ITU-T G.8032 Ethernet Ring Protection Switching

- ITU-T G.8032 Ethernet Ring Protection Switching, on page 2
ITU-T G.8032 Ethernet Ring Protection Switching

The ITU-T G.8032 Ethernet Ring Protection Switching feature implements protection switching mechanisms for Ethernet layer ring topologies. This feature uses the G.8032 Ethernet Ring Protection (ERP) protocol, defined in ITU-T G.8032, to provide protection for Ethernet traffic in a ring topology, while ensuring that no loops are within the ring at the Ethernet layer. The loops are prevented by blocking traffic on either a predetermined link or a failed link.

Prerequisites for Configuring ITU-T G.8032 Ethernet Ring Protection Switching

- The Ethernet Flow Points (EFPs) and Trunk Ethernet Flow Points (TEFPs) must be configured.

About ITU-T G.8032 Ethernet Ring Protection Switching

Ring Protection Links

An Ethernet ring consists of multiple Ethernet ring nodes. Each Ethernet ring node is connected to adjacent Ethernet ring nodes using two independent ring links. A ring link prohibits formation of loops that affect the network. The Ethernet ring uses a specific link to protect the entire Ethernet ring. This specific link is called the Ring Protection Link (RPL). A ring link is bound by two adjacent Ethernet ring nodes and a port for a ring link (also known as a ring port). There must be at least two Ethernet ring nodes in an Ethernet ring.

ITU-T G.8032 Ethernet Ring Protection Switching Functionality

The Ethernet ring protection functionality includes the following:

- Loop avoidance

- The use of learning, forwarding, and Filtering Database (FDB) mechanisms

Loop avoidance in an Ethernet ring is achieved by ensuring that, at any time, traffic flows on all but the Ring Protection Link (RPL).

The following is a list of RPL types (or RPL nodes) and their functions:

- **RPL owner**—Responsible for blocking traffic over the RPL so that no loops are formed in the Ethernet traffic. There can be only one RPL owner in a ring.

- **RPL neighbor node**—An Ethernet ring node adjacent to the RPL. It is responsible for blocking its end of the RPL under normal conditions. This node type is optional and prevents RPL usage when protected.

- **RPL next-neighbor node**—Next-neighbor node is an Ethernet ring node adjacent to an RPL owner node or RPL neighbor node. It is mainly used for FDB flush optimization on the ring. This node is also optional.

The following figure illustrates the G.8032 Ethernet ring topology.
Figure 1: G.8032 Ethernet Ring Topology

R-APS Control Messages

Nodes on the ring use control messages called Ring Automatic Protection Switching (R-APS) messages to coordinate the activities of switching the ring protection link (RPL) on and off. Any failure along the ring triggers a R-APS Signal Failure (R-APS SF) message in both directions of the nodes adjacent to the failed link, after the nodes have blocked the port facing the failed link. On obtaining this message, the RPL owner unblocks the RPL port.

A single link failure in the ring ensures a loop-free topology.

CFM Protocols and Link Failures

Connectivity Fault Management (CFM) and line status messages are used to detect ring link and node failure. During the recovery phase, when the failed link is restored, the nodes adjacent to the restored link send Ring Automatic Protection Switching (R-APS) No Request (R-APS NR) messages. On obtaining this message, the ring protection link (RPL) owner blocks the RPL port and sends R-APS NR and R-APS RPL (R-APS NR, RB) messages. These messages cause all other nodes, other than the RPL owner in the ring, to unblock all blocked ports. The Ethernet Ring Protection (ERP) protocol works for both unidirectional failure and multiple link failure scenarios in a ring topology.

The G.8032 Ethernet Ring Protection (ERP) protocol uses CFM Continuity Check Messages (CCMs) at an interval of 3.3 milliseconds (ms). At this interval (which is supported only on selected platforms), SONET-like switching time performance and loop-free traffic can be achieved.

G.8032 Ring-Supported Commands and Functionality

A G.8032 ring supports these basic operator administrative commands:

- Force switch (FS)—Allows the operator to forcefully block a particular ring port. Note the following points about FS commands:
• Effective even if there is an existing SF condition
• Multiple FS commands for ring are supported
• May be used to allow immediate maintenance operations

• Manual switch (MS)—Allows the operator to manually block a particular ring port. Note the following points about MS commands:
 • Ineffective in an existing FS or signal failure (SF) condition
 • Overridden by new FS or SF conditions
 • When multiple MS commands are executed more than once on the same device, all MS commands are cancelled.

When multiple MS commands are executed on different devices in the ring, for the same instance, then the command executed on the second device is rejected.

• Clear— Cancels an existing FS or MS command on the ring port. The Clear command is used at the ring protection link (RPL) owner to clear a nonrevertive mode condition.

A G.8032 ring can support multiple instances. An instance is a logical ring running over a physical ring. Such instances are used for various reasons, such as load-balancing VLANs over a ring. For example, odd-numbered VLANs may go in one direction of the ring, and even-numbered VLANs may go in the other direction. Specific VLANs can be configured under only one instance. They cannot overlap multiple instances. Otherwise, data traffic or Ring Automatic Protection Switching (R-APS) messages may cross logical rings, which is not desirable.

G.8032 ERP Timers

The G.8032 Ethernet Ring Protection (ERP) protocol specifies the use of different timers to avoid race conditions and unnecessary switching operations:

• Delay timers—Used by the Ring Protection Link (RPL) owner to verify that the network has stabilized before blocking the RPL. Note the following points about delay timers.
 • After a signal failure (SF) condition, a Wait-to-Restore (WTR) timer is used to verify that the SF is not intermittent.
 • The WTR timer can be configured by the operator. The default time interval is 5 minutes; the time interval ranges from 1 to 12 minutes.
 • After a force switch (FS) or a manual switch (MS) command is issued, a Wait-to-Block (WTB) timer is used to verify that no background condition exists.

Note

The WTB timer interval may be shorter than the WTR timer interval.

• Guard timer—Used by all nodes when changing state; the guard timer blocks latent outdated messages from causing unnecessary state changes. The guard timer can be configured. The default time interval is 500 ms; the time interval ranges from 10 to 2000 ms.
• Hold-off timers—Used by the underlying Ethernet layer to filter out intermittent link faults. The hold-off timer can be configured. The default time interval is 0 seconds; the time interval ranges from 0 to 10 seconds. Faults are reported to the ring protection mechanism only if this timer expires.

Protection Switching Functionality in a Single Link Failure and Recovery

The following figure illustrates protection switching functionality in a single-link failure.

Figure 2: G.8032 Ethernet Ring Protection Switching in a Single-Link Failure

The figure represents an Ethernet ring topology consisting of seven Ethernet ring nodes. The ring protection link (RPL) is the ring link between Ethernet ring nodes A and G. In this topology, both ends of the RPL are blocked. Ethernet ring node G is the RPL owner node, and Ethernet ring node A is the RPL neighbor node.

The following sequence describes the steps followed in the single-link failure:

1. A link operates in the normal condition.
2. A failure occurs.
3. Ethernet ring nodes C and D detect a local signal failure (SF) condition and after the hold-off time interval, block the failed ring port and perform the FDB flush.
4. Ethernet ring nodes C and D start sending Ring Automatic Protection Switching (R-APS) SF messages periodically along with the (node ID and bidirectional path-protected ring (BPR) identifier pair) on both ring ports while the SF condition persists.
5. All Ethernet ring nodes receiving an R-APS SF message perform the FDB flush. When the RPL owner node G and RPL neighbor node A receive an R-APS SF message, the Ethernet ring node unblocks its end of the RPL and performs the FDB flush.

6. All Ethernet ring nodes receiving a second R-APS SF message perform the FDB flush again; the additional FDB flush is because of the node ID and BPR-based configuration.

7. R-APS SF messages are detected on the Ethernet Ring indicating a stable SF condition. Further R-APS SF messages trigger no further action.

The following figure illustrates the steps taken in a revertive operation in a single-link failure.

Figure 3: Single-Link Failure Recovery (Revertive Operation)

The following sequence describes the steps followed in the single-link failure revertive (recovery) operation:

1. A link operates in the stable SF condition.
2. Recovery of link failure occurs.
3. Ethernet ring nodes C and D detect clearing of the SF condition, start the guard timer, and initiate periodic transmission of the R-APS No Request (NR) messages on both ring ports. (The guard timer prevents the reception of R-APS messages.)
4. When the Ethernet ring nodes receive an R-APS NR message, the node ID and BPR identifier pair of a receiving ring port is deleted and the RPL owner node starts the Wait-to-Restore (WTR) timer.
5. When the guard timer expires on Ethernet ring nodes C and D, the nodes may accept the new R-APS messages, if any. Ethernet ring node D receives an R-APS NR message with a higher node ID from Ethernet ring node C, and unblocks its nonfailed ring port.
6. When the WTR timer expires, the RPL owner node blocks its end of the RPL, sends R-APS (NR or route blocked [RB]) message with the (node ID and BPR identifier pair), and performs the FDB flush.
7. When Ethernet ring node C receives an R-APS (NR or RB) message, the node removes the block on its blocked ring ports, and stops sending R-APS NR messages. On the other hand, when the RPL neighbor node A receives an R-APS NR or RB message, the node blocks its end of the RPL. In addition, Ethernet ring nodes A to F perform the FDB flush when receiving an RAPS NR or RB message because of the node ID and BPR-based configuration.

Ethernet Flow Points

An Ethernet flow point (EFP) is a forwarding decision point in the provider edge (PE) router, which gives network designers flexibility to make many Layer 2 flow decisions within the interface. Many EFPs can be configured on a single physical port. (The number varies from one device to another.) EFPs are the logical demarcation points of an Ethernet virtual connection (EVC) on an interface. An EVC that uses two or more user network interfaces (UNIs) requires an EFP on the associated ingress and egress interfaces of every device that the EVC passes through.

EFPs can be configured on any Layer 2 traffic port; however, they are usually configured on UNI ports. The following parameters (matching criteria) can be configured on the EFP:

- Frames of a specific VLAN, a VLAN range, or a list of VLANs (100-150 or 100,103,110)
- Frames with no tags (untagged)
- Frames with identical double-tags (VLAN tags) as specified
- Frames with identical Class of Service (CoS) values

A frame passes each configured match criterion until the correct matching point is found. If a frame does not fit any of the matching criteria, it is dropped. Default criteria can be configured to avoid dropping frames.

The following types of commands can be used in an EFP:

- Rewrite commands—In each EFP, VLAN tag management can be specified with the following actions:
 - Pop—1) pops out a tag; 2) pops out two tags
 - Push—pushes in a tag
 - Translate—1 to 1) changes a tag value; 1 to 2) pops one tag and pushes two tags; 2 to 1) pops two tags and pushes one tag; 2 to 2) changes the value for two tags

- Forwarding commands—Each EFP specifies the forwarding command for the frames that enter the EFP. Only one forwarding command can be configured per EFP. The forwarding options are as follows:
 - Layer 2 point-to-point forwarding to a pseudowire tunnel
 - Multipoint bridge forwarding to a bridge domain entity
 - Local switch-to-switch forwarding between two different interfaces

- Feature commands—In each EFP, the QoS features or parameters can be changed and the ACL can be updated.

Service Instances and Associated EFPs

Configuring a service instance on a Layer 2 port creates a pseudoport or EFP on which you configure EVC features. Each service instance has a unique number per interface, but you can use the same number on different interfaces because service instances on different ports are not related.
An EFP classifies frames from the same physical port to one of the multiple service instances associated with that port, based on user-defined criteria. Each EFP can be associated with different forwarding actions and behavior.

When an EFP is created, the initial state is UP. The state changes to DOWN under the following circumstances:

- The EFP is explicitly shut down by a user.
- The main interface to which the EFP is associated is down or removed.
- If the EFP belongs to a bridge domain, the bridge domain is down.
- The EFP is forced down as an error-prevention measure of certain features.

Use the `service instance ethernet` interface configuration command to create an EFP on a Layer 2 interface and to enter service instance configuration mode. Service instance configuration mode is used to configure all management and control data plane attributes and parameters that apply to the service instance on a per-interface basis. The service instance number is the EFP identifier.

After the device enters service instance configuration mode, you can configure these options:

- `default`--Sets a command to its defaults
- `description`--Adds a service instance-specific description
- `encapsulation`--Configures Ethernet frame match criteria
- `exit`--Exits from service instance configuration mode
- `no`--Negates a command or sets its defaults
- `shutdown`--Takes the service instance out of service

Restrictions for Configuring ITU-T G.8032 Ethernet Ring Protection Switching

- G.8032 is supported only on EFP bridgedomains on the physical interface and port-channel interface.
- G.8032 is supported only on EFP with dot1q, dot1ad, QinQ, or dot1ad-dot1Q encapsulation type.
- G.8032 is not supported on xconnect interface.
- G.8032 supports a maximum of eight ERP rings with a maximum of two ERP instances per ring.
- Link flap occurs while configuring the inclusion or exclusion VLAN list.
- Admin shut down is highly recommended before making any changes in Connectivity Fault Management (CFM) configuration.
- The `efd notify` command must be used under CFM configuration to notify G.8032 of failures, if any.
- G.8032 support is claimed only over the normal interfaces and not on the port-channels.
How to Configure ITU-T G.8032 Ethernet Ring Protection Switching

Configuring the Ethernet Ring Profile

To configure the Ethernet ring profile, complete the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet ring g8032 profile profile-name
4. timer {guard seconds | hold-off seconds | wtr minutes}
5. non-revertive
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>* Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 ethernet ring g8032 profile profile-name</td>
<td>Creates the Ethernet ring profile and enters Ethernet ring profile configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config)# ethernet ring g8032 profile profile1</td>
<td></td>
</tr>
<tr>
<td>Step 4 timer {guard seconds</td>
<td>hold-off seconds</td>
</tr>
<tr>
<td>Example: Device(config-erp-profile)# timer hold-off 5</td>
<td></td>
</tr>
<tr>
<td>Step 5 non-revertive</td>
<td>Specifies a nonrevertive Ethernet ring instance.</td>
</tr>
<tr>
<td>Example: Device(config-erp-profile)# non-revertive</td>
<td>* By default, Ethernet ring instances are revertive.</td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Returns to user EXEC mode.</td>
</tr>
<tr>
<td>Example: Device(config-erp-profile)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Ethernet CFM MEPs

Configuring Ethernet Connectivity Fault Management (CFM) maintenance endpoints (MEPs) is optional although recommended for fast failure detection and CFM monitoring. When CFM monitoring is configured, note the following points:

- Static remote MEP (RMEP) checking should be enabled.
- The MEPs should be configured to enable Ethernet fault detection.

For information about configuring Ethernet Connectivity Fault Management (CFM) maintenance endpoints (MEPs), see the “Configuring Ethernet Connectivity Fault Management in a Service Provider Network” module of the Carrier Ethernet Configuration Guide.

Enabling Ethernet Fault Detection for a Service

To enable Ethernet Fault Detection (EFD) for a service to achieve fast convergence, complete the following steps

Note: Link protection is not supported on the RSP3 Module.

SUMMARY STEPS

1. enable
2. configure terminal
3. ethernet cfm global
4. link-protection enable
5. link-protection group management vlan vlan-id
6. link-protection group group-number pccm vlan vlan-id
7. ethernet cfm domain domain-name level level-id [direction outward]
8. service {ma-name | ma-num | vlan-id vlan-id | vpn-id vpn-id} [port | vlan vlan-id [direction down]]
9. continuity-check [interval time | loss-threshold threshold | static rmep]
10. efd notify g8032
11. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>enable</td>
<td>- Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device> enable</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>ethernet cfm global</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm global</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>link-protection enable</td>
<td>Enables link protection globally on the router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# link-protection enable</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>link-protection group management vlan vlan-id</td>
<td>Defines the management VLAN used for link protection.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# link-protection group management vlan 51</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>link-protection group group-number pccm vlan vlan-id</td>
<td>Specifies an ODU-to-ODU continuity check message (P-CCM) VLAN.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# link-protection group 2 pccm vlan 16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ethernet cfm domain domain-name level level-id [direction outward]</td>
<td>Configures the CFM domain for ODU 1 and enters Ethernet CFM configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config)# ethernet cfm domain G8032 level 4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>service {ma-name</td>
<td>ma-num</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm)# service 8032_service evc 8032-evc vlan 1001 direction down</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>continuity-check [interval time</td>
<td>loss-threshold threshold</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# continuity-check interval 3.3ms</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>efd notify g8032</td>
<td>Enables CFM to notify registered protocols when a defect is detected or cleared, which matches the current fault alarm priority.</td>
</tr>
<tr>
<td>Example:</td>
<td>Device(config-ecfm-srv)# efd notify g8032</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Ethernet Protection Ring

To configure the Ethernet Protection Ring (EPR), complete the following steps.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ethernet ring g8032 ring-name`
4. `port0 interface type number`
5. `monitor service instance instance-id`
6. `exit`
7. `port1 {interface-type number | none}`
8. `monitor service instance instance-id`
9. `exit`
10. `exclusion-list vlan-ids vlan-id`
11. `open-ring`
12. `instance instance-id`
13. `description descriptive-name`
14. `profile profile-name`
15. `rpl {port0 | port1} {owner | neighbor | next-neighbor}`
16. `inclusion-list vlan-ids vlan-id`
17. `aps-channel`
18. `level level-value`
19. `port0 service instance instance-id`
20. `port1 service instance {instance-id | none}`
21. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------</td>
</tr>
</tbody>
</table>
| 3 | `ethernet ring g8032 ring-name` | Specifies the Ethernet ring and enters Ethernet ring port configuration mode.
Example:
Device(config)# ethernet ring g8032 ring1 |
| 4 | `port0 interface type number` | Connects port0 of the local node of the interface to the Ethernet ring and enters Ethernet ring protection mode.
Example:
Device(config-erp-ring)# port0 interface gigabitethernet 0/1/0 |
| 5 | `monitor service instance instance-id` | Assigns the Ethernet service instance to monitor the ring port (port0) and detect ring failures.
Example:
Device(config-erp-ring-port)# monitor service instance 1 |
| 6 | `exit` | Exits Ethernet ring port configuration mode.
Example:
Device(config-erp-ring-port)# exit |
| 7 | `port1 interface type number | none` | Connects port1 of the local node of the interface to the Ethernet ring and enters Ethernet ring protection mode.
Example:
Device(config-erp-ring)# port1 interface gigabitethernet 0/1/1 |
| 8 | `monitor service instance instance-id` | Assigns the Ethernet service instance to monitor the ring port (port1) and detect ring failures.
- The interface (to which port1 is attached) must be a subinterface of the main interface.
Example:
Device(config-erp-ring-port)# monitor service instance 2 |
| 9 | `exit` | Exits Ethernet ring port configuration mode.
Example:
Device(config-erp-ring-port)# exit |
| 10 | `exclusion-list vlan-ids vlan-id` | Specifies VLANs that are unprotected by the Ethernet ring protection mechanism.
Example:
Device(config-erp-ring)# exclusion-list vlan-ids 2 |
| 11 | `open-ring` | Specifies the Ethernet ring as an open ring.
Example:
Device(config-erp-ring)# open-ring |
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device(config-erp-ring)# open-ring</td>
<td>Configures the Ethernet ring instance and enters Ethernet ring instance configuration mode.</td>
</tr>
</tbody>
</table>

Step 12
instance instance-id
Example:
Device(config-erp-ring)# instance 1
Specifies a descriptive name for the Ethernet ring instance.
description descriptive-name
Example:
Device(config-erp-inst)# description cisco_customer_instance
Specifies the profile associated with the Ethernet ring instance.
profile profile-name
Example:
Device(config-erp-inst)# profile profile1
Specifies the Ethernet ring port on the local node as the RPL owner, neighbor, or next neighbor.
rpl {port0 | port1} {owner | neighbor | next-neighbor}
Example:
Device(config-erp-inst)# rpl port0 neighbor
Specifies VLANs that are protected by the Ethernet ring protection mechanism.
inclusion-list vlan-ids vlan-id
Example:
Device(config-erp-inst)# inclusion-list vlan-ids 11
Enters Ethernet ring instance aps-channel configuration mode.
aps-channel
Example:
Device(config-erp-inst)# aps-channel
Specifies the Automatic Protection Switching (APS) message level for the node on the Ethernet ring.
level level-value
Example:
Device(config-erp-inst-aps)# level 5
Associates APS channel information with port0.
port0 service instance instance-id
Example:
Device(config-erp-inst-aps)# port0 service instance 100

Note

VLANs should be within or equal to VLAN configured in the interface.
Configuring Topology Change Notification Propagation

To configure topology change notification (TCN) propagation, complete the following steps.

SUMMARY STEPS

1. **enable**
2. **configure** terminal
3. **ethernet tcn-propagation G8032 to {REP | G8032}**
4. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
 | Example: | • Enter your password if prompted. | |
| | | Device> enable |
| Step 2 | configure terminal | Enters global configuration mode. |
| | Example: | Device# configure terminal |
| Step 3 | ethernet tcn-propagation G8032 to {REP | G8032} | Allows topology change notification (TCN) propagation from a source protocol to a destination protocol.
 | Example: | • Source and destination protocols vary by platform and release. | |
| | | Device(config)# ethernet tcn-propagation G8032 to G8032 |
| Step 4 | end | Returns to user EXEC mode. |
| | Example: | Device(config)# end |

Example:

Step 1

- Enter your password if prompted.

Example:

- Device> enable

Step 2

- Enters global configuration mode.

Example:

- Device# configure terminal

Step 3

- Allows topology change notification (TCN) propagation from a source protocol to a destination protocol.

Example:

- Device(config)# ethernet tcn-propagation G8032 to G8032

Step 4

- Returns to user EXEC mode.

Example:

- Device(config)# end
Configuring a Service Instance

To configure a service instance, complete the following steps.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance instance-id ethernet [evc-id]
5. encapsulation dot1q vlan-id [native]
6. bridge-domain bridge-id [split-horizon [group group-id]]
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Specifies the interface type and number.</td>
</tr>
<tr>
<td>Example: Device(config)# interface gigabitethernet 0/1/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 service instance instance-id ethernet [evc-id]</td>
<td>Creates a service instance (an instance of an EVC) on an interface and enters service instance configuration mode.</td>
</tr>
<tr>
<td>Example: Device(config-if)# service instance 101 ethernet</td>
<td></td>
</tr>
<tr>
<td>Step 5 encapsulation dot1q vlan-id [native]</td>
<td>Defines the matching criteria to be used in order to map ingress dot1q frames on an interface to the appropriate service instance.</td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# encapsulation dot1q 13</td>
<td></td>
</tr>
<tr>
<td>Step 6 bridge-domain bridge-id [split-horizon [group group-id]]</td>
<td>Binds the service instance to a bridge domain instance.</td>
</tr>
<tr>
<td>Example: Device(config-if-srv)# bridge-domain 12</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the Ethernet Ring Protection (ERP) Switching Configuration

To verify the ERP switching configuration, use one or more of the following commands in any order.

Note

Follow these rules while adding or deleting VLANs from the inclusion list:

- While adding VLAN into the inclusion list, it has to be first added on the interface and then in the G.8032 inclusion list.
- While removing VLAN from the inclusion list, it has to be removed from the G.8032 inclusion list and then from the interface.

Addition or Deletion of VLANs in exclusion list is not supported.

SUMMARY STEPS

1. enable
2. show ethernet g8032 status [ring-name] [instance [instance-id]]
3. show ethernet ring g8032 brief [ring-name] [instance [instance-id]]
4. show ethernet ring g8032 summary
5. show ethernet ring g8032 statistics [ring-name] [instance [instance-id]]
6. show ethernet ring g8032 profile [profile-name]
7. show ethernet ring g8032 port status interface [type number]
8. show ethernet ring g8032 configuration [ring-name] instance [instance-id]
9. show ethernet ring g8032 trace {ctrl [ring-name instance instance-id] | sm}
10. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| enable
| Example:
| Device> enable |
| Enables privileged EXEC mode.
| • Enter your password if prompted. |
| **Step 2**
| show ethernet ring g8032 status [ring-name] [instance [instance-id]]
| Example: |
| Displays a status summary for the ERP instance. |
Command or Action

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device# show ethernet ring g8032 status RingA instance 1</td>
<td>Displays a brief description of the functional state of the ERP instance.</td>
</tr>
</tbody>
</table>

Step 3

show ethernet ring g8032 brief [ring-name] [instance [instance-id]]

Example:

Device# show ethernet ring g8032 brief

Step 4

show ethernet ring g8032 summary

Example:

Device# show ethernet ring g8032 summary

Step 5

show ethernet ring g8032 statistics [ring-name] [instance [instance-id]]

Example:

Device# show ethernet ring g8032 statistics RingA instance 1

Step 6

show ethernet ring g8032 profile [profile-name]

Example:

Device# show ethernet ring g8032 profile gold

Step 7

show ethernet ring g8032 port status interface [type number]

Example:

Device# show ethernet ring g8032 port status interface gigabitethernet 0/0/1

Step 8

show ethernet ring g8032 configuration [ring-name] instance [instance-id]

Example:

Device# show ethernet ring g8032 configuration RingA instance 1

Step 9

show ethernet ring g8032 trace {ctrl [ring-name instance [instance-id]] | sm}

Example:

Device# show ethernet ring g8032 trace sm

Step 10

end

Example:

Returns to privileged EXEC mode.
Configuration Examples for ITU-T G.8032 Ethernet Ring Protection Switching

Example: Configuring Ethernet Ring Protection Switching

The following is an example of an Ethernet Ring Protection (ERP) switching configuration:

```plaintext
eternet ring g8032 profile profile_ABC
  timer wtr 1
  timer guard 100
  timer hold-off 1

ethernet ring g8032 major_ring_ABC
  exclusion-list vlan-ids 1000
  port 0 interface GigabitEthernet 0/0/1
  monitor service instance 103
  port 1 interface GigabitEthernet 0/1/0
  monitor service instance 102
  instance 1
    profile profile_ABC
    rpl port 0 owner
    inclusion-list vlan-ids 100
    aps-channel
      port 0 service instance 100
      port 1 service instance 100

interface GigabitEthernet0/1/0
  mtu 9216
  no ip address
  negotiation auto
  service instance trunk 1 ethernet
  encapsulation dot1q 60-61
  rewrite ingress tag pop 1 symmetric
  bridge-domain from-encapsulation

!```
Example: Verifying the Ethernet Ring Protection Configuration

The following is sample output from the `show ethernet ring g8032 configuration` command. Use this command to verify if the configuration entered is valid and to check for any missing configuration parameters.

```
Device# show ethernet ring g8032 configuration

eternet ring ring0
 Port0: GigabitEthernet0/0/0 (Monitor: GigabitEthernet0/0/0)
 Port1: GigabitEthernet0/0/4 (Monitor: GigabitEthernet0/0/4)
 Exclusion-list VLAN IDs: 4001-4050
 Open-ring: no
 Instance 1
 Description: ITU-T G.8032 Ethernet Ring Protection Switching
```

ITU-T G.8032 Ethernet Ring Protection Switching
Profile: opp
RPL:
Inclusion-list VLAN IDs: 2,10-500
APS channel
Level: 7
Port0: Service Instance 1
Port1: Service Instance 1
State: configuration resolved
Example: Verifying the Ethernet Ring Protection Configuration