
Implementing BGP

Border Gateway Protocol (BGP) is an Exterior Gateway Protocol (EGP) that allows you to create loop-free
interdomain routing between autonomous systems. An autonomous system is a set of routers under a single
technical administration. Routers in an autonomous system can use multiple Interior Gateway Protocols (IGPs)
to exchange routing information inside the autonomous system and an EGP to route packets outside the
autonomous system.

This module provides the conceptual and configuration information for BGP on Cisco IOS XR software.

For more information about BGP on the Cisco IOS XR software and complete descriptions of the BGP
commands listed in this module, see Related Documents, on page 229 section of this module. To locate
documentation for other commands that might appear while performing a configuration task, search online
in the Cisco IOS XR software master command index.

Note

Feature History for Implementing BGP

ModificationRelease

This feature was introduced.Release 2.0

No modification.Release 3.0

No modification.Release 3.2

VPN routing and forwarding (VRF) support was added, including information on VRF
command modes and command syntax.

BGP cost community information was added.

Release 3.3.0

The following features were supported:

• Four-byte autonomous system (AS) number

• Carrier supporting carrier (CSC) for BGP was added. See Cisco IOS XR Multiprotocol
Label Switching Protocol Configuration Guide for information

• Key chains

Release 3.4.0

Implementing BGP
1

ModificationRelease

The following features were supported:

• IPv6 Provider Edge and IPv6 VPN Provider Edge over Multiprotocol Label Switching

• Neighbor-specific VRF IPv6 address family configurations

• Address family group-specific VPNv6 configurations

• VPN4/VPNv6 over IP core using L2TPv3 tunnels

• Multicast Distribution Tree (MDT) Subaddress Family Identifier Information (SAFI)
support for multicast VPN (MVPN)

Release 3.5.0

No modification.Release 3.6.0

The following features were supported:

• Advertisement of VRF routes for multicast VPNs (MVPN) for both IPv4 and IPv6
address families from PE to PE

• Edits were made to existing MVPN procedures based on new support for IPv6 multicast
VPNs

• Procedure Configuring anMDTAddress Family Session in BGP, on page 57was updated
to reflect MVPN configuration of MDT SAFI from PE to PE

Release 3.7.0

The following features were supported:

• Border Gateway Protocol (BGP) nonstop routing (NSR) with stateful switchover (SSO)

• Next hop as the IPv6 address of peering interface

• Reset weight on import of VPN routes

• New commands enforce-first-as and enforce-first-as-disablewere introduced to provide
enable and disable configuration options for enforce-first-as feature in Neighbor, Neighbor
group, and Session group configuration modes.

Release 3.8.0

The following features were supported:

• BGP Best–External Path

• BGP Prefix Independent Convergence Unipath Primary Backup

• BGP Local Label Retention

• BGP Over GRE Interfaces

• Asplain notation for 4-byte Autonomous System Number

• Command Line Interface (CLI) consistency for BGP commands

• L2VPN Address Family Configuration Mode

Release 3.9.0

Implementing BGP
2

Implementing BGP

ModificationRelease

The following features were supported:

• Accumulated iGP (AiGP)

• BGP Add Path Advertisement

• iBGP Multipath Load Sharing

• Next Hop Self on Route Reflector for iBGP+Label

Release 4.0.0

The following features were supported:

• BGP RT Constrained Route Distribution

Release 4.1.0

The BGP Accept Own feature was added.Release 4.1.1

The following features were supported:

• BGP Multi-Instance/Multi-AS Support

• BFD Multihop Support for BGP

• BGP Error Handling

Support for Distributed BGP (bgp distributed speaker) configuration was removed.

Release 4.2.0

The following features were supported:

• BGP 3107 PIC Updates for Global Prefixes

• BGP Prefix Independent Convergence for RIB and FIB

• BGP Prefix Origin Validation Based on RPKI

Release 4.2.1

The BGP Attribute Filtering feature was added.Release 4.2.3

The BGP DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing feature wad
added.

Release 4.3.0

The following features were supported

• BGP VRF Dynamic Route Leaking

The label-allocation-mode command is renamed the label mode command.

Release 4.3.1

The following features were supported:

• L3VPN iBGP-PE-CE configuration

• Source-based flow tag

• Discard extra paths

Release 5.3.1

Implementing BGP
3

Implementing BGP

ModificationRelease

The following features were supported:

• Graceful Maintenance

• Per Neighbor TCP MSS

Release 5.3.2

• Prerequisites for Implementing BGP, on page 4
• Information About Implementing BGP, on page 4
• Recent Prefixes Events and Trace Support, on page 86
• How to Implement BGP, on page 90
• Configuration Examples for Implementing BGP, on page 213
• Flow-tag propagation, on page 228
• Where to Go Next, on page 229
• Additional References, on page 229

Prerequisites for Implementing BGP
You must be in a user group associated with a task group that includes the proper task IDs. The command
reference guides include the task IDs required for each command. If you suspect user group assignment is
preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing BGP
To implement BGP, you need to understand the following concepts:

BGP Functional Overview
BGP uses TCP as its transport protocol. Two BGP routers form a TCP connection between one another (peer
routers) and exchange messages to open and confirm the connection parameters.

BGP routers exchange network reachability information. This information is mainly an indication of the full
paths (BGP autonomous system numbers) that a route should take to reach the destination network. This
information helps construct a graph that shows which autonomous systems are loop free and where routing
policies can be applied to enforce restrictions on routing behavior.

Any two routers forming a TCP connection to exchange BGP routing information are called peers or neighbors.
BGP peers initially exchange their full BGP routing tables. After this exchange, incremental updates are sent
as the routing table changes. BGP keeps a version number of the BGP table, which is the same for all of its
BGP peers. The version number changes whenever BGP updates the table due to routing information changes.
Keepalive packets are sent to ensure that the connection is alive between the BGP peers and notification
packets are sent in response to error or special conditions.

Other than enabling RTC (route target constraint) with address-family ipv4 rtfilter command, there is
no separate configuration needed to enable RTC for BGP EVPN.

Note

Implementing BGP
4

Implementing BGP
Prerequisites for Implementing BGP

For information on configuring BGP to distribute Multiprotocol Label Switching (MPLS) Layer 3 virtual
private network (VPN) information, see the Cisco IOS XR Multiprotocol Label Switching Configuration
Guide for the Cisco CRS-1 Router.

For information on BGP support for Bidirectional Forwarding Detection (BFD), see theCisco IOS XR Interface
and Hardware Configuration Guide for the Cisco CRS-1 Router and theCisco IOS XR Interface and Hardware
Command Reference for the Cisco CRS-1 Router.

Note

BGP Router Identifier
For BGP sessions between neighbors to be established, BGP must be assigned a router ID. The router ID is
sent to BGP peers in the OPEN message when a BGP session is established.

BGP attempts to obtain a router ID in the following ways (in order of preference):

• By means of the address configured using the bgp router-id command in router configuration mode.

• By using the highest IPv4 address on a loopback interface in the system if the router is booted with saved
loopback address configuration.

• By using the primary IPv4 address of the first loopback address that gets configured if there are not any
in the saved configuration.

If none of these methods for obtaining a router ID succeeds, BGP does not have a router ID and cannot establish
any peering sessions with BGP neighbors. In such an instance, an error message is entered in the system log,
and the show bgp summary command displays a router ID of 0.0.0.0.

After BGP has obtained a router ID, it continues to use it even if a better router ID becomes available. This
usage avoids unnecessary flapping for all BGP sessions. However, if the router ID currently in use becomes
invalid (because the interface goes down or its configuration is changed), BGP selects a new router ID (using
the rules described) and all established peering sessions are reset.

We strongly recommend that the bgp router-id command is configured to prevent unnecessary changes to
the router ID (and consequent flapping of BGP sessions).

Note

BGP Maximum Prefix - Discard Extra Paths
IOS XR BGP maximum-prefix feature imposes a maximum limit on the number of prefixes that are received
from a neighbor for a given address family. Whenever the number of prefixes received exceeds the maximum
number configured, the BGP session is terminated, which is the default behavior, after sending a cease
notification to the neighbor. The session is down until a manual clear is performed by the user. The session
can be resumed by using the clear bgp command. It is possible to configure a period after which the session
can be automatically brought up by using the maximum-prefix command with the restart keyword. The
maximum prefix limit can be configured by the user. Default limits are used if the user does not configure
the maximum number of prefixes for the address family. For default limits, refer to BGP Default Limits, on
page 6.

Discard Extra Paths

Implementing BGP
5

Implementing BGP
BGP Router Identifier

An option to discard extra paths is added to the maximum-prefix configuration. Configuring the discard extra
paths option drops all excess prefixes received from the neighbor when the prefixes exceed the configured
maximum value. This drop does not, however, result in session flap.

The benefits of discard extra paths option are:

• Limits the memory footstamp of BGP.

• Stops the flapping of the peer if the paths exceed the set limit.

When the discard extra paths configuration is removed, BGP sends a route-refresh message to the neighbor
if it supports the refresh capability; otherwise the session is flapped.

On the same lines, the following describes the actions when the maximum prefix value is changed:

• If the maximum value alone is changed, a route-refresh message is sourced, if applicable.

• If the new maximum value is greater than the current prefix count state, the new prefix states are saved.

• If the new maximum value is less than the current prefix count state, then some existing prefixes are
deleted to match the new configured state value.

There is currently no way to control which prefixes are deleted.

For detailed configuration steps, see Configuring Discard Extra Paths, on page 106.

Restrictions
These restrictions apply to the discard extra paths feature:

• When the router drops prefixes, it is inconsistent with the rest of the network, resulting in possible routing
loops.

• If prefixes are dropped, the standby and active BGP sessions may drop different prefixes. Consequently,
an NSR switchover results in inconsistent BGP tables.

• The discard extra paths configuration cannot co-exist with the soft reconfig configuration.

BGP Default Limits
Cisco IOS XRBGP imposes maximum limits on the number of neighbors that can be configured on the router
and on the maximum number of prefixes that are accepted from a peer for a given address family. This
limitation safeguards the router from resource depletion caused by misconfiguration, either locally or on the
remote neighbor. The following limits apply to BGP configurations:

• The default maximum number of peers that can be configured is 4000. The default can be changed using
the bgp maximum neighbor command. The limit range is 1 to 15000. Any attempt to configure
additional peers beyond the maximum limit or set the maximum limit to a number that is less than the
number of peers currently configured will fail.

• To prevent a peer from flooding BGP with advertisements, a limit is placed on the number of prefixes
that are accepted from a peer for each supported address family. The default limits can be overridden
through configuration of the maximum-prefix limit command for the peer for the appropriate address
family. The following default limits are used if the user does not configure the maximum number of
prefixes for the address family:

• IPv4 Unicast: 1048576

Implementing BGP
6

Implementing BGP
Restrictions

• IPv4 Labeled-unicast: 131072

• IPv4 Tunnel: 1048576

• IPv6 Unicast: 524288

• IPv6 Labeled-unicast: 131072

• IPv4 Multicast: 131072

• IPv6 Multicast: 131072

• IPv4 MVPN: 2097152

• VPNv4 Unicast: 2097152

• IPv4 MDT: 131072

• VPNv6 Unicast: 1048576

• L2VPN EVPN: 2097152

A cease notificationmessage is sent to the neighbor and the peering with the neighbor is terminated when
the number of prefixes received from the peer for a given address family exceeds the maximum limit
(either set by default or configured by the user) for that address family.

It is possible that the maximum number of prefixes for a neighbor for a given address family has been
configured after the peering with the neighbor has been established and a certain number of prefixes
have already been received from the neighbor for that address family. A cease notification message is
sent to the neighbor and peering with the neighbor is terminated immediately after the configuration if
the configured maximum number of prefixes is fewer than the number of prefixes that have already been
received from the neighbor for the address family.

BGP Next Hop Tracking
BGP receives notifications from the Routing Information Base (RIB) when next-hop information changes
(event-driven notifications). BGP obtains next-hop information from the RIB to:

• Determine whether a next hop is reachable.

• Find the fully recursed IGP metric to the next hop (used in the best-path calculation).

• Validate the received next hops.

• Calculate the outgoing next hops.

• Verify the reachability and connectedness of neighbors.

BGP is notified when any of the following events occurs:

• Next hop becomes unreachable

• Next hop becomes reachable

• Fully recursed IGP metric to the next hop changes

• First hop IP address or first hop interface change

Implementing BGP
7

Implementing BGP
BGP Next Hop Tracking

• Next hop becomes connected

• Next hop becomes unconnected

• Next hop becomes a local address

• Next hop becomes a nonlocal address

Reachability and recursed metric events trigger a best-path recalculation.Note

Event notifications from the RIB are classified as critical and noncritical. Notifications for critical and noncritical
events are sent in separate batches. However, a noncritical event is sent along with the critical events if the
noncritical event is pending and there is a request to read the critical events.

• Critical events are related to the reachability (reachable and unreachable), connectivity (connected and
unconnected), and locality (local and nonlocal) of the next hops. Notifications for these events are not
delayed.

• Noncritical events include only the IGPmetric changes. These events are sent at an interval of 3 seconds.
A metric change event is batched and sent 3 seconds after the last one was sent.

The next-hop trigger delay for critical and noncritical events can be configured to specify a minimum batching
interval for critical and noncritical events using the nexthop trigger-delay command. The trigger delay is
address family dependent.

The BGP next-hop tracking feature allows you to specify that BGP routes are resolved using only next hops
whose routes have the following characteristics:

• To avoid the aggregate routes, the prefix length must be greater than a specified value.

• The source protocol must be from a selected list, ensuring that BGP routes are not used to resolve next
hops that could lead to oscillation.

This route policy filtering is possible because RIB identifies the source protocol of route that resolved a next
hop as well as the mask length associated with the route. The nexthop route-policy command is used to
specify the route-policy.

For information on route policy filtering for next hops using the next-hop attach point, see the Implementing
Routing Policy Language on Cisco IOS XR Software module of Cisco IOS XR Routing Configuration
Guide (this publication).

Next Hop as the IPv6 Address of Peering Interface
BGP can carry IPv6 prefixes over an IPv4 session. The next hop for the IPv6 prefixes can be set through a
nexthop policy. In the event that the policy is not configured, the nexthops are set as the IPv6 address of the
peering interface (IPv6 neighbor interface or IPv6 update source interface, if any one of the interfaces is
configured).

If the nexthop policy is not configured and neither the IPv6 neighbor interface nor the IPv6 update source
interface is configured, the next hop is the IPv4 mapped IPv6 address.

Implementing BGP
8

Implementing BGP
Next Hop as the IPv6 Address of Peering Interface

Scoped IPv4/VPNv4 Table Walk
To determine which address family to process, a next-hop notification is received by first de-referencing the
gateway context associated with the next hop, then looking into the gateway context to determine which
address families are using the gateway context. The IPv4 unicast and VPNv4 unicast address families share
the same gateway context, because they are registered with the IPv4 unicast table in the RIB. As a result, both
the global IPv4 unicast table and the VPNv4 table are is processed when an IPv4 unicast next-hop notification
is received from the RIB. A mask is maintained in the next hop, indicating if whether the next hop belongs
to IPv4 unicast or VPNv4 unicast, or both. This scoped table walk localizes the processing in the appropriate
address family table.

Reordered Address Family Processing
The Cisco IOS XR software walks address family tables based on the numeric value of the address family.
When a next-hop notification batch is received, the order of address family processing is reordered to the
following order:

• IPv4 tunnel

• VPNv4 unicast

• VPNv6 unicast

• IPv4 labeled unicast

• IPv4 unicast

• IPv4 MDT

• IPv4 multicast

• IPv6 unicast

• IPv6 multicast

• IPv6 labeled unicast

New Thread for Next-Hop Processing
The critical-event thread in the spkr process handles only next-hop, Bidirectional Forwarding Detection (BFD),
and fast-external-failover (FEF) notifications. This critical-event thread ensures that BGP convergence is not
adversely impacted by other events that may take a significant amount of time.

show, clear, and debug Commands
The show bgp nexthops command provides statistical information about next-hop notifications, the amount
of time spent in processing those notifications, and details about each next hop registered with the RIB. The
clear bgp nexthop performance-statistics command ensures that the cumulative statistics associated with
the processing part of the next-hop show command can be cleared to help in monitoring. The clear bgp
nexthop registration command performs an asynchronous registration of the next hop with the RIB. See the
BGP Commands on Cisco IOS XR Softwaremodule of Routing Command Reference for Cisco CRS Routersfor
information on the next-hop show and clear commands.

The debug bgp nexthop command displays information on next-hop processing. The out keyword provides
debug information only about BGP registration of next hops with RIB. The in keyword displays debug
information about next-hop notifications received from RIB. The out keyword displays debug information

Implementing BGP
9

Implementing BGP
Scoped IPv4/VPNv4 Table Walk

about next-hop notifications sent to the RIB. See the BGP Debug Commands on Cisco IOS XR Software
module of Cisco IOS XR Routing Debug Command Reference for the Cisco CRS-1 Router .

Autonomous System Number Formats in BGP
Autonomous system numbers (ASNs) are globally unique identifiers used to identify autonomous systems
(ASs) and enable ASs to exchange exterior routing information between neighboring ASs. A unique ASN is
allocated to each AS for use in BGP routing. ASNs are encoded as 2-byte numbers and 4-byte numbers in
BGP.

RP/0/RP0/CPU0:router(config)# as-format [asdot | asplain]
RP/0/RP0/CPU0:router(config)# as-format asdot

2-byte Autonomous System Number Format
The 2-byte ASNs are represented in asplain notation. The 2-byte range is 1 to 65535.

4-byte Autonomous System Number Format
To prepare for the eventual exhaustion of 2-byte Autonomous SystemNumbers (ASNs), BGP has the capability
to support 4-byte ASNs. The 4-byte ASNs are represented both in asplain and asdot notations.

The byte range for 4-byte ASNs in asplain notation is 1-4294967295. The AS is represented as a 4-byte
decimal number. The 4-byte ASN asplain representation is defined in draft-ietf-idr-as-representation-01.txt.

For 4-byte ASNs in asdot format, the 4-byte range is 1.0 to 65535.65535 and the format is:

high-order-16-bit-value-in-decimal . low-order-16-bit-value-in-decimal

The BGP 4-byte ASN capability is used to propagate 4-byte-based AS path information across BGP speakers
that do not support 4-byte AS numbers. See draft-ietf-idr-as4bytes-12.txt for information on increasing the
size of an ASN from 2 bytes to 4 bytes. AS is represented as a 4-byte decimal number

as-format Command
The as-format command configures the ASN notation to asdot. The default value, if the as-format command
is not configured, is asplain.

BGP Configuration
BGP in Cisco IOS XR software follows a neighbor-based configuration model that requires that all
configurations for a particular neighbor be grouped in one place under the neighbor configuration. Peer groups
are not supported for either sharing configuration between neighbors or for sharing update messages. The
concept of peer group has been replaced by a set of configuration groups to be used as templates in BGP
configuration and automatically generated update groups to share update messages between neighbors.

Configuration Modes
BGP configurations are grouped into modes. The following sections show how to enter some of the BGP
configuration modes. From a mode, you can enter the ? command to display the commands available in that
mode.

Implementing BGP
10

Implementing BGP
Autonomous System Number Formats in BGP

https://tools.ietf.org/html/draft-ietf-idr-as-representation-01
https://tools.ietf.org/html/draft-ietf-idr-as4bytes-12

Router Configuration Mode

The following example shows how to enter router configuration mode:

RP/0/RP0/CPU0:router# configuration
RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)#

Router Address Family Configuration Mode

The following example shows how to enter router address family configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 112
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)#

Neighbor Configuration Mode

The following example shows how to enter neighbor configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.1
RP/0/RP0/CPU0:router(config-bgp-nbr)#

Neighbor Address Family Configuration Mode

The following example shows how to enter neighbor address family configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 112
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)#

VRF Configuration Mode

The following example shows how to enter VPN routing and forwarding (VRF) configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_A
RP/0/RP0/CPU0:router(config-bgp-vrf)#

VRF Address Family Configuration Mode

The following example shows how to enter VRF address family configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 112
RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_A
RP/0/RP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-vrf-af)#

Implementing BGP
11

Implementing BGP
Router Configuration Mode

Configuring Resilient Per-CE Label Mode Under VRF Address Family

Perform this task to configure resilient per-ce label mode under VRF address family.

Resilient per-CE 6PE label allocation is not supported on CRS-1 and CRS-3 routers, but supported only on
ASR 9000 routers.

Note

SUMMARY STEPS

1. configure
2. router bgpas-number

3. vrfvrf-instance

4. address-family {ipv4 | ipv6} unicast
5. label mode per-ce
6. Do one of the following:

• end
• commit

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)#

Enters global configuration mode.

Step 2 router bgpas-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 666
RP/0/RP0/CPU0:router(config-bgp)#

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 vrfvrf-instance

Example:

RP/0/RP0/CPU0:router(config-bgp)# vrf vrf-pe
RP/0/RP0/CPU0:router(config-bgp-vrf)#

Configures a VRF instance.

Step 4 address-family {ipv4 | ipv6} unicast

Example:

Implementing BGP
12

Implementing BGP
Configuring Resilient Per-CE Label Mode Under VRF Address Family

RP/0/RP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-vrf-af)#

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 5 label mode per-ce

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# label mode per-ce
RP/0/RP0/CPU0:router(config-bgp-vrf-af)#

Configures resilient per-ce label mode.

Step 6 Do one of the following:

• end
• commit

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# end

or

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# commit

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:

• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and
returns the router to EXEC mode.

• Entering no exits the configuration session and returns the router to EXEC mode without committing the
configuration changes.

• Entering cancel leaves the router in the current configuration session without exiting or committing the
configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain within the
configuration session.

Configuring Resilient Per-CE Label Mode Using a Route-Policy

Perform this task to configure resilient per-ce label mode using a route-policy.

Resilient per-CE 6PE label allocation is not supported on CRS-1 and CRS-3 routers, but supported only on
ASR 9000 routers.

Note

Implementing BGP
13

Implementing BGP
Configuring Resilient Per-CE Label Mode Using a Route-Policy

SUMMARY STEPS

1. configure
2. route-policypolicy-name

3. set label mode per-ce
4. Do one of the following:

• end
• commit

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)#

Enters global configuration mode.

Step 2 route-policypolicy-name

Example:

RP/0/RP0/CPU0:router(config)# route-policy route1
RP/0/RP0/CPU0:router(config-rpl)#

Creates a route policy and enters route policy configuration mode.

Step 3 set label mode per-ce

Example:

RP/0/RP0/CPU0:router(config-rpl)# set label mode per-ce
RP/0/RP0/CPU0:router(config-rpl)#

Configures resilient per-ce label mode.

Step 4 Do one of the following:

• end
• commit

Example:

RP/0/RP0/CPU0:router(config-rpl)# end

or

RP/0/RP0/CPU0:router(config-rpl)# commit

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:

Implementing BGP
14

Implementing BGP
Configuring Resilient Per-CE Label Mode Using a Route-Policy

• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and
returns the router to EXEC mode.

• Entering no exits the configuration session and returns the router to EXEC mode without committing the
configuration changes.

• Entering cancel leaves the router in the current configuration session without exiting or committing the
configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain within the
configuration session.

VRF Neighbor Configuration Mode

The following example shows how to enter VRF neighbor configuration mode:

Router(config)# router bgp 140
Router(config-bgp)# vrf vrf_A
Router(config-bgp-vrf)# neighbor 11.0.1.2
Router(config-bgp-vrf-nbr)#

VRF Neighbor Address Family Configuration Mode

The following example shows how to enter VRF neighbor address family configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 112
RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_A
RP/0/RP0/CPU0:router(config-bgp-vrf)# neighbor 11.0.1.2
RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#

VPNv4 Address Family Configuration Mode

The following example shows how to enter VPNv4 address family configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 152
RP/0/RP0/CPU0:router(config-bgp)# address-family vpnv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)#

VPNv6 Address Family Configuration Mode

The following example shows how to enter VPNv6 address family configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 150
RP/0/RP0/CPU0:router(config-bgp)# address-family vpnv6 unicast
RP/0/RP0/CPU0:router(config-bgp-af)#

L2VPN Address Family Configuration Mode

The following example shows how to enter L2VPN address family configuration mode:

Implementing BGP
15

Implementing BGP
VRF Neighbor Configuration Mode

RP/0/RP0/CPU0:router(config)# router bgp 100
RP/0/RP0/CPU0:router(config-bgp)# address-family l2vpn vpls-vpws
RP/0/RP0/CPU0:router(config-bgp-af)#

Neighbor Submode
Cisco IOS XR BGP uses a neighbor submode to make it possible to enter configurations without having to
prefix every configuration with the neighbor keyword and the neighbor address:

• Cisco IOS XR software has a submode available for neighbors in which it is not necessary for every
command to have a “neighbor x.x.x.x” prefix:

In Cisco IOS XR software, the configuration is as follows:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 192.23.1.2
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2002
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast

• An address family configuration submode inside the neighbor configuration submode is available for
entering address family-specific neighbor configurations. In Cisco IOS XR software, the configuration
is as follows:

RP/0/RP0/CPU0:router(config-bgp)# neighbor 2002::2
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2023
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv6 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# next-hop-self
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy one in

• You must enter neighbor-specific IPv4, IPv6, VPNv4, or VPNv6 commands in neighbor address-family
configuration submode. In Cisco IOS XR software, the configuration is as follows:

RP/0/RP0/CPU0:router(config)# router bgp 109
RP/0/RP0/CPU0:router(config-bgp)# neighbor 192.168.40.24
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# maximum-prefix 1000

• Youmust enter neighbor-specific IPv4 and IPv6 commands in VRF neighbor address-family configuration
submode. In Cisco IOS XR software, the configuration is as follows:

RP/0/RP0/CPU0:router(config)# router bgp 110
RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_A
RP/0/RP0/CPU0:router(config-bgp-vrf)# neighbor 11.0.1.2
RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)# route-policy pass all in

Configuration Templates
The af-group, session-group, and neighbor-group configuration commands provide template support for
the neighbor configuration in Cisco IOS XR software.

Implementing BGP
16

Implementing BGP
Neighbor Submode

The af-group command is used to group address family-specific neighbor commands within an IPv4, IPv6,
VPNv4,or VPNv6 address family. Neighbors that have the same address family configuration are able to use
the address family group (af-group) name for their address family-specific configuration. A neighbor inherits
the configuration from an address family group by way of the use command. If a neighbor is configured to
use an address family group, the neighbor (by default) inherits the entire configuration from the address family
group. However, a neighbor does not inherit all of the configuration from the address family group if items
are explicitly configured for the neighbor. The address family group configuration is entered under the BGP
router configuration mode. The following example shows how to enter address family group configuration
mode :

RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# af-group afmcast1 address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-afgrp)#

The session-group command allows you to create a session group from which neighbors can inherit address
family-independent configuration. A neighbor inherits the configuration from a session group by way of the
use command. If a neighbor is configured to use a session group, the neighbor (by default) inherits the entire
configuration of the session group. A neighbor does not inherit all of the configuration from a session group
if a configuration is done directly on that neighbor. The following example shows how to enter session group
configuration mode:

RP/0/RP0/CPU0:router# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# session-group session1
RP/0/RP0/CPU0:router(config-bgp-sngrp)#

The neighbor-group command helps you apply the same configuration to one or more neighbors. Neighbor
groups can include session groups and address family groups and can comprise the complete configuration
for a neighbor. After a neighbor group is configured, a neighbor can inherit the configuration of the group
using the use command. If a neighbor is configured to use a neighbor group, the neighbor inherits the entire
BGP configuration of the neighbor group.

The following example shows how to enter neighbor group configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 123
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group nbrgroup1
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)#

The following example shows how to enter neighbor group address family configuration mode:

RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group nbrgroup1
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)#

• However, a neighbor does not inherit all of the configuration from the neighbor group if items are
explicitly configured for the neighbor. In addition, some part of the configuration of the neighbor group
could be hidden if a session group or address family group was also being used.

Configuration grouping has the following effects in Cisco IOS XR software:

• Commands entered at the session group level define address family-independent commands (the same
commands as in the neighbor submode).

Implementing BGP
17

Implementing BGP
Configuration Templates

• Commands entered at the address family group level define address family-dependent commands for a
specified address family (the same commands as in the neighbor-address family configuration submode).

• Commands entered at the neighbor group level define address family-independent commands and address
family-dependent commands for each address family (the same as all available neighbor commands),
and define the use command for the address family group and session group commands.

Template Inheritance Rules
In Cisco IOS XR software, BGP neighbors or groups inherit configuration from other configuration groups.

For address family-independent configurations:

• Neighbors can inherit from session groups and neighbor groups.

• Neighbor groups can inherit from session groups and other neighbor groups.

• Session groups can inherit from other session groups.

• If a neighbor uses a session group and a neighbor group, the configurations in the session group are
preferred over the global address family configurations in the neighbor group.

For address family-dependent configurations:

• Address family groups can inherit from other address family groups.

• Neighbor groups can inherit from address family groups and other neighbor groups.

• Neighbors can inherit from address family groups and neighbor groups.

Configuration group inheritance rules are numbered in order of precedence as follows:

1. If the item is configured directly on the neighbor, that value is used. In the example that follows, the
advertisement interval is configured both on the neighbor group and neighbor configuration and the
advertisement interval being used is from the neighbor configuration:

RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group AS_1
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# advertisement-interval 15
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.1.1.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group AS_1
RP/0/RP0/CPU0:router(config-bgp-nbr)# advertisement-interval 20

The following output from the show bgp neighbors command shows that the advertisement interval used
is 20 seconds:

RP/0/RP0/CPU0:router# show bgp neighbors 10.1.1.1

BGP neighbor is 10.1.1.1, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 20 seconds

Implementing BGP
18

Implementing BGP
Template Inheritance Rules

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1
eBGP neighbor with no inbound or outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:00:14, due to BGP neighbor initialized
External BGP neighbor not directly connected.

2. Otherwise, if an item is configured to be inherited from a session-group or neighbor-group and on the
neighbor directly, then the configuration on the neighbor is used. If a neighbor is configured to be inherited
from session-group or af-group, but no directly configured value, then the value in the session-group or
af-group is used. In the example that follows, the advertisement interval is configured on a neighbor group
and a session group and the advertisement interval value being used is from the session group:

RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# session-group AS_2
RP/0/RP0/CPU0:router(config-bgp-sngrp)# advertisement-interval 15
RP/0/RP0/CPU0:router(config-bgp-sngrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group AS_1
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# advertisement-interval 20
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor 192.168.0.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1
RP/0/RP0/CPU0:router(config-bgp-nbr)# use session-group AS_2
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group AS_1

The following output from the show bgp neighbors command shows that the advertisement interval used
is 15 seconds:

RP/0/RP0/CPU0:router# show bgp neighbors 192.168.0.1

BGP neighbor is 192.168.0.1, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 15 seconds

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1
eBGP neighbor with no inbound or outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:03:23, due to BGP neighbor initialized
External BGP neighbor not directly connected.

3. Otherwise, if the neighbor uses a neighbor group and does not use a session group or address family group,
the configuration value can be obtained from the neighbor group either directly or through inheritance.

Implementing BGP
19

Implementing BGP
Template Inheritance Rules

In the example that follows, the advertisement interval from the neighbor group is used because it is not
configured directly on the neighbor and no session group is used:

RP/0/RP0/CPU0:router(config)# router bgp 150
RP/0/RP0/CPU0:router(config-bgp)# session-group AS_2
RP/0/RP0/CPU0:router(config-bgp-sngrp)# advertisement-interval 20
RP/0/RP0/CPU0:router(config-bgp-sngrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group AS_1
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# advertisement-interval 15
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor 192.168.1.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group AS_1

The following output from the show bgp neighbors command shows that the advertisement interval used
is 15 seconds:

RP/0/RP0/CPU0:router# show bgp neighbors 192.168.1.1

BGP neighbor is 192.168.2.2, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 15 seconds

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1
eBGP neighbor with no outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
Inbound path policy configured
Policy for incoming advertisements is POLICY_1
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:01:14, due to BGP neighbor initialized
External BGP neighbor not directly connected.

To illustrate the same rule, the following example shows how to set the advertisement interval to 15 (from
the session group) and 25 (from the neighbor group). The advertisement interval set in the session group
overrides the one set in the neighbor group. The inbound policy is set to POLICY_1 from the neighbor
group.

RP/0/RP0/CPU0:routerconfig)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# session-group ADV
RP/0/RP0/CPU0:router(config-bgp-sngrp)# advertisement-interval 15
RP/0/RP0/CPU0:router(config-bgp-sngrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group ADV_2
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# advertisement-interval 25
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# route-policy POLICY_1 in
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# exit
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# exit

Implementing BGP
20

Implementing BGP
Template Inheritance Rules

RP/0/RP0/CPU0:router(config-bgp)# neighbor 192.168.2.2
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1
RP/0/RP0/CPU0:router(config-bgp-nbr)# use session-group ADV
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group ADV_2

The following output from the show bgp neighbors command shows that the advertisement interval used
is 15 seconds:

RP/0/RP0/CPU0:router# show bgp neighbors 192.168.2.2

BGP neighbor is 192.168.2.2, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 15 seconds

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1
eBGP neighbor with no inbound or outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:02:03, due to BGP neighbor initialized
External BGP neighbor not directly connected.

4. Otherwise, the default value is used. In the example that follows, neighbor 10.0.101.5 has the minimum
time between advertisement runs set to 30 seconds (default) because the neighbor is not configured to use
the neighbor configuration or the neighbor group configuration:

RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group AS_1
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# remote-as 1
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group adv_15
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# remote-as 10
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# advertisement-interval 15
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.101.5
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group AS_1
RP/0/RP0/CPU0:router(config-bgp-nbr)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.101.10
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group adv_15

The following output from the show bgp neighbors command shows that the advertisement interval used
is 30 seconds:

RP/0/RP0/CPU0:router# show bgp neighbors 10.0.101.5

BGP neighbor is 10.0.101.5, remote AS 1, local AS 140, external link
Remote router ID 0.0.0.0
BGP state = Idle
Last read 00:00:00, hold time is 180, keepalive interval is 60 seconds

Implementing BGP
21

Implementing BGP
Template Inheritance Rules

Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 30 seconds

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.2
eBGP neighbor with no inbound or outbound policy; defaults to 'drop'
Route refresh request: received 0, sent 0
0 accepted prefixes
Prefix advertised 0, suppressed 0, withdrawn 0, maximum limit 524288
Threshold for warning message 75%

Connections established 0; dropped 0
Last reset 00:00:25, due to BGP neighbor initialized
External BGP neighbor not directly connected.

The inheritance rules used when groups are inheriting configuration from other groups are the same as the
rules given for neighbors inheriting from groups.

Viewing Inherited Configurations
You can use the following show commands to view BGP inherited configurations:

show bgp neighbors

Use the show bgp neighbors command to display information about the BGP configuration for neighbors.

• Use the configuration keyword to display the effective configuration for the neighbor, including any
settings that have been inherited from session groups, neighbor groups, or address family groups used
by this neighbor.

• Use the inheritance keyword to display the session groups, neighbor groups, and address family groups
from which this neighbor is capable of inheriting configuration.

The show bgp neighbors command examples that follow are based on this sample configuration:

RP/0/RP0/CPU0:router(config)# router bgp 142
RP/0/RP0/CPU0:router(config-bgp)# af-group GROUP_3 address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-afgrp)# next-hop-self
RP/0/RP0/CPU0:router(config-bgp-afgrp)# route-policy POLICY_1 in
RP/0/RP0/CPU0:router(config-bgp-afgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# session-group GROUP_2
RP/0/RP0/CPU0:router(config-bgp-sngrp)# advertisement-interval 15
RP/0/RP0/CPU0:router(config-bgp-sngrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group GROUP_1
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# use session-group GROUP_2
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# ebgp-multihop 3
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# weight 100
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# send-community-ebgp
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# exit

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor 192.168.0.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 2
RP/0/RP0/CPU0:router(config-bgp-nbr)# use neighbor-group GROUP_1
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# use af-group GROUP_3

Implementing BGP
22

Implementing BGP
Viewing Inherited Configurations

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# weight 200

The following example displays sample output from the show bgp neighbors command using the inheritance
keyword. The example shows that the neighbor inherits session parameters from neighbor group GROUP_1,
which in turn inherits from session group GROUP_2. The neighbor inherits IPv4 unicast parameters from
address family group GROUP_3 and IPv4 multicast parameters from neighbor group GROUP_1:

RP/0/RP0/CPU0:router# show bgp neighbors 192.168.0.1 inheritance

Session: n:GROUP_1 s:GROUP_2
IPv4 Unicast: a:GROUP_3
IPv4 Multicast: n:GROUP_1

The following example displays sample output from the show bgp neighbors command using the
configuration keyword. The example shows from where each item of configuration was inherited, or if it
was configured directly on the neighbor (indicated by []). For example, the ebgp-multihop 3 command was
inherited from neighbor group GROUP_1 and the next-hop-self command was inherited from the address
family group GROUP_3:

RP/0/RP0/CPU0:router# show bgp neighbors 192.168.0.1 configuration

neighbor 192.168.0.1
remote-as 2 []
advertisement-interval 15 [n:GROUP_1 s:GROUP_2]
ebgp-multihop 3 [n:GROUP_1]
address-family ipv4 unicast []
next-hop-self [a:GROUP_3]
route-policy POLICY_1 in [a:GROUP_3]
weight 200 []
address-family ipv4 multicast [n:GROUP_1]
default-originate [n:GROUP_1]

show bgp af-group

Use the show bgp af-group command to display address family groups:

• Use the configuration keyword to display the effective configuration for the address family group,
including any settings that have been inherited from address family groups used by this address family
group.

• Use the inheritance keyword to display the address family groups from which this address family group
is capable of inheriting configuration.

• Use the users keyword to display the neighbors, neighbor groups, and address family groups that inherit
configuration from this address family group.

The show bgp af-group sample commands that follow are based on this sample configuration:

RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# af-group GROUP_3 address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-afgrp)# remove-private-as
RP/0/RP0/CPU0:router(config-bgp-afgrp)# route-policy POLICY_1 in
RP/0/RP0/CPU0:router(config-bgp-afgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# af-group GROUP_1 address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-afgrp)# use af-group GROUP_2
RP/0/RP0/CPU0:router(config-bgp-afgrp)# maximum-prefix 2500 75 warning-only

Implementing BGP
23

Implementing BGP
show bgp af-group

RP/0/RP0/CPU0:router(config-bgp-afgrp)# default-originate
RP/0/RP0/CPU0:router(config-bgp-afgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# af-group GROUP_2 address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-afgrp)# use af-group GROUP_3
RP/0/RP0/CPU0:router(config-bgp-afgrp)# send-community-ebgp
RP/0/RP0/CPU0:router(config-bgp-afgrp)# send-extended-community-ebgp
RP/0/RP0/CPU0:router(config-bgp-afgrp)# capability orf prefix both

The following example displays sample output from the show bgp af-group command using the
configuration keyword. This example shows from where each configuration item was inherited. The
default-originate command was configured directly on this address family group (indicated by []). The
remove-private-as command was inherited from address family group GROUP_2, which in turn inherited
from address family group GROUP_3:

RP/0/RP0/CPU0:router# show bgp af-group GROUP_1 configuration

af-group GROUP_1 address-family ipv4 unicast
capability orf prefix-list both [a:GROUP_2]
default-originate []
maximum-prefix 2500 75 warning-only []
route-policy POLICY_1 in [a:GROUP_2 a:GROUP_3]
remove-private-AS [a:GROUP_2 a:GROUP_3]
send-community-ebgp [a:GROUP_2]
send-extended-community-ebgp [a:GROUP_2]

The following example displays sample output from the show bgp af-group command using the users
keyword:

RP/0/RP0/CPU0:router# show bgp af-group GROUP_2 users

IPv4 Unicast: a:GROUP_1

The following example displays sample output from the show bgp af-group command using the inheritance
keyword. This shows that the specified address family group GROUP_1 directly uses the GROUP_2 address
family group, which in turn uses the GROUP_3 address family group:

RP/0/RP0/CPU0:router# show bgp af-group GROUP_1 inheritance

IPv4 Unicast: a:GROUP_2 a:GROUP_3

show bgp session-group

Use the show bgp session-group command to display session groups:

• Use the configuration keyword to display the effective configuration for the session group, including
any settings that have been inherited from session groups used by this session group.

• Use the inheritance keyword to display the session groups from which this session group is capable of
inheriting configuration.

• Use the users keyword to display the session groups, neighbor groups, and neighbors that inherit
configuration from this session group.

Implementing BGP
24

Implementing BGP
show bgp session-group

The output from the show bgp session-group command is based on the following session group configuration:

RP/0/RP0/CPU0:router(config)# router bgp 113
RP/0/RP0/CPU0:router(config-bgp)# session-group GROUP_1
RP/0/RP0/CPU0:router(config-bgp-sngrp)# use session-group GROUP_2
RP/0/RP0/CPU0:router(config-bgp-sngrp)# update-source Loopback 0
RP/0/RP0/CPU0:router(config-bgp-sngrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# session-group GROUP_2
RP/0/RP0/CPU0:router(config-bgp-sngrp)# use session-group GROUP_3
RP/0/RP0/CPU0:router(config-bgp-sngrp)# ebgp-multihop 2
RP/0/RP0/CPU0:router(config-bgp-sngrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# session-group GROUP_3
RP/0/RP0/CPU0:router(config-bgp-sngrp)# dmz-link-bandwidth

The following is sample output from the show bgp session-group command with the configuration keyword
in EXEC configuration mode:

RP/0/RP0/CPU0:router# show bgp session-group GROUP_1 configuration

session-group GROUP_1
ebgp-multihop 2 [s:GROUP_2]
update-source Loopback0 []
dmz-link-bandwidth [s:GROUP_2 s:GROUP_3]

The following is sample output from the show bgp session-group command with the inheritance keyword
showing that the GROUP_1 session group inherits session parameters from the GROUP_3 and GROUP_2
session groups:

RP/0/RP0/CPU0:router# show bgp session-group GROUP_1 inheritance

Session: s:GROUP_2 s:GROUP_3

The following is sample output from the show bgp session-group command with the users keyword showing
that both the GROUP_1 andGROUP_2 session groups inherit session parameters from the GROUP_3 session
group:

RP/0/RP0/CPU0:router# show bgp session-group GROUP_3 users

Session: s:GROUP_1 s:GROUP_2

show bgp neighbor-group

Use the show bgp neighbor-group command to display neighbor groups:

• Use the configuration keyword to display the effective configuration for the neighbor group, including
any settings that have been inherited from neighbor groups used by this neighbor group.

• Use the inheritance keyword to display the address family groups, session groups, and neighbor groups
from which this neighbor group is capable of inheriting configuration.

• Use the users keyword to display the neighbors and neighbor groups that inherit configuration from this
neighbor group.

The examples are based on the following group configuration:

Implementing BGP
25

Implementing BGP
show bgp neighbor-group

RP/0/RP0/CPU0:router(config)# router bgp 140
RP/0/RP0/CPU0:router(config-bgp)# af-group GROUP_3 address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-afgrp)# remove-private-as
RP/0/RP0/CPU0:router(config-bgp-afgrp)# soft-reconfiguration inbound
RP/0/RP0/CPU0:router(config-bgp-afgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# af-group GROUP_2 address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-afgrp)# use af-group GROUP_3
RP/0/RP0/CPU0:router(config-bgp-afgrp)# send-community-ebgp
RP/0/RP0/CPU0:router(config-bgp-afgrp)# send-extended-community-ebgp
RP/0/RP0/CPU0:router(config-bgp-afgrp)# capability orf prefix both
RP/0/RP0/CPU0:router(config-bgp-afgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# session-group GROUP_3
RP/0/RP0/CPU0:router(config-bgp-sngrp)# timers 30 90
RP/0/RP0/CPU0:router(config-bgp-sngrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group GROUP_1
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# remote-as 1982
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# use neighbor-group GROUP_2
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# exit
RP/0/RP0/CPU0:router(config-nbrgrp)# exit
RP/0/RP0/CPU0:router(config-bgp)# neighbor-group GROUP_2
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# use session-group GROUP_3
RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# address-family ipv4 unicast
RP/0/RP0/CPU0:routerconfig-bgp-nbrgrp-af)# use af-group GROUP_2
RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# weight 100

The following is sample output from the show bgp neighbor-group command with the configuration
keyword. The configuration setting source is shown to the right of each command. In the output shown
previously, the remote autonomous system is configured directly on neighbor group GROUP_1, and the send
community setting is inherited from neighbor group GROUP_2, which in turn inherits the setting from address
family group GROUP_3:

RP/0/RP0/CPU0:router# show bgp neighbor-group GROUP_1 configuration

neighbor-group GROUP_1
remote-as 1982 []
timers 30 90 [n:GROUP_2 s:GROUP_3]
address-family ipv4 unicast []
capability orf prefix-list both [n:GROUP_2 a:GROUP_2]
remove-private-AS [n:GROUP_2 a:GROUP_2 a:GROUP_3]
send-community-ebgp [n:GROUP_2 a:GROUP_2]
send-extended-community-ebgp [n:GROUP_2 a:GROUP_2]
soft-reconfiguration inbound [n:GROUP_2 a:GROUP_2 a:GROUP_3]
weight 100 [n:GROUP_2]

The following is sample output from the show bgp neighbor-group commandwith the inheritance keyword.
This output shows that the specified neighbor group GROUP_1 inherits session (address family-independent)
configuration parameters from neighbor group GROUP_2. Neighbor group GROUP_2 inherits its session
parameters from session group GROUP_3. It also shows that the GROUP_1 neighbor group inherits IPv4
unicast configuration parameters from the GROUP_2 neighbor group, which in turn inherits them from the
GROUP_2 address family group, which itself inherits them from the GROUP_3 address family group:

RP/0/RP0/CPU0:router# show bgp neighbor-group GROUP_1 inheritance

Session: n:GROUP-2 s:GROUP_3
IPv4 Unicast: n:GROUP_2 a:GROUP_2 a:GROUP_3

Implementing BGP
26

Implementing BGP
show bgp neighbor-group

The following is sample output from the show bgp neighbor-group command with the users keyword. This
output shows that the GROUP_1 neighbor group inherits session (address family-independent) configuration
parameters from the GROUP_2 neighbor group. The GROUP_1 neighbor group also inherits IPv4 unicast
configuration parameters from the GROUP_2 neighbor group:

RP/0/RP0/CPU0:router# show bgp neighbor-group GROUP_2 users

Session: n:GROUP_1
IPv4 Unicast: n:GROUP_1

No Default Address Family
BGP does not support the concept of a default address family. An address family must be explicitly configured
under the BGP router configuration for the address family to be activated in BGP. Similarly, an address family
must be explicitly configured under a neighbor for the BGP session to be activated under that address family.
It is not required to have any address family configured under the BGP router configuration level for a neighbor
to be configured. However, it is a requirement to have an address family configured at the BGP router
configuration level for the address family to be configured under a neighbor.

Neighbor Address Family Combinations
For default VRF, starting from Cisco IOS XR Software Release 6.2.x, both IPv4 Unicast and IPv4
Labeled-unicast address families are supported under the same neighbor.

For non-default VRF, both IPv4 Unicast and IPv4 Labeled-unicast address families are not supported under
the same neighbor. However, the configuration is accepted on the Router with the following error:
bgp[1051]: %ROUTING-BGP-4-INCOMPATIBLE_AFI : IPv4 Unicast and IPv4 Labeled-unicast Address
families together are not supported under the same neighbor.

When one BGP session has both IPv4 unicast and IPv4 labeled-unicast AFI/SAF, then the routing behavior
is nondeterministic. Therefore, the prefixes may not be correctly advertised. Incorrect prefix advertisement
results in reachability issues. In order to avoid such reachability issues, you must explicitly configure a route
policy to advertise prefixes either through IPv4 unicast or through IPv4 labeled-unicast address families.

Routing Policy Enforcement
External BGP (eBGP) neighbors must have an inbound and outbound policy configured. If no policy is
configured, no routes are accepted from the neighbor, nor are any routes advertised to it. This added security
measure ensures that routes cannot accidentally be accepted or advertised in the case of a configuration
omission error.

This enforcement affects only eBGP neighbors (neighbors in a different autonomous system than this router).
For internal BGP (iBGP) neighbors (neighbors in the same autonomous system), all routes are accepted or
advertised if there is no policy.

Note

Implementing BGP
27

Implementing BGP
No Default Address Family

In the following example, for an eBGP neighbor, if all routes should be accepted and advertised with no
modifications, a simple pass-all policy is configured:

RP/0/RP0/CPU0:router(config)# route-policy pass-all
RP/0/RP0/CPU0:router(config-rpl)# pass
RP/0/RP0/CPU0:router(config-rpl)# end-policy
RP/0/RP0/CPU0:router(config)# commit

Use the route-policy (BGP) command in the neighbor address-family configurationmode to apply the pass-all
policy to a neighbor. The following example shows how to allow all IPv4 unicast routes to be received from
neighbor 192.168.40.42 and advertise all IPv4 unicast routes back to it:

RP/0/RP0/CPU0:router(config)# router bgp 1
RP/0/RP0/CPU0:router(config-bgp)# neighbor 192.168.40.24
RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 21
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all in
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all out
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# commit

Use the show bgp summary command to display eBGP neighbors that do not have both an inbound and
outbound policy for every active address family. In the following example, such eBGP neighbors are indicated
in the output with an exclamation (!) mark:

RP/0/RP0/CPU0:router# show bgp all all summary

Address Family: IPv4 Unicast
============================

BGP router identifier 10.0.0.1, local AS number 1
BGP generic scan interval 60 secs
BGP main routing table version 41
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.

Process RecvTblVer bRIB/RIB SendTblVer
Speaker 41 41 41

Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
10.0.101.1 0 1 919 925 41 0 0 15:15:08 10
10.0.101.2 0 2 0 0 0 0 0 00:00:00 Idle

Address Family: IPv4 Multicast
==============================

BGP router identifier 10.0.0.1, local AS number 1
BGP generic scan interval 60 secs
BGP main routing table version 1
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.

Process RecvTblVer bRIB/RIB SendTblVer
Speaker 1 1 1

Some configured eBGP neighbors do not have both inbound and
outbound policies configured for IPv4 Multicast address family.
These neighbors will default to sending and/or receiving no
routes and are marked with ’!’ in the output below. Use the

Implementing BGP
28

Implementing BGP
Routing Policy Enforcement

’show bgp neighbor <nbr_address>’ command for details.

Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
10.0.101.2 0 2 0 0 0 0 0 00:00:00 Idle!

Address Family: IPv6 Unicast
============================

BGP router identifier 10.0.0.1, local AS number 1
BGP generic scan interval 60 secs
BGP main routing table version 2
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.

Process RecvTblVer bRIB/RIB SendTblVer
Speaker 2 2 2

Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
2222::2 0 2 920 918 2 0 0 15:15:11 1
2222::4 0 3 0 0 0 0 0 00:00:00 Idle

Address Family: IPv6 Multicast
==============================

BGP router identifier 10.0.0.1, local AS number 1
BGP generic scan interval 60 secs
BGP main routing table version 1
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.

Process RecvTblVer bRIB/RIB SendTblVer
Speaker 1 1 1

Some configured eBGP neighbors do not have both inbound and
outbound policies configured for IPv6 Multicast address family.
These neighbors will default to sending and/or receiving no
routes and are marked with ’!’ in the output below. Use the
’show bgp neighbor <nbr_address>’ command for details.

Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
2222::2 0 2 920 918 0 0 0 15:15:11 0
2222::4 0 3 0 0 0 0 0 00:00:00 Idle!

Table Policy
The table policy feature in BGP allows you to configure traffic index values on routes as they are installed in
the global routing table. This feature is enabled using the table-policy command and supports the BGP policy
accounting feature.

BGP policy accounting uses traffic indices that are set on BGP routes to track various counters. See the
Implementing Routing Policy on Cisco IOS XR Software module in the Routing Configuration Guide for
Cisco CRS Routers for details on table policy use. See the Cisco Express Forwarding Commands on Cisco
IOS XR Software module in the IP Addresses and Services Command Reference for Cisco CRS Routers for
details on BGP policy accounting.

Table policy also provides the ability to drop routes from the RIB based on match criteria. This feature can
be useful in certain applications and should be used with caution as it can easily create a routing ‘black hole’

Implementing BGP
29

Implementing BGP
Table Policy

where BGP advertises routes to neighbors that BGP does not install in its global routing table and forwarding
table.

Update Groups
The BGP Update Groups feature contains an algorithm that dynamically calculates and optimizes update
groups of neighbors that share outbound policies and can share the update messages. The BGPUpdate Groups
feature separates update group replication from peer group configuration, improving convergence time and
flexibility of neighbor configuration.

To use this feature, you must understand the following concepts:

Related Topics
BGP Update Generation and Update Groups , on page 30
BGP Update Group , on page 30

BGP Update Generation and Update Groups
The BGP Update Groups feature separates BGP update generation from neighbor configuration. The BGP
Update Groups feature introduces an algorithm that dynamically calculates BGP update group membership
based on outbound routing policies. This feature does not require any configuration by the network operator.
Update group-based message generation occurs automatically and independently.

BGP Update Group
When a change to the configuration occurs, the router automatically recalculates update group memberships
and applies the changes.

For the best optimization of BGP update group generation, we recommend that the network operator keeps
outbound routing policy the same for neighbors that have similar outbound policies. This feature contains
commands for monitoring BGP update groups.

BGP Cost Community
The BGP cost community is a nontransitive extended community attribute that is passed to internal BGP
(iBGP) and confederation peers but not to external BGP (eBGP) peers. The cost community feature allows
you to customize the local route preference and influence the best-path selection process by assigning cost
values to specific routes. The extended community format defines generic points of insertion (POI) that
influence the best-path decision at different points in the best-path algorithm.

The cost community attribute is applied to internal routes by configuring the set extcommunity cost command
in a route policy. See the Routing Policy Language Commands on Cisco IOS XR Software module of Cisco
IOS XR Routing Command Reference for information on the set extcommunity cost command. The cost
community set clause is configured with a cost community ID number (0–255) and cost community number
(0–4294967295). The cost community number determines the preference for the path. The path with the lowest
cost community number is preferred. Paths that are not specifically configured with the cost community
number are assigned a default cost community number of 2147483647 (the midpoint between 0 and
4294967295) and evaluated by the best-path selection process accordingly. When two paths have been
configured with the same cost community number, the path selection process prefers the path with the lowest
cost community ID. The cost-extended community attribute is propagated to iBGP peers when extended
community exchange is enabled.

Implementing BGP
30

Implementing BGP
Update Groups

The following commands include the route-policy keyword, which you can use to apply a route policy that
is configured with the cost community set clause:

• aggregate-address

• redistribute

• network

How BGP Cost Community Influences the Best Path Selection Process
The cost community attribute influences the BGP best-path selection process at the point of insertion (POI).
By default, the POI follows the Interior Gateway Protocol (IGP) metric comparison. When BGP receives
multiple paths to the same destination, it uses the best-path selection process to determine which path is the
best path. BGP automatically makes the decision and installs the best path in the routing table. The POI allows
you to assign a preference to a specific path when multiple equal cost paths are available. If the POI is not
valid for local best-path selection, the cost community attribute is silently ignored.

Cost communities are sorted first by POI then by community ID. Multiple paths can be configured with the
cost community attribute for the same POI. The path with the lowest cost community ID is considered first.
In other words, all cost community paths for a specific POI are considered, starting with the one with the
lowest cost community. Paths that do not contain the cost community cost (for the POI and community ID
being evaluated) are assigned the default community cost value (2147483647). If the cost community values
are equal, then cost community comparison proceeds to the next lowest community ID for this POI.

To select the path with the lower cost community, simultaneously walk through the cost communities of both
paths. This is done by maintaining two pointers to the cost community chain, one for each path, and advancing
both pointers to the next applicable cost community at each step of the walk for the given POI, in order of
community ID, and stop when a best path is chosen or the comparison is a tie. At each step of the walk, the
following checks are done:

If neither pointer refers to a cost community,
Declare a tie;

Elseif a cost community is found for one path but not for the other,
Choose the path with cost community as best path;

Elseif the Community ID from one path is less than the other,
Choose the path with the lesser Community ID as best path;

Elseif the Cost from one path is less than the other,
Choose the path with the lesser Cost as best path;

Else Continue.

Paths that are not configured with the cost community attribute are considered by the best-path selection
process to have the default cost value (half of the maximum value [4294967295] or 2147483647).

Note

Applying the cost community attribute at the POI allows you to assign a value to a path originated or learned
by a peer in any part of the local autonomous system or confederation. The cost community can be used as a
“tie breaker” during the best-path selection process.Multiple instances of the cost community can be configured
for separate equal cost paths within the same autonomous system or confederation. For example, a lower cost
community value can be applied to a specific exit path in a network with multiple equal cost exit points, and
the specific exit path is preferred by the BGP best-path selection process. See the scenario described
inInfluencing Route Preference in a Multiexit IGP Network, on page 33.

Implementing BGP
31

Implementing BGP
How BGP Cost Community Influences the Best Path Selection Process

The cost community comparison in BGP is enabled by default. Use the bgp bestpath cost-community ignore
command to disable the comparison.

Note

SeeBGP Best Path Algorithm, on page 35 for information on the BGP best-path selection process.

Cost Community Support for Aggregate Routes and Multipaths
The BGP cost community feature supports aggregate routes and multipaths. The cost community attribute
can be applied to either type of route. The cost community attribute is passed to the aggregate or multipath
route from component routes that carry the cost community attribute. Only unique IDs are passed, and only
the highest cost of any individual component route is applied to the aggregate for each ID. If multiple component
routes contain the same ID, the highest configured cost is applied to the route. For example, the following
two component routes are configured with the cost community attribute using an inbound route policy:

• 10.0.0.1

• POI=IGP

• cost community ID=1

• cost number=100

• 192.168.0.1

• POI=IGP

• cost community ID=1

• cost number=200

If these component routes are aggregated or configured as a multipath, the cost value 200 is advertised,
because it has the highest cost.

If one or more component routes do not carry the cost community attribute or the component routes are
configured with different IDs, then the default value (2147483647) is advertised for the aggregate or
multipath route. For example, the following three component routes are configured with the cost
community attribute using an inbound route policy. However, the component routes are configured with
two different IDs.

• 10.0.0.1

• POI=IGP

• cost community ID=1

• cost number=100

• 172.16.0.1

• POI=IGP

• cost community ID=2

• cost number=100

Implementing BGP
32

Implementing BGP
Cost Community Support for Aggregate Routes and Multipaths

• 192.168.0.1

• POI=IGP

• cost community ID=1

• cost number=200

The single advertised path includes the aggregate cost communities as follows:

{POI=IGP, ID=1, Cost=2147483647} {POI-IGP, ID=2, Cost=2147483647}

Influencing Route Preference in a Multiexit IGP Network
This figure shows an IGP network with two autonomous system boundary routers (ASBRs) on the edge. Each
ASBR has an equal cost path to network 10.8/16.

Figure 1: Multiexit Point IGP Network

Both paths are considered to be equal by BGP. If multipath loadsharing is configured, both paths to the routing
table are installed and are used to balance the load of traffic. If multipath load balancing is not configured,
the BGP selects the path that was learned first as the best path and installs this path to the routing table. This
behavior may not be desirable under some conditions. For example, the path is learned from ISP1 PE2 first,
but the link between ISP1 PE2 and ASBR1 is a low-speed link.

The configuration of the cost community attribute can be used to influence the BGP best-path selection process
by applying a lower-cost community value to the path learned by ASBR2. For example, the following
configuration is applied to ASBR2:

RP/0/RP0/CPU0:router(config)# route-policy ISP2_PE1
RP/0/RP0/CPU0:router(config-rpl)# set extcommunity cost (1:1)

The preceding route policy applies a cost community number of 1 to the 10.8.0.0 route. By default, the path
learned from ASBR1 is assigned a cost community number of 2147483647. Because the path learned from
ASBR2 has a lower-cost community number, the path is preferred.

Implementing BGP
33

Implementing BGP
Influencing Route Preference in a Multiexit IGP Network

BGP Cost Community Support for EIGRP MPLS VPN PE-CE with Back-door Links
Back-door links in an EIGRP MPLS VPN topology is preferred by BGP if the back-door link is learned first.
(A back-door link, or route, is a connection that is configured outside of the VPN between a remote and main
site; for example, a WAN leased line that connects a remote site to the corporate network.)

The “prebest path” point of insertion (POI) in the BGP cost community feature supports mixed EIGRP VPN
network topologies that contain VPN and back-door links. This POI is applied automatically to EIGRP routes
that are redistributed into BGP. The “prebest path” POI carries the EIGRP route type and metric. This POI
influences the best-path calculation process by influencing BGP to consider the POI before any other comparison
step. No configuration is required. This feature is enabled automatically for EIGRP VPN sites when Cisco
IOS XR software is installed on a PE, CE, or back-door router.

For information about configuring EIGRP MPLS VPNs, see the MPLS Configuration Guide for the Cisco
CRS Routers.

Figure 2: Network Showing How Cost Community Can be Used to Support Backdoor Links

This figure shows how cost community can be used to support backdoor links in a network.

The following sequence of events happens in PE1:

1. PE1 learns IPv4 prefix 10.1.1.0/24 from CE1 through EIGRP running a virtual routing and forwarding
(VRF) instance. EIGRP selects and installs the best path in the RIB. It also encodes the cost-extended
community and adds the information to the RIB.

2. The route is redistributed into BGP (assuming that IGP-to-BGP redistribution is configured). BGP also
receives the cost-extended community from the route through the redistribution process.

3. After BGP has determined the best path for the newly redistributed prefix, the path is advertised to PE
peers (PE2).

4. PE2 receives the BGP VPNv4 prefix route_distinguisher:10.1.1.0/24 along with the cost community.
It is likely that CE2 advertises the same prefix (because of the back-door link between CE1 and CE2)
to PE2 through EIGRP. PE2 BGP would have already learned the CE route through the redistribution
process along with the cost community value

5. PE2 has two paths within BGP: one with cost community cost1 through multipath BGP (PE1) and
another with cost community cost2 through the EIGRP neighbor (CE2).

6. PE2 runs the enhanced BGP best-path calculation.

7. PE2 installs the best path in the RIB passing the appropriate cost community value.

8. PE2 RIB has two paths for 10.1.1.0/24: one with cost community cost2 added by EIGRP and another
with the cost community cost1 added by BGP. Because both the route paths have cost community, RIB

Implementing BGP
34

Implementing BGP
BGP Cost Community Support for EIGRP MPLS VPN PE-CE with Back-door Links

compares the costs first. The BGP path has the lower cost community, so it is selected and downloaded
to the RIB.

9. PE2 RIB redistributes the BGP path into EIGRP with VRF. EIGRP runs a diffusing update algorithm
(DUAL) because there are two paths, and selects the BGP-redistributed path.

10. PE2 EIGRP advertises the path to CE2 making the path the next hop for the prefix to send the traffic
over the MPLS network.

Adding Routes to the Routing Information Base
If a nonsourced path becomes the best path after the best-path calculation, BGP adds the route to the Routing
Information Base (RIB) and passes the cost communities along with the other IGP extended communities.

When a route with paths is added to the RIB by a protocol, RIB checks the current best paths for the route
and the added paths for cost extended communities. If cost-extended communities are found, the RIB compares
the set of cost communities. If the comparison does not result in a tie, the appropriate best path is chosen. If
the comparison results in a tie, the RIB proceeds with the remaining steps of the best-path algorithm. If a cost
community is not present in either the current best paths or added paths, then the RIB continues with the
remaining steps of the best-path algorithm. See BGP Best Path Algorithm, on page 35 for information on the
BGP best-path algorithm.

BGP Best Path Algorithm
BGP routers typically receivemultiple paths to the same destination. The BGP best-path algorithm determines
the best path to install in the IP routing table and to use for forwarding traffic. This section describes the Cisco
IOS XR software implementation of BGP best-path algorithm, as specified in Section 9.1 of the Internet
Engineering Task Force (IETF) Network Working Group draft-ietf-idr-bgp4-24.txt document.

The BGP best-path algorithm implementation is in three parts:

• Part 1—Compares two paths to determine which is better.

• Part 2—Iterates over all paths and determines which order to compare the paths to select the overall best
path.

• Part 3—Determines whether the old and new best paths differ enough so that the new best path should
be used.

The order of comparison determined by Part 2 is important because the comparison operation is not transitive;
that is, if three paths, A, B, and C exist, such that when A and B are compared, A is better, and when B and
C are compared, B is better, it is not necessarily the case that when A and C are compared, A is better. This
nontransitivity arises because the multi exit discriminator (MED) is compared only among paths from the
same neighboring autonomous system (AS) and not among all paths.

Note

Comparing Pairs of Paths
Perform the following steps to compare two paths and determine the better path:

1. If either path is invalid (for example, a path has the maximum possible MED value or it has an
unreachable next hop), then the other path is chosen (provided that the path is valid).

Implementing BGP
35

Implementing BGP
Adding Routes to the Routing Information Base

2. If the paths have unequal pre-bestpath cost communities, the path with the lower pre-bestpath cost
community is selected as the best path.

3. If the paths have unequal weights, the path with the highest weight is chosen.

The weight is entirely local to the router, and can be set with the weight command or using a routing policy.Note

4. If the paths have unequal local preferences, the path with the higher local preference is chosen.

If a local preference attribute was received with the path or was set by a routing policy, then that value is used
in this comparison. Otherwise, the default local preference value of 100 is used. The default value can be
changed using the bgp default local-preference command.

Note

5. If one of the paths is a redistributed path, which results from a redistribute or network command, then
it is chosen. Otherwise, if one of the paths is a locally generated aggregate, which results from an
aggregate-address command, it is chosen.

Step 1 through Step 4 implement the “Path Selection with BGP”of RFC 1268.Note

6. If the paths have unequal AS path lengths, the path with the shorter AS path is chosen. This step is
skipped if bgp bestpath as-path ignore command is configured.

When calculating the length of the AS path, confederation segments are ignored, and AS sets count as 1.Note

eiBGP specifies internal and external BGP multipath peers. eiBGP allows simultaneous use of internal and
external paths.

Note

7. If the paths have different origins, the path with the lower origin is selected. Interior Gateway Protocol
(IGP) is considered lower than EGP, which is considered lower than INCOMPLETE.

8. If appropriate, the MED of the paths is compared. If they are unequal, the path with the lower MED is
chosen.

A number of configuration options exist that affect whether or not this step is performed. In general,
the MED is compared if both paths were received from neighbors in the same AS; otherwise the MED
comparison is skipped. However, this behavior is modified by certain configuration options, and there
are also some corner cases to consider.

If the bgp bestpath med always command is configured, then theMED comparison is always performed,
regardless of neighbor AS in the paths. Otherwise, MED comparison depends on the AS paths of the
two paths being compared, as follows:

Implementing BGP
36

Implementing BGP
Comparing Pairs of Paths

• If a path has no AS path or the AS path starts with an AS_SET, then the path is considered to be
internal, and the MED is compared with other internal paths.

• If the AS path starts with an AS_SEQUENCE, then the neighbor AS is the first AS number in the
sequence, and the MED is compared with other paths that have the same neighbor AS.

• If the AS path contains only confederation segments or starts with confederation segments followed
by an AS_SET, then the MED is not compared with any other path unless the bgp bestpath med
confed command is configured. In that case, the path is considered internal and the MED is
compared with other internal paths.

• If the AS path starts with confederation segments followed by an AS_SEQUENCE, then the
neighbor AS is the first AS number in the AS_SEQUENCE, and the MED is compared with other
paths that have the same neighbor AS.

If no MED attribute was received with the path, then the MED is considered to be 0 unless the bgp bestpath
med missing-as-worst command is configured. In that case, if no MED attribute was received, the MED is
considered to be the highest possible value.

Note

9. If one path is received from an external peer and the other is received from an internal (or confederation)
peer, the path from the external peer is chosen.

10. If the paths have different IGP metrics to their next hops, the path with the lower IGP metric is chosen.

11. If the paths have unequal IP cost communities, the path with the lower IP cost community is selected
as the best path.

12. If all path parameters in Step 1 through Step 10 are the same, then the router IDs are compared. If the
path was received with an originator attribute, then that is used as the router ID to compare; otherwise,
the router ID of the neighbor from which the path was received is used. If the paths have different router
IDs, the path with the lower router ID is chosen.

Where the originator is used as the router ID, it is possible to have two paths with the same router ID. It is
also possible to have two BGP sessions with the same peer router, and therefore receive two paths with the
same router ID.

Note

13. If the paths have different cluster lengths, the path with the shorter cluster length is selected. If a path
was not received with a cluster list attribute, it is considered to have a cluster length of 0.

14. Finally, the path received from the neighbor with the lower IP address is chosen. Locally generated
paths (for example, redistributed paths) are considered to have a neighbor IP address of 0.

Order of Comparisons
The second part of the BGP best-path algorithm implementation determines the order in which the paths
should be compared. The order of comparison is determined as follows:

1. The paths are partitioned into groups such that within each group the MED can be compared among all
paths. The same rules as in #unique_72 are used to determine whether MED can be compared between

Implementing BGP
37

Implementing BGP
Order of Comparisons

any two paths. Normally, this comparison results in one group for each neighbor AS. If the bgp bestpath
med always command is configured, then there is just one group containing all the paths.

2. The best path in each group is determined. Determining the best path is achieved by iterating through all
paths in the group and keeping track of the best one seen so far. Each path is compared with the best-so-far,
and if it is better, it becomes the new best-so-far and is compared with the next path in the group.

3. A set of paths is formed containing the best path selected from each group in Step 2. The overall best path
is selected from this set of paths, by iterating through them as in Step 2.

Best Path Change Suppression
The third part of the implementation is to determine whether the best-path change can be suppressed or
not—whether the new best path should be used, or continue using the existing best path. The existing best
path can continue to be used if the new one is identical to the point at which the best-path selection algorithm
becomes arbitrary (if the router-id is the same). Continuing to use the existing best path can avoid churn in
the network.

This suppression behavior does not complywith the IETFNetworkingWorkingGroup draft-ietf-idr-bgp4-24.txt
document, but is specified in the IETF Networking Working Group draft-ietf-idr-avoid-transition-00.txt
document.

Note

The suppression behavior can be turned off by configuring the bgp bestpath compare-routerid command.
If this command is configured, the new best path is always preferred to the existing one.

Otherwise, the following steps are used to determine whether the best-path change can be suppressed:

1. If the existing best path is no longer valid, the change cannot be suppressed.

2. If either the existing or new best paths were received from internal (or confederation) peers or were locally
generated (for example, by redistribution), then the change cannot be suppressed. That is, suppression is
possible only if both paths were received from external peers.

3. If the paths were received from the same peer (the paths would have the same router-id), the change cannot
be suppressed. The router ID is calculated using rules in #unique_72.

4. If the paths have different weights, local preferences, origins, or IGP metrics to their next hops, then the
change cannot be suppressed. Note that all these values are calculated using the rules in #unique_72.

5. If the paths have different-length AS paths and the bgp bestpath as-path ignore command is not
configured, then the change cannot be suppressed. Again, the AS path length is calculated using the rules
in #unique_72.

6. If theMED of the paths can be compared and theMEDs are different, then the change cannot be suppressed.
The decision as to whether the MEDs can be compared is exactly the same as the rules in #unique_72, as
is the calculation of the MED value.

7. If all path parameters in Step 1 through Step 6 do not apply, the change can be suppressed.

Implementing BGP
38

Implementing BGP
Best Path Change Suppression

Administrative Distance
An administrative distance is a rating of the trustworthiness of a routing information source. In general, the
higher the value, the lower the trust rating. For information on specifying the administrative distance for BGP,
see the BGP Commands module of the Routing Command Reference for Cisco CRS Routers

Normally, a route can be learned throughmore than one protocol. Administrative distance is used to discriminate
between routes learned from more than one protocol. The route with the lowest administrative distance is
installed in the IP routing table. By default, BGP uses the administrative distances shown in Table 1: BGP
Default Administrative Distances, on page 39.

Table 1: BGP Default Administrative Distances

FunctionDefault
Value

Distance

Applied to routes learned from eBGP.20External

Applied to routes learned from iBGP.200Internal

Applied to routes originated by the router.200Local

Distance does not influence the BGP path selection algorithm, but it does influence whether BGP-learned
routes are installed in the IP routing table.

Note

In most cases, when a route is learned through eBGP, it is installed in the IP routing table because of its
distance (20). Sometimes, however, two ASs have an IGP-learned back-door route and an eBGP-learned
route. Their policy might be to use the IGP-learned path as the preferred path and to use the eBGP-learned
path when the IGP path is down. See Figure 3: Back Door Example , on page 39.

Figure 3: Back Door Example

In Figure 3: Back Door Example , on page 39, Routers A and C and Routers B and C are running eBGP.
Routers A and B are running an IGP (such as Routing Information Protocol [RIP], Interior Gateway Routing
Protocol [IGRP], Enhanced IGRP, or Open Shortest Path First [OSPF]). The default distances for RIP, IGRP,
Enhanced IGRP, and OSPF are 120, 100, 90, and 110, respectively. All these distances are higher than the
default distance of eBGP, which is 20. Usually, the route with the lowest distance is preferred.

Implementing BGP
39

Implementing BGP
Administrative Distance

Router A receives updates about 160.10.0.0 from two routing protocols: eBGP and IGP. Because the default
distance for eBGP is lower than the default distance of the IGP, Router A chooses the eBGP-learned route
from Router C. If you want Router A to learn about 160.10.0.0 from Router B (IGP), establish a BGP back
door. See .

In the following example, a network back-door is configured:

RP/0/RP0/CPU0:router(config)# router bgp 100
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)# network 160.10.0.0/16 backdoor

Router A treats the eBGP-learned route as local and installs it in the IP routing table with a distance of 200.
The network is also learned through Enhanced IGRP (with a distance of 90), so the Enhanced IGRP route is
successfully installed in the IP routing table and is used to forward traffic. If the Enhanced IGRP-learned
route goes down, the eBGP-learned route is installed in the IP routing table and is used to forward traffic.

Although BGP treats network 160.10.0.0 as a local entry, it does not advertise network 160.10.0.0 as it normally
would advertise a local entry.

Multiprotocol BGP
Multiprotocol BGP is an enhanced BGP that carries routing information for multiple network layer protocols
and IP multicast routes. BGP carries two sets of routes, one set for unicast routing and one set for multicast
routing. The routes associated with multicast routing are used by the Protocol Independent Multicast (PIM)
feature to build data distribution trees.

Multiprotocol BGP is useful when you want a link dedicated to multicast traffic, perhaps to limit which
resources are used for which traffic. Multiprotocol BGP allows you to have a unicast routing topology different
from a multicast routing topology providing more control over your network and resources.

In BGP, the only way to perform interdomain multicast routing was to use the BGP infrastructure that was
in place for unicast routing. Perhaps you want all multicast traffic exchanged at one network access point
(NAP). If those routers were not multicast capable, or there were differing policies for which you wanted
multicast traffic to flow, multicast routing could not be supported without multiprotocol BGP.

It is possible to configure BGP peers that exchange both unicast and multicast network layer reachability
information (NLRI), but you cannot connect multiprotocol BGP clouds with a BGP cloud. That is, you cannot
redistribute multiprotocol BGP routes into BGP.

Note

Figure 4: Noncongruent Unicast and Multicast Routes, on page 41 illustrates simple unicast and multicast
topologies that are incongruent, and therefore are not possible without multiprotocol BGP.

Autonomous systems 100, 200, and 300 are each connected to two NAPs that are FDDI rings. One is used
for unicast peering (and therefore the exchange of unicast traffic). The Multicast Friendly Interconnect (MFI)
ring is used for multicast peering (and therefore the exchange of multicast traffic). Each router is unicast and
multicast capable.

Implementing BGP
40

Implementing BGP
Multiprotocol BGP

Figure 4: Noncongruent Unicast and Multicast Routes

Figure 5: Multicast BGP Environment, on page 42 is a topology of unicast-only routers and multicast-only
routers. The two routers on the left are unicast-only routers (that is, they do not support or are not configured
to performmulticast routing). The two routers on the right are multicast-only routers. Routers A and B support
both unicast and multicast routing. The unicast-only and multicast-only routers are connected to a single NAP.

In Figure 5: Multicast BGP Environment, on page 42, only unicast traffic can travel from Router A to the
unicast routers to Router B and back. Multicast traffic could not flow on that path, so another routing table is
required. Multicast traffic uses the path from Router A to the multicast routers to Router B and back.

Figure 5: Multicast BGP Environment, on page 42 illustrates a multiprotocol BGP environment with a separate
unicast route and multicast route from Router A to Router B. Multiprotocol BGP allows these routes to be
incongruent. Both of the autonomous systems must be configured for internal multiprotocol BGP (IMBGP)
in the figure.

Amulticast routing protocol, such as PIM, uses themulticast BGP database to performReverse Path Forwarding
(RPF) lookups for multicast-capable sources. Thus, packets can be sent and accepted on the multicast topology
but not on the unicast topology.

Implementing BGP
41

Implementing BGP
Multiprotocol BGP

Figure 5: Multicast BGP Environment

Route Dampening
Route dampening is a BGP feature that minimizes the propagation of flapping routes across an internetwork.
A route is considered to be flapping when it is repeatedly available, then unavailable, then available, then
unavailable, and so on.

For example, consider a network with three BGP autonomous systems: autonomous system 1, autonomous
system 2, and autonomous system 3. Suppose the route to network A in autonomous system 1 flaps (it becomes
unavailable). Under circumstances without route dampening, the eBGP neighbor of autonomous system 1 to
autonomous system 2 sends a withdraw message to autonomous system 2. The border router in autonomous
system 2, in turn, propagates the withdrawal message to autonomous system 3. When the route to network A
reappears, autonomous system 1 sends an advertisement message to autonomous system 2, which sends it to
autonomous system 3. If the route to network A repeatedly becomes unavailable, then available, many
withdrawal and advertisement messages are sent. Route flapping is a problem in an internetwork connected
to the Internet, because a route flap in the Internet backbone usually involves many routes.

Minimizing Flapping
The route dampening feature minimizes the flapping problem as follows. Suppose again that the route to
network A flaps. The router in autonomous system 2 (in which route dampening is enabled) assigns network
A a penalty of 1000 and moves it to history state. The router in autonomous system 2 continues to advertise
the status of the route to neighbors. The penalties are cumulative.When the route flaps so often that the penalty

Implementing BGP
42

Implementing BGP
Route Dampening

exceeds a configurable suppression limit, the router stops advertising the route to network A, regardless of
how many times it flaps. Thus, the route is dampened.

The penalty placed on network A is decayed until the reuse limit is reached, upon which the route is once
again advertised. At half of the reuse limit, the dampening information for the route to network A is removed.

No penalty is applied to a BGP peer reset when route dampening is enabled, even though the reset withdraws
the route.

Note

BGP Routing Domain Confederation
One way to reduce the iBGP mesh is to divide an autonomous system into multiple subautonomous systems
and group them into a single confederation. To the outside world, the confederation looks like a single
autonomous system. Each autonomous system is fully meshed within itself and has a few connections to other
autonomous systems in the same confederation. Although the peers in different autonomous systems have
eBGP sessions, they exchange routing information as if they were iBGP peers. Specifically, the next hop,
MED, and local preference information is preserved. This feature allows you to retain a single IGP for all of
the autonomous systems.

BGP Route Reflectors
BGP requires that all iBGP speakers be fully meshed. However, this requirement does not scale well when
there are many iBGP speakers. Instead of configuring a confederation, you can reduce the iBGP mesh by
using a route reflector configuration.

Figure 6: Three Fully Meshed iBGP Speakers, on page 44 illustrates a simple iBGP configuration with three
iBGP speakers (routers A, B, and C).Without route reflectors, when Router A receives a route from an external
neighbor, it must advertise it to both routers B and C. Routers B and C do not readvertise the iBGP learned
route to other iBGP speakers because the routers do not pass on routes learned from internal neighbors to
other internal neighbors, thus preventing a routing information loop.

Implementing BGP
43

Implementing BGP
BGP Routing Domain Confederation

Figure 6: Three Fully Meshed iBGP Speakers

With route reflectors, all iBGP speakers need not be fully meshed because there is a method to pass learned
routes to neighbors. In this model, an iBGP peer is configured to be a route reflector responsible for passing
iBGP learned routes to a set of iBGP neighbors. In Figure 7: Simple BGP Model with a Route Reflector, on
page 44 , Router B is configured as a route reflector. When the route reflector receives routes advertised from
Router A, it advertises them to Router C, and vice versa. This scheme eliminates the need for the iBGP session
between routers A and C.

Figure 7: Simple BGP Model with a Route Reflector

The internal peers of the route reflector are divided into two groups: client peers and all other routers in the
autonomous system (nonclient peers). A route reflector reflects routes between these two groups. The route
reflector and its client peers form a cluster. The nonclient peers must be fully meshed with each other, but the

Implementing BGP
44

Implementing BGP
BGP Route Reflectors

client peers need not be fully meshed. The clients in the cluster do not communicate with iBGP speakers
outside their cluster.

Figure 8: More Complex BGP Route Reflector Model

Figure 8: More Complex BGP Route Reflector Model, on page 45 illustrates a more complex route reflector
scheme. Router A is the route reflector in a cluster with routers B, C, and D. Routers E, F, and G are fully
meshed, nonclient routers.

When the route reflector receives an advertised route, depending on the neighbor, it takes the following actions:

• A route from an external BGP speaker is advertised to all clients and nonclient peers.

• A route from a nonclient peer is advertised to all clients.

• A route from a client is advertised to all clients and nonclient peers. Hence, the clients need not be fully
meshed.

Along with route reflector-aware BGP speakers, it is possible to have BGP speakers that do not understand
the concept of route reflectors. They can be members of either client or nonclient groups, allowing an easy
and gradual migration from the old BGPmodel to the route reflector model. Initially, you could create a single
cluster with a route reflector and a few clients. All other iBGP speakers could be nonclient peers to the route
reflector and then more clusters could be created gradually.

An autonomous system can have multiple route reflectors. A route reflector treats other route reflectors just
like other iBGP speakers. A route reflector can be configured to have other route reflectors in a client group
or nonclient group. In a simple configuration, the backbone could be divided into many clusters. Each route

Implementing BGP
45

Implementing BGP
BGP Route Reflectors

reflector would be configured with other route reflectors as nonclient peers (thus, all route reflectors are fully
meshed). The clients are configured to maintain iBGP sessions with only the route reflector in their cluster.

Usually, a cluster of clients has a single route reflector. In that case, the cluster is identified by the router ID
of the route reflector. To increase redundancy and avoid a single point of failure, a cluster might have more
than one route reflector. In this case, all route reflectors in the cluster must be configured with the cluster ID
so that a route reflector can recognize updates from route reflectors in the same cluster. All route reflectors
serving a cluster should be fully meshed and all of them should have identical sets of client and nonclient
peers.

By default, the clients of a route reflector are not required to be fully meshed and the routes from a client are
reflected to other clients. However, if the clients are fully meshed, the route reflector need not reflect routes
to clients.

As the iBGP learned routes are reflected, routing information may loop. The route reflector model has the
following mechanisms to avoid routing loops:

• Originator ID is an optional, nontransitive BGP attribute. It is a 4-byte attributed created by a route
reflector. The attribute carries the router ID of the originator of the route in the local autonomous system.
Therefore, if a misconfiguration causes routing information to come back to the originator, the information
is ignored.

• Cluster-list is an optional, nontransitive BGP attribute. It is a sequence of cluster IDs that the route has
passed.When a route reflector reflects a route from its clients to nonclient peers, and vice versa, it appends
the local cluster ID to the cluster-list. If the cluster-list is empty, a new cluster-list is created. Using this
attribute, a route reflector can identify if routing information is looped back to the same cluster due to
misconfiguration. If the local cluster ID is found in the cluster-list, the advertisement is ignored.

BGP Optimal Route Reflector
BGP-ORR (optimal route reflector) enables virtual route reflector (vRR) to calculate the best path from a
route reflector (RR) client's point of view.

BGP ORR calculates the best path by:

1. Running SPF multiple times in the context of its RR clients or RR clusters (set of RR clients)

2. Saving the result of different SPF runs in separate databases

3. Using these databases to manipulate BGP best path decision and thereby allowing BGP to use and announce
best path that is optimal from the client’s point of view

Enabling the ORR feature increases the memory footprint of BGP and RIB. With increased number of vRR
configured in the network, ORR adversely impacts convergence for BGP.

Note

In an autonomous system, a BGP route reflector acts as a focal point and advertises routes to its peers (RR
clients) along with the RR's computed best path. Since the best path advertised by the RR is computed from
the RR's point of view, the RR's placement becomes an important deployment consideration.

With network function virtualization (NFV) becoming a dominant technology, service providers (SPs) are
hosting virtual RR functionality in a cloud using servers. A vRR can run on a control plane device and can
be placed anywhere in the topology or in a SP data center. Cisco IOS XRv 9000 Router can be implemented

Implementing BGP
46

Implementing BGP
BGP Optimal Route Reflector

as vRR over a NFV platform in a SP data center. vRR allows SPs to scale memory and CPU usage of RR
deployments significantly. Moving a RR out of its optimal placement requires vRRs to implement ORR
functionality that calculates the best path from a RR client's point of view.

BGP ORR offers these benefits:

• calculates the bestpath from the point of view of a RR client.

• enables vRR to be placed anywhere in the topology or in a SP data center.

• allows SPs to scale memory and CPU usage of RR deployments.

Use Case
Consider a BGP Route Reflector topology where:

• Router R1, R2, R3, R4, R5 and R6 are route reflector clients

• Router R1 and R4 advertise 6/8 prefix to vRR

Figure 9: BGP-ORR Topology

vRR receives prefix 6/8 from R1 and R4. Without BGP ORR configured in the network, the vRR selects R4
as the closest exit point for RR clients R2, R3, R5, and R6, and reflects the 6/8 prefix learned from R4 to these
RR clients R2, R3, R5, and R6. From the topology, it is evident that for R2 the best path is R1 and not R4.
This is because the vRR calculates best path from the RR's point of view.

Implementing BGP
47

Implementing BGP
Use Case

When the BGP ORR is configured in the network, the vRR calculates the shortest exit point in the network
from R2’s point of view (ORR Root: R2) and determines that R1 is the closest exit point to R2. vRR then
reflects the 6/8 prefix learned from R1 to R2.

Configuring BGP ORR includes:

• enabling ORR on the RR for the client whose shortest exit point is to be determined

• applying the ORR configuration to the neighbor

Enabling ORR on vRR for R2 (RR client)

For example to determine shortest exit point for R2; configure ORR on vRR with an IP address of R2 that is
192.0.2.2. Use 6500 as AS number and g1 as orr (root) policy name:

router bgp 6500
address-family ipv4 unicast
optimal-route-reflection g1 192.0.2.2

commit

Applying the ORR configuration to the neighbor

Next, apply the ORR policy to BGP neighbor R2 (this enables RR to advertise best path calculated using the
root IP address, 192.0.2.2, configured in orr (root) policy g1 to R2):

router bgp 6500
neighbor 192.0.2.2
address-family ipv4 unicast
optimal-route-reflection g1

commit

Verification

To verify whether R2 received the best exit, execute the show bgp <prefix> command (from R2) in EXEC
mode. In the above example, R1 and R4 advertise the 6/8 prefix; run the show bgp 6.0.0.0/8 command:
R2# show bgp 6.0.0.0/8
Tue Apr 5 20:21:58.509 UTC
BGP routing table entry for 6.0.0.0/8
Versions:
Process bRIB/RIB SendTblVer
Speaker 8 8

Last Modified: Apr 5 20:00:44.022 for 00:21:14
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
192.0.2.1 (metric 20) from 203.0.113.1 (192.0.2.1)
Origin incomplete, metric 0, localpref 100, valid, internal, best, group-best
Received Path ID 0, Local Path ID 1, version 8
Originator: 192.0.2.1, Cluster list: 203.0.113.1

The above show output states that the best path for R2 is through R1, whose IP address is 192.0.2.1 and the
metric of the path is 20.

Implementing BGP
48

Implementing BGP
Use Case

Execute the show bgp command from the vRR to determine the best path calculated for R2 by ORR. R2 has
its own update-group because it has a different best path (or different policy configured) than those of other
peers:
VRR#show bgp 6.0.0.0/8
Thu Apr 28 13:36:42.744 UTC
BGP routing table entry for 6.0.0.0/8
Versions:
Process bRIB/RIB SendTblVer
Speaker 13 13
Last Modified: Apr 28 13:36:26.909 for 00:00:15
Paths: (2 available, best #2)
Advertised to update-groups (with more than one peer):
0.2
Path #1: Received by speaker 0
ORR bestpath for update-groups (with more than one peer):
0.1
Local, (Received from a RR-client)
192.0.2.1 (metric 30) from 192.0.2.1 (192.0.2.1)
Origin incomplete, metric 0, localpref 100, valid, internal, add-path
Received Path ID 0, Local Path ID 2, version 13
Path #2: Received by speaker 0
Advertised to update-groups (with more than one peer):
0.2
ORR addpath for update-groups (with more than one peer):
0.1
Local, (Received from a RR-client)
192.0.2.4 (metric 20) from 192.0.2.4 (192.0.2.4)
Origin incomplete, metric 0, localpref 100, valid, internal, best, group-best
Received Path ID 0, Local Path ID 1, version 13

Path #1 is advertised to update-group 0.1. R2 is in update-group 0.1.Note

Execute the show bgp command for update-group 0.1 verify whether R2 is in update-group 0.1.
VRR#show bgp update-group 0.1
Thu Apr 28 13:38:18.517 UTC

Update group for IPv4 Unicast, index 0.1:
Attributes:
Neighbor sessions are IPv4
Internal
Common admin
First neighbor AS: 65000
Send communities
Send GSHUT community if originated
Send extended communities
Route Reflector Client
ORR root (configured): g1; Index: 0
4-byte AS capable
Non-labeled address-family capable
Send AIGP
Send multicast attributes
Minimum advertisement interval: 0 secs
Update group desynchronized: 0
Sub-groups merged: 0
Number of refresh subgroups: 0
Messages formatted: 5, replicated: 5
All neighbors are assigned to sub-group(s)
Neighbors in sub-group: 0.2, Filter-Groups num:1

Implementing BGP
49

Implementing BGP
Use Case

Neighbors in filter-group: 0.2(RT num: 0)
192.0.2.2

For further verification, check the contents of the table created on vRR as a result of configuring the g1 policy.
From R2’s point of view, the cost of reaching R1 is 20 and the cost of reaching R4 is 30. Therefore, the closest
and best exit for R2 is through R1:
VRR#show orrspf database g1
Thu Apr 28 13:39:20.333 UTC

ORR policy: g1, IPv4, RIB tableid: 0xe0000011
Configured root: primary: 192.0.2.2, secondary: NULL, tertiary: NULL
Actual Root: 192.0.2.2, Root node: 2000.0100.1002.0000

Prefix Cost
203.0.113.1 30
192.0.2.1 20
192.0.2.2 0
192.0.2.3 30
192.0.2.4 30
192.0.2.5 10
192.0.2.6 20

Number of mapping entries: 8

RPL - if prefix is-best-path/is-best-multipath
Border Gateway Protocol (BGP) routers receive multiple paths to the same destination. As a standard, by
default the BGP best path algorithm decides the best path to install in IP routing table. This is used for traffic
forwarding.

BGP assigns the first valid path as the current best path. It then compares the best path with the next path in
the list. This process continues, until BGP reaches the end of the list of valid paths. This contains all rules
used to determine the best path. When there are multiple paths for a given address prefix, BGP:

• Selects one of the paths as the best path as per the best-path selection rules.

• Installs the best path in its forwarding table. Each BGP speaker advertises only the best-path to its peers.

The advertisement rule of sending only the best path does not convey the full routing state of a destination,
present on a BGP speaker to its peers.

Note

After the BGP speaker receives a path from one of its peers; the path is used by the peer for forwarding packets.
All other peers receive the same path from this peer. This leads to a consistent routing in a BGP network. To
improve the link bandwidth utilization, most BGP implementations choose additional paths satisfy certain
conditions, as multi-path, and install them in the forwarding table. Incoming packets for such are load-balanced
across the best-path and the multi-path(s). You can install the paths in the forwarding table that are not
advertised to the peers. The RR route reflector finds out the best-path and multi-path. This way the route
reflector uses different communities for best-path and multi-path. This feature allows BGP to signal the local
decision done by RR or Border Router. With this new feature, selected by RR using community-string (if
is-best-path then community 100:100). The controller checks which best path is sent to all R's. Border Gateway
Protocol routers receive multiple paths to the same destination. While carrying out best path computation

Implementing BGP
50

Implementing BGP
RPL - if prefix is-best-path/is-best-multipath

there will be one best path, sometimes equal and few non-equal paths. Thus, the requirement for abest-path
and is-equal-best-path.

The BGP best path algorithm decides the best path in the IP routing table and used for forwarding traffic. This
enhancement within the RPL allows creating policy to take decisions. Adding community-string for local
selection of best path. With introduction of BGP Additional Path (Add Path), BGP now signals more than the
best Path. BGP can signal the best path and the entire path equivalent to the best path. This is in accordance
to the BGP multi-path rules and all backup paths.

Remotely Triggered Blackhole Filtering with RPL Next-hop Discard
Configuration

Remotely triggered black hole (RTBH) filtering is a technique that provides the ability to drop undesirable
traffic before it enters a protected network. RTBH filtering provides a method for quickly dropping undesirable
traffic at the edge of the network, based on either source addresses or destination addresses by forwarding it
to a null0 interface. RTBH filtering based on a destination address is commonly known as Destination-based
RTBH filtering.Whereas, RTBH filtering based on a source address is known as Source-based RTBH filtering.

RTBH filtering is one of the many techniques in the security toolkit that can be used together to enhance
network security in the following ways:

• Effectively mitigate DDoS and worm attacks

• Quarantine all traffic destined for the target under attack

• Enforce blocklist filtering

RTBH is not supported in cases such as L3VPN iBGP route over NULL0.Note

Configuring Destination-based RTBH Filtering
RTBH is implemented by defining a route policy (RPL) to discard undesirable traffic at next-hop using set
next-hop discard command.

RTBH filtering sets the next-hop of the victim's prefix to the null interface. The traffic destined to the victim
is dropped at the ingress.

The set next-hop discard configuration is used in the neighbor inbound policy. When this config is applied
to a path, though the primary next-hop is associated with the actual path but the RIB is updated with next-hop
set to Null0. Even if the primary received next-hop is unreachable, the RTBH path is considered reachable
and will be a candidate in the bestpath selection process. The RTBH path is readvertised to other peers with
either the received next-hop or nexthop-self based on normal BGP advertisement rules.

A typical deployment scenario for RTBH filtering would require running internal Border Gateway Protocol
(iBGP) at the access and aggregation points and configuring a separate device in the network operations center
(NOC) to act as a trigger. The triggering device sends iBGP updates to the edge, that cause undesirable traffic
to be forwarded to a null0 interface and dropped.

Consider below topology, where a rogue router is sending traffic to a border router.

Implementing BGP
51

Implementing BGP
Remotely Triggered Blackhole Filtering with RPL Next-hop Discard Configuration

Figure 10: Topology to Implement RTBH Filtering

Configurations applied on the Trigger Router

Configure a static route redistribution policy that sets a community on static routes marked with a special tag,
and apply it in BGP:
route-policy RTBH-trigger
if tag is 777 then
set community (1234:4321, no-export) additive
pass

else
pass

endif
end-policy

router bgp 65001
address-family ipv4 unicast
redistribute static route-policy RTBH-trigger
!
neighbor 192.168.102.1
remote-as 65001
address-family ipv4 unicast
route-policy bgp_all in
route-policy bgp_all out

Configure a static route with the special tag for the source prefix that has to be block-holed:
router static
address-family ipv4 unicast
10.7.7.7/32 Null0 tag 777

Configurations applied on the Border Router

Configure a route policy that matches the community set on the trigger router and configure set next-hop
discard:
route-policy RTBH
if community matches-any (1234:4321) then
set next-hop discard

else
pass

endif
end-policy

Apply the route policy on the iBGP peers:

Implementing BGP
52

Implementing BGP
Configuring Destination-based RTBH Filtering

router bgp 65001
address-family ipv4 unicast
!
neighbor 192.168.102.2
remote-as 65001
address-family ipv4 unicast
route-policy RTBH in
route-policy bgp_all out

Verification
On the border router, the prefix 10.7.7.7/32 is flagged as Nexthop-discard:
RP/0/RSP0/CPU0:router#show bgp
BGP router identifier 10.210.0.5, local AS number 65001
BGP generic scan interval 60 secs
BGP table state: Active
Table ID: 0xe0000000 RD version: 12
BGP main routing table version 12
BGP scan interval 60 secs

Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard

Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path

N>i10.7.7.7/32 192.168.102.2 0 100 0 ?

RP/0/RSP0/CPU0:router#show bgp 10.7.7.7/32
BGP routing table entry for 10.7.7.7/32
Versions:
Process bRIB/RIB SendTblVer
Speaker 12 12

Last Modified: Jul 4 14:37:29.048 for 00:20:52
Paths: (1 available, best #1, not advertised to EBGP peer)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
192.168.102.2 (discarded) from 192.168.102.2 (10.210.0.2)
Origin incomplete, metric 0, localpref 100, valid, internal best, group-best
Received Path ID 0, Local Path ID 1, version 12
Community: 1234:4321 no-export

RP/0/RSP0/CPU0:router#show route 10.7.7.7/32

Routing entry for 10.7.7.7/32
Known via "bgp 65001", distance 200, metric 0, type internal
Installed Jul 4 14:37:29.394 for 01:47:02
Routing Descriptor Blocks
directly connected, via Null0
Route metric is 0

No advertising protos.

Default Address Family for show Commands
Most of the show commands provide address family (AFI) and subaddress family (SAFI) arguments (see
RFC 1700 and RFC 2858 for information on AFI and SAFI). The Cisco IOS XR software parser provides the
ability to set the afi and safi so that it is not necessary to specify them while running a show command. The
parser commands are:

• set default-afi { ipv4 | ipv6 | all }

Implementing BGP
53

Implementing BGP
Verification

• set default-safi { unicast | multicast | all }

The parser automatically sets the default afi value to ipv4 and default safi value to unicast . It is necessary
to use only the parser commands to change the default afi value from ipv4 or default safi value from unicast
. Any afi or safi keyword specified in a show command overrides the values set using the parser commands.
Use the following show default-afi-safi-vrf command to check the currently set value of the afi and safi.

TCP Maximum Segment Size
Maximum Segment Size (MSS) is the largest amount of data that a computer or a communication device can
receive in a single, unfragmented TCP segment. All TCP sessions are bounded by a limit on the number of
bytes that can be transported in a single packet; this limit is MSS. TCP breaks up packets into chunks in a
transmit queue before passing packets down to the IP layer.

The TCP MSS value is dependent on the maximum transmission unit (MTU) of an interface, which is the
maximum length of data that can be transmitted by a protocol at one instance. The maximum TCP packet
length is determined by both theMTU of the outbound interface on the source device and theMSS announced
by the destination device during the TCP setup process. The closer the MSS is to the MTU, the more efficient
is the transfer of BGP messages. Each direction of data flow can use a different MSS value.

Per Neighbor TCP MSS
The per neighbor TCP MSS feature allows you to create unique TCP MSS profiles for each neighbor. Per
neighbor TCP MSS is supported in two modes: neighbor group and session group. Before, TCP MSS
configuration was available only at the global level in the BGP configuration.

The per neighbor TCP MSS feature allows you to:

• Enable per neighbor TCP MSS configuration.

• Disable TCP MSS for a particular neighbor in the neighbor group or session group using the
inheritance-disable command.

• Unconfigure TCP MSS value. On unconfiguration, TCP MSS value in the protocol control block (PCB)
is set to the default value.

The default TCPMSS value is 536 (in octets) or 1460 (in bytes). TheMSS default
of 1460 means that TCP segments the data in the transmit queue into 1460-byte
chunks before passing the packets to the IP layer.

Note

To configure per neighbor TCPMSS, use the tcp mss command under per neighbor, neighbor group or session
group configuration.

For detailed configuration steps, see Configuring Per Neighbor TCP MSS, on page 107.

For detailed steps to disable per neighbor TCP MSS, see Disabling Per Neighbor TCP MSS, on page 109.

MPLS VPN Carrier Supporting Carrier
Carrier supporting carrier (CSC) is a term used to describe a situation in which one service provider allows
another service provider to use a segment of its backbone network. The service provider that provides the

Implementing BGP
54

Implementing BGP
TCP Maximum Segment Size

segment of the backbone network to the other provider is called the backbone carrier. The service provider
that uses the segment of the backbone network is called the customer carrier.

A backbone carrier offers Border Gateway Protocol and Multiprotocol Label Switching (BGP/MPLS) VPN
services. The customer carrier can be either:

• An Internet service provider (ISP) (By definition, an ISP does not provide VPN service.)

• A BGP/MPLS VPN service provider

You can configure a CSC network to enable BGP to transport routes and MPLS labels between the backbone
carrier provider edge (PE) routers and the customer carrier customer edge (CE) routers using multiple paths.
The benefits of using BGP to distribute IPv4 routes and MPLS label routes are:

• BGP takes the place of an Interior Gateway Protocol (IGP) and Label Distribution Protocol (LDP) in a
VPN routing and forwarding (VRF) table. You can use BGP to distribute routes and MPLS labels. Using
a single protocol instead of two simplifies the configuration and troubleshooting.

• BGP is the preferred routing protocol for connecting two ISPs, mainly because of its routing policies
and ability to scale. ISPs commonly use BGP between two providers. This feature enables those ISPs to
use BGP.

For detailed information on configuring MPLS VPN CSC with BGP, see the Implementing MPLS Layer 3
VPNs on Cisco IOS XR Software module of the MPLS Configuration Guide for the Cisco CRS Routers.

BGP Keychains
BGP keychains enable keychain authentication between two BGP peers. The BGP endpoints must both comply
with draft-bonica-tcp-auth-05.txt and a keychain on one endpoint and a password on the other endpoint does
not work.

See the System Security Configuration Guide for Cisco CRS Routers for information on keychainmanagement.

BGP is able to use the keychain to implement hitless key rollover for authentication. Key rollover specification
is time based, and in the event of clock skew between the peers, the rollover process is impacted. The
configurable tolerance specification allows for the accept window to be extended (before and after) by that
margin. This accept window facilitates a hitless key rollover for applications (for example, routing and
management protocols).

The key rollover does not impact the BGP session, unless there is a keychain configuration mismatch at the
endpoints resulting in no common keys for the session traffic (send or accept).

BGP Multicast VPN
The BGPMulticast VPN feature uses the IPv4 multicast distribution tree (MDT) subaddress family identifier
(SAFI) in Border Gateway Protocol (BGP).

Multicast VPN (MVPN) extends the VPN architecture to provide multicast services over a shared service
provider backbone using native multicast technology. This is achieved using virtual connections between
provider edge (PE) routers in each VPN and using native multicast forwarding inside the provider network.
An MDT may span across multiple customer sites and the provider network, allowing traffic to flow freely
from one source to multiple receivers.

MVPN is supported on VPN networks based on MPLS and on networks based on IP Layer 2 Tunnel Protocol
version 3 (L2TPv3).

Implementing BGP
55

Implementing BGP
BGP Keychains

PE routers are the only routers that must be MVPN-aware and that must be able to signal to remote PEs
information regarding the MVPN. Therefore, all PE routers must have a BGP relationship with each
other—either directly or using a route reflector (RR).

Generally the source address of the default MDT is the same address used to source the internal BGP (iBGP)
sessions with the remote PE routers that belong to the same VPN and multicast VPN routing and forwarding
(MVRF) instance. When Protocol Independent Multicast–Source Specific Multicast (PIM–SSM) is used for
transport inside the provider core, it is through the BGP relationship that the PEs indicate that they are
MVPN-capable and provide for source discovery. This capability is indicated using the updated BGPmessage.

The source address can also be configured uniquely per VRF instance under multicast-routing configuration.
See Multicast Configuration Guide for Cisco CRS Routers.

Note

When a PE receives a BGP update, which includes the rendezvous point (RP) and the group information, it
joins the root of that tree, thereby joining the MDT.

Figure 11:Multiprotocol iBGPUpdates forMVPN, on page 57 showsMultiprotocol iBGP updates forMVPN.
On PE1, PE2 is configured as its iBGP peer. This BGP peer configuration within a VRF triggers theMP-iBGP
updates that send PE1 local VPN routes to PE2. BGP process on PE2 receives the VPN updates and installs
VPN routes in the Routing Information Base (RIB) VRF table.When PIM looks up a VRF source or rendezvous
point address that is reachable through the provider core, it receives an MP-iBGP route from the RIB.

When anMVPN-specific defaultMDT group is configured on PE1, PIM creates a virtualMDT tunnel interface
with the tunnel source address the same as the BGP local peering address. This MDT interface is used by PIM
to send VPN packets to the provider network and to receive VPN packets from the provider network. PIM
also exchanges control messages over this MDT interface.

Each time a default MDT group is configured for a specific VRF, BGP builds an MDT SAFI update, with
network layer reachability information (NLRI) containing the local PE BGP peering address and the newly
configured MDT group address (The NLRI format is 8-byte-RD:IPv4-address followed by the MDT group
address). This update is sent to all the BGP peers including PE2. The BGP process on PE2 receives this MDT
update and notifies PIM. If the group is a PIM–SSM group, PIM on PE2 begins sending SSM joins to the
BGP peering address on PE1 to establish an SSM tree in the core. This SSM tree is used to carry PIM control
traffic and multicast data traffic in the corresponding VRF.

In summary, PIM requires the following from BGP:

• A new BGP MDT SAFI, which carries the VRF RD and BGP local peering address and default MDT
group in its NLRI.

• A notification mechanism from BGP to PIM about the availability of the MDT SAFI update.

• A notification mechanism from PIM to BGP about the default MDT group address and source address.

See Internet Engineering Task Force (IETF) draft-nalawade-idr-mdt-safi-03 for detailed information onMDT
SAFI.

Implementing BGP
56

Implementing BGP
BGP Multicast VPN

Figure 11: Multiprotocol iBGP Updates for MVPN

Configuring an MDT Address Family Session in BGP
Perform this task to configure an IPv4 multicast distribution tree (MDT) subaddress family identifier (SAFI)
session in BGP, which can also be used for MVPNv6 network distribution.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. exit
5. address-family { vpnv4 | vpnv6 } unicast
6. exit
7. address-family ipv4 mdt
8. exit
9. neighbor ip-address

10. remote-as as-number

11. update-source interface-type interface-id

12. address-family { ipv4 | ipv6 } unicast
13. exit
14. address-family {vpnv4 | vpnv6} unicast
15. exit
16. address-family ipv4 mdt
17. exit
18. vrf vrf-name

19. rd { as-number:nn | ip-address:nn | auto }
20. address-family { ipv4 | ipv6 } unicast
21. Do one of the following:

• redistribute connected [metric metric-value] [route-policy route-policy-name]
• redistribute eigrp process-id [match { external | internal }] [metric metric-value] [

route-policy route-policy-name]

Implementing BGP
57

Implementing BGP
Configuring an MDT Address Family Session in BGP

• redistribute isis process-id [level { 1 | 1-inter-area | 2 }] [metric metric-value] [
route-policy route-policy-name]

• redistribute ospf process-id [match { external [1 | 2] | internal | nssa-external [1 | 2
]}] [metric metric-value] [route-policy route-policy-name]

• redistribute ospfv3 process-id [match { external [1 | 2] | internal | nssa-external [1 |
2]}] [metric metric-value] [route-policy route-policy-name]

• redistribute rip [metric metric-value] [route-policy route-policy-name]
• redistribute static [metric metric-value] [route-policy route-policy-name]

22. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

Exits the current configuration mode.exit

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Specifies the address family and enters the address family
configuration submode.

address-family { vpnv4 | vpnv6 } unicast

Example:

Step 5

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

vpnv4 unicast
Required if you are configuring multicast
MVPN. If configuringMVPNv6, use the vpnv6
keyword

Note

Exits the current configuration mode.exit

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Implementing BGP
58

Implementing BGP
Configuring an MDT Address Family Session in BGP

PurposeCommand or Action

Specifies the multicast distribution tree (MDT) address
family.

address-family ipv4 mdt

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 mdt

Exits the current configuration mode.exit

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 9

Creates a neighbor and assigns a remote autonomous
system number to it.

remote-as as-number

Example:

Step 10

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
2002

Allows sessions to use the primary IP address from a
specific interface as the local address when forming a
session with a neighbor.

update-source interface-type interface-id

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
update-source loopback 0

Step 11

The interface-type interface-id arguments specify the
type and ID number of the interface, such as ATM, POS,
Loopback. Use the CLI help (?) to see a list of all the
possible interface types and their ID numbers.

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 12

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

(Optional) Exits the current configuration mode.exit

Example:

Step 13

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# exit

(Optional) Enters address family configuration submode
for the specified address family.

address-family {vpnv4 | vpnv6} unicast

Example:

Step 14

Required if you are configuring multicast
MVPN. If configuringMVPNv6, use the vpnv6
keyword.

Note
RP/0/RP0/CPU0:router(config-bgp-nbr)#
address-family vpnv4 unicast

Implementing BGP
59

Implementing BGP
Configuring an MDT Address Family Session in BGP

PurposeCommand or Action

Exits the current configuration mode.exit

Example:

Step 15

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# exit

Specifies the multicast distribution tree (MDT) address
family.

address-family ipv4 mdt

Example:

Step 16

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 mdt

Exits the current configuration mode.exit

Example:

Step 17

RP/0/RP0/CPU0:router(config-bgp-af)# exit

(Optional) Enables BGP routing for a particular VRF on
the PE router.

vrf vrf-name

Example:

Step 18

Required if you are configuring multicast
MVPN.

Note
RP/0/RP0/CPU0:router(config-bgp)# vrf vpn1

(Optional) Configures the route distinguisher.rd { as-number:nn | ip-address:nn | auto }Step 19

Example: • Use the auto keyword if you want the router to
automatically assign a unique RD to the VRF.

RP/0/RP0/CPU0:router(config-bgp-vrf)# rd 1:1
• Automatic assignment of RDs is possible only if a
router ID is configured using the bgp router-id
command in router configuration mode. This allows
you to configure a globally unique router ID that can
be used for automatic RD generation.

The router ID for the VRF does not need to be
globally unique, and using the VRF router ID would
be incorrect for automatic RD generation. Having a
single router ID also helps in checkpointing RD
information for BGP graceful restart, because it is
expected to be stable across reboots.

Required if you are configuring multicast
MVPN.

Note

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 20

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

Implementing BGP
60

Implementing BGP
Configuring an MDT Address Family Session in BGP

PurposeCommand or Action

(Optional) Configures redistribution of a protocol into the
VRF address family context.

Do one of the following:Step 21

• redistribute connected [metric metric-value] [
route-policy route-policy-name] Required if you are configuring multicast

MVPN.
Note

• redistribute eigrp process-id [match { external
| internal }] [metric metric-value] [route-policy
route-policy-name]

• redistribute isis process-id [level { 1 |
1-inter-area | 2 }] [metric metric-value] [
route-policy route-policy-name]

• redistribute ospf process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [
metric metric-value] [route-policy
route-policy-name]

• redistribute ospfv3 process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [
metric metric-value] [route-policy
route-policy-name]

• redistribute rip [metric metric-value] [
route-policy route-policy-name]

• redistribute static [metric metric-value] [
route-policy route-policy-name]

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
redistribute eigrp 23

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 22

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

BGP Nonstop Routing
The Border Gateway Protocol (BGP) Nonstop Routing (NSR) with Stateful Switchover (SSO) feature enables
all bgp peerings to maintain the BGP state and ensure continuous packet forwarding during events that could
interrupt service. Under NSR, events that might potentially interrupt service are not visible to peer routers.
Protocol sessions are not interrupted and routing states are maintained across process restarts and switchovers.

BGP NSR provides nonstop routing during the following events:

Implementing BGP
61

Implementing BGP
BGP Nonstop Routing

• Route processor switchover

• Process crash or process failure of BGP or TCP

In case of process crash or process failure, NSR will be maintained only if nsr
process-failures switchover command is configured. In the event of process
failures of active instances, the nsr process-failures switchover configures
failover as a recovery action and switches over to a standby route processor (RP)
or a standby distributed route processor (DRP) thereby maintaining NSR. An
example of the configuration command is RP/0/RSP0/CPU0:router(config) # nsr
process-failures switchover

The nsr process-failures switchover command maintains both the NSR and
BGP sessions in the event of a BGP or TCP process crash. Without this
configuration, BGP neighbor sessions flap in case of a BGP or TCP process crash.
This configuration does not help if the BGP or TCP process is restarted in which
case the BGP neighbors are expected to flap.

Note

• In-Service System Upgrade (ISSU)

• Minimum Disruption Restart (MDR)

During route processor switchover and In-Service System Upgrade (ISSU), NSR is achieved by stateful
switchover (SSO) of both TCP and BGP.

NSR does not force any software upgrades on other routers in the network, and peer routers are not required
to support NSR.

When a route processor switchover occurs due to a fault, the TCP connections and the BGP sessions are
migrated transparently to the standby route processor, and the standby route processor becomes active. The
existing protocol state is maintained on the standby route processor when it becomes active, and the protocol
state does not need to be refreshed by peers.

Events such as soft reconfiguration and policy modifications can trigger the BGP internal state to change. To
ensure state consistency between active and standby BGP processes during such events, the concept of post-it
is introduced that act as synchronization points.

BGP NSR provides the following features:

• NSR-related alarms and notifications

• Configured and operational NSR states are tracked separately

• NSR statistics collection

• NSR statistics display using show commands

• XML schema support

• Auditing mechanisms to verify state synchronization between active and standby instances

• CLI commands to enable and disable NSR

NSR can be provisioned on amultishelf router. The following guidelines should be observed when provisioning
NSR on a multishelf router:

Implementing BGP
62

Implementing BGP
BGP Nonstop Routing

• When provisioning NSR for line cards installed on a single rack, provision the active and standby
applications on the distributed route processor (DRP) of that rack. If a rack failure occurs, sessions are
dropped, because all line cards go down.

• When provisioning NSR for line cards installed on different racks, use one of the following three options:

• Provision the active and standby applications on a distributed route processor (DRP) redundant pair,
where there is a separate route processor in each rack. This configuration uses up two
revenue-producing line-card slots on each rack, but is the most secure configuration.

• Provision the active and standby applications on a distributed route processor (DRP) pair that spans
two racks. In this configuration, the active/standby role of the line cards is not dependent on the
active/standby role of the DRPs. This is called flexible process redundancy and provides for rack
loss and efficient use of LC slots. Use of distributed BGP is not required with this solution.

Sessions on line cards in a lost rack are not protected with any of the above
options, because there is no line-card redundancy. These options ensure only that
sessions on other racks are not affected by a lost rack. However, lost sessions
from a lost rack may cause some traffic loss on other racks, because destinations
learned through those lost sessions may no longer have alternate routes. Also,
rack loss may cause the CPUs on route processors of active racks to slow as they
attempt to define new paths for some routes.

Note

BGP Best-External Path
The Border Gateway Protocol (BGP) best–external path functionality supports advertisement of the
best–external path to the iBGP and Route Reflector peers when a locally selected bestpath is from an internal
peer.

BGP selects one best path and one backup path to every destination. By default, selects one best path .
Additionally, BGP selects another bestpath from among the remaining external paths for a prefix. Only a
single path is chosen as the best–external path and is sent to other PEs as the backup path.

BGP calculates the best–external path only when the best path is an iBGP path. If the best path is an eBGP
path, then best–external path calculation is not required.

The procedure to determine the best–external path is as follows:

1. Determine the best path from the entire set of paths available for a prefix.

2. Eliminate the current best path.

3. Eliminate all the internal paths for the prefix.

4. From the remaining paths, eliminate all the paths that have the same next hop as that of the current best
path.

5. Rerun the best path algorithm on the remaining set of paths to determine the best–external path.

BGP considers the external and confederations BGP paths for a prefix to calculate the best–external path.

BGP advertises the best path and the best–external path as follows:

Implementing BGP
63

Implementing BGP
BGP Best-External Path

• On the primary PE—advertises the best path for a prefix to both its internal and external peers

• On the backup PE—advertises the best path selected for a prefix to the external peers and advertises the
best–external path selected for that prefix to the internal peers

The advertise best-external command enables the advertisement of the best–external path in global address
family configuration mode and VRF address family configuration mode.

BGP Local Label Retention
When a primary PE-CE link fails, BGP withdraws the route corresponding to the primary path along with its
local label and programs the backup path in the Routing Information Base (RIB) and the Forwarding Information
Base (FIB), by default.

However, until all the internal peers of the primary PE reconverge to use the backup path as the new bestpath,
the traffic continues to be forwarded to the primary PE with the local label that was allocated for the primary
path. Hence the previously allocated local label for the primary path must be retained on the primary PE for
some configurable time after the reconvergence. BGP Local Label Retention feature enables the retention of
the local label for a specified period. If no time is specified, the local lable is retained for a default value of
five minutes.

The retain local-label command enables the retention of the local label until the network is converged.

BGP Over GRE Interfaces
Cisco IOS XR software provides the capability to run Border Gateway Protocol (BGP) over Generic Routing
Encapsulation (GRE) tunnel interfaces.

GRE protocol transports packets of one protocol over another protocol by means of encapsulation. Service
Providers can provide IP, MPLS VPN or L2VPN services between their networks that are connected together
by a public network using GRE encapsulation to carry data securely over the public network.

The packet that needs to be transported is first encapsulated in a GRE header, which is further encapsulated
in another protocol like IPv4 or IPv6 and then forwarded to the destination.

The Cisco IOSXR software GRE implementation is compliant with GRE encapsulation defined in RFC 2784.
Key and Sequence numbering as defined in RFC 2890 is not supported in Cisco IOS XR software GRE
implementation. To be backward compliant with RFC 1701, Cisco IOS XR software transmits GRE packets
with Reserved0 field set to zero. A receiver that is compliant with RFC 1701 treats key present, sequence
number, and strict source route as zero and do not expect key and sequence number. The Cisco IOS XR
software discards a GRE packet with any of the bits in Reserved0 field set.

Command Line Interface (CLI) Consistency for BGP Commands
From Cisco IOS XR Release 3.9.0 onwards, the Border Gateway Protocol (BGP) commands use disable
keyword to disable a feature. The keyword inheritance-disable disables the inheritance of the feature
properties from the parent level.

Implementing BGP
64

Implementing BGP
BGP Local Label Retention

BGP Additional Paths
The Border Gateway Protocol (BGP) Additional Paths feature modifies the BGP protocol machinery for a
BGP speaker to be able to send multiple paths for a prefix. This gives 'path diversity' in the network. The add
path enables BGP prefix independent convergence (PIC) at the edge routers.

BGP Additional Path feature is not supported under vrf.Note

BGP add path enables add path advertisement in an iBGP network and advertises the following types of paths
for a prefix:

• Backup paths—to enable fast convergence and connectivity restoration.

• Group-best paths—to resolve route oscillation.

• All paths—to emulate an iBGP full-mesh.

Add path is not be supported with MDT, tunnel, and L2VPN address families
and eBGP peerings.

Note

iBGP Multipath Load Sharing
When a Border Gateway Protocol (BGP) speaking router that has no local policy configured, receives multiple
network layer reachability information (NLRI) from the internal BGP (iBGP) for the same destination, the
router will choose one iBGP path as the best path. The best path is then installed in the IP routing table of the
router.

The iBGP Multipath Load Sharing feature enables the BGP speaking router to select multiple iBGP paths as
the best paths to a destination. The best paths or multipaths are then installed in the IP routing table of the
router.

When there are multiple border BGP routers having reachability information heard over eBGP, if no local
policy is applied, the border routers will choose their eBGP paths as best. They advertise that bestpath inside
the ISP network. For a core router, there can be multiple paths to the same destination, but it will select only
one path as best and use that path for forwarding. iBGP multipath load sharing adds the ability to enable load
sharing among multiple equi-distant paths.

Configuring multiple iBGP best paths enables a router to evenly share the traffic destined for a particular site.

The iBGP Multipath Load Sharing feature functions similarly in a Multiprotocol Label Switching (MPLS)
Virtual Private Network (VPN) with a service provider backbone.

For multiple paths to the same destination to be considered as multipaths, the following criteria must be met:

• All attributes must be the same. The attributes include weight, local preference, autonomous system path
(entire attribute and not just length), origin code, Multi Exit Discriminator (MED), and Interior Gateway
Protocol (iGP) distance.

• The next hop router for each multipath must be different.

Implementing BGP
65

Implementing BGP
BGP Additional Paths

Even if the criteria are met and multiple paths are considered multipaths, the BGP speaking router will still
designate one of the multipaths as the best path and advertise this best path to its neighbors.

Per-vrf label mode is not supported for Carrier Supporting Carrier (CSC) network with internal and external
BGP multipath setup

Per VRF label mode cannot be used for BGP PIC edge with eiBGP multipath as that might cause loops. Only
per prefix label supports per VRF label mode.

BGP Selective Multipath
Traditional BGP multipath feature allows a router receiving parallel paths to the same destination to install
the multiple paths in the routing table. By default, this multipath feature is applied to all configured peers.
BGP selective multipath allows application of the multipath feature only to selected peers.

The BGP router receiving multiple paths is configured with the maximum-paths ... selective option. The
iBGP/eBGP neighbors sharing multiple paths are configured with the multipath option, while being added
as neighbors on the BGP router.

The following behavior is to be noted while using BGP selective multipath:

• BGP selective multipath does not impact best path calculations. A best path is always included in the set
of multipaths.

• For VPN prefixes, the PE paths are always eligible to be multipaths.

For information on themaximum-paths andmultipath commands, see theCisco ASR 9000 Series Aggregation
Services Router Routing Command Reference.

Topology

A sample topology to illustrate the configuration used in this section is shown in the following figure.

Figure 12: BGP Selective Multipath

Router R4 receives parallel paths from Routers R1, R2 and R3 to the same destination. If Routers R1 and R2
are configured as selective multipath neighbors on Router R4, only the parallel paths from these routers are
installed in the routing table of Router R4.

Implementing BGP
66

Implementing BGP
BGP Selective Multipath

Configuration

Configure your network topology with iBGP/eBGP running on your routers, before configuring this feature.Note

To configure BGP selective multipath on Router R4, use the following steps.

1. Configure Router R4 to accept selective multiple paths in your topology.

/* To configure selective multipath for iBGP/eBGP
RP/0/RP0/CPU0:router(config)# router bgp 1
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)# maximum-paths ibgp 4 selective
RP/0/RP0/CPU0:router(config-bgp-af)# maximum-paths ebgp 5 selective
RP/0/RP0/CPU0:router(config-bgp-af)# commit

/* To configure selective multipath for eiBGP
RP/0/RP0/CPU0:router(config)# router bgp 1
RP/0/RP0/CPU0:router(config-bgp)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-af)# maximum-paths eibgp 6 selective
RP/0/RP0/CPU0:router(config-bgp-af)# commit

2. Configure neighbors for Router R4.

Routers R1 (1.1.1.1) and R2 (2.2.2.2) are configured as neighbors with the multipath option.

Router R3 (3.3.3.3) is configured as a neighbor without the multipath option, and hence the routes from
this router are not eligible to be chosen as multipaths.

RP/0/RP0/CPU0:router(config-bgp)# neighbor 1.1.1.1
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# multipath
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# commit

RP/0/RP0/CPU0:router(config-bgp-nbr)# neighbor 2.2.2.2
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# multipath
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# commit

RP/0/RP0/CPU0:router(config-bgp-nbr)# neighbor 3.3.3.3
RP/0/RP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-nbr-af)# commit

You have successfully configured the BGP selective multipath feature.

Accumulated Interior Gateway Protocol Attribute
The Accumulated Interior Gateway Protocol (AiGP)Attribute is an optional non-transitive BGP Path Attribute.
The attribute type code for the AiGPAttribute is to be assigned by IANA. The value field of the AiGPAttribute
is defined as a set of Type/Length/Value elements (TLVs). The AiGP TLV contains the Accumulated IGP
Metric.

The AiGP feature is required in the 3107 network to simulate the current OSPF behavior of computing the
distance associated with a path. OSPF/LDP carries the prefix/label information only in the local area. Then,
BGP carries the prefix/lable to all the remote areas by redistributing the routes into BGP at area boundaries.

Implementing BGP
67

Implementing BGP
Accumulated Interior Gateway Protocol Attribute

The routes/labels are then advertised using LSPs. The next hop for the route is changed at each ABR to local
router which removes the need to leak OSPF routes across area boundaries. The bandwidth available on each
of the core links is mapped to OSPF cost, hence it is imperative that BGP carries this cost correctly between
each of the PEs. This functionality is achieved by using the AiGP.

Per VRF and Per CE Label for IPv6 Provider Edge
The per VRF and per CE label for IPv6 feature makes it possible to save label space by allocating labels per
default VRF or per CE nexthop.

All IPv6 Provider Edge (6PE) labels are allocated per prefix by default. Each prefix that belongs to a VRF
instance is advertised with a single label, causing an additional lookup to be performed in the VRF forwarding
table to determine the customer edge (CE) next hop for the packet.

However, use the label mode commandwith the per-ce keyword or the per-vrf keyword to avoid the additional
lookup on the PE router and conserve label space.

Use per-ce keyword to specify that the same label be used for all the routes advertised from a unique customer
edge (CE) peer router. Use the per-vrf keyword to specify that the same label is to be used for all the routes
advertised from a unique VRF. In 6PE, the label is IPV6 explicit null label.

Constrained Route Distribution for BGP/MPLS Internet Protocol VPNs
Constrained Route Distribution is a feature that service providers use inMultiprotocol Label Switching (MPLS)
Layer 3 Virtual Private Networks (L3VPNs) to reduce the number of unnecessary routing updates that route
reflectors (RR) send to provider edge (PE) routers. The reduction in routing updates saves resources. RRs,
autonomous system boundary routers (ASBRs), and PEs will have fewer routes to carry. Route targets are
used to constrain routing updates.

Some service providers have a very large number of routing updates being sent from RRs to PEs, using
considerable resources. A PE does not need routing updates for VRFs that are not on the PE; therefore, the
PE determines that many routing updates it receives are "unwanted." The PE filters out these unwanted updates.

Now consider a scenario where there are two RRs with another set of PEs. Not only are there unwanted routing
updates from RR to PE, there are also unwanted routing updates between the RRs. As a result, a large number
of unwanted routes might be advertised among RRs and PEs. The Constrained Route Distribution feature
addresses this problem by filtering unwanted routing updates. When the Constrained Route Distribution is in
place, the RR filters the updates.

Constrained Route Distribution Benefits
InMPLS L3VPNs, PE routers use BGP and Route Target (RT) extended communities to control the distribution
of VPN routes, to and from VRFs, to separate the VPNs. It is common for PEs and Autonomous System
Boundary Routers (ASBRs) to receive, and then filter out, unwanted VPN routes.

However, receiving and filtering unwanted VPN routes is a waste of resources. The sender generates and
transmits a VPN routing update and the receiver filters out the unwanted routes. It would save resources to
prevent, in the first place, the generation of such VPN route updates .

Address Family Route Target Filter (ARTF) is a mechanism that prevents the propagation of VPN Network
Layer Reachability Information (NLRI) from the RR to a PE that is not interested in the VPN. This mechanism
provides considerable savings in CPU cycles and transient memory usage. RT constraint limits the number
of VPN routes and describes VPN membership.

Implementing BGP
68

Implementing BGP
Per VRF and Per CE Label for IPv6 Provider Edge

BGP RT-constrain SAFI—rt-filter
The constrained route distribution feature introduces "rt-filter" subsequent address family identifier (SAFI),
the BGP RT-constrain SAFI. Use the address-family ipv4 rt-filter command to enter the rt-filter SAFI. This
SAFI carries route target (RT) filter information relevant to the BGP neighbor advertising it.

The Multiprotocol capability for ipv4 rt-filter address-family is advertised when the AFI is enabled under the
neighbor. The rt-filter SAFI needs to be enabled globally, before it can be enabled under the neighbor. The
rt-filter address family is allowed on both the iBGP and eBGP neighbors under default VRF.

If there are peers that are not RT-constrain capable, the RT-constrain address family must be enabled under
all PE neighbors on RR. If all peers are RT-constrain capable, then the default RT-constrain route is not sent
to the peers.

Note

This example explains how to configure address-family ipv4 rt-filter:

RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config)#router bgp 100
RP/0/RP0/CPU0:router(config-bgp)#address-family ipv4 rt-filter
RP/0/RP0/CPU0:router(config-bgp-af)#neighbor 1.1.1.1
RP/0/RP0/CPU0:router(config-bgp-nbr)#address-family ipv4 rt-filter
RP/0/RP0/CPU0:router(config-bgp-nbr-af)#

To get default rt-filter prefix information, use the show bgp ipv4 rt-filter 0:2:0:0/0 command:

RP/0/RP0/CPU0:router#show bgp ipv4 rt-filter 0:2:0:0/0
BGP routing table entry for 0:2:0:0/0
Versions:
Process bRIB/RIB SendTblVer
Speaker 8489 8489

Last Modified: Jul 2 10:30:42.452 for 3d03h
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
0.0.0.0 from 0.0.0.0 (192.192.5.7)
Received Label 1
Origin IGP, localpref 100, valid, redistributed, best, group-best
Received Path ID 0, Local Path ID 1, version 8489

Selective VRF Download
Selective VRF Download (SVD) feature enables the downloading of only those prefixes and labels to a line
card that are actively required to forward traffic through the line card.

To meet the demand for a consolidated edge MSE platform, the number of VRFs, VRF interfaces, and the
prefix capacity increase. Convergence timings differ in different line card engines. One of the major factors
that determine convergence timing is the time taken to process and program a prefix and its associated data
structures. A lesser number of prefixes and labels ensure better convergence timing. By enabling selective
download of VRF routes to both Engine-3 (E3) and Engine-5 (E5) line cards, SVD reduces scalability and
convergence problems in Layer 3 VPNs (L3VPNs)..

Implementing BGP
69

Implementing BGP
BGP RT-constrain SAFI—rt-filter

By default, SVD is enabled on the line cards. Use the selective-vrf-download disable command to disable
SVD. Use the show svd role and show svd state commands to display role and state information of SVD on
line cards.

Line Card Roles and Filters in Selective VRF Download
In a selective VRF download (SVD) context, line cards have these roles:

• Core LC: a line card that has only core facing interfaces (interfaces that connect to other P/PEs)

• Customer LC: a line card that has one or more customer facing interfaces (interfaces that connect to CEs
in different VRFs)

The line cards handle these prefixes:

• Local Prefix: a prefix that is received from a CE connected to the router in a configured VRF context

• Remote Prefix: a prefix received from another PE and is imported to a configured VRF

These filters are applicable to each line card type:

• A core LC needs all te local prefixes and VRF labels so that the label or IP forwarding, or both is set up
correctly.

• A customer LC needs both local and remote prefixes for all the VRFs to which it is connected, and for
other VRFs which some connected VRFs have dependency. This is based on the import/export RT
configuration; VRF ‘A’ may have imported routes from VRF ‘B’, so the imported route in VRF ‘A’
points to a next-hop that is in VRF ‘B’. For route resolution, VRF ‘B’ routes need to be downloaded to
each line card that has a VRF ‘A’ interface.

• If a line card is hosts both core facing and customer facing interfaces, then it does not need to do any
filtering. All tables and all routes are present on such line cards. These line cards have a role called
“standard”. All RPs and DRPs have the standard role.

• To correctly resolve L3VPN routes, the IPv4 default table needs to be present an all nodes. However, if
the line card does not have any IPv6 interface, it can filter out all IPv6 tables and routes. In such a case,
the line card can be deemed “not interested” in the IPv6 AFI. Then it behaves as if IPv6 is not supported
by it.

BGP Accept Own
The BGP Accept Own feature enables handling of self-originated VPN routes, which a BGP speaker receives
from a route-reflector (RR). A "self-originated" route is one which was originally advertized by the speaker
itself. As per BGP protocol [RFC4271], a BGP speaker rejects advertisements that were originated by the
speaker itself. However, the BGP Accept Own mechanism enables a router to accept the prefixes it has
advertised, when reflected from a route-reflector that modifies certain attributes of the prefix. A special
community called ACCEPT-OWN is attached to the prefix by the route-reflector, which is a signal to the
receiving router to bypass the ORIGINATOR_ID and NEXTHOP/MP_REACH_NLRI check. Generally, the
BGP speaker detects prefixes that are self-originated through the self-origination check (ORIGINATOR_ID,
NEXTHOP/MP_REACH_NLRI) and drops the received updates. However, with the Accept Own community
present in the update, the BGP speaker handles the route.

One of the applications of BGP Accept Own is auto-configuration of extranets within MPLS VPN networks.
In an extranet configuration, routes present in one VRF is imported into another VRF on the same PE. Normally,

Implementing BGP
70

Implementing BGP
Line Card Roles and Filters in Selective VRF Download

the extranet mechanism requires that either the import-rt or the import policy of the extranet VRFs be modified
to control import of the prefixes from another VRF. However, with Accept Own feature, the route-reflector
can assert that control without the need for any configuration change on the PE. This way, the Accept Own
feature provides a centralized mechanism for administering control of route imports between different VRFs.

BGP Accept Own is supported only for VPNv4 and VPNv6 address families in neighbor configuration mode.

Route-Reflector Handling Accept Own Community and RTs

TheACCEPT_OWNcommunity is originated by the InterAS route-reflector (InterAS-RR) using an outbound
route-policy. To minimize the propagation of prefixes with the ACCEPT_OWN community attribute, the
attribute will be attached on the InterAS-RR using an outbound route-policy towards the originating PE. The
InterAs-RR adds the ACCEPT-OWN community and modifies the set of RTs before sending the new Accept
Own route to the attached PEs, including the originator, through intervening RRs. The route is modified via
route-policy.

Accept Own Configuration Example

In this configuration example:

• PE11 is configured with Customer VRF and Service VRF.

• OSPF is used as the IGP.

• VPNv4 unicast and VPNv6 unicast address families are enabled between the PE and RR neighbors and
IPv4 and IPv6 are enabled between PE and CE neighbors.

The Accept Own configuration works as follows:

1. CE1 originates prefix X.

2. Prefix X is installed in customer VRF as (RD1:X).

3. Prefix X is advertised to IntraAS-RR11 as (RD1:X, RT1).

Implementing BGP
71

Implementing BGP
BGP Accept Own

4. IntraAS-RR11 advertises X to InterAS-RR1 as (RD1:X, RT1).

5. InterAS-RR1 attaches RT2 to prefix X on the inbound and ACCEPT_OWN community on the outbound
and advertises prefix X to IntraAS-RR31.

6. IntraAS-RR31 advertises X to PE11.

7. PE11 installs X in Service VRF as (RD2:X,RT1, RT2, ACCEPT_OWN).

Remote PE: Handling of Accept Own Routes

Remote PEs (PEs other than the originator PE), performs bestpath calculation among all the comparable
routes. The bestpath algorithm has been modified to prefer an Accept Own path over non-Accept Own path.
The bestpath comparison occurs immediately before the IGP metric comparison. If the remote PE receives
an Accept Own path from route-reflector 1 and a non-Accept Own path from route-reflector 2, and if the paths
are otherwise identical, the Accept Own path is preferred. The import operates on the Accept Own path.

BGP DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing
Border Gateway Protocol demilitarized zone (BGP DMZ) Link Bandwidth for Unequal Cost Recursive Load
Balancing provides support for unequal cost load balancing for recursive prefixes on local node using BGP
DMZ Link Bandwidth. The unequal load balance is achieved by using the dmz-link-bandwidth command
in BGP Neighbor configuration mode and the bandwidth command in Interface configuration mode.

BFD Multihop Support for BGP
Bi-directional Forwarding Detection Multihop (BFD-MH) support is enabled for BGP. BFD Multihop
establishes a BFD session between two addresses that may spanmultiple network hops. Cisco IOSXRSoftware
BFDMultihop is based on RFC 5883. For more information on BFDMultihop, refer Interface and Hardware
Component Configuration Guide for Cisco CRS Routers and Interface and Hardware Component Command
Reference for Cisco CRS Routers.

BGP Multi-Instance and Multi-AS
Multiple BGP instances are supported on the router corresponding to a Autonomous System (AS). Each BGP
instance is a separate process running on the same or on a different RP/DRP node. The BGP instances do not
share any prefix table between them. No need for a common adj-rib-in (bRIB) as is the case with distributed
BGP. The BGP instances do not communicate with each other and do not set up peering with each other. Each
individual instance can set up peering with another router independently.

Multi-AS BGP enables configuring each instance of a multi-instance BGP with a different AS number.

Multi-Instance and Multi-AS BGP provides these capabilities:

• Mechanism to consolidate the services provided bymultiple routers using a common routing infrastructure
into a single IOS-XR router.

• Mechanism to achieve AF isolation by configuring the different AFs in different BGP instances.

• Means to achieve higher session scale by distributing the overall peering sessions between multiple
instances.

Implementing BGP
72

Implementing BGP
BGP DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing

• Mechanism to achieve higher prefix scale (especially on a RR) by having different instances carrying
different BGP tables.

• Improved BGP convergence under certain scenarios.

• Cisco IOS XR CRSMulti-chassis systems can be used optimally by placing the different BGP instances
on different RP/DRPs.

• All BGP functionalities including NSR are supported for all the instances.

• The load and commit router-level operations can be performed on previously verified or applied
configurations.

Restrictions

• The router supports maximum of 4 BGP instances.

• Each BGP instance needs a unique router-id.

• Only one Address Family can be configured under each BGP instance (VPNv4, VPNv6 and RT-Constrain
can be configured under multiple BGP instances).

• IPv4/IPv6 Unicast should be within the same BGP instance in which IPv4/IPv6 Labeled-Unicast is
configured.

• IPv4/IPv6 Multicast should be within the same BGP instance in which IPv4/IPv6 Unicast is configured.

• All configuration changes for a single BGP instance can be committed together. However, configuration
changes for multiple instances cannot be committed together.

• Cisco recommends that BGP update-source should be unique in the default VRF over all instances while
peering with the same remote router.

BGP Prefix Origin Validation Based on RPKI
ABGP route associates an address prefix with a set of autonomous systems (AS) that identify the interdomain
path the prefix has traversed in the form of BGP announcements. This set is represented as the AS_PATH
attribute in BGP and starts with the AS that originated the prefix.

To help reduce well-known threats against BGP including prefix mis-announcing and monkey-in-the-middle
attacks, one of the security requirements is the ability to validate the origination AS of BGP routes. The AS
number claiming to originate an address prefix (as derived from the AS_PATH attribute of the BGP route)
needs to be verified and authorized by the prefix holder.

The Resource Public Key Infrastructure (RPKI) is an approach to build a formally verifiable database of IP
addresses and AS numbers as resources. The RPKI is a globally distributed database containing, among other
things, information mapping BGP (internet) prefixes to their authorized origin-AS numbers. Routers running
BGP can connect to the RPKI to validate the origin-AS of BGP paths.

The BGP RPKI Bind Source feature allows you to specify the source IP address and interface used for the
RPKI server connection. This feature enables you to have RPKI session that source from loopback interface,
for example.

BGP origin-as validation is enabled by default.

Implementing BGP
73

Implementing BGP
BGP Prefix Origin Validation Based on RPKI

Configuring RPKI Cache-server
Perform this task to configure Resource Public Key Infrastructure (RPKI) cache-server parameters.

Configure the RPKI cache-server parameters in rpki-server configurationmode. Use the rpki server command
in router BGP configuration mode to enter into the rpki-server configuration mode

SUMMARY STEPS

1. configure
2. router bgp as-number

3. rpki server {host-name | ip-address}
4. bind-source interface name

5. Use one of these commands:

• transport ssh port port_number
• transport tcp port port_number

6. (Optional) username user_name

7. (Optional) password password

8. preference preference_value

9. purge-time time

10. Use one of these commands.

• refresh-time time
• refresh-time off

11. Use one these commands.

• response-time time
• response-time off

12. Use the commit or end command.
13. (Optional) shutdown

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Step 2

Enters rpki-server configuration mode and enables
configuration of RPKI cache parameters.

rpki server {host-name | ip-address}

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)#rpki server
10.2.3.4

Implementing BGP
74

Implementing BGP
Configuring RPKI Cache-server

PurposeCommand or Action

Specifies a Loopback interface as the source interface used
for the RPKI server connection.

bind-source interface name

Example:

Step 4

Router#(config-bgp)# bind-source interface
Loopback2

Specifies a transport method for the RPKI cache.Use one of these commands:Step 5

• transport ssh port port_number • ssh—Select ssh to connect to the RPKI cache using
SSH.• transport tcp port port_number

• tcp—Select tcp to connect to the RPKI cache using
TCP (unencrypted).

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#transport
ssh port 22

• port port_number—Specify a port number for the
specified RPKI cache transport. For tcp, the range ofOr
supported port number is 1 to 65535. For ssh, use port
number 22.

RP/0/RP0/CPU0:router(config-bgp-rpki-server)#transport
tcp port 2

Do not specify a custom port number for
RPKI cache transport over SSH. Youmust
use port 22 for RPKI over SSH.

Note

You can set the transport to either TCP or SSH.
Change of transport causes the cache session
to flap.

Note

Specifies a (SSH) username for the RPKI cache-server.(Optional) username user_name

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-rpki-server)#username
ssh_rpki_uname

Specifies a (SSH) password for the RPKI cache-server.(Optional) password passwordStep 7

Example: The “username” and “password” configurations
only apply if the SSH method of transport is
active.

Note

RP/0/RP0/CPU0:router(config-bgp-rpki-server)#password
ssh_rpki_pass

Specifies a preference value for the RPKI cache. Range
for the preference value is 1 to 10. Setting a lower
preference value is better.

preference preference_value

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#preference
1

Step 8

Configures the time BGPwaits to keep routes from a cache
after the cache session drops. Set purge time in seconds.
Range for the purge time is 30 to 360 seconds.

purge-time time

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#purge-time
30

Step 9

Configures the timeBGPwaits in between sending periodic
serial queries to the cache. Set refresh-time in seconds.
Range for the refresh time is 15 to 3600 seconds.

Use one of these commands.Step 10

• refresh-time time
• refresh-time off

Implementing BGP
75

Implementing BGP
Configuring RPKI Cache-server

PurposeCommand or Action

Configure the off option to specify not to send
serial-queries periodically.

Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#refresh-time
20

Or
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#refresh-time
off

Configures the time BGPwaits for a response after sending
a serial or reset query. Set response-time in seconds. Range
for the response time is 15 to 3600 seconds.

Use one these commands.Step 11

• response-time time
• response-time off

Configure the off option to wait indefinitely for a response.
Example:
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#response-time
30

Or
RP/0/RP0/CPU0:router(config-bgp-rpki-server)#response-time
off

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 12

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configures shut down of the RPKI cache.(Optional) shutdown

Example:

Step 13

RP/0/RP0/CPU0:router(config-bgp-rpki-server)#shutdown

Configuring RPKI Prefix Validation
Perform this task to control the behavior of RPKI prefix validation processing.

•

SUMMARY STEPS

1. configure
2. router bgp as-number

3. Use one of these commands.

• bgp origin-as validation disable
• bgp origin-as validation time {off | prefix_validation_time

Implementing BGP
76

Implementing BGP
Configuring RPKI Prefix Validation

4. bgp origin-as validation signal ibgp
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Step 2

Sets the BGP origin-AS validation parameters.Use one of these commands.Step 3

• disable—Use disable option to disable RPKI
origin-AS validation.

• bgp origin-as validation disable
• bgp origin-as validation time {off |

prefix_validation_time • time—Use time option to either set prefix validation
time (in seconds) or to set off the automatic prefix
validation after an RPKI update.

Example:
RP/0/RP0/CPU0:router(config-bgp)#bgp origin-as
validation disable Range for prefix validation time is 5 to 60 seconds.
Or

Configuring the disable option disables prefix
validation for all eBGP paths and all eBGP paths are
marked as "valid" by default.

RP/0/RP0/CPU0:router(config-bgp)#bgp origin-as
validation time 50

Or The bgp origin-as validation options can
also configured in neighbor and neighbor
address family submodes. The neighbor
must be an eBGP neighbor. If configured
at the neighbor or neighor address family
level, prefix validation disable or time
options will be valid only for that specific
neighbor or neighbor address family.

Note
RP/0/RP0/CPU0:router(config-bgp)#bgp origin-as
validation time off

Enables the iBGP signaling of validity state through an
extended-community.

bgp origin-as validation signal ibgp

Example:

Step 4

This can also be configured in global address family
submode.

RP/0/RP0/CPU0:router(config-bgp)#bgp origin-as
validity signal ibgp

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

Implementing BGP
77

Implementing BGP
Configuring RPKI Prefix Validation

PurposeCommand or Action

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configure BGP Prefix Validation
Starting from Release 6.5.1, origin-as validation is disabled by default, you must enable it per address family.
From Release 6.5.1, use the following task to configure RPKI Prefix Validation.

Origin-as validation is enabled by default.
Router(config)# router bgp 100
/* The bgp origin-as validation time and bgp origin-as validity signal ibgp commands are
optional. */.
Router(config-bgp)# bgp origin-as validation time 50
Router(config-bgp)# bgp origin-as validation time off
Router(config-bgp)# bgp origin-as validation signal ibgp
Router(config-bgp)# address-family ipv4 unicast

Use the following commands to verify the origin-as validation configuration:
Router# show bgp origin-as validity

Thu Mar 14 04:18:09.656 PDT
BGP router identifier 10.1.1.1, local AS number 1
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: 0xe0000000 RD version: 514
BGP main routing table version 514
BGP NSR Initial initsync version 2 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best

i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Origin-AS validation codes: V valid, I invalid, N not-found, D disabled

Network Next Hop Metric LocPrf Weight Path
*> 209.165.200.223/27 0.0.0.0 0 32768 ?

*> 209.165.200.225/27 0.0.0.0 0 32768 ?

*> 19.1.2.0/24 0.0.0.0 0 32768 ?

*> 19.1.3.0/24 0.0.0.0 0 32768 ?

*> 10.1.2.0/24 0.0.0.0 0 32768 ?

*> 10.1.3.0/24 0.0.0.0 0 32768 ?

*> 10.1.4.0/24 0.0.0.0 0 32768 ?

*> 198.51.100.1/24 0.0.0.0 0 32768 ?

*> 203.0.113.235/24 0.0.0.0 0 32768 ?

V*> 209.165.201.0/27 10.1.2.1 0 4002 i

Implementing BGP
78

Implementing BGP
Configure BGP Prefix Validation

N*> 198.51.100.2/24 10.1.2.1 0 4002 i

I*> 198.51.100.1/24 10.1.2.1 0 4002 i

*> 192.0.2.1.0/24 0.0.0.0 0 32768 ?

Router# show bgp process
Mon Jul 9 16:47:39.428 PDT

BGP Process Information:
...
Use origin-AS validity in bestpath decisions
Allow (origin-AS) INVALID paths
Signal origin-AS validity state to neighbors

Address family: IPv4 Unicast
...
Origin-AS validation is enabled for this address-family
Use origin-AS validity in bestpath decisions for this address-family
Allow (origin-AS) INVALID paths for this address-family
Signal origin-AS validity state to neighbors with this address-family

Configuring RPKI Bestpath Computation
Perform this task to configure RPKI bestpath computation options.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. bgp bestpath origin-as use validity
4. bgp bestpath origin-as allow invalid
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Step 2

Enables the validity states of BGP paths to affect the path's
preference in the BGP best path process. This configuration
can also be done in router BGP address family submode.

bgp bestpath origin-as use validity

Example:
RP/0/RP0/CPU0:router(config-bgp)#bgp bestpath
origin-as use validity

Step 3

Implementing BGP
79

Implementing BGP
Configuring RPKI Bestpath Computation

PurposeCommand or Action

Allows all "invalid" paths to be considered for BGP bestpath
computation.

bgp bestpath origin-as allow invalid

Example:

Step 4

This configuration can also be done at global
address family, neighbor, and neighbor address
family submodes. Configuring bgp bestpath
origin-as allow invalid in router BGP and address
family submodes allow all "invalid" paths to be
considered for BGP bestpath computation. By
default, all such paths are not bestpath
candidates. Configuring bgp bestpath origin-as
allow invalid in neighbor and neighbor address
family submodes allow all "invalid" paths from
that specific neighbor or neighbor address family
to be considered as bestpath candidates. The
neighbor must be an eBGP neighbor.

NoteRP/0/RP0/CPU0:router(config-bgp)#bgp bestpath
origin-as allow invalid

This configuration takes effect only when the bgp bestpath
origin-as use validity configuration is enabled.

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

BGP 3107 PIC Updates for Global Prefixes
The BGP 3107 PIC Updates for Global Prefixes feature supports Prefix Independent Convergence (PIC)
updates for global IPv4 and IPv6 prefixes in an MPLS VPN provider network. This feature is based on RFC
3107 that describes using BGP to distribute MPLS labels for global IPv4 or IPv6 prefixes. This enables IGP
to scale better and also provides PIC updates for fast convergence.

BGP 3107 PIC is supported on CRS-1 and CRS-3 line cards.

RFC 3107 enables routes and labels to be carried in BGP. When BGP is used to distribute a particular route,
it can also be used to distribute an MPLS label that is mapped to that route. The label mapping information
for a particular route is piggybacked in the same BGP Update message that is used to distribute the route
itself. RFC 3107 allows filtering of Next-Hop Loops from OSPF and reduces labels advertised by LDP. This
implementation significantly reduces OSPF and LDP database.

The 3107 PIC implementation supports the following address-families with additional-path configuration.

• address-family ipv4 unicast

Implementing BGP
80

Implementing BGP
BGP 3107 PIC Updates for Global Prefixes

• address-family ipv6 unicast

• address-family vpnv4 unicast

• address-family vpnv6 unicast

The address-family l2vpn vpls-vpws does not support additional-path. Hence, the l2vpn service that uses
address-family l2vpn vpls-vpws does not guarantee PIC convergence time.

Note

The 3107 PIC implementation supports these Cisco IOS XR features:

• PIC Edge for 3107

• Traffic Engineering Fast-reroute (TE FRR)—Traffic convergence for core link failure is guaranteed
within 50 milliseconds using verbatim tunnel.

• L2VPN Service (VPWS)

• L3VPN VPNv4 Service

• 6 PE Service

• 6 VPE Service

• VPLS Service

BGP 3107 PIC Updates for Global Prefixes implementation uses a shared recursive Load Info (RLDI)
forwarding object in place of a Light-Weight recursive (LW-RLDI) object. The RLDI is shared between
multiple leaves, while the LW-RLDI is instantiated per leaf. Sharing helps in handling PIC updates since it
will be prefix independent.

BGP Prefix Independent Convergence for RIB and FIB
BGP PIC for RIB and FIB adds support for static recursive as PE-CE and faster backup activation by using
fast re-route trigger.

The BGP PIC for RIB and FIB feature supports:

• FRR-like trigger for faster PE-CE link down detection, to further reduce the convergence time (Fast
PIC-edge activation).

• PIC-edge for static recursive routes.

• BFD single-hop trigger for PIC-Edge without any explicit /32 static route configuration.

• Recursive PIC activation at third level and beyond, on failure trigger at the first (IGP) level.

• BGP path recursion constraints in FIB to ensure that FIB is in sync with BGP with respect to BGP
next-hop resolution.

When BGP PIC Edge is configured, configuring the neighbor shutdown command does not trigger CEF to
switch to the backup path. Instead, BGP starts to feed CEF again one by one from the top prefix of the routing
table to the end thus causing a time delay.

Implementing BGP
81

Implementing BGP
BGP Prefix Independent Convergence for RIB and FIB

The time delay causes a black hole in the network. As a workaround, you must route the traffic to the backup
path manually before configuring the neighbor shutdown command.

Caution

BGP Update Message Error Handling
The BGP UPDATE message error handling changes BGP behavior in handling error UPDATE messages to
avoid session reset. Based on the approach described in IETF IDR I-D:draft-ietf-idr-error-handling, the Cisco
IOS XR BGP UPDATE Message Error handling implementation classifies BGP update errors into various
categories based on factors such as, severity, likelihood of occurrence of UPDATE errors, or type of attributes.
Errors encountered in each category are handled according to the draft. Session reset will be avoided as much
as possible during the error handling process. Error handling for some of the categories are controlled by
configuration commands to enable or disable the default behavior.

According to the base BGP specification, a BGP speaker that receives an UPDATE message containing a
malformed attribute is required to reset the session over which the offending attribute was received. This
behavior is undesirable as a session reset would impact not only routes with the offending attribute, but also
other valid routes exchanged over the session.

BGP Attribute Filtering
The BGP Attribute Filter feature checks integrity of BGP updates in BGP update messages and optimizes
reaction when detecting invalid attributes. BGP Update message contains a list of mandatory and optional
attributes. These attributes in the update message includeMED, LOCAL_PREF, COMMUNITY etc. In some
cases, if the attributes are malformed, there is a need to filter these attributes at the receiving end of the router.
The BGP Attribute Filter functionality filters the attributes received in the incoming update message. The
attribute filter can also be used to filter any attributes that may potentially cause undesirable behavior on the
receiving router.

Some of the BGP updates are malformed due to wrong formatting of attributes such as the network layer
reachability information (NLRI) or other fields in the update message. These malformed updates, when
received, causes undesirable behavior on the receiving routers. Such undesirable behavior may be encountered
during update message parsing or during re-advertisement of received NLRIs. In such scenarios, its better to
filter these corrupted attributes at the receiving end.

BGP Attribute Filter Actions
The Attribute-filtering is configured by specifying a single or a range of attribute codes and an associated
action. The allowed actions are:

• " Treat-as-withdraw"— The associated IPv4-unicast or MP_REACH NLRIs, if present, are withdrawn
from the neighbor's Adj-RIB-In.

• "Discard Attribute"—The matching attributes alone are discarded and the rest of the Update message is
processed normally.

When a received Update message contains one or more filtered attributes, the configured action is applied on
the message. Optionally, the Update message is also stored to facilitate further debugging and a syslog message
is generated on the console.

Implementing BGP
82

Implementing BGP
BGP Update Message Error Handling

When an attribute matches the filter, further processing of the attribute is stopped and the corresponding action
is taken.

Use the attribute-filter group command to enter Attribute-filter group command mode. Use the attribute
command in attribute-filter group command mode to either discard an attribute or treat the update message
as a "Withdraw" action.

BGP Error Handling and Attribute Filtering Syslog Messages
When a router receives a malformed update packet, an ios_msg of type
ROUTING-BGP-3-MALFORM_UPDATE is printed on the console. This is rate limited to 1 message per
minute across all neighbors. For malformed packets that result in actions "Discard Attribute" (A5) or "Local
Repair" (A6), the ios_msg is printed only once per neighbor per action. This is irrespective of the number of
malformed updates received since the neighbor last reached an "Established" state.

This is a sample BGP error handling syslog message:

%ROUTING-BGP-3-MALFORM_UPDATE : Malformed UPDATE message received from neighbor 13.0.3.50
- message length 90 bytes,
error flags 0x00000840, action taken "TreatAsWithdraw".
Error details: "Error 0x00000800, Field "Attr-missing", Attribute 1 (Flags 0x00, Length 0),
Data []"

This is a sample BGP attribute filtering syslog message for the "discard attribute" action:

[4843.46]RP/0/0/CPU0:Aug 21 17:06:17.919 : bgp[1037]: %ROUTING-BGP-5-UPDATE_FILTERED :
One or more attributes were filtered from UPDATE message received from neighbor 40.0.101.1
- message length 173 bytes,
action taken "DiscardAttr".
Filtering details: "Attribute 16 (Flags 0xc0): Action "DiscardAttr"". NLRIs: [IPv4 Unicast]
88.2.0.0/17

This is a sample BGP attribute filtering syslog message for the "treat-as-withdraw" action:

[391.01]RP/0/0/CPU0:Aug 20 19:41:29.243 : bgp[1037]: %ROUTING-BGP-5-UPDATE_FILTERED :
One or more attributes were filtered from UPDATE message received from neighbor 40.0.101.1
- message length 166 bytes,
action taken "TreatAsWdr".
Filtering details: "Attribute 4 (Flags 0xc0): Action "TreatAsWdr"". NLRIs: [IPv4 Unicast]
88.2.0.0/17

BGP Link-State
BGP Link-State (LS) is an Address Family Identifier (AFI) and Sub-address Family Identifier (SAFI) defined
to carry interior gateway protocol (IGP) link-state database through BGP. BGP LS delivers network topology
information to topology servers and Application Layer Traffic Optimization (ALTO) servers. BGP LS allows
policy-based control to aggregation, information-hiding, and abstraction. BGP LS supports IS-IS and OSPFv2.

IGPs do not use BGP LS data from remote peers. BGP does not download the received BGP LS data to any
other component on the router.

Note

Implementing BGP
83

Implementing BGP
BGP Error Handling and Attribute Filtering Syslog Messages

BGP Permanent Network
BGP permanent network feature supports static routing through BGP. BGP routes to IPv4 or IPv6 destinations
(identified by a route-policy) can be administratively created and selectively advertised to BGP peers. These
routes remain in the routing table until they are administratively removed.

A permanent network is used to define a set of prefixes as permanent, that is, there is only one BGP
advertisement or withdrawal in upstream for a set of prefixes. For each network in the prefix-set, a BGP
permanent path is created and treated as less preferred than the other BGP paths received from its peer. The
BGP permanent path is downloaded into RIB when it is the best-path.

The permanent-network command in global address family configurationmode uses a route-policy to identify
the set of prefixes (networks) for which permanent paths is to be configured. The advertise permanent-network
command in neighbor address-family configuration mode is used to identify the peers to whom the permanent
paths must be advertised. The permanent paths is always advertised to peers having the advertise
permanent-network configuration, even if a different best-path is available. The permanent path is not advertised
to peers that are not configured to receive permanent path.

The permanent network feature supports only prefixes in IPv4 unicast and IPv6 unicast address-families under
the default Virtual Routing and Forwarding (VRF).

Restrictions

These restrictions apply while configuring the permanent network:

• Permanent network prefixes must be specified by the route-policy on the global address family.

• You must configure the permanent network with route-policy in global address family configuration
mode and then configure it on the neighbor address family configuration mode.

• When removing the permanent network configuration, remove the configuration in the neighbor address
family configuration mode and then remove it from the global address family configuration mode.

BGP VRF Dynamic Route Leaking
The Border Gateway Protocol (BGP) dynamic route leaking feature provides the ability to import routes
between the default-vrf (Global VRF) and any other non-default VRF, to provide connectivity between a
global and a VPN host. The import process installs the Internet route in a VRF table or a VRF route in the
Internet table, providing connectivity.

• Directly connected routes cannot be leaked using BGP VRF Dynamic Route Leaking from default VRF
to non-default VRF

Note

The dynamic route leaking is enabled by:

• Importing from default-VRF to non-default-VRF, using the import from default-vrf route-policy
route-policy-name [advertise-as-vpn] command in VRF address-family configuration mode.

If the advertise-as-vpn option is configured, the paths imported from the default-VRF to the
non-default-VRF are advertised to the PEs as well as to the CEs. If the advertise-as-vpn option is not
configured, the paths imported from the default-VRF to the non-default-VRF are not advertised to the
PE. However, the paths are still advertised to the CEs.

Implementing BGP
84

Implementing BGP
BGP Permanent Network

• Importing from non-default-VRF to default VRF, using the export to default-vrf route-policy
route-policy-name command in VRF address-family configuration mode.

A route-policy is mandatory to filter the imported routes. This reduces the risk of unintended import of routes
between the Internet table and the VRF tables and the corresponding security issues.

There is no hard limit on the number of prefixes that can be imported. The import creates a new prefix in the
destination VRF, which increases the total number of prefixes and paths. However, each VRF importing
global routes adds workload equivalent to a neighbor receiving the global table. This is true even if the user
filters out all but a few prefixes. Hence, importing five to ten VRFs is ideal.

Resilient Per-CE Label Mode
TheResilient Per-CELabel is an extension of the Per-CE label mode to support Prefix Independent Convergence
(PIC) and load balancing.

At present, the three label modes, Per-Prefix, Per-CE, and Per-VRF have these restrictions:

• Resilient per-CE 6PE label is not supported on CRS-1 and CRS-3 routers, but supported only on CRS-X
routers

• No support for PIC

• No support for load balancing across CEs

• Temporary forwarding loop during local traffic diversion to support PIC

• No support for EIBGP multipath load balancing

• Forwarding performance impact

• Per-prefix label mode causes scale issues on another vendor router in a network

In the Resilient Per-CE label scheme, BGP installs a unique rewrite label in LSD for every unique set of CE
paths or next hops. There may be one or more prefixes in BGP table that points to this label. BGP also installs
the CE paths (primary) and optionally a backup PE path into RIB. FIB learns about the label rewrite information
from LSD and the IP paths from RIB.

In steady state, labeled traffic destined to the resilient per-CE label is load balanced across all the CE next
hops. When all the CE paths fail, any traffic destined to that label will result in an IP lookup and will be
forwarded towards the backup PE path, if available. This action is performed on the label independently of
the number of prefixes that may point to the label, resulting in the PIC behavior during primary paths failure.

BGP Multipath Enhancements
• Overwriting of next-hop calculation for multipath prefixes is not allowed. The next-hop-unchanged

multipath command disables overwriting of next-hop calculation for multipath prefixes.

• The ability to ignore as-path onwards while computing multipath is added. The bgp multipath as-path
ignore onwards command ignores as-path onwards while computing multipath.

When multiple connected routers start ignoring as-path onwards while computing multipath, it causes routing
loops. Therefore, you should not configure the bgp multipath as-path ignore onwards command on routers
that can form a loop.

Implementing BGP
85

Implementing BGP
Resilient Per-CE Label Mode

Figure 13: Topology to illustrate formation of loops

Consider three routers R1, R2 and R3 in different autonomous systems (AS-1, AS-2, and AS-3). The routers
are connected with each other. R1 announces a prefix to R2 and R3. Both R2 and R3 are configured with
multipath and also with bgp multipath as-path ignore onwards command. Since R3 is configured as multipath,
R2 will send part of its traffic to R3. Similarly, R3 will send part of its traffic to R2. This creates a forwarding
loop between R3 and R2. Therefore, to avoid such forwarding loops you should not configure the bgp
multipath as-path ignore onwards command on connected routers.

MVPN with BGP SAFI-2 and SAFI-129
BGP supports Subsequent Address Family Identifier (SAFI)-2 and SAFI-129 for multicast VPNs (MVPNs).

SAFI-129 provides the capability to support multicast routing in the core IPv4 network. SAFI-129 supports
BGP-based MVPNs. The addition of SAFI-129 allows multicast to select an upstream multicast hop that may
be independent of the unicast topology. Multicast routes learned from the customer edge (CE) router or
multicast VPN routes learned from remote provider edge (PE) routers are installed into the multicast Routing
Information Base (MuRIB). This MuRIB will be populated with routes that are specific to multicast, and are
not used by unicast forwarding. The PE-CE BGP prefixes are advertised using SAFI-2, the PE-PE routes are
advertised using SAFI-129.

Recent Prefixes Events and Trace Support
The Recent Prefixes Events and Trace Support feature enables you to obtain per prefix level churning
information without the use of debug commands. The show commands associated with this feature provide
you a recent history of major events at the prefix level. They display the last eight events for the last 100
churning number of prefixes across an address family.

Implementing BGP
86

Implementing BGP
MVPN with BGP SAFI-2 and SAFI-129

The following address families support this feature:

• IPv4 Unicast

• IPv6 Unicast

• IPv4 Multicast

• IPv6 Multicast

• VPNv4 Unicast

• VPNv6 Unicast

• BGP Link-State

• L2VPN EVPN

• IPv4 FlowSpec

Retrictions

The following restrictions apply to recent prefixes only. They do not apply to trace support.

• You can only track remote prefixes and path updates. You cannot track internal event trigger or local
prefixes updates.

• You cannot track the events when the neighbor session goes down

Verification

Use the following command to check the events for a specific prefix.
Router# show bgp ipv4 unicast recent-prefixes 192.168.112.0/24 priv$

P/0/RP0/CPU0:root#
Tue Jan 21 10:30:44.488 UTC

Address-Family: IPv4 Unicast Route-Distinguisher: 0:0:0
192.168.112.0/24
Event History [Total events: 8]

Time Event Context1 Context2 Context3
==== ===== ===== ===== =====
Dec 19 16:39:53.329 Withdraw 0x3010101 0x0 0x4000000000020004
Dec 19 16:39:53.330 Create 0x3010101 0x0 0x4000000000020005
Dec 19 16:39:53.330 Modify 0x3010101 0x0 0x4000000000020005
Dec 19 16:40:42.717 Create 0x3010101 0x0 0x4000000000020005
Dec 19 18:16:33.318 Create 0x3010101 0x0 0x4000000000020005
Jan 2 13:36:18.595 Modify 0x3010101 0x0 0x4000000000020005
Jan 2 15:16:00.344 Duplicate 0x3010101 0x0 0x4000000000020005
Jan 14 15:56:28.561 Duplicate 0x3010101 0x0 0x4000000000020005

Verify the route distinguishers and corresponding prefix.
Router# show bgp l2vpn recent-prefixes

Address-Family Route-Distinguisher Prefix
============== =================== ==============
L2VPN EVPN 0:0:0 [5][0][32] [198.51.100.22]/24
L2VPN EVPN 10.5.0.1:100 [5][0][32] [192.0.2.1]/24

Implementing BGP
87

Implementing BGP
Recent Prefixes Events and Trace Support

L2VPN EVPN 10.5.0.1:100 [5][0][32] [192.0.2.2]/24
L2VPN EVPN 10.5.0.1:100 [5][0][32] [192.0.2.3]/24
L2VPN EVPN 10.5.0.1:100 [5][0][32] [192.0.2.4]/24

Verify recently updated or deleted prefixes.
Router# show bgp ipv4 unicast recent-prefixes

Address-Family Route-Distinguisher Prefix
================ =================== ==============
IPv4 Unicast 0:0:0 10.1.1.1/32
IPv4 Unicast 0:0:0 10.1.1.101/32
IPv4 Unicast 0:0:0 10.1.1.100/32
IPv4 Unicast 0:0:0 10.1.1.99/32
IPv4 Unicast 0:0:0 10.1.1.98/32
IPv4 Unicast 0:0:0 10.1.1.93/32

Verify recently updated or deleted prefixes with timestamps and related contexts.
Router# show bgp ipv4 unicast recent-prefixes private

Address-Family: IPv4 Unicast Route-Distinguisher: 0:0:0
10.1.1.10/32
Event History [Total events: 4]

Time Event Context1 Context2 Context3
==== ===== ===== ===== =====
Jul 24 17:03:58.357 Create 0x13000001 0x0 0x4000000000000007
Jul 24 17:04:12.365 Withdraw 0x13000001 0x0 0x4000000001040006
Jul 24 17:04:31.625 Create 0x13000001 0x0 0x4000000000000007
Jul 24 17:04:39.880 Duplicate 0x13000001 0x0 0x4000000000000007

Verify recent history of major events in the link-state database of a network advertised through BGP.
Router# show bgp link-state link-state recent-prefixes

Address-Family: Link-state Link-state Route-Distinguisher: 0:0:0
[E][B][I0x0][N[c1][b19.0.0.1][q19.0.0.1]][R[c200][q19.0.0.2]][L[i26.0.101.100][n29.0.1.30]]/600
Event History [Total events: 4]

Time Event Context1 Context2 Context3
==== ===== ===== ===== =====
Aug 1 15:45:25.171 Create 0x13000001 0x0 0x4000000000020005

Reasons for not Advertising BGP Prefix to a Peer

The following are the categories of reasons for which a BGP prefix may not be advertised to a peer or a set
of peers. The exact reason for which the BGP prefix is not advertised is displayed in the output of the show
bgp ipv4 unicast update-group performance-statistics command.

• Path element not applicable

• Path not available

• Block stitching route targer (RT) constraint

• Block RT constraint network layer reachability information (NLRI)

• Imported path to non-customer edge (CE) neighbor

• VPN only path to CE neighbor

Implementing BGP
88

Implementing BGP
Recent Prefixes Events and Trace Support

• External peer with no export

• Encapsulation mismatch (VxLAN)

• Sender Autonomous System (AS)

• Non-client to non-client

• Cluster identifier not set

• Client to non-client for cluster

• No PIM feedback for eBGP neighbor

• No PIM feedback

• PIM withdraw Feedback

• Wait for PIM feedback

• Prefix-based outbound route filter (ORF)

• RT type mismatch

• No out-policy for eBGP neighbor

• Out-policy

• Nexthop and label select fail

• V6 nexthop for V4 NLRI non-extended encoding capable

• No label

• Net suppressed

• No second label

• Dropped by RT filter

• Dropped by MVPN neighbor filter

• Oversized

• Split horizon update

Verification

The below example shows how to display performance statisticsfor a unadvertized prefix without enabling
debug commands and checking the logs.

BGP prefix may not be advertized to a peer or a set of peers. The below example shows how to display the
total numbers of prefixes not advertising in any AFI or SAFI, including repeating counts on 1 or more prefixes
Router# show bgp update-group performance-statistics

Update group for IPv4 Unicast, index 0.1:
..
Update timer last processed: Sep 23 00:10:15.350
Not-Advertised Stats:
Non-Client to Non-Client : 105 Sep 23 00:10:15.350

Implementing BGP
89

Implementing BGP
Recent Prefixes Events and Trace Support

Path Not Available : 132 Sep 23 00:10:15.350

How to Implement BGP

Enabling BGP Routing
Perform this task to enable BGP routing and establish a BGP routing process. Configuring BGP neighbors is
included as part of enabling BGP routing.

At least one neighbor and at least one address family must be configured to enable BGP routing. At least one
neighbor with both a remote AS and an address family must be configured globally using the address family
and remote as commands.

Note

Before you begin

BGP must be able to obtain a router identifier (for example, a configured loopback address). At least, one
address family must be configured in the BGP router configuration and the same address family must also be
configured under the neighbor.

If the neighbor is configured as an external BGP (eBGP) peer, you must configure an inbound and outbound
route policy on the neighbor using the route-policy command.

Note

While establishing eBGP neighborship between two peers, BGP checks if the two peers are directly connected.
If the peers are not directly connected, BGP does not try to establish a relationship by default. If two BGP
peers are not directly connected and peering is required between the loop backs of the routers, you can use
the ignore-connected-check command. This command overrides the default check that BGP performs which
is to verify if source IP in BGP control packets is in same network as that of destination. In this scenario, a
TTL value of 1 is sufficient if ignore-connected-check is used.

Configuring egp-multihop ttl is needed when the peers are not directly connected and there are more routers
in between. If the egp-multihop ttl command is not configured, eBGP sets the TTL of packets carrying BGP
messages to 1 by default. When eBGP needs to be setup between routers which are more than one hop away,
you need to configure a TTL value which is at least equal to the number of hops between them. For example,
if there are 2 hops (R2, R3) between two BGP peering routers R1 and R4, you need to set a TTL value of 3.

Note

SUMMARY STEPS

1. configure
2. route-policy route-policy-name

3. end-policy
4. Use the commit or end command.

Implementing BGP
90

Implementing BGP
How to Implement BGP

5. configure
6. router bgp as-number

7. bgp router-id ip-address

8. address-family { ipv4 | ipv6 } unicast
9. exit
10. neighbor ip-address

11. remote-as as-number

12. address-family { ipv4 | ipv6 } unicast
13. route-policy route-policy-name { in | out }
14. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

(Optional) Creates a route policy and enters route policy
configurationmode, where you can define the route policy.

route-policy route-policy-name

Example:

Step 2

RP/0/RP0/CPU0:router(config)# route-policy
drop-as-1234
RP/0/RP0/CPU0:router(config-rpl)# if as-path

passes-through '1234' then
RP/0/RP0/CPU0:router(config-rpl)# apply

check-communities
RP/0/RP0/CPU0:router(config-rpl)# else
RP/0/RP0/CPU0:router(config-rpl)# pass
RP/0/RP0/CPU0:router(config-rpl)# endif

(Optional) Ends the definition of a route policy and exits
route policy configuration mode.

end-policy

Example:

Step 3

RP/0/RP0/CPU0:router(config-rpl)# end-policy

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
91

Implementing BGP
Enabling BGP Routing

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 5

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 6

Configures the local router with a specified router ID.bgp router-id ip-address

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp)# bgp router-id
192.168.70.24

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 8

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Exits the current configuration mode.exit

Example:

Step 9

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 10

Creates a neighbor and assigns a remote autonomous
system number to it.

remote-as as-number

Example:

Step 11

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
2002

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 12

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbr)#

address-family ipv4 unicast

(Optional) Applies the specified policy to inbound IPv4
unicast routes.

route-policy route-policy-name { in | out }

Example:

Step 13

Implementing BGP
92

Implementing BGP
Enabling BGP Routing

PurposeCommand or Action

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
route-policy drop-as-1234 in

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 14

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring Multiple BGP Instances for a Specific Autonomous System
Perform this task to configure multiple BGP instances for a specific autonomous system.

All configuration changes for a single BGP instance can be committed together. However, configuration
changes for multiple instances cannot be committed together.

SUMMARY STEPS

1. configure
2. router bgp as-number [instance instance name]
3. bgp router-id ip-address

4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Enters BGP configuration mode for the user specified BGP
instance.

router bgp as-number [instance instance name]

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# router bgp 100
instance inst1

Configures a fixed router ID for the BGP-speaking router
(BGP instance).

bgp router-id ip-address

Example:

Step 3

You must manually configure unique router ID
for each BGP instance.

NoteRP/0/RSP0/CPU0:router(config-bgp)# bgp router-id
10.0.0.0

Implementing BGP
93

Implementing BGP
Configuring Multiple BGP Instances for a Specific Autonomous System

PurposeCommand or Action

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring a Routing Domain Confederation for BGP
Perform this task to configure the routing domain confederation for BGP. This includes specifying a
confederation identifier and autonomous systems that belong to the confederation.

Configuring a routing domain confederation reduces the internal BGP (iBGP)mesh by dividing an autonomous
system into multiple autonomous systems and grouping them into a single confederation. Each autonomous
system is fully meshed within itself and has a few connections to another autonomous system in the same
confederation. The confederation maintains the next hop and local preference information, and that allows
you to retain a single Interior Gateway Protocol (IGP) for all autonomous systems. To the outside world, the
confederation looks like a single autonomous system.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. bgp confederation identifier as-number

4. bgp confederation peers as-number

5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router# router bgp 120

Step 2

Implementing BGP
94

Implementing BGP
Configuring a Routing Domain Confederation for BGP

PurposeCommand or Action

Specifies a BGP confederation identifier.bgp confederation identifier as-number

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# bgp confederation
identifier 5

Specifies that the BGP autonomous systems belong to a
specified BGP confederation identifier. You can associate

bgp confederation peers as-number

Example:

Step 4

multiple AS numbers to the same confederation identifier,
as shown in the example.

RP/0/RP0/CPU0:router(config-bgp)# bgp confederation
peers 1091
RP/0/RP0/CPU0:router(config-bgp)# bgp

confederation peers 1092
RP/0/RP0/CPU0:router(config-bgp)# bgp

confederation peers 1093
RP/0/RP0/CPU0:router(config-bgp)# bgp

confederation peers 1094
RP/0/RP0/CPU0:router(config-bgp)# bgp

confederation peers 1095
RP/0/RP0/CPU0:router(config-bgp)# bgp

confederation peers 1096

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Resetting an eBGP Session Immediately Upon Link Failure
By default, if a link goes down, all BGP sessions of any directly adjacent external peers are immediately reset.
Use the bgp fast-external-fallover disable command to disable automatic resetting. Turn the automatic reset
back on using the no bgp fast-external-fallover disable command.

eBGP sessions flap when the node reaches 3500 eBGP sessions with BGP timer values set as 10 and 30. To
support more than 3500 eBGP sessions, increase the packet rate by using the lpts pifib hardware police
location location-id command. Following is a sample configuration to increase the eBGP sessions:
RP/0/RP0/CPU0:router#configure
RP/0/RP0/CPU0:router(config)#lpts pifib hardware police location 0/2/CPU0
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#flow bgp configured rate 4000
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#flow bgp known rate 4000
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#flow bgp default rate 4000
RP/0/RP0/CPU0:router(config-pifib-policer-per-node)#commit

Implementing BGP
95

Implementing BGP
Resetting an eBGP Session Immediately Upon Link Failure

Logging Neighbor Changes
Logging neighbor changes is enabled by default. Use the log neighbor changes disable command to turn off
logging. The no log neighbor changes disable command can also be used to turn logging back on if it has
been disabled.

Adjusting BGP Timers
Perform this task to set the timers for BGP neighbors.

BGP uses certain timers to control periodic activities, such as the sending of keepalive messages and the
interval after which a neighbor is assumed to be down if no messages are received from the neighbor during
the interval. The values set using the timers bgp command in router configuration mode can be overridden
on particular neighbors using the timers command in the neighbor configuration mode.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. timers bgp keepalive hold-time

4. neighbor ip-address

5. timers keepalive hold-time

6. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 123

Step 2

Sets a default keepalive time and a default hold time for all
neighbors.

timers bgp keepalive hold-time

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# timers bgp 30 90

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 4

Implementing BGP
96

Implementing BGP
Logging Neighbor Changes

PurposeCommand or Action

(Optional) Sets the keepalive timer and the hold-time timer
for the BGP neighbor.

timers keepalive hold-time

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp-nbr)# timers 60
220

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Changing the BGP Default Local Preference Value
Perform this task to set the default local preference value for BGP paths.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. bgp default local-preference value

4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Implementing BGP
97

Implementing BGP
Changing the BGP Default Local Preference Value

PurposeCommand or Action

Sets the default local preference value from the default of
100, making it either a more preferable path (over 100) or
less preferable path (under 100).

bgp default local-preference value

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp default
local-preference 200

Step 3

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring the MED Metric for BGP
Perform this task to set the multi exit discriminator (MED) to advertise to peers for routes that do not already
have a metric set (routes that were received with no MED attribute).

SUMMARY STEPS

1. configure
2. router bgp as-number

3. default-metric value

4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Implementing BGP
98

Implementing BGP
Configuring the MED Metric for BGP

PurposeCommand or Action

Sets the default metric, which is used to set the MED to
advertise to peers for routes that do not already have a
metric set (routes that were receivedwith noMED attribute).

default-metric value

Example:

RP/0/RP0/CPU0:router(config-bgp)# default metric
10

Step 3

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring BGP Weights
Perform this task to assign a weight to routes received from a neighbor. A weight is a number that you can
assign to a path so that you can control the best-path selection process. If you have particular neighbors that
you want to prefer for most of your traffic, you can use the weight command to assign a higher weight to all
routes learned from that neighbor.

Before you begin

The clear bgp command must be used for the newly configured weight to take effect.Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. remote-as as-number

5. address-family { ipv4 | ipv6 } unicast
6. weight weight-value

7. Use the commit or end command.

Implementing BGP
99

Implementing BGP
Configuring BGP Weights

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 3

Creates a neighbor and assigns a remote autonomous system
number to it.

remote-as as-number

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
2002

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 5

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbr)#

address-family ipv4 unicast

Assigns a weight to all routes learned through the neighbor.weight weight-value

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# weight
41150

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 7

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
100

Implementing BGP
Configuring BGP Weights

Tuning the BGP Best-Path Calculation
Perform this task to change the default BGP best-path calculation behavior.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. bgp bestpath med missing-as-worst
4. bgp bestpath med always
5. bgp bestpath med confed
6. bgp bestpath as-path ignore
7. bgp bestpath compare-routerid
8. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 126

Step 2

Directs the BGP software to consider a missing MED
attribute in a path as having a value of infinity, making this
path the least desirable path.

bgp bestpath med missing-as-worst

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath med
missing-as-worst

Step 3

Configures the BGP speaker in the specified autonomous
system to compareMEDs among all the paths for the prefix,

bgp bestpath med always

Example:

Step 4

regardless of the autonomous system from which the paths
are received.

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath med
always

Enables BGP software to compare MED values for paths
learned from confederation peers.

bgp bestpath med confed

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath med
confed

Configures the BGP software to ignore the autonomous
system length when performing best-path selection.

bgp bestpath as-path ignore

Example:

Step 6

Implementing BGP
101

Implementing BGP
Tuning the BGP Best-Path Calculation

PurposeCommand or Action

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath
as-path ignore

Configure the BGP speaker in the autonomous system to
compare the router IDs of similar paths.

bgp bestpath compare-routerid

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp)# bgp bestpath
compare-routerid

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 8

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Indicating BGP Back-door Routes
Perform this task to set the administrative distance on an external Border Gateway Protocol (eBGP) route to
that of a locally sourced BGP route, causing it to be less preferred than an Interior Gateway Protocol (IGP)
route.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. network { ip-address / prefix-length | ip-address mask } backdoor
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Implementing BGP
102

Implementing BGP
Indicating BGP Back-door Routes

PurposeCommand or Action

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Configures the local router to originate and advertise the
specified network.

network { ip-address / prefix-length | ip-address mask
} backdoor

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# network
172.20.0.0/16

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring Aggregate Addresses
Perform this task to create aggregate entries in a BGP routing table.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. aggregate-address address/mask-length [as-set] [as-confed-set] [summary-only] [route-policy

route-policy-name]
5. Use the commit or end command.

Implementing BGP
103

Implementing BGP
Configuring Aggregate Addresses

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Creates an aggregate address. The path advertised for this
route is an autonomous system set consisting of all elements
contained in all paths that are being summarized.

aggregate-address address/mask-length [as-set] [
as-confed-set] [summary-only] [route-policy
route-policy-name]

Step 4

Example: • The as-set keyword generates autonomous system
set path information and community information from
contributing paths.RP/0/RP0/CPU0:router(config-bgp-af)#

aggregate-address 10.0.0.0/8 as-set
• The as-confed-set keyword generates autonomous
system confederation set path information from
contributing paths.

• The summary-only keyword filters all more specific
routes from updates.

• The route-policy route-policy-name keyword and
argument specify the route policy used to set the
attributes of the aggregate route.

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
104

Implementing BGP
Configuring Aggregate Addresses

Redistributing iBGP Routes into IGP
Perform this task to redistribute iBGP routes into an Interior Gateway Protocol (IGP), such as Intermediate
System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF).

Use of the bgp redistribute-internal command requires the clear route * command to be issued to reinstall
all BGP routes into the IP routing table.

Note

Redistributing iBGP routes into IGPs may cause routing loops to form within an autonomous system. Use
this command with caution.

Caution

SUMMARY STEPS

1. configure
2. router bgp as-number

3. bgp redistribute-internal
4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Allows the redistribution of iBGP routes into an IGP, such
as IS-IS or OSPF.

bgp redistribute-internal

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# bgp
redistribute-internal

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

Implementing BGP
105

Implementing BGP
Redistributing iBGP Routes into IGP

PurposeCommand or Action

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring Discard Extra Paths
Perform this task to configure BGP maximum-prefix discard extra paths.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. address-family { ipv4 | ipv6 } unicast
5. maximum-prefix maximum discard-extra-paths
6. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters Global Configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 10

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:
RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.1

Step 3

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)#
address-family ipv4 unicast

Configures a limit to the number of prefixes allowed.maximum-prefix maximum discard-extra-pathsStep 5

Example: Configures discard extra paths to discard extra paths when
the maximum prefix limit is exceeded.RP/0/RP0/CPU0:router(config-bgp-nbr-af)#

maximum-prefix 1000 discard-extra-paths

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

Implementing BGP
106

Implementing BGP
Configuring Discard Extra Paths

PurposeCommand or Action

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring Per Neighbor TCP MSS
Perform this task to configure TCP MSS under neighbor group, which is inherited by a neighbor.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family ipv4 unicast
4. exit
5. neighbor-group name

6. tcp mss segment-size

7. address-family ipv4 unicast
8. exit
9. exit
10. neighbor ip-address

11. remote-as as-number

12. use neighbor-group group-name

13. address-family ipv4 unicast
14. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters Global Configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 10

Step 2

Specifies the IPv4 address family unicast and enters
address family configuration mode.

address-family ipv4 unicast

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 unicast

Implementing BGP
107

Implementing BGP
Configuring Per Neighbor TCP MSS

PurposeCommand or Action

Exits router address family configurationmode, and returns
to BGP configuration mode.

exit

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Enters neighbor group configuration mode.neighbor-group name

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp)# neighbor-group
n1

Configures TCP maximum segment size. The range is
from 68 to 10000.

tcp mss segment-size

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# tcp mss
500

Specifies the IPv4 address family unicast and enters
address family configuration mode.

address-family ipv4 unicast

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)#
address-family ipv4 unicast

Exits router address family configuration mode.exit

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# exit

Exits the neighbor group configuration mode.exit

Example:

Step 9

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
10.0.0.2

Step 10

Creates a neighbor and assigns a remote autonomous
system (AS) number to it.

remote-as as-number

Example:

Step 11

• Range for 2-byte autonomous system numbers
(ASNs) is 1 to 65535.RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as

1
• Range for 4-byte autonomous system numbers
(ASNs) in asplain format is 1 to 4294967295.

• Range for 4-byte autonomous system numbers
(ASNs) is asdot format is 1.0 to 65535.65535.

Implementing BGP
108

Implementing BGP
Configuring Per Neighbor TCP MSS

PurposeCommand or Action

Specifies that the BGP neighbor inherit configuration from
the specified neighbor group.

use neighbor-group group-name

Example:

Step 12

RP/0/RP0/CPU0:router(config-bgp-nbr)# use
neighbor-group n1

Specifies the IPv4 address family unicast and enters
address family configuration mode.

address-family ipv4 unicast

Example:

Step 13

RP/0/RP0/CPU0:router(config-bgp-nbr)#
address-family ipv4 unicast

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 14

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Disabling Per Neighbor TCP MSS
Perform this task to disable TCP MSS for a particular neighbor under neighbor group.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family ipv4 unicast
4. exit
5. neighbor-group name

6. tcp mss segment-size

7. address-family ipv4 unicast
8. exit
9. exit
10. neighbor ip-address

11. remote-as as-number

12. use neighbor-group group-name

13. tcp mss inheritance-disable
14. address-family ipv4 unicast
15. Use the commit or end command.

Implementing BGP
109

Implementing BGP
Disabling Per Neighbor TCP MSS

DETAILED STEPS

PurposeCommand or Action

Enters Global Configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 10

Step 2

Specifies the IPv4 address family unicast and enters
address family configuration mode.

address-family ipv4 unicast

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 unicast

Exits router address family configurationmode, and returns
to BGP configuration mode.

exit

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Enters neighbor group configuration mode.neighbor-group name

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp)# neighbor-group
n1

Configures TCP maximum segment size. The range is
from 68 to 10000.

tcp mss segment-size

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# tcp mss
500

Specifies the IPv4 address family unicast and enters
address family configuration mode.

address-family ipv4 unicast

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)#
address-family ipv4 unicast

Exits router address family configuration mode.exit

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# exit

Exits the neighbor group configuration mode.exit

Example:

Step 9

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit

Implementing BGP
110

Implementing BGP
Disabling Per Neighbor TCP MSS

PurposeCommand or Action

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
10.0.0.2

Step 10

Creates a neighbor and assigns a remote autonomous
system (AS) number to it.

remote-as as-number

Example:

Step 11

• Range for 2-byte autonomous system numbers
(ASNs) is 1 to 65535.RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as

1
• Range for 4-byte autonomous system numbers
(ASNs) in asplain format is 1 to 4294967295.

• Range for 4-byte autonomous system numbers
(ASNs) is asdot format is 1.0 to 65535.65535.

Specifies that the BGP neighbor inherit configuration from
the specified neighbor group.

use neighbor-group group-name

Example:

Step 12

RP/0/RP0/CPU0:router(config-bgp-nbr)# use
neighbor-group n1

Disables TCP MSS for the neighbor.tcp mss inheritance-disable

Example:

Step 13

RP/0/RP0/CPU0:router(config-bgp-nbr)# tcp mss
inheritance-disable

Specifies the IPv4 address family unicast and enters
address family configuration mode.

address-family ipv4 unicast

Example:

Step 14

RP/0/RP0/CPU0:router(config-bgp-nbr)#
address-family ipv4 unicast

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 15

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
111

Implementing BGP
Disabling Per Neighbor TCP MSS

Redistributing Prefixes into Multiprotocol BGP
Perform this task to redistribute prefixes from another protocol into multiprotocol BGP.

Redistribution is the process of injecting prefixes from one routing protocol into another routing protocol.
This task shows how to inject prefixes from another routing protocol into multiprotocol BGP. Specifically,
prefixes that are redistributed into multiprotocol BGP using the redistribute command are injected into the
unicast database, the multicast database, or both.

BGP doesn’t support redistribution of ISIS routes in VRF.Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. Do one of the following:

• redistribute connected [metric metric-value] [route-policy route-policy-name]
• redistribute eigrp process-id [match { external | internal }] [metric metric-value] [

route-policy route-policy-name]
• redistribute ospf process-id [match { external [1 | 2] | internal | nssa-external [1 | 2
]]} [metric metric-value] [route-policy route-policy-name]

• redistribute ospfv3 process-id [match { external [1 | 2] | internal | nssa-external [1 | 2
]]} [metric metric-value] [route-policy route-policy-name]

• redistribute rip [metric metric-value] [route-policy route-policy-name]
• redistribute static [metric metric-value] [route-policy route-policy-name]

5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Implementing BGP
112

Implementing BGP
Redistributing Prefixes into Multiprotocol BGP

PurposeCommand or Action

Causes routes from the specified instance to be redistributed
into BGP.

Do one of the following:Step 4

• redistribute connected [metric metric-value] [
route-policy route-policy-name]

• redistribute eigrp process-id [match { external
| internal }] [metric metric-value] [route-policy
route-policy-name]

• redistribute ospf process-id [match { external [
1 | 2] | internal | nssa-external [1 | 2]]} [metric
metric-value] [route-policy route-policy-name]

• redistribute ospfv3 process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]]} [
metric metric-value] [route-policy
route-policy-name]

• redistribute rip [metric metric-value] [
route-policy route-policy-name]

• redistribute static [metric metric-value] [
route-policy route-policy-name]

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# redistribute
ospf 110

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring BGP Route Dampening
Perform this task to configure and monitor BGP route dampening.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. bgp dampening [half-life [reuse suppress max-suppress-time] | route-policy route-policy-name

]
5. Use the commit or end command.

Implementing BGP
113

Implementing BGP
Configuring BGP Route Dampening

6. show bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] flap-statistics

7. show bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] flap-statistics regexp regular-expression

8. show bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] route-policy route-policy-name

9. show bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] { mask | /prefix-length }}

10. show bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] flap-statistics { ip-address [{ mask | /prefix-length } [longer-prefixes

11. clear bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] flap-statistics

12. clear bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] flap-statistics regexp regular-expression

13. clear bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] route-policy route-policy-name

14. clear bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] flap-statistics network / mask-length

15. clear bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] flap-statistics ip-address / mask-length

16. show bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] dampened-paths

17. clear bgp [ipv4 { unicast | multicast | labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all | labeled-unicast } | vpnv4 unicast [rd rd-address
] | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpnv6 unicast [
rd rd-address]] dampening ip-address / mask-length

Implementing BGP
114

Implementing BGP
Configuring BGP Route Dampening

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Configures BGP dampening for the specified address
family.

bgp dampening [half-life [reuse suppress
max-suppress-time] | route-policy route-policy-name]

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# bgp dampening
30 1500 10000 120

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Displays BGP flap statistics.show bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |

Step 6

all | tunnel } | all { unicast | multicast | all |
labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
flap-statistics

Example:

RP/0/RP0/CPU0:router# show bgp flap statistics

Implementing BGP
115

Implementing BGP
Configuring BGP Route Dampening

PurposeCommand or Action

Displays BGP flap statistics for all paths that match the
regular expression.

show bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all |

Step 7

labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
flap-statistics regexp regular-expression

Example:

RP/0/RP0/CPU0:router# show bgp flap-statistics
regexp _1$

Displays BGP flap statistics for the specified route policy.show bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |

Step 8

all | tunnel } | all { unicast | multicast | all |
labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
route-policy route-policy-name

Example:

RP/0/RP0/CPU0:router(config)# show bgp
flap-statistics route-policy policy_A

Displays BGP flap for the specified prefix.show bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |

Step 9

all | tunnel } | all { unicast | multicast | all |
labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
{ mask | /prefix-length }}

Example:

RP/0/RP0/CPU0:router# show bgp flap-statistics
172.20.1.1

Displays BGP flap statistics for more specific entries for
the specified IP address.

show bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all |

Step 10

labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
flap-statistics { ip-address [{ mask | /prefix-length } [
longer-prefixes

Example:

RP/0/RP0/CPU0:router# show bgp flap-statistics
172.20.1.1 longer-prefixes

Implementing BGP
116

Implementing BGP
Configuring BGP Route Dampening

PurposeCommand or Action

Clears BGP flap statistics for all routes.clear bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |

Step 11

all | tunnel } | all { unicast | multicast | all |
labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
flap-statistics

Example:

RP/0/RP0/CPU0:router# clear bgp all all
flap-statistics

Clears BGP flap statistics for all paths that match the
specified regular expression.

clear bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all |

Step 12

labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
flap-statistics regexp regular-expression

Example:

RP/0/RP0/CPU0:router# clear bgp ipv4 unicast
flap-statistics regexp _1$

Clears BGP flap statistics for the specified route policy.clear bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |

Step 13

all | tunnel } | all { unicast | multicast | all |
labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
route-policy route-policy-name

Example:

RP/0/RP0/CPU0:router# clear bgp ipv4 unicast
flap-statistics route-policy policy_A

Clears BGP flap statistics for the specified network.clear bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |

Step 14

all | tunnel } | all { unicast | multicast | all |
labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
flap-statistics network / mask-length

Example:

RP/0/RP0/CPU0:router# clear bgp ipv4 unicast
flap-statistics 192.168.40.0/24

Implementing BGP
117

Implementing BGP
Configuring BGP Route Dampening

PurposeCommand or Action

Clears BGP flap statistics for routes received from the
specified neighbor.

clear bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all |

Step 15

labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
flap-statistics ip-address / mask-length

Example:

RP/0/RP0/CPU0:router# clear bgp ipv4 unicast
flap-statistics 172.20.1.1

Displays the dampened routes, including the time
remaining before they are unsuppressed.

show bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |
all | tunnel } | all { unicast | multicast | all |

Step 16

labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
dampened-paths

Example:

RP/0/RP0/CPU0:router# show bgp dampened-paths

Clears route dampening information and unsuppresses the
suppressed routes.

clear bgp [ipv4 { unicast | multicast |
labeled-unicast | all } | ipv6 { unicast | multicast |

Step 17

all | tunnel } | all { unicast | multicast | all | Always use the clear bgp dampening
command for an individual address-family. The
all option for address-families with clear bgp
dampening should never be used during normal
functioning of the system. For example, use
clear bgp ipv4 unicast dampening prefix

x.x.x./y

Caution
labeled-unicast } | vpnv4 unicast [rd rd-address] |
vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast
} | ipv6 unicast] | vpnv6 unicast [rd rd-address]]
dampening ip-address / mask-length

Example:

RP/0/RP0/CPU0:router# clear bgp dampening

Applying Policy When Updating the Routing Table
Perform this task to apply a routing policy to routes being installed into the routing table.

Before you begin

See the Implementing Routing Policy on Cisco IOS XR Software module of Routing Configuration Guide for
Cisco CRS Routers (this publication) for a list of the supported attributes and operations that are valid for
table policy filtering.

SUMMARY STEPS

1. configure
2. router bgp as-number

Implementing BGP
118

Implementing BGP
Applying Policy When Updating the Routing Table

3. address-family { ipv4 | ipv6 } unicast
4. table-policy policy-name

5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120.6

Step 2

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Applies the specified policy to routes being installed into
the routing table.

table-policy policy-name

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# table-policy
tbl-plcy-A

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Setting BGP Administrative Distance
Perform this task to specify the use of administrative distances that can be used to prefer one class of route
over another.

Implementing BGP
119

Implementing BGP
Setting BGP Administrative Distance

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. distance bgp external-distance internal-distance local-distance

5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Sets the external, internal, and local administrative distances
to prefer one class of routes over another. The higher the
value, the lower the trust rating.

distance bgp external-distance internal-distance
local-distance

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# distance bgp
20 20 200

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
120

Implementing BGP
Setting BGP Administrative Distance

Configuring a BGP Neighbor Group and Neighbors
Perform this task to configure BGP neighbor groups and apply the neighbor group configuration to a neighbor.
A neighbor group is a template that holds address family-independent and address family-dependent
configurations associated with the neighbor.

After a neighbor group is configured, each neighbor can inherit the configuration through the use command.
If a neighbor is configured to use a neighbor group, the neighbor (by default) inherits the entire configuration
of the neighbor group, which includes the address family-independent and address family-dependent
configurations. The inherited configuration can be overridden if you directly configure commands for the
neighbor or configure session groups or address family groups through the use command.

You can configure an address family-independent configuration under the neighbor group. An address
family-dependent configuration requires you to configure the address family under the neighbor group to
enter address family submode.

From neighbor group configuration mode, you can configure address family-independent parameters for the
neighbor group. Use the address-family command when in the neighbor group configuration mode.

After specifying the neighbor group name using the neighbor group command, you can assign options to
the neighbor group.

All commands that can be configured under a specified neighbor group can be configured under a neighbor.Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. exit
5. neighbor-group name

6. remote-as as-number

7. address-family { ipv4 | ipv6 } unicast
8. route-policy route-policy-name { in | out }
9. exit
10. exit
11. neighbor ip-address

12. use neighbor-group group-name

13. remote-as as-number

14. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Implementing BGP
121

Implementing BGP
Configuring a BGP Neighbor Group and Neighbors

PurposeCommand or Action

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Exits the current configuration mode.exit

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Places the router in neighbor group configuration mode.neighbor-group name

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp)# neighbor-group
nbr-grp-A

Creates a neighbor and assigns a remote autonomous
system number to it.

remote-as as-number

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# remote-as
2002

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 7

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbrgrp)#

address-family ipv4 unicast

(Optional) Applies the specified policy to inbound IPv4
unicast routes.

route-policy route-policy-name { in | out }

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)#
route-policy drop-as-1234 in

Exits the current configuration mode.exit

Example:

Step 9

RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# exit

Exits the current configuration mode.exit

Example:

Step 10

Implementing BGP
122

Implementing BGP
Configuring a BGP Neighbor Group and Neighbors

PurposeCommand or Action

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 11

(Optional) Specifies that the BGP neighbor inherit
configuration from the specified neighbor group.

use neighbor-group group-name

Example:

Step 12

RP/0/RP0/CPU0:router(config-bgp-nbr)# use
neighbor-group nbr-grp-A

Creates a neighbor and assigns a remote autonomous
system number to it.

remote-as as-number

Example:

Step 13

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
2002

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 14

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring a Route Reflector for BGP
Perform this task to configure a route reflector for BGP.

All the neighbors configured with the route-reflector-clientcommand are members of the client group, and
the remaining iBGP peers are members of the nonclient group for the local route reflector.

Together, a route reflector and its clients form a cluster. A cluster of clients usually has a single route reflector.
In such instances, the cluster is identified by the software as the router ID of the route reflector. To increase
redundancy and avoid a single point of failure in the network, a cluster can have more than one route reflector.
If it does, all route reflectors in the cluster must be configured with the same 4-byte cluster ID so that a route
reflector can recognize updates from route reflectors in the same cluster. The bgp cluster-id command is used
to configure the cluster ID when the cluster has more than one route reflector.

SUMMARY STEPS

1. configure

Implementing BGP
123

Implementing BGP
Configuring a Route Reflector for BGP

2. router bgp as-number

3. bgp cluster-id cluster-id

4. neighbor ip-address

5. remote-as as-number

6. address-family { ipv4 | ipv6 } unicast
7. route-reflector-client
8. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Configures the local router as one of the route reflectors
serving the cluster. It is configured with a specified cluster
ID to identify the cluster.

bgp cluster-id cluster-id

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp cluster-id
192.168.70.1

Step 3

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor

Step 4

172.168.40.24

Creates a neighbor and assigns a remote autonomous system
number to it.

remote-as as-number

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
2003

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 6

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-nbr)# address-family

ipv4 unicast

Configures the router as a BGP route reflector and
configures the neighbor as its client.

route-reflector-client

Example:

Step 7

Implementing BGP
124

Implementing BGP
Configuring a Route Reflector for BGP

PurposeCommand or Action

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
route-reflector-client

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 8

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring BGP Route Filtering by Route Policy
Perform this task to configure BGP routing filtering by route policy.

Before you begin

See the Implementing Routing Policy on Cisco IOS XR Softwaremodule of Cisco Cisco IOS XR Routing
Configuration Guide (this publication) for a list of the supported attributes and operations that are valid for
inbound and outbound neighbor policy filtering.

SUMMARY STEPS

1. configure
2. route-policy name

3. end-policy
4. router bgp as-number

5. neighbor ip-address

6. address-family { ipv4 | ipv6 } unicast
7. route-policy route-policy-name { in | out }
8. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

(Optional) Creates a route policy and enters route policy
configuration mode, where you can define the route policy.

route-policy name

Example:

Step 2

Implementing BGP
125

Implementing BGP
Configuring BGP Route Filtering by Route Policy

PurposeCommand or Action

RP/0/RP0/CPU0:router(config)# route-policy
drop-as-1234
RP/0/RP0/CPU0:router(config-rpl)# if as-path

passes-through '1234' then
RP/0/RP0/CPU0:router(config-rpl)# apply

check-communities
RP/0/RP0/CPU0:router(config-rpl)# else
RP/0/RP0/CPU0:router(config-rpl)# pass
RP/0/RP0/CPU0:router(config-rpl)# endif

(Optional) Ends the definition of a route policy and exits
route policy configuration mode.

end-policy

Example:

Step 3

RP/0/RP0/CPU0:router(config-rpl)# end-policy

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 4

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 5

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 6

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbr)#

address-family ipv4 unicast

Applies the specified policy to inbound routes.route-policy route-policy-name { in | out }

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
route-policy drop-as-1234 in

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 8

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
126

Implementing BGP
Configuring BGP Route Filtering by Route Policy

Configuring BGP Attribute Filtering
Perform the following tasks to configure BGP attribute filtering:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. attribute-filter group attribute-filter group name

4. attribute attribute code { discard | treat-as-withdraw }

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Step 2

Specifies the attribute-filter group name and enters the
attribute-filter group configuration mode, allowing you to

attribute-filter group attribute-filter group name

Example:

Step 3

configure a specific attribute filter group for a BGP
neighbor.

RP/0/RP0/CPU0:router(config-bgp)# attribute-filter
group ag_discard_med

Specifies a single or a range of attribute codes and an
associated action. The allowed actions are:

attribute attribute code { discard |
treat-as-withdraw }

Example:

Step 4

• Treat-as-withdraw— Considers the update message
for withdrawal. The associated IPv4-unicast or

RP/0/RP0/CPU0:router(config-bgp-attrfg)# attribute
24 discard

MP_REACH NLRIs, if present, are withdrawn from
the neighbor's Adj-RIB-In.

• Discard Attribute— Discards this attribute. The
matching attributes alone are discarded and the rest of
the Update message is processed normally.

Configuring BGP Next-Hop Trigger Delay
Perform this task to configure BGP next-hop trigger delay. The Routing Information Base (RIB) classifies
the dampening notifications based on the severity of the changes. Event notifications are classified as critical
and noncritical. This task allows you to specify the minimum batching interval for the critical and noncritical
events.

Implementing BGP
127

Implementing BGP
Configuring BGP Attribute Filtering

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. nexthop trigger-delay { critical delay | non-critical delay }
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Sets the critical next-hop trigger delay.nexthop trigger-delay { critical delay | non-critical
delay }

Step 4

Example:

RP/0/RP0/CPU0:router(config-bgp-af)# nexthop
trigger-delay critical 15000

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
128

Implementing BGP
Configuring BGP Next-Hop Trigger Delay

Disabling Next-Hop Processing on BGP Updates
Perform this task to disable next-hop calculation for a neighbor and insert your own address in the next-hop
field of BGP updates. Disabling the calculation of the best next hop to use when advertising a route causes
all routes to be advertised with the network device as the next hop.

Next-hop processing can be disabled for address family group, neighbor group, or neighbor address family.Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. remote-as as-number

5. address-family { ipv4 | ipv6 } unicast
6. next-hop-self
7. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 3

Creates a neighbor and assigns a remote autonomous system
number to it.

remote-as as-number

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
206

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 5

Implementing BGP
129

Implementing BGP
Disabling Next-Hop Processing on BGP Updates

PurposeCommand or Action

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbr)#

address-family ipv4 unicast

Sets the next-hop attribute for all routes advertised to the
specified neighbor to the address of the local router.

next-hop-self

Example:

Step 6

Disabling the calculation of the best next hop to use when

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
next-hop-self

advertising a route causes all routes to be advertised with
the local network device as the next hop.

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 7

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring BGP Community and Extended-Community Advertisements
Perform this task to specify that community/extended-community attributes should be sent to an eBGP
neighbor. These attributes are not sent to an eBGP neighbor by default. By contrast, they are always sent to
iBGP neighbors. This section provides examples on how to enable sending community attributes. The
send-community-ebgp keyword can be replaced by the send-extended-community-ebgp keyword to
enable sending extended-communities.

If the send-community-ebgp command is configured for a neighbor group or address family group, all
neighbors using the group inherit the configuration. Configuring the command specifically for a neighbor
overrides inherited values.

BGP community and extended-community filtering cannot be configured for iBGP neighbors. Communities
and extended-communities are always sent to iBGP neighbors under VPNv4, MDT, IPv4, and IPv6 address
families.

Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. remote-as as-number

5. address-family{ipv4 {labeled-unicast | unicast | mdt | multicast | mvpn | rt-filter | tunnel} | ipv6
{labeled-unicast | mvpn | unicast}}

Implementing BGP
130

Implementing BGP
Configuring BGP Community and Extended-Community Advertisements

6. Use one of these commands:

• send-community-ebgp
• send-extended-community-ebgp

7. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:
RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 3

Creates a neighbor and assigns a remote autonomous system
number to it.

remote-as as-number

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
2002

Enters neighbor address family configuration mode for the
specified address family. Use either ipv4 or ipv6 address

address-family{ipv4 {labeled-unicast | unicast | mdt |
multicast | mvpn | rt-filter | tunnel} | ipv6
{labeled-unicast | mvpn | unicast}}

Step 5

family keyword with one of the specified address family
sub mode identifiers.

Example:
IPv6 address family mode supports these sub modes:RP/0/RP0/CPU0:router(config-bgp-nbr)#

address-family ipv6 unicast • labeled-unicast

• mvpn

• unicast

IPv4 address family mode supports these sub modes:

• labeled-unicast

• mdt

• multicast

• mvpn

• rt-filter

Implementing BGP
131

Implementing BGP
Configuring BGP Community and Extended-Community Advertisements

PurposeCommand or Action

• tunnel

• unicast

Refer the address-family (BGP) command in BGP
Commands module of Routing Command Reference for
Cisco CRS Routers for more information on the Address
Family Submode support.

Specifies that the router send community attributes or
extended community attributes (which are disabled by
default for eBGP neighbors) to a specified eBGP neighbor.

Use one of these commands:Step 6

• send-community-ebgp
• send-extended-community-ebgp

Example:
RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
send-community-ebgp

or
RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
send-extended-community-ebgp

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 7

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring the BGP Cost Community
Perform this task to configure the BGP cost community.

BGP receives multiple paths to the same destination and it uses the best-path algorithm to decide which is the
best path to install in RIB. To enable users to determine an exit point after partial comparison, the cost
community is defined to tie-break equal paths during the best-path selection process.

SUMMARY STEPS

1. configure
2. route-policy name

3. set extcommunity cost { cost-extcommunity-set-name | cost-inline-extcommunity-set } [additive]
4. end-policy
5. router bgp as-number

6. Do one of the following:

Implementing BGP
132

Implementing BGP
Configuring the BGP Cost Community

default-information originate•
• aggregate-address address/mask-length [as-set] [as-confed-set] [summary-only] [route-policy

route-policy-name]
• address-family { ipv4 unicast | ipv4 multicast | ipv4 tunnel | ipv4 mdt | ipv6 unicast |

ipv6 multicast | vpnv4 unicast | vpnv6 unicast } redistribute connected [metric
metric-value] [route-policy route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast | ipv4 tunnel | ipv4 mdt | ipv6 unicast |
ipv6 multicast | vpnv4 unicast | vpnv6 unicast } redistribute eigrp process-id [match
{ external | internal }] [metric metric-value] [route-policy route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast | ipv4 tunnel | ipv4 mdt | ipv6 unicast |
ipv4 mdt | vpnv4 unicast | vpnv6 unicast } redistribute isis process-id [level { 1 |
1-inter-area | 2 }] [metric metric-value] [route-policy route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast | ipv4 tunnel | ipv4 mdt | ipv6 unicast | |
ipv6 multicast vpnv4 unicast | vpnv6 unicast } redistribute ospf process-id [match
{ external [1 | 2] | internal | nssa-external [1 | 2]}] [metric metric-value] [route-policy
route-policy-name]

7. Do one of the following:

• address-family { ipv4 unicast | ipv4 multicast | ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast } redistribute ospfv3 process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [metric metric-value] [route-policy
route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast | ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast } redistribute rip [metric metric-value] [
route-policy route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast | ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast } redistribute static [metric metric-value] [
route-policy route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast | ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast } network { ip-address/prefix-length | ip-address
mask } [route-policy route-policy-name]

• neighbor ip-address remote-as as-number address-family { ipv4 unicast | ipv4 multicast
| ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6 multicast | vpnv4 unicast | vpnv6 unicast }

• route-policy route-policy-name { in | out }

8. Use the commit or end command.
9. show bgp [vrf vrf-name] ip-address

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Enters route policy configuration mode and specifies the
name of the route policy to be configured.

route-policy name

Example:

Step 2

Implementing BGP
133

Implementing BGP
Configuring the BGP Cost Community

PurposeCommand or Action

RP/0/RP0/CPU0:router(config)# route-policy costA

Specifies the BGP extended community attribute for cost.set extcommunity cost { cost-extcommunity-set-name |
cost-inline-extcommunity-set } [additive]

Step 3

Example:

RP/0/RP0/CPU0:router(config)# set extcommunity cost
cost_A

Ends the definition of a route policy and exits route policy
configuration mode.

end-policy

Example:

Step 4

RP/0/RP0/CPU0:router(config)# end-policy

Enters BGP configuration mode allowing you to configure
the BGP routing process.

router bgp as-number

Example:

Step 5

RP/0/RP0/CPU0:router(config)# router bgp 120

Applies the cost community to the attach point (route
policy).

Do one of the following:Step 6

• default-information originate
• aggregate-address address/mask-length [as-set] [

as-confed-set] [summary-only] [route-policy
route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast |
ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast }
redistribute connected [metric metric-value] [
route-policy route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast |
ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast }
redistribute eigrp process-id [match { external
| internal }] [metric metric-value] [route-policy
route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast |
ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv4 mdt
| vpnv4 unicast | vpnv6 unicast } redistribute
isis process-id [level { 1 | 1-inter-area | 2 }] [
metric metric-value] [route-policy
route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast |
ipv4 tunnel | ipv4 mdt | ipv6 unicast | | ipv6
multicast vpnv4 unicast | vpnv6 unicast }
redistribute ospf process-id [match { external [
1 | 2] | internal | nssa-external [1 | 2]}] [metric
metric-value] [route-policy route-policy-name]

Implementing BGP
134

Implementing BGP
Configuring the BGP Cost Community

PurposeCommand or Action

Do one of the following:Step 7

• address-family { ipv4 unicast | ipv4 multicast |
ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast }
redistribute ospfv3 process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [
metric metric-value] [route-policy
route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast |
ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast }
redistribute rip [metric metric-value] [
route-policy route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast |
ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast }
redistribute static [metric metric-value] [
route-policy route-policy-name]

• address-family { ipv4 unicast | ipv4 multicast |
ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast }
network { ip-address/prefix-length | ip-address mask
} [route-policy route-policy-name]

• neighbor ip-address remote-as as-number
address-family { ipv4 unicast | ipv4 multicast |
ipv4 tunnel | ipv4 mdt | ipv6 unicast | ipv6
multicast | vpnv4 unicast | vpnv6 unicast }

• route-policy route-policy-name { in | out }

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 8

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Displays the cost community in the following format:show bgp [vrf vrf-name] ip-addressStep 9

Example: Cost: POI : cost-community-ID : cost-number

RP/0/RP0/CPU0:router# show bgp 172.168.40.24

Implementing BGP
135

Implementing BGP
Configuring the BGP Cost Community

Configuring Software to Store Updates from a Neighbor
Perform this task to configure the software to store updates received from a neighbor.

The soft-reconfiguration inbound command causes a route refresh request to be sent to the neighbor if the
neighbor is route refresh capable. If the neighbor is not route refresh capable, the neighbor must be reset to
relearn received routes using the clear bgp soft command. See the Resetting Neighbors Using BGP Inbound
Soft Reset, on page 183.

Storing updates from a neighbor works only if either the neighbor is route refresh capable or the
soft-reconfiguration inbound command is configured. Even if the neighbor is route refresh capable and the
soft-reconfiguration inbound command is configured, the original routes are not stored unless the always
option is used with the command. The original routes can be easily retrieved with a route refresh request.
Route refresh sends a request to the peer to resend its routing information. The soft-reconfiguration inbound
command stores all paths received from the peer in an unmodified form and refers to these stored paths during
the clear. Soft reconfiguration is memory intensive.

Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. address-family { ipv4 | ipv6 } unicast
5. soft-reconfiguration inbound [always]
6. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 3

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 4

Implementing BGP
136

Implementing BGP
Configuring Software to Store Updates from a Neighbor

PurposeCommand or Action

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbr)#

address-family ipv4 unicast

Configures the software to store updates received from a
specified neighbor. Soft reconfiguration inbound causes the

soft-reconfiguration inbound [always]

Example:

Step 5

software to store the original unmodified route in addition

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
soft-reconfiguration inbound always

to a route that is modified or filtered. This allows a “soft
clear” to be performed after the inbound policy is changed.

Soft reconfiguration enables the software to store the
incoming updates before apply policy if route refresh is not
supported by the peer (otherwise a copy of the update is not
stored). The always keyword forces the software to store
a copy even when route refresh is supported by the peer.

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

BGP Persistence
BGP persistence enables the local router to retain routes that it has learnt from the configured neighbor even
after the neighbor session is down. BGP persistence is also referred as Long Lived Graceful Restart (LLGR).
LLGR takes effect after graceful restart (GR) ends or immediately if GR is not enabled. LLGR ends either
when the LLGR stale timer expires or when the neighbor sends the end-of-RIB marker after it has revised its
routes. When LLGR for a neighbor ends, all routes from that neighbor that are still stale will be deleted. The
LLGR capability is signaled to a neighbor in the BGP OPEN message if it has been configured for that
neighbor. LLGR differs from graceful restart in the following ways.

• It can be in effect for a much longer time than GR

• LLGR stale routes are least preferred during route selection (bestpath computation).

• An LLGR stale route will be advertised with the LLGR_STALE community attached if it is selected as
best path. It will not be advertised at all to routers that are not LLGR capable.

• LLGR stale routes will not be deleted when the forwarding path to the neighbor is detected to be down

• An LLGR stale route will not be deleted if the BGP session to the neighbor goes down multiple times
even if that neighbor does not re-advertise the route.

• Any route that has the NO_LLGR community will not be retained.

Implementing BGP
137

Implementing BGP
BGP Persistence

BGP will not pass the updates containing communities 65535:6, 65535:7 to its neighbors until the neighbors
negotiate BGP persistence capabilities. The communities 65535:6 and 65535:7 are reserved for LLGR_STALE
and NO_LLGR respectively, BGP behavior maybe unpredictable if you have configured these communities
prior to release 5.2.2. We recommend not to configure the communities 65535:6 and 65535:7.

The BGP persistence feature is supported only on the following AFIs:

• VPNv4 and VPNv6

• RT constraint

• Flow spec (IPv4, IPv6, VPNv4 and VPNv6)

• Private IPv4 and IPv6 (IPv4/v6 address family inside VRF)

BGP Persistence Configuration: Example
This example sets long lived graceful restart (LLGR) stale-time of 16777215 on BGP neighbor 3.3.3.3.

router bgp 100
neighbor 3.3.3.3
remote-as 30813
update-source Loopback0
graceful-restart stalepath-time 150
address-family vpnv4 unicast
long-lived-graceful-restart capable
long-lived-graceful-restart stale-time send 16777215 accept 16777215
!
address-family vpnv6 unicast
long-lived-graceful-restart capable
long-lived-graceful-restart stale-time send 16777215 accept 16777215

BGP Graceful Maintenance
When a BGP link or router is taken down, other routers in the network find alternative paths for the traffic
that was flowing through the failed router or link, if such alternative paths exist. The time required before all
routers involved can reach a consensus about an alternate path is called convergence time. During convergence
time, traffic that is directed to the router or link that is down is dropped. The BGP Graceful Maintenance
feature allows the network to perform convergence before the router or link is taken out of service. The router
or link remains in service while the network reroutes traffic to alternative paths. Any traffic that is yet on its
way to the affected router or link is still delivered as before. After all traffic has been rerouted, the router or
link can safely be taken out of service.

The Graceful Maintenance feature is helpful when alternate paths exist and these alternate paths are not known
to routers at the time that the primary paths are withdrawn. The feature provides these alternate paths before
the primary paths are withdrawn. The feature is most helpful in networks where convergence time is long.
Several factors, such as large routing tables and presence of route reflectors, can result in longer convergence
time.

When a BGP router or link is brought into service, the possibility of traffic loss during convergence also exists,
although it is less than when a router or link is taken out of service. The BGP Graceful Maintenance feature
can also be used in this scenario.

Restrictions for BGP Graceful Maintenance
The following restrictions apply for BGP Graceful Maintenance:

Implementing BGP
138

Implementing BGP
BGP Persistence Configuration: Example

• If the affected router is configured to send the GSHUT community attribute, then other routers in the
network that receive it must be configured to interpret it. You must match the community with a routing
policy and set a lower preference.

• The LOCAL_PREF attribute is not sent to another AS. Therefore, the LOCAL_PREF option cannot be
used on an eBGP link.

This restriction does not apply to eBGP links between member-ASs of an AS
confederation.

Note

• Alternative routes must exist in the network, otherwise advertising a lower preference has no effect. For
example, there is no advantage in configuring Graceful Maintenance for a singly-homed customer router
which does not have alternate routes.

• If time consuming policies exist, either at the output of the sending router or at the input of the receiving
router, the Graceful Maintenance operation can take a long time.

• Configuring an eBGP ASBR neighbor results in advertising an implicit null label for directly connected
routes via BGP. If a user shuts down an eBGP neighbor, the label is not reprogrammed as the system
withdraws rewrites on any neighbor state changes. Implicit null label feature support helps avoid churn
in terms of adding or removing rewrites for neighbor flaps.

Graceful Maintenance Operation
When Graceful Maintenance is activated, the affected routes are advertised again with a reduced preference.
This causes neighboring routers to choose alternative routes. You can use any of the following methods to a
signal reduced route preference:

• Add GSHUT community: Use this method to allow remote routers the freedom to set a preference.
Receiving routers must match this community in a policy and set their own preference.

• Reduce LOCAL_PREF value: This works for internal BGP neighbors. Use this method if remote
routers do not match the GSHUT community.

• Prepend AS Path: This works for both internal and external BGP neighbors. Use this method if remote
routers do not match the GSHUT community.

When Graceful Maintenance is activated on a BGP connection, the following two operations happen:

1. All routes received from the connection are re-advertised to other neighbors with a lower preference.
Note, this happens to only those routes that have actually been advertised to other neighbors. It is possible
that a received route was not selected as the best path and therefore not advertised. In that case, it will not
be re-advertised.

2. All routes that were advertised to the connection is re-advertised with a lower preference.

In order for the first operation to happen, all routes received from the connection are tagged with an internal
attribute called graceful-shut. This attribute is stored internal to only the router; it is not advertised by BGP.
This attribute can be seen when the route is displayed with the show bgp command. It is different from the
GSHUT community. The GSHUT community is advertised by BGP and can be seen in the community list
when the route is displayed with the show bgp command.

Implementing BGP
139

Implementing BGP
Graceful Maintenance Operation

All routes that have the graceful-shut attribute are given the lowest preference during route-selection. Any
new route updates that are sent or received on a BGP session under Graceful Maintenance are also treated as
described above.

Inter Autonomous System
Advertising a lower preference to another AS in the public Internet may cause unnecessary routing
advertisements in distant networks, whichmay not be desirable. An additional configuration under the neighbor
address family, send-community-gshut-ebgp, is necessary for the router to originate the GSHUT community
to the eBGP neighbor.

This does not affect the GSHUT community on a route that already had this community when it was received;
it only affects the GSHUT community when this router adds it.

Note

No Automatic Shutdown
The GracefulMaintenance feature does not perform any shutdown.When GracefulMaintenance is configured,
it remains configured, even through system restarts. It is intended to be used in conjunction with a shutdown
of a router or a BGP neighbor. The operator must explicitly shut down whenever it is needed. After Graceful
Maintenance is no longer required, the operator must explicitly deactivate it. Graceful Maintenance may be
deactivated either after the shutdown is completed, or after the deactivated facilities are again brought up.
Whether to leave Graceful Maintenance activated through a bring-up operation depends on whether the
transient routing during the bring-up operation is considered a problem.

When to Shut Down After Graceful Maintenance
The router or link can be shut down after the network has converged as a result of a graceful-maintenance
activation. Convergence can take from less than a second to more than an hour. Unfortunately, a single router
cannot know when a whole network has converged. After a graceful-maintenance activation, it can take a few
seconds to start sending updates. Then, the “InQ” and “OutQ” of neighbors in the show bgp <vrf> <afi>
<safi> summary command's output indicates the level of BGP messaging. Both InQ and OutQ should be 0
after convergence. Neighbors should stop sending traffic. However, they won't stop sending traffic if they do
not have alternate paths; and in that case traffic loss cannot be prevented.

Activate Graceful Maintenance under BGP Router (All Neighbors)
Activating Graceful Maintenance under a BGP router results in activatebeing configured under
graceful-maintenance for all neighbors. With just this one configuration, you get the same result if you were
to go to every neighbor that has graceful-maintenance configured, and added activate under it. If you add
the keyword all-neighbors, thus, graceful-maintenance activate all-neighbors, then the router acts as if
you configured graceful-maintenance activate under every neighbor.

We suggest that you activate Graceful Maintenance under a BGP router instance only if it is acceptable to
send the GSHUT community for all routes on every neighbor. Re-sending all routes to every neighbor can
take significant amount of time on a large router. Sending GSHUT to a neighbor that does not have alternative
routes is pointless. If a router has many of such neighbors then a significant amount of time can be saved by
not activating Graceful Maintenance on them.

Note

Implementing BGP
140

Implementing BGP
Inter Autonomous System

The BGPGracefulMaintenance feature allows you to enable GracefulMaintenance either on a single neighbor,
on a group of neighbors across BGP sessions, or on all neighbors. Enabling Graceful Maintenance under a
neighbor sub-mode, does two things:

1. All routes that are advertised to this neighbor that has the graceful-shut attribute are advertised to that
neighbor with the GSHUT community.

2. Enters graceful-maintenance configuration mode to allow further configuration.

Using the activate keyword under graceful-maintenance, causes the following:

1. All routes that are received from this neighbor acquire the graceful-shut attribute.
2. All routes that are advertised to this neighbor are re-advertised to that neighbor with the GSHUT

community.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. graceful-maintenance activate [all-neighbors | retain-routes]
4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Announces routes with the g-shut community and other
attributes as configured under the neighbors. This causes

graceful-maintenance activate [all-neighbors |
retain-routes]

Step 3

neighbors to reject routes from this router and choose
Example: alternates. This allows the router to be gracefully brought

in or out of service.
RP/0/RP0/CPU0:router(config-bgp)#

If you use the all-neighbors keyword, Graceful
Maintenance is activated even for those neighbors that do

graceful-maintenance activate
all-neighhbors

not have it activated. Choosing retain-routes causes RIB
to retain BGP routes when the BGP process is stopped.
Use the retain-routes option when only BGP must be
brought down instead of the entire router, and when it is
known that neighboring routers are kept in operation during
the maintenance of the local BGP. If RIB has alternative
routes provided by another protocol or a default route, then
it is recommended that you do not to retain BGP routes after
the BGP process stops.

Implementing BGP
141

Implementing BGP
Activate Graceful Maintenance under BGP Router (All Neighbors)

PurposeCommand or Action

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

What to do next

After activating Graceful Maintenance, you must wait for all the routes to be sent and for the neighboring
routers to redirect their traffic away from the router or link under maintenance. After the traffic is redirected,
then it is safe to take the router or link out of service. While there is no definitive way to know when all the
routes have been sent, you can use the show bgp summary command to check the OutQ of the neighbors.
When OutQ reaches a value 0, there are no more updates to be sent.

Activate Graceful Maintenance on a Single Neighbor

Use the following steps to activate Graceful Maintenance for a single neighbor:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. graceful-maintenance activate
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Implementing BGP
142

Implementing BGP
Activate Graceful Maintenance on a Single Neighbor

PurposeCommand or Action

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 3

Announces routes with Graceful Maintenance attributes.graceful-maintenance activate

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)#
graceful-maintenance
activate

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Activate Graceful Maintenance on a Group of Neighbors

Use the following steps to activate Graceful Maintenance on a group of neighbors:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor-group Neighbor-group name

4. graceful-maintenance activate
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Implementing BGP
143

Implementing BGP
Activate Graceful Maintenance on a Group of Neighbors

PurposeCommand or Action

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Places the router in neighbor group configuration mode.neighbor-group Neighbor-group name

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# neighbor-group
AS_1

Announces routes with Graceful Maintenance attributes.graceful-maintenance activate

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)#
graceful-maintenance
activate

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

What to do next

You must configure the send-community-gshut-ebgp command under the neighbor address family of an
eBGP neighbor for this router to add the GSHUT community.

Sending GSHUT community may not be desirable under every address family of an eBGP neighbor. To allow
you to target GSHUT community to a specific set of address families, use the send-community-gshut-ebgp
command.

Note

Direct Router to Reduce Route Preference
The BGPGracefulMaintenance feature works only with the availability of alternate paths. Youmust advertise
routes with a lower preference to allow alternate routes to take over before taking down a link or router. Use
the following steps to modify the route preference:

Implementing BGP
144

Implementing BGP
Direct Router to Reduce Route Preference

Attributes for graceful maintenance are added to a route update message after an outbound policy has been
applied to it.

Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. remote-as as-number

5. graceful-maintenance as-prepends value| local-preference value

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 3

Creates a neighbor and assigns a remote autonomous system
number to it.

remote-as as-number

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
2002

Specifies the number of times the local AS number is to be
to prepended to the AS path of routes and advertises the

graceful-maintenance as-prepends value|
local-preference value

Step 5

GSHUT community with the local preference value
Example: specified for the routes. When the router adds the GSHUT

RP/0/RP0/CPU0:router(config-bgp-nbr)#
community to a route as it advertises it, it also changes the
LOCAL_PREF attribute and prepends the local AS numbergraceful-maintenance

local-preference 4 as specified in the commands. Sending GSHUT provides
flexibility in the manner in which neighboring routers
handle the lower preference: they can match it in a route
policy and do the most appropriate thing with it. On the
other hand, in simple networks, it is easier to set

Implementing BGP
145

Implementing BGP
Direct Router to Reduce Route Preference

PurposeCommand or Action

local-preference to 0, than to create route policies
everywhere else.

LOCAL_PREF is not sent to real eBGP
neighbors, but sent to confederation member AS
eBGP neighbors. To lower the preference to
eBGP neighbors, as-prepends value is required.

Note

Example: Configure route policy matching GSHUT community to lower route preference

route-policy gshut
if community matches-any gshut then
set local-preference 0

endif
pass

end-policy

neighbor 666.0.0.3
address-family ipv4 unicast
route-policy gshut in

Routes received from a GSHUT neighbor are marked with a GSHUT attribute to distinguish them
from routes received with the GSHUT community. When a neighbor is taken out of maintenance,
the attribute on its paths is removed, but not the community. The attribute is internal and not sent in
BGP messages. It is used to reject routes during path selection.

Note

Bring Router or Link Back into Service
Before you bring the router or link back into service, you must first activate graceful maintenance and then
remove the activate configuration.

Show Command Outputs to Verify BGP Graceful Maintenance
This section lists the show commands you can use to verify that BGP Graceful Maintenance is activated and
check related attributes:

Use the show bgp <IP address> command to display graceful-shutdown community and the graceful-shut
path attribute with BGP graceful maintenance activated:
RP/0/0/CPU0:R4#show bgp 5.5.5.5
...
10.10.10.1 from 10.10.10.1 (192.168.0.5)
Received Label 24000
Origin incomplete, metric 0, localpref 100, valid, internal, best, group-best,
import-candidate
Received Path ID 0, Local Path ID 1, version 4
Community: graceful-shutdown
Originator: 192.168.0.5, Cluster list: 192.168.0.1

Implementing BGP
146

Implementing BGP
Bring Router or Link Back into Service

The following is sample output from the show bgp community graceful-shutdown command displaying
the graceful maintenance feature information:
RP/0/0/CPU0:R4#show bgp community graceful-shutdown
BGP router identifier 192.168.0.4, local AS number 4
BGP generic scan interval 60 secs
BGP table state: Active
Table ID: 0xe0000000 RD version: 18
BGP main routing table version 18
BGP scan interval 60 secs
Status codes: s suppressed, d damped, h history, * valid, > best
i - internal, r RIB-failure, S stale, N Nexthop-discard
Origin codes: i - IGP, e - EGP, ? - incomplete
Network Next Hop Metric LocPrf Weight Path
* 5.5.5.5/32 10.10.10.1 88 0 1 ?
Processed 1 prefixes, 1 paths

The following is the sample output from the show bgp neighbors command with the ip-address and
configuration argument and keyword to display graceful maintenance feature attributes:
RP/0/0/CPU0:R1#show bgp neighbor 12.12.12.5
...
Graceful Maintenance locally active, Local Pref=45, AS prepends=3
...
For Address Family: IPv4 Unicast
...
GSHUT Community attribute sent to this neighbor
...
**
RP/0/0/CPU0:R1#show bgp neighbor 12.12.12.5 configuration
neighbor 12.12.12.5
remote-as 1 []
graceful-maintenance 1 []
gr-maint local-preference 45 []
gr-maint as-prepends 3 []
gr-maint activate []

The following is the sample output of the show rpl community-set command with graceful maintenance
feature attributes displayed:
RP/0/0/CPU0:R5#show rpl community-set
Listing for all Community Set objects
community-set gshut
graceful-shutdown
end-set

The following is the sample of the syslog that is issued when a BGP neighbor that has graceful maintenance
activated, comes up. It is a warning text that reminds you to deactivate graceful maintenance after convergence.
RP/0/0/CPU0:Jan 28 22:01:36.356 : bgp[1056]: %ROUTING-BGP-5-ADJCHANGE : neighbor 10.10.10.4
Up (VRF: default) (AS: 4)
WARNING: Graceful Maintenance is Active

L3VPN iBGP PE-CE
The L3VPN iBGP PE-CE feature helps establish an iBGP (internal Border Gateway Protocol) session between
the provider edge (PE) and customer edge (CE) devices to exchange BGP routing information. A BGP session
between two BGP peers is said to be an iBGP session if the BGP peers are in the same autonomous systems.

Implementing BGP
147

Implementing BGP
L3VPN iBGP PE-CE

L3VPN iBGP PE-CE Overview
When BGP is used as the provider edge (PE) or the customer edge (CE) routing protocol, the peering sessions
are configured as external peering between the VPN provider autonomous system (AS) and the customer
network autonomous system. The L3VPN iBGP PE-CE feature enables the PE and CE devices to exchange
Border Gateway Protocol (BGP) routing information by peering as internal Border Gateway Protocol (iBGP)
instead of the widely-used external BGP peering between the PE and the CE. This mechanism applies at each
PE device where a VRF-based CE is configured as iBGP. This eliminates the need for service providers (SPs)
to configure autonomous system override for the CE. With this feature enabled, there is no need to configure
the virtual private network (VPN) sites using different autonomous systems.

The neighbor internal-vpn-client command enables PE devices to make an entire VPN cloud act as an
internal VPN client to the CE devices. These CE devices are connected internally to the VPN cloud through
the iBGP PE-CE connection inside the VRF. After this connection is established, the PE device encapsulates
the CE-learned path into an attribute called ATTR_SET and carries it in the iBGP-sourced path throughout
the VPN core to the remote PE device. At the remote PE device, this attribute is assigned with individual
attributes and the source CE path is extracted and sent to the remote CE devices.

ATTR_SET is an optional transitive attribute that carries the CE path attributes received. The ATTR_SET
attribute is encoded inside the BGP update message as follows:

+------------------------------+
| Attr Flags (O|T) Code = 128 |
+------------------------------+
| Attr. Length (1 or 2 octets) |
+------------------------------+
| Origin AS (4 octets) |
+------------------------------+
| Path attributes (variable) |
+------------------------------+

Origin AS is the AS of the VPN customer for which the ATTR_SET is generated. The minimum length of
ATTR_SET is four bytes and the maximum is the maximum supported for a path attribute after taking into
consideration the mandatory fields and attributes in the BGP update message. It is recommended that the
maximum length is limited to 3500 bytes. ATTR_SETmust not contain the following attributes:MP_REACH,
MP_UNREACH, NEW_AS_PATH, NEW_AGGR, NEXT_HOP and ATTR_SET itself (ATTR_SET inside
ATTR_SET). If these attributes are found inside the ATTR_SET, the ATTR_SET is considered invalid and
the corresponding error handling mechanism is invoked.

Restrictions for L3VPN iBGP PE-CE
The following restrictions apply to configuring L3VPN iBGP PE-CE:

• When the iBGP PE CE feature is toggled and the neighbor no longer supports route-refresh or
soft-reconfiguration inbound, a manual session flap must be done to see the change. When this occurs,
the following message is displayed:
RP/0/0/CPU0: %ROUTING-BGP-5-CFG_CHG_RESET: Internal VPN client configuration change on
neighbor 10.10.10.1 requires HARD reset
(clear bgp 10.10.10.1) to take effect.

• iBGP PE CE CLI configuration is not available for peers under default-VRF, except for
neighbor/session-group.

• This feature does not work on regular VPN clients (eBGP VPN clients).

Implementing BGP
148

Implementing BGP
L3VPN iBGP PE-CE Overview

• Attributes packed inside the ATTR_SET reflects changes made by the inbound route-policy on the iBGP
CE and does not reflect the changes made by the export route-policy for the specified VRF.

• Different VRFs of the same VPN (that is, in different PE routers) that are configured with iBGP PE-CE
peering sessions must use different Route Distinguisher (RD) values under respective VRFs. The iBGP
PE CE feature does ot work if the RD values are the same for the ingress and egress VRF.

Configuring L3VPN iBGP PE-CE
L3VPN iBGP PE-CE can be enabled on the neighbor, neighbor-group, or session-group. To configure L3VPN
iBGP PE-CE, follow these steps:

Before you begin

The CE must be an internal BGP peer.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. vrf vrf-name

4. neighbor ip-address internal-vpn-client
5. Use the commit or end command.
6. show bgp vrf vrf-name neighbors ip-address

7. show bgp {vpnv4|vpnv6 } unicast rd

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Configures a VRF instance.vrf vrf-name

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# vrf blue

Configures a CE neighboring devicewithwhich to exchange
routing information. The neighbor internal-vpn-client

neighbor ip-address internal-vpn-client

Example:

Step 4

command stacks the iBGP-CE neighbor path in the VPN
attribute set.

RP/0/RP0/CPU0:router(config-bgp-vrf)# neighbor
10.0.0.0 internal-vpn-client

Implementing BGP
149

Implementing BGP
Configuring L3VPN iBGP PE-CE

PurposeCommand or Action

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Displays whether the iBGP PE-CE feature is enabled for
the VRF CE peer, or not.

show bgp vrf vrf-name neighbors ip-addressStep 6

Displays the ATTR_SET attributes in the command output
when the L3VPN iBGP PE-CE is enabled on a CE.

show bgp {vpnv4|vpnv6 } unicast rdStep 7

Example

Example: Configuring L3VPN iBGP PE-CE

The following example shows how to configure L3VPN iBGP PE-CE:

R1(config-bgp-vrf-nbr)#neighbor 10.10.10.1 ?
. . .
internal-vpn-client Preserve iBGP CE neighbor path in ATTR_SET across VPN core
. . .
R1(config-bgp-vrf-nbr)#neighbor 10.10.10.1 internal-vpn-client
router bgp 65001
bgp router-id 100.100.100.2
address-family ipv4 unicast
address-family vpnv4 unicast
!
vrf ce-ibgp
rd 65001:100
address-family ipv4 unicast
!
neighbor 10.10.10.1
remote-as 65001
internal-vpn-client

The following is an example of the output of the show bgp vrf vrf-name neighbors ip-address
command when the L3VPN iBGP PE-CE is enabled on a CE peer:
R1#show bgp vrf ce-ibgp neighbors 10.10.10.1
BGP neighbor is 10.10.10.1, vrf ce-ibgp
Remote AS 65001, local AS 65001, internal link
Remote router ID 100.100.100.1
BGP state = Established, up for 00:00:19
. . .
Multi-protocol capability received
Neighbor capabilities:
Route refresh: advertised (old + new) and received (old + new)
4-byte AS: advertised and received

Implementing BGP
150

Implementing BGP
Configuring L3VPN iBGP PE-CE

Address family IPv4 Unicast: advertised and received
CE attributes will be preserved across the core
Received 2 messages, 0 notifications, 0 in queue
Sent 2 messages, 0 notifications, 0 in queue
. . .

The following is an example of the output of the show bgp vpn4/vpn6 unicast rd command when
the L3VPN iBGP PE-CE is enabled on a CE peer:
BGP routing table entry for 1.1.1.0/24, Route Distinguisher: 200:300
Versions:
Process bRIB/RIB SendTblVer
Speaker 10 10

Last Modified: Aug 28 13:11:17.000 for 00:01:00
Paths: (1 available, best #1)
Advertised to update-groups (with more than one peer):
0.2

Path #1: Received by speaker 0
Advertised to update-groups (with more than one peer):
0.2

Local, (Received from a RR-client)
20.20.20.2 from 20.20.20.2 (100.100.100.2)
Received Label 24000
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate,
not-in-vrf Received Path ID 0, Local Path ID 1, version 10
Extended community: RT:228:237
ATTR-SET [

Origin-AS: 200
AS-Path: 51320 52325 59744 12947 21969 50346 18204 36304 41213

23906 33646
Origin: incomplete
Metric: 204
Local-Pref: 234
Aggregator: 304 34.3.3.3
Atomic Aggregator
Community: 1:60042 2:41661 3:47008 4:9280 5:39778 6:1069 7:15918

8:8994 9:52701
10:10268 11:26276 12:8506 13:7131 14:65464 15:14304 16:33615 17:54991
18:40149 19:19401

Extended community: RT:100:1 RT:1.1.1.1:1]

Flow-tag propagation
The flow-tag propagation feature enables you to establish a co-relation between route-policies and user-policies.
Flow-tag propagation using BGP allows user-side traffic-steering based on routing attributes such as, AS
number, prefix lists, community strings and extended communities. Flow-tag is a logical numeric identifier
that is distributed through RIB as one of the routing attribute of FIB entry in the FIB lookup table. A flow-tag
is instantiated using the 'set' operation from RPL and is referenced in the C3PL PBR policy, where it is
associated with actions (policy-rules) against the flow-tag value.

You can use flow-tag propagation to:

• Classify traffic based on destination IP addresses (using the Community number) or based on prefixes
(using Community number or AS number).

• Select a TE-group that matches the cost of the path to reach a service-edge based on customer site service
level agreements (SLA).

Implementing BGP
151

Implementing BGP
Flow-tag propagation

• Apply traffic policy (TE-group selection) for specific customers based on SLA with its clients.
• Divert traffic to application or cache server.

For more information on the commands for flow-tag propagation see the BGP Commands module in the
Routing Command Reference for Cisco CRS Routers.

Restrictions for flow-tag propagation
Some restrictions are placed with regard to using Quality-of-service Policy Propagation Using Border Gateway
Protocol (QPPB). These include:

• A route-policy can have either 'set qos-group' or 'set flow-tag,' but not both for a prefix-set.
• Route policy for qos-group and route policy flow-tag cannot have overlapping routes. The QPPB and
flow tag features can coexist (on same as well as on different interfaces) as long as the route policy used
by them do not have any overlapping route.

• Mixing usage of qos-group and flow-tag in route-policy and policy-map is not recommended.

Source and destination-based flow tag
The source-based flow tag feature allows you to match packets based on the flow-tag assigned to the source
address of the incoming packets. Once matched, you can then apply any supported PBR action on this policy.

Configure Source and Destination-based Flow Tag
This task applies flow-tag to a specified interface. The packets are matched based on the flow-tag assigned
to the source address of the incoming packets.

You will not be able to enable both QPPB and flow tag feature simultaneously on an interface.Note

SUMMARY STEPS

1. configure
2. interface type interface-path-id

3. ipv4 | ipv6 bgp policy propagation input flow-tag{destination |source}
4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Enters interface configuration mode and associates one or
more interfaces to the VRF.

interface type interface-path-id

Example:

Step 2

Implementing BGP
152

Implementing BGP
Restrictions for flow-tag propagation

PurposeCommand or Action

RP/0/RP0/CPU0:router(config-if)# interface
GigabitEthernet 0/0/0/0

Enables flow-tag policy propagation on source or destination
IP address on an interface.

ipv4 | ipv6 bgp policy propagation input
flow-tag{destination |source}

Example:

Step 3

RP/0/RP0/CPU0:router(config-if)# ipv4 bgp policy
propagation input flow-tag source

commit —Saves the configuration changes, and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel—Remains in the configurationmode, without
committing the configuration changes.

Example

The following show commands display outputs with PBR policy applied on the router:
show running-config interface gigabitEthernet 0/0/0/12
Thu Feb 12 01:51:37.820 UTC
interface GigabitEthernet0/0/0/12
service-policy type pbr input flowMatchPolicy
ipv4 bgp policy propagation input flow-tag source
ipv4 address 192.5.1.2 255.255.255.0
!

RP/0/RSP0/CPU0:CRS-0#show running-config policy-map type pbr flowMatchPolicy
Thu Feb 12 01:51:45.776 UTC
policy-map type pbr flowMatchPolicy
class type traffic flowMatch36
transmit
!
class type traffic flowMatch38
transmit
!
class type traffic class-default
!
end-policy-map
!

RP/0/RSP0/CPU0:CRS-0#show running-config class-map type traffic flowMatch36
Thu Feb 12 01:52:04.838 UTC
class-map type traffic match-any flowMatch36
match flow-tag 36
end-class-map
!

Implementing BGP
153

Implementing BGP
Configure Source and Destination-based Flow Tag

Configuring a VPN Routing and Forwarding Instance in BGP
Layer 3 (virtual private network) VPN can be configured only if there is an available Layer 3 VPN license
for the line card slot on which the feature is being configured. If advanced IP license is enabled, 4096 Layer
3 VPN routing and forwarding instances (VRFs) can be configured on an interface. If the infrastructure VRF
license is enabled, eight Layer 3 VRFs can be configured on the line card.

See the Software Entitlement on Cisco IOS XR Software module in System Management Configuration
Guide for Cisco CRS Routers for more information on advanced IP licencing.

The following error message appears if the appropriate licence is not enabled:
RP/0/RP0/CPU0:router#LC/0/0/CPU0:Dec 15 17:57:53.653 : rsi_agent[247]:
%LICENSE-CRS_LICENSE-2-INFRA_VRF_NEEDED : 5 VRF(s) are configured without license A9K-iVRF-LIC
in violation of the Software Right To Use Agreement.
This feature may be disabled by the system without the appropriate license.
Contact Cisco to purchase the license immediately to avoid potential service interruption.

An AIP license is not required for configuring L2VPN services.Note

The following tasks are used to configure a VPN routing and forwarding (VRF) instance in BGP:

Defining Virtual Routing and Forwarding Tables in Provider Edge Routers
Perform this task to define the VPN routing and forwarding (VRF) tables in the provider edge (PE) routers.

SUMMARY STEPS

1. configure
2. vrf vrf-name

3. address-family { ipv4 | ipv6 } unicast
4. maximum prefix maximum [threshold]
5. import route-policy policy-name

6. import route-target [as-number : nn | ip-address : nn]
7. export route-policy policy-name

8. export route-target [as-number : nn | ip-address : nn]
9. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Configures a VRF instance.vrf vrf-name

Example:

Step 2

RP/0/RP0/CPU0:router(config)# vrf vrf_pe

Implementing BGP
154

Implementing BGP
Configuring a VPN Routing and Forwarding Instance in BGP

PurposeCommand or Action

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

Configures a limit to the number of prefixes allowed in a
VRF table.

maximum prefix maximum [threshold]

Example:

Step 4

A maximum number of routes is applicable to dynamic
routing protocols as well as static or connected routes.RP/0/RP0/CPU0:router(config-vrf-af)# maximum prefix

2300
You can specify a threshold percentage of the prefix limit
using the mid-threshold argument.

(Optional) Provides finer control over what gets imported
into a VRF. This import filter discards prefixes that do not
match the specified policy-name argument.

import route-policy policy-name

Example:

RP/0/RP0/CPU0:router(config-vrf-af)# import
route-policy policy_a

Step 5

Specifies a list of route target (RT) extended communities.
Only prefixes that are associated with the specified import

import route-target [as-number : nn | ip-address : nn
]

Step 6

route target extended communities are imported into the
VRF.Example:

RP/0/RP0/CPU0:router(config-vrf-af)# import
route-target 234:222

(Optional) Provides finer control over what gets exported
into a VRF. This export filter discards prefixes that do not
match the specified policy-name argument.

export route-policy policy-name

Example:

RP/0/RP0/CPU0:router(config-vrf-af)# export
route-policy policy_b

Step 7

Specifies a list of route target extended communities. Export
route target communities are associated with prefixes when

export route-target [as-number : nn | ip-address : nn
]

Step 8

they are advertised to remote PEs. The remote PEs import
Example: them into VRFs which have import RTs that match these

exported route target communities.
RP/0/RP0/CPU0:routerr(config-vrf-af)# export
route-target 123;234

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 9

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

Implementing BGP
155

Implementing BGP
Defining Virtual Routing and Forwarding Tables in Provider Edge Routers

PurposeCommand or Action

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring the Route Distinguisher
The route distinguisher (RD) makes prefixes unique across multiple VPN routing and forwarding (VRF)
instances.

In the L3VPN multipath same route distinguisher (RD)environment, the determination of whether to install
a prefix in RIB or not is based on the prefix's bestpath. In a rare misconfiguration situation, where the best
pah is not a valid path to be installed in RIB, BGP drops the prefix and does not consider the other paths. The
behavior is different for different RD setup, where the non-best multipath will be installed if the best multipath
is invalid to be installed in RIB.

Perform this task to configure the RD.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. bgp router-id ip-address

4. vrf vrf-name

5. rd { as-number : nn | ip-address : nn | auto }
6. Do one of the following:

• end
• commit

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Enters BGP configuration mode allowing you to configure
the BGP routing process.

router bgp as-number

Example:

Step 2

RP/0/RP0/CPU0:router(config)# router bgp 120

Configures a fixed router ID for the BGP-speaking router.bgp router-id ip-address

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# bgp router-id
10.0.0.0

Implementing BGP
156

Implementing BGP
Configuring the Route Distinguisher

PurposeCommand or Action

Configures a VRF instance.vrf vrf-name

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_pe

Configures the route distinguisher.rd { as-number : nn | ip-address : nn | auto }Step 5

Example: Use the auto keyword if you want the router to
automatically assign a unique RD to the VRF.

RP/0/RP0/CPU0:router(config-bgp-vrf)# rd 345:567 Automatic assignment of RDs is possible only if a router
ID is configured using the bgp router-id command in router
configurationmode. This allows you to configure a globally
unique router ID that can be used for automatic RD
generation. The router ID for the VRF does not need to be
globally unique, and using the VRF router ID would be
incorrect for automatic RD generation. Having a single
router ID also helps in checkpointing RD information for
BGP graceful restart, because it is expected to be stable
across reboots.

Saves configuration changes.Do one of the following:Step 6

• end • When you issue the end command, the system prompts
you to commit changes:• commit

Uncommitted changes found, commit them before
exiting(yes/no/cancel)?[cancel]:

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf)# end
• Entering yes saves configuration changes to the
running configuration file, exits the configurationor
session, and returns the router to EXEC
configuration mode.RP/0/RP0/CPU0:router(config-bgp-vrf)# commit

• Entering no exits the configuration session and
returns the router to EXEC configuration mode
without committing the configuration changes.

• Entering cancel leaves the router in the current
configuration session without exiting or
committing the configuration changes.

• Use the commit command to save the configuration
changes to the running configuration file and remain
within the configuration session.

Configuring BGP to Advertise VRF Routes for Multicast VPN from PE to PE
Perform these tasks to enable multicast VPN routing for IPv4 and IPv6 address families from one provider
edge (PE) router to another:

Implementing BGP
157

Implementing BGP
Configuring BGP to Advertise VRF Routes for Multicast VPN from PE to PE

Advertising VRF Routes for MVPNv4 from PE to PE

SUMMARY STEPS

1. configure
2. router bgp as-number

3. bgp router-id ip-address

4. address-family { ipv4 | ipv6 } unicast
5. exit
6. address-family vpnv4 unicast
7. exit
8. address-family ipv4 mdt
9. exit
10. neighbor ip-address

11. remote-as as-number

12. update-source type interface-path-id

13. address-family { ipv4 | ipv6 } unicast
14. exit
15. address-family vpnv4 unicast
16. exit
17. vrf vrf-name

18. rd { as-number : nn | ip-address : nn | auto }
19. address-family { ipv4 | ipv6 } unicast
20. Do one of the following:

• redistribute connected [metric metric-value] [route-policy route-policy-name]
• redistribute eigrp process-id [match { external | internal }] [metric metric-value] [

route-policy route-policy-name]
• redistribute isis process-id [level { 1 | 1-inter-area | 2 }] [metric metric-value] [

route-policy route-policy-name]
• redistribute ospf process-id [match { external [1 | 2] | internal | nssa-external [1 | 2
]}] [metric metric-value] [route-policy route-policy-name]

• redistribute ospfv3 process-id [match { external [1 | 2] | internal | nssa-external [1 |
2]}] [metric metric-value] [route-policy route-policy-name]

• redistribute rip [metric metric-value] [route-policy route-policy-name]
• redistribute static [metric metric-value] [route-policy route-policy-name]

21. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Implementing BGP
158

Implementing BGP
Advertising VRF Routes for MVPNv4 from PE to PE

PurposeCommand or Action

Enters BGP configurationmode, allowing you to configure
the BGP routing process.

router bgp as-number

Example:

Step 2

RP/0/RP0/CPU0:router(config)# router bgp 100

Configures a fixed router ID for a BGP-speaking router.bgp router-id ip-address

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# bgp router-id
1.1.1.1

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 4

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

Exits IPv4 address family configuration submode and
reenters BGP configuration submode.

exit

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Enters VPNv4 address family configuration submode.address-family vpnv4 unicast

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp)# address-family
vpvnv4 unicast

Exits IPv4 address-family configuration submode and
reenters BGP configuration submode.

exit

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Configures an IPv4 address-family multicast distribution
tree (MDT).

address-family ipv4 mdt

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 mdt

Exits the current configuration mode.exit

Example:

Step 9

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Implementing BGP
159

Implementing BGP
Advertising VRF Routes for MVPNv4 from PE to PE

PurposeCommand or Action

Places the PE router in neighbor configuration submode.neighbor ip-address

Example:

Step 10

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.16.1.1

Creates a neighbor and assigns the neighbor a remote
autonomous system number, which can be from 1 to 65535.

remote-as as-number

Example:

Step 11

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
100

Allows sessions to use the primary IP address from a
specific interface as the local address when forming a
session with a neighbor.

update-source type interface-path-id

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
update-source loopback 0

Step 12

The interface-type interface-id arguments specify the
type and ID number of the interface, such as
GigabitEthernet or Loopback. Use the CLI help (?) to see
a list of all the possible interface types and their ID
numbers.

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 13

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

Exits the neighbor address family configuration submode.exit

Example:

Step 14

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# exit

Specifies the address family as VPNv4 and enters address
family configuration submode.

address-family vpnv4 unicast

Example:

Step 15

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbr)#

address-family vpnv4 unicast

Exits BGP neighbor address family configuration submode.exit

Example:

Step 16

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# exit

Enables BGP routing for a particular VRF on the PE router.vrf vrf-name

Example:

Step 17

RP/0/RP0/CPU0:router(config-bgp-nbr)# vrf vpn1

Implementing BGP
160

Implementing BGP
Advertising VRF Routes for MVPNv4 from PE to PE

PurposeCommand or Action

Configures the route distinguisher.rd { as-number : nn | ip-address : nn | auto }Step 18

Example: • Use the auto keyword if you want the router to
automatically assign a unique RD to the VRF.

RP/0/RP0/CPU0:router(config-bgp-vrf)# rd 1:1
• Automatic assignment of RDs is possible only if a
router ID is configured using the bgp router-id
command in router configuration mode. This allows
you to configure a globally unique router ID that can
be used for automatic RD generation.

The router ID for the VRF does not need to be
globally unique, and using the VRF router ID would
be incorrect for automatic RD generation. Having a
single router ID also helps in checkpointing RD
information for BGP graceful restart, because it is
expected to be stable across reboots.

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 19

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

Configures redistribution of a protocol into the VRF
address family context.

Do one of the following:Step 20

• redistribute connected [metric metric-value] [
route-policy route-policy-name]

• redistribute eigrp process-id [match { external
| internal }] [metric metric-value] [route-policy
route-policy-name]

• redistribute isis process-id [level { 1 |
1-inter-area | 2 }] [metric metric-value] [
route-policy route-policy-name]

• redistribute ospf process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [
metric metric-value] [route-policy
route-policy-name]

• redistribute ospfv3 process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [
metric metric-value] [route-policy
route-policy-name]

• redistribute rip [metric metric-value] [
route-policy route-policy-name]

• redistribute static [metric metric-value] [
route-policy route-policy-name]

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
redistribute ospf 1

Implementing BGP
161

Implementing BGP
Advertising VRF Routes for MVPNv4 from PE to PE

PurposeCommand or Action

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 21

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Advertising VRF Routes for MVPNv6 from PE to PE

SUMMARY STEPS

1. configure
2. router bgp as-number

3. bgp router-id ip-address

4. address-family ipv6 unicast
5. address-family vpnv6 unicast
6. exit
7. neighbor-group vrf-name

8. remote-as as-number

9. update-source interface-type interface-id

10. address-family vpnv6 unicast
11. exit
12. exit
13. neighbor ip-address

14. remote-as as-number

15. use neighbor-group vpn-name

16. update-source interface-type interface-id

17. address-family ipv6 unicast
18. exit
19. address-family vpnv6 unicast
20. exit
21. exit
22. vrf vrf-name

23. rd { as-number : nn | ip-address : nn | auto }
24. exit
25. vrf vrf-name

26. rd { as-number : nn | ip-address : nn | auto }
27. address-family ipv6 unicast
28. Use the commit or end command.

Implementing BGP
162

Implementing BGP
Advertising VRF Routes for MVPNv6 from PE to PE

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Step 2

bgp router-id ip-addressStep 3

Example:

RP/0/RP0/CPU0:router(config-bgp)# bgp router-id
1.1.1.1

Configures a fixed router ID for a BGP-speaking router.

Specifies the address family as IPv6 and enters IPv6
neighbor address family configuration submode.

address-family ipv6 unicast

Example:

Step 4

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv6 unicast

Enters VPNv6 address family configuration submode.address-family vpnv6 unicast

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp)# address-family
vpnv6 unicast

Exits the VPNv6 address family configuration submode.exit

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Places the router in neighbor group configuration submode.neighbor-group vrf-name

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp)# neighbor-group
vpn22

Creates a neighbor and assigns the neighbor a remote
autonomous system number, which can be from 1 to 65535.

remote-as as-number

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# remote-as
100

Implementing BGP
163

Implementing BGP
Advertising VRF Routes for MVPNv6 from PE to PE

PurposeCommand or Action

Allows sessions to use the primary IP address from a
specific interface as the local address when forming a
session with a neighbor.

update-source interface-type interface-id

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
update-source loopback 0

Step 9

The interface-type interface-id arguments specify the
type and ID number of the interface, such as ATM, POS,
Loopback. Use the CLI help (?) to see a list of all the
possible interface types and their ID numbers.

Specifies the address family as VPNv6 and enters address
family configuration submode.

address-family vpnv6 unicast

Example:

Step 10

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbrgrp)#

address-family vpnv6 unicast

Exits the neighbor group address family configuration
submode.

exit

Example:

Step 11

RP/0/RP0/CPU0:router(config-bgp-nbrgrp-af)# exit

Exits BGP neighbor group configuration submode.exit

Example:

Step 12

RP/0/RP0/CPU0:router(config-bgp-nbrgrp)# exit

Places a PE router in neighbor group configuration
submode.

neighbor ip-address

Example:

Step 13

RP/0/RP0/CPU0:router(config-bgp)# neighbor 1.1.1.2

Creates a neighbor and assigns it a remote autonomous
system number, which can be from 1 to 65535.

remote-as as-number

Example:

Step 14

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
100

(Optional) Specifies that the BGP neighbor inherits the
configuration from the specified VPN neighbor group.

use neighbor-group vpn-name

Example:

Step 15

RP/0/RP0/CPU0:router(config-bgp-nbr)# use
neighbor-group vpn22

Allows sessions to use the primary IP address from a
specific interface as the local address when forming a
session with a neighbor.

update-source interface-type interface-id

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
update-source loopback 0

Step 16

The interface-type interface-id arguments specify the
type and ID number of the interface, such as ATM, POS,
Loopback. Use the CLI help (?) to see a list of all the
possible interface types and their ID numbers.

Implementing BGP
164

Implementing BGP
Advertising VRF Routes for MVPNv6 from PE to PE

PurposeCommand or Action

Specifies the address family as IPv6 and enters IPv6
neighbor address family configuration submode.

address-family ipv6 unicast

Example:

Step 17

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbr)#

address-family ipv6 unicast

Exits BGP neighbor address family configuration submode.exit

Example:

Step 18

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# exit

Specifies the address family as VPNv6 and enters address
family configuration submode.

address-family vpnv6 unicast

Example:

Step 19

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-nbr)#

address-family vpnv6 unicast

Exits the neighbor address family configuration submode.exit

Example:

Step 20

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# exit

Exits the BGP neighbor configuration submode.exit

Example:

Step 21

RP/0/RP0/CPU0:router(config-bgp-nbr)# exit

Enters BGP VRF configuration submode.vrf vrf-name

Example:

Step 22

RP/0/RP0/CPU0:router(config-bgp)# vrf vpn1

Configures the route distinguisher.rd { as-number : nn | ip-address : nn | auto }Step 23

Example: • Use the auto keyword if you want the router to
automatically assign a unique RD to the VRF.

RP/0/RP0/CPU0:router(config-bgp-vrf)# rd 111:1
• Automatic assignment of RDs is possible only if a
router ID is configured using the bgp router-id
command in router configuration mode. This allows
you to configure a globally unique router ID that can
be used for automatic RD generation.

The router ID for the VRF does not need to be
globally unique, and using the VRF router ID would
be incorrect for automatic RD generation. Having a
single router ID also helps in checkpointing RD
information for BGP graceful restart, because it is
expected to be stable across reboots.

Implementing BGP
165

Implementing BGP
Advertising VRF Routes for MVPNv6 from PE to PE

PurposeCommand or Action

Exits BGP VRF configuration submode.exit

Example:

Step 24

RP/0/RP0/CPU0:router(config-bgp-vrf)# exit

Enables BGP routing for a particular VRF on the PE router.vrf vrf-name

Example:

Step 25

RP/0/RP0/CPU0:router(config-bgp-nbr)# vrf vpn1

Configures the route distinguisher.rd { as-number : nn | ip-address : nn | auto }Step 26

Example: • Use the auto keyword if you want the router to
automatically assign a unique RD to the VRF.

RP/0/RP0/CPU0:router(config-bgp-vrf)# rd 1:1
• Automatic assignment of RDs is possible only if a
router ID is configured using the bgp router-id
command in router configuration mode. This allows
you to configure a globally unique router ID that can
be used for automatic RD generation.

The router ID for the VRF does not need to be
globally unique, and using the VRF router ID would
be incorrect for automatic RD generation. Having a
single router ID also helps in checkpointing RD
information for BGP graceful restart, because it is
expected to be stable across reboots.

Specifies the address family as IPv6 and enters IPv6 VRF
address family configuration submode.

address-family ipv6 unicast

Example:

Step 27

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp-vrf)#

address-family ipv6 unicast

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 28

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
166

Implementing BGP
Advertising VRF Routes for MVPNv6 from PE to PE

Configuring PE-PE or PE-RR Interior BGP Sessions
To enable BGP to carry VPN reachability information between provider edge (PE) routers you must configure
the PE-PE interior BGP (iBGP) sessions. A PE uses VPN information carried from the remote PE router to
determine VPN connectivity and the label value to be used so the remote (egress) router can demultiplex the
packet to the correct VPN during packet forwarding.

The PE-PE, PE-route reflector (RR) iBGP sessions are defined to all PE and RR routers that participate in the
VPNs configured in the PE router.

Perform this task to configure PE-PE iBGP sessions and to configure global VPN options on a PE.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { vpnv4 unicast | vpnv6 unicast }
4. exit
5. neighbor ip-address

6. remote-as as-number

7. description text

8. password { clear | encrypted } password

9. shutdown
10. timers keepalive hold-time

11. update-source type interface-id

12. address-family { vpnv4 unicast | vpnv6 unicast }
13. route-policy route-policy-name in
14. route-policy route-policy-name out
15. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Enters VPN address family configuration mode.address-family { vpnv4 unicast | vpnv6 unicast }

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# address-family
vpvn4 unicast

Implementing BGP
167

Implementing BGP
Configuring PE-PE or PE-RR Interior BGP Sessions

PurposeCommand or Action

Exits the current configuration mode.exit

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Configures a PE iBGP neighbor.neighbor ip-address

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.16.1.1

Assigns the neighbor a remote autonomous system number.remote-as as-number

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
1

(Optional) Provides a description of the neighbor. The
description is used to save comments and does not affect
software function.

description text

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)# description
neighbor 172.16.1.1

Step 7

Enables Message Digest 5 (MD5) authentication on the
TCP connection between the two BGP neighbors.

password { clear | encrypted } password

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp-nbr)# password
encrypted 123abc

Terminates any active sessions for the specified neighbor
and removes all associated routing information.

shutdown

Example:

Step 9

RP/0/RP0/CPU0:router(config-bgp-nbr)# shutdown

Set the timers for the BGP neighbor.timers keepalive hold-time

Example:

Step 10

RP/0/RP0/CPU0:router(config-bgp-nbr)# timers 12000
200

Allows iBGP sessions to use the primary IP address from
a specific interface as the local address when forming an
iBGP session with a neighbor.

update-source type interface-id

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
update-source gigabitEthernet 0/1/5/0

Step 11

Enters VPN neighbor address family configuration mode.address-family { vpnv4 unicast | vpnv6 unicast }

Example:

Step 12

Implementing BGP
168

Implementing BGP
Configuring PE-PE or PE-RR Interior BGP Sessions

PurposeCommand or Action

RP/0/RP0/CPU0:router(config-bgp-nbr)#
address-family vpvn4 unicast

Specifies a routing policy for an inbound route. The policy
can be used to filter routes or modify route attributes.

route-policy route-policy-name in

Example:

Step 13

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
route-policy pe-pe-vpn-in in

Specifies a routing policy for an outbound route. The policy
can be used to filter routes or modify route attributes.

route-policy route-policy-name out

Example:

Step 14

RP/0/RP0/CPU0:router(config-bgp-nbr-af)#
route-policy pe-pe-vpn-out out

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 15

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring Route Reflector to Hold Routes That Have a Defined Set of RT Communities
A provider edge (PE) needs to hold the routes that match the import route targets (RTs) of the VPNs configured
on it. The PE router can discard all other VPNv4 (Cisco XR 12000 Series Router and Cisco CRS-1) and
VPNv6 (Cisco XR 12000 Series Router only) routes. But, a route reflector (RR) must retain all VPNv4 and
VPNv6 routes, because it might peer with PE routers and different PEs might require different RT-tagged
VPNv4 and VPNv6 routes (making RRs non-scalable). You can configure an RR to only hold routes that
have a defined set of RT communities. Also, a number of the RRs can be configured to service a different set
of VPNs (thereby achieving some scalability). A PE is then made to peer with all RRs that service the VRFs
configured on the PE. When a new VRF is configured with an RT for which the PE does not already hold
routes, the PE issues route refreshes to the RRs and retrieves the relevant VPN routes.

Note that this process can be more efficient if the PE-RR session supports extended community outbound
route filter (ORF).

Note

Perform this task to configure a reflector to retain routes tagged with specific RTs.

SUMMARY STEPS

1. configure

Implementing BGP
169

Implementing BGP
Configuring Route Reflector to Hold Routes That Have a Defined Set of RT Communities

2. router bgp as-number

3. address-family { vpnv4 unicast | vpnv6 unicast }
4. retain route-target { all | route-policy route-policy-name }
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Enters VPN address family configuration mode.address-family { vpnv4 unicast | vpnv6 unicast }

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# address-family
vpvn4 unicast

Configures a reflector to retain routes tagged with particular
RTs. Use the route-policy-name argument for the policy

retain route-target { all | route-policy
route-policy-name }

Step 4

name that lists the extended communities that a path should
have in order for the RR to retain that path.Example:

RP/0/RP0/CPU0:router(config-bgp-af)# retain
route-target route-policy rr_ext-comm

The all keyword is not required, because this
is the default behavior of a route reflector.

Note

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring BGP as a PE-CE Protocol
Perform this task to configure BGP on the PE and establish PE-CE communication using BGP. This task can
be performed in both VRF and non-VRF configuration.

Implementing BGP
170

Implementing BGP
Configuring BGP as a PE-CE Protocol

SUMMARY STEPS

1. configure
2. router bgp as-number

3. vrf vrf-name

4. bgp router-id ip-address

5. label mode { per-ce | per-vrf }
6. address-family { ipv4 | ipv6 } unicast
7. network { ip-address / prefix-length | ip-address mask }
8. aggregate-address address / mask-length

9. exit
10. neighbor ip-address

11. remote-as as-number

12. password { clear | encrypted } password

13. ebgp-multihop [ttl-value]
14. Do one of the following:

• address-family { ipv4 | ipv6 } unicast
• address-family {ipv4 {unicast | labeled-unicast} | ipv6 unicast}

15. site-of-origin [as-number : nn | ip-address : nn]
16. as-override
17. allowas-in [as-occurrence-number]
18. route-policy route-policy-name in
19. route-policy route-policy-name out
20. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Enables BGP routing for a particular VRF on the PE router.vrf vrf-name

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_pe_2

Configures a fixed router ID for a BGP-speaking router.bgp router-id ip-address

Example:

Step 4

Implementing BGP
171

Implementing BGP
Configuring BGP as a PE-CE Protocol

PurposeCommand or Action

RP/0/RP0/CPU0:router(config-bgp-vrf)# bgp
router-id 172.16.9.9

Configures the MPLS/VPN label mode.label mode { per-ce | per-vrf }Step 5

Example: • The per-ce keyword configures the per-CE label
mode to avoid an extra lookup on the PE router and

RP/0/RP0/CPU0:router(config-bgp-vrf)# label mode
per-ce

conserve label space (per-prefix is the default label
mode). In this mode, the PE router allocates one label
for every immediate next-hop (in most cases, this
would be a CE router). This label is directly mapped
to the next hop, so there is no VRF route lookup
performed during data forwarding. However, the
number of labels allocated would be one for each CE
rather than one for each VRF. Because BGP knows
all the next hops, it assigns a label for each next hop
(not for each PE-CE interface). When the outgoing
interface is a multiaccess interface and the media
access control (MAC) address of the neighbor is not
known, Address Resolution Protocol (ARP) is
triggered during packet forwarding.

• The per-vrf keyword configures the same label to
be used for all the routes advertised from a unique
VRF.

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 6

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

Originates a network prefix in the address family table in
the VRF context.

network { ip-address / prefix-length | ip-address mask
}

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# network
172.16.5.5

Configures aggregation in the VRF address family context
to summarize routing information to reduce the state

aggregate-address address / mask-length

Example:

Step 8

maintained in the core. This summarization introduces

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
aggregate-address 10.0.0.0/24

some inefficiency in the PE edge, because an additional
lookup is required to determine the ultimate next hop for
a packet.When configured, a summary prefix is advertised
instead of a set of component prefixes, which are more
specifics of the aggregate. The PE advertises only one label
for the aggregate. Because component prefixes could have

Implementing BGP
172

Implementing BGP
Configuring BGP as a PE-CE Protocol

PurposeCommand or Action

different next hops to CEs, an additional lookup has to be
performed during data forwarding.

Exits the current configuration mode.exit

Example:

Step 9

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# exit

Configures a CE neighbor. The ip-address argument must
be a private address.

neighbor ip-address

Example:

Step 10

RP/0/RP0/CPU0:router(config-bgp-vrf)# neighbor
10.0.0.0

Configures the remote AS for the CE neighbor.remote-as as-number

Example:

Step 11

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)#
remote-as 2

Enable Message Digest 5 (MD5) authentication on a TCP
connection between two BGP neighbors.

password { clear | encrypted } password

Example:

Step 12

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)# password
encrypted 234xyz

Configures the CE neighbor to accept and attempt BGP
connections to external peers residing on networks that
are not directly connected.

ebgp-multihop [ttl-value]

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr)#
ebgp-multihop 55

Step 13

Specifies either an IPv4 (unicast or labeled-unicast) or
IPv6 unicast address family and enters address family
configuration submode.

Do one of the following:Step 14

• address-family { ipv4 | ipv6 } unicast
• address-family {ipv4 {unicast | labeled-unicast} |

ipv6 unicast} To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).

Example:

RP/0/RP0/CPU0:router(config-vrf)# address-family
ipv4 unicast

Configures the site-of-origin (SoO) extended community.
Routes that are learned from this CE neighbor are tagged

site-of-origin [as-number : nn | ip-address : nn]

Example:

Step 15

with the SoO extended community before being advertised

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#
site-of-origin 234:111

to the rest of the PEs. SoO is frequently used to detect
loops when as-override is configured on the PE router. If
the prefix is looped back to the same site, the PE detects
this and does not send the update to the CE.

Implementing BGP
173

Implementing BGP
Configuring BGP as a PE-CE Protocol

PurposeCommand or Action

Configures AS override on the PE router. This causes the
PE router to replace the CE’s ASNwith its own (PE) ASN.

as-override

Example:

Step 16

This loss of information could lead to routing
loops; to avoid loops caused by as-override, use
it in conjunction with site-of-origin.

Note
RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#
as-override

Allows anAS pathwith the PE autonomous system number
(ASN) a specified number of times.

allowas-in [as-occurrence-number]

Example:

Step 17

Hub and spoke VPN networks need the looping back of
routing information to the HUB PE through the HUB CE.RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#

allowas-in 5 When this happens, due to the presence of the PE ASN,
the looped-back information is dropped by the HUB PE.
To avoid this, use the allowas-in command to allow
prefixes even if they have the PEs ASN up to the specified
number of times.

Specifies a routing policy for an inbound route. The policy
can be used to filter routes or modify route attributes.

route-policy route-policy-name in

Example:

Step 18

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#
route-policy pe_ce_in_policy in

Specifies a routing policy for an outbound route. The policy
can be used to filter routes or modify route attributes.

route-policy route-policy-name out

Example:

Step 19

RP/0/RP0/CPU0:router(config-bgp-vrf-nbr-af)#
route-policy pe_ce_out_policy out

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 20

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Redistribution of IGPs to BGP
Perform this task to configure redistribution of a protocol into the VRF address family.

Even if Interior Gateway Protocols (IGPs) are used as the PE-CE protocol, the import logic happens through
BGP. Therefore, all IGP routes have to be imported into the BGP VRF table.

Implementing BGP
174

Implementing BGP
Redistribution of IGPs to BGP

SUMMARY STEPS

1. configure
2. router bgp as-number

3. vrf vrf-name

4. address-family { ipv4 | ipv6 } unicast
5. Do one of the following:

• redistribute connected [metric metric-value] [route-policy route-policy-name]
• redistribute eigrp process-id [match { external | internal }] [metric metric-value] [

route-policy route-policy-name]
• redistribute isis process-id [level { 1 | 1-inter-area | 2 }] [metric metric-value] [route-policy

route-policy-name]
• redistribute ospf process-id [match { external [1 | 2] | internal | nssa-external [1 | 2
]}] [metric metric-value] [route-policy route-policy-name]

• redistribute ospfv3 process-id [match { external [1 | 2] | internal | nssa-external [1 | 2
]}] [metric metric-value] [route-policy route-policy-name]

• redistribute rip [metric metric-value] [route-policy route-policy-name]
• redistribute static [metric metric-value] [route-policy route-policy-name]

6. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Enables BGP routing for a particular VRF on the PE router.vrf vrf-name

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# vrf vrf_a

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 4

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

Configures redistribution of a protocol into the VRF address
family context.

Do one of the following:Step 5

• redistribute connected [metric metric-value] [
route-policy route-policy-name]

Implementing BGP
175

Implementing BGP
Redistribution of IGPs to BGP

PurposeCommand or Action

The redistribute command is used if BGP is not used
between the PE-CE routers. If BGP is used between PE-CE

• redistribute eigrp process-id [match { external
| internal }] [metric metric-value] [route-policy
route-policy-name] routers, the IGP that is used has to be redistributed into BGP

to establish VPN connectivity with other PE sites.• redistribute isis process-id [level { 1 |
1-inter-area | 2 }] [metric metric-value] [
route-policy route-policy-name]

Redistribution is also required for inter-table import and
export.

• redistribute ospf process-id [match { external [
1 | 2] | internal | nssa-external [1 | 2]}] [metric
metric-value] [route-policy route-policy-name]

• redistribute ospfv3 process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [
metric metric-value] [route-policy
route-policy-name]

• redistribute rip [metric metric-value] [
route-policy route-policy-name]

• redistribute static [metric metric-value] [
route-policy route-policy-name]

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
redistribute eigrp 23

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring Keychains for BGP
Keychains provide secure authentication by supporting different MAC authentication algorithms and provide
graceful key rollover. Perform this task to configure keychains for BGP. This task is optional.

If a keychain is configured for a neighbor group or a session group, a neighbor using the group inherits the
keychain. Values of commands configured specifically for a neighbor override inherited values.

Note

SUMMARY STEPS

1. configure

Implementing BGP
176

Implementing BGP
Configuring Keychains for BGP

2. router bgp as-number

3. neighbor ip-address

4. remote-as as-number

5. keychain name

6. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 3

Creates a neighbor and assigns a remote autonomous system
number to it.

remote-as as-number

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
2002

Configures keychain-based authentication.keychain name

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp-nbr)# keychain
kych_a

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
177

Implementing BGP
Configuring Keychains for BGP

Configuring an MDT Address Family Session in BGP
Perform this task to configure an IPv4 multicast distribution tree (MDT) subaddress family identifier (SAFI)
session in BGP, which can also be used for MVPNv6 network distribution.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. exit
5. address-family { vpnv4 | vpnv6 } unicast
6. exit
7. address-family ipv4 mdt
8. exit
9. neighbor ip-address

10. remote-as as-number

11. update-source interface-type interface-id

12. address-family { ipv4 | ipv6 } unicast
13. exit
14. address-family {vpnv4 | vpnv6} unicast
15. exit
16. address-family ipv4 mdt
17. exit
18. vrf vrf-name

19. rd { as-number:nn | ip-address:nn | auto }
20. address-family { ipv4 | ipv6 } unicast
21. Do one of the following:

• redistribute connected [metric metric-value] [route-policy route-policy-name]
• redistribute eigrp process-id [match { external | internal }] [metric metric-value] [

route-policy route-policy-name]
• redistribute isis process-id [level { 1 | 1-inter-area | 2 }] [metric metric-value] [

route-policy route-policy-name]
• redistribute ospf process-id [match { external [1 | 2] | internal | nssa-external [1 | 2
]}] [metric metric-value] [route-policy route-policy-name]

• redistribute ospfv3 process-id [match { external [1 | 2] | internal | nssa-external [1 |
2]}] [metric metric-value] [route-policy route-policy-name]

• redistribute rip [metric metric-value] [route-policy route-policy-name]
• redistribute static [metric metric-value] [route-policy route-policy-name]

22. Use the commit or end command.

Implementing BGP
178

Implementing BGP
Configuring an MDT Address Family Session in BGP

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

Exits the current configuration mode.exit

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Specifies the address family and enters the address family
configuration submode.

address-family { vpnv4 | vpnv6 } unicast

Example:

Step 5

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

vpnv4 unicast
Required if you are configuring multicast
MVPN. If configuringMVPNv6, use the vpnv6
keyword

Note

Exits the current configuration mode.exit

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Specifies the multicast distribution tree (MDT) address
family.

address-family ipv4 mdt

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 mdt

Exits the current configuration mode.exit

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Implementing BGP
179

Implementing BGP
Configuring an MDT Address Family Session in BGP

PurposeCommand or Action

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 9

Creates a neighbor and assigns a remote autonomous
system number to it.

remote-as as-number

Example:

Step 10

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
2002

Allows sessions to use the primary IP address from a
specific interface as the local address when forming a
session with a neighbor.

update-source interface-type interface-id

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
update-source loopback 0

Step 11

The interface-type interface-id arguments specify the
type and ID number of the interface, such as ATM, POS,
Loopback. Use the CLI help (?) to see a list of all the
possible interface types and their ID numbers.

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 12

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

(Optional) Exits the current configuration mode.exit

Example:

Step 13

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# exit

(Optional) Enters address family configuration submode
for the specified address family.

address-family {vpnv4 | vpnv6} unicast

Example:

Step 14

Required if you are configuring multicast
MVPN. If configuringMVPNv6, use the vpnv6
keyword.

Note
RP/0/RP0/CPU0:router(config-bgp-nbr)#
address-family vpnv4 unicast

Exits the current configuration mode.exit

Example:

Step 15

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# exit

Specifies the multicast distribution tree (MDT) address
family.

address-family ipv4 mdt

Example:

Step 16

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 mdt

Implementing BGP
180

Implementing BGP
Configuring an MDT Address Family Session in BGP

PurposeCommand or Action

Exits the current configuration mode.exit

Example:

Step 17

RP/0/RP0/CPU0:router(config-bgp-af)# exit

(Optional) Enables BGP routing for a particular VRF on
the PE router.

vrf vrf-name

Example:

Step 18

Required if you are configuring multicast
MVPN.

Note
RP/0/RP0/CPU0:router(config-bgp)# vrf vpn1

(Optional) Configures the route distinguisher.rd { as-number:nn | ip-address:nn | auto }Step 19

Example: • Use the auto keyword if you want the router to
automatically assign a unique RD to the VRF.

RP/0/RP0/CPU0:router(config-bgp-vrf)# rd 1:1
• Automatic assignment of RDs is possible only if a
router ID is configured using the bgp router-id
command in router configuration mode. This allows
you to configure a globally unique router ID that can
be used for automatic RD generation.

The router ID for the VRF does not need to be
globally unique, and using the VRF router ID would
be incorrect for automatic RD generation. Having a
single router ID also helps in checkpointing RD
information for BGP graceful restart, because it is
expected to be stable across reboots.

Required if you are configuring multicast
MVPN.

Note

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 20

To see a list of all the possible keywords and arguments
for this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-vrf)# address-family

ipv4 unicast

(Optional) Configures redistribution of a protocol into the
VRF address family context.

Do one of the following:Step 21

• redistribute connected [metric metric-value] [
route-policy route-policy-name] Required if you are configuring multicast

MVPN.
Note

• redistribute eigrp process-id [match { external
| internal }] [metric metric-value] [route-policy
route-policy-name]

• redistribute isis process-id [level { 1 |
1-inter-area | 2 }] [metric metric-value] [
route-policy route-policy-name]

• redistribute ospf process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [

Implementing BGP
181

Implementing BGP
Configuring an MDT Address Family Session in BGP

PurposeCommand or Action

metric metric-value] [route-policy
route-policy-name]

• redistribute ospfv3 process-id [match { external
[1 | 2] | internal | nssa-external [1 | 2]}] [
metric metric-value] [route-policy
route-policy-name]

• redistribute rip [metric metric-value] [
route-policy route-policy-name]

• redistribute static [metric metric-value] [
route-policy route-policy-name]

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)#
redistribute eigrp 23

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 22

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Disabling a BGP Neighbor
Perform this task to administratively shut down a neighbor session without removing the configuration.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. shutdown
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Implementing BGP
182

Implementing BGP
Disabling a BGP Neighbor

PurposeCommand or Action

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 127

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor
172.168.40.24

Step 3

Disables all active sessions for the specified neighbor.shutdown

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)# shutdown

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Resetting Neighbors Using BGP Inbound Soft Reset
Perform this task to trigger an inbound soft reset of the specified address families for the specified group or
neighbors. The group is specified by the * , ip-address , as-number , or external keywords and arguments.

Resetting neighbors is useful if you change the inbound policy for the neighbors or any other configuration
that affects the sending or receiving of routing updates. If an inbound soft reset is triggered, BGP sends a
REFRESH request to the neighbor if the neighbor has advertised the ROUTE_REFRESH capability. To
determinewhether the neighbor has advertised the ROUTE_REFRESH capability, use the show bgp neighbors
command.

SUMMARY STEPS

1. show bgp neighbors
2. clear bgp { ipv4 { unicast | multicast | labeled-unicast | all | tunnel | mdt } | ipv6 { unicast

| multicast | all | labeled-unicast } | all { unicast | multicast | all | labeled-unicast | mdt |
tunnel } | vpnv4 unicast | vrf { vrf-name | all } { ipv4 { unicast | labeled-unicast } | ipv6
unicast } | vpnv6 unicast } { * | ip-address | as as-number | external } soft [in [prefix-filter
] | out]

Implementing BGP
183

Implementing BGP
Resetting Neighbors Using BGP Inbound Soft Reset

DETAILED STEPS

PurposeCommand or Action

Verifies that received route refresh capability from the
neighbor is enabled.

show bgp neighbors

Example:

Step 1

RP/0/RP0/CPU0:router# show bgp neighbors

Soft resets a BGP neighbor.clear bgp { ipv4 { unicast | multicast | labeled-unicast
| all | tunnel | mdt } | ipv6 { unicast | multicast |

Step 2

• The * keyword resets all BGP neighbors.
all | labeled-unicast } | all { unicast | multicast | all
| labeled-unicast | mdt | tunnel } | vpnv4 unicast | • The ip-address argument specifies the address of the

neighbor to be reset.vrf { vrf-name | all } { ipv4 { unicast |
labeled-unicast } | ipv6 unicast } | vpnv6 unicast

• The as-number argument specifies that all neighbors
that match the autonomous system number be reset.

} { * | ip-address | as as-number | external } soft [
in [prefix-filter] | out]

Example: • The external keyword specifies that all external
neighbors are reset.

RP/0/RP0/CPU0:router# clear bgp ipv4 unicast
10.0.0.1 soft in

Resetting Neighbors Using BGP Outbound Soft Reset
Perform this task to trigger an outbound soft reset of the specified address families for the specified group or
neighbors. The group is specified by the * , ip-address , as-number , or external keywords and arguments.

Resetting neighbors is useful if you change the outbound policy for the neighbors or any other configuration
that affects the sending or receiving of routing updates.

If an outbound soft reset is triggered, BGP resends all routes for the address family to the given neighbors.

To determine whether the neighbor has advertised the ROUTE_REFRESH capability, use the show bgp
neighbors command.

SUMMARY STEPS

1. show bgp neighbors
2. clear bgp { ipv4 { unicast | multicast | labeled-unicast | all | tunnel | } | ipv6 { unicast |

multicast | all | labeled-unicast } | all { unicast | multicast | all | labeled-unicast | mdt | tunnel
} | vpnv4 unicast | vrf { vrf-name | all } { ipv4 { unicast | labeled-unicast } | ipv6 unicast } |
vpnv6 unicast } { * | ip-address | as as-number | external } clear bgp { ipv4 | ipv6} { unicast
| labeled-unicast } soft out

DETAILED STEPS

PurposeCommand or Action

Verifies that received route refresh capability from the
neighbor is enabled.

show bgp neighbors

Example:

Step 1

RP/0/RP0/CPU0:router# show bgp neighbors

Implementing BGP
184

Implementing BGP
Resetting Neighbors Using BGP Outbound Soft Reset

PurposeCommand or Action

Soft resets a BGP neighbor.clear bgp { ipv4 { unicast | multicast | labeled-unicast
| all | tunnel | } | ipv6 { unicast | multicast | all |

Step 2

• The * keyword resets all BGP neighbors.
labeled-unicast } | all { unicast | multicast | all |
labeled-unicast | mdt | tunnel } | vpnv4 unicast | vrf • The ip-address argument specifies the address of the

neighbor to be reset.{ vrf-name | all } { ipv4 { unicast | labeled-unicast }
| ipv6 unicast } | vpnv6 unicast } { * | ip-address

• The as-number argument specifies that all neighbors
that match the autonomous system number be reset.

| as as-number | external } clear bgp { ipv4 | ipv6} {
unicast | labeled-unicast } soft out

Example: • The external keyword specifies that all external
neighbors are reset.

RP/0/RP0/CPU0:router# clear bgp ipv4 unicast
10.0.0.2 soft out

Resetting Neighbors Using BGP Hard Reset
Perform this task to reset neighbors using a hard reset. A hard reset removes the TCP connection to the
neighbor, removes all routes received from the neighbor from the BGP table, and then re-establishes the
session with the neighbor. If the graceful keyword is specified, the routes from the neighbor are not removed
from the BGP table immediately, but are marked as stale. After the session is re-established, any stale route
that has not been received again from the neighbor is removed.

SUMMARY STEPS

1. clear bgp { ipv4 { unicast | multicast | labeled-unicast | all | tunnel | mdt } | ipv6 { unicast
| multicast | all | labeled-unicast } | all { unicast | multicast | all | labeled-unicast | mdt |
tunnel } | vpnv4 unicast | vrf { vrf-name | all } { ipv4 { unicast | labeled-unicast } | ipv6 unicast
} | vpnv6 unicast } { * | ip-address | as as-number | external } [graceful] soft [in [prefix-filter
] | out] clear bgp { ipv4 | ipv6} { unicast | labeled-unicast }

DETAILED STEPS

PurposeCommand or Action

Clears a BGP neighbor.clear bgp { ipv4 { unicast | multicast | labeled-unicast
| all | tunnel | mdt } | ipv6 { unicast | multicast |

Step 1

• The * keyword resets all BGP neighbors.
all | labeled-unicast } | all { unicast | multicast | all
| labeled-unicast | mdt | tunnel } | vpnv4 unicast | • The ip-address argument specifies the address of the

neighbor to be reset.vrf { vrf-name | all } { ipv4 { unicast | labeled-unicast
} | ipv6 unicast } | vpnv6 unicast } { * | ip-address |

• The as-number argument specifies that all neighbors
that match the autonomous system number be reset.

as as-number | external } [graceful] soft [in [
prefix-filter] | out] clear bgp { ipv4 | ipv6} { unicast
| labeled-unicast } • The external keyword specifies that all external

neighbors are reset.Example:

RP/0/RP0/CPU0:router# clear bgp ipv4 unicast
10.0.0.3 graceful soft out

The graceful keyword specifies a graceful restart.

Implementing BGP
185

Implementing BGP
Resetting Neighbors Using BGP Hard Reset

Clearing Caches, Tables, and Databases
Perform this task to remove all contents of a particular cache, table, or database. The clear bgp command
resets the sessions of the specified group of neighbors (hard reset); it removes the TCP connection to the
neighbor, removes all routes received from the neighbor from the BGP table, and then re-establishes the
session with the neighbor. Clearing a cache, table, or database can become necessary when the contents of
the particular structure have become, or are suspected to be, invalid.

SUMMARY STEPS

1. clear bgp { ipv4 { unicast | multicast | labeled-unicast | all | tunnel | mdt } | ipv6 { unicast
| multicast | all | labeled-unicast } | all { unicast | multicast | all | labeled-unicast | mdt |
tunnel } | vpnv4 unicast | vrf { vrf-name | all } { ipv4 { unicast | labeled-unicast } | ipv6
unicast } | vpnv6 unicast } ip-address

2. clear bgp external
3. clear bgp *

DETAILED STEPS

PurposeCommand or Action

Clears a specified neighbor.clear bgp { ipv4 { unicast | multicast | labeled-unicast
| all | tunnel | mdt } | ipv6 { unicast | multicast

Step 1

| all | labeled-unicast } | all { unicast | multicast |
all | labeled-unicast | mdt | tunnel } | vpnv4 unicast
| vrf { vrf-name | all } { ipv4 { unicast |
labeled-unicast } | ipv6 unicast } | vpnv6 unicast
} ip-address

Example:

RP/0/RP0/CPU0:router# clear bgp ipv4 172.20.1.1

Clears all external peers.clear bgp external

Example:

Step 2

RP/0/RP0/CPU0:router# clear bgp external

Clears all BGP neighbors.clear bgp *

Example:

Step 3

RP/0/RP0/CPU0:router# clear bgp *

Displaying System and Network Statistics
Perform this task to display specific statistics, such as the contents of BGP routing tables, caches, and databases.
Information provided can be used to determine resource usage and solve network problems. You can also
display information about node reachability and discover the routing path that the packets of your device are
taking through the network.

Implementing BGP
186

Implementing BGP
Clearing Caches, Tables, and Databases

SUMMARY STEPS

1. show bgp cidr-only
2. show bgp community community-list [exact-match]
3. show bgp regexp regular-expression

4. show bgp
5. show bgp neighbors ip-address [advertised-routes | dampened-routes | flap-statistics |

performance-statistics | received prefix-filter | routes]
6. show bgp paths
7. show bgp neighbor-group group-name configuration
8. show bgp summary

DETAILED STEPS

PurposeCommand or Action

Displays routes with nonnatural network masks (classless
interdomain routing [CIDR]) routes.

show bgp cidr-only

Example:

Step 1

RP/0/RP0/CPU0:router# show bgp cidr-only

Displays routes that match the specified BGP community.show bgp community community-list [exact-match]

Example:

Step 2

RP/0/RP0/CPU0:router# show bgp community 1081:5
exact-match

Displays routes that match the specified autonomous system
path regular expression.

show bgp regexp regular-expression

Example:

Step 3

RP/0/RP0/CPU0:router# show bgp regexp "^3 "

Displays entries in the BGP routing table.show bgp

Example:

Step 4

RP/0/RP0/CPU0:router# show bgp

Displays information about the BGP connection to the
specified neighbor.

show bgp neighbors ip-address [advertised-routes |
dampened-routes | flap-statistics |

Step 5

performance-statistics | received prefix-filter | routes
] • The advertised-routes keyword displays all routes

the router advertised to the neighbor.
Example:

• The dampened-routes keyword displays the
dampened routes that are learned from the neighbor.RP/0/RP0/CPU0:router# show bgp neighbors 10.0.101.1

• The flap-statistics keyword displays flap statistics
of the routes learned from the neighbor.

• The performance-statistics keyword displays
performance statistics relating to work done by the
BGP process for this neighbor.

Implementing BGP
187

Implementing BGP
Displaying System and Network Statistics

PurposeCommand or Action

• The received prefix-filter keyword and argument
display the received prefix list filter.

• The routes keyword displays routes learned from the
neighbor.

Displays all BGP paths in the database.show bgp paths

Example:

Step 6

RP/0/RP0/CPU0:router# show bgp paths

Displays the effective configuration for a specified neighbor
group, including any configuration inherited by this
neighbor group.

show bgp neighbor-group group-name configuration

Example:

RP/0/RP0/CPU0:router# show bgp neighbor-group
group_1 configuration

Step 7

Displays the status of all BGP connections.show bgp summary

Example:

Step 8

RP/0/RP0/CPU0:router# show bgp summary

Displaying BGP Process Information
Perform this task to display specific BGP process information.

SUMMARY STEPS

1. show bgp process
2. show bgp ipv4 unicast summary
3. show bgp vpnv4 unicast summary
4. show bgp vrf (vrf-name | all }
5. show bgp process detail
6. show bgp summary
7. show placement program bgp
8. show placement program brib

DETAILED STEPS

PurposeCommand or Action

Displays status and summary information for the BGP
process. The output shows various global and address

show bgp process

Example:

Step 1

family-specific BGP configurations. A summary of the

RP/0/RP0/CPU0:router# show bgp process
number of neighbors, update messages, and notification
messages sent and received by the process is also displayed.

Implementing BGP
188

Implementing BGP
Displaying BGP Process Information

PurposeCommand or Action

Displays a summary of the neighbors for the IPv4 unicast
address family.

show bgp ipv4 unicast summary

Example:

Step 2

RP/0/RP0/CPU0:router# show bgp ipv4 unicast summary

Displays a summary of the neighbors for the VPNv4 unicast
address family.

show bgp vpnv4 unicast summary

Example:

Step 3

RP/0/RP0/CPU0:router# show bgp vpnv4 unicast
summary

Displays BGP VPN virtual routing and forwarding (VRF)
information.

show bgp vrf (vrf-name | all }

Example:

Step 4

RP/0/RP0/CPU0:router# show bgp vrf vrf_A

Displays detailed process information including thememory
used by each of various internal structure types.

show bgp process detail

Example:

Step 5

RP/0/RP0/CPU0:router# show bgp processes detail

Displays the status of all BGP connections.show bgp summary

Example:

Step 6

RP/0/RP0/CPU0:router# show bgp summary

Displays BGP program information.show placement program bgpStep 7

Example: • If a program is shown as having ‘rejected locations’
(for example, locations where program cannot be

RP/0/RP0/CPU0:router# show placement program bgp placed), the locations in question can be viewed using
the show placement program bgp command.

• If a program has been placed but not started, the
amount of elapsed time since the program was placed
is displayed in the Waiting to start column.

Displays bRIB program information.show placement program bribStep 8

Example: • If a program is shown as having ‘rejected locations’
(for example, locations where program cannot be

RP/0/RP0/CPU0:router# show placement program brib placed), the locations in question can be viewed using
the show placement program bgp command.

• If a program has been placed but not started, the
amount of elapsed time since the program was placed
is displayed in the Waiting to start column.

Implementing BGP
189

Implementing BGP
Displaying BGP Process Information

Monitoring BGP Update Groups
This task displays information related to the processing of BGP update groups.

SUMMARY STEPS

1. show bgp [ipv4 { unicast | multicast | labeled-unicast | all | tunnel | } | ipv6 { unicast | all
| labeled-unicast } | all { unicast | multicast | all | mdt | labeled-unicast | tunnel } | vpnv4
unicast | vrf { vrf-name | all } [ipv4 { unicast | labeled-unicast } | ipv6 unicast] | vpvn6 unicast
] update-group [neighbor ip-address | process-id.index [summary | performance-statistics
]]

DETAILED STEPS

PurposeCommand or Action

Displays information about BGP update groups.show bgp [ipv4 { unicast | multicast |
labeled-unicast | all | tunnel | } | ipv6 { unicast | all

Step 1

• The ip-address argument displays the update groups
to which that neighbor belongs.| labeled-unicast } | all { unicast | multicast | all |

mdt | labeled-unicast | tunnel } | vpnv4 unicast | vrf
{ vrf-name | all } [ipv4 { unicast | labeled-unicast } • The process-id.index argument selects a particular

update group to display and is specified as follows:| ipv6 unicast] | vpvn6 unicast] update-group [
neighbor ip-address | process-id.index [summary |
performance-statistics]]

process ID (dot) index. Process ID range is from 0 to
254. Index range is from 0 to 4294967295.

Example: • The summary keyword displays summary information
for neighbors in a particular update group.

RP/0/RP0/CPU0:router# show bgp update-group 0.0
• If no argument is specified, this command displays
information for all update groups (for the specified
address family).

• The performance-statistics keyword displays
performance statistics for an update group.

Configuring BGP Nonstop Routing

SUMMARY STEPS

1. configure
2. router bgp as-number

3. nsr
4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

Implementing BGP
190

Implementing BGP
Monitoring BGP Update Groups

PurposeCommand or Action

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number, and enters the BGP
configurationmode, for configuring BGP routing processes.

router bgp as-number

Example:

Step 2

RP/0/RP0/CPU0:router(config)# router bgp 120

Activates BGP Nonstop routing.nsr

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# nsr

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring Best-External Path Advertisement
Perform the following tasks to advertise the best–external path to the iBGP and route-reflector peers:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. Do one of the following

• address-family { vpnv4 unicast | vpnv6 unicast }

• vrfvrf-name{ipv4 unicast|ipv6 unicast}

4. advertise best-external
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

Implementing BGP
191

Implementing BGP
Configuring Best-External Path Advertisement

PurposeCommand or Action

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Step 2

Specifies the address family or VRF address family and
enters the address family or VRF address family
configuration submode.

Do one of the followingStep 3

• address-family { vpnv4 unicast | vpnv6 unicast
}

• vrfvrf-name{ipv4 unicast|ipv6 unicast}

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family
vpnv4 unicast

Advertise the best–external path to the iBGP and
route-reflector peers.

advertise best-external

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# advertise
best-external

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Installing Primary Backup Path for Prefix Independent Convergence (PIC)
Perform the following tasks to install a backup path into the forwarding table and provide prefix independent
convergence (PIC) in case of a PE-CE link failure:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. Do one of the following

• address-family {vpnv4 unicast | vpnv6 unicast}

Implementing BGP
192

Implementing BGP
Installing Primary Backup Path for Prefix Independent Convergence (PIC)

• vrf vrf-name {ipv4 unicast | ipv6 unicast}

4. additional-paths selection route-policy route-policy-name

5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Step 2

Specifies the address family or VRF address family and
enters the address family or VRF address family
configuration submode.

Do one of the followingStep 3

• address-family {vpnv4 unicast | vpnv6 unicast}

• vrf vrf-name {ipv4 unicast | ipv6 unicast}

Example:

RP/0/RP0/CPU0:router(config-bgp)# address-family
vpnv4 unicast

Configures additional paths selection mode for a prefix.additional-paths selection route-policy route-policy-name

Example:

Step 4

Use the additional-paths selection command
with an appropriate route-policy to calculate
backup paths and to enable Prefix Independent
Convergence (PIC) functionality.

Note

RP/0/RP0/CPU0:router(config-bgp-af)#
additional-paths selection route-policy ap1

The route-policy configuration is a pre-requisite for
configuring the additional-paths selection mode for a prefix
. This is an example route-policy configuration to use with
additional-selection command:
route-policy ap1

set path-selection backup 1 install
end-policy

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

Implementing BGP
193

Implementing BGP
Installing Primary Backup Path for Prefix Independent Convergence (PIC)

PurposeCommand or Action

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Retaining Allocated Local Label for Primary Path
Perform the following tasks to retain the previously allocated local label for the primary path on the primary
PE for some configurable time after reconvergence:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { vpnv4 unicast | vpnv6 unicast }
4. retain local-label minutes

5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Step 2

Specifies the address family and enters the address family
configuration submode.

address-family { vpnv4 unicast | vpnv6 unicast }

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# address-family
vpnv4 unicast

Retains the previously allocated local label for the primary
path on the primary PE for 10 minutes after reconvergence.

retain local-label minutes

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# retain
local-label 10

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

Implementing BGP
194

Implementing BGP
Retaining Allocated Local Label for Primary Path

PurposeCommand or Action

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring BGP Additional Paths
Perform these tasks to configure BGP Additional Paths capability:

SUMMARY STEPS

1. configure
2. route-policy route-policy-name

3. if conditional-expression then action-statement else
4. pass endif
5. end-policy
6. router bgp as-number

7. address-family {ipv4 {unicast | multicast} | ipv6 {unicast | multicast | l2vpn vpls-vpws | vpnv4
unicast | vpnv6 unicast }

8. additional-paths receive
9. additional-paths send
10. additional-paths selection route-policy route-policy-name

11. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Defines the route policy and enters route-policy
configuration mode.

route-policy route-policy-name

Example:

Step 2

RP/0/RP0/CPU0:router (config)#route-policy
add_path_policy

Decides the actions and dispositions for the given route.if conditional-expression then action-statement else

Example:

Step 3

RP/0/RP0/CPU0:router (config-rpl)#if community
matches-any (*) then

set path-selection all advertise
else

Implementing BGP
195

Implementing BGP
Configuring BGP Additional Paths

PurposeCommand or Action

Passes the route for processing and ends the if statement.pass endif

Example:

Step 4

RP/0/RP0/CPU0:router(config-rpl-else)#pass
RP/0/RP0/CPU0:router(config-rpl-else)#endif

Ends the route policy definition of the route policy and
exits route-policy configuration mode.

end-policy

Example:

Step 5

RP/0/RP0/CPU0:router(config-rpl)#end-policy

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)#router bgp 100

Step 6

Specifies the address family and enters address family
configuration submode.

address-family {ipv4 {unicast | multicast} | ipv6
{unicast | multicast | l2vpn vpls-vpws | vpnv4 unicast
| vpnv6 unicast }

Step 7

Example:
RP/0/RP0/CPU0:router(config-bgp)#address-family
ipv4 unicast

Configures receive capability of multiple paths for a prefix
to the capable peers.

additional-paths receive

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp-af)#additional-paths
receive

Configures send capability of multiple paths for a prefix
to the capable peers .

additional-paths send

Example:

Step 9

RP/0/RP0/CPU0:router(config-bgp-af)#additional-paths
send

Configures additional paths selection capability for a
prefix.

additional-paths selection route-policy
route-policy-name

Example:

Step 10

RP/0/RP0/CPU0:router(config-bgp-af)#additional-paths
selection route-policy add_path_policy

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 11

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

Implementing BGP
196

Implementing BGP
Configuring BGP Additional Paths

PurposeCommand or Action

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring iBGP Multipath Load Sharing
Perform this task to configure the iBGP Multipath Load Sharing:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family {ipv4|ipv6} {unicast|multicast}
4. maximum-paths ibgp number

5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 100

Step 2

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family {ipv4|ipv6} {unicast|multicast}

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 multicast

Configures the maximum number of iBGP paths for load
sharing.

maximum-paths ibgp number

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)# maximum-paths
ibgp 30

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

Implementing BGP
197

Implementing BGP
Configuring iBGP Multipath Load Sharing

PurposeCommand or Action

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Originating Prefixes with AiGP
Perform this task to configure origination of routes with the AiGP metric:

Before you begin

Origination of routes with the accumulated interior gateway protocol (AiGP) metric is controlled by
configuration. AiGP attributes are attached to redistributed routes that satisfy following conditions:

• The protocol redistributing the route is enabled for AiGP.

• The route is an interior gateway protocol (iGP) route redistributed into border gateway protocol (BGP).
The value assigned to the AiGP attribute is the value of iGP next hop to the route or as set by a
route-policy.

• The route is a static route redistributed into BGP. The value assigned is the value of next hop to the route
or as set by a route-policy.

• The route is imported into BGP through network statement. The value assigned is the value of next hop
to the route or as set by a route-policy.

SUMMARY STEPS

1. configure
2. route-policy aigp_policy

3. set aigp-metricigp-cost
4. exit
5. router bgp as-number

6. address-family {ipv4 | ipv6} unicast
7. redistribute ospf osp route-policy plcy_namemetric value

8. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Enters route-policy configuration mode and sets the
route-policy

route-policy aigp_policy

Example:

Step 2

RP/0/RP0/CPU0:router(config)# route-policy
aip_policy

Implementing BGP
198

Implementing BGP
Originating Prefixes with AiGP

PurposeCommand or Action

Sets the internal routing protocol cost as the aigp metric.set aigp-metricigp-cost

Example:

Step 3

RP/0/RP0/CPU0:router(config-rpl)# set aigp-metric
igp-cost

Exits route-policy configuration mode.exit

Example:

Step 4

RP/0/RP0/CPU0:router(config-rpl)# exit

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:
RP/0/RP0/CPU0:router(config)# router bgp 100

Step 5

Specifies either the IPv4 or IPv6 address family and enters
address family configuration submode.

address-family {ipv4 | ipv6} unicast

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 unicast

Allows the redistribution of AiBGP metric into OSPF.redistribute ospf osp route-policy plcy_namemetric value

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp-af)#redistribute
ospf osp route-policy aigp_policy metric 1

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 8

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring BGP Accept Own
Perform this task to configure BGP Accept Own:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. remote-as as-number

5. update-source type interface-path-id

Implementing BGP
199

Implementing BGP
Configuring BGP Accept Own

6. address-family {vpnv4 unicast | vpnv6 unicast}
7. accept-own [inheritance-disable]

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:
Router(config)#router bgp 100

Step 2

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:
Router(config-bgp)#neighbor 10.1.2.3

Step 3

Assigns a remote autonomous system number to the
neighbor.

remote-as as-number

Example:

Step 4

Router(config-bgp-nbr)#remote-as 100

Allows sessions to use the primary IP address from a
specific interface as the local address when forming a
session with a neighbor.

update-source type interface-path-id

Example:
Router(config-bgp-nbr)#update-source Loopback0

Step 5

Specifies the address family as VPNv4 or VPNv6 and enters
neighbor address family configuration mode.

address-family {vpnv4 unicast | vpnv6 unicast}

Example:

Step 6

Router(config-bgp-nbr)#address-family vpnv6 unicast

Enables handling of self-originated VPN routes containing
Accept_Own community.

accept-own [inheritance-disable]

Example:

Step 7

Use the inheritance-disable keyword to disable the "accept
own" configuration and to prevent inheritance of
"acceptown" from a parent configuration.

Router(config-bgp-nbr-af)#accept-own

Configuring BGP Link-State

Configuring BGP Link-state
To exchange BGP link-state (LS) information with a BGP neighbor, perform these steps:

SUMMARY STEPS

1. configure

Implementing BGP
200

Implementing BGP
Configuring BGP Link-State

2. router bgp as-number

3. neighbor ip-address

4. remote-as as-number

5. address-family link-state link-state
6. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Step 2

Configures a CE neighbor. The ip-address argument must
be a private address.

neighbor ip-address

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.2

Configures the remote AS for the CE neighbor.remote-as as-number

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as 1

Distributes BGP link-state information to the specified
neighbor.

address-family link-state link-state

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp-nbr)#
address-family link-state link-state

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

Implementing BGP
201

Implementing BGP
Configuring BGP Link-state

PurposeCommand or Action

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring Domain Distinguisher
To configure unique identifier four-octet ASN, perform these steps:

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family link-state link-state
4. domain-distinguisher unique-id

5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the BGP AS number and enters the BGP
configuration mode, allowing you to configure the BGP
routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 100

Step 2

Enters address-family link-state configuration mode.address-family link-state link-state

Example:

Step 3

RP/0/RP0/CPU0:router(config-bgp)# address-family
link-state link-state

Configures unique identifier four-octet ASN. Range is from
1 to 4294967295.

domain-distinguisher unique-id

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-af)#
domain-distinguisher 1234

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

Implementing BGP
202

Implementing BGP
Configuring Domain Distinguisher

PurposeCommand or Action

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring BGP Permanent Network

Configuring BGP Permanent Network
Perform this task to configure BGP permanent network. You must configure at least one route-policy to
identify the set of prefixes (networks) for which the permanent network (path) is to be configured.

SUMMARY STEPS

1. configure
2. prefix-set prefix-set-name

3. exit
4. route-policy route-policy-name

5. end-policy
6. router bgp as-number

7. address-family { ipv4 | ipv6 } unicast
8. permanent-network route-policy route-policy-name

9. Use the commit or end command.
10. show bgp {ipv4 | ipv6} unicast prefix-set

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Enters prefix set configuration mode and defines a prefix
set for contiguous and non-contiguous set of bits.

prefix-set prefix-set-name

Example:

Step 2

RP/0/RP0/CPU0:router(config)# prefix-set
PERMANENT-NETWORK-IPv4
RP/0/RP0/CPU0:router(config-pfx)# 1.1.1.1/32,
RP/0/RP0/CPU0:router(config-pfx)# 2.2.2.2/32,
RP/0/RP0/CPU0:router(config-pfx)# 3.3.3.3/32
RP/0/RP0/CPU0:router(config-pfx)# end-set

Implementing BGP
203

Implementing BGP
Configuring BGP Permanent Network

PurposeCommand or Action

Exits prefix set configuration mode and enters global
configuration mode.

exit

Example:

Step 3

RP/0/RP0/CPU0:router(config-pfx)# exit

Creates a route policy and enters route policy configuration
mode, where you can define the route policy.

route-policy route-policy-name

Example:

Step 4

RP/0/RP0/CPU0:router(config)# route-policy
POLICY-PERMANENT-NETWORK-IPv4
RP/0/RP0/CPU0:router(config-rpl)# if destination
in PERMANENT-NETWORK-IPv4 then
RP/0/RP0/CPU0:router(config-rpl)# pass
RP/0/RP0/CPU0:router(config-rpl)# endif

Ends the definition of a route policy and exits route policy
configuration mode.

end-policy

Example:

Step 5

RP/0/RP0/CPU0:router(config-rpl)# end-policy

Specifies the autonomous system number and enters the
BGP configuration mode.

router bgp as-number

Example:

Step 6

RP/0/RP0/CPU0:router(config)# router bgp 100

Specifies either an IPv4 or IPv6 address family unicast
and enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 7

RP/0/RP0/CPU0:router(config-bgp)# address-family
ipv4 unicast

Configures the permanent network (path) for the set of
prefixes as defined in the route-policy.

permanent-network route-policy route-policy-name

Example:

Step 8

RP/0/RP0/CPU0:router(config-bgp-af)#
permanent-network route-policy
POLICY-PERMANENT-NETWORK-IPv4

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 9

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

Implementing BGP
204

Implementing BGP
Configuring BGP Permanent Network

PurposeCommand or Action

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

(Optional) Displays whether the prefix-set is a permanent
network in BGP.

show bgp {ipv4 | ipv6} unicast prefix-set

Example:

Step 10

RP/0/RP0/CPU0:routershow bgp ipv4 unicast

How to Advertise Permanent Network
Perform this task to identify the peers to whom the permanent paths must be advertised.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. remote-as as-number

5. address-family { ipv4 | ipv6 } unicast
6. advertise permanent-network
7. Use the commit or end command.
8. show bgp {ipv4 | ipv6} unicast neighbor ip-address

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode.

router bgp as-number

Example:

Step 2

RP/0/RP0/CPU0:router(config)# router bgp 100

Places the router in neighbor configuration mode for BGP
routing and configures the neighbor IP address as a BGP
peer.

neighbor ip-address

Example:

RP/0/RP0/CPU0:router(config-bgp)# neighbor

Step 3

10.255.255.254

Implementing BGP
205

Implementing BGP
How to Advertise Permanent Network

PurposeCommand or Action

Assigns the neighbor a remote autonomous system number.remote-as as-number

Example:

Step 4

RP/0/RP0/CPU0:router(config-bgp-nbr)# remote-as
4713

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp-nbr)#
address-family ipv4 unicast

Specifies the peers to whom the permanent network (path)
is advertised.

advertise permanent-network

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp-nbr-af)# advertise
permanent-network

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 7

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

(Optional) Displays whether the neighbor is capable of
receiving BGP permanent networks.

show bgp {ipv4 | ipv6} unicast neighbor ip-address

Example:

Step 8

RP/0/RP0/CPU0:routershow bgp ipv4 unicast neighbor
10.255.255.254

Enabling BGP Unequal Cost Recursive Load Balancing
Perform this task to enable unequal cost recursive load balancing for external BGP (eBGP), interior BGP
(iBGP), and eiBGP and to enable BGP to carry link bandwidth attribute of the demilitarized zone (DMZ) link.

When the PE router includes the link bandwidth extended community in its updates to the remote PE through
theMultiprotocol Interior BGP (MP-iBGP) session (either IPv4 or VPNv4), the remote PE automatically does
load balancing if the maximum-paths command is enabled.

Implementing BGP
206

Implementing BGP
Enabling BGP Unequal Cost Recursive Load Balancing

Unequal cost recursive load balancing happens across maximum eight paths only.

Enabling BGP unequal cost recursive load balancing feature is not supported on CPP based cards.Note

SUMMARY STEPS

1. configure
2. router bgp as-number

3. address-family { ipv4 | ipv6 } unicast
4. maximum-paths { ebgp | ibgp | eibgp } maximum [unequal-cost]
5. exit
6. neighbor ip-address

7. dmz-link-bandwidth
8. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Specifies the autonomous system number and enters the
BGP configuration mode, allowing you to configure the
BGP routing process.

router bgp as-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 120

Step 2

Specifies either an IPv4 or IPv6 address family unicast and
enters address family configuration submode.

address-family { ipv4 | ipv6 } unicast

Example:

Step 3

To see a list of all the possible keywords and arguments for
this command, use the CLI help (?).RP/0/RP0/CPU0:router(config-bgp)# address-family

ipv4 unicast

Configures the maximum number of parallel routes that
BGP installs in the routing table.

maximum-paths { ebgp | ibgp | eibgp } maximum [
unequal-cost]

Step 4

Example: • ebgp maximum : Consider only eBGP paths for
multipath.

RP/0/RP0/CPU0:router(config-bgp-af)# maximum-paths
ebgp 3 • ibgp maximum [unequal-cost]: Consider load

balancing between iBGP learned paths.

• eibgp maximum : Consider both eBGP and iBGP
learned paths for load balancing. eiBGP load balancing
always does unequal-cost load balancing.

Implementing BGP
207

Implementing BGP
Enabling BGP Unequal Cost Recursive Load Balancing

PurposeCommand or Action

When eiBGP is applied, eBGP or iBGP load balancing
cannot be configured; however, eBGP and iBGP load
balancing can coexist.

Exits the current configuration mode.exit

Example:

Step 5

RP/0/RP0/CPU0:router(config-bgp-af)# exit

Configures a CE neighbor. The ip-address argument must
be a private address.

neighbor ip-address

Example:

Step 6

RP/0/RP0/CPU0:router(config-bgp)# neighbor 10.0.0.0

Originates a demilitarized-zone (DMZ) link-bandwidth
extended community for the link to an eBGP/iBGP
neighbor.

dmz-link-bandwidth

Example:

RP/0/RP0/CPU0:router(config-bgp-nbr)#
dmz-link-bandwidth

Step 7

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 8

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring VRF Dynamic Route Leaking
Perform these steps to import routes from default-VRF to non-default VRF or to import routes from non-default
VRF to default VRF.

Before you begin

A route-policy is mandatory for configuring dynamic route leaking. Use the route-policy route-policy-name
command in global configuration mode to configure a route-policy.

SUMMARY STEPS

1. configure
2. vrf vrf_name

3. address-family {ipv4 | ipv6} unicast
4. Use one of these options:

Implementing BGP
208

Implementing BGP
Configuring VRF Dynamic Route Leaking

import from default-vrf route-policy route-policy-name [advertise-as-vpn]•
• export to default-vrf route-policy route-policy-name

5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RP0/CPU0:router# configure

Enters VRF configuration mode.vrf vrf_name

Example:

Step 2

RP/0/RSP0/CPU0:PE51_CRS-9010(config)#vrf vrf_1

Enters VRF address-family configuration mode.address-family {ipv4 | ipv6} unicast

Example:

Step 3

RP/0/RP0/CPU0:router(config-vrf)#address-family
ipv6 unicast

Imports routes from default-VRF to non-default VRF or
from non-default VRF to default-VRF.

Use one of these options:Step 4

• import from default-vrf route-policy
route-policy-name [advertise-as-vpn] • import from default-vrf—configures import from

default-VRF to non-default-VRF.• export to default-vrf route-policy
route-policy-name If the advertise-as-vpn option is configured, the paths

imported from the default-VRF to the non-default-VRFExample:
are advertised to the PEs as well as to the CEs. If theRP/0/RP0/CPU0:router(config-vrf-af)#import from

default-vrf route-policy rpl_dynamic_route_import advertise-as-vpn option is not configured, the paths
imported from the default-VRF to the non-default-VRF

or are not advertised to the PE. However, the paths are
still advertised to the CEs.RP/0/RP0/CPU0:router(config-vrf-af)#export to

default-vrf route-policy rpl_dynamic_route_export
• export to default-vrf—configures import from
non-default-VRF to default VRF. The paths imported
from the default-VRF are advertised to other PEs.

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Implementing BGP
209

Implementing BGP
Configuring VRF Dynamic Route Leaking

What to do next

These show bgp command output displays information from the dynamic route leaking configuration:

• Use the show bgp prefix command to display the source-RD and the source-VRF for imported paths,
including the cases when IPv4 or IPv6 unicast prefixes have imported paths.

• Use the show bgp imported-routes command to display IPv4 unicast and IPv6 unicast address-families
under the default-VRF.

Configuring Resilient Per-CE Label Mode

Configuring Resilient Per-CE Label Mode Under VRF Address Family
Perform this task to configure resilient per-ce label mode under VRF address family.

Resilient per-CE 6PE label allocation is not supported on CRS-1 and CRS-3 routers, but supported only on
ASR 9000 routers.

Note

SUMMARY STEPS

1. configure
2. router bgpas-number

3. vrfvrf-instance

4. address-family {ipv4 | ipv6} unicast
5. label mode per-ce
6. Do one of the following:

• end
• commit

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)#

Enters global configuration mode.

Step 2 router bgpas-number

Example:

RP/0/RP0/CPU0:router(config)# router bgp 666
RP/0/RP0/CPU0:router(config-bgp)#

Implementing BGP
210

Implementing BGP
Configuring Resilient Per-CE Label Mode

Specifies the autonomous system number and enters the BGP configuration mode, allowing you to configure the BGP
routing process.

Step 3 vrfvrf-instance

Example:

RP/0/RP0/CPU0:router(config-bgp)# vrf vrf-pe
RP/0/RP0/CPU0:router(config-bgp-vrf)#

Configures a VRF instance.

Step 4 address-family {ipv4 | ipv6} unicast

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RP0/CPU0:router(config-bgp-vrf-af)#

Specifies either an IPv4 or IPv6 address family unicast and enters address family configuration submode.

Step 5 label mode per-ce

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# label mode per-ce
RP/0/RP0/CPU0:router(config-bgp-vrf-af)#

Configures resilient per-ce label mode.

Step 6 Do one of the following:

• end
• commit

Example:

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# end

or

RP/0/RP0/CPU0:router(config-bgp-vrf-af)# commit

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:

• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and
returns the router to EXEC mode.

• Entering no exits the configuration session and returns the router to EXEC mode without committing the
configuration changes.

• Entering cancel leaves the router in the current configuration session without exiting or committing the
configuration changes.

Implementing BGP
211

Implementing BGP
Configuring Resilient Per-CE Label Mode Under VRF Address Family

• Use the commit command to save the configuration changes to the running configuration file and remain within the
configuration session.

Configuring Resilient Per-CE Label Mode Using a Route-Policy
Perform this task to configure resilient per-ce label mode using a route-policy.

Resilient per-CE 6PE label allocation is not supported on CRS-1 and CRS-3 routers, but supported only on
ASR 9000 routers.

Note

SUMMARY STEPS

1. configure
2. route-policypolicy-name

3. set label mode per-ce
4. Do one of the following:

• end
• commit

DETAILED STEPS

Step 1 configure

Example:

RP/0/RP0/CPU0:router# configure
RP/0/RP0/CPU0:router(config)#

Enters global configuration mode.

Step 2 route-policypolicy-name

Example:

RP/0/RP0/CPU0:router(config)# route-policy route1
RP/0/RP0/CPU0:router(config-rpl)#

Creates a route policy and enters route policy configuration mode.

Step 3 set label mode per-ce

Example:

RP/0/RP0/CPU0:router(config-rpl)# set label mode per-ce
RP/0/RP0/CPU0:router(config-rpl)#

Configures resilient per-ce label mode.

Implementing BGP
212

Implementing BGP
Configuring Resilient Per-CE Label Mode Using a Route-Policy

Step 4 Do one of the following:

• end
• commit

Example:

RP/0/RP0/CPU0:router(config-rpl)# end

or

RP/0/RP0/CPU0:router(config-rpl)# commit

Saves configuration changes.

• When you issue the end command, the system prompts you to commit changes:

Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:

• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and
returns the router to EXEC mode.

• Entering no exits the configuration session and returns the router to EXEC mode without committing the
configuration changes.

• Entering cancel leaves the router in the current configuration session without exiting or committing the
configuration changes.

• Use the commit command to save the configuration changes to the running configuration file and remain within the
configuration session.

Configuration Examples for Implementing BGP
This section provides the following configuration examples:

Enabling BGP: Example
The following shows how to enable BGP.

prefix-set static
2020::/64,
2012::/64,
10.10.0.0/16,
10.2.0.0/24

end-set

route-policy pass-all
pass

end-policy
route-policy set_next_hop_agg_v4
set next-hop 10.0.0.1

end-policy

Implementing BGP
213

Implementing BGP
Configuration Examples for Implementing BGP

route-policy set_next_hop_static_v4
if (destination in static) then
set next-hop 10.1.0.1

else
drop

endif
end-policy

route-policy set_next_hop_agg_v6
set next-hop 2003::121

end-policy

route-policy set_next_hop_static_v6
if (destination in static) then

set next-hop 2011::121
else

drop
endif

end-policy

router bgp 65000
bgp fast-external-fallover disable
bgp confederation peers
65001
65002

bgp confederation identifier 1
bgp router-id 1.1.1.1
address-family ipv4 unicast
aggregate-address 10.2.0.0/24 route-policy set_next_hop_agg_v4
aggregate-address 10.3.0.0/24
redistribute static route-policy set_next_hop_static_v4

address-family ipv4 multicast
aggregate-address 10.2.0.0/24 route-policy set_next_hop_agg_v4
aggregate-address 10.3.0.0/24
redistribute static route-policy set_next_hop_static_v4

address-family ipv6 unicast
aggregate-address 2012::/64 route-policy set_next_hop_agg_v6
aggregate-address 2013::/64
redistribute static route-policy set_next_hop_static_v6

address-family ipv6 multicast
aggregate-address 2012::/64 route-policy set_next_hop_agg_v6
aggregate-address 2013::/64
redistribute static route-policy set_next_hop_static_v6

neighbor 10.0.101.60
remote-as 65000
address-family ipv4 unicast
address-family ipv4 multicast

neighbor 10.0.101.61
remote-as 65000
address-family ipv4 unicast
address-family ipv4 multicast

neighbor 10.0.101.62
remote-as 3
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

address-family ipv4 multicast
route-policy pass-all in
route-policy pass-all out

neighbor 10.0.101.64
remote-as 5
update-source Loopback0
address-family ipv4 unicast
route-policy pass-all in

Implementing BGP
214

Implementing BGP
Enabling BGP: Example

route-policy pass-all out
address-family ipv4 multicast
route-policy pass-all in
route-policy pass-all out

Displaying BGP Update Groups: Example
The following is sample output from the show bgp update-group command run in EXEC configuration
mode:

show bgp update-group

Update group for IPv4 Unicast, index 0.1:
Attributes:
Outbound Route map:rm
Minimum advertisement interval:30

Messages formatted:2, replicated:2
Neighbors in this update group:
10.0.101.92

Update group for IPv4 Unicast, index 0.2:
Attributes:
Minimum advertisement interval:30

Messages formatted:2, replicated:2
Neighbors in this update group:
10.0.101.91

BGP Neighbor Configuration: Example
The following example shows how BGP neighbors on an autonomous system are configured to share
information. In the example, a BGP router is assigned to autonomous system 109, and two networks are listed
as originating in the autonomous system. Then the addresses of three remote routers (and their autonomous
systems) are listed. The router being configured shares information about networks 131. 108.0.0 and 192.
31.7.0 with the neighbor routers. The first router listed is in a different autonomous system; the second
neighbor and remote-as commands specify an internal neighbor (with the same autonomous system number)
at address 131. 108.234.2; and the third neighbor and remote-as commands specify a neighbor on a different
autonomous system.

route-policy pass-all
pass
end-policy
router bgp 109
address-family ipv4 unicast
network 131.108.0.0 255.0.0.0
network 192.31.7.0 255.0.0.0
neighbor 131.108.200.1
remote-as 167
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-out out
neighbor 131.108.234.2
remote-as 109
exit

Implementing BGP
215

Implementing BGP
Displaying BGP Update Groups: Example

address-family ipv4 unicast
neighbor 150.136.64.19
remote-as 99
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

BGP Confederation: Example
The following is a sample configuration that shows several peers in a confederation. The confederation consists
of three internal autonomous systems with autonomous system numbers 6001, 6002, and 6003. To the BGP
speakers outside the confederation, the confederation looks like a normal autonomous systemwith autonomous
system number 666 (specified using the bgp confederation identifier command).

In a BGP speaker in autonomous system 6001, the bgp confederation peers command marks the peers from
autonomous systems 6002 and 6003 as special eBGP peers. Hence, peers 171. 69.232.55 and 171. 69.232.56
get the local preference, next hop, and MED unmodified in the updates. The router at 160. 69.69.1 is a normal
eBGP speaker, and the updates received by it from this peer are just like a normal eBGP update from a peer
in autonomous system 666.

router bgp 6001
bgp confederation identifier 666
bgp confederation peers
6002
6003
exit

address-family ipv4 unicast
neighbor 171.69.232.55
remote-as 6002
exit

address-family ipv4 unicast
neighbor 171.69.232.56
remote-as 6003
exit

address-family ipv4 unicast
neighbor 160.69.69.1
remote-as 777

In a BGP speaker in autonomous system 6002, the peers from autonomous systems 6001 and 6003 are
configured as special eBGP peers. Peer 170. 70.70.1 is a normal iBGP peer, and peer 199.99.99.2 is a normal
eBGP peer from autonomous system 700.

router bgp 6002
bgp confederation identifier 666
bgp confederation peers
6001
6003
exit

address-family ipv4 unicast
neighbor 170.70.70.1
remote-as 6002
exit

address-family ipv4 unicast
neighbor 171.69.232.57
remote-as 6001

Implementing BGP
216

Implementing BGP
BGP Confederation: Example

exit
address-family ipv4 unicast
neighbor 171.69.232.56
remote-as 6003
exit

address-family ipv4 unicast
neighbor 199.69.99.2
remote-as 700
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

In a BGP speaker in autonomous system 6003, the peers from autonomous systems 6001 and 6002 are
configured as special eBGP peers. Peer 200. 200.200.200 is a normal eBGP peer from autonomous system
701.

router bgp 6003
bgp confederation identifier 666
bgp confederation peers
6001
6002
exit

address-family ipv4 unicast
neighbor 171.69.232.57
remote-as 6001
exit

address-family ipv4 unicast
neighbor 171.69.232.55
remote-as 6002
exit

address-family ipv4 unicast
neighbor 200.200.200.200
remote-as 701
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out

The following is a part of the configuration from the BGP speaker 200. 200.200.205 from autonomous system
701 in the same example. Neighbor 171. 69.232.56 is configured as a normal eBGP speaker from autonomous
system 666. The internal division of the autonomous system into multiple autonomous systems is not known
to the peers external to the confederation.

router bgp 701
address-family ipv4 unicast
neighbor 171.69.232.56
remote-as 666
exit

address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
exit

address-family ipv4 unicast
neighbor 200.200.200.205
remote-as 701

Implementing BGP
217

Implementing BGP
BGP Confederation: Example

BGP Route Reflector: Example
The following example shows how to use an address family to configure internal BGP peer 10.1.1.1 as a route
reflector client for both unicast and multicast prefixes:

router bgp 140
address-family ipv4 unicast
neighbor 10.1.1.1
remote-as 140
address-family ipv4 unicast
route-reflector-client
exit
address-family ipv4 multicast
route-reflector-client

BGP MDT Address Family Configuration: Example
The following example shows how to configure an MDT address family in BGP:
router bgp 10

bgp router-id 10.0.0.2
address-family ipv4 unicast
address-family vpnv4 unicast
address-family ipv4 mdt

!
neighbor 1.1.1.1

remote-as 11
update-source Loopback0
address-family ipv4 unicast
address-family vpnv4 unicast
address-family ipv4 md

!

BGP Nonstop Routing Configuration: Example
The following example shows how to enable BGP NSR:

configure
router bgp 120
nsr
end

The following example shows how to disable BGP NSR:

configure
router bgp 120
no nsr
end

Implementing BGP
218

Implementing BGP
BGP Route Reflector: Example

Best-External Path Advertisement Configuration: Example
The following example shows how to configure Best–External Path Advertisement:

router bgp 100
address-family l2vpn vpls-vpws
advertise best-external

end

Primary Backup Path Installation: Example
The following example shows how to enable installation of primary backup path:

router bgp 120
address-family ipv4 unicast
additional-paths receive
additional-paths send
additional-paths selection route-policy bgp_add_path
!
!
end

Allocated Local Label Retention: Example
The following example shows how to retain the previously allocated local label for the primary path on the
primary PE for 10 minutes after reconvergence:

router bgp 100
address-family l2vpn vpls-vpws
retain local-label 10

end

iBGP Multipath Loadsharing Configuration: Example
The following is a sample configuration where 30 paths are used for loadsharing:

router bgp 100
address-family ipv4 multicast
maximum-paths ibgp 30
!
!
end

Discard Extra Paths Configuration: Example
The following example shows how to configure discard extra paths feature for the IPv4 address family:

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# router bgp 10

Implementing BGP
219

Implementing BGP
Best-External Path Advertisement Configuration: Example

RP/0/RSP0/CPU0:router(config-bgp)# neighbor 10.0.0.1
RP/0/RSP0/CPU0:router(config-bgp-nbr)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# maximum-prefix 1000 discard-extra-paths
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# commit

Displaying Discard Extra Paths Information: Example
The following screen output shows details about the discard extra paths option:

RP/0/0/CPU0:ios# show bgp neighbor 10.0.0.1

BGP neighbor is 10.0.0.1
Remote AS 10, local AS 10, internal link
Remote router ID 0.0.0.0
BGP state = Idle (No best local address found)
Last read 00:00:00, Last read before reset 00:00:00
Hold time is 180, keepalive interval is 60 seconds
Configured hold time: 180, keepalive: 60, min acceptable hold time: 3
Last write 00:00:00, attempted 0, written 0
Second last write 00:00:00, attempted 0, written 0
Last write before reset 00:00:00, attempted 0, written 0
Second last write before reset 00:00:00, attempted 0, written 0
Last write pulse rcvd not set last full not set pulse count 0
Last write pulse rcvd before reset 00:00:00
Socket not armed for io, not armed for read, not armed for write
Last write thread event before reset 00:00:00, second last 00:00:00
Last KA expiry before reset 00:00:00, second last 00:00:00
Last KA error before reset 00:00:00, KA not sent 00:00:00
Last KA start before reset 00:00:00, second last 00:00:00
Precedence: internet
Multi-protocol capability not received
Received 0 messages, 0 notifications, 0 in queue
Sent 0 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 0 secs

For Address Family: IPv4 Unicast
BGP neighbor version 0
Update group: 0.1 Filter-group: 0.0 No Refresh request being processed
Route refresh request: received 0, sent 0
0 accepted prefixes, 0 are bestpaths
Cumulative no. of prefixes denied: 0.
Prefix advertised 0, suppressed 0, withdrawn 0
Maximum prefixes allowed 10 (discard-extra-paths) <<<<<<<<<<<<<<<<<<<<<
Threshold for warning message 75%, restart interval 0 min
AIGP is enabled
An EoR was not received during read-only mode
Last ack version 1, Last synced ack version 0
Outstanding version objects: current 0, max 0
Additional-paths operation: None
Send Multicast Attributes

Connections established 0; dropped 0
Local host: 0.0.0.0, Local port: 0, IF Handle: 0x00000000
Foreign host: 10.0.0.1, Foreign port: 0
Last reset 00:00:00

Implementing BGP
220

Implementing BGP
Displaying Discard Extra Paths Information: Example

Configure Per Neighbor TCP MSS: Examples
These examples show how to configure per neighbor TCP MSS, disable per neighbor TCP MSS, and
unconfigure TCP MSS.

Topology Scenario

This figure shows a basic scenario for per neighbor TCP MSS configuration.

R1 Configuration:

router bgp 1
bgp router-id 10.0.0.1
address-family ipv4 unicast
!
neighbor-group n1
tcp mss 100
address-family ipv4 unicast

!
!
neighbor 10.0.0.2
remote-as 1
use neighbor-group n1
address-family ipv4 unicast

!
!
!

R2 Configuration:

router bgp 1
bgp router-id 10.0.0.2
address-family ipv4 unicast
!
neighbor 10.0.0.1
remote-as 1
address-family ipv4 unicast

!
!
!

Configure Per Neighbor TCP MSS: Example

The following example shows how to configure per neighbor TCP MSS under neighbor group:

router bgp 1
bgp router-id 10.0.0.1
address-family ipv4 unicast
!
neighbor-group n1
tcp mss 500
address-family ipv4 unicast

Implementing BGP
221

Implementing BGP
Configure Per Neighbor TCP MSS: Examples

!
!
neighbor 10.0.0.2
remote-as 1
use neighbor-group n1
address-family ipv4 unicast
!
!
!
!
end

Disable Per Neighbor TCP MSS: Example

The following example shows how to configure TCP MSS under neighbor group and configure inheritance
disable under one of the neighbors inheriting the TCP MSS value:

router bgp 1
bgp router-id 10.0.0.1
address-family ipv4 unicast
!
neighbor-group n1
tcp mss 500
address-family ipv4 unicast
!
!
neighbor 10.0.0.2
remote-as 1
use neighbor-group n1
tcp mss inheritance-disable
address-family ipv4 unicast
!
!
!
!
end

Unconfigure TCP MSS: Example

The following example shows how to unconfigure TCP MSS:

RP/0/0/CPU0:ios(config)#router bgp 1
RP/0/0/CPU0:ios(config-bgp)#neighbor-group n1
RP/0/0/CPU0:ios(config-bgp-nbrgrp)#no tcp mss 500
RP/0/0/CPU0:ios(config-bgp-nbrgrp)#commit

Verify Per Neighbor TCP MSS: Examples
The following example shows how to verify the per neighbor TCP MSS feature on a router:

RP/0/0/CPU0:ios#show bgp neighbor 10.0.0.2

BGP neighbor is 10.0.0.2
Remote AS 1, local AS 1, internal link
Remote router ID 10.0.0.2
BGP state = Established, up for 00:09:17

Implementing BGP
222

Implementing BGP
Verify Per Neighbor TCP MSS: Examples

Last read 00:00:16, Last read before reset 00:00:00
Hold time is 180, keepalive interval is 60 seconds
Configured hold time: 180, keepalive: 60, min acceptable hold time: 3
Last write 00:00:16, attempted 19, written 19
Second last write 00:01:16, attempted 19, written 19
Last write before reset 00:00:00, attempted 0, written 0
Second last write before reset 00:00:00, attempted 0, written 0
Last write pulse rcvd Dec 7 11:58:42.411 last full not set pulse count 23
Last write pulse rcvd before reset 00:00:00
Socket not armed for io, armed for read, armed for write
Last write thread event before reset 00:00:00, second last 00:00:00
Last KA expiry before reset 00:00:00, second last 00:00:00
Last KA error before reset 00:00:00, KA not sent 00:00:00
Last KA start before reset 00:00:00, second last 00:00:00
Precedence: internet
Multi-protocol capability received
Neighbor capabilities:
Route refresh: advertised (old + new) and received (old + new)
Graceful Restart (GR Awareness): advertised and received
4-byte AS: advertised and received
Address family IPv4 Unicast: advertised and received
Received 12 messages, 0 notifications, 0 in queue
Sent 12 messages, 0 notifications, 0 in queue
Minimum time between advertisement runs is 0 secs
TCP Maximum Segment Size 500

For Address Family: IPv4 Unicast
BGP neighbor version 4
Update group: 0.2 Filter-group: 0.1 No Refresh request being processed
Route refresh request: received 0, sent 0
0 accepted prefixes, 0 are bestpaths
Cumulative no. of prefixes denied: 0.
Prefix advertised 0, suppressed 0, withdrawn 0
Maximum prefixes allowed 1048576
Threshold for warning message 75%, restart interval 0 min
AIGP is enabled
An EoR was received during read-only mode
Last ack version 4, Last synced ack version 0
Outstanding version objects: current 0, max 0
Additional-paths operation: None
Send Multicast Attributes

The following example shows how to verify the TCP MSS configuration:

RP/0/0/CPU0:ios#show bgp neighbor 10.0.0.2 configuration

neighbor 10.0.0.2
remote-as 1 []
tcp-mss 400 [n:n1]
address-family IPv4 Unicast []

The following example shows how to display TCP connection endpoints information:

RP/0/0/CPU0:ios#show tcp brief

PCB VRF-ID Recv-Q Send-Q Local Address Foreign Address State
0x08789b28 0x60000000 0 0 :::179 :::0 LISTEN
0x08786160 0x00000000 0 0 :::179 :::0 LISTEN
0xecb0c9f8 0x60000000 0 0 10.0.0.1:12404 10.0.0.2:179 ESTAB
0x0878b168 0x60000000 0 0 11.0.0.1:179 11.0.0.2:61177 ESTAB
0xecb0c6b8 0x60000000 0 0 0.0.0.0:179 0.0.0.0:0 LISTEN

Implementing BGP
223

Implementing BGP
Verify Per Neighbor TCP MSS: Examples

0x08781590 0x00000000 0 0 0.0.0.0:179 0.0.0.0:0 LISTEN

The following example shows how to display TCP connection information for a specific PCB value:

RP/0/0/CPU0:ios#show tcp pcb 0xecb0c9f8

Connection state is ESTAB, I/O status: 0, socket status: 0
Established at Sun Dec 7 11:49:39 2014

PCB 0xecb0c9f8, SO 0xecb01b68, TCPCB 0xecb01d78, vrfid 0x60000000,
Pak Prio: Medium, TOS: 192, TTL: 255, Hash index: 1322
Local host: 10.0.0.1, Local port: 12404 (Local App PID: 19840)
Foreign host: 10.0.0.2, Foreign port: 179

Current send queue size in bytes: 0 (max 24576)
Current receive queue size in bytes: 0 (max 32768) mis-ordered: 0 bytes
Current receive queue size in packets: 0 (max 0)

Timer Starts Wakeups Next(msec)
Retrans 17 2 0
SendWnd 0 0 0
TimeWait 0 0 0
AckHold 13 5 0
KeepAlive 1 0 0
PmtuAger 0 0 0
GiveUp 0 0 0
Throttle 0 0 0

iss: 1728179225 snduna: 1728179536 sndnxt: 1728179536
sndmax: 1728179536 sndwnd: 32517 sndcwnd: 1000
irs: 2055835995 rcvnxt: 2055836306 rcvwnd: 32536 rcvadv: 2055868842

SRTT: 206 ms, RTTO: 300 ms, RTV: 59 ms, KRTT: 0 ms
minRTT: 10 ms, maxRTT: 230 ms

ACK hold time: 200 ms, Keepalive time: 0 sec, SYN waittime: 30 sec
Giveup time: 0 ms, Retransmission retries: 0, Retransmit forever: FALSE
Connect retries remaining: 30, connect retry interval: 30 secs

State flags: none
Feature flags: Win Scale, Nagle
Request flags: Win Scale

Datagrams (in bytes): MSS 500, peer MSS 1460, min MSS 500, max MSS 1460

Window scales: rcv 0, snd 0, request rcv 0, request snd 0
Timestamp option: recent 0, recent age 0, last ACK sent 0
Sack blocks {start, end}: none
Sack holes {start, end, dups, rxmit}: none

Socket options: SO_REUSEADDR, SO_REUSEPORT, SO_NBIO
Socket states: SS_ISCONNECTED, SS_PRIV
Socket receive buffer states: SB_DEL_WAKEUP
Socket send buffer states: SB_DEL_WAKEUP
Socket receive buffer: Low/High watermark 1/32768
Socket send buffer : Low/High watermark 2048/24576, Notify threshold 0

PDU information:
#PDU's in buffer: 0
FIB Lookup Cache: IFH: 0x200 PD ctx: size: 0 data:
Num Labels: 0 Label Stack:

Implementing BGP
224

Implementing BGP
Verify Per Neighbor TCP MSS: Examples

Originating Prefixes With AiGP: Example
The following is a sample configuration for originating prefixes with the AiGP metric attribute:

route-policy aigp-policy
set aigp-metric 4
set aigp-metric igp-cost

end-policy
!
router bgp 100
address-family ipv4 unicast
network 10.2.3.4/24 route-policy aigp-policy
redistribute ospf osp1 metric 4 route-policy aigp-policy
!
!
end

BGP Accept Own Configuration: Example
This example shows how to configure BGP Accept Own on a PE router.
router bgp 100
neighbor 45.1.1.1
remote-as 100
update-source Loopback0
address-family vpnv4 unicast
route-policy pass-all in
accept-own
route-policy drop_111.x.x.x out
!
address-family vpnv6 unicast
route-policy pass-all in
accept-own
route-policy drop_111.x.x.x out
!
!

This example shows an InterAS-RR configuration for BGP Accept Own.
router bgp 100
neighbor 45.1.1.1
remote-as 100
update-source Loopback0
address-family vpnv4 unicast
route-policy rt_stitch1 in
route-reflector-client
route-policy add_bgp_ao out
!
address-family vpnv6 unicast
route-policy rt_stitch1 in
route-reflector-client
route-policy add_bgp_ao out
!
!
extcommunity-set rt cs_100:1
100:1

end-set
!
extcommunity-set rt cs_1001:1
1001:1

end-set

Implementing BGP
225

Implementing BGP
Originating Prefixes With AiGP: Example

!
route-policy rt_stitch1
if extcommunity rt matches-any cs_100:1 then
set extcommunity rt cs_1000:1 additive

endif
end-policy
!
route-policy add_bgp_ao
set community (accept-own) additive

end-policy
!

BGP Unequal Cost Recursive Load Balancing: Example
This is a sample configuration for unequal cost recursive load balancing:

interface Loopback0
ipv4 address 20.20.20.20 255.255.255.255
!
interface MgmtEth0/RSP0/CPU0/0
ipv4 address 8.43.0.10 255.255.255.0
!
interface TenGigE0/3/0/0
bandwidth 8000000
ipv4 address 11.11.11.11 255.255.255.0
ipv6 address 11:11:0:1::11/64
!
interface TenGigE0/3/0/1
bandwidth 7000000
ipv4 address 11.11.12.11 255.255.255.0
ipv6 address 11:11:0:2::11/64
!
interface TenGigE0/3/0/2
bandwidth 6000000
ipv4 address 11.11.13.11 255.255.255.0
ipv6 address 11:11:0:3::11/64
!
interface TenGigE0/3/0/3
bandwidth 5000000
ipv4 address 11.11.14.11 255.255.255.0
ipv6 address 11:11:0:4::11/64
!
interface TenGigE0/3/0/4
bandwidth 4000000
ipv4 address 11.11.15.11 255.255.255.0
ipv6 address 11:11:0:5::11/64
!
interface TenGigE0/3/0/5
bandwidth 3000000
ipv4 address 11.11.16.11 255.255.255.0
ipv6 address 11:11:0:6::11/64
!
interface TenGigE0/3/0/6
bandwidth 2000000
ipv4 address 11.11.17.11 255.255.255.0
ipv6 address 11:11:0:7::11/64
!
interface TenGigE0/3/0/7
bandwidth 1000000
ipv4 address 11.11.18.11 255.255.255.0
ipv6 address 11:11:0:8::11/64

Implementing BGP
226

Implementing BGP
BGP Unequal Cost Recursive Load Balancing: Example

!
interface TenGigE0/4/0/0
description CONNECTED TO IXIA 1/3
transceiver permit pid all
!
interface TenGigE0/4/0/2
ipv4 address 9.9.9.9 255.255.0.0
ipv6 address 9:9::9/64
ipv6 enable
!
route-policy pass-all
pass

end-policy
!
router static
address-family ipv4 unicast
202.153.144.0/24 8.43.0.1
!
!
router bgp 100
bgp router-id 20.20.20.20
address-family ipv4 unicast
maximum-paths eibgp 8
redistribute connected
!
neighbor 11.11.11.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.12.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.13.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.14.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.15.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!

Implementing BGP
227

Implementing BGP
BGP Unequal Cost Recursive Load Balancing: Example

!
neighbor 11.11.16.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.17.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
neighbor 11.11.18.12
remote-as 200
dmz-link-bandwidth
address-family ipv4 unicast
route-policy pass-all in
route-policy pass-all out
!
!
!
end

VRF Dynamic Route Leaking Configuration: Example
These examples show how to configure VRF dynamic route leaking:

Import Routes from default-VRF to non-default-VRF

vrf vrf_1
address-family ipv6 unicast
import from default-vrf route-policy rpl_dynamic_route_import
!
end

Import Routes from non-default-VRF to default-VRF

vrf vrf_1
address-family ipv6 unicast

export to default-vrf route-policy rpl_dynamic_route_export
!
end

Flow-tag propagation
The flow-tag propagation feature enables you to establish a co-relation between route-policies and user-policies.
Flow-tag propagation using BGP allows user-side traffic-steering based on routing attributes such as, AS
number, prefix lists, community strings and extended communities. Flow-tag is a logical numeric identifier
that is distributed through RIB as one of the routing attribute of FIB entry in the FIB lookup table. A flow-tag
is instantiated using the 'set' operation from RPL and is referenced in the C3PL PBR policy, where it is
associated with actions (policy-rules) against the flow-tag value.

Implementing BGP
228

Implementing BGP
VRF Dynamic Route Leaking Configuration: Example

You can use flow-tag propagation to:

• Classify traffic based on destination IP addresses (using the Community number) or based on prefixes
(using Community number or AS number).

• Select a TE-group that matches the cost of the path to reach a service-edge based on customer site service
level agreements (SLA).

• Apply traffic policy (TE-group selection) for specific customers based on SLA with its clients.

• Divert traffic to application or cache server.

Restrictions for Flow-Tag Propagation
Some restrictions are placed with regard to using Quality-of-service Policy Propagation Using Border Gateway
Protocol (QPPB) and flow-tag feature together. These include:

• A route-policy can have either 'set qos-group' or 'set flow-tag,' but not both for a prefix-set.
• Route policy for qos-group and route policy flow-tag cannot have overlapping routes. The QPPB and
flow tag features can coexist (on same as well as on different interfaces) as long as the route policy used
by them do not have any overlapping route.

• Mixing usage of qos-group and flow-tag in route-policy and policy-map is not recommended.

Where to Go Next
For detailed information about BGP commands, see Routing Command Reference for Cisco CRS Routers

Additional References
The following sections provide references related to implementing BGP.

Related Documents

Document TitleRelated Topic

Routing Command Reference for Cisco CRS RoutersBGP commands: complete command syntax,
commandmodes, command history, defaults, usage
guidelines, and examples

IP Addresses and Services Command Reference for
Cisco CRS Routers

Cisco Express Forwarding (CEF) commands:
complete command syntax, command modes,
command history, defaults, usage guidelines, and
examples

MPLS Configuration Guide for the Cisco CRS RoutersMPLS VPN configuration information.

Interface and Hardware Component Configuration Guide
for Cisco CRS Routers and Interface and Hardware
Component Command Reference for Cisco CRS Routers

Bidirectional Forwarding Detection (BFD)

Implementing BGP
229

Implementing BGP
Restrictions for Flow-Tag Propagation

Document TitleRelated Topic

Configuring AAA Services on Cisco IOS XR Software
module of System Security Configuration Guide for
Cisco CRS Routers

Task ID information.

Standards

TitleStandards

Authentication for TCP-based Routing and Management Protocols, by
R. Bonica, B. Weis, S. Viswanathan, A. Lange, O. Wheeler

draft-bonica-tcp-auth-05.txt

A Border Gateway Protocol 4, by Y. Rekhter, T.Li, S. Haresdraft-ietf-idr-bgp4-26.txt

Definitions of Managed Objects for the Fourth Version of Border
Gateway Protocol (BGP-4), by J. Hass and S. Hares

draft-ietf-idr-bgp4-mib-15.txt

Subcodes for BGP Cease Notification Message, by Enke Chen, V. Gilletdraft-ietf-idr-cease-subcode-05.txt

Avoid BGP Best Path Transitions from One External to Another, by
Enke Chen, Srihari Sangli

draft-ietf-idr-avoid-transition-00.txt

BGP Support for Four-octet AS Number Space, by Quaizar Vohra, Enke
Chen

draft-ietf-idr-as4bytes-12.txt

MDT SAFI, by Gargi Nalawade and Arjun Sreekantiahdraft-nalawade-idr-mdt-safi-03.txt

MIBs

MIBs LinkMIBs

To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the
following URL and choose a platform under the Cisco Access Products menu:
https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index

—

RFCs

TitleRFCs

Assigned NumbersRFC
1700

BGP Communities AttributeRFC
1997

Protection of BGP Sessions via the TCP MD5 Signature OptionRFC
2385

BGP Route Flap DampingRFC
2439

Implementing BGP
230

Implementing BGP
Additional References

https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index

TitleRFCs

Use of BGP-4Multiprotocol Extensions for IPv6 Inter-Domain RoutingRFC
2545

BGP Route Reflection - An Alternative to Full Mesh IBGPRFC
2796

Multiprotocol Extensions for BGP-4RFC
2858

Route Refresh Capability for BGP-4RFC
2918

Autonomous System Confederations for BGPRFC
3065

Capabilities Advertisement with BGP-4RFC
3392

A Border Gateway Protocol 4 (BGP-4)RFC
4271

BGP/MPLS IP Virtual Private Networks (VPNs)RFC
4364

Graceful Restart Mechanism for BGPRFC
4724

Generic Routing Encapsulation (GRE)RFC
2784

Technical Assistance

LinkDescription

http://www.cisco.com/
techsupport

The Cisco Technical Support website contains thousands of pages of
searchable technical content, including links to products, technologies,
solutions, technical tips, and tools. Registered Cisco.com users can log in
from this page to access even more content.

Implementing BGP
231

Implementing BGP
Additional References

http://www.cisco.com/techsupport
http://www.cisco.com/techsupport

Implementing BGP
232

Implementing BGP
Additional References

	Implementing BGP
	Prerequisites for Implementing BGP
	Information About Implementing BGP
	BGP Functional Overview
	BGP Router Identifier
	BGP Maximum Prefix - Discard Extra Paths
	Restrictions

	BGP Default Limits
	BGP Next Hop Tracking
	Next Hop as the IPv6 Address of Peering Interface
	Scoped IPv4/VPNv4 Table Walk
	Reordered Address Family Processing
	New Thread for Next-Hop Processing
	show, clear, and debug Commands

	Autonomous System Number Formats in BGP
	2-byte Autonomous System Number Format
	4-byte Autonomous System Number Format
	as-format Command

	BGP Configuration
	Configuration Modes
	Router Configuration Mode
	Router Address Family Configuration Mode
	Neighbor Configuration Mode
	Neighbor Address Family Configuration Mode
	VRF Configuration Mode
	VRF Address Family Configuration Mode
	Configuring Resilient Per-CE Label Mode Under VRF Address Family
	Configuring Resilient Per-CE Label Mode Using a Route-Policy

	VRF Neighbor Configuration Mode
	VRF Neighbor Address Family Configuration Mode
	VPNv4 Address Family Configuration Mode
	VPNv6 Address Family Configuration Mode
	L2VPN Address Family Configuration Mode

	Neighbor Submode
	Configuration Templates
	Template Inheritance Rules
	Viewing Inherited Configurations
	show bgp neighbors
	show bgp af-group
	show bgp session-group
	show bgp neighbor-group

	No Default Address Family
	Neighbor Address Family Combinations
	Routing Policy Enforcement
	Table Policy
	Update Groups
	BGP Update Generation and Update Groups
	BGP Update Group

	BGP Cost Community
	How BGP Cost Community Influences the Best Path Selection Process
	Cost Community Support for Aggregate Routes and Multipaths
	Influencing Route Preference in a Multiexit IGP Network
	BGP Cost Community Support for EIGRP MPLS VPN PE-CE with Back-door Links
	Adding Routes to the Routing Information Base

	BGP Best Path Algorithm
	Comparing Pairs of Paths
	Order of Comparisons
	Best Path Change Suppression

	Administrative Distance
	Multiprotocol BGP
	Route Dampening
	Minimizing Flapping

	BGP Routing Domain Confederation
	BGP Route Reflectors
	BGP Optimal Route Reflector
	Use Case

	RPL - if prefix is-best-path/is-best-multipath
	Remotely Triggered Blackhole Filtering with RPL Next-hop Discard Configuration
	Configuring Destination-based RTBH Filtering
	Verification

	Default Address Family for show Commands
	TCP Maximum Segment Size
	Per Neighbor TCP MSS

	MPLS VPN Carrier Supporting Carrier
	BGP Keychains
	BGP Multicast VPN
	Configuring an MDT Address Family Session in BGP

	BGP Nonstop Routing
	BGP Best-External Path
	BGP Local Label Retention
	BGP Over GRE Interfaces
	Command Line Interface (CLI) Consistency for BGP Commands
	BGP Additional Paths
	iBGP Multipath Load Sharing
	BGP Selective Multipath
	Accumulated Interior Gateway Protocol Attribute
	Per VRF and Per CE Label for IPv6 Provider Edge
	Constrained Route Distribution for BGP/MPLS Internet Protocol VPNs
	Constrained Route Distribution Benefits
	BGP RT-constrain SAFI—rt-filter

	Selective VRF Download
	Line Card Roles and Filters in Selective VRF Download

	BGP Accept Own
	BGP DMZ Link Bandwidth for Unequal Cost Recursive Load Balancing
	BFD Multihop Support for BGP
	BGP Multi-Instance and Multi-AS
	BGP Prefix Origin Validation Based on RPKI
	Configuring RPKI Cache-server
	Configuring RPKI Prefix Validation
	Configure BGP Prefix Validation
	Configuring RPKI Bestpath Computation

	BGP 3107 PIC Updates for Global Prefixes
	BGP Prefix Independent Convergence for RIB and FIB
	BGP Update Message Error Handling
	BGP Attribute Filtering
	BGP Attribute Filter Actions

	BGP Error Handling and Attribute Filtering Syslog Messages
	BGP Link-State
	BGP Permanent Network
	BGP VRF Dynamic Route Leaking
	Resilient Per-CE Label Mode
	BGP Multipath Enhancements
	MVPN with BGP SAFI-2 and SAFI-129

	Recent Prefixes Events and Trace Support
	How to Implement BGP
	Enabling BGP Routing
	Configuring Multiple BGP Instances for a Specific Autonomous System
	Configuring a Routing Domain Confederation for BGP
	Resetting an eBGP Session Immediately Upon Link Failure
	Logging Neighbor Changes
	Adjusting BGP Timers
	Changing the BGP Default Local Preference Value
	Configuring the MED Metric for BGP
	Configuring BGP Weights
	Tuning the BGP Best-Path Calculation
	Indicating BGP Back-door Routes
	Configuring Aggregate Addresses
	Redistributing iBGP Routes into IGP
	Configuring Discard Extra Paths
	Configuring Per Neighbor TCP MSS
	Disabling Per Neighbor TCP MSS
	Redistributing Prefixes into Multiprotocol BGP
	Configuring BGP Route Dampening
	Applying Policy When Updating the Routing Table
	Setting BGP Administrative Distance
	Configuring a BGP Neighbor Group and Neighbors
	Configuring a Route Reflector for BGP
	Configuring BGP Route Filtering by Route Policy
	Configuring BGP Attribute Filtering
	Configuring BGP Next-Hop Trigger Delay
	Disabling Next-Hop Processing on BGP Updates
	Configuring BGP Community and Extended-Community Advertisements
	Configuring the BGP Cost Community
	Configuring Software to Store Updates from a Neighbor
	BGP Persistence
	BGP Persistence Configuration: Example

	BGP Graceful Maintenance
	Restrictions for BGP Graceful Maintenance
	Graceful Maintenance Operation
	Inter Autonomous System
	No Automatic Shutdown
	When to Shut Down After Graceful Maintenance
	Activate Graceful Maintenance under BGP Router (All Neighbors)
	Activate Graceful Maintenance on a Single Neighbor
	Activate Graceful Maintenance on a Group of Neighbors

	Direct Router to Reduce Route Preference
	Bring Router or Link Back into Service
	Show Command Outputs to Verify BGP Graceful Maintenance

	L3VPN iBGP PE-CE
	L3VPN iBGP PE-CE Overview
	Restrictions for L3VPN iBGP PE-CE
	Configuring L3VPN iBGP PE-CE

	Flow-tag propagation
	Restrictions for flow-tag propagation

	Source and destination-based flow tag
	Configure Source and Destination-based Flow Tag

	Configuring a VPN Routing and Forwarding Instance in BGP
	Defining Virtual Routing and Forwarding Tables in Provider Edge Routers
	Configuring the Route Distinguisher
	Configuring BGP to Advertise VRF Routes for Multicast VPN from PE to PE
	Advertising VRF Routes for MVPNv4 from PE to PE
	Advertising VRF Routes for MVPNv6 from PE to PE
	Configuring PE-PE or PE-RR Interior BGP Sessions
	Configuring Route Reflector to Hold Routes That Have a Defined Set of RT Communities
	Configuring BGP as a PE-CE Protocol
	Redistribution of IGPs to BGP

	Configuring Keychains for BGP
	Configuring an MDT Address Family Session in BGP
	Disabling a BGP Neighbor
	Resetting Neighbors Using BGP Inbound Soft Reset
	Resetting Neighbors Using BGP Outbound Soft Reset
	Resetting Neighbors Using BGP Hard Reset
	Clearing Caches, Tables, and Databases
	Displaying System and Network Statistics
	Displaying BGP Process Information
	Monitoring BGP Update Groups
	Configuring BGP Nonstop Routing
	Configuring Best-External Path Advertisement
	Installing Primary Backup Path for Prefix Independent Convergence (PIC)
	Retaining Allocated Local Label for Primary Path
	Configuring BGP Additional Paths
	Configuring iBGP Multipath Load Sharing
	Originating Prefixes with AiGP
	Configuring BGP Accept Own
	Configuring BGP Link-State
	Configuring BGP Link-state
	Configuring Domain Distinguisher

	Configuring BGP Permanent Network
	Configuring BGP Permanent Network
	How to Advertise Permanent Network

	Enabling BGP Unequal Cost Recursive Load Balancing
	Configuring VRF Dynamic Route Leaking
	Configuring Resilient Per-CE Label Mode
	Configuring Resilient Per-CE Label Mode Under VRF Address Family
	Configuring Resilient Per-CE Label Mode Using a Route-Policy

	Configuration Examples for Implementing BGP
	Enabling BGP: Example
	Displaying BGP Update Groups: Example
	BGP Neighbor Configuration: Example
	BGP Confederation: Example
	BGP Route Reflector: Example
	BGP MDT Address Family Configuration: Example
	BGP Nonstop Routing Configuration: Example
	Best-External Path Advertisement Configuration: Example
	Primary Backup Path Installation: Example
	Allocated Local Label Retention: Example
	iBGP Multipath Loadsharing Configuration: Example
	Discard Extra Paths Configuration: Example
	Displaying Discard Extra Paths Information: Example
	Configure Per Neighbor TCP MSS: Examples
	Verify Per Neighbor TCP MSS: Examples
	Originating Prefixes With AiGP: Example
	BGP Accept Own Configuration: Example
	BGP Unequal Cost Recursive Load Balancing: Example
	VRF Dynamic Route Leaking Configuration: Example

	Flow-tag propagation
	Restrictions for Flow-Tag Propagation

	Where to Go Next
	Additional References

