No MSDP SA messages within the SSM range are accepted, generated, or forwarded.

PIM-Bidirectional Operations

PIM Bidirectional (BIDIR) has one shared tree from sources to RP and from RP to receivers. This is unlike the PIM-SM, which is unidirectional by nature with multiple source trees - one per (S,G) or a shared tree from receiver to RP and multiple SG trees from RP to sources.

Benefits of PIM BIDIR are as follows:

- As many sources for the same group use one and only state (*, G), only minimal states are required in each router.
- No data triggered events.
- Rendezvous Point (RP) router not required. The RP address only needs to be a routable address and need not exist on a physical device.

Restrictions for PIM-SM and PIM-SSM, and PIM BIDIR

Interoperability with SSM

PIM-SM operations within the SSM range of addresses change to PIM-SSM. In this mode, only PIM (S,G) join and prune messages are generated by the router, and no (S,G) RP shared tree or (*,G) shared tree messages are generated.

IGMP Version

To report multicast memberships to neighboring multicast routers, hosts use IGMP, and all routers on the subnet must be configured with the same version of IGMP.

A router running Cisco IOS XR Software does not automatically detect Version 1 systems. You must use the `version` command in router IGMP configuration submode to configure the IGMP version.

MLD Version

To report multicast memberships to neighboring multicast routers, routers use MLD, and all routers on the subnet must be configured with the same version of MLD.

PIM-BIDIR Restrictions

- PIM SSM is not supported in the core for BIDIR traffic in the MVRF.
Anycast RP is not supported for BIDIR in the MVRF and in native.

Data MDT is not supported for BIDIR in the MVRF.

Extranet is not supported for BIDIR traffic.

MVPN BIDIR in the core is not supported.

The SM scale is about 350 VRFs per system and the maximum BIDIR scale is expected to be around 10% of SM scale. Thus, the BIDIR scale is about 35 VRFs.

Internet Group Management Protocol and Multicast Listener Discovery

Cisco IOS XR Software provides support for Internet Group Management Protocol (IGMP) over IPv4 and Multicast Listener Discovery (MLD) over IPv6.

IGMP (and MLD) provide a means for hosts to indicate which multicast traffic they are interested in and for routers to control and limit the flow of multicast traffic throughout the network. Routers build state by means of IGMP and MLD messages; that is, router queries and host reports.

A set of queries and hosts that receive multicast data streams from the same source is called a multicast group. Hosts use IGMP and MLD messages to join and leave multicast groups.

Note

IGMP messages use group addresses, which are Class D IP addresses. The high-order four bits of a Class D address are 1110. Host group addresses can be in the range 224.0.0.0 to 239.255.255.255. The address 224.0.0.0 is guaranteed not to be assigned to any group. The address 224.0.0.1 is assigned to all systems on a subnet. The address 224.0.0.2 is assigned to all routers on a subnet.

IGMP and MLD Versions

The following points describe IGMP versions 1, 2, and 3:

- IGMP Version 1 provides for the basic query-response mechanism that allows the multicast router to determine which multicast groups are active and for other processes that enable hosts to join and leave a multicast group.

- IGMP Version 2 extends IGMP allowing such features as the IGMP query timeout and the maximum query-response time. See RFC 2236.

Note

MLDv1 provides the same functionality (under IPv6) as IGMP Version 2.

- IGMP Version 3 permits joins and leaves for certain source and group pairs instead of requesting traffic from all sources in the multicast group.

Note

MLDv2 provides the same functionality (under IPv6) as IGMP Version 3.
IGMP Routing Example

Figure 2: IGMPv3 Signaling, on page 10 illustrates two sources, 10.0.0.1 and 10.0.1.1, that are multicasting to group 239.1.1.1. The receiver wants to receive traffic addressed to group 239.1.1.1 from source 10.0.0.1 but not from source 10.0.1.1. The host must send an IGMPv3 message containing a list of sources and groups (S, G) that it wants to join and a list of sources and groups (S, G) that it wants to leave. Router C can now use this information to prune traffic from Source 10.0.1.1 so that only Source 10.0.0.1 traffic is being delivered to Router C.

When configuring IGMP, ensure that all systems on the subnet support the same IGMP version. The router does not automatically detect Version 1 systems. Configure the router for Version 2 if your hosts do not support Version 3.

Protocol Independent Multicast

Protocol Independent Multicast (PIM) is a routing protocol designed to send and receive multicast routing updates. Proper operation of multicast depends on knowing the unicast paths towards a source or an RP. PIM relies on unicast routing protocols to derive this reverse-path forwarding (RPF) information. As the name PIM implies, it functions independently of the unicast protocols being used. PIM relies on the Routing Information Base (RIB) for RPF information.
If the multicast subsequent address family identifier (SAFI) is configured for Border Gateway Protocol (BGP), or if multicast intact is configured, a separate multicast unicast RIB is created and populated with the BGP multicast SAFI routes, the intact information, and any IGP information in the unicast RIB. Otherwise, PIM gets information directly from the unicast SAFI RIB. Both multicast unicast and unicast databases are outside of the scope of PIM.

Note

Cisco IOS XR Software supports PIM-SM, PIM-SSM, PIM Bidir, and PIM Version 2 only. PIM Version 1 hello messages that arrive from neighbors are rejected.

PIM-Sparse Mode

Typically, PIM in sparse mode (PIM-SM) operation is used in a multicast network when relatively few routers are involved in each multicast. Routers do not forward multicast packets for a group, unless there is an explicit request for traffic. Requests are accomplished using PIM join messages, which are sent hop by hop toward the root node of the tree. The root node of a tree in PIM-SM is the rendezvous point (RP) in the case of a shared tree or the first-hop router that is directly connected to the multicast source in the case of a shortest path tree (SPT). The RP keeps track of multicast groups, and the sources that send multicast packets are registered with the RP by the first-hop router of the source.

As a PIM join travels up the tree, routers along the path set up the multicast forwarding state so that the requested multicast traffic is forwarded back down the tree. When multicast traffic is no longer needed, a router sends a PIM prune message up the tree toward the root node to prune (or remove) the unnecessary traffic. As this PIM prune travels hop by hop up the tree, each router updates its forwarding state appropriately. Ultimately, the forwarding state associated with a multicast group or source is removed. Additionally, if prunes are not explicitly sent, the PIM state will timeout and be removed in the absence of any further join messages.

PIM-SM is the best choice for multicast networks that have potential members at the end of WAN links.

PIM-Source Specific Multicast

In many multicast deployments where the source is known, protocol-independent multicast-source-specific multicast (PIM-SSM) mapping is the obvious multicast routing protocol choice to use because of its simplicity. Typical multicast deployments that benefit from PIM-SSM consist of entertainment-type solutions like the ETTH space, or financial deployments that completely rely on static forwarding.

PIM-SSM is derived from PIM-SM. However, whereas PIM-SM allows for the data transmission of all sources sending to a particular group in response to PIM join messages, the SSM feature forwards traffic to receivers only from those sources that the receivers have explicitly joined. Because PIM joins and prunes are sent directly towards the source sending traffic, an RP and shared trees are unnecessary and are disallowed. SSM is used to optimize bandwidth utilization and deny unwanted Internet broadcast traffic. The source is provided by interested receivers through IGMPv3 membership reports.

In SSM, delivery of datagrams is based on (S,G) channels. Traffic for one (S,G) channel consists of datagrams with an IP unicast source address S and the multicast group address G as the IP destination address. Systems receive traffic by becoming members of the (S,G) channel. Signaling is not required, but receivers must subscribe or unsubscribe to (S,G) channels to receive or not receive traffic from specific sources. Channel
subscription signaling uses IGMP to include mode membership reports, which are supported only in Version 3 of IGMP (IGMPv3).

To run SSM with IGMPv3, SSM must be supported on the multicast router, the host where the application is running, and the application itself. Cisco IOS XR Software allows SSM configuration for an arbitrary subset of the IP multicast address range 224.0.0.0 through 239.255.255.255. When an SSM range is defined, existing IP multicast receiver applications do not receive any traffic when they try to use addresses in the SSM range, unless the application is modified to use explicit (S,G) channel subscription.

PIM-Bidirectional Mode

PIM BIDIR is a variant of the Protocol Independent Multicast (PIM) suite of routing protocols for IP multicast. In PIM, packet traffic for a multicast group is routed according to the rules of the mode configured for that multicast group. In bidirectional mode, traffic is only routed along a bidirectional shared tree that is rooted at the rendezvous point (RP) for the group. In PIM-BIDIR, the IP address of the RP acts as the key to having all routers establish a loop-free spanning tree topology rooted in that IP address. This IP address does not need to be a router, but can be any unassigned IP address on a network that is reachable throughout the PIM domain. Using this technique is the preferred configuration for establishing a redundant RP configuration for PIM-BIDIR.

Note In Cisco IOS XR Release 4.2.1, Anycast RP is not supported on PIM Bidirectional mode.

PIM-BIDIR is designed to be used for many-to-many applications within individual PIM domains. Multicast groups in bidirectional mode can scale to an arbitrary number of sources without incurring overhead due to the number of sources. PIM-BIDIR is derived from the mechanisms of PIM-sparse mode (PIM-SM) and shares many SPT operations. PIM-BIDIR also has unconditional forwarding of source traffic toward the RP upstream on the shared tree, but no registering process for sources as in PIM-SM. These modifications are necessary and sufficient to allow forwarding of traffic in all routers solely based on the (*, G) multicast routing entries. This feature eliminates any source-specific state and allows scaling capability to an arbitrary number of sources.

The traditional PIM protocols (dense-mode and sparse-mode) provided two models for forwarding multicast packets, source trees and shared trees. Source trees are rooted at the source of the traffic while shared trees are rooted at the rendezvous point. Source trees achieve the optimum path between each receiver and the source at the expense of additional routing information: an (S,G) routing entry per source in the multicast routing table. The shared tree provides a single distribution tree for all of the active sources. This means that traffic from different sources traverse the same distribution tree to reach the interested receivers, therefore reducing the amount of routing state in the network. This shared tree needs to be rooted somewhere, and the location of this root is the rendezvous point. PIM BIDIR uses shared trees as their main forwarding mechanism.

The algorithm to elect the designated forwarder is straightforward, all the PIM neighbors in a subnet advertise their unicast route to the rendezvous point and the router with the best route is elected. This effectively builds a shortest path between every subnet and the rendezvous point without consuming any multicast routing state (no (S,G) entries are generated). The designated forwarder election mechanism expects all of the PIM neighbors to be BIDIR enabled. In the case where one of more of the neighbors is not a BIDIR capable router, the election fails and BIDIR is disabled in that subnet.
PIM Shared Tree and Source Tree (Shortest Path Tree)

In PIM-SM, the rendezvous point (RP) is used to bridge sources sending data to a particular group with receivers sending joins for that group. In the initial setup of state, interested receivers receive data from senders to the group across a single data distribution tree rooted at the RP. This type of distribution tree is called a shared tree or rendezvous point tree (RPT) as illustrated in Figure 3: Shared Tree and Source Tree (Shortest Path Tree), on page 13. Data from senders is delivered to the RP for distribution to group members joined to the shared tree.

Figure 3: Shared Tree and Source Tree (Shortest Path Tree)

Unless the `spt-threshold infinity` command is configured, this initial state gives way as soon as traffic is received on the leaf routers (designated router closest to the host receivers). When the leaf router receives traffic from the RP on the RPT, the router initiates a switch to a data distribution tree rooted at the source sending traffic. This type of distribution tree is called a shortest path tree or source tree. By default, the Cisco IOS XR Software switches to a source tree when it receives the first data packet from a source.

The following process describes the move from shared tree to source tree in more detail:

1. Receiver joins a group; leaf Router C sends a join message toward RP.
2. RP puts link to Router C in its outgoing interface list.
3. Source sends data; Router A encapsulates data in Register and sends it to RP.
4. RP forwards data down the shared tree to Router C and sends a join message toward Source. At this point, data may arrive twice at the RP, once encapsulated and once natively.
5. When data arrives natively (unencapsulated) at RP, RP sends a register-stop message to Router A.
6 By default, receipt of the first data packet prompts Router C to send a join message toward Source.

7 When Router C receives data on (S,G), it sends a prune message for Source up the shared tree.

8 RP deletes the link to Router C from outgoing interface of (S,G). RP triggers a prune message toward Source.

Join and prune messages are sent for sources and RPs. They are sent hop by hop and are processed by each PIM router along the path to the source or RP. Register and register-stop messages are not sent hop by hop. They are exchanged using direct unicast communication between the designated router that is directly connected to a source and the RP for the group.

Tip

The `spt-threshold infinity` command lets you configure the router so that it never switches to the shortest path tree (SPT).

Multicast-Intact

The multicast-intact feature provides the ability to run multicast routing (PIM) when Interior Gateway Protocol (IGP) shortcuts are configured and active on the router. Both Open Shortest Path First, version 2 (OSPFv2), and Intermediate System-to-Intermediate System (IS-IS) support the multicast-intact feature. Multiprotocol Label Switching Traffic Engineering (MPLS-TE) and IP multicast coexistence is supported in Cisco IOS XR Software by using the `mpls traffic-eng multicast-intact` IS-IS or OSPF router command. See *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router* for information on configuring multicast-intact using IS-IS and OSPF commands.

You can enable multicast-intact in the IGP when multicast routing protocols (PIM) are configured and IGP shortcuts are configured on the router. IGP shortcuts are MPLS tunnels that are exposed to IGP. The IGPs route the IP traffic over these tunnels to destinations that are downstream from the egress router of the tunnel (from an SPF perspective). PIM cannot use IGP shortcuts for propagating PIM joins because reverse path forwarding (RPF) cannot work across a unidirectional tunnel.

When you enable multicast-intact on an IGP, the IGP publishes a parallel or alternate set of equal-cost next-hops for use by PIM. These next-hops are called **mcast-intact next-hops**. The mcast-intact next-hops have the following attributes:

- They are guaranteed not to contain any IGP shortcuts.
- They are not used for unicast routing but are used only by PIM to look up an IPv4 next hop to a PIM source.
- They are not published to the Forwarding Information Base (FIB).
- When multicast-intact is enabled on an IGP, all IPv4 destinations that were learned through link-state advertisements are published with a set equal-cost mcast-intact next-hops to the RIB. This attribute applies even when the native next-hops have no IGP shortcuts.
- In IS-IS, the max-paths limit is applied by counting both the native and mcast-intact next-hops together. (In OSPFv2, the behavior is slightly different.)
Designated Routers

Cisco routers use PIM-SM to forward multicast traffic and follow an election process to select a designated router (DR) when there is more than one router on a LAN segment.

The designated router is responsible for sending PIM register and PIM join and prune messages toward the RP to inform it about host group membership.

If there are multiple PIM-SM routers on a LAN, a designated router must be elected to avoid duplicating multicast traffic for connected hosts. The PIM router with the highest IP address becomes the DR for the LAN unless you choose to force the DR election by use of the `dr-priority` command. The DR priority option allows you to specify the DR priority of each router on the LAN segment (default priority = 1) so that the router with the highest priority is elected as the DR. If all routers on the LAN segment have the same priority, the highest IP address is again used as the tiebreaker.

Figure 4: Designated Router Election on a Multiaccess Segment, on page 16 illustrates what happens on a multiaccess segment. Router A (10.0.0.253) and Router B (10.0.0.251) are connected to a common multiaccess Ethernet segment with Host A (10.0.0.1) as an active receiver for Group A. As the Explicit Join model is used, only Router A, operating as the DR, sends joins to the RP to construct the shared tree for Group A. If Router B were also permitted to send (*, G) joins to the RP, parallel paths would be created and Host A would receive duplicate multicast traffic. When Host A begins to source multicast traffic to the group, the DR’s responsibility is to send register messages to the RP. Again, if both routers were assigned the responsibility, the RP would receive duplicate multicast packets.

If the DR fails, the PIM-SM provides a way to detect the failure of Router A and to elect a failover DR. If the DR (Router A) were to become inoperable, Router B would detect this situation when its neighbor adjacency with Router A timed out. Because Router B has been hearing IGMP membership reports from Host A, it already has IGMP state for Group A on this interface and immediately sends a join to the RP when it becomes the new DR. This step reestablishes traffic flow down a new branch of the shared tree using Router B. Additionally, if Host A were sourcing traffic, Router B would initiate a new register process immediately after receiving the next multicast packet from Host A. This action would trigger the RP to join the SPT to Host A, using a new branch through Router B.
Two PIM routers are neighbors if there is a direct connection between them. To display your PIM neighbors, use the `show pim neighbor` command in EXEC mode.

Tip

Figure 4: Designated Router Election on a Multiaccess Segment

DR election process is required only on multiaccess LANs. The last-hop router directly connected to the host is the DR.

Rendezvous Points

When PIM is configured in sparse mode, you must choose one or more routers to operate as a rendezvous point (RP). A rendezvous point is a single common root placed at a chosen point of a shared distribution tree, as illustrated in Figure 3: Shared Tree and Source Tree (Shortest Path Tree), on page 13. A rendezvous point can be either configured statically in each box or learned through a dynamic mechanism.

PIM DRs forward data from directly connected multicast sources to the rendezvous point for distribution down the shared tree. Data is forwarded to the rendezvous point in one of two ways:

- Encapsulated in register packets and unicast directly to the rendezvous point by the first-hop router operating as the DR.
- Multicast forwarded by the RPF forwarding algorithm, described in the Reverse-Path Forwarding, on page 18, if the rendezvous point has itself joined the source tree.
The rendezvous point address is used by first-hop routers to send PIM register messages on behalf of a host sending a packet to the group. The rendezvous point address is also used by last-hop routers to send PIM join and prune messages to the rendezvous point to inform it about group membership. You must configure the rendezvous point address on all routers (including the rendezvous point router).

A PIM router can be a rendezvous point for more than one group. Only one rendezvous point address can be used at a time within a PIM domain. The conditions specified by the access list determine for which groups the router is a rendezvous point.

You can either manually configure a PIM router to function as a rendezvous point or allow the rendezvous point to learn group-to-RP mappings automatically by configuring Auto-RP or BSR. (For more information, see the Auto-RP, on page 17 section that follows and PIM Bootstrap Router, on page 18.)

Auto-RP

Automatic route processing (Auto-RP) is a feature that automates the distribution of group-to-RP mappings in a PIM network. This feature has these benefits:

- It is easy to use multiple RPs within a network to serve different group ranges.
- It allows load splitting among different RPs.
- It facilitates the arrangement of RPs according to the location of group participants.
- It avoids inconsistent, manual RP configurations that might cause connectivity problems.

Multiple RPs can be used to serve different group ranges or to serve as hot backups for each other. To ensure that Auto-RP functions, configure routers as candidate RPs so that they can announce their interest in operating as an RP for certain group ranges. Additionally, a router must be designated as an RP-mapping agent that receives the RP-announcement messages from the candidate RPs, and arbitrates conflicts. The RP-mapping agent sends the consistent group-to-RP mappings to all remaining routers. Thus, all routers automatically determine which RP to use for the groups they support.

Tip

By default, if a given group address is covered by group-to-RP mappings from both static RP configuration, and is discovered using Auto-RP or PIM BSR, the Auto-RP or PIM BSR range is preferred. To override the default, and use only the RP mapping, use the `rp-address override` keyword.

Note

If you configure PIM in sparse mode and do not configure Auto-RP, you must statically configure an RP as described in the Configuring a Static RP and Allowing Backward Compatibility, on page 47. When router interfaces are configured in sparse mode, Auto-RP can still be used if all routers are configured with a static RP address for the Auto-RP groups.

Note

Auto-RP is not supported on VRF interfaces. Auto-RP Lite allows you to configure auto-RP on the CE router. It allows the PE router that has the VRF interface to relay auto-RP discovery, and announce messages across the core and eventually to the remote CE. Auto-RP is supported in only the IPv4 address family.
PIM Bootstrap Router

The PIM bootstrap router (BSR) provides a fault-tolerant, automated RP discovery and distribution mechanism that simplifies the Auto-RP process. This feature is enabled by default allowing routers to dynamically learn the group-to-RP mappings.

PIM uses the BSR to discover and announce RP-set information for each group prefix to all the routers in a PIM domain. This is the same function accomplished by Auto-RP, but the BSR is part of the PIM Version 2 specification. The BSR mechanism interoperates with Auto-RP on Cisco routers.

To avoid a single point of failure, you can configure several candidate BSRs in a PIM domain. A BSR is elected among the candidate BSRs automatically. Candidates use bootstrap messages to discover which BSR has the highest priority. The candidate with the highest priority sends an announcement to all PIM routers in the PIM domain that it is the BSR.

Routers that are configured as candidate RPs unicast to the BSR the group range for which they are responsible. The BSR includes this information in its bootstrap messages and disseminates it to all PIM routers in the domain. Based on this information, all routers are able to map multicast groups to specific RPs. As long as a router is receiving the bootstrap message, it has a current RP map.

Reverse-Path Forwarding

Reverse-path forwarding (RPF) is an algorithm used for forwarding multicast datagrams. It functions as follows:

- If a router receives a datagram on an interface it uses to send unicast packets to the source, the packet has arrived on the RPF interface.
- If the packet arrives on the RPF interface, a router forwards the packet out the interfaces present in the outgoing interface list of a multicast routing table entry.
- If the packet does not arrive on the RPF interface, the packet is silently discarded to prevent loops.

PIM uses both source trees and RP-rooted shared trees to forward datagrams; the RPF check is performed differently for each, as follows:

- If a PIM router has an (S,G) entry present in the multicast routing table (a source-tree state), the router performs the RPF check against the IP address of the source for the multicast packet.
- If a PIM router has no explicit source-tree state, this is considered a shared-tree state. The router performs the RPF check on the address of the RP, which is known when members join the group.

Sparse-mode PIM uses the RPF lookup function to determine where it needs to send joins and prunes. (S,G) joins (which are source-tree states) are sent toward the source. (*,G) joins (which are shared-tree states) are sent toward the RP.

Multicast VPN

Multicast VPN (MVPN) provides the ability to dynamically provide multicast support over MPLS networks. MVPN introduces an additional set of protocols and procedures that help enable a provider to support multicast traffic in a VPN.
PIM-Bidir is not supported on MVPN.

There are two ways MCAST VPN traffic can be transported over the core network:

- Rosen GRE (native): MVPN uses GRE with unique multicast distribution tree (MDT) forwarding to enable scalability of native IP Multicast in the core network. MVPN introduces multicast routing information to the VPN routing and forwarding table (VRF), creating a Multicast VRF. In Rosen GRE, the MCAST customer packets (c-packets) are encapsulated into the provider MCAST packets (p-packets), so that the PIM protocol is enabled in the provider core, and mrib/mfib is used for forwarding p-packets in the core.

- MLDP ones (Rosen, partition): MVPN allows a service provider to configure and support multicast traffic in an MPLS VPN environment. This type supports routing and forwarding of multicast packets for each individual VPN routing and forwarding (VRF) instance, and it also provides a mechanism to transport VPN multicast packets across the service provider backbone. In the MLDP case, the regular label switch path forwarding is used, so core does not need to run PIM protocol. In this scenario, the c-packets are encapsulated in the MPLS labels and forwarding is based on the MPLS Label Switched Paths (LSPs), similar to the unicast case.

In both the above types, the MVPN service allows you to build a Protocol Independent Multicast (PIM) domain that has sources and receivers located in different sites.

To provide Layer 3 multicast services to customers with multiple distributed sites, service providers look for a secure and scalable mechanism to transmit customer multicast traffic across the provider network. Multicast VPN (MVPN) provides such services over a shared service provider backbone, using native multicast technology similar to BGP/MPLS VPN.

MVPN emulates MPLS VPN technology in its adoption of the multicast domain (MD) concept, in which provider edge (PE) routers establish virtual PIM neighbor connections with other PE routers that are connected to the same customer VPN. These PE routers thereby form a secure, virtual multicast domain over the provider network. Multicast traffic is then transmitted across the core network from one site to another, as if the traffic were going through a dedicated provider network.

Multi-instance BGP is supported on multicast and MVPN. Multicast-related SAFIs can be configured on multiple BGP instances.

Multicast VPN Routing and Forwarding

Dedicated multicast routing and forwarding tables are created for each VPN to separate traffic in one VPN from traffic in another.

The VPN-specific multicast routing and forwarding database is referred to as MVRF. On a PE router, an MVRF is created when multicast is enabled for a VRF. Protocol Independent Multicast (PIM), and Internet Group Management Protocol (IGMP) protocols run in the context of MVRF, and all routes created by an MVRF protocol instance are associated with the corresponding MVRF. In addition to VRFs, which hold VPN-specific protocol states, a PE router always has a global VRF instance, containing all routing and forwarding information for the provider network.
Multicast Distribution Tree Tunnels

The multicast distribution tree (MDT) can span multiple customer sites through provider networks, allowing traffic to flow from one source to multiple receivers. For MLDP, the MDT tunnel trees are called as Labeled MDT (LMDT).

Secure data transmission of multicast packets sent from the customer edge (CE) router at the ingress PE router is achieved by encapsulating the packets in a provider header and transmitting the packets across the core. At the egress PE router, the encapsulated packets are decapsulated and then sent to the CE receiving routers.

Multicast distribution tree (MDT) tunnels are point-to-multipoint. A MDT tunnel interface is an interface that MVRF uses to access the multicast domain. It can be deemed as a passage that connects an MVRF and the global MVRF. Packets sent to an MDT tunnel interface are received by multiple receiving routers. Packets sent to an MDT tunnel interface are encapsulated, and packets received from a MDT tunnel interface are decapsulated.

Figure 5: Virtual PIM Peer Connection over an MDT Tunnel Interface

Encapsulating multicast packets in a provider header allows PE routers to be kept unaware of the packets’ origin— all VPN packets passing through the provider network are viewed as native multicast packets and are routed based on the routing information in the core network. To support MVPN, PE routers only need to support native multicast routing.

MVPN also supports optimized VPN traffic forwarding for high-bandwidth applications that have sparsely distributed receivers. A dedicated multicast group can be used to encapsulate packets from a specific source, and an optimized MDT can be created to send traffic only to PE routers connected to interested receivers. This is referred to as data MDT.

InterAS Support on Multicast VPN

The Multicast VPN Inter-AS Support feature enables service providers to provide multicast connectivity to VPN sites that span across multiple autonomous systems. This feature was added to MLDP profile that enables Multicast Distribution Trees (MDTs), used for Multicast VPNs (MVPNs), to span multiple autonomous systems.

There are two types of MVPN inter-AS deployment scenarios:

- Single-Provider Inter-AS—A service provider whose internal network consists of multiple autonomous systems.
• Intra-Provider Inter-AS—Multiple service providers that need to coordinate their networks to provide inter-AS support.

To establish a Multicast VPN between two autonomous systems, a MDT-default tunnel must be setup between the two PE routers. The PE routers accomplish this by joining the configured MDT-default group. This MDT-default group is configured on the PE router and is unique for each VPN. The PIM sends the join based on the mode of the groups, which can be PIM SSM, bidir, or sparse mode.

Note PIM-Bidir is not supported on MVPN.

Benefits of MVPN Inter-AS Support
The MVPN Inter-AS Support feature provides these benefits to service providers:

• Increased multicast coverage to customers that require multicast to span multiple services providers in an MPLS Layer 3 VPN service.

• The ability to consolidate an existing MVPN service with another MVPN service, as in the case of a company merger or acquisition.

InterAS Option A
InterAS Option A is the basic Multicast VPN configuration option. In this option, the PE router partially plays the Autonomous System Border Router (ASBR) role in each Autonomous System (AS). Such a PE router in each AS is directly connected through multiple VRF bearing subinterfaces. MPLS label distribution protocol need not run between these InterAS peering PE routers. However, an IGP or BGP protocol can be used for route distribution under the VRF.

The Option A model assumes direct connectivity between PE routers of different autonomous systems. The PE routers are attached by multiple physical or logical interfaces, each of which is associated with a given VPN (through a VRF instance). Each PE router, therefore, treats the adjacent PE router like a customer edge (CE) router. The standard Layer 3 MPLS VPN mechanisms are used for route redistribution with each autonomous system; that is, the PEs use exterior BGP (eBGP) to distribute unlabeled IPv4 addresses to each other.

Note Option A allows service providers to isolate each autonomous system from the other. This provides better control over routing exchanges and security between the two networks. However, Option A is considered the least scalable of all the inter-AS connectivity options.

BGP Requirements
PE routers are the only routers that need to be MVPN-aware and able to signal remote PEs with information regarding the MVPN. It is fundamental that all PE routers have a BGP relationship with each other, either directly or through a route reflector, because the PE routers use the BGP peering address information to derive the RPF PE peer within a given VRF.

PIM-SSM MDT tunnels cannot be set up without a configured BGP MDT address-family, because you establish the tunnels, using the BGP connector attribute.
See the Implementing BGP on Cisco IOS XR Software module of the *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router* for information on BGP support for Multicast VPN.

Multitopology Routing

Multitopology routing allows you to manipulate network traffic flow when desirable (for example, to broadcast duplicate video streams) to flow over non-overlapping paths.

At the core of multitopology routing technology is router space infrastructure (RSI). RSI manages the global configuration of routing tables. These tables are hierarchically organized into VRF tables under logical routers. By default, RSI creates tables for unicast and multicast for both IPv4 and IPv6 under the default VRF. Using multitopology routing, you can configure named topologies for the default VRF.

PIM uses a routing policy that supports matching on source or group address to select the topology in which to look up the reverse-path forwarding (RPF) path to the source. If you do not configure a policy, the existing behavior (to select a default table) remains in force.

Currently, IS-IS and PIM routing protocols alone support multitopology-enabled network.

For information on how to configure multitopology routing, see Configuring Multitopology Routing, on page 73.

Multicast VPN Extranet Routing

Multicast VPN (MVPN) extranet routing lets service providers distribute IP multicast content from one enterprise site to another across a multicast VRF. In other words, this feature provides capability to seamlessly hop VRF boundaries to distribute multicast content end to end.

Unicast extranet can be achieved simply by configuring matching route targets across VRFs. However, multicast extranet requires such configuration to resolve route lookups across VRFs in addition to the following:

- Maintain multicast topology maps across VRFs.
- Maintain multicast distribution trees to forward traffic across VRFs.

Information About Extranets

An extranet can be viewed as part of an enterprise intranet that is extended to users outside the enterprise. A VPN is used as a way to do business with other enterprises and with customers, such as selling products and maintaining strong business partnerships. An extranet is a VPN that connects to one or more corporate sites to external business partners or suppliers to securely share a designated part of the enterprise’s business information or operations.

MVPN extranet routing can be used to solve such business problems as:

- Inefficient content distribution between enterprises.
- Inefficient content distribution from service providers or content providers to their enterprise VPN customers.

MVPN extranet routing provides support for IPv4 and IPv6 address family.
An extranet network requires the PE routers to pass traffic across VRFs (labeled "P" in Figure 6: Components of an Extranet MVPN, on page 23). Extranet networks can run either IPv4 or IPv6, but the core network always runs only IPv4 active multicast.

Note
Multicast extranet routing is not supported on BVI interfaces.

Extranet Components

Figure 6: Components of an Extranet MVPN

MVRF—Multicast VPN routing and forwarding (VRF) instance. An MVRF is a multicast-enabled VRF. A VRF consists of an IP routing table, a derived forwarding table, a set of interfaces that use the forwarding table, and a set of rules and routing protocols that determine what goes into the forwarding table. In general, a VRF includes the routing information that defines a customer VPN site that is attached to a provider edge (PE) router.

Source MVRF—An MVRF that can reach the source through a directly connected customer edge (CE) router.

Receiver MVRF—An MVRF to which receivers are connected through one or more CE devices.

Source PE—A PE router that has a multicast source behind a directly connected CE router.

Receiver PE—A PE router that has one or more interested receivers behind a directly connected CE router.

Information About the Extranet MVPN Routing Topology

In unicast routing of peer-to-peer VPNs, BGP routing protocol is used to advertise VPN IPv4 and IPv6 customer routes between provider edge (PE) routers. However, in an MVPN extranet peer-to-peer network, PIM RPF is used to determine whether the RPF next hop is in the same or a different VRF and whether that source VRF is local or remote to the PE.
Source MVRF on a Receiver PE Router

To provide extranet MVPN services to enterprise VPN customers by configuring a source MVRF on a receiver PE router, you would complete the following procedure:

- On a receiver PE router that has one or more interested receivers in an extranet site behind a directly connected CE router, configure an MVRF that has the same default MDT group as the site connected to the multicast source.
- On the receiver PE router, configure the same unicast routing policy to import routes from the source MVRF to the receiver MVRF.

If the originating MVRF of the RPF next hop is local (source MVRF at receiver PE router), the join state of the receiver VRFs propagates over the core by using the default multicast distribution tree (MDT) of the source VRF. Figure 7: Source MVRF at the Receiver PE Router, on page 24 illustrates the flow of multicast traffic in an extranet MVPN topology where the source MVRF is configured on a receiver PE router (source at receiver MVRF topology). An MVRF is configured for VPN-A and VPN-B on PE2, a receiver PE router. A multicast source behind PE1, the source PE router, is sending out a multicast stream to the MVRF for VPN-A, and there are interested receivers behind PE2, the receiver PE router for VPN-B, and also behind PE3, the receiver PE router for VPN-A. After PE1 receives the packets from the source in the MVRF for VPN-A, it replicates and forwards the packets to PE2 and PE3. The packets received at PE2 in VPN-A are decapsulated and replicated to receivers in VPN-B.

Figure 7: Source MVRF at the Receiver PE Router

Receiver MVRF on the Source PE Router

To provide extranet MVPN services to enterprise VPN customers by configuring the receiver MVRF on the source PE router, complete the following procedure:

- For each extranet site, you would configure an additional MVRF on the source PE router, which has the same default MDT group as the receiver MVRF, if the MVRF is not already configured on the source PE.
• In the receiver MVRF configuration, you would configure the same unicast routing policy on the source and receiver PE routers to import routes from the source MVRF to the receiver MVRF.

If the originating MVRF of the RPF next-hop is remote (receiver MVRF on the source PE router), then the join state of receiver VRFs propagates over the core through the MDT of each receiver.

Figure 8: Receiver MVRF at the Source PE Router Receiver on page 25 illustrates the flow of multicast traffic in an extranet MVPN topology where a receiver MVRF is configured on the source PE router. An MVRF is configured for VPN-A and VPN-B on PE1, the source PE router. A multicast source behind PE1 is sending out a multicast stream to the MVRF for VPN-A, and there are interested receivers behind PE2 and PE3, the receiver PE routers for VPN-B and VPN-A, respectively. After PE1 receives the packets from the source in the MVRF for VPN-A, it independently replicates and encapsulates the packets in the MVRF for VPN-A and VPN-B and forwards the packets. After receiving the packets from this source, PE2 and PE3 decapsulate and forward the packets to the respective MVRFS.

For more information, see also Configuring MVPN Extranet Routing, on page 76 and Configuring MVPN Extranet Routing: Example, on page 116.

RPF Policies in an Extranet

RPF policies can be configured in receiver VRFs to bypass RPF lookup in receiver VRFs and statically propagate join states to specified source VRF. Such policies can be configured to pick a source VRF based on either multicast group range, multicast source range, or RP address.

For more information about configuration of RFP policies in extranets, see Configuring RPL Policies in Receiver VRFs to Propagate Joins to a Source VRF: Example, on page 118 and Configuring RPL Policies in Receiver VRFs on Source PE Routers to Propagate Joins to a Source VRF: Example, on page 120.
Multicast VPN Hub and Spoke Topology

Hub and spoke topology is an interconnection of two categories of sites — Hub sites and Spoke sites. The routes advertised across sites are such that they achieve connectivity in a restricted hub and spoke fashion. A spoke can interact only with its hub because the rest of the network (that is, other hubs and spokes) appears hidden behind the hub.

The hub and spoke topology can be adopted for these reasons:

- Spoke sites of a VPN customer receives all their traffic from a central (or Hub) site hosting services such as server farms.
- Spoke sites of a VPN customer requires all the connectivity between its spoke sites through a central site. This means that the hub site becomes a transit point for interspoke connectivity.
- Spoke sites of a VPN customer do not need any connectivity between spoke sites. Hubs can send and receive traffic from all sites but spoke sites can send or receive traffic only to or from Hub sites.

Both Cisco CRS and Cisco XR 12000 Series routers support MVPN v4 Hub-and-spoke implementation. But MVPNv6 Hub-and-spoke is not supported on Cisco CRS Router.

Realizing the Hub and Spoke Topology

Hub and Spoke implementation leverages the infrastructure built for MVPN Extranet. The regular MVPN follows the model in which packets can flow from any site to the other sites. But Hub and Spoke MVPN will restrict traffic flows based on their subscription.

A site can be considered to be a geographic location with a group of CE routers and other devices, such as server farms, connected to PE routers by PE-CE links for VPN access. Either every site can be placed in a separate VRF, or multiple sites can be combined in one VRF on the PE router.

By provisioning every site in a separate VRF, you can simplify the unicast and multicast Hub and Spoke implementation. Such a configuration brings natural protection from traffic leakage - from one spoke site to another. Cisco IOS XR Software implementation of hub and spoke follows the one-site-to-one VRF model. Any site can be designated as either a hub or spoke site, based on how the import or export of routes is setup. Multiple hub and spoke sites can be collated on a given PE router.

Unicast Hub and Spoke connectivity is achieved by the spoke sites importing routes from only Hub sites, and Hub sites importing routes from all sites. As the spoke sites do not exchange routes, spoke to spoke site traffic cannot flow. If interspoke connectivity is required, hubs can choose to re-inject routes learned from one spoke site into other spoke site.

MVPN Hub and Spoke is achieved by separating core tunnels, for traffic sourced from hub sites, and spoke sites. MDT hub is the tunnel carrying traffic sourced from all Hub sites, and MDT spoke carries traffic sourced from all spoke sites. Such tunnel end-points are configured on all PEs participating in hub and spoke topology. If spoke sites do not host any multicast sources or RPs, provisioning of MDT Spoke can be completely avoided at all such routers.

Once these tunnels are provisioned, multicast traffic path will be policy routed in this manner:

1 Hub sites will send traffic to only MDT Hub.
2. Spoke sites will send traffic to only MDT Spoke.
3. Hub sites will receive traffic from both tunnels.
4. Spoke sites will receive traffic from only MDT Hub.

These rules ensure that hubs and spokes can send and receive traffic to or from each other, but direct spoke to spoke communication does not exist. If required, interspoke multicast can flow by turning around the traffic at Hub sites.

These enhancements are made to the Multicast Hub and Spoke topology in Cisco IOS XR Software Release 4.0:

- Auto-RP and BSR are supported across VRFs that are connected through extranet. It is no longer restricted to using static RP only.
- MP-BGP can publish matching import route-targets while passing prefix nexthop information to RIB.
- Route policies can use extended community route targets instead of IP address ranges.
- Support for extranet v4 data mdt was included so that data mdt in hub and spoke can be implemented.

Label Switched Multicast (LSM) Multicast Label Distribution Protocol (mLDP) based Multicast VPN (mVPN) Support

Label Switch Multicast (LSM) is MPLS technology extensions to support multicast using label encapsulation. Next-generation MVPN is based on Multicast Label Distribution Protocol (mLDP), which can be used to build P2MP and MP2MP LSPs through a MPLS network. These LSPs can be used for transporting both IPv4 and IPv6 multicast packets, either in the global table or VPN context.

Benefits of LSM MLDP based MVPN

LSM provides these benefits when compared to GRE core tunnels that are currently used to transport customer traffic in the core:

- It leverages the MPLS infrastructure for transporting IP multicast packets, providing a common data plane for unicast and multicast.
- It applies the benefits of MPLS to IP multicast such as Fast ReRoute (FRR) and
- It eliminates the complexity associated PIM.

Configuring MLDP MVPN

The MLDP MVPN configuration enables IPv4 multicast packet delivery using MPLS. This configuration uses MPLS labels to construct default and data Multicast Distribution Trees (MDTs). The MPLS replication is used as a forwarding mechanism in the core network. For MLDP MVPN configuration to work, ensure that the global MPLS mLDP configuration is enabled. To configure MVPN extranet support, configure the source...
multicast VPN Routing and Forwarding (mVRF) on the receiver Provider Edge (PE) router or configure the receiver mVRF on the source PE. MLDP MVPN is supported for both intranet and extranet.

Figure 9: MLDP based MPLS Network

![MLDP based MPLS Network Diagram]

P2MP and MP2MP Label Switched Paths

mLDP is an application that sets up Multipoint Label Switched Paths (MP LSPs) in MPLS networks without requiring multicast routing protocols in the MPLS core. mLDP constructs the P2MP or MP2MP LSPs without interacting with or relying upon any other multicast tree construction protocol. Using LDP extensions for MP LSPs and Unicast IP routing, mLDP can setup MP LSPs. The two types of MP LSPs that can be setup are Point-to-Multipoint (P2MP) and Multipoint-to-Multipoint (MP2MP) type LSPs.

A P2MP LSP allows traffic from a single root (ingress node) to be delivered to a number of leaves (egress nodes), where each P2MP tree is uniquely identified with a 2-tuple (root node address, P2MP LSP identifier). A P2MP LSP consists of a single root node, zero or more transit nodes, and one or more leaf nodes, where typically root and leaf nodes are PEs and transit nodes are P routers. A P2MP LSP setup is receiver-driven and is signaled using mLDP P2MP FEC, where LSP identifier is represented by the MP Opaque Value element. MP Opaque Value carries information that is known to ingress LSRs and Leaf LSRs, but need not be interpreted by transit LSRs. There can be several MP LSPs rooted at a given ingress node, each with its own identifier.

A MP2MP LSP allows traffic from multiple ingress nodes to be delivered to multiple egress nodes, where a MP2MP tree is uniquely identified with a 2-tuple (root node address, MP2MP LSP identifier). For a MP2MP LSP, all egress nodes, except the sending node, receive a packet sent from an ingress node.

A MP2MP LSP is similar to a P2MP LSP, but each leaf node acts as both an ingress and egress node. To build an MP2MP LSP, you can setup a downstream path and an upstream path so that:

- Downstream path is setup just like a normal P2MP LSP
- Upstream path is setup like a P2P LSP towards the upstream router, but inherits the downstream labels from the downstream P2MP LSP.
Packet Flow in mLDP-based Multicast VPN

For each packet coming in, MPLS creates multiple out-labels. Packets from the source network are replicated along the path to the receiver network. The CE1 router sends out the native IP multicast traffic. The PE1 router imposes a label on the incoming multicast packet and replicates the labeled packet towards the MPLS core network. When the packet reaches the core router (P), the packet is replicated with the appropriate labels for the MP2MP default MDT or the P2MP data MDT and transported to all the egress PEs. Once the packet reaches the egress PE, the label is removed and the IP multicast packet is replicated onto the VRF interface.

Realizing a mLDP-based Multicast VPN

There are different ways a Label Switched Path (LSP) built by mLDP can be used depending on the requirement and nature of application such as:

- P2MP LSPs for global table transit Multicast using in-band signaling.
- P2MP/MP2MP LSPs for MVPN based on MI-PMSI or Multidirectional Inclusive Provider Multicast Service Instance (Rosen Draft).
- P2MP/MP2MP LSPs for MVPN based on MS-PMSI or Multidirectional Selective Provider Multicast Service Instance (Partitioned E-LAN).

The Cisco CRS Router performs the following important functions for the implementation of MLDP:

- Encapsulating VRF multicast IP packet with GRE/Label and replicating to core interfaces (imposition node).
- Replicating multicast label packets to different interfaces with different labels (Mid node).
- Decapsulate and replicate label packets into VRF interfaces (Disposition node).

Characteristics of mLDP Profiles

The characteristics of various mLDP profiles are listed in this section.

Profile 1: Rosen-mLDP (with no BGP-AD)

These are the characteristics of this profile:

- MP2MP mLDP trees are used in the core.
- VPN-ID is used as the VRF distinguisher.
- Configuration based on Default MDTs.
- Same Default-MDT core-tree used for IPv4 and IPv6 traffic.
- Data-MDT announcements sent by PIM (over Default-MDT).
- The multicast traffic can either be SM or SSM.
- Inter-AS Options A, B, and C are supported. Connector Attribute is announced in VPN-IP routes.
Profile 2: MS-PMSI-mLDP-MP2MP (No BGP-AD)
These are the characteristics of this profile:

- MP2MP mLDP trees are used in the core.
- Different MS-PMSI core-trees for IPv4 and IPv6 traffic.
- The multicast traffic can be SM or SSM.
- Extranet, Hub and Spoke are supported.
- Inter-AS Options A, B, and C are supported. Connector Attribute is announced in VPN-IP routes.

Profile 3: Rosen-GRE with BGP-AD
These are the characteristics of this profile:

- PIM-trees are used in the core. The data encapsulation method used is GRE.
- SM, SSM, or Bidir used in the core.
- Configuration is based on Default-MDTs.
- The multicast traffic can be SM or SSM.
- MoFRR in the core is supported.
- Extranet, Hub and Spoke, CsC, Customer-RP-discovery (Embedded-RP, AutoRP and BSR) are supported.
- Inter-AS Options A, B, and C are supported. VRF-Route-Import EC is announced in VPN-IP routes.

Profile 4: MS-PMSI-mLDP-MP2MP with BGP-AD
These are the characteristics of this profile:

- MP2MP mLDP trees are used in the core.
- The multicast traffic can be SM or SSM.
- Extranet, Hub and Spoke, CsC, Customer-RP-discovery (Embedded-RP, AutoRP, and BSR) are supported.
- Inter-AS Options A, B, and C are supported. VRF-Route-Import EC is announced in VPN-IP routes.

Profile 5: MS-PMSI-mLDP-P2MP with BGP-AD
These are the characteristics of this profile:

- P2MP mLDP trees are used in the core.
- The multicast traffic can be SM or SSM.
- Extranet, Hub and Spoke, CsC, Customer-RP-discovery (Embedded-RP, AutoRP, and BSR) are supported.
- Inter-AS Options A, B, and C are supported. VRF-Route-Import EC is announced in VPN-IP routes.

Profile 6: VRF In-band Signaling (No BGP-AD)
These are the characteristics of this profile:

- P2MP mLDP trees are used in the core.
• MoFRR in the core is supported.
• There is one core tree built per VRF-S,G route. There can be no (*,G) routes in VRF, with RPF reachability over the core.
• The multicast traffic can be SM S,G or SSM.

Profile 7: Global Inband Signalling
These are the characteristics of this profile:
• P2MP mLDP inband tree in the core; no C-multicast Routing.
• Customer traffic can be SM S,G or SSM.
• Support for global table S,Gs on PEs.

For more information on mLDP implementation and OAM concepts, see the Cisco IOS XR MPLS Configuration Guide for the Cisco CRS Router

Profile 8: Global P2MP-TE
These are the characteristics of this profile:
• P2MP-TE tree, with static Destination list, in the core; no C-multicast Routing.
• Static config of (S,G) required on Head-end PE.
• Only C-SSM support on PEs.
• Support for global table S,Gs on PEs.

Profile 9: Rosen-mLDP with BGP-AD
These are the characteristics of this profile:
• Single MP2MP mLDP core-tree as the Default-MDT, with PIM C-multicast Routing.
• All UMH options supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM, or Bidir (separate-partitioned-mdt).
• RIB-Extranet, RPL-Extranet, Hub & Spoke supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.

Profile 10: VRF Static-P2MP-TE with BGP AD
These are the characteristics of this profile:
• P2MP-TE tree, with static Destination list, in the core; no C-multicast Routing.
• Static config of (S,G) required on Head-end PE.
• Only C-SSM support on PEs.
• Support for IPv4 MVPN S,Gs on PEs. No support for IPv6 MVPN routes.
Profile 11: Rosen-PIM/GRE with BGP C-multicast Routing

These are the characteristics of this profile:

• PIM-trees in the core, data encapsulation is GRE, BGP C-multicast Routing.
• Static config of (S,G) required on Head-end PE.
• For PIM-SSM core-tree and PIM-SM core-tree with no spt-infinity, all UMH options are supported.
• For PIM-SM core-tree with spt-infinity case, only SFS (Highest PE or Hash-of-BGP-paths) is supported. Hash of installed-paths method is not supported.
• Default and Data MDTs supported.
• Customer traffic can be SM, SSM, or Bidir (separate-partitioned-mdt).
• Inter-AS Option A supported. Options B and C not supported.

Profile 12: Rosen-mLDP-P2MP with BGP C-multicast Routing

These are the characteristics of this profile:

• Full mesh of P2MP mLDP core-tree as the Default-MDT, with BGP C-multicast Routing.
• All UMH options supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM, or Bidir (separate-partitioned-mdt).
• RPL-Tail-end-Extranet supported.
• Inter-AS Option A, B and C supported.

Profile 13: Rosen-mLDP-MP2MP with BGP C-multicast Routing

These are the characteristics of this profile:

• Single MP2MP mLDP core-tree as the Default-MDT, with BGP C-multicast Routing.
• Only SFS (Highest PE or Hash-of-BGP-paths) is supported. Hash of Installed-paths method is not supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM, or Bidir (separate-partitioned-mdt).
• RIB-Tail-end-Extranet, RPL-Tail-end-Extranet supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A, B and C supported. For Options B and C, Root has to be on a PE or the roor-address reachability has to be leaked across all autonomous systems.

Profile 14: MP2MP-mLDP-P2MP with BGP C-multicast Routing

These are the characteristics of this profile:

• Full mesh of P2MP mLDP core-tree as the Default-MDT, with BGP C-multicast Routing.
• All UMH options supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM, or Bidir (separate-partitioned-mdt).
• RPL-Tail-end-Extranet supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A, B and C supported.

Profile 15: MP2MP-mLDP-MP2MP with BGP C-multicast Routing

These are the characteristics of this profile:
• Full mesh of MP2MP mLDP core-tree as the Default-MDT, with BGP C-multicast Routing.
• All UMH options supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM, or Bidir (separate-partitioned-mdt).
• RPL-Tail-end-Extranet supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A, B and C supported.

Profile 16: Rosen-Static-P2MP-TE with BGP C-multicast Routing

These are the characteristics of this profile:
• Full mesh of Static-P2MP-TE core-trees, as the Default-MDT, with BGP C-multicast Routing.
• All UMH options supported.
• Support for Data MDT, Default MDT.
• Customer traffic can be SM, SSM.
• RPL-Tail-end-Extranet supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A supported. Options B and C not supported.

Note
Whenever multicast stream crosses configured threshold on encap PE (Head PE), S-PMSI is announced. Core tunnel is static P2MP-TE tunnel configured under route-policy for the stream. Static P2MP-TE data mdt is implemented in such a way that it can work with dynamic data mdt, dynamic default mdttand default static P2MP.

Profile 17: Rosen-mLDP-P2MP with BGP AD/PIM C-multicast Routing

These are the characteristics of this profile:
• Full mesh of P2MP mLDP core-tree as the Default-MDT, with PIM C-multicast Routing.
• All UMH options supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM, or Bidir (separate-partitioned-mdt).
• RPL-Extranet, Hub & Spoke supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A, B and C supported.

Profile 18: Rosen-Static-P2MP-TE with BGP AD/PIM C-multicast Routing
These are the characteristics of this profile:
• Full mesh of Static-P2MP-TE core-trees, as the Default-MDT, with PIM C-multicast Routing.
• All UMH options supported.
• Default MDT supported; Data MDT is not supported.
• Customer traffic can be SM, SSM.
• RPL-Extranet, Hub & Spoke supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A supported. Options B and C not supported.

Profile 20: Rosen-P2MP-TE with BGP AD/PIM C-multicast Routing
These are the characteristics of this profile:
• Dynamic P2MP-TE tunnels setup on demand, with PIM C-multicast Routing
• All UMH options supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM.
• RPL-Extranet, Hub & Spoke supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A and C-supported.

Profile 22: Rosen-P2MP-TE with BGP C-multicast Routing
These are the characteristics of this profile:
• Dynamic P2MP-TE tunnels with BGP C-multicast Routing
• All UMH options supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM, or Bidir.
• RIB-Tail-end-Extranet, RPL-Tail-end-Extranet supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A and C- supported.

Profile 24: Partitioned-P2MP-TE with BGP AD/PIM C-multicast Routing

These are the characteristics of this profile:
• Dynamic P2MP-TE tunnels setup on demand, with PIM C-multicast Routing
• All UMH options supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM, or Bidir.
• RPL-Extranet, Hub & Spoke supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A and C- supported.

Profile 26: Partitioned-P2MP-TE with BGP C-multicast Routing

These are the characteristics of this profile:
• Dynamic P2MP-TE tunnels with BGP C-multicast Routing
• All UMH options supported.
• Default and Data MDT supported.
• Customer traffic can be SM, SSM.
• RIB-Tail-end-Extranet, RPL-Tail-end-Extranet supported.
• Customer-RP-discovery (Embedded-RP, AutoRP & BSR) is supported.
• Inter-AS Option A and C- supported.

Configuration rules for profiles

Rules for Rosen-mGRE profiles (profiles- 0, 3, 11)
• All profiles require VPNv4 or v6 unicast reachability.
• By default, encap 1400-byte size c-multicast IP packet is supported. To support decap or encap larger packet size, `mdt mtu` command.
• Loopback configuration is required. Use the `mdt source loopback0` command. Other loopbacks can be used for different VRFs, but this is not recommended.

Rules for Rosen-mLDP profiles (profiles- 1, 9, 12, 13, 17)
• mLDP must be globally enabled.
• VPN-id is mandatory for Rosen-mLDP MP2MP profiles.
• Root node must be specified manually. Multiple root nodes can be configured for Root Node Redundancy.
• If only profile 1 is configured, MVPN must be enabled under bgp.
• For BGP-AD profiles, the remote PE address is required.

Rules for mLDP profiles (profiles- 2, 4, 5, 14, 15)

• MVPN must be enabled under bgp, if only profile 2 is configured.

• Support only for static RP for customer RP.

Rules for inband mLDP profiles (profiles- 6, 7)

• MVPN must be enabled under bgp for vrf-inband profiles.

• Data MDT is not supported.

• Backbone facing interface (BFI) must be enabled on tail PE.

• Source route of SSM must be advertise to tail PE by iBGP.

MLDP inband signaling

MLDP Inband signaling allows the core to create (S,G) or (*,G) state without using out-of-band signaling such as BGP or PIM. It is supported in VRF (and in the global context). Both IPv4 and IPv6 multicast groups are supported. MLDP inband signaling is supported on CRS-10.

In MLDP Inband signaling, one can configure an ACL range of multicast (S,G). This (S,G) can be transported in MLDP LSP. Each multicast channel (S,G), is 1 to 1 mapped to each tree in the inband tree. The (S,G) join, through IGMP/MLD/PIM, will be registered in MRIB, which is the client of MLDP.

MLDP In-band signalling supports transiting PIM (S,G) or (*,G) trees across a MPLS core without the need for an out-of-band protocol. In-band signaling is only supported for shared-tree-only forwarding (also known as sparse-mode threshold infinity). PIM Sparse-mode behavior is not supported (switching from (*,G) to (S,G).

The details of the MLDP profiles are discussed in the *Cisco IOS XR Multicast Configuration Guide for the Cisco CRS Router*

Summary of Supported MVPN Profiles

This tables summarizes the supported MVPN profiles:

<table>
<thead>
<tr>
<th>Profile Number</th>
<th>Name</th>
<th>Opaque-value</th>
<th>BGP-AD</th>
<th>Data-MDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Rosen GRE</td>
<td>N/A</td>
<td>N/A</td>
<td>PIM TLVs over default MDT</td>
</tr>
<tr>
<td>1</td>
<td>Rosen MLDP</td>
<td>Type 2 - Root Address:VPN-ID:0-n</td>
<td>N/A</td>
<td>PIM TLVs over default MDT</td>
</tr>
<tr>
<td>2</td>
<td>MS- PMSI (Partition)</td>
<td>Cisco proprietary - Source- PE:RD:0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>Rosen GRE with BGP -AD</td>
<td>N/A</td>
<td>• Intra-AS MI- PMSI</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• S- PMSI for Data-MDT</td>
<td>PIM or BGP -AD (knob controlled)</td>
</tr>
</tbody>
</table>

Cisco IOS XR Multicast Configuration Guide for the Cisco CRS Router, Release 4.3.x
<table>
<thead>
<tr>
<th>Profile Number</th>
<th>Name</th>
<th>Opaque-value</th>
<th>BGP-AD</th>
<th>Data-MDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>MS- PMSI (Partition) MLDP MP2MP with BGP -AD</td>
<td>Type 1 - Source-PE:Global -ID</td>
<td>- I- PMSI with empty PTA</td>
<td>BGP-AD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- MS- PMSI for partition mdt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- S- PMSI for data-mdt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- S- PMSI cust RP-discovery trees</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MS- PMSI (Partition) MLDP P2MP with BGP -AD</td>
<td>Type 1 - Source-PE:Global -ID</td>
<td>- I- PMSI with empty PTA</td>
<td>BGP-AD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- MS- PMSI for partition mdt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- S- PMSI for data-mdt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- S- PMSI cust RP-discovery trees</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>VRF Inband MLDP</td>
<td>RD:S,G</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>Global Inband</td>
<td>S,G</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>Global P2MP TE</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>9</td>
<td>Rosen MLDP with BGP -AD</td>
<td>Type 2 - RootAddresss:VPN -ID:0 -n</td>
<td>- Intra-AS MI- PMSI</td>
<td>PIM or BGP-AD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- S- PMSI for Data-MDT</td>
<td>knob controlled</td>
</tr>
</tbody>
</table>

Configuration Process for MLDP MVPN (Intranet)

These steps provide a broad outline of the different configuration process of MLDP MVPN for intranet:

Note

For detailed summary of the various MVPN profiles, see the Summary of Supported MVPN Profiles, on page 36.

- Enabling MPLS MLDP

 * configure
• mpls ldp mldp

• Configuring a VRF entry
 * configure
 * vrf vrf_name
 * address-family ipv4/ipv6 unicast
 * import route-target route-target-ext-community
 * export route-target route-target-ext-community

• Configuring VPN ID
 * configure
 * vrf vrf_name
 * vpn id vpn_id

The configuring VPN ID procedure is needed for profiles 1 and 9 (Rosen MLDP).

• Configuring MVPN Routing and Forwarding instance
 * configure
 * multicast-routing vrf vrf_name
 * address-family ipv4
 * mdt default mldp ipv4 root-node

For profile 1 (MLDP Rosen), the **mdt default mldp ipv4** command and for profile 4/5 (MS- PMSI with BGP-AD), the **mdt partitioned mldp ipv4 mp2mp/p2mp** command are configured.

• Configuring the Route Distinguisher
 * configure
 * router bgp AS Number
 * vrf vrf_name
 * rd rd_value

• Configuring Data MDTs (optional)
 * configure
 * multicast-routing vrf vrf_name
 * address-family ipv4
 * mdt data <1-255>

• Configuring BGP MDT address family
 * configure
 * router bgp AS Number
• Configuring BGP vpnv4 address family
 • configure
 • router bgp AS Number
 • address-family vpnv4 unicast

• Configuring BGP IPv4 VRF address family
 • configure
 • router bgp AS Number
 • vrf vrf_name
 • address-family ipv4 unicast

• Configuring PIM SM/SSM Mode for the VRFs
 • configure
 • router pim
 • vrf vrf_name
 • address-family ipv4
 • rpf topology route-policy rosen_mvnp_mldp

For each profile, a different route-policy is configured.

• Configuring route-policy
 • route-policy rosen_mvnp_mldp
 • set core-tree tree-type
 • pass
 • end-policy

For profile 1 (MLDP Rosen), the mldp-rosen core tree type and for profile 4/5 (MS-PMSI with BGP-AD), the mldp-partitioned-mp2mp/p2mp core tree type are configured.

The configuration of the above procedures depends on the profile used for each configuration. For detailed examples of each profile, see Configuring LSM based MLDP: Examples, on page 136.

Next-Generation Multicast VPN

Next-Generation Multicast VPN (NG-MVPN) offers more scalability for Layer 3 VPN multicast traffic. It allows point-to-multipoint Label Switched Paths (LSP) to be used to transport the multicast traffic between PEs, thus allowing the multicast traffic and the unicast traffic to benefit from the advantages of MPLS transport,
such as traffic engineering and fast re-route. This technology is ideal for video transport as well as offering multicast service to customers of the layer 3 VPN service.

NG-MVPN supports:

- VRF Route-Import and Source-AS Extended Communities
- Upstream Multicast Hop (UMH) and Duplicate Avoidance
- Leaf AD (Type-4) and Source-Active (Type-5) BGP AD messages
- Default-MDT with mLDP P2MP trees and with Static P2MP-TE tunnels
- BGP C-multicast Routing
- RIB-based Extranet with BGP AD
- Accepting (*,G) S-PMSI announcements
- Egress-PE functionality for Ingress Replication (IR) core-trees
- Enhancements for PIM C-multicast Routing
- Migration of C-multicast Routing protocol
- PE-PE ingress replication
- Dynamic P2MP-TE tunnels
- Flexible allocation of P2MP-TE attribute-sets
- Data and partitioned MDT knobs
- Multi-instance BGP support
- SAFI-129 and VRF SAFI-2 support
- Anycast-RP using MVPN SAFI

Multicast Source Discovery Protocol

Multicast Source Discovery Protocol (MSDP) is a mechanism to connect multiple PIM sparse-mode domains. MSDP allows multicast sources for a group to be known to all rendezvous points (RPs) in different domains. Each PIM-SM domain uses its own RPs and need not depend on RPs in other domains.

An RP in a PIM-SM domain has MSDP peering relationships with MSDP-enabled routers in other domains. Each peering relationship occurs over a TCP connection, which is maintained by the underlying routing system.

MSDP speakers exchange messages called Source Active (SA) messages. When an RP learns about a local active source, typically through a PIM register message, the MSDP process encapsulates the register in an SA message and forwards the information to its peers. The message contains the source and group information for the multicast flow, as well as any encapsulated data. If a neighboring RP has local joiners for the multicast group, the RP installs the S, G route, forwards the encapsulated data contained in the SA message, and sends PIM joins back towards the source. This process describes how a multicast path can be built between domains.
Although you should configure BGP or Multiprotocol BGP for optimal MSDP interdomain operation, this is not considered necessary in the Cisco IOS XR Software implementation. For information about how BGP or Multiprotocol BGP may be used with MSDP, see the MSDP RPF rules listed in the Multicast Source Discovery Protocol (MSDP), Internet Engineering Task Force (IETF) Internet draft.

VRF-aware MSDP

VRF (VPN Routing and Forwarding) -aware MSDP enables MSDP to function in the VRF context. This in turn, helps the user to locate the PIM (protocol Independent Multicast) RP on the Provider Edge and use MSDP for anycast-RP.

MSDP needs to be VRF-aware when:

- Anycast-RP is deployed in an MVPN (Multicast MVPN) in such a manner that one or more PIM RPs in the anycast-RP set are located on a PE. In such a deployment, MSDP needs to operate in the VRF context on the PE.
- The PIM RP is deployed in an MVPN in such a manner that it is not on a PE and when the customer multicast routing type for the MVPN is BGP and the PEs have suppress-shared-tree-join option configured. In this scenario, there is no PE-shared tree link, so traffic may stop at the RP and it does not flow to other MVPN sites. An MSDP peering between the PIM RP and one or more PEs resolves the issue.

Multicast Nonstop Forwarding

The Cisco IOS XR Software nonstop forwarding (NSF) feature for multicast enhances high availability (HA) of multicast packet forwarding. NSF prevents hardware or software failures on the control plane from disrupting the forwarding of existing packet flows through the router.

The contents of the Multicast Forwarding Information Base (MFIB) are frozen during a control plane failure. Subsequently, PIM attempts to recover normal protocol processing and state before the neighboring routers time out the PIM hello neighbor adjacency for the problematic router. This behavior prevents the NSF-capable router from being transferred to neighbors that will otherwise detect the failure through the timed-out adjacency. Routes in MFIB are marked as stale after entering NSF, and traffic continues to be forwarded (based on those routes) until NSF completion. On completion, MRIB notifies MFIB and MFIB performs a mark-and-sweep to synchronize MFIB with the current MRIB route information.

Nonstop forwarding is not supported for PIM bidirectional routes. If a PIM or MRIB failure (including RP failover) happens with multicast-routing NSF enabled, PIM bidirectional routes in the MFIBs are purged immediately and forwarding on these routes stops. Routes are reinstalled and forwarding recommences after NSF recovery has ended. This affects only bidirectional routes. PIM-SM and PIM-SSM routes are forwarded with NSF during the failure. This exception is designed to prevent possible multicast routing loops from forming when the control plane is not able to participate in the BiDir Designated Forwarder election.
Multicast Configuration Submodes

Cisco IOS XR Software moves control plane CLI configurations to protocol-specific submodes to provide mechanisms for enabling, disabling, and configuring multicast features on a large number of interfaces.

Cisco IOS XR Software allows you to issue most commands available under submodes as one single command string from the global or XR config mode.

For example, the `ssm` command could be executed from the multicast-routing configuration submode like this:

```
RP/0/RP0/CPU0:router(config)# multicast-routing
RP/0/RP0/CPU0:router(config-mcast-ipv4)# ssm range
```

Alternatively, you could issue the same command from the global or XR config mode like this:

```
RP/0/RP0/CPU0:router(config)# multicast-routing ssm range
```

The following multicast protocol-specific submodes are available through these configuration submodes:

Multicast-Routing Configuration Submode

When you issue the `multicast-routing ipv4` or `multicast-routing ipv6` command, all default multicast components (PIM, IGMP, MLD, MFWD, and MRIB) are automatically started, and the CLI prompt changes to "config-mcast-ipv4" or "config-mcast-ipv6", indicating that you have entered multicast-routing configuration submode.

PIM Configuration Submode

When you issue the `router pim` command, the CLI prompt changes to "config-pim-ipv4," indicating that you have entered the default pim address-family configuration submode.

To enter pim address-family configuration submode for IPv6, type the `address-family ipv6` keyword together with the `router pim` command before pressing Enter.

IGMP Configuration Submode

When you issue the `router igmp` command, the CLI prompt changes to "config-igmp," indicating that you have entered IGMP configuration submode.

MLD Configuration Submode

When you issue the `router mld` command, the CLI prompt changes to "config-mld," indicating that you have entered MLD configuration submode.

MSDP Configuration Submode

When you issue the `router msdp` command, the CLI prompt changes to "config-msdp," indicating that you have entered router MSDP configuration submode.

Understanding Interface Configuration Inheritance

Cisco IOS XR Software allows you to configure commands for a large number of interfaces by applying command configuration within a multicast routing submode that could be inherited by all interfaces. To override the inheritance mechanism, you can enter interface configuration submode and explicitly enter a different command parameter.

For example, in the following configuration you could quickly specify (under router PIM configuration mode) that all existing and new PIM interfaces on your router will use the hello interval parameter of 420 seconds. However, Packet-over-SONET/SDH (POS) interface 0/1/0/1 overrides the global interface configuration and uses the hello interval time of 210 seconds.

RP/0/RP0/CPU0:router(config)# router pim
RP/0/RP0/CPU0:router(config-pim-default-ipv4)# hello-interval 420
RP/0/RP0/CPU0:router(config-pim-default-ipv4)# interface pos 0/1/0/1
RP/0/RP0/CPU0:router(config-pim-ipv4-if)# hello-interval 210

The following is a listing of commands (specified under the appropriate router submode) that use the inheritance mechanism:

- router pim
 - dr-priority
 - hello-interval
 - join-prune-interval
- multicast-routing
 - version
 - query-interval
 - query-max-response-time
 - explicit-tracking
- router mld
 - interface all disable
 - version
 - query-interval
 - query-max-response-time
 - explicit-tracking
- router msdp
 - connect-source
 - sa-filter
 - filter-sa-request list
 - remote-as
 - ttl-threshold

Understanding Interface Configuration Inheritance Disablement

As stated elsewhere, Cisco IOS XR Software allows you to configure multiple interfaces by applying configurations within a multicast routing submode that can be inherited by all interfaces.

To override the inheritance feature on specific interfaces or on all interfaces, you can enter the address-family IPv4 or IPv6 submode of multicast routing configuration mode, and enter the `interface-inheritance disable` command together with the `interface type interface-path-id` or `interface all` command. This causes PIM or IGMP protocols to disallow multicast routing and to allow only multicast forwarding on those interfaces specified. However, routing can still be explicitly enabled on specified individual interfaces.
The following configuration disables multicast routing interface inheritance under PIM and IGMP generally, although forwarding enablement continues. The example shows interface enablement under IGMP of GigabitEthernet 0/6/0/3:

```
RP/0/RP0/CPU0:router# multicast-routing address-family ipv4
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# interface all enable
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# interface-inheritance disable
```

For related information, see Understanding Enabling and Disabling Interfaces, on page 44

Understanding Enabling and Disabling Interfaces

When the Cisco IOS XR Software multicast routing feature is configured on your router, by default, no interfaces are enabled.

To enable multicast routing and protocols on a single interface or multiple interfaces, you must explicitly enable interfaces using the `interface` command in multicast routing configuration mode.

To set up multicast routing on all interfaces, enter the `interface all` command in multicast routing configuration mode. For any interface to be fully enabled for multicast routing, it must be enabled specifically (or be default) in multicast routing configuration mode, and it must not be disabled in the PIM and IGMP/MLD configuration modes.

For example, in the following configuration, all interfaces are explicitly configured from multicast routing configuration submode:

```
RP/0/RP0/CPU0:router(config)# multicast-routing
RP/0/RP0/CPU0:router(config-mcast)# interface all enable
```

To disable an interface that was globally configured from the multicast routing configuration submode, enter interface configuration submode, as illustrated in the following example:

```
RP/0/RP0/CPU0:router(config-mcast)# interface GigabitEthernet0pos 0/1/0/0
RP/0/RP0/CPU0:router(config-mcast-default-ipv4-if)# disable
```

Multicast Routing Information Base

The Multicast Routing Information Base (MRIB) is a protocol-independent multicast routing table that describes a logical network in which one or more multicast routing protocols are running. The tables contain generic multicast routes installed by individual multicast routing protocols. There is an MRIB for every logical network (VPN) in which the router is configured. MRIBs do not redistribute routes among multicast routing protocols; they select the preferred multicast route from comparable ones, and they notify their clients of changes in selected attributes of any multicast route.
Multicast Forwarding Information Base

Multicast Forwarding Information Base (MFIB) is a protocol-independent multicast forwarding system that contains unique multicast forwarding entries for each source or group pair known in a given network. There is a separate MFIB for every logical network (VPN) in which the router is configured. Each MFIB entry resolves a given source or group pair to an incoming interface (IIF) for reverse forwarding (RPF) checking and an outgoing interface list (olist) for multicast forwarding.

MSDP MD5 Password Authentication

MSDP MD5 password authentication is an enhancement to support Message Digest 5 (MD5) signature protection on a TCP connection between two Multicast Source Discovery Protocol (MSDP) peers. This feature provides added security by protecting MSDP against the threat of spoofed TCP segments being introduced into the TCP connection stream.

MSDP MD5 password authentication verifies each segment sent on the TCP connection between MSDP peers. The `password clear` command is used to enable MD5 authentication for TCP connections between two MSDP peers. When MD5 authentication is enabled between two MSDP peers, each segment sent on the TCP connection between the peers is verified.

Note

MSDP MD5 authentication must be configured with the same password on both MSDP peers to enable the connection between them. The 'password encrypted' command is used only for applying the stored running configuration. Once you configure the MSDP MD5 authentication, you can restore the configuration using this command.

MSDP MD5 password authentication uses an industry-standard MD5 algorithm for improved reliability and security.

How to Implement Multicast Routing

This section contains instructions for both building a basic multicast configuration, as well as optional tasks to help you to optimize, debug, and discover the routers in your multicast network.
Configuring PIM-SM and PIM-SSM

SUMMARY STEPS

1. configure
2. multicast-routing [address-family {ipv4 | ipv6}]
3. interface all enable
4. exit
5. Use router {igmp} for IPv4 hosts or use router {mld} for IPv6
6. version {1 | 2 | 3} for IPv4 (IGMP) hosts or version {1 | 2} for IPv6 (MLD) hosts.
7. commit
8. show pim [ipv4 | ipv6] group-map [ip-address-name] [info-source]
9. show pim [vrf vrf-name] [ipv4 | ipv6] topology [source-ip-address [group-ip-address] | entry-flag flag | interface-flag | summary] [route-count]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>multicast-routing [address-family {ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# multicast-routing</td>
</tr>
<tr>
<td></td>
<td>Enters multicast routing configuration mode.</td>
</tr>
<tr>
<td></td>
<td>- The following multicast processes are started: MRIB, MFWD, PIM, IGMP, and MLD.</td>
</tr>
<tr>
<td></td>
<td>- For IPv4, IGMP version 3 is enabled by default; for IPv6, MLD version 1 is enabled by default.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface all enable</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-mcast-ipv4)# interface all enable</td>
</tr>
<tr>
<td></td>
<td>Enables multicast routing and forwarding on all new and existing interfaces.</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-mcast-ipv4)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits multicast routing configuration mode, and returns the router to the source configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Use router {igmp} for IPv4 hosts or use router {mld} for IPv6</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router igmp</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enters router IGMP configuration mode (for IPv4 hosts), or enters router MLD configuration mode (for IPv6 hosts).</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# router mld</td>
<td>(Optional) Selects the IGMP or MLD version that the router interface uses.</td>
</tr>
<tr>
<td>Step 6</td>
<td>version {1</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-igmp)# version 3</td>
<td>RP/0/RP0/CPU0:router(config-mld)# version 2</td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
</tr>
<tr>
<td>Step 8</td>
<td>**show pim [ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show pim ipv4 group-map</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>**show pim [vrf vrf-name] [ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show pim topology</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Static RP and Allowing Backward Compatibility

When PIM is configured in sparse mode, you must choose one or more routers to operate as a rendezvous point (RP) for a multicast group. An RP is a single common root placed at a chosen point of a shared distribution tree. An RP can either be configured statically in each router, or learned through Auto-RP or BSR.

This task configures a static RP. For more information about RPs, see the Rendezvous Points, on page 16. For configuration information for Auto-RP, see the Configuring Auto-RP to Automate Group-to-RP Mappings, on page 49.
SUMMARY STEPS

1. configure
2. `router pim [address-family {ipv4 | ipv6}]`
3. `rp-address ip-address [group-access-list] [] [override]`
4. `old-register-checksum`
5. exit
6. `{ipv4 | ipv6} access-list name`
7. `[sequence-number] permit source [source-wildcard]`
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters PIM configuration mode, or PIM address-family configuration submode.</td>
</tr>
</tbody>
</table>

Step 2
```
router pim [address-family {ipv4 | ipv6}]
```

Example:
```
RP/0/RP0/CPU0:router(config)# router pim
```

Step 3
```
rp-address ip-address [group-access-list] [] [override]
```

Example:
```
RP/0/RP0/CPU0:router(config-pim-default-ipv4)#
rp-address 172.16.6.22 rp-access
```

Step 3 Assigns an RP to multicast groups.
- If you specify a `group-access-list-number` value, you must configure that access list using the `ipv4 access-list` command.

Step 4
```
old-register-checksum
```

Example:
```
RP/0/RP0/CPU0:router(config-pim-ipv4)#
old-register-checksum
```

Step 4 (Optional) Allows backward compatibility on the RP that uses old register checksum methodology.

Step 5
```
exit
```

Example:
```
RP/0/RP0/CPU0:router(config-pim-ipv4)# exit
```

Step 5 Exits PIM configuration mode, and returns the router to the source configuration mode.

Step 6
```
{ipv4 | ipv6} access-list name
```

Example:
```
RP/0/RP0/CPU0:router(config)# ipv4 access-list rp-access
```

Step 6 (Optional) Enters access list configuration mode and configures the RP access list.
- The access list called "rp-access" permits multicast group 239.1.1.0 0.0.255.255.
The command in Step 7, on page 48 and Step 7, on page 49 can be combined in one command string like this: ipv4 access-list rp-access permit 239.1.1.0 0.0.255.255.

Configuring Auto-RP to Automate Group-to-RP Mappings

This task configures the Auto-RP mechanism to automate the distribution of group-to-RP mappings in your network. In a network running Auto-RP, at least one router must operate as an RP candidate and another router must operate as an RP mapping agent.

SUMMARY STEPS

1. configure
2. router pim [address-family ipv4]
3. auto-rp candidate-rp type instance scope ttl-value [group-list access-list-name] [interval seconds] bidir
4. auto-rp mapping-agent type number scope ttl-value [interval seconds]
5. exit
6. commit
7. ipv4 access-list name
8. (sequence-number) permit source [source-wildcard]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters PIM configuration mode, or PIM address-family configuration submode.</td>
</tr>
<tr>
<td>Step 2 router pim [address-family ipv4]</td>
<td>Configures an RP candidate that sends messages to the CISCO-RP-ANNOUNCE multicast group (224.0.1.39).</td>
</tr>
<tr>
<td>Step 3 auto-rp candidate-rp type instance scope ttl-value [group-list access-list-name] [interval seconds] bidir</td>
<td>This example sends RP announcements out all PIM-enabled interfaces for a maximum of 31 hops. The IP address by which</td>
</tr>
</tbody>
</table>
Configuring Auto-RP to Automate Group-to-RP Mappings

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Example:** RP/0/RP0/CPU0:router(config-pim-ipv4)# auto-rp candidate-rp GigabitEthernet0/1/0/1 scope 31 group-list 2 bidir | the router wants to be identified as an RP is the IP address associated with GigabitEthernet interface 0/1/0/1.
- Access list 2 designates the groups this router serves as RP.
- If you specify group-list, you must configure the optional access-list command. |
| **Step 4** auto-rp mapping-agent type number scope ttl-value [interval seconds] | Configures the router to be an RP mapping agent on a specified interface.
- After the router is configured as an RP mapping agent and determines the RP-to-group mappings through the CISCO-RP-ANNOUNCE (224.0.1.39) group, the router sends the mappings in an Auto-RP discovery message to the well-known group CISCO-RP-DISCOVERY (224.0.1.40).
- A PIM DR listens to this well-known group to determine which RP to use.
- This example limits Auto-RP discovery messages to 20 hops. |
| **Step 5** exit | Exits PIM configuration mode and returns the router to the source configuration mode. |
| **Step 6** ipv4 access-list name | (Optional) Defines the RP access list. |
| **Example:** RP/0/RP0/CPU0:router(config-pim-ipv4)# ipv4 access-list 2 | |
| **Step 7** [sequence-number] permit source [source-wildcard] | (Optional) Permits multicast group 239.1.1.1 for the RP access list.
Tip The commands in **Step 6, on page 50** and **Step 7, on page 50** can be combined in one command string and entered from the global or XR config mode like this: ipv4 access-list rp-access permit 239.1.1.1 0.0.0.0 |
| **Example:** RP/0/RP0/CPU0:router(config-pim-ipv4-acl)# permit 239.1.1.1 0.0.0.0 | |
| **Step 8** commit | |
Configuring the Bootstrap Router

This task configures one or more candidate bootstrap routers (BSRs) and a BSR mapping agent. This task also connects and locates the candidate BSRs in the backbone portion of the network.

For more information about BSR, see the [PIM Bootstrap Router](#) on page 18.

SUMMARY STEPS

1. `configure`
2. `router pim [address-family {ipv4 | ipv6}]`
3. `bsr candidate-bsr ip-address [hash-mask-len length] [priority value]`
4. `bsr candidate-rp ip-address [group-list access-list interval seconds] [priority value] bidir`
5. `interface type interface-path-id`
6. `bsr-border`
7. `exit`
8. `exit`
9. `{ipv4 | ipv6} access-list name`
10. Do one of the following:
 * `[sequence-number] permit source [source-wildcard]`
 * `[sequence-number] permit source-prefix dest-prefix`
11. `commit`
12. `clear pim [vrf vrf-name] [ipv4 | ipv6] bsr`
13. `show pim [vrf vrf-name] [ipv4 | ipv6] bsr candidate-rp`
14. `show pim [vrf vrf-name] [ipv4 | ipv6] bsr election`
15. `show pim [vrf vrf-name][ipv4 | ipv6] bsr rp-cache`
16. `show pim [vrf vrf-name][ipv4 | ipv6] group-map [ip-address-name] [info-source]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router pim [address-family {ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router pim</td>
</tr>
<tr>
<td>Step 3</td>
<td>bsr candidate-bsr ip-address [hash-mask-len length] [priority value]</td>
</tr>
<tr>
<td></td>
<td>Configures the router to announce its candidacy as a BSR.</td>
</tr>
</tbody>
</table>
Table: Configuring the Bootstrap Router

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pim-default-ipv4)# bsr candidate-bsr 10.0.0.1 hash-mask-len 30</td>
<td>Step 4 Configures the router to advertise itself as a PIM Version 2 candidate RP to the BSR.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pim-default-ipv4)# bsr candidate-rp 172.16.0.0 group-list 4 bidir</td>
<td>Step 4 Configures the router to advertise itself as a PIM Version 2 candidate RP to the BSR.</td>
</tr>
<tr>
<td>Optional Enters interface configuration mode for the PIM protocol.</td>
<td>Step 6 (Optional) Stops the forwarding of bootstrap router (BSR) messages on a Protocol Independent Multicast (PIM) router interface.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pim-ipv4-if)# bsr-border</td>
<td>Step 7 (Optional) Exits PIM interface configuration mode, and returns the router to PIM configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pim-ipv4-if)# exit</td>
<td>Step 8 Exits PIM configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-pim-default-ipv4)# exit</td>
<td>Step 9 (Optional) Defines the candidate group list to the BSR.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# ipv4 access-list 4</td>
<td>Example: RP/0/RP0/CPU0:router(config)# ipv4 access-list 4</td>
</tr>
<tr>
<td>Access list number 4 specifies the group prefix associated with the candidate RP address 172.16.0.0. (See Step 4, on page 52).</td>
<td>Step 9 (Optional) Defines the candidate group list to the BSR.</td>
</tr>
<tr>
<td>This RP is responsible for the groups with the prefix 239.</td>
<td>Step 9 (Optional) Defines the candidate group list to the BSR.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 10</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td>• [sequence-number] permit source [source-wildcard]</td>
<td>(Optional) Permits multicast group 239.1.1.1 for the candidate group list.</td>
</tr>
<tr>
<td>• [sequence-number] permit source-prefix dest-prefix</td>
<td>Tip The commands in Step 6, on page 52 and Step 7, on page 52 can be combined in one command string and entered from global configuration mode like this: ipv4 access-list rp-access permit 239.1.1.1 0.255.255.255</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ipv4-acl)# permit 239.1.1.1 0.255.255.255</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>commit</td>
</tr>
<tr>
<td>Step 12</td>
<td>clear pim [vrf vrf-name] [ipv4</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# clear pim bsr</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>show pim [vrf vrf-name] [ipv4</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show pim bsr candidate-rp</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>show pim [vrf vrf-name] [ipv4</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show pim bsr election</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>show pim [vrf vrf-name][ipv4</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show pim bsr rp-cache</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>show pim [vrf vrf-name][ipv4</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show pim ipv4 group-map</td>
<td></td>
</tr>
</tbody>
</table>

Calculating Rates per Route

This procedure enables multicast hardware forward-rate counters on a per-VRF-family basis.
SUMMARY STEPS

1. configure
2. multicast-routing [vrf vrf-name] [address-family {ipv4 | ipv6}]
3. rate-per-route
4. interface {type interface-path-id | all} enable
5. Do one of the following:
 - accounting per-prefix
 - accounting per-prefix forward-only
6. commit
7. show mfib [vrf vrf-name] [ipv4 | ipv6] route [rate | statistics] [* | source-address] [group-address
 [prefix-length] [detail | old-output] | summary] [location node-id]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters multicast routing configuration mode.</td>
</tr>
</tbody>
</table>

Step 2 multicast-routing [vrf vrf-name] [address-family {ipv4 | ipv6}]

Example:

```
RP/0/RP0/CPU0:router(config)# multicast-routing
address-family ipv4
```

Enables a per (S,G) rate calculation for a particular route.

Step 3 rate-per-route

Example:

```
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# rate-per-route
```

Enables multicast routing on all interfaces.

Step 4 interface {type interface-path-id | all} enable

Example:

```
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# interface all enable
```

or

```
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# interface FastEthernet0/3/3/1 enable
```

Step 5 Do one of the following:

- accounting per-prefix

- Enables per-prefix counters present in hardware accounting per-prefix—Enables three counters on ingress (forward, punt and drop, and two on egress (forward and
Configuring Multicast Nonstop Forwarding

This task configures the nonstop forwarding (NSF) feature for multicast packet forwarding for the purpose of alleviating network failures, or software upgrades and downgrades.

Although we strongly recommend that you use the NSF lifetime default values, the optional Step 3, on page 56 through Step 6, on page 57 allow you to modify the NSF timeout values for Protocol Independent Multicast (PIM) and Internet Group Management Protocol (IGMP) or Multicast Listener Discovery (MLD). Use these commands when PIM and IGMP (or MLD) are configured with nondefault interval or query intervals for join and prune operations.

Generally, configure the IGMP NSF and PIM NSF lifetime values to equal or exceed the query or join query interval. For example, if you set the IGMP query interval to 120 seconds, set the IGMP NSF lifetime to 120 seconds (or greater).

If the Cisco IOS XR Software control plane does not converge and reconnect after NSF is enabled on your router, multicast packet forwarding continues for up to 15 minutes, then packet forwarding stops.

Before You Begin

For NSF to operate in your multicast network, you must also enable NSF for the unicast protocols (such as IS-IS, OSPF, and BGP) that PIM relies on for Reverse Path Forwarding (RPF) information. See the appropriate configuration modules to learn how to configure NSF for unicast protocols.
SUMMARY STEPS

1. configure
2. router pim [address-family {ipv4 | ipv6}]
3. nsf lifetime seconds
4. exit
5. router {igmp | }
6. nsf lifetime seconds
7. commit
8. show {igmp | mld} [old-output] nsf
9. show mrib [ipv4 | ipv6] nsf [location node-id]
10. show pim [ipv4 | ipv6] nsf

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router pim [address-family {ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Enters PIM address-family configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# router pim address-family ipv4</td>
</tr>
<tr>
<td>Step 3</td>
<td>nsf lifetime seconds</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Configures the NSF timeout value for multicast forwarding route entries under the PIM process.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>If you configure the PIM hello interval to a nondefault value, configure the PIM NSF lifetime to a value less than the hello hold time. Typically the value of the hold-time field is 3.5 times the interval time value, or 120 seconds if the PIM hello interval time is 30 seconds.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-pim-default-ipv4)#</td>
</tr>
<tr>
<td></td>
<td>nsf lifetime 30</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Exits PIM configuration mode and returns the router to the source configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-pim-default-ipv4)#</td>
</tr>
<tr>
<td></td>
<td>exit</td>
</tr>
<tr>
<td>Step 5</td>
<td>router {igmp</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Enters router IGMP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# router igmp</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Step 6</td>
<td>nsf lifetime seconds</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(config-igmp)# nsf lifetime 30</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
</tr>
<tr>
<td>Step 8</td>
<td>`show {igmp</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router# show igmp nsf</code></td>
</tr>
<tr>
<td>Step 9</td>
<td>`show mfib [ipv4</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router# show mfib nsf</code></td>
</tr>
<tr>
<td>Step 10</td>
<td>`show mrib [ipv4</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router# show mrib nsf</code></td>
</tr>
<tr>
<td>Step 11</td>
<td>`show pim [ipv4</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router# show pim nsf</code></td>
</tr>
</tbody>
</table>

Configuring Multicast VPN

- **Enabling a VPN for Multicast Routing, on page 58** (required)
- “Configuring BGP to Advertise VRF Routes for Multicast VPN from PE to PE” (required)

 See the module "Implementing BGP on Cisco IOS XR Software in Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router.

- Configuring an MDT Address Family Session in BGP as a PE-to- PE Protocol (optional for PIM-SM MDT groups; required for PIM-SSM MDT groups)

 See the "Configuring an MDT Address Family Session in BGP" section in Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router.

- Configuring a provider-edge-to-customer-edge protocol (optional)

- Specifying the PIM VRF Instance, on page 61 (optional)

Prerequisites for Multicast VPN

- PIM and multicast forwarding must be configured on all interfaces used by multicast traffic. In an MVPN, you must enable PIM and multicast forwarding for the following interfaces:
 - Physical interface on a provider edge (PE) router that is connected to the backbone.
 - Interface used for BGP peering source address.
 - Any interfaces configured as PIM rendezvous points.

Note

PIM and multicast forwarding are enabled in multicast routing configuration mode. No additional configuration is required in router pim mode to enable the PIM protocol.

- Interfaces in the VPN intended for use in forwarding multicast traffic must be enabled for PIM and multicast forwarding.
- BGP should already be configured and operational on all routers that are sending or receiving multicast traffic.
- To enable MVPN, you must include a VPN IPv4 address-family (AFI) in your BGP configuration. See Restrictions for Multicast VPN for Multicast Routing, on page 58. (See also the "Enabling BGP Routing" section in Cisco IOS XR Routing Configuration Guide.)
- All PE routers in the multicast domain must be running a Cisco IOS XR Software image that supports MVPN.
- Multicast forwarding must be configured for the global IPv4 address family.
- Each multicast SM VRF domain must have an associated PIM rendezvous point (RP) definition. Using Auto-RP and the bootstrap router (BSR), you may configure RP services in the MVPN on the customer-edge (CE) device because the MVPN learns about the RP dynamically. The VRF interface can be used as a listener on the PE device.

To enable static RP services, you must configure every device in the domain for this purpose.

Restrictions for Multicast VPN for Multicast Routing

- Configuration of the MDT source on a per-VRF basis is only supported on IPv4.
- The MDT group address should be the same for both the address families in the same VRF.

Enabling a VPN for Multicast Routing

This task enables multicast VPN routing for IPv4.
The MDT group address is used by provider edge (PE) routers to form a virtual PIM “neighborship” for the MDT. This enables the PEs to communicate with other PEs in the VRF as if they shared a LAN.

When sending customer VRF traffic, PEs encapsulate the traffic in their own (S,G) state, where the G is the MDT group address, and the S is the MDT source for the PE. By joining the (S,G) MDT of its PE neighbors, a PE router is able to receive the encapsulated multicast traffic for that VRF.

Although the VRF itself may have many multicast sources sending to many groups, the provider network needs only to install state for one group per VRF, in other words, the MDT group.

SUMMARY STEPS

1. configure
2. multicast-routing
3. address-family ipv4
4. nsf
5. mdt source type interface-path-id
6. interface all enable
7. vrf vrf-name
8. address-family {ipv4}
9. mdt default mdt-group-address
10. mdt data mdt-group-address/prefix-length threshold threshold acl-name
11. mdt mtu size
12. interface all enable
13. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>multicast-routing</td>
<td>Enters multicast routing configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# multicast-routing</td>
</tr>
<tr>
<td>Step 3</td>
<td>address-family ipv4</td>
<td>Enters ipv4 address-family submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CPU0:router(config-mcast)# address-family ipv4</td>
</tr>
<tr>
<td>Step 4</td>
<td>nsf</td>
<td>Specifies that nonstop forwarding (NSF) maintains the forwarding state in case of a disruption to a multicast process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CPU0:router(config-mcast-default-ipv4)#</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsf</td>
<td>Specifies the MDT source address.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Specifies the MDT source address.</td>
</tr>
<tr>
<td><code>mdt source</code></td>
<td>The MDT source interface name should be the same as the one used for BGP.</td>
</tr>
<tr>
<td><code>interface-path-id</code></td>
<td>Enables multicast routing and forwarding on all new and existing interfaces. You can also enable individual interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>To avoid any possibility of a reverse-path forwarding (RPF) failure, you should proactively enable any interfaces that might possibly carry multicast traffic.</td>
</tr>
<tr>
<td><code>interface all enable</code></td>
<td>Enables multicast routing and forwarding on all new and existing interfaces. You can also enable individual interfaces.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Enables multicast routing and forwarding on all new and existing interfaces. You can also enable individual interfaces.</td>
</tr>
<tr>
<td><code>vrf</code></td>
<td>Configures a VPN routing and forwarding (VRF) instance and enters VRF configuration mode.</td>
</tr>
<tr>
<td><code>vrf-name</code></td>
<td>Specifies the virtual routing and forwarding instance for the ipv4 address family.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Specifies the virtual routing and forwarding instance for the ipv4 address family.</td>
</tr>
<tr>
<td><code>address-family {ipv4}</code></td>
<td>Specifies the multicast distribution tree (MDT) default group address.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Specifies the multicast distribution tree (MDT) default group address.</td>
</tr>
<tr>
<td><code>mdt default</code></td>
<td>(IPv4 MVPN configuration only) Specifies the multicast group address range to be used for data MDT traffic.</td>
</tr>
<tr>
<td><code>mdt-group-address</code></td>
<td>This group range should not overlap the MDT default group.</td>
</tr>
<tr>
<td>Step 9</td>
<td>This is an optional command. The default threshold beyond which traffic is sent using a data MDT group is 1 kbps. However, you may configure a higher threshold, if desired.</td>
</tr>
<tr>
<td><code>mdt data</code></td>
<td>You may also, optionally, configure an access list to limit the number of groups to be tunneled through a data MDT group. Traffic from groups not on the access-list continues to be tunneled using the default MDT group.</td>
</tr>
<tr>
<td><code>mdt-group-address/prefix-length threshold acl-name</code></td>
<td>This is an optional step.</td>
</tr>
<tr>
<td>Step 10</td>
<td>This is an optional step.</td>
</tr>
<tr>
<td><code>mdt mtu</code></td>
<td>Specifies the MTU size. It is recommended to configure a high value, to accommodate the maximum multicast packet size.</td>
</tr>
<tr>
<td><code>size</code></td>
<td>Specifies the MTU size. It is recommended to configure a high value, to accommodate the maximum multicast packet size.</td>
</tr>
</tbody>
</table>
Specifying the PIM VRF Instance

If you are configuring Protocol Independent Multicast in sparse mode (PIM-SM) in the MVPN, you may also need to configure a rendezvous point (RP). This task specifies the optional PIM VPN instance.

SUMMARY STEPS

1. configure
2. `router pim vrf vrf-name address-family {ipv4 | ipv6}`
3. `rp-address ip-address [group-access-list-name] [bidir] [override]`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters PIM address-family configuration submode and configure the PIM VRF for either an IPv4 or IPv6 address family.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`router pim vrf vrf-name address-family {ipv4</td>
<td>ipv6}`</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>group-access-list-name</code> = Specifies an access list of groups to be mapped to a given RP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>bidir</code> = Specifies a bidirectional RP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>override</code> = Specifies that a static RP configuration should override auto-RP and the bootstrap router (BSR).</td>
</tr>
</tbody>
</table>

Table:

- **Purpose:** The default MTU for PIM/GRE MDT is 1376 and the default value for mLDP/P2MP-TE MDT is 9000 for Multicast VPN.

<table>
<thead>
<tr>
<th>Step 12</th>
<th><code>interface all enable</code></th>
<th>Enables multicast routing and forwarding on all new and existing interfaces.</th>
</tr>
</thead>
</table>
| **Example:** | `RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# interface all enable` | }

| Step 13 | `commit` | }

Example:

```
RP/0/RP0/CPU0:router(config-pim-vrf_A-ipv4)# rp-address 10.0.0.0
```

Example:

```
RP/0/RP0/CPU0:router(config-pim-vrf_A-ipv4)# rp-address 10.0.0.0
```
Configuring Multicast VPN

Specifying the IGMP VRF Instance

SUMMARY STEPS

1. `configure`
2. `router igmp`
3. `vrf vrf-name`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router igmp</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config)# router igmp</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>vrf vrf-name</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-igmp)# vrf vrf_B</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>commit</code></td>
</tr>
</tbody>
</table>

Configuring the MDT Source per VRF

This optional feature lets you change the default routing mechanism in a multicast VPN network topology, which routes all unicast traffic through a BGP peering loopback configured on a default VRF. Instead, you may configure a loopback that allows you to specify the MDT source using a specific VRF, as opposed to the default VRF. This overrides the current behavior and updates BGP as part of a MDT group. BGP then modifies the source and connector attributes in the MDT SAFI and VPN IPv4 updates.

For VRFs on which the MDT source is not configured, the MDT source for the default VRF is applied. Also, when the MDT source on a VRF is unconfigured, the configuration of the MDT source default VRF takes effect.
In the configuration below, the default VRF does not require explicit reference in Step 5.

SUMMARY STEPS

1. configure
2. multicast-routing
3. address-family [ipv4 | ipv6]
4. mdt source loopback 0
5. exit
6. vrf 101
7. address-family ipv4
8. mdt source loopback 1
9. Repeat the steps 6 to 8, as many times as needed to create other VRFs.
10. commit
11. show pim vrf all mdt interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Purpose Enables IP multicast routing and forwarding.</td>
</tr>
<tr>
<td>Step 2</td>
<td>multicast-routing</td>
<td>Purpose Enables IP multicast routing and forwarding.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>address-family [ipv4</td>
<td>ipv6]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>mdt source loopback 0</td>
<td>Purpose Enables IP multicast routing and forwarding.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Exits from the current mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 vrf 101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-mcast)# vrf 101</td>
<td>Enters the IPv4 address-family mode.</td>
<td></td>
</tr>
<tr>
<td>Step 7 address-family ipv4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-mcast-101)# address-family ipv4</td>
<td>Configures the interface used to set the MDT source address for MVPN.</td>
<td></td>
</tr>
<tr>
<td>Step 8 mdt source loopback 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-mcast-101-ipv4)# mdt source loopback 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9 Repeat the steps 6 to 8, as many times as needed to create other VRFs.</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-mcast)# vrf 102 mdt source loopback 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10 commit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11 show pim vrf all mdt interface</td>
<td>To verify the MDT source per VRF configuration, use the show pim vrf all mdt interface command.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show pim vrf all mdt interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GroupAddress</td>
<td>Interface</td>
<td>Source</td>
</tr>
<tr>
<td>239.0.0.239</td>
<td>mdtVRF_NAME</td>
<td>Loopback1</td>
</tr>
</tbody>
</table>
Configuring Label Switched Multicast

Deployment of an LSM MLDP-based MVPN involves configuring a default MDT and one or more data MDTs. A static default MDT is established for each multicast domain. The default MDT defines the path used by PE routers to send multicast data and control messages to other PE routers in the multicast domain. A default MDT is created in the core network using a single MP2MP LSP.

An LSP MLDP-based MVPN also supports dynamic creation of the data MDTs for high-bandwidth transmission. For high-rate data sources, a data MDT is created using the P2MP LSPs to off-load the traffic from the default MDT to avoid unnecessary waste of bandwidth to PEs that are not part of the stream. You can configure MLDP MVPN for both the intranet or extranet. This configuration section covers the rosen based MLDP profile. For configuration examples of other MLDP profiles, see Configuring LSM based MLDP: Examples, on page 136.

Note

Before configuring MLDP based MVPN, ensure that the MPLS is enabled on the core facing interface. For information in MPLS configuration, see Cisco IOS XR MPLS Configuration Guide. Also, ensure that BGP and any interior gateway protocol (OSPF or ISIS) is enabled on the core router. For more information on BGP and route-policy configuration, see Cisco IOS XR Routing Configuration Guide.

Perform this task to configure label switched multicast:
SUMMARY STEPS

1. configure
2. mpls ldp mldp
3. root
4. vrf vrf_name
5. vpn id vpn-id
6. address-family [ipv4 | ipv6] unicast
7. import route-target [xx.yy.nn | as-number:nn | ip-address:nn]
8. export route-target [xx.yy.nn | as-number:nn | ip-address:nn]
9. root
10. multicast-routing vrf vrf_name
11. address-family [ipv4 | ipv6]
12. mdt default mldp ipv4 root-node
13. mdt data mdt-group-address threshold value
14. root
15. router bgp as-number vrf vrf-name
16. rd route-distinguisher
17. address-family ipv4 mdt
18. address-family vpnv4 unicast
19. root
20. router pim
21. vrf vrf_name
22. address-family [ipv4 | ipv6]
23. rpf topology route-policy route_policy_name
24. root
25. route-policy route_policy_name
26. set core-tree tree_type
27. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls ldp mldp</td>
<td>Enables MPLS MLDP support.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# mpls ldp mldp</td>
<td></td>
</tr>
</tbody>
</table>

Cisco IOS XR Multicast Configuration Guide for the Cisco CRS Router, Release 4.3.x
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>root</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>vrf vrf_name</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>vpn id vpn_id</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>address-family [ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>import route-target [xx.yy:nn</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>export route-target [xx.yy:nn</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>root</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-vrf-af)# root</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>multicast-routing vrf vrf_name</td>
<td>Enables multicast routing for the specified VRF.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# multicast-routing vrf vrf1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>address-family [ipv4</td>
<td>ipv6]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-mcast-vrf1)# address-family ipv4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mdt default mldp ipv4 root-node</td>
<td>Configures MLDP MDT for a VRF. The root node can be IP address of a loopback or physical interface on any router (source PE, receiver PE or core router) in the provider network. The root node address should be reachable by all the routers in the network. The router from where the signalling occurs functions as the root node. The default MDT must be configured on each PE router to enable the PE routers to receive multicast traffic for this particular MVRF.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-mcast-vrf1-ipv4)# mdt default mldp ipv4 2.2.2.2</td>
<td></td>
</tr>
</tbody>
</table>

Note By default MPLS MLDP is enabled. To disable, use the `no mpls ldp mldp` command.
Note LSPVIF tunnel is created as a result of `mdt default mldp root-node` command.

<table>
<thead>
<tr>
<th>Step 13</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mdt data mdt-group-address threshold value</td>
<td>Configures the threshold value for data MDT.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-mcast-vrf1-ipv4)# mdt data 239.0.0.0/24 threshold 1000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 14</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>root</td>
<td>Takes the user to the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-mcast-vrf1-ipv4)# root</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>15</td>
<td>router bgp as-number vrf vrf-name</td>
<td>Enters the BGP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# router bgp 1 vrf vrf1</td>
<td></td>
</tr>
</tbody>
</table>
| 16 | **rd route-distinguisher** | Creates routing and forwarding tables. Specify the route-distinguisher argument to add an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter an RD value in either of these formats:
| | **Example:** | • 16-bit autonomous system number. For example, 101:3.
| | RP/0/RP0/CPU0:router(config-bgp-vrf)# rd 1.1.1.1:1 | • 32-bit IP address: your 16-bit number. For example, 192.168.122.15:1. |
| 17 | **address-family ipv4 mdt** | Configures the BGP MDT address family. |
| | **Example:** | |
| | RP/0/RP0/CPU0:router(config-bgp-vrf)# address-family ipv4 mdt | |
| 18 | **address-family vpnv4 unicast** | Configures the BGP vpnv4 address family. |
| | **Example:** | |
| | RP/0/RP0/CPU0:router(config-bgp-af)# address-family vpnv4 unicast | |
| 19 | **root** | Takes the user to the global configuration mode. |
| | **Example:** | |
| | RP/0/RP0/CPU0:router(config-bgp-af)# root | |
| 20 | **router pim** | Enters the PIM configuration mode. |
| | **Example:** | |
| | RP/0/RP0/CPU0:router(config)# router pim | |
| 21 | **vrf vrf_name** | Specifies the VRF instance. |
| | **Example:** | |
| | RP/0/RP0/CPU0:router(config-pim)# vrf vrf1 | |
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>address-family [ipv4</td>
<td>Enter the address-family submode.</td>
</tr>
<tr>
<td></td>
<td>ipv6]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-pim-vrf1)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>rpf topology route-policy route_policy_name</td>
<td>Assigns a given routing policy to an RPF topology table.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-pim-vrf1-af)# rpf topology route-policy FOO</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>root</td>
<td>Takes the user to the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-pim-vrf1-af)# root</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>route-policy route_policy_name</td>
<td>Configures the route policy for a profile. For more information about configuring route policy, see Cisco IOS XR Routing Configuration Guide.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# route-policy FOO</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>set core-tree tree_type</td>
<td>Specifies the MDT type for the route policy.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-rpl)# set core-tree mldp-rosen</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Verification of LSM mLDP based MVPN Configuration

Use these commands to verify the LSM mLDP based MVPN intranet configuration:

- To check the mLDP neighbors, use the `show mpls mldp neighbors` command:

  ```
  Router# show mpls mldp neighbors
  mLDP neighbor database
  mLDP peer ID : 1.0.0.1:0, uptime 15:36:30 Up,
  Capabilities  : GR, Typed Wildcard FEC, P2MP, MP2MP, MBB
  Target Adj    : No
  Upstream count: 0
  Branch count  : 0
  LDP GR        : Enabled
  ```
To check the PIM neighbors, use the `show pim vrf vrf-name neighbor` command:

```
Router# show pim vrf A1_MIPMSI neighbor
PIM neighbors in VRF A1_MIPMSI

Neighbor Address        Interface       Uptime         Expires  DR pri s
101.2.2.101*            Loopback2      15:54:43        00:00:02  1 (DR) BP
```

MLDP peer ID : 3.0.0.1:0, uptime 15:36:31 Up,
Capabilities : GR, Typed Wildcard FEC, P2MP, MP2MP, MBB
Target Adj : No
Upstream count: 334
Branch count : 328
LDP GR : Enabled
Label map timer: never
Policy filter in: None
Path count : 1
Path(s) : 11.113.1.2 GigabitEthernet0/2/0/3 LDP
Adj list : 11.113.1.2 GigabitEthernet0/2/0/3
Peer addr list: 8.39.15.2
 : 3.0.0.1
 : 189.189.189.189
 : 13.13.13.13
 : 111.113.1.2
 : 112.113.1.6
 : 112.113.1.6
• To check the multicast routes for a given VRF, use `show mrib vrf vrf_name route` command:

```plaintext
Router# show mrib vrf A1_MIPMSI route
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain,
C - Directly-Connected Check, S - Signal, IA - Inherit Accept,
IF - Inherit From, D - Drop, MA - MDT Address, ME - MDT Encap,
MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle
CD - Conditional Decap, MPLS - MPLS Decap, MF - MPLS Encap, EX - Extranet
MoFE - NoFRR Enabled, MoFS - MoFRR State
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
NS - Negate Signal, DP - Don’t Preserve, SP - Signal Present,
II - Internal Interest, ID - Internal Disinterest, LI - Local Interest,
LD - Local Disinterest, DI - Decapsulation Interface
EI - Encapsulation Interface, MI - MDT Interface, LVIF - MPLS Encap,
EX - Extranet, A2 - Secondary Accept
(*,224.0.0.0/24) Flags: D
Up: 15:57:19

(*,224.0.1.39) Flags: S
Up: 15:57:19

(*,224.0.1.40) Flags: S
Up: 15:57:19

Outgoing Interface List
Serial0/5/0/0/1 Flags: II LI, Up: 15:57:12

(*,225.0.0.0/19) RPF nbr: 101.2.2.101 Flags: L C
Up: 15:57:19

Outgoing Interface List
Decapstunnel98 Flags: NS DI, Up: 15:57:10

(*,225.0.32.0/19) RPF nbr: 102.0.0.102 Flags: C
Up: 15:57:19

(*,225.0.32.1) RPF nbr: 102.0.0.102 Flags: C
Up: 04:08:30

Incoming Interface List
LmdtA1/MIPMSI Flags: A LMI, Up: 04:08:30

Outgoing Interface List
Serial0/2/2/0/1:1.16 Flags: F NS, Up: 04:08:30

(*,225.0.32.2) RPF nbr: 102.0.0.102 Flags: C
Up: 04:08:30

Incoming Interface List
LmdtA1/MIPMSI Flags: A LMI, Up: 04:08:30

Outgoing Interface List
Serial0/2/2/0/1:1.16 Flags: F NS, Up: 04:08:30

(*,225.0.32.3) RPF nbr: 102.0.0.102 Flags: C
Up: 04:08:30

Incoming Interface List
LmdtA1/MIPMSI Flags: A LMI, Up: 04:08:30
```
Outgoing Interface List
Serial0/2/0/1:1.16 Flags: F NS, Up: 04:08:30
(*,225.0.32.4) RPF nbr: 102.0.0.102 Flags: C
Up: 04:08:30
Incoming Interface List
LmdtA1/MIPMSI Flags: A LMI, Up: 04:08:30
Outgoing Interface List
Serial0/2/0/1:1.16 Flags: F NS, Up: 04:08:30

• To check the MPLS forwarding status, use `show mpls forwarding` command:

```
Router# show mpls forwarding
Label Label or ID Interface Switched
------ ----------- ------------------ ------------ ----------------
16000 16255 MLDP LSM ID: 0x1 Gi0/2/0/3 11.113.1.2 348727240
16001 16254 MLDP LSM ID: 0x3 Gi0/2/0/3 11.113.1.2 348727234
16002 16253 MLDP LSM ID: 0x5 Gi0/2/0/3 11.113.1.2 348727234
16003 16252 MLDP LSM ID: 0x7 Gi0/2/0/3 11.113.1.2 348727234
16004 16251 MLDP LSM ID: 0x9 Gi0/2/0/3 11.113.1.2 421876882
16005 16250 MLDP LSM ID: 0xb Gi0/2/0/3 11.113.1.2 348726916
```

Configuring Multitopology Routing

This set of procedures configures multitopology routing, which is used by PIM for reverse-path forwarding (RPF) path selection.

• “Configuring a Global Topology and Associating It with an Interface” (required)
 For information, see *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router*.

• “Enabling an IS-IS Topology” (required)
 For information, see *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router*.

• “Placing an Interface in a Topology in IS-IS” (required)
 For information, see *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router*.

• “Configuring a Routing Policy” (required)
 For information, see *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router*.

For an example of multitopology routing, see *Configuring Multitopology Routing: Example*, on page 115.

Restrictions for Configuring Multitopology Routing

• Only the default VRF is currently supported in a multitopology solution.

• Only protocol-independent multicast (PIM) and intermediate system-intermediate system (IS-IS) routing protocols are currently supported.

• Topology selection is restricted solely to (S, G) route sources for both SM and SSM. Static and IS-IS are the only interior gateway protocols (IGPs) that support multitopology deployment.

For non-(S, G) route sources like a rendezvous point or bootstrap router (BSR), or when a route policy is not configured, the current policy default remains in effect. In other words, either a unicast-default or multicast-default table is selected for all sources based on any of the following configurations:
* Open Shortest Path First (OSPF)
* Intermediate System-to-Intermediate System (IS-IS)
* Multiprotocol Border Gateway Protocol (MBGP)

Note
Although both **multicast** and **unicast** keywords are available when using the **address-family** `{ipv4 | ipv6}` command in routing policy language (RPL), only topologies under multicast SAFI can be configured globally.

Information About Multitopology Routing

Configuring multitopology networks requires the following tasks:

- “Configuring a Global Topology and Associating It with an Interface” (required)
 For information, see *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router*.
- “Enabling an IS-IS Topology” (required)
 For information, see *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router*.
- “Placing an Interface in a Topology in IS-IS” (required)
 For information, see *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router*.
- “Configuring a Routing Policy” (required)
 For information, see *Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router*.

For an example of multitopology routing, see *Configuring Multitopology Routing: Example,* on page 115.

Configuring an RPF Topology in PIM

SUMMARY STEPS

1. configure
2. router pim address-family `{ipv4 | ipv6}`
3. rpf topology route-policy `policy-name`
4. exit
5. multicast-routing address-family `{ipv4 | ipv6}`
6. interface all enable
7. commit
8. show pim [vrf `vrf-name`] `{ipv4 | ipv6}` [{unicast | multicast | safi-all} topology `{table-name | all}`] rpf `{ip-address | hash | summary | route-policy}`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>router pim address-family {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)#
RP/0/RP0/CPU0:router(config-pim-default-ipv4)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>rpf topology route-policy policy-name</td>
<td>Assigns a given routing policy to an RPF topology table.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-pim-default-ipv4)# rpf topology route-policy mtpolicy</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
<td>Exits pim address-family configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-pim-default-ipv4)# exit
RP/0/RP0/CPU0:router(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>multicast-routing address-family {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# multicast-routing address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>interface all enable</td>
<td>Enables multicast routing and forwarding on all new and existing interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-mcast-default- ipv4)# interface all enable</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>show pim [vrf vrf-name] [ipv4</td>
<td>ipv6] [[unicast</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# show pim vrf mtt rpf ipv44 multicast topology all rpf</td>
<td></td>
</tr>
</tbody>
</table>
Configuring MVPN Extranet Routing

To be able to import unicast routes from source VRFs to receiver VRFs, the import route targets of receiver VRFs must match the export route targets of a source VRF. Also, all VRFs on the PEs where the extranet source-receiver switchover takes place should be added to the BGP router configuration on those PEs.

Configuring MVPN extranet routing consists of these mandatory and optional tasks, which should be performed in the sequence shown:

- “Configuring a Routing Policy” (required only if performing the following task)

 For information, see Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router.

For examples of an end-to-end configuration of each of the two available MVPN extranet topology solutions, see Configuring MVPN Extranet Routing: Example, on page 116.

Prerequisites for MVPN Extranet Routing

- PIM-SM and PIM-SSM are supported. You must configure the multicast group range in the source and receiver VRFs with a matching PIM mode.

- Because only static RP configuration is currently supported for a given multicast group range, both source and receiver MVRFs must be configured with the same RP.

- In the IPv6 Connectivity over MVPN topology model, the data MDT encapsulation range should be large enough to accommodate extranet streams without any aggregation. This prevents extranet traffic, flowing to multiple VRFs, from being carried into only one data MDT.

- Data MDT configuration is required on only the Source VRF and Source PE Router.

Restrictions for MVPN Extranet Routing

- PIM-DM is not supported.

- Cisco IOS XR Software software supports only IPv4 extranet multicast routing over IPv4 core multicast routing.

- Any PE can be configured as an RP except a PE in the “Receiver VRF on the Source PE Router” model where the extranet switchover occurs, and where the source VRF has no interfaces. This is because the source VRF must have some physical interface to signal the data packets being received from the first hop.

- Cisco IOS XR Software currently supports only one encapsulation of VRF traffic on an extranet. This means that only one encapsulation interface (or MDT) is allowed in the outgoing forwarding interface list of the multicast route. If, for a given stream, there are multiple receiver VRFs joining the same source VRF, only the first receiver VRF receives traffic; other receiver VRF joins are discarded.

Note This limitation applies only to IPv6 Connectivity over MVPN topology model.
Configuring VPN Route Targets

This procedure demonstrates how to configure a VPN route target for each topology.

SUMMARY STEPS

1. configure
2. vrf source-vrf
3. address-family [ipv4 | ipv6] unicast
4. import route-target [xx.yy:nn | as-number:nn | ip-address:nn]
5. export route-target [xx.yy:nn | as-number:nn | ip-address:nn]
6. commit
7. configure
8. vrf receiver-vrf
9. Repeat Step 3 through Step 6.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Configures a VRF instance for the source PE router.</td>
</tr>
<tr>
<td>Step 2 vrf source-vrf</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# vrf green RP/0/RP0/CPU0:router(config-vrf)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 address-family [ipv4</td>
<td>ipv6] unicast</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-vrf)# address-family ipv4 unicast</td>
<td></td>
</tr>
<tr>
<td>Step 4 import route-target [xx.yy:nn</td>
<td>as-number:nn</td>
</tr>
</tbody>
</table>
| **Example:** RP/0/RP0/CPU0:router(config-vrf-af)# import route-target 234:222 RP/0/RP0/CPU0:router(config-vrf-af)# import | | • 4-byte AS number of the route target in xx.yy:nn format. Range is 0-65535:0-65535:0-65535
• AS number of the route target in nn format. Range is 0-65535.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>route-target 100:100</td>
<td>• IP address of the route target in $A.B.C.D.$ format.</td>
</tr>
</tbody>
</table>

Step 5

export route-target [xx.yy:nn | as-number:nn | ip-address:nn]

Example:

RP/0/RP0/CPU0:router(config-vrf-af)# export route-target 100:100

Exports the selected route target, optionally expressed as one of the following:

• 4-byte AS number of the route target in $xx.yy:nn$ format. Range is 0-65535.0-65535:0-65535
• AS number of the route target in nn format. Range is 0-65535.
• IP address of the route target in $A.B.C.D.$ format.

Step 6

commit

Step 7

configure

Step 8

vrf receiver-vrf

Example:

RP/0/RP0/CPU0:router(config)# vrf red RP/0/RP0/CPU0:router(config-vrf)#

Configures a VRF instance for the receiver PE router.

Step 9

Repeat Step 3 through Step 6.

Interconnecting PIM-SM Domains with MSDP

To set up an MSDP peering relationship with MSDP-enabled routers in another domain, you configure an MSDP peer to the local router.

If you do not want to have or cannot have a BGP peer in your domain, you could define a default MSDP peer from which to accept all Source-Active (SA) messages.

Finally, you can change the Originator ID when you configure a logical RP on multiple routers in an MSDP mesh group.

Before You Begin

You must configure MSDP default peering, if the addresses of all MSDP peers are not known in BGP or multiprotocol BGP.
SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. ipv4 address address mask
4. exit
5. router msdp
6. default-peer ip-address [prefix-list list]
7. originator-id type interface-path-id
8. peer peer-address
9. connect-source type interface-path-id
10. mesh-group name
11. remote-as as-number
12. commit
13. show msdp [ipv4] globals
14. show msdp [ipv4] peer [peer-address]
15. show msdp [ipv4] rpf rpf-address

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
<td>(Optional) Enters interface configuration mode to define the IPv4 address for the interface. Note This step is required if you specify an interface type and number whose primary address becomes the source IP address for the TCP connection.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# interface loopback 0</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv4 address address mask</td>
<td>(Optional) Defines the IPv4 address for the interface. Note This step is required only if you specify an interface type and number whose primary address becomes the source IP address for the TCP connection. See optional for information about configuring the connect-source command.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-if)# ipv4 address 10.0.1.3 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 5 | **router msdp**
Example: `<router-ip>:/router(config)# router msdp` | Enters MSDP protocol configuration mode. |
Step 6 | **default-peer ip-address [prefix-list list]**
Example: `<router-ip>:/router(config-msdp)# default-peer 172.23.16.0` | (Optional) Defines a default peer from which to accept all MSDP SA messages. |
Step 7 | **originator-id type interface-path-id**
Example: `<router-ip>:/router(config-msdp)# originator-id pos 0/1/1/0` | (Optional) Allows an MSDP speaker that originates a (Source-Active) SA message to use the IP address of the interface as the RP address in the SA message. |
Step 8 | **peer peer-address**
Example: `<router-ip>:/router(config-msdp)# peer 172.31.1.2` | Enters MSDP peer configuration mode and configures an MSDP peer.
• Configure the router as a BGP neighbor.
• If you are also BGP peering with this MSDP peer, use the same IP address for MSDP and BGP. You are not required to run BGP or multiprotocol BGP with the MSDP peer, as long as there is a BGP or multiprotocol BGP path between the MSDP peers. |
Step 9 | **connect-source type interface-path-id**
Example: `<router-ip>:/router(config-msdp-peer)# connect-source loopback 0` | (Optional) Configures a source address used for an MSDP connection. |
Step 10 | **mesh-group name**
Example: `<router-ip>:/router(config-msdp-peer)# mesh-group internal` | (Optional) Configures an MSDP peer to be a member of a mesh group. |
Step 11 | **remote-as as-number**
Example: `<router-ip>:/router(config-msdp-peer)# remote-as 250` | (Optional) Configures the remote autonomous system number of this peer. |
Command or Action

<table>
<thead>
<tr>
<th>Step 12</th>
<th>commit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 13</td>
<td><code>show msdp [ipv4] globals</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router# show msdp globals</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Displays the MSDP global variables.</td>
</tr>
<tr>
<td>Step 14</td>
<td><code>show msdp [ipv4] peer [peer-address]</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router# show msdp peer 172.31.1.2</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Displays information about the MSDP peer.</td>
</tr>
<tr>
<td>Step 15</td>
<td><code>show msdp [ipv4] rpf rpf-address</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router# show msdp rpf 172.16.10.13</code></td>
</tr>
<tr>
<td>Purpose</td>
<td>Displays the RPF lookup.</td>
</tr>
</tbody>
</table>

Controlling Source Information on MSDP Peer Routers

Your MSDP peer router can be customized to control source information that is originated, forwarded, received, cached, and encapsulated.

When originating Source-Active (SA) messages, you can control to whom you will originate source information, based on the source that is requesting information.

When forwarding SA messages you can do the following:
- Filter all source/group pairs
- Specify an extended access list to pass only certain source/group pairs
- Filter based on match criteria in a route map

When receiving SA messages you can do the following:
- Filter all incoming SA messages from an MSDP peer
- Specify an extended access list to pass certain source/group pairs
- Filter based on match criteria in a route map

In addition, you can use time to live (TTL) to control what data is encapsulated in the first SA message for every source. For example, you could limit internal traffic to a TTL of eight hops. If you want other groups to go to external locations, you send those packets with a TTL greater than eight hops.
By default, MSDP automatically sends SA messages to peers when a new member joins a group and wants to receive multicast traffic. You are no longer required to configure an SA request to a specified MSDP peer.

SUMMARY STEPS

1. `configure`
2. `router msdp`
3. `sa-filter {in | out} {ip-address | peer-name} [list access-list-name] [rp-list access-list-name]`
4. `cache-sa-state [list access-list-name] [rp-list access-list-name]`
5. `ttl-threshold ttl-value`
6. `exit`
7. `ipv4 access-list name [sequence-number] permit source [source-wildcard]`
8. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters MSDP protocol configuration mode.</td>
</tr>
</tbody>
</table>
| Step 2 | `router msdp` | Enters MSDP protocol configuration mode.
Example:
`RP/0/RP0/CPU0:router(config)# router msdp` |
| Step 3 | `sa-filter {in | out} {ip-address | peer-name} [list access-list-name] [rp-list access-list-name]` | Configures an incoming or outgoing filter list for messages received from the specified MSDP peer.
- If you specify both the `list` and `rp-list` keywords, all conditions must be true to pass any source, group (S, G) pairs in outgoing Source-Active (SA) messages.
- You must configure the `ipv4 access-list` command in Step 7, on page 83.
- If all match criteria are true, a `permit` from the route map passes routes through the filter. A `deny` filters routes.
- This example allows only (S, G) pairs that pass access list 100 to be forwarded in an SA message to the peer named router.cisco.com.
Example:
`RP/0/RP0/CPU0:router(config-msdp)# sa-filter out router.cisco.com list 100` |
| Step 4 | `cache-sa-state [list access-list-name] [rp-list access-list-name]` | Creates and caches source/group pairs from received Source-Active (SA) messages and controls pairs through access lists.
Example:
`RP/0/RP0/CPU0:router(config-msdp)# cache-sa-state 100` |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td></td>
</tr>
</tbody>
</table>
| ttl-threshold *ttl-value* | *(Optional) Limits which multicast data is sent in SA messages to an MSDP peer.*
 - Only multicast packets with an IP header TTL greater than or equal to the *ttl-value* argument are sent to the MSDP peer specified by the IP address or name.
 - Use this command if you want to use TTL to examine your multicast data traffic. For example, you could limit internal traffic to a TTL of 8. If you want other groups to go to external locations, send those packets with a TTL greater than 8.
 - This example configures a TTL threshold of eight hops. |
| **Example:** |
 RP/0/RP0/CPU0:router(config-msdp)# ttl-threshold 8 |
| **Step 6** | |
| exit | *Exits the current configuration mode.* |
| **Example:** |
 RP/0/RP0/CPU0:router(config-msdp)# exit |
| **Step 7** | |
| ipv4 access-list *name* [sequence-number]
 permit *source* [source-wildcard] | *Defines an IPv4 access list to be used by SA filtering.*
 - In this example, the access list 100 permits multicast group 239.1.1.1.
 - The *ipv4 access-list* command is required if the keyword *list* is configured for SA filtering in **Step 3**, on page 82. |
| **Example:** |
 RP/0/RP0/CPU0:router(config)# ipv4 access-list 100 20 permit 239.1.1.1 0.0.0.0 |
| **Step 8** | |
| commit | |

Configuring MSDP MD5 Password Authentication

SUMMARY STEPS

1. configure
2. router msdp
3. peer *peer-address*
4. password {clear | encrypted} *password*
5. commit
6. show mfib [vrf *vrf-name*] {ipv4 | ipv6} hardware route {* | source-address | group-address[/prefix-length]} location *node-id*
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router msdp</td>
<td>Enters MSDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CP00:router(config)# router msdp</td>
</tr>
<tr>
<td>Step 3</td>
<td>peer peer-address</td>
<td>Configures the MSDP peer.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CP00:router(config-msdp)# peer 10.0.5.4</td>
</tr>
<tr>
<td>Step 4</td>
<td>password {clear</td>
<td>encrypted} password</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CP00:router(config-msdp-peer)# password encrypted a34bi5m</td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>show mfib [vrf vrf-name] [ipv4</td>
<td>ipv6] hardware route {*}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RP0/CP00:router# show mfib hardware route * location 0/1/cpu0</td>
</tr>
</tbody>
</table>

Configuring VRF for MSDP

Use the vrf keyword in the MSDP configuration mode to enable VRF for MSDP.

SUMMARY STEPS

1. configure
2. router msdp
3. vrf vrf-name
4. peer peer-address
5. commit
Multicast only fast reroute (MoFRR)

MoFRR allows fast reroute for multicast traffic on a multicast router. MoFRR minimizes packet loss in a network when node or link failures occur (at the topology merge point). It works by making simple enhancements to multicast routing protocols.

MoFRR involves transmitting a multicast join message from a receiver towards a source on a primary path and transmitting a secondary multicast join message from the receiver towards the source on a backup path. Data packets are received from the primary and secondary paths. The redundant packets are discarded at topology merge points with the help of Reverse Path Forwarding (RPF) checks. When a failure is detected on the primary path, the repair occurs locally by changing the interface on which packets are accepted to the secondary interface, thus improving the convergence times in the event of a node or link failure on the primary path.

MoFRR supports ECMP (Equal Cost Multipath) and non-ECMP topologies as well.

TI (Topology Independent) MoFRR is a multicast feature that performs fast convergence (Fast ReRoute) for specified routes/flows when failure is detected on one of the paths between the router and the source.

Operating Modes of MoFRR

- RIB-based MoFRR—the RIB version is configured at the software level and is based on routing convergence. RIB events are used as trigger for switchover.
Configuring MoFRR

RIB-based MoFRR

SUMMARY STEPS

1. configure
2. router pim
3. mofrr rib acl-name
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters the PIM configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router pim</td>
<td>Enter the ACL name.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# router pim</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>mofrr rib acl-name</td>
<td>Entry the ACL name.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(pim)# mofrr rib acl1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Route Policy for Static RPF

SUMMARY STEPS

1. configure
2. router static
3. address-family[ipv4 | ipv6][multicast | unicast]destination prefix interface-typeinterface-path-id
4. exit
5. route-policypolicy-name
6. set rpf-topology policy-nameaddress-family[ipv4 | ipv6]multicast | unicasttopologyname
7. end route-policy
8. router pim address-family[ipv4 | ipv6]
9. rpf topology route-policypolicy-namepim policy

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 router static</td>
<td>Enables a static routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config) # router static</td>
<td></td>
</tr>
<tr>
<td>Step 3 address-family[ipv4</td>
<td>ipv6][multicast</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-static) # address-family ipv4 multicast 202.93.100.4/32 202.95.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits from the address family configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ipv4-afi) # exit</td>
<td></td>
</tr>
<tr>
<td>Step 5 route-policypolicy-name</td>
<td>Configures the route policy to select the RPF topology.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config) # route-policy rl</td>
<td></td>
</tr>
<tr>
<td>Step 6 set rpf-topology policy-nameaddress-family[ipv4</td>
<td>ipv6]multicast</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-rpl) # set rpf-topology pl ipv4 multicast topology t1</td>
<td></td>
</tr>
</tbody>
</table>
Point-to-Multipoint Traffic Engineering Label-Switched Multicast

IP multicast was traditionally used for IPTV broadcasting and content delivery services. MPLS-TE (traffic engineering) is fast replacing the IP multicast technique because of the various advantages of MPLS-TE, such as:

- Fast re-routing and restoration in case of link/node failure
- Bandwidth guarantee
- Explicit path setting along with off-line computation

MPLS supports point-to-point path. However, in order to use MPLS for multicast service, MPLS has to be extended to handle point-to-multipoint paths. A reliable solution to signal Point-to-Multipoint (P2MP) label switched paths (LSP) is the Point-to-Multipoint TE LSP. This solution uses the Resource Reservation Protocol-Traffic Engineering (RSVP-TE) extension as the signaling protocol for establishing P2MP TE LSPs.

Point to Multipoint LSP (P2MP)

P2MP LSP is unidirectional. In case of native IP multicast, the multicast forwarding always has to perform an acceptance check. This check ensures all multicast packets undergo a RPF check to ensure that the packets have arrived on the correct interface in the direction of the source. However, the acceptance check with MPLS forwarding may be different in case of an unicast or upstream label.

Depending on the multicast signaling protocol, the labeled packet may require an additional L3 lookup at the P and PE routers in order to forward the multicast packet to the physical interfaces according to multicast routing. In this case, the incoming P2MP LSP as the incoming interface for the received multicast packet must
also be available to the multicast forwarding plane during the L3 lookup. For more details on RSVP-TE and P2MP LSP, refer the Cisco IOS XR MPLS Configuration Guide for the Cisco CRS Router

Multicast Routing Protocol support for P2MP

All multicast routing protocols support P2MP TE LSP. At ingress node, a multicast protocol must make a mapping between the multicast traffic and the P2MP TE LSP with the configuration of static-join. At egress node, the multicast protocol must conduct a special RPF check for the multicast packet which is received from MPLS core and forward it to the customer facing interface. The RPF check is based on the configuration of static-rpf. These multicast groups which are forwarded over the P2MP TE LSPs can be specified with the static-rpf configuration in case of PIM-SSM.

Enabling Multicast Forwarding Over Tunnel Interface (at Ingress Node)

This configuration is used for allowing the forwarding of the multicast packet over the specified interface.

SUMMARY STEPS

1. configure
2. multicast-routing
3. address-family {ipv4|ipv6}
4. interface tunnel-mte range
5. enable | disable
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters multicast routing configuration mode.</td>
</tr>
<tr>
<td>Step 2 multicast-routing</td>
<td>Enters ipv4 or ipv6 address-family submode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# multicast-routing</td>
<td></td>
</tr>
<tr>
<td>Step 3 address-family {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-mcast)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 4 interface tunnel-mte range</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-mcast-default-ipv4)#</td>
<td></td>
</tr>
</tbody>
</table>
Purpose Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface tunnel-mte 100</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`enable</td>
<td>disable`</td>
<td>If enable is set, MFIB forwards multicast packets over the interface. If disable is set, MFIB stops forwarding multicast packets over the interface.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# enable
```

Step 6

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

P2MP configurations at egress node and bud node

Configuring Static Reverse Path Forwarding (RPF)

SUMMARY STEPS

1. `configure`
2. `multicast-routing`
3. `address-family {ipv4 | ipv6}`
4. `static-rpf address range prefix`
5. `mpls address`
6. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure</code></td>
<td></td>
<td>Enters multicast routing configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# multicast-routing
```

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>multicast-routing</code></td>
<td></td>
<td>Enters IPv4 (or IPv6) address-family submode.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-mcast)# address-family ipv4
```

SUMMARY STEPS

1. `configure`
2. `multicast-routing`
3. `address-family {ipv4 | ipv6}`
4. `static-rpf address range prefix`
5. `mpls address`
6. `commit`
Configuring Core Tree Protocol

SUMMARY STEPS

1. configure
2. multicast-routing
3. address-family {ipv4 | ipv6}
4. core-tree-protocol rsvp-te group-list name
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters multicast routing configuration mode.</td>
</tr>
<tr>
<td>Step 2 multicast-routing</td>
<td>Enters multicast-routing configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# multicast-routing</td>
</tr>
<tr>
<td>Step 3 address-family {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-mcast)# address-family ipv4</td>
</tr>
</tbody>
</table>
Core-tree-protocol Configuration

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>core-tree-protocol rsvp-te group-list name</code></td>
<td>Enters the core-tree-protocol configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)#
core-tree-protocol rsvp-te group-list acl1
```

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Implementing Multicast Routing on Software

This section provides the following configuration examples:

MSDP Anycast RP Configuration on Cisco IOS XR Software: Example

Anycast RP allows two or more rendezvous points (RPs) to share the load for source registration and to act as hot backup routers for each other. MSDP is the key protocol that makes Anycast RP possible.

In Anycast RP, two or more RPs are configured with the same IP address on loopback interfaces. Configure the Anycast RP loopback address with a 32-bit mask, making it a host address. Configure all downstream routers to "know" that the Anycast RP loopback address is the IP address of the local RP. IP routing automatically selects the topologically closest RP for each source and receiver.

As a source may register with one RP and receivers may join to a different RP, a method is needed for the RPs to exchange information about active sources. This information exchange is done with MSDP.

In Anycast RP, all the RPs are configured to be MSDP peers of each other. When a source registers with one RP, a Source-Active (SA) message is sent to the other RPs, informing them that there is an active source for a particular multicast group. The result is that each RP knows about the active sources in the area of the other RPs. If any of the RPs fails, IP routing converges and one of the RPs becomes the active RP in more than one area. New sources register with the backup RP, and receivers join the new RP.

Note that the RP is usually needed only to start new sessions with sources and receivers. The RP facilitates the shared tree so that sources and receivers can directly establish a multicast data flow. If a multicast data flow is already directly established between a source and the receiver, an RP failure does not affect that session. Anycast RP ensures that new sessions with sources and receivers can begin at any time.

The following Anycast RP example configures Router A and Router B as Anycast RPs. The Anycast RP IP address assignment is 10.0.0.1.

Router A

```
interface loopback 0
ipv4 address 10.0.0.1/32
no shutdown
interface loopback 1
```
IPv4 address 10.2.0.1/32
no shutdown
multicast-routing
interfaces all enable
router pim
rp-address 10.0.0.1
router msdp
connect-source loopback 1
peer 10.2.0.2

Router B

interface loopback 0
ipv4 address 10.0.0.1/32
no shutdown
interface loopback 1
ipv4 address 10.2.0.2/32
no shutdown
multicast-routing
interfaces all enable
router pim
rp-address 10.0.0.1
router msdp
connect-source loopback 1
peer 10.2.0.1

Apply the following configuration to all network routers:

multicast-routing
router pim
rp-address 10.0.0.1

Bidir-PIM Configuration on Software: Example

An access list on the RP can be used to specify a list of groups to be advertised as bidirectional PIM (bidir-PIM). The following example shows how to configure an RP for both PIM-SM and the bidir-PIM mode groups. The bidir-PIM groups are configured as 224/8 and 227/8, with the remaining multicast group range (224/4) configured as PIM-SM.

interface loopback 0
ipv4 address 10.0.0.1/24
no shutdown
interface loopback 1
ipv4 address 10.2.0.1/24
no shutdown
ipv4 access-list bidir_acl
10 permit 224.0.0.0 0.255.255.255 any
20 permit 225.0.0.0 0.255.255.255 any
multicast-routing
interface all enable
router pim
auto-rp mapping-agent loopback 0 scope 15 interval 60
auto-rp candidate-rp loopback 0 scope 15 group-list bidir_acl interval 60 bidir
auto-rp candidate-rp loopback 1 scope 15 group-list 224/4 interval 60

Tip
Issue the show pim group-map command and verify the output to ensure that the configured mappings are learned correctly.
Calculating Rates per Route: Example

The following example illustrates output from hardware counters based on rate per route for a specific source and group address location:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)# multicast-routing vrf vpn12 address-family ipv4
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# rate-per-route
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# interface all enable
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# accounting per-prefix
RP/0/RP0/CPU0:router(config-mcast-default-ipv4)# commit
RP/0/RP0/CPU0:router(config-mcast)# exit
RP/0/RP0/CPU0:router(config)# exit
RP/0/RP0/CPU0:router# show mfib route rate

IP Multicast Forwarding Rates Source Address, Group Address HW Forwarding Rates: bps In/pps Out

<table>
<thead>
<tr>
<th>Source Address</th>
<th>In bps</th>
<th>In pps</th>
<th>Out bps</th>
<th>Out pps</th>
</tr>
</thead>
<tbody>
<tr>
<td>(*,224.0.0.0/24)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(*,224.0.1.39)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(*,224.0.1.40)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(*,232.0.0.0/8)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>(30.0.70.2,225.0.0.0)</td>
<td>22649</td>
<td>50</td>
<td>22951</td>
<td>50</td>
</tr>
<tr>
<td>(30.0.70.2,225.0.0.1)</td>
<td>22649</td>
<td>50</td>
<td>22951</td>
<td>50</td>
</tr>
<tr>
<td>(30.0.70.2,225.0.0.2)</td>
<td>22649</td>
<td>50</td>
<td>22951</td>
<td>50</td>
</tr>
<tr>
<td>(30.0.70.2,225.0.0.3)</td>
<td>22649</td>
<td>50</td>
<td>22951</td>
<td>50</td>
</tr>
<tr>
<td>(30.0.70.2,225.0.0.4)</td>
<td>22649</td>
<td>50</td>
<td>22951</td>
<td>50</td>
</tr>
<tr>
<td>(30.0.70.2,225.0.0.5)</td>
<td>22649</td>
<td>50</td>
<td>22951</td>
<td>50</td>
</tr>
<tr>
<td>(30.0.70.2,225.0.0.6)</td>
<td>22649</td>
<td>50</td>
<td>22951</td>
<td>50</td>
</tr>
</tbody>
</table>
Preventing Auto-RP Messages from Being Forwarded on Software: Example

This example shows that Auto-RP messages are prevented from being sent out of the Packet over SONET/SDH (POS) interface 0/3/0/0. It also shows that access list 111 is used by the Auto-RP candidate and access list 222 is used by the boundary command to contain traffic on POS interface 0/3/0/0.

```
ipv4 access-list 111
  10 permit 224.1.0.0 0.0.255.255 any
  20 permit 224.2.0.0 0.0.255.255 any
!
!Access list 111 is used by the Auto-RP candidate.
!
ipv4 access-list 222
  10 deny any host 224.0.1.39
  20 deny any host 224.0.1.40
!
!Access list 222 is used by the boundary command to contain traffic (on POS0/3/0/0) that is sent to groups 224.0.1.39 and 224.0.1.40.
!
router pim
  auto-rp mapping-agent loopback 2 scope 32 interval 30
  auto-rp candidate-rp loopback 2 scope 15 group-list 111 interval 30
multicast-routing
  interface pos 0/3/0/0
  boundary 222

Inheritance in MSDP on Software: Example

The following MSDP commands can be inherited by all MSDP peers when configured under router MSDP configuration mode. In addition, commands can be configured under the peer configuration mode for specific peers to override the inheritance feature.

- `connect-source`
- `sa-filter`
- `ttl-threshold`

If a command is configured in both the router msdp and peer configuration modes, the peer configuration takes precedence.

In the following example, MSDP on Router A filters Source-Active (SA) announcements on all peer groups in the address range 226/8 (except IP address 172.16.0.2); and filters SAs sourced by the originator RP 172.16.0.3 to 172.16.0.2.

MSDP peers (172.16.0.1, 172.16.0.2, and 172.17.0.1) use the loopback 0 address of Router A to set up peering. However, peer 192.168.12.2 uses the IPv4 address configured on the Packet-over-SONET/SDH (POS) interface to peer with Router A.

**Router A**

```
!
ipv4 access-list 111
 10 deny ip host 172.16.0.3 any
 20 permit any any
!`
ipv4 access-list 112
10 deny any 226.0.0.0 0.255.255.255
30 permit any any
!
router mldp
 connect-source loopback 0
 sa-filter in rp-list 111
 sa-filter out rp-list 111
 peer 172.16.0.1
!
 peer 172.16.0.2
 sa-filter out list 112
!
 peer 172.17.0.1
!
 peer 192.168.12.2
 connect-source pos 0/2/0/0
!

MSDP-VRF: Example

This is an example where, peer 1.1.1.1 is configured in the VRF context for vrf1.

config
 router mldp
 vrf vrf1
 peer 1.1.1.1
 exit
end
!

Configuring Route Policy for Static RPF: Example

router static
 address-family ipv4 multicast
 202.93.192.74 /32 202.40.148.11
!
route-policy pim-policy
 set rpf-topology ipv4 multicast topology default
end-policy
!
router pim
 address-family ipv4
 rpf topology route-policy pim-policy

Configuring IPv4 Multicast VPN: Example

Cisco CRS Routers support only IPv4 addressing.
This end-to-end configuration example shows how to establish a multicast VPN topology (Figure 10: Topology in CE4PE1PE2 CE3MVPN Configuration, on page 97), using two different routing protocols (OSPF or BGP) to broadcasting traffic between customer-edge (CE) routers and provider-edge (PE) routers:

Figure 10: Topology in CE4PE1PE2 CE3MVPN Configuration

CE4------------------ PE1 -- PE2 ------------------ CE3

For more configuration information, see the Configuring Multicast VPN, on page 57 of this module and also related configuration information in Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router.

Configuring MVPN to Advertise Routes Between the CE and the PE Using OSPF: Example

PE1:

```ini
! vrf vpn1
  address-family ipv4 unicast
  import route-target
  1:1
  ! export route-target
  1:1
  !
  ! interface Loopback0
  ipv4 address 1.1.1.1 255.255.255.255
  ! interface Loopback1
  vrf vpn1
  ipv4 address 2.2.2.2 255.255.255.255
  ! interface GigabitEthernet0/5/0/0
  vrf vpn1
  ipv4 address 101.1.1.1 255.255.255.0
  ! interface TenGigE0/6/0/0
  ipv4 address 12.1.1.1 255.255.255.0
  ! mpls ldp
  ! router-id 1.1.1.1
  interface TenGigE0/6/0/0
  !
  ! multicast-routing
  vrf vpn1 address-family ipv4
  mdt data 233.1.0.0/16 threshold 3
  mdt default ipv4 232.1.1.1
  rate-per-route
  interface all enable
  accounting per-prefix
  ! address-family ipv4
  ! nsf
  mdt source Loopback0
  interface all enable
  accounting per-prefix
  !
  ! router bgp 100
  bgp router-id 1.1.1.1
  address-family ipv4 unicast
  !
  address-family vpnv4 unicast
```

Cisco IOS XR Multicast Configuration Guide for the Cisco CRS Router, Release 4.3.x
! address-family ipv4 mdt
! neighbor 9.9.9.9
 remote-as 100
 update-source Loopback0
 address-family ipv4 unicast
 !
 address-family vpnv4 unicast
 !
 address-family ipv4 mdt
 !
 vrf vpn1
 rd 1:1
 address-family ipv4 unicast
 redistribute ospf 1
!}
!
router ospf 1
vrf vpn1
 router-id 2.2.2.2
 redistribute bgp 100
 area 0
 interface Loopback1
 !
 interface GigabitEthernet0/5/0/0
 !
 !
router ospf 100
vrf vpn1
 router-id 1.1.1.1
 area 0
 interface Loopback0
 !
 interface TenGigE0/6/0/0
 !
 !
router pim vrf vpn1 address-family ipv4
 rp-address 2.2.2.2
 log neighbor changes
!
router pim vrf default address-family ipv4
 rp-address 1.1.1.1
end

PE2:

! vrf vpn1
 address-family ipv4 unicast
 import route-target
 1:1
 !
 export route-target
 1:1
!}
!
interface Loopback0
ipv4 address 9.9.9.9 255.255.255.255
!
interface Loopback1
vrf vpn1
ipv4 address 10.10.10.10 255.255.255.255
!
interface GigabitEthernet0/2/2/7
 vrf vpn1
 ipv4 address 122.1.1.1 255.255.255.0
 negotiation auto
!
interface TenGigE0/3/0/0
 ipv4 address 12.1.1.2 255.255.255.0
!
mls ldp
 router-id 9.9.9.9
!
interface TenGigE0/3/0/0
!
!
multicast-routing
 vrf vpn1 address-family ipv4
 mdt data 233.1.0.0/16 threshold 3
 mdt default ipv4 232.1.1.1
 rate-per-route
 interface all enable
 accounting per-prefix
 !
 address-family ipv4
 mdt source Loopback0
 interface all enable
 accounting per-prefix
 !
!
routerview
 router-id 9.9.9.9
 address-family ipv4 unicast
 !
 address-family vpnv4 unicast
 !
 address-family ipv4 mdt
 !
 neighbor 1.1.1.1
 remote-as 100
 update-source Loopback0
 address-family ipv4 unicast
 !
 address-family vpnv4 unicast
 !
 address-family ipv4 mdt
 !
!
routerview
 vrf vpn1
 rd 1:1
 address-family ipv4 unicast
 redistribute ospf 1
 !
 !
 router ospf 1
 vrf vpn1
 router-id 10.10.10.10
 redistribute bgp 100
 area 0
 interface Loopback1
 !
 interface GigabitEthernet0/2/2/7
 !
 !
 router ospf 100
 vrf vpn1
 router-id 9.9.9.9
 area 0
 interface Loopback0
 !
 interface TenGigE0/3/0/0
 !
router pim vrf vpn1 address-family ipv4
 rp-address 2.2.2.2
router pim vrf default address-family ipv4
 rp-address 1.1.1.1
end

CE4:
For information about configuring the CE router, using Cisco IOS software, see the appropriate Cisco IOS software configuration documentation.

interface Loopback0
 ipv4 address 101.101.101.101 255.255.255.255

interface GigabitEthernet0/0/0/0
 ipv4 address 101.1.1.1 255.255.255.0

interface GigabitEthernet0/0/0/3
 ipv4 address 11.1.1.1 255.255.255.0

multicast-routing
 address-family ipv4
 interface all enable

router ospf 1
 router-id 101.101.101.101
 area 0
 interface Loopback0

 interface GigabitEthernet0/0/0/0

 interface GigabitEthernet0/0/0/3

router pim vrf default address-family ipv4
 rp-address 2.2.2.2
 interface Loopback0

 interface GigabitEthernet0/0/0/0

 interface GigabitEthernet0/0/0/3

end

CE3:
For information about configuring the CE router, using Cisco IOS software, see the appropriate Cisco IOS software configuration documentation.

interface Loopback0
 ipv4 address 122.122.122.122 255.255.255.255

interface GigabitEthernet0/1/3/0
 ipv4 address 22.1.1.1 255.255.255.0

interface GigabitEthernet0/2/3/0
 ipv4 address 122.1.1.2 255.255.255.0
multicast-routing
 address-family ipv4
 interface all enable
!
router ospf 1
 router-id 122.122.122.122
 area 0
 interface Loopback0
 !
 interface GigabitEthernet0/1/3/0
 !
 interface GigabitEthernet0/2/3/0
 !
 !
router pim vrf default address-family ipv4
 rp-address 2.2.2.2
 interface Loopback0
 !
 interface GigabitEthernet0/1/3/0
 !
 interface GigabitEthernet0/2/3/0
 !
 !
end

Configuring MVPN to Advertise Routes Between the CE and the PE Using BGP: Example

PE1:

vrf vpn1
 address-family ipv4 unicast
 import route-target
 1:1
 !
 export route-target
 1:1
 !
 !
 interface Loopback0
 ipv4 address 1.1.1.1 255.255.255.255
 !
 interface Loopback1
 vrf vpn1
 ipv4 address 2.2.2.2 255.255.255.255
 !
 interface GigabitEthernet0/5/0/0
 vrf vpn1
 ipv4 address 101.1.1.1 255.255.255.0
 !
 interface TenGigE0/6/0/0
 ipv4 address 12.1.1.1 255.255.255.0
 !
 mpls ldp
 router-id 1.1.1.1
 !
 !
 multicast-routing
 vrf vpn1 address-family ipv4
 mdt data 233.1.0.0/16 threshold 3
 mdt default ipv4 232.1.1.1
 rate-per-route
 interface all enable
 accounting per-prefix
 !
 address-family ipv4
nsf
mdt source Loopback0
interface all enable
accounting per-prefix
!
!
route-policy pass-all
pass
end-policy
!
router bgp 100
bgp router-id 1.1.1.1
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
address-family ipv4 mdt
!
neighbor 9.9.9.9
remote-as 100
update-source Loopback0
address-family ipv4 unicast
!
address-family vpnv4 unicast
!
address-family ipv4 mdt
!
!
vrf vpn1
rd 1:1
address-family ipv4 unicast
redistribute connected
!
neighbor 101.1.1.2
remote-as 400
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
!
router ospf 100
router-id 1.1.1.1
area 0
 interface Loopback0
!
 interface TenGigE0/6/0/0
!
!
router pim vrf vpn1 address-family ipv4
rp-address 2.2.2.2
log neighbor changes
!
router pim vrf default address-family ipv4
rp-address 1.1.1.1
!
end

PE2:

!
vrf vpn1
 address-family ipv4 unicast
 import route-target
 1:1
 export route-target
interface Loopback0
 ipv4 address 9.9.9.9 255.255.255.255
!
interface Loopback1
 vrf vpn1
 ipv4 address 10.10.10.10 255.255.255.255
!
interface GigabitEthernet0/2/2/7
 vrf vpn1
 ipv4 address 122.1.1.1 255.255.255.0
 negotiation auto
!
interface TenGigE0/3/0/0
 ipv4 address 12.1.1.2 255.255.255.0
!
mpls ldp
 router-id 9.9.9.9
!
interface TenGigE0/3/0/0
!
multicast-routing
 vrf vpn1 address-family ipv4
 mdt data 233.1.0.0/16 threshold 3
 mdt default ipv4 232.1.1.1
 rate-per-route
 interface all enable
 accounting per-prefix
!
address-family ipv4
 nsf
 mdt source Loopback0
 interface all enable
 accounting per-prefix
!
route-policy pass-all
 pass
end-policy
!
router bgp 100
 bgp router-id 9.9.9.9
 address-family ipv4 unicast
 !
 address-family vpnv4 unicast
 !
 address-family ipv4 mdt
 !
neighbor 1.1.1.1
 remote-as 100
 update-source Loopback0
 address-family ipv4 unicast
 !
 address-family vpnv4 unicast
 !
 address-family ipv4 mdt
 !
!
neighbor 122.1.1.2
 remote-as 500
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
router ospf 100
router-id 9.9.9.9
area 0
 interface Loopback0
 interface TenGigE0/3/0/0
router pim vrf vpn1 address-family ipv4
 rp-address 2.2.2.2
router pim vrf default address-family ipv4
 rp-address 1.1.1.1
end

CE4:
For information about configuring the CE router, using Cisco IOS software, see the appropriate Cisco IOS software configuration documentation.

interface Loopback0
 ipv4 address 101.101.101.101 255.255.255.255
interface GigabitEthernet0/0/0/0
 ipv4 address 101.1.1.2 255.255.255.0
interface GigabitEthernet0/0/0/3
 ipv4 address 11.1.1.1 255.255.255.0
multicast-routing
 address-family ipv4
 interface all enable
route-policy pass-all
 pass
end-policy
router bgp 400
 bgp router-id 101.101.101.101
 address-family ipv4 unicast
 redistribute connected
 neighbor 101.1.1.1
 remote-as 100
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
router pim vrf default address-family ipv4
 rp-address 2.2.2.2
interface Loopback0
 interface GigabitEthernet0/0/0/0
 interface GigabitEthernet0/0/0/3
end
CE3:

For information about configuring the CE router, using Cisco IOS software, see the appropriate Cisco IOS software configuration documentation.

```plaintext
interface Loopback0
 ipv4 address 122.122.122.122 255.255.255.255
!
interface GigabitEthernet0/1/3/0
 ipv4 address 22.1.1.1 255.255.255.0
!
interface GigabitEthernet0/2/3/0
 ipv4 address 122.1.1.2 255.255.255.0

multicast-routing
 address-family ipv4
 interface all enable
 !
 !
 route-policy pass-all
 pass
 end-policy
!
router bgp 500
 bgp router-id 122.122.122.122
 address-family ipv4 unicast
 redistribute connected
!
neighbor 122.1.1.1
 remote-as 100
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
!
router pim vrf default address-family ipv4
 rp-address 2.2.2.2
 interface Loopback0
!
interface GigabitEthernet0/1/3/0
!
interface GigabitEthernet0/2/3/0
!
!
end
```

Configuration Examples for MVPN Profiles

The profile-wise configuration examples for the various MVPN profiles.

Configuration Examples for Inband mLDP profiles

Profile-6: VRF Inband mLDP

```plaintext
router bgp 100
 mvpn
 !
multicast-routing
 mdt source Loopback0
 vrf v6l
```
address-family ipv4
 mdt mtu 1600
 mdt mldp in-band-signaling ipv4
 interface all enable
!
address-family ipv6
 mdt mtu 1600
 mdt mldp in-band-signaling ipv4
 interface all enable
!
router pim
 vrf v61
 address-family ipv4
 rpf topology route-policy mldp-inband
 !
 address-family ipv6
 rpf topology route-policy mldp-inband
 !
 route-policy mldp-inband
 set core-tree mldp-inband
 end-policy
!
Profile-7: Global Inband mLDP

multicast-routing
 address-family ipv4
 mdt source Loopback0
 mdt mldp in-band-signaling ipv4
 ssm range Global-SSM-Group
 interface all enable
 !
 address-family ipv6
 mdt source Loopback0
 mdt mldp in-band-signaling ipv4
 ssm range Global-SSM-Group-V6
 interface all enable
!
router pim
 address-family ipv4
 rpf topology route-policy mldp-inband
 !
 address-family ipv6
 rpf topology route-policy mldp-inband
 !
 route-policy mldp-inband
 set core-tree mldp-inband
 end-policy
!

Configuration Examples for P2MP-TE profiles

Profile-8: Global Static P2MP-TE

interface Loopback0
 ipv4 address 200.200.1.1 255.255.255.255
!
multicast-routing
 address-family ipv4
 mdt source Loopback0
 ssm range Global-SSM-Group
 interface all enable
 !
 address-family ipv6
 mdt source Loopback0
 ssm range Global-SSM-Group-V6
 interface all enable
 !
 router igmp
interface tunnel-mte1

 static-group 228.1.1.1 2.2.2.1

router mld
interface tunnel-mte1
 static-group ff3e::0:228::1 2001:2:2::1

Profile-10: VRF static P2MP-TE with BGP-AD

! multicast-routing
 mdt source Loopback0
 vrf v101
 address-family ipv4
 mdt static p2mp-te tunnel-mte10
 interface all enable
 bgp auto-discovery p2mp-te

 ! router igmp
 vrf v101
 interface tunnel-mte10
 static-group 227.101.1.1 101.7.1.1

!

Profile-18: Rosen Static P2MP-TE with BGP-AD and PIM signaling

multicast-routing
 mdt source Loopback0
 vrf v181
 address-family ipv4
 mdt default p2mp-te static tunnel-mte18
 interface all enable
 bgp auto-discovery p2mp-te

 ! address-family ipv6
 mdt default p2mp-te static tunnel-mte181
 interface all enable
 bgp auto-discovery p2mp-te

 !
 router pim
 vrf v181
 address-family ipv4
 rpf topology route-policy p2mp-te-default

 !
 address-family ipv6
 rpf topology route-policy p2mp-te-default

 !
 route-policy p2mp-te-default
 set core-tree p2mp-te-default
end-policy

Profile-16: Rosen Static P2MP-TE with BGP-Ad and BGP signaling

! multicast-routing
 mdt source Loopback0
 vrf v161
 address-family ipv4
 mdt default p2mp-te static tunnel-mte16
 interface all enable
 bgp auto-discovery p2mp-te

 ! address-family ipv6
 mdt default p2mp-te static tunnel-mte161
 interface all enable
 bgp auto-discovery p2mp-te

Configuration examples for Partitioned mLDP profiles

Profile-2: Partitioned mLDP MP2MP without BGP-AD

```
router bgp 100
    mvpn
    !
    multicast-routing
    vrf v21
    address-family ipv4
        mdt mtu 1600
        mdt partitioned mldp ipv4 mp2mp
            interface all enable
    !
    address-family ipv6
        mdt mtu 1600
        mdt partitioned mldp ipv4 mp2mp
            interface all enable
    !
    router pim
    vrf v21
    address-family ipv4
        rpf topology route-policy mldp-partitioned-mp2mp
    !
    address-family ipv6
        rpf topology route-policy mldp-partitioned-mp2mp
    !
    route-policy mldp-partitioned-mp2mp
        set core-tree mldp-partitioned-mp2mp
    end-policy
```

Profile-4: Partitioned mLDP MP2MP with BGP-AD and PIM signaling

```
multicast-routing
    mdt source Loopback0
    vrf v41
    address-family ipv4
        mdt mtu 1600
        mdt partitioned mldp ipv4 mp2mp
        mdt data 255
            interface all enable
            bgp auto-discovery mldp
    !
    address-family ipv6
        mdt mtu 1600
        mdt partitioned mldp ipv4 mp2mp
        mdt data 255
            interface all enable
            bgp auto-discovery mldp
    !
```
router pim
vrf v41
 address-family ipv4
 rpf topology route-policy mldp-partitioned-mp2mp
!
 address-family ipv6
 rpf topology route-policy mldp-partitioned-mp2mp
!
route-policy mldp-partitioned-mp2mp
 set core-tree mldp-partitioned-mp2mp
end-policy

Profile-15: Partitioned mLDPP2MP with BGP-AD and BGP signaling

! multicast-routing
 mdt source Loopback0
 vrf v151
 address-family ipv4
 mdt mtu 1600
 mdt partitioned mldp ipv4 mp2mp
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
! address-family ipv6
 mdt mtu 1600
 mdt partitioned mldp ipv4 mp2mp
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
!
router pim
 vrf v151
 address-family ipv4
 rpf topology route-policy mldp-partitioned-mp2mp
 mdt c-multicast-routing bgp
! address-family ipv6
 rpf topology route-policy mldp-partitioned-mp2mp
 mdt c-multicast-routing bgp
!
route-policy mldp-partitioned-mp2mp
 set core-tree mldp-partitioned-mp2mp
end-policy

Profile-5: Partitioned mLDPP2MP with BGP-AD and PIM signaling

! multicast-routing
 mdt source Loopback0
 vrf v51
 address-family ipv4
 mdt mtu 1600
 mdt partitioned mldp ipv4 p2mp
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
! address-family ipv6
 mdt mtu 1600
 mdt partitioned mldp ipv4 p2mp
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
!
router pim
 vrf v51
 address-family ipv4
Profile-14: Partitioned mLDP P2MP with BGP-AD and BGP signaling

```
multicast-routing
mdt source Loopback0
vrf v141
  address-family ipv4
    mdt mtu 1600
    mdt partitioned mldp ipv4 p2mp
    mdt data 255
    interface all enable
    bgp auto-discovery mldp
  !
  address-family ipv6
    mdt mtu 1600
    mdt partitioned mldp ipv4 p2mp
    mdt data 255
    interface all enable
    bgp auto-discovery mldp
  !
router pim
vrf v141
  address-family ipv4
    rpf topology route-policy mldp-partitioned-p2mp
    mdt c-multicast-routing bgp
  !
  address-family ipv6
    rpf topology route-policy mldp-partitioned-p2mp
    mdt c-multicast-routing bgp
  !
route-policy mldp-partitioned-p2mp
  set core-tree mldp-partitioned-p2mp
end-policy
```

Configuration Examples for Rosen-mGRE profiles

Profile-0: Rosen mGRE with MDT SAFI

```
router bgp 100
  address-family ipv4 mdt
  !
  neighbor X.X.X.X
    !
    address-family ipv4 mdt
    !
multicast-routing
  address-family ipv4
    mdt source Loopback0
    interface all enable
    !
    address-family ipv6
    mdt source Loopback0
    interface all enable
    !
  vrf v1
    address-family ipv4
    mdt mtu 1600
```
Interface all enable

Profile-3: Rosen mGRE with BGP-AD and PIM signaling

router bgp 100
 address-family ipv4 mvpn
 address-family ipv6 mvpn
 neighbor X.X.X.X < -----RR or Remote PE ip address
 address-family ipv4 mvpn
 address-family ipv6 mvpn
 !
 vrf v31
 rd 100:31
 address-family ipv4 mvpn
 address-family ipv6 mvpn
 !
 !
 !
 !
 !
 !
 !
 !
 multicast-routing
 mdt source Loopback0
 vrf v31
 address-family ipv4
 mdt mtu 1600
 mdt data 232.31.1.2/32
 mdt default ipv4 232.31.1.1
 interface all enable
 bgp auto-discovery pim
 address-family ipv6
 mdt mtu 1600
 mdt data 232.31.1.2/32
 mdt default ipv4 232.31.1.1
 interface all enable
 bgp auto-discovery pim
 !
 !
Profile-11: Rosen mGRE with BGP-AD and BGP signaling

router bgp 100
 address-family ipv4 mvpn
 address-family ipv6 mvpn
 neighbor X.X.X.X < -----RR or Remote PE ip address
 address-family ipv4 mvpn
 address-family ipv6 mvpn
 !
 vrf v111
 rd 100:111
 address-family ipv4 mvpn
 address-family ipv6 mvpn
 !
 !
multicast-routing
 mdt source Loopback0
 vrf v111
 address-family ipv4
 mdt mtu 1600
 mdt data 232.111.1.2/32
 mdt default ipv4 232.111.1.1
 interface all enable
 bgp auto-discovery pim
 !
 address-family ipv6
 mdt mtu 1600
 mdt data 232.111.1.2/32
 mdt default ipv4 232.111.1.1
 interface all enable
 bgp auto-discovery pim

 router pim
 vrf v111
 address-family ipv4
 mdt c-multicast-routing bgp
 !
 address-family ipv6
 mdt c-multicast-routing bgp
 !

Configuration Examples for Rosen mLDP profiles

Profile-1: Rosen mLDP with M2MP without BGP-AD

vrf v11
 vpn id 100:11

router bgp 100
 mvpn

 multicast-routing
 mdt source Loopback0
 vrf v11
 address-family ipv4
 mdt mtu 1600
 mdt default mldp ipv4 100.100.1.1
 mdt default mldp ipv4 100.100.1.2
 mdt data 255
 interface all enable
 !
 address-family ipv6
 mdt mtu 1600
 mdt default mldp ipv4 100.100.1.1
 mdt default mldp ipv4 100.100.1.2
 mdt data 255
 interface all enable
 !

 router pim
 vrf v11
 address-family ipv4
 rpf topology route-policy rosen-mldp
 !
 address-family ipv6
 rpf topology route-policy rosen-mldp
 !

route-policy rosen-mldp
 set core-tree mldp-default
end-policy!
Profile-9: Rosen mLDP MP2MP with BGP-AD and PIM signaling

vrf v91
vpn id 100:91

multicast-routing
mdt source Loopback0
vrf v91
 address-family ipv4
 mdt mtu 1600
 mdt default mldp ipv4 100.100.1.1
 mdt default mldp ipv4 100.100.1.2
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
 !
 address-family ipv6
 mdt mtu 1600
 mdt default mldp ipv4 100.100.1.1
 mdt default mldp ipv4 100.100.1.2
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
 !
router pim
vrf v91
 address-family ipv4
 rpf topology route-policy rosen-mldp
 !
 address-family ipv6
 rpf topology route-policy rosen-mldp
 !
route-policy rosen-mldp
 set core-tree mldp-default
end-policy

Profile-13: Rosen mLDP MP2MP with BGP-AD and BGP signaling

vrf v131
vpn id 100:131

multicast-routing
mdt source Loopback0
vrf v131
 address-family ipv4
 mdt mtu 1600
 mdt default mldp ipv4 100.100.1.1
 mdt default mldp ipv4 100.100.1.2
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
 !
 address-family ipv6
 mdt mtu 1600
 mdt default mldp ipv4 100.100.1.1
 mdt default mldp ipv4 100.100.1.2
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
 !
router pim
vrf v131
 address-family ipv4
 rpf topology route-policy rosen-mldp
 mdt c-multicast-routing bgp
 !
address-family ipv6
rpf topology route-policy rosen-mldp
mdt c-multicast-routing bgp
end-policy
Profile-17: Rosen mLDP P2MP with BGP-AD and PIM signaling

multicast-routing
mdt source Loopback0
vrf v171
address-family ipv4
 mdt mtu 1600
 mdt default mldp p2mp
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
 !
 address-family ipv6
 mdt mtu 1600
 mdt default mldp p2mp
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
 !
router pim
vrf v171
address-family ipv4
 rpf topology route-policy rosen-mldp
 !
 address-family ipv6
 rpf topology route-policy rosen-mldp
 !
route-policy rosen-mldp
 set core-tree mldp-default
end-policy

Profile-12: Rosen mLDP P2MP with BGP-AD and BGP signaling

multicast-routing
mdt source Loopback0
vrf v121
address-family ipv4
 mdt mtu 1600
 mdt default mldp p2mp
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
 !
 address-family ipv6
 mdt mtu 1600
 mdt default mldp p2mp
 mdt data 255
 interface all enable
 bgp auto-discovery mldp
 !
router pim
vrf v121
address-family ipv4
 rpf topology route-policy rosen-mldp
 !
 address-family ipv6
 rpf topology route-policy rosen-mldp
 !
address-family ipv6
 rpf topology route-policy rosen-mldp
 mdt c-multicast-routing bgp
Configuring Multitopology Routing: Example

The following example shows the configuration required to enable a dual multicast topology. The two topologies defined are named BLUE and GREEN. Each contains one interface. IS-IS is configured so that each interface is only in the IS-IS topology, and the interfaces themselves are configured so that their connected and local routes are placed only within the appropriate routing tables.

The routing policy was configured to select which topology should be used based on the source address of the multicast flow.

```conf
! interface GigabitEthernet0/1/0/0
  address-family ipv4 multicast topology BLUE
! interface GigabitEthernet0/1/0/1
  address-family ipv4 multicast topology GREEN
! router isis 1
  net 00.0000.0000.0001.00
  interface GigabitEthernet0/1/0/0
    address-family ipv4 multicast topology BLUE
  interface GigabitEthernet0/1/0/1
    address-family ipv4 multicast topology GREEN
!
route-policy mtp1
  if destination in (230.5.1.2) then
    if source in (10.10.10.10) then
      set rpf-topology ipv4 multicast topology BLUE
    else
      set rpf-topology ipv4 multicast topology GREEN
    endif
  endif
end-policy
!
router pim
  address-family ipv4
    rpf topology route-policy mtp1
! multicast-routing
  address-family ipv4
    interface all enable
!```

Examples 1 and 2 illustrate routing policies that you can use in configuring PIM RPF topologies:

Example 1

```conf
route-policy mtp1
 if destination in (225.0.0.1, 225.0.0.11) then
 set rpf-topology ipv4 multicast topology t201
 elseif destination in (225.0.0.2, 225.0.0.12) then
 set rpf-topology ipv4 multicast topology t202
 elseif destination in (225.0.0.3, 225.0.0.13) then
```
Configuring MVPN Extranet Routing: Example

These examples describe two ways to configure MVPN extranet routing:

For the full set of configuration tasks, see Configuring MVPN Extranet Routing, on page 76.

Configuring the Source MVRF on the Receiver PE Router: Example

The following examples show how to configure MVPN extranet routing by specifying the source MVRF on the receiver PE router.

You must configure both the source PE router and the receiver PE router.

Configure the Source PE Router Using Route Targets

```
interface Loopback5
 ipv4 address 201.5.5.201 255.255.255.255
!
interface Loopback22
 vrf provider-vrf
 ipv4 address 201.22.22.201 255.255.255.255
!
interface GigabitEthernet0/6/0/0
 vrf provider-vrf
 ipv4 address 10.10.10.1 255.255.0.0
!
vrf provider-vrf
 address-family ipv4 unicast
 import route-target
 1100:1
!
export route-target
 1100:1
!
router bgp 1
 regular BGP MVPN config
 vrf provider-vrf
 rd 1100:1
 address-family ipv4 unicast
 redistribute connected
```
multicast-routing
vrf provider-vrf address-family ipv4
mdt data 226.1.4.0/24 threshold 3
log-traps
mdt default ipv4 226.0.0.4
rate-per-route
interface all enable
accounting per-prefix
!
address-family ipv4
nsf
mdt source Loopback5
interface all enable
!
router pim vrf provider-vrf address-family ipv4
 rp-address 201.22.22.201
!

Configure the Receiver PE Router Using Route Targets

interface Loopback5
  ipv4 address 202.5.5.202 255.255.255.255
!
interface GigabitEthernet0/3/0/2
  vrf receiver-vrf
  ipv4 address 20.20.20.1 255.255.0.0
!
  vrf provider-vrf
  address-family ipv4 unicast
  import route-target
  1100:1
  !
  export route-target
  1100:1
  !

  vrf receiver-vrf
  address-family ipv4 unicast
  import route-target
  110:1
  110:1
  !
  export route-target
  110:1
  !
  multicast-routing
  vrf provider-vrf address-family ipv4
  log-traps
  mdt default ipv4 226.0.0.4
  rate-per-route
  interface all enable
  accounting per-prefix
  !

  vrf receiver_vrf address-family ipv4
  log-traps
  mdt default ipv4 226.0.0.5
  rate-per-route
  interface all enable
  accounting per-prefix
  !
  address-family ipv4
  nsf
  mdt source Loopback5
interface all enable
!
router pim vrf provider-vrf address-family ipv4
  rp-address 201.22.22.201
!
router pim vrf receiver_vrf address-family ipv4
  rp-address 201.22.22.201
!
router bgp 1
  regular BGP MVPN config
  vrf provider-vrf
    rd 1100:1
    address-family ipv4 unicast
    redistribute connected
  !
  vrf receiver_vrf
    rd 1101:1
    address-family ipv4 unicast
    redistribute connected
!

Configuring RPL Policies in Receiver VRFs to Propagate Joins to a Source VRF: Example

In addition to configuring route targets, Routing Policy Language (RPL) policies can be configured in receiver VRFs on receiver PE routers to propagate joins to a specified source VRF. However, this configuration is optional.

The following configuration example shows a policy where the receiver VRF can pick either "provider_vrf_1" or "provider_vrf_2" to propagate PIM joins.

In this example, provider_vrf_1 is used for multicast streams in the range of from 227.0.0.0 to 227.255.255.255, while provider_vrf_2 is being used for streams in the range of from 228.0.0.0 to 228.255.255.255.

route-policy extranet_streams_from_provider_vrf
  if destination in (227.0.0.0/32 ge 8 le 32) then
    set rpf-topology vrf provider_vrf_1
  elseif destination in (228.0.0.0/32 ge 8 le 32) then
    set rpf-topology vrf provider_vrf_2
  else
    pass
  endif
end-policy
!
router pim vrf receiver_vrf address-family ipv4
  rpf topology route-policy extranet_streams_from_provider_vrf
!

Configuring the Receiver MVRF on the Source PE Router: Example

The following examples show how to configure MVPN extranet routing by specifying the receiver MVRF on the source PE router.

---

**Note**

You must configure both the source PE router and the receiver PE router.
Configure the Source PE Router Using Route Targets

interface Loopback5
ipv4 address 202.5.5.202 255.255.255.255
!
interface GigabitEthernet0/3/0/2
vrf provider-vrf
ipv4 address 20.20.20.1 255.255.0.0
!
vrf provider-vrf
address-family ipv4 unicast
import route-target
1100:1
!
export route-target
1100:1
!
!
vrf receiver-vrf
address-family ipv4 unicast
import route-target
1100:1
1101:1
!
export route-target
1101:1
!
!
router bgp 1
regular BGP MVPN config
vrf provider-vrf
rd 1100:1
address-family ipv4 unicast
redistribute connected
!
vrf receiver-vrf
rd 1101:1
address-family ipv4 unicast
redistribute connected
!
!
multicast-routing
vrf provider-vrf address-family ipv4
log-traps
mdt default ipv4 226.0.0.4
rate-per-route
interface all enable
accounting per-prefix
!
vrf receiver_vrf address-family ipv4
log-traps
mdt default ipv4 226.0.0.5
rate-per-route
interface all enable
accounting per-prefix
!
address-family ipv4
nsf
mdt source Loopback5
interface all enable
!
router pim vrf provider-vrf address-family ipv4
rp-address 201.22.22.201
!
router pim vrf receiver_vrf address-family ipv4
rp-address 201.22.22.201
Configure the Receiver PE Router Using Route Targets

```plaintext
interface Loopback5
 ipv4 address 201.5.5.201 255.255.255.255
!
interface Loopback22
 vrf receiver_vrf
 ipv4 address 201.22.22.201 255.255.255.255
!
interface GigabitEthernet0/6/0/0
 vrf receiver_vrf
 ipv4 address 10.10.10.1 255.255.0.0
!

vrf receiver_vrf
 address-family ipv4 unicast
 import route-target
 1100:1
 1101:1
!
 export route-target
 1101:1
!
!
routing bgp 1
 regular BGP MVPN config
 vrf receiver_vrf
 rd 1101:1
 address-family ipv4 unicast
 redistribute connected
!

multicast-routing
 vrf receiver_vrf address-family ipv4
 log-traps
 mdt default ipv4 226.0.0.5
 rate-per-route
 interface all enable
 accounting per-prefix
!
 address-family ipv4
 nsf
 mdt source Loopback5
 interface all enable
!

router pim vrf receiver_vrf address-family ipv4
 rp-address 201.22.22.201
!
```

Configuring RPL Policies in Receiver VRFs on Source PE Routers to Propagate Joins to a Source VRF: Example

In addition to configuring route targets, RPL policies can be configured in receiver VRFs on a source PE router to propagate joins to a specified source VRF. However, this configuration is optional.

The configuration below shows a policy in which the receiver VRF can select either "provider_vrf_1" or "provider_vrf_2" to propagate PIM joins. Provider_vrf_1 will be selected if the rendezvous point (RP) for a multicast stream is 201.22.22.201, while provider_vrf_2 will be selected if the RP for a multicast stream is 202.22.22.201.
As an alternative, you can configure a multicast group-based policy as shown in the Configuring RPL Policies in Receiver VRFs to Propagate Joins to a Source VRF: Example, on page 118.

```plaintext
route-policy extranet_streams_from_provider_rp
 if source in (201.22.22.201) then
 set rpf-topology vrf provider_vrf_1
 else if source in (202.22.22.201) then
 set rpf-topology vrf provider_vrf_2
 else
 pass
 endif
end-policy

! router pim vrf receiver_vrf address-family ipv4
 rpf topology route-policy extranet_streams_from_provider_rp
 rp-address 201.22.22.201 grange_227
 rp-address 202.22.22.201 grange_228
!```

Configuring Multicast Hub and Spoke Topology: Example

These examples describe two ways to configure Multicast Hub and Spoke:

Figure 11: Example for CE1 PE1 PE3 CE3 Multicast Hub and Spoke Topology

CE1--------- PE1 -- PE3 --------- CE3

CE1, PE1, and PE3 are all on Cisco IOS XR Software, CE3 has Cisco IOS Software in order to configure autorp on VRF interface. For information about configuring the CE router, using Cisco IOS software, see the appropriate Cisco IOS software documentation.

Hub and Spoke Non-Turnaround Configuration: Example

A1-Spoke-3

No turnaround case with bsr and autorp relay

PE1:

```plaintext
vrf A1-Hub-1
address-family ipv4 unicast
import route-target
  1000:10
  1001:10
  !
export route-target
  1000:10
  !
!```
vrf A1-Hub-Tunnel
address-family ipv4 unicast
  import route-target
  1000:10
  !
  !
  !
vrf A1-Spoke-Tunnel
address-family ipv4 unicast
  import route-target
  1001:10
  !
  !
  !
router pim
vrf A1-Hub-1
address-family ipv4
  rpf topology route-policy A1-Hub-Policy
  bsr relay vrf A1-Hub-Tunnel
  bsr candidate-bar 201.10.10.201 hash-mask-len 30 priority 4
  bar candidate-rp 201.10.10.201 group-list A1_PE1_RP_grange priority 4 interval 60
  auto-rp relay vrf A1-Hub-Tunnel
  !
  !
  !
router pim
vrf A1-Hub-Tunnel
address-family ipv4
  !
  !
  !
multicast-routing
vrf A1-Hub-1
address-family ipv4
  log-traps
  multipath
  rate-per-route
  interface all enable
accounting per-prefix
!
!
!
multicast-routing
vrf A1-Hub-Tunnel
  address-family ipv4
    mdt data 226.202.1.0/24 threshold 10
    log-traps
    mdt default ipv4 226.202.0.0
    rate-per-route
    accounting per-prefix
    !
    !
multicast-routing
vrf A1-Spoke-Tunnel
  address-family ipv4
    mdt mtu 2000
    mdt data 226.202.2.0/24 threshold 5
    log-traps
    mdt default ipv4 226.202.0.1
    rate-per-route
    accounting per-prefix
    !
    !

router bgp 1
vrf A1-Hub-1
  rd 1000:1
  address-family ipv4 unicast
    route-target download
    redistribute connected
    redistribute eigrp 20 match internal external metric 1000
    !
    !
router bgp 1
  vrf A1-Hub-Tunnel
    rd 1002:1
    address-family ipv4 unicast
      redistribute connected
    !
  !
router bgp 1
  vrf A1-Spoke-Tunnel
    rd 1002:2
    address-family ipv4 unicast
      redistribute connected
    !
  !
route-policy A1-Hub-Policy
  if extcommunity rt matches-any (1000:10) then
    set rpf-topology vrf A1-Hub-Tunnel
  elseif extcommunity rt matches-any (1001:10) then
    set rpf-topology vrf A1-Spoke-Tunnel
  else
    pass
  endif
end-policy
!
route-policy A1-Spoke-Policy
  if extcommunity rt matches-any (1000:10) then
    set rpf-topology vrf A1-Hub-Tunnel
  else
    pass
  endif
end-policy
!
PE3:
  vrf A1-Hub-4
  address-family ipv4 unicast
import route-target
  1000:10
  1001:10
!
export route-target
  1000:10
!
!
!
!

vrf A1-Spoke-2
address-family ipv4 unicast
import route-target
  1000:10
!
export route-target
  1001:10
!
!
!

vrf A1-Hub-Tunnel
address-family ipv4 unicast
import route-target
  1000:10
!
!
!

vrf A1-Spoke-Tunnel
address-family ipv4 unicast
import route-target
  1001:10
!
!
!
router pim
vrf A1-Hub-4
address-family ipv4
  rpf topology route-policy A1-Hub-Policy
  bsr relay vrf A1-Hub-Tunnel listen
  auto-rp relay vrf A1-Hub-Tunnel
!
!  
!  
router pim  
vrf A1-Spoke-2  
  address-family ipv4  
    rpf topology route-policy A1-Spoke-Policy  
    bsr relay vrf A1-Hub-Tunnel listen  
    auto-rp relay vrf A1-Hub-4  
  
!  
!  
!  
!  
multicast-routing  
vrf A1-Hub-4  
  address-family ipv4  
    log-traps  
    rate-per-route  
    interface all enable  
    accounting per-prefix  
  
!  
!  
!  
!  
multicast-routing  
vrf A1-Spoke-2  
  address-family ipv4  
    log-traps  
    rate-per-route  
    interface all enable  
    accounting per-prefix  
  
!  
!  
!  
!  
multicast-routing  
vrf A1-Hub-Tunnel  
  address-family ipv4  
    mdt data 226.202.1.0/24 threshold 10  
    log-traps  
    mdt default ipv4 226.202.0.0
rate-per-route
accounting per-prefix

!
!
!

multicast-routing
vrf A1-Spoke-Tunnel
address-family ipv4
  mdt data 226.202.2.0/24 threshold 5
  log-traps
  mdt default ipv4 226.202.0.1
  rate-per-route
  accounting per-prefix

!
!
!
!

router bgp 1
vrf A1-Hub-4
  rd 1000:4
  address-family ipv4 unicast
    route-target download
    redistribute connected
    redistribute eigrp 4 match internal external metric 1000

!
!
!

router bgp 1
vrf A1-Spoke-2
  rd 1001:2
  address-family ipv4 unicast
    route-target download
    redistribute connected
    redistribute eigrp 6 match internal external metric 1000

!
!
!

router bgp 1
vrf A1-Hub-Tunnel
  rd 1002:1
address-family ipv4 unicast
   redistribute connected
!
!
router bgp 1
 vrf A1-Spoke-Tunnel
  rd 1002:2
  address-family ipv4 unicast
   redistribute connected
!
!
 route-policy A1-Hub-Policy
   if extcommunity rt matches-any (1000:10) then
     set rpf-topology vrf A1-Hub-Tunnel
   elseif extcommunity rt matches-any (1001:10) then
     set rpf-topology vrf A1-Spoke-Tunnel
   else
     pass
   endif
 end-policy
!
 route-policy A1-Spoke-Policy
   if extcommunity rt matches-any (1000:10) then
     set rpf-topology vrf A1-Hub-Tunnel
   else
     pass
   endif
 end-policy
!
CE1:
 vrf A1-Hub-1
 address-family ipv4 unicast
 import route-target
  1000:10
1001:10
!
export route-target
1000:10
!
!
!
multicast-routing
vrf A1-Hub-1
address-family ipv4
log-traps
rate-per-route
interface all enable
accounting per-prefix
!
!
!
No router pim configuration required

CE3: Where autorp is configured (this is an Cisco IOS Software example, because auto-rp on vrf interface is not supported in Cisco IOS XR Software)

ip vrf A1-Hub-4
rd 1000:4
route-target export 1000:10
route-target import 1000:10
route-target import 1001:10
!
ip vrf A1-Spoke-2
rd 1001:2
route-target export 1001:10
route-target import 1000:10
!
ip multicast-routing vrf A1-Hub-4
ip multicast-routing vrf A1-Spoke-2

interface Loopback10
ip vrf forwarding A1-Hub-4
ip address 103.10.10.103 255.255.255.255
ip pim sparse-mode
!
ip pim vrf A1-Hub-4 autorp listener
ip pim vrf A1-Hub-4 send-rp-announce Loopback10 scope 32
ip pim vrf A1-Hub-4 send-rp-discovery Loopback10 scope 32

**Hub and Spoke with Turnaround: Example**

Multicast turnaround mandates a 2-interface connection to the hub site

To configure a CE as a turnaround router, it is connected to its respective PE through two interfaces and each interface is placed in a separate hub site vrf called **hub-x-in vrf** and **hub-x-out vrf**. Hub-x-in vrf carries joins that come from the receiver spoke site through the Hub Tunnel and hub-x-out vrf will carry the same joins towards the source spoke site through the Spoke Tunnel without violating the four basic rules below. The source spoke sends traffic to the spoke tunnel to hub-x-out which is turned around to the hub-tunnel on the hub-x-in interface.

1. Hub sites sends traffic only to MDTHub.
2. Spoke sites sends traffic only to MDTspoke.
3. Hub sites receives traffic from both tunnels.
4. Spoke sites receives traffic only from MDTHub.

A2-Spoke-1  A2-Hub-2
A2-Spoke-2  A2-Hub-3in
A2-Hub-2out
A2-Spoke-3 (spoke has auto-rp)

**Figure 12: Example for CE1PE1PE2 CE2Multicast Hub and Spoke Topology with Turnaround**

CE1------------------ PE1 ------------------------------------------------ PE2 ------------------ CE2

Routes exported by hub sites are imported by hub sites and spoke sites. Routes exported by spoke sites are imported by both **hub-x-out** and **hub-x-in** and hub site exports spoke routes back into the core by hub VRF route targets. This causes routes originated from one spoke site to be learned by all other spoke sites but with the nexthop of **hub-x-out**. For example, Spoke2 will see the RPF for Spoke1 reachable with nexthop of **A2-Hub-3in**. This is the fundamental difference in leaking of routes which helps in achieving turnaround of multicast traffic.

**PE1:**

vrf A2-Spoke-1
  address-family ipv4 unicast
  import route-target
    4000:1
    4000:2
4000:3
4000:4
!
export route-target
4001:1
!
!
!

vrf A2-Spoke-2

address-family ipv4 unicast
import route-target
4000:1
4000:2
4000:3
4000:4
!
export route-target
4001:2
!
!
!

PE2:

vrf A2-Hub-2

address-family ipv4 unicast
import route-target
4000:1
4000:2
4000:3
4000:4
4001:1
4001:2
4001:3
4001:4
!
export route-target
vrf A2-Hub-3out
  address-family ipv4 unicast
  import route-target
  4000:1
  4000:2
  4000:3
  4000:4
  4001:1 --------à exports the spoke routes into CE2 into vrf default
  4001:2 --------à exports the spoke routes into CE2 into vrf default
  4001:3 --------à exports the spoke routes into CE2 into vrf default
  4001:4 --------à exports the spoke routes into CE2 into vrf default
!
  export route-target
  4000:4
!
!
!
vrf A2-Hub-3in
  address-family ipv4 unicast
  import route-target
  4000:1
  4000:2
  4000:3
  4000:4
!
  export route-target
  4000:3--------à selected spoke routes (in the prefix-set below) can be re-exported with hub route target so other spokes can reach them via A2-Hub-3in
!
!
!
prefix-set A2-Spoke-family
112.31.1.0/24,  
112.32.1.0/24,  
152.31.1.0/24,  
132.30.1.0/24,  
102.9.9.102/32,  
103.31.31.103/32,  
183.31.1.0/24,  
183.32.1.0/24  
end-set  

!  
route-policy A2-Spoke-family  
  if destination in A2-Spoke-family then  
    pass  
  else  
    drop  
  endif  
end-policy  
!

router bgp 1  
  vrf A2-Hub-3in  
  rd 4000:3  
  address-family ipv4 unicast  
    route-target download  
    redistribute connected  
  !  
  neighbor 113.113.114.9  
    remote-as 12  
    address-family ipv4 unicast  

route-policy A2-Spoke-family in ------à leaking the selected spoke routes with hub route targets so they can be imported by the spoke sites with RPF A2-Hub-3in.  

    route-policy pass-all out  
  !  
  !  
  !
router bgp 1
  vrf A2-Hub-3out
    rd 4000:4
    address-family ipv4 unicast
      route-target download
      redistribute connected
  !
  !
  !
router bgp 1
  vrf A2-Hub-2
    rd 4000:2
    address-family ipv4 unicast
    route-target download
    redistribute connected
    redistribute eigrp 20 match internal external metric 1000
  !
  !
  !
multicast-routing
  vrf A2-Hub-2
    address-family ipv4
    log-traps
    rate-per-route
    interface all enable
    accounting per-prefix
  !
  !
  !
multicast-routing
  vrf A2-Hub-3in
    address-family ipv4
    log-traps
    rate-per-route
    interface all enable
    accounting per-prefix
  !
  !
Any CE-PE protocol can be used. In this example, A2-Hub-3out exports all the hub and spoke routes to CE2 through EIGRP.
A2-Hub-3in uses route policy A2-Spoke-family to re-import selected spoke routes into PE2 through BGP.

```
router eigrp 20
vrf A2-Hub-3out
address-family ipv4
default-metric 1000 1 255 1 1500
autonomous-system 20
redistribute bgp 1
interface GigabitEthernet0/1/0/1.13
hold-time 60
!
!
!

CE2:
Here A2-Hub-3in and A2-Hub-3out interfaces are in vrf default and not in a hub site vrf.
```

```
interface GigabitEthernet0/12/1/0.12
description To PE2 or vrf A2-Hub-3in
ipv4 address 113.113.114.9 255.255.255.252
encapsulation dot1q 3001
!
interface GigabitEthernet0/12/1/0.13
description To PE2 or vrf A2-Hub-3out
ipv4 address 113.113.114.13 255.255.255.252
encapsulation dot1q 3002
!
router bgp 12
nhr
bgp graceful-restart
 address-family ipv4 unicast
 redistribute connected
 redistribute eigrp 20
!
neighbor 113.113.114.10 --à this is the A2-Hub-3in neighbor on PE2.
 remote-as 1
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy pass-all out
!
!
```

**Configuring LSM based MLDP: Examples**

These examples describe multiple profiles to configure MLDP based MVPN:

**Rosen MLDP without BGP-Advertisement**

```
vrf 1
vrf id 1:1
address-family ipv4 unicast
 import route-target
 1:1
```
export route-target
1:1
!
!
interface Loopback0
 ipv4 address 1.1.1.1 255.255.255.255
!
route-policy mldp-1
 set core-tree mldp-default
end-policy
!
router ospf 1
 address-family ipv4 unicast
 area 0
 mpls traffic-eng
!
!
router bgp 100 mvpn
 address-family ipv4 unicast
 redistribute connected
!
 address-family vpnv4 unicast
!
 address-family vpnv6 unicast
!
 address-family ipv4 mdt
!
neighbor 5.5.5.5
 remote-as 100
 update-source Loopback0
 address-family ipv4 unicast
!
 address-family vpnv4 unicast
!
 address-family vpnv6 unicast
!
 address-family ipv4 mdt
!
!
vrf 1
 rd 1:1
 address-family ipv4 unicast
 redistribute connected
!
!
 mpls traffic-eng
 interface GigabitEthernet0/0/2/0
!
!
 mpls ldp
 router-id 1.1.1.1
 graceful-restart
 mldp
 logging internal
!
<all core-facing interfaces>
!
multicast-routing
 address-family ipv4
 nsf
 mdt source Loopback0
 interface all enable
 accounting per-prefix
!
!
vrf 1
 address-family ipv4
 interface all enable
 mdt default mldp ipv4 1.1.1.1
 accounting per-prefix
!
!
router pim
vrf 1
  address-family ipv4
    rpf topology route-policy mldp-1
    rp-address 10.1.1.1

Rosen MLDP with BGP Advertisement

vrf 101
  vpn id 101:101
  address-family ipv4 unicast
    import route-target 101:101
  export route-target 101:101

  interface Loopback0
    ipv4 address 1.1.1.1 255.255.255.255
  interface Loopback101
    vrf 101
    ipv4 address 10.1.101.1 255.255.255.255
  route-policy mldp-101
    set core-tree mldp-default
    end-policy

router ospf 1
  address-family ipv4 unicast
  area 0
    mpls traffic-eng
    interface Loopback0
  
    interface Loopback1
    
    interface GigabitEthernet0/0/2/0
    
    interface GigabitEthernet0/3/2/1
    
    interface GigabitEthernet0/3/2/2
    
    mpls traffic-eng router-id Loopback0

router bgp 100 mvpn
  address-family ipv4 unicast
  redistribute connected

  address-family vpnv4 unicast

  address-family vpnv6 unicast

  address-family ipv4 mvpn

  neighbor 5.5.5.5
    remote-as 100
    update-source Loopback0
  address-family ipv4 unicast

  address-family vpnv4 unicast

  address-family vpnv6 unicast

  address-family ipv4 mvpn
rd 101:101
address-family ipv4 unicast
  redistribute connected
  address-family ipv4 mvpn
!

mpls traffic-eng
  interface GigabitEthernet0/0/2/0
  !
  mpls ldp
  router-id 1.1.1.1
  graceful-restart
  mldp
  logging internal
  !
  <all core-facing interfaces>
  !
  multicast-routing
  address-family ipv4
  nsf
  mdt source Loopback0
  interface all enable
  accounting per-prefix
  !
  router pim
  vrf 101
  address-family ipv4
  rpf topology route-policy mldp-101
  vpn-id 101
  rp-address 10.1.101.1
  !

VRF In-band Profile

vrf 250
  address-family ipv4 unicast
  import route-target 250:250
  ! export route-target 250:250
  !
  !
  interface Loopback0
  ipv4 address 1.1.1.1 255.255.255.255
  !
  interface Loopback250
  vrf 250
  ipv4 address 10.1.250.1 255.255.255.255
  !
  route-policy mldp-250
  set core-tree mldp-inband
  end-policy
  !
  router ospf 1
  address-family ipv4 unicast
  area 0
  mpls traffic-eng
  interface Loopback0
  !
  interface Loopback1
  !
  interface GigabitEthernet0/0/2/0
  !
  interface GigabitEthernet0/3/2/1
interface GigabitEthernet0/3/2/2

mpls traffic-eng router-id Loopback0

router bgp 100
  address-family ipv4 unicast
    redistribute connected
  !
  address-family vpnv4 unicast
  !
  address-family vpnv6 unicast
  !
neighbor 5.5.5.5
  remote-as 100
  update-source Loopback0
  address-family ipv4 unicast
  !
  address-family vpnv4 unicast
  !
  address-family vpnv6 unicast
  !
vrf 250
  rd 250:250
  address-family ipv4 unicast
    redistribute connected
    !
    address-family ipv4 mvpn
    !
  mpls traffic-eng
  interface GigabitEthernet0/0/2/0
    !
  mpls ldp
  router-id 1.1.1.1
  graceful-restart
  mldp
    logging internal
  !
  <all core-facing interfaces>
  !
  multicast-routing
  address-family ipv4
    NSF
    mdt source Loopback0
    interface all enable
    accounting per-prefix
    !
  vrf 250
    address-family ipv4
    mdt mldp in-band-signaling
    interface all enable
    !
  router pim
  vrf 250
    address-family ipv4
    rpf topology route-policy mldp-250
    rp-address 10.1.250.1
    !
  !
**Partitioned-MDT MP2MP without BGP-AD**

vrf 251
  address-family ipv4 unicast
  import route-target
251:251
! export route-target
  251:251
  !
  !
  interface Loopback0
  ipv4 address 1.1.1.1 255.255.255.255
  !
  interface Loopback251
  vrf 251
  ipv4 address 10.11.1.1 255.255.255.255
  !
  route-policy mldp-251
  set core-tree mldp-partitioned-mp2mp
  end-policy
  !
  router ospf 1
  address-family ipv4 unicast
  area 0
  mpls traffic-eng
  interface Loopback0
  !
  interface Loopback1
  !
  interface GigabitEthernet0/0/2/0
  !
  interface GigabitEthernet0/3/2/1
  !
  interface GigabitEthernet0/3/2/2
  !
  mpls traffic-eng router-id Loopback0
  !
  router bgp 100
  address-family ipv4 unicast
  redistribute connected
  !
  address-family vpnv4 unicast
  !
  address-family vpnv6 unicast
  !
  neighbor 5.5.5.5
  remote-as 100
  update-source Loopback0
  address-family ipv4 unicast
  !
  address-family vpnv4 unicast
  !
  address-family vpnv6 unicast
  !
  vrf 251
  rd 251:251
  address-family ipv4 unicast
  redistribute connected
  !
  mpls traffic-eng
  interface GigabitEthernet0/0/2/0
  !
  mpls ldp
  router-id 1.1.1.1
  graceful-restart
  ldp
  logging internal
  !
  <all core-facing interfaces>
  !
multicast-routing
  address-family ipv4
  mdt source Loopback0
  interface all enable
  accounting per-prefix
!
  vrf 251
  address-family ipv4
    mdt partitioned mldp ipv4 mp2mp
    interface all enable
    !
  router pim
  vrf 251
  address-family ipv4
    rpf topology route-policy mldp-251
    rp-address 10.11.1.1
    !

Partitioned-MDT MP2MP with BGP-AD

vrf 301
  address-family ipv4 unicast
  import route-target
    301:301
  !
  export route-target
    301:301
  !
  interface Loopback0
    ipv4 address 1.1.1.1 255.255.255.255
  !
  interface Loopback301
  vrf 301
  ipv4 address 10.11.51.1 255.255.255.255
  !
  route-policy mldp-301
    set core-tree mldp-partitioned-mp2mp
  end-policy
  !
  router ospf 1
  address-family ipv4 unicast
  area 0
    mpls traffic-eng
      interface Loopback0
      !
      interface Loopback1
      !
      interface GigabitEthernet0/0/2/0
      !
      interface GigabitEthernet0/3/2/1
      !
      interface GigabitEthernet0/3/2/2
      !
      mpls traffic-eng router-id Loopback0
  !
  router bgp 100
  address-family ipv4 unicast
    redistribute connected
    !
  address-family vpnv4 unicast
  !
  address-family vpnv6 unicast
  !
  address-family ipv4 mvpn
neighbor 5.5.5.5
remote-as 100
update-source Loopback0
address-family ipv4 unicast
! address-family vpnv4 unicast
! address-family vpnv6 unicast
! address-family ipv4 mvpn
!
vrf 301
rd 301:301
address-family ipv4 unicast
redistribute connected
! address-family ipv4 mvpn
!
��ls traffic-eng
interface GigabitEthernet0/0/2/0
!
��ls ldp
router-id 1.1.1.1
graceful-restart
mldp
logging internal
<all core-facing interfaces>
!
multicast-routing
address-family ipv4
nsf
mdt source Loopback0
interface all enable
accounting per-prefix
!
vrf 301
address-family ipv4
bgp auto-discovery mldp
mdt partitioned mldp ipv4 mp2mp
interface all enable
!
router pim
vrf 301
address-family ipv4
rpf topology route-policy mldp-301
rp-address 10.11.51.1
!

Multidirectional Selective Provider Multicast Service Instance mLDP-P2MP with BGP-Advertisement

vrf 401
address-family ipv4 unicast
import route-target 401:401
!
export route-target 401:401
!
!
interface Loopback0
ipv4 address 1.1.1.1 255.255.255.255
!
interface Loopback401
  vrf 401
  ipv4 address 10.11.151.1 255.255.255.255
route-policy mldp-401
  set core-tree mldp-partitioned-p2mp
end-policy
router ospf 1
  address-family ipv4 unicast
    area 0
      mpls traffic-eng
        interface Loopback0
        interface Loopback1
        interface GigabitEthernet0/0/2/0
        interface GigabitEthernet0/3/2/1
        interface GigabitEthernet0/3/2/2
      mpls traffic-eng router-id Loopback0
router bgp 100
  address-family ipv4 unicast
    redistribute connected
  address-family vpnv4 unicast
  address-family vpnv6 unicast
  address-family ipv4 mvpn
neighbor 5.5.5.5
  remote-as 100
  update-source Loopback0
  address-family ipv4 unicast
  address-family vpnv4 unicast
  address-family vpnv6 unicast
  address-family ipv4 mvpn
vrf 401
  rd 401:401
  address-family ipv4 unicast
    redistribute connected
  address-family ipv4 mvpn
mpls traffic-eng
  interface GigabitEthernet0/0/2/0
mpls ldp
  router-id 1.1.1.1
  graceful-restart mldp
  logging internal
  <all core-facing interfaces>
  multicast-routing
    address-family ipv4
      nsf
      mdt source Loopback0
      interface all enable
accounting per-prefix
!
vr 401
to-address-family ipv4
  bgp auto-discovery mldp
  mdt partitioned mldp ipv4 p2mp
  interface all enable
!
router pim
vr 401
to-address-family ipv4
  rpf topology route-policy mldp-401
  rp-address 10.11.151.1
!

**Rosen-GRE with BGP-Advertisement**

vr 501
to-address-family ipv4 unicast
  import route-target
  501:501
  !
  export route-target
  501:501
  !
  !
  interface Loopback0
  ipv4 address 1.1.1.1 255.255.255.255
  !
  interface Loopback501
vr 501
ipv4 address 10.11.11.1 255.255.255.255
!
<no route policy?>

vr 501
rd 501:501
to-address-family ipv4 unicast
  redistribute connected
  !
  address-family ipv4 mvpn
  !
  !
router ospf 1
to-address-family ipv4 unicast
  area 0
  mpls traffic-eng
  interface Loopback0
  !
  interface Loopback1
  !
  interface GigabitEthernet0/0/2/0
  !
  interface GigabitEthernet0/3/2/1
  !
  interface GigabitEthernet0/3/2/2
  !
  mpls traffic-eng router-id Loopback0
  !
router bgp 100
to-address-family ipv4 unicast
  redistribute connected
  !
  address-family vpnv4 unicast
  !
  address-family vpnv6 unicast
  !
address-family ipv4 mvpn
!
neighbor 5.5.5.5
  remote-as 100
  update-source Loopback0
  address-family ipv4 unicast
    !
  address-family vpnv4 unicast
    !
  address-family vpnv6 unicast
    !
  address-family ipv4 mvpn
    !
vrf 501
  rd 501:501
  address-family ipv4 unicast
    redistribute connected
    !
  address-family ipv4 mvpn
    !
mls traffic-eng
  interface GigabitEthernet0/0/2/0
    !
mls ldp
  router-id 1.1.1.1
  graceful-restart
  mldp
    logging internal
    
<all core-facing interfaces>
    !

multicast-routing
  address-family ipv4
  nsf
  mdt source Loopback0
  interface all enable
    accounting per-prefix
    !
vrf 501
  address-family ipv4
    bgp auto-discovery pim
    mdt default ipv4 232.1.1.1
    interface all enable
    !
router pim
  vrf 501
  address-family ipv4
    rp-address 10.111.1.1
    !

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast command reference document</td>
<td>Cisco IOS XR Multicast Command Reference for the</td>
</tr>
<tr>
<td></td>
<td>Cisco CRS Router</td>
</tr>
</tbody>
</table>
## Related Topic

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getting started material</td>
<td><em>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</em></td>
</tr>
<tr>
<td>Modular quality of service command reference document</td>
<td><em>Cisco IOS XR Aggregation Services Router Modular Quality of Service Command Reference for the Cisco CRS Router</em></td>
</tr>
<tr>
<td>Routing command reference and configuration documents</td>
<td><em>Cisco IOS XR Routing Command Reference for the Cisco CRS Router</em></td>
</tr>
<tr>
<td></td>
<td><em>Cisco IOS XR Routing Configuration Guide for the Cisco CRS Router</em></td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td><em>Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</em></td>
</tr>
</tbody>
</table>

## Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-l3vpn-rfc2547bis</td>
<td>BGP/MPLS IP VPNs</td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: <a href="http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml">http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</a></td>
</tr>
</tbody>
</table>

## RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2385</td>
<td>Protection of BGP Sessions via the TCP MD5 Signature Option</td>
</tr>
</tbody>
</table>
### RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2547</td>
<td>BGP/MPLS VPNs</td>
</tr>
<tr>
<td>RFC 2710</td>
<td>Multicast Listener Discovery (MLD) for IPv6</td>
</tr>
<tr>
<td>RFC 3376</td>
<td>Internet Group Management Protocol, Version 3</td>
</tr>
<tr>
<td>RFC 3446</td>
<td>Anycast Rendezvous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)</td>
</tr>
<tr>
<td>RFC 3618</td>
<td>Multicast Source Discovery Protocol (MSDP)</td>
</tr>
<tr>
<td>RFC 3810</td>
<td>Multicast Listener Discovery Version 2 (MLDv2) for IPv6</td>
</tr>
<tr>
<td>RFC 4875</td>
<td>Extensions to Resource Reservation Protocol - Traffic Engineering (RSVP-TE) for Point-to-Multipoint TE Label-Switched Paths (LSPs)</td>
</tr>
<tr>
<td>RFC 4364</td>
<td>BGP/MPLS IP Virtual Private Networks</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>
Implementing Automatic Multicast Routing:

This module describes how to implement Automatic Multicast Routing (AMT).

Feature History for Implementing AMT:

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.3.1</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

- Automatic Multicast Tunneling, page 149
- Implementing AMT, page 151
- Enabling AMT, page 152
- Configuring AMT, page 153
- Configuration Examples for Implementing AMT, page 154

Automatic Multicast Tunneling

Automatic Multicast Tunneling (AMT) provides a method to tunnel multicast data over a unicast network. The tunneling is performed between AMT Relays and AMT Gateways, using UDP (User Datagram Protocol) encapsulation. This enables service providers and their customers to participate in delivering multicast traffic even in the absence of end-to-end multicast connectivity.

Advantages of AMT

The advantages of AMT are:

- Simplicity: Instead of incurring the overhead of manually provisioning, establishing and maintaining GRE tunnels between two locations, the receiving network simply sends AMT advertisements to a well-known any-cast prefix. The rest of the tunnel establishment process is done automatically without the need for additional configuration.
• Resiliency: Because the relay discovery uses an any-cast address, gateways automatically find the closest relay. If that relay becomes unavailable or unreachable, the routing table reconverges on the next closest relay.

• Efficiency: AMT allows transit routers to perform flow-based load balancing for more efficient link utilization.

Prerequisites for configuring AMT

The required prerequisites are:

• Ensure that the Cisco CRS Router has the CRS-3 line card installed.

• Ensure that you have a Package Installation Envelope (PIE) installed and activated, for running the multicast routing software. For detailed information about optional PIE installation, see Cisco IOS XR Getting Started Guide for the Cisco CRS Router. For running AMT, an mcast PIE must be installed.

• Ensure that you are in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

• Ensure that you know how to apply the generalized interface name with the generalized notation rack/slot/module/port.

Restrictions for AMT

These are the restrictions and limitations for AMT:

• Support only for CRS-3 linecards (CRS-MSC-140G and CRS-FP140).

• Support for a maximum of 64000 tunnels.

• Relay scale highly dependent on the bandwidth of the edge-facing interfaces and the rate of the multicast stream.

• Support only for certain features; namely - MTU, QoS, TTL.

• No support for ACLs; filtering capability is achieved by accepting or dropping specific gateway addresses.

• No support for IPv6 tunnels.
Implementing AMT

The Multicast source sends traffic to the firsthop. Multicast traffic flows through the network until it reaches the lasthop (receivers) or AMT Relays. AMT relays are typically routers with native IP multicast connectivity that aggregate a potentially large number of AMT tunnels.

Figure 13: Implementing Automatic Multicast Tunneling

In the above diagram, Relay1 and Relay2 are two AMT Relays, which encapsulate the traffic into AMT tunnels, and send one copy to each of the AMT Gateways.

AMT Message Exchanges

The AMT protocol defines seven message types for control and encapsulation. The message exchanges happen in this particular order (as discussed here):

1. Relay Discovery - Gateway sends an AMT discovery message to an anycast address that represents the AMT relay.
2. Relay Advertisement – Relay responds with an advertisement message, which includes the relay’s unique IP address.
3. Relay Request - Gateway sends an AMT Request message to the relay using the unique IP address as the destination, along with a nonce to be used for security.
4. Membership Query – Relay responds with an AMT query that includes the nonce from the AMT request and an opaque security code.
5. Membership Update- Gateway responds with a membership update that includes an encapsulated IGMPv3/MLDv2 packet.
6. Teardown - Gateway sends a message to stop the delivery of multicast data messages requested in an earlier membership update message.
7 After validation the Relay establishes the AMT Tunnel and starts sending multicast traffic [Type 6]. Any further (S,G) uses the same Request/Query/Update - three-way handshake because the tunnel is already established.

The AMT Protocol Stack

The elements of the AMT protocol stack are:

<table>
<thead>
<tr>
<th>Payload</th>
<th>AMT Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDP Header</td>
<td></td>
</tr>
<tr>
<td>IP Header</td>
<td></td>
</tr>
</tbody>
</table>

**AMT Tunnel and Traffic Types**

The multicast traffic carried in the AMT tunnel may be IPv4 or IPv6. The AMT tunnel may be setup with IPv4 or IPv6 endpoints. This provides us four possibilities.

- **v4-in-v4**: IPv4 multicast traffic carried over an IPv4 tunnel
- **v6-in-v4**: IPv6 multicast traffic carried over an IPv4 tunnel
- **v6-in-v6**: IPv6 multicast traffic carried over an IPv6 tunnel
- **v4-in-v6**: IPv4 multicast traffic carried over an IPv6 tunnel

Currently, support is available only for the first two options; namely, IPv4-in-IPv4 and IPv6-in-IPv4.

**Out of Resource mode**

An important aspect of AMT tunnels is the Out of Resource mode (OOR). You can monitor a relay based on the number of gateways, the total number of gateways across all routes, or on the number of routes per gateway.

If any of these limits are hit, the relay goes into the OOR mode. During this time, the relay withdraws the anycast prefix. The default method to come out of the OOR mode, is the automatic method, where the relay comes back to normal after reaching 80% of the maximum value.

**Enabling AMT**

This tasks outlines the procedure for enabling AMT.

**SUMMARY STEPS**

1. configure
2. router amt
3. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>configure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>router amt</td>
</tr>
</tbody>
</table>

**Example:**

```
RP/0/RP0/CPU0:router(config) # router amt
```

| Step 3 | commit |

 Configuring AMT

This procedure describes the steps involved in configuring various AMT parameters.

The AMT commands used in this configuration procedure, are discussed in detail in the *Cisco IOS XR Multicast Command Reference for the Cisco CRS Router*.

SUMMARY STEPS

1. configure
2. router amt
3. relay ipv4
4. Use one of these commands:
   - `advertisement-address relay-address`
   - `gateway gateway-address`
   - `gateway-filter acl-name`
   - `maximum-gateway value`
   - `maximum route value`
   - `mtu mtu-value`
   - `ttl ttl-value`
   - `tos tos-value`
   - `qqic qqic-value`
5. exit
6. commit
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> router amt</td>
<td>Enters the AMT configuration mode.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router(config) # router amt</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> relay ipv4</td>
<td>Enters the AMT relay IPv4 tunnel submode.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router(config-amt-relay-v4) # relay ipv4</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> Use one of these commands:</td>
<td>Configures the limit for the selected AMT parameter.</td>
</tr>
<tr>
<td>• advertisement-address relay-address</td>
<td>Note: This step can be repeated to configure all the required parameters.</td>
</tr>
<tr>
<td>• gateway gateway-address</td>
<td></td>
</tr>
<tr>
<td>• gateway-filter acl-name</td>
<td></td>
</tr>
<tr>
<td>• maximum-gateway value</td>
<td></td>
</tr>
<tr>
<td>• maximum route value</td>
<td></td>
</tr>
<tr>
<td>• mtu mtu-value</td>
<td></td>
</tr>
<tr>
<td>• ttl ttl-value</td>
<td></td>
</tr>
<tr>
<td>• tos tos-value</td>
<td></td>
</tr>
<tr>
<td>• qqic qqic-value</td>
<td></td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router(config-amt-relay-v4) # maximum gateway 100</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> exit</td>
<td>Exits from the current mode.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router(config-amt-relay-v4) # exit</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>

### Configuration Examples for Implementing AMT

This section provides configuration examples:
Enabling AMT: Example

This example shows how to enable AMT on the router.

```config
router amt
end
```

AMT Maximum Gateway Configuration: Example

This example shows how to set the maximum gateway value at 100 for the AMT tunnels:

```config
router amt
 relay ipv4
 maximum gateway 100
 end
end
```

AMT MTU Configuration: Example

This example shows how to set the MTU value (Maximum Transmission Units) for an AMT relay:

```config
router amt
 relay ipv4
 mtu 500
 end
end
```

AMT TOS Configuration: Example

This example shows how to set the TOS value (Type of Service) for an AMT relay:

```config
router amt
 relay ipv4
 tos 100
 end
end
```
Implementing Automatic Multicast Routing:

AMT TOS Configuration: Example