
Trace Management

The following sections are included in this chapter:

• Tracing Overview, on page 1
• How Tracing Works, on page 1
• Tracing Levels, on page 4
• Viewing a Tracing Level, on page 6
• Setting a Tracing Level, on page 7
• Viewing the Content of the Trace Buffer, on page 7
• Example: Using Packet Trace, on page 8

Tracing Overview
Tracing is a function that logs internal events. Trace files containing trace messages are automatically created
and saved to the tracelogs directory on the hard disk: file system on the router, which stores tracing files in
bootflash.

The contents of trace files are useful for the following purposes:

• Troubleshooting—Helps to locate and solve an issue with a router. The trace files can be accessed in
diagnostic mode even if other system issues are occurring simultaneously.

• Debugging—Helps to obtain a detailed view of system actions and operations.

How Tracing Works
Tracing logs the contents of internal events on a router. Trace files containing all the trace output pertaining
to a module are periodically created and updated and stored in the tracelog directory. Trace files can be erased
from this directory to recover space on the file system without impacting system performance. The files can
be copied to other destinations using file transfer functions (such as FTP and TFTP) and opened using a plain
text editor.

Tracing cannot be disabled on a router.Note

Use the following commands to view trace information and set tracing levels:

Trace Management
1

• show logging process module—Shows the most recent trace information for a specific module. This
command can be used in privileged EXEC and diagnostic modes. When used in diagnostic mode, this
command can gather trace log information during a Cisco IOS XE failure.

• set platform software trace—Sets a tracing level that determines the types of messages that are stored
in the output. For more information on tracing levels, see Tracing Levels, on page 4.

Configuring Packet Tracer with UDF Offset
Perform the following steps to configure the Packet-Trace UDF with offset:

SUMMARY STEPS

1. enable
2. configure terminal
3. udf udf name header {inner | outer} {13|14} offset offset-in-bytes length length-in-bytes

4. udf udf name {header | packet-start} offset-base offset length

5. ip access-list extended {acl-name |acl-num}
6. ip access-list extended { deny | permit } udf udf-name value mask
7. debug platform condition [ipv4 | ipv6] [interface interface] [access-list access-list -name | ipv4-address

/ subnet-mask | ipv6-address / subnet-mask] [ingress | egress |both]
8. debug platform condition start
9. debug platform packet-trace packet pkt-num [fia-trace | summary-only] [circular] [data-size

data-size]
10. debug platform packet-trace {punt | inject|copy | drop |packet | statistics}
11. debug platform condition stop
12. exit

DETAILED STEPS

PurposeCommand or Action

Enables privileged EXEC mode.enableStep 1

Example: • Enter your password if prompted.

Device> enable

Enters global configuration mode.configure terminal

Example:

Step 2

Device# configure terminal

Configures individual UDF definitions. You can specify
the name of the UDF, the networking header from which
offset, and the length of data to be extracted.

udf udf name header {inner | outer} {13|14} offset
offset-in-bytes length length-in-bytes

Example:

Step 3

The inner or outer keywords indicate the start of the offset
from the unencapsulated Layer 3 or Layer 4 headers, or ifRouter(config)# udf TEST_UDF_NAME_1 header inner

l3 64 1 there is an encapsulated packet, they indicate the start of
offset from the inner L3/L4.

Trace Management
2

Trace Management
Configuring Packet Tracer with UDF Offset

PurposeCommand or Action

Router(config)# udf TEST_UDF_NAME_2 header inner
l4 77 2

The length keyword specifies, in bytes, the length from
the offset. The range is from 1 to 2.

.
Router(config)# udf TEST_UDF_NAME_3 header outer
l3 65 1

Router(config)# udf TEST_UDF_NAME_4 header outer
l4 67 1

udf udf name {header | packet-start} offset-base offset
length

Step 4 • header—Specifies the offset base configuration.

• packet-start—Specifies the offset base from
packet-start. packet-start” can vary depending on ifExample:
packet-trace is for an inbound packet or outbound

Router(config)# udf TEST_UDF_NAME_5 packet-start
120 1

packet. If the packet-trace is for an inbound packet
then the packet-start will be layer2. For outbound, he
packet-start will be layer3.

• offset—Specifies the number of bytes offset from the
offset base. To match the first byte from the offset
base (Layer 3/Layer 4 header), configure the offset
as 0.

• length—Specifies the number of bytes from the offset.
Only 1 or 2 bytes are supported. To match additional
bytes, you must define multiple UDFs.

Enables extendedACL configurationmode. TheCLI enters
the extended ACL configuration mode in which all

ip access-list extended {acl-name |acl-num}

Example:

Step 5

subsequent commands apply to the current extended access

Router(config)# ip access-list extended acl2
list. Extended ACLs control traffic by the comparison of
the source and destination addresses of the IP packets to
the addresses configured in the ACL.

Configures the ACL to match on UDFs along with the
current access control entries (ACEs) . The bytes defined

ip access-list extended { deny | permit } udf udf-name
value mask

Step 6

in ACL is 0xD3. Masks are used with IP addresses in IP
ACLs to specify what should be permitted and denied.Example:

Router(config-acl)# permit ip any any udf
TEST_UDF_NAME_5 0xD3 0xFF

Specifies thematching criteria for tracing packets. Provides
the ability to filter by protocol, IP address and subnet mask,
access control list (ACL), interface, and direction.

debug platform condition [ipv4 | ipv6] [interface
interface] [access-list access-list -name | ipv4-address /
subnet-mask | ipv6-address / subnet-mask] [ingress |
egress |both]

Step 7

Example:

Router# debug platform condition interface gi0/0/0
ipv4 access-list acl2 both

Trace Management
3

Trace Management
Configuring Packet Tracer with UDF Offset

PurposeCommand or Action

Enables the specified matching criteria and starts packet
tracing.

debug platform condition start

Example:

Step 8

Router# debug platform condition start

Collects summary data for a specified number of packets.
Captures feature path data by default, and optionally
performs FIA trace.

debug platform packet-trace packet pkt-num [fia-trace
| summary-only] [circular] [data-size data-size]

Example:

Step 9

pkt-num—Specifies the maximum number of packets
maintained at a given time.Router# debug platform packet-trace packet 1024

fia-trace data-size 2048
fia-trace—Provides detailed level of data capture,
including summary data, feature-specific data. Also
displays each feature entry visited during packet
processing.

summary-only—Enables the capture of summary data
with minimal details.

circular—Saves the data of the most recently traced
packets.

data-size—Specifies the size of data buffers for storing
feature and FIA trace data for each packet in bytes. When
very heavy packet processing is performed on packets,
users can increase the size of the data buffers if necessary.
The default value is 2048.

Enables tracing of punted packets from data to control
plane.

debug platform packet-trace {punt | inject|copy | drop
|packet | statistics}

Example:

Step 10

Router# debug platform packet-trace punt

Deactivates the condition and stops packet tracing.debug platform condition stop

Example:

Step 11

Router# debug platform condition start

Exits the privileged EXEC mode.exit

Example:

Step 12

Router# exit

Tracing Levels
Tracing levels determine how much information should be stored about a module in the trace buffer or file.

Trace Management
4

Trace Management
Tracing Levels

The following table shows all the tracing levels that are available and provides descriptions of what types of
messages are displayed with each tracing level.

Table 1: Tracing Levels and Descriptions

DescriptionLevel NumberTracing Level

The message is regarding an issue
that makes the system unusable.

0Emergency

The message is regarding an action
that must be taken immediately.

1Alert

The message is regarding a critical
condition. This is the default setting
for every module on the router.

2Critical

The message is regarding a system
error.

3Error

The message is regarding a system
warning.

4Warning

The message is regarding a
significant issue, but the router is
still working normally.

5Notice

The message is useful for
informational purposes only.

6Informational

The message provides debug-level
output.

7Debug

All possible tracing messages are
sent.

8Verbose

All possible trace messages
pertaining to a module are logged.

The noise level is always equal to
the highest possible tracing level.
Even if a future enhancement to
tracing introduces a higher tracing
level than verbose level, the noise
level will become equal to the level
of the newly introduced tracing
level.

—Noise

If a tracing level is set, messages are collected from both lower tracing levels and from its own level.

For example, setting the tracing level to 3 (error) means that the trace file will contain output messages for
levels: 0 (emergencies), 1 (alerts), 2 (critical), and 3 (error).

If you set the trace level to 4 (warning), it results in output messages for levels: 0 (emergencies), 1 (alerts), 2
(critical), 3 (error), and 4 (warning).

Trace Management
5

Trace Management
Tracing Levels

The default tracing level for every module on the router is 5 (notice).

A tracing level is not set in a configuration mode, which results in tracing-level settings being returned to
default values after the router reloads.

Setting the tracing level of a module to debug level or higher can have a negative impact on the performance.Caution

Setting high tracing levels on a large number of modules can severely degrade performance. If a high tracing
level is required in a specific context, it is almost always preferable to set the tracing level of a single module
to a higher level rather than setting multiple modules to high levels.

Caution

Viewing a Tracing Level
By default, all the modules on a router are set to 5 (notice). This setting is maintained unless changed by a
user.

To see the tracing level for a module on a router, enter the show logging process command in privileged
EXEC mode or diagnostic mode.

The following example shows how the show logging process command is used to view the tracing levels of
the forwarding manager processes on an active RP:
Router# showlogging process forwarding-manager rp active
Module Name Trace Level

acl Notice
binos Notice
binos/brand Notice
bipc Notice
bsignal Notice
btrace Notice
cce Notice
cdllib Notice
cef Notice
chasfs Notice
chasutil Notice
erspan Notice
ess Notice
ether-channel Notice
evlib Notice
evutil Notice
file_alloc Notice
fman_rp Notice
fpm Notice
fw Notice
icmp Notice
interfaces Notice
iosd Notice
ipc Notice
ipclog Notice
iphc Notice
IPsec Notice
mgmte-acl Notice
mlp Notice

Trace Management
6

Trace Management
Viewing a Tracing Level

mqipc Notice
nat Notice
nbar Notice
netflow Notice
om Notice
peer Notice
qos Notice
route-map Notice
sbc Notice
services Notice
sw_wdog Notice
tdl_acl_config_type Notice
tdl_acl_db_type Notice
tdl_cdlcore_message Notice
tdl_cef_config_common_type Notice
tdl_cef_config_type Notice
tdl_dpidb_config_type Notice
tdl_fman_rp_comm_type Notice
tdl_fman_rp_message Notice
tdl_fw_config_type Notice
tdl_hapi_tdl_type Notice
tdl_icmp_type Notice
tdl_ip_options_type Notice
tdl_ipc_ack_type Notice
tdl_IPsec_db_type Notice
tdl_mcp_comm_type Notice
tdl_mlp_config_type Notice
tdl_mlp_db_type Notice
tdl_om_type Notice
tdl_ui_message Notice
tdl_ui_type Notice
tdl_urpf_config_type Notice
tdllib Notice
trans_avl Notice
uihandler Notice
uipeer Notice
uistatus Notice
urpf Notice
vista Notice
wccp Notice

Setting a Tracing Level
To set a tracing level for a module on a router, or for all the modules within a process on a router, enter the
set platform software trace command in the privileged EXEC mode or diagnostic mode.

The following example shows the tracing level for the ACL module in the Forwarding Manager of the ESP
processor in slot 0 set to info:
set platform software trace forwarding-manager F0 acl info

Viewing the Content of the Trace Buffer
To view the trace messages in the trace buffer or file, enter the show logging process command in privileged
EXEC or diagnostic mode. In the following example, the trace messages for the Host Manager process in
Route Processor slot 0 are viewed using the show logging process command:

Trace Management
7

Trace Management
Setting a Tracing Level

Router# show logging process host-manager R0
08/23 12:09:14.408 [uipeer]: (info): Looking for a ui_req msg
08/23 12:09:14.408 [uipeer]: (info): Start of request handling for con 0x100a61c8
08/23 12:09:14.399 [uipeer]: (info): Accepted connection for 14 as 0x100a61c8
08/23 12:09:14.399 [uipeer]: (info): Received new connection 0x100a61c8 on descriptor 14
08/23 12:09:14.398 [uipeer]: (info): Accepting command connection on listen fd 7
08/23 11:53:57.440 [uipeer]: (info): Going to send a status update to the shell manager in
slot 0
08/23 11:53:47.417 [uipeer]: (info): Going to send a status update to the shell manager in
slot 0

Example: Using Packet Trace
This example provides a scenario in which packet trace is used to troubleshoot packet drops for a NAT
configuration on a Cisco ASR 1006 Router. This example shows how you can effectively utilize the level of
detail provided by the Packet-Trace feature to gather information about an issue, isolate the issue, and then
find a solution.

In this scenario, you can detect that there are issues, but are not sure where to start troubleshooting. You
should, therefore, consider accessing the Packet-Trace summary for a number of incoming packets.

Router# debug platform condition ingress
Router# debug platform packet-trace packet 2048 summary-only
Router# debug platform condition start
Router# debug platform condition stop
Router# show platform packet-trace summary
Pkt Input Output State Reason
0 Gi0/0/0 Gi0/0/0 DROP 402 (NoStatsUpdate)
1 internal0/0/rp:0 internal0/0/rp:0 PUNT 21 (RP<->QFP keepalive)
2 internal0/0/recycle:0 Gi0/0/0 FWD

The output shows that packets are dropped due to NAT configuration on Gigabit Ethernet interface 0/0/0,
which enables you to understand that an issue is occurring on a specific interface. Using this information, you
can limit which packets to trace, reduce the number of packets for data capture, and increase the level of
inspection.

Router# debug platform packet-trace packet 256
Router# debug platform packet-trace punt
Router# debug platform condition interface Gi0/0/0
Router# debug platform condition start
Router# debug platform condition stop
Router# show platform packet-trace summary
Router# show platform packet-trace 15
Packet: 15 CBUG ID: 238
Summary
Input : GigabitEthernet0/0/0
Output : internal0/0/rp:1
State : PUNT 55 (For-us control)
Timestamp
Start : 1166288346725 ns (06/06/2016 09:09:42.202734 UTC)
Stop : 1166288383210 ns (06/06/2016 09:09:42.202770 UTC)

Path Trace
Feature: IPV4
Input : GigabitEthernet0/0/0
Output : <unknown>
Source : 10.64.68.3
Destination : 224.0.0.102
Protocol : 17 (UDP)

Trace Management
8

Trace Management
Example: Using Packet Trace

SrcPort : 1985
DstPort : 1985

IOSd Path Flow: Packet: 15 CBUG ID: 238
Feature: INFRA
Pkt Direction: IN
Packet Rcvd From CPP

Feature: IP
Pkt Direction: IN
Source : 10.64.68.122
Destination : 10.64.68.255

Feature: IP
Pkt Direction: IN
Packet Enqueued in IP layer
Source : 10.64.68.122
Destination : 10.64.68.255
Interface : GigabitEthernet0/0/0

Feature: UDP
Pkt Direction: IN
src : 10.64.68.122(1053)
dst : 10.64.68.255(1947)
length : 48

Router#show platform packet-trace packet 10
Packet: 10 CBUG ID: 10
Summary
Input : GigabitEthernet0/0/0
Output : internal0/0/rp:0
State : PUNT 55 (For-us control)
Timestamp
Start : 274777907351 ns (01/10/2020 10:56:47.918494 UTC)
Stop : 274777922664 ns (01/10/2020 10:56:47.918509 UTC)

Path Trace
Feature: IPV4(Input)
Input : GigabitEthernet0/0/0
Output : <unknown>
Source : 10.78.106.2
Destination : 224.0.0.102
Protocol : 17 (UDP)
SrcPort : 1985
DstPort : 1985

IOSd Path Flow: Packet: 10 CBUG ID: 10
Feature: INFRA
Pkt Direction: IN

Packet Rcvd From DATAPLANE
Feature: IP

Pkt Direction: IN
Packet Enqueued in IP layer
Source : 10.78.106.2
Destination : 224.0.0.102
Interface : GigabitEthernet0/0/0

Feature: UDP
Pkt Direction: IN DROP
Pkt : DROPPED
UDP: Discarding silently
src : 881 10.78.106.2(1985)
dst : 224.0.0.102(1985)
length : 60

Router#show platform packet-trace packet 12
Packet: 12 CBUG ID: 767
Summary
Input : GigabitEthernet3

Trace Management
9

Trace Management
Example: Using Packet Trace

Output : internal0/0/rp:0
State : PUNT 11 (For-us data)
Timestamp
Start : 16120990774814 ns (01/20/2020 12:38:02.816435 UTC)
Stop : 16120990801840 ns (01/20/2020 12:38:02.816462 UTC)

Path Trace
Feature: IPV4(Input)
Input : GigabitEthernet3
Output : <unknown>
Source : 12.1.1.1
Destination : 12.1.1.2
Protocol : 6 (TCP)
SrcPort : 46593
DstPort : 23

IOSd Path Flow: Packet: 12 CBUG ID: 767
Feature: INFRA
Pkt Direction: IN
Packet Rcvd From DATAPLANE

Feature: IP
Pkt Direction: IN
Packet Enqueued in IP layer
Source : 12.1.1.1
Destination : 12.1.1.2
Interface : GigabitEthernet3

Feature: IP
Pkt Direction: IN
FORWARDEDTo transport layer
Source : 12.1.1.1
Destination : 12.1.1.2
Interface : GigabitEthernet3

Feature: TCP
Pkt Direction: IN
tcp0: I NoTCB 12.1.1.1:46593 12.1.1.2:23 seq 1925377975 OPTS 4 SYN WIN 4128

Router# show platform packet-trace summary
Pkt Input Output State Reason
0 INJ.2 Gi1 FWD
1 Gi1 internal0/0/rp:0 PUNT 11 (For-us data)
2 INJ.2 Gi1 FWD
3 Gi1 internal0/0/rp:0 PUNT 11 (For-us data)
4 INJ.2 Gi1 FWD
5 INJ.2 Gi1 FWD
6 Gi1 internal0/0/rp:0 PUNT 11 (For-us data)
7 Gi1 internal0/0/rp:0 PUNT 11 (For-us data)
8 Gi1 internal0/0/rp:0 PUNT 11 (For-us data)
9 Gi1 internal0/0/rp:0 PUNT 11 (For-us data)
10 INJ.2 Gi1 FWD
11 INJ.2 Gi1 FWD
12 INJ.2 Gi1 FWD
13 Gi1 internal0/0/rp:0 PUNT 11 (For-us data)
14 Gi1 internal0/0/rp:0 PUNT 11 (For-us data)
15 Gi1 internal0/0/rp:0 PUNT 11 (For-us data)
16 INJ.2 Gi1 FWD

The following example displays the packet trace data statistics.
Router#show platform packet-trace statistics
Packets Summary
Matched 3
Traced 3

Packets Received
Ingress 0

Trace Management
10

Trace Management
Example: Using Packet Trace

Inject 0
Packets Processed
Forward 0
Punt 3
Count Code Cause
3 56 RP injected for-us control

Drop 0
Consume 0

PKT_DIR_IN
Dropped Consumed Forwarded

INFRA 0 0 0
TCP 0 0 0
UDP 0 0 0
IP 0 0 0
IPV6 0 0 0
ARP 0 0 0

PKT_DIR_OUT
Dropped Consumed Forwarded

INFRA 0 0 0
TCP 0 0 0
UDP 0 0 0
IP 0 0 0
IPV6 0 0 0
ARP 0 0 0

The following example displays packets that are injected and punted to the forwarding processor from the
control plane.
Router#debug platform condition ipv4 10.118.74.53/32 both
Router#Router#debug platform condition start
Router#debug platform packet-trace packet 200
Packet count rounded up from 200 to 256

Router#show platform packet-tracer packet 0
show plat pack pa 0
Packet: 0 CBUG ID: 674
Summary
Input : GigabitEthernet1
Output : internal0/0/rp:0
State : PUNT 11 (For-us data)
Timestamp
Start : 17756544435656 ns (06/29/2020 18:19:17.326313 UTC)
Stop : 17756544469451 ns (06/29/2020 18:19:17.326346 UTC)

Path Trace
Feature: IPV4(Input)
Input : GigabitEthernet1
Output : <unknown>
Source : 10.118.74.53
Destination : 198.51.100.38
Protocol : 17 (UDP)
SrcPort : 2640
DstPort : 500

IOSd Path Flow: Packet: 0 CBUG ID: 674
Feature: INFRA
Pkt Direction: IN
Packet Rcvd From DATAPLANE

Feature: IP
Pkt Direction: IN
Packet Enqueued in IP layer
Source : 10.118.74.53

Trace Management
11

Trace Management
Example: Using Packet Trace

Destination : 198.51.100.38
Interface : GigabitEthernet1

Feature: IP
Pkt Direction: IN
FORWARDED To transport layer
Source : 10.118.74.53
Destination : 198.51.100.38
Interface : GigabitEthernet1

Feature: UDP
Pkt Direction: IN
DROPPED
UDP: Checksum error: dropping
Source : 10.118.74.53(2640)
Destination : 198.51.100.38(500)

Router#show platform packet-tracer packet 2
Packet: 2 CBUG ID: 2

IOSd Path Flow:
Feature: TCP
Pkt Direction: OUTtcp0: O SYNRCVD 198.51.100.38:22 198.51.100.55:52774 seq 3052140910

OPTS 4 ACK 2346709419 SYN WIN 4128

Feature: TCP
Pkt Direction: OUT
FORWARDED
TCP: Connection is in SYNRCVD state
ACK : 2346709419
SEQ : 3052140910
Source : 198.51.100.38(22)
Destination : 198.51.100.55(52774)

Feature: IP
Pkt Direction: OUTRoute out the generated packet.srcaddr: 198.51.100.38, dstaddr:

198.51.100.55

Feature: IP
Pkt Direction: OUTInject and forward successful srcaddr: 198.51.100.38, dstaddr:

198.51.100.55

Feature: TCP
Pkt Direction: OUTtcp0: O SYNRCVD 198.51.100.38:22 198.51.100.55:52774 seq 3052140910

OPTS 4 ACK 2346709419 SYN WIN 4128
Summary
Input : INJ.2
Output : GigabitEthernet1
State : FWD
Timestamp
Start : 490928006866 ns (06/29/2020 13:31:30.807879 UTC)
Stop : 490928038567 ns (06/29/2020 13:31:30.807911 UTC)

Path Trace
Feature: IPV4(Input)
Input : internal0/0/rp:0
Output : <unknown>
Source : 172.18.124.38
Destination : 172.18.124.55
Protocol : 6 (TCP)
SrcPort : 22
DstPort : 52774

Feature: IPSec
Result : IPSEC_RESULT_DENY

Trace Management
12

Trace Management
Example: Using Packet Trace

Action : SEND_CLEAR
SA Handle : 0
Peer Addr : 55.124.18.172
Local Addr: 38.124.18.172

Router#

Trace Management
13

Trace Management
Example: Using Packet Trace

Trace Management
14

Trace Management
Example: Using Packet Trace

	Trace Management
	Tracing Overview
	How Tracing Works
	Configuring Packet Tracer with UDF Offset

	Tracing Levels
	Viewing a Tracing Level
	Setting a Tracing Level
	Viewing the Content of the Trace Buffer
	Example: Using Packet Trace

