THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2017 Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface xvii

Changes to This Document xvii

Obtaining Documentation and Submitting a Service Request xvii

CHAPTER 1 New and Changed System Management Features 1

System Management Features Added or Modified in IOS XR Release 6.2.x 1

CHAPTER 2 Configuring Secure Domain Routers on the Cisco IOS XR Software 3

Prerequisites for Working with Secure Domain Routers 4

Information About Configuring Secure Domain Routers 4

What Is a Secure Domain Router? 5

Owner SDR and Administration Configuration Mode 5

Non-Owner SDRs 5

SDR Access Privileges 6

Root-System Users 6

root-lr Users 7

Other SDR Users 7

Designated Secure Domain Router Shelf Controller (DSDRSC) 7

DSCs and DSDRSCs 8

Designated Shelf Controller (DSC) 8

Using a DRP or DRP Pair as the DSDRSC 8

Using an RP Pair as the DSDRSC 8

Removing a DSDRSC Configuration 9

Default Configuration for New Non-Owner SDRs 9

High Availability Implications 10

Fault Isolation 10

Rebooting an SDR 10
DSDRSC Redundancy 10
Cisco IOS XR Software Package Management 10
Restrictions For SDR Creation and Configuration 11
How to Configure Secure Domain Routers 11
Creating SDRs 11
Adding Nodes to a Non-Owner SDR 15
 Adding Nodes to an SDR 15
Removing Nodes and SDRs 17
 Removing Nodes from an SDR 17
 Removing an SDR 19
Configuring a Username and Password for a Non-Owner SDR 20
Disabling Remote Login for SDRs 23
Configuration Examples for Secure Domain Routers 24
 Creating a New SDR: Example 24
 Adding Nodes to an SDR: Example 24
 Removing Notes from an SDR: Example 24
 Removing an SDR from the Router: Example 25
 Configuring a Username and Password for a Non-Owner SDR: Example 25
 Disabling Remote Login for SDRs: Example 25
Additional References 25

CHAPTER 3
Upgrading and Managing Cisco IOS XR Software 29
Overview of Cisco IOS XR Software Packages 31
 Package Installation Envelopes 31
Summary of Cisco IOS XR Software Packages 32
 Packages in the Cisco IOS XR Unicast Routing Core Bundle 32
 Software Maintenance Upgrades 32
PIE Filenames and Version Numbers 33
 Filename Component Description 33
 Copying the PIE File to a Local Storage Device or Network Server 35
Information About Package Management 36
 Summary of Package Management 36
 Adding Packages 36
 Verifying Package Details 37
 Activating Packages 38
Activating Multiple Packages or SMUs 38
Activating All Packages Added in a Specific Operation 38
Adding and Activating a Package with a Single Command 39
Updating Software Images Without a Router Reload 39
 ISSU Software Images 39
 Description of ISSU Process 40
 Software Maintenance Updates Using ISSU 42
 SMU Installation Combinations 43
Upgrading and Downgrading Packages 44
Committing the Active Software Set 44
Rolling Back to a Previous Installation Operation 45
Multiple Disks Support during Installations 45
 Restrictions 45
 Deactivation of fully superseded SMUs 46
 Support for the Ignore Package Presence Check Option 46
Managing Software Packages in a Multishelf System 46
Default Software Profile for New SDRs 47
Upgrading Packages 48
Downgrading Packages 48
Impact of Package Version Changes 49
Impact of Package Activation and Deactivation 49
Delaying the Return of the CLI Prompt 50
Displaying Installation Log Information 50
 Examples 51
Package Management Procedures 53
 Activation and Deactivation Prerequisites 53
 Prerequisites for ISSU 54
 Restrictions for ISSU 55
Obtaining and Placing Cisco IOS XR Software 55
 Transferring Installation Files from a Network File Server to a Local Storage Device 56
Preparing for Software Installation Operations 58
 Examples 61
Adding and Activating Packages 65
 Examples 72
 ISSU Examples 75
CHAPTER 4

Configuring Disk Backups and Disk Mirroring on the Cisco IOS XR Software

- Disk Backup Prerequisites 102
- Disk Mirroring Prerequisites 102
- Information About the Backup Disk 103
- Information About Disk Mirroring 103
- How to Create a Backup Disk 104
 - Creating a New or Revised Backup Disk 104
 - Using the Backup Disk to Boot a Router 106
- How to Enable Disk Mirroring 107
 - Enabling Disk Mirroring 107
 - Replacing the Secondary Mirroring Device 109
 - Replacing the Primary Mirroring Device 110
- Configuration Examples for Creating a Backup Disk 113
- Configuration Examples for Enabling Disk Mirroring 116

Additional References 118

CHAPTER 5

Software Entitlement on the Cisco IOS XR Software

- What Is Software Entitlement? 121
- Implementing Default Licensing 123
 - Prerequisites for Configuring Software Entitlement 123
 - Information About Default (Traditional) Licensing 123
Types of Licenses 123
SDR License Pools 123
Chassis-Locked Licenses 123
Slot-Based Licenses 124
Using Implicit Licenses After a Software Image Upgrade 124
Features that Require Licenses After a Software Image Upgrade 124
Configure Licenses Using Default Licensing 126
Adding a License for a New Feature 126
Enabling 40-Gbps Throughput on an MSC 128
Examples 129
Back Up Licenses 129
Examples 130
Restoring Licenses 131
Examples 131
Transferring Licenses to a new Route Switch Processor 440 132
Upgrading Line Cards and Licenses 133
Troubleshooting License Issues after a Software Upgrade 134
Additional References 134

CHAPTER 6
Managing the Router Hardware 137
Prerequisites for Managing Router Hardware 138
Displaying Hardware Status 138
Displaying SDR Hardware Version Information 138
Displaying System Hardware Version Information 140
Displaying the Chassis Serial Numbers 144
Displaying the Configured Chassis Serial Numbers 144
Displaying Software and Hardware Information 145
Displaying Router Power Consumption 145
Displaying SDR Node IDs and Status 148
Displaying Router Node IDs and Status 150
Displaying Router Environment Information 151
Displaying RP Redundancy Status 153
Displaying Field-Programmable Device Compatibility 153
RP Redundancy and Switchover 156
Establishing RP Redundancy 156
Determined the Active RP in a Redundant Pair 157
Role of the Standby RP 157
Summary of Redundancy Commands 157
Automatic Switchover 158
RP Redundancy During RP Reload 158
Manual Switchover 159
Communicating with a Standby RP 160
CPAK 160
 Modes supported on CPAKs 160
 Power saving mode 160
 To configure the power save option 161
Reloading, Shutting Down, or Power Cycling a Node 161
 Reloading the Active RP 162
Flash Disk Recovery 164
Using Controller Commands to Manage Hardware Components 165
Formatting Hard Drives, Flash Drives, and Other Storage Devices 165
Removing and Replacing Cards 166
 Removing Line Cards, MSCs, or PLIMs 166
 Replacing an MSC 167
 Replacing a Line Card or PLIM with the Same Media Type and Port Count 167
 Replacing a Line Card or PLIM with the Same Media Type and a Different Port Count 167
 Replacing a Line Card or PLIM with a Different Media Type 168
Real Time Power Monitoring 168
 Advantages 168
 Card support 168
Examples: Breakout and Power saving options 168
Removing and Replacing Cisco 16-Slot Line Card Chassis Switch Fabric Cards 169
 Examples 174
Removing and Replacing 8-Slot Line Card Chassis Switch Fabric Cards 177
 Examples 182
Removing and Replacing Cisco 4-Slot Line Card Chassis Switch Fabric Cards 185
 Examples 190
Upgrading the CPU Controller Bits 193
 Examples 194
CHAPTER 7 Configuring Flexible Command Line Interface Configuration Groups 197

Information About Flexible CLI Configuration Groups 197
Flexible Configuration Restrictions 198
Configuring a Configuration Group 199
 Simple Configuration Group: Example 201
 Configuration Group Applied to Different Places: Example 201
Verifying the Configuration of Configuration Groups 201
Apply Groups Priority Inheritance 203
Regular Expressions in Configuration Groups 204
 Configuration Examples Using Regular Expressions 210
 Configuration Group with Regular Expression: Example 210
 Configuration Group Inheritance with Regular Expressions: Example 212
 Layer 2 Transport Configuration Group: Example 213
 Configuration Group Precedence: Example 213
 Changes to Configuration Group are Automatically Inherited: Example 214
Configuration Examples for Flexible CLI Configuration 214
 Basic Flexible CLI Configuration: Example 214
 Interface MTU Settings for Different Interface Types: Example 215
 ACL Referencing: Example 217
 Local Configuration Takes Precedence: Example 218
 ISIS Hierarchical Configuration: Example 219
 OSPF Hierarchy: Example 223
 Link Bundling Usage: Example 225

CHAPTER 8 Upgrading FPD 227

Prerequisites for FPD Image Upgrades 228
Overview of FPD Image Upgrade Support 228
 Automatic FPD Upgrade 228
How to Upgrade FPD Images 229
Configuration Examples for FPD Image Upgrade 233
 show hw-module fpd Command Output: Example 233
 show fpd package Command Output: Example 235
 upgrade hw-module fpd Command Output: Example 241

Additional References 194

System Management Configuration Guide for Cisco CRS Routers, IOS XR Release 6.2.x
CHAPTER 11 Implementing NTP 273
 Prerequisites for Implementing NTP on Cisco IOS XR Software 274
 Information About Implementing NTP 274
 How to Implement NTP on Cisco IOS XR Software 275
 Configuring Poll-Based Associations 275
 Configuring Broadcast-Based NTP Associates 277
 Configuring Multicast-Based NTP Associations 279
 Configuring NTP Access Groups 281
 Configuring NTP Authentication 283
 Disabling NTP Services on a Specific Interface 285
 Configuring the Source IP Address for NTP Packets 286
 Configuring the System as an Authoritative NTP Server 288
 Updating the Hardware Clock 289
 Verifying the Status of the External Reference Clock 290
 Examples 291
 Configuration Examples for Implementing NTP 291
 Additional References 294

CHAPTER 12 Implementing the Network Configuration Protocol 297
 The Network Configuration Protocol 297
 Netconf Sessions and Operations 298
 The Yang data model 298
 Netconf and Yang 299
 Supported Yang Models 300
 Denial of Services Defence for Netconf-Yang 300
 Enabling NETCONF over SSH 301
 Examples: Netconf over SSH 302
 Additional Reference 303

CHAPTER 13 Implementing Object Tracking on the Cisco IOS XR Software 305
CHAPTER 14
Prerequisites for Configuring Cisco IOS XR Process Placement 320
Information About Cisco IOS XR Process Placement 320
What Is a Process? 320
What Is Process Placement? 320
Default Placement Policy 320
Reasons to Change the Default Process Placement 321
Reoptimizing Process Placements 321
Reconfiguring Process Placements 322
Recommended Guidelines for Process Placement 322
Process Placement Based on Memory Consumption 322
Changing Process Affinities 322
 affinity location set 323
 affinity location type 323
 affinity program 323
 affinity self 323
Hierarchical Placement Policy 323
How to Configure Cisco IOS XR Process Placement 324
Reoptimizing Process Placement 324
Setting Memory Consumption Thresholds 325
Creating a Location Set Affinity 326
Creating a Location Type Affinity 327
Creating a Program Affinity 329
CHAPTER 15
Implementing Physical and Virtual Terminals 335
Prerequisites for Implementing Physical and Virtual Terminals 336
Information About Implementing Physical and Virtual Terminals 336
Line Templates 336
Line Template Configuration Mode 336
Line Template Guidelines 337
Terminal Identification 337
vty Pools 337
How to Implement Physical and Virtual Terminals on Cisco IOS XR Software 338
Modifying Templates 338
Creating and Modifying vty Pools 339
Monitoring Terminals and Terminal Sessions 341
Craft Panel Interface 342
Configuration Examples for Implementing Physical and Virtual Terminals 342
Additional References 344

CHAPTER 16
Implementing SNMP 347
Prerequisites for Implementing SNMP 348
Restrictions for SNMP Use on Cisco IOS XR Software 348
Information About Implementing SNMP 348
SNMP Functional Overview 348
SNMP Manager 348
SNMP Agent 349
MIB 349
SNMP Notifications 349
SNMP Versions 350
Comparison of SNMPv1, v2c, and v3 351
Security Models and Levels for SNMPv1, v2, v3 352
SNMPv3 Benefits 353
SNMPv3 Costs 354
User-Based Security Model 354
CHAPTER 18
Implementing CDP 387
Prerequisites for Implementing CDP 387
Information About Implementing CDP 388
How to Implement CDP on Cisco IOS XR Software 389
 Enabling CDP 389
 Modifying CDP Default Settings 390
 Monitoring CDP 391
 Examples 392
Configuration Examples for Implementing CDP 394
Additional References 394
Preface

This guide describes the System Management configuration details for Cisco IOS XR software. This chapter contains details on the changes made to this document.

- Changes to This Document, page xvii
- Obtaining Documentation and Submitting a Service Request, page xvii

Changes to This Document

This table lists the changes made to this document since it was first released.

Table 1: Changes to This Document

<table>
<thead>
<tr>
<th>Date</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2017</td>
<td>Initial release of this document.</td>
</tr>
<tr>
<td>July 2017</td>
<td>Republished for Release 6.2.2.</td>
</tr>
</tbody>
</table>

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see What's New in Cisco Product Documentation.

To receive new and revised Cisco technical content directly to your desktop, you can subscribe to the What's New in Cisco Product Documentation RSS feed. RSS feeds are a free service.
New and Changed System Management Features

This chapter lists all the features that have been added or modified in this guide. The table also contains references to these feature documentation sections.

- System Management Features Added or Modified in IOS XR Release 6.2.x, page 1

System Management Features Added or Modified in IOS XR Release 6.2.x

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No new features introduced</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>
CHAPTER 2

Configuring Secure Domain Routers on the Cisco IOS XR Software

Secure domain routers (SDRs) are a means of dividing a single physical system into multiple logically separated routers. SDRs are isolated from each other in terms of their resources, performance, and availability.

For complete descriptions of the SDR commands listed in this module, see Related Documents, on page 26. To locate documentation for other commands that might appear in the course of performing a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

Table 2: Feature History for Configuring Secure Domain Routers on Cisco IOS XR Software

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.3.0</td>
<td>This feature was introduced. Support included distributed route processor cards (DRPs) and DRP pairs, and SDR-specific software package activation.</td>
</tr>
<tr>
<td>Release 3.5.0</td>
<td>DSC migration functionality was improved.</td>
</tr>
<tr>
<td>Release 3.5.2</td>
<td>DSC migration was removed.</td>
</tr>
<tr>
<td>Release 3.6.3</td>
<td>Support for an SDR with DRPs within a single rack was added.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>Support was added for an SDR with DRPs on different racks.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for Working with Secure Domain Routers, page 4
- Information About Configuring Secure Domain Routers, page 4
- How to Configure Secure Domain Routers, page 11
- Configuration Examples for Secure Domain Routers, page 24
- Additional References, page 25
Prerequisites for Working with Secure Domain Routers

Before configuring SDRs, the following conditions must be met:

Initial Setup

- The router must be running the Cisco IOS XR software, including a designated shelf controller (DSC).
- The root-system username and password must be assigned as part of the initial configuration.
- For more information on booting a router and performing initial configuration, see *Cisco IOS XR Getting Started Guide for the Cisco CRS Router*.

Required Cards for Each SDR

- Additional route processor (RP) pair, DRP or DRP pair must be installed in each line card (LC) chassis to manage each SDR in the system.
- For additional information on DRPs, refer to *Cisco CRS-1 Carrier Routing System 16-Slot Line Card Chassis System Description*. For instructions on installing DRPs, see *Installing the Cisco CRS-1 Carrier Routing System 16-Slot Line Card Chassis*.

Task ID Requirements

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Software Version Requirements

- Cisco IOS XR Software Releases 2.0, 3.0, and 3.2 support only one owner SDR. Multiple (non-owner) SDRs are not supported in these releases. The owner SDR cannot be added or removed from the configuration.
- Multiple SDRs, including non-owner SDRs, are supported on Cisco IOS XR Software Release 3.3.0 or higher.

Maximum SDR Configurations

- A maximum of eight SDRs are supported, including one owner SDR and up to seven non-owner SDRs.

Information About Configuring Secure Domain Routers

Review the sections in this module before configuring secure domain routers.
What Is a Secure Domain Router?

Cisco routers running the Cisco IOS XR software can be partitioned into multiple, and independent routers known as secure domain routers (SDRs). SDRs are a means of dividing a single physical system into multiple logically separated routers. They perform routing functions similar to a physical router, but they share resources with the rest of the system. For example, the software, the configurations, the protocols, and the routing tables, which are assigned, are unique to a particular SDR. Other functions, such as chassis-control and switch fabric, are shared with the rest of the system.

Owner SDR and Administration Configuration Mode

The owner SDR is created at system startup and cannot be removed. This owner SDR performs system-wide functions, including the creation of additional non-owner SDRs. You cannot create the owner SDR because it always exists, nor can you completely remove the owner SDR because it is necessary to manage the router. By default, all nodes in the system belong to the owner SDR.

The owner SDR also provides access to the administration EXEC and administration configuration modes. Only users with root-system privileges can access the administration modes by logging in to the primary route processor (RP) for the owner SDR (called the designated shelf controller, or DSC).

Administration modes are used for the following purposes:

- Create and remove additional non-owner SDRs.
- Assign nodes to the non-owner SDRs.
- View the configured SDRs in the system.
- View and manage system-wide resources and logs.

Note

Administration modes cannot be used to configure the features within a non-owner SDR, or view the router configuration for a non-owner SDR. After the SDR is created, users must log into the non-owner SDR directly to change the local configuration and manage the SDR.

Non-Owner SDRs

To create a new non-owner SDR, the root-system user enters administration configuration mode, defines a new SDR name, and assigns a set of cards to that SDR. Only a user with root-system privileges can access the commands in administration configuration mode. Therefore, users without root-system privileges cannot create SDRs or assign cards to the SDRs.

After a non-owner SDR is created, the users configured on the non-owner SDR can log in and manage the router. The configuration for each non-owner SDR is separate from the owner SDR and can be accessed only by logging in to the non-owner SDR.
For information regarding support for non-owner SDRs in Cisco IOS XR software releases before release 3.9.0, see Related Topics.

SDR Access Privileges

Each SDR in a router has a separate AAA configuration that defines usernames, passwords, and associated privileges.

- Only users with root-system privileges can access the administration EXEC and administration configuration modes.
- Users with root-lr privileges can access only the non-owner SDR in which that username was created.
- Users with other access privileges can access features according to their assigned privileges for a specific SDR.

For more information about AAA policies, see the Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router.

Root-System Users

Users with root-system privileges have access to system-wide features and resources, including the ability to create and remove secure domain routers. The root-system user is created during the initial boot and configuration of the router.

The root-system user has the following privileges:

- Access to administration EXEC and administration configuration commands.
- Ability to create and delete non-owner SDRs.
- Ability to assign nodes (RPs, distributed route processors [DRPs], and line cards) to SDRs.
- Ability to create other users with similar or lower privileges.
- Complete authority over the chassis.
- Ability to log in to non-owner SDRs using admin plane authentication. Admin plane authentication allows the root-system user to log in to a non-owner SDR regardless of the configuration set by the root-lr user.
- Ability to install and activate software packages for all SDRs or for a specific SDR.
- Ability to view the following administration (admin) plane events (owner SDR logging system only):
 - Software installation operations and events.
 - System card boot operations, such as card booting notifications and errors, heartbeat-missed notifications, and card reloads.
 - Card alphanumeric display changes.
 - Environment monitoring events and alarms.
Fabric control events.
Upgrade progress information.

root-lr Users

Users with root-lr privileges can log in to an SDR only and perform configuration tasks that are specific to that SDR. The root-lr group has the following privileges:

- Ability to configure interfaces and protocols.
- Ability to create other users with similar or lower privileges on the SDR.
- Ability to view the resources assigned to their particular SDR.

The following restrictions apply to root-lr users:

- Users with root-lr privileges cannot enter administration EXEC or configuration modes.
- Users with root-lr privileges cannot create or remove SDRs.
- Users with root-lr privileges cannot add or remove nodes from an SDR.
- Users with root-lr privileges cannot create root-system users.
- The highest privilege a non-owner SDR user can have is root-lr.

Other SDR Users

Additional usernames and passwords can be created by the root-system or root-lr users to provide more restricted access to the configuration and management capabilities of the owner SDR or non-owner SDRs.

Designated Secure Domain Router Shelf Controller (DSDRSC)

In a router running Cisco IOS XR software, one RP is assigned the role of DSC. The DSC provides system-wide administration and control capability, including access to the administration EXEC and administration configuration modes. For more information on DSCs, refer to Cisco IOS XR Getting Started Guide for the Cisco CRS Router.

In each SDR, similar administration and control capabilities are provided by the designated secure domain router system controller (DSDRSC). Each SDR must include a DSDRSC to operate, and you must assign an RP or DRP to act as the DSDRSC.

Note

In the owner SDR, the DSC also provides DSDRSC functionality.
DSCs and DSDRSCs

Designated Shelf Controller (DSC)

The primary and standby DSC is always an RP pair. By default, the DSC is also the DSDRSC for the owner SDR. The owner DSDRSCs cannot be removed from the SDR configuration, or assigned to a non-owner SDR.

For information on DSC assignment and initial router configuration, refer to Cisco IOS XR Getting Started Guide for the Cisco CRS Router.

Using a DRP or DRP Pair as the DSDRSC

Cisco Systems recommends the use of DRPs as the DSDRSC in non-owner SDRs. An SDR without an RP must designate a DRP or DRP as the potential DSDRSC.

To create a DRP DSDRSC in a non-owner SDR, you must configure a DRP or DRP pair as the primary node for that SDR. The following guidelines apply:

• Although a single DRP can be used as the DSDRSC, we recommend the use of a redundant DRP pair.
• To create a DRP pair and configure it as the DSDRSC, complete the instructions in Creating SDRs, on page 11.
• DRPs cannot be used as the DSC in the owner SDR. Only RPs can be used as the DSC in the owner SDR.
• DRPs cannot be assigned as the DSDRSC if an RP is present in the SDR. To assign a DRP as the DSDRSC, you must first remove any RPs from the SDR configuration, and then add the DRP or DRP pair as the primary node. After the DRP is assigned as the DSDRSC, the RPs can be added to the SDR. For more information, see Related Topics.

Note

DRPs can also be used to provide additional processing capacity. For additional information on DRPs, see Cisco CRS-1 Carrier Routing System 16-Slot Line Card Chassis System Description. For instructions on installing DRPs, see Installing the Cisco CRS-1 Carrier Routing System 16-Slot Line Card Chassis. For information on using DRPs for additional processing capacity, see the Process Placement on Cisco IOS XR Software module in Cisco IOS XR System Management Configuration Guide for the Cisco CRS Router.

Using an RP Pair as the DSDRSC

RP pairs can also be used as the DSDRSC in non-owner SDRs.

• Single RPs cannot be used as the DSDRSC.
• Redundant RPs are installed in slots RP0 and RP1 of each line card chassis.
• To assign an RP pair as the DSDRSC, complete the instructions in How to Configure Secure Domain Routers, on page 11.
Although an RP pair can be used as the DSDRSC in non-owner SDRs, we recommend the use of a redundant DRP pair.

Removing a DSDRSC Configuration

There are two ways to remove a DSDRSC from an SDR:

- First remove all other nodes from the SDR configuration, and then remove the DSDRSC node. You cannot remove the DSDRSC node when other nodes are in the SDR configuration.
- Remove the entire SDR. Removing an SDR name deletes the SDR and moves all nodes back to the owner SDR inventory.

Default Configuration for New Non-Owner SDRs

By default, the configuration of a new SDR is blank. The first configuration step after creating an SDR is to log in to the new non-owner SDR using admin plane authentication and create a username and password. You can then log out of the SDR and log back in using the new username and password.

When logged in to a non-owner SDR using admin plane authentication, the admin configuration is displayed. However, admin plane authentication should be only used to configure a username and password for the non-owner SDR. To perform additional configuration tasks, log in with the username for the non-owner SDR.

Default Software Profile for SDRs

When a new non-owner SDR is created, the nodes assigned to that SDR are activated with the default software package profile. The default software profile is defined by the last install operation that did not specify an SDR.

To view the default software profile, use the `show install active summary` command in administration EXEC mode. Any new nodes that are configured to become a part of an SDR will boot with the default software profile listed in the output of this command.

```
RP/0/RP0/CPU0:router# show install active summary
Wed Dec 24 01:47:02.076 PST
Active Packages:
  disk1:hfr-infra-test-3.8.0.25I
  disk1:hfr-fpd-3.8.0.25I
  disk1:hfr-doc-3.8.0.25I
  disk1:hfr-diags-3.8.0.25I
  disk1:hfr-mgbl-3.8.0.25I
  disk1:hfr-mcast-3.8.0.25I
  disk1:hfr-mpls-3.8.0.25I
  disk1:comp-hfr-mini-3.8.0.25I
```
High Availability Implications

The sections in this module describe various high availability implications.

Fault Isolation

Because the CPU and memory of an SDR are not shared with other SDRs, configuration problems that cause out-of-resources conditions in one SDR do not affect other SDRs.

Rebooting an SDR

Each non-owner SDR can be rebooted independently of the other SDRs in the system. If you reboot the owner SDR, however, then all non-owner SDRs in the system automatically reboot, because the non-owner SDRs rely on the owner SDR for basic chassis management functionality.

Note

The DSDRSC of the owner SDR is also the DSC of the entire system.

DSDRSC Redundancy

To achieve full redundancy, each SDR must be assigned two cards: one to act as the primary DSDRSC and one RP or DRP to act as a standby DSDRSC.

We recommend the use of DRP pairs as DSDRSC for all non-owner SDRs the system.

Cisco IOS XR Software Package Management

Software packages are added to the DSC of the system from administration EXEC mode. Once added, a package can be activated for all SDRs in the system or for a specific SDR. For detailed instructions regarding software package management, see the Upgrading and Managing Cisco IOS XR Software module of Cisco IOS XR System Management Configuration Guide for the Cisco CRS Router. See also the Software Package Management Commands on the Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router.
SDR-specific activation is supported for specific packages and upgrades, such as optional packages and SMUs. Packages that do not support SDR-specific activation can only be activated for all SDRs in the system.

Note

- To access **install** commands, you must be a member of the root-system user group with access to the administration EXEC mode.
- Most **show install** commands can be used in the EXEC mode of an SDR to view the details of the active packages for that SDR.

Restrictions For SDR Creation and Configuration

The following restrictions apply to SDR creation and configuration:

- DRPs are supported for the DSDRSC.
- We recommend the configuration of DRP pairs as the DSDRSC for all non-owner SDRs, as described in Using a DRP or DRP Pair as the DSDRSC, on page 8.
- Single RPs are not supported for the DSDRSC. RPs must be installed and configured in redundant pairs.
- Admin plane events are displayed only on the non-owner SDR.
- Some admin plane debug events are not displayed on the owner SDR. For example, a non-owner card cannot send debug events to the DSC, which limits the debugging of administration processes to the non-owner SDR.

How to Configure Secure Domain Routers

To create an SDR, configure an SDR name and then add nodes to the configuration. At least one node in each SDR must be explicitly configured as the DSDRSC. After the SDR is created, you can add or remove additional nodes and create a username and password for the SDR.

Creating SDRs

To create a non-owner SDR, create an SDR name, add a DSDRSC, and then add additional nodes to the configuration. After the SDR is created, you can create a username and password for the SDR to allow additional configuration.

Note

The Cisco CRS-1 supports a maximum of eight SDRs, including one owner SDR and up to seven non-owner SDRs.

The 4-slot line card chassis does not support the creation of multiple SDRs.
Before You Begin
The procedures in this section can be performed only on a router that is already running Cisco IOS XR software. For instructions to boot a router and perform the initial configuration, see *Cisco IOS XR Getting Started Guide for the Cisco CRS Router*. When a router is booted, the owner SDR is automatically created, and cannot be removed. This also includes instructions to create the owner SDR username and password.

SUMMARY STEPS

1. `admin`
2. `configure`
3. `pairing pair-name`
4. `location partially-qualified-nodeid partially-qualified-nodeid`
5. `exit`
6. `sdr sdr-name`
7. Do one of the following:
 - `pair pair-name primary`
 - `location partially-qualified-nodeid primary`
8. Do one of the following:
 - `location partially-qualified-nodeid`
 - `location pair-name`
9. Repeat Step 8, on page 14 as needed to add nodes to an SDR.
10. `exit`
11. Repeat Step 3, on page 13 through Step 10, on page 14 through as needed.
12. `commit`
13. Create a username and password for the new SDR.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# admin</td>
</tr>
<tr>
<td>Step 2 configure</td>
<td>Enters administration configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(admin)# configure</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>pairing pair-name
Example:
RP/0/RP0/CPU0:router(admin-config)# pairing drp1</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enter DRP pairing configuration mode. If the DRP name does not exist, the DRP pair is created when you add nodes, as described in the following step.
• pair-name can be between 1 and 32 alphanumeric characters. The characters ‘ ’ or ‘' are also allowed. All other characters are invalid.
DRP pairs are used as the DSDRSC for a non-owner SDR.
Note: Although a single DRP can be used as the DSDRSC in a non-owner SDR, Cisco systems recommends that two redundant DRPs be installed and assigned to the SDR.
Note: DRPs can also be added to an SDR to provide additional processing capacity. See Related Topics for more information on DRP installation and configuration.</td>
</tr>
<tr>
<td>Step 4</td>
<td>location partially-qualified-nodeid
partially-qualified-nodeid
Example:
RP/0/RP0/CPU0:router{admin-config-pairing:drp1}# location 0/3/* 0/4/*</td>
</tr>
<tr>
<td></td>
<td>(Optional) Specifies the location of the DRPs in a DRP pair. The partially-qualified-nodeid argument is entered in the rack/slot/ notation. Node IDs are always specified at the slot level, so the wildcard (*) is used to specify the CPU.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit
Example:
RP/0/RP0/CPU0:router{admin-config-pairing:drp1}# exit</td>
</tr>
<tr>
<td></td>
<td>(Optional) Exits the DRP pairing configuration mode and returns to Administration configuration mode. Complete this step only if you created a DRP pair.</td>
</tr>
<tr>
<td>Step 6</td>
<td>sdr sdr-name
Example:
RP/0/RP0/CPU0:router{admin-config}# sdr rname</td>
</tr>
<tr>
<td></td>
<td>Enters the SDR configuration sub-mode for the specified SDR.
• If this SDR does not yet exist, it is created when you add a node, as described in step 7.
• If this SDR existed previously, you can add additional slots as described in step 7 and step 8.
• Only alphanumeric characters, ",", and "," are valid characters to include in the sdr-name argument.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Do one of the following:
• pair pair-name primary
• location partially-qualified-nodeid primary
Example:
</td>
</tr>
</tbody>
</table>
Purpose

- **Command or Action:**

 RP/0/RP0/CPU0:router(admin-config-sdr:rname)# pair drp1 primary
 or
 RP/0/RP0/CPU0:router(admin-config-sdr:rname)# location 0/0/ primary*
 or
 RP/0/RP0/CPU0:router(admin-config-sdr:rname)# location 0/RP//* primary*

- **Purpose:**

 - The **primary** keyword configures the RPs, DRP pair, or DRP as the DSDRSC. If the **primary** keyword is not used, the node is assigned to the SDR, but it is not the DSDRSC.
 - If an RP is already assigned to the SDR, it must be removed before a DRP or DRP pair can be assigned as the DSDRSC.

Step 8

Do one of the following:

- **location** `partially-qualified-nodeid`
- **location** `pair-name`

Example:

RP/0/RP0/CPU0:router(admin-config-sdr:rname)# location 0/0/
 or*
 RP/0/RP0/CPU0:router(admin-config-sdr:rname)# location drp1
 or
 RP/0/RP0/CPU0:router(admin-config-sdr:rname)# location 0/RP//**

Adds additional nodes, DRP pairs, or RP pairs to the SDR.

Step 9

Repeat Step 8, on page 14 as needed to add nodes to an SDR.

Adds additional nodes to the SDR.

Step 10

exit

Example:

RP/0/RP0/CPU0:router(admin-config-sdr:rname)# exit

(Optional) Exits the SDR configuration submode and returns to Administration configuration mode.

Note Complete this step only if you need to create additional SDRs.

Step 11

Repeat Step 3, on page 13 through Step 10, on page 14 through as needed.

Creates additional SDRs.

Step 12

commit

Step 13

Create a username and password for the new SDR.
Adding Nodes to a Non-Owner SDR

When adding nodes to an existing non-owner SDR, the following rules apply:

- By default, all nodes in a new system belong to the owner SDR. When a node is assigned to a non-owner SDR, the node is removed from the owner SDR inventory and added to the non-owner SDR.
- When a node is removed from a non-owner SDR, it is automatically returned to the owner SDR inventory.
- To add a node that already belongs to another non-owner SDR, you must first remove the node from the other SDR, and then reassign it to the new SDR.
- You cannot assign the DSC or standby DSC to a non-owner SDR. The DSC and standby DSC can only be removed and assigned to a non-owner SDR.
- Note the following points about DSDRSC support:
 - DRPs and DRP pairs are supported.
 - RPs can only be added in redundant pairs.

Adding Nodes to an SDR

This task explains how add nodes to an SDR.

SUMMARY STEPS

1. admin
2. configure
3. sdr sdr-name
4. Do one of the following:
 - location partially-qualified-nodeid
 - location pair-name
5. Use one of the following commands:
 - end
 - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

RP/0/RP0/CPU0:router# admin
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure
Example:
RP/0/RP0/CPU0:router(admin)# configure</td>
</tr>
<tr>
<td>Step 3</td>
<td>sdr sdr-name
Example:
RP/0/RP0/CPU0:router(admin-config)# sdr rname</td>
</tr>
<tr>
<td>Step 4</td>
<td>Do one of the following:
• location partially-qualified-nodeid
• location pair-name
Example:
RP/0/RP0/CPU0:router(admin-config-sdr:rname)# location 0/0/
or
RP/0/RP0/CPU0:router(admin-config-sdr:rname)# location drp1
or
RP/0/RP0/CPU0:router(admin-config-sdr:rname)# location 0/RP//*</td>
</tr>
<tr>
<td>Step 5</td>
<td>Use one of the following commands:
• end
• commit
Example:
RP/0/RP0/CPU0:router(admin-config-sdr:rname)# end
or
RP/0/RP0/CPU0:router(admin-config-sdr:rname)# commit</td>
</tr>
</tbody>
</table>
Removing Nodes and SDRs

When removing a node or an entire SDR, the following rules apply:

- When a node is removed from a non-owner SDR, it is automatically returned to the owner SDR inventory.
- To remove a DSDRSC, first remove the other nodes in the SDR and then remove the DSDRSC. This rule does not apply when the entire SDR is removed.
- If all nodes are removed from a non-owner SDR, the SDR name is also removed.
- To remove all nodes, including the DSDRSC, remove the SDR name. All nodes are returned to the owner SDR inventory.
- You must first remove a node from a non-owner SDR before it can be reassigned to another non-owner SDR.
- To remove a node from the owner SDR inventory, assign the node to an non-owner SDR.
- The owner SDR cannot be removed, and the owner DSDRSC (DSC) cannot be removed.

Removing Nodes from an SDR

This task explains how remove nodes from an SDR.

SUMMARY STEPS

1. admin
2. configure
3. sdr sdr-name
4. Do one of the following:
 - no location partially-qualified-nodeid
 - no location pair-name
5. Use one of the following commands:
 - end
 - commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# admin</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure</td>
<td>Enters administration configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(admin)# configure</td>
<td></td>
</tr>
<tr>
<td>Step 3 sdr sdr-name</td>
<td>Enters the SDR configuration submode for the specified SDR.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(admin-config)# sdr rname</td>
<td></td>
</tr>
<tr>
<td>Step 4 Do one of the following:</td>
<td>Removes a node, DRP pair, or RP pair from a non-owner SDR.</td>
</tr>
<tr>
<td>• no location partially-qualified-nodeid</td>
<td>• When a node is removed from an SDR, it is automatically added to the owner SDR inventory. This node may now be assigned to a different SDR, as described in Adding Nodes to a Non-Owner SDR, on page 15.</td>
</tr>
<tr>
<td>• no location pair-name</td>
<td>• Removing all the slots from an SDR deletes that SDR.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(admin-config-sdr:rname2)# no location 0/0/*</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(admin-config-sdr:rname2)# no location drp1</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(admin-config-sdr:rname)# no location 0/RP*/*</td>
<td></td>
</tr>
<tr>
<td>Step 5 Use one of the following commands:</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td>• end</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>• commit</td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(admin-config-sdr:rname)# end</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(admin-config-sdr:rname)# commit</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(admin-config-sdr:rname)# commit</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
</tbody>
</table>
Removing an SDR

This section provides instructions to remove a secure domain router from your router. To remove an SDR, you can either remove all the nodes in the SDR individually or remove the SDR name. This section contains instructions to remove the SDR name and return all nodes to the owner SDR inventory.

Note
The owner SDR cannot be removed. Only non-owner SDRs can be removed.

SUMMARY STEPS

1. admin
2. configure
3. no sdr sdr-name
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# admin</td>
</tr>
<tr>
<td>Step 2 configure</td>
<td>Enters administration configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# configure</td>
</tr>
<tr>
<td>Step 3 no sdr sdr-name</td>
<td>Removes the specified SDR from the current owner SDR.</td>
</tr>
<tr>
<td>Example:</td>
<td>All slots belonging to that SDR return to the owner SDR inventory.</td>
</tr>
</tbody>
</table>
Configuring a Username and Password for a Non-Owner SDR

After you create an SDR, you can create a username and password on that SDR. When you assign root-lr privileges to that username, the user can administer the non-owner SDR and create additional users if necessary.

Only users with root-system privileges can access administration modes to add or remove SDRs. SDR users cannot add or remove SDRs.

To create a username and password for the new non-owner SDR:

1. On the owner SDR, enable admin plane authentication. This allows you to log in to the non-owner SDR and create local usernames and passwords.
2. Log in to the non-owner SDR.
3. Configure a new username and password on the non-owner SDR. Assign the username to the root-lr group to allow the creation of additional usernames on that SDR.
4. To verify the new username, log out and log back in to the non-owner SDR using the new username and password.
5. Provide the username and password to the SDR user.

Complete the following steps to create usernames and passwords on a non-owner SDR.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RP0/CPU0:router(admin-config)# no sdr rname</td>
<td>Step 4 commit</td>
</tr>
</tbody>
</table>

SUMMARY STEPS

1. Connect a terminal to the console port of the DSC (DSDRSC of the owner SDR).
2. `admin`
3. `configure`
4. `aaa authentication login remote local`
5. `commit`
6. Connect a terminal to the console port of the non-owner SDR DSDRSC.
7. Log in to the non-owner SDR using admin plane authentication.
8. `configure`
9. `username username`
10. `secret password`
11. `group root-lr`
12. `commit`
13. `exit`
14. Log back in with the SDR administrator username and password you created.
15. Provide the new username and password to the user.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Connect a terminal to the console port of the DSC (DSDRSC of the owner SDR).</td>
<td>If an IP address has not yet been assigned to the Management Ethernet port, you must connect a terminal directly to the console port of the DSC.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>admin</code></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router# admin</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>configure</code></td>
<td>Enters administration configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(admin)# configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>aaa authentication login remote local</code></td>
<td>Enables admin plane authentication.</td>
</tr>
</tbody>
</table>
| Example: | `RP/0/RP0/CPU0:router(admin-config)# aaa authentication login remote local` | • The `remote` keyword specifies a method list that uses remote non-owner SDR for authentication.
 • The `local` keyword specifies a method list that uses the local username database method for authentication. The local authentication cannot fail because the system always ensures that at least one user is present in the local database, and a rollover cannot happen beyond the local method. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 commit</td>
<td>Note You can also use other methods to enable AAA system accounting, such as TACACS+ or RADIUS servers. See the Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router for more information.</td>
</tr>
<tr>
<td>Step 6 Connect a terminal to the console port of the non-owner SDR DSDRSC.</td>
<td>Note A terminal server connection is required for Telnet connections to the console port because an IP address has not yet been assigned to the management Ethernet port.</td>
</tr>
<tr>
<td>Step 7 Log in to the non-owner SDR using admin plane authentication.</td>
<td>Logs a root-system user into the SDR using admin plane authentication. Note When prompted for the Username, use your username followed by @admin.</td>
</tr>
<tr>
<td>Step 8 configure</td>
<td></td>
</tr>
<tr>
<td>Step 9 username username</td>
<td>Defines an SDR username and enters username configuration mode. The username argument can be only one word. Spaces and quotation marks are not allowed.</td>
</tr>
<tr>
<td>Example: Username:xxxx@admin Password:pppp</td>
<td></td>
</tr>
<tr>
<td>Step 10 secret password</td>
<td>Defines a password for the user.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# secret 5 XXXX</td>
<td></td>
</tr>
<tr>
<td>Step 11 group root-lr</td>
<td>Adds the user to the predefined root-lr group. Note Only users with root-system authority or root-lr authority may use this option.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-un)# group root-lr</td>
<td></td>
</tr>
<tr>
<td>Step 12 commit</td>
<td></td>
</tr>
<tr>
<td>Step 13 exit</td>
<td>Closes the active terminal session and log off the router.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# exit</td>
<td></td>
</tr>
</tbody>
</table>
Disabling Remote Login for SDRs

When you disable admin plane authentication, the admin username cannot be used to log in to non-owner SDRs. Only local SDR usernames can be used to log into the SDR.

SUMMARY STEPS

1. `admin`
2. `configure`
3. `no aaa authentication login remote local`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>admin</code></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# admin</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure</code></td>
<td>Enters administration configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# configure</td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for Secure Domain Routers

Creating a New SDR: Example

The following example shows how to create a new SDR:

```
admin
configure
  pairing drp1
  location 0/3/* 0/4/*
  exit
sdr rname2
  pair pair1 primary
  location 0/0/*
end
```

Adding Nodes to an SDR: Example

The following example shows how to add nodes to an SDR:

```
admin
configure
  sdr rname2
  location 0/0/*
end
```

Removing Notes from an SDR: Example

The following example shows how to remove nodes from an SDR:

```
admin
configure
  sdr rname2
  no location 0/0/*
end
```
Removing an SDR from the Router: Example

The following example shows how to remove an SDR from the router:

```bash
admin
configure
  no sdr rname2
end
```

Configuring a Username and Password for a Non-Owner SDR: Example

The following example shows how to connect to the DSC of the owner SDR:

```bash
admin
configure
  aaa authentication login remote local
end
```

To continue, connect a terminal to the console port of the non-owner SDR DSDRSC.

Username:xxxx@admin
Password:xxxx

```
configure
  username user1
  secret 5 XXXX
  group root-lr
end
exit
```

Press RETURN to get started.
Username:user1
Password:xxxxx

Disabling Remote Login for SDRs: Example

The following example shows how to disable remote login for an SDR:

```bash
admin
configure
  no aaa authentication login remote local
end
```

Additional References

The following sections provide references related to SDR configuration.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDR command reference</td>
<td>Secure Domain Router Commands on the Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>DRP pairing command reference</td>
<td>Distributed Route Processor Commands on the Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Initial system bootup and configuration information for a router using the Cisco IOS XR software</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>DRP description and requirements</td>
<td>Cisco CRS-1 Carrier Routing System 16-Slot Line Card Chassis System Description</td>
</tr>
<tr>
<td>Instructions to install DRP and DRP PLIM cards</td>
<td>Installing the Cisco CRS-1 Carrier Routing System 16-Slot Line Card Chassis</td>
</tr>
<tr>
<td>Cisco IOS XR master command reference</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR interface configuration commands</td>
<td>Cisco IOS XR Interface and Hardware Component Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about configuring interfaces and other components on the Cisco CRS-1 from a remote Craft Works Interface (CWI) client management application</td>
<td>Cisco Craft Works Interface User Guide</td>
</tr>
<tr>
<td>Information about AAA policies, including instructions to create and modify users and username access privileges</td>
<td>Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Upgrading and Managing Cisco IOS XR Software

The Cisco IOS XR software is divided into software packages so that you can select which features run on your router. This module describes the concepts and tasks necessary to add feature packages, upgrade the active set of packages, roll back to a previously active set of packages, and perform other related package management tasks.

For complete descriptions of the commands listed in this module, see Related Documents, on page 98. To locate documentation for other commands that might appear in the course of performing a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

Table 3: Feature History for Upgrading and Managing Cisco IOS XR Software

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.4.0</td>
<td>Support was added for installation operations in SDR EXEC mode. Three new software PIEs were added:</td>
</tr>
<tr>
<td></td>
<td>• Field-programmable devices (FPD)</td>
</tr>
<tr>
<td></td>
<td>• Documentation</td>
</tr>
<tr>
<td></td>
<td>• IPSec</td>
</tr>
<tr>
<td></td>
<td>Module was moved to Cisco IOS XR System Management Configuration Guide for the Cisco CRS Router from Cisco IOS XR Getting Started Guide for the Cisco CRS Router.</td>
</tr>
<tr>
<td>Release 3.6.0</td>
<td>Support was added for installing PIE files from tar files. Support was added for labels to identify rollback points.</td>
</tr>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
</tbody>
</table>
| Release 3.7.0 | Support was added for activating software packages by specifying the operation ID of the `install add` command operation that added the packages. Simultaneous activation of multiple SMUs was streamlined to minimize disruption, with fewer cases requiring reloads. The `install verify packages` command was enhanced so that it checks for corruptions of installation state files and MBI image files as well as software files. Support was added for the following commands:
 - `install boot-options`
 - `clear boot-options`
 - `show boot-options` |
| Release 3.8.0 | Support was added for the `pause sw-change` keywords in the following commands:
 - `install activate`
 - `install add`
 - `install deactivate`
 - `install rollback` |
| Release 4.0.0 | A procedure to upgrade software from Cisco IOS XR Release 3.x was introduced. See [Upgrading to Cisco IOS XR Software Release 4.0](#), on page 83. Support for installation commands was removed from EXEC mode. The ability to install software on a specific SDR was removed. |
| Release 4.2.1 | ISSU SMUs were supported. |
| Release 4.3.0 | ISSU upgrades were supported. See [Updating Software Images Without a Router Reload](#), on page 39. |

This module contains the following topics:

- [Overview of Cisco IOS XR Software Packages](#), page 31
- [Information About Package Management](#), page 36
- [Package Management Procedures](#), page 53
- [Rolling Back to a Previous Software Set](#), page 95
- [Additional References](#), page 97
Overview of Cisco IOS XR Software Packages

Cisco IOS XR software is divided into software packages so that you can select which features run on your router. Each package contains the components to perform a specific set of router functions, such as routing, security, or modular services card (MSC) support. Bundles are groups of packages that can be downloaded as a set. For example, Cisco IOS XR Unicast Routing Core Bundle (known as mini) provides the main packages for use on every router.

Adding a package to the router does not affect the operation of the router—it only copies the package files to a local storage device on the router, known as the boot device (such as the internal flash disk0:). To make the package functional on the router, you must activate it for one or more cards.

To upgrade a package, you activate a newer version of the package. When the automatic compatibility checks have been passed, the new version is activated, and the old version is deactivated.

Note
Activating a software maintenance upgrade (SMU) does not cause any earlier SMUs or the package to which the SMU applies to be automatically deactivated.

Note
If an interface on a router does not have a configuration and is brought up by performing no-shut operation, then upon router reload, the interface state changes to admin-shutdown automatically.

To downgrade a package, you activate an older version of the package. When the automatic compatibility checks have been passed, the older version is activated, and the newer version is deactivated.

Note
For more information on the features and components included in each package, refer to the release notes.

Package Installation Envelopes

Package Installation Envelopes (PIEs) are nonbootable files that contain a single package or a set of packages (called a composite package or bundle). Because the files are nonbootable, they are used to add software package files to a running router.

PIE files have a pie extension. When a PIE file contains software for a specific bug fix, it is called a software maintenance upgrade (SMU).

Note
Files with the vm extension are bootable installation files used only to replace all current Cisco IOS XR software. These files are installed from ROM Monitor mode, which causes significant router downtime. Cisco Systems recommends installing or upgrading software packages only using PIE files as described in this document. For more information on vm files, see Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router.
Summary of Cisco IOS XR Software Packages

Every router includes a basic set of required packages contained in the Cisco IOS XR Unicast Routing Core Bundle. Additional optional packages can be added and activated on the router to provide specific features.

Packages in the Cisco IOS XR Unicast Routing Core Bundle

The packages contained in the Cisco IOS XR Unicast Routing Core Bundle are as follows:

- Operating system (OS) and minimum boot image (MBI)—Kernel, file system, memory management, and other slow changing core components.
- Base—Interface manager, system database, checkpoint services, configuration management, other slow-changing components.
- Routing—RIB, BGP, ISIS, OSPF, EIGRP, RIP, RPL, and other routing protocols.
- Forwarding—FIB, ARP, QoS, ACL, and other components.
- LC—MSC drivers.

The filename for this bundle is: hfr-mini.pie-version.

Refer to the release notes for additional information on the specific features provided by each package.

Software Maintenance Upgrades

A software maintenance upgrade (SMU) is a PIE file that contains fixes for a specific defect. A composite SMU is a PIE file that contains SMUs for more than one package. SMUs are added and activated using the same procedures as other PIE files. SMUs are created to respond to immediate issues and do not include new features. Typically, SMUs do not have a large impact on router operations. SMU versions are synchronized to the package major, minor, and maintenance versions they upgrade.

The affect of an SMU depends on its type:

- Process Restart SMU—Causes a process or group of processes to restart on activation.
- Reload SMU—Causes a parallel reload (of RPs and line cards).
- In-service software upgrade (ISSU) SMU—Enhanced Reload SMU, takes advantage of a warm reload.

SMUs are not an alternative to maintenance releases. They provide quick resolution of immediate issues. All bugs fixed by SMUs are integrated into the maintenance releases. For information on available SMUs, contact Cisco Technical Support, as described in Obtaining Technical Assistance in the monthly What’s New in Cisco Product Documentation.

Note

Activating a software maintenance upgrade (SMU) does not cause any earlier SMUs, or the package to which the SMU applies, to be automatically deactivated.
Related Topics

Upgrading Software Images Without a Router Reload, on page 39

PIE Filenames and Version Numbers

PIE filenames have two formats: one for composite-package PIEs (bundles) and one for single-package PIEs. A composite-package file is a PIE file that contains multiple packages.

Note

Hyphens in the filename are part of the filename.

Table 4: PIE Filenames, on page 33 shows the filenames for available PIE types.

<table>
<thead>
<tr>
<th>Software Delivery Type</th>
<th>Filename</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite (Bundle) PIE</td>
<td>platform-composite_name-p.pie-major.minor.maintenance</td>
<td>hfr-mini-p.pie-4.0.0</td>
</tr>
<tr>
<td>Single package PIE</td>
<td>platform-package_type-p.pie-major.minor.maintenance</td>
<td>hfr-mgbl-p.pie-3.7.0</td>
</tr>
<tr>
<td>Composite SMU</td>
<td>platform-p.composite_name.ddts.pie</td>
<td>hfr-p-4.0.0.16C.CSOee10001.pie</td>
</tr>
</tbody>
</table>

Filename Component Description

The filename components for all packages are described in Table 5: Composite- and Single-Package Filename Components, on page 33.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>platform</td>
<td>Identifies the platform for which the software package is designed.</td>
</tr>
<tr>
<td></td>
<td>• The platform designation is “hfr.”</td>
</tr>
<tr>
<td>composite_name</td>
<td>Identifies a specific composite package.</td>
</tr>
<tr>
<td></td>
<td>• The only composite PIE file at this time is named “mini” and includes all packages described in the Cisco IOS XR Unicast Routing Core Bundle.</td>
</tr>
<tr>
<td>Component</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>package_type</td>
<td>Identifies the type of package the file supports. (package_type applies only to single-package PIEs). Package types include:</td>
</tr>
<tr>
<td></td>
<td>• mcast—Multicast package</td>
</tr>
<tr>
<td></td>
<td>• mgbl—Manageability package</td>
</tr>
<tr>
<td></td>
<td>• mpls—MPLS package</td>
</tr>
<tr>
<td></td>
<td>• k9sec—Security package</td>
</tr>
<tr>
<td></td>
<td>• diags—Diagnostics package</td>
</tr>
<tr>
<td></td>
<td>• fpd—Field-programmable device package</td>
</tr>
<tr>
<td></td>
<td>• cgn—Carrier Grade NAT package</td>
</tr>
<tr>
<td></td>
<td>• doc—Documentation package</td>
</tr>
<tr>
<td>major</td>
<td>Identifies the major release of this package.</td>
</tr>
<tr>
<td></td>
<td>• A major release occurs when there is a major architectural change to the product (for example, a major new capability is introduced).</td>
</tr>
<tr>
<td></td>
<td>• All packages operating on the router must be at the same major release level.</td>
</tr>
<tr>
<td></td>
<td>• A major release is the least frequent release and may require a router reboot.</td>
</tr>
<tr>
<td>minor</td>
<td>Identifies the minor release of this package.</td>
</tr>
<tr>
<td></td>
<td>• A minor release contains one or more of the following:</td>
</tr>
<tr>
<td></td>
<td>• New features</td>
</tr>
<tr>
<td></td>
<td>• Bug fixes</td>
</tr>
<tr>
<td></td>
<td>• The minor release version does not have to be identical for all software packages operating on the router, but the operating packages must be certified by Cisco as compatible with each other.</td>
</tr>
<tr>
<td></td>
<td>• A minor release may require a router reboot.</td>
</tr>
</tbody>
</table>
Component | Description
--- | ---
maintenance | Identifies the maintenance release of this package. • A maintenance release contains a collection of bug fixes for a package. • The maintenance release version does not have to be identical for all software packages operating on the router, but the major and minor versions of the maintenance release must match those of the package being updated. • A maintenance release does not usually require a router reboot.

ddts | SMUs only. Identifies a DDTS\(^1\) number that describes the problem this SMU addresses. DDTS is the method used to track known bugs and the resolutions or workarounds for those issues.

p | In Cisco IOS XR Software Release 4.0, the software packages were reorganized into functionally well-defined and independently-releasable packages that support the hardware with the PPC architecture. These reorganized packages are identified by the \(-p\) in the filename. These packages are not compatible with packages released prior to Release 4.0. When upgrading to Release 4.0 or above, special upgrade instructions must be followed.

px | Identifies images that are compatible with hardware that uses the x86 architecture. Starting with Cisco IOS XR Release 4.2, \(-px\) releases replace the \(-p\) releases.

\(^1\) distributed defect tracking system

Copying the PIE File to a Local Storage Device or Network Server

To add an optional package or upgrade or downgrade a package, you must copy the appropriate PIE file to a local storage device or to a network file server to which the router has access.

If you need to store PIE files on the router, we recommended storing PIE files on the hard disk. Flash disk0: serves as the boot device for packages that have been added or activated on the system. Flash disk1: is used as a backup for disk0:.
Before copying PIE files to a local storage device, use the `dir` command to check to see if the required PIE files are already on the device.

Information About Package Management

Summary of Package Management

The general procedure for adding optional packages, upgrading a package or package set, or downgrading packages on the router is as follows:

1. Copy the package file or files to a local storage device or file server.
2. Add the package or packages on the router using the command `install add`.
3. Activate the package or packages on the router using the `install activate` command.
4. Commit the current set of packages using the `install commit` command.

Figure 1: Process to Add, Activate, and Commit Cisco IOS XR Software Packages, on page 36 illustrates key steps in the package management process.

Adding Packages

Use the `install add` command to unpack the package software files from a PIE file and copy them to the boot device (usually disk0:) of your router.

From administration EXEC mode, the package software files are added to the boot device of the designated secure domain router system controller (DSDRSC) for all SDRs on the router, as well as all active and standby Route Processors (RPs), DRPs and fabric shelf controllers (SCs) installed on the router.
The disk that holds the unpacked software files is also known as the boot device. By default, flash disk0: is used as the boot device. To use an alternate storage device, such as flash disk1:, see the Router Recovery with ROM Monitor module of Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router. Remember that all RPs in a system must use the same boot device. If the boot device on the primary RP is flash disk0:, then the standby RP or DRP must also have a flash disk0:.

Note

Verifying Package Details

Before you activate a package on the router, you can verify the type of upgrade that is required for the package and whether the package requires a router reload or not. Use the `show install package pie detail` command in admin mode.

```bash
RP/O/RP0/CPU0:router (admin)# show install package disk0:hfr-px-4.x.x.04I.CSCuc66088-0.0.4.i detail
Mon Nov 19 09:44:24.036 UTC
disk0:hfr-px-4.x.x.04I.CSCuc66088-0.0.4.i
  asr9k-px-4.x.x.04I.CSCuc66088 V0.0.4.i(SMU) User specified bundle
  iosxr-infra-hfr-px1-4.x.x.04I.CSCuc66088.pi.pie.
  [composite package]
  [root package, grouped contents]
  Vendor : Cisco Systems
  Build : Built on Fri Nov 9 11:00:11 UTC 2012
  Source : By iox-bld27 in /scratch1/SMU_BLD_WS/ci-431_206626_CSCuc66088_121109102249 for pie
  Card(s): RP, CRS-RP-X86, CRS8-RP-x86, CRS16-RP-x86, ASR9001-RP, RP-STARSCREAM, NP24-4x10GE, NP24-40x1GE, NP40-40x1GE, NP40-8x10GE, NP40-2_20_COMBO, NP80-8x10GE, NP80-16x10GE, NP80-36x10GE, NP80-2x100GE, NP80-1x100GE, NP200-8x10GE, NP200-16x10GE, NP200-24x10GE, NP200-36x10GE, NP200-24x10GE, NP200-40x10GE, A9K-SIP-700, A9K-SIP-500, A9K-SIP-AVSM
  Restart information:
  Default: parallel impacted processes restart
  Size Compressed/Uncompressed: 1744KB/1830KB (95%)
  Components in package disk0:asr9k-px-4.x.x.04I.CSCuc66088-0.0.4.i, package hfr-px-4.x.x.04I.CSCuc66088:
  disk0:iosxr-infra-4.x.x.04I.CSCuc66088-0.0.4.i
  iosxr-infra-4.x.x.04I.CSCuc66088 V0.0.4.i(SMU) IOS-XR Infra Package Definition
  Vendor : Cisco Systems
  Desc : IOS-XR Infra Package Definition
  Build : Built on Fri Nov 9 11:00:10 UTC 2012
  Source : By iox-bld27 in /scratch1/SMU_BLD_WS/ci-431_206626_CSCuc66088_121109102249 for pie
  Card(s): RP, CRS-RP-X86, CRS8-RP-x86, CRS16-RP-x86, ASR9001-RP, RP-STARSCREAM, NP24-4x10GE, NP24-40x1GE, NP40-40x1GE, NP40-8x10GE, NP40-2_20_COMBO, NP80-8x10GE, NP80-16x10GE, NP80-24x10GE, NP80-36x10GE, NP80-2x100GE, NP80-1x100GE, NP200-8x10GE, NP200-16x10GE, NP200-24x10GE, NP200-36x10GE, NP200-2x100GE, NP200-1x100GE, NP200-5x40GE, A9K-SIP-700, A9K-SIP-500, A9K-SIP-AVSM
  Restart information:
  Default: ISSU (quick) warm reload
  Specific: ISSU (quick) warm reload to and from ***-*
  Size Compressed/Uncompressed: 1744KB/1830KB (95%)
  Components in package disk0:iosxr-infra-4.x.x.04I.CSCuc66088-0.0.4.i,
```

Summary of Package Management
Activating Packages

Software packages remain inactive until activated with the `install activate` command. After a package has been added to the router, use the `install activate` command to activate the package or SMUs for all valid cards. Information within the package is used to verify compatibility with the target cards and with the other active software. Actual activation is performed only after the package compatibility and application programming interface (API) compatibility checks have been passed.

Activating a Package on the Router

To activate a package on your router, use the `install activate` command in administration EXEC mode. The `install activate` command also activates the package on all administration plane nodes and resources, including service processors (SPs), fabric SCs, fan controllers, alarm modules, and power modules.

Note

To enter administration EXEC mode, you must be logged in to the owner secure domain router (SDR) and have root-system access privileges.

Activating Multiple Packages or SMUs

To install multiple packages or software maintenance upgrades (SMUs) with a single command, use the `install activate` command and either specify up to 16 packages by repeating `device:package` arguments or use wildcard syntax to specify multiple packages. Some SMUs may require a reload. If the operation requires a node reload, the user is prompted before the installation operation occurs.

For considerations related to activating multiple SMUs that use in-service software upgrades (ISSU), refer to the ISSU sections.

Related Topics

SMU Installation Combinations, on page 43

Activating All Packages Added in a Specific Operation

To install all packages that were added in a specific `install add` operation, use the `install activate` command with the `id add-id` keyword and argument, specifying the operation ID of the `install add` operation. You can specify up to 16 operations in a single command.
Adding and Activating a Package with a Single Command

To add and activate a package with a single command, use the `install add` command with the `activate` keyword from administration EXEC mode.

Updating Software Images Without a Router Reload

In-service software upgrade (ISSU) provides the ability to upgrade the router software with no outage on the control plane and minimal outage (generally within several seconds) on the forwarding plane. ISSU is a user-initiated and user-controlled process that uses Cisco nonstop forwarding (NSF) with stateful switchover (SSO). ISSU upgrades a SSO-NSF-capable image from a lower to a higher version, or installs ISSU software maintenance updates (SMUs) with minimal downtime, degradation of service, or loss of packets.

To achieve ISSU, the IOS XR software uses the ISSU Minimal Disruptive Restart (iMDR) software. iMDR is the warm reload technology that has a primary function of allowing line cards to be upgraded as if they were redundant in hardware. iMDR effectively separates the CPU and CPU memory of the line cards from the forwarding ASICS, memory, and TCAM of the line cards. The CPU and CPU memory can be thought of as the "software" portion of the line cards, while the forwarding ASICS, memory and TCAM can be thought of as the "hardware" portion of the line cards. iMDR allows the software portion of the cards to be upgraded to a new version (V2) at the same time that the hardware portion is continuing to perform its duties using the old version (V1). After the software portion upgrades itself and stages the information needed to upgrade the hardware portion, it performs a flush to replace the V1 image with the V2 image. This flush generally takes no more than several seconds and that is the only time that there is a disruption of service. The exact time required for the flush depends on the hardware configuration of your router.

Note

ISSU is supported only on Cisco CRS single-shelf systems.

The ISSU process can be performed in prompted mode, to ensure and verify that there is no service degradation throughout the process. Or, the ISSU process can be performed unprompted, where the phases are executed automatically with no user intervention.

Related Topics

Adding and Activating Packages, on page 65

ISSU Software Images

Note

Your router only supports ISSU for a software maintenance upgrade (SMU).

ISSU provides the ability to upgrade the system from one major version to another version with minimal impact on traffic/forwarding. There are 2 sets of images involved in the ISSU procedure -- the first one is the image set which currently runs on the system (V1); the second one is the SMU containing all the software upgrades and fixes that you want to apply to the system using ISSU (V2). The SMU must be built for the same version as the one that is currently active on the router.

In ISSU, you need to perform the software upgrade for all of the software packages from V1 to V2. ISSU does not allow packages with different version numbers to co-exist in the system. And if you have a software...
package installed in V1, you must install a compatible package for V2. Use the command `show install active` command to view the active software packages running on your system.

Description of ISSU Process

As in a standard software upgrade, ISSU consists of three major milestones:

- New software image is added or unpacked on the router. The software addition is performed using the `install add` command.
- Actual software upgrade of the router is performed using iMDR. The upgrade includes three phases: `load`, `run` and `complete`. These are described later in this section.
- When the upgrade is successfully complete, the new software is committed to the configuration using the `commit` command.

The three phases of ISSU are described here in detail:

1. The **Load** phase is the first phase of the ISSU process. The new image (V2) is downloaded to all nodes in the router. The new image is checked for compatibility to ensure that the router can be upgraded. If the image is found to be incompatible, or an outage is warranted, you are notified. At the start of the Load phase, the router configuration mode is locked, and you cannot perform any configuration on the router until ISSU completes the phase.

 Standby RPs are reloaded with the new version of the software. Each fabric card is also reloaded with the new software one at a time to minimize the impact to traffic. Each plane is brought down, fabric cards in this plane are reloaded with the new image and then the plane is added back before proceeding to the next plane.

 At the end of this stage, all standby nodes run V2 and all active nodes (including all line cards) still run the original software images (V1). Any aborting of the upgrade process during the Load phase, either intentionally (user abort) or due to failures, results in a hitless rollback and each standby or upgraded node is reloaded with V1. The Load phase is completed once all standby nodes are READY (platform and NSR READY).

2. The **Run** phase is the second phase of the ISSU process. Each RP/SC pair completes an active to standby switchover. In parallel, each line card undergoes an iMDR to complete the software upgrade. This is where non-redundant hardware in the system or line cards are upgraded. These activities are performed:

 - Line cards are separated virtually into a “software” portion and “hardware” portion.
 - Layer 2 spoofers are needed to keep a few key protocols alive and well during the Run phase; these spoofers send hello and keep-alive messages, and respond in turn. The Layer 2 spoofers are started here, and they take over from their main software counter parts.
 - The software portion of the line cards is brought down and brought up with a new non-minimum boot image (MBI) image. The cards begin to load the new version of software and stage the V2 information in memory.
 - Meanwhile, the hardware portion of the line card continues to forward packets using the V1 information.
 - The software portion of the line cards starts to build the V2 information and stores this in the Resource Shadow Memory (RSM) cache so that the hardware portion can use this after the flush occurs.
- When the software portion of the line card has completed its upgrade to V2 and has staged all of the new software image information it needs in memory, the switchover of the hardware to the new software version occurs.

- The flush, or the final switch from V1 to V2, on the hardware portion of the line card is what determines the length of the router outage. In most practical scenarios, this process should take less than six seconds; however, in no scenario is traffic outage longer than six seconds.

- Any unsupported hardware that was previously shut down is now brought back online automatically, and it loads the new version of software.

Any abort of the upgrade process during the run phase results in a router reload with the original software image. The ISSU run phase is completed after all iMDR and switchover operations are completed.

3 The Complete phase is the final step of the ISSU process. This concludes the ISSU process and the new software runs on all nodes in the system. From this point onwards, if you need to revert to the original software, you must use either the install rollback command (if you have committed the upgrade) or the reload location all command (if you have not committed the upgrade yet).

This figure shows a high level diagram of the each step in the ISSU process.

Figure 2: ISSU Process
Software Maintenance Updates Using ISSU

A software maintenance update (SMU) delivers a software change to the user in the least possible time. Prior to ISSU support, SMU installations resulted in either restart of one or more processes, or reload of one or more nodes. ISSU minimizes the operational impact that a user experiences. Not all Reload SMUs qualify to be ISSU SMUs. Certain changes to the Kernel, ROMMON, memory carving, and other infrastructure areas cannot be achieved using a warm reload, and in such instances the router must undergo a standard reload to load such a SMU.

As ISSU does not support software downgrade, SMU upgrades installed using ISSU can only be uninstalled by means of a parallel reload method.

To perform an ISSU SMU upgrade, use the **issu** keyword with the **install activate** command. There are three types of SMUs:

- **ISSU SMU**—This is installed using the ISSU method. These SMUs can also be installed using the parallel reload method by omitting the **issu** keyword in the **install activate** command.
- **Reload SMU**—This SMU requires parallel reloads during its installation.
- **Restart SMU**—This SMU requires process restarts during its installation.

The SMU type can be identified by viewing the output of the **show install package pie detail** command. ISSU SMUs are identified by **ISSU (quick) warm-reload** in the Restart information field (highlighted here).

```
RP/0/RP0/CP00:router(admin)# show install package disk0:hfr-px-4.3.1.04I.CSCuc66088-0.0.4.i detail
```

```
Mon Nov 19 09:44:24.036 UTC
disk0:hfr-px-4.3.1.04I.CSCuc66088-0.0.4.i
   hfr-px-4.3.1.04I.CSCuc66088 V0.0.4.i[SMU] User specified bundle
   iosxr-infra-hfr-pxl-4.3.1.04I.CSCuc66088.pl.pie.
   {composite package}
   [root package, grouped contents]
   Vendor : Cisco Systems
   Desc  : User specified bundle iosxr-infra-hfr-pxl-4.3.1.04I.CSCuc66088.pl.pie.
   Build : Built on Fri Nov 9 11:00:11 UTC 2012
   Source : By iox-bld27 in /scratch1/SMU_BLD_WS/ci-431_206626_CSCuc66088_121109102249 for pie
   Card(s): RP, CRS-RP-X86, CRS8-RP-x86, CRS16-RP-x86, ASR9001-RP, RP-STARSCREAM,
   NP24-4x10GE,
   NP24-40x1GE, NP40-40x1GE, NP40-4x10GE, NP40-8x10GE, NP40-2_20_COMBO, NP80-8x10GE,
   NP80-16x10GE, NP200-24x10GE, NP200-36x10GE, NP200-2x100GE, NP200-1x100GE,
   NP200-5x40GE,
   NP200-8x10GE, NP200-MOD-SMEM, NP200-MOD-LMEM, ASR9001-LC, A9K-SIP-700,
   A9K-SIP-500, A9K-SIP-AVSM
   Restart information:
   Default: parallel impacted processes restart
   Size Compressed/Uncompressed: 1744KB/1830KB (95%)
   Components in package disk0:asr9k-px-4.3.1.04I.CSCuc66088-0.0.4.i, package
   hfr-px-4.3.1.04I.CSCuc66088:
   disk0:iosxr-infra-4.3.1.04I.CSCuc66088-0.0.4.i
   iosxr-infra-4.3.1.04I.CSCuc66088 V0.0.4.i[SMU] IOS-XR Infra Package Definition
   Vendor : Cisco Systems
   Desc  : IOS-XR Infra Package Definition
   Build : Built on Fri Nov 9 11:00:10 UTC 2012
   Source : By iox-bld27 in /scratch1/SMU_BLD_WS/ci-431_206626_CSCuc66088_121109102249 for pie
   Card(s): RP, CRS-RP-X86, CRS8-RP-x86, CRS16-RP-x86, ASR9001-RP, RP-STARSCREAM,
   NP24-4x10GE,
   NP24-40x1GE, NP40-40x1GE, NP40-4x10GE, NP40-8x10GE, NP40-2_20_COMBO, NP80-8x10GE,
   NP80-16x10GE, NP200-24x10GE, NP200-36x10GE, NP200-2x100GE, NP200-1x100GE,
```

```
```
Restart information:
Default:
ISSU (quick) warm reload
Specific:
ISSU (quick) warm reload to and from ***-***

Size Compressed/Uncompressed: 1744KB/1830KB (95%)
Components in package disk0:iosxr-infra-4.3.1.04I.CSCuc66088-0.0.4.i,
package iosxr-infra-4.3.1.04I.CSCuc66088:
platforms-spa-chopper V[ci-4x-bugfix/8] This component contains Platform Independent
package iosxr-infra-4.3.1.04I.CSCuc66088-package V[Default] Manifest information for package iosxr-infra-4.3.1.04I.CSCuc66088-package-compatibility V[Default] Package Compatibility information for package iosxr-infra-4.3.1.04I.CSCuc66088

Mixed SMU types can only be combined in the same activation if parallel reload is used as the activation type. ISSU cannot be used to activate parallel-process-restart SMUs. However, if you want to install both parallel-process-restart and ISSU SMUs, use one of these two options:

- Use parallel-reload to install the SMUs.
- Install the parallel-process-restart SMU(s) as the first operation, and then install the ISSU SMU(s) as a separate operation.

You can use these commands outside the maintenance window as there is no traffic impact:

- **install add**

 Example: install add tftp://223.255.254.254/hfr-px-4.3.1.CSCzz99999.pie

- **install activate**—This command is used to initiate the ISSU and specify the prompt mode.

 Example: install activate id 1 issu prompt-level all issu

It is recommended that you to use these commands within the maintenance window; there may be minimal traffic disruption.

- **ISSU Run Phase**

 Example: install operation 70 run

- **ISSU Complete Phase**

 Example: install operation 70 complete

SMU Installation Combinations

The three types of software maintenance updates (SMUs), process restart SMUs, ISSU SMUs, and reload SMUs, can be combined in various combinations in an upgrade procedure. Not all combinations of SMUs can be installed in one step. This table lists the installation behavior when the SMU activation is done both with, and without, the **issu** keyword:
Upgrading and Downgrading Packages

To upgrade a package, activate the latest version of the package; the previous version is automatically deactivated. To downgrade a package, activate the previous version of the package; the latest version is automatically deactivated.

Actual activation is performed only after compatibility checks have been passed.

Note

Activating a software maintenance upgrade (SMU) does not cause previous versions of the SMUs, or the package to which the SMU applies, to be automatically deactivated.

Committing the Active Software Set

When a package is activated on the router, it becomes part of the current running configuration for those SDRs. To make the package activation persistent across reloads, enter the `install commit` command in administration EXEC mode. On startup, the designated secure domain router shelf controller (DSDRSC) of the secure domain router (SDR) loads the committed software set.

<table>
<thead>
<tr>
<th>SMU Type</th>
<th>With issu Keyword</th>
<th>Without issu Keyword</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restart SMU</td>
<td>User is prompted to continue operation as Parallel Process Restart</td>
<td>Parallel Process Restart</td>
</tr>
<tr>
<td>ISSU SMU</td>
<td>In-service upgrade</td>
<td>Parallel Reload</td>
</tr>
<tr>
<td>Reload SMU</td>
<td>User is prompted to continue operation as Parallel Reload</td>
<td>Parallel Reload</td>
</tr>
<tr>
<td>Restart and ISSU SMUs</td>
<td>Not supported, but allowed. The recommended procedure is to install the SMUs in two steps: first install the restart SMUs using the Parallel Process Restart method, then perform the in-service upgrade of the ISSU SMUs.</td>
<td>Parallel Reload</td>
</tr>
<tr>
<td>ISSU and Reload SMUs</td>
<td>User is prompted to continue the operation as a Parallel Reload</td>
<td>Parallel Reload</td>
</tr>
<tr>
<td>Restart, ISSU and Reload SMUs</td>
<td>User is prompted to continue operation as a Parallel Reload</td>
<td>Parallel Reload</td>
</tr>
</tbody>
</table>
If the system is restarted before the active software set is saved with the `install commit` command, the previously committed software set is used.

Rolling Back to a Previous Installation Operation

Although the term `commit` sounds final, the Cisco IOS XR software provides the flexibility to roll back the selected package set to previously saved package sets. Each time a package is activated or deactivated, a rollback point is created that defines the package set that is active after the package activation or deactivation. The software also creates a rollback point for the last committed package set. If you find that you prefer a previous package set over the currently active package set, you can use the `install rollback` command to make a previously active package set active again.

Related Topics

- Rolling Back to a Previous Software Set, on page 95

Multiple Disks Support during Installations

In installations on platforms where Cisco IOS XR Software is supported, only a single disk is used as an install device; that is, either disk0 or disk1. When multiple packages are installed on a single disk, it results in space constraints. To resolve this space limitation, the disk supported for the install operations has been extended to another disk called the disk1. When installing multiple packages, this feature enables you to choose between disk0 and disk1.

To add packages to a specific disk name, use the `install media` command in the admin configuration mode.

```
RP/0/RSP0/CPU0: router (admin) # install media disk1
```

Restrictions

- Before enabling the addition of disk1 through the `install media` command, the disk mirroring feature should be explicitly disabled. For details regarding disk mirroring, see the Disk Mirroring chapter.
- All single version packages should be installed into one disk; that is, either disk0 or disk1.
- When downgrading to an image that does not support extended disk, the rollback points of the extended disk will not be available on the downgraded image. For example, assume a case where the version1 (V1) image does not support the extended disk functionality and version2 (V2) image supports the functionality. Upgrading from V1(disk0) to V2(disk1), in such a case, makes the rollback points of V1 available on V2. However, when downgrading from V2(disk1) to V1(disk0), the rollback points of V2 will not be available on V1. For more information about the rollback feature and rollback points, see the Upgrading and Managing Software chapter.
- In-Service Software Upgrade (ISSU) is not supported across multiple disks.
Deactivation of fully superseded SMUs

Cisco IOS XR Software will accumulate a set of Software Maintenance Upgrades (SMUs) over time, where an older SMU gets superseded by the latest SMU. For example, if SMU A was initially delivered to you, and subsequently, as a result of a bug resolution, SMU B was delivered, then SMU A becomes the subset of SMU B and SMU A is superseded by SMU B. In this case, SMU A is redundant and can be deactivated to clean up the software package.

To deactivate all the fully superseded SMUs, use the `install deactivate superseded` command in the admin mode.

```
RP/0/RSP0/CPU0: router(admin) # install deactivate superseded
```

To display the details of the SMUs that are superseded, use the `show install superseded` command in the EXEC mode.

```
RP/0/RSP0/CPU0: router # show install superseded
Thu Feb 3 17:37:20.379 UTC
disk0:asr9k-px-4.3.0.CSCud93518-1.0.0 is fully superseded by
disk0:asr9k-px-4.3.0.CSCue23747-1.0.0
```

Support for the Ignore Package Presence Check Option

During any software package upgrade in Cisco IOS XR Software, two versions of the packages get stored, both the previous version and the upgraded version. In Route Switch Processor 2 (RSP2), the disk space is insufficient to hold all packages of these two versions. To address this, a new optional keyword, `ignore-pkg-presence-check`, is added to the `install activate` command, which allows upgrading with lesser number of packages. For example, assume a case where version1 (V1) of the software consists of packages A, B, C, and D, and you want to upgrade to the version2 (V2) with only 3 packages (A, B, and C). The ignore-pkg-presence-check option allows only packages A, B, and C to be upgraded to V2 and deactivates package D of V1. Thus, an explicit deactivation of package D is not required and the user can add package D of V1 after upgrading to V2.

To upgrade software with lesser number of packages, use the `install activate [ignore-pkg-presence-check]` command in the admin mode.

```
RP/0/RSP0/CPU0: router(admin) # install activate [ignore-pkg-presence-check] V2 packages
```

Restrictions

The restrictions for this option are:

- The ignore-pkg-presence-check keyword is supported only with the `install activate` command and is not supported with the `install add activate` command.
- When you upgrade using the ignore-pkg-presence-check option, the deactivation of packages always happens synchronously, using the synchronous keyword in the `install deactivate` command.

Managing Software Packages in a Multishelf System

Software operations in a multishelf system are the same as in a single-shelf system: software packages are added and activated on the router from administration EXEC mode. The DSC keeps track of software operations for the entire system, while the DSDRSC of each SDR manages the software operations for that specific SDR.

The software packages and related configurations are synchronized throughout a multishelf system by the designated shelf controller (DSC), using the Ethernet control network, as shown in Figure 3: DSC in a
CRS-1/M-F1 Multishelf System, on page 47. The DSC maintains an inventory of the packages, versions, and configurations for each node in the system.

Whenever a new chassis or node is added to the system, the DSC verifies that the software configuration for that chassis is correct and downloads any required packages and configurations. The active RP in each chassis then distributes and manages the software and configurations for the cards and equipment in that chassis.

Note

Figure 3: DSC in a CRS-1/M-F1 Multishelf System

Default Software Profile for New SDRs

When a new non-owner SDR is created, the nodes assigned to that SDR are activated with the default software profile. The default profile is the active software set for the owner SDR. The owner SDR is the default SDR accessed by logging into the DSC of the system.

To view the default software profile, use the `show install active summary` command in administration EXEC mode. Any new nodes that are configured to become a part of an SDR will boot with the default software profile listed in the output of this command.

```
RP/0/RP0/CPU0:router(admin)# show install active summary

Default Profile:
SDRs:
```

Upgrading Packages

To upgrade a package that is currently active on your SDR, add and activate a newer version of the same package (see Figure 4: Example of a Maintenance Release Package Upgrade, on page 48). The older version of the software package is deactivated automatically. These actions are permitted only after the package compatibility checks and API version compatibility checks have been passed.

Deactivated packages are not removed from the router. To remove inactive package files, use the install remove command.

Caution: Upgrading or downgrading a software package can cause a process to restart or a new process to start. Use the test option to preview the impact of the package activation.

Figure 4: Example of a Maintenance Release Package Upgrade

![Figure 4: Example of a Maintenance Release Package Upgrade](image)

Related Topics

Deactivating and Removing Cisco IOS XR Software Packages, on page 89

Downgrading Packages

To downgrade a software package, activate an older version on one or more cards for which that package is already active. The newer version of the same software package is deactivated automatically. These actions are performed only after the package compatibility checks and API version compatibility checks have been passed.

Deactivated packages are not removed from the router. To remove inactive package files, use the install remove command. See the Related Topics section for links to more information.
Downgrading to Cisco IOS XR Software Release 3.7.0 or earlier releases is not supported if you are using a FAT32 flash disk. If you are using a FAT32 flash disk, and you must downgrade, convert the flash disk to FAT16 before downgrading. If you do not convert the flash disk to FAT16 before the downgrade, the disk becomes unreadable and the router does not boot. Converting from FAT32 to FAT16 is a complex procedure. If you need to convert a FAT32 disk to FAT16, contact Cisco technical support for guidance.

Note

ISSU is not supported during a software downgrade. Downgrading the software package is generally traffic impacting and requires a router reload.

Related Topics

Deactivating and Removing Cisco IOS XR Software Packages, on page 89

Impact of Package Version Changes

Each package version change has a different impact on the operation of the router, depending on the type of package and whether the upgrade is for a major, minor, or maintenance release. The following resources can provide more information on the impact of a package version change:

• See Related Topics for more information on the typical impact for major, minor, and maintenance releases.

• For specific information about the impact of an upgrade, consult the release notes for the package release, and test the impact of the package activation by adding the test option to the `install activate` command.

• The Cisco IOS XR Software Selector tool also contains information on package version compatibility.

Related Topics

PIE Filenames and Version Numbers, on page 33
Obtaining and Placing Cisco IOS XR Software, on page 55

Impact of Package Activation and Deactivation

Activation or deactivation of a package can have an immediate impact on the system. The system can be affected in the following ways:

• When a new package is activated, any new CLI commands for the package are added to the SDRs impacted by the new software. The router need not be restarted or reloaded.

• When a package is deactivated, the commands associated with the features being deactivated are removed from any SDR impacted by the operation. The commands are no longer available to the user.

• During a software package deactivation, upgrade, or downgrade, any incompatible configurations are removed from the running configuration of any SDR impacted by the operation, and saved to a file. Messages for incompatible configurations are displayed. Incompatible configurations are those configurations that are not supported by the new version of the software package.
You must address any issues that result from the revised configuration and reapply the configuration, if necessary.

- New processes may be started.
- Running processes may be stopped or restarted.
- All processes in the cards may be restarted. Restarting processes in the cards is equivalent to a soft reset.
- The cards may reload.
- No impact: no processes in the card may be affected.

When activating and deactivating packages, use the `test` option to test the effects of a command without impacting the running system. After the activation or deactivation process completes, enter the `show install log` command to display the process results.

Delaying the Return of the CLI Prompt

By default, the CLI prompt is returned to the screen before the installation operation is complete, which allows you to enter other commands that are not installation commands. If additional installation requests are attempted before the first operation is complete, they are not run.

To delay the return of the CLI prompt until an installation operation is complete, enter the `install` command with the `synchronous` keyword. For example:

```
install add disk1:/pie-file synchronous
install activate disk0:package synchronous
```

To determine if an `install` command is currently running, enter the `show install request` command.

Displaying Installation Log Information

The install log provides information on the history of the installation operations. Each time an installation operation is run, a number is assigned to that operation.

- Use the `show install log` command to display information about both successful and failed installation operations.
- The `show install log` command with no arguments displays a summary of all installation operations. Specify the `request-id` argument to display information specific to an operation. Use the `detail` or `verbose` keywords to display details for specific operation.
- Use the `detail` or `verbose` keywords to display detailed information, including file changes, nodes that could be reloaded, impact to processes, and impact to Dynamic Link Libraries (DLLs).
By default, the install log stores up to 50 entries. Use the `clear install log-history` command to reset the number of entries to any value from 0 to 255.

Examples

Displaying install log Entries: Example

The following example displays information for the install requests. Use the `verbose` keyword to display detailed information, including files changes, impact to processes, and impact to DLLs.

```
RP/0/RP0/CPU0:router(admin)# show install log verbose

Install operation 1 started by user 'labuser' at 17:48:51 UTC Sat Jun 03 2006.
install add /disk1:hfr-diags-p.pie-PD34-06.06.07
/disk1:hfr-k9sec-p.pie-PD34-06.06.07 /disk1:hfr-mcast-p.pie-PD34-06.06.07
/disk1:hfr-mgbl-p.pie-PD34-06.06.07 /disk1:hfr-mpls-p.pie-PD34-06.06.07
Install operation 1 completed successfully at 17:51:32 UTC Sat Jun 03 2006.

Install logs:
Install operation 1 'install add /disk1:hfr-diags-p.pie-PD34-06.06.07
/disk1:hfr-k9sec-p.pie-PD34-06.06.07 /disk1:hfr-mcast-p.pie-PD34-06.06.07
/disk1:hfr-mgbl-p.pie-PD34-06.06.07 /disk1:hfr-mpls-p.pie-PD34-06.06.07'
started by user 'labuser' at 17:48:51 UTC Sat Jun 03 2006.
Info: The following packages are now available to be activated:
Info:    disk0:hfr-diags-3.4.0.1I
Info:    disk0:hfr-k9sec-3.4.0.1I
Info:    disk0:hfr-mcast-3.4.0.1I
Info:    disk0:hfr-mgbl-3.4.0.1I
Info:    disk0:hfr-mpls-3.4.0.1I
Info:    Install operation 1 completed successfully at 17:51:32 UTC Sat Jun 03 2006.

Install operation 2 started by user 'labuser' at 18:06:32 UTC Sat Jun 03 2006.
install activate disk0:hfr-diags-3.4.0.1I disk0:hfr-k9sec-3.4.0.1I
disk0:hfr-mcast-3.4.0.1I disk0:hfr-mgbl-3.4.0.1I disk0:hfr-mpls-3.4.0.1I
Install operation 2 completed successfully at 18:07:48 UTC Sat Jun 03 2006.

Summary:
Install method: parallel
Summary of changes on nodes 0/1/SP, 0/6/SP, 0/SM0/SP, 0/SM1/SP, 0/SM2/SP, 0/SM3/SP:
Activated:  hfr-diags-3.4.0.1I
No processes affected

Summary of changes on nodes 0/1/CPU0, 0/6/CPU0:
Activated:  hfr-diags-3.4.0.1I
  hfr-mcast-3.4.0.1I
  hfr-mpls-3.4.0.1I
1 hfr-mpls processes affected (0 updated, 1 added, 0 removed, 0 impacted)
2 hfr-mcast processes affected (0 updated, 2 added, 0 removed, 0 impacted)

Summary of changes on nodes 0/RP0/CPU0, 0/RP1/CPU0:
Activated:  hfr-diags-3.4.0.1I
  hfr-k9sec-3.4.0.1I
  hfr-mcast-3.4.0.1I
  hfr-mgbl-3.4.0.1I
  hfr-mpls-3.4.0.1I
6 hfr-mgbl processes affected (0 updated, 6 added, 0 removed, 0 impacted)
8 hfr-mpls processes affected (0 updated, 8 added, 0 removed, 0 impacted)
7 hfr-k9sec processes affected (0 updated, 7 added, 0 removed, 0 impacted)
14 hfr-mcast processes affected (0 updated, 14 added, 0 removed, 0 impacted)
```
Install logs:
Install operation 2 'install activate disk0:hfr-diags-3.4.0.1I disk0:hfr-k9sec-3.4.0.1I disk0:hfr-mcast-3.4.0.1I disk0:hfr-mgbl-3.4.0.1I disk0:hfr-mpls-3.4.0.1I' started by user 'labuser' at 18:06:32 UTC Sat Jun 03 2006.
Info: The changes made to software configurations will not be persistent across system reloads. Use the command 'admin install commit' to make changes persistent.
Info: Please verify that the system is consistent following the software change using the following commands:
Info: show system verify
--More--

The following example displays information for a specific install request. Use the detail keyword to display additional information, including impact to processes and nodes impacted.

RP/0/RP0/CPU0:router# show install log 2 detail

Install operation 2 started by user 'labuser' at 18:06:32 UTC Sat Jun 03 2006. Install activate disk0:hfr-diags-3.4.0.1I disk0:hfr-k9sec-3.4.0.1I disk0:hfr-mcast-3.4.0.1I disk0:hfr-mgbl-3.4.0.1I disk0:hfr-mpls-3.4.0.1I Install operation 2 completed successfully at 18:07:48 UTC Sat Jun 03 2006.

Summary:
Install method: parallel

Summary of changes on nodes 0/1/SP, 0/6/SP, 0/SM0/SP, 0/SM1/SP, 0/SM2/SP, 0/SM3/SP:
Activated: hfr-diags-3.4.0.1I
No processes affected

Summary of changes on nodes 0/1/CPU0, 0/6/CPU0:
Activated: hfr-diags-3.4.0.1I
hfr-mcast-3.4.0.1I
hfr-mpls-3.4.0.1I
1 hfr-mpls processes affected (0 updated, 1 added, 0 removed, 0 impacted)
2 hfr-mcast processes affected (0 updated, 2 added, 0 removed, 0 impacted)

Summary of changes on nodes 0/RP0/CPU0, 0/RP1/CPU0:
Activated: hfr-diags-3.4.0.1I
hfr-k9sec-3.4.0.1I
hfr-mcast-3.4.0.1I
hfr-mgbl-3.4.0.1I
hfr-mpls-3.4.0.1I
6 hfr-mgbl processes affected (0 updated, 6 added, 0 removed, 0 impacted)
8 hfr-mpls processes affected (0 updated, 8 added, 0 removed, 0 impacted)
7 hfr-k9sec processes affected (0 updated, 7 added, 0 removed, 0 impacted)
14 hfr-mcast processes affected (0 updated, 14 added, 0 removed, 0 impacted)

Install logs:
Install operation 2 'install activate disk0:hfr-diags-3.4.0.1I disk0:hfr-k9sec-3.4.0.1I disk0:hfr-mcast-3.4.0.1I disk0:hfr-mgbl-3.4.0.1I disk0:hfr-mpls-3.4.0.1I' started by user 'labuser' at 18:06:32 UTC Sat Jun 03 2006.
Info: The changes made to software configurations will not be persistent across system reloads. Use the command 'admin install commit' to make changes persistent.
Info: Please verify that the system is consistent following the software change using the following commands:
Info: show system verify
Info: install verify packages
Install operation 2 completed successfully at 18:07:48 UTC Sat Jun 03 2006.
Package Management Procedures

Review the concepts about package management before performing the tasks described in this module.

Note

Related Topics

Information About Package Management, on page 36

Activation and Deactivation Prerequisites

These prerequisites must be met for a package to be activated or deactivated:

• You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

• Verify that all cards are installed and operating properly. For example, do not activate or deactivate packages while cards are booting, while cards are being upgraded or replaced, or when you anticipate an automatic switchover activity.

• If a ROM Monitor upgrade is required for the software package, the upgrade must be completed before the package is activated. For ROM Monitor upgrade information and procedures, see Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router.

• Check the sanity of the configuration file system and recover from any internal inconsistencies by using the cfs check command.

RP/0/RP0/CPU0:router# cfs check
Tue Sep 20 07:22:03.374 DST
Creating any missing directories in Configuration File system...OK
Initializing Configuration Version Manager...OK
Syncing commit database with running configuration...OK

• Clear any inconsistency alarms and remove any failed configurations using the clear configuration inconsistency command.

An inconsistency alarm is set when there is a failure to restore the configuration; this can occur during router startup, or when a line card, modular services card (MSC), or route processor (RP) card is inserted or removed. If an inconsistency alarm is set, a message similar to the one in this example is displayed:

RP/0/RP0/CPU0:May 26 11:58:40.662 : cfgmgr-rp[130]: %MGBL-CONFIGCLI-3
BATCH_CONFIG_FAIL : 28 config(s) failed during startup. To view
failed config(s) use the command - "show configuration failed startup"

When the inconsistency alarm is set, all configuration commit operations fail until the alarm is cleared.

• Although more than one version of a software package can be added to a storage device, only one version of a package can be active for any card.

• Some packages require the activation or deactivation of other packages.

• The package being activated must be compatible with the current active software set.
Activation is performed only after the package compatibility checks and API version compatibility checks have been passed. If a conflict is found, an on-screen error message is displayed.

While a software package is being activated, other requests are not allowed to run on any of the impacted nodes. Package activation is completed when a message similar to this one appears:

Install operation 2 completed successfully at 20:30:29 UTC Mon Nov 14 2005.

Each CLI install request is assigned a request ID, which can be used later to review the events.

Prerequisites for ISSU

These prerequisites must be met before you can perform ISSU:

- You must have at least four fabric planes installed, two odd and two even. Use the command `show controller fabric plane all` in administration EXEC mode to verify the number of fabric planes in your router.

```
RP/0/RP0/CPU0:router(admin)# show controller fabric plane all
Thu Jun 23 04:45:40.186 DST
Flags: P - plane admin down, p - plane oper down
       C - card admin down, c - card oper down
       A - asic admin down, a - asic oper down
       L - link port admin down, l - linkport oper down
       B - bundle port admin Down, b - bundle port oper down
       I - bundle admin down, i - bundle oper down
       N - node admin down, n - node down
       X - ctrl admin down, x - ctrl down
       e - other end of link down d - data down
       m - plane multicast down, s - link port permanently shutdown
       t - no barrier input O - Out-Of-Service oper down
       T - topology mismatch down e - link port control only
       D - plane admin data down U - issu down

<table>
<thead>
<tr>
<th>Plane Id</th>
<th>Admin State</th>
<th>Oper State</th>
<th>up-&gt;dn counter</th>
<th>up-&gt;mcast counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UP</td>
<td>UP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>UP</td>
<td>UP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>UP</td>
<td>UP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>UP</td>
<td>UP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>UP</td>
<td>UP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>UP</td>
<td>UP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>UP</td>
<td>UP</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>UP</td>
<td>UP</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

- You must have only UNIGEN flash disks installed in your system. Use the command `show file disk0:` in EXEC mode to verify the flash disk vendor.

```
RP/0/RP0/CPU0:router# show file disk0:
Thu Jun 23 04:48:59.183 DST
Model: UNIGEN FLASH
Capacity: 8215201 Sectors, Total 4206182912 Bytes, (512 Bytes/sector)
```

- You must have at least 400 MB of memory available on all line cards to be upgraded.
- You must have enough disk space for V1 and V2 images, PIEs and SMUs. This prerequisite is no different than that of a non-ISSU upgrade.
Cisco recommends that you do a backup of the ASCII configuration before each upgrade.

Related Topics

ISSU Software Images

Restrictions for ISSU

These restrictions apply to ISSU:

- ISSU does not work if any of the following hardware is running in the chassis. If you have any of these running in your system, manually shut them down before running ISSU, and then bring them back up after ISSU is complete.
 - DRP cards
 - Non-owner SDRs

If any non-supported hardware is running on your system, you receive an error message similar to this one when ISSU tries to run:

```
RP/0/RP0/CPU0:router(admin)# install activate id 4 6 prompt-level all auto-abort timer off issu
Thu Jun  9 13:42:47.217 DST
Install operation 10 ' (admin) install activate id 4 6 prompt-level all auto-abort-timer off issu' started by user 'user1' via CLI at 13:42:48 DST
Thu Jun 09 2011.
/ 1% complete: The operation can still be aborted (ctrl-c for options)
Info: This operation will activate the following packages:
Info: disk0:hfr-mini-p-4.3.99
Info: disk0:hfr-mpls-p-4.3.99
Info: disk0:hfr-mgb1-p-4.3.99
Info: disk0:hfr-mcast-p-4.3.99
Info: disk0:hfr-k9sec-p-4.3.99
Info: disk0:hfr-fpd-p-4.3.99
Info: disk0:hfr-doc-p-4.3.99
Info: disk0:hfr-diags-p-4.3.99
/ 1% complete: The operation can still be aborted (ctrl-c for options)
Error: ISSU upgrade not supported: 'ISSU is not supported for DRP cards

- Refer to your release notes for a complete list of hardware that cannot be upgraded during the ISSU process. If you have any non-supported hardware running in your system, the upgrade process automatically shuts them down and reloads them after the upgrade is complete.

- Ethernet OAM flaps after an ISSU upgrade.

- ISSU downgrade is not supported.

- ISSU is not supported on the NV cluster set-up.

---

**Obtaining and Placing Cisco IOS XR Software**

This section contains information to locate the available software packages and to transfer them either to a local storage device or to a network server. When this is done, the package or packages can be added and activated on the router.
There are two primary ways to obtain packages in Cisco IOS XR software:

- Request the software from Cisco on a flash disk that you can insert into the removable flash disk slot (usually flash disk1:). Flash disk1: is optional. When it is installed, flash disk1: can be used to store PIE files, which can then be used to add new software to the boot device (usually flash disk0:).

- Download the Cisco IOS XR software packages to a local storage device of the DSC, such as flash disk1:, or to a remote server, such as a tftp or rcp server.

The boot device is the local disk on the DSC where Cisco IOS XR software is added and activated. PIE files should not be stored on this boot device. The default boot device is disk0:. All PIE files should be stored on flash disk1:.

**Transferring Installation Files from a Network File Server to a Local Storage Device**

If the Cisco IOS XR software PIE files are located on a remote TFTP, FTP, SFTP, or rcp server, you can copy the files to a local storage device such as disk1:. When the PIE files are located on a local storage device, the software packages can be added and activated on the router from that storage device. Table 6: Download Protocols Supported by Cisco IOS XR Software, on page 56 describes the supported server protocols, and the CLI syntax used copy files from each server type to the local storage device.

---

**Tip**
Cisco IOS XR software PIE files can also be added to the router boot device directly from the remote server.

---

**Note**
Consult your system administrator for the location and availability of your network server.

---

**Table 6: Download Protocols Supported by Cisco IOS XR Software**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
</table>
| Trivial File Transfer Protocol      | TFTP allows files to be transferred from one computer to another over a network, usually without the use of client authentication (for example, username and password). It is a simplified version of FTP.  

**Note** Some Cisco IOS XR software images may be larger than 32 MB, and the TFTP services provided by some vendors may not support a file this large. If you do not have access to a TFTP server that supports files larger than 32 MB, download the software image using FTP or rcp. |
| File Transfer Protocol              | FTP is part of the TCP/IP protocol stack and requires a username and password. |
| Remote Copy Protocol                | The rcp protocol uses TCP to ensure the reliable delivery of data, and rcp downloads require a usernames. |
SFTP is part of the SSHv2 feature in the Security package and provides for secure file transfers. For more information, see the Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router.

The router commands listed in Table 7: Commands for Copying Package Files to the Router, on page 57 show how to copy package files to the router using three types of file transfer protocols.

### Table 7: Commands for Copying Package Files to the Router

<table>
<thead>
<tr>
<th>Server Type</th>
<th>Command and Examples</th>
</tr>
</thead>
</table>
| TFTP        | The following command syntax is used:  
  \texttt{copy tftp://hostname_or_ipaddress/directory-path/pie-name disk1:}  
  Example:  
  \begin{verbatim}
  RP/0/RP0/CPU0:router# copy tftp://10.1.1.1/images/comp-hfr-mini.pie disk1:
  \end{verbatim} |
| FTP         | The following command syntax is used:  
  \texttt{copy ftp://username:password@hostname_or_ipaddress/directory-path/pie-name disk1:}  
  Example:  
  \begin{verbatim}
  RP/0/RP0/CPU0:router# copy ftp://john:secret@10.1.1.1/images/comp-hfr-mini.pie disk1:
  \end{verbatim} |
| rcp         | The following command syntax is used:  
  \texttt{copy rcp://username@hostname_or_ipaddress/directory-path/pie-name disk1:}  
  Example:  
  \begin{verbatim}
  RP/0/RP0/CPU0:router# copy rcp://john@10.1.1.1/images/comp-hfr-mini.pie disk1:
  \end{verbatim} |

Table 8: Command Variables for Copying and Adding Packages from a Network Server, on page 58 describes the command variables for copying packages from a network server.
Table 8: Command Variables for Copying and Adding Packages from a Network Server

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostname_or_ipaddress</td>
<td>Host name or IP address of the server that stores the source file.</td>
</tr>
<tr>
<td>pie-name</td>
<td>Name of the PIE file (package). See the Overview of Cisco IOS XR Software Packages, on page 31 for descriptions of the available packages.</td>
</tr>
<tr>
<td>username</td>
<td>Required for FTP and rcp only and must be a valid username on the FTP or rcp server.</td>
</tr>
<tr>
<td>password</td>
<td>Required for FTP only. If a password is not provided, the networking device accepts anonymous FTP.</td>
</tr>
</tbody>
</table>
| directory-path    | The specified directory should be a directory under the home directory of the user. In the rcp and FTP examples in Table 7: Commands for Copying Package Files to the Router, on page 57, the file being downloaded is in a subdirectory called “images” in the home directory of the user “john.”  
Note: For FTP and rcp services, directory-path is the directory relative to the username home directory. If you want to specify an absolute path for the directory, you must add a “/” following the server address. |

When the installation files have been transferred to a network file server or the router, you are ready to activate or upgrade the software.

Files with the vm extension are bootable installation files used only to replace all current Cisco IOS XR software. These files are installed from ROM monitor mode and cause significant router downtime. We recommend installing or upgrading software packages using PIE files only, as described in this chapter. See Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router for information on installing from vm files.

Related Topics

- Adding and Activating Packages, on page 65
- Overview of Cisco IOS XR Software Packages, on page 31

Preparing for Software Installation Operations

This section includes instructions to prepare for software installation operations.
Activation is performed only after the automatic package compatibility and API version compatibility checks have been passed. If a conflict is found, an on-screen error message is displayed.

**Before You Begin**

Before adding or activating Cisco IOS XR software:

- Update the ROM Monitor software, if necessary.
- Determine if a software change is required.
- Verify that the new package is supported on your system. Some software packages require that other packages or package versions be activated, and some packages only support specific cards.
- Review the release notes for important information related to that release and to help determine the package compatibility with your router configuration.
- Verify that the system is stable and prepared for the software changes.

**SUMMARY STEPS**

1. admin
2. show diag
3. Update the ROMMON software if necessary.
4. show install active
5. show install pie-info device:package [brief | detail | verbose]
6. verify packages
7. exit
8. (Optional) show system verify start
9. (Optional) show system verify [detail | report]
10. show clock

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# admin</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> show diag</td>
<td>Displays the ROMMON software version for all cards in the system. Verify that the correct ROMMON software version is installed before upgrading a Cisco IOS XR software package.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router{admin}# show diag</td>
<td></td>
</tr>
<tr>
<td>Note See Related Topics for information regarding the required ROM Monitor (ROMMON) software version.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 3</strong> Update the ROMMON software if necessary.</td>
<td>Updates the ROMMON software. For instructions, see <em>Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router</em>.</td>
</tr>
<tr>
<td><strong>Step 4</strong> <code>show install active</code></td>
<td>Displays the active software on the router for an SDR or for all SDRs. Use this command to determine what software should be added, upgraded or downgraded on the router, and to compare to the active software report after installation operations are complete.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>RP/0/RP0/CPU0:router(admin)# show install active</code></td>
<td>You can also display the active packages for a specific node, and view results in detailed or summary mode. See the <em>Software Package Management Commands on the Cisco IOS XR Software</em> module of <em>Cisco IOS XR System Management Command Reference for the Cisco CRS Router</em> for more information.</td>
</tr>
<tr>
<td><strong>Step 5</strong> `show install pie-info device:package [ brief</td>
<td>detail</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>RP/0/RP0/CPU0:router(admin)# show install pie-info disk1:/hfr-mcast-p.pie-3.8.30</code></td>
<td><em>brief</em> (default)—Displays the expiration date of the file, the size, and the installed package name. The expiration date is used for certifying the package.</td>
</tr>
<tr>
<td><strong>Step 6</strong> <code>verify packages</code></td>
<td>Verifies that there are no corrupted software files. The consistency of a previously installed software set is verified against the package file from which it originated. This command can be used as a debugging tool to verify the validity of the files that constitute the packages, to determine if there are any corrupted files. This command also checks for corruptions of installation state files and MBI image files. This command is particularly useful when issued after the activation of a package or upgrading the Cisco IOS XR software to a major release.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>RP/0/RP0/CPU0:router(admin)# install verify packages</code></td>
<td>The <code>install verify packages</code> command can take up to two minutes per package to process.</td>
</tr>
<tr>
<td><strong>Step 7</strong> <code>exit</code></td>
<td>Exits administration EXEC mode and returns to EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>RP/0/RP0/CPU0:router(admin)# exit</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> <code>show system verify start</code></td>
<td>(Optional) Starts the system status check.</td>
</tr>
<tr>
<td><strong>Example:</strong> <code>RP/0/RP0/CPU0:router# show system verify start</code></td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**
- `show system verify [ detail | report ]`

**Purpose**
(Optional)
Displays system status information. A variety of information is displayed including the memory and CPU usage, process status, protocol status, and other status information. Use this information to verify that the system is stable.

- **detail**—Displays additional information at the card and processor level, including actual numbers.
- **report**—Displays the same information as the default `show system verify` command

**Example:**
RP/0/RP0/CPU0:router# show system verify

**Note**
Although most of the output should display the status "OK," some processes may show other output, such as "Warning." This does not specifically indicate a problem. Contact your Cisco technical support representative for more information on the output of this command.

---

### Purpose

**Command or Action**
- `show clock`

**Purpose**
Verifies that the system clock is correct. Software operations use certificates based on router clock times.

**Example:**
RP/0/RP0/CPU0:router# show clock

---

**Related Topics**

Activation and Deactivation Prerequisites, on page 53

---

**Examples**

**Verifying That the ROM Monitor Version Is Correct: Example**

In the following example, the ROM Monitor software version is displayed in the "ROMMON:" field for each card.

**Note**
For instructions to upgrade the ROM Monitor software, see *Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router*.

Example:
RP/0/RP0/CPU0:router# admin
RP/0/RP0/CPU0:router(admin)# show diag
CARD 0/1/* : Cisco CRS-1 Series Modular Services Card
  MAIN:  board type 500060
    800-25021-05 rev B0
e    dev 079239
S/N SAD09280BS9
  PCA: 73-7648-08 rev B0
  PID: CRS-MSC
  VID: V02
  CLEI: IPUCAC1BAA
  ECI: 132502
Displaying the Active Software for All SDRs or for a Specific SDR: Example

The following example displays the active packages for all SDRs in the system. Use this information to determine if a software change is required:

```
RP/0/RP1/CPU0:router(admin)# show install active summary

Default Profile:
SDRs:
 Owner
 CEIb
Active Packages:
disk0:hfr-diags-3.3.30
disk0:hfr-mgbl-3.3.30
disk0:hfr-k9sec-3.3.30
disk0:comp-hfr-mini-3.3.30
```

The following example displays a summary of active packages for a specific SDR:

```
RP/0/RP1/CPU0:router(admin)# show install active summary sdr owner

Active Packages:
disk0:hfr-diags-3.3.30
disk0:hfr-mgbl-3.3.30
disk0:hfr-k9sec-3.3.30
disk0:comp-hfr-mini-3.3.30
```

Displaying Information About the Contents of a PIE File: Example

In the following example, information is displayed about the manageability PIE. This command displays the expiry date of the package, the cards supported by the package, and other details. Use this information to verify the compatibility of the package with your system and other software packages.
A software activation is performed only after the automatic package compatibility and API version compatibility checks have been passed. If a conflict is found, an on-screen error message is displayed.

```bash
RP/0/RP0/CPU0:router(admin)# show install pie-info disk1:/hfr-mgbl-p.pie-3.8.0 detail
Contents of pie file '/disk1:/hfr-mgbl-p.pie-3.8.0':
 Expiry date : Jan 19, 2007 02:55:56 UTC
 Uncompressed size : 17892613
hfr-mgbl-3.8.0
 hfr-mgbl V3.8.0[00] Manageability Package
 Vendor : Cisco Systems
 Desc : Manageability Package
 Build : Built on Wed May 10 08:04:58 UTC 2006
 Source : By edde-bld1 in /vws/aga/production/3.8.0/hfr/workspace for c28
 Card(s): RP, DRP, DRFSC
 Restart information:
 Default: parallel impacted processes restart
 Components in package hfr-mgbl-3.8.0, package hfr-mgbl:
 manageability-cwi V[r33x/2] Craft Web Interface related binaries ae
 hfr-feature-ipsla V[r33x/1] IPSLA time stamping feature
 doc-hfr-mgbl V[r33x/2] Contains the man page documentation for hfrs
```

### Verifying That There Are No Corrupted Software Files: Example

The following sample output verifies the consistency of the currently active software against the file from which it originated:

```bash
RP/0/RP0/CPU0:router# install verify packages
Install operation 2 '(admin) install verify packages' started by user 'admin' via CLI at 07:35:01 UTC Wed May 14 2008.
Info: This operation can take up to 2 minutes per package being verified. Please be patient.
Info: 0/3/CPU0 [LC] [SDR: Owner]
Info: meta-data: [SUCCESS] Verification Successful.
Info: /install/hfr-fwg-3.8.0.02I: [SUCCESS] Verification Successful.
Info: /install/hfr-admin-3.8.0.02I: [SUCCESS] Verification Successful.
Info: /install/hfr-admin-3.8.0.02I: [SUCCESS] Verification Successful.
Info: 0/SM1/SP [SP] [Admin Resource]
Info: meta-data: [SUCCESS] Verification Successful.
Info: /install/hfr-admin-3.8.0.02I: [SUCCESS] Verification Successful.
Info: /install/hfr-admin-3.8.0.02I: [SUCCESS] Verification Successful.
Info: 0/3/SP [SP] [Admin Resource]
Info: meta-data: [SUCCESS] Verification Successful.
Info: /install/hfr-admin-3.8.0.02I: [SUCCESS] Verification Successful.
Info: /install/hfr-admin-3.8.0.02I: [SUCCESS] Verification Successful.
Info: 0/RP1/CPU0 [RP] [SDR: Owner]
Info: meta-data: [SUCCESS] Verification Successful.
Info: /install/hfr-admin-3.8.0.02I: [SUCCESS] Verification Successful.
```

System Management Configuration Guide for Cisco CRS Routers, IOS XR Release 6.2.x
Info: meta-data: [SUCCESS] Verification Successful.
Info: /install/hfr-os-.mdl-3.8.0.02I: [SUCCESS] Verification Successful.
Info: /install/hfr-rout-3.8.0.02I: [SUCCESS] Verification Successful.
Info: Verification Summary:
Info: 0/3/CPU0: SUCCESSFUL. No anomalies found.
Info: 0/SM1/SP: SUCCESSFUL. No anomalies found.
Info: 0/3/SP: SUCCESSFUL. No anomalies found.
Info: 0/RP1/CPU0: SUCCESSFUL. No anomalies found.
Info: 0/RP0/CPU0: SUCCESSFUL. No anomalies found.
Info: The system needs no repair.

Verifying the Current System Status: Example

The following example shows how to prepare for system verification:

RP/0/RP0/CPU0:router# show system verify start

Storing initial router status ...
done.

The following example shows output from running the show system verify command.

Note

Although most of the output should display the status "OK," some processes may show other output, such as "Warning." This does not specifically indicate a problem. Contact your Cisco technical support representative for more information on the output of this command.

RP/0/RP0/CPU0:router# show system verify

Getting current router status ...
System Verification Report
----------------------------------
- Verifying Memory Usage          : [OK]
- Verified Memory Usage
- Verifying CPU Usage            : [OK]
- Verified CPU Usage
- Verifying Blocked Processes    : [OK]
- Verified Blocked Processes
- Verifying Aborted Processes    : [OK]
- Verified Aborted Processes
- Verifying Crashed Processes    : [OK]
- Verified Crashed Processes
- Verifying LC Status            : [OK]
- Verified LC Status
- Verifying QNET Status          : [FAIL]
Unable to get current LC status info
- Verified QNET Status
- Verifying GSP Fabric Status    : [OK]
- Verified GSP Fabric Status
- Verifying GSP Ethernet Status  : [OK]
gsp WARNING messages for router
Current set of gsp ping nodes does not match initial set of nodes
- Verified GSP Ethernet Status   : [WARNING]
- Verifying POS interface Status : [OK]
- Verified POS interface Status
- Verifying TenGigE interface Status
- Verified TenGigE interface Status : [OK]
- Verifying TCP statistics
- Verified TCP statistics : [OK]
- Verifying UDP statistics
  tcp_udp_raw WARNING messages for router
  UDP Packets sent has not increased during this period.
- Verified UDP statistics : [WARNING]
- Verifying RAW statistics
- Verified RAW statistics : [OK]

- Verifying RIB Status
- Verified RIB Status : [OK]
- Verifying CEF Status
- Verified CEF Status : [OK]
- Verifying CEF Consistency Status
- Verified CEF Consistency Status : [OK]
- Verifying BGP Status
- Verified BGP Status : [OK]
- Verifying ISIS Status
- Verified ISIS Status : [OK]
- Verifying OSPF Status
- Verified OSPF Status : [OK]

- Verifying Syslog Messages
- Verified Syslog Messages : [OK]

System may not be stable. Please look into WARNING messages.

**Verifying That the System Clock Is Correct: Example**

The following example displays the current system clock setting:

```
RP/0/RP0/CPU0:router# show clock
02:14:51.474 PST Wed Jan 28 2009
```

**Adding and Activating Packages**

The procedure in this section describes how to upgrade or add Cisco IOS XR software PIE files that are stored on a local storage device, such as a flash disk, or on a remote TFTP, FTP, SFTP, or rcp server. The PIE software file can include any of the following:

- The Cisco IOS XR Unicast Routing Core Bundle (six packages in one composite PIE file)
- Any of the optional packages (one package per PIE file)
- Software maintenance upgrades (SMUs)

**Note**

If ISSU is being used, the PIE software file must be a SMU.

When you need to add and activate two or more of the preceding package types, you should add and activate them in the order listed above.
When adding and activating two or more packages, optional packages can be activated together. Also, if the operation is a reload, multiple packages can be activated together. For example, five reload SMUs can be activated together or the Cisco IOS XR Unicast Routing Core Bundle plus the SMUs and optional packages can be activated together.

For a description of the software management process, see the Related Topics section.

These instructions are also used to downgrade software packages.

By default, installation operations are performed asynchronously: the CLI prompt is returned before the operation is complete, allowing the operator to continue work while the installation is completed in the background. Use the synchronous keyword at the end of install commands to delay the return of the CLI prompt until an installation operation is complete. See the Related Topics section for more information.

**Before You Begin**

Before upgrading or adding packages, verify that these prerequisites have been met:

- Verify that the ROMMON version is correct. For instructions on upgrading ROM Monitor, see Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router.

- All packages to be upgraded or added are present on a local storage device (for example a flash disk), or a network file server.

- Prerequisites for the activation of packages are met as described in the Prerequisites section.

- Complete the procedures described in the Preparing for Software Installation Operations, on page 58 section.

- If you are performing an in-service software upgrade (ISSU), make a note of all ISSU prerequisites and restrictions as listed in Prerequisites for ISSU, on page 54 and Restrictions for ISSU, on page 55.

To use the automatic FPD upgrade feature, the fpd auto-upgrade command must be enabled in administration configuration mode.

Do not enable the automatic FPD upgrade feature if you are performing ISSU.
SUMMARY STEPS

1. Connect to the console port and log in.
2. (Optional) `dir flash-disk`
3. `admin`
4. `install add [source source-path | tar] file [activate [issu]]`
5. (Optional) `show install inactive summary`
6. `install activate {id add-id | device package} [test] [location node-id] [pause sw-change] [issu] [prompt-level {all | none}] [auto-abort-timer {time | off}]`
7. Repeat Step 4, on page 67 through Step 6, on page 69 until all packages are activated.
8. (Optional) `show install active summary`
9. (Optional) `install verify packages`
10. (Optional) `exit`
11. (Optional) `show system verify start`
12. `admin`
13. (Optional) `install commit`
14. Upgrade the field-programmable device (FPD) software, if necessary.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Connect to the console port and log in.</td>
<td>Establishes a CLI management session with the SDR. Connect to the console port for the active DSC. For more information on console connections, see <em>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</em>.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>dir flash-disk :</code></td>
<td>(Optional) Displays the package files that are available for package upgrades and additions. <strong>Note</strong> Only PIE files can be added and activated using this procedure.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router# dir disk1:</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>admin</code></td>
<td>Enters administration EXEC mode. <strong>Note</strong> Some <code>show install</code> commands can be entered in EXEC mode on an SDR.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router# admin</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> `install add [source source-path</td>
<td>tar] file [activate [issu]]`</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin)# install add disk1:/hfr-mgbl-px.pie-6.0.1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>tftp://10.1.1.1/images/ hfr-k9sec-p.pie</td>
<td>• If the tar keyword is used, all PIE files contained in the tar file are unpacked.</td>
</tr>
<tr>
<td>hfr-mpls-p.pie hfr-mcast-p.pie</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(admin)# install add ftp://john:secret@10.1.1.1/images/hfr-k9sec-p.pie</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(admin)# install add tar rcp://john@10.1.1.1/images/hfr-iosxr-3.6.0.tar</td>
<td></td>
</tr>
</tbody>
</table>

The *file* argument can take any of these formats:

- *device* filename

- tftp://hostname_or_ipaddress/directory-path/filename

- ftp://username:password@hostname_or_ipaddress/directory-path/filename

- rcp://username@hostname_or_ipaddress/directory-path/filename

These are descriptions for each of the terms used here:

- *device*—Name of the local storage device where the PIE file is stored, such as disk1:/.

- *filename*—Name of the PIE file you want to add. If the tar keyword is used, the *file* argument is the name of a tar file containing one or more PIE files, or directories containing PIE files.

- tftp://—Unpacks the PIE file from a network server using Trivial File Transfer Protocol.

- ftp://—Unpacks the PIE file from a network server using File Transfer Protocol.

- rcp://—Unpacks the PIE file from a network server using Remote Copy Protocol

- hostname_or_ipaddress—Host name or IP address of the network file server.

- directory-path—Network file server path that leads to the PIE file to be added.

- username—Username of user that has access privileges to the directory in which the PIE file is stored.

- password—Password associated with the username of user that has access privileges to the directory in which the PIE file is stored.

- activate—Automatically activates the software package after it is successfully added.

- issu—Performs an in-service software upgrade. Before selecting this option, note all ISSU prerequisites and restrictions.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Multiple versions of a software package can be added</strong> to the storage device without impacting the running configuration, but only one version of a package can be activated for a card.</td>
<td></td>
</tr>
</tbody>
</table>

**Note**

**The automatic FPD upgrade occurs only when the FPD pie is added and activated together with the install PIE.**

**Tip**

<table>
<thead>
<tr>
<th>Step 5 show install inactive summary</th>
<th>(Optional) Displays the inactive packages on the router. Verify that the package added in the previous step appears in the display.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Example:</strong></td>
<td><strong>RP/0/RP0/CPU0:router (admin) # show install inactive summary</strong></td>
</tr>
</tbody>
</table>

**Step 6 install activate {id add-id | device package} [test] [location node-id] [pause sw-change] [issu] [prompt-level {all | none}] [auto-abort-timer {time | off}]**

| **Activates a package that was added to one or more SDRs.** (Skip this step if the package was activated earlier with the **install add** command.) |
| **Example:**                         | **RP/0/RP0/CPU0:router (admin) # install activate disk0:hfr-mini-px-4.3.99**                                    |
| **Or using ISSU:**                   | **RP/0/RP0/CPU0:router (admin) # install activate disk0:hfr-px-4.0.0.16C.CSCee10001.pie prompt-level none synchronous issu** |

- **id add-id**—Specifies the package using the operation ID of the **install add** operation in which you added the package. The operation ID is provided in the output of the **install add** command. You can also use **show install log** to display installation operation IDs.

- **device:package**—Specifies the package by name. Replace the **device:package** argument with the name of the boot device and inactive package, which can be displayed as described in the previous step.

**Note**

Press ? after a partial package name to display all possible matches available for activation. If there is only one match, press [TAB] to fill in the rest of the package name.

- **location node-id**—Activates a package for a specific card (node). To display a list of node IDs for the entire system, enter the **show platform** command in administration EXEC mode. A package cannot be activated on a single node unless some version of the package being activated is already active on all nodes.

**Note**

By default, packages are activated for all cards supported by that package.

- **pause sw-change**—Pauses the operation after preparatory checks and before the configuration is locked for the actual activation. This action enables you to hold the operation while you perform configuration changes, and proceed with the activation whenever you choose. This operation is useful, for example, if your workflow involves configuring a router out of the network during software installation and you want to minimize the time that the router is out of the network. Follow onscreen instructions to control the pausing and completion of the operation.
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• <strong>issu</strong>—Performs an in-service software upgrade. Before selecting this option, note all ISSU prerequisites and restrictions.</td>
<td></td>
</tr>
<tr>
<td>• <strong>prompt-level</strong>—Use a prompt-level of <strong>all</strong> to view all stages of the installation process and to specify whether to continue, or not. This is especially applicable during the ISSU process.</td>
<td></td>
</tr>
<tr>
<td>• <strong>auto-abort-timer</strong>—Specifies an abort timer value, in minutes, which when expired loads the last committed loadpath. The default is 60. The timer is enabled by default. After the installation, if the activated software is working correctly, use the <strong>install commit</strong> command to cancel the timer and commit the new loadpath.</td>
<td></td>
</tr>
</tbody>
</table>

### Note
The package being activated must be compatible with the currently active software to operate. When an activation is attempted, the system runs an automatic compatibility check to ensure that the package is compatible with the other active software on the router. The activation is permitted only after all compatibility checks have been passed.

### Tip
When activating packages, use the **test** option to test the effects of a command without impacting the running system. After the activation process finishes, enter the **show install log** command to display the process results.

### Tip
The automatic FPD upgrade occurs only when the FPD pie is added and activated together with the install PIE. Do not enable the automatic FPD upgrade feature if you are performing ISSU.

### Step 7
Repeat **Step 4**, on page 67 through **Step 6**, on page 69 until all packages are activated.

This step activates additional packages as required.

### Step 8
**show install active summary**

**Example:**

```
RP/O/RP0/CPU0:router(admin)# show install active
```

(Optional)
Displays all active packages. Use this display to determine if the correct packages are active.

### Step 9
**install verify packages**

**Example:**

```
RP/O/RP0/CPU0:router(admin)# install verify packages
```

(Optional)
Verifies the consistency of a installed software set with the package file from which it originated. This command can be used as a debugging tool to verify the validity of the files that constitute the packages, to determine whether there are any corrupted files. This command also checks for corruptions of installation state files and MBI image files. This command is particularly useful when issued after the activation of a package or upgrading the Cisco IOS XR software to a major release.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 10</strong> exit</td>
<td>(Optional) Exits administration EXEC mode and returns to EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router (admin) # exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> show system verify start</td>
<td>(Optional) Starts the system status check.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router # show system verify start</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router # admin</td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> install commit</td>
<td>(Optional) Commits the current set of packages on the router so that these packages are used if the router is restarted. For more information, see the Related Topics section.</td>
</tr>
</tbody>
</table>
| **Example:** RP/0/RP0/CPU0:router # dir disk1:  
RP/0/RP0/CPU0:router (admin) # install commit | |
| **Step 14** Upgrade the field-programmable device (FPD) software, if necessary. | Whenever a Cisco IOS XR software image that supports SPAs and SIPS is released, a companion SPA or SIP FPD image is bundled with the Cisco IOS XR software release. Generally, the FPD image is not automatically upgraded. You must manually upgrade the FPD image running on the SPA or SIP when you upgrade the Cisco IOS XR software image. FPD versions must be compatible with the Cisco IOS XR software that is running on the router. |
| **Note** If you have enabled the fpd auto-upgrade command and add and activate the FPD PIE together with the software installation PIE, the FPD image is automatically upgraded before the router is rebooted. | For information on FPDs, including instructions to upgrade FPD images, see the Upgrading FPD Cisco IOS XR Software section. |

**Related Topics**

- Obtaining and Placing Cisco IOS XR Software, on page 55
- Activation and Deactivation Prerequisites, on page 53
- Preparing for Software Installation Operations, on page 58
- Information About Package Management, on page 36
Examples

**Adding a Package: Example**

The following example shows how to add the contents of a PIE file on disk1: to the boot device. Because the software package is added to the boot device by default, it is not necessary to specify the destination device in the CLI.

```
From Cisco IOS XR Software Release 6.0.1 and later, you must append a forward slash (/) to the source location (for example, disk1:) of the PIE file in the install add command.
```

```
RP/0/RP0/CPU0:router(admin)# install add disk1:/hfr-mpls-px.pie-6.0.1 synchronous
Install operation 4 'install add /disk1:/hfr-mpls.pie-mpls-px.pie-6.0.1 synchronous' started by user 'cisco' at 18:10:18 UTC Sat Apr 08 2009.
Info: The following package is now available to be activated:
Info: disk0:hfr-mpls-px.pie-6.0.1
Info: Install operation 4 completed successfully at 18:14:11 UTC Sat Apr 08 2009.
```

The following example shows how to add the contents of a PIE file on a TFTP server to the boot device:

```
RP/0/RP0/CPU0:router(admin)# install add tftp://209.165.201.1/ hfr-mpls.pie synchronous
Install operation 4 '(admin) install add /tftp://209.165.201.1/hfr-mpls.pie synchronous' started by user 'cisco' at 18:16:18 UTC Thu Jan 03 2009.
Info: The following package is now available to be activated:
Info: disk0:hfr-mpls-3.7.2
Info: Install operation 4 completed successfully at 18:19:10 UTC Thu Jan 03 2009.
```

**Activating a Package: Example**

The following example shows the activation of the MPLS package. The package is activated on the boot device disk0:.

```
RP/0/RP0/CPU0:router(admin)# install activate disk0: hfr-mpls-3.7.2 synchronous
Install operation 15 'install activate disk0:hfr-mpls-3.7.2 synchronous' started by user 'lab' at 19:15:33 UTC Sat Apr 08 2009.
Info: The changes made to software configurations will not be persistent
Info: across system reloads. Use the command 'admin install commit' to make
Info: changes persistent.
```
Info: Please verify that the system is consistent following the software change using the following commands:
Info: show system verify
Info: install verify packages
Install operation 5 completed successfully at 19:16:18 UTC Sat Apr 08 2009.

Activating a Package by Specifying an Operation ID: Example

The following example shows the activation of the MPLS package using the operation ID of the install add operation that added the package:

```
RP/0/RP0/CPU0:router(admin)# install activate id 4
Install operation 5 '(admin) install activate id 4' started by user 'lab' via CLI at 18:20:17 UTC Thu Jan 03 2009.
Info: This operation will activate the following package:
Info: disk0:hfr-mpls-3.7.2
Info: Install Method: Parallel Process Restart
The install operation will continue asynchronously.
Info: The changes made to software configurations will not be persistent across system reloads. Use the command '(admin) install commit' to make changes persistent.
Info: Please verify that the system is consistent following the software change using the following commands:
Info: show system verify
Info: install verify packages
Install operation 5 completed successfully at 18:21:30 UTC Thu Jan 03 2009.
```

Adding and Activating a Package from an FTP File Server with One Command: Example

To add and activate a package with a single command, enter the install add command with the activate keyword. In the following example, the Manageability PIE located on disk1: is verified, unpacked, and added to the boot device disk0. Because this operation is performed in administration EXEC mode, the package is activated for all SDRs in the system.

```
RP/0/RP0/CPU0:router(admin)# install add disk1:/hfr-mgbl-px.pie-6.0.1 activate
Install operation 4 'install add /disk1:/hfr-mgbl-px.pie-6.0.1 activate' started by user 'cisco' at 07:58:56 UTC Wed Mar 01 2009.
The install operation will continue asynchronously.
:router(admin)#Part 1 of 2 (add software): Started
Info: The following package is now available to be activated:
Info: disk0:hfr-mgbl-px.pie-6.0.1
Part 1 of 2 (add software): Completed successfully
Part 2 of 2 (activate software): Started
Info: The changes made to software configurations will not be persistent across system reloads. Use the command 'admin install commit' to make changes persistent.
Info: Please verify that the system is consistent following the software change using the following commands:
Info: show system verify
Info: install verify packages
Part 2 of 2 (activate software): Completed successfully
Part 1 of 2 (add software): Completed successfully
Part 2 of 2 (activate software): Completed successfully
Install operation 4 completed successfully at 08:00:24 UTC Wed Mar 01 2009.
```
Displaying the Active Packages: Example

The following example displays a summary of the active packages on a router. Because this operation is performed in administration EXEC mode, the active packages for all SDRs are displayed.

RP/0/RP0/CPU0:router(admin)# show install active summary

Active Packages:
- disk0:hfr-mpls-3.7.0
- disk0:hfr-mgbl-3.7.0
- disk0:hfr-mcast-3.7.0
- disk0:hfr-k9sec-3.7.0
- disk0:hfr-fpd-3.7.0
- disk0:hfr-doc-3.7.0
- disk0:hfr-diags-3.7.0
- disk0:comp-hfr-mini-3.7.0

You can also display the active packages for a specific SDR, or for a specific node. Enter the `show install active` command in EXEC mode, or use the `sdr` keyword in administration EXEC mode, as shown in the following example:

RP/0/RP0/CPU0:router(admin)# show install active sdr owner

Secure Domain Router: Owner

Node 0/1/CPU0 [LC] [SDR: Owner]
- Boot Device: bootflash:
- Boot Image: /disk0/hfr-os-mbi-3.7.0/mbihfr-lc.vm
- Committed Packages:
  - disk0:hfr-fpd-3.7.0
  - disk0:hfr-diags-3.7.0
  - disk0:hfr-mcast-3.7.0
  - disk0:hfr-mpls-3.7.0
  - disk0:comp-hfr-mini-3.7.0

Node 0/4/CPU0 [DRP] [SDR: Owner]
- Boot Device: disk0:
- Boot Image: /disk0/hfr-os-mbi-3.7.0/mbihfr-drp.vm
- Committed Packages:
  - disk0:hfr-fpd-3.7.0
  - disk0:hfr-doc-3.7.0
  - disk0:hfr-diags-3.7.0
  - disk0:hfr-mgbl-3.7.0
  - disk0:hfr-mcast-3.7.0
  - disk0:hfr-mpls-3.7.0
  - disk0:hfr-k9sec-3.7.0
  - disk0:comp-hfr-mini-3.7.0

Node 0/4/CPU1 [DRP] [SDR: Owner]
- Boot Device: disk0:
- Boot Image: /disk0/hfr-os-mbi-3.7.0/mbihfr-drp.vm
- Committed Packages:
  - disk0:hfr-fpd-3.7.0
  - disk0:hfr-doc-3.7.0
  - disk0:hfr-diags-3.7.0
  - disk0:hfr-mgbl-3.7.0
  - disk0:hfr-mcast-3.7.0
  - disk0:hfr-mpls-3.7.0
  - disk0:hfr-k9sec-3.7.0
  - disk0:comp-hfr-mini-3.7.0

Node 0/RP0/CPU0 [RP] [SDR: Owner]
- Boot Device: disk0:
- Boot Image: /disk0/hfr-os-mbi-3.7.0/mbihfr-rp.vm
- Committed Packages:
  - disk0:hfr-fpd-3.7.0
  - disk0:hfr-doc-3.7.0
  - disk0:hfr-diags-3.7.0
  - disk0:hfr-mgbl-3.7.0

System Management Configuration Guide for Cisco CRS Routers, IOS XR Release 6.2.x
**ISSU Examples**

**Prompted ISSU Upgrade**

This example shows the in-service software upgrade of a router with an SMU:

```
RP/0/RP0/CPU0:router(admin)# install activate disk0:hfr-mini-px-4.3.99 issu
```

Install operation 22 '(admin) install activate disk0:hfr-mini-px-4.3.99 issu' started by user 'lab' via CLI at 12:43:11 UTC Wed Nov 28 2012.

- Info: The three phases can be performed consecutively without user input
- Info: (unprompted), or there can be a pause after each phase until the user
- Info: has specified that the next phase can be performed (prompted).
- Info: The activation will continue in three phases, minimizing packet loss:
- Info: load - confirms the viability of the activation, and prepares
- Info: any nodes for the activation.
- Info: - reload the following node:
- Info: 0/RP1/CPU0
- Info: run - causes the new software to be run on the active nodes
- Info: for the first time.
- Info: - switchover performed from:
- Info: 0/RP0/CPU0 to 0/RP1/CPU0
- Info: - warm-reload the following nodes:
- Info: 0/0/CPU0
- Info: 0/2/CPU0
- Info: 0/4/CPU0
- Info: 0/5/CPU0
- Info: complete - completes the operation.

Install operation 22: load phase started at 13:01:28 UTC Tue Jun 05 2012.

- Given prompt
  - How do you want the operation to continue (unprompted/prompted/abort)?:
    - User is asked for prompt
    - [prompted]
    - Given prompt

The install operation will continue asynchronously, prompting after each phase.

The **Load** phase begins after you enter either 'prompted' or 'unprompted' mode. In this example 'prompted' mode is chosen.

```
RP/0/RP0/CPU0:router(admin)# install operation 22: load phase started at 15:16:47
UTC Thu Dec 08 2011.
```

After the **Load** phase completes, start the **Run** phase by using the `install operation run` command. To determine the ID to use in the command, see the output of the `show install request` command:

```
Last phase completed: load
Info: The following operation will continue the activation.
Info: (admin) install operation 22
```

To continue with the **Run** phase, use the `install operation run` command. The operation number should match the operation number for starting the **Load** phase.

```
RP/0/RP0/CPU0:router(admin)# install operation 22 run
```
Thu Dec 8 16:23:30.793 UTC

After the Run phase has finished, the Complete phase is run. Use the install operation complete command:

```
RP/0/RP0/CPU0:router(admin)# install operation 22 complete
```

Thu Dec 8 16:52:00.721 UTC
RP/0/RP0/CPU0:Dec 8 16:52:05.931 : instdir[245]:%INSTALL-INSTMGR-6-INSTALL_COMPLETE_PHASE_FINISHED :
Install operation 22: Complete Phase has finished.
RP/0/RP0/CPU0:Dec 8 16:52:19.264 : insthelper[67]: ISSU: Starting sysdb bulk start session
RP/0/RP0/CPU0:Dec 8 16:52:28.263 : instdir[245]:%INSTALL-INSTMGR-4-ACTIVE_SOFTWARE_COMMITTED_INFO :
The currently active software is not committed. If the system reboots then the committed software will be used.
Use 'install commit' to commit the active software.
RP/0/RP0/CPU0:Dec 8 16:52:28.279 : instdir[245]:%INSTALL-INSTMGR-6-INSTALL_OPERATION_COMPLETED_SUCCESSFULLY :
Install operation 22 completed successfully

When the Complete phase finishes, the ISSU operation is complete. To retain the new version of software on the router, the software needs to be committed. Use the commit command:

```
RP/0/RP0/CPU0:router(admin)# install commit
```

Thu Dec 8 16:54:38.423 UTC
Install operation 23 '(admin) install commit' started by user 'lab' via CLI at 16:54:39 UTC Thu Dec 08 2011.
RP/0/RP0/CPU0:Dec 8 16:54:39.546 : instdir[245]:%INSTALL-INSTMGR-6-INSTALL_OPERATION_STARTED :
Install operation 23 '(admin) install commit' started by user 'lab' - 100% complete: The operation can no longer be aborted (ctrl-c for options)RP/0/RP0/CPU0:Dec 8 16:54:51.946 : instdir[245]:%INSTALL-INSTMGR-4-ACTIVE_SOFTWARE_COMMITTED_INFO :
The currently active software is now the same as the committed software.
RP/0/RP0/CPU0:Dec 8 16:54:51.959 : instdir[245]:%INSTALL-INSTMGR-6-INSTALL_OPERATION_COMPLETED_SUCCESSFULLY :
Install operation 23 completed successfully
Install operation 23 completed successfully at 16:54:51 UTC Thu Dec 08 2011.

Unprompted ISSU Upgrade

This example shows an in-service software upgrade without prompts:

```
RP/0/RP0/CPU0:router(admin)# install activate hfr-px-4.2.1.32I.CSCth65946.pie auto-abort-timer off prompt-level none issu
```

Install operation 8 '(admin) install activate disk0:hfr-mini-px-4.2.2.0?I auto-abort-timer off prompt-level none issu' started by user 'UNKNOWN' via CLI at 12:59:08 UTC Tue Jun 05 2012.
Info: The issu option has been specified for install operation 8.
The install operation will continue asynchronously.
Info: Install Method: In-service Upgrade
RP/0/RP0/CPU0:router# show Info: The activation will continue in three phases, minimizing packet loss:
Info: load - confirms the viability of the activation, and prepares
Info: run - causes the new software to be run on the active nodes for the first time.
Info: switchover performed from:
Info: 0/RP0/CPU0 to 0/RP1/CPU0
Verifying the Status of ISSU

This task describes how to monitor the status of the in-service software upgrade (ISSU) on your router.

SUMMARY STEPS

1. show install request
2. show install issu stage
3. show install issu inventory
4. show imdr stage current {all | current} info location node-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show install request</td>
<td>Provides useful feedback and information regarding the installation process, including the percentage of the installation process that is complete.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(admin)# show install request</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install operation 3 '(admin) install activate disk0:hrf-pk-4.3.99.CSCub69429-0.0.3.1 issu' started by user 'lab' via CLI at 13:10:18 PST Fri Aug 26 2011. Phase in progress: load Phase started by 'lab' at 13:12:15 PST Fri Aug 26 2011. The operation is 16% complete The operation can still be aborted. Abort Status: Method: standby reload Impact: hitless</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>show install issu stage</td>
<td>Displays the current stage of the running ISSU process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(admin)# show install issu stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thu Dec 8 16:09:48.397 UTC Current State : LOAD phase done (Load phase</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Verifying ISSU Status: Examples

With the power and flexibility of the prompted ISSU process comes the need to check on the upgrade progress and assess which phase is currently underway, or awaiting. Use the `show install request` command to provide useful feedback and information, including the percentage complete for the current operation.

```plaintext
RP/0/RP0/CPU0:router(admin)# show install request
Install operation 3 '(admin) install activate
disk0:hfr-p-4.1.2.081.CSCtr82128-1.0.0 issu' started by user 'lab' via CLI at
Phase in progress: load Phase started by 'lab' at 13:12:15 PST Fri Aug 26 2011.
The operation is 16% complete
The operation can still be aborted. Abort Status:

 Method: standby reload
 Impact: hitless

Use the `show install issu stage` command to determine which stage of ISSU is currently operational. This example shows that the `Load` phase is running:

```plaintext
RP/0/RP0/CPU0:router(admin)# show install issu stage
Thu Dec  8 16:09:48.397 UTC
Current State : LOAD phase done (Load phase done)
Status : 31% Completed
Participating nodes : 0
Nodes in progress : 0
```

Sample output, when the `Run` phase is underway appears similar to that in this example:

```plaintext
RP/0/RP0/CPU0:router(admin)# show install issu stage
Thu Dec  8 16:50:08.815 UTC
Current State : RUN (Run phase done)
```
Status : 88% Completed
Participating nodes : 0
Nodes in progress : 0

This example shows sample output from the `show install request` command after ISSU has completed:

```
RP/0/RP0/CPU0:router(admin)# show install request
Thu Dec 8 16:56:14.551 UTC
There are no install requests in operation.
```

This example provides output from the `show install request` command after the Load phase completes and the system is waiting for user input to begin the next phase. It provides instructions on how to initiate the next phase.

```
RP/0/RP0/CPU0:router@admin)# show install request
Install operation 3 '(admin) install activate disk0:hfr-p-4.1.2.08I.CSCtr82128-1.0.0 issu'
started by user 'lab' via CLI at 13:10:18 PST Fri Aug 26 2011.
Last phase completed: load
Info: The following operation will continue the activation.
Info: (admin) install operation 3 run
The operation is 42% complete
The operation can still be aborted.
Abort Status:
  Method: standby reload
  Impact: hitless
```

This example shows sample output about the current iMDR stage:

```
RP/0/RP0/CPU0:router# show imdr stage current info location 0/3/CPU0
```

This example shows sample output about all iMDR stages being run:

```
RP/0/RP0/CPU0:router# show imdr stage all info location 0/3/CPU0
```
<table>
<thead>
<tr>
<th>Location 0/3/CPU0 Stage Cfg_Dwnld_2</th>
<th>Nov 29 09:13:47.008 Nov 29 09:13:59.328</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientName</td>
<td>JobId</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>g_spa_1</td>
<td>203</td>
</tr>
<tr>
<td>g_spa_0</td>
<td>202</td>
</tr>
<tr>
<td>mpla_io_ea</td>
<td>272</td>
</tr>
</tbody>
</table>

Location 0/3/CPU0 Stage Rt_Dwnld_1 has no client registered

<table>
<thead>
<tr>
<th>Location 0/3/CPU0 Stage Rt_Dwnld_2</th>
<th>Nov 29 09:13:47.013 Nov 29 09:15:04.930</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientName</td>
<td>JobId</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>fib_mgr</td>
<td>182</td>
</tr>
<tr>
<td>aib</td>
<td>111</td>
</tr>
</tbody>
</table>

Location 0/3/CPU0 Stage Rt_Dwnld_3

<table>
<thead>
<tr>
<th>Location 0/3/CPU0 Stage NSF_Pause</th>
<th>Nov 29 09:13:59.331</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClientName</td>
<td>JobId</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------</td>
</tr>
<tr>
<td>l2fib_mgr</td>
<td>253</td>
</tr>
</tbody>
</table>

Location 0/3/CPU0 Stage NSF_Update

<table>
<thead>
<tr>
<th>Group 1 --</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 Tier 1** --</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>ClientName</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>fib_mgr</td>
</tr>
<tr>
<td>sip_jacket</td>
</tr>
<tr>
<td>fialc</td>
</tr>
</tbody>
</table>

Group 1 Tier 2 --

<table>
<thead>
<tr>
<th>ClientName</th>
<th>JobId</th>
<th>InstName</th>
<th>Request</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>insthelper</td>
<td>64</td>
<td>ISA_PARTIAL</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Group 1 Tier 4

<table>
<thead>
<tr>
<th>ClientName</th>
<th>JobId</th>
<th>InstName</th>
<th>Request</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>sip_jacket</td>
<td>321</td>
<td>SPA_INFRA_N</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>QFPUPBridge_main</td>
<td>209</td>
<td>QFP_CPU_Bri</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cpp_driver0</td>
<td>147</td>
<td>CPP_DRV_IMD</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>cpp_driver1</td>
<td>148</td>
<td>CPP_DRV_IMD</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

Location 0/3/CPU0 Stage NSF_Update

<table>
<thead>
<tr>
<th>Group 1 --</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1 Tier 1** --</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>ClientName</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>sip_jacket</td>
</tr>
<tr>
<td>mgid_prgm</td>
</tr>
</tbody>
</table>

Group 1 Tier 2 --

<table>
<thead>
<tr>
<th>ClientName</th>
<th>JobId</th>
<th>InstName</th>
<th>Request</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>QFPUPBridge_main</td>
<td>209</td>
<td>QFP_CPU_Bri</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>mpla_io_ea</td>
<td>272</td>
<td>mpla_io_imd</td>
<td>Nov 29 09:13:47.363</td>
<td></td>
</tr>
</tbody>
</table>
Committing the Active Package Set

When a package is activated, it becomes part of the current running configuration. To make the package activation persistent across system-wide reloads, enter the `install commit` command. On startup, the DSDRSC of the SDR loads this committed software set. If the system is reloaded before the current active software is committed with the `install commit` command, the previously committed software set is used.

<table>
<thead>
<tr>
<th>ClientName</th>
<th>JobId</th>
<th>InstName</th>
<th>Request</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpp_driver0</td>
<td>147</td>
<td>CPP_DRV_IMD</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>cpp_driver1</td>
<td>148</td>
<td>CPP_DRV_IMD</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Group 1 Tier 4

<table>
<thead>
<tr>
<th>ClientName</th>
<th>JobId</th>
<th>InstName</th>
<th>Request</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>sip_jacket</td>
<td>321</td>
<td>SPA_INFRA_N</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Location 0/3/CPU0

<table>
<thead>
<tr>
<th>ClientName</th>
<th>JobId</th>
<th>InstName</th>
<th>Request</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>sip_jacket</td>
<td>321</td>
<td>JACKET_IMDR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>QFPCPUBridge_main</td>
<td>209</td>
<td>QFP_CPU_Bri</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>cpp_plu_offload_svr</td>
<td>152</td>
<td>CPP_PLU_OFF</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>cpp_sp_svr</td>
<td>154</td>
<td>CPP_SP_IMDR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>cpp_cp_svr</td>
<td>145</td>
<td>CPP_CP_IMDR</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>cpp_ha_top_level_ser</td>
<td>151</td>
<td>CPP_HA_IMDR</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Group 1 Tier 1

<table>
<thead>
<tr>
<th>ClientName</th>
<th>JobId</th>
<th>InstName</th>
<th>Request</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>sip_jacket</td>
<td>321</td>
<td>SPA_INFRA_N</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Group 6

<table>
<thead>
<tr>
<th>ClientName</th>
<th>JobId</th>
<th>InstName</th>
<th>Request</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>mgid_prgrm</td>
<td>350</td>
<td>MGID NSF BL</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Group 7

<table>
<thead>
<tr>
<th>ClientName</th>
<th>JobId</th>
<th>InstName</th>
<th>Request</th>
<th>Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>l2fib_mgr</td>
<td>253</td>
<td>vkg_cpp_l2f</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>cpp_preroute</td>
<td>153</td>
<td>preroute_IM</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>bundlemgr_adj</td>
<td>124</td>
<td>vkg_bmp.IMD</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>fib_mgr</td>
<td>182</td>
<td>fib_mgrpd2</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Committing the Active Package Set

When a package is activated, it becomes part of the current running configuration. To make the package activation persistent across system-wide reloads, enter the `install commit` command. On startup, the DSDRSC of the SDR loads this committed software set. If the system is reloaded before the current active software is committed with the `install commit` command, the previously committed software set is used.
If the SDR reloads and the committed SDR software is incompatible with the current software running on the rest of the system, the committed software of the SDR will not be used and the current running SDR software is used.

If the system is reloaded before the current active software is committed with the `install commit` command, the previously committed software set is used.

Tip

Before committing a package set, verify that the SDR is operating correctly and is forwarding packets as expected.

SUMMARY STEPS

1. `admin`
2. `install commit`
3. `show install committed [detail | summary | verbose] [location node-id]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router# admin</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 install commit</td>
<td>Commits the current set of packages on the router so that these packages are used if the router is restarted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(admin)# install commit</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 show install committed [detail</td>
<td>summary</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(admin)# show install committed</code></td>
<td></td>
</tr>
</tbody>
</table>

Examples

Committing the Active Package Set: Example

In the following example, the active software packages are committed on all SDRs in the router:

```
RP/0/RP0/CPU0:router(admin)# install commit
```
Install operation 16 'install commit' started by user 'lab' at 19:18:58 UTC Sat Apr 08 2009.
Install operation 16 completed successfully at 19:19:01 UTC Sat Apr 08 2009.

Displaying the Committed Package Versions: Example

In the following example, the committed packages are shown for the owner SDR:

RP/0/RP0/CPU0:router# show install committed

Secure Domain Router: Owner

Node 0/1/SP [SP] [SDR: Owner]
 Boot Image: /disk0/hfr-os-mbi-3.3.30/sp/mbihfr-sp.vm
 Committed Packages:
 disk0:hfr-diags-3.3.30
 disk0:comp-hfr-mini-3.3.30

Node 0/1/CPU0 [LC] [SDR: Owner]
 Boot Image: /disk0/hfr-os-mbi-3.3.30/lc/mbihfr-lc.vm
 Committed Packages:
 disk0:hfr-diags-3.3.30
 disk0:comp-hfr-mini-3.3.30

Node 0/6/SP [SP] [SDR: Owner]
 Boot Image: /disk0/hfr-os-mbi-3.3.30/sp/mbihfr-sp.vm
 Committed Packages:
 disk0:hfr-diags-3.3.30
 disk0:comp-hfr-mini-3.3.30

Node 0/6/CPU0 [LC] [SDR: Owner]
 Boot Image: /disk0/hfr-os-mbi-3.3.30/lc/mbihfr-lc.vm
 Committed Packages:
 --More--

As with the show install active command, the show install committed command may display a composite package that represents all packages in the Cisco IOS XR Unicast Routing Core Bundle.

Upgrading to Cisco IOS XR Software Release 4.0

In Cisco IOS XR Software Release 4.0, the software packages were reorganized into functionally well-defined and independently-releasable packages. For this reason, when you upgrade from a software release prior to Release 4.0, you must perform the following procedure in order to synchronize all of the software packages according to the reorganized structure. General information regarding the addition and activation of software packages is not covered in this procedure.

The main difference between the standard upgrade procedure and the procedure required to upgrade from Release 3.x to 4.x is that the later requires the addition of one additional software package, known as the upgrade package (hfr-upgrade-p.pie).

Before You Begin

Before performing this procedure, see the adding and activating software package procedures described in this module.
SUMMARY STEPS

1. **admin**
2. **install add** `tftp://hostname_or_ipaddress/directory-path/mandatory-bundle-pie`
3. **install add** `tftp://hostname_or_ipaddress/directory-path/hfr-upgrade-p.pie`
4. **install activate** `device:mandatory-bundle-pie device:upgrade-package`
5. **install deactivate** `device:upgrade-package`
6. **install deactivate** `device:upgrade-package` (Optional)
7. **install remove** `device:upgrade-package`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# admin</td>
</tr>
<tr>
<td>Step 2 install add <code>tftp://hostname_or_ipaddress/directory-path/mandatory-bundle-pie</code></td>
<td>Unpacks the mandatory bundle PIE file from a network server and adds the package file to the boot device of the router. Note Refer to the standard procedure to add and activate packages to see other options of PIE file locations and a description of the various arguments for the install add command.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# install add tftp://10.1.1.1/auto/tftpboot/usr/400/hfr-mini-p.pie</td>
</tr>
<tr>
<td>Step 3 install add <code>tftp://hostname_or_ipaddress/directory-path/hfr-upgrade-p.pie</code></td>
<td>Unpacks the upgrade PIE file from a network server and adds the package file to the boot device of the router.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# install add tftp://10.1.1.1/auto/tftpboot/usr/400/hfr-upgrade-p.pie</td>
</tr>
<tr>
<td>Step 4 install activate <code>device:mandatory-bundle-pie</code> <code>device:upgrade-package</code></td>
<td>Activates the package that was added to the router together with the upgrade package. Note The bundle of mandatory packages and the upgrade bundle are activated together to perform the successful upgrade from release 3.x to 4.x.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# install activate disk0:hfr-mini-p-4.0.0 disk0:hfr-upgrade-p-4.0.0</td>
</tr>
<tr>
<td>Step 5 install deactivate <code>device:upgrade-package</code></td>
<td>Deactivates the upgrade package on the router. For specific information regarding the deactivation and removal of software packages, refer to the general procedure.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# install deactivate disk0:hfr-upgrade-p-4.0.0</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>6</td>
<td>install commit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(admin)# install commit</td>
</tr>
<tr>
<td>7</td>
<td>install remove device:upgrade-package</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(admin)# install remove disk0:hfr-upgrade-p-4.0.0</td>
</tr>
</tbody>
</table>

The following example illustrates the upgrade operation:

```
RP/0/RP0/CPU0:router(admin)# install add /tftp://223.255.254.254/auto/tftpboot/users/user/hfr-mini-p.pie
Fri Jul  9 03:53:11.052 UTC
RP/0/RP1/CPU0:Jul 9 03:53:12.053 :
instdir[235]: %INSTALL-INSTMGR-6-INSTALL_OPERATION_STARTED :
  Install operation 4 (admin) install add
  /tftp://223.255.254.254/auto/tftpboot/users/user/hfr-mini-p.pie'
  started by user 'lab'
  Install operation 4 (admin) install add
  /tftp://223.255.254.254/auto/tftpboot/users/user/hfr-mini-p.pie'
  started by user 'lab' via CLI at 03:53:12 UTC Fri Jul 09 2010.
The install operation will continue asynchronously.
RP/0/RP0/CPU0:router(admin)#
Info: The following package is now available to be activated:
Info: disk0:hfr-mini-p-4.0.0
Info: The package can be activated across the entire router.
RP/0/RP1/CPU0:Jul  9 04:32:26.152 :
instdir[235]: %INSTALL-INSTMGR-6-INSTALL_OPERATION_COMPLETED_SUCCESSFULLY :
Info: Install operation 4 completed successfully
Info: The following package is now available to be activated:
Info: disk0:hfr-mini-p-4.0.0
Info: The package can be activated across the entire router.
RP/0/RP0/CPU0:router(admin)# install add /tftp://223.255.254.254/auto/tftpboot/users/user/hfr-mpls-p.pie
Fri Jul  9 05:07:52.237 UTC
RP/0/RP1/CPU0:Jul 9 05:07:53.710 :
instdir[235]: %INSTALL-INSTMGR-6-INSTALL_OPERATION_STARTED :
Info: Install operation 5 (admin) install add
Info: started by user 'lab'
Info: Install operation 5 (admin) install add
Info: started by user 'lab' via CLI at 05:07:53 UTC Fri Jul 09 2010.
Info: The install operation will continue asynchronously.
RP/0/RP0/CPU0:router(admin)#
Info: The following package is now available to be activated:
Info: disk0:hfr-mpls-p-4.0.0
Info: The package can be activated across the entire router.
RP/0/RP1/CPU0:Jul 9 05:09:08.854 :
instdir[235]: %INSTALL-INSTMGR-6-INSTALL_OPERATION_COMPLETED_SUCCESSFULLY :
Info: Install operation 5 completed successfully
Info: The following package is now available to be activated:
Info: disk0:hfr-mpls-p-4.0.0
Info: The package can be activated across the entire router.
RP/0/RP0/CPU0:router# install add /tftp://223.255.254.254/auto/tftpboot/users/user/hfr-upgrade-p.pie
Fri Jul  9 05:10:31.133 UTC
RP/0/RP1/CPU0:Jul 9 05:10:32.156 :
instdir[235]: %INSTALL-INSTMGR-6-INSTALL_OPERATION_STARTED :
Info: Install operation 6 (admin) install add
```
Info: started by user 'lab'
Info: Install operation 6 '(admin) install add
Info: started by user 'lab' via CLI at 05:10:32 UTC Fri Jul 09 2010.
Info: The install operation will continue asynchronously.
RP/0/RP0/CPU0:router(admin)#RP/0/RP1/CPU0:
Jul 9 05:11:55.634 : instdir[(235]:
%INSTALL-INSTMGR-6-INSTALL_OPERATION_COMPLETED_SUCCESSFULLY :
Info: Install operation 6 completed successfully
Info: The following package is now available to be activated:
Info: disk0:hfr-upgrade-p-4.0.0
Info: This package can be activated across the entire router.
Info: Install operation 6 completed successfully at 05:11:55 UTC Fri Jul 09 2010.
RP/0/RP0/CPU0:router(admin)# install activate disk0:hfr-mini-p-4.0.0 disk0:hfr-upgrade-p-4.0.0
disk0:hfr-mpls-p-4.0.0
Fri Jul 9 05:23:23.150 UTC
Install operation 7 '(admin) install activate disk0:hfr-mini-p-4.0.0
Info: disk0:hfr-upgrade-p-4.0.0 disk0:hfr-mpls-p-4.0.0'
Info: started by user 'lab'RP/0/RP1/CPU0:Jul 9 05:23:24.161 : instdir[(235]:
%INSTALL-INSTMGR-6-INSTALL_OPERATION_STARTED :
Info: Install operation 7 '(admin) install activate disk0:hfr-mini-p-4.0.0
Info: disk0:hfr-upgrade-p-4.0.0 disk0:hfr-mpls-p-4.0.0'
Info: started by user 'lab' via CLI at 05:23:24 UTC Fri Jul 09 2010. 1% complete:
Info: The operation can still be aborted (ctrl-c for options)
Info: This operation will reload the following nodes in parallel:
Info: 0/RP1/CPU0 (HRP) (SDR: Owner)
Info: 0/SMD0/SP (Fabric-SP) (Admin Resource)Proceed with this install operation (y/n)?
[y] 1% complete: The operation can still be aborted (ctrl-c for options)
Info: Install Method: Parallel Reload/ 1% complete: The operation can still be aborted
[ctrl-c for options)
Info: The install operation will continue asynchronously.
RP/0/RP0/CPU0:router(admin)#SP/0/SM0/SP:
Jul 9 05:36:41.152 : insthelper[(62]:
%INSTALL-INSTMGR-6-INSTALL_OPERATION_COMPLETED_SUCCESSFULLY :
%INSTALL-INSTMGR-6-INSTALL_OPERATION_COMPLETED_SUCCESSFULLY :
Info: Install operation 7 completed successfully
Info: change using the following commands:
Info: show system verify
Info: install verify packages
Info: Install operation 7 completed successfully at 05:36:43 UTC Fri Jul 09 2010.
rebooting Initializing DDR SDRAM...found 4096 MB
Initializing ECC on bank 0
Initializing ECC on bank 1
Initializing ECC on bank 2
Initializing ECC on bank 3
Turning off data cache, using DDR for first time
Initialzing NVRAM...Testing a portion of DDR SDRAM...done
Reading ID EEPROMs Initializing SQUID ...
Initializing PCI ...PCI0 device[1]: Vendor ID 0x100ePCI0 device[1]: Device ID 0x300ePCI1 device[1]:
Device ID 0x1100PCI1 device[1]: Vendor ID 0x1013PCI1 device[2]: Device ID 0x680PCI1 device[2]:
Vendor ID 0x1095PCI1 device[3]: Device ID 0x5618PCI1 device[3]: Vendor ID 0x14e4 Configuring
MPPs ...
Configuring FCMA/1 slota ...System Bootstrap, Version 1.53(20090311:225342) [CRS-1 ROMMON],
Copyright (c) 1994-2009 by Cisco Systems, Inc.
Acquiring backplane mastership ... successful
Preparing for fan initialization........... ready
Setting fan speed to 4000 RPMs successfulReading backplane EEPROM ...
Released backplane mastership ...Board type is 0x100002 (1048578)
Switch 0 initialized
Switch 0 Port fe1: link up (100Mb Full Duplex Copper)
Enabling watchdogG4(7457-NonSMP-MV64360 Rev 3) platform with 4096 MB of main memory....
CARD_RACK_NUMBER: 0 CARD_SLOT_NUMBER: 1 CPU_INSTANCE: 1
RACK_SERIAL_NUMBER: TBC08052402
MBI Validation starts ... using Control Plane Ethernet.
DEBUG: Driving up signal strength for Intel LXT971
Our MAC address is 0005.9a3e.89da
Interface link changed state to UP.
Interface link state up.
MBI validation sending request.
HIT CTRL-C to abort
No MBI confirmation received from dSCboot: booting from bootflash:disk0/hfr-os-mbi-4.0.0/mbihfr-rp.vm

Restricted Rights Legend
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.
cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706
Cisco IOS XR Software for the Cisco XR Router, Version 4.0.0 Copyright (c) 2010 by Cisco Systems, Inc.

Jul 09 05:39:21.334 : Install (Node Preparation): Booting with software activated by previous install operation, errno=2
RP/0/RP1/CPU0: Jul 9 05:44:45.941: syslogd_helper: [89]: dsc_event_handler: Got SysMgr dSC event : 1
RP/0/RP1/CPU0: Jul 9 05:45:11.354 : shelfmgr[306]: %PLATFORM-SHELFMRG-3-POWERDOWN_RESET : Node 0/2/SP is powered off due to admin power off request ios con0/RP1/CPU0 is now available Press RETURN to get started.
RP/0/RP1/CPU0: Jul 9 05:45:27.453 : instdir[216]: %INSTALL-INSTMGR-4-ACTIVE_SOFTWARE_COMMITTED_INFO : The currently active software is not committed. If the system reboots then the committed software will be used. Use 'install commit' to commit the active software. SYSTEM CONFIGURATION IN PROCESS The startup configuration for this device is presently loading. This may take a few minutes. You will be notified upon completion. Please do not attempt to reconfigure the device until this process is complete.
User Access Verification
Username: labPassword:
RP/0/RP0/CPU0:router# admin
Fri Jul 9 05:45:55.941 UTC
RP/0/RP0/CPU0:router(admin)# show platform

Fri Jul 9 05:45:59.805 UTC
Node Type Config State
Config PLIM State
SP
N/A UNPOWERED NPWR,NSSHUT,MON
0/2/SP MSC(SP) N/A IOS XR RUN PWR,NSSHUT,MON
0/RP1/CPU0 RP(Active) N/A MBI-RUNNING PWR,NSSHUT,MON
0/SM0/SP FC-40G/S(SP) N/A MBI-RUNNING PWR,NSSHUT,MON
0/SM1/* UNKNOWN N/A MBI-RUNNING PWR,NSSHUT,MON

RP/0/RP1/CPU0:ios(admin)#
RP/0/RP1/CPU0: Jul 9 05:46:08.411 : instdir_lr[217]: %INSTALL-INSTMGR-4-ACTIVE_SOFTWARE_COMMITTED_INFO : The currently active software is not committed. If the system reboots then the committed software will be used. Use 'install commit' to commit the active software.
RP/0/RP1/CPU0: Jul 9 05:50:49.918 : placed[283]: LR-PLANE-READY DECLARATION SYSTEM CONFIGURATION COMPLETED
RP/0/RP1/CPU0: Jul 9 05:50:57.293 : ifmgr[213]: %PKT_INFRA-LINK-3-UPDOWN : Interface MgmtEth0/RP1/CPU0/0, changed state to Down
RP/0/RP1/CPU0: Jul 9 05:50:57.313 : ifmgr[213]: %PKT_INFRA-LINK-3-UPDOWN : Interface MgmtEth0/RP1/CPU0/0, changed state to Down
Interface MgmtEth0/RP1/CPU0/0, changed state to Up
RP/0/RP0/CPU0:router(admin)# show platform

Fri Jul 9 05:59:36.266 UTC
Node Type PLIM State Config State

0/2/SP MSC(SP) N/A UNPOWERED NPWR, NSHUT, MON
0/RP1/CPU0 RP(Active) N/A IOS XR RUN PWR, NSHUT, MON
0/SM0/SP FC-40G/S(SP) N/A IOS XR RUN PWR, NSHUT, MON
0/SM1/* UNKNOWN N/A PRESENT PWR, NSHUT, MON

RP/0/RP0/CPU0:router(admin)# install commit

Fri Jul 9 05:59:41.851 UTC
Install operation 8 '(admin) install commit' started by user 'lab' via CLI at 05:59:43 UTC Fri Jul 09 2010.
20% complete: The operation can no longer be aborted (ctrl-c for options) -
100% complete: The operation can no longer be aborted (ctrl-c for options)

RP/0/RP1/CPU0:Jul 9 05:59:46.402 : instdir[216]: %INSTALL-INSTMGR-4-ACTIVE_SOFTWARE_COMMITTED_INFO : The currently active software is now the same as the committed software.
Install operation 8 completed successfully at 05:59:46 UTC Fri Jul 09 2010.

RP/0/RP0/CPU0:router(admin)# install deactivate disk0:
hfr-upgrade-p-4.0.0

Fri Jul 9 05:59:58.082 UTC
Install operation 9 '(admin) install deactivate disk0:hfr-upgrade-p-4.0.0' started by user 'lab' via CLI at 05:59:59 UTC Fri Jul 09 2010.
1% complete: The operation can still be aborted (ctrl-c for options) -
Info: The changes made to software configurations will not be persistent
Info: across system reboots. Use the command '(admin) install commit' to
Info: make changes persistent.
Info: Please verify that the system is consistent following the software
Info: change using the following commands:
Info: show system verify

Instdir[216]: %INSTALL-INSTMGR-4-ACTIVE_SOFTWARE_COMMITTED_INFO : The currently active software is not committed. If the system reboots then the committed software will be used.
Use 'install commit' to commit the active software.
Install operation 9 completed successfully at 06:01:45 UTC Fri Jul 09 2010.

RP/0/RP0/CPU0:router(admin)# install remove disk0:
hfr-upgrade-p-4.0.0

Fri Jul 9 06:04:57.676 UTC
Install operation 11 '(admin) install remove disk0:hfr-upgrade-p-4.0.0' started by user 'lab' via CLI at 06:04:58 UTC Fri Jul 09 2010.
1% complete: The operation can no longer be aborted (ctrl-c for options)
Info: This operation will remove the following packages:
Deactivating and Removing Cisco IOS XR Software Packages

When a package is deactivated, it is no longer active on the SDR, but the package files remain on the boot disk. The package files can be reactivated later, or they can be removed from the disk.

A package is deactivated using the following methods:

- When a newer version of a package is activated, the earlier version of the package is automatically deactivated. See Related Topics for more information.

 Note Activating a software maintenance upgrade (SMU) does not cause any earlier SMUs or the package to which the SMU applies to be automatically deactivated.

- When an earlier version of a package is activated, the newer version is deactivated automatically. See Related Topics for more information.

- A specific package is deactivated using the `install deactivate` command. This command turns off the package features for a card or card type.

Related Topics

- Activation and Deactivation Prerequisites, on page 53
- Adding and Activating Packages, on page 65
- Deactivating and Removing Cisco IOS XR Software Packages, on page 89
Before You Begin

The following are the restrictions when deactivating and removing Cisco IOS XR Software packages:

- A package cannot be deleted if it is part of the running or committed software of the SDR.
- A package cannot be deactivated if that package is required by another active package. When a deactivation is attempted, the system runs an automatic check to ensure that the package is not required by other active packages. The deactivation is permitted only after all compatibility checks have been passed.
- Router reloads: If the deactivation requires a router reload, a confirmation prompt appears. Use the `install deactivate` command with the prompt-level none keywords to automatically ignore any reload confirmation prompts and proceed with the package deactivation. The router reloads if required.
- Node reloads: If a software operation requires a node reload, the configuration register for that node should be set to autoboot. If the config-register for the node is not set to autoboot, then the system automatically changes the setting and the node reboots. A message describing the change is displayed.
- FPD versions must be compatible with the Cisco IOS XR software that is running on the router; if an incompatibility exists between an FPD version and the Cisco IOS XR software, the device with the field-programmable gate array (FPGA) may not operate properly until the incompatibility is resolved. For information on FPDs, including instructions to upgrade FPD images, see the Upgrading FPD Cisco IOS XR Software module of Cisco IOS XR Interface and Hardware Component Configuration Guide for the Cisco CRS Router.

SUMMARY STEPS

1. Connect to the console port and log in.
2. admin
3. `install deactivate { id | add-id | device : package } { location node-id |[test] [pause sw-change]}
4. (Optional) `show install inactive summary`
5. (Optional) `install verify packages`
6. exit
7. (Optional) `show system verify start`
8. (Optional) `show system verify [detail | report]`
9. admin
10. (Optional) `install commit`
11. (Optional) `install remove { id | add-id | device : package | inactive |[test]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Connect to the console port and log in. Establishes a CLI management session with the SDR. Connect to the console port for the active DSC. For more information on console connections, see Cisco IOS XR Getting Started Guide for the Cisco CRS Router.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td>admin</td>
</tr>
</tbody>
</table>
| | | Example:
| | | RP/0/RP0/CPU0:router# admin |
| 3 | install deactivate { id add-id | device : package } [location node-id] [test] [pause sw-change] | Deactivates a package on all SDRs.
- To deactivate all packages that were added in one or more specific install add operations, or specify packages by name, use the id add-id keyword and argument. The operation ID of an install add operation is indicated in the syslog displayed during the operation and in the output of the show install log command.
- Use the location node-id keyword and argument to deactivate the package for a specific node, if supported.
- Use the pause sw-change keywords to pause the operation after preparatory checks and before the configuration is locked for the actual deactivation. This enables you to hold the operation while you perform configuration changes, and proceed with the deactivation whenever you choose. This is useful, for example, if your workflow involves configuring a router out of the network during software changes and you want to minimize the time that the router is out of the network. Follow the onscreen instructions to control the pausing and completion of the operation.

Note Press ? after a partial package name to display all possible matches available for deactivation. If there is only one match, press [TAB] to fill in the rest of the package name. When a package is deactivated for an SDR from administration EXEC mode, a notification message appears on the console for that SDR, with information on the impact of the deactivation. |
| 4 | show install inactive summary | (Optional) Displays the inactive packages on the router.
Example:
RP/0/RP0/CPU0:router(admin)# show install inactive summary |
| 5 | install verify packages | (Optional) Verifies the consistency of an installed software set with the package file from which it originated. This command can be used as a debugging tool to verify the validity of the files that constitute the packages, to determine if there are any corrupted files. This command also checks for corruptions of installation state files and MB1 image files. This command is particularly useful when issued after the activation of a package or upgrading the Cisco IOS XR software to a major release.
Note The install verify packages command can take up to two minutes per package to process.
Example:
RP/0/RP0/CPU0:router(admin)# install verify packages |
<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits administration EXEC mode and returns to EXEC mode.</td>
</tr>
</tbody>
</table>

Example:
```
RP/O/RP0/CPU0:router(admin)# exit
```

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show system verify start</td>
<td>(Optional) Starts the system status check.</td>
</tr>
</tbody>
</table>

Example:
```
RP/O/RP0/CPU0:router# show system verify start
```

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show system verify [detail</td>
<td>report]</td>
</tr>
</tbody>
</table>

- **detail**—Displays additional information at the card and processor level, including actual numbers.
- **report**—Displays the same information as the default `show system verify` command

Note Although most of the output should display the status “OK,” some processes may show other output, such as “Warning.” This does not specifically indicate a problem. Contact your Cisco technical support representative for more information on the output of this command.

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
</tbody>
</table>

Example:
```
RP/O/RP0/CPU0:router# admin
```

<table>
<thead>
<tr>
<th>Step 10</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>install commit</td>
<td>(Optional) Commits the current set of packages so that these packages are used if the router is restarted. Packages can be removed only if the deactivation operation is committed.</td>
</tr>
</tbody>
</table>

Note This command is entered in administration EXEC mode.

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>install remove { id add-id</td>
<td>device : package</td>
</tr>
</tbody>
</table>

- Only inactive packages can be removed.
- Packages can be removed only if they are deactivated from all cards in all SDRs.
- The package deactivation must be committed.
- To remove a specific inactive package from a storage device, use the `install remove` command with the `device: package` arguments.
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• To remove all packages that were added in one or more specific install add operations, use the id add-id keyword and argument. The operation ID of an install add operation is indicated in the syslog displayed during the operation and in the output of the show install log command. If you specify packages according to operation ID, all the packages that were added by the specified operation must still be on the router.</td>
<td></td>
</tr>
<tr>
<td>• To remove all inactive packages from all nodes in the system, use the install remove command with the inactive keyword.</td>
<td></td>
</tr>
<tr>
<td>• To remove packages from all SDRs, use the install remove command in administration EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Adding and Activating Packages, on page 65
- Committing the Active Package Set, on page 81
- Committing the Active Package Set, on page 81

Examples

In the following examples, a package is deactivated from all SDRs in a router. The changes are committed and the inactive package is removed from the router.

Deactivating the Package: Example

```
RP/0/RP0/CPU0:router(admin)# install deactivate disk0:hfr -diags=.7.2
Install operation 27 'install deactivate disk0:hfr-diags-3.7.2' started by user 'lab' at 23:29:37 UTC Sat Apr 15 2009.
The install operation will continue asynchronously.
Info: The changes made to software configuration
Info: across system reloads. Use the command 'admin install commit' to make
Info: changes persistent.
Info: Please verify that the system is consistent following the software
Info: change using the following commands:
Info: show system verify
Info: install verify packages
Install operation 27 completed successfully at 23:30:22 UTC Sat Apr 15 2009.
```

Committing the Active Software Set: Example

```
RP/0/RP0/CPU0:router(admin)# install commit
Install operation 29 'install commit' started by user 'lab' at 23:39:21 UTC Sat Apr 15 2009.
```
Displaying the Inactive Packages: Example

RP/0/RP0/CPU0:router(admin)# show install inactive summary

Default Profile:
SDRs:
Owner
Inactive Packages:
disk0:hfr-diags-3.7.2

Removing the Inactive Package from the Router: Example

The following example shows how to remove an inactive package. In this example, the operation is run in test mode. The operation is confirmed and the package is removed.

RP/0/RP0/CPU0:router(admin)# install remove disk0:hfr-diags-3.7.2 test

Install operation 30 'install remove disk0:hfr-diags-3.7.2 test' started by
user: 'lab' at 23:40:22 UTC Sat Apr 15 2009.
Warning: No changes will occur due to 'test' option being specified. The
Warning: following is the predicted output for this install command.
Info: This operation will remove the following package:
Info: disk0:hfr-diags-3.7.2
Info: After this install remove the following install rollback points will
Info: no longer be reachable, as the required packages will not be present:
Info: 4, 9, 10, 14, 15, 17, 18
Proceed with removing these packages? [confirm] y

The install operation will continue asynchronously.
Install operation 30 completed successfully at 23.

Pausing Before Configuration Lock: Example

The following example shows how to deactivate a package, pausing the operation before locking the configuration for the actual software deactivation. While the operation is paused, you can enter a configuration mode and perform configurations. When you want to complete the operation, enter the install operation id complete command, or the install operation id attach synchronous command.

RP/0/RP0/CPU0:router(admin)# install deactivate disk0:comp-hfr -3.7.2.071.CSCsr09575-1.0.0 pause sw-change

Install operation 12 '(admin) install deactivate
disk0:comp-hfr-3.7.2.071.CSCsr09575-1.0.0 pause sw-change'
started by user 'admin' via CLI at 09:06:26 BST Mon Jul 07 2009.
Info: This operation will reload the following nodes in parallel:
Info: 0/0/CPU0 (RP) (SDR: Owner)
Info: 0/1/CPU0 (LC(E3-GE-4)) (SDR: Owner)
Info: 0/5/CPU0 (LC(E3-OC3-POS-4)) (SDR: Owner)
Proceed with this install operation (y/n)? [y]
The install operation will continue asynchronously.
Info: Install Method: Parallel Reload
Info: Install operation 12 is pausing before the config lock is applied for
Info: the software change as requested by the user.
Info: No further install operations will be allowed until the operation is resumed.
Info: Please continue the operation using one of the following steps:
Info: - run the command '(admin) install operation 12 complete'.
Info: - run the command '(admin) install operation 12 attach synchronous' and then
Info: answer the query.
Rolling Back to a Previous Software Set

Cisco IOS XR software allows you to roll back one or more SDRs to a previous committed or uncommitted software set. Use the `show install rollback` command to view the available rollback points and use the `install rollback to` command to roll back the SDR to a previous software set. You can also use the `install rollback to committed` command to roll back to the most recent committed software set.

Note
Rollback operations can be performed for all SDRs by running the command in administration EXEC or for a single SDR by running the command in either administration EXEC or EXEC mode.

Displaying Rollback Points

A rollback point is created every time a software package is activated, deactivated, or committed. Use the `show install rollback` command to display the eligible rollback points.

```
RP/0/RP0/CPU0:router# admin
RP/0/RP0/CPU0:router(admin)# show install rollback ?
  0 ID of the rollback point to show package information for
  2 ID of the rollback point to show package information for
```

In this example, the rollback points are 0 and 2. The rollback point with the highest number is the current software point. For example, if the last installation operation was operation 3 (activating the MPLS package) then the highest rollback point is 3, which is the same as the current software (MPLS package activated).

To easily identify specific rollback points, you can assign a label or description to a rollback point using the `install label` command.

Enter the command in administration EXEC mode to display rollback points for all SDRs. Enter the command in EXEC mode to display rollback points for the SDR to which you are currently logged in. You can also display rollback points for a specific SDR in administration EXEC mode by using the `sdr sdr-name` keyword and argument.

Displaying the Active Packages Associated with a Rollback Point

To display the active packages associated with a rollback point, use the `show install rollback` command with the `point-id` argument. This command displays the packages that are active if you roll back one or more SDRs to that installation point. For example, the `show install rollback 2` command displays the packages that are active if you roll back to rollback point 2.

```
RP/0/RP0/CPU0:router(admin)# show install rollback 2
Secure Domain Router: Owner
Node 0/1/SP [GP] [SDR: Owner]
  Boot Image: /disk0/hfr-os-mbi-3.8.84/sp/mbihfr-sp.vm
Rollback Packages:
  disk0:hfr-diags-3.8.84
  disk0:comp-hfr-mini-3.8.84
```
Rolling Back to a Specific Rollback Point

You can roll back to a specific rollback point, including a noncommitted software set:

- If you roll back to the most recent noncommitted rollback point (with the highest number), you do not need to reload the router.

For more information on the command options, see the Software Package Management Commands on Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router.
• You can repeat the rollback process one rollback point at a time without reloading if you always choose the most recent rollback point.

• If you choose a rollback point that is older than the most recent point, the impacted nodes reload, interrupting data traffic on those nodes. Before the reload occurs, you are prompted to confirm the install rollback operation.

In the following example, the system is rolled back to noncommitted rollback point 8:

```
RP/0/RP0/CPU0:router(admin)# install rollback to 8
```

Install operation 10 'install rollback to 8' started by user 'cisco' at 07:49:26 UTC Mon Nov 14 2009.
The install operation will continue asynchronously.
Info: The changes made to software configurations will not be persistent
Info: changes persistent.
Info: Please verify that the system is consistent following the software
Info: change using the following commands:
Info: show system verify
Info: install verify packages

The currently active software is the same as the committed software.

Install operation 10 completed successfully at 07:51:24 UTC Mon Nov 14 2009.

Rolling Back to the Last Committed Package Set

Use the `install rollback to committed` command to roll back to the last committed package set.

In the following example, all SDRs in the system are rolled back to the last committed package set:

```
RP/0/RP0/CPU0:router(admin)# install rollback to committed
```

Install operation 27 'install rollback to committed' started by user 'lab' at 16:41:38 UTC Sat Nov 19 2009.
Info: The rollback to committed software will require a reload of impacted
Info: nodes because it is over multiple activation & deactivation
Info: operations.
Info: This operation will reload the following node:
Info: 0/RP1/CPU0 (RP) (SDR: Owner)
Info: This operation will reload all RPs in the Owner SDR, and thereby
Info: indirectly cause every node in the router to reload.

Proceed with this install operation? [confirm]

Updating Commit Database. Please wait...[OK]
Info: The changes made to software configurations will not be persistent
Info: changes persistent.
Info: Please verify that the system is consistent following the software
Info: change using the following commands:
Info: show system verify
Info: install verify packages

Additional References

The following sections provide references related to software package management on Cisco IOS XR software.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR install commands</td>
<td>Software Package Management Commands on the Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR getting started material</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR master command index</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>ROM Monitor</td>
<td>Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
CHAPTER 4

Configuring Disk Backups and Disk Mirroring on the Cisco IOS XR Software

This module describes the process to configure disk mirroring and create a backup disk of the packages and configurations in Cisco IOS XR software.

Note

The disk backup feature is also known as Golden Disk.

For complete descriptions of the commands listed in this module, see Related Documents, on page 118. To locate documentation for other commands that might appear in the course of performing a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

Table 9: Feature History for Disk Backups and Disk Mirroring for Cisco IOS XR Software

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.4.0</td>
<td>Backup disk creation was introduced.</td>
</tr>
<tr>
<td>Release 3.6.0</td>
<td>Disk mirroring was introduced.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Disk Backup Prerequisites, page 102
- Disk Mirroring Prerequisites, page 102
- Information About the Backup Disk, page 103
- Information About Disk Mirroring, page 103
- How to Create a Backup Disk, page 104
- How to Enable Disk Mirroring, page 107
- Configuration Examples for Creating a Backup Disk, page 113
- Configuration Examples for Enabling Disk Mirroring, page 116
Disk Backup Prerequisites

Before performing a system backup, the following conditions must be met:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- Local storage device specified for the backup must be installed. The supported storage devices are disk0: and disk1: (if installed).
- Disk mirroring must not be enabled.

Disk Mirroring Prerequisites

Before enabling disk mirroring, the following conditions must be met:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- The secondary storage device specified for the mirroring must be installed in the same node as the primary boot device. The supported storage devices are disk0: and disk1:.
- The secondary storage device must be the same size or larger than the designated primary storage device.
- The secondary storage device must be partitioned.
- After disk mirroring is enabled, you cannot configure the backup disk feature.

Note

The primary partition on the secondary storage device must be large enough to contain all data on the primary boot device. This can be an issue if the primary boot device has not yet been partitioned. For example, in the situation where both the primary boot device and the secondary storage device are 1 GB in size, the primary boot device contains 950 MB of data, and the secondary storage device is already partitioned to 800 MB in the primary partition and 200 MB in the secondary partition. In such a case, the 950 MB of data from the primary boot device does not fit on the secondary storage device because of the partition. Such a configuration is rejected and an error is displayed. You need to replace the secondary storage device with a higher capacity device. For information about disk partition sizes, see Related Topics.

Note

Although compactflash: can be used as the secondary device on a Performance Route Processor (PRP–2), there is an issue with the ROM Monitor not being able to boot the minimum boot image (MBI) from the secondary device if the device is not disk0: or disk1:. In such a situation, you would need to go into ROMMON mode and boot the PRP-2 manually using the MBI on the compactflash:.
Information About the Backup Disk

A system backup disk is created when you back up the system files to a local storage device for the first time. This process formats the selected device, and copies the software packages and system configurations to that device. If the backup operation is performed from EXEC mode, then the files from that specific secure domain router (SDR) are backed up. If the backup operation is performed from administration EXEC mode, then the files from the administration plane and from all SDRs are backed up.

Before you create a backup disk of the Cisco IOS XR software packages and configurations, you need to determine which device is being used as the primary boot device. The boot device is displayed using the following commands:

- `show version`
- `show install active`
- `show install committed`

See *Cisco IOS XR System Management Command Reference for the Cisco CRS Router* for information on using the commands to determine the boot device.

Information About Disk Mirroring

The route processor (RP) card has a primary storage device that is used to store installation packages and configuration files. This primary storage device is referred to as the primary boot device and is essential for booting the RP and its normal operation.

Disk mirroring replicates the critical data on the primary boot device onto another storage device on the same RP, henceforth referred to as the secondary device. If the primary boot device fails, applications continue to be serviced transparently by the secondary device, thereby avoiding a switchover to the standby RP. The failed primary storage device can be replaced or repaired without disruption of service.

Disk mirroring should only mirror critical data on the primary boot device onto a secondary storage device and not any noncritical data such as logging data. To separate critical data from noncritical data, the disk devices need to be partitioned. Disk0: is partitioned to disk0: and disk0a:; disk1: is partitioned to disk1: and disk1a:. Disk0: and disk1: are used for critical data, whereas disk0a: and disk1a: are used for logging data and other noncritical data. Before you can configure disk mirroring on the RP, you must have partitioned the secondary storage device. The sizes of disk partitions are related to the total disk size, and are provided in *Table 10: Size of Disk Partitions in Relation to Size of Disk*, on page 103.

Table 10: Size of Disk Partitions in Relation to Size of Disk

<table>
<thead>
<tr>
<th>Size of Disk</th>
<th>Primary Partition Percentage</th>
<th>Secondary Partition Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 900 MB</td>
<td>Partitioning not supported</td>
<td>Partitioning not supported</td>
</tr>
<tr>
<td>900 MB to 1.5 GB</td>
<td>80%</td>
<td>20%</td>
</tr>
<tr>
<td>1.5 GB to 3 GB</td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>more than 3 GB</td>
<td>50%</td>
<td>50%</td>
</tr>
</tbody>
</table>
How to Create a Backup Disk

Creating a New or Revised Backup Disk

Complete the following instructions to create a new backup disk, or to back up the most recent software and configuration files onto an existing backup disk.

Note

If disk mirroring is enabled, you will not be able to configure a backup disk.

SUMMARY STEPS

1. `admin`
2. (Optional) `show system backup [target-dev] [details | diff] [verify] [location {all | node-id}]`
3. (Optional) `system boot-sequence primary-device [secondary-device] [location {all | node-id}]`
4. `system backup [target-dev] [format] [location {all | node-id}] [synchronous | asynchronous]`
5. (Optional) `show system backup [target-dev] [details | diff] [verify] [location {all | node-id}]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# admin</td>
<td></td>
</tr>
<tr>
<td>Step 2 `show system backup [target-dev] [details</td>
<td>diff] [verify] [location {all</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show system backup disk1:</td>
<td></td>
</tr>
</tbody>
</table>

- `target-dev`—Displays backup information for a specified RP node.
- `details`—Lists information about the software packages and configuration files stored on the backup device.
- `diff`—Displays the differences between the software and configurations on the backup device and the software and configurations on the currently active boot disk.
- `location node-id`—Displays information for a backup on a specific node. Use the `location all` keywords to display information for backups on all nodes in the system.

If no backup exists, an error message is displayed.
Purpose

Command or Action

Step 3

```plaintext
system boot-sequence
  primary-device
  secondary-device [location {all | node-id}]
```

Example:

```
RP/0/RP0/CPU0:router(admin)#
system boot-sequence disk0: disk1:
```

Step 4

```plaintext
system backup [target-dev]
  [format] [location {all | node-id}]
  [synchronous | asynchronous]
```

Example:

```
RP/0/RP0/CPU0:router(admin)#
system backup disk0: disk1:
```

Purpose

(Optional)

Defines the order of local storage devices used to boot a router. Enter a value for the secondary device field to define the default location for system backups. If this field is left blank, the backup device can be defined with the `system backup` command, as shown in the next step.

- The boot devices specified in this command must be installed in the card, or the command will fail.
- `primary-device`—Defines the default device where software packages are installed and run. This device is also the default location for router configurations. We recommend disk0: as the primary boot device in the boot sequence.
- `secondary-device`—Defines the device used by the `system backup` command to back up system software and configurations. The value of the `secondary-device` argument must be different from the value of the `primary-device` argument. We recommend disk1: as the secondary boot device in the boot sequence. This field is optional.
- `location node-id`—Defines the boot sequence for a specific RP.
- `location all`—Defines the boot sequence for all RPs in the SDR. Use this command in administration EXEC mode to define the boot sequence for all RPs in all SDRs. The `node-id` argument is expressed in `rack/slot/module` notation.

Backs up the system software and configurations to a backup disk.

Use the `system backup` command without keywords or arguments to back up the system software and configurations on the target device for the designated secure domain router shelf controller (SDRSC) where you are logged in.

- By default, the backup disk is the secondary device defined with the `system boot-sequence` command in Step 3, on page 105.
- To define a backup device for the current backup operation only, use the `system backup` command with the `target-dev` argument.
- If a target device is not specified with either the `system backup target-dev` command or the `system boot-sequence` command, then the backup operation is not allowed.

Note

The `target-dev` argument can be any local storage device except the current boot device, and must be large enough to store the current software set and configuration.

- `location node-id`—Specifies an alternate node for the system backup, such as the standby DSDRSC.
- `location all`—Performs the backup on all RPs installed in a specific SDR, when used in EXEC mode; performs the backup on all RPs in all SDRs installed in the system, when used in administration EXEC mode.
- Default is `synchronous`.
Using the Backup Disk to Boot a Router

Complete the following instructions to use the backup disk to boot a router.

SUMMARY STEPS

1. Enter ROM Monitor mode.
2. `dir disk1:`
3. Locate the `hfr-os-mbi-X.Y.Z` directory.
4. `dir disk1: hfr -os-mbi-X.Y.Z`
5. Locate the `mbihfr-xx.vm` file.
6. `unset BOOT`
7. `sync`
8. `confreg 0x102`
9. `boot disk1: hfr -os-mbi-X.Y.Z/mbi hfr hfr`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enter ROM Monitor mode.</td>
</tr>
</tbody>
</table>

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show system backup [target-dev] [details</td>
<td>diff] [verify] [location {all</td>
</tr>
<tr>
<td></td>
<td>- target-dev—Displays backup information for a specified RP node.</td>
</tr>
<tr>
<td></td>
<td>- details—Lists information about the software packages and configuration files stored on the backup device.</td>
</tr>
<tr>
<td></td>
<td>- diff—Displays the differences between the software and configurations on the backup device and the software and configurations on the currently active boot disk.</td>
</tr>
<tr>
<td></td>
<td>- location node-id—Displays information for a backup on a specific node. Use the <code>location all</code> keywords to display information for backups on all nodes in the system.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# show system backup disk1:</td>
</tr>
<tr>
<td></td>
<td>If no backup exists, an error message is displayed.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>dir disk1:</td>
</tr>
<tr>
<td>Example:</td>
<td>rommon1> dir disk1:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Locate the hfr-os-mbi-X.Y.Z directory.</td>
<td>Identifies the directory on the disk1: storage device.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dir disk1: hfr-os-mbi-X.Y.Z</td>
<td>Displays the files in the hfr-os-mbi-X.Y.Z directory.</td>
</tr>
<tr>
<td>Example:</td>
<td>rommon2> dir disk1:hfr-os-mbi=3.8.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Locate the mbihfr-xx.vm file.</td>
<td>Identifies the file in the hfr-os-mbi-X.Y.Z directory.</td>
</tr>
<tr>
<td>Note</td>
<td>On the RP, xx = rp; on the DRP, xx = drp.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unset BOOT</td>
<td>Clears the setting for the BOOT variable.</td>
</tr>
<tr>
<td>Example:</td>
<td>rommon3> unset BOOT</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sync</td>
<td>Saves the new ROM Monitor variable settings.</td>
</tr>
<tr>
<td>Example:</td>
<td>rommon4> sync</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>confreg 0x102</td>
<td>Sets the configuration register to 0x102.</td>
</tr>
<tr>
<td>Example:</td>
<td>rommon5> confreg 0x102</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>boot disk1: hfr-os-mbi-X.Y.Z/mbihfr-hfr</td>
<td>Retrieves the file and installs it on the boot device.</td>
</tr>
<tr>
<td>Note</td>
<td>On the RP, xx = rp; on the DRP, xx = drp.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>rommon6> boot disk1:hfr-os-mbi=3.8.0/mbihfr-rp.vm</td>
<td></td>
</tr>
</tbody>
</table>

How to Enable Disk Mirroring

The tasks in this section describe how to enable and manage disk mirroring.

Enabling Disk Mirroring

Complete the following instructions to enable disk mirroring. After disk mirroring is configured, if there is a fault on the primary boot drive or it cannot be accessed for any reason, control is automatically transferred to the secondary storage device.
Disk mirroring overrides any existing disk backup configuration (Golden Disk), and subsequent disk backups fail.

SUMMARY STEPS

1. `format secondary-device partition [location node-id]`
2. Remove any noncritical data from the primary boot device.
3. `configure`
4. `mirror location node-id Primary-device Secondary-device`
5. `commit`
6. `show mirror [location node-id]`
7. `mirror verify location node-id`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Format <code>secondary-device partition [location node-id]</code></td>
<td>Partitions the secondary storage device into two partitions.</td>
</tr>
<tr>
<td>Example:</td>
<td>• If the device is already partitioned, you do not need to perform this step.</td>
</tr>
<tr>
<td>[RP/0/RP0/CPU0:]format disk1: partition</td>
<td>• On multishelf systems, specify the node of the primary boot device with the <code>location</code> keyword.</td>
</tr>
<tr>
<td></td>
<td>Note When you partition a FAT16 disk, the file system changes to FAT32.</td>
</tr>
<tr>
<td></td>
<td>If you might need to downgrade to Cisco IOS XR Software Release 3.7.0 or earlier, consider carefully before partitioning the disk.</td>
</tr>
<tr>
<td></td>
<td>Software downgrades to Cisco IOS XR Software Release 3.7.0 or earlier are not supported for FAT32 disks. The procedure for converting a FAT32 disk to FAT16 is complex and requires the assistance of Cisco technical support.</td>
</tr>
<tr>
<td>Step 2 Remove any noncritical data from the</td>
<td>The primary boot device should contain installation packages and configuration files only. Log files can be copied to the “a” partition of the secondary device, for example <code>disk1a:</code>.</td>
</tr>
<tr>
<td>primary boot device.</td>
<td></td>
</tr>
<tr>
<td>Step 3 Configure</td>
<td></td>
</tr>
<tr>
<td>Step 4 Mirror `location node-id Primary-device</td>
<td>Enables disk mirroring of the primary-device to the secondary-device. On multishelf systems, specify the node of the primary boot device with the <code>location</code> keyword.</td>
</tr>
<tr>
<td>Secondary-device`</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>If the primary boot device is not partitioned, the following occurs:</td>
</tr>
<tr>
<td>[RP/0/RP0/CPU0:]mirror location 0/rp 0/cpu0 disk0:disk1:</td>
<td>• The contents of the primary device are replicated to the secondary device</td>
</tr>
<tr>
<td></td>
<td>• Control of the mirroring server switches to the secondary storage device.</td>
</tr>
<tr>
<td></td>
<td>• The primary device is partitioned.</td>
</tr>
<tr>
<td></td>
<td>• Data is replicated back to the primary boot device.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
<tr>
<td>Step 6</td>
<td>show mirror [location node-id]
Example:
RP/0/RP0/CPU0:router# show mirror location 0/rp 0/cpu0</td>
</tr>
<tr>
<td></td>
<td>Displays disk mirroring information for an RP node. It also provides the status of the synchronization between the primary and secondary devices.
Use the location node-id keyword and argument to view the mirror status on other line card and fabric card chassis. The default display is the mirror status of the card to which the console is connected.</td>
</tr>
<tr>
<td>Step 7</td>
<td>mirror verify location node-id
Example:
RP/0/RP0/CPU0:router# mirror verify location 0/rp 0/cpu0</td>
</tr>
<tr>
<td></td>
<td>Verifies disk synchronization for disk mirroring on an RP node.</td>
</tr>
</tbody>
</table>

Replacing the Secondary Mirroring Device

Follow this procedure if you need to replace the secondary boot device used in the disk mirroring process.

SUMMARY STEPS

1. show mirror [location node-id]
2. mirror pause [location node-id]
3. show mirror [location node-id]
4. unmount secondary-device [location node-id]
5. Remove the device and insert a new device.
6. format secondary-device partition [location node-id]
7. show media [location node-id]
8. mirror resume [location node-id]
9. show mirror [location node-id]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show mirror [location node-id]
Example:
RP/0/RP0/CPU0:router# show mirror</td>
</tr>
<tr>
<td></td>
<td>Verifies that mirroring is active. In the output, the Current Mirroring State should be redundant.
Use the location node-id keyword and argument to view the mirror status on other line card and fabric card chassis. The default display is the mirror status of the card to which the console is connected.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Step 2</td>
<td>mirror pause [location node-id]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# mirror pause</td>
</tr>
<tr>
<td>Step 3</td>
<td>show mirror [location node-id]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# show mirror</td>
</tr>
<tr>
<td>Step 4</td>
<td>unmount secondary-device [location node-id]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# unmount disk1:</td>
</tr>
<tr>
<td>Step 5</td>
<td>Remove the device and insert a new device.</td>
</tr>
<tr>
<td>Step 6</td>
<td>format secondary-device partition [location node-id]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# format disk1: partition</td>
</tr>
<tr>
<td>Step 7</td>
<td>show media [location node-id]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# show media</td>
</tr>
<tr>
<td>Step 8</td>
<td>mirror resume [location node-id]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# mirror resume</td>
</tr>
<tr>
<td>Step 9</td>
<td>show mirror [location node-id]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# show mirror</td>
</tr>
</tbody>
</table>

Replacing the Primary Mirroring Device

In the event that your primary boot disk is defective and you need to replace it while disk mirroring is enabled, perform this task.
SUMMARY STEPS

1. show mirror [location node-id]
2. configure
3. mirror location node-id Primary-device Secondary-device
4. commit
5. show mirror [location node-id]
6. mirror pause [location node-id]
7. show mirror
8. unmount secondary-device [location node-id]
9. Remove the device and insert a new device.
10. show media [location node-id]
11. (Optional) format secondary-device partition [location node-id]
12. mirror resume [location node-id]
13. show mirror [location node-id]
14. configure
15. mirror location node-id Primary-device Secondary-device
16. show mirror [location node-id]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show mirror [location node-id]</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show mirror</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verifies that mirroring is in the redundant state. In the output, the Current Mirroring State should be redundant. If mirroring is not in the redundant state, you cannot proceed with the procedure. You must wait until mirroring is in the redundant state. Use the location node-id keyword and argument to view the mirror status on other line card and fabric card chassis. The default display is the mirror status of the card to which the console is connected.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure</td>
</tr>
<tr>
<td>Step 3</td>
<td>mirror location node-id Primary-device Secondary-device</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# mirror location 0/ RP0 /CPU0 disk1:disk0:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swaps the device roles such that the primary mirroring device now becomes the secondary device and the secondary mirroring device becomes the primary device.</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>
Replacing the Primary Mirroring Device

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5** | show mirror [location node-id] | Verifies that the primary device is now the secondary device and vice versa. In the output, if disk0 was the primary disk that you want to replace, it should now be listed as the secondary device. Example:
RP/0/RP0/CPU0:router# show mirror |
| **Step 6** | mirror pause [location node-id] | Temporarily pauses disk mirroring. Example:
RP/0/RP0/CPU0:router# mirror pause |
| **Step 7** | show mirror | Verifies that mirroring has paused. In the output, the *Current Mirroring State* should be paused. Example:
RP/0/RP0/CPU0:router# show mirror |
| **Step 8** | unmount secondary-device [location node-id] | Unmounts the secondary device which is the device that you want to replace. Initially, this was the primary device. Example:
RP/0/RP0/CPU0:router# unmount disk1: |
| **Step 9** | Remove the device and insert a new device. | |
| **Step 10** | show media [location node-id] | Verifies that the new disk is partitioned. You should see that the new device is mounted. If the new device is not partitioned, format the device as indicated in the next step. Example:
RP/0/RP0/CPU0:router# show media |
| **Step 11** | format secondary-device partition [location node-id] | (Optional) Formats the device. You only need to perform this step if the new device is not partitioned. Example:
RP/0/RP0/CPU0:router# format disk1: partition |
| **Step 12** | mirror resume [location node-id] | Resumes mirroring. Example:
RP/0/RP0/CPU0:router# mirror resume |
| **Step 13** | show mirror [location node-id] | Verifies that mirroring has restarted. In the output, the *Current Mirroring State* should be Syncing. It can take 15 to 30 minutes for the mirroring process to complete. The exact time depends on the number of packages or files on the boot device. When the mirroring is complete, the *Current Mirroring State* should be Redundant. Example:
RP/0/RP0/CPU0:router# show mirror |
| **Step 14** | configure | |
Purpose
Command or Action | Purpose
--- | ---
Step 15 | mirror location node-id Primary-device Secondary-device
Example:
RP/0/RP0/CPU0:router(config)# mirror location 0/ RP0 /CPU0 disk0:disk1:
Swaps the device roles back so that the newly inserted device becomes the primary device.

Step 16 | show mirror [location node-id]
Example:
RP/0/RP0/CPU0:router# show mirror
Verifies that the new device is now the primary device.

Configuration Examples for Creating a Backup Disk

Defining the Boot Disk Sequence: Example
The following example shows how to define the primary and secondary boot device for the active RP (or DSC). The secondary device is also the default location for system backups. In this example, the default location for software and configurations is disk0:. The location for backups of software and configurations is disk1:.

```plaintext
admin
system boot-sequence disk0: disk1:  
Info: node0_0_CPU0: command succeeded.
```

Creating a Backup Disk for All SDRs: Example
The following example shows how to back up the software and configuration files:

- The command is run in administration EXEC mode, which backs up both the administration and SDR configurations.

- The target device is defined by the value entered with the `system boot-sequence` command, as shown in Defining the Boot Disk Sequence: Example, on page 113.

- Because this is the first backup on the device, the disk is formatted.

```plaintext
admin
system backup location all  
Info: node0_0_CPU0: formatting target device  
Info: node0_1_CPU0: formatting target device
```
Creating a Backup Disk for a Single SDR: Example

In the following example, the backup disk is created for a non-owner SDR.

- The command is run in EXEC mode, which backs up only the current SDR files and configuration.
- The target device is defined as disk1:
- Because this is the first backup on the device, the disk is formatted.

```
system backup disk1:
```

Showing the Backup Information: Examples

In the following example, the `show system backup` command displays the status of the last system backup:

```
RP/0/RP0/CPU0:router# admin
RP/0/RP0/CPU0:router(admin)# show system backup
```

```
System Backup information for node0_0_CPU0 on disk1:
=================================================================
 Last Backup Successful
Backup started at Sat Jun 24 12:22:10 2009
 ended at Sat Jun 24 12:42:11 2009
 Verify started at Sat Jun 24 12:42:12 2009
 ended at Sat Jun 24 12:48:47 2009
BOOT_DEV_SEQ_CONF=disk0:;disk1: 
BOOT_DEV_SEQ_OPER=disk0:;disk1: 
```
In the following example, the `show system backup` command is entered with the `details` keyword to display additional information on the configuration and software package files stored on the backup device. Because this command is entered in administration EXEC mode, the backup information for both the administration and SDR configurations is displayed.

```
RP/0/RP0/CPU0:router(admin)# show system backup details
System Backup information for node0_0_CPU0 on disk1:
................................................................................................................................................
Last Backup Successful
Backup started at Sat Jun 24 12:22:10 2009
ended at Sat Jun 24 12:42:11 2009
Verify started at Sat Jun 24 12:42:12 2009
ended at Sat Jun 24 12:48:47 2009
BOOT_DEV_SEQ_CONF=disk0;;disk1:
BOOT_DEV_SEQ_OPER=disk0;;disk1:
Admin configuration last commit record on disk1:
Device Commitid Time Stamp
  disk1: 2000000010 23:07:59 UTC Fri Jun 09 2009
SDR configuration last commit record on disk1:
Device Commitid Time Stamp
  disk1: 1000000030 11:56:43 UTC Thu Jun 22 2006
Active software packages on disk1:
  hfr-os-mbi-3.7.2
  hfr-base-3.7.2
  hfr-admin-3.7.2
  hfr-fwdg-3.7.2
  hfr-ic-3.7.2
  hfr-rout-3.7.2
  hfr-diags-3.7.2
  hfr-k9sec-3.7.2
  hfr-mcast-3.7.2
  hfr-mgbfl-3.7.2
  hfr-mpls-3.7.2
No Inactive software packages on disk1:

In the following example, backup information is displayed for backups located on disk1: in all RPs in the system. In this example, a separate backup was created on disk1: of node 0/3/CPU0 for a non-owner SDR.

```
RP/0/RP0/CPU0:router(admin)# show system backup disk1: location all
System Backup information for node0_0_CPU0 on disk1:
..
Last Backup Successful
Backup started at Sat Jun 24 12:22:10 2009
ended at Sat Jun 24 12:42:11 2009
Verify started at Sat Jun 24 12:42:12 2009
ended at Sat Jun 24 12:48:47 2009
BOOT_DEV_SEQ_CONF=disk0;;disk1:
BOOT_DEV_SEQ_OPER=disk0;;disk1:
System Backup information for node0_3_CPU0 on disk1:
..
Last Backup Successful
Backup started at Sat Jun 24 13:02:23 2006
ended at Sat Jun 24 13:21:30 2006
Verify started at Sat Jun 24 13:21:30 2006
BOOT_DEV_SEQ_CONF=disk0;;disk1:
BOOT_DEV_SEQ_OPER=disk0;;disk1:
```
### Configuration Examples for Enabling Disk Mirroring

#### Enabling Disk Mirroring: Example

In the following example, disk mirroring is enabled on a router:

```
format disk1: partition
```

This operation will destroy all data on "disk1:" and partition device.
Continue? [confirm]  y

Device partition disk1: is now formatted and is available for use.

```
configure
 mirror location 0/0/cpu0 disk0:disk1:
 commit
```

#### show mirror Command Output: Example

```
RP/0/RP0/CPU0:router# show mirror location all
Tue Dec 7 05:58:11.187 PST
Mirror Information for 0/4/CPU0.
==
Mirroring Enabled
 Configured Primary: disk0:
 Configured Secondary: disk1:
Current Mirroring State: Redundant
 Current Physical Primary: disk0:
 Current Physical Secondary: disk1:
Mirroring Logical Device: disk0:
Mirroring Logical Device2: disk1:

<table>
<thead>
<tr>
<th>Physical Device</th>
<th>State</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>disk0:</td>
<td>Available</td>
<td>Enabled</td>
</tr>
<tr>
<td>disk1:</td>
<td>Available</td>
<td>Enabled</td>
</tr>
<tr>
<td>compactflash:</td>
<td>Not Present</td>
<td></td>
</tr>
<tr>
<td>harddisk:</td>
<td>Not Present</td>
<td></td>
</tr>
<tr>
<td>disk0a:</td>
<td>Available</td>
<td></td>
</tr>
<tr>
<td>disk1a:</td>
<td>Available</td>
<td></td>
</tr>
<tr>
<td>compactflasha:</td>
<td>Not Present</td>
<td></td>
</tr>
<tr>
<td>harddisk:</td>
<td>Available</td>
<td></td>
</tr>
</tbody>
</table>

Mirroring Rommon Variable
 BOOT_DEV_SEQ_CONF = disk0:;disk1:
 BOOT_DEV_SEQ_OPER = disk0:;disk1:
 MIRROR_ENABLE = Y

Mirror Information for 0/4/CPU1.
==
Mirroring Enabled
 Configured Primary: disk0:
 Configured Secondary: disk1:
Current Mirroring State: Redundant
 Current Physical Primary: disk0:
 Current Physical Secondary: disk1:
Mirroring Logical Device: disk0:
Mirroring Logical Device2: disk1:
```
Physical Device State Flags
----------------------------------------
disk0: Available Enabled
disk1: Available Enabled
compactflash: Not Present
harddiska: Not Present
disk0a: Available
disk1a: Available
compactflasha: Not Present
harddisk: Available

Mirroring Rommon Variable
BOOT_DEV_SEQ_CONF = disk0:;disk1:
BOOT_DEV_SEQ_OPER = disk0:;disk1:
MIRROR_ENABLE = Y

Mirror Information for 0/RP0/CPU0.
----------------------------------------
Mirroring Enabled
Configured Primary: disk0:
Configured Secondary: disk1:

Current Mirroring State: Redundant
Current Physical Primary: disk0:
Current Physical Secondary: disk1:

Mirroring Logical Device: disk0:
Mirroring Logical Device2: disk1:

Physical Device State Flags
----------------------------------------
disk0: Available Enabled
disk1: Available Enabled
compactflash: Not Present
harddiska: Not Present
disk0a: Available
disk1a: Available
compactflasha: Not Present
harddisk: Available

Mirroring Rommon Variable
BOOT_DEV_SEQ_CONF = disk0:;disk1:
BOOT_DEV_SEQ_OPER = disk0:;disk1:
MIRROR_ENABLE = Y

Mirror Information for 0/RP1/CPU0.
----------------------------------------
Mirroring Enabled
Configured Primary: disk0:
Configured Secondary: disk1:

Current Mirroring State: Redundant
Current Physical Primary: disk0:
Current Physical Secondary: disk1:

Mirroring Logical Device: disk0:
Mirroring Logical Device2: disk1:

Physical Device State Flags
----------------------------------------
disk0: Available Enabled
disk1: Available Enabled
compactflash: Not Present
harddiska: Not Present
disk0a: Available
disk1a: Available
compactflasha: Not Present
harddisk: Available

Mirroring Rommon Variable
show mirror Command Output on a Multishelf System: Example

RP/0/RP0/CPU0:router(admin)# show mirror location F0/SC0/CPU0

Mirror Information for F0/SC0/CPU0.
=========================================================

Mirroring Disabled

Current Mirroring State: Not Configured
Current Physical Primary: disk0:
Current Physical Secondary: Not Set

Mirroring Logical Device: disk0:

Physical Device | State   | Flags
----------------|---------|-------
disk0:          | Available| Enabled
disk1:          | Available| Formatted
compactflash:   | Not Present|      
disk0a:         | Available| Formatted
disk1a:         | Available| Formatted
compactflasha:  | Not Present|      

Mirroring Rommon Variable
BOOT_DEV_SEQ_CONF =
BOOT_DEV_SEQ_OPER =
MIRROR_ENABLE =

mirror verify Command Output: Example

RP/0/RP0/CPU0:router# mirror verify

Mirror Verify Information for 0/0/CPU0.
=========================================================

Primary device and secondary device are fully synchronized.

Additional References

The following sections provide references related to disk backup and disk mirroring configuration.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial system bootstrap and configuration information for a router using the Cisco IOS XR software</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR command master list</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
</tbody>
</table>
### Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIBs Link</th>
<th>MIBs</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: <a href="http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml">http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Software Entitlement on the Cisco IOS XR Software

Cisco IOS XR software contains all the supported features for a given release. Before the introduction of software entitlement on Cisco IOS XR software, you could freely activate all available software packages on your network devices and could enable all the bundled features. The same was true for hardware, as well. For example, modular services cards (MSCs) can be programmed to run in 20-Gbps or 40-Gbps modes. Before Release 3.5.0 of Cisco IOS XR software, all MSCs ran in 40-Gbps mode. Software entitlement has been introduced so you pay only for the features that you need today, but can upgrade when necessary while keeping your investment safe. Licensing enables you to purchase individual software features and upgrade hardware capacity in a safe and reliable way.

For complete descriptions of the commands listed in this module, see Related Documents, on page 134. To locate documentation for other commands that might appear in the course of performing a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

Table 11: Feature History for Software Entitlement

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.5.0</td>
<td>The software entitlement feature was introduced.</td>
</tr>
<tr>
<td>Release 4.3.0</td>
<td>CRS- FP140 license was supported.</td>
</tr>
</tbody>
</table>

This model contains the following topics:

- What Is Software Entitlement?, page 121
- Implementing Default Licensing, page 123
- Additional References, page 134

What Is Software Entitlement?

Software entitlement is a system that consists of a license manager on a Cisco IOS XR device that manages licenses for various software and hardware features. The license manager parses and authenticates a license
before accepting it. The software features on the router use the license manager APIs to check out and release licenses. Licenses are stored in persistent storage on the router.

Core routing features are available for use without any license. The following features can be enabled on your router using licenses:

**Layer 3 VPN**

Layer 3 (virtual private network) VPN can be configured only if there is an available Layer 3 VPN license for the modular services card (MSC) slot on which the feature is being configured. The Layer 3 VPN license is included with the MSC, but it must be purchased separately to use with the 40G forwarding processor (CRS-FP40).

See the following modules in *Cisco IOS XR MPLS Configuration Guide for the Cisco CRS Router* for information about Layer 3 VPN configurations:

- Implementing MPLS Layer 3 VPNs on the Cisco IOS XR Software
- Implementing Virtual Private LAN Services on the Cisco IOS XR Software

**Performance Netflow**

The CRS-FP40 card can support down to 1:360 netflow sample rate running 45 Mpps at a 40-Gbps line rate. Without this license, the CRS-FP40 and CRS-FP140 can support down to 1:1500 netflow sample rate. The MSC includes this license.

**Advanced Features**

Lawful Interception, GRE tunnel, and L2TPv3. The MSC includes this license.

**Modular Services Card Bandwidth**

Modular services cards (MSCs) can operate at 40-Gbps throughput when a license is enabled. You must use the `hw-module linecard throughput` command to enable 40-Gbps throughput once a license is available.

**Scale**

The CRS-FP140 can support increased route scale (more than 1 million IPv4 routes) and traffic engineering scale (more than 3,000 tunnels per system using licenses).

**Multichassis Support**

The CRS-FP140 can support a multichassis system using a license.

**Related Topics**

Enabling 40-Gbps Throughput on an MSC, on page 128
Implementing Default Licensing

Prerequisites for Configuring Software Entitlement

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Default (Traditional) Licensing

To configure software license entitlements using the default mode of licensing, you need to understand the concepts described in this module.

Types of Licenses

The following types of licenses are currently defined:

- Permanent licenses—Licenses that enable a designated feature permanently, as long as the license resides on the router.
- Implicit evaluation licenses—Set of evaluation licenses that are included with the software image (upgrade or initial install). Like regular evaluation licenses, these are valid for a period of ninety days, but the countdown to expiry starts as soon as the router is booted with an image containing these licenses.

SDR License Pools

License pools are maintained according to secure domain router (SDR). By default, all added licenses are allocated to the owner SDR license pool, and they can be freely allocated to any slot in any SDR. Features on cards belonging to the owner SDR are granted licenses based on availability in the owner SDR license pool.

You can create SDR-specific license pools by using the `license pool create` command. License requests for features running on cards belonging to SDRs with SDR-specific pools are not served from the owner license pool, even if the owner SDR license pool has licenses available. You must allocate licenses from the owner SDR to other SDRs explicitly for these license requests to succeed. Similarly, if a slot in the owner SDR had a feature license and subsequently was moved to some other SDR with an SDR-specific license pool, the feature license stays with the original SDR license pool.

You can explicitly add new licenses to a particular SDR license pool or move available licenses from the owner SDR license pool to any other SDR.

Chassis-Locked Licenses

Licenses are locked to a unique device identifier (UDI). The UDI is comprised of the chassis serial number, along with an additional identifier. The complete set of UDI information can be displayed using the `show license udi` command. The license manager parses the user-provided license and verifies that it is valid for the chassis it is running on and determines if the license is being readded.
Multiple single-chassis Cisco CRS-1 routers can be connected using a fabric chassis to form a multishelf system. In multishelf systems, licenses are locked to the UDI of the individual chassis, but can be used to enable features on any chassis. The list of available licenses for a multishelf system is a collection of all licenses on each contributing chassis.

**Slot-Based Licenses**

Feature licenses are allocated to router slots and not cards. Therefore, if a card is replaced, the existing license is applied to the newly inserted card. For example, if you have eight licenses for Layer 3 VPN in the system, you can configure Layer 3 VPN features on any eight cards in an SDR, and the licenses are allocated to the slots within which the cards are installed. If a card is removed from one of these licensed slots, say slot 3, and entered into an empty slot with no license, say slot 5, the license remains with slot 3 and the feature cannot be activated on slot 5 with the permanent license entered earlier by the user. In this case, you can release the license to the appropriate license pool by removing the configuration of the card (while it is inserted), or by using the `license move slot` command. When you configure the feature on slot 5, the license is checked out.

**Using Implicit Licenses After a Software Image Upgrade**

When you upgrade your Cisco IOS XR software image from a release that does not support software entitlement to one that does, you are provided with implicit licenses to use for all configured features in your original configuration. This enables you to upgrade your software without worrying about the implications of software entitlement.

Implicit licenses are good for a period of 90 days. As soon as the new image boots, the license manager displays a syslog message to the console once a day, indicating that an implicit license is being used and must be replaced with a permanent license. This frequency increases to once an hour on the last day before the expiry of the implicit licenses, to ensure that you do not miss it.

Before your implicit licenses expire, you should purchase licenses for all features that you want to keep running.

**Related Topics**

[Adding a License for a New Feature, on page 126](#)
[Troubleshooting License Issues after a Software Upgrade, on page 134](#)

**Features that Require Licenses After a Software Image Upgrade**

When you upgrade your Cisco IOS XR software image from a release that does not support software entitlement to one that does, a warning message is displayed to the console port for each feature that requires a license. You must acquire either an evaluation license or a permanent license in order to continue using any features that require a license.

During an install activate operation, if the installation fails to acquire a license (through the license manager) for a package that requires licensing then the install operation is allowed but a warning message similar to the following is displayed:

```plaintext
Fri Nov 20 15:26:52.311 UTC
Install operation 3 started by user 'lab' via CLI at 15:21:18
UTC Fri Nov 20 2009.
(admin) install activate disk0:hfr-mcast-p-4.0.0.3P disk0:hfr-mgbl-p-4.0.0.3P
Install operation 3 completed successfully at 15:25:21 UTC Fri Nov 20 2009.
```
Install logs:
Install operation 3 *(admin) install activate disk0:hfr-mcast-p-4.0.0.3P
disk0:hfr-mgbl-p-4.0.0.3P* started by user 'lab' via CLI at 15:21:18 UTC Fri Nov 20 2009.
Warning: There is no valid license for the following packages:
Warning: disk0:hfr-mcast-supp-4.0.0.3P
Warning: disk0:hfr-mgbl-supp-4.0.0.3P
Warning: Info: The following sequence of sub-operations has been determined to minimize any impact:
Info: Sub-operation 1:
Info: Install Method: Parallel Process Restart
Info: hfr-mcast-supp-4.0.0.3P
Info: iosxr-mcast-4.0.0.3P
Info: Sub-operation 2:
Info: Install Method: Parallel Process Restart
Info: hfr-mgbl-supp-4.0.0.3P
Info: iosxr-mgbl-4.0.0.3P
Info: Info: The changes made to software configurations will not be persistent across system reloads. Use the command *(admin) install commit* to make changes persistent.
Info: Please verify that the system is consistent following the software change using the following commands:
Info: show system verify
Info: install verify packages
Install operation 3 completed successfully at 15:25:21 UTC Fri Nov 20 2009.

If you activate an SMU whose corresponding package requires a license but a license was not acquired successfully, then the install operation is allowed but a warning message similar to the following is displayed:

Wed Nov 25 15:02:23.418 PST
Install operation 8 started by user 'lab' via CLI at 14:59:46 PST Wed Nov 25 2009.
-install activate id 7

Install logs:
Install operation 8 *(admin) install activate id 7* started by user 'lab'
Info: This operation will activate the following packages:
Info: disk0:comp-crs1-4.0.0.3P.CSCee40001-1.0.0
Info: disk0:comp-crs1-4.0.0.3P.CSCee30001-1.0.0
Info: disk0:comp-crs1-4.0.0.3P.CSCee20001-1.0.0
Info: disk0:comp-crs1-4.0.0.3P.CSCee10001-1.0.0
Info: The following SMUs are not being activated as they do not apply to any packages on the router:
Info: disk0:hfr-diags-supp-4.0.0.3P.CSCee30001-1.0.0
Info: disk0:hfr-fpd-4.0.0.3P.CSCee40001-1.0.0
Info: Warning: There is no valid license found for package 'disk0:hfr-mcast-supp-4.0.0.3P'
Warning: when activating SMU 'disk0:hfr-mcast-supp-4.0.0.3P.CSCee10001-1.0.0'.
Warning: There is no valid license found for package 'disk0:hfr-mgbl-supp-4.0.0.3P'
Warning: when activating SMU 'disk0:hfr-mgbl-supp-4.0.0.3P.CSCee20001-1.0.0'.
Warning: Info: The following sequence of sub-operations has been determined to minimize any impact:
Info: Sub-operation 1:
Info: Install Method: Parallel Process Restart
Info: hfr-mcast-supp-4.0.0.3P.CSCee10001-1.0.0
Info: Sub-operation 2:
Info: Install Method: Parallel Process Restart
Info: hfr-mgbl-supp-4.0.0.3P.CSCee20001-1.0.0
Info: The changes made to software configurations will not be persistent across system reloads. Use the command *(admin) install commit* to
Info: make changes persistent.
Info: Please verify that the system is consistent following the software change using the following commands:
Info: show system verify
Info: install verify packages

Related Topics

Adding a License for a New Feature, on page 126

Configure Licenses Using Default Licensing

Adding a License for a New Feature

This task describes how to acquire a permanent license for a feature that you have purchased or an evaluation license for a feature that you have arranged with your sales representative to try. Use this procedure to replace implicit or evaluation licenses with permanent licenses.

Note

Evaluation licenses cannot be installed if permanent licenses for the same feature are valid on the chassis. Also note that if you add a permanent license to a chassis, all evaluation or implicit licenses of the same type are disabled.

Before You Begin

You must have purchased the feature for which you are adding the license. When you purchase the feature, you are provided with a product authorization key (PAK) that you use to download the license.

Note

All implicit or evaluation licenses for a feature are disabled when at least one permanent license for a feature is added to the router. This is true even if you had more evaluation licenses than permanent licenses.

SUMMARY STEPS

1. admin
2. show license udi
4. Copy the license to your TFTP server.
5. admin
6. license add license-name [ sdr sdr-name ]
7. configure
8. license license-name location {all | node-id}
9. exit
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Displays the UDI of the chassis. This consists of a product identifier (PID), serial number (S/N), and operation identifier (Operation ID).</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Go to the license tool on Cisco.com. You must log in to the site before you can access the license tool. Follow the instructions for product license registration. You are required to enter the feature PAK and the chassis UDI to acquire the license. <strong>Note</strong> If you are installing a permanent license, you should have received the PAK when you purchased the feature. If you are installing an evaluation license, your sales representative should provide you with the PAK.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Copy the license to your TFTP server. You will be issued a license. You can copy the license and store it on your computer, or alternatively, you can request that the license be sent to you in an e-mail. When you have received the license, copy it to a TFTP server that is accessible by your router.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Adds the license to the SDR license pool. By default, the license is added to the owner SDR license pool.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Enters administration configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

- `admin` (Step 1)
- `show license udi` (Step 2)
- `http://www.cisco.com/go/license` (Step 3)
- `license add license-name [ sdr sdr-name ]` (Step 6)
- `configure` (Step 7)
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>Purpose</strong></td>
</tr>
<tr>
<td>license license-name location {all</td>
<td>node-id}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(admin-config)# license A9K-ADV-OPTIC-LIC location 0/0/CPU0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Exit administration EXEC mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(admin)# exit</td>
<td></td>
</tr>
</tbody>
</table>

**What to Do Next**

To use the feature associated with the added license, you must configure it on your router. To configure Layer 3 VPN, see the Implementing MPLS Layer 3 VPNs on Cisco IOS XR Software module in Cisco IOS XR MPLS Configuration Guide for the Cisco CRS Router.

To verify that your MSC is operating at 40-Gbps throughput, use the `show hw-module linecard throughput` command. To verify that your Layer 3 VPN configuration is operational, use the `show rsi interface all global` command.

**Related Topics**

- Enabling 40-Gbps Throughput on an MSC, on page 128

**Enabling 40-Gbps Throughput on an MSC**

To configure a modular services card (MSC) to operate at 40-Gbps throughput, perform the following task. This must be performed when you add permanent licenses to your router to replace implicit licenses. It also must be performed if you are purchasing a new license for 40-Gbps throughput after using the MSC with the default 20-Gbps throughput.

**Note**

When you upgrade your image from an image that does not support software entitlement to one that does, all existing MSCs default to the 40-Gbps configuration as long as there are active implicit licenses. When the implicit licenses expire, the configuration reverts to the default 20-Gbps.

**Before You Begin**

You must have a license on your system for 40-Gbps throughput to enable this feature. This could be an implicit license, evaluation license, or permanent license.
SUMMARY STEPS

1. configure
2. hw-module linecard throughput 40 location node-id
3. commit
4. show hw-module linecard throughput

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 hw-module linecard throughput 40 location node-id</td>
<td>Enables 40-Gbps throughput on the MSC in the specified node-id. If this command is not added to your configuration, the MSC continues to work at 20 Gbps, even if you have a valid license.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# hw-module linecard throughput 40 location 0/6/0</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
<tr>
<td>Step 4 show hw-module linecard throughput</td>
<td>Displays the operational throughput on the MSCs in the router.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show hw-module linecard throughput</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows sample output from the show hw-module linecard throughput command. In this example, the MSC in slot 6 has no license to run at 40 Gbps, while the MSC in slot 1 has a license and is operating at 40 Gbps.

```
RP/0/RP0/CPU0:router# show hw-module linecard throughput

------------------------- Throughput -------------------------
Location Configured Lic Acquired Operating
0/6/CPU0 no config No 20G
0/1/CPU0 no config Yes 40G
```

Backing Up Licenses

When your router is configured with the licenses that you require, you should perform this task to back up all licenses. Backing up licenses makes it easier to restore them if there is a problem.
SUMMARY STEPS

1. `admin`
2. `license backup backup-file`
3. `show license backup backup-file`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>admin</code></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router# admin</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Backs up all licenses on the router to a backup file in the specified location. The backup file can be a local file or a remote file on a TFTP or RCP server.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>license backup backup-file</code></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(admin)# license backup disk1:/license_back</code></td>
<td>License command &quot;license backup disk1:/license_back&quot; completed successfully.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Displays the contents of the backup file.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>show license backup backup-file</code></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(admin)# show license backup disk1:/license_back</code></td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows sample output from the `show license backup` command.

```
RP/0/RP0/CPU0:router(admin)# show license backup disk1:/license_back
Local Chassis UDI Information:
 S/N : TBA09370035
 Operation ID: 5
Licenses :
 FeatureID Type #installed
 CRS-MSC-40G Slot based, Permanent 2
 XC-L3VPN Slot based, Permanent 1
```
Restoring Licenses

If your licenses become corrupted, and you have previously created a backup of your licenses, you can perform this task to restore the licenses to your router.

Before You Begin

You must have created a backup file of your licenses before you can restore them on your router.

SUMMARY STEPS

1. `admin`
2. `show license backup backup-file`
3. `license restore backup-file`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# admin</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Displays the contents of the backup file. You should verify the contents of the backup file before you restore your licenses.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# show license backup disk1:/license_back</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Restores all licenses on the router from a backup file in the specified location. This can be a local file, or a remote file on a TFTP or RCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# license restore backup-file disk1:/license_back</td>
</tr>
</tbody>
</table>

Examples

This example shows sample output from the `license restore` command.

```
RP/0/RP0/CPU0:router(admin)# license restore disk1:/license_back
Info: This command will erase all existing licenses.
Info: It is strongly recommended to backup existing licenses first.
Do you wish to proceed? [yes/no]: y
License command "license restore disk1:/license_back" completed successfully.
```
Transferring Licenses to a new Route Switch Processor 440

To upgrade a route switch processor (RSP) to the RSP440 with your active licenses, perform this task.

**SUMMARY STEPS**

1. Save the original license file that you received from Cisco, in a USB drive or TFTP server.
2. save configuration running
3. Replace the RSP with the RSP440.
4. load
5. Add all licenses as described in Adding a License for a New Feature, on page 126.

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Save the original license file that you received from Cisco, in a USB drive or TFTP server. Stores the license files in a location that is accessible to the new RSP after it is installed.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>save configuration running Saves the running-configuration from both global and administration configuration modes to files. The administration configuration contains user group information that is required for the licenses.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>save configuration</td>
<td></td>
</tr>
<tr>
<td>running</td>
<td></td>
</tr>
<tr>
<td>tftp://192.10.10.10/mylicenses/rc_03132013</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Replace the RSP with the RSP440. Loads the saved running-configuration files on the new RSP440. This must be done in both global configuration mode and administration configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>load</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>load</td>
<td></td>
</tr>
<tr>
<td>tftp://192.10.10.10/mylicenses/rc_03132013</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Add all licenses as described in Adding a License for a New Feature, on page 126. Installs the licenses to the new RSP.</td>
</tr>
</tbody>
</table>
Upgrading Line Cards and Licenses

You may have a number of licenses running on the line cards in your router. Before you upgrade these line cards to advanced models, you need to install new licenses that are appropriate for these line cards. This task describes the steps necessary to upgrade your line cards and their licenses.

Before You Begin

- You must have purchased all relevant licenses for the line cards that you are upgrading, prior to performing this task.
- You must have placed the license files on your router disk drive or a TFTP server such that they accessible from your router. Refer to Adding a License for a New Feature, on page 126 for more information.

SUMMARY STEPS

1. admin
2. license add license-name
3. configure
4. Remove the old line cards and install the new ones.
5. show license

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# admin</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Adds the license to the SDR license pool. By default, the license is added to the owner SDR license pool.</td>
</tr>
<tr>
<td>license add license-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router{admin}# license add tftp://192.10.10.10/mylicenses/A9K-24X10G-AIP-TR-lic</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Enters administration configuration mode.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router{admin}# configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Associates the new license on the slot with the new line card.</td>
</tr>
<tr>
<td>Remove the old line cards and install the new ones.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Verifies the status of the licenses.</td>
</tr>
<tr>
<td>show license</td>
<td></td>
</tr>
</tbody>
</table>
**Troubleshooting License Issues after a Software Upgrade**

In the instance that you were running Cisco IOS XR Release 3.9.0 and had the optic feature enabled on a interface and the A9K-ADV-OPTIC-LIC license was active on a particular slot, when you upgrade to Cisco IOS XR Release 4.0.0, the A9K-ADV-OPTIC-LIC license is still active, but you may get the following warning message:

```
RP/0/RSP0/CPU0:Jul 27 14:22:22.594 : licmgr[236]:
%LICENSE-LICMGR-4-PACKAGE_LOCATION_LICENSE_INVALID :
Feature associated to package A9K-ADV-OPTIC-LIC configured
on node 0/4/CPU0 without a valid license
```

To solve this issue, configure the `license` command in administration EXEC mode. This binds the A9K-ADV-OPTIC-LIC license to the slot on which you are using the license. For example:

```
RP/0/RSP0/CPU0:router(config)# license A9K-ADV-OPTIC-LIC location 0/4/CPU0
RP/0/RSP0/CPU0:router(config)# commit
```

**Additional References**

The following sections provide references related to Cisco IOS XR software entitlement.

**Related Documents**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR software entitlement commands</td>
<td>Software Entitlement Commands on the Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
</tbody>
</table>
### Related Topic
<table>
<thead>
<tr>
<th>Document Title</th>
<th>Module of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementing MPLS Layer 2 VPNs</td>
<td>Cisco IOS XR MPLS Configuration Guide for the</td>
</tr>
<tr>
<td></td>
<td>Cisco CRS Router</td>
</tr>
<tr>
<td>Implementing MPLS Layer 3 VPNs</td>
<td>Cisco IOS XR MPLS Configuration Guide for the</td>
</tr>
<tr>
<td></td>
<td>Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR software commands</td>
<td>Cisco IOS XR Commands Master List for the Cisco</td>
</tr>
<tr>
<td></td>
<td>CRS Router</td>
</tr>
<tr>
<td>Information on getting started with Cisco IOS XR</td>
<td>Cisco IOS XR Getting Started Guide for the</td>
</tr>
<tr>
<td>software</td>
<td>Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on the Cisco IOS XR</td>
</tr>
<tr>
<td></td>
<td>Software module of Cisco IOS XR System Security</td>
</tr>
<tr>
<td></td>
<td>Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support</td>
<td>—</td>
</tr>
<tr>
<td>for existing standards has not been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco</td>
</tr>
<tr>
<td></td>
<td>MIB Locator found at the following URL and choose a platform under the</td>
</tr>
<tr>
<td></td>
<td>cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support</td>
<td>—</td>
</tr>
<tr>
<td>for existing RFCs has not been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>
### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
CHAPTER 6

Managing the Router Hardware

This chapter describes the command-line interface (CLI) techniques and commands used to manage and configure the hardware components of a router running the Cisco IOS XR software.

For complete descriptions of the commands listed in this module, see Additional References, on page 194. To locate documentation for other commands that might appear in the course of performing a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

Table 12: Feature History for Managing Router Hardware with Cisco IOS XR Software

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.2</td>
<td>Logical router (LR) was first supported.</td>
</tr>
<tr>
<td>Release 3.3.0</td>
<td>The term logical router (LR) was changed to secure domain router (SDR).</td>
</tr>
<tr>
<td>Release 3.5.0</td>
<td>Flash disk recovery was implemented.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for Managing Router Hardware, page 138
- Displaying Hardware Status, page 138
- RP Redundancy and Switchover, page 156
- CPAK, page 160
- Reloading, Shutting Down, or Power Cycling a Node, page 161
- Flash Disk Recovery, page 164
- Using Controller Commands to Manage Hardware Components, page 165
- Formatting Hard Drives, Flash Drives, and Other Storage Devices, page 165
- Removing and Replacing Cards, page 166
- Upgrading the CPU Controller Bits, page 193
Prerequisites for Managing Router Hardware

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Displaying Hardware Status

This section describes how to display different types of hardware status information.

Displaying SDR Hardware Version Information

To display hardware version information for the components assigned to a secure domain router (SDR), connect to the appropriate designated secure domain router shelf controller (DSDRSC) and enter the `show diag` command in EXEC mode. The displayed information includes the card serial number and the ROMMON software version.

The syntax for the `show diag` command in EXEC mode is:

```
show diag [node-id | details | summary]
```

In the following example, the `show diag` command displays information for all nodes in the SDR:

```
RP/0/RP0/CPU0:router# show diag

PLIM 0/1/CPU0 : JACKET CARD
 MAIN: board type 580070
 800-23819-03 rev C0
 dev N/A
 S/N SAD094401CR
 PCA: 73-8982-06 rev C0
 PID: CRS1-SIP-800
 VID: V01
 CLEI: COUIAMCAA
 ECI: 134912
 Board State : IOS XR RUN
 PLD: Motherboard: 0x0025, Processor: 0xda13, Power: N/A
 MONLIB: QNXFFS Monlib Version 3.0
 ROMMON: Version 1.40(20050525:193559) [CRS-1 ROMMON]
 Interface port config: 0 Ports
 Optical reach type: Unknown
 Connector type: MT-P

NODE 0/1/0 : 4xOC3 POS SPA
 MAIN: board type 0440
 68-2169-01 rev C0
 dev N/A
 S/N JAB093309PA
 PCA: 73-9313-04 rev B0
 PID: SPA-4XOC3-POS
 VID: V01
 CLEI: IPUIAFNRAA

NODE 0/1/5 : 8xGE SPA
 MAIN: board type 044f
 68-2239-01 rev A0
```
dev N/A
S/N SAD0937022J
PCA: 73-8557-03 rev A0
PID: SPA-8X1GE
VID: V01
CLEI: CNU1AH6AAA

PLIM 0/6/CPU0 : JACKET CARD
MAIN: board type 580070
800-23819-03 rev C0
dev N/A
S/N SAD094203W2
PCA: 73-8982-06 rev C0
PID: CRS1-SIP-800
VID: V01
CLEI: COUIAACAA
ECI: 134912
Board State : IOS XR RUN
PLD: Motherboard: 0x0025, Processor: 0xda13, Power: N/A
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193559) [CRS-1 ROMMON]
Interface port config: 0 Ports
Optical reach type: Unknown
Connector type: MT-P

NODE 0/6/0 : 4xOC3 POS SPA
MAIN: board type 0440
68-2169-01 rev C0
dev N/A
S/N JAB093309MG
PCA: 73-9313-04 rev B0
PID: SPA-4XOC3-POS
VID: V01
CLEI: IPUIAFNRAA

NODE 0/6/4 : 8xOC3/OC12 POS SPA
MAIN: board type 0404
68-2164-01 rev 34
dev N/A
S/N JAB09470619
PCA: 73-9941-02 rev 04
PID: SPA-8XOC12-POS
VID: V01
CLEI: SOUIAA8BAA

NODE 0/6/5 : 8xGE SPA
MAIN: board type 044f
68-2239-01 rev A0
dev N/A
S/N SAD093909GM
PCA: 73-8557-03 rev A0
PID: SPA-8X1GE
VID: V01
CLEI: CNU1AH6AAA

NODE 0/RP0/CPU0 : RP
MAIN: board type 100002
800-22921-10 rev B0
dev 080366, 080181
S/N SAD093507J8
PCA: 73-8564-10 rev A0
PID: CRS-8-RP
VID: V01
CLEI: IPUCABWBAA
ECI: 129507
Board State : IOS XR RUN
PLD: Motherboard: 0x0028, Processor: 0x0038, Power: 0x0000
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193559) [CRS-1 ROMMON]

NODE 0/RP1/CPU0 : RP
MAIN: board type 100002
800-22921-10 rev B0
Displaying System Hardware Version Information

To display hardware version information for all or some of the components assigned in a system, connect to the designated shelf controller (DSC) and enter the `show diag` command in administration EXEC mode. When this command is entered in administration EXEC mode, you can display information on RPs, MSCs or line cards, fabric cards, and system components such as the chassis, fan trays, and power supplies.

If you enter the `show diag` command in EXEC mode, the software displays only the hardware assigned to the SDR to which you are connected.

The syntax for the `show diag` command in administration EXEC mode is:

```
show diag [node-id | chassis | details | fans | memory | power-supply | summary]
```

For information on the software version, use the `show version` command.

In the following example, the `show diag` command displays information for a single node:

```
RP/0/RP0/CPU0:router# show diag 0/RP0/CPU0
```

In the following example, the `show diag` command displays information for all nodes in the system:

```
RP/0/RP0/CPU0:router(admin)# show diag
```
Managing the Router Hardware

Displaying System Hardware Version Information

PID: CRS-MSC
VID: V02
CLEI: IPUCAC1BAA
ECI: 132502
Board State : IOS XR RUN
PLD: Motherboard: 0x0025, Processor: 0xda13, Power: N/A
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193402) [CRS-1 ROMMON]

PLIM 0/1/CPU0 : JACKET CARD
MAIN: board type 580070
800-23819-03 rev C0
dev N/A
S/N SAD094401CR
PCA: 73-8982-06 rev C0
PID: CRS1-SIP-800
VID: V01
CLEI: C0UIAAMCAA
ECI: 134912
Board State : IOS XR RUN
PLD: Motherboard: 0x0025, Processor: 0xda13, Power: N/A
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193559) [CRS-1 ROMMON]
Interface port config: 0 Ports
Optical reach type: Unknown
Connector type: MT-F

NODE 0/1/0 : 4xOC3 POS SPA
MAIN: board type 0440
68-2169-01 rev C0
dev N/A
S/N JAB093309PA
PCA: 73-9313-04 rev B0
PID: SPA-4XOC3-POS
VID: V01
CLEI: IPUIAAMCAA

NODE 0/1/5 : 8xGE SPA
MAIN: board type 044f
68-2239-01 rev A0
dev N/A
S/N SAD0937022J
PCA: 73-8557-03 rev A0
PID: SPA-8X1GE
VID: V01
CLEI: C0UIAAMCAA

NODE 0/RP0/CPU0 : RP
MAIN: board type 100002
800-22921-10 rev B0
dev 080366, 080181
S/N SAD093507J8
PCA: 73-8564-10 rev B0
PID: CRS-8-RP
VID: V01
CLEI: IPUCABWBA
ECI: 129507
Board State : IOS XR RUN
PLD: Motherboard: 0x0038, Processor: 0x0038, Power: 0x0000
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193559) [CRS-1 ROMMON]

NODE 0/RP1/CPU0 : RP
MAIN: board type 100002
800-22921-10 rev B0
dev 080366, 080181
S/N SAD093507JP
PCA: 73-8564-10 rev B0
PID: CRS-8-RP
VID: V01
CLEI: IPUCABWBA
ECI: 129507
Board State : IOS XR RUN
Displaying System Hardware Version Information

Managing the Router Hardware

Rack 0:

Fan Tray 0: Fan Tray Upper
MAIN: board type 900160
800-23275-05 rev A0
dev N/A
S/N TBA09370056
PCA: 0-0-00 rev 00
PID: CRS-8-LCC-FAN-TR

PLD: Motherboard: 0x0038, Processor: 0x0038, Power: 0x0000
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193559) [CRS-1 ROMMON]

NODE 0/SM0/SP : FC/S
MAIN: board type 400035
800-23168-05 rev B0
dev N/A
S/N SAD0933081S
PCA: 73-8682-05 rev B0
PID: CRS-8-FC/S
VID: V01
CLEI: IPUCABXBA
ECI: 129510
Board State : IOS XR RUN
PLD: Motherboard: 0x001e, Processor: 0x0000, Power: N/A
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193402) [CRS-1 ROMMON]

NODE 0/SM1/SP : FC/S
MAIN: board type 400035
800-23168-05 rev B0
dev N/A
S/N SAD09330492
PCA: 73-8682-05 rev B0
PID: CRS-8-FC/S
VID: V01
CLEI: IPUCABXBA
ECI: 129510
Board State : IOS XR RUN
PLD: Motherboard: 0x001e, Processor: 0x0000, Power: N/A
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193402) [CRS-1 ROMMON]

NODE 0/SM2/SP : FC/S
MAIN: board type 400035
800-23168-05 rev B0
dev N/A
S/N SAD09330830
PCA: 73-8682-05 rev B0
PID: CRS-8-FC/S
VID: V01
CLEI: IPUCABXBA
ECI: 129510
Board State : IOS XR RUN
PLD: Motherboard: 0x001e, Processor: 0x0000, Power: N/A
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193402) [CRS-1 ROMMON]

NODE 0/SM3/SP : FC/S
MAIN: board type 400035
800-23168-05 rev B0
dev N/A
S/N SAD0933081W
PCA: 73-8682-05 rev B0
PID: CRS-8-FC/S
VID: V01
CLEI: IPUCABXBA
ECI: 129510
Board State : IOS XR RUN
PLD: Motherboard: 0x001e, Processor: 0x0000, Power: N/A
MONLIB: QNXFFS Monlib Version 3.0
ROMMON: Version 1.40(20050525:193402) [CRS-1 ROMMON]
Line cards are called modular services cards (MSCs).

In the following example, the `show diag` command displays information for a single system component:

```
RP/0/RP0/CPU0:router(admin) # show diag chassis
```

```
RACK 0:
MAIN: board type 0001e4
 800-23271-04 rev F0
 dev 076763
 S/N TBA09370035
PCA: 73-8696-03 rev A0
VID: V01
CLEI: IPMEZ10BRA
ECI: 446387
```
Displaying the Chassis Serial Numbers

Each chassis serial number must be defined during the configuration of multishelf routers. To view the actual serial number for each chassis in the system, enter the command `show diag chassis` in administration EXEC mode.

- Chassis serial numbers are displayed in the "Main" category for each chassis.
- "Rack Num" field displays the rack number assigned to that serial number.

For example:
```
RP/0/RP0/CPU0:router# admin
RP/0/RP0/CPU0:router(admin)# show diag chassis

RACK 0:
MAIN: board type 0001e0 800-24872
 dev 075078 S/N TBA00000001
PCA: 73-7640-05 rev 20
PID: CRS-16-LCC
VID: V01
CLEI: IPM6700DRA
ECI: 445022
RACK NUM: 0

RACK 1:
MAIN: board type 0001e0 800-24872-01 rev 20
 dev 075078 S/N TBA00000002
PCA: 73-7640-05 rev 20
PID: CRS-16-LCC
VID: V01
CLEI: IPM6700DRA
ECI: 445022
RACK NUM: 1
```

Displaying the Configured Chassis Serial Numbers

Enter the command `show running-config | include dsc` in administration EXEC mode to display the serial number configured for each rack number.

This command is used to verify that the configuration is correct. The serial numbers displayed are those entered by an operator. If this number is wrong because of an entry error, the number is still displayed, but the DSC does not recognize the chassis.

```
Note
This command can also be entered in administration configuration mode.
```

For example:
```
RP/0/RP0/CPU0:router# admin
RP/0/RP0/CPU0:router(admin)# show running-config | include dsc
```
Displaying Software and Hardware Information

The **show version** command displays a variety of system information, including the hardware and software versions, router uptime, boot settings (including the configuration register), and active software.

The following is sample output from the **show version** command:

```
RP/0/RP0/CPU0:router# show version
Cisco IOS XR Software, Version 3.4.0[21]
Copyright (c) 2006 by Cisco Systems, Inc.
ROM: System Bootstrap, Version 1.40(20050525:193559) [CRS-1 ROMMON],
router uptime is 1 week, 1 day, 17 hours, 1 minute
System image file is "disk0:hfr-os-mbi-3.4.0/mbihfr-rp.vm"
cisco CRS-8/S (7457) processor with 4194304K bytes of memory. 7457 processor at 1197Mhz, Revision 1.2
16 Packet over SONET/SDH network interface(s)
16 SONET/SDH Port controller(s)
2 Ethernet/IEEE 802.3 interface(s)
16 GigabitEthernet/IEEE 802.3 interface(s)
2043K bytes of non-volatile configuration memory.
38079M bytes of hard disk.
1000592k bytes of ATA PCMCIA card at disk 0 (Sector size 512 bytes).
1000640k bytes of ATA PCMCIA card at disk 1 (Sector size 512 bytes).
Package active on node 0/1/SP:
hfr-diags, V 3.4.0[21], Cisco Systems, at disk0:hfr-diags-3.4.0
 Built on Mon Mar 13 12:58:02 UTC 2006
 By iox8.cisco.com in /auto/ioxws48/production/3.4.0.2I/hfr/workspace for c8

hfr-admin, V 3.4.0[21], Cisco Systems, at disk0:hfr-admin-3.4.0
 Built on Mon Mar 13 11:46:36 UTC 2006
 By iox8.cisco.com in /auto/ioxws48/production/3.4.0.2I/hfr/workspace for c8

hfr-base, V 3.4.0[21], Cisco Systems, at disk0:hfr-base-3.4.0
 Built on Mon Mar 13 11:43:22 UTC 2006
 By iox8.cisco.com in /auto/ioxws48/production/3.4.0.2I/hfr/workspace for c8

hfr-os-mbi, V 3.4.0[21], Cisco Systems, at disk0:hfr-os-mbi-3.4.0
 Built on Mon Mar 13 11:27:02 UTC 2006
 By iox8.cisco.com in /auto/ioxws48/production/3.4.0.2I/hfr/workspace for c8
```

Displaying Router Power Consumption

With the introduction of PLIMs and MSCs that consume higher power than before, and given the modular power available on a configurable number of power modules, it is possible that a fully loaded chassis can consume more power than available to the system. For this reason it is important to monitor your router power consumption and pay attention to any warnings or alarms regarding power.
Your router monitors the power necessary to run all cards in the system, and if the power requirements exceed the available power, syslog messages or alarms are displayed. Syslog messages can be displayed following two possible events:

- A board is powered up and a shortage of available power is detected.
- Available power becomes lower than the power consumed by inserted cards, for example because a power module is removed.

The following considerations are used when calculating the power consumption:

- Powering on an MSC or DRP adds to the power requirements of the chassis.
- Inserting or removing power modules affects the calculation of available power.
- Line cards are allowed to power up, before their power consumption is calculated.
- The power consumption of a SIP or SPA is calculated as though it is fully populated.
- RP, Switch Fabric, Fan tray, Fan controller and Alarm module power consumption is always added to the total chassis power usage regardless of whether they are physically present or not.
- The power of one power module is reserved for redundancy against a module failure (redundancy threshold), and thus subtracted from the calculation of available power.

For systems with modular power supplies, the total power availability is the sum of all power modules in both shelves minus one. This one power module is reserved to guard against a single module failure.

In a 4-Slot line card chassis, the total power available is the sum of all the power modules present (maximum of four).

**Alarms and Messages**

The following alarms can be raised:

- A major alarm is raised when the power consumption exceeds the power budget, and the alpha display on the alarm module is set to “PWR CRITICAL.”
- A minor alarm is raised when the redundancy threshold is crossed, and the alpha display is set to “PWR LOW.”
- A critical alarm is raised when there is a zone failure, and the alpha display is set to “ZONEX PWR FAIL,” where “X” is the zone number.

Syslog messages are displayed when a power event is registered.

**Table 13: Syslog Messages Displayed on Systems with Modular Power Supplies**

<table>
<thead>
<tr>
<th>Event</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power budget is exceeded</td>
<td>Power allotted to cards in this rack has exceeded the available rack power budget. Please check the 'show power' command to resolve this situation.</td>
</tr>
</tbody>
</table>
Message

<table>
<thead>
<tr>
<th>Event</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power budget is restored</td>
<td>Power budget is now sufficient for rack power.</td>
</tr>
<tr>
<td>Power consumption exceeds the capacity of both shelves minus the capacity of one power module</td>
<td>Rack power is now being allotted from all power modules. Power module redundancy is no longer available, a single power module failure might result in card power loss.</td>
</tr>
<tr>
<td>Power consumption drops below the capacity of both shelves minus the capacity of one power module</td>
<td>Power allotment in this rack is now normal. Power module redundancy restored.</td>
</tr>
</tbody>
</table>

Table 14: Syslog Messages Displayed on Systems with Fixed Power Supplies

<table>
<thead>
<tr>
<th>Event</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone power budget is exceeded</td>
<td>Power allotted in zone X has exceeded the available zone power budget. Please check the ‘show power’ command to resolve this situation.</td>
</tr>
<tr>
<td>Zone power budget is restored</td>
<td>Power budget for zone X is now sufficient for zone power.</td>
</tr>
<tr>
<td>Zone failure</td>
<td>Zone X has lost power. Check that power modules Ax and Bx are providing power.</td>
</tr>
<tr>
<td>Zone restoration</td>
<td>Zone X is now receiving power.</td>
</tr>
</tbody>
</table>

show power command Sample Output

Use the **show power** commands to display the total power available and the total power being consumed.

The **show power allotted** command displays the power allotted to the cards in the chassis. This example is from a system using modular power supplies:

```
RP/0/RP0/CPU0:router(admin)# show power allotted location 0/0/*
```

```
Sun Nov 18 22:00:51.176 UTC	nodeid = 0x2a00000f
 Node | Card Type | State | PID | Power Allotted |

0/0/* FP-140G POWERED UP CRS-MSC-FP140 450.0W
0/0/PL0 14-10GbE POWERED UP 14X10GBE-WL-XF 150.0W
```

The **show power capacity** command displays the power supplied to a rack. This example is from a system using fixed power supplies:

```
RP/0/RP1/CPU0:router(admin)# show power capacity rack 0
```

```
Tue Nov 20 19:43:30.458 OST

Rack 0: Cisco CRS Fixed AC Power System

```
Zone  Power Module  State  Zone  Power Capacity
-----------------  -----------------  -----------------  ---------------------
Zone 1:  A[0]  NOT PRESENT  2500.0W
         B[0]  OK
Zone 2:  A[0]  NOT PRESENT  2500.0W
         B[0]  OK
Zone 3:  A[0]  NOT PRESENT  2500.0W
         B[0]  OK

Total Rack Power Capacity: 7500.0W

The **show power summary** displays a summary of the power consumption and availability for a rack. This example is from a system using modular power supplies:

```
RP/0/RP0/CPU0:router(admin)# show power summary rack 0
Sun Nov 18 22:02:40.434 UTC
Location Power Capacity Power Allotted Power Available
----------------- ----------------- ----------------- ------------------
Rack : 0 7600.0W 1285.0W 6315.0W
```

### Displaying SDR Node IDs and Status

In EXEC mode, the **show platform** command displays information for all nodes assigned to a secure domain router (SDR). For each node, this information includes the host card type, the operational state, and the configuration state. To display information on a single node, enter the command with a node ID.

The syntax for the **show platform** command is:

```
show platform [node-id]
```

The following example displays the status for all nodes in the SDR to which you are connected:

```
RP/0/RP0/CPU0:router# show platform
Node Type PLIM State Config State
----------------- ----------------- ----------------- -----------------
0/0/CPU0 MSC 16OC48-POS/DPT IOS XR RUN PWR,NOSHUT,MON
0/2/CPU0 MSC 16OC48-POS/DPT IOS XR RUN PWR,NOSHUT,MON
0/RP0/CPU0 RP(Standby) N/A IOS XR RUN PWR,NOSHUT,MON
0/RP1/CPU0 RP(Active) N/A IOS XR RUN PWR,NOSHUT,MON
```

**Note**

Line cards are called modular services cards (MSCs).

The **node-id** appears in the **rack/slot/module** notation, and the **node-id** components are as follows:

- **rack** — In a single-shelf system the rack number is always “0.” In a multishelf system, the LCC rack number range is 0 to 255 and the FCC rack number range is F0 to F7.
- **slot** — Number of the physical slot in which the card is installed.
- **module** — Subslot number of a system hardware component.

Table 15: Node ID Components, on page 149 summarizes the **node-id** for each type of card.
### Table 15: Node ID Components

<table>
<thead>
<tr>
<th>Card Type (the card to which you are issuing commands)</th>
<th>Rack (always “0” in a single-shelf system)</th>
<th>Slot (the physical slot in which the card is installed)</th>
<th>Module (the entity on the card that is the target of the command)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route processor</td>
<td>0–255</td>
<td>RP0 and RP1</td>
<td>CPU0</td>
</tr>
<tr>
<td>DRP</td>
<td>0-255</td>
<td>0–7 (8-slot chassis) 0–15 (16-slot chassis)</td>
<td>CPU0 or CPU1</td>
</tr>
<tr>
<td>MSC</td>
<td>0–255</td>
<td>0-3 (4-slot chassis) 0-7 (8-slot chassis) 0-15 (16-slot chassis)</td>
<td>Service processor (SP)</td>
</tr>
<tr>
<td>PLIM</td>
<td>0–255</td>
<td>0-3 (4-slot chassis) 0-7 (8-slot chassis) 0-15 (16-slot chassis)</td>
<td>CPU0</td>
</tr>
<tr>
<td>Cisco CRS-1 SPA Interface Processor (SIP)-800</td>
<td>0–255</td>
<td>0–7 (8-slot chassis) 0–15 (16-slot chassis)</td>
<td>CPU0</td>
</tr>
<tr>
<td>1-Port OC-192c/STM-64c Packet-over-SONET/SDH (POS) XFP SPA 4-Port OC-3c/STM-1 POS SPA 8-Port Gigabit Ethernet SPA</td>
<td>0–255</td>
<td>0–7 (8-slot chassis) 0–15 (16-slot chassis)</td>
<td>0–5 (SPA module number on the Cisco CRS-1 SIP-800)</td>
</tr>
<tr>
<td>Switch fabric module</td>
<td>0–255</td>
<td>SM0–SM3 (4-slot chassis) SM0–SM3 (8-slot chassis) SM0–SM7 (16-slot chassis)</td>
<td>SP</td>
</tr>
<tr>
<td>Alarm cards</td>
<td>0–255</td>
<td>AM0–AM1 (16-slot chassis)</td>
<td>SP</td>
</tr>
<tr>
<td>Fan controller cards</td>
<td>0–255</td>
<td>FC0–FC1 (16-slot chassis)</td>
<td>SP</td>
</tr>
</tbody>
</table>
Displaying Router Node IDs and Status

In administration EXEC mode, the **show platform** command displays information for all router nodes, which include nodes in all chassis and SDRs. In administration EXEC mode, the command display also includes additional node IDs such as those for fabric cards, alarm modules, and fan controllers. For each node, this information includes the host card type, the operational state, and the configuration state. To display information on a single node, enter the command with a node ID.

The syntax for the **show platform** command is:

```
show platform [node-id]
```

The following example displays the status for all nodes in a Cisco CRS-1 Multishelf System:

```
RP/0/RP0/CPU0:router(admin)# show platform

+-------------+-----------------+-----------------+-----------------+-----------------+
| Node Type | PLIM | State | Config State |
+-------------+-----------------+-----------------+-----------------+
| 0/5/SP | MSC(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/5/CPU0 | MSC | 40C192-POS/DPT | IOS XR RUN PWR,NSHUT,MON |
| 0/7/SP | DRP(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/7/CPU0 | DRP(Active) | DRP-ACC | IOS XR RUN PWR,NSHUT,MON |
| 0/1/SP | DRP(Active) | DRP-ACC | IOS XR RUN PWR,NSHUT,MON |
| 0/14/SP | MSC(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/14/CPU0 | MSC | 8-10GBe | IOS XR RUN PWR,NSHUT,MON |
| 0/RF0/CPU0 | RF(Active) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/RF1/CPU0 | RF(Standby) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/FC0/SP | LCC-FAN-CT(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/FC1/SP | LCC-FAN-CT(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/AM0/SP | ALARM(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/AM1/SP | ALARM(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/SM0/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/SM1/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/SM2/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/SM3/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/SM4/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/SM5/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/SM6/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 0/SM7/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/4/SP | MSC(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/4/CPU0 | MSC | 40C192-POS/DPT | IOS XR RUN PWR,NSHUT,MON |
| 1/RP0/CPU0 | RP(Active) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/RP1/CPU0 | RP(Standby) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/FC0/SP | LCC-FAN-CT(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/FC1/SP | LCC-FAN-CT(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/AM0/SP | ALARM(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/SM0/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/SM1/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/SM2/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/SM3/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/SM4/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/SM5/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/SM6/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 1/SM7/SP | FC/M(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 2/SM4/SP | FCC-SFC(SP) | FCC-FM-1S | IOS XR RUN PWR,NSHUT,MON |
| 2/SM5/SP | FCC-SFC(SP) | FCC-FM-1S | IOS XR RUN PWR,NSHUT,MON |
| 2/SM6/SP | FCC-SFC(SP) | FCC-FM-1S | IOS XR RUN PWR,NSHUT,MON |
| 2/SM7/SP | FCC-SFC(SP) | FCC-FM-1S | IOS XR RUN PWR,NSHUT,MON |
| 2/SM4/SP | FCC-SC(Active) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 2/SM5/SP | FCC-SC(Standby)| N/A | IOS XR RUN PWR,NSHUT,MON |
| 2/AM0/SP | ALARM(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 2/AM1/SP | ALARM(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 2/SM0/SP | FCC-LED(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
| 2/SM1/SP | UNKNOWN(SP) | N/A | IOS XR RUN PWR,NSHUT,MON |
```

System Management Configuration Guide for Cisco CRS Routers, IOS XR Release 6.2.x
Line cards are called modular services cards (MSCs).

The node-id appears in the rack/slot/module notation, and the node-id components are as follows:

- rack — In a single-shelf system the rack number is always "0." In a multishelf system, the LCC rack number range is 0 to 255 and the FCC rack number range is F0 to F7.
- slot — Number of the physical slot in which the card is installed.
- module — Subslot number of a system hardware component.

Table 15: Node ID Components, on page 149 summarizes the node-id argument for each type of card.

Displaying Router Environment Information

The show environment command displays hardware information for the system, including fan speeds, LED indications, power supply voltage and current information, and temperatures.

The syntax for the show environment command is:

```
show environment [options]
```

You can use the show environment command options to limit the detail in the command display. To view the command options, enter the show environment? command. The following example shows the full environment status report:

```
RP/0/RP0/CPU0:router# show environment

Temperature Information

R/S/I Modules Sensor Temp. (deg C)
0/0/* host Inlet 23.0
host Hot 23.0
0/3/* host Inlet 24.0
host Hot 33.0
0/4/* host Inlet 24.5
host Hot 31.5
0/5/* host Inlet 23.5
host Hot 30.5
0/6/* host Hot 31.5
host Inlet 22.5
0/7/* host Hot 20.0
0/8/* host Inlet 20.5
host Hot 32.0

Threshold Information

R/S/I Modules Sensor Minor Major Critical
(Lo/Hi) (Lo/Hi) (Lo/Hi)
0/0/* host InletTemp --/ 55 --/ 60 --/ --
host HotTemp --/ 66 --/ 69 --/ --
host PLIM_V4_1.6V --/ -- --/ -- --/ --
host PLIM_V5_1.8V --/ -- --/ -- --/ --
host PLIM_V3_2.5V --/ -- --/ -- --/ --
host 3.4V 2950/3500 2900/3600 --/ --
host 5V 4800/5150 4700/5200 --/ --
```
<table>
<thead>
<tr>
<th>Voltage Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/S/I</td>
</tr>
<tr>
<td>0/0/0</td>
</tr>
<tr>
<td>host InletTemp</td>
</tr>
<tr>
<td>host HotTemp</td>
</tr>
<tr>
<td>host PLIM V3 1.5V</td>
</tr>
<tr>
<td>host PLIM V8 1.8V</td>
</tr>
<tr>
<td>host PLIM V7 2.5V</td>
</tr>
<tr>
<td>host 3.4V</td>
</tr>
<tr>
<td>host 5V</td>
</tr>
<tr>
<td>host Mbus5V</td>
</tr>
<tr>
<td>0/0/1</td>
</tr>
<tr>
<td>host HotTemp</td>
</tr>
<tr>
<td>host PLIM V3 1.5V</td>
</tr>
<tr>
<td>host PLIM V8 1.8V</td>
</tr>
<tr>
<td>host PLIM V7 2.5V</td>
</tr>
<tr>
<td>host PLIM V6 1.5V</td>
</tr>
<tr>
<td>host 5V</td>
</tr>
<tr>
<td>host Mbus5V</td>
</tr>
<tr>
<td>0/0/2</td>
</tr>
<tr>
<td>host HotTemp</td>
</tr>
<tr>
<td>host PLIM V3 1.5V</td>
</tr>
<tr>
<td>host PLIM V8 1.8V</td>
</tr>
<tr>
<td>host PLIM V7 2.5V</td>
</tr>
<tr>
<td>host PLIM V6 1.5V</td>
</tr>
<tr>
<td>host 5V</td>
</tr>
<tr>
<td>host Mbus5V</td>
</tr>
<tr>
<td>0/0/3</td>
</tr>
<tr>
<td>host HotTemp</td>
</tr>
<tr>
<td>host PLIM V3 1.5V</td>
</tr>
<tr>
<td>host PLIM V8 1.8V</td>
</tr>
<tr>
<td>host PLIM V7 2.5V</td>
</tr>
<tr>
<td>host PLIM V6 1.5V</td>
</tr>
<tr>
<td>host 3.4V</td>
</tr>
<tr>
<td>host 5V</td>
</tr>
<tr>
<td>host Mbus5V</td>
</tr>
</tbody>
</table>

**System Management Configuration Guide for Cisco CRS Routers, IOS XR Release 6.2.x**
### Displaying RP Redundancy Status

The **show redundancy** command displays the redundancy status of the route processors (RPs). This command also displays the boot and switch-over history for the RPs.

The **show redundancy** operates in EXEC and administration EXEC mode.

In the following example, the **show redundancy** command displays the redundancy status for a redundant RP pair:

```
RP/0/RP0/CPU0:router# show redundancy

This node (0/RP0/CPU0) is in ACTIVE role
Partner node (0/RP1/CPU0) is in STANDBY role
Standby node in 0/RP1/CPU0 is ready

Reload and boot info

RP reloaded Fri Apr 9 03:44:28 2004: 16 hours, 51 minutes ago
This node booted Fri Apr 9 06:19:05 2004: 14 hours, 16 minutes ago
Last switch-over Fri Apr 9 06:53:18 2004: 13 hours, 42 minutes ago
Standby node boot Fri Apr 9 06:54:25 2004: 13 hours, 41 minutes ago
Standby node last not ready Fri Apr 9 20:35:23 2004: 0 minutes ago
Standby node last ready Fri Apr 9 20:35:23 2004: 0 minutes ago
There have been 2 switch-overs since reload
```

### Displaying Field-Programmable Device Compatibility

The **show hw-module fpd** command displays field-programmable device (FPD) compatibility for all modules or a specific module.

The syntax for the **show hw-module fpd** command is:

```
show hw-module fpd
```
show hw-module fpd location {all | node-id}

The `show hw-module fpd` operates in EXEC and administration EXEC mode.

The following examples show how to display FPD compatibility for all modules in the router:

```
RP/0/RSP0/CPU0:router# show hw-module fpd location all

Existing Field Programmable Devices

| Location | Card Type | HW Version | Type | Subtype | Inst | Version | Type | Dng? |

| 0/RSP0/CPU0 | CRS1-SIP-800 | 1.0 | lc | fpga3 | 0 | 1.23 | Yes |
| | | fpga1 | 0 | 1.05 | No |
| | | fpga2 | 0 | 3.08 | No |
| 0/0/0 | SPA-2XCHOC12/DS0 | 1.0 | spa | rommon | 0 | 2.02 | No |
| | | spa | 0 | 1.36 | No |
| | | spa | 0 | 1.00 | No |
```

**NOTES:**

1. One or more FPD needs an upgrade or a downgrade. This can be accomplished using the "admin upgrade hw-module fpd" CLI.
2. * One or more FPD is running minimum software version supported. It can be upgraded using the "admin> upgrade hw-module fpd <fpd> force location <loc>" CLI.
3. + One or more FPD is running up-rev FPGA version. Downgrade is "OPTIONAL" in this case. It can be downgraded using the "admin> upgrade hw-module fpd <fpd> force location <loc>" CLI.
4. ^ One or more FPD will be intentionally skipped from upgrade using CLI with option "all" or during "Auto fpd". It can be upgraded only using the "admin> upgrade hw-module fpd <fpd> location <loc>" CLI with exact location.

After Release 5.3.x, Upg/Dng? will display Yes only for upgrade.

The following example shows the FPD for which upgrade will be skipped.

```
RP/0/RP0/CPU0:router# show hw-module fpd location all

Existing Field Programmable Devices

| Location | Card Type | HW Version | Type | Subtype | Inst | Version | Type | Dng? |

| 0/SMI/SP | 140G-4-S1S2S3 | 0.1 | lc | rommonA | 0 | 2.08 | Yes |
| | | rommon | 0 | 2.08 | Yes |
| | | fpga1 | 0 | 6.04 | No |
| | | fpga2 | 0 | 4.01 | No |
```

**NOTES:**

1. ^ One or more FPD will be intentionally skipped from upgrade using CLI with option "all" or during "Auto fpd". It can be upgraded only using the "admin> upgrade hw-module fpd <fpd> location <loc>" CLI with exact location.

```
RP/0/RP0/CPU0:router# show hw-module fpd location 0/6/cpu0
Sun Apr 18 03:18:24.903 DST
```
If the cards in the system do not meet the minimum requirements, the output contains a “NOTES” section that states how to upgrade the FPD image.

Table 16: show hw-module fpd Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Location of the module in the rack/slot/module notation.</td>
</tr>
<tr>
<td>Card Type</td>
<td>Module part number.</td>
</tr>
<tr>
<td>HW Version</td>
<td>Hardware model version for the module.</td>
</tr>
<tr>
<td>Type</td>
<td>Hardware type. Can be one of the following types:</td>
</tr>
<tr>
<td></td>
<td>• spa—Shared port adapter</td>
</tr>
<tr>
<td></td>
<td>• lc—Line card</td>
</tr>
<tr>
<td>Subtype</td>
<td>FPD type. Can be one of the following types:</td>
</tr>
<tr>
<td></td>
<td>• fabldr—Fabric downloader</td>
</tr>
<tr>
<td></td>
<td>• fpga1—Field-programmable gate array</td>
</tr>
<tr>
<td></td>
<td>• fpga2—Field-programmable gate array 2</td>
</tr>
<tr>
<td></td>
<td>• fpga3—Field-programmable gate array 3</td>
</tr>
<tr>
<td></td>
<td>• fpga4—Field-programmable gate array 4</td>
</tr>
<tr>
<td></td>
<td>• fpga5—Field-programmable gate array 5</td>
</tr>
<tr>
<td></td>
<td>• rommonA—Read-only memory monitor A</td>
</tr>
<tr>
<td></td>
<td>• rommon—Read-only memory monitor B</td>
</tr>
<tr>
<td>Inst</td>
<td>FPD instance. The FPD instance uniquely identifies an FPD and is used by the FPD process to register an FPD.</td>
</tr>
<tr>
<td>Current SW Version</td>
<td>Currently running FPD image version.</td>
</tr>
</tbody>
</table>
RP Redundancy and Switchover

This section describes RP redundancy and switchover commands and issues.

Establishing RP Redundancy

Your router has two slots for RPs: RP0 and RP1 (see Figure 5: Redundant Set of RPs Installed in Slots RP0 and RP1 in an 8-Slot Chassis, on page 156). These slots are configured for redundancy by default, and the redundancy cannot be eliminated. To establish RP redundancy, install RPs into both slots.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upg/Dng?</td>
<td>Specifies whether an FPD upgrade or downgrade is required. A downgrade is required in rare cases when the version of the FPD image has a higher major revision than the version of the FPD image in the current Cisco IOS XR software package.</td>
</tr>
</tbody>
</table>
**Determining the Active RP in a Redundant Pair**

During system startup, one RP in each redundant pair becomes the active RP. You can tell which RP is the active RP in the following ways:

- The active RP can be identified by the green Primary LED on the faceplate of the card. The active RP is indicated when the Primary LED is on. The alphanumeric LED display on the RP displays ACTV RP.

- The slot of the active RP is indicated in the CLI prompt. For example:

```
RP/0/RP1/CPU0:router#
```

In this example, the prompt indicates that you are communicating with the active RP in slot RP1. See *Cisco IOS XR Getting Started Guide for the Cisco CRS Router* for a complete description of the CLI prompt.

- Enter the **show redundancy** command in EXEC mode to display a summary of the active and standby RP status. For example:

```
RP/0/RP0/CPU0:router# show redundancy
```

This node (0/RP0/CPU0) is in ACTIVE role
Partner node (0/RP1/CPU0) is in STANDBY role
Standby node in 0/RP1/CPU0 is ready

Reload and boot info
----------------------
RP reloaded Fri Apr  9 03:44:28 2004: 16 hours, 51 minutes ago
This node booted Fri Apr  9 06:54:25 2004: 13 hours, 41 minutes ago
Last switch-over Fri Apr  9 06:53:18 2004: 13 hours, 42 minutes ago
Standby node boot Fri Apr  9 06:54:25 2004: 13 hours, 41 minutes ago
Standby node last not ready Fri Apr  9 20:35:23 2004: 0 minutes ago
Standby node last ready Fri Apr  9 20:35:23 2004: 0 minutes ago
There have been 2 switch-overs since reload

**Role of the Standby RP**

The second RP to boot in a redundant pair automatically becomes the standby RP. While the active RP manages the system and communicates with the user interface, the standby RP maintains a complete backup of the software and configurations for all cards in the system. If the active RP fails or goes off line for any reason, the standby RP immediately takes control of the system.

**Summary of Redundancy Commands**

RP redundancy is enabled by default in the Cisco IOS XR software, but you can use the commands described in *Table 17: RP Redundancy Commands*, on page 158 to display the redundancy status of the cards or force a manual switchover.
Table 17: RP Redundancy Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show redundancy</td>
<td>Displays the redundancy status of the RPs. This command also displays the boot and switch-over history for the RPs.</td>
</tr>
<tr>
<td>redundancy switchover</td>
<td>Forces a manual switchover to the standby RP. This command works only if the standby RP is installed and in the &quot;ready&quot; state.</td>
</tr>
<tr>
<td>show platform</td>
<td>Displays the status for node, including the redundancy status of the RP cards. In EXEC mode, this command displays status for the nodes assigned to the SDR. In administration EXEC mode, this command displays status for all nodes in the system.</td>
</tr>
</tbody>
</table>

**Automatic Switchover**

Automatic switchover from the active RP to the standby RP occurs only if the active RP encounters a serious system error, such as the loss of a mandatory process or a hardware failure. When an automatic switchover occurs, the RPs respond as follows:

- If a standby RP is installed and "ready" for switchover, the standby RP becomes the active RP. The original active RP attempts to reboot.
- If the standby RP is not in "ready" state, then both RPs reboot. The first RP to boot successfully assumes the role of active RP.

**RP Redundancy During RP Reload**

The reload command causes the active RP to reload the Cisco IOS XR software. When an RP reload occurs, the RPs respond as follows:

- If a standby RP is installed and "ready" for switchover, the standby RP becomes the active RP. The original active RP reboots and becomes the standby RP.
- If the standby RP is not in the "ready" state, then both RPs reboot. The first RP to boot successfully assumes the role of active RP.

⚠️ **Caution**

You should not use the reload command to force an RP switchover because the result could be a significant loss of router operations. Instead, use the redundancy switchover command to fail over to the standby RP, then use the hw-module location node-id reload command to reload the new standby RP.
Related Topics

Reloading, Shutting Down, or Power Cycling a Node, on page 161

Manual Switchover

You can force a manual switchover from the active RP to the standby RP using the `redundancy switchover` command.

If a standby RP is installed and ready for switchover, the standby RP becomes the active RP. The original active RP becomes the standby RP. In the following example, partial output for a successful redundancy switchover operation is shown:

```
RP/0/RP0/CPU0:router# show redundancy
This node (0/RP0/CPU0) is in ACTIVE role
Partner node (0/RP1/CPU0) is in STANDBY role
Standby node in 0/RP1/CPU0 is ready
RP/0/RP0/CPU0:router# redundancy switchover
Updating Commit Database. Please wait...[OK]
Proceed with switchover 0/RP0/CPU0 -> 0/RP1/CPU0? [confirm]
Initiating switch-over.
RP/0/RP0/CPU0:router#
<Your 'TELNET' connection has terminated>
```

In the preceding example, the Telnet connection is lost when the previously active RP resets. To continue management of the router, you must connect to the newly activated RP as shown in the following example:

```
User Access Verification
Username: xxxxx
Password: xxxxx
Last switch-over Sat Apr 15 12:26:47 2009: 1 minute ago
RP/0/RP1/CPU0:router#
```

If the standby RP is not in "ready" state, the switchover operation is not allowed. In the following example, partial output for a failed redundancy switchover attempt is shown:

```
RP/0/RP0/CPU0:router# show redundancy
Redundancy information for node 0/RP1/CPU0:
==
Node 0/RP0/CPU0 is in ACTIVE role
Partner node (0/RP1/CPU0) is in UNKNOWN role
Reload and boot info

RP reloaded Wed Mar 29 17:22:08 2009: 2 weeks, 2 days, 19 hours, 14 minutes ago
Active node booted Sat Apr 15 12:27:58 2009: 8 minutes ago
Last switch-over Sat Apr 15 12:35:42 2009: 1 minute ago
There have been 4 switch-overs since reload
RP/0/RP0/CPU0:router# redundancy switchover
Switchover disallowed: Standby node is not ready.
```
Communicating with a Standby RP

The active RP automatically synchronizes all system software, settings, and configurations with the standby RP.

If you connect to the standby RP through the console port, you can view the status messages for the standby RP. The standby RP does not display a CLI prompt, so you cannot manage the standby card while it is in standby mode.

If you connect to the standby RP through the management Ethernet port, the prompt that appears is for the active RP, and you can manage the router the same as if you had connected through the management Ethernet port on the active RP.

CPAK

CPAKs are the Cisco's innovation for 100G pluggable optics, which is built with the industry leading smallest form factor, in full compliant with IEEE802.3ae specification for 100GE-SR10, -LR4, and can interoperate with all IEEE 802.3ba compliant CFP-SR10 or CFP-LR4 100G optics.

Modes supported on CPAKs

This table clearly lists the modes supported with the relevant PID:

<table>
<thead>
<tr>
<th>CPAK (PID)</th>
<th>Modes Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPAK-100G-SR10</td>
<td>100 GE, 10 GE, 40 GE</td>
</tr>
<tr>
<td>CPAK-100G-LR</td>
<td>100 GE</td>
</tr>
<tr>
<td>CPAK-10X10G-LR</td>
<td>100 GE</td>
</tr>
</tbody>
</table>

Power saving mode

8x100GE Line card consists of 4 Slices (0,1,2,3). Each slice has two physical ports. Slice-1, 2 and 3 can be configured into power save mode. Power save option is not applicable to Slice-0. Use the hw-module power saving command to configure the required slice to power saving mode.

Once a slice is configured in the power saving mode, the interfaces will be deleted and hence all traffic passing through the interfaces will be dropped.

Table 18: Slice-Port mapping table

<table>
<thead>
<tr>
<th>Slice</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,3</td>
</tr>
<tr>
<td>2</td>
<td>4,5</td>
</tr>
</tbody>
</table>
To configure the power save option

This task enables the user to configure the power save option.

SUMMARY STEPS

1. admin
2. configure
3. hw-module power saving location location slice number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>admin</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# admin</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Configures the power saving option for the specified slice. The available options are Slice1, 2, 3.</td>
</tr>
<tr>
<td>hw-module power saving location location slice number</td>
<td>Note: Power save option is not applicable for Slice 0.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router (admin-config) # hw-module power saving location 0/1/CPU0 slice 3</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

Use the show plat slices command to get the status of the slices.

Reloading, Shutting Down, or Power Cycling a Node

Use the commands described in this section to reload the Cisco IOS XR software on the active RP or on any specified node in the system. This section also describes the commands used to administratively shut down a node and power a node on or off.

Table 19: Commands to Reload, Shut Down, or Power Cycle a Node, on page 162 summarizes the commands described in this section.
Table 19: Commands to Reload, Shut Down, or Power Cycle a Node

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw-module location node-id power disable</td>
<td>This command administratively turns the power off for a node. It is entered in administration configuration mode. The changes do not take effect until you enter the <strong>commit</strong> command. To power on a node, use the <strong>no</strong> form of this command. <strong>Note</strong> This command cannot be used to disable power on the RP from which the command is entered.</td>
</tr>
<tr>
<td>hw-module location node-id reload</td>
<td>This command works in EXEC mode and reloads the Cisco IOS XR software on a specific node or all nodes. To specify all nodes, enter the <strong>all</strong> keyword in place of the <strong>node-id</strong> argument. The node reloads with the current running configuration and active software set for that node.</td>
</tr>
<tr>
<td>hw-module shutdown location node-id</td>
<td>This command must be entered in administration configuration mode and administratively shuts down the specified node. Nodes that are shut down still have power but cannot load or operate Cisco IOS XR software. To return a node to the up state, use the <strong>no</strong> form of this command. <strong>Note</strong> This command cannot be used to shut down the RP from which the command is entered.</td>
</tr>
</tbody>
</table>

**Reloading the Active RP**

The **reload** command causes the active RP to reload the Cisco IOS XR software according to the configuration register setting. This setting determines how the active RP acts when reloaded.

This section contains instructions to reload the Cisco IOS XR software and return to EXEC mode. For instructions to use the **reload** command for entering ROM Monitor bootstrap mode, see *Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router*.

**Caution**

Because the **reload** command causes the active RP to go off line and either reload the Cisco IOS XR software or enter ROM Monitor mode, the router experiences a loss of service unless a redundant standby RP is installed and in “ready” state. To display the status of the standby RP, use the **show redundancy** command in EXEC mode.
### SUMMARY STEPS

1. show redundancy  
2. admin  
3. show variables boot  
4. (Optional) `config-register register-value`  
5. admin  
6. reload

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** show redundancy | Displays the RP redundancy status.  
- If a standby RP is in “ready” redundancy state, the `reload` command also causes the router to gracefully fail over to the standby RP. |
| Example:  

```
RP/0/RP0/CPU0:router# show redundancy
```

| **Step 2** admin | Enters administration EXEC mode. |
| Example:  

```
RP/0/RP0/CPU0:router# admin
```

| **Step 3** show variables boot | Displays the configuration register setting.  
- Enter this command in administration EXEC mode.  
- For normal operations, the configuration register setting is 0x102 or 0x2102, which causes the active RP to reload the Cisco IOS XR software.  
- Verify that the configuration register setting is 0x102 or 0x2102. If it is not, complete **Step 4, on page 163** to reset the configuration register to 0x102 or 0x2102.  
**Note** For instructions on how to enter ROM Monitor bootstrap mode, see *Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router*. |
| Example:  

```
RP/0/RP0/CPU0:router(admin)# show variables boot
```

| **Step 4** `config-register register-value` | (Optional) Sets the configuration register to the respective value. This step is necessary only if the register is not set to the respective value (0x102 or 0x2102) in the running configuration. You can use either 0x102 or 0x2102. Both these values specify the same functionality, as bit 13 in 0x2102 is not significant for Cisco IOS XR software. |
| Example:  

```
RP/0/RP0/CPU0:router(admin)# config-register 0x102
```

| **Step 5** admin | Enters administration EXEC mode. |
| Example:  

```
RP/0/RP0/CPU0:router# admin
```

<p>| <strong>Step 6</strong> reload | Reloads the active RP according to the configuration register setting. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| RP/0/RP0/CPU0:router# reload | • If the setting is 0x102 or 0x2102, then the RP reloads the Cisco IOS XR software.  
• If the standby RP is in "ready" redundancy state, the router switches over to the standby RP.  
• If a standby RP is not installed or not in a "ready" state, the router experiences a loss of service while the active RP is reloading the Cisco IOS XR software. |

### Flash Disk Recovery

When an RP or DRP is power cycled or experiences an ungraceful reset, the boot disk (PCMCIA flash disk used to boot the card) may experience a file-system corruption. If this occurs, an error message is displayed and the RP or DRP fails to boot. The corrupted flash disk is automatically reformatted and the Cisco IOS XR software is restored from the designated system controller (DSC) for the system.

For example, if a flash disk for an RP or DRP is corrupted, the RP or DRP fails to boot and the following error message is displayed:

```
Unable to mount /disk0:, filesystem is corrupted.
Check fsck log at /tmp/chkfs_fd0.log
init: special_commands:wait for disk0: failed
```

If this occurs, then the flash disk is automatically reformatted and the Cisco IOS XR software is restored to the flash disk.

---

**Note**

If the flash disk is badly damaged and cannot be reformatted, the disk must be replaced.

If the corrupted flash disk is the DSC, then the router fails over to the standby DSC. If no standby DSC is installed, then the system fails to boot.
Using Controller Commands to Manage Hardware Components

The controller, controllers, and show controllers commands are used to manage and display settings for various hardware components, including the switch fabric management, Ethernet control plane, and interface manager. These commands are primarily diagnostic and related to driver-level details. The information available with these commands varies widely and is hardware specific.

For information on the use of these commands, see Cisco IOS XR Interface and Hardware Component Command Reference for the Cisco CRS Router.

Formatting Hard Drives, Flash Drives, and Other Storage Devices

To format a storage device on the router, use the format command in EXEC mode.

**Caution**
Formatting a storage device deletes all data on that device.

The following command syntax is used:

```
format filesystem: [options]
```

Table 20: format command Syntax Description, on page 165 describes the format command syntax.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
</table>
| filesystem | Specifies the memory device to format. The supported file systems are:  
  - bootflash:  
  - compactflash:  
  - flash:  
  - harddisk:  
  - harddiska:  
  - disk0:  
  - disk1:  
  Enter `format ?` to see the devices supported on your router. |
| options | Enter `format filesystem: ?` to see the available options.  
For more information, see Cisco IOS XR System Management Command Reference for the Cisco CRS Router. |
In the following example, the **format** command is used to format the hard disk:

```
RP/0/RP0/CPU0:router# format harddisk:
```

## Removing and Replacing Cards

This section describes card replacement issues and procedures.

### Removing Line Cards, MSCs, or PLIMs

Line cards, modular services cards (MSCs), and physical layer interface modules (PLIMs) are designed for online insertion and removal (OIR). The service processing functions are provided on the MSC, and the physical line interface is provided on a separate card that connects the physical lines to the MSC.

The OIR feature allows you to remove and replace cards without removing power to the card or chassis. Removing a card interrupts all traffic passing through the card, but it does not remove the card configuration.

When you remove a card, the configuration remains for all interfaces, but the interfaces do not appear in the output of the `show interfaces` command. You can view interface configurations by entering the `show running-config` command. The following example shows how the configuration appears when a card is removed:

```
RP/0/RP0/CPU0:router# show running-config
Building configuration...
hostname router
router ospf 3269
area 0
 interface POS0/3/0/0
cost 20

! interface preconfigure POS0/3/0/0
ipv4 address 10.10.50.1 255.255.255.0
!
! interface preconfigure POS0/3/0/1
description POS0/3/0/1
shutdown
!
! interface preconfigure POS0/3/0/2
description POS0/3/0/2
shutdown
!
! interface preconfigure POS0/3/0/3
description POS0/3/0/3
shutdown
!
```

In this example, the MSC in slot 3 is removed, and the interface configuration for all four interfaces changes to “interface preconfigure.” However, the “router ospf” reference to a slot 3 interface does not change. If you replace a PLIM with another PLIM that uses the same media type and port count, the configuration becomes active on the replacement card.

To remove the configuration for a slot after a card is removed, use the **no interface preconfigure** command to remove all interface configuration statements for that card in the running configuration. In addition, search
the configuration for any references to the removed interfaces, such as the "router ospf" reference to slot 3 in
the preceding example.

To remove the configuration for a slot when a card is installed, use the no interface command to remove
all interface configuration statements for that card in the running configuration. In addition, search the
configuration for any references to the removed interfaces.

Each PLIM supports a specific media type (Packet over SONET/SDH [POS] or Ethernet, for example) and
port count. If you replace a PLIM with one that supports a different media type or port count, you should
review the configuration and revise it to support the replacement PLIM.

Replacing an MSC

When you replace an MSC, the guidelines in the Removing Line Cards, MSCs, or PLIMs, on page 166 apply.
Because only one type of MSC exists, no special procedures are required for card removal and replacement.

Replacing a Line Card or PLIM with the Same Media Type and Port Count

When you replace a line card or PLIM with a card that is of the same media type and has the same port count
as the replaced card, the guidelines in the Removing Line Cards, MSCs, or PLIMs, on page 166 apply. Because
the replacement card is of the same media type and port count, no special procedures are required for card
removal and replacement.

Replacing a Line Card or PLIM with the Same Media Type and a Different Port Count

When you replace a line card or PLIM with a card that is of the same media type with a different port count,
the guidelines in Removing Line Cards, MSCs, or PLIMs, on page 166 apply.

If the new card has a greater port count than the replaced card, the configuration applies to the corresponding
lower port numbers, and the ports that did not exist on the replaced card have no configuration and come up
in the shutdown state.

If the new card supports fewer ports, the existing configuration for the corresponding number of ports on the
new card set is applied. The previous configuration for the removed ports remains in interface preconfigure
state, as shown in the following example:

RP/0/RP0/CPU0:router# show running-config

Building configuration...  
hostname rtp-gsr1
interface POS0/3/0/0
  ipv4 address 10.10.50.1 255.255.255.0

! interface preconfigure POS0/3/0/1
  description POS0/3/0/1
  shutdown

! interface preconfigure POS0/3/0/2
  description POS0/3/0/2
  shutdown

! interface preconfigure POS0/3/0/3
  description POS0/3/0/3
  shutdown

In the preceding example, a four-port card has been replaced with a single-port card. The configuration from
port 1 on the four-port card is applied to the single port on the replacement card, and the remaining port
configurations change to “interface preconfigure.” To remove the configuration for the missing interfaces, use the no interface preconfigure command. In addition, search for and remove any configuration references to the removed interfaces.

Whenever you replace a line card or PLIM with the same media type and a different port count, review the running configuration in the router and revise the configuration as necessary.

### Replacing a Line Card or PLIM with a Different Media Type

When you replace a line card or PLIM with a card that is of a different media type (for example, if you replace a POS PLIM with an Ethernet PLIM), the guidelines in Removing Line Cards, MSCs, or PLIMs, on page 166 apply. Review the running configuration in the router and revise the configuration as necessary for the new media type.

### Real Time Power Monitoring

Real Time Power monitoring feature consolidates the power consumption values into a common interface. The user can now know the real time power being consumed on the individual slots and the router as a whole.

#### Advantages

With real time power monitoring, power consumption is maintained at slot level granularity. The user can identify to which power consuming slab the system belongs to, and can take business decisions accordingly.

#### Card support

Real Time Power is supported on the following cards:

- Cisco CRS Modular Services card 400G
- Cisco CRS Modular Services card 200G
- Cisco CRS Series 16 Slots Fabric Card / Multi (400G)
- Cisco CRS Series 16 Slots Fabric Card / Multi (200G)
- Cisco CRS Series 16 Slots Fabric Card / Single (400G)
- Cisco CRS Series 8 Slots Fabric Card / Single (400G)
- Cisco CRS Series 40x10GE Interface Module
- Cisco CRS Series 4x100GE Interface Module
- Cisco CRS 2X100GE (CPACK) and 5X40GE (QSFP+) LAN/OTN Flexible Interface Module

### Examples: Breakout and Power saving options

The following are the examples for the power save and breakout options:

- **Power saving mode**
Configuring the power saving option:

```
admin
 config
 hw-module power saving location 0/0/CPU0 slice 3
! show platform slices
Line Card Slice Config Status
0/0/CPU0 0 Power on Completed
1 Power on Completed
2 Power on Completed
3 Power saving Completed
```

**Breakout option**

Configuring the breakout option:

```
config
 hw-module location 0/0/CPU0 port 0 breakout 10xTenGigE
! show command output indicating the breakout ports:
```

```
RP/0/RSP0/CP00:T02#show ipv4 interface brief | include Hun
Sun Sep 7 15:59:33.446 PST
HundredGigE0/0/0/0 34.34.34.2 Down Down
HundredGigE0/0/0/1 100.0.1.1 Up Up
HundredGigE0/0/0/2 unassigned Up Up
HundredGigE0/0/0/3 unassigned Up Up
HundredGigE0/0/0/4 unassigned Shutdown Down
HundredGigE0/0/0/5 unassigned Shutdown Down
HundredGigE0/0/0/6 unassigned Shutdown Down
HundredGigE0/0/0/7 unassigned Shutdown Down
```

```
RP/0/RSP0/CP00:router(config)#hw-module location 0/0/CPU0 port 2 breakout 10xTenGigE
RP/0/RSP0/CP00:router(config)#commit
RP/0/RSP0/CP00:router#show ipv4 interface brief | include Ten
TenGigE0/0/0/2/0 unassigned Shutdown Down
TenGigE0/0/0/2/1 unassigned Shutdown Down
TenGigE0/0/0/2/2 unassigned Shutdown Down
TenGigE0/0/0/2/3 unassigned Shutdown Down
TenGigE0/0/0/2/4 unassigned Shutdown Down
TenGigE0/0/0/2/5 unassigned Shutdown Down
TenGigE0/0/0/2/6 unassigned Shutdown Down
TenGigE0/0/0/2/7 unassigned Shutdown Down
TenGigE0/0/0/2/8 unassigned Shutdown Down
TenGigE0/0/0/2/9 unassigned Shutdown Down
```

---

**Removing and Replacing Cisco 16-Slot Line Card Chassis Switch Fabric Cards**

16-slot LCCs support two switch fabric cards: the CRS-16-FC/S and the CRS-16-FC/M. The CRS-16-FC/S switch fabric card provides the Stage 1, 2, and 3 switch fabric for one fabric plane in a standalone Cisco CRS-1 Carrier Routing System 16-Slot Line Card Chassis. The CRS-16-FC/M switch fabric card provides the Stage 1 and 3 switch fabric for one fabric plane in a Cisco CRS-1 LCC within a multishelf system.

The Cisco CRS-1 16-Slot LCC can support the maximum throughput with seven of the eight fabric planes. To prevent traffic loss, we recommend that you shut the power down on a fabric plane for a switch fabric card before you remove it. If a switch fabric card is removed with the power on, the card is not harmed, but some traffic may be lost. When the replacement card is inserted, you can restore the power to the fabric plane and bring up the replacement card. This section describes how to properly remove and replace Cisco CRS-16-FC/S and Cisco CRS-16-FC/M cards for upgrades or repairs.
The process of removing and replacing cards while the router power is on is called **online insertion and removal (OIR)**. This procedure removes power to a specific slot before the switch fabric card is replaced. The power remains on for all other slots.

**Tip**
For more information about switch fabric cards, see Related Topics.

**Note**
This procedure does not apply when starting the router for the first time or after a power cycle or reload.

**Before You Begin**

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

- You must log in as root-system before starting the procedure. To confirm your login status, use the `show user group` command:

  ```
 RP/0/RP0/CPU0:router# show user group
 root-system, cisco-support
  ```

  To confirm your login status including root, use the `show user all | include root` command:

  ```
 RP/0/RP0/CPU0:router# show user all | include root
 Groups: root-system, cisco-support
 Task: root-lr : READ WRITE EXECUTE DEBUG (reserved)
 Task: root-system : READ WRITE EXECUTE DEBUG (reserved)
  ```
SUMMARY STEPS

1. admin
2. show platform
3. show controllers fabric plane all
4. admin
5. controllers fabric plane plane_number shutdown
6. commit
7. end
8. show controllers fabric plane all
9. admin
10. hw-module power disable location node-id
11. show platform
12. When the fabric card state changes to UNPOWERED, replace the fabric card.
13. admin
14. no hw-module power disable location node-id
15. show platform
16. admin
17. no controllers fabric plane plane_number shutdown
18. show controllers fabric plane all

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| * Slot SM6: fabric plane 6  
* Slot SM7: fabric plane 7 | Displays the status of each fabric plane. |

**Step 3**

**show controllers fabric plane all**

Example:

```
RP/0/RP0/CPU0:router(admin)# show controllers fabric plane all
```

**Step 4**

**admin**

Example:

```
RP/0/RP0/CPU0:router# admin
```

**Step 5**

**controllers fabric plane plane_number shutdown**

Example:

```
RP/0/RP0/CPU0:router(admin-config)# controllers fabric plane 0 shutdown
```

**Step 6**

**commit**

Example:

```
RP/0/RP0/CPU0:router(admin-config)# commit
```

**Step 7**

**end**

Example:

```
RP/0/RP0/CPU0:router(admin-config)# end
```

**Step 8**

**show controllers fabric plane all**

Example:

```
RP/0/RP0/CPU0:router(admin)# show controllers fabric plane all
```

- The **Admin State** and **Oper State** columns should read **DOWN**.

**Step 9**

**admin**

Example:

```
RP/0/RP0/CPU0:router# admin
```

**Step 10**

**hw-module power disable location node-id**

Example:

```
RP/0/RP0/CPU0:router(admin-config)# hw-module
```
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>power disable</td>
<td>Displays the status of all cards on the router.</td>
</tr>
</tbody>
</table>
| location 0/SM0/SP | • Check the *State* column for the status of the fabric card.  
|                   | • Do not continue to the next step until the status in the *State* column changes to UNPOWERED.  
|                   | • It takes some time for the card to shut down. Repeat the **show platform** command to check the card state. |

<table>
<thead>
<tr>
<th>Step 11 show platform</th>
<th>When the fabric card state changes to UNPOWERED, replace the fabric card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Replaces the physical card.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(admin)# show platform</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12行政</th>
<th>Enters administration EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin</td>
<td>Enter admin EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# admin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 14 no hw-module power disable location node-id</th>
<th>Sets the target configuration to restore power to the fabric card.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router{admin-config}# no</td>
</tr>
<tr>
<td></td>
<td>hw-module power</td>
</tr>
<tr>
<td></td>
<td>disable location 0/SM0/SP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 15 show platform</th>
<th>Displays the status of all cards on the router.</th>
</tr>
</thead>
</table>
| Example:              | • Check the *State* column for the status of the fabric card.  
|                       | • Do not continue to the next step until the status in the *State* column changes to IOS XR RUN.  
|                       | • It takes some time for the card to start up. Repeat the **show platform** command to check the card state. |
|                       | RP/0/RP0/CPU0:router{admin}# show platform |

<table>
<thead>
<tr>
<th>Step 16 admin</th>
<th>Enters administration EXEC mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# admin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 17 no controllers fabric plane plane_number shutdown</th>
<th>Sets the target configuration to bring up the fabric plane.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router{admin-config}# no</td>
</tr>
<tr>
<td></td>
<td>controllers fabric</td>
</tr>
<tr>
<td></td>
<td>plane 0 shutdown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 18 show controllers fabric plane all</th>
<th>Displays the fabric plane status.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router{admin}# show</td>
</tr>
<tr>
<td></td>
<td>controllers fabric plane all</td>
</tr>
</tbody>
</table>
### Related Topics

**Additional References**, on page 194

### Examples

The following example shows the commands and command responses for replacing a a 16-slot LCC fabric card:

```
RP/0/RP1/CPU0:router# admin
RP/0/RP1/CPU0:router(admin)# show platform
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Type</th>
<th>PLIM</th>
<th>State</th>
<th>Config State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1/SP</td>
<td>MSC (SP)</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/1/CPU0</td>
<td>MSC</td>
<td>16OC48-POS/DPT</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/RP1/CPU0</td>
<td>RP (Active)</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/S10/SP</td>
<td>FC/SP</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/S11/SP</td>
<td>FC/SP</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/S12/SP</td>
<td>FC/SP</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/S13/SP</td>
<td>FC/SP</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/S14/SP</td>
<td>FC/SP</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/S15/SP</td>
<td>FC/SP</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/S16/SP</td>
<td>FC/SP</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
<tr>
<td>0/S17/SP</td>
<td>FC/SP</td>
<td>N/A</td>
<td>IOS XR</td>
<td>RUN</td>
</tr>
</tbody>
</table>

```
RP/0/RP1/CPU0:router(admin)# show controllers fabric plane all
```

Flags:  
P - plane admin down,  
p - plane oper down  
C - card admin down,  
c - card oper down  
L - link port admin down,  
l - linkport oper down  
A - asic admin down,  
a - asic oper down  
B - bundle port admin Down,  
b - bundle port oper down  
I - bundle admin down,  
i - bundle oper down  
N - node admin down,  
n - node down  
o - other end of link down  
d - data down  
f - failed component downstream  
m - plane multicast down

```
Plane Admin Oper
```

<table>
<thead>
<tr>
<th>Id</th>
<th>State</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>1</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>2</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>3</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>4</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>5</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>6</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>7</td>
<td>UP</td>
<td>UP</td>
</tr>
</tbody>
</table>

```
RP/0/RP1/CPU0:router(admin)# configure
```
Managing the Router Hardware

Removing and Replacing Cisco 16-Slot Line Card Chassis Switch Fabric Cards

When the state of the fabric card changes to UNPOWERED, replace the fabric card.
configuration committed by user 'jim'. Use 'show configuration commit changes 100000143' to view the changes.

RP/0/RP1/CPU0:router(config)#RP/0/RP1/CPU0:Oct 5 02:19:42.747 : shelfmgr[284] : %PLATFORM-MBIMGR-7-IMAGE_VALIDATED : 0/SM0/SP: MBI tftp:/hfr-os-mbi-3.4.0/sp/mblfr-sp.vm validated

RP/0/RP1/CPU0:router(admin-config)# end
RP/0/RP1/CPU0:router(admin)# show platform

<table>
<thead>
<tr>
<th>Node</th>
<th>Type</th>
<th>PLIM</th>
<th>State</th>
<th>Config State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1/SP</td>
<td>MSC(SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/1/CPU0</td>
<td>MSC</td>
<td>16OC48-POS/DPT</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/RP1/CPU0</td>
<td>RP(Active)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM0/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM1/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM2/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM3/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM4/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM5/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM6/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM7/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
</tbody>
</table>

RP/0/RP1/CPU0:router(admin)# show platform

<table>
<thead>
<tr>
<th>Node</th>
<th>Type</th>
<th>PLIM</th>
<th>State</th>
<th>Config State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1/SP</td>
<td>MSC(SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/1/CPU0</td>
<td>MSC</td>
<td>16OC48-POS/DPT</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/RP1/CPU0</td>
<td>RP(Active)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM0/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM1/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM2/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM3/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM4/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM5/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM6/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
<tr>
<td>0/SM7/SP</td>
<td>FC(S(SP))</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR,NSHUT,MON</td>
</tr>
</tbody>
</table>

RP/0/RP1/CPU0:router(admin)# configure

SP/0/SM0/SP:Oct 5 02:20:19.102 : init[65541] : %OS-INIT-7-MBI_STARTED : total time 7.678 seconds
SP/0/SM0/SP:Oct 5 02:20:20.361 : insthelper[60] : %INSTALL-INSTHELPER-7-PKG_DOWN
SP/0/SM0/SP:Oct 5 02:22:23.458 : init[65541] : %OS-INIT-7-INSTALL_READY : total time 132.060 seconds
SP/0/SM0/SP:Oct 5 02:22:39.329 : sfe_drvr[108][120] : Board revision : 0x06.
SP/0/SM0/SP:Oct 5 02:22:47.306 : sfe_drvr[108] : %FABRIC-FABRIC_DRV-6-ASIC_IN
ITALIZED : Fabric ASICs initialized
SP/0/SM0/SP:Oct 5 02:23:06.316 : alphadisplay[100] : %PLATFORM-ALPHA_DISPLAY-6-CHANGE : Alpha display on node 0/SM0/SP changed to IOS-XR in state default

RP/0/RP1/CPU0:router(admin-config)# no controllers fabric plane 0 shutdown
RP/0/RP1/CPU0:router(admin-config)# commit

RP/0/RP1/CPU0:Oct 5 02:25:15.736 : fsdb_aserver[173] : %FABRIC-FSDB-1-PLANE_UPDO
Removing and Replacing 8-Slot Line Card Chassis Switch Fabric Cards

Each CRS-8-FC/S switch fabric card provides the Stage 1, 2, and 3 switch fabric for two fabric planes in a Cisco CRS-1 8-Slot Line Card Chassis.

The 8-Slot LCC can support the maximum throughput with seven of the eight fabric planes. However, because each CRS-8-FC/S switch fabric card hosts two fabric planes, replacing a fabric card does reduce the maximum throughput and impacts router traffic if the router is operating at maximum capacity. To minimize traffic loss, we recommend that you shut the power down for the switch fabric card before you remove it. If a switch fabric card is removed with power on, the card is not harmed, but the traffic impact may be greater than if the card power were removed. When the replacement card is inserted, you can restore the power and bring up the replacement card. This section describes how to properly remove and replace a Cisco CRS-8-FC/S switch fabric card for upgrades or repairs.

The process of removing and replacing cards while the router power is on is called online insertion and removal (OIR). This procedure removes power to a specific slot before the switch fabric card is replaced. The power remains on for all other slots.

For more information about switch fabric cards, see Related Topics.

Before You Begin

• You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
• You must log in as root-system before starting the procedure. To confirm your login status, use the show user group command:

RP/0/RP0/CPU0:router# show user group
root-system, cisco-support

To confirm your login status including root, use the show user all | include root command:

RP/0/RP0/CPU0:router# show user all | include root
Groups: root-system, cisco-support
Task: root-lr : READ WRITE EXECUTE DEBUG (reserved)
Task: root-system : READ WRITE EXECUTE DEBUG (reserved)

SUMMARY STEPS

1. admin
2. show platform
3. show controllers fabric plane all
4. admin
5. controllers fabric plane plane_number shutdown
6. controllers fabric plane plane_number shutdown
7. commit
8. end
9. show controllers fabric plane all
10. admin
11. hw-module power disable location node-id
12. commit
13. end
14. show platform
15. When the fabric card state changes to UNPOWERED, replace the fabric card.
16. admin
17. no hw-module power disable location node-id
18. commit
19. end
20. show platform
21. admin
22. no controllers fabric plane plane_number shutdown
23. no controllers fabric plane plane_number shutdown
24. commit
25. end
26. show controllers fabric plane all
## Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>admin</code></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router# admin</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>show platform</code></td>
<td>Displays all cards on the router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(admin)# show platform</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>show controllers fabric plane all</code></td>
<td>Displays the status of each fabric plane.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(admin)# show controllers fabric plane all</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>admin</code></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router# admin</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>controllers fabric plane plane_number shutdown</code></td>
<td>Shuts down one of the two fabric planes on a CRS-8-FC/S card.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(config)# controllers fabric plane 0 shutdown</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>controllers fabric plane plane_number shutdown</code></td>
<td>Shuts down one of the two fabric planes on a CRS-8-FC/S card.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin-config)# controllers fabric plane 1 shutdown</td>
<td>• Shut down the companion plane to the plane shut down in the previous step.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> commit</td>
<td>Commits the target configuration to the router running configuration.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin-config)# commit</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> end</td>
<td>Exits administration configuration mode and returns to administration EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin-config)# end</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> show controllers fabric plane all</td>
<td>Displays the status of each fabric plane. The <em>Admin State</em> and <em>Oper State</em> columns should read DOWN for both of the shutdown planes.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin)# show controllers fabric plane all</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> admin</td>
<td>Enters administration EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router# admin</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong> hw-module power disable location node-id</td>
<td>Sets the target configuration to remove power from the fabric card.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin-config)# hw-module power disable location 0/SM0/SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> commit</td>
<td>Commits the target configuration to the router running configuration.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin-config)# commit</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 13</strong> end</td>
<td>Exits administration configuration mode and returns to administration EXEC mode.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin-config)# end</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> show platform</td>
<td>Displays the status of all cards on the router.</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin)# show platform</td>
<td>• Check the <em>State</em> column for the status of the fabric card.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Do not continue to the next step until the status in the <em>State</em> column changes to UNPOWERED.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• It takes some time for the card to shut down. Repeat the <em>show platform</em> command to check the card state.</td>
<td></td>
</tr>
</tbody>
</table>
### Removing and Replacing 8-Slot Line Card Chassis Switch Fabric Cards

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 15</strong></td>
<td>When the fabric card state changes to UNPOWERED, replace the fabric card. Replaces the physical card.</td>
</tr>
<tr>
<td><strong>Step 16</strong></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>admin</td>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router# admin</td>
</tr>
<tr>
<td><strong>Step 17</strong></td>
<td>Sets the target configuration to restore power to the fabric card.</td>
</tr>
<tr>
<td>no hw-module power disable location node-id</td>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(config)# no hw-module power disable location 0/SM0/SP</td>
</tr>
<tr>
<td><strong>Step 18</strong></td>
<td>Commits the target configuration to the router running configuration.</td>
</tr>
<tr>
<td>commit</td>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(config)# commit</td>
</tr>
<tr>
<td><strong>Step 19</strong></td>
<td>Exits administration configuration mode and returns to administration EXEC mode.</td>
</tr>
<tr>
<td>end</td>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(config)# end</td>
</tr>
<tr>
<td><strong>Step 20</strong></td>
<td>Displays the status of all cards on the router.</td>
</tr>
<tr>
<td>show platform</td>
<td>• Check the State column for the status of the fabric card.</td>
</tr>
<tr>
<td></td>
<td>• Do not continue to the next step until the status in the State column changes to IOS XR RUN.</td>
</tr>
<tr>
<td></td>
<td>• It takes some time for the card to start up. Repeat the show platform command to check the card state.</td>
</tr>
<tr>
<td><strong>Step 21</strong></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>admin</td>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router# admin</td>
</tr>
<tr>
<td><strong>Step 22</strong></td>
<td>Sets the target configuration to bring up one of the two fabric planes on the card.</td>
</tr>
<tr>
<td>no controllers fabric plane plane_number shutdown</td>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(config)# no controllers fabric plane 0 shut</td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Step 23 no controllers fabric plane \textit{plane\_number} shutdown | Sets the target configuration to bring up one of the two fabric planes on the card.
Example: RP/0/RP0/CPU0:router (admin-config)\# no controllers fabric plane 1 shut
Step 24 commit | Commits the target configuration to the router running configuration.
Example: RP/0/RP0/CPU0:router (admin-config)\# commit
Step 25 end | Exits administration configuration mode and returns to administration EXEC mode.
Example: RP/0/RP0/CPU0:router (admin-config)\# end
Step 26 show controllers fabric plane all | Displays the fabric plane status.
The \textit{Admin State} and \textit{Oper State} columns should read \textit{UP} for both fabric planes on the fabric card.
Example: RP/0/RP0/CPU0:router (admin)\# show controllers fabric plane all

Related Topics

Additional References, on page 194

Examples

The following example shows the commands and command responses for replacing an 8-slot LCC fabric card:

```
RP/0/RP1/CPU0:router# admin
RP/0/RP1/CPU0:router (admin)\# show platform
```

<table>
<thead>
<tr>
<th>Node</th>
<th>Type</th>
<th>PLIM</th>
<th>State</th>
<th>Config State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1/SP</td>
<td>MSC (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/1/CPU0</td>
<td>MSC</td>
<td>16OC48-POS/DPT</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/RP1/CPU0</td>
<td>RP(Active)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM0/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM1/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM2/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM3/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
</tbody>
</table>

```
RP/0/RP1/CPU0:router (admin)\# show controllers fabric plane all
```

Flags: P - plane admin down, p - plane oper down
C - card admin down, c - card oper down
L - link port admin down, l - linkport oper down
### Plane Admin Oper

<table>
<thead>
<tr>
<th>Id</th>
<th>State</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>1</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>2</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>3</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>4</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>5</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>6</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>7</td>
<td>UP</td>
<td>UP</td>
</tr>
</tbody>
</table>

**configure**

**controllers fabric plane 0 shutdown**

**commit**

**show controllers fabric plane all**

**Files:**
- P - plane admin down, p - plane oper down
- C - card admin down, c - card oper down
- L - link port admin down, l - linkport oper down
- A - asic admin down, a - asic oper down
- B - bundle port admin Down, b - bundle port oper down
- I - bundle admin down, i - bundle oper down
- N - node admin down, n - node down
- o - other end of link down d - data down
- f - failed component downstream m - plane multicast down

### Plane Admin Oper

<table>
<thead>
<tr>
<th>Id</th>
<th>State</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DOWN</td>
<td>DOWN</td>
</tr>
<tr>
<td>1</td>
<td>DOWN</td>
<td>DOWN</td>
</tr>
<tr>
<td>2</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>3</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>4</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>5</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>6</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>7</td>
<td>UP</td>
<td>UP</td>
</tr>
</tbody>
</table>

**configure**

**hw-module power disable location 0/SM0/SP**

**commit**

**show controllers fabric plane all**

**Files:**
- P - plane admin down, p - plane oper down
- C - card admin down, c - card oper down
- L - link port admin down, l - linkport oper down
- A - asic admin down, a - asic oper down
- B - bundle port admin Down, b - bundle port oper down
- I - bundle admin down, i - bundle oper down
- N - node admin down, n - node down
- o - other end of link down d - data down
- f - failed component downstream m - plane multicast down

### Plane Admin Oper

<table>
<thead>
<tr>
<th>Id</th>
<th>State</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DOWN</td>
<td>DOWN</td>
</tr>
<tr>
<td>1</td>
<td>DOWN</td>
<td>DOWN</td>
</tr>
<tr>
<td>2</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>3</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>4</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>5</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>6</td>
<td>UP</td>
<td>UP</td>
</tr>
<tr>
<td>7</td>
<td>UP</td>
<td>UP</td>
</tr>
</tbody>
</table>
Removing and Replacing 8-Slot Line Card Chassis Switch Fabric Cards

When the state for the fabric card changes to UNPOWERED, replace the fabric card.

```
RP/0/RP1/CPU0:router(config)# end
RP/0/RP1/CPU0:router(config)# configure
RP/0/RP1/CPU0:router(config)# no hw-module power disable location 0/SM0/SP
RP/0/RP1/CPU0:router(config)# commit
```

```
Node Type PLIM State Config State
---------- ---------- ---------- ---------- -------------------------
0/1/SP MSC (SP) N/A IOS XR RUN PWR,NSHUT,MON
0/1/CPU0 MSC 16OC48-POS/DPT IOS XR RUN PWR,NSHUT,MON
0/RP1/CPU0 RP(Active) N/A IOS XR RUN PWR,NSHUT,MON
0/SM0/SP FC/S (SP) N/A IOS XR RUN PWR,NSHUT,MON
0/SM1/SP FC/S (SP) N/A IOS XR RUN PWR,NSHUT,MON
0/SM2/SP FC/S (SP) N/A IOS XR RUN PWR,NSHUT,MON
0/SM3/SP FC/S (SP) N/A IOS XR RUN PWR,NSHUT,MON
```

```
RP/0/RP1/CPU0:router(config)# SP/0/SM0/SP:Oct 5 02:20:19.102 : init[65541]: %OS-INIT-7-MBI_STARTED : total time 7.678 seconds
SP/0/SM0/SP:Oct 5 02:20:21.361 : insthelper[60]: %INSTALL-INSTHELPER-7-PKG_DOWN LOAD : MBI running; starting software download
```
Removing and Replacing Cisco 4-Slot Line Card Chassis Switch Fabric Cards

The Cisco CRS-4-FC switch fabric card provides the Stage 1, 2, and 3 switch fabric for one fabric plane in a Cisco CRS-1 4-Slot Line Card Chassis.

The Cisco CRS-1 4-Slot LCC can support the maximum throughput with three of the four fabric planes. To prevent traffic loss, we recommend that you shut the power down on a fabric plane for a switch fabric card before you remove it. If a switch fabric card is removed with the power on, the card is not harmed, but some traffic may be lost. When the replacement card is inserted, you can restore the power to the fabric plane and bring up the replacement card. This section describes how to properly remove and replace Cisco CRS-4-FC switch fabric cards for upgrades or repairs.
At least two planes of the switch fabric (an even plane and an odd plane) must be active at all times for the Cisco CRS-1 4-slot line card chassis to operate. Otherwise, the switch fabric fails, causing a system failure.

The process of removing and replacing cards while the router power is on is called online insertion and removal (OIR). This procedure removes power to a specific slot before the switch fabric card is replaced. The power remains on for all other slots.

For more information about switch fabric cards, see the hardware documentation listed in the Related Documents, on page 194.

This procedure does not apply when starting the router for the first time or after a power cycle or reload.

Before You Begin

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- You must log in as root-system before starting the procedure. To confirm your login status, use the show user group command:

  RP/0/RP0/CPU0:router# show user group
  
  root-system, cisco-support

  To confirm your login status including root, use the show user all | include root command:

  RP/0/RP0/CPU0:router# show user all | include root

  Groups: root-system, cisco-support
  Task: root-lr : READ WRITE EXECUTE DEBUG (reserved)
  Task: root-system : READ WRITE EXECUTE DEBUG (reserved)
SUMMARY STEPS

1. admin
2. show platform
3. show controllers fabric plane all
4. configure
5. controllers fabric plane plane_number shutdown
6. commit
7. end
8. show controllers fabric plane all
9. configure
10. hw-module power disable location node-id
11. commit
12. end
13. show platform
14. When the fabric card state changes to UNPOWERED, replace the fabric card.
15. configure
16. no hw-module power disable location node-id
17. commit
18. end
19. show platform
20. configure
21. no controllers fabric plane plane_number shutdown
22. commit
23. end
24. show controllers fabric plane all

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>admin</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# admin</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Displays all cards on the router.</td>
</tr>
<tr>
<td>show platform</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# show platform</td>
</tr>
</tbody>
</table>

   • Allows you to identify a fabric card (identified with an SM prefix).
   • The number following the SM prefix identifies the corresponding fabric plane, as follows:
     • Slot SM0: fabric plane 0
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong> show controllers fabric plane all</td>
<td>Displays the status of each fabric plane.</td>
</tr>
<tr>
<td><strong>Step 4</strong> configure</td>
<td>Enters administration configuration mode.</td>
</tr>
<tr>
<td><strong>Step 5</strong> controllers fabric plane <em>plane_number</em> shutdown</td>
<td>shuts down the fabric plane.</td>
</tr>
<tr>
<td><strong>Step 6</strong> commit</td>
<td>Commits the target configuration to the router running configuration.</td>
</tr>
<tr>
<td><strong>Step 7</strong> end</td>
<td>Exits administration configuration mode and returns to administration EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 8</strong> show controllers fabric plane all</td>
<td>Displays the status of each fabric plane.</td>
</tr>
<tr>
<td><strong>Step 9</strong> configure</td>
<td>Enters administration configuration mode.</td>
</tr>
<tr>
<td><strong>Step 10</strong> hw-module power disable location <em>node-id</em></td>
<td>Sets the target configuration to remove power from the fabric card.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 11</strong></td>
<td><strong>commit</strong>&lt;br&gt;Example: RP/0/RP0/CPU0:router(admin-config)# commit</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Commits the target configuration to the router running configuration.</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td><strong>end</strong>&lt;br&gt;Example: RP/0/RP0/CPU0:router(admin-config)# end</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Exits administration configuration mode and returns to administration EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td><strong>show platform</strong>&lt;br&gt;Example: RP/0/RP0/CPU0:router(admin)# show platform</td>
</tr>
</tbody>
</table>
| **Purpose** | Displays the status of all cards on the router.  
- Check the *State* column for the status of the fabric card.  
- Do not continue to the next step until the status in the *State* column changes to UNPOWERED.  
- It takes some time for the card to shut down. Repeat the *show platform* command to check the card state. |
| **Step 14** | When the fabric card state changes to UNPOWERED, replace the fabric card. |
| **Purpose** | Replaces the physical card. |
| **Step 15** | **configure**<br>Example: RP/0/RP0/CPU0:router(admin)# configure |
| **Purpose** | Enters administration configuration mode. |
| **Step 16** | **no hw-module power disable location node-id**<br>Example: RP/0/RP0/CPU0:router(admin-config)# no hw-module power disable location 0/SM0/SP |
| **Purpose** | Sets the target configuration to restore power to the fabric card. |
| **Step 17** | **commit**<br>Example: RP/0/RP0/CPU0:router(admin-config)# commit |
| **Purpose** | Commits the target configuration to the router running configuration. |
| **Step 18** | **end**<br>Example: RP/0/RP0/CPU0:router(admin-config)# end |
| **Purpose** | Exits administration configuration mode and returns to administration EXEC mode. |
| **Step 19** | **show platform**<br>Example: RP/0/RP0/CPU0:router(admin)# show platform |
| **Purpose** | Displays the status of all cards on the router.  
- Check the *State* column for the status of the fabric card.  
- Do not continue to the next step until the status in the *State* column changes to IOS XR RUN. |
### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 20</strong> configure</td>
<td>Enters administration configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin)# configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 21</strong> no controllers fabric plane <em>plane_number</em> shutdown</td>
<td>Sets the target configuration to bring up the fabric plane.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin-config)# no controllers fabric plane 0 shutdown</td>
<td></td>
</tr>
<tr>
<td><strong>Step 22</strong> commit</td>
<td>Commits the target configuration to the router running configuration.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin-config)# commit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 23</strong> end</td>
<td>Exits administration configuration mode and returns to administration EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin-config)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 24</strong> show controllers fabric plane all</td>
<td>Displays the fabric plane status. The Admin State and Oper State columns should read UP.</td>
</tr>
<tr>
<td><strong>Example:</strong> RP/0/RP0/CPU0:router(admin)# show controllers fabric plane all</td>
<td></td>
</tr>
</tbody>
</table>

### Examples

The following example shows the commands and command responses for replacing a 4-slot LCC switch fabric card:

```
RP/0/RP1/CPU0:router# admin
RP/0/RP1/CPU0:router(admin)# show platform

Node Type PLIM State Config State

0/1/SP MSC(SP) N/A IOS XR RUN PWR,NSHUT,MON
0/1/CPU0 MSC 16COC48-POS/DPT IOS XR RUN PWR,NSHUT,MON
0/RP1/CPU0 RP(Active) N/A IOS XR RUN PWR,NSHUT,MON
0/SM0/SP FC/S(SP) N/A IOS XR RUN PWR,NSHUT,MON
0/SM1/SP FC/S(SP) N/A IOS XR RUN PWR,NSHUT,MON
0/SM2/SP FC/S(SP) N/A IOS XR RUN PWR,NSHUT,MON
0/SM3/SP FC/S(SP) N/A IOS XR RUN PWR,NSHUT,MON

RP/0/RP1/CPU0:router(admin)# show controllers fabric plane all
```
Flags: P - plane admin down, p - plane oper down
C - card admin down, c - card oper down
L - link port admin down, l - linkport oper down
A - asic admin down, a - asic oper down
B - bundle port admin Down, b - bundle port oper down
I - bundle admin down, i - bundle oper down
N - node admin down, n - node down
o - other end of link down d - data down
f - failed component downstream
m - plane multicast down

Plane Admin Oper
Id  State  State
----------------------
0  UP     UP
1  UP     UP
2  UP     UP
3  UP     UP

RP/0/RP1/CPU0:router(config)# controllers fabric plane 0 shutdown
RP/0/RP1/CPU0:router(config)# commit

RP/0/RP1/CPU0:Oct 5 02:15:09.265 : fsdb_aserver[173]: %FABRIC-FSDB-1-PLANE_UPDO
WN : Plane 0 state changed to DOWN:
RP/0/RP1/CPU0:Oct 5 02:15:09.319 : config[65734]: %MGBL-LIBTARCFG-6-ADMIN_COMMIT:
T : Administration configuration committed by user 'jim'.

RP/0/RP1/CPU0:router(config)# end

RP/0/RP1/CPU0:router(config)# show controllers fabric plane all

Plane Admin Oper
Id  State  State
----------------------
0  DOWN   DOWN
1  UP     UP
2  UP     UP
3  UP     UP

RP/0/RP1/CPU0:router(config)# hw-module power disable location 0/SM0/SP
RP/0/RP1/CPU0:router(config)# commit

RP/0/RP1/CPU0:Oct 5 02:18:24.774 : config[65734]: %MGBL-LIBTARCFG-6-COMMIT: Co
nfiguration committed by user 'jim'. Use 'show configuration commit changes 10
00000142' to view the changes.
RP/0/RP1/CPU0:router(config)#LC/0/1/CPU0:Oct 5 02:18:25.974 : fabricq_mgr[127]: %FABRICK-FABRICQ-3-PI_UNCORR_ERROR: fabricq: Major error in Fabric Interfa
ce : RS Uncorrectable errors on Fabricq ASIC 0 link 3
RP/0/RP1/CPU0:Oct 5 02:18:28.059 : shelfmgr[284]: %PLATFORM-SHELFMGR-3-POWERDOW
N_RESET : Node 0/SM0/SP is powered off due to admin power off request

RP/0/RP1/CPU0:router(config)# end
RP/0/RP1/CPU0:router(config)# show platform

Node Type    PLIM       State Config State
---------------------------------------------
When the state of the fabric card changes to UNPOWERED, replace the fabric card.

```
RP/0/RP1/CPU0:router# configure
RP/0/RP1/CPU0:router(admin-config)# no hw-module power disable location 0/SM0/SP
RP/0/RP1/CPU0:router(admin-config)# commit

RP/0/RP1/CPU0:router(config)#RP/0/RP1/CPU0:Oct 5 02:19:30.472 : config[65734]: %MGBL-LIBTARCFG-6-COMMIT : Configuration committed by user 'jim'. Use 'show configuration commit changes 100000143' to view the changes.
RP/0/RP1/CPU0:router(admin-config)#end
RP/0/RP1/CPU0:router(admin)## show platform
```

```
<table>
<thead>
<tr>
<th>Node</th>
<th>Type</th>
<th>PLIM</th>
<th>State</th>
<th>Config State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1/SP</td>
<td>MSC (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/1/CPU0</td>
<td>MSC</td>
<td>16OC48-POS/DPT</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/RP1/CPU0</td>
<td>RP (Active)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM0/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>MBI-BOOTING</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM1/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM2/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM3/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
</tbody>
</table>
```

```
RP/0/RP1/CPU0:router(admin)## show platform
```

```
<table>
<thead>
<tr>
<th>Node</th>
<th>Type</th>
<th>PLIM</th>
<th>State</th>
<th>Config State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1/SP</td>
<td>MSC (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/1/CPU0</td>
<td>MSC</td>
<td>16OC48-POS/DPT</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/RP1/CPU0</td>
<td>RP (Active)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM0/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>MBI-RUNNING</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM1/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM2/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM3/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
</tbody>
</table>
```

```
RP/0/RP1/CPU0:router(admin)## show platform
```

```
<table>
<thead>
<tr>
<th>Node</th>
<th>Type</th>
<th>PLIM</th>
<th>State</th>
<th>Config State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1/SP</td>
<td>MSC (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/1/CPU0</td>
<td>MSC</td>
<td>16OC48-POS/DPT</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/RP1/CPU0</td>
<td>RP (Active)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM0/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM1/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM2/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
<tr>
<td>0/SM3/SP</td>
<td>FC/S (SP)</td>
<td>N/A</td>
<td>IOS XR RUN</td>
<td>PWR, NSHUT, MON</td>
</tr>
</tbody>
</table>
```

```
RP/0/RP1/CPU0:router(admin)## configure
```

```
SP/0/SM0/SP:Oct 5 02:20:19.102 : init[65541]: %OS-INIT-7-MBI_STARTED : total time 7.678 seconds
SP/0/SM0/SP:Oct 5 02:20:21.361 : insthelper[60]: %INSTALL-INSTHELPER-7-PKG_DOWN LOAD : MBI running; starting software download
SP/0/RP1/SM0/SP:Oct 5 02:22:23.458 : init[65541]: %OS-INIT-7-INSTALL_READY : total time 132.060 seconds
SP/0/SM0/SP:Oct 5 02:22:39.329 : sfe_drvr[108][120]: Board revision : 0x06.
```
Upgrading the CPU Controller Bits

Use this procedure to upgrade the CPU controller bits on all nodes that are installed in the router or on a specific node.

SUMMARY STEPS

1. **admin**

2. **upgrade cpuctrlbits {all | location node-id}**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# admin</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>upgrade cpuctrlbits {all</td>
<td>location node-id}</td>
</tr>
</tbody>
</table>
### Command or Action

**Example:**

```
RP/0/RP0/CPU0:router(admin)# upgrade cpucrtrlbits all
```

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the <strong>location node-id</strong> keyword and argument to upgrade the CPU controller bits on a specific node.</td>
<td></td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to upgrade the CPU controller bits on all nodes in a router:

```
RP/0/RP0/CPU0:router# admin
RP/0/RP0/CPU0:router(admin)# upgrade cpucrtrlbits all
```

Please do not power cycle, reload the router or reset any nodes until all upgrades are completed.
Please check the syslog to make sure that all nodes are upgraded successfully.
If you need to perform multiple upgrades, please wait for current upgrade to be completed before proceeding to another upgrade. Failure to do so may render the cards under upgrade to be unusable.

### Additional References

The following sections provide references related to hardware management on Cisco IOS XR software.

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR hardware commands</td>
<td>Hardware Redundancy and Node Administration Commands on the Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about getting started with Cisco IOS XR software</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>ROM Monitor</td>
<td>Cisco IOS XR ROM Monitor Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR command master list</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

### Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: <a href="http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml">http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
CHAPTER

7

Configuring Flexible Command Line Interface Configuration Groups

This module describes how to configure and use flexible command line interface (CLI) configuration groups.

Table 21: Feature History for Configuring Flexible CLI Configuration Groups

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.3.1</td>
<td>Flexible CLI configuration groups were introduced.</td>
</tr>
</tbody>
</table>

This module contains these topics:

- Information About Flexible CLI Configuration Groups, page 197
- Flexible Configuration Restrictions, page 198
- Configuring a Configuration Group, page 199
- Verifying the Configuration of Configuration Groups, page 201
- Apply Groups Priority Inheritance, page 203
- Regular Expressions in Configuration Groups, page 204
- Configuration Examples for Flexible CLI Configuration, page 214

Information About Flexible CLI Configuration Groups

Flexible command line interface (CLI) configuration groups provide the ability to minimize repetitive configurations by defining a series of configuration statements in a configuration group, and then applying this group to multiple hierarchical levels in the router configuration tree.

Flexible CLI configuration groups utilize regular expressions that are checked for a match at multiple submodes of the configuration tree based on where the group is applied within the hierarchy. If a match is found at a configuration submode, the corresponding configuration defined in the group is inherited within the matched submode.
Flexible CLI configuration groups also provide an auto-inheritance feature. Auto-inheritance means that any change done to a CLI configuration group is automatically applied to the configuration in any matched submodes that have an apply-group at that hierarchical level. This allows you to make a configuration change or addition once, and have it applied automatically in multiple locations, depending on where you have applied the flexible CLI configuration group.

Flexible Configuration Restrictions

Note these restrictions while using flexible configuration groups:

- Flexible CLI configuration groups are not supported in administration configurations and corresponding apply-groups are not supported in administration configurations.

- Use of preconfigured interfaces in configuration groups is not supported.

- Downgrading from an image that supports configuration groups to an image that does not support them is not supported.

- Access lists, quality of service and route policy configurations do not support the use of configuration groups. Configurations such as these are not valid:

```
group g-not-supported
 ipv4 access-list ...
 | ipv6 access-list ...
 | ethernet-service access-list ...
 | class-map ...
 | policy-map ...
 | route-policy ...
 |
end-group
```

You can, however, reference such configurations, as shown in this example:

```
group g-reference-ok
router bgp 6500
 neighbor 7::7
 remote-as 65000
 bfd fast-detect
 update-source Loopback300
 graceful-restart disable
 address-family ipv6 unicast
 route-policy test1 in
 route-policy test2 out
 soft-reconfiguration inbound always
 |
 |
interface Bundle-Ether1005
 bandwidth 10000000
 mtu 9188
 service-policy output input_1
 load-interval 30
 |
end-group
```

- Some regular expressions are not supported within groups. For example, ‘?’ , ‘|’ and ‘$’, are not supported within groups. Also some characters such as /d and /w are not supported.
The choice operator "|" to express multiple match expressions within a regular expression is not supported. For example, these expressions are not supported:

Gig.*|Gig.*\..*—To match on either Gigabit Ethernet main interfaces or Gigabit Ethernet sub-interfaces.

Gig.*0/0/0/[1-5]|Gig.*0/0/0/[10-20]—To match on either Gig.*0/0/0/[1-5] or Gig.*0/0/0/[10-20].

'TenGigE.*|POS.*—To match on either TenGigE.* or POS.*.

• Commands that require a node identifier for the location keyword are not supported. For example, this configuration is not supported:

lpts pifib hardware police location 0/0/CPU0

• Overlapping regular expressions within a configuration group for the same configuration are not supported. For example:

group G-INTERFACE
interface 'gig.*a.*'
  mtu 1500
  !
interface 'gig.*e.*'
  mtu 2000
  !
end-group

interface gigabitethernet0/4/1/0
  apply-group G-INTERFACE

This configuration is not permitted because it cannot be determined whether the interface gigabitethernet0/4/1/0 configuration inherits mtu 1500 or mtu 2000. Both expressions in the configuration group match gigabitethernet0/4/1/0.

• Up to eight configuration groups are permitted on one apply-group command.

---

**Configuring a Configuration Group**

A configuration group includes a series of configuration statements that can be used in multiple hierarchical levels in the router configuration tree. By using regular expressions in a configuration group, you can create generic commands that can be applied in multiple instances.

Use this task to create and use a configuration group.

---

**Note**

Flexible CLI configurations are not available through the XML interface.
SUMMARY STEPS

1. configure
2. group group-name
3. Enter configuration commands, starting from global configuration mode. Use regular expressions for interface names and other variable instances.
4. end-group
5. apply-group

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Specifies a name for a configuration group and enters group configuration mode to define the group. The group-name argument can have up to 32 characters and cannot contain any special characters. For information regarding special characters, refer to the Understanding Regular Expressions, Special Characters, and Patterns module in the Cisco IOS XR Getting Started Guide for the Cisco CRS Router.</td>
</tr>
<tr>
<td>Step 2</td>
<td>group group-name</td>
<td>Specifies the configuration statements that you want included in this configuration group. For more information regarding the use of regular expressions, see Regular Expressions in Configuration Groups, on page 204. This example is applicable to all Gigabit Ethernet interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# group g-interf</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enter configuration commands, starting from global configuration mode. Use regular expressions for interface names and other variable instances.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# group g-interf \ RP/0/RP0/CPU0:router(config-GRP)# interface 'GigabitEthernet.*' \ RP/0/RP0/CPU0:router(config-GRP-if)# mtu 1500</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end-group</td>
<td>Completes the configuration of a configuration group and exits to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-GRP-if)# end-group</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>apply-group</td>
<td>Adds the configuration of the configuration group into the router configuration applicable at the location that the group is applied. Groups can be applied in multiple locations, and their effect depends on the location and context. The MTU value from the group g-interf is applied to the interface GigabitEthernet0/2/0/0. If this group is applied in global configuration mode, the MTU value is inherited by all Gigabit Ethernet interfaces that do not have an MTU value configured.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# interface GigabitEthernet0/2/0/0 \ RP/0/RP0/CPU0:router(config-if)# apply-group g-interf</td>
<td></td>
</tr>
</tbody>
</table>
Simple Configuration Group: Example

This example shows how to use configuration groups to add a global configuration to the system:

```
RP/0/RP0/CPU0:router(config)# group g-logging
RP/0/RP0/CPU0:router(config-GRP)# logging trap notifications
RP/0/RP0/CPU0:router(config-GRP)# logging console debugging
RP/0/RP0/CPU0:router(config-GRP)# logging monitor debugging
RP/0/RP0/CPU0:router(config-GRP)# logging buffered 10000000
RP/0/RP0/CPU0:router(config-GRP)# end-group
RP/0/RP0/CPU0:router(config)# apply-group g-logging
```

When this configuration is committed, all commands contained in the g-logging configuration group are committed.

Configuration Group Applied to Different Places: Example

Configuration groups can be applied to different places, and their effect depends on the context within which they are applied. Consider this configuration group:

```
RP/0/RP0/CPU0:router(config)# group g-interfaces
RP/0/RP0/CPU0:router(config-GRP)# interface 'FastEthernet.*'
RP/0/RP0/CPU0:router(config-GRP-if)# mtu 1500
RP/0/RP0/CPU0:router(config-GRP-if)# exit
RP/0/RP0/CPU0:router(config-GRP)# interface 'GigabitEthernet.*'
RP/0/RP0/CPU0:router(config-GRP-if)# mtu 1000
RP/0/RP0/CPU0:router(config-GRP-if)# exit
RP/0/RP0/CPU0:router(config-GRP)# interface 'POS.*'
RP/0/RP0/CPU0:router(config-GRP-if)# mtu 2000
RP/0/RP0/CPU0:router(config-GRP-if)# end-group
```

This group can be applied to Fast Ethernet, Gigabit Ethernet or POS interfaces, and in each instance the applicable MTU is applied. For instance, in this example, the Gigabit Ethernet interface is configured to have an MTU of 1000:

```
RP/0/RP0/CPU0:router(config)# interface GigabitEthernet0/2/0/0
RP/0/RP0/CPU0:router(config-if)# apply-group g-interfaces
RP/0/RP0/CPU0:router(config-if)# ipv4 address 2.2.2.2 255.255.255.0
```

In this example, the Fast Ethernet interface is configured to have an MTU of 1500:

```
RP/0/RP0/CPU0:router(config)# interface FastEthernet0/2/0/0
RP/0/RP0/CPU0:router(config-if)# apply-group g-interfaces
RP/0/RP0/CPU0:router(config-if)# ipv4 address 3.3.3.3 255.255.255.0
```

The same configuration group is used in both cases, but only the applicable configuration statements are used.

Verifying the Configuration of Configuration Groups

Use this task to verify the router configuration using configuration groups:
SUMMARY STEPS

1. show running-config group [group-name]
2. show running-config
3. show running-config inheritance
4. show running-config interface x/y/z inheritance config-command

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> show running-config group [group-name]</td>
<td>Displays the contents of a specific or all configured configuration groups.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show running-config group</td>
<td></td>
</tr>
<tr>
<td>group g-int-ge</td>
<td></td>
</tr>
<tr>
<td>interface 'GigabitEthernet.*'</td>
<td></td>
</tr>
<tr>
<td>mtu 1000</td>
<td></td>
</tr>
<tr>
<td>negotiation auto</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>end-group</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> show running-config</td>
<td>Displays the running configuration. Any applied groups are displayed. There is no indication as to whether these configuration groups affect the actual configuration or not. In this example, although the group G-INTERFACE-MTU is applied to POS0/4/1/1, the configured MTU value is 2000 and not 1500. This happens if the command mtu group G-INTERFACE-MTU 2000 is configured directly on the interface. An actual configuration overrides a configuration group configuration if they are the same.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show running-config</td>
<td></td>
</tr>
<tr>
<td>group G-INTERFACE-MTU</td>
<td></td>
</tr>
<tr>
<td>interface 'POS.*'</td>
<td></td>
</tr>
<tr>
<td>mtu 1500</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>end-group</td>
<td></td>
</tr>
<tr>
<td>interface POS0/4/1/0</td>
<td></td>
</tr>
<tr>
<td>apply-group G-INTERFACE-MTU</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>interface POS0/4/1/1</td>
<td></td>
</tr>
<tr>
<td>apply-group G-INTERFACE-MTU</td>
<td></td>
</tr>
<tr>
<td>mtu 2000</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> show running-config inheritance</td>
<td>Displays the inherited configuration where ever a configuration group has been applied.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show running-config inheritance</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>group G-INTERFACE-MTU</td>
<td></td>
</tr>
<tr>
<td>interface 'POS.*'</td>
<td></td>
</tr>
<tr>
<td>mtu 1500</td>
<td></td>
</tr>
<tr>
<td>!</td>
<td></td>
</tr>
<tr>
<td>end-group</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td></td>
</tr>
<tr>
<td>interface POS0/4/1/0</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

#### Command or Action

```
Inherited from group G-INTERFACE-MTU
mtu 1500
!
interface POS0/4/1/1
 mtu 2000

```

#### Purpose

Displays the inherited configuration for a specific configuration command.

#### Step 4

```
show running-config interface x/y/z inheritance
config-command

Example:

RP/0/RP0/CPU0:router# show running-config interface pos0/4/1/0 inheritance [detail]
interface POS0/4/1/0
Inherited from group G-INTERFACE-MTU
mtu 1500
```

### Apply Groups Priority Inheritance

The inheritance is supported according to the priority. Apply groups priority inheritance helps flexible configuration groups handle common configuration statements between groups. When multiple configuration groups have common configuration statements, the inheritance priority is configuration statements present in inner groups have precedence over configuration statements present in outer groups. Tiebreaker is determined by the system order (lexicographical) of the regular expressions. User defined order of commands are not accepted.

For example, a configuration statement in configuration group ONE has precedence over any other group. A configuration statement in configuration group SEVEN is used only if it is not contained in any other group. Within a configuration group, inheritance priority is lengthiest match.

```
apply-group SIX SEVEN
router ospf 0
 apply-group FOUR FIVE
 area 0
 apply-group THREE
 interface GigabitEthernet 0/0/0/0
 apply-group ONE TWO

```

The above example states two scenarios. Inner most group (apply-group ONE TWO) has the highest priority.

**Case 1**

In the first scenario it shows which group gets the first priority. The example states which group is applied between different configuration groups (different groups- nothing in common between them). While applying the group one (ONE TWO), all the seven groups that matches to the interface `interface GigabitEthernet 0/0/0/0` will be applied.

**Case 2**
In the case when all these groups (mentioned above) have same (common) configuration, group one will be active. The `apply-group ONE TWO` will be active. If group ONE is deleted then group TWO will be active.

**Regular Expressions in Configuration Groups**

Regular expressions are used in configuration groups to make them widely applicable. Portable Operating System Interface for UNIX (POSIX) 1003.2 regular expressions are supported in the names of configuration statements. Single quotes must be used to delimit a regular expression.

For general information regarding regular expressions, refer to the *Understanding Regular Expressions, Special Characters, and Patterns* module in the *Cisco IOS XR Getting Started Guide for the Cisco CRS Router*.

---

**Note**

Not all POSIX regular expressions are supported. Refer to Flexible Configuration Restrictions, on page 198 for more information.

---

**Regular Expressions for Interface Identifiers**

Configuration groups do not accept exact interface identifiers. You must use a regular expression to identify a group of interfaces that are applicable to the configuration group. The regular expression `'*'` is not allowed. You must begin the regular expression for an interface identifier with an unambiguous word, followed by the regular expression. For example, to configure Gigabit Ethernet interfaces, use the regular expression `GigabitEthernet.*`.

To display a list of available interface types for your router configuration, enter `interface ?` at the configuration group prompt:

```
RP/0/RP0/CPU0:router(config-GRP)# interface ?
ATM 'RegExp': ATM Network Interface(s)
BVI 'RegExp': Bridge-Group Virtual Interface
Bundle-Ether 'RegExp': Aggregated Ethernet interface(s)
Bundle-POS 'RegExp': Aggregated POS interface(s)
GigabitEthernet 'RegExp': GigabitEthernet/IEEE 802.3 interface(s)
IMA 'RegExp': ATM Network Interface(s)
Loopback 'RegExp': Loopback interface(s)
MgmtEth 'RegExp': Ethernet/IEEE 802.3 interface(s)
Multilink 'RegExp': Multilink network interface(s)
Null 'RegExp': Null interface
POS 'RegExp': Packet over SONET/SDH network interface(s)
PW-Ether 'RegExp': PWHE Ethernet Interface
PW-IW 'RegExp': PWHE VC11 IP Interworking Interface
Serial 'RegExp': Serial network interface(s)
tunnel-ip 'RegExp': GRE/IPinIP Tunnel Interface(s)
tunnel-mte 'RegExp': MPLS Traffic Engineering P2MP Tunnel interface(s)
tunnel-te 'RegExp': MPLS Traffic Engineering Tunnel interface(s)
tunnel-tp 'RegExp': MPLS Transport Protocol Tunnel interface
```

---

**Note**

Although you are required to enter only enough characters for the interface type to be unique, it is recommended that you enter the entire phrase. All interface types used in regular expressions are case-sensitive.
To specify a subinterface, prefix the expression with the characters \. (backslash period). For example, use interface 'GigabitEthernet.*\..*' to configure all Gigabit Ethernet subinterfaces.

You can specify Layer 2 transport interfaces or point-to-point interfaces as shown in these examples:

```plaintext
group g-l2t
 interface 'Gi.*\..*' l2transport

end-group
group g-ptp
 interface 'Gi.*\..*' point-to-point

end-group
```

**Regular Expressions for an OSPF Configuration**

Exact router process names and OSPF areas cannot be used. You must use a regular expression to specify a process name or group of OSPF areas. To specify that the OSPFP area can be either a scalar value or an IP address, use the regular expression '.*', as in this example:

```plaintext
group g-ospf
 router ospf '.*'
 area '.*'
 mtu-ignore enable

! end-group
```

To specify that the OSPF area must be an IP address, use the expression \\ as in this example:

```plaintext
group g-ospf-ipaddress
 router ospf '.*\..*\..*\..*'
 area '.*'
 passive enable

! end-group
```

To specify that the OSPF area must be a scalar value, use the expression '1.*', as in this example:

```plaintext
group g-ospf-match-number
 router ospf '.*'
 area '1.*'
 passive enable

! end-group
```

**Regular Expressions for a BGP AS**

Exact BGP AS values cannot be used in configuration groups. Use a regular expression to specify either AS plain format, or AS dot format as in the format X.Y. To match AS plain format instances, use a simple regular expression. To match AS dot format instances, use two regular expressions separated by a dot, as shown in this example:

```plaintext
group g-bgp
 router bgp '.*
 address-family ipv4 unicast

!```
Regular Expressions for ANCP

Exact Access Node Control Protocol (ANCP) sender-name identifiers cannot be used in configuration groups. Because the sender name argument can be either an IP address or a MAC address, you must specify in the regular expression which one is being used. Specify an IP address as ‘.*\..*\..*\..*’; specify a MAC address as ‘.*\..*\..*’.

Resolving to a Uniform Type

Regular expressions must resolve to a uniform type. This is an example of an illegal regular expression:

```
  group g-invalid
  interface ‘.*’
    bundle port-priority 10
  !
  interface ‘.*Ethernet.*’
    bundle port-priority 10
  !
end-group
```

In this example, the `bundle` command is supported for interface type GigabitEthernet but not for interface type 'FastEthernet'. The regular expressions ‘.*’ and ‘.*Ethernet.*’ match both GigabitEthernet and FastEthernet types. Because the `bundle` command is not applicable to both these interface types, they do not resolve to a uniform type and therefore the system does not allow this configuration.

Note

If the system cannot determine from the regular expression what the configuration should be, the expression is not considered valid.

Note

The regular expression ‘.*’ is not allowed when referring to an interface identifier. You must begin the regular expression for an interface identifier with an unambiguous word, followed by the regular expression. Refer to `Regular Expressions for Interface Identifiers` in this section for more information.

Overlapping Regular Expressions

Regular expressions are used in names of configuration statements within a configuration group. This permits inheritance by the configuration when applied to matching names. Single quotes are used to delimit the regular expression. Overlapping regular expression within a configuration group for the same configuration is permitted.

The example, given below, illustrates the process of creating and applying multiple configuration groups:

```
RP/0/RP0/CPU0:router(config)#group FB_flexi_snmp
RP/0/RP0/CPU0:router(config-GRP)# snmp-server vrf ‘.*’
RP/0/RP0/CPU0:router(config-GRP-snmp-vrf)# host 1.1.1.1 traps version 2c group_1
RP/0/RP0/CPU0:router(config-GRP-snmp-vrf)# host 1.1.1.1 informs version 2c group_1
RP/0/RP0/CPU0:router(config-GRP-snmp-vrf)# context group_1
RP/0/RP0/CPU0:router(config-GRP-snmp-vrf)# commit
RP/0/RP0/CPU0:router(config-GRP-snmp-vrf)#
RP/0/RP0/CPU0:router(config-GRP-snmp-vrf)#
RP/0/RP0/CPU0:router(config)(#)
```
The example given below demonstrates the regular expression. In this example `snmp-server vrf '.*'` and `snmp-server vrf '^[\w]+'` are two different regular expressions.
host 2.2.2.2 informs version 2c group_2
context group_2
! end-group

This individual regular expression gets combined to all the three expressions - snmp-server vrf vrf1, snmp-server vrf vrf10 and snmp-server vrf vrf100 as given below.

apply-group FB_flexi_snmp
snmp-server vrf vrf1
!
 snmp-server vrf vrf10
 !
 snmp-server vrf vrf100
!

In a configuration group, there can be instances of regular expressions overlap. In such cases, the regular expression with the highest priority is activated and inherited, when applied. It has that regular expression, which comes first in the lexicographic order that has the highest priority.

The following examples show how to use overlapping regular expressions and how the expression with higher priority is applied:

```plaintext
group FB_flexi_snmp
  snmp-server vrf '.*'
  host 1.1.1.1 traps version 2c group_1
  host 1.1.1.1 informs version 2c group_1
  context group_1
!
  snmp-server vrf '^[\w]+$'
  host 2.2.2.2 traps version 2c group_2
  host 2.2.2.2 informs version 2c group_2
  context group_2
!
end-group
```

The expression shown below has the highest priority:

```plaintext
group FB_flexi_snmp
  snmp-server vrf '.*'
  host 1.1.1.1 traps version 2c group_1
  host 1.1.1.1 informs version 2c group_1
  context group_1
```

The examples given above, show two different regular expression snmp-server vrf '.*' and snmp-server vrf '^[\w]+$'.

The expression below, shows how these two expressions get merged together:
Any change in a regular expression with lower priority will not affect the inheritance.
Any changes made to an existing regular expression, which is of less (non-top) priority, it will not have any effect on the inheritance.

```
snmp-server vrf '\[\w]+'  
host 2.2.2.2 traps version 2c group_2  
host 2.2.2.2 informs version 2c group_2  
context group_2
```

The expression with the higher priority gets inherited, as shown below:

```
group FB_flexi_snmp  
snmp-server vrf '.*'  
host 1.1.1.1 traps version 2c group_1  
host 1.1.1.1 informs version 2c group_1  
context group_1
```

Apply Groups Priority Inheritance

Priority governs inheritance.

Apply groups priority inheritance helps flexible configuration groups to handle common configuration statements between groups. When multiple configuration groups have common configuration statements, the inheritance priority is such that the configuration statements present in inner groups have precedence over those configuration statements present in outer groups. In case of tiebreakers, the priority is assigned in accordance to the lexicographical order of regular expressions. User defined order of commands are not accepted.

For example, a configuration statement in configuration group ONE has precedence over another group. A configuration statement in configuration group SEVEN is used only if it does not exist in any other group. Within a configuration group, inheritance priority is the longest match.

```
apply-group SIX SEVEN  
  router ospf 0
  apply-group FOUR FIVE
  area 0
  apply-group THREE
  interface GigabitEthernet 0/0/0/0
  apply-group ONE TWO
  !
  !
```

The above example shows two scenarios. The inner most group (apply-group ONE TWO) has the highest priority.

Case 1
The first scenario shows which group gets the priority. The example states which group is applied between different configuration groups (different groups with nothing in common). While applying group one (ONE TWO), all the seven groups matches the interface interface GigabitEthernet 0/0/0/0 is applied.

Case 2

Here, when all have the same (common) configuration, group one will be active. That is apply-group ONE TWO is active. If group ONE is deleted, then group TWO will be active.

Configuration Examples Using Regular Expressions

Configuration Group with Regular Expression: Example

This example shows the definition of a configuration group for configuring Gigabit Ethernet interfaces with ISIS routing parameters, using regular expressions for the exact interface:

```
RP/0/RP0/CPU0:router(config)# group g-isis-gige
RP/0/RP0/CPU0:router(config-GRP)# router isis '.*'
RP/0/RP0/CPU0:router(config-GRP-isis)# interface 'GigabitEthernet.*'
RP/0/RP0/CPU0:router(config-GRP-isis-if)# lsp-interval 20
RP/0/RP0/CPU0:router(config-GRP-isis-if)# hello-interval 40
RP/0/RP0/CPU0:router(config-GRP-isis-if)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-GRP-isis-if-af)# metric 10
RP/0/RP0/CPU0:router(config-GRP-isis-if-af)# end-group
RP/0/RP0/CPU0:router(config)#
```

To illustrate the use of this configuration group, assume that you want to configure these Gigabit Ethernet interfaces with the ISIS routing parameters:

```
router isis green
interface GigabitEthernet0/0/0/0
  lsp-interval 20
  hello-interval 40
  address-family ipv4 unicast
    metric 10
!
interface GigabitEthernet0/0/0/1
  lsp-interval 20
  hello-interval 40
  address-family ipv4 unicast
    metric 10
!
interface GigabitEthernet0/0/0/2
  lsp-interval 20
  hello-interval 40
  address-family ipv4 unicast
    metric 10
!
interface GigabitEthernet0/0/0/3
  lsp-interval 20
  hello-interval 40
  address-family ipv4 unicast
    metric 10
!
```
There are three possible ways to use the configuration group to configure these interfaces. The first is by applying the group within the interface configuration, as shown here:

```
router isis green
  interface GigabitEthernet0/0/0/0
      apply-group g-isis-gige
  !
  interface GigabitEthernet0/0/0/1
      apply-group g-isis-gige
  !
  interface GigabitEthernet0/0/0/2
      apply-group g-isis-gige
  !
  interface GigabitEthernet0/0/0/3
      apply-group g-isis-gige
  !
```

In this situation, only the interfaces to which you apply the configuration group inherit the configuration.

The second way to configure these interfaces using the configuration group is to apply the configuration group within the `router isis` configuration, as shown here:

```
router isis green
  apply-group g-isis-gige
  interface GigabitEthernet0/0/0/0
  !
  interface GigabitEthernet0/0/0/1
  !
  interface GigabitEthernet0/0/0/2
  !
  interface GigabitEthernet0/0/0/3
  !
```

In this way, any other Gigabit Ethernet interfaces that you configure in the ISIS green configuration also inherit these configurations.

The third way to configure these interfaces using the configuration group is to apply the group at the global level as shown here:

```
apply-group g-isis-gige
router isis green
  interface GigabitEthernet0/0/0/0
  !
  interface GigabitEthernet0/0/0/1
  !
  interface GigabitEthernet0/0/0/2
  !
  interface GigabitEthernet0/0/0/3
  !
```

In this example, the configuration of the group is applied to all Gigabit Ethernet interfaces configured for ISIS.
Configuration Group Inheritance with Regular Expressions: Example

Local Configuration Has Precedence Over Configuration Group

An explicit configuration takes precedence over a configuration applied from a configuration group. For example, assume that this configuration is running on the router:

```bash
router ospf 100
  packet-size 1000
!
```

You configure this configuration group, apply it, and commit it to the configuration.

```bash
RP/0/RP0/CPU0:router(config)# group g-ospf
RP/0/RP0/CPU0:router(config-GRP)# router ospf '.*'
RP/0/RP0/CPU0:router(config-GRP-ospf)# nsf cisco
RP/0/RP0/CPU0:router(config-GRP-ospf)# packet-size 3000
RP/0/RP0/CPU0:router(config-GRP-ospf)# end-group
RP/0/RP0/CPU0:router(config)# apply-group g-ospf
```

The result is effectively this configuration:

```bash
router ospf 100
  packet-size 1000
  nsf cisco
!
```

Note that `packet-size 3000` is not inherited from the configuration group because the explicit local configuration has precedence.

Compatible Configuration Is Inherited

The configuration in the configuration group must match the configuration on the router to be inherited. If the configuration does not match, it is not inherited. For example, assume that this configuration is running on the router:

```bash
router ospf 100
  auto-cost disable
!
```

You configure this configuration and commit it to the configuration.

```bash
RP/0/RP0/CPU0:router(config)# group g-ospf
RP/0/RP0/CPU0:router(config-GRP)# router ospf '.*'
RP/0/RP0/CPU0:router(config-GRP-ospf)# area '.*'
RP/0/RP0/CPU0:router(config-GRP-ospf-ar)# packet-size 2000
RP/0/RP0/CPU0:router(config-GRP-ospf-ar)# end-group
RP/0/RP0/CPU0:router(config)# apply-group g-ospf
RP/0/RP0/CPU0:router(config)# router ospf 200
RP/0/RP0/CPU0:router(config-ospf)# area 1
```

The result is effectively this configuration:

```bash
router ospf 100
  auto-cost disable

router ospf 200
  area 1
```
packet-size 2000

The packet size is inherited by the ospf 200 configuration, but not by the ospf 100 configuration because the area is not configured.

Layer 2 Transport Configuration Group: Example

This example shows how to configure and apply a configuration group with Layer 2 transport subinterfaces:

```
RP/0/RP0/CPU0:router (config)# group g-l2trans-if
RP/0/RP0/CPU0:router (config-GRP)# interface 'TenGigE.*\.\.' l2transport
RP/0/RP0/CPU0:router (config-GRP)# mtu 1514
RP/0/RP0/CPU0:router (config-GRP)# end-group
RP/0/RP0/CPU0:router (config)# interface TenGigE0/0/0/0.1 l2transport
RP/0/RP0/CPU0:router (config-if)# apply-group g-l2trans-if
```

When this configuration is committed, the Ten Gigabit Ethernet interface 0/0/0/0.1 inherits the 1514 MTU value. This is the output displayed from the `show running-config inheritance` command for the Ten Gigabit Ethernet interface:

```
interface TenGigE0/0/0/0.1 l2transport
## Inherited from group g-l2trans-if
mtu 1514
```

Configuration Group Precedence: Example

When similar configuration statements are contained in multiple configuration groups, groups applied in inner configuration modes take precedence over groups applied in outer modes. This example shows two configuration groups that configure different cost values for OSPF.

```
RP/0/RP0/CPU0:router (config)# group g-ospf2
RP/0/RP0/CPU0:router (config-GRP)# router ospf '.*'
RP/0/RP0/CPU0:router (config-GRP-ospf)# area '.*'
RP/0/RP0/CPU0:router (config-GRP-ospf-ar)# cost 2
RP/0/RP0/CPU0:router (config-GRP-ospf-ar)# end-group
RP/0/RP0/CPU0:router (config)# group g-ospf100
RP/0/RP0/CPU0:router (config-GRP)# router ospf '.*'
RP/0/RP0/CPU0:router (config-GRP-ospf)# area '.*'
RP/0/RP0/CPU0:router (config-GRP-ospf-ar)# cost 100
RP/0/RP0/CPU0:router (config-GRP-ospf-ar)# end-group
```

If these configuration groups are applied as follows, the cost 2 specified in g-ospf2 is inherited by OSPF area 0 because the group is applied in a more inner configuration mode. In this case, the configuration in group g-ospf100 is ignored.

```
RP/0/RP0/CPU0:router (config)# router ospf 0
RP/0/RP0/CPU0:router (config-ospf)# apply-group g-ospf100
RP/0/RP0/CPU0:router (config-ospf)# area 0
RP/0/RP0/CPU0:router (config-ospf-ar)# apply-group g-ospf2
```
Changes to Configuration Group are Automatically Inherited: Example

When you make changes to a configuration group that is committed and applied to your router configuration, the changes are automatically inherited by the router configuration. For example, assume that this configuration is committed:

```
group g-interface-mtu
  interface 'POS.*'
    mtu 1500
  !
end-group

interface POS0/4/1/0
  apply-group g-interface-mtu
  !
```

Now you change the configuration group as in this example:

```
RP/0/RP0/CPU0:router(config)# group g-interface-mtu
RP/0/RP0/CPU0:router(config-GRP)# interface 'POS.*'
RP/0/RP0/CPU0:router(config-GRP-if)# mtu 2000
RP/0/RP0/CPU0:router(config-GRP-if)# end-group
```

When this configuration group is committed, the MTU configuration for interface POS0/4/1/0 is automatically updated to 2000.

Configuration Examples for Flexible CLI Configuration

Basic Flexible CLI Configuration: Example

This example shows that the Media Access Control (MAC) accounting configuration from the gd21 configuration group is applied to all Gigabit Ethernet interfaces in slot 2, ports 1 to 9.

1 Configure the configuration group that configures MAC accounting:

```
RP/0/RP0/CPU0:router# show running group gd21
group gd21
  interface 'GigabitEthernet0/0/0/2[1-9]' description general interface inheritance check
  load-interval 30
  mac-accounting ingress
  mac-accounting egress
  !
end-group
```

2 Check that the corresponding apply-group is configured in global configuration or somewhere in the hierarchy:

```
RP/0/RP0/CPU0:router# show running | in apply-group gd21
Building configuration...
apply-group gd21
```

3 Check the concise local view of the configuration of some of the interfaces:

```
RP/0/RP0/CPU0:router# show running interface
```
4 Verify that the match and inheritance occur on these interfaces:

RP/0/RP0/CPU0:router# show running inheritance interface

interface GigabitEthernet0/0/0/21
Inherited from group gd21
description general interface inheritance check
Inherited from group gd21
load-interval 30
Inherited from group gd21
mac-accounting ingress
Inherited from group gd21
mac-accounting egress
!
Interface GigabitEthernet0/0/0/22
Inherited from group gd21
description general interface inheritance check
Inherited from group gd21
load-interval 30
Inherited from group gd21
mac-accounting ingress
Inherited from group gd21
mac-accounting egress
!

5 Verify that the inherited configuration actually takes effect:

RP/0/RP0/CPU0:router# show mac gigabitEthernet0/0/0/21
GigabitEthernet0/0/0/21
Input (96 free)
 6c9c.ed35.90fd: 1271 packets, 98426 bytes
 Total: 1271 packets, 98426 bytes
Output (96 free)
 6c9c.ed35.90fd: 774 packets, 63265 bytes
 Total: 774 packets, 63264 bytes

Interface MTU Settings for Different Interface Types: Example

This example shows that an MTU value is configured on different interface types.

1 Configure an interface MTU configuration group and apply this group:

RP/0/RP0/CPU0:router# show running group l2tr

group l2tr
interface 'GigabitEthernet0/0/0/3.*'
 mtu 1500
!
interface 'GigabitEthernet0/0/0/9\..*'
 mtu 1400
!
interface 'GigabitEthernet0/0/0/9\..*' l2transport
 mtu 1400
!
end-group

RP/0/RP0/CPU0:router# show running | inc apply-group

Building configuration...
apply-group l2tr

2 Check the concise view and the inheritance view of the various interfaces:

```
RP/0/RP0/CPU0:router# show running interface gigabitEthernet0/0/0/30
interface GigabitEthernet0/0/0/30
!
RP/0/RP0/CPU0:router# show running inheritance interface gigabitEthernet0/0/0/30
interface GigabitEthernet0/0/0/30
## Inherited from group l2tr
mtu 1500
!
```

```
RP/0/RP0/CPU0:router# show running interface gigabitEthernet0/0/0/9.800
interface GigabitEthernet0/0/0/9.800
   encapsulation dot1q 800
!
RP/0/RP0/CPU0:router# show running inheritance interface gigabitEthernet0/0/0/9.800
interface GigabitEthernet0/0/0/9.800
## Inherited from group l2tr
mtu 1400
encapsulation dot1q800
!
```

```
RP/0/RP0/CPU0:router# show running interface gigabitEthernet0/0/0/9.250
interface GigabitEthernet0/0/0/9.250 l2transport
   encapsulation dot1q 250
!
RP/0/RP0/CPU0:router# show running inheritance interface gigabitEthernet0/0/0/9.800
interface GigabitEthernet0/0/0/9.250 l2transport
   encapsulation dot1q250
## Inherited from group l2tr
mtu 1400
!
```

3 Verify that the correct values from the group do take effect:

```
RP/0/RP0/CPU0:router# show interface gigabitEthernet 0/0/0/30
GigabitEthernet0/0/0/30 is down, line protocol is down
Interface state transitions: 0
Hardware is GigabitEthernet, address is 0026.9824.ee56 (bia 0026.9824.ee56)
Internet address is Unknown
MTU 1500 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
   Full-duplex, 1000Mb/s, link type is force-up
output flow control is off, input flow control is off
loopback not set,
Last input never, output never
Last clearing of "show interface" counters never
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
   0 packets input, 0 bytes, 0 total input drops
   0 drops for unrecognized upper-level protocol
   Received 0 broadcast packets, 0 multicast packets
   0 runts, 0 giants, 0 throttles, 0 parity
   0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
   0 packets output, 0 bytes, 0 total output drops
   Output 0 broadcast packets, 0 multicast packets
   0 output errors, 0 underruns, 0 applique, 0 resets
```
ACL Referencing: Example

This example shows how to reference access-lists on a number of interfaces using configuration groups.

1 Configure the configuration group and apply-group:

```
RP/0/RP0/CPU0:router# show running group acref

group acref
  interface 'GigabitEthernet0/0/0/3.*'
    ipv4 access-group adem ingress
    ipv4 access-group adem egress
!
end-group
RP/0/RP0/CPU0:router# show running | inc apply-group

Building configuration...

apply-group isis l2tr isis2 mpp bundle1 acref
```

2 Check the concise and inheritance view of the matching configurations:

```
RP/0/RP0/CPU0:router# show running interface gigabitEthernet 0/0/30
```
Local Configuration Takes Precedence: Example

This example illustrates that local configurations take precedence when there is a discrepancy between a local configuration and the configuration inherited from a configuration group.

1. Configure a local configuration in a configuration submode with an access list:

```
RP/0/RP0/CPU0:router# show running interface gigabitEthernet 0/0/0/39
interface GigabitEthernet0/0/0/39
  ipv4 access-group smany ingress
  ipv4 access-group smany egress
!
```

```
RP/0/RP0/CPU0:router# show running interface gigabitEthernet 0/0/0/38
interface GigabitEthernet0/0/0/38
!
```

```
RP/0/RP0/CPU0:router# show running ipv4 access-list smany
ipv4 access-list smany
  10 permit ipv4 any any
!
```

```
RP/0/RP0/CPU0:router# show running ipv4 access-list adem
ipv4 access-list adem
  10 permit ipv4 21.0.0.0 0.255.255.255 host 55.55.55.55
  20 deny ipv4 any any
!
```

3. Check that the ACL group configuration actually got configured by using a traffic generator and watching that denied traffic is dropped.
2 Configure and apply the access list group configuration:

```
RP/0/RP0/CPU0:router# show running group acref

  group acref
    interface 'GigabitEthernet0/0/0/3.*'
        ipv4 access-group adem ingress
        ipv4 access-group adem egress
    !

end-group

RP/0/RP0/CPU0:router# show running | inc apply-group

Building configuration...
apply-group isis l2tr isis2 mpp bundle1 acref
```

3 Check the concise and inheritance views for the matching interface where the access list reference is configured locally:

```
RP/0/RP0/CPU0:router# show running interface gigabitEthernet 0/0/0/39

  interface GigabitEthernet0/0/0/39
    ipv4 access-group smany ingress
    ipv4 access-group smany egress
    !

RP/0/RP0/CPU0:router# show running inheritance interface gigabitEthernet 0/0/0/39

  interface GigabitEthernet0/0/0/39
    ## Inherited from group l2tr
    mtu 1500
    ipv4 access-group smany ingress
    ipv4 access-group smany egress  << no config inherited, local config prioritized
    !

RP/0/RP0/CPU0:router# show running interface gigabitEthernet 0/0/0/38

  interface GigabitEthernet0/0/0/38
    !

RP/0/RP0/CPU0:router# show running inheritance interface gigabitEthernet 0/0/0/38

  interface GigabitEthernet0/0/0/38
    ## Inherited from group l2tr
    mtu 1500
    ## Inherited from group acref
    ipv4 access-group adem ingress
    ## Inherited from group acref
    ipv4 access-group adem egress
    !
```

4 Use a traffic generator to verify that the traffic pattern for interface GigabitEthernet0/0/0/39 gets acted on by the access list in the local configuration (smany) and not according to the inherited referenced access list (adem).

ISIS Hierarchical Configuration: Example

This example illustrates inheritance and priority handling with two ISIS groups using an ISIS configuration.

1 Configure the local ISIS configuration:

```
RP/0/RP0/CPU0:router# show running router isis

  router isis vink
```
Configure two ISIS groups and apply these to the configuration:

RP/0/RP0/CPU0:router# show running group isis

2 Configure two ISIS groups and apply these to the configuration:

RP/0/RP0/CPU0:router# show running group isis
RP/0/RP0/CPU0:router# show running group isis2

group isis2
router isis '.*'
!
router isis '^\(vink\)'
address-family ipv4 unicast
!
interface '((Ten)Gig.**)
!
interface '((Ten)Gig.**)
address-family ipv4 unicast
 metric 66
!
end-group
RP/0/RP0/CPU0:router# show running | inc apply-group

Building configuration...

apply-group isis 12tr isis2 mpp bundle1 acref

3 Check the inheritance view of the ISIS configuration:

RP/0/RP0/CPU0:router# show running inheritance router isis

router isis vink
net 49.0011.2222.2222.2222.00
address-family ipv4 unicast
 mpls traffic-eng level-1-2
 mpls traffic-eng router-id Loopback0
 redistribute connected
 ## Inherited from group isis
 redistribute ospf 1 level-1-2
!
interface Bundle-Ether1
 address-family ipv4 unicast
 ## Inherited from group isis
 metric 55
!
interface Bundle-Ether2
 ## Inherited from group isis
 address-family ipv4 unicast
 ## Inherited from group isis
 metric 55
!
interface Loopback0
!
interface TenGigE0/2/0/0.3521
 ## Inherited from group isis
 slot-interval 40
 ## Inherited from group isis
 hello-interval 15
 address-family ipv4 unicast
 ## Inherited from group isis
 metric 50
!
interface TenGigE0/2/0/0.3522
 ## Inherited from group isis
 slot-interval 40
 ## Inherited from group isis
 hello-interval 15
 address-family ipv4 unicast
 ## Inherited from group isis
 metric 50
!
ISIS Hierarchical Configuration: Example

```conf

! interface TenGigE0/2/0/0.3523
   ## Inherited from group isis
   lsp-interval 40
   ## Inherited from group isis
   hello-interval 15
   address-family ipv4 unicast
   ## Inherited from group isis
   metric 50
!

! interface TenGigE0/2/0/0.3524
   ## Inherited from group isis
   lsp-interval 40
   ## Inherited from group isis
   hello-interval 15
   address-family ipv4 unicast
   ## Inherited from group isis
   metric 50
!

! interface TenGigE0/2/0/0.3525
   ## Inherited from group isis
   lsp-interval 40
   ## Inherited from group isis
   hello-interval 15
   address-family ipv4 unicast
   ## Inherited from group isis
   metric 50
!

! interface TenGigE0/2/0/0.3526
   ## Inherited from group isis
   lsp-interval 40
   ## Inherited from group isis
   hello-interval 15
   address-family ipv4 unicast
   ## Inherited from group isis
   metric 50
!

! interface TenGigE0/2/0/0.3527
   ## Inherited from group isis
   lsp-interval 40
   ## Inherited from group isis
   hello-interval 15
   address-family ipv4 unicast
   ## Inherited from group isis
   metric 50
!

! interface TenGigE0/2/0/0.3528
   ## Inherited from group isis
   lsp-interval 40
   ## Inherited from group isis
   hello-interval 15
   address-family ipv4 unicast
   ## Inherited from group isis
   metric 50
!

! interface TenGigE0/2/0/1
   ## Inherited from group isis
   lsp-interval 40
   ## Inherited from group isis
   hello-interval 15
   address-family ipv4 unicast
   ## Inherited from group isis
   metric 50
!
```
4 Verify the actual functionality:

```
RP/0/RP0/CPU0:router# show isis interface TenGigE0/2/0/0.3528 | inc Metric
Metric (L1/L2): 50/50
```

OSPF Hierarchy: Example

This example illustrates hierarchical inheritance and priority. The configuration that is lower in hierarchy gets the highest priority.

1 Configure a local OSPF configuration:

```
RP/0/RP0/CPU0:router# show running router ospf
router ospf 1
  apply-group go-c
  nsr
  router-id 121.121.121.121
  nsf cisco
  redistribute connected
  address-family ipv4 unicast
  area 0
  apply-group go-b
  interface GigabitEthernet0/0/0/0
  apply-group go-a

  interface GigabitEthernet0/0/0/1

  interface GigabitEthernet0/0/0/3

  interface GigabitEthernet0/0/0/4

  interface GigabitEthernet0/0/0/21
  bfd minimum-interval 100
  bfd fast-detect
  bfd multiplier 3

  interface TenGigE0/2/0/0.3891

  interface TenGigE0/2/0/0.3892

  interface TenGigE0/2/0/0.3893

  interface TenGigE0/2/0/0.3894

  router ospf 100

  router ospf 1000

  router ospf 1001
```

2 Configure a configuration group and apply it in a configuration submode:

```
RP/0/RP0/CPU0:router# show running group go-a
```

```
group go-a
  router ospf ".*"
  area ".*"
  interface 'Gig.*'
  cost 200
```
OSPF Hierarchy: Example

RP/0/RP0/CPU0:router# show running group go-b

group go-b
 router ospf '.*'
 area '.*'
 interface 'Gig.*'
 cost 250
 !
 !
end-group

RP/0/RP0/CPU0:router# show running group go-c

group go-c
 router ospf '.*'
 area '.*'
 interface 'Gig.*'
 cost 300
 !
 !
end-group

3 Check the inheritance view and verify that the apply-group in the lowest configuration submode gets the highest priority:

RP/0/RP0/CPU0:router# show running inheritance router ospf 1

router ospf 1
 nsr
 router-id 121.121.121.121
 nsf cisco
 redistribute connected
 address-family ipv4 unicast
 area 0
 interface GigabitEthernet0/0/0/0
 ## Inherited from group go-a
 cost 200
 !
 interface GigabitEthernet0/0/0/1
 ## Inherited from group go-c
 cost 250
 !
 interface GigabitEthernet0/0/0/3
 ## Inherited from group go-b
 cost 250
 !
 interface GigabitEthernet0/0/0/4
 ## Inherited from group go-b
 cost 250
 !
 interface GigabitEthernet0/0/0/21
 bfd minimum-interval 100
 bfd fast-detect
 bfd multiplier 3
 ## Inherited from group go-b
 cost 250
 !
 interface TenGigE0/2/0/0.3891
 !
 interface TenGigE0/2/0/0.3892
 !
 interface TenGigE0/2/0/0.3893
 !
 interface TenGigE0/2/0/0.3894
4 Check the functionality of the cost inheritance through the groups:

```
RP/0/RP0/CPU0:router# show ospf 1 interface GigabitEthernet 0/0/0/0
```

GigabitEthernet0/0/0/0 is up, line protocol is up
Internet Address 1.0.1.1/30, Area 0
Process ID 1, Router ID 121.121.121.121, Network Type BROADCAST, Cost: 200
Transmit Delay is 1 sec, State DR, Priority 1, MTU 1500, MaxPktSz 1500
Designated Router (ID) 121.121.121.121, Interface address 1.0.1.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Non-Stop Forwarding (NSF) enabled
 Hello due in 00:00:02
 Index 5/5, flood queue length 0
 Last flood scan length is 1, maximum is 40
 Last flood scan time is 0 msec, maximum is 7 msec
 LS Ack List: current length 0, high water mark 0
 Neighbor Count is 1, Adjacent neighbor count is 0
 Suppress hello for 0 neighbor(s)
 Multi-area interface Count is 0

Link Bundling Usage: Example

This example shows how to configure interface membership in a bundle link:

1. Configure the configuration groups:

   ```
   RP/0/RP0/CPU0:router# show running group bundle1
   group bundle1
   interface 'GigabitEthernet0/1/0/1[1-6]' bundle id 1 mode active
   end-group
   RP/0/RP0/CPU0:router# show running | inc apply-group
   Building configuration...
   apply-group isis l2tr isis2 mpp bundle1
   ```

2. Check the local configuration:

   ```
   RP/0/RP0/CPU0:router# show running interface gigabitEthernet 0/1/0/11
   interface GigabitEthernet0/1/0/11
   
   RP/0/RP0/CPU0:router# show running interface Bundle-Ether1
   interface Bundle-Ether1
   ipv4 address 108.108.1.1 255.255.255.0
   bundle maximum-active links 10
   bundle minimum-active links 5
   ```

3. Check the inheritance configuration view:

   ```
   RP/0/RP0/CPU0:router# show running inheritance interface GigabitEthernet 0/1/0/11
   ```
interface GigabitEthernet0/1/0/11
 ## Inherited from group bundle1
 bundle id 1 mode active

4 Check that the inheritance configuration took effect:

RP/0/RP0/CPU0:router# show interface Bundle-Ether1

Bundle-Ether1 is up, line protocol is up
 Interface state transitions: 1
 Hardware is Aggregated Ethernet interface(s), address is 0024.f71f.4bc3
 Internet address is 108.108.1.1/24
 MTU 1514 bytes, BW 6000000 Kbit (Max: 6000000 Kbit)
 reliability 255/255, txload 0/255, rxload 0/255
 Encapsulation ARPA,
 Full-duplex, 6000Mb/s
 loopback not set,
 ARP type ARPA, ARP timeout 04:00:00
 No. of members in this bundle: 6
 GigabitEthernet0/1/0/11 Full-duplex 1000Mb/s Active
 GigabitEthernet0/1/0/12 Full-duplex 1000Mb/s Active
 GigabitEthernet0/1/0/13 Full-duplex 1000Mb/s Active
 GigabitEthernet0/1/0/14 Full-duplex 1000Mb/s Active
 GigabitEthernet0/1/0/15 Full-duplex 1000Mb/s Active
 GigabitEthernet0/1/0/16 Full-duplex 1000Mb/s Active

Last input 00:00:00, output 00:00:00
Last clearing of "show interface" counters never
5 minute input rate 8000 bits/sec, 1 packets/sec
5 minute output rate 3000 bits/sec, 1 packets/sec
2058 packets input, 1999803 bytes, 426 total input drops
 0 drops for unrecognized upper-level protocol
 Received 1 broadcast packets, 2057 multicast packets
 0 runts, 0 giants, 0 throttles, 0 parity
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
1204 packets output, 71976 bytes, 0 total output drops
Output 2 broadcast packets, 1202 multicast packets
 0 output errors, 0 underruns, 0 applique, 0 resets
 0 output buffer failures, 0 output buffers swapped out
 0 carrier transitions
Upgrading FPD

In general terms, field-programmable devices (FPDs) are hardware devices implemented on router cards that support separate software upgrades. A field-programmable gate array (FPGA) is a type of programmable memory device that exists on most hardware components of the router. The term FPD has been introduced to collectively and generically describe any type of programmable hardware device on SIPS and shared port adapters (SPAs), including FPGAs. Cisco IOS XR software provides the Cisco FPD upgrade feature to manage the upgrade of FPD images on SIPS and SPAs.

This chapter describes the information that you must know to verify image versions and to perform an upgrade for SPA or SIP FPD images when incompatibilities arise.

For complete descriptions of the FPD commands listed in this module, see Related Documents, on page 243. To locate documentation for other commands that might appear in the course of performing a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.2</td>
<td>SIPs and SPAs were introduced. FPD images were introduced to support SIPS and SPAs.</td>
</tr>
<tr>
<td>Release 3.3.0</td>
<td>Reload option was added to the upgrade hw-module fpd command, including a prompt to inform the user. Possibility for multiple FPD images on a card was added.</td>
</tr>
<tr>
<td>Release 5.3.2</td>
<td>Enhance FPD upgrade and downgrade behaviour.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for FPD Image Upgrades, page 228
- Overview of FPD Image Upgrade Support, page 228
- How to Upgrade FPD Images, page 229
- Configuration Examples for FPD Image Upgrade, page 233
Prerequisites for FPD Image Upgrades

Before upgrading the FPD on your router you must install and activate the fpd.pie.

Overview of FPD Image Upgrade Support

An FPD image is used to upgrade the software on an FPD.

Whenever an image is released that supports SIPs and SPAs, a companion SIP and SPA FPD image is bundled. Generally, the FPD image is not automatically upgraded. You must manually upgrade the FPD image running on the SPA or SIP when you upgrade the Cisco IOS XR software image.

FPD versions must be compatible with the Cisco IOS XR software that is running on the router; if an incompatibility exists between an FPD version and the Cisco IOS XR software, the device with the FPGA may not operate properly until the incompatibility is resolved. An FPGA incompatibility on a SPA does not necessarily affect the running of the SPA interfaces; an FPD incompatibility on a SIP disables all interfaces for all SPAs in the SIP until the incompatibility is addressed.

Use the `show hw-module fpd` command to determine if an FPD upgrade is required. A value of ‘Yes’ in the Upg/Dng? (upgrade/downgrade) column indicates that an upgrade or downgrade is required.

The Cisco CRS Router supports upgrades for FPGA devices on its SIPs and SPAs. FPGA and ROMMON software upgrades are part of an FPD image package that corresponds to a Cisco IOS XR software image. SIPs and SPAs support manual upgrades for FPGA devices using the Cisco FPD upgrade feature that is further described in this chapter.

Related Topics

- show hw-module fpd Command Output: Example, on page 233

Automatic FPD Upgrade

By default, the FPD image is not automatically upgraded. You must manually upgrade the FPD image running on the SPA or SIP when you upgrade the Cisco IOS XR software image.

However, if you enable the `fpd auto-upgrade` command in Admin Configuration mode, FPD images are automatically updated when:

- Software upgrade is carried out.

The following conditions must be met for an Automatic FPD Upgrade to work:

- FPD package installation envelope (PIE) must already be installed on the router.
- FPD PIE must be activated together with the new Cisco IOS XR image.
- The `fpd auto-upgrade` command must be enabled.
Although the FPD upgrade is performed during the install operation, there is no install commit performed. Therefore, once the FPD has been upgraded, if the image is rolled back to the original version, the FPD version is not downgraded to the previous version.

Automatic FPD Upgrade is not performed when:

- Line cards or other cards such as RPs, SPAs or alarm cards are added to an existing router.
- A line card chassis is added to an existing CRS multi-chassis router.
- A non-reload software maintenance upgrade (SMU) or PIE installation is performed, even where the FPD image version changes. Since a non-reload installation is, by definition, not supposed to reload the router, and an FPD upgrade requires a router reload, an Automatic FPD Upgrade is repressed.

In all cases where the automatic FPD upgrade is not performed, you must perform a manual FPD upgrade using the `upgrade hw-module fpd` command.

A message is displayed when router modules cannot get upgraded during automatic FPD upgrade indicating that the FPGA is intentionally skipped during upgrade. To upgrade such FPGAs, you can use the CLI command with a particular location explicitly specified. For example, `upgrade hw-module fpd all location 0/3/1`.

How to Upgrade FPD Images

You must determine if an FPD image upgrade is needed using the `show hw-module fpd` command and perform the upgrade, if needed, under the following circumstances:

- You migrate the software to a later Cisco IOS XR software release.
- You swap SPAs or SIPs from a system running a different Cisco IOS XR software release.
- You insert a new SPA or SIP.

In the event that there is an FPD incompatibility with your card, you may receive an error message. If you upgrade to a newer version of the Cisco IOS XR software and there is an FPD incompatibility, you receive the following message:

```
LC/0/1/CPU0:Dec 23 16:33:47.945 : spa_192_jacket_v2(203): %PLATFORM-UPGRADE_FPD-4-DOWN_REV : spa fpga2 instance 0 is down-rev (V0.6), upgrade to (V1.0). Use the "upgrade hw-module fpd" CLI in admin mode.
```

If the FPD image on the card is newer then what is required by the currently running Cisco IOS XR software image on the router, you receive the following error message:

```
LC/0/1/CPU0:Dec 23 16:33:47.955 : spa_192_jacket_v2(203): %PLATFORM-UPGRADE_FPD-4-UP_REV : spa fpga instance 1 is up-rev(V1.10), downgrade to (V0.09) is "OPTIONAL". Use "upgrade hw-module fpd force" CLI in admin mode.
```
You should perform the FPD upgrade procedure if you receive such messages. Cards may not function properly if FPD incompatibilities are not resolved.

An error message is displayed (as shown below) when version-34 of FPGA is upgraded to version-37. This is only for CRS-X linecards. However, when the user upgrades to version-37, from any other lower version (other than version-34), this failure message is not displayed. Even though we see this failure message, FPD upgrade will complete successfully and after a power cycle/reload it will properly reflect the upgraded version. There is no functionality impact.

```
FAILED to upgrade fpga3 for 4-100GbE on location1/1/CPU0 from 34.00 to 37.00
LC/1/1/CPU0:Nov 12 15:28:40.057 : lc_fpd_upgrade[244]: %PLATFORM-UPGRADE_FPD-3-OPERATION_FAILED : Failed to update FPD : FPD Programming action failed on this card.
```

The use of the **force** option when performing a FPD upgrade is not recommended except under explicit direction from Cisco engineering or TAC.

Before You Begin

- Before upgrading the FPD, you must install and activate the hfr-fpd.pie. For information about performing this task, see the *Upgrading and Managing Cisco IOS XR Software* module.

- The FPD upgrade procedure is performed while the card is online. At the end of the procedure the card must be reloaded before the FPD upgrade is complete. To automatically reload the card, you can use the **hw-module reload** command during your next maintenance window. The upgrade procedure is not complete until the card is reloaded.

- During the FPD upgrade, you **must not** do the following:
 - Reload, perform an online insertion and removal (OIR) of a line card (LC), or power down the chassis. Doing so may cause the node to enter an unusable state.
 - Press Ctrl-C if the console appears to hang without any output. Doing so may abort the upgrade.

- If you are not sure whether a card requires an FPD upgrade, you can install the card and use the **show hw-module fpd** command to determine if the FPD image on the card is compatible with the currently running Cisco IOS XR software release.

SUMMARY STEPS

1. **show hw-module fpd location** (`all | node-id`)
2. **admin**
3. (Optional) **show fpd package**
4. **upgrade hw-module fpd** (`all | fpga-type` | **force**) `location` (`all | node-id`)
5. **exit**
6. (Optional) **hw-module** (`location` `node-id` | **subslot** `subslot-id`) **reload**
7. **show platform**
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show hw-module fpd location [all</td>
<td>node-id]</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show hw-module fpd location all or RP/0/RP0/CPU0:router# show hw-module fpd location 0/4/cpu0</td>
<td></td>
</tr>
<tr>
<td>Step 2 admin</td>
<td>Enters administration EXEC mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# admin</td>
<td></td>
</tr>
<tr>
<td>Step 3 show fpd package</td>
<td>(Optional) Displays which cards are supported with your current Cisco IOS XR software release, which FPD image you need for each card, and what the minimum hardware requirements are for the various modules. (A minimum hardware requirement version of 0.0 indicates that all hardware can support this FPD image version.) If there are multiple FPD images for your card, use this command to determine which FPD image to use if you want to upgrade only a specific FPD type.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(admin)# show fpd package</td>
<td></td>
</tr>
<tr>
<td>Step 4 upgrade hw-module fpd {all</td>
<td>fpga-type} [force] location [all</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(admin)# upgrade hw-module fpd all location 0/3/1</td>
<td>FPD upgrade started. FPD upgrade in progress.. FPD upgrade in progress.. FPD upgrade sent to location xxxx FPD upgrade sent to location yyyy FPD upgrade in progress.. FPD upgrade finished for location xxxx FPD upgrade in progress.. FPD upgrade finished for location yyyy FPD upgrade completed.</td>
</tr>
<tr>
<td></td>
<td>The "FPD upgrade in progress." message is printed every minute. These logs are information logs, and as such, are displayed if the logging console informational command is configured.</td>
</tr>
</tbody>
</table>
Purpose

If Ctrl-C is pressed while the FPD upgrade is in progress, the following warning message is displayed:

> FPD upgrade in progress on some hardware, aborting now is not recommended as it might cause HW programming failure and result in RMA of the hardware.
>
> Do you want to continue? [Confirm(y/n)]

If you confirm that you want to abort the FPD upgrade procedure, this message is displayed:

> FPD upgrade process has been aborted, please check the status of the hardware and reissue the upgrade command if required.

Note
If your card supports multiple FPD images, you can use the `show fpd package` admin command to determine what specific image to upgrade in the `upgrade hw-module fpd` command.

Note
A message is displayed when router modules cannot get upgraded during upgrade with `location all` option indicating that the FPGA is intentionally skipped during upgrade. To upgrade such FPGAs, you can use the CLI command with a particular location explicitly specified. For example, `upgrade hw-module fpd all location 0/3/1`.

Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(admin)# exit</td>
</tr>
<tr>
<td>Purpose</td>
<td>Exits administration EXEC mode and returns to EXEC mode.</td>
</tr>
</tbody>
</table>

Step 6

| hw-module {location node-id | subslot subslot-id} reload |
|-----------------------------|
| Example: | RP/0/RP0/CPU0:router# hw-module subslot 0/3/1 reload
or
RP/0/RP0/CPU0:router# hw-module location 0/3/cpu0 reload |
| (Optional) | Use the `hw-module subslot reload` command to reload a SPA and the `hw-module location reload` command to reload a SIP or line card. |

Step 7

<table>
<thead>
<tr>
<th>show platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Purpose</td>
</tr>
</tbody>
</table>
Configuration Examples for FPD Image Upgrade

The following examples indicate the use of commands associated with the FPD image upgrade procedure.

show hw-module fpd Command Output: Example

Use the `show hw-module fpd` to display the current version of FPD images on the SPAs, SIPs and other cards installed on your router.

This command can be used to identify information about FPDs on any card. If you enter the location of a line card that is not a SPA, the output displays information about any programmable devices on that line card.

The following example shows how to display FPD compatibility for all modules in the router:

```
RP/0/RSP0/CPU0:router# show hw-module fpd location all
```

<table>
<thead>
<tr>
<th>Location</th>
<th>Card Type</th>
<th>HW Current SW Upg/</th>
<th>Type</th>
<th>Subtype</th>
<th>Inst Version</th>
<th>Upg/Dng?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/RSP0/CPU0 CRS1-SIP-800</td>
<td>1.0 lc fpga3 0 1.23</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fpga1 0 1.05</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fpga2 0 3.08"</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/0/0 SPA-2XCHOC12/DS0</td>
<td>1.0 spa rommonA 0 2.02</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>spa fpga 0 1.36+</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>spa fpga2 0 1.00*</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. One or more FPD needs an upgrade or a downgrade. This can be accomplished using the "admin upgrade hw-module fpd" CLI.
2. * One or more FPD is running minimum software version supported. It can be upgraded using the "admin> upgrade hw-module fpd <fpd> force location <loc>" CLI.
3. + One or more FPD is running up-rev FPGA version. Downgrade is "OPTIONAL" in this case. It can be downgraded using the "admin> upgrade hw-module fpd <fpd> force location <loc>" CLI.
4. ^ One or more FPD will be intentionally skipped from upgrade using CLI with option "all" or during "Auto fpd". It can be upgraded only using the "admin> upgrade hw-module fpd <fpd> location <loc>" CLI with exact location.

After Release 5.3.x, Upg/Dng? will display Yes only for upgrade.

The following example shows the FPD for which upgrade will be skipped.

```
RP/0/RP0/CPU0:router# show hw-module fpd location all
```

<table>
<thead>
<tr>
<th>Location</th>
<th>Card Type</th>
<th>HW Current SW Upg/</th>
<th>Type</th>
<th>Subtype</th>
<th>Inst Version</th>
<th>Dng?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/S1/SP</td>
<td>140G-4-S1S2S3</td>
<td>0.1 lc rommonA 0 2.08</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note

The following examples indicate the use of commands associated with the FPD image upgrade procedure.
Upgrading FPD

show hw-module fpd Command Output: Example

```
1c  rommon  0  2.08  Yes
-----------------------------------------------
1c  fpga1  0  6.04^  No
-----------------------------------------------
1c  fpga2  0  4.01  No
-----------------------------------------------
```

NOTES:
1. ^ One or more FPD will be intentionally skipped from upgrade using CLI with option "all" or during "Auto fpd".
 It can be upgraded only using the "admin> upgrade hw-module fpd <fpd> location <loc>" CLI with exact location.

Re//0//RP0//CPU0# show hw-module fpd location 0/6/cpu0

```
Sun Apr 18 03:18:24.903 DST

Existing Field Programmable Devices
-----------------------------------------------
<table>
<thead>
<tr>
<th>Location</th>
<th>Card Type</th>
<th>HW Version</th>
<th>Type</th>
<th>Subtype</th>
<th>Inst</th>
<th>Current SW Upg/Version</th>
<th>Dng?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/6/CPU0</td>
<td>CRSI-SIP-800</td>
<td>0.96</td>
<td>lc</td>
<td>fpga1</td>
<td>0</td>
<td>6.00</td>
<td>No</td>
</tr>
<tr>
<td>0/6/CPU0</td>
<td>CRSI-SIP-800</td>
<td>0.96</td>
<td>lc</td>
<td>rommonA</td>
<td>0</td>
<td>2.100</td>
<td>No</td>
</tr>
<tr>
<td>0/6/CPU0</td>
<td>CRSI-SIP-800</td>
<td>0.96</td>
<td>lc</td>
<td>rommon</td>
<td>0</td>
<td>2.100</td>
<td>No</td>
</tr>
</tbody>
</table>
```

If the cards in the system do not meet the minimum requirements, the output contains a "NOTES" section that states how to upgrade the FPD image.

Table 23: show hw-module fpd Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Location of the module in the rack/slot/module notation.</td>
</tr>
<tr>
<td>Card Type</td>
<td>Module part number.</td>
</tr>
<tr>
<td>HW Version</td>
<td>Hardware model version for the module.</td>
</tr>
<tr>
<td>Type</td>
<td>Hardware type. Can be one of the following types:</td>
</tr>
<tr>
<td></td>
<td>• spa—Shared port adapter</td>
</tr>
<tr>
<td></td>
<td>• lc—Line card</td>
</tr>
</tbody>
</table>
show fpd package Command Output: Example

Use the `show fpd package` command in administration EXEC mode to find out which SPAs and SIPs are supported with your current Cisco IOS XR software release, which FPD image package you need for each SPA or SIP, and what the minimum hardware requirements are for each module. If multiple FPD images are available for your card, they are listed as Subtype fpga2, fpga3, and so on.

The following example shows sample output from the `show fpd package` command:

```
RP/0/RP0/CPU0:Router# admin
RP/0/RP0/CPU0:Router (admin)# show fpd package
Thu Jun 24 10:58:49.319 UTC

Field Programmable Device Package

<table>
<thead>
<tr>
<th>Card Type</th>
<th>FPD Description</th>
<th>Type</th>
<th>Subtype</th>
<th>SW Version</th>
<th>Min Req SW Ver</th>
<th>Min Req HW Ver</th>
</tr>
</thead>
<tbody>
<tr>
<td>1OC768-ITU/C</td>
<td>OPTICS FIRMWARE 104B4</td>
<td>lc</td>
<td>fpga2</td>
<td>104.04</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1OC768-DWDM-L</td>
<td>OPTICS FIRMWARE 104B4</td>
<td>lc</td>
<td>fpga2</td>
<td>104.04</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
```
show fpd package Command Output: Example

<table>
<thead>
<tr>
<th>Module Type</th>
<th>Module Code</th>
<th>Revision</th>
<th>Status</th>
<th>LAN Speed</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1OC768-DPSK/C</td>
<td>OPTICS FIRMWARE 101B3</td>
<td>lc fpga2</td>
<td>101.03</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1OC768-DPSK/C-O</td>
<td>OPTICS FIRMWARE 101B3</td>
<td>lc fpga2</td>
<td>101.03</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1OC768-DPSK/C-E</td>
<td>OPTICS FIRMWARE 101B3</td>
<td>lc fpga2</td>
<td>101.03</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CRS-ADVSC-FLIM</td>
<td>FPGA mCPU0 0.557</td>
<td>lc fpga2</td>
<td>0.557</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>FPGA sCPU0 0.557</td>
<td>lc fpga3</td>
<td>0.557</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>FPGA mCPU1 0.557</td>
<td>lc fpga4</td>
<td>0.557</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>FPGA sCPU1 0.557</td>
<td>lc fpga5</td>
<td>0.557</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>FPGA PLIM_SVC 0.41013</td>
<td>lc fpga1</td>
<td>0.41013</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CRS1-SIP-800</td>
<td>JACKET FPGA swv6.0</td>
<td>lc fpga1</td>
<td>6.00</td>
<td>5.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>FPGA swv6.0 hwv80</td>
<td>lc fpga1</td>
<td>6.00</td>
<td>5.0</td>
<td>0.80</td>
</tr>
<tr>
<td>8-10GBE</td>
<td>FPGA swvA.0</td>
<td>lc fpga1</td>
<td>10.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OC48-POS-16-ED</td>
<td>FPGA PLIM_OC48 9.0</td>
<td>lc fpga1</td>
<td>9.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4-10GE</td>
<td>SQUIRREL FPGA 10.0</td>
<td>lc fpga1</td>
<td>10.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>42-1GE</td>
<td>FPGA swv6.0</td>
<td>lc fpga1</td>
<td>6.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>FPGA swv6.0 hwv0.80</td>
<td>lc fpga1</td>
<td>6.00</td>
<td>0.0</td>
<td>0.80</td>
</tr>
<tr>
<td>20-1GE-FLEX</td>
<td>FPGA swv6.0</td>
<td>lc fpga1</td>
<td>6.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>FPGA swv6.0 hwv0.80</td>
<td>lc fpga1</td>
<td>6.00</td>
<td>0.0</td>
<td>0.80</td>
</tr>
<tr>
<td>2-10GE-WL-FLEX</td>
<td>FPGA swv6.0</td>
<td>lc fpga1</td>
<td>6.00</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>FPGA swv6.0 hwv0.80</td>
<td>lc fpga1</td>
<td>6.00</td>
<td>0.0</td>
<td>0.80</td>
</tr>
<tr>
<td>Route Processor</td>
<td>ROMMONA swv1.54 asmp</td>
<td>lc rommonA</td>
<td>1.52</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONA swv1.54 dsm</td>
<td>lc rommonA</td>
<td>1.52</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONB swv1.54 asmp</td>
<td>lc rommon</td>
<td>1.54</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONB swv1.54 dsm</td>
<td>lc rommon</td>
<td>1.54</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SC</td>
<td>ROMMONA swv1.54 asmp</td>
<td>lc rommonA</td>
<td>1.52</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONA swv1.54 dsm</td>
<td>lc rommonA</td>
<td>1.52</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONB swv1.54 asmp</td>
<td>lc rommon</td>
<td>1.54</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONB swv1.54 dsm</td>
<td>lc rommon</td>
<td>1.54</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>RP</td>
<td>ROMMONA swv1.54 asmp</td>
<td>lc rommonA</td>
<td>1.52</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONA swv1.54 dsm</td>
<td>lc rommonA</td>
<td>1.52</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Upgrading FPD

<table>
<thead>
<tr>
<th>Component</th>
<th>ROMMONA Package Details</th>
<th>ROMMONB Package Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf Controller GE</td>
<td>ROMMONA swv1.54 aamp 1c rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 aamp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONA swv1.54 damp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 damp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td>Shelf Controller GE2</td>
<td>ROMMONA swv1.54 aamp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 aamp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONA swv1.54 damp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 damp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td>DRP</td>
<td>ROMMONA swv1.54 aamp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 aamp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONA swv1.54 damp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 damp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONA swv1.54 sp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 sp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td>DRP_B</td>
<td>ROMMONA swv1.54 aamp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 aamp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONA swv1.54 damp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 damp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td></td>
<td>ROMMONA swv1.54 sp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 sp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td>S1S2S3</td>
<td>ROMMONA swv1.54 sp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 sp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td>S1S3</td>
<td>ROMMONA swv1.54 sp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 sp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td>S2</td>
<td>ROMMONA swv1.54 sp lc rommonA 1.52 0.0 0.0</td>
<td>ROMMONB swv1.54 sp lc rommon 1.54 0.0 0.0</td>
</tr>
<tr>
<td>Device</td>
<td>ROMMON A</td>
<td>ROMMON B</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Fabric HS123</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
<tr>
<td>Fabric HS123 Star</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
<tr>
<td>Fabric HS13 Star</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
<tr>
<td>Fabric QQS123</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
<tr>
<td>LED</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
<tr>
<td>40G-MSC</td>
<td>swv1.54 asmp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 dsmpl</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 asmp</td>
<td>lc rommon</td>
</tr>
<tr>
<td></td>
<td>swv1.54 dsmpl</td>
<td>lc rommon</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
<tr>
<td>MSC_B</td>
<td>swv1.54 asmp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 dsmpl</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 asmp</td>
<td>lc rommon</td>
</tr>
<tr>
<td></td>
<td>swv1.54 dsmpl</td>
<td>lc rommon</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
<tr>
<td>FP40</td>
<td>swv1.54 asmp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 dsmpl</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 asmp</td>
<td>lc rommon</td>
</tr>
<tr>
<td></td>
<td>swv1.54 dsmpl</td>
<td>lc rommon</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
<tr>
<td>PSAL</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
<tr>
<td>Unknown</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
</tr>
<tr>
<td></td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
</tr>
</tbody>
</table>

show fpd package Command Output: Example
<table>
<thead>
<tr>
<th>Component</th>
<th>Model</th>
<th>Description</th>
<th>Version</th>
<th>Status</th>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAN</td>
<td>RommonA</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
<td>1.52</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td></td>
<td>RommonB</td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
<td>1.54</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>FC Fan Controller</td>
<td>RommonA</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
<td>1.52</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td></td>
<td>RommonB</td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
<td>1.54</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>LED</td>
<td>RommonA</td>
<td>swv1.54 sp</td>
<td>lc rommonA</td>
<td>1.52</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td></td>
<td>RommonB</td>
<td>swv1.54 sp</td>
<td>lc rommon</td>
<td>1.54</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-4XT3/E3</td>
<td>SPA E3 Subrate FPGA</td>
<td>spa fpga2</td>
<td>1.04</td>
<td>0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPA T3 Subrate FPGA</td>
<td>spa fpga3</td>
<td>1.04</td>
<td>0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPA I/O FPGA</td>
<td>spa fpga1</td>
<td>1.00</td>
<td>0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPA Rommon</td>
<td>spa rommon</td>
<td>2.12</td>
<td>0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>SPA-2XT3/E3</td>
<td>SPA E3 Subrate FPGA</td>
<td>spa fpga2</td>
<td>1.04</td>
<td>0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPA T3 Subrate FPGA</td>
<td>spa fpga3</td>
<td>1.04</td>
<td>0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPA I/O FPGA</td>
<td>spa fpga1</td>
<td>1.00</td>
<td>0.0 0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPA Rommon</td>
<td>spa rommon</td>
<td>2.12</td>
<td>0.0 0.0</td>
<td></td>
</tr>
<tr>
<td>SPA-OC192POS</td>
<td>SPA FPGA</td>
<td>swv1.3</td>
<td>spa fpga1</td>
<td>1.03</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-6XOC12-POS</td>
<td>SPA FPGA</td>
<td>swv1.0</td>
<td>spa fpga1</td>
<td>1.00</td>
<td>0.0 0.5</td>
</tr>
<tr>
<td>SPA-4XOC3-POS</td>
<td>SPA FPGA</td>
<td>swv3.4</td>
<td>spa fpga1</td>
<td>3.04</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-OC192POS-XFP</td>
<td>SPA FPGA</td>
<td>swv1.2</td>
<td>spa fpga1</td>
<td>1.02</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-8X1GE</td>
<td>SPA FPGA</td>
<td>swv1.8</td>
<td>spa fpga1</td>
<td>1.08</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-2XC48POS/RPR</td>
<td>SPA FPGA</td>
<td>swv1.0</td>
<td>spa fpga1</td>
<td>1.00</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-4XC48POS/RPR</td>
<td>SPA FPGA</td>
<td>swv1.0</td>
<td>spa fpga1</td>
<td>1.00</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-10X1GE-V2</td>
<td>SPA FPGA</td>
<td>swv1.10</td>
<td>spa fpga1</td>
<td>1.10</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-8X1GE-V2</td>
<td>SPA FPGA</td>
<td>swv1.10</td>
<td>spa fpga1</td>
<td>1.10</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-5X1GE-V2</td>
<td>SPA FPGA</td>
<td>swv1.10</td>
<td>spa fpga1</td>
<td>1.10</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-1X1GE-L-V2</td>
<td>SPA FPGA</td>
<td>swv1.9</td>
<td>spa fpga1</td>
<td>1.09</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-1X1GE-WL-V2</td>
<td>SPA FPGA</td>
<td>swv1.11</td>
<td>spa fpga1</td>
<td>1.11</td>
<td>0.0 0.0</td>
</tr>
<tr>
<td>SPA-1XC3-ATM-V2</td>
<td>SPA FPGA</td>
<td>swv1.2</td>
<td>spa fpga1</td>
<td>1.03</td>
<td>0.0 0.0</td>
</tr>
</tbody>
</table>
show fpd package Command Output: Example

This table describes the significant fields shown in the display:

Table 24: show fpd package Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card Type</td>
<td>Module part number.</td>
</tr>
<tr>
<td>FPD Description</td>
<td>Description of all FPD images available for the SPA.</td>
</tr>
<tr>
<td>Type</td>
<td>Hardware type. Possible types can be:</td>
</tr>
<tr>
<td></td>
<td>• spa—Shared port adapter</td>
</tr>
<tr>
<td></td>
<td>• lc—Line card</td>
</tr>
<tr>
<td>Subtype</td>
<td>FPD subtype. These values are used in the upgrade hw-module fpd command to indicate a specific FPD image type to upgrade.</td>
</tr>
<tr>
<td>SW Version</td>
<td>FPD software version recommended for the associated module running the current Cisco IOS XR software.</td>
</tr>
<tr>
<td>Min Req SW Vers</td>
<td>Minimum required FPD image software version to operate the card. Version 0.0 indicates that a minimum required image was not programmed into the card.</td>
</tr>
<tr>
<td>Min Req HW Vers</td>
<td>Minimum required hardware version for the associated FPD image. A minimum hardware requirement of version 0.0 indicates that all hardware can support this FPD image version.</td>
</tr>
</tbody>
</table>

Note

In the show fpd package command output, the "subtype" column shows the FPDs that correspond with each SPA image. To upgrade a specific FPD with the upgrade hw-module fpd command, replace the fpga-type argument with the appropriate FPD from the "subtype" column, as shown in the following example:

RP/0/RP0/CPU0:router(admin)# upgrade hw-module fpd fpga2 location 0/3/1 reload
upgrade hw-module fpd Command Output: Example

Use the `upgrade hw-module fpd` command to upgrade the FPD image on a SPA, SIP or line card.

```
RP/0/RP0/CPU0:Router# admin
RP/0/RP0/CPU0:Router(admin)# upgrade hw-module fpd fpga location 0/1/4

% RELOAD REMINDER:
- The upgrade operation of the target module will not interrupt its normal operation. However, for the changes to take effect, the target module will need to be manually reloaded after the upgrade operation. This can be accomplished with the use of "hw-module <target> reload" command.
- If automatic reload operation is desired after the upgrade, please use the "reload" option at the end of the upgrade command.
- The output of "show hw-module fpd location" command will not display correct version information after the upgrade if the target module is not reloaded.
```

Continue? [confirm] y

```
SP/0/1/SP:Dec 22 05:41:17.920 : upgrade_daemon[125]: programming...with file /net/node0_RP1_CPU0/hfr-lc-3.3.83/fpd/ucode/fpd_gladiator_sw0.6.xsvf
SP/0/1/SP:Dec 22 05:41:28.906 : upgrade_daemon[125]: ...it will take a while...
SP/0/1/SP:Dec 22 05:41:29.004 : upgrade_daemon[125]: ...it will take a while...
SP/0/1/SP:Dec 22 05:43:03.432 : upgrade_daemon[125]: ...programming...
SP/0/1/SP:Dec 22 05:43:03.438 : upgrade_daemon[125]: ...it will take a while...
Successfully upgraded spa fpga instance 4 on location 0/1/4.
```

The following example shows how to upgrade the FPD image on a PLIM. Note that this upgrade does not upgrade the SPAs installed in the PLIM.

```
RP/0/RP0/CPU0:router(admin)# upgrade hw-module fpd all location 0/RP0/CPU0
Wed Mar 23 12:55:17.141 DST

***** UPGRADE WARNING MESSAGE: *****
* This upgrade operation has a maximum timeout of 90 minutes. *
* If you are executing the cmd for one specific location and *
* card in that location reloads or goes down for some reason *
* you can press CTRL-C to get back the RP's prompt. *
* If you are executing the cmd for _all_ locations and a node *
* reloads or is down please allow other nodes to finish the *
* upgrade process before pressing CTRL-C. *
```

% RELOAD REMINDER:
- The upgrade operation of the target module will not interrupt its normal operation. However, for the changes to take effect, the target module will need to be manually reloaded after the upgrade operation. This can be accomplished with the use of "hw-module <target> reload" command.
- If automatic reload operation is desired after the upgrade, please use the "reload" option at the end of the upgrade command.
- The output of "show hw-module fpd location" command will not display correct version information after the upgrade if the target module is not reloaded.

NOTE: Chassis CLI will not be accessible while upgrade is in progress.
Continue? [confirm] y

FPD upgrade in progress on some hardware, reload/configuration change on those is not recommended as it might cause HW programming failure and result in RMA of the hardware.

```
Starting the upgrade/download of following FPDs:
------------- ----- ------- ------------ ------------
Current Upg/Dng Version
------------- ----- ------- ------------
Location  Type  Subtype Upg/Dng Version
------------- ----- ------- ------------
0/6/CPU0  lc     fpga  upg  6.00  6.00
          lc     rommon dng 2.100 2.03
-------------
```

System Management Configuration Guide for Cisco CRS Routers, IOS XR Release 6.2.x
FPD upgrade in progress. Max timeout remaining 89 min.
FPD upgrade in progress. Max timeout remaining 88 min.
FPD upgrade in progress. Max timeout remaining 87 min.
Successfully upgraded fpga for CRS1-SIP-800 on location 0/6/CPU0 from 6.00 to 6.00
Successfully downgraded rommon for 40G-MSC on location 0/6/CPU0 from 2.100 to 2.03
FPD upgrade has ended.

show platform Command Output: Example

Use the `show platform` command to verify that the SPA is up and running.

```
RP/0/RP0/CPU0:router# show platform
```

```
Node | Type   | PLIM  | State | Config State
-----|--------|-------|-------|--------------
0/1/SP | MSC(SP) | N/A   | IOS XR RUN | PWR,NSHUT,MON
0/1/CPU0 | MSC | Jacket Card | IOS XR RUN | PWR,NSHUT,MON
0/1/0 | MSC(SPA) | 4XOC3-POS | OK | PWR,NSHUT,MON
0/1/1 | MSC(SPA) | OC192RPR-XFP | OK | PWR,NSHUT,MON
0/1/4 | MSC(SPA) | 8XOC3/OC12-POS | OK | PWR,NSHUT,MON
0/RP1/CPU0 | RP(Active) | N/A | IOS XR RUN | PWR,NSHUT,MON
```

Troubleshooting Problems with FPD Image Upgrades

This section contains information to help troubleshoot problems that can occur during the upgrade process.

Power Failure or Removal of a SPA During an FPD Image Upgrade

If the FPD upgrade operation is interrupted by a power failure or the removal of the SPA, it could corrupt the FPD image. This corruption of the FPD image file makes the SPA unusable by the router and the system displays the following messages when it tries to power up the SPA. When it cannot successfully power up the SPA, it places it in the failed state, as shown in the following example:

```
LC/0/3/CPU0:Feb 4 08:23:16.672: spa_192_jacket[188]: %L2-SPA-5-OIR_INSERTED: SPA discovered in bay 0
LC/0/3/CPU0:Feb 4 08:23:23.349 : spa_192_jacket[188]: %L2-SPA-5-OIR_ERROR : SPA (0): An error occurred (0x1002), error recovery action: reset SPA
LC/0/3/CPU0:Feb 4 08:23:26.431 : spa_192_jacket[188]: %L2-SPA-5-OIR_INSERTED: SPA discovered in bay 0
LC/0/3/CPU0:Feb 4 08:23:32.593 : spa_192_jacket[188]: %L2-SPA-5-OIR_ERROR : SPA (0): Too many retries, error recovery stopped
LC/0/3/CPU0:Feb 4 08:23:32.593 : spa_192_jacket[188]: %L2-SPA-5-OIR_ERROR : SPA (0): An error occurred (0x1002), error recovery action: hold SPA in reset
```

When a SPA is in the failed state, it may not register itself with the FPD upgrade mechanism. In this case, you do not see the SPA listed when you use the `show hw-module fpd` command. To verify the state of a SPA, use the `show hw-module subslot error` command and the `show hw-module subslot status` command.

Performing a SPA FPD Recovery Upgrade

To recover a SPA from the failed state because of a corrupted FPD image, you must manually shut down the SPA. Use the `hw-module subslot subslot-id shutdown` command in Global Configuration mode to
administratively shutdown the SPA. After the SPA is shut down, you can use the `upgrade hw-module fpd` command in administration EXEC mode:

```
RP/0/RP0/CPU0:router# admin
RP/0/RP0/CPU0:router(admin)# upgrade hw-module fpd fpga location 0/3/0
```

Performing a SIP FPD Recovery Upgrade

If a SIP upgrade fails for whatever reason, do not reload the SIP. Try to perform the upgrade procedure again. You can perform the upgrade procedure multiple times, as long as you do not reload the SIP. The FPD upgrade procedure takes several minutes to complete; do not interrupt the procedure. If you reload the SIP when the FPD image is corrupted, the SIP malfunctions and you must contact Cisco technical support for assistance.

To recover a SIP from the failed state because of a corrupted FPD image, you must contact Cisco technical support.

To recover a SIP from the failed state because of a corrupted FPD image, you must turn off the automatic reset of the SIP card. Use the `hw-module reset auto disable` command in administration configuration mode, as shown in the following example:

```
RP/0/RP0/CPU0:router(admin-config)# hw-module reset auto disable location 0/1/4
```

Additional References

The following sections provide references related to FPD software upgrade.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR command master list</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR FPD upgrade-related commands</td>
<td>Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Initial system bootup and configuration information for a router using the Cisco IOS XR Software.</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about configuring interfaces and other components on the Cisco CRS-1 from a remote Craft Works Interface (CWI) client management application</td>
<td>Cisco CRS-1 Series Carrier Routing System Craft Works Interface Configuration Guide</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no applicable MIBs for this module.</td>
<td>To locate and download MIBs for selected platforms using Cisco IOS XR Software, use the Cisco MIB Locator found at the following URL: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
CHAPTER 9

Configuring Manageability

This module describes the configuration required to enable the Extensible Markup Language (XML) agent services. The XML Parser Infrastructure provides parsing and generation of XML documents with Document Object Model (DOM), Simple Application Programming Interface (API) for XML (SAX), and Document Type Definition (DTD) validation capabilities:

• DOM allows customers to programmatically create, manipulate, and generate XML documents.
• SAX supports user-defined functions for XML tags.
• DTD allows for validation of defined document types.

Table 25: Feature History for Configuring Manageability on Cisco IOS XR Software

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>3.8.0</td>
<td>An enhanced-performance XML agent was introduced.</td>
</tr>
<tr>
<td>3.9.0</td>
<td>The ability to enable XML requests over Secure Socket Layer (SSL) was introduced. The ability to configure an idle timeout for the XML agent was introduced.</td>
</tr>
<tr>
<td>4.0.0</td>
<td>The ability to configure a dedicated agent to receive and send messages via a specified VPN routing and forwarding (VRF) instance was introduced. The ability to control CPU time used by the XML agent was introduced.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

• Information About XML Manageability, page 246
• How to Configure Manageability, page 246
• Configuration Examples for Manageability, page 247
• Additional References, page 247
Information About XML Manageability

The Cisco IOS XR Extensible Markup Language (XML) API provides a programmable interface to the router for use by external management applications. This interface provides a mechanism for router configuration and monitoring utilizing XML formatted request and response streams. The XML interface is built on top of the Management Data API (MDA), which provides a mechanism for Cisco IOS XR components to publish their data models through MDA schema definition files.

Cisco IOS XR software provides the ability to access the router via XML using a dedicated TCP connection, Secure Socket Layer (SSL), or a specific VPN routing and forwarding (VRF) instance.

How to Configure Manageability

Configuring the XML Agent

SUMMARY STEPS

1. xml agent [ssl]
2. iteration on size iteration-size
3. session timeout timeout
4. throttle {memory size | process-rate tags}
5. vrf { default | vrf-name } [access-list access-list-name]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables Extensible Markup Language (XML) requests over a dedicated TCP connection and enters XML agent configuration mode. Use the ssl keyword to enable XML requests over Secure Socket Layer (SSL).</td>
</tr>
<tr>
<td>xml agent [ssl]</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# xml agent</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures the iteration size for large XML agent responses in KBytes. The default is 48.</td>
</tr>
<tr>
<td>iteration on size iteration-size</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# iteration on size 500</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures an idle timeout for the XML agent in minutes. By default, there is no timeout.</td>
</tr>
<tr>
<td>session timeout timeout</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# session timeout 5</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures the XML agent processing capabilities.</td>
</tr>
<tr>
<td>throttle {memory size</td>
<td>process-rate tags}</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Example:** RP/0/RP0/CPU0:router:router(config-xml-agent)# throttle memory 300 | • Specify the memory size in Mbytes. Values can range from 100 to 600. The default is 300.
• Specify the process-rate as the number of tags that the XML agent can process per second. Values can range from 1000 to 30000. By default the process rate is not throttled. |

Step 5

vrf { default | vrf-name} [access-list access-list-name]

Example: RP/0/RP0/CPU0:router:router(config-xml-agent)# vrf my-vrf

Configures the dedicated agent or SSL agent to receive and send messages via the specified VPN routing and forwarding (VRF) instance.

Configuration Examples for Manageability

Enabling VRF on an XML Agent: Examples

The following example illustrates how to configure the dedicated XML agent to receive and send messages via VRF1, VRF2 and the default VRF:

```
RP/0/RP0/CPU0:router:router(config)# xml agent
RP/0/RP0/CPU0:router:router(config-xml-agent)# vrf VRF1
RP/0/RP0/CPU0:router:router(config-xml-agent)# vrf VRF2
```

The following example illustrates how to remove access to VRF2 from the dedicated agent:

```
RP/0/RP0/CPU0:router:router(config)# xml agent
RP/0/RP0/CPU0:router:router(config-xml-agent)# no vrf VRF2
```

The following example shows how to configure the XML SSL agent to receive and send messages through VRF1, VRF2 and the default VRF:

```
RP/0/RP0/CPU0:router:router(config)# xml agent ssl
RP/0/RP0/CPU0:router:router(config-xml-agent)# vrf VRF1
RP/0/RP0/CPU0:router:router(config-xml-agent)# vrf VRF2
```

The following example removes access for VRF2 from the dedicated XML agent:

```
RP/0/RP0/CPU0:router:router(config)# xml agent ssl
RP/0/RP0/CPU0:router:router(config-xml-agent)# no vrf VRF2
```

Additional References

The following sections provide references related to configuring manageability on Cisco IOS XR software.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR commands</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR XML API material</td>
<td>Cisco IOS XR XML API Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Configuring Call Home on the Cisco IOS XR Software

This module describes the configuring of the Call Home feature.

Table 26: Feature History for Configuring Call Home

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.1.0</td>
<td>Call Home was introduced</td>
</tr>
</tbody>
</table>

This model contains the following topics:

- About Call Home, page 252
- Configuring Call Home, page 256
- Configuring Contact Information, page 256
- Configuring and Activating Destination Profiles, page 258
- Associating an Alert Group with a Destination Profile, page 260
- Configuring Email, page 262
- Enabling Call Home, page 263
- Configuring Smart Call Home (single command), page 264
- Configuring Call Home Data Privacy, page 265
- Configuring Syslog Throttling, page 265
- Enabling AAA Authorization, page 266
- Sending Call Home Alert group Messages Manually, page 267
- Manually sending command output message for a Command List, page 268
- Configuring a HTTP Proxy Server, page 269
- Configuring Snapshot alert group, page 270
About Call Home

Call Home provides an email and http/https based notification for critical system policies. A range of message formats are available for compatibility with pager services or XML-based automated parsing applications. You can use this feature to page a network support engineer, email a Network Operations Center, or use Cisco Smart Call Home services to generate a case with the Technical Assistance Center. The Call Home feature can deliver alert messages containing information about diagnostics and environmental faults and events.

The Call Home feature can deliver alerts to multiple recipients, referred to as Call Home destination profiles. Each profile includes configurable message formats and content categories. A predefined destination is provided for sending alerts to the Cisco TAC, but you also can define your own destination profiles. When you configure Call Home to send messages, the appropriate CLI show command is executed and the command output is attached to the message. Call Home messages are delivered in the following formats:

- **Short text format** which provides a one or two line description of the fault that is suitable for pagers or printed reports.
- **Full text format** which provides fully formatted message with detailed information that is suitable for human reading.

Destination Profiles

A destination profile includes the following information:

- **One or more alert groups**—The group of alerts that trigger a specific Call Home message if the alert occurs.
- **One or more e-mail or http destinations**—The list of recipients for the Call Home messages generated by alert groups assigned to this destination profile.
- **Message format**—The format for the Call Home message (short text, full text, or XML).
- **Message severity level**—The Call Home severity level that the alert must meet before a Call Home message is sent to all e-mail and http url addresses in the destination profile. An alert is not generated if the Call Home severity level of the alert is lower than the message severity level set for the destination profile.

You can also configure a destination profile to allow periodic inventory update messages by using the inventory alert group that will send out periodic messages daily, weekly, or monthly.

The following predefined destination profiles are supported:

- **CiscoTAC-1**—Supports the Cisco-TAC alert group in XML message format.
Call Home Alert Groups

An alert group is a predefined subset of alerts or events that Call Home detects and reports to one or more destinations. Alert groups allow you to select the set of alerts that you want to send to a predefined or custom destination profile. Alerts are sent to e-mail destinations in a destination profile only if that alert belongs to one of the alert groups associated with that destination profile and if the alert has a Call Home message severity at or above the message severity set in the destination profile.

The following table lists supported alert groups and the default CLI command output included in Call Home messages generated for the alert group.

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Description</th>
<th>Executed Commands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
<td>Events related to power, fan, and environment-sensing elements such as temperature alarms.</td>
<td>show environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show logging</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show environment trace</td>
</tr>
<tr>
<td></td>
<td></td>
<td>show diag</td>
</tr>
<tr>
<td>Inventory</td>
<td>Inventory status that is provided whenever a unit is cold booted, or when FRUs are inserted or removed. This alert is considered a noncritical event, and the information is used for status and entitlement.</td>
<td>Full-inventory messages:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show diag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show diag chassis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show diag chassis eeprom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show install active summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show sdr summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Delta OIR messages:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show diag [location] details</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show version</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show inventory location [location]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show inventory active summary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• admin show sdr summary</td>
</tr>
</tbody>
</table>
Call Home maps the syslog severity level to the corresponding Call Home severity level for syslog port group messages.

Call Home Message Levels

Call Home allows you to filter messages based on their level of urgency. You can associate each destination profile (predefined and user-defined) with a Call Home message level threshold. The Call Home message level ranges from 0 (lowest level of urgency) to 9 (highest level of urgency). Call Home messages are generated if they have a severity level equal to or greater than the Call Home message level threshold for the destination profile.

Call Home messages that are sent for syslog alert groups have the syslog severity level mapped to the Call Home message level.

Note

Call Home does not change the syslog message level in the message text.

The following table lists each Call Home message level keyword and the corresponding syslog level for the syslog port alert group.

Table 28: Severity and syslog Level Mapping

<table>
<thead>
<tr>
<th>Call Home Level</th>
<th>Keyword</th>
<th>syslog Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Catastrophic</td>
<td>N/A</td>
<td>Network-wide catastrophic failure.</td>
</tr>
</tbody>
</table>
Obtaining Smart Call Home

If you have a service contract directly with Cisco Systems, you can register your devices for the Smart Call Home service. Smart Call Home provides fast resolution of system problems by analyzing Call Home messages sent from your devices and providing background information and recommendations. For issues that can be identified as known, particularly GOLD diagnostics failures, Automatic Service Requests will be generated with the Cisco-TAC.

Smart Call Home offers the following features:

- Continuous device health monitoring and real-time diagnostic alerts.
- Analysis of Call Home messages from your device and, where appropriate, Automatic Service Request generation, routed to the appropriate TAC team, including detailed diagnostic information to speed problem resolution.
- Secure message transport directly from your device or through a downloadable Transport Gateway (TG) aggregation point. You can use a TG aggregation point in cases that require support for multiple devices or in cases where security requirements mandate that your devices may not be connected directly to the Internet.
- Web-based access to Call Home messages and recommendations, inventory and configuration information for all Call Home devices. Provides access to associated field notices, security advisories and end-of-life information.

<table>
<thead>
<tr>
<th>Call Home Level</th>
<th>Keyword</th>
<th>syslog Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Disaster</td>
<td>N/A</td>
<td>Significant network impact.</td>
</tr>
<tr>
<td>7</td>
<td>Fatal</td>
<td>Emergency (0)</td>
<td>System is unusable.</td>
</tr>
<tr>
<td>6</td>
<td>Critical</td>
<td>Alert (1)</td>
<td>Critical conditions that indicate that immediate attention is needed.</td>
</tr>
<tr>
<td>5</td>
<td>Major</td>
<td>Critical (2)</td>
<td>Major conditions.</td>
</tr>
<tr>
<td>4</td>
<td>Minor</td>
<td>Error (3)</td>
<td>Minor conditions.</td>
</tr>
<tr>
<td>3</td>
<td>Warning</td>
<td>Warning (4)</td>
<td>Warning conditions.</td>
</tr>
<tr>
<td>2</td>
<td>Notification</td>
<td>Notice (5)</td>
<td>Basic notification and informational messages. Possibly independently insignificant.</td>
</tr>
<tr>
<td>1</td>
<td>Normal</td>
<td>Information (6)</td>
<td>Normal event signifying return to normal state.</td>
</tr>
<tr>
<td>0</td>
<td>Debugging</td>
<td>Debug (7)</td>
<td>Debugging messages.</td>
</tr>
</tbody>
</table>
You need the following items to register:

- The SMARTnet contract number for your device
- Your e-mail address
- Your Cisco.com ID

For more information about Smart Call Home, see the Smart Call Home page at this URL: https://supportforums.cisco.com/community/netpro/solutions/smart_services/smartcallhome

Anonymous Reporting

Smart Call Home is a service capability included with many Cisco service contracts and is designed to assist customers resolve problems more quickly. If you decide not to use Smart Call Home, you can still enable Anonymous Reporting to allow Cisco to securely receive minimal error and health information from the device. If you enable Anonymous Reporting, your customer identity will remain anonymous, and no identifying information is sent.

When Call Home is configured for anonymous reporting, only inventory, and test messages are sent to Cisco. No identifying information is sent.

When you enable Anonymous Reporting, you acknowledge your consent to transfer the specified data to Cisco or to vendors operating on behalf of Cisco (including countries outside the United States). Cisco maintains the privacy of all customers. For information about how Cisco treats personal information, see the Cisco Privacy Statement.

Configuring Call Home

The tasks in this module describe how to configure the sending of Call Home messages. The following steps are involved:

1. Assign contact information.
2. Configure and enable one or more destination profiles.
3. Associate one or more alert groups to each profile.
4. Configure the email server options.
5. Enable Call Home.

Configuring Contact Information

Each router must include a contact e-mail address. You can optionally include other identifying information for your system installation.
SUMMARY STEPS

1. configure
2. call-home
3. contact-email-addr email-address
4. (Optional) contract-id contract-id-string
5. (Optional) customer-id customer-id-string
6. (Optional) phone-number phone-number-string
7. (Optional) street-address street-address
8. (Optional) site-id site-id-string
9. commit
10. show call-home

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters call home configuration mode.</td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-call-home)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 contact-email-addr email-address</td>
<td>Configures the customer email address. Enter up to 200 characters in email address format with no spaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-call-home)#</td>
<td></td>
</tr>
<tr>
<td>contact-email-addr user1@cisco.com</td>
<td></td>
</tr>
<tr>
<td>Step 4 contract-id contract-id-string</td>
<td>(Optional) Configures the contract ID. Enter up to 64 characters. If you include spaces, you must enclose the entry in quotes ("").</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-call-home)#</td>
<td></td>
</tr>
<tr>
<td>contract-id Contract-identifier</td>
<td></td>
</tr>
<tr>
<td>Step 5 customer-id customer-id-string</td>
<td>(Optional) Configures the customer ID. Enter up to 64 characters. If you include spaces, you must enclose the entry in quotes ("").</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-call-home)#</td>
<td></td>
</tr>
<tr>
<td>customer-id Customer1</td>
<td></td>
</tr>
</tbody>
</table>
Configuring and Activating Destination Profiles

You must have at least one activated destination profile for Call Home messages to be sent. The CiscoTAC-1 profile exists by default but is not active.

SUMMARY STEPS

1. configure
2. call-home
3. profile profile-name
4. destination address email email-address
5. destination message-size-limit max-size
6. destination preferred-msg-format {short-text | long-text | xml}
7. destination transport-method [email | http]
8. active
9. commit
10. show call-home profile { all | profile-name }

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>phone-number phone-number-string</td>
<td>(Optional) Configures the customer phone number. The number must begin with a plus (+) prefix, and may contain only dashes (-) and numbers. Enter up to 16 characters.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-call-home)# phone-number +405-123-4567</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>street-address street-address</td>
<td>(Optional) Configures the customer street address where RMA equipment can be shipped. Enter up to 200 characters. If you include spaces, you must enclose the entry in quotes ("").</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| | RP/0/RP0/CPU0:router(config-call-home)# street-address "300 E. Tasman Dr.
San Jose, CA 95134" | |
| Step 8 | site-id site-id-string | (Optional) Configures the site ID for the system. Enter up to 200 characters. If you include spaces, you must enclose the entry in quotes ("""). |
| | Example: | |
| | RP/0/RP0/CPU0:router(config-call-home)# site-id SJ-RouterRoom1 | |
| Step 9 | commit | |
| Step 10| show call-home | Displays information about the system contacts. |
| | Example: | |
| | RP/0/RP0/CPU0:router# show call-home | |
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure</td>
<td>call-home</td>
<td>Enters call home configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# call-home RP/0/RP0/CPU0:router(config-call-home)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>profile profile-name</td>
<td>Enters call home profile configuration mode to configure a new or existing profile.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-call-home)# profile my_profile RP/0/RP0/CPU0:router(config-call-home-profile)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>destination address email email-address</td>
<td>Configures an email address to which Call Home messages are sent for this profile.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-call-home-profile)# destination address email support_me@cisco.com</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>destination message-size-limit max-size</td>
<td>Configures the maximum size of Call Home messages for this profile. Values can be between 50 and 3145728 characters.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-call-home-profile)# destination message-size-limit 1000</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>destination preferred-msg-format {short-text</td>
<td>long-text</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-call-home-profile)# destination preferred-msg-format xml</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>destination transport-method [email</td>
<td>http]</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-call-home-profile)# destination transport-method email</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>active</td>
<td>Activates the destination profile.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-call-home-profile)# active</td>
<td></td>
</tr>
</tbody>
</table>

Note At least one destination profile must be active for Call Home messages to be sent.
Step 9

Commit

Step 10

Step 10

show call-home profile `{all | profile-name}`

Example:

`RP/0/RP0/CPU0:router# show call-home profile all`

Purpose: Displays information about the destination profile.

Associating an Alert Group with a Destination Profile

An alert is sent only to destination profiles that have subscribed to the Call Home alert group.

Before You Begin

Use the `show call-home alert-group` command to view available alert groups.

SUMMARY STEPS

1. configure
2. call-home
3. profile *profile-name*
4. subscribe-to-alert-group inventory {periodic {daily | monthly day-of-month | weekly day-of-week} hh:mm}
5. subscribe-to-alert-group syslog severity severity-level pattern string
6. subscribe-to-alert-group snapshot severity severity-level pattern string
7. subscribe-to-alert-group configuration severity severity-level pattern string
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>call-home</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config)# call-home</code>
<code>RP/0/RP0/CPU0:router(config-call-home)#</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>profile profile-name</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-call-home)# profile</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>subscribe-to-alert-group inventory {periodic {daily</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-call-home)# subscribe-to-alert-group inventory daily 00:00</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>subscribe-to-alert-group syslog severity severity-level pattern string</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-call-home)# subscribe-to-alert-group syslog severity severe pattern string</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>subscribe-to-alert-group snapshot severity severity-level pattern string</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-call-home)# subscribe-to-alert-group snapshot severity severe pattern string</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>subscribe-to-alert-group configuration severity severity-level pattern string</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-call-home)# subscribe-to-alert-group configuration severity severe pattern string</code></td>
</tr>
<tr>
<td>Step 8</td>
<td>commit</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td><code>my_profile</code> RP/0/RP0/CPU0:router(config-call-home-profile)#</td>
<td>Configures a destination profile to receive messages for the inventory alert group. Either alerts are sent periodically, or any non-normal event triggers an alert.</td>
</tr>
<tr>
<td>Step 4 subscribe-to-alert-group inventory {periodic {daily</td>
<td>monthly day-of-month</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-call-home-profile)# subscribe-to-alert-group inventory periodic monthly 1 10:00</td>
<td></td>
</tr>
<tr>
<td>Step 5 subscribe-to-alert-group syslog severity severity-level pattern string</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-call-home-profile)# subscribe-to-alert-group syslog severity major pattern</td>
<td></td>
</tr>
<tr>
<td>Step 6 subscribe-to-alert-group snapshot severity severity-level pattern string</td>
<td>Configures a destination profile to receive messages for the snapshot alert group. Alerts with a severity the same or greater than the specified severity level are sent.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-call-home-profile)# subscribe-to-alert-group snapshot severity major pattern</td>
<td>You can specify a pattern to be matched in the syslog message. If the pattern contains spaces, you must enclose it in quotes (“”).</td>
</tr>
</tbody>
</table>
Configuring Call Home on the Cisco IOS XR Software

Configuring Email

Call Home messages are sent via email. You must configure your email server before Call Home messages can be sent.

SUMMARY STEPS

1. `configure`
2. `call-home`
3. (Optional) `sender from email-address`
4. (Optional) `sender reply-to email-address`
5. `mail-server address priority priority`
6. `rate-limit events-count`
7. `commit`
8. `show call-home mail-server status`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters call home configuration mode.</td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-call-home)#</td>
<td></td>
</tr>
</tbody>
</table>

Purpose

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>subscribe-to-alert-group configuration severity severity-level pattern string</td>
<td>Configures a destination profile to receive messages for the configuration alert group. Alerts with a severity the same or greater than the specified severity level are sent. You can specify a pattern to be matched in the syslog message. If the pattern contains spaces, you must enclose it in quotes ("").</td>
</tr>
</tbody>
</table>

Step 7

Step 8

commit

What to Do Next

Use the `show call-home profile` command to view the profile configurations.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 sender from email-address</td>
<td>(Optional) Specifies the email message “from” address.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-call-home)# sender from my_email@cisco.com</td>
<td></td>
</tr>
<tr>
<td>Step 4 sender reply-to email-address</td>
<td>(Optional) Specifies the email message “reply-to” address.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-call-home)# sender reply-to my_email@cisco.com</td>
<td></td>
</tr>
<tr>
<td>Step 5 mail-server address priority priority</td>
<td>Specifies the mail server to use to send Call Home messages. You can specify an IP address or mail server name. You can specify up to five mail servers to use. The server with the lower priority is tried first.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-call-home)# mail-server 198.51.100.10 priority 1</td>
<td></td>
</tr>
<tr>
<td>Step 6 rate-limit events-count</td>
<td>Specifies the maximum trigger rate per minute. The default is five events per minute and the maximum is also five.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-call-home)# rate-limit 4</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
<tr>
<td>Step 8 show call-home mail-server status</td>
<td>Displays the status of the specified mail server.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router# show call-home mail-server status</td>
<td></td>
</tr>
</tbody>
</table>

Enabling Call Home

By default the sending of Call Home messages is disabled. You must perform this task to enable the sending of Call Home messages.

Before You Begin

Before enabling the sending of Call Home messages, you should complete the configuration tasks described in this module. Specifically, you must have enabled a destination profile for any Call Home messages to be sent.
Configuring Smart Call Home (single command)

SUMMARY STEPS

1. configure
2. call-home reporting \{ anonymous | contact-email email-address \} [http-proxy \{ address \} port port-number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td>Enables all call home basic configurations using a single command.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router (config) # call-home reporting contact-email email@company.com</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Call Home Data Privacy

SUMMARY STEPS

1. configure
2. call-home
3. data-privacy { level { normal | high } | hostname }

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>call-home</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config) # call-home</td>
</tr>
<tr>
<td>Step 3</td>
<td>data-privacy { level { normal</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-call-home) # data-privacy level high</td>
</tr>
</tbody>
</table>

- **normal** - scrubs all normal level commands, such as password/username/ip/destination.
- **high** - scrubs all normal level commands plus the IP domain name and IP address commands.
- **hostname** - scrubbing the hostname from call-home messages may cause Smart Call Home processing failure.

Note

Enabling the data-privacy command can affect CPU utilization when scrubbing a large amount of data.

Configuring Syslog Throttling

This task is used to enable or disable Call Home syslog message throttling and avoid sending repetitive Call Home syslog messages.
Enabling AAA Authorization

This task is used to enable AAA authorization for Call Home messages.

SUMMARY STEPS

1. configure
2. call-home
3. aaa-authorization [username username]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters Call Home configuration mode.</td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td>Enters Call Home configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router (config) # call-home</td>
<td></td>
</tr>
<tr>
<td>Step 3 syslog-throttling</td>
<td>Enables or disables Call Home syslog message throttling and avoids sending repetitive Call Home syslog messages. By default, syslog message throttling is enabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router (config-call-home) # syslog-throttling</td>
<td></td>
</tr>
</tbody>
</table>
Sending Call Home Alert group Messages Manually

This task is used to manually trigger Call Home alert group messages.

You can use the `call-home send` command to manually send a specific alert group message. Guidelines for the CLI options of the command:

- Only the snapshot, configuration, and inventory alert groups can be sent manually. Syslog alert groups cannot be sent manually.
- When you manually trigger a snapshot, configuration, or inventory alert group message and you specify a destination profile name, a message is sent to the destination profile regardless of the profile’s active status, subscription status, or severity setting.
- When you manually trigger a snapshot, configuration, or inventory alert group message and do not specify a destination profile name, a message is sent to all active profiles that have either a normal or periodic subscription to the specified alert group.

SUMMARY STEPS

1. `call-home send alert-group snapshot [profile name]`
2. `call-home send alert-group configuration [profile name]`
3. `call-home send alert-group inventory [profile name]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>call-home send alert-group snapshot [profile name]</code></td>
<td>Sends a snapshot alert group message to one destination profile if specified or to all subscribed destination profiles.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router # call-home send alert-group snapshot profile p1</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>call-home send alert-group configuration [profile name]</code></td>
<td>Sends a configuration alert group message to one destination profile if specified or to all subscribed destination profiles.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router # call-home send alert-group configuration profile p1</code></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Step 3 call-home send alert-group inventory [profile name]</td>
<td>Sends an inventory alert group message to one destination profile if specified or to all subscribed destination profiles.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router # call-home send alert-group inventory profile p1
```

Manually sending command output message for a Command List

You can use the `call-home send` command to execute a command or a list of commands and send the command output through HTTP or email protocol.

Guidelines when sending the output of a command:

- The specified command or list of commands can be any run command, including commands for all modules. The command must be contained in quotes ("").
- If the email option is selected using the "email" keyword and an email address is specified, the command output is sent to that address.
- If neither the email nor the HTTP option is specified, the output is sent in long-text format with the specified service request number to the Cisco TAC (attach@cisco.com).
- If neither the "email" nor the "http" keyword is specified, the service request number is required for both long-text and XML message formats and is provided in the subject line of the email.
- If the HTTP option is specified, the CiscoTAC-1 profile destination HTTP or HTTPS URL is used as the destination. The destination email address can be specified so that Smart Call Home can forward the message to the email address. The user must specify either the destination email address or an SR number but they can also specify both.

This task enables you to execute command and send the command output.

SUMMARY STEPS

1. `call-home send { cli command | cli list } [email email msg-format { long-text | xml } | http { destination-email-address email }] [tac-request SR#]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 call-home send { cli command</td>
<td>cli list } { email email msg-format { long-text</td>
</tr>
</tbody>
</table>

- `{ cli command | cli list }`—Specifies the command or list of commands (separated by ‘;’). It can be any run command, including commands for all modules. The commands must be contained in quotes (”).

- `email msg-format { long-text | xml }`—If the email option is selected, the command output will be sent to the specified email address in long-text or XML format with the service request number in the subject. The email address, the service request number, or both must be specified. The service request number is required if the email address is not specified (default is attach@cisco.com for long-text format and callhome@cisco.com for XML format).

- `http { destination-email-address email }`—If the http option is selected, the command output will be sent to Smart Call Home backend server (URL specified in the CiscoTAC-1 profile) in XML format. destination-email-address email can be specified so that the backend server can forward the message to the email address. The email address, the service request number, or both must be specified.

- `tac-service-request SR#`—Specifies the service request number. The service request number is required if the email address is not specified.

Configuring a HTTP Proxy Server

This task enables the user to configure a HTTP Proxy Server.

SUMMARY STEPS

1. configure
2. call-home
3. http-proxy proxy-server-name port port-number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Call Home on the Cisco IOS XR Software

Configuring Snapshot alert group

SUMMARY STEPS

1. configure
2. call-home
3. alert-group-configuration snapshot
4. add-command "command string"

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td>Enters Call Home configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router (config) # call-home</td>
<td></td>
</tr>
<tr>
<td>Step 3 alert-group-configuration snapshot</td>
<td>Enters snapshot configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router (config-call-home) #</td>
<td></td>
</tr>
<tr>
<td>alert-group-configuration snapshot</td>
<td></td>
</tr>
<tr>
<td>Step 4 add-command "command string"</td>
<td>Adds the command to the snapshot alert group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router (config-call-home-snapshot) #</td>
<td></td>
</tr>
<tr>
<td>add-command "show ver"</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Anonymous Reporting

This task enables the user to configure an anonymous mode profile.

SUMMARY STEPS

1. configure
2. call-home
3. profile name
4. anonymous-reporting-only

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>call-home</td>
<td>Enters Call Home configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RP0/CPU0:router (config) # call-home</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>profile name</td>
<td>Enters the profile configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RP0/CPU0:router (config-call-home) # profile ciscotac</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>anonymous-reporting-only</td>
<td>Enters anonymous mode. When anonymous-reporting-only is set, only inventory and test messages are sent.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RP0/CPU0:router (config-call-home-profile) # anonymous-reporting-only</td>
<td></td>
</tr>
</tbody>
</table>

What to Do Next

•

Configuring Call Home to use VRF

SUMMARY STEPS

1. configure
2. call-home
3. vrf vrf-name
Configuring Call Home on the Cisco IOS XR Software

Configuring Source Interface

This task enables the user to configure a source interface.

SUMMARY STEPS

1. configure
2. call-home
3. source-interface type interface-path-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td>Enters Call Home configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3 vrf vrf-name</td>
<td>Configures call home for the specified VRF. VRF works only for the http transport method. It does not work for the email transport method.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4 source-interface type</td>
<td>Configures the source interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note Source-interface supports email and HTTP messages.</td>
</tr>
</tbody>
</table>
Implementing NTP

Network Time Protocol (NTP) is a protocol designed to time-synchronize devices within a network. Cisco IOS XR software implements NTPv4. NTPv4 retains backwards compatibility with the older versions of NTP, including NTPv3 and NTPv2 but excluding NTPv1, which has been discontinued due to security vulnerabilities.

The Cisco implementation of NTP supports both IPv4 and IPv6 addresses and supports VRF.

This module describes the tasks you need to implement NTP on the Cisco IOS XR software.

For more information about NTP on the Cisco IOS XR software and complete descriptions of the NTP commands listed in this module, see Related Documents, on page 294. To locate documentation for other commands that might appear in the course of running a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

Table 29: Feature History for Implementing NTP on Cisco IOS XR Software

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.8.0</td>
<td>Support was added for IPv6 addresses, VRFs, multicast-based associations, and burst and iburst modes for poll-based associations.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for Implementing NTP on Cisco IOS XR Software, page 274
- Information About Implementing NTP, page 274
- How to Implement NTP on Cisco IOS XR Software, page 275
- Configuration Examples for Implementing NTP, page 291
- Additional References, page 294
Prerequisites for Implementing NTP on Cisco IOS XR Software

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing NTP

NTP synchronizes timekeeping among a set of distributed time servers and clients. This synchronization allows events to be correlated when system logs are created and other time-specific events occur.

NTP uses the User Datagram Protocol (UDP) as its transport protocol. All NTP communication uses Coordinated Universal Time (UTC). An NTP network usually receives its time from an authoritative time source, such as a radio clock or an atomic clock attached to a time server. NTP distributes this time across the network. NTP is extremely efficient; no more than one packet per minute is necessary to synchronize two machines to within a millisecond of each other.

NTP uses the concept of a "stratum" to describe how many NTP "hops" away a machine is from an authoritative time source. A "stratum 1" time server typically has an authoritative time source (such as a radio or atomic clock, or a GPS time source) directly attached, a "stratum 2" time server receives its time via NTP from a "stratum 1" time server, and so on.

NTP avoids synchronizing to a machine whose time may not be accurate, in two ways. First, NTP never synchronizes to a machine that is not synchronized itself. Second, NTP compares the time reported by several machines and does not synchronize to a machine whose time is significantly different than the others, even if its stratum is lower. This strategy effectively builds a self-organizing tree of NTP servers.

The Cisco implementation of NTP does not support stratum 1 service; in other words, it is not possible to connect to a radio or atomic clock (for some specific platforms, however, you can connect a GPS time-source device). We recommend that time service for your network be derived from the public NTP servers available in the IP Internet.

If the network is isolated from the Internet, the Cisco implementation of NTP allows a machine to be configured so that it acts as though it is synchronized via NTP, when in fact it has determined the time using other means. Other machines can then synchronize to that machine via NTP.

Several manufacturers include NTP software for their host systems, and a publicly available version for systems running UNIX and its various derivatives is also available. This software also allows UNIX-derivative servers to acquire the time directly from an atomic clock, which would subsequently propagate time information along to Cisco routers.

The communications between machines running NTP (known as associations) are usually statically configured; each machine is given the IP address of all machines with which it should form associations. Accurate timekeeping is made possible by exchanging NTP messages between each pair of machines with an association.

The Cisco implementation of NTP supports three ways that a networking device can obtain NTP time information on a network:

- By polling host servers
- By listening to NTP broadcasts
- By listening to NTP multicasts
In a LAN environment, NTP can be configured to use IP broadcast or multicast messages. As compared to polling, IP broadcast or multicast messages reduce configuration complexity, because each machine can simply be configured to send or receive broadcast or multicast messages. However, the accuracy of timekeeping is marginally reduced because the information flow is one-way only.

An NTP broadcast client listens for broadcast messages sent by an NTP broadcast server at a designated IPv4 address. The client synchronizes the local clock using the first received broadcast message.

An NTP multicast server periodically sends a message to a designated IPv4 or IPv6 local multicast group address. An NTP multicast client listens on this address for NTP messages.

The time kept on a machine is a critical resource, so we strongly recommend that you use the security features of NTP to avoid the accidental or malicious setting of incorrect time. Two mechanisms are available: an access list-based restriction scheme and an encrypted authentication mechanism.

When multiple sources of time (VINES, hardware clock, manual configuration) are available, NTP is always considered to be more authoritative. NTP time overrides the time set by any other method.

How to Implement NTP on Cisco IOS XR Software

Configuring Poll-Based Associations

Note

No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

You can configure the following types of poll-based associations between the router and other devices (which may also be routers):

- Client mode
- Symmetric active mode

The client and the symmetric active modes should be used when NTP is required to provide a high level of time accuracy and reliability.

When a networking device is operating in the client mode, it polls its assigned time serving hosts for the current time. The networking device then picks a host from all the polled time servers to synchronize with. Because the relationship that is established in this case is a client-host relationship, the host does not capture or use any time information sent by the local client device. This mode is most suited for file-server and workstation clients that are not required to provide any form of time synchronization to other local clients. Use the `server` command to individually specify the time-serving hosts that you want your networking device to consider synchronizing with and to set your networking device to operate in the client mode.

When a networking device is operating in the symmetric active mode, it polls its assigned time-serving hosts for the current time and it responds to polls by its hosts. Because this is a peer-to-peer relationship, the host also retains time-related information about the local networking device that it is communicating with. This mode should be used when there are several mutually redundant servers that are interconnected via diverse network paths. Most stratum 1 and stratum 2 servers on the Internet today adopt this form of network setup. Use the `peer` command to individually specify the time-serving hosts that you want your networking device to consider synchronizing with and to set your networking device to operate in the symmetric active mode.

When the router polls several other devices for the time, the router selects one device with which to synchronize.
To configure a peer-to-peer association between the router and another device, you must also configure the router as a peer on the other device.

You can configure multiple peers and servers, but you cannot configure a single IP address as both a peer and a server at the same time.

To change the configuration of a specific IP address from peer to server or from server to peer, use the no form of the peer or server command to remove the current configuration before you perform the new configuration. If you do not remove the old configuration before performing the new configuration, the new configuration does not overwrite the old configuration.

SUMMARY STEPS

1. configure
2. ntp
3. server ip-address [version number] [key key-id] [minpoll interval] [maxpoll interval] [source type interface-path-id] [prefer] [burst] [iburst]
4. peer ip-address [version number] [key key-id] [minpoll interval] [maxpoll interval] [source type interface-path-id] [prefer]
5. Use one of the following commands:
 - end
 - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 ntp</td>
<td>Enters NTP configuration mode.</td>
</tr>
<tr>
<td>Step 3 server ip-address [version number] [key key-id] [minpoll interval] [maxpoll interval] [source type interface-path-id] [prefer] [burst] [iburst]</td>
<td>Forms a server association with another system. This step can be repeated as necessary to form associations with multiple devices.</td>
</tr>
</tbody>
</table>
| **Example:**
 RP/0/RP0/CPU0:router(config)# ntp
| **Step 4** peer ip-address [version number] [key key-id] [minpoll interval] [maxpoll interval] [source type interface-path-id] [prefer] | Forms a peer association with another system. This step can be repeated as necessary to form associations with multiple systems. |
Purpose

To complete the configuration of a peer-to-peer association between the router and the remote device, the router must also be configured as a peer on the remote device.

Note

Example:
```
RP/0/RP0/CPU0:router(config-ntp)# peer
192.168.22.33
   minpoll 8 maxpoll 12 source tengige 0/0/0/1
```

Saves configuration changes.

- When you issue the `end` command, the system prompts you to commit changes:

```
Uncommitted changes found, commit them before exiting(yes/no/cancel)?
[cancel]:
```

 - Entering `yes` saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
 - Entering `no` exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
 - Entering `cancel` leaves the router in the current configuration session without exiting or committing the configuration changes.

- Use the `commit` command to save the configuration changes to the running configuration file and remain within the configuration session.

Configuring Broadcast-Based NTP Associates

In a broadcast-based NTP association, an NTP server propagates NTP broadcast packets throughout a network. Broadcast clients listen for the NTP broadcast packets propagated by the NTP server and do not engage in any polling.

Broadcast-based NTP associations should be used when time accuracy and reliability requirements are modest and if your network is localized and has a large number of clients (more than 20). Broadcast-based NTP associations also are recommended for use on networks that have limited bandwidth, system memory, or CPU resources. Time accuracy is marginally reduced in broadcast-based NTP associations because information flows only one way.

Use the `broadcast client` command to set your networking device to listen for NTP broadcast packets propagated through a network. For broadcast client mode to work, the broadcast server and its clients must be located on the same subnet. The time server that is transmitting NTP broadcast packets must be enabled on the interface of the given device using the `broadcast` command.
Use the `broadcast` command to set your networking device to send NTP broadcast packets.

Note

No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

SUMMARY STEPS

1. `configure`
2. `ntp`
3. (Optional) `broadcastdelay microseconds`
4. `interface type interface-path-id`
5. `broadcast client`
6. `broadcast [destination ip-address] [key key-id] [version number]`
7. Use one of the following commands:
 - `end`
 - `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>ntp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# ntp</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>broadcastdelay microseconds</code></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-ntp)# broadcastdelay 5000</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>interface type interface-path-id</code></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-ntp)# interface POS 0/1/0/0</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>broadcast client</code></td>
</tr>
<tr>
<td>Note</td>
<td>Go to Step 6, on page 279 to configure the interface to send NTP broadcast packets.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-ntp-int)# broadcast client</td>
</tr>
</tbody>
</table>
Configuring Multicast-Based NTP Associations

Multicast-based NTP associations should be used when time accuracy and reliability requirements are modest and if your network is localized and has a large number of clients (more than 20). Multicast-based NTP associations also are recommended for use on networks that have limited bandwidth, system memory, or CPU resources.

When the router operates as an NTP multicast client, it listens for NTP multicast packets that are sent by an NTP multicast server to a designated IPv4 or IPv6 multicast group IP address.

When the router operates as an NTP multicast server, it sends NTP multicast messages to a designated IPv4 or IPv6 multicast group IP address.
No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

SUMMARY STEPS

1. `configure`
2. `ntp`
3. `interface type interface-path-id [vrf vrf-name]`
4. `multicast client [ip-address]`
5. `multicast destination ip-address [key key-id] [version number] [ttl ttl]`
6. Use one of the following commands:
 - `end`
 - `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters NTP configuration mode.</td>
</tr>
<tr>
<td>Step 2 ntp</td>
<td>Enters NTP interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config)# ntp</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id [vrf vrf-name]</td>
<td>Enters NTP interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-ntp)# interface POS 0/1/0/0</code></td>
<td>Configures the specified interface to listen for NTP multicast packets on the specified IPv4 or IPv6 address. If no IP address is specified, the interface listens on the default IPv4 address 224.0.1.1.</td>
</tr>
<tr>
<td>Step 4 multicast client [ip-address]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-ntp-int)# multicast client</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 multicast destination ip-address [key key-id] [version number] [ttl ttl]</td>
<td>Configures the specified interface to send NTP multicast packets to a specified IPv4 or IPv6 multicast group address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RP0/CPU0:router(config-ntp-int)# multicast destination 224.0.1.1</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Saves configuration changes.</td>
</tr>
</tbody>
</table>

Note To configure the interface to send NTP multicast packets, go to Step 5, on page 280.

Note To configure the interface to listen for NTP multicast packets, go to Step 4, on page 280.
Purpose

When you issue the `end` command, the system prompts you to commit changes:

```
Uncommitted changes found, commit them before exiting(yes/no/cancel)?
[cancel]:
```

- Entering `yes` saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
- Entering `no` exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
- Entering `cancel` leaves the router in the current configuration session without exiting or committing the configuration changes.

- Use the `commit` command to save the configuration changes to the running configuration file and remain within the configuration session.

Configuring NTP Access Groups

No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

The access list-based restriction scheme allows you to grant or deny certain access privileges to an entire network, a subnet within a network, or a host within a subnet. NTP communication consists of time requests and control queries. A time request is a request for time synchronization from an NTP server. A control query is a request for configuration information from an NTP server.

The access group options are scanned in the following order, from least restrictive to most restrictive:

1. **peer**—Allows time requests and NTP control queries and allows the system to synchronize itself to a system whose address passes the access list criteria.
2. **serve**—Allows time requests and NTP control queries, but does not allow the system to synchronize itself to a system whose address passes the access list criteria.
3. **serve-only**—Allows only time requests from a system whose address passes the access list criteria.
4. **query-only**—Allows only NTP control queries from a system whose address passes the access list criteria.

If the source IP address matches the access lists for more than one access type, the first type is granted. If no access groups are specified, all access types are granted to all systems. If any access groups are specified, only the specified access types are granted.
For details on NTP control queries, see RFC 1305 (NTP version 3).

SUMMARY STEPS

1. configure
2. ntp
3. access-group {peer | query-only | serve | serve-only} access-list-name
4. Use one of the following commands:
 • end
 • commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>ntp</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters NTP configuration mode.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# ntp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>access-group {peer</td>
</tr>
<tr>
<td>Example:</td>
<td>Creates an access group and applies a basic IPv4 or IPv6 access list to it.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ntp)# access-group peer access1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Use one of the following commands:</td>
</tr>
<tr>
<td></td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td></td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</td>
</tr>
<tr>
<td>Example:</td>
<td>Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ntp)# end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ntp)# commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring NTP Authentication

This task explains how to configure NTP authentication.

Note

No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

The encrypted NTP authentication scheme should be used when a reliable form of access control is required. Unlike the access-list-based restriction scheme that is based on IP addresses, the encrypted authentication scheme uses authentication keys and an authentication process to determine if NTP synchronization packets sent by designated peers or servers on a local network are deemed as trusted, before the time information that it carries along is accepted.

The authentication process begins from the moment an NTP packet is created. A message authentication code (MAC) is computed using the MD5 Message Digest Algorithm and the MAC is embedded into an NTP synchronization packet. The NTP synchronization packet together with the embedded MAC and key number are transmitted to the receiving client. If authentication is enabled and the key is trusted, the receiving client computes the MAC in the same way. If the computed MAC matches the embedded MAC, the system is allowed to sync to the server that uses this key in its packets.

After NTP authentication is properly configured, your networking device only synchronizes with and provides synchronization to trusted time sources.

SUMMARY STEPS

1. configure
2. ntp
3. authenticate
4. authentication-key *key-number* md5 [clear | encrypted] *key-name*
5. trusted-key *key-number*
6. Use one of the following commands:
 - end
 - commit
Configuring NTP Authentication

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters NTP configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>ntp</td>
<td>Enters NTP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# ntp</td>
</tr>
<tr>
<td>Step 3</td>
<td>authenticate</td>
<td>Enables the NTP authentication feature.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-ntp)# authenticate</td>
</tr>
<tr>
<td>Step 4</td>
<td>authentication-key key-number md5 [clear</td>
<td>Defines the authentication keys.</td>
</tr>
<tr>
<td></td>
<td>encrypted] key-name</td>
<td>* Each key has a key number, a type, a value, and, optionally, a name.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Currently the only key type supported is <code>md5</code>.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-ntp)# authentication-key 42 md5 clear key1</td>
</tr>
<tr>
<td>Step 5</td>
<td>trusted-key key-number</td>
<td>Defines trusted authentication keys.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-ntp)# trusted-key 42</td>
</tr>
<tr>
<td>Step 6</td>
<td>Use one of the following commands:</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• end</td>
<td>• When you issue the <code>end</code> command, the system prompts you to commit</td>
</tr>
<tr>
<td></td>
<td>• commit</td>
<td>changes:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[cancel]:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Entering <code>yes</code> saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Entering <code>no</code> exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>* Entering <code>cancel</code> leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
</tr>
</tbody>
</table>
Purpose

```
• Usethe **commit** command to save the configuration changes to the running configuration file and remain within the configuration session.
```

Disabling NTP Services on a Specific Interface

NTP services are disabled on all interfaces by default.

NTP is enabled globally when any NTP commands are entered. You can selectively prevent NTP packets from being received through a specific interface by turning off NTP on a given interface.

SUMMARY STEPS

1. **configure**
2. **ntp**
3. Use one of the following commands:
 - **no interface** type interface-path-id
 - **interface** type interface-path-id disable
4. Use one of the following commands:
 - **end**
 - **commit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters NTP configuration mode.</td>
</tr>
<tr>
<td>Step 2 ntp</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# ntp</td>
<td></td>
</tr>
<tr>
<td>Step 3 Use one of the following commands:</td>
<td>Disables NTP services on the specified interface.</td>
</tr>
<tr>
<td>• no interface type interface-path-id</td>
<td></td>
</tr>
<tr>
<td>• interface type interface-path-id disable</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Source IP Address for NTP Packets

By default, the source IP address of an NTP packet sent by the router is the address of the interface through which the NTP packet is sent. Use this procedure to set a different source address.

Note

No specific command enables NTP; the first NTP configuration command that you issue enables NTP.
SUMMARY STEPS

1. configure
2. ntp
3. source type interface-path-id
4. Use one of the following commands:
 - end
 - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters NTP configuration mode.</td>
</tr>
<tr>
<td>Step 2 ntp</td>
<td>Configures an interface from which the IP source address is taken.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# ntp</td>
<td>This interface is used for the source address for all packets sent to all destinations. If a source address is to be used for a specific association, use the source keyword in the peer or server command shown in Configuring Poll-Based Associations, on page 275.</td>
</tr>
<tr>
<td>Step 3 source type interface-path-id</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ntp)# source POS 0/0/0/1</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</td>
<td>• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td>◦ Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
<td></td>
</tr>
<tr>
<td>◦ Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
<td>• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
</tr>
<tr>
<td>Step 4 Use one of the following commands: end commit</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-ntp)# end or commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the System as an Authoritative NTP Server

You can configure the router to act as an authoritative NTP server, even if the system is not synchronized to an outside time source.

Note
No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

SUMMARY STEPS

1. configure
2. ntp
3. master stratum
4. Use one of the following commands:
 • end
 • commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enter NTP configuration mode.</td>
</tr>
<tr>
<td>Step 2 ntp</td>
<td>Makes the router an authoritative NTP server.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# ntp</td>
<td></td>
</tr>
<tr>
<td>Step 3 master stratum</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Use the master command with caution. It is very easy to override valid time sources using this command, especially if a low stratum number is configured. Configuring multiple machines in the same network with the master command can cause instability in time keeping if the machines do not agree on the time.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-ntp)# master 9</td>
<td></td>
</tr>
<tr>
<td>Step 4 Use one of the following commands:</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td>• end</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>• commit</td>
<td>Uncommitted changes found, commit them before</td>
</tr>
</tbody>
</table>
Purpose

Example:

```
RP/0/RP0/CPU0:router(config-ntp)#
```

- **end**
 - Exiting yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
 - Exiting no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
 - Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.

- **commit**
 - Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

Updating the Hardware Clock

On devices that have hardware clocks (system calendars), you can configure the hardware clock to be periodically updated from the software clock. This is advisable for devices using NTP, because the time and date on the software clock (set using NTP) is more accurate than the hardware clock. The time setting on the hardware clock has the potential to drift slightly over time.

- **Note**
 - No specific command enables NTP; the first NTP configuration command that you issue enables NTP.

SUMMARY STEPS

1. configure
2. ntp
3. update-calendar
4. Use one of the following commands:
 - end
 - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>
Purpose and Command for NTP Configuration

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ntp</code></td>
<td>Enters NTP configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# ntp
```

Step 3: Configure to Update System Calendar

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>update-calendar</code></td>
<td>Configures the router to update its system calendar from the software clock at periodic intervals.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-ntp)# update-calendar
```

Step 4: Save Configuration Changes

SUMMARY STEPS

- Use one of the following commands:
 - `end`
 - `commit`

Example:

```
RP/0/RP0/CPU0:router(config-ntp)# end
or
RP/0/RP0/CPU0:router(config-ntp)# commit
```

- When you issue the `end` command, the system prompts you to commit changes:

 Uncommitted changes found, commit them before exiting (yes/no/cancel)?

 - Entering **yes** saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
 - Entering **no** exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
 - Entering **cancel** leaves the router in the current configuration session without exiting or committing the configuration changes.

- Use the `commit` command to save the configuration changes to the running configuration file and remain within the configuration session.

Verifying the Status of the External Reference Clock

This task explains how to verify the status of NTP components.

Note:

The commands can be entered in any order.

SUMMARY STEPS

1. `show ntp associations [detail] [location node-id]`
2. `show ntp status [location node-id]`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show ntp associations [detail] [location node-id]</td>
<td>Displays the status of NTP associations.</td>
</tr>
<tr>
<td>Example: RP/O/RP0/CPU0:router# show ntp associations</td>
<td></td>
</tr>
<tr>
<td>Step 2 show ntp status [location node-id]</td>
<td>Displays the status of NTP.</td>
</tr>
<tr>
<td>Example: RP/O/RP0/CPU0:router# show ntp status</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show ntp associations` command:

```
RP/O/RP0/CPU0:router# show ntp associations
Tue Oct 7 11:22:46.839 JST
address ref clock st when poll reach delay offset disp
*~192.168.128.5 10.81.254.131 2 1 64 377 7.98 -0.560 0.108
+~dead:beef::2 vrf testAA 171.68.10.80 3 20 64 377 6.00 -2.832 0.046
* sys_peer, # selected, + candidate, - outlayer, x falseticker, ~ configured
```

The following is sample output from the `show ntp status` command:

```
RP/O/RP0/CPU0:router# show ntp status
Tue Oct 7 11:22:54.023 JST
Clock is synchronized, stratum 3, reference is 192.168.128.5
nominal freq is 1000.0000 Hz, actual freq is 1000.2725 Hz, precision is 2**24
reference time is CC95463C.9B964367 (11:21:48.607 JST Tue Oct 7 2008)
clock offset is -1.738 msec, root delay is 186.050 msec
root dispersion is 53.86 msec, peer dispersion is 0.09 msec
loopfilter state is 'CTRL' (Normal Controlled Loop), drift is -0.0002724105 s/s
system poll interval is 64, last update was 66 sec ago
```

Configuration Examples for Implementing NTP

Configuring Poll-Based Associations: Example

The following example shows an NTP configuration in which the router’s system clock is configured to form a peer association with the time server host at IP address 192.168.22.33, and to allow the system clock to be synchronized by time server hosts at IP address 10.0.2.1 and 172.19.69.1:

```
ntp
```
server 10.0.2.1 minpoll 5 maxpoll 7
peer 192.168.22.33
server 172.19.69.1

Configuring Broadcast-Based Associations: Example

The following example shows an NTP client configuration in which interface 0/2/0/0 is configured to receive NTP broadcast packets, and the estimated round-trip delay between an NTP client and an NTP broadcast server is set to 2 microseconds:

```conf
ntp
  interface tengige 0/2/0/0
    broadcast client
  exit
    broadcastdelay 2
```

The following example shows an NTP server configuration where interface 0/2/0/2 is configured to be a broadcast server:

```conf
ntp
  interface tengige 0/2/0/2
    broadcast
```

Configuring Multicast-Based Associations: Example

The following example shows an NTP multicast client configuration where 10-Gigabit Ethernet interface 0/1/1/0 is configured to be a multicast client and to join the default multicast group (IPv4 address 224.0.1.1):

```conf
ntp interface TenGigE 0/1/1/0
  multicast client
```

The following example shows an NTP multicast server configuration where 10-Gigabit Ethernet interface 0/1/1/0 is configured to be a multicast server:

```conf
ntp interface TenGigE 0/1/1/0
  multicast destination 224.0.1.1
```

Configuring NTP Access Groups: Example

The following example shows a NTP access group configuration where the following access group restrictions are applied:

- Peer restrictions are applied to IP addresses that pass the criteria of the access list named peer-acl.
- Serve restrictions are applied to IP addresses that pass the criteria of access list named serve-acl.
- Serve-only restrictions are applied to IP addresses that pass the criteria of the access list named serve-only-acl.
- Query-only restrictions are applied to IP addresses that pass the criteria of the access list named query-only-acl.

```conf
ntp
  peer 10.1.1.1
  peer 10.1.1.1
  peer 10.2.2.2
  peer 10.3.3.3
```
peer 10.4.4.4
peer 10.5.5.5
peer 10.6.6.6
peer 10.7.7.7
peer 10.8.8.8
access-group peer peer-acl
access-group serve serve-acl
access-group serve-only serve-only-acl
access-group query-only query-only-acl
exit
ipv4 access-list peer-acl
 10 permit ip host 10.1.1.1 any
 20 permit ip host 10.8.8.8 any
exit
ipv4 access-list serve-acl
 10 permit ip host 10.4.4.4 any
 20 permit ip host 10.5.5.5 any
exit
ipv4 access-list query-only-acl
 10 permit ip host 10.2.2.2 any
 20 permit ip host 10.3.3.3 any
exit
ipv4 access-list serve-only-acl
 10 permit ip host 10.6.6.6 any
 20 permit ip host 10.7.7.7 any
exit

Configuring NTP Authentication: Example
The following example shows an NTP authentication configuration. In this example, the following is configured:

- NTP authentication is enabled.
- Two authentication keys are configured (key 2 and key 3).
- The router is configured to allow its software clock to be synchronized with the clock of the peer (or vice versa) at IP address 10.3.32.154 using authentication key 2.
- The router is configured to allow its software clock to be synchronized with the clock by the device at IP address 10.32.154.145 using authentication key 3.
- The router is configured to synchronize only to systems providing authentication key 3 in their NTP packets.

```
ntp authenticate
  authentication-key 2 md5 encrypted 06120A2D40031D1008124
  authentication-key 3 md5 encrypted 1311121E074110232621
trusted-key 3
server 10.3.32.154 key 3
peer 10.32.154.145 key 2
```

Disabling NTP on an Interface: Example
The following example shows an NTP configuration in which 0/2/0/0 interface is disabled:

```
ntp
interface tengige 0/2/0/0
  disable
exit
authentication-key 2 md5 encrypted 06120A2D40031D1008124
authentication-key 3 md5 encrypted 1311121E074110232621
authenticate trusted-key 3
```
server 10.3.32.154 key 3
default 10.32.154.145 key 2

Configuring the Source IP Address for NTP Packets: Example
The following example shows an NTP configuration in which Ethernet management interface 0/0/CPU0/0 is configured as the source address for NTP packets:

ntp
 authentication-key 2 md5 encrypted 06120A2D40031D1008124
 authentication-key 3 md5 encrypted 1311121E074110232621
 authenticate
 trusted-key 3
 server 10.3.32.154 key 3
default 10.32.154.145 key 2
 source MgmtEth0/0/CPU0/0

Configuring the System as an Authoritative NTP Server: Example
The following example shows a NTP configuration in which the router is configured to use its own NTP master clock to synchronize with peers when an external NTP source becomes unavailable:

ntp
 master 6

Updating the Hardware Clock: Example
The following example shows an NTP configuration in which the router is configured to update its hardware clock from the software clock at periodic intervals:

ntp
 server 10.3.32.154
 update-calendar

Additional References

The following sections provide references related to implementing NTP on Cisco IOS XR software.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR clock commands</td>
<td>Clock Commands on the Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR NTP commands</td>
<td>NTP Commands on module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about getting started with Cisco IOS XR Software</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>
Implementing NTP

Related Topic

<table>
<thead>
<tr>
<th>Cisco IOS XR master command index</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
<td></td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Implementing the Network Configuration Protocol

This module provides details of the Network Configuration Protocol. For relevant commands, see *Cisco IOS XR System Security Command Reference for the Cisco CRS Router*.

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 5.3.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 5.3.1</td>
<td>Support extended for more Yang models.</td>
</tr>
<tr>
<td>Release 6.0</td>
<td>Support extended for the Netconf subsystem configuration to be vrf aware. The configuration of the netconf port is no longer sufficient to start the Netconf subsystem support. At least one vrf needs to be configured. The configuration of the port is now optional.</td>
</tr>
</tbody>
</table>

- The Network Configuration Protocol, page 297
- Netconf and Yang, page 299
- Supported Yang Models, page 300
- Denial of Services Defence for Netconf-Yang, page 300
- Enabling NETCONF over SSH, page 301
- Additional Reference, page 303

The Network Configuration Protocol

The Network Configuration Protocol (Netconf) provides mechanisms to install, manipulate, and delete the configuration of network devices. It uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the protocol messages. Yang is a data modeling language used with Netconf.
Netconf uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate communication between a client and a server. The client can be a script or application typically running as part of a network manager. The server is typically a network device.

The configuration of features need not be done the traditional way (using CLIs), the client application (controller) reads the Yang model and communicates with the Netconf server (IOS XR) accordingly.

Netconf Sessions and Operations

A Netconf session is the logical connection between a network configuration application and a network device. A device should be capable of supporting multiple sessions and at least one Netconf session.

Characteristics of a netconf session:

- Netconf is connection-oriented - SSH or TLS can be the underlying transport.
- The netconf client establishes session with the server.
- Netconf sessions are established with the *hello* message. Features and capabilities are announced.
- Sessions can be terminated using the *close* or *kill* messages.

Basic Netconf operations:

- Get configuration `<get-config>`
- Get all information `<get>`
- Edit configuration `<edit-config>`
- Copy configuration `<copy-config>`
- Delete configuration `<delete-config>`
- `<lock>`, `<unlock>`
- `<kill-session>`
- `<close-session>`
- Commit configuration `<commit>`

The Yang data model

Each feature has a defined Yang Model which is synthesized from the schemas. A model is published in a tree format and includes:

- Top level nodes and their subtrees
- Subtrees that augment nodes in other yang models

Example: The aaa Yang model

```
module: Cisco-IOS-XR-aaa-lib-cfg
  +--rw aaa
    +--rw accountings
      | +--rw accounting* [type listname]
      |    +--rw type     xr:Cisco-ios-xr-string
      |    +--rw listname  xr:Cisco-ios-xr-string
      |    +--rw rp-failover? Aaa-accounting-rp-failover
```
Advantages of using the Yang model are:

- Yang supports programmatic interfaces.
- Yang supports simplified network management applications.
- Yang supports interoperability that provides a standard way to model management data.

Netconf and Yang

The workflow displayed here, will help the user to understand how Netconf-Yang can configure and control the network with minimal user intervention. The required components:

- Cisco Router (ASR9000 series or CRS) with Netconf capability
- Netconf Client Application with connection to the router

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Device / component</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cisco router (ASR 9000 or CRS router)</td>
<td>Login/ access the router.</td>
</tr>
<tr>
<td>2</td>
<td>Cisco router</td>
<td>Prerequisites for enabling Netconf.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• k9sec pie must be installed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Crypto keys must be generated.</td>
</tr>
<tr>
<td>3</td>
<td>Cisco router</td>
<td>Enable Netconf agent. Use the <code>netconf-yang agent ssh</code> and <code>ssh server netconf</code> command. The port can be selected. By default, it is set as 830.</td>
</tr>
<tr>
<td>4</td>
<td>Cisco router</td>
<td>Yang models are a part of the software image. The models can be retrieved from the router , using the <code><get-schema></code> operation.</td>
</tr>
</tbody>
</table>
TheYangmodelscanbedownloadedfromaprescribedlocation(ftpserver)orcanalsoberetrieveddirectly from therouter using the get-schema operation.

For a feature, separate Yang models are available for configuring the feature and to get operational statistics (show commands). The -cfg.yang suffix denotes configuration and -oper*.yang is for operational data statistics. In some cases, -oper is followed by -sub, indicating that a submodule(s) is available.

For a list of supported Yang models, see https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

Denial of Services Defence for Netconf-Yang

In case of a DoS (Denial of Service) attack on Netconf, wherein, Netconf receives numerous requests in a short span of time, the router may become irresponsible if Netconf consumes most of the bandwidth or CPU processing time. This can be prevented, by limiting the traffic directed at the Netconf agent. This is achieved using the netconf-yang agent rate-limit and netconf-yang agent session commands.

If rate-limit is set, the Netconf processor measures the incoming traffic from the SSH server. If the incoming traffic exceeds the set rate-limit, the packets are dropped.

If session-limit is set, the Netconf processor checks for the number of open sessions. If the number of current sessions is greater than or equal to, the set limit, no new sessions are opened.
Session idle-timeout and absolute-timeout also prevent DoS attacks. The Netconf processor closes the sessions, even without user input or intervention, as soon as the idle-out session is greater than or equal to the set time limit.

The relevant commands are discussed in detail, in the *Cisco IOS XR System Security Command Reference for the Cisco CRS Router*

Enabling NETCONF over SSH

This task enables NETCONF over SSH. SSH is currently the only supported transport method.

If the client supports, Netconf over ssh can utilize the multi-channeling capabilities of IOS XR ssh server. For additional details about Multi-channeling in SSH, see *Implementing Secure Shell in System Security Configuration Guide*.

Prerequisites:

- k9sec-pie must be installed, otherwise the port configuration for the netconf ssh server cannot be completed. (The Netconf subsystem for SSH, as well as, SSH cannot be configured without the k9sec pie.)
- Crypto keys must be generated prior to this configuration.
- The Netconf-YANG feature is packaged in the mgbl pie, which must be installed before enabling the Netconf-YANG agent.

SUMMARY STEPS

1. configure
2. netconf-yang agent ssh
3. ssh server netconf [vrf vrf-name[ipv4 access-listipv4 access list name][ipv6 access-list ipv6 access list name]]
4. ssh server netconf port port-number

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables NETCONF agent over SSH connection. After NETCONF is enabled, the Yang model in the controller, can configure the relevant models.</td>
</tr>
<tr>
<td>Step 2 netconf-yang agent ssh</td>
<td>Enables NETCONF agent over SSH connection. After NETCONF is enabled, the Yang model in the controller, can configure the relevant models.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router (config) # netconf agent ssh</td>
<td>Note The Yang models can be retrieved from the router via NETCONF <get-schema> operation.</td>
</tr>
<tr>
<td>Step 3 ssh server netconf [vrf vrf-name[ipv4 access-listipv4 access list name][ipv6 access-list ipv6 access list name]]</td>
<td>Brings up the netconf subsystem support with SSH server using a specified VRF of up to 32 characters. If no VRF is specified, the default VRF is used. To stop the SSH server from receiving any further connections for the specified VRF, use the no form of this command.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router (config) # ssh server netconf vrf netconfvrf ipv4 access-list InternetFilter</td>
<td>Optionally ACLs for IPv4 and IPv6 can be used to restrict access to the netconf subsystem of the ssh server before the port is opened.</td>
</tr>
<tr>
<td>Note</td>
<td>The netconf subsystem support with SSH server can be configured for use with multiple VRFs.</td>
</tr>
<tr>
<td>Step 4 ssh server netconf port port-number</td>
<td>Configures a port for the netconf ssh server. This command is optional. If no port is specified, port 830 is uses by default.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router (config) # ssh server netconf port 830</td>
<td>Note</td>
</tr>
</tbody>
</table>

What to Do Next

The `show netconf-yang statistics` command and `show netconf-yang clients` command can be used to verify the configuration details of the netconf agent.

The `clear netconf-yang agent session` command clears the specified Netconf session (on the Netconf server side).

Examples: Netconf over SSH

This section illustrates some examples relevant to Netconf:

Enabling netconf-yang for ssh transport and netconf subsystem for default vrf with default port (830)

```
config
netconf-yang agent ssh
ssh server netconf vrf default
!
```

Enabling netconf-yang for ssh transport and netconf subsystem for vrf `green` and vrf `red` with netconf port (831)

```
config
netconf-yang agent ssh
!
ssh server netconf vrf green
ssh server netconf vrf red
ssh server netconf port 831
!
```

Show command outputs

```
show netconf-yang statistics
Summary statistics requests| total time| min time per request| max
--------------|-----------|-------------------|---
time per request| avg time per request| other 0| 0h 0m 0s 0ms|
0h 0m 0s 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
close-session 0| 0h 0m 0s 3ms| 0h 0m 0s 0ms|
kill-session 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
get-schema 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
get 0| 0h 0m 0s 0ms| 0h 0m 0s 0ms|
```
Additional Reference

Table 30: Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Netconf-Yang</td>
<td>For related commands, see Cisco IOS XR System Security Command Reference for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Table 31: Standards

<table>
<thead>
<tr>
<th>Component</th>
<th>RFCs</th>
</tr>
</thead>
<tbody>
<tr>
<td>YANG</td>
<td>6020</td>
</tr>
<tr>
<td>NETCONF</td>
<td>6241</td>
</tr>
<tr>
<td>NETCONF over SSH</td>
<td>6242</td>
</tr>
</tbody>
</table>
CHAPTER 13

Implementing Object Tracking on the Cisco IOS XR Software

This module describes the configuration of object tracking on your Cisco IOS XR network. For complete descriptions of the commands listed in this module, see Related Documents, on page 316. To locate documentation for other commands that might appear in the course of performing a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

Table 32: Feature History for Implementing Object Tracking

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.2.1</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for Implementing Object Tracking, page 305
- Information About Object Tracking, page 306
- How to Implement Object Tracking, page 306
- Configuration Examples for Configuring Object Tracking, page 316
- Additional References, page 316

Prerequisites for Implementing Object Tracking

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
Information About Object Tracking

Object tracking is a mechanism to track an object and to take an action on another object with no relationship to the tracked objects, based on changes to the properties of the object being tracked.

Each tracked object is identified by a unique name specified on the tracking command-line interface (CLI). Cisco IOS XR processes then use this name to track a specific object.

The tracking process periodically polls the tracked object and reports any changes to its state in terms of its being up or down, either immediately or after a delay, as configured by the user.

Multiple objects can also be tracked by means of a list, using a flexible method for combining objects with Boolean logic. This functionality includes:

- **Boolean AND function**—When a tracked list has been assigned a Boolean AND function, each object defined within a subset must be in an up state, so that the tracked object can also be in the up state.

- **Boolean OR function**—When the tracked list has been assigned a Boolean OR function, it means that at least one object defined within a subset must also be in an up state, so that the tracked object can also be in the up state.

How to Implement Object Tracking

This section describes the various object tracking procedures.

Tracking the Line Protocol State of an Interface

Perform this task in global configuration mode to track the line protocol state of an interface.

A tracked object is considered up when a line protocol of the interface is up.

After configuring the tracked object, you may associate the interface whose state should be tracked and specify the number of seconds to wait before the tracking object polls the interface for its state.

SUMMARY STEPS

1. configure
2. track *track-name*
3. type line-protocol state
4. interface type *interface-path-id*
5. exit
6. (Optional) delay {up seconds|down seconds}
7. Use one of the following commands:
 - end
 - commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>
| Step 2 | track track-name | Enters track configuration mode.
- *track-name*—Specifies a name for the object to be tracked. |
| Example: | | RP/0/RP0/CPU0:router(config)# track track1 |
| Step 3 | type line-protocol state | Creates a track based on the line protocol of an interface. |
| Example: | | RP/0/RP0/CPU0:router(config-track)# type line-protocol state |
| Step 4 | interface type interface-path-id | Specifies the interface to track the protocol state.
- *type*—Specifies the interface type. For more information, use the question mark (?) online help function.
- *interface-path-id*—Identifies a physical interface or a virtual interface. |
| Example: | | RP/0/RP0/CPU0:router(config-track-line-prot)# interface atm 0/2/0/0.1 |
| Note | Use the **show interfaces** command to see a list of all possible interfaces currently configured on the router.
Note | The loopback and null interfaces are always in the up state and, therefore, cannot be tracked. |
| Step 5 | exit | Exits the track line protocol configuration mode. | |
| Example: | | RP/0/RP0/CPU0:router(config-track-line-prot)# exit |
| Step 6 | delay {up seconds|down seconds} | (Optional) Schedules the delay that can occur between tracking whether the object is up or down. |
| Example: | | RP/0/RP0/CPU0:router(config-track)# delay up 10 |
| Step 7 | Use one of the following commands:
- *end*
- *commit* | Saves configuration changes.
- When you issue the **end** command, the system prompts you to commit changes:

?

- **cancel**:

- Entering **yes** saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode. |
| Example: | | RP/0/RP0/CPU0:router(config-track)# end
or
RP/0/RP0/CPU0:router(config-track)# commit |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>◦ Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
<td></td>
</tr>
<tr>
<td>◦ Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
<td></td>
</tr>
<tr>
<td>◦ Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
<td></td>
</tr>
</tbody>
</table>

Tracking IP Route Reachability

When a host or a network goes down on a remote site, routing protocols notify the router and the routing table is updated accordingly. The routing process is configured to notify the tracking process when the route state changes due to a routing update.

A tracked object is considered up when a routing table entry exists for the route and the route is accessible.

SUMMARY STEPS

1. configure
2. track *track-name*
3. type route reachability
4. Use one of the following commands:
 - vrf *vrf-table-name*
 - route ipv4 *IP-prefix/mask*
5. exit
6. (Optional) delay {up seconds|down seconds}
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Step 2 track track-name</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config)# track track1</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>type route reachability</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-track)# type route reachability vrf internet</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Use one of the following commands:</td>
</tr>
<tr>
<td></td>
<td>• <code>vrf vrf-table-name</code></td>
</tr>
<tr>
<td></td>
<td>• <code>route ipv4 IP-prefix/mask</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-track-route)# vrf vrf-table-4</code> or <code>RP/0/RP0/CPU0:router(config-track-route)# route ipv4 10.56.8.10/16</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-track-line-prot)# exit</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>**delay {up seconds</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-track)# delay up 10</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
</tr>
</tbody>
</table>

Building a Track Based on a List of Objects

Perform this task in the global configuration mode to create a tracked list of objects (which, in this case, are lists of interfaces or prefixes) using a Boolean expression to determine the state of the list.

A tracked list contains one or more objects. The Boolean expression enables two types of calculations by using either AND or OR operators. For example, when tracking two interfaces, using the AND operator, up means that **both** interfaces are up, and down means that **either** interface is down.
An object must exist before it can be added to a tracked list.

The NOT operator is specified for one or more objects and negates the state of the object.

After configuring the tracked object, you must associate the interface whose state should be tracked and you may optionally specify the number of seconds to wait before the tracking object polls the interface for its state.

SUMMARY STEPS

1. configure
2. track track-name
3. type list boolean { and | or }
4. object object-name [not]
5. exit
6. (Optional) delay { up seconds | down seconds }
7. Use one of the following commands:
 - end
 - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Step 2 track track-name</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• track-name—Specifies a name for the object to be tracked.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# track track1</td>
<td></td>
</tr>
<tr>
<td>Step 3 type list boolean { and</td>
<td>or }</td>
</tr>
<tr>
<td>Example:</td>
<td>• boolean—Specifies that the state of the tracked list is based on a Boolean calculation.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-track-list)# type list boolean and</td>
<td>• and—Specifies that the list is up if all objects are up, or down if one or more objects are down. For example, when tracking two interfaces, up means that both interfaces are up, and down means that either interface is down.</td>
</tr>
<tr>
<td></td>
<td>• or—Specifies that the list is up if at least one object is up. For example, when tracking two interfaces, up means that either interface is up, and down means that both interfaces are down.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies the object to be tracked by the list</td>
</tr>
<tr>
<td>object object-name [not]</td>
<td>- object-name—Name of the object to track.</td>
</tr>
<tr>
<td>Example:</td>
<td>- not—Negates the state of the object.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-track-list)# object 3 not</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Exits the track line protocol configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-track-line-prot)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Schedules the delay that can occur between tracking whether the object is up or down.</td>
</tr>
<tr>
<td>delay {up seconds</td>
<td>down seconds}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-track)# delay up 10</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td>Use one of the following commands:</td>
<td>- When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>• end</td>
<td><code>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</code></td>
</tr>
<tr>
<td>• commit</td>
<td><code>• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>• Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</code></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-track)# end or</td>
<td><code>• Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</code></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-track)# commit</td>
<td><code>• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.</code></td>
</tr>
</tbody>
</table>

Building a Track Based on a List of Objects - Threshold Percentage

Perform this task in the global configuration mode to create a tracked list of objects (which, in this case, are lists of interfaces or prefixes) using a threshold percentage to determine the state of the list.
SUMMARY STEPS

1. configure
2. track track-name
3. type list threshold percentage
4. object object-name
5. threshold percentage up percentage down percentage
6. Use one of the following commands:
 - end
 - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Step 2 track track-name</td>
<td>track-name—Specifies a name for the object to be tracked.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# track track1</td>
<td>Configures a track of type threshold percentage list.</td>
</tr>
<tr>
<td>Step 3 type list threshold percentage</td>
<td>Configures object 1, object 2, object 3 and object 4 as members of track type track1.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-track-list)# type list threshold percentage</td>
<td></td>
</tr>
<tr>
<td>Step 4 object object-name</td>
<td>Configures the percentage of objects that need to be UP or DOWN for the list to be considered UP or Down respectively. For example, if object 1, object 2, and object 3 are in the UP state and object 4 is in the DOWN state, the list is considered to be in the UP state.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-track-list-threshold)# threshold percentage up 50 down 33</td>
<td></td>
</tr>
<tr>
<td>Step 5 threshold percentage up percentage down percentage</td>
<td></td>
</tr>
<tr>
<td>Step 6 Use one of the following commands:</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• end</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>• commit</td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</td>
</tr>
<tr>
<td>Example:</td>
<td>• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-track)# end or RP/0/RP0/CPU0:router(config-track)# commit</td>
<td>• Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
</tr>
</tbody>
</table>

Building a Track Based on a List of Objects - Threshold Weight

Perform this task in the global configuration mode to create a tracked list of objects (which, in this case, are lists of interfaces or prefixes) using a threshold weight to determine the state of the list.

SUMMARY STEPS

1. configure
2. track *track-name*
3. type list threshold weight
4. object *object-name* weight *weight*
5. threshold weight up *weight* down *weight*
6. Use one of the following commands:
 - end
 - commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Step 2 track track-name</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# track track1</td>
<td>track-name—Specifies a name for the object to be tracked.</td>
</tr>
<tr>
<td>Step 3 type list threshold weight</td>
<td>Configures a track of type, threshold weighted list.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-track-list)# type list threshold weight</td>
<td></td>
</tr>
<tr>
<td>Step 4 object object-name weight weight</td>
<td>Configures object 1, object 2 and object 3 as members of track t1 and with weights 10, 5 and 3 respectively.</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-track-list-threshold)# object 1 weight 10 RP/0/RP0/CPU0:router(config-track-list-threshold)# object 2 weight 5 RP/0/RP0/CPU0:router(config-track-list-threshold)# object 3 weight 3</td>
<td></td>
</tr>
<tr>
<td>Step 5 threshold weight up weight down weight</td>
<td>Configures the range of weights for the objects that need to be UP or DOWN for the list to be considered UP or DOWN respectively. In this example, the list is considered to be in the DOWN state because objects 1 and 2 are in the UP state and the cumulative weight is 15 (not in the 10-5 range).</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-track-list-threshold)# threshold weight up 10 down 5</td>
<td></td>
</tr>
<tr>
<td>Step 6 Use one of the following commands:</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td>• end</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>• commit</td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-track)# end</td>
<td>• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td>or RP/0/RP0/CPU0:router(config-track)# commit</td>
<td>• Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
</tr>
</tbody>
</table>
Tracking IPSLA Reachability

Use this task to enable the tracking of the return code of IP service level agreement (SLA) operations.

SUMMARY STEPS

1. `configure`
2. `track track-name`
3. `type rtr ipsla-no reachability`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code> Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>configure</code> RP/0/RP0/CPU0:router# configure</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>track track-name</code> Enters track configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>track track-name</code> RP/0/RP0/CPU0:router(config)# track t1</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>type rtr ipsla-no reachability</code> Specifies the IP SLA operation ID to be tracked for reachability. Values for the <code>ipsla-no</code> can range from 1 to 2048.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>type rtr ipsla-no reachability</code> RP/0/RP0/CPU0:router(config-track)# type rtr 100 reachability</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>commit</code></td>
</tr>
</tbody>
</table>

Configuring IPSLA Tracking: Example

This example shows the configuration of IPSLA tracking:

```
RP/0/RP0/CPU0:router(config)# track track1
RP/0/RP0/CPU0:router(config-track)# type rtr 1 reachability
RP/0/RP0/CPU0:router(config-track)# delay up 5
```
Configuration Examples for Configuring Object Tracking

Configuring IPSLA Tracking: Example
This example shows the configuration of IPSLA tracking, including the ACL and IPSLA configuration:

ACL configuration:
```
RP/0/RP0/CPU0:router(config)# ipv4 access-list abf-track
RP/0/RP0/CPU0:router(config-ipv4-acl)# 10 permit any any nexthop track track1 1.2.3.4
```

Object tracking configuration:
```
RP/0/RP0/CPU0:router(config)# track track1
RP/0/RP0/CPU0:router(config-track)# type rtr 1 reachability
RP/0/RP0/CPU0:router(config-track)# delay up 5
RP/0/RP0/CPU0:router(config-track)# delay down 10
```

IPSLA configuration:
```
RP/0/RP0/CPU0:router(config)# ipsla
RP/0/RP0/CPU0:router(config-ipsla)# operation 1
RP/0/RP0/CPU0:router(config-ipsla-op)# type icmp echo
RP/0/RP0/CPU0:router(config-ipsla-icmp-echo)# source address 2.3.4.5
RP/0/RP0/CPU0:router(config-ipsla-icmp-echo)# destination address 1.2.3.4
RP/0/RP0/CPU0:router(config-ipsla-icmp-echo)# frequency 60
RP/0/RP0/CPU0:router(config-ipsla-icmp-echo)# exit
RP/0/RP0/CPU0:router(config-ipsla-op)# exit
RP/0/RP0/CPU0:router(config-ipsla)# schedule operation 1
RP/0/RP0/CPU0:router(config-ipsla-sched)# start-time now
RP/0/RP0/CPU0:router(config-ipsla-sched)# life forever
```

Additional References
The following sections provide references related to implementing object tracking for IPSec network security.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP SLA configuration information</td>
<td>Implementing IP Service Level Agreements on the Cisco IOS XR Software module in Cisco IOS XR System Monitoring Configuration Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>IP SLA commands</td>
<td>IP Service Level Agreement Commands on the Cisco IOS XR Software module in Cisco IOS XR System Monitoring Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Object tracking commands</td>
<td>Object Tracking Commands on the Cisco IOS XR Software module in Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2401</td>
<td>Security Architecture for the Internet Protocol</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
CHAPTER 14

Process Placement

This module describes conceptual information and configuration tasks for process placement on your router. Process Placement on Cisco IOS XR software balances application processes between the available route processors (RPs) and distributed route processors (DRPs) based on memory usage and other criteria. Use the procedures described in this document to reoptimize the placement of processes, or override the default placement policies.

For complete descriptions of the process placement commands listed in this module, see Related Documents, on page 333. To locate documentation for other commands that might appear in the course of performing a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

Table 33: Feature History for Configuring Cisco IOS XR Process Placement

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.3.0</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for Configuring Cisco IOS XR Process Placement, page 320
- Information About Cisco IOS XR Process Placement, page 320
- How to Configure Cisco IOS XR Process Placement, page 324
- Configuration Examples for Process Placement, page 332
- Additional References, page 333
Prerequisites for Configuring Cisco IOS XR Process Placement

Note
Only processes that are identified in Cisco IOS XR software as placeable can be controlled through process placement configuration. Nonplaceable processes are not affected by placement policy. To learn the processes that are placeable, issue the show placement program all command.

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Cisco IOS XR Process Placement

What Is a Process?
To achieve high availability and performance, the Cisco IOS XR software is built on a modular system of processes. Each process provides specific functionality for the system and runs in a protected memory space to ensure that problems with one process cannot impact the entire system. Multiple instances of a process can run on a single node, and multiple threads of execution can run on each process instance.

Under normal operating conditions, processes are managed automatically by the Cisco IOS XR software. Processes are started, stopped, or restarted as required by the running configuration of the router. In addition, processes are checkpointed to optimize performance during process restart and automatic switchover.

What Is Process Placement?
Process placement is the assignment of placeable processes to specific locations, such as an RP or DRP installed in the router. Process placement is configured and managed for each Secure Domain Router (SDR) in the system.

Placeable processes include all routing processes, such as Open Shortest Path First Protocol (OSPF), Border Gateway Protocol (BGP), and multicast routing.

Default Placement Policy
In a new system, processes are distributed according to their affinity values among the available RP and DRP nodes and node pairs in a SDR.

Note
The default process policy that is shipped on the system upon startup is suitable for general purposes. While customizing is possible, there is no requirement to change the process placement. If you believe the change is required, you should work closely with Cisco personnel to ensure that the impact to your system is contained to just an instance of a process to avoid any undesirable results.

Following is the default placement policy:
• Processes have a preference to run on paired nodes (nodes that have an associated standby node).
• Processes have a preference to remain on their current node. Therefore, processes do not move automatically, unless the unpaired node (or both nodes in a node pair) on which they are running fails. If the node fails, and there is no standby node, the processes are restarted on a different node.
• When a new node pair is added, the following rules apply:
 ◦ The currently running processes are not automatically moved to the new cards.
 ◦ The general preference is for new processes (such as a new ISIS instance) to start on the new node pair, which contains the most available CPU and memory resources in the system.
 ◦ Other affinity settings may override the general preference. For example, if the IS-IS process has a strong affinity to run on the same node where ipv4_io is running, then IS-IS would be started on that node, and not the new node-pair.

Reasons to Change the Default Process Placement

Although the default process policy that is shipped on the system upon startup is suitable for general purposes, changes to the router configuration can result in the need for processes to be rebalanced among the available CPU and memory resources.

When a system is initially booted, the system assumes that all processes use the same amount of memory, thereby treating each process as equivalent. As the configuration grows, however, the CPU load and memory requirements of some application processes increase. Centralized applications may need a larger portion of the RP and DRP resources, or distributed applications may require additional instances of processes to be started on new DRPs.

In addition, when a new RP or DRP is added to a system, only new processes or process instances are added to the node. This could result in some processes with too few resources, while the newer RP and DRP cards are underutilized.

Therefore, as the software configuration changes, or hardware is added, it may become necessary to rebalance processes among the available RPs and DRPs in an SDR.

Reoptimizing Process Placements

The easiest and most reliable method for users to redistribute processes among the available RPs and DRPs in an SDR is with the `placement reoptimize` command.

During router operation, the actual resource usage of each process is collected and compared to the router configuration and network topology. An ideal configuration for process placement is created and updated in real time.

To implement this ideal process placement configuration, enter the `placement reoptimize` command in EXEC mode. Before the changes are made, the system displays a summary of the predicted changes. You can either accept the changes or cancel the operation.

See Reoptimizing Process Placement, on page 324 for detailed instructions.
Reconfiguring Process Placements

You can also change the process placement affinities, or preferences, to override the default policies. For example, you may learn that some processes perform better on the primary node pair of the SDR, or that some processes have better high-availability characteristics when running on a paired node (a node with a standby partner). Other processes might benefit from co-location or by being assigned to nodes far apart from each other.

Note
Consult with your technical support representative before changing the default process placement configuration. Incorrect configurations can cause system error, poor performance or downtime.

Recommended Guidelines for Process Placement

The following are a few recommended guidelines for changes to the process placement configuration:

• Generally, the process placement feature functions well upon system startup; fine tuning is seldom required.

• Use the EXEC mode command placement reoptimize, as described in the Reoptimizing Process Placements, on page 321 to automatically redistribute the processes among the available RPs and DRPs.

• Keep process placement policy changes to a minimum, and always consult technical support personnel before implementation.

Process Placement Based on Memory Consumption

You can change process placements based on memory use of processes in an SDR. Memory use is expressed in terms of the memory "footprint of the placeable process. The system attempts to spread the load among the nodes without exceeding their memory capacity. In addition, the system computes the affinity values to determine the best placement.

Cisco IOS XR software assumes that every placeable process uses one megabyte of memory.

For detailed instructions, see Setting Memory Consumption Thresholds, on page 325.

Changing Process Affinities

Process placement can also be controlled by changing the affinities, or preferences, of a process or process group. The following types of process affinities are operator configurable:

• affinity location set
• affinity location type
• affinity program
• affinity self
affinity location set

This affinity specifies a preference for a process to run on a specific node pair or set of node pairs. A node pair is either an active and standby pair of nodes [hosted on route processors (RPs) or distributed RPs], or a single active node on an RP or DRP that does not have a standby.

By containing references to specific location identifiers, location set affinities are more specific to the individual SDR in which they are used than other affinity types.

affinity location type

This affinity specifies a preference for a process to run on a particular location type. Available location types are as follows:

- **paired**—RP nodes that have an associated standby node
- **primary**—Primary RP node for the SDR (also known as the DSDRSC)
- **current**—Current node. A process’s affinity to its current node characterizes its preference to remain on the same node where possible.

You configure the placement policy to allow certain processes to stay where they are (current) or move by specifying the various affinity values. The higher the positive value of an affinity, the stronger the requirement that the process run at a location, and so on. A low or zero point value indicates a weaker requirement (or no preference) that a process run at a location.

affinity program

This affinity specifies a preference for a process to run on the same node as another process, or to run on a different node than another process. You would want to use this affinity in the case that certain processes perform better when they are running together on the same node (attract); or on different nodes, apart from each other (repulse).

affinity self

This affinity adjusts placement decisions when multiple instances of a process are started. An attract (positive) affinity indicates a preference to have all instances of a process run on the same node, while a repulse (negative) affinity indicates a preference to have each instance of a process run on different nodes.

Hierarchical Placement Policy

When you configure placement policies, you must remember that affinities are applied to the software in a hierarchical way.

Affinities applied to process instances take precedence over affinities applied to a process class. In the following example, all OSPF instances have a preference to run on the primary RP of the SDR, but only OSPF instance 10 has a preference to run on a paired node:

```
RP/0/RP0/CPU0:router(config)# placement program ospf
RP/0/RP0/CPU0:router(config-place)# affinity location-type primary attract 200
RP/0/RP0/CPU0:router(config)# placement program ospf instance 10
```
How to Configure Cisco IOS XR Process Placement

Reoptimizing Process Placement

This task reoptimizes the placeable processes among the available RP and DRP nodes according to memory and CPU usage.

SUMMARY STEPS

1. placement reoptimize
2. Use one of the following commands:
 • yes
 • no

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Displays the predicted changes of the optimization.</td>
</tr>
<tr>
<td>placement reoptimize</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router#</td>
<td></td>
</tr>
<tr>
<td>placement reoptimize</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Accepts or rejects the changes.</td>
</tr>
<tr>
<td>Use one of the following</td>
<td></td>
</tr>
<tr>
<td>commands:</td>
<td></td>
</tr>
<tr>
<td>• yes</td>
<td></td>
</tr>
<tr>
<td>• no</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router#</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

Class affinities take precedence over default process affinities. In the following example, all OSPF instances have a preference to be placed on unpaired nodes. This overrides the default policy for all processes to prefer paired nodes.

RP/0/RP0/CPU0:router (config-place)# affinity location-type paired attract 200

RP/0/RP0/CPU0:router (config)# placement program ospf
RP/0/RP0/CPU0:router (config-place)# affinity location-type paired repulse 200
Setting Memory Consumption Thresholds

SUMMARY STEPS

1. show placement policy global
2. configure
3. placement memory {maximum | threshold} value
4. Use one of the following commands:
 • end
 • commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>show placement policy global</td>
<td>Displays the current memory settings.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# show placement policy global</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure</td>
<td>Use maximum value keyword and argument to set the maximum percentage of memory that can be used on a node (based on the estimated memory usage of the processes).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# placement memory maximum 80</td>
</tr>
<tr>
<td>Step 3</td>
<td>placement memory {maximum</td>
<td>threshold} value</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-place)# end or RP/0/RP0/CPU0:router(config-place)# commit</td>
</tr>
<tr>
<td>Step 4</td>
<td>Use one of the following commands:</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• end</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td></td>
<td>• commit</td>
<td>Uncommitted changes found, commit them before exiting {yes/no/cancel}?{cancel}:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>* Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-place)# end or</td>
<td>* Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-place)# commit</td>
<td>* Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Use the <code>commit</code> command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
<td></td>
</tr>
</tbody>
</table>

Creating a Location Set Affinity

This task sets the affinity of a placement program (process) to or from node pairs.

SUMMARY STEPS

1. `configure`
2. `placement program {program [instance instance] | default}`
3. `affinity location-set node-id1 [node-id2] {attract strength | repulse strength | default | none}`
4. Use one of the following commands:
 - `end`
 - `commit`
5. `show placement location {node-id | all}`
6. `show placement program {program | all}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td>Enters placement program configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`placement program {program [instance instance]</td>
<td>default}`</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config)# placement program ospf</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>`affinity location-set node-id1 [node-id2] {attract strength</td>
<td>repulse strength</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RP0/CPU0:router(config-place)# affinity location-set 0/1/cpu0 0/1/cpu1 attract 200</code></td>
<td>To specify multiple nodes, enter the value of the <code>node-id</code> argument for each node. You can specify up to 5 nodes.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Use one of the following commands:</td>
<td>Saves configuration changes.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• end</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>• commit</td>
<td>Uncommitted changes found, commit them before exiting (yes/no/cancel)?[cancel]:</td>
</tr>
<tr>
<td></td>
<td>• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
</tr>
</tbody>
</table>

Example:
- `RP/0/RP0/CPU0:router(config-place)# end`
- `RP/0/RP0/CPU0:router(config-place)# commit`

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show placement location `{node-id</td>
<td>all}`</td>
</tr>
</tbody>
</table>

Example:
- `RP/0/RP0/CPU0:router# show placement location all`

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show placement program `{program</td>
<td>all}`</td>
</tr>
</tbody>
</table>

Example:
- `RP/0/RP0/CPU0:router# show placement program ospf`

Creating a Location Type Affinity

This task sets affinity of a placement program (process) to or from a location type.
SUMMARY STEPS

1. configure
2. placement program \{program [instance instance] | default\}
3. affinity location-type \{current | paired | primary\} \{attract strength | repulse strength | default | none\}
4. Use one of the following commands:
 - end
 - commit
5. show placement location \{node-id | all\}
6. show placement program \{program | all\}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters placement program configuration mode.</td>
</tr>
<tr>
<td>Step 2 placement program {program [instance instance]</td>
<td>default}</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# placement program bgp</td>
</tr>
<tr>
<td>Step 3 affinity location-type {current</td>
<td>paired</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-place)# affinity location-type current attract 10</td>
</tr>
<tr>
<td>Step 4 end</td>
<td>When you issue the \texttt{end} command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>or commit</td>
<td>Uncommitted changes found, commit them before exiting (yes/no/cancel)?[cancel]:</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-place)# end or RP/0/RP0/CPU0:router(config-place)# commit</td>
</tr>
<tr>
<td></td>
<td>*Entering \texttt{yes} saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>*Entering \texttt{no} exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
</tbody>
</table>
Purpose Command or Action
Purpose

- Entering `cancel` leaves the router in the current configuration session without exiting or committing the configuration changes.
- Use the `commit` command to save the configuration changes to the running configuration file and remain within the configuration session.

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show placement location {node-id</td>
<td>all}`</td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router# show placement location all</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show placement program {program</td>
<td>all}`</td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router# show placement program bgp</code></td>
<td></td>
</tr>
</tbody>
</table>

Creating a Program Affinity

This task sets the affinity of a placement program (process) to or from another program.

SUMMARY STEPS

1. configure
2. `placement program {program [instance instance] | default}`
3. `affinity program program {attract strength | repulse strength | default | none}`
4. Use one of the following commands:
 - end
 - commit
5. `show placement location {node-id | all}`
6. `show placement program {program | all}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 placement program</td>
<td></td>
</tr>
<tr>
<td>Step 3 affinity program</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td></td>
</tr>
<tr>
<td>Step 5 show placement location</td>
<td></td>
</tr>
<tr>
<td>Step 6 show placement program</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>placement program *(program [instance instance]</td>
</tr>
<tr>
<td></td>
<td>default)*</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config)# placement program</td>
</tr>
<tr>
<td></td>
<td>ipv4_rib</td>
</tr>
<tr>
<td>3</td>
<td>affinity program *(program {attract strength</td>
</tr>
<tr>
<td></td>
<td>repulse strength</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-place)# affinity program</td>
</tr>
<tr>
<td></td>
<td>ipv6_rib repulse 200</td>
</tr>
<tr>
<td>4</td>
<td>Use one of the following commands:</td>
</tr>
<tr>
<td></td>
<td>• end</td>
</tr>
<tr>
<td></td>
<td>• commit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-place)# end</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router(config-place)# commit</td>
</tr>
<tr>
<td>5</td>
<td>show placement location *(node-id</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# show placement location all</td>
</tr>
<tr>
<td>6</td>
<td>show placement program *(program</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP0/CPU0:router# show placement program all</td>
</tr>
</tbody>
</table>
Creating a Self Affinity

This task sets the affinity of a placement program (process) to or from one of its own instances.

SUMMARY STEPS

1. configure
2. placement program program {instance instance | default}
3. affinity self {attract strength | repulse strength | default | none}
4. Use one of the following commands:
 - end
 - commit
5. show placement location {node-id | all}
6. show placement program {program | all}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>placement program program {instance instance</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# placement program bgp</td>
</tr>
<tr>
<td>Step 3</td>
<td>affinity self {attract strength</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config-place)# affinity self repulse 200</td>
</tr>
<tr>
<td>Step 4</td>
<td>Use one of the following commands:</td>
</tr>
<tr>
<td>- end</td>
<td>Saves configuration changes.</td>
</tr>
<tr>
<td>- commit</td>
<td>- When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>Example:</td>
<td>Uncommitted changes found, commit them before exiting (yes/no/cancel)?[cancel]:</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-place)# end</td>
<td>*Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td>or</td>
<td>*Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-place)# commit</td>
<td></td>
</tr>
</tbody>
</table>

System Management Configuration Guide for Cisco CRS Routers, IOS XR Release 6.2.x
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Entering <code>cancel</code> leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
<td></td>
</tr>
<tr>
<td>• Use the <code>commit</code> command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
<td></td>
</tr>
</tbody>
</table>

Step 5

show placement location `{node-id | all}`

Displays the location of a placement process.

Example:
```
RP/0/RP0/CPU0:router# show placement location all
```

Step 6

show placement program `{program | all}`

Displays the operational state for each placement program.

Example:
```
RP/0/RP0/CPU0:router# show placement program bgp
```

Configuration Examples for Process Placement

This section contains examples to view the processes that are placeable in an SDR.

If you believe that a custom reconfiguration of the processes on your system is required, you should work closely with Cisco personnel to ensure that the impact to your system is contained to just an instance of a process to avoid any undesirable results.

To learn the processes that are placeable, enter the `show placement program all` command in EXEC mode.

```
RP/0/RP0/CPU0:router# show placement program all
Mon Aug 18 17:13:15.155 PST DST

If a program is shown as having 'rejected locations' (i.e., locations on which it cannot be placed), the locations in question can be seen using the "show placement policy program" command.

If a program has been placed but not yet started, the amount of time elapsed since the program was placed is shown in the 'waiting to start' field.

Parentheses around the node indicate that the node has not yet fully booted. This will be true of standby nodes.

<table>
<thead>
<tr>
<th>Program</th>
<th>Placed at location</th>
<th># rejected locations</th>
<th>Waiting to start</th>
</tr>
</thead>
<tbody>
<tr>
<td>li_mgr</td>
<td>0/RP0/CPU0 (0/RP1/CPU0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs1_master</td>
<td>0/RP0/CPU0 (0/RP1/CPU0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>statsd_manager</td>
<td>0/RP0/CPU0 (0/RP1/CPU0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipv4_rib</td>
<td>0/RP0/CPU0 (0/RP1/CPU0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipv6_rib</td>
<td>0/RP0/CPU0 (0/RP1/CPU0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>policy_repository</td>
<td>0/RP0/CPU0 (0/RP1/CPU0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ipv4_mpa</td>
<td>0/RP0/CPU0 (0/RP1/CPU0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional References

The following sections provide references related to Cisco IOS XR Process Placement.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR process placement commands</td>
<td>Process and Memory Management Commands on Cisco IOS XR software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR master command index</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>Getting started with Cisco IOS XR software</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on Cisco IOS XR software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>
## Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: <a href="http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml">http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</a></td>
</tr>
</tbody>
</table>

## RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
Implementing Physical and Virtual Terminals

Line templates define standard attribute settings for incoming and outgoing transport over physical and virtual terminal lines (vtys). Vty pools are used to apply template settings to ranges of vtys.

Note

Before creating or modifying the vty pools, enable the telnet server using the `telnet server` command in Global Configuration mode. See Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router and Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router for more information.

This module describes the new and revised tasks you need to implement physical and virtual terminals on your Cisco IOS XR network.

For more information about physical and virtual terminals on the Cisco IOS XR software and complete descriptions of the terminal services commands listed in this module, see Related Documents, on page 344. To locate documentation for other commands that might appear in the course of running a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

<table>
<thead>
<tr>
<th>Table 34: Feature History for Implementing Physical and Virtual Templates on Cisco IOS XR Software</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Release</strong></td>
</tr>
<tr>
<td>Release 2.0</td>
</tr>
<tr>
<td>Release 3.8.0</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for Implementing Physical and Virtual Terminals, page 336
- Information About Implementing Physical and Virtual Terminals, page 336
- How to Implement Physical and Virtual Terminals on Cisco IOS XR Software, page 338
- Craft Panel Interface, page 342
- Configuration Examples for Implementing Physical and Virtual Terminals, page 342
- Additional References, page 344
Prerequisites for Implementing Physical and Virtual Terminals

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing Physical and Virtual Terminals

To implement physical and virtual terminals, you need to understand the concepts in this section.

Line Templates

The following line templates are available in the Cisco IOS XR software.

- Default line template—The default line template that applies to a physical and virtual terminal lines.
- Console line template—The line template that applies to the console line.
- User-defined line templates—User-defined line templates that can be applied to a range of virtual terminal lines.

Line Template Configuration Mode

Changes to line template attributes are made in line template configuration mode. To enter line template configuration mode, issue the `line` command from Global Configuration mode, specifying the template to be modified. These line templates can be configured with the `line` command:

- `console`—console template
- `default`—default template
- `template`—user-defined template

After you specify a template with the `line` command, the router enters line template configuration mode where you can set the terminal attributes for the specified line. This example shows how to specify the attributes for the console:

```
RP/0/RP0/CPU0:router(config)# line console
RP/0/RP0/CPU0:router(config-line)#
```

From line template configuration mode, use the online help feature (`?`) to view all available options. Some useful options include:

- `absolute-timeout`—Specifies a timeout value for line disconnection.
- `escape-character`—Changes the line escape character.
- `exec-timeout`—Specifies the EXEC timeout.
- `length`—Sets the number of lines displayed on the screen.
• **session-limit**—Specifies the allowable number of outgoing connections.
• **session-timeout**—Specifies an interval for closing the connection if there is no input traffic.
• **timestamp**—Displays the timestamp before each command.
• **width**—Specifies the width of the display terminal.

### Line Template Guidelines

The following guidelines apply to modifying the console template and to configuring a user-defined template:

- Modify the templates for the physical terminal lines on the router (the console port) from line template configuration mode. Use the `line console` command from Global Configuration mode to enter line template configuration mode for the console template.

- Modify the template for virtual lines by configuring a user-defined template with the `line template-name` command, configuring the terminal attributes for the user-defined template from line template configuration, and applying the template to a range of virtual terminal lines using the `vty pool` command.

Attributes not defined in the console template, or any virtual template, are taken from the default template. The default settings for the default template are described for all commands in line template configuration mode in the `Terminal Services Commands on the Cisco IOS XR Software` module in *Cisco IOS XR System Management Command Reference for the Cisco CRS Router*.

---

**Note**

Before creating or modifying the vty pools, enable the telnet server using the `telnet server` command in Global Configuration mode. See *Cisco IOS XR IP Addresses and Services Configuration Guide for the Cisco CRS Router* and *Cisco IOS XR IP Addresses and Services Command Reference for the Cisco CRS Router* for more information.

### Terminal Identification

The physical terminal lines for the console port is identified by its location, expressed in the format of `rack/slot/module`, on the active or standby route processor (RP) where the respective console port resides. For virtual terminals, physical location is not applicable; the Cisco IOS XR software assigns a vty identifier to vty's according to the order in which the vty connection has been established.

### vty Pools

Each virtual line is a member of a pool of connections using a common line template configuration. Multiple vty pools may exist, each containing a defined number of vty's as configured in the vty pool. The Cisco IOS XR software supports the following vty pools by default:

- **Default vty pool**—The default vty pool consists of five vty's (vty 0 through 4) that each reference the default line template.

- **Default fault manager pool**—The default fault manager pool consists of six vty’s (vty 100 through 105) that each reference the default line template.
In addition to the default vty pool and default fault manager pool, you can also configure a user-defined vty pool that can reference the default template or a user-defined template.

When configuring vty pools, follow these guidelines:

- The vty range for the default vty pool must start at vty 0 and must contain a minimum of five vtys.
- The vty range from 0 through 99 can reference the default vty pool.
- The vty range from 5 through 99 can reference a user-defined vty pool.
- The vty range from 100 is reserved for the fault manager vty pool.
- The vty range for fault manager vty pools must start at vty 100 and must contain a minimum of six vtys.
- A vty can be a member of only one vty pool. A vty pool configuration will fail if the vty pool includes a vty that is already in another pool.
- If you attempt to remove an active vty from the active vty pool when configuring a vty pool, the configuration for that vty pool will fail.

How to Implement Physical and Virtual Terminals on Cisco IOS XR Software

Modifying Templates

This task explains how to modify the terminal attributes for the console and default line templates. The terminal attributes that you set will modify the template settings for the specified template.

SUMMARY STEPS

1. configure
2. line {console | default}
3. Configure the terminal attribute settings for the specified template using the commands in line template configuration mode.
4. Use one of the following commands:
   - end
   - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 line {console</td>
<td>default}</td>
</tr>
</tbody>
</table>

System Management Configuration Guide for Cisco CRS Routers, IOS XR Release 6.2.x
Creating and Modifying vty Pools

This task explains how to create and modify vty pools.

You can omit Step 3, on page 340 to Step 5, on page 340 if you are configuring the default line template to reference a vty pool.
SUMMARY STEPS

1. `configure`
2. `telnet {ipv4 | ipv6} server max-servers limit`
3. `line template template-name`
4. Configure the terminal attribute settings for the specified line template using the commands in line template configuration mode.
5. `exit`
6. `vty-pool {default | pool-name | eem} first-vty last-vty [line-template {default | template-name}]`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`telnet {ipv4</td>
<td>ipv6} server max-servers limit`</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td>By default no Telnet servers are allowed. You must configure this command in order to enable the use of Telnet servers.</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(config)# telnet ipv4 server max-servers 10</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>line template template-name</code></td>
<td>Enters line template configuration mode for a user-defined template.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(config)# line template 1</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configure the terminal attribute settings for the specified line template using the commands in line template configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>exit</code></td>
<td>Exits line template configuration mode and returns the router to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(config-line)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`vty-pool {default</td>
<td>pool-name</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(config)# vty-pool default 0 5 line-template default</code> or <code>RP/0/RP0/CPU0:router(config)# vty-pool pool1 5 50 line-template template1</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Creates or modifies vty pools.</td>
<td></td>
</tr>
</tbody>
</table>

- If you do not specify a line template with the `line-template` keyword, a vty pool defaults to the default line template.
- `default` —Configures the default vty pool.
  - The default vty pool must start at vty 0 and must contain a minimum of five vtys (vtys 0 through 4).
  - You can resize the default vty pool by increasing the range of vtys that compose the default vty pool.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>or</td>
<td></td>
</tr>
</tbody>
</table>
| ```
RP/0/RP0_CPU0::router(config)# vty-pool
eem 100 105 line-template template1
``` |         |

- **pool-name** — Creates a user-defined vty pool.
 - A user-defined pool must start at least at vty 5, depending on whether the default vty pool has been resized.
 - If the range of vtys for the default vty pool has been resized, use the first range value free from the default line template. For example, if the range of vtys for the default vty pool has been configured to include 10 vtys (vty 0 through 9), the range value for the user-defined vty pool must start with vty 10.

- **eem** — Configures the embedded event manager pool.
 - The default embedded event manager vty pool must start at vty 100 and must contain a minimum of six vtys (vtys 100 through 105).

- **line-template template-name** — Configures the vty pool to reference a user-defined template.

Step 7

commit

Monitoring Terminals and Terminal Sessions

This task explains how to monitor terminals and terminal sessions using the `show` EXEC commands available for physical and terminal lines.

Note

The commands can be entered in any order.

SUMMARY STEPS

1. (Optional) `show line [aux location node-id | console location node-id | vty number]`
2. (Optional) `show terminal`
3. (Optional) `show users`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>`show line [aux location node-id</td>
<td>console location node-id</td>
</tr>
</tbody>
</table>
Craft Panel Interface

The Craft Panel is an easily-accessible and user-friendly interface which assists the field operator in troubleshooting the router. It consists of a LCD display and three LEDs. The LEDs indicate minor, major and critical alarms.

For more details of the Craft Panel Interface, refer the *Hardware and System set-up guides*.

Configuration Examples for Implementing Physical and Virtual Terminals

Modifying the Console Template: Example

This configuration example shows how to modify the terminal attribute settings for the console line template:

```
line console
  exec-timeout 0 0
  escape-character 0x5a
```
session-limit 10
disconnect-character 0x59
session-timeout 100
transport input telnet
transport output telnet

In this configuration example, the following terminal attributes are applied to the console line template:

- The EXEC time out for terminal sessions is set to 0 minutes, 0 seconds. Setting the EXEC timeout to 0 minutes and 0 seconds disables the EXEC timeout function; thus, the EXEC session for the terminal session will never time out.

- The escape character is set to the 0x5a hexadecimal value (the 0x5a hexadecimal value translates into the “Z” character).

- The session limit for outgoing terminal sessions is set to 10 connections.

- The disconnect character is set to 0x59 hexadecimal value (the 0x59 hexadecimal character translates into the “Y” character).

- The session time out for outgoing terminal sessions is set to 100 minutes (1 hour and 40 minutes).

- The allowed transport protocol for incoming terminal sessions is Telnet.

- The allowed transport protocol for outgoing terminal sessions is Telnet.

To verify that the terminal attributes for the console line template have been applied to the console, use the `show line` command:

```plaintext
RP/0/RP0/CPU0:router# show line console location 0/0/CPU0

TTY Speed Modem Uses Noise Overruns Acc I/O
* con0/0/CPU0 9600 - - - 0/0 -/-

Line con0_0_CPU0, Location "Unknown", Type "Unknown"
Length: 24 lines, Width: 80 columns
Baud rate (TX/RX) is 9600, 1 parity, 2 stopbits, 8 databits
Template: console
Config:
Allowed transports are telnet.
```

Modifying the Default Template: Example

This configuration example shows how to override the terminal settings for the default line template:

```plaintext
line default
exec-timeout 0 0
width 512
length 512
```

In this example, the following terminal attributes override the default line template default terminal attribute settings:

- The EXEC timeout for terminal sessions is set to 0 minutes and 0 seconds. Setting the EXEC timeout to 0 minutes and 0 seconds disables the EXEC timeout function; thus, the EXEC session for the terminal session will never time out (the default EXEC timeout for the default line template is 10 minutes).

- The width of the terminal screen for the terminals referencing the default template is set to 512 characters (the default width for the default line template is 80 characters).

- The length, the number of lines that will display at one time on the terminal referencing the default template, is set to 512 lines (the default length for the default line template is 24 lines).
Configuring a User-Defined Template to Reference the Default vty Pool: Example

This configuration example shows how to configure a user-defined line template (named test in this example) for vty's and to configure the line template test to reference the default vty pool:

```
line template test
  exec-timeout 100 0
  width 100
  length 100
  exit
vty-pool default 0 4 line-template test
```

Configuring a User-Defined Template to Reference a User-Defined vty Pool: Example

This configuration example shows how to configure a user-defined line template (named test2 in this example) for vty's and to configure the line template test2 to reference a user-defined vty pool (named pool1 in this example):

```
line template test2
  exec-timeout 0 0
  session-limit 10
  session-timeout 100
  transport input all
  transport output all
  exit
vty-pool pool1 5 50 line-template test2
```

Configuring a User-Defined Template to Reference the Fault Manager vty Pool: Example

This configuration example shows how to configure a user-defined line template (named test3 in this example) for vty's and to configure the line template test3 to reference the fault manager vty pool:

```
line template test3
  width 110
  length 100
  session-timeout 100
  exit
vty-pool eem 100 106 line-template test3
```

Additional References

The following sections provide references related to implementing physical and virtual terminals on Cisco IOS XR software.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR terminal services commands</td>
<td>Terminal Services Commands on the Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR command master index</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Information about getting started with Cisco IOS XR software</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Implementing SNMP

Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language used for the monitoring and management of devices in a network.

This module describes the new and revised tasks you need to implement SNMP on your Cisco IOS XR network.

For detailed conceptual information about SNMP on the Cisco IOS XR software and complete descriptions of the SNMP commands listed in this module, see Related Documents, on page 371. For information on specific MIBs, refer to Cisco CRS and Cisco XR 12000 Series Router MIB Overview. To locate documentation for other commands that might appear in the course of performing a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

Table 35: Feature History for Implementing SNMP on Cisco IOS XR Software

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.6.0</td>
<td>Support was added for encrypted community strings.</td>
</tr>
<tr>
<td></td>
<td>Support was added for setting IPv4 precedence and DSCP values.</td>
</tr>
<tr>
<td></td>
<td>The clear snmp counters command was added.</td>
</tr>
<tr>
<td>Release 3.8.0</td>
<td>Support was added for SNMP contexts.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>Support was added for packet loss monitoring.</td>
</tr>
<tr>
<td></td>
<td>Support was added for 3DES and AES encryption.</td>
</tr>
<tr>
<td></td>
<td>The ability to preserve ENTITY-MIB and CISCO-CLASS-BASED-QOS-MIB data was added.</td>
</tr>
<tr>
<td>Release 4.2.0</td>
<td>Support was added for SNMP over IPv6.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for Implementing SNMP, page 348
Prerequisites for Implementing SNMP

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for SNMP Use on Cisco IOS XR Software

SNMP outputs are only 32-bits wide and therefore cannot display any information greater than 2^{32}. 2^{32} is equal to 4.29 Gigabits. Note that a 10 Gigabit interface is greater than this and so if you are trying to display speed information regarding the interface, you might see concatenated results.

Information About Implementing SNMP

To implement SNMP, you need to understand the concepts described in this section.

SNMP Functional Overview

The SNMP framework consists of three parts:

- SNMP manager
- SNMP agent
- Management Information Base (MIB)

SNMP Manager

The SNMP manager is the system used to control and monitor the activities of network hosts using SNMP. The most common managing system is called a network management system (NMS). The term NMS can be applied to either a dedicated device used for network management, or the applications used on such a device. A variety of network management applications are available for use with SNMP. These features range from simple command-line applications to feature-rich graphical user interfaces (such as the CiscoWorks 2000 line of products).
SNMP Agent

The SNMP agent is the software component within the managed device that maintains the data for the device and reports these data, as needed, to managing systems. The agent and MIB reside on the router. To enable the SNMP agent, you must define the relationship between the manager and the agent.

MIB

The *Management Information Base* (MIB) is a virtual information storage area for network management information, which consists of collections of managed objects. Within the MIB there are collections of related objects, defined in MIB modules. MIB modules are written in the SNMP MIB module language, as defined in STD 58, RFC 2578, RFC 2579, and RFC 2580. Note that individual MIB modules are also referred to as MIBs; for example, the Interfaces Group MIB (IF-MIB) is a MIB module within the MIB on your system.

The SNMP agent contains MIB variables whose values the SNMP manager can request or change through Get or Set operations. A manager can get a value from an agent or store a value into that agent. The agent gathers data from the MIB, the repository for information about device parameters and network data. The agent can also respond to manager requests to get or set data.

Figure 6: Communication Between an SNMP Agent and Manager

A manager can send the agent requests to get and set MIB values. The agent can respond to these requests. Independent of this interaction, the agent can send unsolicited notifications (traps) to the manager to notify the manager of network conditions.

SNMP Notifications

A key feature of SNMP is the ability to generate notifications from an SNMP agent. These notifications do not require that requests be sent from the SNMP manager. On Cisco IOS XR software, unsolicited (asynchronous) notifications can be generated only as *traps*. Traps are messages alerting the SNMP manager to a condition on the network. Notifications can indicate improper user authentication, restarts, the closing of a connection, loss of connection to a neighbor router, or other significant events.

Note

Inform requests (inform operations) are supported in Cisco IOS XR software from release 4.1 onwards. For more information, see http://www.cisco.com/c/en/us/td/docs/routers/asa/asa9k/asa9k_r5-3/sysman/command/reference/b-sysman-cr53xasr.html

Traps are less reliable than informs because the receiver does not send any acknowledgment when it receives a trap. The sender cannot determine if the trap was received. An SNMP manager that receives an inform
request acknowledges the message with an SNMP response protocol data unit (PDU). If the manager does not receive an inform request, it does not send a response. If the sender never receives a response, the inform request can be sent again. Thus, informs are more likely to reach their intended destination.

However, traps are often preferred because informs consume more resources in the router and in the network. Unlike a trap, which is discarded as soon as it is sent, an inform request must be held in memory until a response is received or the request times out. Also, traps are sent only once, and an inform may be retried several times. The retries increase traffic and contribute to a higher overhead on the network. Thus, traps and inform requests provide a trade-off between reliability and resources.

In this illustration, the agent router sends a trap to the SNMP manager. Although the manager receives the trap, it does not send any acknowledgment to the agent. The agent has no way of knowing that the trap reached its destination.

Figure 7: Trap Received by the SNMP Manager

In this illustration, the agent sends a trap to the manager, but the trap does not reach the manager. Because the agent has no way of knowing that the trap did not reach its destination, the trap is not sent again. The manager never receives the trap.

Figure 8: Trap Not Received by the SNMP Manager

SNMP Versions

Cisco IOS XR software supports the following versions of SNMP:

- Simple Network Management Protocol Version 1 (SNMPv1)
- Simple Network Management Protocol Version 2c (SNMPv2c)
- Simple Network Management Protocol Version 3 (SNMPv3)
Both SNMPv1 and SNMPv2c use a community-based form of security. The community of managers able to access the agent MIB is defined by an IP address access control list and password.

SNMPv2c support includes a bulk retrieval mechanism and more detailed error message reporting to management stations. The bulk retrieval mechanism supports the retrieval of tables and large quantities of information, minimizing the number of round-trips required. The SNMPv2c improved error handling support includes expanded error codes that distinguish different kinds of error conditions; these conditions are reported through a single error code in SNMPv1. Error return codes now report the error type. Three kinds of exceptions are also reported: no such object exceptions, no such instance exceptions, and end of MIB view exceptions.

SNMPv3 is a security model. A security model is an authentication strategy that is set up for a user and the group in which the user resides. A security level is the permitted level of security within a security model. A combination of a security model and a security level will determine which security mechanism is employed when an SNMP packet is handled. See Table 37: SNMP Security Models and Levels, on page 352 for a list of security levels available in SNMPv3. The SNMPv3 feature supports RFCs 3411 to 3418.

You must configure the SNMP agent to use the version of SNMP supported by the management station. An agent can communicate with multiple managers; for this reason, you can configure the Cisco IOS-XR software to support communications with one management station using the SNMPv1 protocol, one using the SNMPv2c protocol, and another using SNMPv3.

Comparison of SNMPv1, v2c, and v3

SNMP v1, v2c, and v3 all support the following operations:

- get-request—Retrieves a value from a specific variable.
- get-next-request—Retrieves the value following the named variable; this operation is often used to retrieve variables from within a table. With this operation, an SNMP manager does not need to know the exact variable name. The SNMP manager searches sequentially to find the needed variable from within the MIB.
- get-response—Operation that replies to a get-request, get-next-request, and set-request sent by an NMS.
- set-request—Operation that stores a value in a specific variable.
- trap—Unsolicited message sent by an SNMP agent to an SNMP manager when some event has occurred.

Table 36: SNMPv1, v2c, and v3 Feature Support, on page 351 identifies other key SNMP features supported by the SNMP v1, v2c, and v3.

![Table 36: SNMPv1, v2c, and v3 Feature Support](image)
Security Models and Levels for SNMPv1, v2, v3

The security level determines if an SNMP message needs to be protected from disclosure and if the message needs to be authenticated. The various security levels that exist within a security model are as follows:

- **noAuthNoPriv** — Security level that does not provide authentication or encryption.
- **authNoPriv** — Security level that provides authentication but does not provide encryption.
- **authPriv** — Security level that provides both authentication and encryption.

Three security models are available: SNMPv1, SNMPv2c, and SNMPv3. The security model combined with the security level determine the security mechanism applied when the SNMP message is processed. Table 37: SNMP Security Models and Levels, on page 352 identifies what the combinations of security models and levels mean.

Table 37: SNMP Security Models and Levels

<table>
<thead>
<tr>
<th>Model</th>
<th>Level</th>
<th>Authentication</th>
<th>Encryption</th>
<th>What Happens</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v2c</td>
<td>noAuthNoPriv</td>
<td>Community string</td>
<td>No</td>
<td>Uses a community string match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>noAuthNoPriv</td>
<td>Username</td>
<td>No</td>
<td>Uses a username match for authentication.</td>
</tr>
<tr>
<td>v3</td>
<td>authNoPriv</td>
<td>HMAC-MD5 or HMAC-SHA</td>
<td>No</td>
<td>Provides authentication based on the HMAC²-MD5³ or the HMAC-SHA⁴.</td>
</tr>
</tbody>
</table>
What Happens

Encryption

Authentication

Model	Level	Authentication	Encryption	What Happens
v3 | authPriv | HMAC-MD5 or HMAC-SHA | DES | Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Provides DES\(^5\) 56-bit encryption in addition to authentication based on the CBC\(^6\) DES (DES-56) standard.
v3 | authPriv | HMAC-MD5 or HMAC-SHA | 3DES | Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Provides 168-bit 3DES\(^7\) level of encryption.
v3 | authPriv | HMAC-MD5 or HMAC-SHA | AES | Provides authentication based on the HMAC-MD5 or HMAC-SHA algorithms. Provides 128-bit AES\(^8\) level of encryption.

Use of 3DES and AES encryption standards requires that the security package (k9sec) be installed. For information on installing software packages, see *Upgrading and Managing Cisco IOS XR Software*.

SNMPv3 Benefits

SNMPv3 provides secure access to devices by providing authentication, encryption and access control. These added security benefits secure SNMP against the following security threats:

- **Masquerade**—The threat that an SNMP user may assume the identity of another SNMP user to perform management operations for which that SNMP user does not have authorization.
Message stream modification—The threat that messages may be maliciously reordered, delayed, or replayed (to an extent that is greater than can occur through the natural operation of a subnetwork service) to cause SNMP to perform unauthorized management operations.

Disclosure—The threat that exchanges between SNMP engines could be eavesdropped. Protecting against this threat may be required as a matter of local policy.

In addition, SNMPv3 provides access control over protocol operations on SNMP managed objects.

SNMPv3 Costs

SNMPv3 authentication and encryption contribute to a slight increase in the response time when SNMP operations on MIB objects are performed. This cost is far outweighed by the security advantages provided by SNMPv3.

Table 38: Order of Response Times from Least to Greatest, on page 354 shows the order of response time (from least to greatest) for the various security model and security level combinations.

Table 38: Order of Response Times from Least to Greatest

<table>
<thead>
<tr>
<th>Security Model</th>
<th>Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMPv2c</td>
<td>noAuthNoPriv</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>noAuthNoPriv</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authNoPriv</td>
</tr>
<tr>
<td>SNMPv3</td>
<td>authPriv</td>
</tr>
</tbody>
</table>

User-Based Security Model

SNMPv3 User-Based Security Model (USM) refers to SNMP message-level security and offers the following services:

• Message integrity—Ensures that messages have not been altered or destroyed in an unauthorized manner and that data sequences have not been altered to an extent greater than can occur nonmaliciously.

• Message origin authentication—Ensures that the claimed identity of the user on whose behalf received data was originated is confirmed.

• Message confidentiality—Ensures that information is not made available or disclosed to unauthorized individuals, entities, or processes.

SNMPv3 authorizes management operations only by configured users and encrypts SNMP messages.

USM uses two authentication protocols:

• HMAC-MD5-96 authentication protocol
• HMAC-SHA-96 authentication protocol
USM uses Cipher Block Chaining (CBC)-DES (DES-56) as the privacy protocol for message encryption.

View-Based Access Control Model

The View-Based Access Control Model (VACM) enables SNMP users to control access to SNMP managed objects by supplying read, write, or notify access to SNMP objects. It prevents access to objects restricted by views. These access policies can be set when user groups are configured with the `snmp-server group` command.

MIB Views

For security reasons, it is often valuable to be able to restrict the access rights of some groups to only a subset of the management information within the management domain. To provide this capability, access to a management object is controlled through MIB views, which contain the set of managed object types (and, optionally, the specific instances of object types) that can be viewed.

Access Policy

Access policy determines the access rights of a group. The three types of access rights are as follows:

- **read-view access**—The set of object instances authorized for the group when objects are read.
- **write-view access**—The set of object instances authorized for the group when objects are written.
- **notify-view access**—The set of object instances authorized for the group when objects are sent in a notification.

IP Precedence and DSCP Support for SNMP

SNMP IP Precedence and differentiated services code point (DSCP) support delivers QoS specifically for SNMP traffic. You can change the priority setting so that SNMP traffic generated in a router is assigned a specific QoS class. The IP Precedence or IP DSCP code point value is used to determine how packets are handled in weighted random early detection (WRED).

After the IP Precedence or DSCP is set for the SNMP traffic generated in a router, different QoS classes cannot be assigned to different types of SNMP traffic in that router.

The IP Precedence value is the first three bits in the type of service (ToS) byte of an IP header. The IP DSCP code point value is the first six bits of the differentiate services (DiffServ Field) byte. You can configure up to eight different IP Precedence markings or 64 different IP DSCP markings.

How to Implement SNMP on Cisco IOS XR Software

This section describes how to implement SNMP.

The `snmp-server` commands enable SNMP on Management Ethernet interfaces by default. For information on how to enable SNMP server support on other inband interfaces, see the Implementing Management Plane Protection on Cisco IOS XR Software module in Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router.
Configuring SNMPv3

This task explains how to configure SNMPv3 for network management and monitoring.

Note
No specific command enables SNMPv3; the first `snmp-server` global configuration command (config), that you issue enables SNMPv3. Therefore, the sequence in which you issue the `snmp-server` commands for this task does not matter.

SUMMARY STEPS

1. configure
2. `snmp-server view view-name oid-tree {included | excluded}`
3. `snmp-server group name {v1 | v2c | v3 {auth | noauth | priv}} [read view] [write view] [notify view] [access-list-name]`
4. `snmp-server user username groupname {v1 | v2c | v3 {auth {md5 | sha} {clear | encrypted}} auth-password [priv des56 {clear | encrypted} priv-password]} [access-list-name]`
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 `snmp-server view view-name oid-tree {included</td>
<td>excluded}`</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# snmp-server view view_name 1.3.6.1.2.1.1.5 included</td>
<td></td>
</tr>
<tr>
<td>Step 3 `snmp-server group name {v1</td>
<td>v2c</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# snmp-server group group_name v3 noauth read view_name1 write view_name2</td>
<td></td>
</tr>
<tr>
<td>Step 4 `snmp-server user username groupname {v1</td>
<td>v2c</td>
</tr>
</tbody>
</table>

Note Only one remote host can be assigned to the same username for SNMP version 3. If you configure the same username with different remote hosts, only the last username and remote host combination will be accepted and will be seen in the `show running` configuration. In the case of multiple SNMP managers, multiple unique usernames are required.
Configuring SNMP Trap Notifications

This task explains how to configure the router to send SNMP trap notifications.

Note
You can omit Step 3, on page 356 if you have already completed the steps documented under the Configuring SNMPv3, on page 356 task.

SUMMARY STEPS

1. configure
2. snmp-server group name {v1 | v2c | v3 {auth | noauth | priv}} [read view] [write view] [notify view] [access-list-name]
3. snmp-server user username groupname {v1 | v2c | v3 [auth | noauth | priv] {auth-password [priv des56 {clear | encrypted}; priv-password]} [access-list-name]
4. snmp-server host address [traps] [version {1 | 2c | 3 [auth | noauth | priv}] [community-string [udp-port port] [notification-type]
5. snmp-server traps [notification-type]
6. commit
7. (Optional) show snmp host

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 snmp-server group name {v1</td>
<td>v2c</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config)# snmp-server group</td>
<td></td>
</tr>
</tbody>
</table>
Implementing SNMP

Setting the Contact, Location, and Serial Number of the SNMP Agent

This task explains how to set the system contact string, system location string, and system serial number of the SNMP agent.

- **Step 3**
 - **Purpose**: Configures a new user to an SNMP group.
 - **Note**: Only one remote host can be assigned to the same username for SNMP version 3. If you configure the same username with different remote hosts, only the last username and remote host combination will be accepted and will be seen in the `show running` configuration. In the case of multiple SNMP managers, multiple unique usernames are required.

- **Step 4**
 - **Purpose**: Specifies SNMP trap notifications, the version of SNMP to use, the security level of the notifications, and the recipient (host) of the notifications.

- **Step 5**
 - **Purpose**: Enables the sending of trap notifications and specifies the type of trap notifications to be sent.
 - **Note**: If a trap is not specified with the `notification-type` argument, all supported trap notifications are enabled on the router. To display which trap notifications are available on your router, enter the `snmp-server traps ?` command.

- **Step 6**
 - **Purpose**: (Optional) Displays information about the configured SNMP notification recipient (host), port number, and security model.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>group_name v3 noauth read view_name1 write view_name2</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 `snmp-server user username groupname {v1</td>
<td>v2c</td>
</tr>
<tr>
<td>Note: Only one remote host can be assigned to the same username for SNMP version 3. If you configure the same username with different remote hosts, only the last username and remote host combination will be accepted and will be seen in the <code>show running</code> configuration. In the case of multiple SNMP managers, multiple unique usernames are required.</td>
<td></td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router(config)# snmp-server user noauth user group_name v3</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 `snmp-server host address [traps] [version {1</td>
<td>2c</td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router(config)# snmp-server host 12.26.25.61 traps version 3 noauth userV3noauth</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>snmp-server traps [notification-type]</code></td>
<td>Purpose: Enables the sending of trap notifications and specifies the type of trap notifications to be sent.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router(config)# snmp-server traps bgp</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>commit</code></td>
<td></td>
</tr>
<tr>
<td>Step 7 <code>show snmp host</code></td>
<td>Purpose: (Optional) Displays information about the configured SNMP notification recipient (host), port number, and security model.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router# show snmp host</code></td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. configure
2. (Optional) snmp-server contact system-contact-string
3. (Optional) snmp-server location system-location
4. (Optional) snmp-server chassis-id serial-number
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 snmp-server contact system-contact-string</td>
<td>(Optional) Sets the system contact string.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# snmp-server contact Dial System Operator at beeper # 27345</td>
<td></td>
</tr>
<tr>
<td>Step 3 snmp-server location system-location</td>
<td>(Optional) Sets the system location string.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# snmp-server location Building 3/Room 214</td>
<td></td>
</tr>
<tr>
<td>Step 4 snmp-server chassis-id serial-number</td>
<td>(Optional) Sets the system serial number.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# snmp-server chassis-id 123456</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

Defining the Maximum SNMP Agent Packet Size

This task shows how to configure the largest SNMP packet size permitted when the SNMP server is receiving a request or generating a reply.

Note: The sequence in which you issue the snmp-server commands for this task does not matter.
SUMMARY STEPS

1. configure
2. (Optional) `snmp-server packetsize byte-count`
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>snmp-server packetsize byte-count</code></td>
<td>(Optional) Sets the maximum packet size.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RP0/CPU0:router(config)# snmp-server packetsize 1024</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>

Changing Notification Operation Values

After SNMP notifications have been enabled, you can specify a value other than the default for the source interface, message queue length, or retransmission interval.

This task explains how to specify a source interface for trap notifications, the message queue length for each host, and the retransmission interval.

Note

The sequence in which you issue the `snmp-server` commands for this task does not matter.

SUMMARY STEPS

1. configure
2. (Optional) `snmp-server trap-source type interface-path-id`
3. (Optional) `snmp-server queue-length length`
4. (Optional) `snmp-server trap-timeout seconds`
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server trap-source type interface-path-id</td>
<td>(Optional) Specifies a source interface for trap notifications.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server trap-source POS 0/0/1/0
```

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server queue-length length</td>
<td>(Optional) Establishes the message queue length for each notification.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server queue-length 20
```

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp-server trap-timeout seconds</td>
<td>(Optional) Defines how often to resend notifications on the retransmission queue.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config)# snmp-server trap-timeout 20
```

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Setting IP Precedence and DSCP Values

This task describes how to configure IP Precedence or IP DSCP for SNMP traffic.

Before You Begin

SNMP must be configured.

SUMMARY STEPS

1. configure
2. Use one of the following commands:
 - snmp-server ipv4 precedence value
 - snmp-server ipv4 dscp value
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>
Displaying SNMP Context Mapping

The SNMP agent serves queries based on SNMP contexts created by the client features. There is a context mapping table. Each entry in the context mapping table includes a context name, the name of the feature that created the context, and the name of the specific instance of the feature.

SUMMARY STEPS

1. show snmp context-mapping

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>show snmp context-mapping</td>
<td>Displays the SNMP context mapping table.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router# show snmp context-mapping</td>
<td></td>
</tr>
</tbody>
</table>

Monitoring Packet Loss

It is possible to monitor packet loss by configuring the generation of SNMP traps when packet loss exceeds a specified threshold. The configuration described in this task enables the creation of entries in the MIB tables of the EVENT-MIB. This can then be monitored for packet loss using SNMP GET operations.
Before You Begin

Entries created in the EVENT-MIB MIB tables using the configuration described in this task cannot be altered using an SNMP SET.

Entries to the EVENT-MIB MIB tables created using an SNMP SET cannot be altered using the configuration described in this task.

SUMMARY STEPS

1. `snmp-server mibs eventmib packet-loss type interface-path-id falling lower-threshold interval sampling-interval rising upper-threshold`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Generates SNMP EVENT-MIB traps for the interface when the packet loss exceeds the specified thresholds. Up to 100 interfaces can be monitored. falling lower-threshold — Specifies the lower threshold. When packet loss between two intervals falls below this threshold and an mteTriggerRising trap was generated previously, a SNMP mteTriggerFalling trap is generated. This trap is not generated until the packet loss exceeds the upper threshold and then falls back below the lower threshold. interval sampling-interval — Specifies how often packet loss statistics are polled. This is a value between 5 and 1440 minutes, in multiples of 5. rising upper-threshold — Specifies the upper threshold. When packet loss between two intervals increases above this threshold, an SNMP mteTriggereRising trap is generated. This trap is not generated until the packet loss drops below the lower threshold and then rises above the upper threshold.</td>
</tr>
</tbody>
</table>

Example:
```
RP/0/RP0/CPU0:router(config)#
snmp-server mibs eventmib packet-loss falling 1 interval 5 rising 2
```

Configuring MIB Data to be Persistent

Many SNMP MIB definitions define arbitrary 32-bit indices for their object tables. MIB implementations often do a mapping from the MIB indices to some internal data structure that is keyed by some other set of data. In these MIB tables the data contained in the table are often other identifiers of the element being modelled. For example, in the ENTITY-MIB, entries in the entPhysicalTable are indexed by the 31-bit value, entPhysicalIndex, but the entities could also be identified by the entPhysicalName or a combination of the other objects in the table.

Because of the size of some MIB tables, significant processing is required to discover all the mappings from the 32-bit MIB indices to the other data which the network management station identifies the entry. For this reason, it may be necessary for some MIB indices to be persistent across process restarts, switchovers, or
device reloads. The ENTITY-MIB entPhysicalTable and CISCO-CLASS-BASED-QOS-MIB are two such MIBs that often require index values to be persistent.

Also, because of query response times and CPU utilization during CISCO-CLASS-BASED-QOS-MIB statistics queries, it is desirable to cache service policy statistics.

SUMMARY STEPS

1. (Optional) `snmp-server entityindex persist`
2. (Optional) `snmp-server mibs cbqosmib persist`
3. (Optional) `snmp-server cbqosmib cache refresh time time`
4. (Optional) `snmp-server cbqosmib cache service-policy count count`
5. `snmp-server ifindex persist`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>(Optional) Enables the persistent storage of ENTITY-MIB data.</td>
</tr>
<tr>
<td><code>snmp-server entityindex persist</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# <code>snmp-server entityindex persist</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>(Optional) Enables persistent storage of the CISCO-CLASS-BASED-QOS-MIB data.</td>
</tr>
<tr>
<td><code>snmp-server mibs cbqosmib persist</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# <code>snmp-server mibs cbqosmib persist</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>(Optional) Enables QoS MIB caching with a specified cache refresh time.</td>
</tr>
<tr>
<td><code>snmp-server cbqosmib cache refresh time time</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# <code>snmp-server mibs cbqosmib cache refresh time 45</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>(Optional) Enables QoS MIB caching with a limited number of service policies to cache.</td>
</tr>
<tr>
<td><code>snmp-server cbqosmib cache service-policy count count</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# <code>snmp-server mibs cbqosmib cache service-policy count 50</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables ifIndex persistence globally on all Simple Network Management Protocol (SNMP) interfaces.</td>
</tr>
<tr>
<td><code>snmp-server ifindex persist</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router(config)# <code>snmp-server ifindex persist</code></td>
</tr>
</tbody>
</table>
Configuring LinkUp and LinkDown Traps for a Subset of Interfaces

By specifying a regular expression to represent the interfaces for which you are interested in setting traps, you can enable or disable linkUp and linkDown traps for a large number of interfaces simultaneously.

Before You Begin

SNMP must be configured.

SUMMARY STEPS

1. configure
2. snmp-server interface subset subset-number regular-expression expression
3. notification linkupdown disable
4. commit
5. (Optional) show snmp interface notification subset subset-number
6. (Optional) show snmp interface notification regular-expression expression
7. (Optional) show snmp interface notification type interface-path-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>
| Step 2 | snmp-server interface subset subset-number regular-expression expression | Enters snmp-server interface mode for the interfaces identified by the regular expression.
 The subset-number argument identifies the set of interfaces, and also assigns a priority to the subset in the event that an interface is included in more than one subset. Lower numbers have higher priority and their configuration takes precedence over interface subsets with higher numbers.
 The expression argument must be entered surrounded by double quotes.
 Refer to the Understanding Regular Expressions, Special Characters, and Patterns module in Cisco IOS XR Getting Started Guide for the Cisco CRS Router for more information regarding regular expressions. |
| Example: | | |
| RP/0/RP0/CPU0:router(config)# snmp-server interface subset 10 regular-expression "^Gig[a-zA-Z]+[0-9/]+\." | | |
| RP/0/RP0/CPU0:router(config-snmp-if-subset)# | | |
| Step 3 | notification linkupdown disable | Disables linkUp and linkDown traps for all interfaces being configured. To enable previously disabled interfaces, use the no form of this command. |
| Example: | | |
| RP/0/RP0/CPU0:router(config-snmp-if-subset)# notification linkupdown disable | | |
| Step 4 | commit | |
Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>show snmp interface notification subset subset-number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# show snmp interface</td>
</tr>
<tr>
<td></td>
<td>notification subset 10</td>
</tr>
</tbody>
</table>

- **Purpose**: (Optional) Displays the linkUp and linkDown notification status for all interfaces identified by the subset priority.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>show snmp interface notification regular-expression expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# show snmp interface notification</td>
</tr>
<tr>
<td></td>
<td>regular-expression</td>
</tr>
<tr>
<td></td>
<td>"^Gig[a-zA-Z]+[0-9/]"</td>
</tr>
</tbody>
</table>

- **Purpose**: (Optional) Displays the linkUp and linkDown notification status for all interfaces identified by the regular expression.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>show snmp interface notification type interface-path-id</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP0/CPU0:router# show snmp interface notification</td>
</tr>
<tr>
<td></td>
<td>tengige 0/4/0/3.10</td>
</tr>
</tbody>
</table>

- **Purpose**: (Optional) Displays the linkUp and linkDown notification status for the specified interface.

Configuration Examples for Implementing SNMP

Configuring SNMPv3: Examples

Setting an Engine ID

This example shows how to set the identification of the local SNMP engine:

```
snmp-server engineID local 00:00:00:09:00:00:00:a1:61:6c:20:61
```

- **Note**: After the engine ID has been configured, the SNMP agent restarts.

Verifying the Identification of the Local SNMP Engines

This example shows how to verify the identification of the local SNMP engine:

```
config
  show snmp engineid
```
SNMP engineID 00000009000000a1ffffffff

Creating a View

There are two ways to create a view:

- You can include the object identifier (OID) of an ASN.1 subtree of a MIB family from a view by using the `included` keyword of the `snmp-server view` command.
- You can exclude the OID subtree of the ASN.1 subtree of a MIB family from a view by using the `excluded` keyword of the `snmp-server view` command.

This example shows how to create a view that includes the `sysName (1.3.6.1.2.1.1.5)` object:

```config
snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1.5 included
```

This example shows how to create a view that includes all the OIDs of a system group:

```config
snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1 included
```

This example shows how to create a view that includes all the OIDs under the system group except the `sysName object (1.3.6.1.2.1.1.5)`, which has been excluded:

```config
snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1 included
snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1.5 excluded
```

Verifying Configured Views

This example shows how to display information about the configured views:

RP/0/RP0/CPU0:router# show snmp view

```
v1default 1.3.6.1 - included nonVolatile active
SNMP_VIEW1 1.3.6.1.2.1.1 - included nonVolatile active
SNMP_VIEW1 1.3.6.1.2.1.1.5 - excluded nonVolatile active
```

Creating Groups

If you do not explicitly specify a notify, read, or write view, the Cisco IOS XR software uses the v1 default (1.3.6.1). This example shows how to create a group that utilizes the default view:

RP/0/RP0/CPU0:router(config)# snmp-server group group-name v3 auth

The following configuration example shows how to create a group that has read access to all the OIDs in the system except the `sysUpTime object (1.3.6.1.2.1.1.3)`, which has been excluded from the view applied to the group, but write access only to the `sysName object (1.3.6.1.2.1.1.5)`:

```
! snmp-server view view_name1 1.3.6.1.2.1.1 included
snmp-server view view_name1 1.3.6.1.2.1.1.3 excluded
snmp-server view view_name2 1.3.6.1.2.1.1.5 included
snmp-server group group_name1 v3 auth read view_name1 write view_name2
```
Verifying Groups

This example shows how to verify the attributes of configured groups:

```
RP/0/RP0/CPU0:router# show snmp group

groupname: group_name1  security model: usm
   readview: view_name1
   notifyview: v1default
   row status: nonVolatile

   writeview: view_name2
```

Creating and Verifying Users

Given the following SNMPv3 view and SNMPv3 group configuration:

```
!  snmp-server view view_name 1.3.6.1.2.1.1 included
  snmp-server group group_name v3 noauth read view_name write view_name
!
```

This example shows how to create a noAuthNoPriv user with read and write view access to a system group:

```
config
  snmp-server user noauthuser group_name v3
```

Note
The user must belong to a noauth group before a noAuthNoPriv user can be created.

This example shows how to verify the attributes that apply to the SNMP user:

```
RP/0/RP0/CPU0:router# show snmp user

   User name: noauthuser
   Engine ID: localSnmpID
   storage-type: nonvolatile active
```

Given the following SNMPv3 view and SNMPv3 group configuration:

```
!  snmp-server view SNMP_VIEW1 1.3.6.1.2.1.1 included
  snmp-server group SNMP_GROUP1 v3 auth notify SNMP_VIEW1 read SNMP_VIEW1 write SNMP_VIEW1
!
```

This example shows how to create a user with authentication (including encryption), read, and write view access to a system group:

```
config
  snmp-server user userv3authpriv SNMP_GROUP1 v3 auth md5 password123 priv aes 128 password123
```

Given the following SNMPv3 view and SNMPv3 group configuration:

```
!  snmp-server view view_name 1.3.6.1.2.1.1 included
  snmp group group_name v3 priv read view_name write view_name
!
```

This example shows how to create authNoPriv user with read and write view access to a system group:

```
RP/0/RP0/CPU0:router(config)# snmp-server user authuser group_name v3 auth md5 clear auth_passwd
```
Because the group is configured at a security level of Auth, the user must be configured as "auth" at a minimum to access this group ("priv" users could also access this group). The authNoPriv user configured in this group, authuser, must supply an authentication password to access the view. In the example, auth_passwd is set as the authentication password string. Note that clear keyword is specified before the auth_passwd password string. The clear keyword indicates that the password string being supplied is unencrypted.

This example shows how to verify the attributes that apply to SNMP user:

```
RP/0/RP0/CPU0:router# show snmp user
User name: authuser
  Engine ID: localSnmpID
  storage-type: nonvolatile active
```

Given the following SNMPv3 view and SNMPv3 group configuration:

```
!  snmp view view_name 1.3.6.1.2.1.1 included
  snmp group group_name v3 priv read view_name write view_name
!`

This example shows how to create an authPriv user with read and write view access to a system group:

```
config
 snmp-server user privuser group_name v3 auth md5 clear auth_passwd priv des56 clear priv_passwd
```

Because the group has a security level of Priv, the user must be configured as a "priv" user to access this group. In this example, the user, privuser, must supply both an authentication password and privacy password to access the OIDs in the view.

This example shows how to verify the attributes that apply to the SNMP user:

```
RP/0/RP0/CPU0:router# show snmp user
User name: privuser
 Engine ID: localSnmpID
 storage-type: nonvolatile active
```

### Configuring Trap Notifications: Example

The following example configures an SNMP agent to send out different types of traps. The configuration includes a v2c user, a noAuthNoPriv user, an authNoPriv user, and an AuthPriv user.

The default User Datagram Protocol (UDP) port is 161. If you do not specify a UDP port with the `udp-port` keyword and `port` argument, then the configured SNMP trap notifications are sent to port 161.

```
```
This example shows how to verify the configuration SNMP trap notification recipients host, the recipients of SNMP trap notifications. The output displays the following information:

- IP address of the configured notification host
- UDP port where SNMP notification messages are sent
- Type of trap configured
- Security level of the configured user
- Security model configured

```
config
 show snmp host
 Notification host: 10.50.32.170 udp-port: 2345 type: trap
 user: userV3auth security model: v3 auth
 Notification host: 10.50.32.170 udp-port: 2345 type: trap
 user: userV3noauth security model: v3 noauth
 Notification host: 10.50.32.170 udp-port: 2345 type: trap
 user: userV3priv security model: v3 priv
 Notification host: 10.50.32.170 udp-port: 2345 type: trap
 user: userv2c security model: v2c
```

### Setting an IP Precedence Value for SNMP Traffic: Example

The following example shows how to set the SNMP IP Precedence value to 7:

```
configure
 snmp-server ipv4 precedence 7
 exit
 Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: y
```

### Setting an IP DSCP Value for SNMP Traffic: Example

The following example shows how to set the IP DSCP value of SNMP traffic to 45:

```
configure
```
snmp-server ipv4 dscp 45
exit

Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]: y

Additional References

The following sections provide references related to Implementing SNMP on Cisco IOS XR software.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR SNMP commands</td>
<td>SNMP Server Commands on the Cisco IOS XR Software module of Cisco IOS XR System Management Command Reference for the Cisco CRS Router</td>
</tr>
<tr>
<td>MIB information</td>
<td>Cisco CRS and Cisco XR 12000 Series Router MIB Overview</td>
</tr>
<tr>
<td>Cisco IOS XR commands</td>
<td>Cisco IOS XR Commands Master List for the Cisco CRS Router</td>
</tr>
<tr>
<td>Getting started with Cisco IOS XR software</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on the Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router</td>
</tr>
<tr>
<td>Cisco IOS XR Quality of Service</td>
<td>Cisco IOS XR Modular Quality of Service Configuration Guide for the Cisco CRS Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: <a href="http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml">http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3412</td>
<td>Message Processing and Dispatching for the Simple Network Management Protocol (SNMP)</td>
</tr>
<tr>
<td>RFC 3413</td>
<td>Simple Network Management Protocol (SNMP) Applications</td>
</tr>
<tr>
<td>RFC 3414</td>
<td>User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)</td>
</tr>
<tr>
<td>RFC 3415</td>
<td>View-based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP)</td>
</tr>
<tr>
<td>RFC 3417</td>
<td>Transport Mappings for the Simple Network Management Protocol (SNMP)</td>
</tr>
<tr>
<td>RFC 3418</td>
<td>Management Information Base (MIB) for the Simple Network Management Protocol (SNMP)</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
CHAPTER 17

Configuring Periodic MIB Data Collection and Transfer on the Cisco IOS XR Software

This document describes how to periodically transfer selected MIB data from your router to a specified Network Management System (NMS). The periodic MIB data collection and transfer feature is also known as bulk statistics.

Table 39: Feature History for Periodic MIB Data Collection and Transfer

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.2.0</td>
<td>The periodic MIB data collection and transfer feature was introduced and supported the IF-MIB only.</td>
</tr>
<tr>
<td>Release 4.2.1</td>
<td>Additional MIBs were supported.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for Periodic MIB Data Collection and Transfer, page 375
- Information About Periodic MIB Data Collection and Transfer, page 376
- 4arg, page 377
- How to Configure Periodic MIB Data Collection and Transfer, page 377
- Periodic MIB Data Collection and Transfer: Example, page 384

Prerequisites for Periodic MIB Data Collection and Transfer

To use periodic MIB data collection and transfer, you should be familiar with the Simple Network Management Protocol (SNMP) model of management information. You should also know what MIB information you want to monitor on your network devices, and the OIDs or object names for the MIB objects to be monitored.
Information About Periodic MIB Data Collection and Transfer

SNMP Objects and Instances

A type (or class) of SNMP management information is called an object. A specific instance from a type of management information is called an object instance (or SNMP variable). To configure a bulk statistics collection, you must specify the object types to be monitored using a bulk statistics object list and the specific instances of those objects to be collected using a bulk statistics schema.

MIBs, MIB tables, MIB objects, and object indices can all be specified using a series of numbers called an object identifier (OID). OIDs are used in configuring a bulk statistics collection in both the bulk statistics object lists (for general objects) and in the bulk statistics schemas (for specific object instances).

Bulk Statistics Object Lists

To group the MIB objects to be polled, you need to create one or more object lists. A bulk statistics object list is a user-specified set of MIB objects that share the same MIB index. Object lists are identified using a name that you specify. Named bulk statistics object lists allow the same configuration to be reused in different bulk statistics schemas.

All the objects in an object list must share the same MIB index. However, the objects do not need to be in the same MIB and do not need to belong to the same MIB table. For example, it is possible to group ifInOctets and a CISCO-IF-EXTENSION-MIB object in the same schema, because the containing tables for both objects are indexed by the ifIndex.

Bulk Statistics Schemas

Data selection for the Periodic MIB Data Collection and Transfer Mechanism requires the definition of a schema with the following information:

- Name of an object list.
- Instance (specific instance or series of instances defined using a wild card) that needs to be retrieved for objects in the specified object list.
- How often the specified instances need to be sampled (polling interval). The default polling interval is 5 minutes.

A bulk statistics schema is also identified using a name that you specify. This name is used when configuring the transfer options.

Bulk Statistics Transfer Options

After configuring the data to be collected, a single virtual file (VFile or bulk statistics file) with all collected data is created. This file can be transferred to a network management station using FTP or TFTP. You can specify how often this file should be transferred. The default transfer interval is once every 30 minutes. You can also configure a secondary destination for the file to be used if, for whatever reason, the file cannot be transferred to the primary network management station.
The value of the transfer interval is also the collection period (collection interval) for the local bulk statistics file. After the collection period ends, the bulk statistics file is frozen, and a new local bulk statistics file is created for storing data. The frozen bulk statistics file is then transferred to the specified destination.

By default, the local bulk statistics file is deleted after successful transfer to an network management station.

Benefits of Periodic MIB Data Collection and Transfer

Periodic MIB data collection and transfer (bulk statistics feature) allows many of the same functions as the bulk file MIB (CISCO-BULK-FILE-MIB.my), but offers some key advantages. The main advantage is that this feature can be configured through the CLI and does not require an external monitoring application.

Periodic MIB data collection and transfer is mainly targeted for medium to high-end platforms that have sufficient local storage (volatile or permanent) to store bulk statistics files. Locally storing bulk statistics files helps minimize loss of data during temporary network outages.

This feature also has more powerful data selection features than the bulk file MIB; it allows grouping of MIB objects from different tables into data groups (object lists). It also incorporates a more flexible instance selection mechanism, where the application is not restricted to fetching an entire MIB table.

4arg

4arg is Cisco’s implementation of Object Size Checking (OSC). OSC is a useful static analysis utility and a critical runtime defense for the detection and prevention of buffer overflows. 4arg captures buffer overflows (at runtime) that are otherwise undetected by code analysis tools and human review. 4arg also carries a reporting and logging component.

4arg refers to a theoretical fourth argument to a string copy function representing the destination buffer size.

4arg Messages: Example

An example of a 4arg message:

```
RP/0/RP0/CPU0:router:Dec 1 12:00:00.802 : foo[123]:
%OS-DATACORRUPTION-1-DATAINCONSISTENCY : copy error : pkg/bin/foo:
(FID=12345) : -Traceback= 4bd43404 4bac7e04 4000c100
```

Note
If you witness a traceback, please report the incident to Cisco TAC as soon as possible. Include the log message exactly as printed in the console.

How to Configure Periodic MIB Data Collection and Transfer

Configuring a Bulk Statistics Object List

The first step in configuring the Periodic MIB Data Collection and Transfer Mechanism is to configure one or more object lists.
## SUMMARY STEPS

1. configure
2. snmp-server mib bulkstat object-list `list-name`
3. add `{oid | object-name}`
4. commit

## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> snmp-server mib bulkstat object-list <code>list-name</code></td>
<td>Defines an SNMP bulk statistics object list and enters bulk statistics object list configuration mode.</td>
</tr>
<tr>
<td>Example: snmp-server mib bulkstat object-list ifMib</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> add `{oid</td>
<td>object-name}`</td>
</tr>
<tr>
<td>Example: RP/0/RP0/CPU0:router(config-bulk-objects)# add 1.3.6.1.2.1.2.2.1.11 RP/0/RP0/CPU0:router(config-bulk-objects)# add ifAdminStatus RP/0/RP0/CPU0:router(config-bulk-objects)# add ifDescr</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>

### What to Do Next
Configure a bulk statistics schema.

### Configuring a Bulk Statistics Schema

The second step in configuring periodic MIB data collection and transfer is to configure one or more schemas.

### Before You Begin
The bulk statistics object list to be used in the schema must be defined.
**SUMMARY STEPS**

1. configure
2. `snmp-server mib bulkstat schema schema-name`
3. `object-list list-name`
4. Do one of the following:
   - `instance exact {interface interface-id [sub-if] | oid oid}`
   - `instance wild {interface interface-id [sub-if] | oid oid}`
   - `instance range start oid end oid`
   - `instance repetition oid max repeat-number`
5. `poll-interval minutes`
6. `commit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>snmp-server mib bulkstat schema schema-name</code></td>
<td>Names the bulk statistics schema and enters bulk statistics schema mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF/0/RP0/CPU0:router(config)# snmp-server mib bulkstat schema intE0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF/0/RP0/CPU0:router(config-bulk-sc)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>object-list list-name</code></td>
<td>Specifies the bulk statistics object list to be included in this schema. Specify only one object list per schema. If multiple object-list commands are executed, the earlier ones are overwritten by newer commands.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF/0/RP0/CPU0:router(config-bulk-sc)# object-list ifMib</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Do one of the following:</td>
<td>Specifies the instance information for objects in this schema:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>`instance exact {interface interface-id [sub-if]</td>
<td>oid oid}`</td>
</tr>
<tr>
<td></td>
<td>`instance wild {interface interface-id [sub-if]</td>
<td>oid oid}`</td>
</tr>
<tr>
<td></td>
<td><code>instance range start oid end oid</code></td>
<td>• The <strong>instance range</strong> command indicates a range of instances on which to collect data.</td>
</tr>
<tr>
<td></td>
<td><code>instance repetition oid max repeat-number</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Bulk Statistics Transfer Options

The final step in configuring periodic MIB data collection and transfer is to configure the transfer options. The collected MIB data are kept in a local file-like entity called a VFile (virtual file, referred to as a bulk statistics file in this document). This file can be transferred to a remote network management station at intervals you specify.

Before You Begin
The bulk statistics object lists and bulk statistics schemas must be defined before configuring the bulk statistics transfer options.

What to Do Next
Configure the bulk statistics transfer options.

### Configuring Bulk Statistics Transfer Options

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>• The instance repetition command indicates data collection to repeat for a certain number of instances of a MIB object.</td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bulk-sc)#</td>
<td>Note Only one instance command can be configured per schema. If multiple instance commands are executed, the earlier ones are overwritten by new commands.</td>
</tr>
<tr>
<td>instance wild oid 1</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bulk-sc)#</td>
<td></td>
</tr>
<tr>
<td>instance exact interface FastEthernet 0/1.25</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bulk-sc)#</td>
<td></td>
</tr>
<tr>
<td>instance range start 1 end 2</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bulk-sc)#</td>
<td></td>
</tr>
<tr>
<td>instance repetition 1 max 4</td>
<td></td>
</tr>
<tr>
<td>Step 5 poll-interval minutes</td>
<td>Sets how often data should be collected from the object instances specified in this schema, in minutes. The default is once every 5 minutes. The valid range is from 1 to 20000.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bulk-sc)#</td>
<td></td>
</tr>
<tr>
<td>poll-interval 10</td>
<td></td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. configure
2. snmp-server mib bulkstat transfer-id transfer-id
3. buffer-size bytes
4. format {bulkBinary | bulkASCII | schemaASCII}
5. schema schema-name
6. transfer-interval minutes
7. url primary url
8. url secondary url
9. retry number
10. retain minutes
11. enable
12. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> snmp-server mib bulkstat transfer-id transfer-id</td>
<td>Identifies the transfer configuration with a name (transfer-id argument) and enters bulk statistics transfer configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config)# snmp-server mib bulkstat transfer bulkstat1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> buffer-size bytes</td>
<td>(Optional) Specifies the maximum size for the bulk statistics data file, in bytes. The valid range is from 1024 to 2147483647 bytes. The default buffer size is 2048 bytes.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bulk-tr)# buffersize 3072</td>
<td>Note: If the maximum buffer size for a bulk statistics file is reached before the transfer interval time expires, all additional data received is deleted. To correct this behavior, you can decrease the polling frequency, or increase the size of the bulk statistics buffer.</td>
</tr>
<tr>
<td><strong>Step 4</strong> format {bulkBinary</td>
<td>bulkASCII</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Transfers can only be performed using schemaASCII (cdcSchemaASCII) format. SchemaASCII is a human-readable format that contains parser-friendly hints for parsing data values.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>RP/0/RP0/CPU0:router(config-bulk-tr)# format schemaASCII</td>
<td></td>
</tr>
</tbody>
</table>
## Configuring Bulk Statistics Transfer Options

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>schema schema-name</strong></td>
</tr>
<tr>
<td></td>
<td>Specifies the bulk statistics schema to be transferred. Repeat this command as desired. Multiple schemas can be associated with a single transfer configuration; all collected data are placed in a single bulk data file (VFile).</td>
</tr>
</tbody>
</table>
| **Example:**            | RP/0/RP0/CPU0:router(config-bulk-tr)# schema ATM2/0-IFMIB  
                         | RP/0/RP0/CPU0:router(config-bulk-tr)# schema ATM2/0-CAR  
                         | RP/0/RP0/CPU0:router(config-bulk-tr)# schema Ethernet2/1-IFMIB  |
| **Step 6**              | **transfer-interval minutes**                                                                                                          |
|                         | (Optional) Specifies how often the bulk statistics file are transferred, in minutes. The default value is once every 30 minutes. The transfer interval is the same as the collection interval. |
| **Example:**            | RP/0/RP0/CPU0:router(config-bulk-tr)# transfer-interval 20  |
| **Step 7**              | **url primary url**                                                                                                                     |
|                         | Specifies the network management system (host) that the bulk statistics data file is transferred to, and the protocol to use for transfer. The destination is specified as a Uniform Resource Locator (URL). FTP or TFTP can be used for the bulk statistics file transfer. |
| **Example:**            | RP/0/RP0/CPU0:router(config-bulk-tr)# url primary ftp://user:password@host/folder/bulkstat1 |
| **Step 8**              | **url secondary url**                                                                                                                  |
|                         | (Optional) Specifies a backup transfer destination and protocol for use in the event that transfer to the primary location fails. FTP or TFTP can be used for the bulk statistics file transfer. |
| **Example:**            | RP/0/RP0/CPU0:router(config-bulk-tr)# url secondary tftp://10.1.0.1/tftboot/user/bulkstat1 |
| **Step 9**              | **retry number**                                                                                                                        |
|                         | (Optional) Specifies the number of transmission retries. The default value is 0 (in other words, no retries). If an attempt to send the bulk statistics file fails, the system can be configured to attempt to send the file again using this command. |
| **Example:**            | RP/0/RP0/CPU0:router(config-bulk-tr)# retry 1  |
| **Step 10**             | **retain minutes**                                                                                                                     |
|                         | (Optional) Specifies how long the bulk statistics file should be kept in system memory, in minutes, after the completion of the collection interval and a transmission attempt is made. The default value is 0. Zero (0) indicates that the file is deleted immediately after the transfer is attempted. The valid range is from 0 to 20000. |
| **Example:**            | RP/0/RP0/CPU0:router(config-bulk-tr)# retain 60 |
### Command or Action | Purpose
--- | ---
**Note** | If the retry command is used, you should configure a retain interval larger than 0. The interval between retries is the retain interval divided by the retry number. For example, if `retain 10` and `retry 2` are configured, two retries are attempted once every 5 minutes. Therefore, if retain 0 is configured, no retries are attempted.

**Step 11** | `enable`  
**Example:**  
RP/0/RP0/CPU0:router(config-bulk-tr)# enable  
| Begins the bulk statistics data collection and transfer process for this configuration.  
• For successful execution of this action, at least one schema with non-zero number of objects must be configured.  
• Periodic collection and file transfer begins only if this command is configured. Conversely, the `no enable` command stops the collection process. A subsequent `enable` starts the operations again.  
• Each time the collection process is started using the `enable` command, data is collected into a new bulk statistics file. When the `no enable` command is used, the transfer process for any collected data immediately begins (in other words, the existing bulk statistics file is transferred to the specified management station).

**Step 12** | `commit`

---

**What to Do Next**

**Note** | If the maximum buffer size for a bulk statistics file is reached before the transfer interval time expires, the transfer operation is still initiated, but any bulk statistics data received after the file was full, and before it was transferred, are deleted. To correct this behavior, you can decrease the polling frequency, or increase the size of the bulk statistics buffer.

If `retain 0` is configured, no retries are attempted. This is because the interval between retries is the retain value divided by the retry value. For example, if `retain 10` and `retry 2` are configured, retries are attempted once every 5 minutes. Therefore, if you configure the retry command, you should also configure an appropriate value for the retain command.

---

### Monitoring Periodic MIB Data Collection and Transfer

**SUMMARY STEPS**

1. `show snmp mib bulkstat transfer transfer-name`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
show snmp mib bulkstat transfer transfer-name | (Optional) The show command for this feature lists all bulk statistics virtual files (VFiles) on the system that have finished collecting data. (Data files that are not complete are not displayed.) The output lists all of the completed local bulk statistics files, the remaining time left before the bulk statistics file is deleted (remaining retention period), and the state of the bulk statistics file. The “STATE” of the bulk statistics file is one of the following:

  - Queued--Indicates that the data collection for this bulk statistics file is completed (in other words, the transfer interval has been met) and that the bulk statistics file is waiting for transfer to the configured destination(s).
  - Retry--Indicates that one or more transfer attempts have failed and that the file transfer will be attempted again. The number of retry attempts remaining are displayed in parenthesis.
  - Retained--Indicates that the bulk statistics file has either been successfully transmitted or that the configured number of retries have been completed.

To display only the status of a named transfer (as opposed to all configured transfers), specify the name of the transfer in the transfer-name argument. |

### show snmp mib bulkstat transfer Sample Output

```
RP/0/RP0/CPU0:router# show snmp mib bulkstat transfer

Transfer Name : ifmib
Retained files

File Name : Time Left (in seconds) :STATE
ifmib_Router_020421_100554683 : 173 : Retry (2 Retry attempt(s) Left)
```

## Periodic MIB Data Collection and Transfer: Example

This example shows how to configure periodic MIB data collection and transfer:

```
snmp-server mib bulkstat object-list cempo
add cempMemPoolName
add cempMemPoolType

snmp-server mib bulkstat schema cempWild
object-list cempo
instance wild oid 8695772
poll-interval 1

snmp-server mib bulkstat schema cempRepeat
object-list cempo
instance repetition 8695772.1 max 4294967295
poll-interval 1

snmp-server mib bulkstat transfer-id cemp1
enable
```
schema cempWild
schema cempRepeat
transfer-interval 2
!

This example shows sample bulk statistics file content:

```
Schema-def cemp1.cempWild "%u, %s, %s, %d" Epochtime instanceoid
 1.3.6.1.4.1.9.9.221.1.1.1.1.3 1.3.6.1.4.1.9.9.221.1.1.1.1.2
 cemp1.cempWild: 133491515, 8695772.1, processor, 2
 cemp1.cempWild: 133491515, 8695772.2, reserved, 11
 cemp1.cempWild: 133491515, 8695772.3, image, 12
 cemp1.cempWild: 133491575, 8695772.1, processor, 2
 cemp1.cempWild: 133491575, 8695772.2, reserved, 11
 cemp1.cempWild: 133491575, 8695772.3, image, 12

Schema-def cemp1.cempRepeat "%u, %s, %s, %d" Epochtime instanceoid
 1.3.6.1.4.1.9.9.221.1.1.1.1.3 1.3.6.1.4.1.9.9.221.1.1.1.1.2
 cemp1.cempRepeat: 133491515, 8695772.1, processor, 2
 cemp1.cempRepeat: 133491515, 8695772.2, reserved, 11
 cemp1.cempRepeat: 133491515, 8695772.3, image, 12
 cemp1.cempRepeat: 133491515, 26932192.1, processor, 2
 cemp1.cempRepeat: 133491515, 26932192.2, reserved, 11
 cemp1.cempRepeat: 133491515, 26932192.3, image, 12
 cemp1.cempRepeat: 133491515, 35271015.1, processor, 2
 cemp1.cempRepeat: 133491515, 35271015.2, reserved, 11
 cemp1.cempRepeat: 133491515, 35271015.3, image, 12
 cemp1.cempRepeat: 133491515, 52690955.1, processor, 2
 cemp1.cempRepeat: 133491515, 52690955.2, reserved, 11
 cemp1.cempRepeat: 133491515, 52690955.3, image, 12
```

System Management Configuration Guide for Cisco CRS Routers, IOS XR Release 6.2.x
Implementing CDP

Cisco Discovery Protocol (CDP) is a media- and protocol-independent protocol that runs on all Cisco-manufactured equipment including routers, bridges, access and communication servers, and switches. Using CDP, you can view information about all the Cisco devices that are directly attached to the device.

This module describes the new and revised tasks you need to implement CDP on your Cisco IOS XR network. For more information about CDP on the Cisco IOS XR software and complete descriptions of the CDP commands listed in this module, refer to Related Documents, on page 394. To locate documentation for other commands that might appear in the course of running a configuration task, search online in Cisco IOS XR Commands Master List for the Cisco CRS Router.

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 2.0</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

This module contains the following topics:

- Prerequisites for Implementing CDP, page 387
- Information About Implementing CDP, page 388
- How to Implement CDP on Cisco IOS XR Software, page 389
- Configuration Examples for Implementing CDP, page 394
- Additional References, page 394

Prerequisites for Implementing CDP

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
Information About Implementing CDP

CDP is primarily used to obtain protocol addresses of neighboring devices and discover the platform of those devices. CDP can also be used to display information about the interfaces your router uses. CDP is media- and protocol-independent, and runs on all equipment manufactured by Cisco, including routers, bridges, access servers, and switches.

Use of SNMP with the CDP MIB allows network management applications to learn the device type and the SNMP agent address of neighboring devices and to send SNMP queries to those devices. CDP uses the CISCO-CDP-MIB.

CDP runs on all media that support Subnetwork Access Protocol (SNAP), including LAN, Frame Relay, and ATM physical media. CDP runs over the data link layer only. Therefore, two systems that support different network-layer protocols can learn about each other.

Each device configured for CDP sends periodic messages, known as advertisements, to a multicast address. Each device advertises at least one address at which it can receive SNMP messages. The advertisements also contain time-to-live, or hold-time, information, which indicates the length of time a receiving device holds CDP information before discarding it. Each device also listens to the periodic CDP messages sent by others to learn about neighboring devices and determine when their interfaces to the media go up or down.

CDP Version-2 (CDPv2) is the most recent release of the protocol and provides more intelligent device tracking features. These features include a reporting mechanism that allows for more rapid error tracking, thereby reducing costly downtime. Reported error messages can be sent to the console or to a logging server, and can cover instances of unmatching native VLAN IDs (IEEE 802.1Q) on connecting ports, and unmatching port duplex states between connecting devices.

CDPv2 show commands can provide detailed output on VLAN Trunking Protocol (VTP) management domain and duplex modes of neighbor devices, CDP-related counters, and VLAN IDs of connecting ports.

Type-length-value fields (TLVs) are blocks of information embedded in CDP advertisements. Table 41: Type-Length-Value Definitions for CDPv2, on page 388 summarizes the TLV definitions for CDP advertisements.

Table 41: Type-Length-Value Definitions for CDPv2

<table>
<thead>
<tr>
<th>TLV</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device-ID TLV</td>
<td>Identifies the device name in the form of a character string.</td>
</tr>
<tr>
<td>Address TLV</td>
<td>Contains a list of network addresses of both receiving and sending devices.</td>
</tr>
<tr>
<td>Port-ID TLV</td>
<td>Identifies the port on which the CDP packet is sent.</td>
</tr>
<tr>
<td>Capabilities TLV</td>
<td>Describes the functional capability for the device in the form of a device type; for example, a switch.</td>
</tr>
<tr>
<td>Version TLV</td>
<td>Contains information about the software release version on which the device is running.</td>
</tr>
<tr>
<td>Platform TLV</td>
<td>Describes the hardware platform name of the device, for example, Cisco 4500.</td>
</tr>
</tbody>
</table>
### How to Implement CDP on Cisco IOS XR Software

**Enabling CDP**

To enable CDP, you must first enable CDP globally on the router and then enable CDP on a per-interface basis. This task explains how to enable CDP globally on the router and then enable CDP on an interface.

**SUMMARY STEPS**

1. `configure`
2. `cdp`
3. `interface type interface-path-id`
4. `cdp`
5. `commit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td><code>cdp</code></td>
<td>Enables CDP globally.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(config)# cdp</code></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td><code>interface type interface-path-id</code></td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP0/CPU0:router(config)# interface pos 0/0/0/1</code></td>
<td></td>
</tr>
</tbody>
</table>
### Modifying CDP Default Settings

This task explains how to modify the default version, hold-time setting, and timer settings.

**Note**
The commands can be entered in any order.

#### SUMMARY STEPS

1. configure
2. cdp advertise v1
3. cdp holdtime seconds
4. cdp timer seconds
5. commit
6. (Optional) show cdp

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Configures CDP to use only version 1 (CDPv1) in communicating with neighboring devices.</td>
</tr>
<tr>
<td><strong>Step 2</strong> cdp advertise v1</td>
<td>Enables CDP on an interface.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RP0/CPU0:router(config-if)# cdp advertise v1
```

• By default, when CDP is enabled, the router sends CDPv2 packets. CDP also sends and receives CDPv1 packets if the device with which CDP is interacting does not process CDPv2 packets.

• In this example, the router is configured to send and receive only CDPv1 packets.
### Implementing CDP

#### Monitoring CDP

This task shows how to monitor CDP.

---

**Note**

The commands can be entered in any order.

---

**SUMMARY STEPS**

1. `show cdp entry { * | entry-name } [ protocol | version ]`
2. `show cdp interface [ type interface-path-id | location node-id ]`
3. `show cdp neighbors [ type interface-path-id | location node-id ] [ detail ]`
4. `show cdp traffic [ location node-id ]`

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3** | cdp holdtime *seconds*
| **Example:**  |
| RP/0/RP0/CPU0:router(config)# cdp holdtime 30 | Specifies the amount of time that the receiving networking device will hold a CDP packet sent from the router before discarding it.  
- By default, when CDP is enabled, the receiving networking device holds a CDP packet for 180 seconds before discarding it.  
- **Note** The CDP hold time must be set to a higher number of seconds than the time between CDP transmissions, which is set with the `cdp timer` command.  
- In this example, the value of hold-time for the `seconds` argument is set to 30. |
| **Step 4** | cdp timer *seconds*
| **Example:**  |
| RP/0/RP0/CPU0:router(config)# cdp timer 20 | Specifies the frequency at which CDP update packets are sent.  
- By default, when CDP is enabled, CDP update packets are sent at a frequency of once every 60 seconds.  
- **Note** A lower timer setting causes CDP updates to be sent more frequently.  
- In this example, CDP update packets are configured to be sent at a frequency of once every 20 seconds. |
| **Step 5** | commit |
| **Step 6** | show cdp |
| **Example:**  |
| RP/0/RP0/CPU0:router# show cdp | (Optional) Displays global CDP information. The output displays the CDP version running on the router, the hold time setting, and the timer setting. |
# DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Displays information about a specific neighboring device or all neighboring devices discovered using CDP.</td>
</tr>
<tr>
<td>`show cdp entry [*</td>
<td><code>entry-name</code>] [protocol</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router# show cdp entry *</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Displays information about the interfaces on which CDP is enabled.</td>
</tr>
<tr>
<td>`show cdp interface [type interface-path-id</td>
<td>location node-id]`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router# show cdp interface pos 0/0/0/1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Displays detailed information about neighboring devices discovered using CDP.</td>
</tr>
<tr>
<td>`show cdp neighbors [type interface-path-id</td>
<td>location node-id] [detail]`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router# show cdp neighbors</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Displays information about the traffic gathered between devices using CDP.</td>
</tr>
<tr>
<td><code>show cdp traffic [location node-id]</code></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router# show cdp traffic</code></td>
<td></td>
</tr>
</tbody>
</table>

## Examples

The following is sample output for the `show cdp neighbors` command:

```
RP/0/RP0/CPU0:router# show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
 S - Switch, H - Host, I - IGMP, r - Repeater

Device ID Local Intrfce Holdtme Capability Platform Port ID
router1 Mg0/0/CPU0/0 177 T S WS-C2924M Fa0/12
router2 P00/4/0/0 157 R 12008/GRP P00/4/0/1
```

The following is sample output for the `show cdp neighbors` command. In this example, the optional `type instance` arguments are used in conjunction with the `detail` optional keyword to display detailed information about a CDP neighbor. The output includes information on both IPv4 and IPv6 addresses.

```
RP/0/RP0/CPU0:router# show cdp neighbors POS 0/4/0/0 detail

Device ID: uut-user
SysName : uut-user
Entry address(es):
IPv4 address: 1.1.1.1
IPv6 address: 1::1
IPv6 address: 2::2
```
Implementing CDP

Monitoring CDP

Platform: cisco 12008/GRP, Capabilities: Router
Interface: POS0/4/0/3
Port ID (outgoing port): POS0/2/0/3
Holdtime : 177 sec

Version :
Cisco IOS XR Software, Version 0.0.0[Default]
Copyright (c) 2005 by cisco Systems, Inc.
advertisement version: 2

The following is sample output for the `show cdp entry` command. In this example, the optional `entry` argument is used to display entry information related to a specific CDP neighbor.

RP/0/RP0/CPU0:router# show cdp entry router2
advertisement version: 2
-------------------------
Device ID: router2
SysName : router2
Entry address(es):
Platform: cisco 12008/GRP, Capabilities: Router
Interface: POS0/4/0/0
Port ID (outgoing port): POS0/4/0/1
Holdtime : 145 sec

Version :
Cisco IOS XR Software, Version 0.48.0[Default]
Copyright (c) 2004 by cisco Systems, Inc.
advertisement version: 2

The following is sample output for the `show cdp interface` command. In this example, CDP information related to Packet over SONET/SDH (POS) interface 0/4/0/0 is displayed.

RP/0/RP0/CPU0:router# show cdp interface pos 0/4/0/0

POS0/4/0/0 is Up
Encapsulation HDLC
Sending CDP packets every 60 seconds
Holdtime is 180 seconds

The following is sample output for the `show cdp traffic` command:

RP/0/RP0/CPU0:router# show cdp traffic

CDP counters :
Packets output: 194, Input: 99
Hdr syntax: 0, Chksum error: 0, Encaps failed: 0
No memory: 0, Invalid packet: 0, Truncated: 0
CDP version 2 advertisements output: 194, Input: 99
Unrecognize Hdr version: 0, File open failed: 0

The following is sample output for the `show cdp traffic` command. In this example, the optional `location` keyword and `node-id` argument are used to display information about the traffic gathered between devices using CDP from the specified node.

RP/0/RP0/CPU0:router# show cdp traffic location 0/4/cpu0

CDP counters :
Packets output: 16, Input: 13
Hdr syntax: 0, Chksum error: 0, Encaps failed: 0
No memory: 0, Invalid packet: 0, Truncated: 0
CDP version 1 advertisements output: 0, Input: 0
Configuration Examples for Implementing CDP

Enabling CDP: Example

The following example shows how to configure CDP globally and then enable CDP on Packet over SONET/SDH (POS) interface 0/3/0/0:

```c
cdp
 interface POS0/3/0/0
 cdp
```

Modifying Global CDP Settings: Example

The following example shows how to modify global CDP settings. In this example, the timer setting is set to 20 seconds, the hold-time setting is set to 30 seconds, and the version of CDP used to communicate with neighboring devices is set to CDPv1:

```c
cdp timer 20
 cdp holdtime 30
 cdp advertise v1
```

The following example shows how to use the `show cdp` command to verify the CDP global settings:

```c
RP/0/RP0/CPU0:router# show cdp

Global CDP information:
 Sending CDP packets every 20 seconds
 Sending a holdtime value of 30 seconds
 Sending CDPv2 advertisements is not enabled
```

Additional References

The following sections provide references related to implementing CDP on Cisco IOS XR software.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR CDP commands</td>
<td><code>CDP Commands on Cisco IOS XR Software</code> module of <code>Cisco IOS XR System Management Command Reference for the Cisco CRS Router</code></td>
</tr>
<tr>
<td>Cisco IOS XR commands</td>
<td><code>Cisco IOS XR Commands Master List for the Cisco CRS Router</code></td>
</tr>
<tr>
<td>Cisco IOS XR XML API material</td>
<td><code>Cisco IOS XR XML API Guide for the Cisco CRS Router</code></td>
</tr>
</tbody>
</table>
Related Topic | Document Title
--- | ---
Getting started with Cisco IOS XR Software | *Cisco IOS XR Getting Started Guide for the Cisco CRS Router*
Information about user groups and task IDs | *Configuring AAA Services on Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco CRS Router*

### Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: <a href="http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml">http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</a></td>
</tr>
</tbody>
</table>

### RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

### Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>