
Prerequisites for Implementing Access Lists and
Prefix Lists

The following prerequisite applies to implementing access lists and prefix lists:

All command task IDs are listed in individual command references and in the Cisco IOSXRTask ID Reference
Guide.If you need assistance with your task group assignment, contact your system administrator.

• Restrictions for Implementing Access Lists and Prefix Lists, on page 1
• Restrictions for Implementing ACL-based Forwarding, on page 2
• Information About Implementing Access Lists and Prefix Lists , on page 2
• Information About Implementing ACL-based Forwarding, on page 10
• How to Implement Access Lists and Prefix Lists , on page 11
• How to Implement ACL-based Forwarding, on page 23
• Configuring Pure ACL-Based Forwarding for IPv6 ACL, on page 25
• Configuring Pure ACL-based Forwarding for ACL, on page 26
• ACL-Chaining, on page 27
• Configuration Examples for Implementing Access Lists and Prefix Lists , on page 29
• Configuration Examples for Implementing ACL-based Forwarding, on page 30
• IPv6 ACL in Class Map, on page 32
• Configuring an Interface to accept Common ACL - Examples, on page 35
• Additional References, on page 37

Restrictions for Implementing Access Lists and Prefix Lists
The following restrictions apply to implementing access lists and prefix lists:

• Layer 2/Layer 3 ACLs are not supported on Layer 2 interfaces.

• Object group ACLs are not supported.

• IPv4 ACLs are not supported for loopback and interflex interfaces.

• IPv6 ACLs are not supported for loopback, interflex and L2 Ethernet Flow Point (EFP) main or
subinterfaces.

• IPv6 ACL configuration on bundle interfaces (Ethernet LAG bundles only) is not supported.

Prerequisites for Implementing Access Lists and Prefix Lists
1

• If the TCAM utilization is high and large ACLs are modified, then an error may occur. During such
instances, do the following to edit an ACL:

1. Remove the ACL from the interface.

2. Reconfigure the ACL.

3. Reapply the ACL to the interface.

Use the show prm server tcam summary all acl all location and show pfilter-ea
fea summary location commands to view the TCAM utilization.

Note

• Filtering of MPLS packets through common ACL and interface ACL is not supported.

Restrictions for Implementing ACL-based Forwarding
The following restrictions apply to implementing ACL-based forwarding (ABF):

• No support for IPv4 multicast traffic.

• No support for ACL-based forwarding from a software switching path (for example, IPv4 option packets).

• Support is only on physical interfaces, subinterfaces, and bundles.

• ACL-based forwarding is an ingress-only feature.

Information About Implementing Access Lists and Prefix Lists
To implement access lists and prefix lists, you must understand the following concepts:

Access Lists and Prefix Lists Feature Highlights
This section lists the feature highlights for access lists and prefix lists.

• Cisco IOS XR software provides the ability to clear counters for an access list or prefix list using a
specific sequence number.

• Cisco IOS XR software provides the ability to copy the contents of an existing access list or prefix list
to another access list or prefix list.

• Cisco IOS XR software allows users to apply sequence numbers to permit or deny statements and to
resequence, add, or remove such statements from a named access list or prefix list.

Resequencing is only for IPv4 prefix lists.Note

Prerequisites for Implementing Access Lists and Prefix Lists
2

Prerequisites for Implementing Access Lists and Prefix Lists
Restrictions for Implementing ACL-based Forwarding

• Cisco IOSXR software does not differentiate between standard and extended access lists. Standard access
list support is provided for backward compatibility.

• Cisco IOSXR software provides ACL-based forwarding to forward packets to a next-hop that is specified
by the ACL rule.

• Atomic update is supported for both ACL and ACL-based forwarding.

Purpose of IP Access Lists
Access lists perform packet filtering to control which packets move through the network and where. Such
controls help to limit network traffic and restrict the access of users and devices to the network. Access lists
have many uses, and therefore many commands accept a reference to an access list in their command syntax.
Access lists can be used to do the following:

• Filter incoming packets on an interface.

• Filter outgoing packets on an interface.

• Restrict the contents of routing updates.

• Limit debug output based on an address or protocol.

• Control vty access.

• Identify or classify traffic for advanced features, such as congestion avoidance, congestion management,
and priority and custom queueing.

How an IP Access List Works
An access list is a sequential list consisting of permit and deny statements that apply to IP addresses and
possibly upper-layer IP protocols. The access list has a name by which it is referenced. Many software
commands accept an access list as part of their syntax.

An access list can be configured and named, but it is not in effect until the access list is referenced by a
command that accepts an access list. Multiple commands can reference the same access list. An access list
can control traffic arriving at the router or leaving the router, but not traffic originating at the router. Note
that, traffic such as SSH, ICMP and telnet traffic are blocked by ACL, in spite of being originated from the
router. This is because, those packets are not injected as high priority packets, and hence get subjected to ACL
processing. At the same time, BGP traffic bypasses the ACL applied on the interface, as it is a control packet
which is injected as a critical inject packet from RSP or LC. Such packets are handled in the system with high
priority and do not get dropped.

IP Access List Process and Rules
Use the following process and rules when configuring an IP access list:

• The software tests the source or destination address or the protocol of each packet being filtered against
the conditions in the access list, one condition (permit or deny statement) at a time.

• If a packet does not match an access list statement, the packet is then tested against the next statement
in the list.

Prerequisites for Implementing Access Lists and Prefix Lists
3

Prerequisites for Implementing Access Lists and Prefix Lists
Purpose of IP Access Lists

• If a packet and an access list statement match, the remaining statements in the list are skipped and the
packet is permitted or denied as specified in the matched statement. The first entry that the packet matches
determines whether the software permits or denies the packet. That is, after the first match, no subsequent
entries are considered.

• If the access list denies the address or protocol, the software discards the packet and returns an Internet
ControlMessage Protocol (ICMP) Host Unreachable message. ICMP is configurable in the Cisco IOSXR
software.

• If no conditions match, the software drops the packet because each access list ends with an unwritten or
implicit deny statement. That is, if the packet has not been permitted or denied by the time it was tested
against each statement, it is denied.

• The access list should contain at least one permit statement or else all packets are denied.

• Because the software stops testing conditions after the first match, the order of the conditions is critical.
The same permit or deny statements specified in a different order could result in a packet being passed
under one circumstance and denied in another circumstance.

• Only one access list per interface, per protocol, per direction is allowed.

• Inbound access lists process packets arriving at the router. Incoming packets are processed before being
routed to an outbound interface. An inbound access list is efficient because it saves the overhead of
routing lookups if the packet is to be discarded because it is denied by the filtering tests. If the packet is
permitted by the tests, it is then processed for routing. For inbound lists, permit means continue to process
the packet after receiving it on an inbound interface; deny means discard the packet.

• Outbound access lists process packets before they leave the router. Incoming packets are routed to the
outbound interface and then processed through the outbound access list. For outbound lists, permit means
send it to the output buffer; deny means discard the packet.

• An access list can not be removed if that access list is being applied by an access group in use. To remove
an access list, remove the access group that is referencing the access list and then remove the access list.

• An access list must exist before you can use the ipv4 access group command.

Helpful Hints for Creating IP Access Lists
Consider the following when creating an IP access list:

• Create the access list before applying it to an interface. An interface to which an empty access list is
applied permits all traffic.

• If you applied a nonexistent access list to an interface and then proceed to configure the access list, the
first statement is placed into effect, and the the implicit deny statement that follows could cause all other
traffic that needs to be permitted on the interface to be dropped, until you configure statements allowing
the dropped traffic to be permitted.

• Organize your access list so that more specific references in a network or subnet appear before more
general ones.

• To make the purpose of individual statements more easily understood at a glance, you can write a helpful
remark before or after any statement.

Prerequisites for Implementing Access Lists and Prefix Lists
4

Prerequisites for Implementing Access Lists and Prefix Lists
Helpful Hints for Creating IP Access Lists

Source and Destination Addresses
Source address and destination addresses are two of the most typical fields in an IP packet on which to base
an access list. Specify source addresses to control packets from certain networking devices or hosts. Specify
destination addresses to control packets being sent to certain networking devices or hosts.

Wildcard Mask and Implicit Wildcard Mask
Address filtering uses wildcard masking to indicate whether the software checks or ignores corresponding IP
address bits when comparing the address bits in an access-list entry to a packet being submitted to the access
list. By carefully setting wildcard masks, an administrator can select a single or several IP addresses for permit
or deny tests.

Wildcard masking for IP address bits uses the number 1 and the number 0 to specify how the software treats
the corresponding IP address bits. A wildcard mask is sometimes referred to as an inverted mask, because a
1 and 0 mean the opposite of what they mean in a subnet (network) mask.

• A wildcard mask bit 0 means check the corresponding bit value.

• A wildcard mask bit 1 means ignore that corresponding bit value.

You do not have to supply a wildcard mask with a source or destination address in an access list statement.
If you use the host keyword, the software assumes a wildcard mask of 0.0.0.0.

Unlike subnet masks, which require contiguous bits indicating network and subnet to be ones, wildcard masks
allow noncontiguous bits in the mask. For IPv6 access lists, only contiguous bits are supported.

You can also use CIDR format (/x) in place of wildcard bits. For example, the IPv4 address 1.2.3.4
0.255.255.255 corresponds to 1.2.3.4/8

Transport Layer Information
You can filter packets on the basis of transport layer information, such as whether the packet is a TCP, UDP,
SCTP, ICMP, or IGMP packet.

IP Access List Entry Sequence Numbering
The ability to apply sequence numbers to IP access-list entries simplifies access list changes. Prior to this
feature, there was no way to specify the position of an entry within an access list. If a user wanted to insert
an entry (statement) in the middle of an existing list, all the entries after the desired position had to be removed,
then the new entry was added, and then all the removed entries had to be reentered. This method was
cumbersome and error prone.

The IP Access List Entry Sequence Numbering feature allows users to add sequence numbers to access-list
entries and resequence them. When you add a new entry, you choose the sequence number so that it is in a
desired position in the access list. If necessary, entries currently in the access list can be resequenced to create
room to insert the new entry.

Sequence Numbering Behavior
The following details the sequence numbering behavior:

• If entries with no sequence numbers are applied, the first entry is assigned a sequence number of 10, and
successive entries are incremented by 10. The maximum configurable sequence number is 2147483643

Prerequisites for Implementing Access Lists and Prefix Lists
5

Prerequisites for Implementing Access Lists and Prefix Lists
Source and Destination Addresses

for IPv4 and IPv6 entries. For other entries, the maximum configurable sequence number is 2147483646.
If the generated sequence number exceeds this maximum number, the following message displays:

Exceeded maximum sequence number.

• If you provide an entry without a sequence number, it is assigned a sequence number that is 10 greater
than the last sequence number in that access list and is placed at the end of the list.

• ACL entries can be added without affecting traffic flow and hardware performance.

• If a new access list is entered from global configuration mode, then sequence numbers for that access
list are generated automatically.

• Distributed support is provided so that the sequence numbers of entries in the route processor (RP) and
line card (LC) are synchronized at all times.

• This feature works with named standard and extended IP access lists. Because the name of an access list
can be designated as a number, numbers are acceptable.

Understanding IP Access List Logging Messages
Cisco IOS XR software can provide logging messages about packets permitted or denied by a standard IP
access list. That is, any packet that matches the access list causes an informational logging message about the
packet to be sent to the console. The level of messages logged to the console is controlled by the logging
console command in global configuration mode.

The first packet that triggers the access list causes an immediate logging message, and subsequent packets
are collected over 5-minute intervals before they are displayed or logged. The logging message includes the
access list number, whether the packet was permitted or denied, the source IP address of the packet, and the
number of packets from that source permitted or denied in the prior 5-minute interval.

However, you can use the { ipv4 | ipv6 } access-list log-update threshold command to set the number of
packets that, when they match an access list (and are permitted or denied), cause the system to generate a log
message. You might do this to receive log messages more frequently than at 5-minute intervals.

If you set the update-number argument to 1, a log message is sent right away, rather than caching it; every
packet that matches an access list causes a log message. A setting of 1 is not recommended because the volume
of log messages could overwhelm the system.

Caution

Even if you use the { ipv4 | ipv6} access-list log-update threshold command, the 5-minute timer remains
in effect, so each cache is emptied at the end of 5 minutes, regardless of the number of messages in each cache.
Regardless of when the log message is sent, the cache is flushed and the count reset to 0 for that message the
same way it is when a threshold is not specified.

The logging facility might drop some logging message packets if there are too many to be handled or if more
than one logging message is handled in 1 second. This behavior prevents the router from using excessive CPU
cycles because of too many logging packets. Therefore, the logging facility should not be used as a billing
tool or as an accurate source of the number of matches to an access list.

Note

Prerequisites for Implementing Access Lists and Prefix Lists
6

Prerequisites for Implementing Access Lists and Prefix Lists
Understanding IP Access List Logging Messages

Extended Access Lists with Fragment Control
In earlier releases, the non-fragmented packets and the initial fragments of a packet were processed by IP
extended access lists (if you apply this access list), but non-initial fragments were permitted, by default.
However, now, the IP Extended Access Lists with Fragment Control feature allows more granularity of control
over non-initial fragments of a packet. Using this feature, you can specify whether the system examines
non-initial IP fragments of packets when applying an IP extended access list.

As non-initial fragments contain only Layer 3 information, these access-list entries containing only Layer 3
information, can now be applied to non-initial fragments also. The fragment has all the information the system
requires to filter, so the access-list entry is applied to the fragments of a packet.

This feature adds the optional fragments keyword to the following IP access list commands: deny (IPv4),
permit (IPv4) , deny (IPv6) , permit (IPv6). By specifying the fragments keyword in an access-list entry,
that particular access-list entry applies only to non-initial fragments of packets; the fragment is either permitted
or denied accordingly.

The behavior of access-list entries regarding the presence or absence of the fragments keyword can be
summarized as follows:

Then...If the Access-List Entry has...

For an access-list entry containing only Layer 3 information:

• The entry is applied to non-fragmented packets, initial fragments, and
non-initial fragments.

For an access-list entry containing Layer 3 and Layer 4 information:

• The entry is applied to non-fragmented packets and initial fragments.

• If the entry matches and is a permit statement, the packet or
fragment is permitted.

• If the entry matches and is a deny statement, the packet or
fragment is denied.

• The entry is also applied to non-initial fragments in the following
manner. Because non-initial fragments contain only Layer 3 information,
only the Layer 3 portion of an access-list entry can be applied. If the
Layer 3 portion of the access-list entry matches, and

• If the entry is a permit statement, the non-initial fragment is
permitted.

• If the entry is a deny statement, the next access-list entry is
processed.

Note that the deny statements are handled differently for
non-initial fragments versus non-fragmented or initial
fragments.

Note

...no fragments keyword and
all of the access-list entry
information matches,

Prerequisites for Implementing Access Lists and Prefix Lists
7

Prerequisites for Implementing Access Lists and Prefix Lists
Extended Access Lists with Fragment Control

Then...If the Access-List Entry has...

The access-list entry is applied only to non-initial fragments.

The fragments keyword cannot be configured for an access-list
entry that contains any Layer 4 information.

Note

...the fragments keyword
and all of the access-list entry
information matches,

You should not add the fragments keyword to every access-list entry, because the first fragment of the IP
packet is considered a non-fragment and is treated independently of the subsequent fragments. Because an
initial fragment will not match an access list permit or deny entry that contains the fragments keyword, the
packet is compared to the next access list entry until it is either permitted or denied by an access list entry that
does not contain the fragments keyword. Therefore, you may need two access list entries for every deny
entry. The first deny entry of the pair will not include the fragments keyword, and applies to the initial
fragment. The second deny entry of the pair will include the fragments keyword and applies to the subsequent
fragments. In the cases where there are multiple deny access list entries for the same host but with different
Layer 4 ports, a single deny access-list entry with the fragments keyword for that host is all that has to be
added. Thus all the fragments of a packet are handled in the same manner by the access list.

Packet fragments of IP datagrams are considered individual packets and each fragment counts individually
as a packet in access-list accounting and access-list violation counts.

The fragments keyword cannot solve all cases involving access lists and IP fragments.Note

Within the scope of ACL processing, Layer 3 information refers to fields located within the IPv4 header; for
example, source, destination, protocol. Layer 4 information refers to other data contained beyond the IPv4
header; for example, source and destination ports for TCP or UDP, flags for TCP, type and code for ICMP.

Note

Policy Routing
Fragmentation and the fragment control feature affect policy routing if the policy routing is based on the
match ip address command and the access list had entries that match on Layer 4 through Layer 7 information.
It is possible that noninitial fragments pass the access list and are policy routed, even if the first fragment was
not policy routed or the reverse.

By using the fragments keyword in access-list entries as described earlier, a better match between the action
taken for initial and noninitial fragments can be made and it is more likely policy routing will occur as intended.

Comments About Entries in Access Lists
You can include comments (remarks) about entries in any named IP access list using the remark access list
configuration command. The remarks make the access list easier for the network administrator to understand
and scan. Each remark line is limited to 255 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put
the remark so it is clear which remark describes which permit or deny statement. For example, it would be
confusing to have some remarks before the associated permit or deny statements and some remarks after the
associated statements. Remarks can be sequenced.

Prerequisites for Implementing Access Lists and Prefix Lists
8

Prerequisites for Implementing Access Lists and Prefix Lists
Policy Routing

Remember to apply the access list to an interface or terminal line after the access list is created. See
the“Applying Access Lists, on page 13” section for more information.

Access Control List Counters
In Cisco IOS XR software, ACL counters are maintained both in hardware and software. Hardware counters
are used for packet filtering applications such as when an access group is applied on an interface. Software
counters are used by all the applications mainly involving software packet processing.

Packet filtering makes use of 64-bit hardware counters per ACE. If the same access group is applied on
interfaces that are on the same line card in a given direction, the hardware counters for the ACL are shared
between two interfaces.

To display the hardware counters for a given access group, use the show access-lists ipv4 [access-list-name
hardware {ingress | egress} [interface type interface-path-id] {location node-id}] command in EXECmode.

To clear the hardware counters, use the clear access-list ipv4 access-list-name [hardware {ingress | egress}
[interface type interface-path-id] {location node-id}] command in EXEC mode.

Hardware counting is not enabled by default for IPv4 ACLs because of a small performance penalty. To
enable hardware counting, use the ipv4 access-group access-list-name {ingress | egress} [hardware-count]
command in interface configuration mode. This command can be used as desired, and counting is enabled
only on the specified interface.

Software counters are updated for the packets processed in software, for example, exception packets punted
to the LC CPU for processing, or ACL used by routing protocols, and so on. The counters that are maintained
are an aggregate of all the software applications using that ACL. To display software-only ACL counters, use
the show access-lists ipv4 access-list-name [sequence number] command in EXEC mode.

All the above information is true for IPv6, except that hardware counting is always enabled; there is no
hardware-count option in the IPv6 access-group command-line interface (CLI).

BGP Filtering Using Prefix Lists
Prefix lists can be used as an alternative to access lists in many BGP route filtering commands. The advantages
of using prefix lists are as follows:

• Significant performance improvement in loading and route lookup of large lists.

• Incremental updates are supported.

• More user friendly CLI. The CLI for using access lists to filter BGP updates is difficult to understand
and use because it uses the packet filtering format.

• Greater flexibility.

Before using a prefix list in a command, you must set up a prefix list, and you may want to assign sequence
numbers to the entries in the prefix list.

How the System Filters Traffic by Prefix List
Filtering by prefix list involves matching the prefixes of routes with those listed in the prefix list. When there
is a match, the route is used. More specifically, whether a prefix is permitted or denied is based upon the
following rules:

Prerequisites for Implementing Access Lists and Prefix Lists
9

Prerequisites for Implementing Access Lists and Prefix Lists
Access Control List Counters

• An empty prefix list permits all prefixes.

• An implicit deny is assumed if a given prefix does not match any entries of a prefix list.

• When multiple entries of a prefix list match a given prefix, the longest, most specific match is chosen.

Sequence numbers are generated automatically unless you disable this automatic generation. If you disable
the automatic generation of sequence numbers, you must specify the sequence number for each entry using
the sequence-number argument of the permit and deny commands in either IPv4 or IPv6 prefix list
configuration command. Use the no form of the permit or deny command with the sequence-number
argument to remove a prefix-list entry.

The show commands include the sequence numbers in their output.

Information About Implementing ACL-based Forwarding
To implement access lists and prefix lists, you must understand the following concepts:

ACL-based Forwarding Overview
Converged networks carry voice, video and data. Users may need to route certain traffic through specific
paths instead of using the paths computed by routing protocols. This is achieved by specifying the next-hop
address in ACL configurations, so that the configured next-hop address from ACL is used for fowarding
packet towards its destination instead of routing packet-based destination address lookup. This feature of
using next-hop in ACL configurations for forwarding is called ACL Based Forwarding (ABF).

Traffic engineering over an IP orMPLS backbone can be done withoutMPLS-TE. The ability to divert certain
kinds of traffic on top of routing allows you to let only voice traffic travel over certain links, while allowing
data traffic to be sent using regular routing.

ACL-based forwarding enables you to choose service from multiple providers for broadcast TV over IP, IP
telephony, data, and so on, which provides a cafeteria-like access to the Internet. Service providers can divert
user traffic to various content providers.

ACL-based Forwarding Functions
ACL-based forwarding (ABF) enables you to configure filters for IPv4 packets. Each packet is based on the
information from an IP source or destination address, TCP ports, precedence, DSCP, and so on. If a match
occurs, ABF forwards the packet to one of the multiple next hops (up to three). ABF provides an alternative
to regular routing by giving the ability to forward a next hop, based on packet content that extends beyond
the destination IP address.

The ABF rule does not apply to “For Us” packets.

By implementing ABF, you can perform the following functions:

• Specify up to three next hops in the ACL rules.

• Forward IPv4 packets that are being forwarded on default routes to the next hop, as specified by the ACL
rule.

Prerequisites for Implementing Access Lists and Prefix Lists
10

Prerequisites for Implementing Access Lists and Prefix Lists
Information About Implementing ACL-based Forwarding

• Use the existing ACLmatching functionality to pick up the next-hop IP address that is based on the ACE
configuration. The highest preferred, active, next-hop IP address—which is based on the ACE
configuration—is chosen.

• Use the traditional destination IP address forwarding if the ABF next hops are not reachable.

• Use ABF as an ingress-only feature; it is not available for packets switched or originated by the software.

• Specify no rejection when both VRF and ABF configurations are applied on an interface. The ABF
configuration is silently ignored by the forwarding software.

How to Implement Access Lists and Prefix Lists
This section contains the following procedures:

Configuring Extended Access Lists
This task configures an extended IPv4 or IPv6 access list.

SUMMARY STEPS

1. configure
2. {ipv4 | ipv6} access-list name
3. [sequence-number] remark remark
4. Do one of the following:

• [sequence-number]{permit | deny} source source-wildcard destination destination-wildcard
[precedence precedence] [dscp dscp] [fragments] [log | log-input]

• [sequence-number] {permit | deny} protocol {source-ipv6-prefix/prefix-length | any | host
source-ipv6-address} [operator {port | protocol-port}] {destination-ipv6-prefix/prefix-length | any
| host destination-ipv6-address} [operator {port | protocol-port}] [dscp value] [routing] [authen]
[destopts] [fragments] [log | log-input]

5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no
sequence-number command to delete an entry.

6. commit
7. show access-lists {ipv4 | ipv6} [access-list-name hardware {ingress | egress} [interface type

interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name
[sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters either IPv4 or IPv6 access list configuration mode
and configures the named access list.

{ipv4 | ipv6} access-list name

Example:

Step 2

RP/0/RP0/CPU0:router(config)# ipv4 access-list
acl_1

Prerequisites for Implementing Access Lists and Prefix Lists
11

Prerequisites for Implementing Access Lists and Prefix Lists
How to Implement Access Lists and Prefix Lists

PurposeCommand or Action

or

RP/0/RP0/CPU0:router(config)# ipv6 access-list
acl_2

(Optional) Allows you to comment about a permit or
deny statement in a named access list.

[sequence-number] remark remark

Example:

Step 3

• The remark can be up to 255 characters; anything
longer is truncated.RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 remark

Do not allow user1 to telnet out
• Remarks can be configured before or after permit or
deny statements, but their location should be
consistent.

Specifies one or more conditions allowed or denied in IPv4
access list acl_1.

Do one of the following:Step 4

• [sequence-number]{permit | deny} source
source-wildcard destination destination-wildcard • The optional log keyword causes an information

logging message about the packet that matches the
entry to be sent to the console.

[precedence precedence] [dscp dscp] [fragments]
[log | log-input]

• [sequence-number] {permit | deny} protocol
{source-ipv6-prefix/prefix-length | any | host • The optional log-input keyword provides the same

function as the log keyword, except that the logging
message also includes the input interface.source-ipv6-address} [operator {port | protocol-port}]

{destination-ipv6-prefix/prefix-length | any | host
destination-ipv6-address} [operator {port | orprotocol-port}] [dscp value] [routing] [authen]
[destopts] [fragments] [log | log-input] Specifies one or more conditions allowed or denied in IPv6

access list acl_2.
Example:

• Refer to the deny (IPv6) and permit (IPv6)
commands for more information on filtering IPv6RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 permit

172.16.0.0 0.0.255.255 traffic based on based on IPv6 option headers and
optional, upper-layer protocol type information.RP/0/RP0/CPU0:router(config-ipv4-acl)# 20 deny

192.168.34.0 0.0.0.255

or Every IPv6 access list has an implicit deny ipv6
any any statement as its last match condition.
An IPv6 access list must contain at least one
entry for the implicit deny ipv6 any any
statement to take effect.

Note

RP/0/RP0/CPU0:router(config-ipv6-acl)# 20 permit
icmp any any
RP/0/RP0/CPU0:router(config-ipv6-acl)# 30 deny tcp
any any gt 5000

Allows you to revise an access list.Repeat Step 4 as necessary, adding statements by sequence
number where you planned. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

(Optional) Displays the contents of current IPv4 or IPv6
access lists.

show access-lists {ipv4 | ipv6} [access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 7

{sequence number | location node-id} | summary • Use the access-list-name argument to display the
contents of a specific access list.[access-list-name] | access-list-name [sequence-number] |

maximum [detail] [usage {pfilter location node-id}]]

Prerequisites for Implementing Access Lists and Prefix Lists
12

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring Extended Access Lists

PurposeCommand or Action

Example: • Use the hardware , ingress or egress , and location
or sequence keywords to display the access-list

RP/0/RP0/CPU0:router# show access-lists ipv4 acl_1 hardware contents and counters for all interfaces that
use the specified access list in a given direction (ingress
or egress). The access group for an interface must be
configured using the ipv4 access-group command
for access-list hardware counters to be enabled.

• Use the summary keyword to display a summary of
all current IPv4 or IPv6 access-lists.

• Use the interface keyword to display interface
statistics.

What to do next

After creating an access list, you must apply it to a line or interface. See the Applying Access Lists, on page
13 section for information about how to apply an access list.

ACL commit fails while adding and removing unique Access List Entries (ACE). This happens due to the
absence of an assigned manager process. The user has to exit the config-ipv4-acl mode to configuration mode
and re-enter the config-ipv4-acl mode before adding the first ACE.

Applying Access Lists
After you create an access list, you must reference the access list to make it work. Access lists can be applied
on either outbound or inbound interfaces. This section describes guidelines on how to accomplish this task
for both terminal lines and network interfaces.

Set identical restrictions on all the virtual terminal lines, because a user can attempt to connect to any of them.

For inbound access lists, after receiving a packet, Cisco IOS XR software checks the source address of the
packet against the access list. If the access list permits the address, the software continues to process the
packet. If the access list rejects the address, the software discards the packet and returns an ICMP host
unreachable message. The ICMP message is configurable.

For outbound access lists, after receiving and routing a packet to a controlled interface, the software checks
the source address of the packet against the access list. If the access list permits the address, the software sends
the packet. If the access list rejects the address, the software discards the packet and returns an ICMP host
unreachable message.

When you apply an access list that has not yet been defined to an interface, the software acts as if the access
list has not been applied to the interface and accepts all packets. Note this behavior if you use undefined access
lists as a means of security in your network.

Controlling Access to an Interface
This task applies an access list to an interface to restrict access to that interface.

Access lists can be applied on either outbound or inbound interfaces.

Prerequisites for Implementing Access Lists and Prefix Lists
13

Prerequisites for Implementing Access Lists and Prefix Lists
Applying Access Lists

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. Do one of the following:

• ipv4 access-group access-list-name {ingress | egress} [hardware-count] [interface-statistics]
• ipv6 access-group access-list-name {ingress | egress} [interface-statistics]

4. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Configures an interface and enters interface configuration
mode.

interface type interface-path-id

Example:

Step 2

• The type argument specifies an interface type. For
more information on interface types, use the question
mark (?) online help function.

RP/0/RP0/CPU0:router(config)# interface
GigabitEthernet 0/2/0/2

• The instance argument specifies either a physical
interface instance or a virtual instance.

• The naming notation for a physical interface
instance is rack/slot/module/port. The slash (/)
between values is required as part of the notation.

• The number range for a virtual interface instance
varies depending on the interface type.

Controls access to an interface.Do one of the following:Step 3

• ipv4 access-group access-list-name {ingress |
egress} [hardware-count] [interface-statistics]

• Use the access-list-name argument to specify a
particular IPv4 or IPv6 access list.

• ipv6 access-group access-list-name {ingress |
egress} [interface-statistics] • Use the in keyword to filter on inbound packets or the

out keyword to filter on outbound packets.
Example:

• Use the hardware-count keyword to enable hardware
counters for the IPv4 access group.RP/0/RP0/CPU0:router(config-if)# ipv4 access-group

p-in-filter in • Hardware counters are automatically enabled for
IPv6 access groups.RP/0/RP0/CPU0:router(config-if)# ipv4 access-group

p-out-filter out

• Use the interface-statistics keyword to specify
per-interface statistics in the hardware.

This example applies filters on packets inbound and
outbound from GigabitEthernet interface 0/2/0/2.

commitStep 4

Prerequisites for Implementing Access Lists and Prefix Lists
14

Prerequisites for Implementing Access Lists and Prefix Lists
Controlling Access to an Interface

Controlling Access to a Line
This task applies an access list to a line to control access to that line.

SUMMARY STEPS

1. configure
2. line {aux | console | default | template template-name}
3. access-class list-name{ingress | egress}
4. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Specifies either the auxiliary, console, default, or a
user-defined line template and enters line template
configuration mode.

line {aux | console | default | template template-name}

Example:

RP/0/RP0/CPU0:router(config)# line default

Step 2

• Line templates are a collection of attributes used to
configure and manage physical terminal line
connections (the console and auxiliary ports) and vty
connections. The following templates are available in
Cisco IOS XR software:

• Aux line template—The line template that applies
to the auxiliary line.

• Console line template— The line template that
applies to the console line.

• Default line template—The default line template
that applies to a physical and virtual terminal
lines.

• User-defined line templates—User-defined line
templates that can be applied to a range of virtual
terminal lines.

Restricts incoming and outgoing connections using an IPv4
or IPv6 access list.

access-class list-name{ingress | egress}

Example:

Step 3

• In the example, outgoing connections for the default
line template are filtered using the IPv6 access list
acl_2.

RP/0/RP0/CPU0:router(config-line)# access-class
acl_2 out

commitStep 4

Configuring Prefix Lists
This task configures an IPv4 or IPv6 prefix list.

Prerequisites for Implementing Access Lists and Prefix Lists
15

Prerequisites for Implementing Access Lists and Prefix Lists
Controlling Access to a Line

SUMMARY STEPS

1. configure
2. {ipv4 | ipv6} prefix-list name
3. [sequence-number] remark remark
4. [sequence-number] {permit | deny} network/length [ge value] [le value] [eq value]
5. Repeat Step 4 as necessary. Use the no sequence-number command to delete an entry.
6. commit
7. Do one of the following:

• show prefix-list ipv4 [name] [sequence-number]
• show prefix-list ipv6 [name] [sequence-number] [summary]

8. clear {ipv4 | ipv6} prefix-list name [sequence-number]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters either IPv4 or IPv6 prefix list configuration mode
and configures the named prefix list.

{ipv4 | ipv6} prefix-list name

Example:

Step 2

• To create a prefix list, you must enter at least one
permit or deny clause.RP/0/RP0/CPU0:router(config)# ipv4 prefix-list

pfx_1
• Use the no {ipv4 | ipv6} prefix-list name command
to remove all entries in a prefix list.or

RP/0/RP0/CPU0:router(config)# ipv6 prefix-list
pfx_2

(Optional) Allows you to comment about the following
permit or deny statement in a named prefix list.

[sequence-number] remark remark

Example:

Step 3

• The remark can be up to 255 characters; anything
longer is truncated.RP/0/RP0/CPU0:router(config-ipv4_pfx)# 10 remark

Deny all routes with a prefix of 10/8
• Remarks can be configured before or after permit or
deny statements, but their location should be
consistent.

RP/0/RP0/CPU0:router(config-ipv4_pfx)# 20 deny
10.0.0.0/8 le 32

Specifies one or more conditions allowed or denied in the
named prefix list.

[sequence-number] {permit | deny} network/length [ge
value] [le value] [eq value]

Step 4

Example: • This example denies all prefixes matching /24 in
128.0.0.0/8 in prefix list pfx_2.

RP/0/RP0/CPU0:router(config-ipv6_pfx)# 20 deny
128.0.0.0/8 eq 24

Allows you to revise a prefix list.Repeat Step 4 as necessary. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

Prerequisites for Implementing Access Lists and Prefix Lists
16

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring Prefix Lists

PurposeCommand or Action

(Optional) Displays the contents of current IPv4 or IPv6
prefix lists.

Do one of the following:Step 7

• show prefix-list ipv4 [name] [sequence-number]
• Use the name argument to display the contents of a
specific prefix list.

• show prefix-list ipv6 [name] [sequence-number]
[summary]

• Use the sequence-number argument to specify the
sequence number of the prefix-list entry.

Example:

RP/0/RP0/CPU0:router# show prefix-list ipv4 pfx_1
• Use the summary keyword to display summary
output of prefix-list contents.or

RP/0/RP0/CPU0:router# show prefix-list ipv6 pfx_2
summary

(Optional) Clears the hit count on an IPv4 or IPv6 prefix
list.

clear {ipv4 | ipv6} prefix-list name [sequence-number]

Example:

Step 8

The hit count is a value indicating the number
of matches to a specific prefix-list entry.

Note
RP/0/RP0/CPU0:router# clear prefix-list ipv4 pfx_1
30

Configuring Standard Access Lists
This task configures a standard IPv4 access list.

Standard access lists use source addresses for matching operations.

SUMMARY STEPS

1. configure
2. ipv4 access-list name
3. [sequence-number] remark remark
4. [sequence-number] {permit | deny} source [source-wildcard] [log | log-input]
5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no

sequence-number command to delete an entry.
6. commit
7. show access-lists [ipv4 | ipv6] [access-list-name hardware {ingress | egress} [interface type

interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name
[sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters IPv4 access list configuration mode and configures
access list acl_1.

ipv4 access-list name

Example:

Step 2

RP/0/RP0/CPU0:router# ipv4 access-list acl_1

Prerequisites for Implementing Access Lists and Prefix Lists
17

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring Standard Access Lists

PurposeCommand or Action

(Optional) Allows you to comment about the following
permit or deny statement in a named access list.

[sequence-number] remark remark

Example:

Step 3

• The remark can be up to 255 characters; anything
longer is truncated.RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 remark

Do not allow user1 to telnet out
• Remarks can be configured before or after permit or
deny statements, but their location should be
consistent.

Specifies one or more conditions allowed or denied, which
determines whether the packet is passed or dropped.

[sequence-number] {permit | deny} source
[source-wildcard] [log | log-input]

Step 4

Example: • Use the source argument to specify the number of
network or host from which the packet is being sent.

RP/0/RP0/CPU0:router(config-ipv4-acl)# 20 permit
172.16.0.0 0.0.255.255 • Use the optional source-wildcard argument to specify

the wildcard bits to be applied to the source.
or

• The optional log keyword causes an information
logging message about the packet that matches the
entry to be sent to the console.

RRP/0/RP0/CPU0:routerrouter(config-ipv4-acl)# 30
deny 192.168.34.0 0.0.0.255

• The optional log-input keyword provides the same
function as the log keyword, except that the logging
message also includes the input interface.

Allows you to revise an access list.Repeat Step 4 as necessary, adding statements by sequence
number where you planned. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

(Optional) Displays the contents of the named IPv4 access
list.

show access-lists [ipv4 | ipv6] [access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 7

{sequence number | location node-id} | summary • The contents of an IPv4 standard access list are
displayed in extended access-list format.[access-list-name] | access-list-name [sequence-number] |

maximum [detail] [usage {pfilter location node-id}]]

Example:

RP/0/RP0/CPU0:router# show access-lists ipv4 acl_1

What to do next

After creating a standard access list, you must apply it to a line or interface. See the “ Applying Access Lists,
on page 13” section for information about how to apply an access list.

Copying Access Lists
This task copies an IPv4 or IPv6 access list.

Prerequisites for Implementing Access Lists and Prefix Lists
18

Prerequisites for Implementing Access Lists and Prefix Lists
Copying Access Lists

SUMMARY STEPS

1. copy access-list {ipv4 | ipv6}source-acl destination-acl
2. show access-lists {ipv4 | ipv6}[access-list-name hardware {ingress | egress} [interface type

interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name
[sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

Creates a copy of an existing IPv4 or IPv6 access list.copy access-list {ipv4 | ipv6}source-acl destination-aclStep 1

Example: • Use the source-acl argument to specify the name of
the access list to be copied.

RP/0/RP0/CPU0:router# copy ipv6 access-list list-1
list-2 • Use the destination-acl argument to specify where

to copy the contents of the source access list.

• The destination-acl argument must be a unique
name; if the destination-acl argument name
exists for an access list, the access list is not
copied.

(Optional) Displays the contents of a named IPv4 or IPv6
access list. For example, you can verify the output to see

show access-lists {ipv4 | ipv6}[access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 2

that the destination access list list-2 contains all the
information from the source access list list-1.

{sequence number | location node-id} | summary
[access-list-name] | access-list-name [sequence-number] |
maximum [detail] [usage {pfilter location node-id}]]

Example:

RP/0/RP0/CPU0:router# show access-lists ipv4 list-2

Sequencing Access-List Entries and Revising the Access List
This task shows how to assign sequence numbers to entries in a named access list and how to add or delete
an entry to or from an access list. It is assumed that a user wants to revise an access list. Resequencing an
access list is optional.

SUMMARY STEPS

1. resequence access-list {ipv4 | ipv6} name [base [increment]]
2. configure
3. {ipv4 | ipv6} access-list name
4. Do one of the following:

• [sequence-number] {permit | deny} source source-wildcard destination destination-wildcard
[precedence precedence] [dscp dscp] [fragments] [log | log-input]

• [sequence-number] {permit | deny} protocol {source-ipv6-prefix/prefix-length | any | host
source-ipv6-address} [operator {port | protocol-port}] {destination-ipv6-prefix/prefix-length | any

Prerequisites for Implementing Access Lists and Prefix Lists
19

Prerequisites for Implementing Access Lists and Prefix Lists
Sequencing Access-List Entries and Revising the Access List

| host destination-ipv6-address} [operator {port | protocol-port}] [dscp value] [routing] [authen]
[destopts] [fragments] [log | log-input]

5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no
sequence-number command to delete an entry.

6. commit
7. show access-lists [ipv4 | ipv6] [access-list-name hardware {ingress | egress} [interface type

interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name
[sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

(Optional) Resequences the specified IPv4 or IPv6 access
list using the starting sequence number and the increment
of sequence numbers.

resequence access-list {ipv4 | ipv6} name [base
[increment]]

Example:

Step 1

• This example resequences an IPv4 access list named
acl_3. The starting sequence number is 20 and theRP/0/RP0/CPU0:router# resequence access-list ipv4

acl_3 20 15 increment is 15. If you do not select an increment, the
default increment 10 is used.

configureStep 2

Enters either IPv4 or IPv6 access list configuration mode
and configures the named access list.

{ipv4 | ipv6} access-list name

Example:

Step 3

RP/0/RP0/CPU0:router(config)# ipv4 access-list
acl_1

or

RP/0/RP0/CPU0:router(config)# ipv6 access-list
acl_2

Specifies one or more conditions allowed or denied in IPv4
access list acl_1.

Do one of the following:Step 4

• [sequence-number] {permit | deny} source
source-wildcard destination destination-wildcard • The optional log keyword causes an information

logging message about the packet that matches the
entry to be sent to the console.

[precedence precedence] [dscp dscp] [fragments]
[log | log-input]

• [sequence-number] {permit | deny} protocol
{source-ipv6-prefix/prefix-length | any | host • The optional log-input keyword provides the same

function as the log keyword, except that the logging
message also includes the input interface.source-ipv6-address} [operator {port | protocol-port}]

{destination-ipv6-prefix/prefix-length | any | host
destination-ipv6-address} [operator {port | • This access list happens to use a permit statement

first, but a deny statement could appear first,
depending on the order of statements you need.

protocol-port}] [dscp value] [routing] [authen]
[destopts] [fragments] [log | log-input]

Example:
or

RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 permit Specifies one or more conditions allowed or denied in IPv6
access list acl_2.172.16.0.0 0.0.255.255

Prerequisites for Implementing Access Lists and Prefix Lists
20

Prerequisites for Implementing Access Lists and Prefix Lists
Sequencing Access-List Entries and Revising the Access List

PurposeCommand or Action
RP/0/RP0/CPU0:router(config-ipv4-acl)# 20 deny
192.168.34.0 0.0.0.255

• Refer to the permit (IPv6) and deny (IPv6)
commands for more information on filtering IPv6
traffic based on IPv6 option headers and upper-layer
protocols such as ICMP, TCP, and UDP.

or

RP/0/RP0/CPU0:router(config-ipv6-acl)# 20 permit
Every IPv6 access list has an implicit deny ipv6
any any statement as its last match condition.
An IPv6 access list must contain at least one
entry for the implicit deny ipv6 any any
statement to take effect.

Noteicmp any any
RP/0/RP0/CPU0:router(config-ipv6-acl)# 30 deny tcp
any any gt 5000

Allows you to revise the access list.Repeat Step 4 as necessary, adding statements by sequence
number where you planned. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

(Optional) Displays the contents of a named IPv4 or IPv6
access list.

show access-lists [ipv4 | ipv6] [access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 7

{sequence number | location node-id} | summary • Review the output to see that the access list includes
the updated information.[access-list-name] | access-list-name [sequence-number] |

maximum [detail] [usage {pfilter location node-id}]]

Example:

RP/0/RP0/CPU0:router# show access-lists ipv4 acl_1

What to do next

If your access list is not already applied to an interface or line or otherwise referenced, apply the access list.
See the “Applying Access Lists, on page 13” section for information about how to apply an access list.

Copying Prefix Lists
This task copies an IPv4 or IPv6 prefix list.

SUMMARY STEPS

1. copy prefix-list {ipv4 | ipv6} source-name destination-name
2. Do one of the following:

• show prefix-list ipv4 [name] [sequence-number] [summary]
• show prefix-list ipv6 [name] [sequence-number] [summary]

Prerequisites for Implementing Access Lists and Prefix Lists
21

Prerequisites for Implementing Access Lists and Prefix Lists
Copying Prefix Lists

DETAILED STEPS

PurposeCommand or Action

Creates a copy of an existing IPv4 or IPv6 prefix list.copy prefix-list {ipv4 | ipv6} source-name
destination-name

Step 1

• Use the source-name argument to specify the name
of the prefix list to be copied and the destination-nameExample:
argument to specify where to copy the contents of the
source prefix list.RP/0/RP0/CPU0:router# copy prefix-list ipv6 list_1

list_2
• The destination-name argument must be a unique
name; if the destination-name argument name exists
for a prefix list, the prefix list is not copied.

(Optional) Displays the contents of current IPv4 or IPv6
prefix lists.

Do one of the following:Step 2

• show prefix-list ipv4 [name] [sequence-number]
[summary] • Review the output to see that prefix list list_2 includes

the entries from list_1.• show prefix-list ipv6 [name] [sequence-number]
[summary]

Example:

RP/0/RP0/CPU0:router# show prefix-list ipv6 list_2

Sequencing Prefix List Entries and Revising the Prefix List
This task shows how to assign sequence numbers to entries in a named prefix list and how to add or delete
an entry to or from a prefix list. It is assumed a user wants to revise a prefix list. Resequencing a prefix list
is optional.

Before you begin

Resequencing IPv6 prefix lists is not supported.Note

SUMMARY STEPS

1. resequence prefix-list ipv4 name [base [increment]]
2. configure
3. {ipv4 | ipv6} prefix-list name
4. [sequence-number] {permit | deny} network/length [ge value] [le value] [eq value]
5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no

sequence-number command to delete an entry.
6. commit
7. Do one of the following:

• show prefix-list ipv4 [name] [sequence-number]
• show prefix-list ipv6 [name] [sequence-number] [summary]

Prerequisites for Implementing Access Lists and Prefix Lists
22

Prerequisites for Implementing Access Lists and Prefix Lists
Sequencing Prefix List Entries and Revising the Prefix List

DETAILED STEPS

PurposeCommand or Action

(Optional) Resequences the named IPv4 prefix list using
the starting sequence number and the increment of sequence
numbers.

resequence prefix-list ipv4 name [base [increment]]

Example:

RP/0/RP0/CPU0:router# resequence prefix-list ipv4
pfx_1 10 15

Step 1

• This example resequences a prefix list named pfx_1.
The starting sequence number is 10 and the increment
is 15.

configureStep 2

Enters either IPv4 or IPv6 prefix list configuration mode
and configures the named prefix list.

{ipv4 | ipv6} prefix-list name

Example:

Step 3

RP/0/RP0/CPU0:router(config)# ipv6 prefix-list
pfx_2

Specifies one or more conditions allowed or denied in the
named prefix list.

[sequence-number] {permit | deny} network/length [ge
value] [le value] [eq value]

Example:

Step 4

RP/0/RP0/CPU0:router(config-ipv6_pfx)# 15 deny
128.0.0.0/8 eq 24

Allows you to revise the prefix list.Repeat Step 4 as necessary, adding statements by sequence
number where you planned. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

(Optional) Displays the contents of current IPv4 or IPv6
prefix lists.

Do one of the following:Step 7

• show prefix-list ipv4 [name] [sequence-number]
• Review the output to see that prefix list pfx_2 includes
all new information.

• show prefix-list ipv6 [name] [sequence-number]
[summary]

Example:

RP/0/RP0/CPU0:router# show prefix-list ipv6 pfx_2

How to Implement ACL-based Forwarding
This section contains the following procedures:

Configuring ACL-based Forwarding with Security ACL
Perform this task to configure ACL-based forwarding with security ACL.

Prerequisites for Implementing Access Lists and Prefix Lists
23

Prerequisites for Implementing Access Lists and Prefix Lists
How to Implement ACL-based Forwarding

SUMMARY STEPS

1. configure
2. ipv4 access-list name
3. [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence

precedence] [[default] nexthop1 [vrf vrf-name][ipv4 ipv4-address1] nexthop2[vrf vrf-name][ipv4
ipv4-address2] nexthop3[vrf vrf-name][ipv4 ipv4-address3]] [dscp dscp] [fragments] [log | log-input]
[[ttl ttl [value1 ... value2]]

4. commit
5. show access-list ipv4 [[access-list-name hardware {ingress | egress} [interface type interface-path-id]

{sequence number | location node-id} | summary [access-list-name] | access-list-name [sequence-number]
| maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters IPv4 access list configuration mode and configures
the specified access list.

ipv4 access-list name

Example:

Step 2

RP/0/RP0/CPU0:router(config)# ipv4 access-list
security-abf-acl

Sets the conditions for an IPv4 access list. The configuration
example shows how to configure ACL-based forwarding
with security ACL.

[sequence-number] permit protocol source
source-wildcard destination destination-wildcard
[precedence precedence] [[default] nexthop1 [vrf

Step 3

vrf-name][ipv4 ipv4-address1] nexthop2[vrf vrf-name • The nexthop1, nexthop2, nexthop3 keywords
forward the specified next hop for this entry.][ipv4 ipv4-address2] nexthop3[vrf vrf-name][ipv4

ipv4-address3]] [dscp dscp] [fragments] [log | log-input]
[[ttl ttl [value1 ... value2]] • If the default keyword is configured, ACL-based

forwarding action is taken only if the results of theExample:
PLU lookup for the destination of the packets

Example: determine a default route; that is, no specified route is
determined to the destination of the packet.

RP/0/RP0/CPU0:router# show access-lists ipv4 v4_acl

ipv4 access-list v4_acl
10 permit ipv4 any host 172.1.1.1 nexthop1 vrf
vrf_A ipv4 1.1.1.1 nexthop2 vrf vrf_B ipv4 2.2.2.2
nexthop3 vrf vrf_C ipv4 3.3.3.3

commitStep 4

Displays the information for ACL software.show access-list ipv4 [[access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 5

{sequence number | location node-id} | summary
[access-list-name] | access-list-name [sequence-number] |
maximum [detail] [usage {pfilter location node-id}]]

Example:

Prerequisites for Implementing Access Lists and Prefix Lists
24

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring ACL-based Forwarding with Security ACL

PurposeCommand or Action

RP/0/RP0/CPU0:router# show access-lists ipv4
security-abf-acl

RP/0/RP0/CPU0:router# show access-lists ipv4 v4_acl

ipv4 access-list v4_acl
10 permit ipv4 any host 172.1.1.1 nexthop1 vrf
vrf_A ipv4 1.1.1.1 nexthop2 vrf vrf_B ipv4 2.2.2.2
nexthop3 vrf vrf_C ipv4 3.3.3.3

Configuring Pure ACL-Based Forwarding for IPv6 ACL
SUMMARY STEPS

1. configure
2. {ipv6 } access-list name
3. [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence

precedence] [default nexthop [ipv6-address1] [ipv6-address2] [ipv6-address3]] [dscp dscp] [fragments]
[log | log-input] [nexthop [ipv6-address1] [ipv6-address2] [ipv6-address3]] [ttl ttl value [value1 ...
value2]][vrf vrf-name [ipv6-address1] [ipv6-address2] [ipv6-address3]]

4. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters IPv6 access list configuration mode and configures
the specified access list.

{ipv6 } access-list name

Example:

Step 2

RP/0/RP0/CPU0:router(config)# ipv6 access-list
security-abf-acl

Sets the conditions for an IPv6 access list. The configuration
example shows how to configure pure ACL-based
forwarding for ACL.

[sequence-number] permit protocol source
source-wildcard destination destination-wildcard
[precedence precedence] [default nexthop [ipv6-address1

Step 3

] [ipv6-address2] [ipv6-address3]] [dscp dscp] • The nexthop keyword forwards the specified next
hop for this entry.[fragments] [log | log-input] [nexthop [ipv6-address1]

[ipv6-address2] [ipv6-address3]] [ttl ttl value [value1 ...
value2]][vrf vrf-name [ipv6-address1] [ipv6-address2]
[ipv6-address3]]

Example:

RP/0/RP0/CPU0:router(config-ipv6-acl)# 10 permit
ipv6 host 100:1:1:2:3::1 host 10:11:12::2 nexthop1

Prerequisites for Implementing Access Lists and Prefix Lists
25

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring Pure ACL-Based Forwarding for IPv6 ACL

PurposeCommand or Action
ipv6 195:1:1:200:5ff:fe00:0

commitStep 4

Configuring Pure ACL-based Forwarding for ACL
Perform this task to configure pure ACL-based forwarding for ACL.

SUMMARY STEPS

1. configure
2. {ipv4 } access-list name
3. [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence

precedence] [default nexthop [ipv4-address1] [ipv4-address2] [ipv4-address3]] [dscp dscp] [fragments]
[log | log-input] [nexthop [ipv4-address1] [ipv4-address2] [ipv4-address3]] [ttl ttl value [value1 ...
value2]][vrf vrf-name [ipv4-address1] [ipv4-address2] [ipv4-address3]]

4. commit
5. show access-list ipv4 [access-list-name hardware {ingress | egress} [interface type interface-path-id]

{sequence number | location node-id} | summary [access-list-name] | access-list-name [sequence-number]
| maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters IPv4 access list configuration mode and configures
the specified access list.

{ipv4 } access-list name

Example:

Step 2

RP/0/RP0/CPU0:router(config)# ipv4 access-list
security-abf-acl

Sets the conditions for an IPv4 or an IPv6 access list. The
configuration example shows how to configure pure
ACL-based forwarding for ACL.

[sequence-number] permit protocol source
source-wildcard destination destination-wildcard
[precedence precedence] [default nexthop [ipv4-address1

Step 3

] [ipv4-address2] [ipv4-address3]] [dscp dscp] • The nexthop keyword forwards the specified next
hop for this entry.[fragments] [log | log-input] [nexthop [ipv4-address1]

[ipv4-address2] [ipv4-address3]] [ttl ttl value [value1 ...
value2]][vrf vrf-name [ipv4-address1] [ipv4-address2]
[ipv4-address3]]

Example:

RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 permit
ipv4 10.0.0.0 0.255.255.255 any nexthop 50.1.1.2
RP/0/RP0/CPU0:router(config-ipv4-acl)# 15 permit
ipv4 30.2.1.0 0.0.0.255 any
RP/0/RP0/CPU0:router(config-ipv4-acl)# 20 permit

Prerequisites for Implementing Access Lists and Prefix Lists
26

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring Pure ACL-based Forwarding for ACL

PurposeCommand or Action
ipv4 30.2.0.0 0.0.255.255 any nexthop 40.1.1.2
RP/0/RP0/CPU0:router(config-ipv4-acl)# 25 permit
ipv4 any any

commitStep 4

Displays the information for ACL software.show access-list ipv4 [access-list-name hardware {ingress
| egress} [interface type interface-path-id] {sequence

Step 5

number | location node-id} | summary [access-list-name]
| access-list-name [sequence-number] |maximum [detail]
[usage {pfilter location node-id}]]

Example:

RP/0/RP0/CPU0:router# show access-lists ipv4
security-abf-acl

ACL-Chaining
ACL-Chaining also known asMulti-ACL enables customers to apply two IPv4 or IPv6 (common and interface)
ACLs on an interface for packet filtering at the router. One ACL is common across multiple interfaces on the
line card. This provides Ternary Content Addressable Memory(TCAM)/HW scalability.

ACL-Chaining Overview
Currently, the packet filter process (pfilter_ea) supports only one ACL to be applied per direction and per
protocol on an interface. This leads to manageability issues if there are common ACL entries needed on most
interfaces. Duplicate ACEs are configured for all those interfaces, and any modification to the common ACEs
needs to be performed for all ACLs.

A typical ACL on the edge box for an ISP has two sets of ACEs:

• common ISP specific ACEs (ISP protected address block)

• customer/interface specific ACEs (Customer source address block)

The purpose of these address blocks is to deny access to ISP’s protected infrastructure networks and
anti-spoofing protection by allowing only customer source address blocks. This results in configuring unique
ACL per interface and most of the ACEs being common across all the ACLs on a box. ACL provisioning and
modification is very cumbersome. Any changes to the ACE impacts every customer interface. (This also
wastes the HW/TCAM resources as the common ACEs are being replicated in all ACLs).

The ACL chaining feature also known as Multi-ACL allows you to configure more than one ACL that can
be applied to a single interface. The goal is to separate various types of ACLs for management, and also allow
you to apply both of them on the same interface, in a defined order.

Restrictions for Common ACL
The following restrictions apply while implementing Common ACL:

• Common ACL is supported in only ingress direction and for L3 interfaces only.

Prerequisites for Implementing Access Lists and Prefix Lists
27

Prerequisites for Implementing Access Lists and Prefix Lists
ACL-Chaining

• The interface-statistics option is not available for common ACLs.

• The hardware-count option is available for only IPv4 ACLs.

• Only one common IPv4 and IPv6 ACL is supported on each line card.

• The common ACL option is not available for Ethernet Service (ES) ACLs.

• You can specify only common ACL or only interface ACL or both common and interface ACL in this
command.

• The compress option is not supported for common ACLs.

Configuring an Interface to accept Common ACL
Perform this task to configure the interface to accept a common ACL along with the interface specific ACL:

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. { ipv4 | ipv6 } access-group { common access-list-name { [access-list-name ingress [

interface-statistics]] | ingress } |access-list-name { ingress | egress } [interface-statistics
] } [hardware-count]

4. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

This command configures an interface (in this case a
TenGigabitEThernet interface) and enters the interface
configuration mode.

interface type interface-path-id

Example:

RP/0/RP0/CPU0:router(config)# interface TenGigE
0/2/0/1

Step 2

Configures the interface to accept a common ACL along
with the interface specific ACL.

{ ipv4 | ipv6 } access-group { common
access-list-name { [access-list-name ingress [
interface-statistics]] | ingress } |access-list-name

Step 3

{ ingress | egress } [interface-statistics] } [
hardware-count]

Example:

RP/0/RP0/CPU0:router(config-if)# ipv4 access-group
common acl-p acl1 ingress

commitStep 4

Prerequisites for Implementing Access Lists and Prefix Lists
28

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring an Interface to accept Common ACL

Configuration Examples for Implementing Access Lists and
Prefix Lists

This section provides the following configuration examples:

Resequencing Entries in an Access List: Example
The following example shows access-list resequencing. The starting value in the resequenced access list is 1
, and increment value is 2 . The subsequent entries are ordered based on the increment values that users provide,
and the range is from 1 to 2147483646.

When an entry with no sequence number is entered, by default it has a sequence number of 10 more than the
last entry in the access list.

ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34
20 permit icmp any any
30 permit tcp any host 10.3.3.3
40 permit ip host 10.4.4.4 any
60 permit ip host 172.16.2.2 host 10.3.3.12
70 permit ip host 10.3.3.3 any log
80 permit tcp host 10.3.3.3 host 10.1.2.2
100 permit ip any any

configure
ipv6 access-list acl_1
end
resequence ipv6 access-list acl_1 10 20

ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34
30 permit icmp any any
50 permit tcp any host 10.3.3.3
70 permit ip host 10.4.4.4 any
90 Dynamic test permit ip any any
110 permit ip host 172.16.2.2 host 10.3.3.12
130 permit ip host 10.3.3.3 any log
150 permit tcp host 10.3.3.3 host 10.1.2.2
170 permit ip host 10.3.3.3 any
190 permit ip any any

Adding Entries with Sequence Numbers: Example
In the following example, an new entry is added to IPv4 access list acl_5.
ipv4 access-list acl_5
2 permit ipv4 host 10.4.4.2 any
5 permit ipv4 host 10.0.0.44 any
10 permit ipv4 host 10.0.0.1 any
20 permit ipv4 host 10.0.0.2 any
configure
ipv4 access-list acl_5
15 permit 10.5.5.5 0.0.0.255
end
ipv4 access-list acl_5

Prerequisites for Implementing Access Lists and Prefix Lists
29

Prerequisites for Implementing Access Lists and Prefix Lists
Configuration Examples for Implementing Access Lists and Prefix Lists

2 permit ipv4 host 10.4.4.2 any
5 permit ipv4 host 10.0.0.44 any
10 permit ipv4 host 10.0.0.1 any
15 permit ipv4 10.5.5.5 0.0.0.255 any
20 permit ipv4 host 10.0.0.2 any

Adding Entries Without Sequence Numbers: Example
The following example shows how an entry with no specified sequence number is added to the end of an
access list. When an entry is added without a sequence number, it is automatically given a sequence number
that puts it at the end of the access list. Because the default increment is 10, the entry will have a sequence
number 10 higher than the last entry in the existing access list.

configure
ipv4 access-list acl_10
permit 1.1.1.1 0.0.0.255
permit 2.2.2.2 0.0.0.255
permit 3.3.3.3 0.0.0.255
end

ipv4 access-list acl_10
10 permit ip 1.1.1.0 0.0.0.255 any
20 permit ip 2.2.2.0 0.0.0.255 any
30 permit ip 3.3.3.0 0.0.0.255 any

configure
ipv4 access-list acl_10
permit 4.4.4.4 0.0.0.255
end

ipv4 access-list acl_10
10 permit ip 1.1.1.0 0.0.0.255 any
20 permit ip 2.2.2.0 0.0.0.255 any
30 permit ip 3.3.3.0 0.0.0.255 any
40 permit ip 4.4.4.0 0.0.0.255 any

Configuration Examples for Implementing ACL-based
Forwarding

This section provides the following configuration examples:

All configuration examples include a forwarded action nexthop keyword. If the default nexthop keyword
is configured, ABF action is taken only if the pointer lookup (PLU) of the destination of the packets results
in hitting a default route; for example, no specific route is specified to the packet destination.

ACL with Security and ACL-based Forwarding Access Control Entry: Example
The following example shows how to configure ACL with security and an ACL-based forwarding access
control entry (ACE):

configure
ipv4 access-list security-abf-acl
10 permit ipv4 10.0.0.0 0.255.255.255 any
15 permit ipv4 10.2.0.0 0.0.255.255 any next-hop 10.1.1.2

Prerequisites for Implementing Access Lists and Prefix Lists
30

Prerequisites for Implementing Access Lists and Prefix Lists
Adding Entries Without Sequence Numbers: Example

20 deny ipv4 10.1.0.0 0.0.255.255 any
25 permit ipv4 10.0.0.0 0.255.255.255 any
end

For ACL-based forwarding, the following command is programmed in the hardware after access list entry
(ACE) 25:

Note

deny ipv4 any any

The following methods are used to attach the ACL for both security and ACL-based forwarding ACE to an
interface in ingress direction:

• Packets entering an interface with source address 10.x.x.x are forwarded using a traditional forwarding
lookup.

• Packets entering an interface with source address 30.2.x.x are forwarded to next hop 40.1.1.2 (if reachable
through FIB).

• Packets entering an interface with source address 30.1.x.x are dropped by security ACE 20.

• All other packets that are entering an interface are dropped by security ACL.

Pure ACL-based Forwarding for ACL Example
The following example shows how to configure pure ABF for ACL:

configure
ipv4 access-list security-abf-acl
10 permit ipv4 10.0.0.0 0.255.255.255 any next-hop 10.1.1.2
15 permit ipv4 10.2.1.0 0.0.0.255 any
20 permit ipv4 10.2.0.0 0.0.255.255 any next-hop 10.1.1.2
25 permit ipv4 any any
end

IPv6 ACL-based Forwarding Example
The following example shows how to configure IPv6 supported ABF:

configure
ipv6 access-list v6_abf

10 permit ipv6 host 100:1:1:2:3::1 host 10:11:12::2 nexthop1 ipv6 195:1:1:1:200:5ff:fe00:0

20 permit ipv6 host 100:1:1:2:3::1 host 10:11:12::2 nexthop1 ipv6 195:1:1:1:200:5ff:fe00:0
nexthop2 ipv6 192:3:2:2:200:3ff:fe00:0 nexthop3 ipv6 192:4:2:2:200:3ff:fe00:0
30 permit ipv6 host 100:1:1:2:3::1 host 10:11:12::2 nexthop1 vrf VRF1
40 permit ipv6 host 100:1:1:2:3::1 host 10:11:12::3 nexthop1 vrf VRF1 ipv6

192:2:2:2:200:3ff:fe00:0
50 permit ipv6 host 100:1:1:2:3::1 host 10:11:12::2 default nexthop1 ipv6

195:1:1:1:200:5ff:fe00:0
60 permit ipv6 any any nexthop1 vrf VRF1 ipv6 192:2:2:2:200:3ff:fe00:0 nexthop2 vrf

VRF1 ipv6 192:3:2:2:200:3ff:fe00:0 nexthop3 vrf VRF1 ipv6 192:4:2:2:200:3ff:fe00:0
end

Prerequisites for Implementing Access Lists and Prefix Lists
31

Prerequisites for Implementing Access Lists and Prefix Lists
Pure ACL-based Forwarding for ACL Example

For ACL-based forwarding, the following command is programmed in hardware of the ACL:FNote

deny ipv4 any any

Therefore, the following ACE command must be issued to let other traffic through:

25 permit ipv4 any any

The following methods are used to attach the ACL, which is used only for an ACL-based forwarding ACE,
to an interface in the ingress direction:

• Packets entering an interface with source address 10.x.x.x are forwarded to next hop 10.1.1.2 (if reachable
through FIB).

• Packets entering an interface with source address 10.2.1.x are forwarded using traditional forwarding
lookup.

• Packets entering an interface with source address 19.2.x.x, but not in 30.2.1.x, are forwarded to next hop
10.1.1.2 (if reachable through FIB).

• All other packets entering an interface are permitted by ACE 25 and are forwarded by using a traditional
forwarding lookup.

• ACE 25 ensures that all packets not matching this ACL-based forwarding ACE are forwarded and are
not dropped due to an implicit deny ACE that is installed after ACE 25 by the software.

IPv6 ACL in Class Map
In Release 4.2.1, Quality of Service (Qos) features on ASR 9000 Ethernet line card and ASR 9000 Enhanced
Ethernet line card are enhanced to support these:

• ASR 9000 Enhanced Ethernet LC:

• Support on L2 and L3 interface and sub-interface

• Support on bundle L2 and L3 interface and sub-interface

• Support for both ingress and egress directions

• ICMP code and type for IPv4/IPv6

• ASR 9000 Ethernet LC:

• Support on only L3 interface and sub-interface

• Support on L3 bundle interface and sub-interface

• Support for both ingress and egress directions

• ICMP code and type for IPv4/IPv6

• IPv6-supported match fields:

Prerequisites for Implementing Access Lists and Prefix Lists
32

Prerequisites for Implementing Access Lists and Prefix Lists
IPv6 ACL in Class Map

• IPv6 Source Address

• IPv6 Destination Address

• IPv6 Protocol

• Time to live (TTL) or hop limit

• Source Port

• Destination Port

• TCP Flags

• IPv6 Flags (Routing Header(RH), Authentication Header(AH) and Destination Option Header(DH))

• Class map with IPv6 ACL that also supports:

• IPv4 ACL

• Discard class

• QoS Group

• Outer CoS

• Inner CoS

• Outer VLAN (ASR 9000 Enhanced Ethernet LC only)

• Inner VLAN (ASR 9000 Enhanced Ethernet LC only)

• match-not option

• type of service (TOS) support

• Policy-map with IPv6 ACL supports:

• hierarchical class-map

Configuring IPv6 ACL QoS - An Example
This example shows how to configure IPv6 ACL QoS with IPv4 ACL and other fields :

ipv6 access-list aclv6
10 permit ipv6 1111:6666::2/64 1111:7777::2/64 authen
30 permit tcp host 1111:4444::2 eq 100 host 1111:5555::2 ttl eq 10
!

ipv4 access-list aclv4
10 permit ipv4 host 10.6.10.2 host 10.7.10.2
!

class-map match-any c.aclv6
match access-group ipv6 aclv6
match access-group ipv4 aclv4
match cos 1
end-class-map

Prerequisites for Implementing Access Lists and Prefix Lists
33

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring IPv6 ACL QoS - An Example

!

policy-map p.aclv6
class c.aclv6
set precedence 3

!
class class-default
!
end-policy-map
!

show qos-ea km policy p.aclv6 vmr interface tenGigE 0/1/0/6.10 hw

==
B : type & id E : ether type VO : vlan outer VI : vlan inner
Q : tos/exp/group X : Reserved DC : discard class Fl : flags
F2: L2 flags F4: L4 flags SP/DP: L4 ports
T : IP TTL D : DFS class# L : leaf class#
Pl: Protocol G : QoS Grp M : V6 hdr ext. C : VMR count
--
policy name p.aclv6 and km format type 4
Total Egress TCAM entries: 5
|B F2 VO VI Q G DC T F4 Pl SP DP M IPv4/6 SA IPv4/6
DA
==
V|3019 00 0000 0000 00 00 00 00 00 00 0000 0000 80 11116666:00000000:00000000:00000000
11117777:00000000:00000000:00000000
M|0000 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF 7F 00000000:00000000:FFFFFFFF:FFFFFFFF
00000000:00000000:FFFFFFFF:FFFFFFFF
R| C=0 03080200 000000A6 F06000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000
V|3019 00 0000 0000 00 00 00 0A 01 00 0064 0000 00 11114444:00000000:00000000:00000002
11115555:00000000:00000000:00000002
M|0000 FF FFFF FFFF FF FF FF 00 FE FF 0000 FFFF FF 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
R| C=1 03080200 000000A6 F06000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000
V|3018 00 0000 0000 00 00 00 00 00 00 0000 0000 00 0A060A02 -------- -------- --------
0A070A02 -------- -------- --------
M|0000 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF 00000000 -------- -------- --------
00000000 -------- -------- --------
R| C=2 03080200 000000A6 F06000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000
V|3018 00 2000 0000 00 00 00 00 00 00 0000 0000 00 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
M|0003 FF 1FFF FFFF FF FF FF FF FF FF FFFF FFFF FF FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
R| C=3 03080200 000000A6 F06000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000
V|3018 00 0000 0000 00 00 00 00 00 00 0000 0000 00 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
M|0003 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
R| C=4 03000200 00010002 FF0000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000

This example shows how to configure hierarchical policy map:

ipv6 access-list aclv6.p
10 permit ipv6 1111:1111::/8 2222:2222::/8

ipv6 access-list aclv6.c
10 permit ipv6 host 1111:1111::2 host 2222:2222::3

Prerequisites for Implementing Access Lists and Prefix Lists
34

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring IPv6 ACL QoS - An Example

class-map match-any c.aclv6.c
match not access-group ipv6 aclv6.c
end-class-map
!

class-map match-any c.aclv6.p
match access-group ipv6 aclv6.p
end-class-map
!

policy-map child
class c.aclv6.c
set precedence 7

!

policy-map parent
class c.aclv6.p
service-policy child
set precedence 1

(config)#do show qos-ea km policy parent vmr interface tenGigE 0/1/0/6 hw

==
B : type & id E : ether type VO : vlan outer VI : vlan inner
Q : tos/exp/group X : Reserved DC : discard class Fl : flags
F2: L2 flags F4: L4 flags SP/DP: L4 ports
T : IP TTL D : DFS class# L : leaf class#
Pl: Protocol G : QoS Grp M : V6 hdr ext. C : VMR count

==
policy name parent and format type 4
Total Ingress TCAM entries: 3
|B F2 VO VI Q G DC T F4 Pl SP DP M IPv4/6 SA IPv4/6
DA
==
V|200D 00 0000 0000 00 00 00 00 00 00 0000 0000 00 11111111:00000000:00000000:00000002
22222222:00000000:00000000:00000003
M|0000 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
R| C=0 11800200 00020000 29000000 80004100 00000000 00000000 00000000 00000000
V|200D 00 0000 0000 00 00 00 00 00 00 0000 0000 00 11000000:00000000:00000000:00000000
22000000:00000000:00000000:00000000
M|0000 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF 00FFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
00FFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
R| C=1 11800200 00010000 29000000 80004700 00000000 00000000 00000000 00000000
V|200C 00 0000 0000 00 00 00 00 00 00 0000 0000 00 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
M|0003 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
R| C=2 11000200 00030000 00000000 00000000 00000000 00000000 00000000 00000000

Configuring an Interface to accept Common ACL - Examples
This section provides configuration examples of common ACL.

This example shows how to replace an ACL configured on the interface without explicitly deleting the ACL:

Prerequisites for Implementing Access Lists and Prefix Lists
35

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring an Interface to accept Common ACL - Examples

Interface Pos0/2/0/0
ipv4 access-group common C_acl ACL1 ingress
commit
replace Interface acl ACL1 by ACL2
Interface Pos0/2/0/0
ipv4 access-group common C_acl ACL2 ingress
commit

This example shows how common ACL cannot be replaced on interfaces without deleting it explicitly from
the interface:

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit
change the common acl to C_acl2
Interface Pos0/2/0/0
no ipv4 access-group common C_acl1 ACL1 ingress
commit
Interface Pos0/2/0/0
ipv4 access-group common C_acl2 ACL1 ingress
commit

When reconfiguring common ACL, you must ensure that no other interface on the line card is attached to the
common ACL. In other words, atomic replacement of common ACL is not possible.

Note

If both common ACL and interface ACL are attached to an interface and only one of the above is reconfigured
on the interface, then the other will be removed automatically.

Note

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit

Interface Pos0/2/0/0
ipv4 access-group ACL1 ingress
commit
This removes the common acl.

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ingress
commit

This example shows how the interface ACL is removed:

Prerequisites for Implementing Access Lists and Prefix Lists
36

Prerequisites for Implementing Access Lists and Prefix Lists
Configuring an Interface to accept Common ACL - Examples

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit

Interface Pos0/2/0/0
no ipv4 access-group common acl acl ingress
Commit

Additional References
The following sections provide references related to implementing access lists and prefix lists.

Related Documents

Document TitleRelated Topic

Access List Commands module in IP Addresses
and Services Command Reference for Cisco CRS
Routers

Access list commands: complete command syntax,
command modes, command history, defaults, usage
guidelines, and examples

Prefix List Commands module in IP Addresses
and Services Command Reference for Cisco CRS
Routers

Prefix list commands: complete command syntax,
command modes, command history, defaults, usage
guidelines, and examples

Terminal Services Commands module in System
Management Command Reference for isco CRS
Routers

Terminal services commands: complete command
syntax, command modes, command history, defaults,
usage guidelines, and examples

Standards

TitleStandards

—No new or modified standards are supported by this feature, and support for existing standards has not
been modified by this feature.

MIBs

MIBs LinkMIBs

To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a
platform under the Cisco Access Products menu: https://mibs.cloudapps.cisco.com/ITDIT/MIBS/
servlet/index

—

RFCs

TitleRFCs

—No new or modified RFCs are supported by this feature, and support for existing RFCs has not been
modified by this feature.

Prerequisites for Implementing Access Lists and Prefix Lists
37

Prerequisites for Implementing Access Lists and Prefix Lists
Additional References

https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index
https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index

Technical Assistance

LinkDescription

http://www.cisco.com/techsupportThe Cisco Technical Support website contains thousands of pages of
searchable technical content, including links to products, technologies,
solutions, technical tips, and tools. Registered Cisco.com users can log
in from this page to access even more content.

Prerequisites for Implementing Access Lists and Prefix Lists
38

Prerequisites for Implementing Access Lists and Prefix Lists
Additional References

http://www.cisco.com/techsupport

	Prerequisites for Implementing Access Lists and Prefix Lists
	Restrictions for Implementing Access Lists and Prefix Lists
	Restrictions for Implementing ACL-based Forwarding
	Information About Implementing Access Lists and Prefix Lists
	Access Lists and Prefix Lists Feature Highlights
	Purpose of IP Access Lists
	How an IP Access List Works
	IP Access List Process and Rules
	Helpful Hints for Creating IP Access Lists
	Source and Destination Addresses
	Wildcard Mask and Implicit Wildcard Mask
	Transport Layer Information

	IP Access List Entry Sequence Numbering
	Sequence Numbering Behavior

	Understanding IP Access List Logging Messages
	Extended Access Lists with Fragment Control
	Policy Routing

	Comments About Entries in Access Lists
	Access Control List Counters
	BGP Filtering Using Prefix Lists
	How the System Filters Traffic by Prefix List

	Information About Implementing ACL-based Forwarding
	ACL-based Forwarding Overview
	ACL-based Forwarding Functions

	How to Implement Access Lists and Prefix Lists
	Configuring Extended Access Lists
	Applying Access Lists
	Controlling Access to an Interface
	Controlling Access to a Line

	Configuring Prefix Lists
	Configuring Standard Access Lists
	Copying Access Lists
	Sequencing Access-List Entries and Revising the Access List
	Copying Prefix Lists
	Sequencing Prefix List Entries and Revising the Prefix List

	How to Implement ACL-based Forwarding
	Configuring ACL-based Forwarding with Security ACL

	Configuring Pure ACL-Based Forwarding for IPv6 ACL
	Configuring Pure ACL-based Forwarding for ACL
	ACL-Chaining
	ACL-Chaining Overview
	Restrictions for Common ACL
	Configuring an Interface to accept Common ACL

	Configuration Examples for Implementing Access Lists and Prefix Lists
	Resequencing Entries in an Access List: Example
	Adding Entries with Sequence Numbers: Example
	Adding Entries Without Sequence Numbers: Example

	Configuration Examples for Implementing ACL-based Forwarding
	ACL with Security and ACL-based Forwarding Access Control Entry: Example
	Pure ACL-based Forwarding for ACL Example
	IPv6 ACL-based Forwarding Example

	IPv6 ACL in Class Map
	Configuring IPv6 ACL QoS - An Example

	Configuring an Interface to accept Common ACL - Examples
	Additional References

