CONTENTS

CHAPTER 1
Configuring Multi Router Automatic Protection Switching 1
 Finding Feature Information 1
 Restrictions for MR-APS 1
 Information About MR-APS 2
 Configuring MR-APS with HSPW-ICRM on a CEM interface 4
 Verifying MR-APS 8
 Configuration Examples for MR-APS 15
 Configuring MR-APS on a POS interface 17
 Configuring working node for POS MR-APS 17
 Configuring protect node for POS MR-APS 20
 Verifying MR-APS on POS interface 23
 Configuration Examples for MR-APS on POS interface 25

CHAPTER 2
Hot Standby Pseudowire Support for ATM and TDM Access Circuits 27
 Finding Feature Information 27
 Prerequisites for Hot Standby Pseudowire Support for ATM and TDM Access Circuits 28
 Restrictions for Hot Standby Pseudowire Support for ATM and TDM Access Circuits 28
 Information About Hot Standby Pseudowire Support for ATM and TDM Access Circuits 28
 How the Hot Standby Pseudowire Support for ATM and TDM Access Circuits Feature Works 28
 Supported Transport Types 29
 How to Configure Hot Standby Pseudowire Support for ATM and TDM Access Circuits 29
 Configuring a Pseudowire for Static VPLS 29
 Configuring Hot Standby Pseudowire Support for ATM and TDM Access Circuits 32
 Verifying the Hot Standby Pseudowire Support for ATM and TDM Access Circuits Configuration 33
 Configuration Examples for Hot Standby Pseudowire Support for ATM and TDM Access Circuits 34
Configuring Hot Standby Pseudowire Support for ATM and TDM Access Circuits on CEM Circuits

Example

Additional References

CHAPTER 3

Configuring Pseudowire Group Message Generation
39

- Pseudowire Group Message Generation
- Prerequisites for Pseudowire Group Message Generation
- Restrictions for Pseudowire Group Message Generation
- Information About Pseudowire Group Message Generation
- Multisegment Pseudowire
- Configuring Pseudowire Group Message Generation
- Example for Configuring Pseudowire Group Message
- Verifying a Pseudowire Group Message Configuration

CHAPTER 4

PPP and Multilink PPP Configuration
43

- Limitations
- PPP and Multilink PPP
- Point-to-Point Protocol
- CHAP or PPP Authentication
- IP Address Pooling
- Peer Address Allocation
- Precedence Rules
- MLP on Synchronous Serial Interfaces
- How to Configure PPP
- Enabling PPP Encapsulation
- Enabling CHAP or PAP Authentication
- Configuring IP Address Pooling
- Global Default Address Pooling Mechanism
- Defining DHCP as the Global Default Mechanism
- Defining Local Address Pooling as the Global Default Mechanism
- Controlling DHCP Network Discovery
- Configuring IP Address Assignment
- Disabling or Reenabling Peer Neighbor Routes
- Configuring Multilink PPP

Time Division Multiplexing Configuration Guide, Cisco IOS XE Release 3S (Cisco ASR 920 Series)
Configuring MLP on Synchronous Interfaces 56
Configuring a Multilink Group 57
Configuring PFC and ACFC 59
Changing the Default Endpoint Discriminator 61
Creating a Multilink Bundle 62
Assigning an Interface to a Multilink Bundle 63
Configuring PPP/MLP MRRU Negotiation Configuration on Multilink Groups 65
Monitoring and Maintaining PPP and MLP Interfaces 68

CHAPTER 5

Configuring VCoP Smart SFP 69
Features of VCoP Smart SFP 69
Benefits of VCoP Smart SFP 69
Prerequisites 70
Restrictions 71
Alarms on VCoP Smart SFP 71
Configuring VCoP Smart SFP 71
 Configuring VCoP Smart SFP on OC-3 71
 Enabling VCoP Smart SFP on OC-3 71
 Configuring Framing for CEM Circuits for STS-1 on OC-3 72
 Configuring CEM Circuits on VCoP for STS-3c on OC-3 72
 Configuring Cross-connect for STS-1 on OC-3 72
 Configuring Cross-connect for STS-3C on OC-3 72
 Verifying VCoP Smart SFP Configuration for STS-1 on OC-3 73
 Verifying VCoP Smart SFP Configuration for STS-3C on OC-3 74
Configuring VCoP Smart SFP on OC-12 75
 Enabling VCoP Smart SFP on OC-12 75
 Configuring Framing for CEM Circuits for STS-1 on OC-12 75
 Configuring CEM Circuits on VCoP for STS-12C on OC-12 76
 Configuring Cross-connect for STS-1 on OC-12 76
 Configuring Cross-connect for STS-12C on OC-12 77
 Verifying VCoP Smart SFP Configuration for STS-1 on OC-12 77
 Verifying VCoP Smart SFP Configuration for STS-12C on OC-12 78
Performance Monitoring 80
 Performance Monitoring and Overhead Bytes 80
CHAPTER 1

Configuring Multi Router Automatic Protection Switching

The Multi Router Automatic Protection Switching (MR-APS) integration with hot standby pseudowire (HSPW) feature is a protection mechanism for Synchronous Optical Network (SONET) networks that enables SONET connections to switch to another SONET circuit when a circuit failure occurs. A protect interface serves as the backup interface for the working interface. When the working interface fails, the protect interface quickly assumes its traffic load.

- Finding Feature Information, on page 1
- Restrictions for MR-APS, on page 1
- Information About MR-APS, on page 2
- Configuring MR-APS with HSPW-ICRM on a CEM interface, on page 4
- Configuring MR-APS on a POS interface, on page 17

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Restrictions for MR-APS

- Asynchronous Transfer Mode (ATM) port mode is not supported.
- An APS group number must be greater than zero.
- Revertive APS mode on the Circuit Emulation (CEM) interface is not supported.
- Starting with Cisco IOS XE Release 3.15, CEM MR-APS switchover does not occur on an RP SSO.
- HSPW group number other than the redundancy interchassis group number is not supported.
• Do not configure the backup delay value command if the MR-APS integration with HSPW feature is configured.

• Unconfiguring the mpls ip command on the core interface is not supported.

• The hspw force switch command is not supported.

• In redundancy configuration, the commands related to MR-APS feature are only supported.

• When you enable MRAPS 1+1 unidirectional mode, the PW status does not change for ASR 903 routers. But, the same behavior is not seen for ASR 901 routers. To overcome this issue, reload the ASR 901 router.

• Ensure to have both ASR 903 and ASR 901 routers configured with unidirectional configuration mode for MRAPS 1+1, else it results in a traffic drop.

Information About MR-APS

This feature enables interface connections to switch from one circuit to another if a circuit fails. Interfaces can be switched in response to a router failure, degradation or loss of channel signal, or manual intervention. In a multi router environment, the MR-APS allows the protected SONET interface to reside in a different router from the working SONET interface.

Service providers are migrating to ethernet networks from their existing SONET or SDH equipment to reduce cost. Any transport over MPLS (AToM) PWs help service providers to maintain their investment in time division multiplexing (TDM) network and change only the core from SONET or SDH to ethernet. When the service providers move from SONET or SDH to ethernet, network availability is always a concern. Therefore, to enhance the network availability, service providers use PWs.

The HSPW support for TDM access circuits (ACs) allow the backup PW to be in a hot-standby state, so that it can immediately take over if the primary PW fails. The present HSPW solution does not support ACs as part of the APS group. The PWs which are configured over the protected interface, remain in the standby state. MR-APS integration with an HSPW is an integration of APS with CEM TDM HSPW and improves the switchover time.

For more information on APS, see the Automatic Protection Switching Configuration.

In the example below, routers P1 and PE1 are in the same APS group G1, and routers P2 and PE2 are in the same APS group G2. In group G1, P1 is the working router and PE1 is the protected router. Similarly in group G2, P2 is the working router and PE2 is the protected router.

The MR-APS integration with HSPW deployment involves cell sites connected to the provider network using bundled T1/E1 connections. These T1/E1 connections are aggregated into the optical carrier 3 (OC3) link using the add-drop multiplexers (ADM)s.
Failover Operations

MR-APS integration with HSPW feature handles the following failures:

- Failure 1, where the link between ADM and P1 goes down, or the connecting ports at ADM or P1 go down.
- Failure 2, where the router P1 fails.
- Failure 3, where the router P1 is isolated from the core.

In case of failure 1, where either port at the ADM goes down, or the port at the router goes down, or the link between ADM and router fails, the APS switchover triggers the pseudowires at the protect interface to become active. The same applies to failure 2 as well where the complete router fails over.

In case of failure 3, where all the links carrying primary and backup traffic lose the connection, a new client is added to the inter chassis redundancy manager (ICRM) infrastructure to handle the core isolation. The client listens to the events from the ICRM. Upon receiving the core isolation event from the ICRM, the client either initiates the APS switchover, or initiates the alarm based on the peer core isolation state. If APS switchover occurs, it changes the APS inactive interface to active and hence activates the PWs at the interface. Similarly, when core connectivity goes up based upon the peer core isolation state, it clears the alarms or triggers the
APS switchover. The ICRM monitors the directly connected interfaces only. Hence only those failures in the directly connected interfaces can cause a core isolation event.

Figure 3: MR-APS Integration on a POS interface

Configuring MR-APS with HSPW-ICRM on a CEM interface

To configure MR-APS integration with HSPW-ICRM on a CEM interface, complete the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. pseudowire-class *pw-class-name*
4. encapsulation mpls
5. status peer topology dual-homed
6. exit
7. redundancy
8. interchassis group *group-id*
9. member ip *ip-address*
10. backbone interface *slot/bay/port*
11. exit
12. controller SONET *slot/bay/port*
13. framing [SDH | SONET]
14. clock source line
15. sts-1 *sts1-number*
16. mode vt-15
17. vtg vtg_number t1 t1_line_number cem-group *group-number* timeslots time-slot-range
18. exit
19. aps group *group_id*
20. aps [working | protect] *aps-group-number*
21. aps hspw-icrm-grp *group-number*
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.
Example:
Router> `enable`
- Enter your password if prompted. |
| 2 | `configure terminal` | Enters global configuration mode.
Example:
Router# `configure terminal` |
| 3 | `pseudowire-class pw-class-name` | Specifies the name of a PW class and enters PW class configuration mode.
Example:
Router(config)# `pseudowire-class hspw_aps` |
| 4 | `encapsulation mpls` | Specifies that MPLS is used as the data encapsulation method for tunneling Layer 2 traffic over the PW.
Example:
Router(config-pw-class)# `encapsulation mpls` |
| 5 | `status peer topology dual-homed` | Enables the reflection of the attachment circuit status on both the primary and secondary PWs. This configuration is necessary if the peer PEs are connected to a dual-homed device.
Example:
Router(config-pw-class)# `status peer topology dual-homed` |
| 6 | `exit` | Exits PW class configuration mode.
Example:
Router(config-pw-class)# `exit` |
| 7 | `redundancy` | Enters the redundancy configuration mode.
Example:
Router(config)# `redundancy` |
| 8 | `interchassis group group-id` | Configures an interchassis group within the redundancy configuration mode and enters the interchassis redundancy mode.
Example:
Router(config-red)# `interchassis group 50` |
| 9 | `member ip ip-address` | Configures the IP address of the peer member group.
Example:
Router(config-r-ic)# `member ip 60.60.60.2` |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10 backbone interface slot/bay/port</td>
<td>Specifies the backbone interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-r-ic)# backbone interface GigabitEthernet 0/3</td>
<td></td>
</tr>
<tr>
<td>Step 11 exit</td>
<td>Exits the redundancy mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-r-ic)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 12 controller SONET slot/bay/port</td>
<td>Selects and configures a SONET controller and enters controller configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# controller SONET 0/5/2</td>
<td></td>
</tr>
<tr>
<td>Step 13 framing [SDH</td>
<td>SONET]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# framing SONET</td>
<td></td>
</tr>
<tr>
<td>Step 14 clock source line</td>
<td>Sets the clocking for individual T1 or E1 links.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# clock source line</td>
<td></td>
</tr>
<tr>
<td>Step 15 sts-1 sts1-number</td>
<td>Specifies the STS identifier.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# sts-1 1</td>
<td></td>
</tr>
<tr>
<td>Step 16 mode vt-15</td>
<td>Specifies the STS-1 mode of operation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrlr-sts1)# mode vt-15</td>
<td></td>
</tr>
<tr>
<td>Step 17 vtg vtg_number tl t1_line_number cem-group group-number timeslots time-slot-range</td>
<td>Creates a Circuit Emulation Services over Packet Switched Network circuit emulation (CESoPSN) CEM group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrlr-sts1)# vtg 1 tl 1 cem-group 0 timeslots 1-24</td>
<td></td>
</tr>
<tr>
<td>• vtg—Specifies the VTG number from 1-7.</td>
<td></td>
</tr>
<tr>
<td>• t1—Specifies the T1 line.</td>
<td></td>
</tr>
<tr>
<td>• t1_line_number—Specifies the T1 line number.</td>
<td></td>
</tr>
<tr>
<td>• cem-group—Creates a circuit emulation (CEM) channel from one or more time slots of a T1 line.</td>
<td></td>
</tr>
<tr>
<td>• group-number—CEM identifier to be used for this group of time slots. For T1 ports, the range is from 0 to 23.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **timeslots**—Specifies that a list of time slots is to be used as specified by the **time-slot-range** argument.
time-slot-range—Specifies the time slots to be included in the CEM channel. The list of time slots may include commas and hyphens without spaces between the numbers. |
| **exit** | Exits from the STS configuration mode. |
| **aps group group_id** | Configures the APS group for CEM. |
| **aps [working | protect] aps-group-number** | Configures the APS group as working or protect interface.
Note For MR-APS, one router must be configured as aps working 1 and the other router must be configured as aps protect 1. |
| **aps hspw-icrm-grp group-number** | Associates the APS group to an ICRM group number. |
| **interface cem slot/bay/port** | Configures a serial interface and enters the interface configuration mode
slot—Chassis slot number, which is always 0.
port—Port or interface number. The range is from 0 to 7 for Gigabit Ethernet. |
| **cem group-number** | Selects the CEM circuit (group) to configure a PW for. |
| **xconnect peer-ip-address vcid pw-class pw-class-name** | Specifies the IP address of the peer PE router and the 32-bit virtual circuit identifier shared between the PEs at each end of the control channel.
peer-ip-address—IP address of the remote provider edge (PE) peer. The remote router ID can be any IP address, as long as it is reachable. |

Step 18

Example:

Router(config-ctrlr-sts1)# **exit**

Step 19

Example:

Router(config-controller)# **aps group 1**

Step 20

Example:

Router(config-controller)# **aps working 1**

Step 21

Example:

Router(config-controller)# **aps hspw-icrm-group 1**

Step 22

Example:

Router(config-controller)# **exit**

Step 23

Example:

Router(config)# **interface cem 0/5/2**

Step 24

Example:

Router(config-if)# **cem 0**

Step 25

Example:

Router(config-if-srv)# **xconnect 3.3.3.3 1 pw-class hspw_aps**
Verifying MR-APS

- Use the `show cem circuit` [cem-group-id | interface {CEM | Virtual-CEM} slot/subslot/port cem-group-id | detail | summary] command to display CEM statistics for the configured CEM circuits. If `xconnect` is configured under the circuit, the command output also includes information about the attached circuit.

Following is a sample output of the `show cem circuit` command to display the detailed information about CEM circuits configured on the router:

```bash
Router# show cem circuit

CEM Int. | ID | Ctrlr | Admin | Circuit | AC
---------|----|-------|-------|---------|-------
CEM0/2   | 1  | UP    | UP    | Active  | UP    
CEM0/2   | 2  | UP    | UP    | Active  | UP    
CEM0/2   | 3  | UP    | UP    | Active  | UP    
CEM0/2   | 83 | UP    | UP    | Active  | UP    
CEM0/2   | 84 | UP    | UP    | Active  | UP    
```

Following is a sample output of the `show cem circuit0-504` command to display the detailed information about that particular circuit:

```bash
Router# show cem circuit 1

CEM Int. | ID | Ctrlr | Admin | Circuit | AC
---------|----|-------|-------|---------|-------
CEM0/2   | 1  | UP    | UP    | Active  | UP    
CEM0/2   | 2  | UP    | UP    | Active  | UP    
CEM0/2   | 3  | UP    | UP    | Active  | UP    
CEM0/2   | 83 | UP    | UP    | Active  | UP    
CEM0/2   | 84 | UP    | UP    | Active  | UP    
```
CEM0/2, ID: 1, Line: UP, Admin: UP, Ckt: ACTIVE Controller state: up, T1/E1 state: up Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 192
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 151066 Dropped: 0
Egress Pkts: 151066 Dropped: 0

• Use the **show mpls ldp neighbor** command to display the status of Label Distribution Protocol (LDP) sessions:

  ```
  Router# show mpls ldp neighbor
  ```

Peer LDP Ident: 17.3.3.3:0; Local LDP Ident 17.1.1.1:0
TCP connection: 17.3.3.3.13282 - 17.1.1.1.646
State: Oper; Msgs sent/rcvd: 466/209; Downstream
Up time: 00:23:50
LDP discovery sources:
 GigabitEthernet0/0, Src IP addr: 11.11.11.2
 Targeted Hello 17.1.1.1 -> 17.3.3.3, active, passive
Addresses bound to peer LDP Ident:
 70.70.70.1 22.22.22.2 17.3.3.3 11.11.11.2

Peer LDP Ident: 17.4.4.4:0; Local LDP Ident 17.1.1.1:0
TCP connection: 17.4.4.4.24248 - 17.1.1.1.646
State: Oper; Msgs sent/rcvd: 209/205; Downstream
Up time: 00:23:40
LDP discovery sources:
 GigabitEthernet0/4/2, Src IP addr: 33.33.33.2
 Targeted Hello 17.1.1.1 -> 17.4.4.4, active, passive
Addresses bound to peer LDP Ident:
 70.70.70.2 44.44.44.2 17.4.4.4 33.33.33.2

Peer LDP Ident: 17.2.2.2:0; Local LDP Ident 17.1.1.1:0
TCP connection: 17.2.2.2.32112 - 17.1.1.1.646
State: Oper; Msgs sent/rcvd: 45/44; Downstream
Up time: 00:23:38
LDP discovery sources:
 GigabitEthernet0/4, Src IP addr: 60.60.60.2
Addresses bound to peer LDP Ident:
 22.22.22.1 44.44.44.1 17.2.2.2 60.60.60.2

• Use the **show mpls l2 vc** command to display information related to a VC:
Router# show mpls l2 vc

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 1</td>
<td>17.3.3.3</td>
<td>1001</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 2</td>
<td>17.3.3.3</td>
<td>1002</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 3</td>
<td>17.3.3.3</td>
<td>1003</td>
<td>UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 19</td>
<td>17.3.3.3</td>
<td>1019</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 20</td>
<td>17.3.3.3</td>
<td>1020</td>
<td>UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 21</td>
<td>17.3.3.3</td>
<td>1021</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 22</td>
<td>17.3.3.3</td>
<td>1022</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 23</td>
<td>17.3.3.3</td>
<td>1023</td>
<td>UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 25</td>
<td>17.3.3.3</td>
<td>1025</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 43</td>
<td>17.3.3.3</td>
<td>1043</td>
<td>UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 44</td>
<td>17.3.3.3</td>
<td>1044</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 45</td>
<td>17.3.3.3</td>
<td>1045</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 46</td>
<td>17.3.3.3</td>
<td>1046</td>
<td>UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 65</td>
<td>17.3.3.3</td>
<td>1065</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 66</td>
<td>17.3.3.3</td>
<td>1066</td>
<td>UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 67</td>
<td>17.3.3.3</td>
<td>1067</td>
<td>UP</td>
</tr>
<tr>
<td>Local intf</td>
<td>Local circuit</td>
<td>Dest address</td>
<td>VC ID</td>
<td>Status</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 68</td>
<td>17.3.3.3</td>
<td>1068</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 69</td>
<td>17.3.3.3</td>
<td>1069</td>
<td>UP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 83</td>
<td>17.3.3.3</td>
<td>1083</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 84</td>
<td>17.3.3.3</td>
<td>1084</td>
<td>UP</td>
</tr>
<tr>
<td>STANDBY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 1</td>
<td>17.4.4.4</td>
<td>4001</td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 2</td>
<td>17.4.4.4</td>
<td>4002</td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 3</td>
<td>17.4.4.4</td>
<td>4003</td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 4</td>
<td>17.4.4.4</td>
<td>4004</td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 5</td>
<td>17.4.4.4</td>
<td>4005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 6</td>
<td>17.4.4.4</td>
<td>4006</td>
<td></td>
</tr>
<tr>
<td>STANDBY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 7</td>
<td>17.4.4.4</td>
<td>4007</td>
<td></td>
</tr>
<tr>
<td>STANDBY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 8</td>
<td>17.4.4.4</td>
<td>4008</td>
<td></td>
</tr>
<tr>
<td>STANDBY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 27</td>
<td>17.4.4.4</td>
<td>4027</td>
<td></td>
</tr>
<tr>
<td>STANDBY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 28</td>
<td>17.4.4.4</td>
<td>4028</td>
<td></td>
</tr>
<tr>
<td>STANDBY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 29</td>
<td>17.4.4.4</td>
<td>4029</td>
<td></td>
</tr>
<tr>
<td>STANDBY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 30</td>
<td>17.4.4.4</td>
<td>4030</td>
<td></td>
</tr>
<tr>
<td>STANDBY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2</td>
<td>SATOP T1 31</td>
<td>17.4.4.4</td>
<td>4031</td>
<td></td>
</tr>
<tr>
<td>STANDBY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local intf</td>
<td>Local circuit</td>
<td>Dest address</td>
<td>VC ID</td>
<td>Status</td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>CEM0/2 SATOP T1 50</td>
<td>17.4.4.4</td>
<td>4050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2 SATOP T1 51</td>
<td>17.4.4.4</td>
<td>4051</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM0/2 SATOP T1 52</td>
<td>17.4.4.4</td>
<td>4052</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2 SATOP T1 53</td>
<td>17.4.4.4</td>
<td>4053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2 SATOP T1 54</td>
<td>17.4.4.4</td>
<td>4054</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM0/2 SATOP T1 73</td>
<td>17.4.4.4</td>
<td>4073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2 SATOP T1 74</td>
<td>17.4.4.4</td>
<td>4074</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM0/2 SATOP T1 75</td>
<td>17.4.4.4</td>
<td>4075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2 SATOP T1 76</td>
<td>17.4.4.4</td>
<td>4076</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2 SATOP T1 77</td>
<td>17.4.4.4</td>
<td>4077</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM0/2 SATOP T1 83</td>
<td>17.4.4.4</td>
<td>4083</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEM0/2 SATOP T1 84</td>
<td>17.4.4.4</td>
<td>4084</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R-96-2011#sh cem circuit

<table>
<thead>
<tr>
<th>CEM Int.</th>
<th>ID</th>
<th>Ctrlr</th>
<th>Admin</th>
<th>Circuit</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM0/2</td>
<td>1</td>
<td>UP</td>
<td>UP</td>
<td>Active</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>2</td>
<td>UP</td>
<td>UP</td>
<td>Active</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/2</td>
<td>3</td>
<td>UP</td>
<td>UP</td>
<td>Active</td>
<td>UP</td>
</tr>
</tbody>
</table>

| CEM0/2 | 83 | UP | UP | Active | UP |
• Use the `show mpls l2 vc vc-id detail` command to display detailed information related to the VC:

```
Router# show mpls l2 vc 1001 detail
Local interface: CEM0/2 up, line protocol up, SATOP T1 1 up
  Destination address: 17.3.3.3, VC ID: 1001, VC status: up
  Output interface: Gi0/0, imposed label stack {42}
  Preferred path: not configured
  Default path: active
  Next hop: 11.11.11.2
  Create time: 00:26:04, last status change time: 00:03:36
  Last label FSM state change time: 00:23:00
  Signaling protocol: LDP, peer 17.3.3.3:0 up
  Targeted Hello: 17.1.1.1(LDP Id) -> 17.3.3.3, LDP is UP
  Graceful restart: configured and enabled
  Non stop routing: not configured and not enabled
  Status TLV support (local/remote) : enabled/supported
    LDP route watch : enabled
    Label/status state machine : established, LruRru
    Last local dataplane status rcvd: No fault
    Last BFD dataplane status rcvd: Not sent
    Last BFD peer monitor status rcvd: No fault
    Last local AC circuit status sent: No fault
    Last local AC circuit status sent: No fault
    Last local PW i/f circ status rcvd: No fault
    Last local LDP TLV status sent: No fault
    Last remote LDP TLV status rcvd: No fault
    Last remote LDP ADJ status rcvd: No fault
  MPLS VC labels: local 182, remote 42
  Group ID: local 0, remote 0
  MTU: local 0, remote 0
  Sequencing: receive disabled, send disabled
  Control Word: On (configured: autosense)
  SSO Descriptor: 17.3.3.3/1001, local label: 182
  Dataplane:
    SSM segment/switch IDs: 1278679/4262 (used), PWID: 1
  VC statistics:
    transit packet totals: receive 201616, send 201617
    transit byte totals: receive 41129664, send 40323400
    transit packet drops: receive 0, seq error 0, send 0
```

• Use the `show hspw-aps-icrm group group-id` command to display information about a specified HSPW APS group:

```
Router# show hspw-aps-icrm group 100
ICRM group id 100, Flags : My core isolated No,Peer core isolated No, State Connect
  APS Group id 1 hw_if_index 33 APS valid:Yes
  Total aps grp attached to ICRM group 100 is 1
```

• Use the `show hspw-aps-icrm all` command to display information about all HSPW APS and ICRM groups:

```
Router# show hspw-aps-icrm all
```
Verifying MR-APS

ICRM group id 100, Flags : My core isolated No, Peer core isolated No, State Connect

APS Group id 1 hw_if_index 33 APS valid: Yes
Total aps grp attached to ICRM group 100 is 1 ICRM group count attached to MR-APS HSPW feature is 1

- Use the `show redundancy interchassis` command to display information about interchassis redundancy group configuration:

```bash
Router# show redundancy interchassis
```

Redundancy Group 100 (0x64)
Applications connected: MR-APS with HSPW
Monitor mode: RW
member ip: 60.60.60.2 "R-222-2028", CONNECTED
Route-watch for 60.60.60.2 is UP
MR-APS with HSPW state: CONNECTED
backbone int GigabitEthernet0/0: UP (IP)
backbone int GigabitEthernet0/2: UP (IP)

ICRM fast-failure detection neighbor table
<table>
<thead>
<tr>
<th>IP Address</th>
<th>Status</th>
<th>Type</th>
<th>Next-hop IP</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.60.60.2</td>
<td>UP</td>
<td>RW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Use the `show aps` command to display information about the current APS feature:

```bash
Router# show aps
```

SONET 0/2 APS Group 1: working channel 1 (Active) (HA)
Protect at 60.60.60.2
PGP timers (from protect): hello time=1; hold time=10
SONET framing
Remote APS configuration: (null)

- Use the `show xconnect all` command to display information about all Cross–Connect attachment circuits and PWs:

```bash
Router# show xconnect all
```

Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
UP=Up DN=Down AD=Admin Down IA=Inactive SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware

XC ST Segment 1 S1 Segment 2
| S2 +-----------------+-----------------+-----------------+-----------------+-----------------|
UP pri ac CEM0/2:1(SATOP T1)	UP mpls 17.3.3.3:1001
IA sec ac CEM0/2:1(SATOP T1)	UP mpls 17.4.4.4:4001
UP pri ac CEM0/2:10(SATOP T1)	UP mpls 17.3.3.3:1010
IA sec ac CEM0/2:10(SATOP T1)	UP mpls 17.4.4.4:4010

!
Configuration Examples for MR-APS

The following example shows how to configure the MR-APS integration with HSPW on a CEM interface on the working router with framing mode as SONET on router P1:

RouterP1> enable
RouterP1# configure terminal
RouterP1(config)# pseudowire-class hspw_aps
RouterP1(config-pw-class)# encapsulation mpls
RouterP1(config-pw-class)# status peer topology dual-homed
RouterP1(config-pw-class)# exit
RouterP1(config)# redundancy
RouterP1(config-red)# interchassis group 1
RouterP1(config-red)# member ip 14.2.0.2
RouterP1(config-red)# backbone interface GigabitEthernet 0/0
RouterP1(config-red)# backbone interface GigabitEthernet 0/1
RouterP1(config-red)# exit
RouterP1(config)# controller SONET 0/0
RouterP1(config-controller)# framing sonet
RouterP1(config-controller)# clock source line
RouterP1(config-controller)# sts-1 1
RouterP1(config-controller)# mode vt-15
RouterP1(config-controller)# vtg 1 t1 1 cem-group 0 timeslots 1-24
RouterP1(config-controller)# aps group 3
RouterP1(config-controller)# aps working 1
RouterP1(config-controller)# aps hspw-icrm-grp 1
RouterP1(config-controller)# exit
RouterP1(config)# interface cem 0/0
RouterP1(config-if)# cem 0
RouterP1(config-if)# xconnect 3.3.3.3 1 encapsulation mpls pw-class hspw_aps
RouterP1(config-if)# backup peer 4.4.4.4 2 pw-class hspw_aps
RouterP1(config-if)# exit
RouterP1(config)# end

The following example shows how to configure the MR-APS integration with HSPW on a CEM interface on the protect router with framing mode as SONET on router PE1:

RouterPE1> enable
RouterPE1# configure terminal
RouterPE1(config)# pseudowire-class hspw_aps
RouterPE1(config-pw-class)# encapsulation mpls
RouterPE1(config-pw-class)# status peer topology dual-homed
RouterPE1(config-pw-class)# exit
RouterPE1(config)# redundancy
RouterPE1(config-red)# interchassis group 1
RouterPE1(config-red)# member ip 14.2.0.1
RouterPE1(config-red)# backbone interface GigabitEthernet 0/0
RouterPE1(config-red)# backbone interface GigabitEthernet 0/1
RouterPE1(config-red)# exit
RouterPE1(config)# controller SONET 0/0

Time Division Multiplexing Configuration Guide, Cisco IOS XE Release 3S (Cisco ASR 920 Series)
RouterPE1(config-controller)# framing sonet
RouterPE1(config-controller)# clock source line
RouterPE1(config-controller)# sts-1 1
RouterPE1(config-ctrlr-sts1)# mode vt-15
RouterPE1(config-ctrlr-sts1)# vtg 1 t1 1 cem-group 0 timeslots 1-24
RouterPE1(config-ctrlr-sts1)# exit
RouterPE1(config-controller)# aps group 3
RouterPE1(config-controller)# aps protect 1 14.2.0.2
RouterPE1(config-controller)# aps hspw-icrm-grp 1
RouterPE1(config-controller)# exit
RouterPE1(config)# interface cem 0/0
RouterPE1(config-if)# cem 0
RouterPE1(config-if)# xconnect 3.3.3.3 3 pw-class hspw_aps
RouterPE1(config-if)# backup peer 4.4.4.4 4 pw-class hspw_aps
RouterPE1(config-if)# exit
RouterPE1(config)# end

The following example shows how to configure the MR-APS integration with HSPW on a CEM interface on the working router with framing mode as SONET on router P2:

RouterP2> enable
RouterP2# configure terminal
RouterP2(config)# pseudowire-class hspw_aps
RouterP2(config-pw-class)# encapsulation mpls
RouterP2(config-pw-class)# status peer topology dual-homed
RouterP2(config-pw-class)# exit
RouterP2(config)# redundancy
RouterP2(config-red)# interchassis group 1
RouterP2(config-red-ic)# member ip 14.6.0.2
RouterP2(config-red-ic)# backbone interface GigabitEthernet 0/0
RouterP2(config-red-ic)# backbone interface GigabitEthernet 0/1
RouterP2(config-red-ic)# exit
RouterP2(config)# controller SONET 0/0
RouterP2(config-controller)# framing sonet
RouterP2(config-controller)# clock source line
RouterP2(config-controller)# sts-1 1
RouterP2(config-ctrlr-sts1)# mode vt-15
RouterP2(config-ctrlr-sts1)# vtg 1 t1 1 cem-group 0 timeslots 1-24
RouterP2(config-ctrlr-sts1)# exit
RouterP2(config-controller)# aps group 3
RouterP2(config-controller)# aps working 1
RouterP2(config-controller)# aps hspw-icrm-grp 1
RouterP2(config-controller)# exit
RouterP2(config)# interface cem 0/0
RouterP2(config-if)# cem 0
RouterP2(config-if)# xconnect 1.1.1.1 1 encapsulation mpls pw-class hspw_aps
RouterP2(config-if)# backup peer 2.2.2.2 3 pw-class hspw_aps
RouterP2(config-if)# exit
RouterP2(config)# end

The following example shows how to configure the MR-APS Integration with HSPW on a CEM interface on the protect router with framing mode as SONET on router PE2:

RouterPE2> enable
RouterPE2# configure terminal
RouterPE2(config)# pseudowire-class hspw_aps
RouterPE2(config-pw-class)# encapsulation mpls
RouterPE2(config-pw-class)# status peer topology dual-homed
RouterPE2(config-pw-class)# exit
RouterPE2(config)# redundancy
RouterPE2(config-red)# interchassis group 1
RouterPE2(config-red-ic)# member ip 14.6.0.1
RouterPE2(config-red-ic)# backbone interface GigabitEthernet 0/0
RouterPE2(config-red-ic)# backbone interface GigabitEthernet 0/1
RouterPE2(config-red-ic)# exit
Configuring MR-APS on a POS interface

The following section shows how to configure the MR-APS integration on a POS interface on the working node and protect node.

Configuring working node for POS MR-APS

To configure MR-APS working node for POS interface, complete the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. exit
4. redundancy
5. interchassis group group-id
6. member ip ip-address
7. monitor peer bfd
8. exit
9. controller SONET slot/bay/port
10. framing [SDH | SONET]
11. clock source internal
12. sts-1 1-3POS
13. exit
14. controller SONET slot/bay/port
15. Shutdown
16. aps group group_id
17. aps working aps-group-number
18. aps interchassis group group-id
19. no shut
20. exit
21. interface POS slot/bay/port
22. ip address ip-address
23. encapsulation ppp
24. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | enable | Enables privileged EXEC mode.
| | Example: | • Enter your password if prompted. |
| | Router> enable | |
| 2 | configure terminal | Enters global configuration mode. |
| | Example: | Router# configure terminal |
| 3 | exit | Exits PW class configuration mode. |
| | Example: | Router(config-pw-class)# exit |
| 4 | redundancy | Enters the redundancy configuration mode. |
| | Example: | Router(config)# redundancy |
| 5 | interchassis group group-id | Configures an interchassis group within the redundancy configuration mode and enters the interchassis redundancy mode. |
| | Example: | Router(config-red)# interchassis group 50 |
| 6 | member ip ip-address | Configures the IP address of the peer member group. |
| | Example: | Router(config-r-ic)# member ip 60.60.60.2 |
| 7 | monitor peer bfd | Enables BFD on the POS link. |
| | Example: | Router(config-red)# monitor peer bfd |
| 8 | exit | Exits the redundancy mode. |
| | Example: | Router(config-r-ic)# exit |
| 9 | controller SONET slot/bay/port | Selects and configures a SONET controller and enters controller configuration mode.
| | Example: | • slot—Chassis slot number, which is always 0.
| | | • port—Port or interface number. The range is from 0 to 7 for Gigabit Ethernet.
<p>| | Router(config)# controller SONET 0/5/2 |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 10** | **framing [SDH | SONET]**
Example:
Router(config-controller)# framing SONET
Purpose: Configures the controller with framing type. SONET framing is the default option. |
| **Step 11** | **clock source internal**
Example:
Router(config-controller)# clock source internal
Sets the clocking for individual E1 links. |
| **Step 12** | **sts-1 1-3POS**
Example:
Router(config-controller)# sts-1 1-3
Specifies the STS identifier. |
| **Step 13** | **Exit**
Example:
Router(config-ctrlr-sts1)# exit
Exits from the STS configuration mode. |
| **Step 14** | **controller SONET slot/bay/port**
Example:
Router(config)# controller SONET 0/5/2
Selects and configures a SONET controller and enters controller configuration mode. |
| **Step 15** | **Shutdown**
Example:
Router(config)# Shutdown
Shut down the controller before APS configuration. |
| **Step 16** | **aps group group_id**
Example:
Router(config-controller)# aps group 1
Configures the APS group for POS. |
| **Step 17** | **aps working aps-group-number**
Example:
Router(config-controller)# aps working 1
Configures the APS group as working or protect interface.
Note: For MR-APS, one router must be configured as aps working 1 and the other router must be configured as aps protect 1. |
| **Step 18** | **aps interchassis group group-id**
Example:
Router(config-red)# aps interchassis group 50
Configures an aps inter chassis group. |
| **Step 19** | **No shut**
Example:
Router(config-controller)# no shut
Shut down the controller. |
| **Step 20** | **Exit**
Example:
Router(config-controller)# exit
Ends the controller session and returns to the configuration mode. |
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 21</td>
<td>interface POS slot/bay/port
Example:
Router(config)# interface POS 0/5/2</td>
</tr>
<tr>
<td>Step 22</td>
<td>ip address ip-address
Example:
Router(config-if)# ip address 45.1.1.2 255.255.255.0</td>
</tr>
<tr>
<td>Step 23</td>
<td>encapsulation ppp
Example:
Router(config-if-srv)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 24</td>
<td>end
Example:
Router(config-if-srv)# end</td>
</tr>
</tbody>
</table>

Configuring protect node for POS MR-APS

To configure MR-APS protect node for POS interface, complete the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. exit
4. redundancy
5. interchassis group group-id
6. member ip ip-address
7. monitor peer bfd
8. exit
9. controller SONET slot/bay/port
10. framing [SDH | SONET]
11. clock source internal
12. sts-1 l-3POS
13. exit
14. controller SONET slot/bay/port
15. Shutdown
16. aps group group_id
17. aps protect 1 remote loopback ip
18. aps interchassis group interchassis group-id
19. no shut
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Exits PW class configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td>Exits PW class configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-pw-class)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters the redundancy configuration mode.</td>
</tr>
<tr>
<td>redundancy</td>
<td>Enters the redundancy configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# redundancy</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Configures an interchassis group within the redundancy configuration mode and enters the interchassis redundancy mode.</td>
</tr>
<tr>
<td>interchassis group group-id</td>
<td>Configures an interchassis group within the redundancy configuration mode and enters the interchassis redundancy mode.</td>
</tr>
<tr>
<td>Example: Router(config-red)# interchassis group 50</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Configures the IP address of the peer member group.</td>
</tr>
<tr>
<td>member ip ip-address</td>
<td>Configures the IP address of the peer member group.</td>
</tr>
<tr>
<td>Example: Router(config-r-ic)# member ip 60.60.60.2</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Enables BFD on the POS link.</td>
</tr>
<tr>
<td>monitor peer bfd</td>
<td>Enables BFD on the POS link.</td>
</tr>
<tr>
<td>Example: Router(config-red)# monitor peer bfd</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>Exits the redundancy mode.</td>
</tr>
<tr>
<td>exit</td>
<td>Exits the redundancy mode.</td>
</tr>
<tr>
<td>Example: Router(config-r-ic)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>Selects and configures a SONET controller and enters controller configuration mode.</td>
</tr>
<tr>
<td>controller SONET slot/bay/port</td>
<td>Selects and configures a SONET controller and enters controller configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# controller SONET 0/5/2</td>
<td>slot—Chassis slot number, which is always 0.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 10</td>
<td>Configures the controller with framing type. SONET framing is the default option.</td>
</tr>
<tr>
<td>`framing [SDH</td>
<td>SONET]`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# framing SONET</code></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>Sets the clocking for individual E1 links.</td>
</tr>
<tr>
<td><code>clock source internal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# clock source internal</code></td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>Specifies the STS identifier.</td>
</tr>
<tr>
<td><code>sts-1 1-3POS</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# sts-1 1-3</code></td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>Exits from the STS configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-ctrlr-sts1)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>Selects and configures a SONET controller and enters controller configuration mode.</td>
</tr>
<tr>
<td><code>controller SONET slot/bay/port</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# controller SONET 0/5/2</code></td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>Shut down the controller before APS configuration.</td>
</tr>
<tr>
<td><code>Shutdown</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# Shutdown</code></td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>Configures the APS group for POS.</td>
</tr>
<tr>
<td><code>aps group group_id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# aps group 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 17</td>
<td>Enable the protect node.</td>
</tr>
<tr>
<td><code>aps protect 1 remote loopback ip</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# aps protect 1 192.168.1.1</code></td>
<td></td>
</tr>
<tr>
<td>Step 18</td>
<td>Enable the inter chasis.</td>
</tr>
<tr>
<td><code>aps interchasis group interchasis group-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# aps interchasis group 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 19</td>
<td>Unshut the controller.</td>
</tr>
<tr>
<td><code>no shut</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# no shut</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 20</td>
<td>exit
Example:
Router(config-controller)# exit</td>
</tr>
<tr>
<td>Step 21</td>
<td>interface POS slot/bay/port
Example:
Router(config)# interface POS 0/5/2</td>
</tr>
<tr>
<td></td>
<td>• slot—Chassis slot number, which is always 0.
• port—Port or interface number. The range can be 0-3.</td>
</tr>
<tr>
<td>Step 22</td>
<td>ip address ip-address
Example:
Router(config-if)# ip address 45.1.1.2 255.255.255.0</td>
</tr>
<tr>
<td>Step 23</td>
<td>encapsulation ppp
Example:
Router(config-if-srv)# encapsulation ppp</td>
</tr>
<tr>
<td>Step 24</td>
<td>end
Example:
Router(config-if-srv)# end</td>
</tr>
</tbody>
</table>

Verifying MR-APS on POS interface

- Use the `show rfg groups` command to display POS statistics for the configured POS circuits.

Following is a sample output of the `show rfg groups` command to display the detailed information about POS interface configured on the router:

```
Router# show rfg groups

Router# sh rfg groups

Total RGF groups: 2

ACTIVE RGF GROUP
RGF Group ID : 1
RGF Peer Group ID: 0
ICRM Group ID : 1
APS Group ID : 1

RGF State information:
My State Present : Active-fast <<<<<<<<<<<Chk this status
Previous : Standby-hot
Peer State Present: Standby-hot
Previous: Standby-bulk

Misc:
Communication state Up
aps_bulk: 0
```
Following is a sample output of the `show ppp interface POS` command.

```
Router# show  ppp interface 0/5/2

PPP Serial Context Info
---------------------
Interface : PO0/4/2.1
PPP Serial Handle: 0xE9000006
PPP Handle : 0xBF000006
SSS Handle : 0x8000006
AAA ID : 14
Access IE : 0xA000006
SHDB Handle : 0xA3000006
State : Up
Last State : Binding
Last Event : LocalTerm
```

- Use the `show ccm group id group-id number` command to check CCM status.

```
Router# show ccm group id

CCM Group 1 Details
-------------------
CCM Group ID : 1
Infra Group ID : 2
Infra Type : Redundancy Group Facility (RGF) <<<<Chk this
HA State : CCM HA Active
Redundancy State : Dynamic Sync
Group Initialized/cleaned : FASLE
```

- Following is a sample output of the `show aps gr 1` command:

```
Router# show aps gr 1

SONET 0/4/2 APS Group 1: working channel 1 (Inactive) (HA)
  Protect at 33.1.1.1
  PGP timers (from protect): hello time=1; hold time=10
  SDH framing
  Remote APS configuration: (null)
```

- Following is a sample output of the `show redundancy interchassis` command to display information about interchassis redundancy group configuration:

```
Router# show redundancy interchassis

Redundancy Group 1 (0x1)
  Applications connected: MSR
  Monitor mode: BFD
  member ip: 10.17.255.163 "ASR903_PE2", CONNECTED
        BFD neighbor: GigabitEthernet0/1/2, next hop 33.1.1.2, DOWN
```
Configuration Examples for MR-APS on POS interface

The following example shows how to configure the MR-APS integration on a POS interface on the working router PE1 working node:

```
RouterPE1> enable
RouterPE1(config)#cont so 0/4/2
RouterPE1(config-controller)#au-4 1 pos
RouterPE1(config-controller)#aps gr 1
RouterPE1(config-controller)#aps working 1
RouterPE1(config-controller)#aps interchassis group 1
RouterPE1(config-controller)#exit
RouterPE1(config)#interface POS0/4/2.1
RouterPE1(config-interface)#ip address 45.1.1.2
RouterPE1(config)#encapsulation ppp
RouterPE1(config)#redundancy
RouterPE1(config-red)#interchassis group 1
RouterPE1(config-r-ic)#member ip 14.2.0.2
RouterPE1(config-r-ic)#backbone interface gig 0/0/1
RouterPE1(config-r-ic)#exit
```

The following example shows how to configure the MR-APS integration on a POS interface on the Protect router PE2 Protect node:

```
RouterPE2> enable
RouterPE2(config)#cont so 0/4/2
RouterPE2(config-controller)#framing sdh
RouterPE2(config-controller)#clock source line
RouterPE2(config-controller)#aug mapping au-4
RouterPE2(config-controller)#au-4 1 pos
RouterPE2(config-controller)#aps group 1
RouterPE2(config-controller)#aps protect 1 1.1.1.1
RouterPE2(config-controller)#aps interchassis group 1
RouterPE2(config-controller)#exit
RouterPE2(config)#interface POS0/4/2.1
RouterPE2(config-interface)#ip address 45.1.1.1 255.255.255.0
RouterPE2(config)#encapsulation ppp
RouterPE2(config-controller)#network-clock input-source 1 controller SONET 0/4/2
RouterPE2(config)#redundancy
RouterPE2(config)#mode sso
RouterPE2(config-red)#interchassis group 1
RouterPE2(config-r-ic)#monitor peer bfd
RouterPE2(config-r-ic)#member ip 52.1.1.1
RouterPE2(config-r-ic)#exit
```

The following example shows how to configure the MR-APS integration on a POS interface on the router CE1 working node:

```
RouterPE3> enable
RouterPE3(config)#cont SONET 0/3/1
RouterPE3(config-controller)#framing sdh
```
RouterPE3(config-controller)#clock source line
RouterPE3(config-controller)#aug mapping au-4
RouterPE3(config-controller)#au-4 1 pos
RouterPE3(config)#interface POS0/4/2.1
RouterPE3(config-interface)#ip address 45.1.1.1
RouterPE3(config-interface)#encapsulation ppp
RouterPE3(config-controller)#network-clock input-source 1 controller SONET 0/4/2
RouterPE1(config-controller)#exit
CHAPTER 2

Hot Standby Pseudowire Support for ATM and TDM Access Circuits

The Hot Standby Pseudowire Support for ATM and TDM Access Circuits feature is an enhancement to the L2VPN Pseudowire Redundancy feature in the following ways:

• Faster failover of to the backup pseudowire
• Less traffic loss during failover

The Hot Standby Pseudowire Support for ATM and TDM Access Circuits feature allows the backup pseudowire to be in a “hot standby” state, so that it can immediately take over if the primary pseudowire fails. The following sections explain the concepts and configuration tasks for this feature.

• Finding Feature Information, on page 27
• Prerequisites for Hot Standby Pseudowire Support for ATM and TDM Access Circuits, on page 28
• Restrictions for Hot Standby Pseudowire Support for ATM and TDM Access Circuits, on page 28
• Information About Hot Standby Pseudowire Support for ATM and TDM Access Circuits, on page 28
• How to Configure Hot Standby Pseudowire Support for ATM and TDM Access Circuits, on page 29
• Configuration Examples for Hot Standby Pseudowire Support for ATM and TDM Access Circuits, on page 34
• Additional References, on page 36

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Prerequisites for Hot Standby Pseudowire Support for ATM and TDM Access Circuits

- This feature requires that you understand how to configure Layer 2 virtual private networks (VPNs). You can find that information in the following documents:
 - Any Transport over MPLS
 - L2 VPN Interworking
 - L2VPN Pseudowire Redundancy
- The Hot Standby Pseudowire Support for ATM and TDM Access Circuits feature recommends that the following mechanisms be in place to enable faster detection of a failure in the network:
 - Label-switched paths (LSP) Ping/Traceroute and Any Transport over MPLS Virtual Circuit Connection Verification (AToM VCCV)
 - Local Management Interface (LMI)
 - Operation, Administration, and Maintenance (OAM)

Restrictions for Hot Standby Pseudowire Support for ATM and TDM Access Circuits

- Hot Standby Pseudowire Support for ATM and TDM Access Circuits is not supported on L2TPv3. Only MPLS L2VPNs are supported.
- More than one backup pseudowire is not supported.
- Different pseudowire encapsulation types on the MPLS pseudowire are not supported.
- If you use Hot Standby Pseudowire Support for ATM and TDM Access Circuits with L2VPN Interworking, the interworking method must be the same for the primary and backup pseudowires. For TDM access circuits, interworking is not supported.
- Only dynamic pseudowires are supported.

Information About Hot Standby Pseudowire Support for ATM and TDM Access Circuits

How the Hot Standby Pseudowire Support for ATM and TDM Access Circuits Feature Works

The Hot Standby Pseudowire Support for ATM and TDM Access Circuits feature improves the availability of L2VPN pseudowires by detecting failures and handling them with minimal disruption to the service.
The Hot Standby Pseudowire Support for ATM and TDM Access Circuits feature allows the backup pseudowire to be in a “hot standby” state, so that it can immediately take over if the primary pseudowire fails. The L2VPN Pseudowire Redundancy feature allows you to configure a backup pseudowire too, but in a cold state. With the L2VPN Pseudowire Redundancy feature, if the primary pseudowire fails, it takes time for the backup pseudowire to take over, which causes a loss in traffic.

If you have configured L2VPN Pseudowire Redundancy on your network and upgrade to Cisco IOS Release 15.1(1)S, you do not need add any other commands to achieve Hot Standby Pseudowire Support for ATM and TDM Access Circuits. The backup pseudowire will automatically be in a hot standby state.

Supported Transport Types

The Hot Standby Pseudowire Support for ATM and TDM Access Circuits feature supports the following transport types:

- ATM
 - ATM AAL5 in VC mode
 - ATM packed cell relay in VC Mode
 - ATM in VP mode
 - ATM packed cell relay in VP mode
 - ATM in port mode
 - ATM packed cell relay in port mode
- Time division multiplexing (TDM)
 - Structure-Agnostic TDM over Packet (SAToP)
 - Circuit Emulation Services over PSN (CESoPSN)

How to Configure Hot Standby Pseudowire Support for ATM and TDM Access Circuits

The Hot Standby Pseudowire Support for ATM and TDM Access Circuits feature enables you to configure a backup pseudowire in case the primary pseudowire fails. When the primary pseudowire fails, the PE router can immediately switch to the backup pseudowire.

Configuring a Pseudowire for Static VPLS

The configuration of pseudowires between provider edge (PE) devices helps in the successful transmission of the Layer 2 frames between PE devices.

Use the pseudowire template to configure the virtual circuit (VC) type for the virtual path identifier (VPI) pseudowire. In the following task, the pseudowire will go through a Multiprotocol Label Switching (MPLS)-Tunneling Protocol (TP) tunnel.

The pseudowire template configuration specifies the characteristics of the tunneling mechanism that is used by the pseudowires, which are:

- Encapsulation type
- Control protocol
• Payload-specific options
• Preferred path

Perform this task to configure a pseudowire template for static Virtual Private LAN Services (VPLS).

Note
Ensure that you perform this task before configuring the virtual forwarding instance (VFI) peer. If the VFI peer is configured before the pseudowire class, the configuration is incomplete until the pseudowire class is configured. The `show running-config` command displays an error stating that configuration is incomplete.

```
Device# show running-config | sec vfi
l2 vfi config manual
vpn id 1000
! Incomplete point-to-multipoint vfi config
```

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **template type pseudowire name**
4. **encapsulation mpls**
5. **signaling protocol none**
6. **preferred-path interface Tunnel-tp interface-number**
7. **exit**
8. **interface pseudowire number**
9. **source template type pseudowire name**
10. **neighbor peer-address vcid-value**
11. **label local-pseudowire-label remote-pseudowire-label**
12. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 1 Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 template type pseudowire name</td>
<td>Specifies the template type as pseudowire and enters template configuration mode.</td>
</tr>
<tr>
<td>Step 3 Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Device(config)# template type pseudowire static-vpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Step 4 encapsulation mpls</td>
<td>Specifies the tunneling encapsulation.</td>
</tr>
<tr>
<td>Example:</td>
<td>- For Any Transport over MPLS (AToM), the encapsulation type is MPLS.</td>
</tr>
<tr>
<td>Device(config-template)# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 5 signaling protocol none</td>
<td>Specifies that no signaling protocol is configured for the pseudowire class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-template)# signaling protocol none</td>
<td></td>
</tr>
<tr>
<td>Step 6 preferred-path interface Tunnel-tp interface-number</td>
<td>(Optional) Specifies the path that traffic uses: an MPLS Traffic Engineering (TE) tunnel or destination IP address and Domain Name Server (DNS) name.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-template)# preferred-path interface Tunnel-tp 1</td>
<td></td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits template configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-template)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 interface pseudowire number</td>
<td>Establishes a pseudowire interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# interface pseudowire 1</td>
<td></td>
</tr>
<tr>
<td>Step 9 source template type pseudowire name</td>
<td>Configures the source template type of the configured pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# source template type pseudowire static-vpls</td>
<td></td>
</tr>
<tr>
<td>Step 10 neighbor peer-address vcid-value</td>
<td>Specifies the peer IP address and VC ID value of a Layer 2 VPN (L2VPN) pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# neighbor 10.0.0.1 123</td>
<td></td>
</tr>
<tr>
<td>Step 11 label local-pseudowire-label remote-pseudowire-label</td>
<td>Configures an Any Transport over MPLS (AToM) static pseudowire connection by defining local and remote circuit labels.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config-if)# label 301 17</td>
<td></td>
</tr>
<tr>
<td>Step 12 end</td>
<td>Exits interface configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Hot Standby Pseudowire Support for ATM and TDM Access Circuits

Use the following steps to configure the Hot Standby Pseudowire Support for ATM and TDM Access Circuits feature.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface atm number`
4. `pvc [name] vpi/vci l2transport`
5. `xconnect peer-router-id vcid {encapsulation mpls|pw-class pw-class-name}`
6. `backup peer peer-router-ip-addr vcid [pw-class pw-class-name]`
7. `backup delay enable-delay {disable-delay | never}`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
| Example: Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal | |
| **Step 3** interface atm number | Specifies the ATM interface and enters interface configuration mode.
| Example: Router(config)# interface atm4/1/0 | |
| **Step 4** pvc [name] vpi/vci l2transport | Creates or assigns a name to an ATM PVC and enters L2transport PVC configuration mode.
| Example: Router(config-if)# pvc 1/100 l2transport | |
| **Step 5** xconnect peer-router-id vcid {encapsulation mpls|pw-class pw-class-name} | Binds the attachment circuit to a pseudowire VC.
<p>| Example: | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# xconnect 10.0.0.1 123 pw-class atom</td>
<td>Specifies a redundant peer for the pseudowire VC. The pseudowire class name must match the name you specified when you created the pseudowire class, but you can use a different pw-class in the backup peer command than the name that you used in the primary xconnect command.</td>
</tr>
</tbody>
</table>

Step 6
backup peer peer-router-ip-addr vcid [pw-class pw-class-name]
Example:
Router(config-if-atm-l2trans-pvc)# backup peer 10.0.0.3 125 pw-class atom

Step 7
backup delay enable-delay {disable-delay | never}
Example:
Router(config-if-atm-l2trans-pvc)# backup delay 5 never

Specifies how long (in seconds) the backup pseudowire VC should wait to take over after the primary pseudowire VC goes down. The range is 0 to 180.

Specifies how long the primary pseudowire should wait after it becomes active to take over for the backup pseudowire VC. The range is 0 to 180 seconds. If you specify the never keyword, the primary pseudowire VC never takes over for the backup.

Verifying the Hot Standby Pseudowire Support for ATM and TDM Access Circuits Configuration

Use the following commands to verify that the backup pseudowire is provisioned for hot standby support.

SUMMARY STEPS

1. show atm acircuit
2. show atm pvc
3. show cem acircuit
4. show cem acircuit detail

DETAILED STEPS

Step 1
show atm acircuit
If the output of the show atm acircuit command shows two entries for the same vpi/vci, then the backup pseudowire has been correctly provisioned, as shown in the following example:

Example:

```
Router# show atm acircuit
Interface VPI VCI AC Id Switch Segment St Flg Prov
-------- --- --- -- -- ------- -------- -- --- ----
ATM2/1/0.2 11 111 ATA5 1 2003 4007 2 0 Y
ATM2/1/0.2 11 111 ATA5 1 1002 3006 2 0 Y
```

Step 2
show atm pvc
If the output of the `show atm pvc` command includes “Red Prov: Yes,” then the backup pseudowire has been correctly provisioned, as shown in bold in the following example:

Example:

Router# show atm pvc 1/1010
Interworking Method: like to like
AC Type: ATM AAL5, Circuit Id: 2, AC State: UP, Prov: YES
Switch_hdl: 0x1005, Segment_hdl: 0x4011
Red Switch_hdl: 0x3007, Red Segment_hdl: 0x6010, Red Prov: YES
AC_hdl: 0x7200000F, AC Peer_hdl: 0x5D000012, Flg:0, Platform Idx:10
Status: UP

Step 3
`show cem acircuit`

If the output of the `show cem acircuit` command includes “Redundancy Member Prov: Yes,” then the backup pseudowire has been correctly provisioned, as shown in bold in the following example:

Example:

Router# show cem acircuit
CEM Int. ID Flags Sw_hdl Seg_hdl Ckt_type Provisioned

CEM3/0/0 1 0 B00E 201E 19 Yes
Redundancy Switch_hdl: 0xC00F Redundancy Segment_hdl: 0x401F Redundancy Member Prov: Yes

Step 4
`show cem acircuit detail`

If the output of the `show cem acircuit detail` command includes “Redundancy Member Prov: Yes,” then the backup pseudowire has been correctly provisioned, as shown in bold in the following example:

Example:

Router# show cem acircuit detail
CEM3/0/0 Cemid 1
PW Ckt_type: 19 Aie_hdl: EE00000B Peer aie_hdl: 0x2000000C
Switch_hdl: 0xB00E Segment_hdl: 0x201E Redundancy Switch_hdl: 0x1000 Redundancy Segment_hdl: 0x4002 Redundancy Member Prov: Yes

Configuration Examples for Hot Standby Pseudowire Support for ATM and TDM Access Circuits

Configuring Hot Standby Pseudowire Support for ATM and TDM Access Circuits on CEM Circuits Example

The figure below shows the configuration of Hot Standby Pseudowire Support for ATM and TDM Access Circuits, where the backup pseudowire is on the same PE router.
The configuration shown in the figure above is used in the following examples:

Table 1: Configuring Hot Standby Pseudowire Support for ATM and TDM Access Circuits on CEM Circuits: Example

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
</table>
| interface Loopback0
ip address 10.4.4.4 255.255.255.255
Controller E1 9/2/0
clock source internal
cem-group 0 timeslots 1-4
pseudowire-class atom
encapsulation mpls
interface CEM9/2/0
no ip address
class int cesopsn_1
cem 0
xconnect 10.2.2.2 5000 pw-class atom
backup peer 10.2.2.2 5005 pw-class atom
backup delay 0 5 | interface Loopback0
ip address 10.2.2.2 255.255.255.255
Controller E1 2/2/0
clock source internal
cem-group 0 timeslots 1-4 Primary
cem-group 5 timeslots 21-24 Backup
interface CEM2/2/0
no ip address
class int cesopsn_1
cem 0 Primary
service-policy input cem_exp_6
xconnect 10.4.4.4 5000 encapsulation mpls
cem 5 Backup
xconnect 10.4.4.4 5005 encapsulation mpls |

Table 2: Configuring Hot Standby Pseudowire Support for ATM and TDM Access Circuits on ATM Circuits: Example

<table>
<thead>
<tr>
<th>PE1</th>
<th>PE2</th>
</tr>
</thead>
</table>
| interface Loopback0
ip address 10.44.44.4 255.255.255.255
interface POS3/3/0
ip address 10.44.4 255.255.255.0
mpls ip
interface ATM4/1/0
no ip address
no atm enable-ilmi-trap
pvc 1/100 l2transport
xconnect 10.24.22.22 1 encapsulation mpls
backup peer 10.22.22.22 2 | interface Loopback0
ip address 10.22.22.22 255.255.255.255
interface POS3/3/0
ip address 10.4.4.1 255.255.255.0
mpls ip
interface ATM4/1/0
no ip address
no atm enable-ilmi-trap
pvc 1/100 l2transport
xconnect 10.44.44.4 1 encapsulation mpls
pvc 1/200 l2transport
xconnect 10.44.44.4 2 encapsulation mpls |
Additional References

The following sections provide references related to the Hot Standby Pseudowire Support for ATM and TDM Access Circuits feature.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>MPLS commands</td>
<td>Cisco IOS Multiprotocol Label Switching Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-muley-pwe3-redundancy</td>
<td>Pseudowire Redundancy</td>
</tr>
<tr>
<td>draft-ietf-pwe3-iccp-xx.txt</td>
<td>Inter-Chassis Communication Protocol for L2VPN PE Redundancy</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MI Bs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CISCO-IETF-PW-ATM-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 5085</td>
<td>Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
CHAPTER 3

Configuring Pseudowire Group Message Generation

This chapter provides information about configuring the pseudowire (PW) group message generation feature on Cisco routers.

- Pseudowire Group Message Generation, on page 39

Pseudowire Group Message Generation

The Pseudowire Group Message Generation feature assigns the pseudowire group ID for a group of pseudowires and sends wildcard status notifications or label withdrawal messages for a group.

Prerequisites for Pseudowire Group Message Generation

- The remote provider edge (PE) router must be capable of receiving group status messages.
- Label Distribution Protocol (LDP) must be implemented on the network.

Restrictions for Pseudowire Group Message Generation

The Pseudowire Group Message Generation feature is supported on Cisco IOS XE Release 3.16 and later releases.

- This feature is supported on Cisco Routers on the following attachment circuits:
 - Ethernet VLAN
 - Asynchronous Transfer Mode (ATM)
 - Circuit Emulation over MPLS (CEM)
- Pseudowire group ID is unique and is assigned automatically.
- This feature can only be configured globally rather than for each xconnect.
- Hot Standby Pseudowire (HSPW) has high convergence for Cisco RSP3 Module.
Information About Pseudowire Group Message Generation

The pseudowires associated with a given attachment circuit parent (e.g. physical or port channel) interface are grouped together by assigning a group ID. The group ID is assigned based on port index or virtual tunnel index of the interface. When a fault occurs in a group of pseudowires, a single status message is sent to the remote PE router for that particular group ID. When the status message is received by the remote PE router, it can switch the entire group to the designated backup pseudowires, instead of switching an individual pseudowire, thus reducing switchover time.

The Pseudowire Group Message Generation feature thus enhances recovery performance and scalability by reducing switchover time.

Note
The Pseudowire Group Message Generation feature is disabled by default.

Multisegment Pseudowire

An L2VPN multisegment pseudowire (MS-PW) is a set of two or more PW segments that function as a single PW. When a MS-PW is configured, the switching provider edge router (S-PE) assigns Local group IDs to each pseudowire. This group ID is then sent to the terminating provider edge routers (T-PEs). Pseudowire group status messages received from a T-PE are then converted into group status messages for another T-PE by using the locally assigned group ID to prevent replication of group IDs.

Configuring Pseudowire Group Message Generation

SUMMARY STEPS

1. enable
2. configure terminal
3. l2vpn
4. pseudowire group status
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>l2vpn</td>
<td>Enters l2vpn configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# l2vpn</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Pseudowire Group Message Generation

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td><code>pseudowire group status</code></td>
<td>Sends pseudowire group status messages.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-l2vpn)# pseudowire group status</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>end</code></td>
<td>Exits l2vpn configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Device(config-l2vpn)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Example for Configuring Pseudowire Group Message

The following example shows how to configure a pseudowire group message:

PE1:

```
Router# show run interface GigabitEthernet0/3/5
Building configuration...
Current configuration: 1623 bytes
!
interface GigabitEthernet0/3/5
  mtu 1504
  no ip address
  carrier-delay msec 0
  negotiation auto
  service instance 100 ethernet
  encapsulation dot1q 100
  xconnect 2.2.2.2 1000 encapsulation mpls
  backup peer 3.3.3.3 1000
  backup delay 0 40
```

PE2:

```
Router# show run | section l2vpn
l2vpn
logging pseudowire status
pseudowire group status
```

Verifying a Pseudowire Group Message Configuration

You can use `show` commands to view information about a pseudowire group message configuration.

The following example displays the information about local pseudowire groups and the parent interface state the last time when the pseudowire status was sent:

```
Device# show l2vpn atom group local

Peer Address  Group ID  Status
---------- ------ -------
1.1.1.1      5        UP
```

The following example displays the count of the number of LDP messages sent and received:

```
Device# show l2vpn atom statistics ldp
```
Verifying a Pseudowire Group Message Configuration

Load for five secs: 0%/0%; one minute: 0%; five minutes: 0%
Time source is hardware calendar, *07:36:32.858 PST Wed Dec 10 2014*

<table>
<thead>
<tr>
<th>LDP Message Type</th>
<th>Sent</th>
<th>Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label Mapping</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Label Request</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Label Release</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Label Withdraw</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group Withdraw</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VC Notification</td>
<td>55</td>
<td>20</td>
</tr>
<tr>
<td>Group Notification</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
This module describes how to configure PPP and Multilink PPP (MLP) features on any interface. Multilink PPP provides a method for spreading traffic across multiple physical WAN links.

- Limitations, on page 43
- PPP and Multilink PPP, on page 44
- IP Address Pooling, on page 45
- How to Configure PPP, on page 47
- Monitoring and Maintaining PPP and MLP Interfaces, on page 68

Limitations

The following limitations apply when using MLPPP on the Cisco ASR 903 Router:

- All links in an MLPPP bundle must be on the same interface module.
- All links in an MLPPP bundle must be of the same bandwidth.
- The router supports a maximum of 16 links per bundle and a minimum of 2 links per bundle. Maximum number of bundles supported per interface module is 168.
- To change the MLPPP bundle fragmentation mode between enabled and disabled, perform a `shutdown/no shutdown` on the bundle.
- LFI is not supported. However, PPP Multilink fragmentation is supported by default. To disable fragmentation, see Disabling PPP Multilink Fragmentation.
- Multicast MLP is not supported.
- PPP compression is not supported.
- PPP half bridging is not supported.
- IPv6 is not supported for this feature.
- To enable an ACFC or PFC configuration, issue a shut `shutdown/no shutdown` on the serial interface.
- Channelization is not supported
- Also that only 1 channel-group can be created per controller with complete timeslots.
PPP and MLPPP are supported on synchronous serial interfaces; Asynchronous serial interfaces, high-speed serial interfaces (HSSI), and ISDN interfaces are not supported.

If you configure interfaces on each end of an MLPPP connection with different MTU values, the link drops traffic at high traffic rates. We recommend that you configure the same MTU values across all nodes in an MLPPP connection.

PPP and Multilink PPP

To configure the Media-Independent PPP and Multilink PPP, you should understand the following concepts:

Point-to-Point Protocol

Point-to-Point Protocol (PPP), described in RFC 1661, encapsulates network layer protocol information over point-to-point links. You can configure PPP on synchronous serial interfaces.

Challenge Handshake Authentication Protocol (CHAP), Microsoft Challenge Handshake Authentication Protocol (MS-CHAP), or Password Authentication Protocol (PAP)

Magic Number support is available on all serial interfaces. PPP always attempts to negotiate for Magic Numbers, which are used to detect looped-back lines. Depending on how the `down-when-looped` command is configured, the router might shut down a link if it detects a loop.

CHAP or PPP Authentication

PPP with CHAP or PAP authentication is often used to inform the central site about which remote routers are connected to it.

With this authentication information, if the router or access server receives another packet for a destination to which it is already connected, it does not place an additional call. However, if the router or access server is using rotaries, it sends the packet out the correct port.

CHAP and PAP were originally specified in RFC 1334, and CHAP was updated in RFC 1994. These protocols are supported on synchronous and asynchronous serial interfaces. When using CHAP or PAP authentication, each router or access server identifies itself by a name. This identification process prevents a router from placing another call to a router to which it is already connected, and also prevents unauthorized access.

Access control using CHAP or PAP is available on all serial interfaces that use PPP encapsulation. The authentication feature reduces the risk of security violations on your router or access server. You can configure either CHAP or PAP for the interface.

Note

To use CHAP or PAP, you must be running PPP encapsulation.

When CHAP is enabled on an interface and a remote device attempts to connect to it, the local router or access server sends a CHAP packet to the remote device. The CHAP packet requests or “challenges” the remote device to respond. The challenge packet consists of an ID, a random number, and the hostname of the local router.

The required response has two parts:
• An encrypted version of the ID, a secret password, and the random number

• Either the hostname of the remote device or the name of the user on the remote device

When the local router or access server receives the response, it verifies the secret password by performing the same encryption operation as indicated in the response and looking up the required hostname or username. The secret passwords must be identical on the remote device and the local router.

Because this response is sent, the password is never sent in clear text, preventing other devices from stealing it and gaining illegal access to the system. Without the proper response, the remote device cannot connect to the local router.

CHAP transactions occur only when a link is established. The local router or access server does not request a password during the rest of the call. (The local device can, however, respond to such requests from other devices during a call.)

When PAP is enabled, the remote router attempting to connect to the local router or access server is required to send an authentication request. The username and password specified in the authentication request are accepted, and the Cisco IOS software sends an authentication acknowledgment.

After you have enabled CHAP or PAP, the local router or access server requires authentication from remote devices. If the remote device does not support the enabled protocol, no traffic will be passed to that device.

To use CHAP or PAP, you must perform the following tasks:

• Enable PPP encapsulation.

• Enable CHAP or PAP on the interface.

For CHAP, configure hostname authentication and the secret password for each remote system with which authentication is required.

IP Address Pooling

A point-to-point interface must be able to provide a remote node with its IP address through the IP Control Protocol (IPCP) address negotiation process. The IP address can be obtained from a variety of sources. The address can be configured through the command line, entered with an EXEC-level command, provided by TACACS+ or the Dynamic Host Configuration Protocol (DHCP), or from a locally administered pool.

IP address pooling uses a pool of IP addresses from which an incoming interface can provide an IP address to a remote node through IPCP address negotiation process. IP address pooling also enhances configuration flexibility by allowing multiple types of pooling to be active simultaneously.

The IP address pooling feature allows configuration of a global default address pooling mechanism, per-interface configuration of the address pooling mechanism, and per-interface configuration of a specific address or pool name.

Peer Address Allocation

A peer IP address can be allocated to an interface through several methods:

• Dialer map lookup—This method is used only if the peer requests an IP address, no other peer IP address has been assigned, and the interface is a member of a dialer group.
- PPP EXEC command—An asynchronous dialup user can enter a peer IP address or hostname when PPP is invoked from the command line. The address is used for the current session and then discarded.

- IPCP negotiation—If the peer presents a peer IP address during IPCP address negotiation and no other peer address is assigned, the presented address is acknowledged and used in the current session.

- Default IP address.

- TACACS+ assigned IP address—During the authorization phase of IPCP address negotiation, TACACS+ can return an IP address that the user being authenticated on a dialup interface can use. This address overrides any default IP address and prevents pooling from taking place.

- DHCP retrieved IP address—If configured, the routers acts as a proxy client for the dialup user and retrieves an IP address from a DHCP server. That address is returned to the DHCP server when the timer expires or when the interface goes down.

- Local address pool—The local address pool contains a set of contiguous IP addresses (a maximum of 1024 addresses) stored in two queues. The free queue contains addresses available to be assigned and the used queue contains addresses that are in use. Addresses are stored to the free queue in first-in, first-out (FIFO) order to minimize the chance the address will be reused, and to allow a peer to reconnect using the same address that it used in the last connection. If the address is available, it is assigned; if not, another address from the free queue is assigned.

- Chat script (asynchronous serial interfaces only)—The IP address in the dialer map command entry that started the script is assigned to the interface and overrides any previously assigned peer IP address.

- Virtual terminal/protocol translation—The translate command can define the peer IP address for a virtual terminal (pseudo asynchronous interface).

- The pool configured for the interface is used, unless TACACS+ returns a pool name as part of authentication, authorization, and accounting (AAA). If no pool is associated with a given interface, the global pool named default is used.

Precedence Rules

The following precedence rules of peer IP address support determine which address is used. Precedence is listed from most likely to least likely:

1. AAA/TACACS+ provided address or addresses from the pool named by AAA/TACACS+
2. An address from a local IP address pool or DHCP (typically not allocated unless no other address exists)
3. Dialer map lookup address (not done unless no other address exists)
4. Address from an EXEC-level PPP command, or from a chat script
5. Configured address from the peer default ip address command or address from the protocol translate command
6. Peer-provided address from IPCP negotiation (not accepted unless no other address exists)

MLP on Synchronous Serial Interfaces

Address pooling is available on all synchronous serial interfaces that are running PPP and PPPoX sessions.
MLP provides characteristics are most similar to hardware inverse multiplexers, with good manageability and Layer 3 services support. Figure below shows a typical inverse multiplexing application using two Cisco routers and Multilink PPP over four T1 lines.

How to Configure PPP

The sections below describe how to configure PPP.

Enabling PPP Encapsulation

The encapsulation ppp command enables PPP on serial lines to encapsulate IP and other network protocol datagrams.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface serial slot/subslot/port:channel
4. encapsulation ppp
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface serial slot/subslot/port:channel</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface serial 0/0/0:0</td>
<td></td>
</tr>
<tr>
<td>Step 4 encapsulation ppp</td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td>Example: Router(config-if) # encapsulation ppp</td>
<td>Note PPP echo requests are used as keepalives to minimize disruptions to the end users of your network. Use the no keepalive command to disable echo requests.</td>
</tr>
</tbody>
</table>
Enabling CHAP or PAP Authentication

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface serial number`
4. `ppp authentication {chap | chap pap | pap chap | pap} [if-needed] [list-name | default] [callin]`
5. `ppp use-tacacs [single-line]or aaa authentication ppp`
6. `exit`
7. `username name [user-maxlinks link-number] password secret`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable
Example:
Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal
Example:
Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface serial number
Example:
Router(config)# interface serial 0/0/0</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 4 | `ppp authentication {chap | chap pap | pap chap | pap}` [if-needed] [list-name | default] [callin] | Defines the authentication methods supported and the order in which they are used.
Note
- Use the `ppp authentication chap` command only with TACACS or extended TACACS.
- With AAA configured on the router and list names defined for AAA, the `list-name` optional argument can be used with AAA/TACACS+. Use the `ppp use-tacacs` command with TACACS and Extended TACACS. Use the `aaa authentication ppp` command with AAA/TACACS+. |
| | Example:
Router(config-if)# ppp authentication chap | |
| 5 | `ppp use-tacacs [single-line]` or `aaa authentication ppp` | Configure TACACS on a specific interface as an alternative to global host authentication. |
| | Example:
Router(config-if)# ppp use-tacacs single-line
Router(config-if)# aaa authentication ppp | |
| 6 | `exit` | Exits interface configuration mode. |
| | Example:
Router(config-if)# exit | |
| 7 | `username name [user-maxlinks link-number] password secret` | Configures identification.
- Optionally, you can specify the maximum number of connections a user can establish.
- To use the `user-maxlinks` keyword, you must also use the `aaa authorization network default local` command and PPP encapsulation and name authentication on all the interfaces the user will be accessing. |
| | Example:
Router(config)# username name user-maxlinks 1 password password1 | |
| 8 | `end` | Exits global configuration mode and enters privileged EXEC mode.
Caution If you use a list name that has not been configured with the `aaa authentication ppp` command, you disable PPP on the line. |
| | Example:
Router(config)# end | |
| | Example
Router# configure terminal
Router(config)# interface serial 0/0/0 | |
Configuring IP Address Pooling

You can define the type of IP address pooling mechanism used on router interfaces in one or both of the ways described in the following sections:

Note

For more information about address pooling, see the IP Addressing Configuration Guide Library, Cisco IOS XE Release 3S

Global Default Address Pooling Mechanism

The global default mechanism applies to all point-to-point interfaces that support PPP encapsulation and that have not otherwise been configured for IP address pooling. You can define the global default mechanism to be either DHCP or local address pooling.

To configure the global default mechanism for IP address pooling, perform the tasks in the following sections:

- Defining DHCP as the Global Default Mechanism
- Defining Local Address Pooling as the Global Default Mechanism

After you have defined a global default mechanism, you can disable it on a specific interface by configuring the interface for some other pooling mechanism. You can define a local pool other than the default pool for the interface or you can configure the interface with a specific IP address to be used for dial-in peers.

You can also control the DHCP network discovery mechanism; see the following section for more information:

- Controlling DHCP Network Discovery

Defining DHCP as the Global Default Mechanism

DHCP specifies the following components:

- A DHCP server—A host-based DHCP server configured to accept and process requests for temporary IP addresses.
- A DHCP proxy client—A Cisco access server configured to arbitrate DHCP calls between the DHCP server and the DHCP client. The DHCP client-proxy feature manages a pool of IP addresses available to dial-in clients without a known IP address.

Perform this task to enable DHCP as the global default mechanism.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip address-pool dhcp-proxy-client
4. `ip dhcp-server [ip-address | name]`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enabling privileged EXEC mode.</td>
</tr>
<tr>
<td>Router> enable</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Entering global configuration mode.</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip address-pool dhcp-proxy-client</td>
<td>Specifies the DHCP client-proxy feature as the global default mechanism.</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifying DHCP client-proxy feature.</td>
</tr>
<tr>
<td>Router(config)# ip address-pool dhcp-proxy-client</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip dhcp-server [ip-address</td>
<td>name]</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifying DHCP server.</td>
</tr>
<tr>
<td>Router(config)# ip dhcp-server 209.165.201.1</td>
<td></td>
</tr>
<tr>
<td>Step 5 end</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Exiting global configuration mode.</td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Defining Local Address Pooling as the Global Default Mechanism

Perform this task to define local address pooling as the global default mechanism.

Note If no other pool is defined, a local pool called “default” is used. Optionally, you can associate an address pool with a named pool group.
SUMMARY STEPS

1. enable
2. configure terminal
3. ip address-pool local
4. ip local pool {named-address-pool | default} first-IP-address [last-IP-address] [group group-name] [cache-size size]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip address-pool local</td>
<td>Specifies local address pooling as the global default mechanism.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip address-pool local</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip local pool {named-address-pool</td>
<td>default} first-IP-address [last-IP-address] [group group-name] [cache-size size]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip local pool default 192.0.2.1</td>
<td></td>
</tr>
</tbody>
</table>

Controlling DHCP Network Discovery

Perform the steps in this section to allow peer routers to dynamically discover Domain Name System (DNS) and NetBIOS name server information configured on a DHCP server using PPP IPCP extensions.

The `ip dhcp-client network-discovery` global configuration command provides a way to control the DHCP network discovery mechanism. The number of DHCP Inform or Discovery messages can be set to 1 or 2, which determines how many times the system sends the DHCP Inform or Discover messages before stopping network discovery. You can set a timeout period from 3 to 15 seconds, or leave the default timeout period at 15 seconds. The default for the `informs` and `discovers` keywords is 0, which disables the transmission of these messages.

| Note | For more information about DHCP, see the IP Addressing Configuration Guide Library, Cisco IOS XE Release 3S |

Time Division Multiplexing Configuration Guide, Cisco IOS XE Release 3S (Cisco ASR 920 Series)
SUMMARY STEPS

1. enable
2. configure terminal
3. ip dhcp-client network-discovery informs number-of-messages discovers number-of-messages period seconds

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip dhcp-client network-discovery informs number-of-messages discovers number-of-messages period seconds</td>
<td>Provides control of the DHCP network discovery mechanism by allowing the number of DHCP Inform and Discover messages to be sent, and a timeout period for retransmission, to be configured.</td>
</tr>
<tr>
<td>Example: Router(config)# ip dhcp-client network-discovery informs 2 discovers 2 period 2</td>
<td></td>
</tr>
</tbody>
</table>

Configuring IP Address Assignment

Perform this task to configure IP address alignment.

After you have defined a global default mechanism for assigning IP addresses to dial-in peers, you can configure the few interfaces for which it is important to have a nondefault configuration. You can do any of the following:

- Define a nondefault address pool for use by a specific interface.
- Define DHCP on an interface even if you have defined local pooling as the global default mechanism.
- Specify one IP address to be assigned to all dial-in peers on an interface.
- Make temporary IP addresses available on a per-interface basis to asynchronous clients using PPP.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip local pool {named-address-pool | default} {first-IP-address [last-IP-address]} [group group-name] [cache-size size]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ip local pool {named-address-pool</td>
<td>Creates one or more local IP address pools.</td>
</tr>
<tr>
<td>default} {first-IP-address [last-IP-address]} [group group-name] [cache-size size]}</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# ip local pool default 192.0.2.0</td>
<td></td>
</tr>
<tr>
<td>Step 4 interface type number</td>
<td>Specifies the interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface ethernet 2/0</td>
<td></td>
</tr>
<tr>
<td>Step 5 peer default ip address pool pool-name-list</td>
<td>Specifies the pool or pools for the interface to use.</td>
</tr>
<tr>
<td>Example: Router(config-if)# peer default ip address pool 2</td>
<td></td>
</tr>
<tr>
<td>Step 6 peer default ip address pool dhcp</td>
<td>Specifies DHCP as the IP address mechanism on this interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# peer default ip address pool dhcp</td>
<td></td>
</tr>
<tr>
<td>Step 7 peer default ip address ip-address</td>
<td>Specifies the IP address to assign to all dial-in peers on an interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# peer default ip address 192.0.2.2</td>
<td></td>
</tr>
</tbody>
</table>
Disabling or Reenabling Peer Neighbor Routes

The Cisco IOS software automatically creates neighbor routes by default; that is, it automatically sets up a route to the peer address on a point-to-point interface when the PPP IPCP negotiation is completed.

To disable this default behavior or to reenable it once it has been disabled, perform the following task:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `no peer neighbor-route`
5. `peer neighbor-route`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `enable` | Enables privileged EXEC mode.
 Example:
 `Router> enable`
| Step 2 | `configure terminal` |
 Example:
 `Router# configure terminal`
| | Enters global configuration mode. |
| Step 3 | `interface type number` | Specifies the interface and enters interface configuration mode.
 Example:
 `Router(config)# interface ethernet 0/1` |
| Step 4 | `no peer neighbor-route` | Disables creation of neighbor routes.
 Example:
 `Router(config-if)# no peer neighbor-route`
| Step 5 | `peer neighbor-route` | Reenables creation of neighbor routes.
 Example:
 `Router(config-if)# peer neighbor-route` |

Note
If entered on a dialer or asynchronous group interface, this command affects all member interfaces.
Configuring Multilink PPP

The Multilink PPP feature provides load balancing functionality over multiple WAN links, while providing multivendor interoperability, packet fragmentation and proper sequencing, and load calculation on both inbound and outbound traffic. The Cisco implementation of MLP supports the fragmentation and packet sequencing specifications in RFC 1990. Additionally, you can change the default endpoint discriminator value that is supplied as part of user authentication. Refer to RFC 1990 for more information about the endpoint discriminator.

MLP allows packets to be fragmented and the fragments to be sent at the same time over multiple point-to-point links to the same remote address. The multiple links come up in response to a defined dialer load threshold. The load can be calculated on inbound traffic, outbound traffic, or on either, as needed for the traffic between the specific sites. MLP provides bandwidth on demand and reduces transmission latency across WAN links.

MLP is designed to work over synchronous and asynchronous serial and BRI and PRI types of single or multiple interfaces that have been configured to support both dial-on-demand rotary groups and PPP encapsulation.

Perform the tasks in the following sections, as required for your network, to configure MLP:

Configuring MLP on Synchronous Interfaces

To configure Multilink PPP on synchronous interfaces, you configure the synchronous interfaces to support PPP encapsulation and Multilink PPP.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface serial number
4. no ip address
5. encapsulation ppp
6. ppp multilink
7. pulse-time seconds

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface serial number</td>
<td>Specifies an asynchronous interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Router(config)# interface serial 0/0/1 |
Step 4 no ip address
Example:
Router(config-if)# no ip address | Specifies no IP address for the interface.
Step 5 encapsulation ppp
Example:
Router(config-if)# encapsulation ppp | Enables PPP encapsulation.
Step 6 ppp multilink
Example:
Router(config-if)# ppp multilink | Enables Multilink PPP.
Step 7 pulse-time seconds
Example:
Router(config-if)# pulse-time 60 | Enables pulsing data terminal ready (DTR) signal intervals on an interface.
Note Repeat these steps for additional synchronous interfaces, as needed.

Configuring a Multilink Group

A multilink group allows you to assign multiple interfaces to a multilink bundle. When the `ppp multilink group` command is configured on an interface, the interface is restricted from joining any interface but the designated multilink group interface. If a peer at the other end of the interface tries to join a different multilink group, the connection is severed. This restriction applies when Multilink PPP (MLP) is negotiated between the local end and the peer system. The interface can still come up as a regular PPP interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface multilink `group-number`
4. ip address `address mask`
5. encapsulation ppp
6. ppp chap hostname `hostname`
7. exit
8. interface `type number`
9. ppp multilink group `group-number`
10. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1 | `enable` | Enables privileged EXEC mode.

 * Enter your password if prompted.

 Example:

 `Router> enable` | |
| 2 | `configure terminal` | Enters global configuration mode.

 Example:

 `Router# configure terminal` | |
| 3 | `interface multilink group-number` | Creates a multilink bundle and enters interface configuration mode to configure the bundle.

 Example:

 `Router(config)# interface multilink 2` | |
| 4 | `ip address address mask` | Sets a primary IP address for an interface.

 Example:

 `Router(config-if)# ip address 192.0.2.1 255.255.255.224` | |
| 5 | `encapsulation ppp` | Enables PPP encapsulation.

 Example:

 `Router(config-if)# encapsulation ppp` | |
| 6 | `ppp chap hostname hostname` | Specifies the hostname on the interface.

 Example:

 `Router(config-if)# ppp chap hostname host1` | |
| 7 | `exit` | Exits interface configuration mode.

 Example:

 `Router(config-if)# exit` | |
| 8 | `interface type number` | Enters interface configuration mode.

 Example:

 `Router(config)# interface serial 0/0/1` | |
| 9 | `ppp multilink group group-number` | Restricts a physical link to joining only a designated multilink group interface.

 Example:

 `Router(config-if)# ppp multilink group 2` | |
Configuring PFC and ACFC

Protocol-Field-Compression (PFC) and Address-and-Control-Field-Compression (AFC) are PPP compression methods defined in RFCs 1661 and 1662. PFC allows for compression of the PPP Protocol field; ACFC allows for compression of the PPP Data Link Layer Address and Control fields.

Configuring ACFC

Follow these steps to configure ACFC handling during PPP negotiation

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface multilink number`
4. `ppp acfc local {request | forbid}`
5. `ppp acfc remote {apply | reject | ignore}`
6. `exit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>interface multilink number</code></td>
<td>Select a multilink interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface multilink 2</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring PFC

Follow these steps to configure PFC handling during PPP negotiation:

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface multilink number**
4. **ppp pfc local {request | forbid}**

 `Router(config-if)# ppp pfc local request`
5. **ppp pfc remote {apply | reject | ignore}**
6. **exit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Enter your password if prompted.</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Step 2

Command or Action:
- `configure terminal`

 Example:

 Router# configure terminal

Purpose: Enters global configuration mode.

Step 3

Command or Action:
- `interface multilink number`

 Example:

 Router(config)# interface multilink 2

Purpose: Select a multilink interface.

Step 4

Command or Action:
- `ppp pfc local {request | forbid}`

 Example:

 Router(config-if)# ppp pfc local request

Purpose: Configure how the router handles PFC in its outbound configuration requests where:
- `request` — The PFC option is included in outbound configuration requests.
- `forbid` — The PFC option is not sent in outbound configuration requests, and requests from a remote peer to add the PFC option are not accepted.

Step 5

Command or Action:
- `ppp pfc remote {apply | reject | ignore}`

 Example:

 Router(config-if)# ppp pfc remote apply

Purpose: Configure a method for the router to use to manage the PFC option in configuration requests received from a remote peer where:
- `apply` — PFC options are accepted and PFC may be performed on frames sent to the remote peer.
- `reject` — PFC options are explicitly ignored.
- `ignore` — PFC options are accepted, but PFC is not performed on frames sent to the remote peer.

Step 6

Command or Action:
- `exit`

 Example:

 Router(config-if)# exit

Purpose: Exits interface configuration mode.

Changing the Default Endpoint Discriminator

By default, when the system negotiates use of MLP with the peer, the value that is supplied for the endpoint discriminator is the same as the username used for authentication. That username is configured for the interface by the Cisco IOS `ppp chap hostname` or `ppp pap sent-username` command, or defaults to the globally configured hostname (or stack group name, if this interface is a Stack Group Bidding Protocol, or SGBP, group member).

Perform this task to override or change the default endpoint discriminator.

SUMMARY STEPS

1. `enable`
Creating a Multilink Bundle

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface multilink group-number`
4. `ip address address mask`
5. `encapsulation ppp`
6. `ppp multilink`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface virtual template number</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface virtual template 1</td>
</tr>
<tr>
<td>Step 4</td>
<td>`ppp multilink endpoint {hostname</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ppp multilink endpoint ip 192.0.2.0</td>
</tr>
</tbody>
</table>
Assigning an Interface to a Multilink Bundle

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2

configure terminal

Example:

Router# configure terminal

Step 3

interface multilink *group-number*

Example:

Router(config)# interface multilink 10

Step 4

ip address *address mask*

Example:

Router(config-if)# ip address 192.0.2.9 255.255.255.224

Step 5

encapsulation ppp

Example:

Router(config-if)# encapsulation ppp

Step 6

ppp multilink

Example:

Router(config-if)# ppp multilink

Assigning an Interface to a Multilink Bundle

Caution

Do not install a router to the peer address while configuring an MLP lease line. This installation can be disabled when **no ppp peer-neighbor-route** command is used under the MLPPP bundle interface.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface multilink *group-number*
4. no ip address
5. keepalive
6. encapsulation ppp
7. ppp multilink group *group-number*
8. ppp multilink
9. ppp authentication chap
10. **pulse-time seconds**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface multilink group-number</code></td>
<td>Assigns a multilink group number and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# interface multilink 10</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>no ip address</code></td>
<td>Removes any specified IP address.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# no ip address</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>keepalive</code></td>
<td>Sets the frequency of keepalive packets.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# keepalive</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>encapsulation ppp</code></td>
<td>Enables PPP encapsulation.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# encapsulation ppp</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>ppp multilink group group-number</code></td>
<td>Restricts a physical link to joining only the designated multilink-group interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ppp multilink 12</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>ppp multilink</code></td>
<td>Enables Multilink PPP.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-if)# ppp multilink</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>ppp authentication chap</code></td>
<td>(Optional) Enables CHAP authentication.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Router(config-if)# ppp authentication chap

Step 10

pulse-time *seconds*

Example:

Router(config-if)# pulse-time 10

(Optional) Configures DTR signal pulsing.

Configuring PPP/MLP MRRU Negotiation Configuration on Multilink Groups

In this task, you configure MRRU negotiation on the multilink interface. The bundle interface is static, that is, always available.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface multilink *number*
4. ip address *ip-address* *mask*
5. ppp multilink mrru [local | remote] *mrru-value*
6. mtu *bytes*
7. exit
8. interface serial *slot/port*
9. ppp multilink
10. ppp multilink group *group-number*
11. mtu *bytes*
12. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>· Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface multilink number</td>
<td>Creates a virtual template interface that can be configured and applied dynamically in creating virtual access interfaces, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface multilink 10</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>ip address ip-address mask</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip address 10.13.1.1 255.255.255.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppp multilink mrru [local</td>
<td>remote] mrru-value</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ppp multilink mrru local 1600</td>
<td></td>
</tr>
</tbody>
</table>

- **local**—(Optional) Configures the local MRRU value. The default values for the local MRRU are the value of the multilink group interface MTU for multilink group members, and 1524 bytes for all other interfaces.
- **remote**—(Optional) Configures the minimum value that the software will accept from the peer when it advertises its MRRU. By default, the software accepts any peer MRRU value of 128 or higher. You can specify a higher minimum acceptable MRRU value in a range from 128 to 16384 bytes.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mtu bytes</td>
<td>(Optional) Adjusts the maximum packet size or MTU size.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# mtu 1600</td>
<td></td>
</tr>
</tbody>
</table>

- Once you configure the MRRU on the bundle interface, you enable the router to receive large reconstructed MLP frames. You may want to configure the bundle MTU so the router can transmit large MLP frames, although it is not strictly necessary.
- The maximum recommended value for the bundle MTU is the value of the peer’s MRRU. The default MTU for serial interfaces is 1500. The software will automatically reduce the bundle interface MTU if necessary, to avoid violating the peer’s MRRU.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits interface configuration mode and returns to global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface serial slot/port</td>
<td>Selects a serial interface to configure and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface serial 0/0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ppp multilink</td>
<td>Enables MLP on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
---|---
Router(config-if)# ppp multilink | **Purpose**
Step 10 ppp multilink group group-number | Restricts a physical link to joining only a designated multilink-group interface.
Example: Router(config-if)# ppp multilink group 1 | (Optional) Adjusts the maximum packet size or MTU size.
mtu bytes | • The default MTU for serial interfaces is 1500.
Example: Router(config-if)# mtu 1600 | • When the bundle interface MTU is tuned to a higher number, then depending upon the fragmentation configuration, the link interface may be given larger frames to transmit.
• You must ensure that fragmentation is performed such that fragments are sized less than the link interface MTU (refer to command pages for the **ppp multilink fragmentation** and **ppp multilink fragment-delay** commands for more information about packet fragments), or configure the MTUs of the link interfaces such that they can transmit the larger frames.
Step 12 exit | Exits interface configuration mode and returns to global configuration mode.
Example: Router(config-if)# exit | **Disabling PPP Multilink Fragmentation**

SUMMARY STEPS
1. enable
2. configure terminal
3. interface multilink group-number
4. ppp multilink fragment disable
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Example: Router> enable | • Enter your password if prompted.
##PPP and Multilink PPP Configuration

Troubleshooting Tips

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface multilink group-number</td>
<td>Assigns a multilink group number and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface multilink 10</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>ppp multilink fragment disable</td>
<td>(Optional) Disables PPP multilink fragmentation.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ppp multilink fragment disable</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting PPP

You can troubleshoot PPP reliable link by using the `debug lapb` command and the `debug ppp negotiations`, `debug ppp errors`, and `debug ppp packets` commands. You can determine whether Link Access Procedure, Balanced (LAPB) has been established on a connection by using the `show interface` command.

Monitoring and Maintaining PPP and MLP Interfaces

You can use the `show ppp multilink` command to display MLP bundle information.

For more information about configuring MLPPP interfaces, see the *Wide-Area Networking Configuration Guide: Multilink PPP, Cisco IOS XE Release 3S*.

For more information about configuring MRRU and MTU values, see the *Wide-Area Networking Configuration Guide: Wide-Area Networking Configuration Guide: Multilink PPP, Cisco IOS XE Release 3S*.

Use the `debug ppp negotiation` command to verify and troubleshoot MRRU negotiation on multilink groups. Use the `show interface` command to verify MRRU negotiation on the interfaces.
CHAPTER 5

Configuring VCoP Smart SFP

The Virtual Container over Packet (VCoP) smart small form-factor pluggable (SFP) forwards the SONET signal transparently across the packet network. VCoP smart SFP is a special type of transceiver which encapsulates SONET frames on STS-1, STS-3C or STS-12C channels into a single circuit emulating pseudowire and transports it to a single destination over Packet Switched Network (PSN).

• Features of VCoP Smart SFP, on page 69
• Benefits of VCoP Smart SFP, on page 69
• Prerequisites, on page 70
• Restrictions, on page 71
• Alarms on VCoP Smart SFP, on page 71
• Configuring VCoP Smart SFP, on page 71
• Performance Monitoring, on page 80
• Troubleshooting, on page 83
• Running Bit Error Rate Testing, on page 84
• Loopback on VCoP Smart SFP, on page 86
• Configuration Examples for VCoP Smart SFP, on page 88
• Associated Commands, on page 91
• Additional References for VCoP Smart SFP, on page 92

Features of VCoP Smart SFP

VCoP smart SFP provides support for the following features:

Benefits of VCoP Smart SFP

• Supports channelization upto STS1 channel
• Reduces network complexity
Prerequisites

- The Multi-Protocol Label Switching (MPLS) and Interior Gateway Protocol (IGP) endpoints are up and running fine between the PE nodes.

- Ensure that SyncE is configured.

- Use the PTP Telecom profile, G.8265.1 for frequency synchronization, for CEM.

- VCoP smart SFP on OCn mode supports single-mode optical fiber cables.

- Port interface is set as default by using the `default int Gig 0/0/8` command before inserting VCoP smart SFP on GE or 10GE port.

- The GE or 10GE port interface is brought up using the `no shutdown` command.

- In cases where a non-VCoP SFP is to be inserted on any port from which any VCoP smart SFP is removed, then before inserting non-VCoP SFP, the VCoP smart SFP configuration is removed using the below commands:
 - For OC-3
    ```
    no platform smart-sfp interface Gig x/y/z type oc3
    ```
 - For OC-12
    ```
    no platform smart-sfp interface Gig x/y/z type oc12
    ```
 - For T1
    ```
    no platform smart-sfp interface Gig x/y/z type t1
    ```

 - Replace GE with 10GE in the above commands to configure VCoP as 10GE port interface when inserted in a 10GE port.

 - There is no need to remove `platform smart-sfp interface Gig/TenGig x/y/z type oc3/oc12/ds3` command for OC-3 and OC-12 modes and `platform smart-sfp interface Gig/TenGig x/y/z type T1` for T1 mode if you are replacing one VCoP smart SFP with the same or another VCoP smart SFP.

 - Recovered clock configuration needs to be removed before applying the `no platform` command.

- To connect the CE nodes, VCoP smart SFP uses single mode fiber (SMF) over the LC optical interface for OCx mode.

 - Recommended interfacing connector for the T3 VCoP SFP is Compel 1.0/2.3 Coaxial connector P/N 350.064.621.
Restrictions

- The payload size is fixed to STS1 and is 783 bytes.
- VCoP smart SFP does not support Stateful Switchover (SSO).
- For QoS, VCoP smart SFP supports only the default MPLS experimental marking.
- At a time, OC-3/OC-12 supports BERT at any one path.
- VCoP smart SFP does not support E3 mode.
- The chassis supports up to 12 VCoP smart SFPs.

Alarms on VCoP Smart SFP

VCoP smart SFP supports the following alarms on OC-3 or OC-12 mode:

- Loss of Signal (LOS)
- Loss of Frame (LOF)
- Alarm Indication Signal (MS-AIS, AU-AIS)
- Remote Defect Indication Line (RDI-L)
- Loss of Pointer (AU-LOP)
- Path Unequipped Indication Signal (PUNEQ)

Note

In case of RDI-L (remote alarm), SONET controller does not go down as this is not a critical alarm.

Configuring VCoP Smart SFP

Configuring VCoP Smart SFP on OC-3

Enabling VCoP Smart SFP on OC-3

You can enable VCoP smart SFP for STS1 and STS-3c channels on OC-3.

```
enable
cisco
configure terminal
platform smart-sfp interface GigabitEthernet 0/0/8 type OC3
exit
```
Configuring Framing for CEM Circuits for STS-1 on OC-3

```
enable
cfg term
ctrl SONET 0/0/8
framing sonet
sts-1 1
mode unframed
cem-group 20 cep
sts-1 2
mode unframed
cem-group 21 cep
sts-1 3
mode unframed
cem-group 22 cep
exit
```

Configuring CEM Circuits on VCoP for STS-3c on OC-3

```
enable
cfg term
ctrl SONET 0/0/10
framing sonet
sts-1 1-3 mode sts-3c
cem-group 0 cep
overhead c2 0
exit
```

Configuring Cross-connect for STS-1 on OC-3

Note

Ensure that the VC number configured in `xconnect` command is the same on both PEs.

```
enable
cfg term
interface CEM 0/0/8
no ip address
cem 20
xconnect 2.2.2.2 3000 encapsulation mpls
cem 21
xconnect 2.2.2.2 3001 encapsulation mpls
cem 22
xconnect 2.2.2.2 3002 encapsulation mpls
exit
```

Configuring Cross-connect for STS-3C on OC-3

```
enable
cfg term
interface GigabitEthernet 0/0/10
no ip address
neg auto
interface CEM 0/0/10
no ip address
cem 0
xconnect 2.2.2.2 1000 encapsulation mpls
exit
```
Verifying VCoP Smart SFP Configuration for STS-1 on OC-3

Use the `show cem circuit` command to verify the VCoP smart SFP configuration.

```
Device# show cem circuit detail
CEM0/0/8, ID: 20, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, CEP state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 783
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 24000 Dropped: 0
Egress Pkts: 24000 Dropped: 0

CEM Counter Details
Input Errors: 0 Output Errors: 0
Pkts Missing: 0 Pkts Reordered: 0
Misorder Drops: 0 JitterBuf Underrun: 0
Error Sec: 0 Severly Errored Sec: 0
Unavailable Sec: 0 Failure Counts: 0
Pkts Malformed: 0 JitterBuf Overrun: 0
```

```
CEM0/0/8, ID: 21, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, CEP state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 783
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 24000 Dropped: 0
Egress Pkts: 24000 Dropped: 0

CEM Counter Details
Input Errors: 0 Output Errors: 0
Pkts Missing: 0 Pkts Reordered: 0
Misorder Drops: 0 JitterBuf Underrun: 0
Error Sec: 0 Severly Errored Sec: 0
Unavailable Sec: 0 Failure Counts: 0
Pkts Malformed: 0 JitterBuf Overrun: 0
```

```
CEM0/0/8, ID: 22, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, CEP state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 783
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
```

RTP: No RTP

| Ingress Pkts: | 24000 | Dropped: | 0 |
| Egress Pkts: | 24000 | Dropped: | 0 |

CEM Counter Details

Input Errors:	0
Pkts Missing:	0
Misorder Drops:	0
Error Sec:	0
Unavailable Sec:	0
Pkts Malformed:	0

Output Errors:	0
Pkts Reordered:	0
JitterBuf Underrun:	0
Failure Counts:	0
JitterBuf Overrun:	0

Device# show cem circuit

<table>
<thead>
<tr>
<th>CEM Int.</th>
<th>ID</th>
<th>Ctrlr</th>
<th>Admin</th>
<th>Circuit</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM0/0/8</td>
<td>20</td>
<td>UP</td>
<td>UP</td>
<td>Active</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/0/8</td>
<td>21</td>
<td>UP</td>
<td>UP</td>
<td>Active</td>
<td>UP</td>
</tr>
<tr>
<td>CEM0/0/8</td>
<td>22</td>
<td>UP</td>
<td>UP</td>
<td>Active</td>
<td>UP</td>
</tr>
</tbody>
</table>

Device# show mpls l2 vc

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE0/0/8</td>
<td>CEM 20</td>
<td>2.2.2.2</td>
<td>3000</td>
<td>UP</td>
</tr>
<tr>
<td>CE0/0/8</td>
<td>CEM 21</td>
<td>2.2.2.2</td>
<td>3001</td>
<td>UP</td>
</tr>
<tr>
<td>CE0/0/8</td>
<td>CEM 22</td>
<td>2.2.2.2</td>
<td>3002</td>
<td>UP</td>
</tr>
</tbody>
</table>

Verifying VCoP Smart SFP Configuration for STS-3C on OC-3

Use the `show controller` command to verify the VCoP smart SFP configuration.

Device#show controller sonet 0/0/10

SONET 0/0/10 is up.
 Hardware is 12xGE-4x10GE-FIXED

Port configured rate: OC-3
Appliance type is Channelized Sonet/SDH
Clock Source is Line
Medium info:
 Type: Sonet, Line Coding: NRZ,
 SECTION:
 LOS = 0 LOF = 0 BIP(B1) = 0

SONET/SDH Section Tables

<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>CV</th>
<th>ES</th>
<th>SES</th>
<th>SEFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:58-16:11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LINE:
 AIS = 0 RDI = 0 REI = 0 BIP(B2) = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF SF B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = 40
 K1 = 00, K2 = 00
 J0 = 01
 RX S1 = 00
Tx: S1S0 = 00
 K1 = 00, K2 = 00
SONET/SDH Line Tables
INTERVAL CV ES SES UAS
15:58-16:11 0 0 0 0

High Order Path:
PATH 1:
AIS = 0 RDI = 0 REI = 0 BIP(B3) = 0
LOP = 0 PSE = 0 NSE = 0 NEWPTR = 0
LOM = 0 PLM = 0 UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PLOP LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 00
PATH TRACE BUFFER : UNSTABLE

SONET/SDH Path Tables
INTERVAL CV ES SES UAS
16:11-16:11 0 0 0 0

STS-1 1 - 3 mode sts-3c
- cep is configured: TRUE cem_id :0
Path 2:
- configured as member of a concatenated interface
Path 3:
- configured as member of a concatenated interface

Configuring VCoP Smart SFP on OC-12

Enabling VCoP Smart SFP on OC-12

You can enable VCoP smart SFP for STS-1 and STS-12C channels on OC-12.

```
enable
configure terminal
platform smart-sfp interface GigabitEthernet 0/0/8 type OC12
exit
```

Configuring Framing for CEM Circuits for STS-1 on OC-12

```
enable
configure terminal
controller SONET 0/0/8
framing sonet
sts-1 1
mode unframed
```
Configuring CEM Circuits on VCoP for STS-12C on OC-12

```
cem-group 20 cep
sts-1 2
mode unframed
cem-group 21 cep
sts-1 3
mode unframed
cem-group 22 cep
sts-1 4
mode unframed
sts-1 5
mode unframed
sts-1 6
mode unframed
sts-1 7
mode unframed
sts-1 8
mode unframed
sts-1 9
mode unframed
sts-1 10
mode unframed
sts-1 11
mode unframed
sts-1 12
mode unframed
exit
```

Configuring Cross-connect for STS-1 on OC-12

```
enable
configure terminal
controller SONET 0/0/8
framing sonet
sts-1 1-12 mode sta-12c
cem-group 0 cep
overhead c2 2
exit
```
Configuring Cross-connect for STS-12C on OC-12

```bash
enable
configure terminal
interface GigabitEthernet 0/0/8
no ip address
negotiation auto
interface CEM 0/0/8
no ip address
cem 0
xconnect 2.2.2.2 2222 encapsulation mpls
exit
```

Verifying VCoP Smart SFP Configuration for STS-1 on OC-12

Use the `show cem circuit` and `show mpls l2 vc` commands to verify the VCoP smart SFP configuration.

Device# show cem circuit detail

CEM0/0/8, ID: 20, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, CEP state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 783
Framing: Unframed
CEM Defects Set
None

Signalling: No CAS
RTP: No RTP

<table>
<thead>
<tr>
<th>Ingress Pkts</th>
<th>Egress Pkts</th>
<th>Dropped</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>24000</td>
<td>24000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CEM Counter Details

<table>
<thead>
<tr>
<th>Input Errors</th>
<th>Output Errors</th>
<th>Pkts Missing</th>
<th>Pkts Reordered</th>
<th>Misorder Drops</th>
<th>JitterBuf Underrun</th>
<th>Error Sec</th>
<th>Severly Errored Sec</th>
<th>Unavailable Sec</th>
<th>Failure Counts</th>
<th>Pkts Malformed</th>
<th>JitterBuf Overrun</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

CEM0/0/8, ID: 21, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, CEP state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 783
Framing: Unframed
CEM Defects Set
None

Signalling: No CAS
RTP: No RTP

<table>
<thead>
<tr>
<th>Ingress Pkts</th>
<th>Egress Pkts</th>
<th>Dropped</th>
<th>Dropped</th>
</tr>
</thead>
<tbody>
<tr>
<td>24000</td>
<td>24000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

CEM Counter Details

<table>
<thead>
<tr>
<th>Input Errors</th>
<th>Output Errors</th>
<th>Pkts Missing</th>
<th>Pkts Reordered</th>
<th>Misorder Drops</th>
<th>JitterBuf Underrun</th>
<th>Error Sec</th>
<th>Severly Errored Sec</th>
<th>Unavailable Sec</th>
<th>Failure Counts</th>
<th>Pkts Malformed</th>
<th>JitterBuf Overrun</th>
</tr>
</thead>
</table>
Verifying VCoP Smart SFP Configuration for STS-12C on OC-12

Use the show controller command to verify the VCoP smart SFP configuration.

Device# show controller sonet 0/0/8
SONET 0/0/8 is up.
Hardware is 12xGE-4x10GE-FIXED

Port configured rate: OC-3
Applique type is Channelized Sonet/SDH
Clock Source is Line
Medium info:
 Type: Sonet, Line Coding: NRZ,
 SECTION:
 LOS = 0 LOF = 0 BIP(B1) = 0

SONET/SDH Section Tables
 INTERVAL CV ES SES SEFS
 16:01-16:09 0 0 0 0

LINE:
AIS = 0 RDI = 0 REI = 0 BIP(B2) = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF SF B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-6 B2 = 10e-6
Rx: S1S0 = 40
 K1 = 00, K2 = 00
 J0 = 01
 RX S1 = 00
Tx: S1S0 = 00
 K1 = 00, K2 = 00
 J0 = 01
SONET/SDH Line Tables
<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>CV</th>
<th>ES</th>
<th>SES</th>
<th>UAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:01-16:09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

High Order Path:

PATH 1:

AIS = 0 RDI = 0 REI = 0 BIP(B3) = 0
LOP = 0 PSE = 0 NSE = 0 NEWPTR = 0
LOM = 0 PLM = 0 UNEQ = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PLOP LOM B3-TCA
TCA threshold: B3 = 10e-6
Rx: C2 = 00
Tx: C2 = 02
PATH TRACE BUFFER : UNSTABLE

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

SONET/SDH Path Tables
<table>
<thead>
<tr>
<th>INTERVAL</th>
<th>CV</th>
<th>ES</th>
<th>SES</th>
<th>UAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:09-16:09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

STS-1 1 - 12 mode sts-12c
cem_id :0
Path 2:
 configured as member of a concatenated interface
Path 3:
 configured as member of a concatenated interface
Path 4:
 configured as member of a concatenated interface
Path 5:
 configured as member of a concatenated interface
Path 6:
 configured as member of a concatenated interface
Path 7:
 configured as member of a concatenated interface
Path 8:
Performance Monitoring

Performance Monitoring and Overhead Bytes

The VCoP smart SFP supports the performance monitoring counter to maintain the path quality of the link. You can view the statistics or error count generated on the VCoP smart SFP, if you have the configuration that is described:

```
enable
configure terminal
controller SONET 0/0/8
threshold b1-tca 8
threshold b2-tca 8
framing sonet
overhead j0 6
overhead a1s0 2
!
sts-1 1
overhead c2 2
threshold b3-ber_sd 8
threshold b3-ber_sf 8
overhead 1 message PATH_TRACE)
threshold b3-tca 8
mode unframed
cem-group0 cep
!
```

The following parameters affect SONET configuration:

- **Overhead** - Sets the SONET overhead bytes in the frame header to a specific standards requirement, or to ensure interoperability with equipment from another vendors.
 - **J0** - Sets the J0/C1 byte value in the SONET section overhead.
 - **J1** - Path Trace Byte
 - **C2** - Path Signal label
 - **S1S0** - Sets the SS bits value of the H1 byte in the SONET line overhead
 - **Alarm Reporting** - Enables reporting for all or selected alarms.

The following parameters affect SONET configuration:

- **Overhead** - Sets the SONET overhead bytes in the frame header to a specific standards requirement, or to ensure interoperability with equipment from another vendors.
 - **J0** - Sets the J0/C1 byte value in the SONET section overhead.

Note

1 byte, 16 bytes, and 64 bytes are the supported values for J0.
• B1 - Section BIP Error (SF/SD)
• B2 - Line BIP Error (SF/SD)
• B3 (SF/SD) - STS Path BIP Error
• sd-ber - Sets Signal Degradation BER threshold
• sf-ber - Sets Signal failure BER threshold

The performance monitoring result is displayed using the `show controller` command. The following snippets are the performance monitoring details when the `show controller` command is executed.

```
Router# show controller sonet 0/0/8
SONET 0/0/8 is up.
    Hardware is 12xGE-4x10GE-FIXED

Port configured rate: OC3
Applique type is Channelized Sonet/SDH
Clock Source is Line
Medium info:
    Type: Sonet, Line Coding: NRZ,
SECTION:
    LOS = 0 LOF = 0 BIP(B1) = 0

SONET/SDH Section Tables
INTERVAL CV ES SES SEFS
12:25-12:25 0 0 0 0

LINE:
    AIS = 0 RDI = 0 REI = 0 BIP(B2) = 0
Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: SLOS SLOF SF B1-TCA B2-TCA
BER thresholds: SF = 10e-3 SD = 10e-6
TCA thresholds: B1 = 10e-8 B2 = 10e-8
Rx: S1S0 = 40
    K1 = 00, K2 = 00
    J0 = 01
    RX S1 = 00

Tx: S1S0 = 02
    K1 = 00, K2 = 00
    J0 = 06

SONET/SDH Line Tables
INTERVAL CV ES SES UAS
12:25-12:25 0 0 0 0

High Order Path:
PATH 1:
    AIS = 0 RDI = 0 REI = 0 BIP(B3) = 0
    LOP = 0 PSE = 0 NSE = 0 NEWPTR = 0
    LOM = 0 PLM = 0 UNEQ = 0
Active Defects: None
Detected Alarms: PAIS
Asserted/Active Alarms: PAIS
Alarm reporting enabled for: PLOP LOM B3-TCA
```
TCA threshold: \(B3 = 10^{-6} \)
Rx: C2 = 00
Tx: C2 = 02

PATH TRACE BUFFER : UNSTABLE

```
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
```

SONET/SDH Path Tables

```
INTERVAL  CV  ES  SES  UAS
12:25-12:25  0  0  0  0
```

PATH 2:

AIS = 0 RDI = 0 REI = 0 \(\text{BIP}(B3) = 0 \)
LOF = 0 PSE = 0 NSE = 0 NEWPTR = 0
LOM = 0 PLM = 0 UNEQ = 0

Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PLOP LOM B3-TCA

TCA threshold: \(B3 = 10^{-6} \)
Rx: C2 = 00
Tx: C2 = 02

PATH TRACE BUFFER : UNSTABLE

```
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
```

SONET/SDH Path Tables

```
INTERVAL  CV  ES  SES  UAS
12:25-12:25  0  0  0  0
```

PATH 3:

AIS = 0 RDI = 0 REI = 0 \(\text{BIP}(B3) = 0 \)
LOF = 0 PSE = 0 NSE = 0 NEWPTR = 0
LOM = 0 PLM = 0 UNEQ = 0

Active Defects: None
Detected Alarms: None
Asserted/Active Alarms: None
Alarm reporting enabled for: PLOP LOM B3-TCA

TCA threshold: \(B3 = 10^{-6} \)
Rx: C2 = 00
Tx: C2 = 02

PATH TRACE BUFFER : UNSTABLE

```
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ............
```

SONET/SDH Path Tables

```
INTERVAL  CV  ES  SES  UAS
```

Performance Monitoring and Overhead Bytes

Configuring VCoP Smart SFP
Troubleshooting

Troubleshooting VCoP Smart SFP Configuration on OC-3

Problem Checking the MAC address of the VCoP smart SFP from database

Possible Cause None

Solution Use the `show platform software ssfpd` and `show inventory` commands to troubleshoot issues with the VCoP smart SFP configuration.

Device# show platform software ssfpd

```plaintext
=== Redundancy role ===
RF role: Active

=== Smart SFP info ===
dpix: 15
mac: 00:19:3a:00:79:58
port: 8
bay: 0
ssfp upgrade data store id: -1
ssfp is device upgrade safe: -1
upgrade percentage complete: 0
ssfp upgrade in progress: 0

fpga version of the VCoP

Device# show platform software ssfpd slot 0 bay 0 port 8 version
```

```plaintext
sdid: 15
rma timestamp: 160209-09:21
rma version: 00060000
firmware: 03002400
ppactive: 00060000
ppstored: 00060000
--CN Information--
cnid: 0
mbid: 271
hwid: 1274
nabc: 0
sabc: 0
nmbc: 0
ReleaseType: OFFICIAL
```

Device# show inventory | beg VCoPNAME: "subslot 0/0 transceiver 8", DESCR: "VCoP OC-3/OC-12" PID: ONS-SI-OC-VCOP , VID: 01.0, SN: OEA194300007
Troubleshooting VCoP Smart SFP Configuration on OC-12

Problem Checking the MAC address of the VCoP smart SFP from database

Possible Cause None

Solution Use the `show platform software ssfpd` and `show inventory` commands to troubleshoot issues with the VCoP smart SFP configuration.

```
Device#show platform software ssfpd db

--- Redundancy role ---
RF role: Active

--- Smart SFP info ---
dpidx: 15
mac : 00:19:3a:00:79:58
port: 8
bay: 0
ssfp upgrade data store id: -1
ssfp is device upgrade safe: -1
upgrade percentage complete: 0
ssfp upgrade in progress: 0

fpga version of the VCoP
#################
```

```
Device#show platform software ssfpd slot 0 bay 0 port 8 version
sdid: 15
rma timestamp: 160209-09:21
rma version: 00060000
firmware: 03002400
ppactive: 00060000
ppstored: 00060000
--CN Information--
   cnid: 0
   mbid: 271
   hwid: 1274
   nabc: 0
   sabc: 0
   nmbc: 0
   ReleaseType: OFFICIAL

Device#show inventory
| beg VCoPNAME: "subslot 0/0 transceiver 8", DESCR: "VCoP OC-3/OC-12"PID: ONS-SI-OC-VCOP , VID: 01.0, SN: OEA19430007 |
```

Running Bit Error Rate Testing

Bit Error Rate Testing (BERT) is supported on VCoP smart SFP at the STS-1 path level. The OCn VCoP hardware does not support BERT at the concatenated level paths like STS-3c or STS-12c. The interfaces contain onboard BERT circuitry to send and detect a pattern.

When running a BERT test, your system expects to receive the same pattern that it is transmitting. To help ensure the two common options are available:

- Use a loopback somewhere in the link or network
- Configure remote testing equipment to transmit the same BERT test pattern at the same time
VCoP smart SFP supports Pseudo Random Binary Sequence (PRBS) pattern.

Both the total number of error bits received and the total number of error bits received are available for analysis. You can select the testing period to be from 1 minute to 24 hours, and you can also retrieve the error statistics anytime during the BERT test.

BERT is supported in two directions:

- Line - supports BERT in TDM direction
- System - supports BERT in PSN direction

Note

When the BERT is configured towards system direction, it internally loopbacks the TDM side locally.

Note

DS3 VCoP supports BERT only in the Line direction.

Note

Running BERT on DS3 VCoP triggers LOF alarm and it is cleared as soon as BERT is over.

Configuring BERT on OC-3/OC-12 VCoP Smart SFP

Follow these steps to configure BERT on VCoP STS-1 path for direction as line.

```
enable
configure terminal
controller SONET 0/0/9
sts-1 1
bert pattern pRBS interval 5 direction line
exit
```

Note

To terminate a BERT test during the specified test period, use the `no bert` command.

You can view the results of a BERT test at the following times:

- After you terminate the test using the `no bert` command.
- After the test runs completely.
- Anytime during the test (in real time).

Verifying BERT on OC3/OC12

Use the `show controller` command to verify the BERT configuration on VCoP smart SFP.

```
BERT test result (running)
Test Pattern : All 0's, Status : Not Sync, Sync Detected : 0
```
Interval : 5 minute(s), Time Remain : 4 minute(s)
Bit Errors (since BERT started): 0 bits,
Bits Received (since BERT started): 0 Kbits
Bit Errors (since last sync): 0 bits
Bits Received (since last sync): 0 Kbits
Direction : Line

Loopback on VCoP Smart SFP

VCoP smart SFP supports two types of loopback configurations:

- Local loopback - In local loopback, the transmitting signal is looped back to the receiver signal.
- Network loopback - In network loopback, the receiving signal is looped back to the transmitting signal.

You can configure loopback on VCoP smart SFP at two levels:

- Controller level
- Path Level

Configuring Loopback on VCoP STS1 Channel

Configuring Network Loopback

Follow these steps to configure network loopback on VCoP STS1 channel.

```
enable
configure terminal
controller SONET 0/0/8
sts-1 1
loopback network
exit
```

Configuring Local Loopback

Follow these steps to configure local loopback on VCoP STS1 channel.

```
enable
configure terminal
controller SONET 0/0/8
sts-1 1
loopback local
exit
```

Verifying Loopback at Path Level

Use the `show run controller sonet 0/0/8` command to verify the configuration with loopback on VCoP smart SFP.

```
Controller SONET 0/0/11
no TU-AIS
threshold sf-ber 3
threshold b1-tca 8
threshold b2-tca 8
framing sonet
```
overhead j0 6
overhead s1s0 2
!
sts-1 1 - 12 mode sts-12c
cem-group 0 cep
loopback local
overhead c2 2
threshold b3-ber_sd 8
threshold b3-ber_sf 8
overhead j1 message PATH_T
threshold b3-tca 8

Use the show controller sonet 0/0/8 command to verify the path level local loopback configuration on VCoP smart SFP.

SONET 0/0/8 is up.
 Hardware is A900-IMA8S
 Port configured rate: OC3
 Applique type is Channelized Sonet/SDH

SONET/SDH Path Tables
 INTERVAL CV ES SES UAS
 02:32-02:32 0 0 0 0

STS-1 1 mode UNFRAMED
 cep is configured: TRUE cem_id :10
 Configured Loopback : Locally Loopback

Use the show controller sonet 0/0/8 command to verify the path level network loopback configuration on VCoP smart SFP.

SONET 0/0/8 is up.
 Hardware is A900-IMA8S
 Port configured rate: OC3
 Applique type is Channelized Sonet/SDH
 Clock Source is Line

SONET/SDH Path Tables
 INTERVAL CV ES SES UAS
 02:35-02:35 0 0 0 0

STS-1 1 mode UNFRAMED
 cep is configured: TRUE cem_id :10
 Configured Loopback : Network Loopback

Configuring Loopback on SONET Controller

Configuring Network Loopback

Follow these steps to configure network loopback on sonet controller.
Verifying Loopback at Controller Level

Use the `show controller sonet 0/0/8` command to verify the controller level local loopback configuration on VCoP smart SFP.

```
SONET 0/0/8 is up.(Configured for Locally Loopled)
   Hardware is A900-IMA8S
   Port configured rate: OC3
   Applique type is Channelized Sonet/SDH
   .......
```

Use the `show controller sonet 0/0/8` command to verify the BERT configuration on VCoP Smart SFP.

```
SONET 0/0/8 is up.(Configured for Network Looped)
   Hardware is A900-IMA8S
   Port configured rate: OC3
   Applique type is Channelized Sonet/SDH
   .......
```

Configuration Examples for VCoP Smart SFP

Example: VCoP Smart SFP Configuration on OC-3

Enabling the VCoP SSFP.
```
setting smart-sfp interface GigabitEthernet0/0/8 type OC3
```

configuring the sonet controller.
```
controller SONET 0/0/8
   framing sonet
!
   sta-1 1
   mode unframed
   cem-group 20 cep
!
```
sts-1 2
 mode unframed
 cem-group 21 cep
!
sts-1 3
 mode unframed
 cem-group 22 cep
!
configuring the cem interface

interface CEM0/0/8
 no ip address
 cem 20
 xconnect 2.2.2.2 3000 encapsulation mpls
 !
 cem 21
 xconnect 2.2.2.2 3001 encapsulation mpls
 !
 cem 22
 xconnect 2.2.2.2 3002 encapsulation mpls
!

Example: VCoP Smart SFP Configuration on OC-12

Enabling the VCoP SSFP.

platform smart-sfp interface GigabitEthernet0/0/8 type OC12
configuring the sonet controller.

controller SONET 0/0/8
 framing sonet
!
sts-1 1
 mode unframed
 cem-group 20 cep
!
sts-1 2
 mode unframed
 cem-group 21 cep
!
sts-1 3
 mode unframed
 cem-group 22 cep
!
sts-1 4
 mode unframed
!
sts-1 5
 mode unframed
!
sts-1 6
 mode unframed
!
sts-1 7
 mode unframed
!
configuring the cem interface

interface CEM0/0/8
no ip address
cem 20
 xconnect 2.2.2.2 3000 encapsulation mpls
 !
cem 21
 xconnect 2.2.2.2 3001 encapsulation mpls
 !
cem 22
 xconnect 2.2.2.2 3002 encapsulation mpls
 !
cem 23
 !
cem 24
 !
cem 25
 !
cem 26
 !
cem 27
 !
cem 28
 !
cem 29
 !
cem 30
 !
cem 31
 !
Associated Commands

The commands used to configure VCoP Smart SFP.

<table>
<thead>
<tr>
<th>Commands</th>
<th>URL</th>
</tr>
</thead>
</table>
Commands

<table>
<thead>
<tr>
<th>Commands</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>sonet</td>
<td>ir-s3.html#wp1341372847</td>
</tr>
</tbody>
</table>

Additional References for VCoP Smart SFP

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IETF RFC: 4842</td>
<td>Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) - Circuit Emulation over Packet (CEP)</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>CISCO-MIB</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
CHAPTER 6

Transparent SONET or SDH over Packet (TSoP) Protocol

The Transparent SONET or SDH over Packet (TSoP) protocol converts SONET or SDH TDM traffic to a packet stream. Operators can now transport SONET or SDH traffic across a packet network by simply adding the TSoP Smart SFP to any router or packet switch. With TSoP the SONET or SDH signal is forwarded transparently, maintaining its embedded payload structure, protection protocols and synchronization. This simplifies the configuration and service turn-up of SONET or SDH connections across the packet network.

- Prerequisites for TSoP, on page 93
- Restrictions for TSoP, on page 93
- Information About TSoP Smart SFP, on page 94
- Configuring the Reference Clock, on page 95
- Configuration Examples for TSoP, on page 96
- Verification Examples, on page 97

Prerequisites for TSoP

- Single mode optical fiber must be used to connect TSoP Smart SFP with the OC-3 port.
- The TSoP smart SFP pseudowire endpoints must use the same configuration parameters.

Restrictions for TSoP

- The TSoP smart SFP payload size is not configurable. The byte size is fixed at 810 bytes.
- The router cannot be synced with the TSoP Smart SFP clock.
- Only untagged encapsulation is supported.
- CFM (connectivity fault management) is not supported.
- Only QoS Default Experimental marking is supported.
- SSO is not supported on TSoP for STM-4 or OC-12 SFP due to hardware restriction.
- TSoP is not supported on the 10G ports.
Information About TSoP Smart SFP

TSoP Smart SFP is a special type of optical transceiver which provides solution to transparently encapsulate SDH or SONET bit streams into packet format, suitable for pseudowire transport over an ethernet network. The TSoP pseudowires is manually configured or setup using PWE3 control protocol [RFC4447].

TSoP provides packetization, de-packetization, and clock recovery that translates the TDM bit stream to fixed size data blocks (810 octets), and vice versa.

TSoP follows the SAToP method described in [RFC4553] for pseudowire transport of E1/DS1, over a packet switched network. With TSoP, the entire OC-3 or STM-1 is encapsulated in a single circuit emulating pseudowire traffic, and is transported it to a single destination across the ethernet network.

Note

The TSoP smart SFP is used on any of the front panel ports of the 8-port Gigabit Ethernet SFP Interface Module (8X1GE).

- The Smart SFP transceivers is compatible with the Small Form Factor Pluggable 20-pin Multi-Source Agreement (MSA).
- TSoP Smart SFP (PN: ONS-SC-155-TSOP) transports upto 155 Mbps, on a L1.1 (40km) optical data link.

Guidelines for TSoP Smart SFP

TSoP is compatible with the below SFPs supported on the OC-3 interface module. We recommend you use the specified attenuator:

- ONS-SI-155-I1—For 15km cable length, use 2 dB attenuator; short distance use 8 dB attenuator to avoid receiver overload.
- ONS-SI-155-L1—For 40km cable length, no attenuator; short distance use 10 dB attenuator to avoid receiver overload.
- ONS-SI-155-L2—For 40km cable length, use 2 dB attenuator; short distance use 10 dB attenuator to avoid receiver overload.

Note

Multimode SFP is not supported with TSoP.

STM-4 TSoP is compatible with the below SFPs supported on the OC-12 interface module:

- ONS-SI-622-L2—For 40km cable length, use 2 dB attenuator; short distance use 10 dB attenuator to avoid receiver overload.
- ONS-SI-622-L1—For 40km cable length, no attenuator; short distance use 10 dB attenuator to avoid receiver overload.
- ONS-SI-622-I1—For 15km cable length, use 2 dB attenuator; short distance use 8 dB attenuator to avoid receiver overload.
The OC-12 Smart SFP (PN: ONS-SC-622-TSOP) is not supported in Cisco IOS XE Release 3.14S.

Note Effective Cisco IOS XE Release 3.18, STM-4 TSoP is supported on ASR 920 routers.

Configuring the Reference Clock

The reference clock for the TSoP is extracted from the network. You can extract the clock reference from either of the following:

- Ethernet physical interface
- Incoming TDM physical interface

Note If TDM reference clock is configured, and you want to return to the Ethernet reference clock (default), use the `ssfpd tsop clock-source ethernet` command. Additionally, you can also use the `no ssfpd tsop clock-source` command to return the Ethernet reference clock (default).

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ssfpd tsop clock-source {ethernet | tdm}
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
- enable
 - Example: `Router> enable`
| Enables privileged EXEC mode.
 - Enter your password if prompted. |
| **Step 2**
- configure terminal
 - Example: `Router# configure terminal`
| Enters global configuration mode. |
| **Step 3**
- interface type number
 - Example: `Device(config)# interface gigabitethernet 0/0/0`
<p>| Specifies the Gigabit Ethernet interface for configuration and enters interface configuration mode. |</p>
<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| | ssfpd tsop clock-source \{ethernet | tdm\} | Configures the reference clock on the interface.
| Example: | Device(config)# ssfpd tsop clock-source ethernet |
| | | • ethernet—Specifies the ethernet interface as clock source. Default is ethernet.
| | | • tdm—Specifies the TDM interface as clock source.
| Note | If Ethernet interface is selected as clock source, the TSoP Smart SFP is synchronized with the Ethernet interface’s clock (where smart SFP is installed), which in turn is synchronized with the network clock (that is already chosen through PTP or SYNC-E). |
| Step 5 | end | Exists configuration and enters privileged EXEC mode |

Figure 5: TSoP in Packet Switched Network

TSoP Smart SFP inserted in the PE’s, CE (SONET or SDH) can be configured as
- SDH or SONET framing for T1 and E1 mode.
- Serial interface in SDH or SONET mode. The scale for OC-3 IM is as supported—63 for E1 and 84 for T1 interfaces. The scale supported for OC-12 IM is 252 E1 and 336 T1 interfaces.
- Multilink interface with minimum of 1 member link and maximum of 16 member link.
- POS interface in SDH or SONET mode.
- ATM Layer3 interfaces in SDH or SONET mode.
ATM Layer 3 interface is not supported on CE for OC-12 IM.

• In OC-12 mode, if OC-12 IM is used on CE, only port 0 (ZERO) of the IM is used. Use the card-type command to operate the OC-12 IM.

For configuring the pseudowire using service instances, see Ethernet Virtual Connections Configuration on the Cisco ASR 903 Router.

Only untagged encapsulation is supported.

• The following example shows a sample configuration on the CE:

```
! control SONET 0/2/3
  framing sdh
  clock source line
  aug mapping au-3
  !
  au-3 1
  overhead j1 length 64
  mode c-11
  tug-2 1 t1 1 channel-group 0 timeslots 1

!```

• The following example shows a sample configuration of the Gigabit Ethernet interface with TSoP smart SFP installed:

```
! interface GigabitEthernet0/0/0
 no ip address
 negotiation auto
 no keepalive
 service instance 1 ethernet
 encapsulation untagged
 xconnect 2.2.2.2 1 encapsulation mpls

!```

Verification Examples

Verifying TSoP Smart SFP

• Use the show inventory command to display all TSoP Smart SFPs installed on the router.

```
Router# show inventory
NAME: "subslot 0/0 transceiver 7", DESCR: "TSoP OC-3/STM-1"
PID: ONS-SC-155-TSOP , VID: 01.0, SN: GES18100028
```
• Use the `show platform software ssfpd db` command to display all TSoP Smart SFPs recognized by the router.

```
Router# show platform software ssfpd db
=== Smart SFP info ===
    dpidx: 14
    mac : 00:19:3a:00:2f:18
    port: 7
    bay: 0
    ssfp upgrade data store id: -1
    ssfp is device upgrade safe: -1
    upgrade percentage complete: 0
    ssfp upgrade in progress: 0
```

• Use the `show platform software ssfpd db` command with slot, bay and port to display specific TSoP Smart SFPs recognized by the router.

```
Router# show platform software ssfpd slot 0 bay 0 port 7 ssfp-d
    dpidx: 14
    mac : 00:19:3a:00:2f:18
    port: 7
    bay: 0
    ssfp upgrade data store id: -1
    ssfp device upgrade safe: -1
    Upgrade percentage complete: 0
    ssfp upgrade in progress: 0
```

• Use the `show hw-module subslot` command to view information about TSoP Smart SFP.

```
Router# show hw-module subslot 0/0 transceiver 7 idprom
IDPROM for transceiver GigabitEthernet0/0/7:
    Description = SFP or SFP+ optics (type 3)
    Transceiver Type: = TSoP OC-3/STM-1 (291)
    Product Identifier (PID) = ONS-SC-155-TSOP
    Vendor Revision = 01.0
    Serial Number (SN) = OES18100028
    Vendor Name = CISCO-OES
    Vendor OUI (IEEE company ID) = 00.19.3A (6458)
    CLEI code = NOTRDBZBAA
    Cisco part number = 10-2949-01
    Device State = Enabled.
    Date code (yy/mm/dd) = 14/03/07
    Connector type = LC.
    Encoding = 8B10B
    NRZ
    Nominal bitrate = OC3/STM1 (200 Mbits/s)
```

The following example shows the configuration of STM-4 TSoP:

NAME: "subslot 0/5 transceiver 2", DESCR: "TSoP OC-12/STM-4"
PID: ONS-SC-622-TSOP , VID: 01.0, SN: OES17420029

Verifying Clock Source

• Use the `show platform software ssfpd` command to display the configured clock source. In the following example, rtpClockSource value for Ethernet clock source is displayed as 0. For TDM clock source the rtpClockSource value is displayed as 1.
Router# show platform software ssfpd slot 0 bay 0 port 7 encap-params
sdId: 14
channel: 0
iwfEncapOutputEnable: 1
ecid: 0
gAisTriggerActive: 0
gAisIncludeLosTrigger: 1
gAisIncludeLofTrigger: 1
insertRtpHeader: 1
rtpClockSource: 0
rtpFrequency: 0
rtpPayloadType: 0
rtpSsrc: 0
Verifying Clock Source