

## **End-to-End Flow Control**

- Feature Summary and Revision History, on page 1
- Feature Description, on page 2
- Simplified Control Plane flow control configurations, on page 2
- FSOL Token Mechanism, on page 6
- Limitations and Restrictions, on page 7
- How it Works (Manual Configuration), on page 8
- Configuring End-to-End Flow Control (Manual Configuration), on page 9

# **Feature Summary and Revision History**

## **Summary Data**

#### Table 1: Summary Data

| Applicable Product(s) or Functional Area | cnBNG                             |
|------------------------------------------|-----------------------------------|
| Applicable Platform(s)                   | SMI                               |
| Feature Default Setting                  | Disabled - Configuration Required |
| Related Documentation                    | Not Applicable                    |

## **Revision History**

#### Table 2: Revision History

| Revision Details                                                 | Release   |
|------------------------------------------------------------------|-----------|
| Introduced support for simplified CP flow control configuration. | 2025.04.0 |

| Revision Details                                                                                                                                                 | Release   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| The Flow Control feature supports the following functionalities:                                                                                                 | 2022.03.0 |
| Different rate limit and queue size for different<br>UPFs                                                                                                        |           |
| <ul> <li>Packet priority and differential treatment to<br/>packets based on packet type or DSCP value of<br/>the packet</li> <li>FSOL token mechanism</li> </ul> |           |
| First introduced.                                                                                                                                                | 2021.04.0 |

## **Feature Description**



Note

This feature is Network Services Orchestrator (NSO) integrated.

The Cloud Native Broadband Network Gateway (cnBNG) manages residential subscribers from different access planes in a centralized way. It accepts and identifies subscriber Control Plane (CP) traffic coming from multiple User Planes (UPs) associated with the CP. When the number of UPs scale, the amount of CP traffic coming from each UP multiplies.

The traffic flow between CP and UP must be regulated to ensure that the CP attends all the service requests without service interruption.

The following scenarios create burstiness or higher flow rates in the traffic flows:

- · Power outage in a residential area
- Access network outage for a specific period
- UP catastrophic events such as process crash, route processor reboots, and chassis reload

These scenarios generate sudden spike in traffic going to the CP. To handle these traffic spikes, it is necessary to flow control and rate limit the CP ingress to ensure that service applications are not overwhelmed with these bursts. The End-to-End Flow Control feature optimizes flow control and rate limit of the traffic toward the CP ingress.

# Simplified Control Plane flow control configurations

A simplified Control Plane flow control configuration is a network automation feature that

- derives dispatcher and overload control settings automatically from user-supplied Calls per Second (CPS)
  values
- adapts dynamically as User Plane Functions (UPFs) are added or removed from the network, and

• allows for manual overrides when specific customization is required.

Prior to cnBNG Release 2025.04.0, configuring flow control and overload control for User Plane Functions (UPFs) required complex manual steps. Each UPF and interface demanded individual dispatcher and overload control settings, making operations difficult to scale and maintain, especially in environments where UPFs change frequently.

Starting with cnBNG Release 2025.04.0, a simplified configuration model introduces automation by basing dispatcher and overload controls on user-supplied CPS values. This model streamlines setup and adjustment, improves operational consistency, and dramatically reduces manual effort.

#### **Key attributes**

- User Plane CPS (Calls Per Second): Each UPF is configured according to its maximum supported CPS value to accurately represent its capacity.
- **CP Cluster CPS:** The cluster-wide configuration sets total Control Plane processing capability. You can optimize rate limiting for specific session types such as **all-types**, **ipoe-only**, or **pppoe-lns-only** to match the network's traffic profile.
- Automatic adjustment: Whenever CPS values or UPF counts change, the system recalculates all relevant dispatcher and overload settings automatically, eliminating manual reconfiguration.



Note

- You can change CPS values at any time. The system will update internal settings accordingly. Note that such changes may affect processing of packets already in queues.
- The optional **session-type** parameter enables further optimization based on the predominant protocol used (IPOE or PPPOE). By default, mixed traffic is assumed.

#### **Benefits of simplified CP Flow Control configuration**

- Reduced configuration complexity.
- Improved consistency and reliability across UPFs and clusters.
- Faster adaptation to changes in network design or capacity.
- More accurate and efficient resource usage.

#### Simplified CP Flow Control configuration example

Suppose a network operator adds new UPFs to handle increased subscriber load. With simplified Control Plane flow control configuration, the operator specifies the CPS for each new UPF and updates the cluster CPS if needed. The system immediately recalculates and applies the necessary dispatcher and overload settings, with no manual recalibration required.

### Configure user-plane and subscriber CPS values

Configure the CP flow control system for automated dispatcher and overload control, improving efficiency and consistency.

Use this task when adding or updating user-plane functions (UPFs) or adjusting cluster-wide performance limits. This approach replaces complex manual configuration with a simplified model.

#### Before you begin

- Identify the CPS capabilities of each UPF you want to configure.
- Determine the total processing capacity (CPS) available in the CP cluster.
- Decide if your sessions are primarily of a single type (ipoe-only, pppoe-lns-only) or mixed (all-types).

Follow these steps to configure automated CP flow control:

#### **Procedure**

**Step 1** For each user-plane, specify the maximum supported CPS value in the configuration.

#### **Example:**

```
configure
user-plane
instance 1
user-plane ASR9k-0001
cps 200
exit
```

At the subscriber (cluster) level, set the total available CPS and, optionally, the session type (all-types, ipoe-only, or pppoe-lns-only) to refine flow control parameters. all-types is the default.

#### Example:

```
configure
  subscriber
  cps 2000 [ session-type all-types | ipoe-only | pppoe-lns-only ]
exit
```

#### Important

The configuration becomes active only when you assign CPS values under user-plane or subscriber settings.

#### NOTES:

- cps: Specifies the calls per second value. There is no default CPS value. You must assign a specific value to enable overload-control for the cluster.
- session-type ipoe-only: All sessions use the DHCP protocol.
- session-type pppoe-lns-only: All sessions use the PPPoE protocol.
- session-type all-types: (Default) Sessions can be a mix of both DHCP and PPPoE.

### Migrate CP flow control models

You can change the operational mode of CP Flow Control between manual and automated methods for clusters, supporting both geographical redundancy (GR) and non-GR setups.

Use this task to ensure that your CP Flow Control model matches deployment requirements and maintains operational stability during migration. Procedures differ for GR and non-GR configurations.

### Upgrade from manual to automated method on a GR setup

Migrate a system with Geographical redundancy (GR) from manual configuration to an automated method.

#### Before you begin

- Verify that both remote and local clusters are accessible.
- Ensure you have backups of all existing configurations.

Follow these steps to upgrade from manual to automated method on a GR setup:

#### **Procedure**

- **Step 1** Make the remote cluster active for both instances.
- **Step 2** Shut down the local cluster.
- **Step 3** Remove the old configuration and apply the new configuration.
- **Step 4** Bring up the local cluster and restore GR roles as needed.

### Upgrade from manual to automated method on a non-GR setup

Migrate a standard (non-GR) cluster from manual configuration to an automated method.

#### Before you begin

Ensure you have backups of all existing configurations.

Follow these steps to upgrade from manual to automated method on a non-GR setup:

#### **Procedure**

- **Step 1** Shut down the cluster.
- **Step 2** Remove the old configuration and apply the new configuration.
- **Step 3** Bring up the cluster.

### Downgrade from automated to manual method on GR and non-GR setups

Revert from automated to manual configuration on either Geographical redundancy (GR) or non-GR clusters.

#### Before you begin

Ensure the system is in a stable state and you have reliable backups for both old and new configurations.

Follow this step to downgrade from automated to manual method on GR and non-GR setups:

#### **Procedure**

In a single commit transaction, remove the new configuration and apply the old configuration.

### **FSOL Token Mechanism**

The FSOL token mechanism is a protection method to control the maximum inflight transactions on the control plane at each FSOL pod. This mechanism addresses higher packet rates and works along with UDP proxy flow control to protect the control plane. The UDP proxy flow control configuration acts as the first-level check in the control plane to control incoming GTPU and PFCP message rates. Token mechanism does not support rate control.

To receover from token leakage or stale token usage, FSOL supports the use of the action command **subscriber reset-token { dhcp | pppoe }** to reset the in-use token to zero.

FSOL token mechanism supports the following functionalities:

- Token mechanism is applicable for IPoE, PPPoE, and L2TP session types. This feature does not support per UPF token.
- DHCP and PPPoE have separate token configurations. DHCPv6 over PPPoE consumes the DHCP token.
- Only transactions that deal with IPCs with multiple pods or that result in interaction with external entities consume the token. The external entities can be Policy plane interaction, N4 PFCP Establishment, N4 PFCP Modification. Handling of DHCPv4 Renew, DHCPv4Rebind, DHCPv4 Information and DHCPv6 Renew, DHCPv6 Rebind, DHCPv6 Information-Request packets will not consume the token.
- Acquires the token and releases across transactions.
- A Discover storm without any request packet for the offered IPs can consume all the tokens. Since the
  tokens that are acquired during Discover processing are released only after processing the request from
  CPE. If CPE does not send the request, the token is released only after the temporary lease expiry (around
  1 minute).
- IPoE lease expiry handling consumes the token. If the token is not available, the lease expiry handling is postponed with an exponential back off up to 8 minutes.
- If the token is not available when the hold timer expires, then the hold timer is extended for a minute.
- DHCP admin clear consumes the token. If the token is not available, the session will not get cleared.
- Internal failure handling consumes the token. If the tokens are not available, then failure handling proceeds uninterrupted as failure cannot be cached.
- FSOL token will not be consumed in the following scenarios:

- Session manager admin clear
- Disconnect message from session manager (due to pod or PPPoE session disconnect)
- Notify conflict handling, failure callback handling for CDL update, and CP reconciliation
- Caches packets if tokens are unavailable during release packet handling.

## **Configuring Token for FSOL Pod**

To configure the FSOL token mechanism, use the following sample configuration:

```
config
  subscriber token { dhcp | pppoe } token_count
  exit
```

#### **NOTES:**

- **subscriber token** { **dhcp** | **pppoe** } *token\_count*: Set the maximum token available for the FSOL pod. *token\_count* is cumulative across instances. For example, if there are 4 DHCP pods and DHCP token is set as 2000, then 500 tokens will be assigned for each pod.
  - dhcp: Set the DHCP pod token count.
  - pppoe: Set the PPPoE pod token count.

### **Limitations and Restrictions**

The End-to-End Flow Control feature has the following limitations and restrictions:

- Session bring-down rate (DHCP release, PPPOE PADT, L2TP, CDN rate control) cannot be enforced using the CP flow control configuration. Also, UP does not have flow control of these packets. Therefore, solution level flow control for session disconnect triggers for all session types is not supported.
- Packet level flow control for DHCPv4 and DHCPv6 Renew, and DHCPv6 Relay forwarded messages is not supported.
- L2TP LAC and LNS FSOL rate control are not supported on the ASR 9000 UP in this release. The CP does not have rate control based on FSOL. Because PPPoE bring-up controls LAC, PPPoE FSOL rate control on ASR 9000 can be used to control LAC session bring-up.
- Flow control must be configured at the UP level for the following packets at the UPF. This ensures that the packet rate from UP to CP is controlled because CP cannot provide per packet rate control, per UPF.
  - FSOL
  - · Session delete notifications
  - LCP keepalive failure notifications
  - · Session statistics report

# **How it Works (Manual Configuration)**



Note

This section is not applicable if you use the automated configuration method.

This section describes how End-to-End Flow Control works in cnBNG.

There are two types of traffic that enter or exit the CP:

- Control traffic that is responsible for subscriber session creation
- Control traffic that is already provisioned for a subscriber session

The following application infrastructure (App-Infra) features facilitates the cnBNG CP ingress packet flow control:

- Dispatcher, on page 8
- Overload Control, on page 9

## **Dispatcher**

In the dispatcher, if you configure the right dequeue rate, the packets do not pile up in the PFCP queue. The dequeue rate must be higher than the incoming rate from the UP.

All PFCP packets land into a single queue because there is no packet segregation. Any rate control that is applied on this queue is per UPF PFCP packet rate control. It is not possible to control a particular type of packet per UPF. For example, DHCP release, PPPoE PADT, or keepalive failure notification packet cannot be controlled per UPF at the dispatcher queue.

The dispatcher queue size configuration handles the burst of packets. This functionality supports the following:

- Dedicated queue for each PFCP or N4 interface, and GTPu interface for each UPF connected to the control plane
- Configuration of queue size and flow control rate limits

#### **Different Rate Limit and Queue Size Support**

For N4 or GTPu dispatcher, the flow control feature supports different rate limits and queue sizes for different UPFs. Depending on the UPF's capability, the rates and queue sizes vary for all UPFs.

The rate limit and queue size are configurable for different UPFs. You can configure the flow control group under the endpoint udp-proxy configuration. You can associate the flow control group in the user-plane configuration.

#### **Packet Priority and Differential Treatment to Packets**

cnBNG supports packet priority and differential treatment to packets based on the packet type or DSCP value in the packet. When the system is congested or queues are full, certain incoming packets such as PFCP heartbeats, session reports, and subscriber redundancy group notification messages are treated with high

priority. These packets will be delivered to the destination without delay and will not be dropped if the queues are full.

The PFCP Heartbeats, PFCP Association Update or Release, and PFCP Node Report packets that cannot be rate controlled and dropped will be bypassed from the dispatcher queues and overload control queues.

### **Overload Control**

Overload control is applied to a packet after it is released from a dispatcher. This creates a queue based on the packet type at the aggregate level across all UPF data. Because overload control enables packet type based queues, rate control is applied for that type of packet at the aggregate level of all UPFs.

Special treatment of the packet is indirectly achieved by having different queues for a packet at overload control feature and aggregate of all UPF level.

The dispatcher supports the following catogories of virtual message groups:

- PFCP keepalive messages between CP and UPF
- PFCP LCP keepalive failure notification messages
- PFCP Response messages
- · Session Report messages
- Other message types which are not listed in different categories

The Overload Control feature provides aggregate queues for a message type coming from UPF functions. Group IDs are supported for each message group and the message type is configurable for each group. When configured, a virtual queue is created for each message type and treated based on the configured attributes for that group. For each queue, the size and rate limit can be configured.

For each message, the configured rate of packets are dequeued and sent to the CPF. For priority packets such as PFCP keepalives, dedicated queues are allocated so that they are not impacted with other queue sizes.

Based on the cluster capacity, specific values for each queue and message type must be configured. The values are adjusted based on the capacity.

# **Configuring End-to-End Flow Control (Manual Configuration)**



Note

This section is not applicable if you use the automated configuration method.

This section describes how to configure the End-to-End Flow Control feature on Control Plane (CP) manually.

The configuration involves the following procedures:

- Configuring Dispatcher for GTPu Interface, on page 10
- Configuring Dispatcher for N4 Interface, on page 11
- Configuring Overload Control for Message Types, on page 13
- Associating Flow Control Group in User Plane, on page 14

• Configuring Token for FSOL Pod, on page 7

## **Configuring Dispatcher for GTPu Interface**

To configure dispatcher for GTPu interface, use the following commands:

```
config
  instance instance-id instance_id
  endpoint udp-proxy
    interface gtpu dispatcher { cache { true | false } |
      capacity queue_capacity | count queue_count |
      flowctrl-group group_name { capacity inbound_queue_size |
  outbound-capacity outbound_queue_size | outbound-rate-limit outbound_rate_limit |
      rate-limit inbound_rate_limit } |
      outbound { true | false } | rate-limit rate_limit |
      threshold threshold_value }
      exit
```

#### NOTES:

- **instance** *instance\_id*: Configure multiple instances for the specified instance and enters the instance sub-mode.
- endpoint udp-proxy: Configure parameters for the UDP-proxy endpoint and enters the endpoint sub-mode.
- interface gtpu dispatcher { cache { true | false } | capacity | queue\_capacity | count | flowctrl-group group\_name { capacity inbound\_queue\_size | outbound-capacity outbound\_queue\_size | outbound-rate-limit outbound\_rate\_limit | rate-limit inbound\_rate\_limit } | outbound { true | false } | rate-limit value | threshold\_threshold\_value }: Specify the dispatcher parameters for the GTPu interface.
  - cache { true | false }: Enable (false ) or disable (true) cache retransmission support. The default value false indicates that the cache retransmission support is enabled.
  - **capacity** *queue\_capacity*: Specify the number of packets that this queue holds.



Note

Ensure that there is sufficient memory when configuring higher capacity queues.

- **count** *queue\_count*: Specify the number of N4 queues to be created. Each queue is associated or dedicated to an UPF. For example, if the count is 2, two N4 queues are created and two UPs can be connected.
- flowctrl-group group\_name { capacity inbound\_queue\_size | outbound-capacity outbound\_queue\_size | outbound-rate-limit outbound\_rate\_limit | rate-limit inbound\_rate\_limit }: Specify the queue size and rate limit for the specified flow control group.



Note

The flow control group name must be the same for N4 and GTPu interfaces for a given group.

• capacity inbound queue size: Specify the capacity of inbound queue.

- outbound-capacity outbound\_queue\_size: Specify the capacity of outbound queue.
- outbound-rate-limit outbound\_rate\_limit: Specify the rate limit for outbound queue.
- rate-limit inbound\_rate\_limit: Specify the rate limit for inbound queue.
- **outbound { true | false }**: Enable (true) or disable (false) queue support for outbound messages. Default value: **false**.



Note

Outbound flow control for BNG is not supported.

- rate-limit rate\_limit: Specify the rate limit for each queue, that is, when packets are dequeued. The rate limit is defined in seconds.
- threshold threshold\_value: Specify the queue size before packets are dropped.

#### **Example**

The following is a configuration example.

```
interface gtpu
   sla response 150000
   dispatcher
   count 1
   capacity 1000000
   outbound true
    rate-limit 500
    cache true
    threshold 950000
    flowctrl-group group1
    capacity 2000
     rate-limit 200
    exit
  exit
 exit.
exit
exit
```

### **Configuring Dispatcher for N4 Interface**

To configure dispatcher for N4 interface, use the following commands:

```
config
  instance instance_id
  endpoint udp-proxy
    interface n4 dispatcher { cache { true | false } |
    capacity queue_capacity | count queue_count |
    flowctrl-group group_name { capacity inbound_queue_size |
  outbound-capacity outbound_queue_size | outbound-rate-limit outbound_rate_limit |
    rate-limit inbound_rate_limit } |
    outbound { true | false } | rate-limit rate_limit |
    threshold threshold_value }
  exit
```

#### NOTES:

- **instance** *instance\_id*: Configure multiple instances for the specified instance and enters the instance sub-mode.
- endpoint udp-proxy: Configure parameters for the UDP-proxy endpoint and enters the endpoint sub-mode.
- interface n4 dispatcher { cache { true | false } | capacity | queue\_capacity | count | count | flowetrl-group | group\_name { capacity | inbound\_queue\_size | outbound-capacity | outbound\_queue\_size | outbound-rate-limit | outbound\_rate\_limit | rate-limit | inbound\_rate\_limit } | outbound { true | false } | rate-limit | value | threshold\_treshold\_value }: Specify dispatcher parameters for the N4 interface.
  - cache { true | false }: Enable (false ) or disable (true) cache retransmission support. The default value false indicates that the cache retransmission support is enabled.
  - capacity queue\_capacity: Specify the number of packets that this queue holds.



Note

Ensure that there is sufficient memory when configuring higher capacity queues.

- **count** *queue\_count*: Specify the number of N4 queues to be created. Each queue is associated or dedicated to an UPF. For example, if the count is 2, two N4 queues are created and two UPs can be connected.
- flowctrl-group group\_name { capacity inbound\_queue\_size | outbound-capacity outbound\_queue\_size | outbound-rate-limit outbound\_rate\_limit | rate-limit inbound\_rate\_limit }: Specify the queue size and rate limit for the specified flow control group.



Note

The flow control group name must be the same for N4 and GTPu interfaces for a given group.

- **capacity** *inbound\_queue\_size*: Specify the capacity of inbound queue.
- outbound-capacity outbound\_queue\_size: Specify the capacity of outbound queue.
- outbound-rate-limit outbound\_rate\_limit: Specify the rate limit for outbound queue.
- rate-limit inbound\_rate\_limit: Specify the rate limit for inbound queue.
- **outbound { true | false }**: Enable (true) or disable (false) queue support for outbound messages. Default value: **false**.



Note

Outbound flow control for BNG is not supported.

- rate-limit *per\_second*: Specify the rate limit for each queue, that is, when packets are dequeued. The rate limit is defined in seconds.
- **threshold** threshold: Specify the queue size before packets are dropped.

#### Example

The following is an example configuration.

```
endpoint udp-proxy
 replicas 1
 nodes 2
 vip-ip 201.201.201.51
 vip-ipv6 2001::10:1:39.191
 interface n4
  sla response 150000
  dispatcher
   count. 1
   capacity 500000
   outbound true
   rate-limit 300
   cache false
   threshold 950000
    flowctrl-group group1
    capacity 1000
    rate-limit 100
   exit
   exit
```

## **Configuring Overload Control for Message Types**

To configure overload control for all message types, use the following commands:

```
config
    overload-control msg-type { all | lcpkeepalive | pfcpkeepalive |
pfcpresponse | sessionreport }
    msg-priority msg_priority | rate-limit rate_value| queue-size queue_size
| reject-threshold reject_threshold | pending-request pending_request |
discard-behavior { drop | true }
    commit
```

#### NOTES:

- overload-control msg-type { all | lcpkeepalive | pfcpkeepalive | pfcpresponse | sessionreport }: Configure overload control for the specified message type.
- msg-priority msg\_priority: Specify the message priority. This keyword is not applicable in the BNG context.
- rate-limit rate\_value: Specify the rate limit for each queue, that is, when packets are dequeued. The rate limit is defined in seconds.
- queue-size queue\_size: Specify the size of the queue to be created.
- reject-threshold threshold\_limit: Specify the percentage of the pending-request value.
- pending-request pending\_request: Specify the number of packets present in the queue at any time.
- discard-behavior { drop | true }: Specify whether to drop or process the packets. Default value: drop.

#### **Example**

The following is a configuration example.

```
overload-control msg-type all
rate-limit 13000 queue-size 200000 reject-threshold 95 pending-request 200000
exit
overload-control msg-type lcpkeepalive
rate-limit 1100 queue-size 25000 reject-threshold 95 pending-request 25000
exit
overload-control msg-type sessionreport
rate-limit 1000 queue-size 25000 reject-threshold 95 pending-request 25000
exit
overload-control msg-type pfcpkeepalive
rate-limit 100 queue-size 1000 reject-threshold 95 pending-request 1000
exit
overload-control msg-type pfcpresponse
rate-limit 4000 queue-size 25000 reject-threshold 95 pending-request 25000
exit
exit
```

## **Associating Flow Control Group in User Plane**

To associate the flow control group in the user plane, use the following sample configuration:

```
config
  user-plane user_plane_name
  flowctrl-group group_name
  exit
```

#### **NOTES:**

- user-plane user\_plane\_name: Specify the User Plane (UP) name and enter UP Configuration mode.
- **flowctrl-group** *group\_name*: Specify the name of the flow control group to be associated in the user plane.