The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

Notwithstanding any other warranty herein, all document files and software of these suppliers are provided “as is” with all faults. Cisco and the above-named suppliers disclaim all warranties, expressed or implied, including, without limitation, those of merchantability, fitness for a particular purpose and noninfringement or arising from a course of dealing, usage, or trade practice.

In no event shall Cisco or its suppliers be liable for any indirect, special, consequential, or incidental damages, including, without limitation, lost profits or loss or damage to data arising out of the use or inability to use this manual, even if Cisco or its suppliers have been advised of the possibility of such damages.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2017–2020 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1

Feature History 1

CHAPTER 2

Bidirectional Forwarding Detection 3

Prerequisites for Bidirectional Forwarding Detection 3
Restrictions for Bidirectional Forwarding Detection 3
Information About Bidirectional Forwarding Detection 4

BFD Operation 4

Neighbor Relationships 4
BFD Detection of Failures 5
BFD Version Interoperability 5
BFD Process on the RP 6

BFD Support for Nonstop Forwarding with Stateful Switchover 6
BFD Support for Stateful Switchover 7
BFD Support for Static Routing 7
BFD on Multiple Hops 8

Benefits of Using BFD for Failure Detection 8

How to Configure Bidirectional Forwarding Detection 9

Configuring BFD Session Parameters on the Interface 9
Configuring BFD Support for Static Routing 11

Configuring BFD Echo Mode 15

Prerequisites 15

Configuring the BFD Slow Timer 15
Disabling BFD Echo Mode Without Asymmetry 16

Creating and Configuring BFD Templates 17

Configuring a Single-Hop Template 17
Configuring a Multihop Template 18
CHAPTER 5
IS-IS IPv6 Client for BFD
Prerequisites for IS-IS IPv6 Client for BFD
Restrictions for IS-IS IPv6 Client for BFD
Information About IS-IS IPv6 Client for BFD
IS-IS BFD Topology
IS-IS BFD IPv6 Session Creation
IS-IS BFD IPv6 Session Deletion
How to Configure ISIS IPv6 Client for BFD
Configuring IS-IS IPv6 Client Support for BFD on an Interface
Configuring IS-IS IPv6 Client Support for BFD on All Interfaces
Configuration Examples for ISIS IPv6 Client for BFD
Example: IS-IS IPv6 Client Support for BFD on a Single Interface
Example: IS-IS IPv6 Client Support for BFD on All Interfaces

CHAPTER 6
BFD IPv6 Encapsulation Support
Prerequisites for BFD IPv6 Encapsulation Support
Restrictions for BFD IPv6 Encapsulation Support
Information About BFD IPv6 Encapsulation Support
Overview of the BFDv6 Protocol
BFDv6 Registration
BFDv6 Global and Link-Local Addresses
BFD for IPv4 and IPv6 on the Same Interface
How to Configure BFD IPv6 Encapsulation Support
Configuring BFD Session Parameters on the Interface
Configuration Examples for BFD IPv6 Encapsulation Support
Example: Configuring BFD Session Parameters on the Interface

CHAPTER 7
Configuring BFD Debug Enhancement

IP Routing: BFD Configuration Guide, Cisco IOS XE 16 (Cisco ASR 920 Series)
Feature History

The following table lists the new and modified features supported in the IP Routing: BFD Configuration Guide in Cisco IOS XE 16 releases.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Cisco IOS XE Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro BFD</td>
<td>16.11.1a</td>
</tr>
<tr>
<td>BFD on IP Unnumbered Interfaces</td>
<td>16.5.1</td>
</tr>
</tbody>
</table>
Bidirectional Forwarding Detection

This document describes how to enable the Bidirectional Forwarding Detection (BFD) protocol. BFD is a detection protocol that is designed to provide fast forwarding path failure detection times for all media types,encapsulations, topologies, and routing protocols. It includes a description of how to configure multihop BFD sessions.

BFD provides a consistent failure detection method for network administrators, in addition to fast forwarding path failure detection. Because the network administrator can use BFD to detect forwarding path failures at a uniform rate, rather than the variable rates for different routing protocol hello mechanisms, network profiling and planning will be easier, and reconvergence time will be consistent and predictable.

- Prerequisites for Bidirectional Forwarding Detection, on page 3
- Restrictions for Bidirectional Forwarding Detection, on page 3
- Information About Bidirectional Forwarding Detection, on page 4
- How to Configure Bidirectional Forwarding Detection, on page 9
- Configuration Examples for Bidirectional Forwarding Detection, on page 21
- Micro BFD, on page 34

Prerequisites for Bidirectional Forwarding Detection

- Cisco Express Forwarding and IP routing must be enabled on all participating routers

Restrictions for Bidirectional Forwarding Detection

- Minimum value supported on bfd interval command is 50ms.
- BFD templates must be used to configure 3.3ms BFD. For more information, see Creating and Configuring BFD Templates, on page 17.
- Moving from echo to non-echo and non-echo to echo multiple times without any delay between each iteration may cause a few BFD sessions to flap. So multiple times echo to non-echo/non-echo to echo transition is not recommended and if this scenario is required then it should be done with a delay of at least 20 seconds at each step.
- The loopback packets are not prioritized for BFD echo sessions. Apply QoS policy to increase the priority of the packets.
• BFD packets for both, echo and non-echo sessions are not subjected to the Egress QoS. These packets are sent in the high-priority queue.

• BFD flaps on enabling internal loopback and traffic looped back with line rate as both the traffic passes through the HPCT queue.

• When 300 plus scaled BFD sessions are configured with 1 second BFD timers, few sessions may take time to come up or some times sessions do not come up. This is an expected behavior on the router when the peer node is Cisco ASR 920.

• BFD with authentication is supported only in software. Hardware offload is not supported for BFD with authentication.

• The minimum timer value supported for the BFD software session is 200 ms.

• BFD over IPv4 unicast GRE tunnel is not supported.

Information About Bidirectional Forwarding Detection

BFD Operation

BFD provides a low-overhead, short-duration method of detecting failures in the forwarding path between two adjacent routers, including the interfaces, data links, and forwarding planes.

BFD is a detection protocol that is enabled at the interface and protocol levels. Cisco supports BFD asynchronous mode, which depends on the sending of BFD control packets between two systems to activate and maintain BFD neighbor sessions between routers. Therefore, in order for a BFD session to be created, BFD must be configured on both systems (or BFD peers). Once BFD has been enabled on the interfaces and at the router level for the appropriate protocols (NHRP and the routing protocol on overlay), a BFD session is created, BFD timers are negotiated, and the BFD peers will begin to send BFD control packets to each other at the negotiated interval.

Neighbor Relationships

BFD provides fast BFD peer failure detection times independently of all media types, encapsulations, topologies, and routing protocols BGP, EIGRP, IS-IS, and OSPF. By sending rapid failure detection notices to the routing protocols in the local router to initiate the routing table recalculation process, BFD contributes to greatly reduced overall network convergence time. The figure below shows a simple network with two routers running OSPF and BFD. When OSPF discovers a neighbor (1) it sends a request to the local BFD process to initiate a BFD neighbor session with the OSPF neighbor router (2). The BFD neighbor session with the OSPF neighbor router is established (3).

The figure below shows what happens when a failure occurs in the network (1). The BFD neighbor session with the OSPF neighbor router is torn down (2). BFD notifies the local OSPF process that the BFD neighbor
is no longer reachable (3). The local OSPF process tears down the OSPF neighbor relationship (4). If an alternative path is available, the routers will immediately start converging on it.

A routing protocol needs to register with BFD for every neighbor it acquires. Once a neighbor is registered, BFD initiates a session with the neighbor if a session does not already exist.

OSPF registers with BFD when:

- A neighbor finite state machine (FSM) transitions to full state.
- Both OSPF BFD and BFD are enabled.

On broadcast interfaces, OSPF establishes a BFD session only with the designated router (DR) and backup designated router (BDR), but not between any two routers in DROTHER state.

Note A single BFD session notifies all protocols. For example, if OSPF and PIM neighbors exist, then a single BFD session notifies both the protocols.

BFD Detection of Failures

Once a BFD session has been established and timer negations are complete, BFD peers send BFD control packets that act in the same manner as an IGP hello protocol to detect liveliness, except at a more accelerated rate. The following information should be noted:

- BFD is a forwarding path failure detection protocol. BFD detects a failure, but the routing protocol must take action to bypass a failed peer.
- Typically, BFD can be used at any protocol layer. However, the Cisco implementation of BFD for Cisco IOS Releases 12.0(31)S, and 12.4(4)T supports only Layer 3 clients, in particular, the BGP, EIGRP, IS-IS, and OSPF routing protocols. For Cisco IOS Release 12.2(33)SRC, BFD is supported for static routing.
- The Cisco implementation of BFD for Cisco IOS Release 12.2(18)SXE also supports only Layer 3 clients and the EIGRP, IS-IS, and OSPF routing protocols. It does not support the BGP routing protocol.
- Cisco devices will use one BFD session for multiple client protocols in the Cisco implementation of BFD for Cisco IOS Releases 12.2(18)SXE, 12.0(31)S, and 12.4(4)T. For example, if a network is running OSPF and EIGRP across the same link to the same peer, only one BFD session will be established, and BFD will share session information with both routing protocols.

BFD Version Interoperability

Cisco IOS Release 12.4(9)T supports BFD Version 1 as well as BFD Version 0.

Cisco IOS Release 12.2EY and Cisco IOS Release 15.S support BFD Version 1 and BFD Version 0.
All BFD sessions come up as Version 1 by default and will be interoperable with Version 0. The system automatically performs BFD version detection, and BFD sessions between neighbors will run in the highest common BFD version between neighbors. For example, if one BFD neighbor is running BFD Version 0 and the other BFD neighbor is running Version 1, the session will run BFD Version 0. The output from the `show bfd neighbors [details]` command will verify which BFD version a BFD neighbor is running.

Note

RSP3 supports only Version 1 and do not support BFD version interoperability.

See the Example Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default for an example of BFD version detection.

BFD Process on the RP

Client Interaction

The BFD process on the RP will handle the interaction with clients, which create and delete BFD sessions.

Session Management for the BFD Process on the RP

The BFD RP process will primarily own all BFD sessions on the router. It will pass the session creation and deletion requests to the BFD processes on all LCs. BFD LC sessions will have no knowledge of sessions being added or deleted by the clients. Only the BFD RP process will send session addition and deletion commands to the BFD LC process.

Session Database Management

The BFD RP process will maintain a database of all the BFD sessions on the router. This database will contain only the minimum required information.

Process EXEC Commands

The BFD RP process services the BFD `show` commands.

BFD Support for Nonstop Forwarding with Stateful Switchover

Typically, when a networking device restarts, all routing peers of that device detect that the device went down and then came back up. This transition results in a routing flap, which could spread across multiple routing domains. Routing flaps caused by routing restarts create routing instabilities, which are detrimental to the overall network performance. Nonstop forwarding (NSF) helps to suppress routing flaps in devices that are enabled with stateful switchover (SSO), thereby reducing network instability.

NSF allows for the forwarding of data packets to continue along known routes while the routing protocol information is being restored after a switchover. With NSF, peer networking devices do not experience routing flaps. Data traffic is forwarded through intelligent line cards or dual forwarding processors while the standby RP assumes control from the failed active RP during a switchover. The ability of line cards and forwarding processors to remain up through a switchover and to be kept current with the Forwarding Information Base (FIB) on the active RP is key to NSF operation.

In devices that support dual RPs, SSO establishes one of the RPs as the active processor; the other RP is designated as the standby processor, and then synchronizes information between them. A switchover from
the active to the standby processor occurs when the active RP fails, when it is removed from the networking device, or when it is manually taken down for maintenance.

In Cisco IOS Release 12.2(33)SRC, BFD sessions are placed in an “Admin Down” state during a planned switchover. The BFD configuration is synched from the active to standby processor, and all BFD clients re-register with the BFD process on the standby processor.

In Cisco IOS Release 12.2(33)SB, BFD is not SSO-aware, and it is not supported with NSF/SSO. These features should not be used together. Enabling BFD along with NSF/SSO causes the nonstop forwarding capability to break during failover because BFD adjacencies are not maintained and the routing clients are forced to mark down adjacencies and reconverge.

BFD Support for Stateful Switchover

The BFD protocol provides short-duration detection of failures in the path between adjacent forwarding engines. In network deployments that use dual RP routers or switches (to provide redundancy), the routers have a graceful restart mechanism that protects the forwarding state during a switchover between the active RP and the standby RP.

The dual RPs have variable switchover times that depend on the ability of the hardware to detect a communication failure. When BFD is running on the RP, some platforms are not able to detect a switchover before the BFD protocol times out; these platforms are referred to as slow switchover platforms.

Stateful BFD on the Standby RP

To ensure a successful switchover to the standby RP, the BFD protocol uses checkpoint messages to send session information from the active RP Cisco IOS instance to the standby RP Cisco IOS instance. The session information includes local and remote discriminators, adjacent router timer information, BFD setup information, and session-specific information such as the type of session and the session version. In addition, the BFD protocol sends session creation and deletion checkpoint messages to create or delete a session on the standby RP.

The BFD sessions on the standby RP do not receive or send packets and do not process expired timers. These sessions wait for a switchover to occur and then send packets for any active sessions so that sessions do not time out on adjacent routers.

When the BFD protocol on the standby RP is notified of a switchover it changes its state to active, registers itself with Cisco Express Forwarding so that it can receive packets, and then sends packets for any elements that have expired.

BFD also uses checkpoint messages to ensure that sessions created by clients on the active RP are maintained during a switchover. When a switchover occurs, BFD starts an SSO reclaim timer. Clients must reclaim their sessions within the duration specified by the reclaim timer or else the session is deleted.

Timer values are different based on the number of BFD sessions and the platform.

BFD Support for Static Routing

Unlike dynamic routing protocols, such as OSPF and BGP, static routing has no method of peer discovery. Therefore, when BFD is configured, the reachability of the gateway is completely dependent on the state of the BFD session to the specified neighbor. Unless the BFD session is up, the gateway for the static route is considered unreachable, and therefore the affected routes will not be installed in the appropriate Routing Information Base (RIB).

For a BFD session to be successfully established, BFD must be configured on the interface on the peer and there must be a BFD client registered on the peer for the address of the BFD neighbor. When an interface is
used by dynamic routing protocols, the latter requirement is usually met by configuring the routing protocol instances on each neighbor for BFD. When an interface is used exclusively for static routing, this requirement must be met by configuring static routes on the peers.

If a BFD configuration is removed from the remote peer while the BFD session is in the up state, the updated state of the BFD session is not signaled to IPv4 static. This will cause the static route to remain in the RIB. The only workaround is to remove the IPv4 static BFD neighbor configuration so that the static route no longer tracks BFD session state. Also, if you change the encapsulation type on a serial interface to one that is unsupported by BFD, BFD will be in a down state on that interface. The workaround is to shut down the interface, change to a supported encapsulation type, and then reconfigure BFD.

A single BFD session can be used by an IPv4 static client to track the reachability of next hops through a specific interface. You can assign a BFD group for a set of BFD-tracked static routes. Each group must have one active static BFD configuration, one or more passive BFD configurations, and the corresponding static routes to be BFD-tracked. Nongroup entries are BFD-tracked static routes for which a BFD group is not assigned. A BFD group must accommodate static BFD configurations that can be part of different VRFs. Effectively, the passive static BFD configurations need not be in the same VRF as that of the active configuration.

For each BFD group, there can be only one active static BFD session. You can configure the active BFD session by adding a static BFD configuration and a corresponding static route that uses the BFD configuration. The BFD session in a group is created only when there is an active static BFD configuration and the static route that uses the static BFD configuration. When the active static BFD configuration or the active static route is removed from a BFD group, all the passive static routes are withdrawn from the RIB. Effectively, all the passive static routes are inactive until an active static BFD configuration and a static route to be tracked by the active BFD session are configured in the group.

Similarly, for each BFD group, there can be one or more passive static BFD configurations and their corresponding static routes to be BFD-tracked. Passive static session routes take effect only when the active BFD session state is reachable. Though the active BFD session state of the group is reachable, the passive static route is added to the RIB only if the corresponding interface state is up. When a passive BFD session is removed from a group, it will not affect the active BFD session if one existed, or the BFD group reachability status.

BFD on Multiple Hops

Cisco IOS Release 15.1(3)S and later releases support BFD on arbitrary paths, which might span multiple network hops. The BFD Multihop feature provides subsecond forwarding failure detection for a destination more than one hop, and up to 255 hops, away.

A BFD multihop session is set up between a unique source-destination address pair provided by the client. A session can be set up between two endpoints that have IP connectivity.

You must configure the `bfd-template` and `bfd map` commands to create a multihop template and associate it with one or more maps of destinations and associated BFD timers. You can enable authentication and configure a key chain for BFD multihop sessions.

Multi-hop BFD over IPv6 is supported in software mode only.

Benefits of Using BFD for Failure Detection

When you deploy any feature, it is important to consider all the alternatives and be aware of any trade-offs being made.
The closest alternative to BFD in conventional EIGRP, IS-IS, and OSPF deployments is the use of modified failure detection mechanisms for EIGRP, IS-IS, and OSPF routing protocols.

If you set EIGRP hello and hold timers to their absolute minimums, the failure detection rate for EIGRP falls to within a one- to two-second range.

If you use fast hellos for either IS-IS or OSPF, these Interior Gateway Protocol (IGP) protocols reduce their failure detection mechanisms to a minimum of one second.

There are several advantages to implementing BFD over reduced timer mechanisms for routing protocols:

- BFD on the CPU operates under interrupt like CEF switched traffic. EIGRP, IS-IS and OSPF protocol hellos are handled in the process switching path. This provides BFD greater scalability and reliability over protocol hellos.

- Although reducing the EIGRP, IS-IS, and OSPF timers can result in minimum detection timer of one to two seconds, BFD can provide failure detection in less than one second.

- Because BFD is not tied to any particular routing protocol, it can be used as a generic and consistent failure detection mechanism for EIGRP, IS-IS, and OSPF.

- Because some parts of BFD can be distributed to the data plane, it can be less CPU-intensive than the reduced EIGRP, IS-IS, and OSPF timers, which exist wholly at the control plane.

How to Configure Bidirectional Forwarding Detection

Configuring BFD Session Parameters on the Interface

The steps in this procedure show how to configure BFD on the interface by setting the baseline BFD session parameters on an interface. Repeat the steps in this procedure for each interface over which you want to run BFD sessions to BFD neighbors.

Note

RSP3 Module eysupports only the following BFD interval timers:

3.3ms, 6.6ms, 10ms, 20ms, 50ms, 100ms, 200ms ,999ms. It is recommended that peer should also configure the same timer values.

SUMMARY STEPS

1. enable
2. configure terminal
3. bfd-template single-hop template-name
4. interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
5. interface type number
6. interface gigabitethernet number
7. Perform one of the following steps:
 - ip address ipv4-address mask
 - ipv6 address ipv6-address/mask
Detailed Steps

Step 1
`enable`
Example:

Device> enable
Enables privileged EXEC mode.
 • Enter your password if prompted.

Step 2
`configure terminal`
Example:

Device# configure terminal
Enters global configuration mode.

Step 3
`bfd-template single-hop template-name`
Example:

Router(config)# bfd-template single-hop bfdtemplate1
Creates a single-hop BFD template and enters BFD configuration mode.

Step 4
`interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value`
Example:

Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3
Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.

Step 5
`interface type number`
Example:

Device(config)# interface FastEthernet 6/0
Enters interface configuration mode.

Step 6
`interface gigabitethernet number`
Example:

Device(config)# interface gigabitethernet 0/0/0
Specifies the Gigabit Ethernet interface and enters interface configuration mode.

Step 7
Perform one of the following steps:
 • `ip address ipv4-address mask`
ipv6 address ipv6-address/mask

Example:
Configuring an IPv4 address for the interface:

Device(config-if)# ip address 10.201.201.1 255.255.255.0

Configuring an IPv6 address for the interface:

Device(config-if)# ipv6 address 2001:db8:1:1::1/32

Step 8 bfd template template name

Enables the BFD template.

Step 9 end

Example:

Device(config-if)# end

Exits interface configuration mode and returns to privileged EXEC mode.

Configuring BFD Support for Static Routing

Perform this task to configure BFD support for static routing. Repeat the steps in this procedure on each BFD neighbor. For more information, see the "Example: Configuring BFD Support for Static Routing" section.

SUMMARY STEPS

1. enable
2. configure terminal
3. bfd-template single-hop template-name
4. interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
5. interface type number
6. Perform one of the following steps:
 • ip address ipv4-address mask
 • ipv6 address ipv6-address/mask
7. bfd template template name
8. bfd interval milliseconds mix_rx milliseconds multiplier interval-multiplier
9. exit
10. Perform one of the following steps:
 • ip route static bfd interface-type interface-number ip-address [group group-name [passive]]
 • ipv6 route static bfd interface-type interface-number ip-address [unaasosiated]
11. Perform one of the following steps:
• ip route [vrf vrf-name] prefix mask {ip-address | interface-type interface-number [ip-address]} [dhcp] [distance] [name next-hop-name] [permanent | track number] [tag tag]

• ipv6 route [vrf vrf-name] ipv6-prefix/ipv6-prefix {ipv6-address | interface-type interface-number [ip-address]} [name next-hop-name] [track number] [tag tag]

12. exit
13. Perform one of the following steps:
 • show ip static route
 • show ipv6 static

14. Perform one of the following steps:
 • show ip static route bfd
 • show ipv6 static bfd

15. exit

DETAILED STEPS

Step 1 enable
Example:

Device> enable
Enables privileged EXEC mode.
 • Enter your password if prompted.

Step 2 configure terminal
Example:

Device# configure terminal
Enters global configuration mode.

Step 3 bfd-template single-hop template-name
Example:

Router(config)# bfd-template single-hop bfdtemplate1
Creates a single-hop BFD template and enters BFD configuration mode.

Step 4 interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
Example:

Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3
Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.

Step 5 interface type number
Example:

Device(config)# interface GigabitEthernet 0/0/0

Configures an interface and enters interface configuration mode.

Step 6
Perform one of the following steps:

- `ip address ipv4-address mask`
- `ipv6 address ipv6-address/mask`

Example:
Configuring an IPv4 address for the interface:

Device(config-if)# ip address 10.201.201.1 255.255.255.0

Configuring an IPv6 address for the interface:

Device(config-if)# ipv6 address 2001:db8:1:1::1/32

Configures an IP address for the interface.

Step 7
`bfd template template name`

Enables the BFD template.

Step 8
`bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier`

Example:

Device(config-if)# bfd interval 500 min_rx 500 multiplier 5

Enables BFD on the interface.

The BFD interval configuration is removed when the subinterface on which it is configured is removed.

The BFD interval configuration is not removed when:

- an IPv4 address is removed from an interface
- an IPv6 address is removed from an interface
- IPv6 is disabled from an interface
- an interface is shutdown
- IPv4 CEF is disabled globally or locally on an interface
- IPv6 CEF is disabled globally or locally on an interface

Step 9
`exit`

Example:

Device(config-if)# exit

Exits interface configuration mode and returns to global configuration mode.

Step 10
Perform one of the following steps:

- `ip route static bfd interface-type interface-number ip-address [group group-name [passive]]`
• **ipv6 route static bfd** *interface-type interface-number ip-address* [unaasosiated]

Example:

Device(config)# ip route static bfd GigabitEthernet 0/0/0 10.1.1.1 group group1 passive
Device(config)# ipv6 route static bfd TenGigabitEthernet 0/0/7 19:1:1::2

Specifies a static route BFD neighbor.

• The *interface-type*, *interface-number*, and *ip-address* arguments are required because BFD support exists only for directly connected neighbors.

Step 11

Perform one of the following steps:

• **ip route** [vrf vrf-name] prefix mask {ip-address | interface-type interface-number [ip-address]} [dhcp]
 [distance] [name next-hop-name] [permanent | track number] [tag tag]

• **ipv6 route** [vrf vrf-name] ipv6 prefix/mask {ipv6-address | interface-type interface-number [ipv6-address]}
 [name next-hop-name] [track number] [tag tag]

Example:

Device(config)# ip route 10.0.0.0 255.0.0.0
Device(config)# ipv6 route 19:1:1::/64 TenGigabitEthernet0/0/7 19:1:1::2

Specifies a static route BFD neighbor.

Step 12

exit

Example:

Device(config)# exit

Exits global configuration mode and returns to privileged EXEC mode.

Step 13

Perform one of the following steps:

• **show ip static route**

• **show ipv6 static**

Example:

Device# show ipv6 static

(Optional) Displays static route database information.

Step 14

Perform one of the following steps:

• **show ip static route bfd**

• **show ipv6 static bfd**

Example:

Device # show ipv6 static bfd

(Optional) Displays information about the static BFD configuration from the configured BFD groups and nongroup entries.

Step 15

exit
Configuring BFD Echo Mode

BFD echo mode is enabled by default, but you can disable it such that it can run independently in each direction. BFD echo mode works with asynchronous BFD. Echo packets are sent by the forwarding engine and forwarded back along the same path in order to perform detection—the BFD session at the other end does not participate in the actual forwarding of the echo packets. The echo function and the forwarding engine are responsible for the detection process; therefore, the number of BFD control packets that are sent out between two BFD neighbors is reduced. In addition, because the forwarding engine is testing the forwarding path on the remote (neighbor) system without involving the remote system, there is an opportunity to improve the interpacket delay variance, thereby achieving quicker failure detection times than when using BFD Version 0 with BFD control packets for the BFD session.

Echo mode is described as without asymmetry when it is running on both sides (both BFD neighbors are running echo mode).

BFD Slow Timer

BFD can use the slow timer to slow down the asynchronous session when the echo mode is enabled, and reduce the number of BFD control packets that are sent between two BFD neighbors. Also, the forwarding engine tests the forwarding path on the remote (neighbor) system without involving the remote system, so there is less interpacket delay variability and faster failure detection times.

Prerequisites

BFD must be running on all participating routers.

Before using BFD echo mode, you must disable the sending of Internet Control Message Protocol (ICMP) redirect messages by entering the `no ip icmp redirects` command, in order to avoid high CPU utilization.

The baseline parameters for BFD sessions on the interfaces over which you want to run BFD sessions to BFD neighbors must be configured. See the Configuring BFD Session Parameters on the Interface section for more information.

Configuring the BFD Slow Timer

The steps in this procedure show how to change the value of the BFD slow timer. Repeat the steps in this procedure for each BFD router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bfd slow-timer milliseconds`
4. `end`
Disabling BFD Echo Mode Without Asymmetry

The steps in this procedure show how to disable BFD echo mode without asymmetry—no echo packets will be sent by the router, and the router will not forward BFD echo packets that are received from any neighbor routers.

Repeat the steps in this procedure for each BFD router.

SUMMARY STEPS

1. enable
2. configure terminal
3. end

DETAILED STEPS

Step 1 enable
Example:

Switch> enable
Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal
Example:

Switch# configure terminal
Enters global configuration mode.

Step 3 bfd slow-timer milliseconds
Example:

Switch(config)# bfd slow-timer 12000
Configures the BFD slow timer.

Step 4 end
Example:

Switch(config)# end
Exits global configuration mode and returns the router to privileged EXEC mode.
Example:

Router> enable

Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal
Example:

Router# configure terminal

Enters global configuration mode.

Step 3 end
Example:

Router(config)# end

Exits global configuration mode and returns to privileged EXEC mode.

Creating and Configuring BFD Templates

You can configure a single-hop template to specify a set of BFD interval values. BFD interval values specified as part of the BFD template are not specific to a single interface. You can configure a multihop template to associate these values with one or more maps of destinations and associated BFD timers. You can enable authentication and configure a key chain for BFD multihop sessions.

Configuring a Single-Hop Template

Perform this task to create a BFD single-hop template and configure BFD interval timers.

Note
Cisco IOS Release 15.0(1)S introduced the concept of BFD templates that allow BFD interval timers to be configured independently of an interface. BFD templates are required to provide support for the BFD Control Channel over VCCV-Support for ATM Pseudowires feature.

SUMMARY STEPS

1. enable
2. configure terminal
3. bfd-template single-hop template-name
4. interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
5. end
DETAILED STEPS

Step 1

enable

Example:

Router> enable

Enables privileged EXEC mode.

- Enter your password if prompted.

Step 2

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 3

bfd-template single-hop template-name

Example:

Router(config)# bfd-template single-hop bfdtemplate1

Creates a single-hop BFD template and enters BFD configuration mode.

Step 4

interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value

Example:

Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3

Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.

Step 5

end

Example:

Router(bfd-config)# end

Exits BFD configuration mode and returns the router to privileged EXEC mode.

Configuring a Multihop Template

Perform this task to create a BFD multihop template and configure BFD interval timers, authentication, and key chain.

Note

Cisco IOS Release 15.1(3)S and later releases support BFD on multiple network hops. After you have configured interval timers and authentication in a template, you can configure a map to associate the template with unique source-destination address pairs for multihop BFD sessions.
See “Xconnect as a Client of BFD” for information on configuring xconnect as a client of BFD and detecting failure with the `monitor peer bfd` command.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bfd-template multi-hop template-name`
4. `interval min-tx milliseonds min-rx milliseonds multiplier multiplier-value`
5. `authentication authentication-type keychain keychain-name`
6. `end`

DETAILED STEPS

Step 1

enable

Example:

```
Router> enable
```

Enables privileged EXEC mode.

- Enter your password if prompted.

Step 2

configure terminal

Example:

```
Router# configure terminal
```

Enters global configuration mode.

Step 3

bfd-template multi-hop template-name

Example:

```
Router(config)# bfd-template multi-hop mh-template1
```

 Creates a BFD multihop BFD template and enters BFD configuration mode.

Step 4

interval min-tx milliseonds min-rx milliseonds multiplier multiplier-value

Example:

```
Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3
```

Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.

Step 5

authentication authentication-type keychain keychain-name

Example:
Configuring a BFD Map

Perform this task to configure a BFD map that associates the interval timers and authentication configured in a template with unique source-destination address pairs for multihop BFD sessions.

Before you begin
You must configure a BFD multihop template before you associate it with a map.

SUMMARY STEPS

1. enable
2. configure terminal
3. bfd map ipv4 vrf vrf-name destination length source-address length template-name
4. Perform one of the following steps:
 • bfd map ipv4 destination length source-address length template-name
 • bfd map ipv4 vrf vrf-name destination length vrf vrfframe source-address length template-name
5. end

DETAILED STEPS

Step 1 enable
Example:

Router> enable
Enables privileged EXEC mode.
 • Enter your password if prompted.

Step 2 configure terminal
Example:

Router# configure terminal
Enters global configuration mode.
Step 3 bfd map ipv4 vrf vrf-name destination length source-address length template-name

Example:
Router(config)# bfd map ipv4 vrf vpn1 192.168.0.0/24 192.168.42.5/32 mh-template1
Configures a BFD map and associates it with the template.

Step 4 Perform one of the following steps:

• bfd map ipv4 destination length source-address length template-name
• bfd map ipv4 vrf vrf-name destination length vrf vrfname source-address length template-name

Example:
Router(config)# bfd map ipv4 192.168.0.0/24 192.168.42.5/32 mh-template1
Router(config)# bfd map ipv4 vrf vpn1 192.168.0.0/24 vpn2 192.168.42.5/32 BFD_RPW_MH
Configures a BFD map and associates it with the template.
Mention the VRF name for the source-address as well, if source address is part of a VRF.

Step 5 end

Example:
Router(config)# end
Exits BFD configuration mode and returns the router to privileged EXEC mode.

Configuration Examples for Bidirectional Forwarding Detection

Example: Configuring BFD in an EIGRP Network with Echo Mode Enabled by Default

In the following example, the EIGRP network contains RouterA, RouterB, and RouterC. The Gigabit Ethernet interface 0/0/1 on RouterA is connected to the same network as Gigabit Ethernet interface 0/0/1 on RouterB. The Gigabit Ethernet interface 0/0/1 on RouterB is connected to the same network as Gigabit Ethernet interface 0/0/1 on RouterC.

RouterA and RouterB are running BFD Version 1, which supports echo mode, and RouterC is running BFD Version 0, which does not support echo mode. The BFD sessions between RouterC and its BFD neighbors are said to be running echo mode with asymmetry because echo mode will run on the forwarding path for RouterA and RouterB, and their echo packets will return along the same path for BFD sessions and failure detections, while their BFD neighbor RouterC runs BFD Version 0 and uses BFD controls packets for BFD sessions and failure detections.

The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for RouterA

interface Gigabtethernet0/0/0
no shutdown
ip address 10.4.9.14 255.255.255.0
duplex auto
speed auto
!
interface Gigabtethernet0/0/1
ip address 172.16.1.1 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
no shutdown
duplex auto
speed auto
!
router eigrp 11
network 172.16.0.0
bfd all-interfaces
auto-summary
!

Configuration for RouterB

!
interface Gigabtethernet0/0/0
no shutdown
ip address 10.4.9.34 255.255.255.0
duplex auto
speed auto
!
interface Gigabtethernet0/0/1
ip address 172.16.1.2 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
no shutdown
duplex auto
speed auto
!
router eigrp 11
network 172.16.0.0
bfd all-interfaces
auto-summary
!

Configuration for RouterC

!
!
interface Gigabtethernet0/0/0
no shutdown
ip address 10.4.9.51 255.255.255.0
duplex auto
speed auto
!
interface Gigabtethernet0/0/1
ip address 172.16.1.3 255.255.255.0
bfd interval 50 min_rx 50 multiplier 3
no shutdown
duplex auto
speed auto
!
router eigrp 11
network 172.16.0.0
bfd all-interfaces
The output from the `show bfd neighbors details` command from RouterA verifies that BFD sessions have been created among all three routers and that EIGRP is registered for BFD support. The first group of output shows that RouterC with the IP address 172.16.1.3 runs BFD Version 0 and therefore does not use the echo mode. The second group of output shows that RouterB with the IP address 172.16.1.2 does run BFD Version 1, and the 50 millisecond BFD interval parameter had been adopted. The relevant command output is shown in bold in the output.

```
RouterA# show bfd neighbors details

OurAddr  NeighAddr  LD/RD  RH/RS  Holdown(mult)  State  Int
172.16.1.1  172.16.1.3  5/3   1(RH)   150 (3 )  Up   Gig0/0/1

Session state is UP and not using echo function.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holdown (hits): 150(0), Hello (hits): 50(1364284)
Rx Count: 1351813, Rx Interval (ms) min/max/avg: 28/64/49 last: 4 ms ago
Tx Count: 1364289, Tx Interval (ms) min/max/avg: 40/68/49 last: 32 ms ago
Registered protocols: EIGRP
Uptime: 18:42:45
Last packet: Version: 0
- Diagnostic: 0
  I Hear You bit: 1 - Demand bit: 0
  Poll bit: 0 - Final bit: 0
  Multiplier: 3 - Length: 24
  My Discr.: 3 - Your Discr.: 5
  Min tx interval: 50000 - Min rx interval: 50000
  Min Echo interval: 0
OurAddr  NeighAddr  LD/RD  RH/RS  Holdown(mult)  State  Int
172.16.1.1  172.16.1.2  6/1   Up    0 (3 )  Up   Gig0/0/1

Session state is UP and using echo function with 50 ms interval.
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(317)
Rx Count: 305, Rx Interval (ms) min/max/avg: 1/1016/887 last: 448 ms ago
Tx Count: 319, Tx Interval (ms) min/max/avg: 1/1008/880 last: 532 ms ago
Registered protocols: EIGRP
Uptime: 00:04:30
Last packet: Version: 1
- Diagnostic: 0
  State bit: Up - Demand bit: 0
  Poll bit: 0 - Final bit: 0
  Multiplier: 3 - Length: 24
  My Discr.: 1 - Your Discr.: 6
  Min tx interval: 1000000 - Min rx interval: 1000000
  Min Echo interval: 50000
```

The output from the `show bfd neighbors details` command on Router B verifies that BFD sessions have been created and that EIGRP is registered for BFD support. As previously noted, RouterA runs BFD Version 1,
therefore echo mode is running, and RouterC runs BFD Version 0, so echo mode does not run. The relevant command output is shown in bold in the output.

RouterB# show bfd neighbors details

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.2</td>
<td>172.16.1.1</td>
</tr>
<tr>
<td>1/6</td>
<td>Up</td>
</tr>
</tbody>
</table>

Session state is UP and using echo function with 50 ms interval.

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3
Received MinRxInt: 1000000, Received Multiplier: 3
Holdown (hits): 3000(0), Hello (hits): 1000(337)
Rx Count: 341, Rx Interval (ms) min/max/avg: 1/1008/882 last: 364 ms ago
Tx Count: 339, Tx Interval (ms) min/max/avg: 1/1016/886 last: 632 ms ago
Registered protocols: EIGRP
Uptime: 00:05:00
Last packet: Version: 1
 - Diagnostic: 0
 - State bit: Up
 - Poll bit: 0
 - Multiplier: 3
 - My Discr.: 6
 - Min tx interval: 1000000
 - Min rx interval: 1000000
 - Min Echo interval: 50000

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.2</td>
<td>172.16.1.3</td>
</tr>
<tr>
<td>3/6</td>
<td>1(RH)</td>
</tr>
</tbody>
</table>

Session state is UP and not using echo function.

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holdown (hits): 150(0), Hello (hits): 50(5735)
Rx Count: 5731, Rx Interval (ms) min/max/avg: 32/72/49 last: 32 ms ago
Tx Count: 5740, Tx Interval (ms) min/max/avg: 40/64/50 last: 44 ms ago
Registered protocols: EIGRP
Uptime: 00:04:45
Last packet: Version: 0
 - Diagnostic: 0
 - I Hear You bit: 1
 - Poll bit: 0
 - Multiplier: 3
 - My Discr.: 6
 - Min tx interval: 50000
 - Min rx interval: 50000
 - Min Echo interval: 0

When Gigabit ethernet interface 0/0/1 on RouterB fails, BFD will no longer detect Router B as a BFD neighbor for RouterA or for RouterC. In this example, Gigabit Ethernet interface 0/0/1 has been administratively shut down on RouterB.

The following output from the show bfd neighbors command on RouterA now shows only one BFD neighbor for RouterA in the EIGRP network. The relevant command output is shown in bold in the output.

RouterA# show bfd neighbors

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.1.1</td>
<td>172.16.1.3</td>
</tr>
</tbody>
</table>
The following output from the `show bfd neighbors` command on RouterC also now shows only one BFD neighbor for RouterC in the EIGRP network. The relevant command output is shown in bold in the output.

```
RouterC# show bfd neighbors

OurAddr    NeighAddr
LD/RD      RH    Holdown(mult) State    Int
172.16.1.3 172.16.1.1 3/5 1 114 (3 ) Up    Gig0/0/1
```

Example: Configuring BFD in an OSPF Network

In the following example, the simple OSPF network consists of Router A and Router B. Gigabit Ethernet interface 0/0/1 on Router A is connected to the same network as Gigabit Ethernet interface 0/0/1 in Router B. The example, starting in global configuration mode, shows the configuration of BFD. For both Routers A and B, BFD is configured globally for all interfaces associated with the OSPF process.

Configuration for Router A

```
! interface Gigabitethernet 0/0/1
  ip address 172.16.10.1 255.255.255.0
  bfd interval 50 min_rx 50 multiplier 3!
! interface Gigabitethernet 0/0/0
  ip address 172.17.0.1 255.255.255.0!
router ospf 123
  log-adjacency-changes detail
  network 172.16.10.0 0.0.0.255 area 0
  network 172.17.10.0 0.0.0.255 area 0
  bfd all-interfaces
```

Configuration for Router B

```
! interface Gigabitethernet 0/0/1
  ip address 172.16.10.2 255.255.255.0
  bfd interval 50 min_rx 50 multiplier 3!
! interface Gigabitethernet 0/0/0
  ip address 172.18.0.1 255.255.255.0!
router ospf 123
  log-adjacency-changes detail
  network 172.16.10.0 0.0.0.255 area 0
  network 172.18.10.0 0.0.0.255 area 0
  bfd all-interfaces
```

The output from the `show bfd neighbors details` command verifies that a BFD session has been created and that OSPF is registered for BFD support. The relevant command output is shown in bold in the output.
Example: Configuring BFD in an OSPF Network

Router A

RouterA# show bfd neighbors details
OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
172.16.10.1 172.16.10.2 1/2 1 532 (3) Up Gig0/0/0
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 200000, MinRxInt: 200000, Multiplier: 5
Received MinRxInt: 1000, Received Multiplier: 3
Holdown (hits): 600(22), Hello (hits): 200(84453)
Rx Count: 49824, Rx Interval (ms) min/max/avg: 208/440/332 last: 68 ms ago
Tx Count: 84488, Tx Interval (ms) min/max/avg: 152/248/196 last: 192 ms ago
Registered protocols: OSPF

Uptime: 02:18:49
Last packet: Version: 0
 - Diagnostic: 0
 I Hear You bit: 1 - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 Multiplier: 3 - Length: 24
 My Discr.: 2 - Your Discr.: 1
 Min tx interval: 50000 - Min rx interval: 1000
 Min Echo interval: 0

The output from the show bfd neighbors details command from Router B verifies that a BFD session has been created:

Router B

Router> show bfd neighbors details
Cleanup timer hits: 0
OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
172.16.10.2 172.16.10.1 8/1 1 1000 (5) Up Gig0/0/0
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 1000, Multiplier: 5
Received MinRxInt: 200000, Received Multiplier: 3
Holdown (hits): 1000(0), Hello (hits): 200(5995)
Rx Count: 10126, Rx Interval (ms) min/max/avg: 152/248/196 last: 0 ms ago
Tx Count: 5998, Tx Interval (ms) min/max/avg: 204/440/332 last: 12 ms ago
Last packet: Version: 0
 - Diagnostic: 0
 I Hear You bit: 1 - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 Multiplier: 5 - Length: 24
 My Discr.: 1 - Your Discr.: 8
 Min tx interval: 200000 - Min rx interval: 200000
 Min Echo interval: 0

Uptime: 00:33:13
SSO Cleanup Timer called: 0
SSO Cleanup Action Taken: 0
Pseudo pre-emptive process count: 239103 min/max/avg: 8/16/8 last: 0 ms ago
IPC Tx Failure Count: 0
IPC Rx Failure Count: 0
Total Adjs Found: 1

The output of the show ip ospf command verifies that BFD has been enabled for OSPF. The relevant command output is shown in bold in the output.

Router A

RouterA# show ip ospf
Routing Process "ospf 123" with ID 172.16.10.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPF's 10000 msecs
Maximum wait time between two consecutive SPF's 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x000000
Number of opaque A5 LSA 0. Checksum Sum 0x000000
Number of DCbitless external and opaque A5 LSA 0
Number of DoNotAge external and opaque A5 LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
External flood list length 0
BFD is enabled

Area BACKBONE(0)
 Number of interfaces in this area is 2 (1 loopback)
 Area has no authentication
 SPF algorithm last executed 00:00:08.828 ago
 SPF algorithm executed 9 times
 Area ranges are
 Number of LSA 3. Checksum Sum 0x028417
 Number of opaque link LSA 0. Checksum Sum 0x000000
 Number of DCbitless LSA 0
 Number of indication LSA 0
 Number of DoNotAge LSA 0
 Flood list length 0

Router B

RouterB# show ip ospf
Routing Process "ospf 123" with ID 172.18.0.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Supports area transit capability
Initial SPF schedule delay 5000 msecs
Minimum hold time between two consecutive SPF's 10000 msecs
Maximum wait time between two consecutive SPF's 10000 msecs
Incremental-SPF disabled
Minimum LSA interval 5 secs
Minimum LSA arrival 1000 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Number of external LSA 0. Checksum Sum 0x0
Number of opaque A5 LSA 0. Checksum Sum 0x0
Number of DCbitless external and opaque A5 LSA 0
Number of DoNotAge external and opaque A5 LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Number of areas transit capable is 0
External flood list length 0
BFD is enabled

Area BACKBONE(0)
Number of interfaces in this area is 2 (1 loopback)
Area has no authentication
SPF algorithm last executed 02:07:30.932 ago
SPF algorithm executed 7 times
Area ranges are
Number of LSA 3. Checksum Sum 0x28417
Number of opaque link LSA 0. Checksum Sum 0x0
Number of DCbitless LSA 0
Number of indication LSA 0
Number of DoNotAge LSA 0
Flood list length 0

The output of the `show ip ospf interface` command verifies that BFD has been enabled for OSPF on the interfaces connecting Router A and Router B. The relevant command output is shown in bold in the output.

Router A

```
RouterA# show ip ospf interface GigabitEthernet 0/0/1

GigabitEthernet0/0/1 is up, line protocol is up
Internet Address 172.16.10.1/24, Area 0
Process ID 123, Router ID 172.16.10.1, Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State BDR, Priority 1, **BFD enabled**
Designated Router (ID) 172.18.0.1, Interface address 172.16.10.2
Backup Designated router (ID) 172.16.10.1, Interface address 172.16.10.1
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
  oob-resync timeout 40
  Hello due in 00:00:03
  Supports Link-local Signaling (LLS)
  Index 1/1, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 1, maximum is 1
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 1, Adjacent neighbor count is 1
    Adjacent with neighbor 172.18.0.1 (Designated Router)
  Suppress hello for 0 neighbor(s)
```

Router B

```
RouterB# show ip ospf interface GigabitEthernet 0/0/0

GigabitEthernet0/0/1 is up, line protocol is up
Internet Address 172.18.0.1/24, Area 0
Process ID 123, Router ID 172.18.0.1, Network Type BROADCAST, Cost: 1
Transmit Delay is 1 sec, State DR, Priority 1, **BFD enabled**
Designated Router (ID) 172.18.0.1, Interface address 172.18.0.1
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
  oob-resync timeout 40
  Hello due in 00:00:01
  Supports Link-local Signaling (LLS)
  Index 1/1, flood queue length 0
  Next 0x0(0)/0x0(0)
  Last flood scan length is 0, maximum is 0
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 0, Adjacent neighbor count is 0
  Suppress hello for 0 neighbor(s)
```
Example: Configuring BFD in a BGP Network

In the following example, the simple BGP network consists of Router A and Router B. The Gigabit Ethernet interface 0/0/1 on Router A is connected to the same network as Gigabit Ethernet interface 0/0/1 in Router B. The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for Router A

```plaintext
! interface GigabitEthernet 0/0/1
    ip address 172.16.10.1 255.255.255.0
    bfd interval 50 min_rx 50 multiplier 3
! interface GigabitEthernet 0/0/0
    ip address 172.17.0.1 255.255.255.0
!
router bgp 40000
    bgp log-neighbor-changes
    neighbor 172.16.10.2 remote-as 45000
    neighbor 172.16.10.2 fall-over bfd
!    address-family ipv4
    neighbor 172.16.10.2 activate
    no auto-summary
    no synchronization
    network 172.18.0.0 mask 255.255.255.0
    exit-address-family
!
```

Configuration for Router B

```plaintext
! interface GigabitEthernet 0/0/1
    ip address 172.16.10.2 255.255.255.0
    bfd interval 50 min_rx 50 multiplier 3
!
interface GigabitEthernet 0/0/0
    ip address 172.18.0.1 255.255.255.0
!
router bgp 45000
    bgp log-neighbor-changes
    neighbor 172.16.10.1 remote-as 40000
    neighbor 172.16.10.1 fall-over bfd
!
    address-family ipv4
    neighbor 172.16.10.1 activate
    no auto-summary
    no synchronization
    network 172.17.0.0 mask 255.255.255.0
    exit-address-family
!
```

The output from the `show bfd neighbors details` command from Router A verifies that a BFD session has been created and that BGP is registered for BFD support. The relevant command output is shown in bold in the output.
Router A

RouterA# `show bfd neighbors details`

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH</th>
<th>Holdown(mult)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.10.1</td>
<td>172.16.10.2</td>
<td>1/8</td>
<td>1</td>
<td>332 (3)</td>
<td>Up</td>
<td>Gig0/0/1</td>
</tr>
</tbody>
</table>

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 200000, MinRxInt: 200000, Multiplier: 5
Received MinRxInt: 1000, Received Multiplier: 3
Holdown (hits): 600(0), Hello (hits): 200(15491)
Rx Count: 9160, Rx Interval (ms) min/max/avg: 200/440/332 last: 268 ms ago
Tx Count: 15494, Tx Interval (ms) min/max/avg: 152/248/197 last: 32 ms ago

Registered protocols: BGP

Uptime: 00:50:45

The output from the `show bfd neighbors details` command on Router B verifies that a BFD session has been created:

Router B

RouterB> `show bfd neighbors details`

Cleanup timer hits: 0

<table>
<thead>
<tr>
<th>OurAddr</th>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH</th>
<th>Holdown(mult)</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.10.2</td>
<td>172.16.10.1</td>
<td>8/1</td>
<td>1</td>
<td>1000 (5)</td>
<td>Up</td>
<td>Gig0/0/0</td>
</tr>
</tbody>
</table>

Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 1000, Multiplier: 3
Received MinRxInt: 200000, Received Multiplier: 5
Holdown (hits): 1000(0), Hello (hits): 200(5995)
Rx Count: 10126, Rx Interval (ms) min/max/avg: 152/248/196 last: 0 ms ago
Tx Count: 5998, Tx Interval (ms) min/max/avg: 204/440/332 last: 12 ms ago

Last packet: Version: 0 - Diagnostic: 0
I Hear You bit: 1 - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 8 - Your Discr.: 1
Min tx interval: 50000 - Min rx interval: 1000
Min Echo interval: 0

Uptime: 00:33:13

The output of the `show ip bgp neighbors` command verifies that BFD has been enabled for the BGP neighbors:

Router A

RouterA# `show ip bgp neighbors`

BGP neighbor is 172.16.10.2, remote AS 45000, external link
Using BFD to detect fast failover.
Example: Configuring BFD in an IS-IS Network

In the following example, the simple IS-IS network consists of Router A and Router B. The Gigabit Ethernet interface 0/0/1 on Router A is connected to the same network as Gigabit Ethernet interface 0/0/0 for Router B. The example, starting in global configuration mode, shows the configuration of BFD.

Configuration for Router A

 !
 interface GigabitEthernet 0/0/1
 ip address 172.16.10.1 255.255.255.0
 ip router isis
 bfd interval 50 min_rx 50 multiplier 3
 !
 interface GigabitEthernet 0/0/0
 ip address 172.17.0.1 255.255.255.0
 ip router isis
 !
 router isis
 net 49.0001.1720.1600.1001.00
 bfd all-interfaces
 !

Configuration for Router B

 !
 interface GigabitEthernet 0/0/0
 ip address 172.16.10.2 255.255.255.0
 ip router isis
 bfd interval 50 min_rx 50 multiplier 3
 !
 interface GigabitEthernet 0/0/1
 ip address 172.18.0.1 255.255.255.0
 ip router isis
 !
 router isis
 net 49.0000.0000.0002.00
 bfd all-interfaces
 !

The output from the `show bfd neighbors details` command from Router A verifies that a BFD session has been created and that IS-IS is registered for BFD support:

 RouterA# show bfd neighbors details
The output from the `show bfd neighbors details` command from the line card on Router B verifies that a BFD session has been created:

```
Router> show bfd neighbors details
Cleanup timer hits: 0
OurAddr NeighAddr LD/RD RH Holdown(mult) State Int
172.16.10.2 172.16.10.1 8/1 1 1000 (5 ) Up Gig0/0/0
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 1000, Multiplier: 3
Received MinRxInt: 200000, Received Multiplier: 5
Holdown (hits): 1000(0), Hello (hits): 200(5995)
Rx Count: 5998, Tx Interval (ms) min/max/avg: 204/440/332 last: 0 ms ago
Tx Count: 10126, Tx Interval (ms) min/max/avg: 204/440/332 last: 12 ms ago
Last packet: Version: 0 - Diagnostic: 0
I Hear You bit: 1 - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 5 - Length: 24
My Discr.: 1 - Your Discr.: 8
Min tx interval: 200000 - Min rx interval: 200000
Min Echo interval: 0
```

Example: Configuring BFD in an HSRP Network

In the following example, the HSRP network consists of Router A and Router B. The Gigabit Ethernet interface 2/0 on Router A is connected to the same network as Gigabit Ethernet interface 2/0 on Router B. The example, starting in global configuration mode, shows the configuration of BFD.

```
Example: Configuring BFD in an HSRP Network
```

Note

In the following example, the `standby bfd` and the `standby bfd all-interfaces` commands are not displayed. HSRP support for BFD peering is enabled by default when BFD is configured on the router or interface using the `bfd interval` command. The `standby bfd`and `standby bfd all-interfaces` commands are needed only if BFD has been manually disabled on a router or interface.
Router A

interface GigabitEthernet0/0/1
no shutdown
ip address 10.0.0.1 255.0.0.0
bfd interval 200 min_rx 200 multiplier 3
standby 1 ip 10.0.0.11
standby 1 preempt
standby 1 priority 110
standby 2 ip 10.0.0.12
standby 2 preempt
standby 2 priority 110

Router B

interface GigabitEthernet0/0/1
ip address 10.1.0.22 255.255.0.0
no shutdown
bfd interval 200 min_rx 200 multiplier 3
standby 1 ip 10.0.0.11
standby 1 preempt
standby 1 priority 90
standby 2 ip 10.0.0.12
standby 2 preempt
standby 2 priority 80

The output from the show standby neighbors command verifies that a BFD session has been created:

RouterA# show standby neighbors

HSRP neighbors on GigabitEthernet0/0/0
10.1.0.22
 No active groups
 Standby groups: 1
 BFD enabled!

RouterB# show standby neighbors

HSRP neighbors on GigabitEthernet0/0/1
10.0.0.2
 Active groups: 1
 No standby groups
 BFD enabled!

Example: Configuring BFD Support for Static Routing

In the following example, the network consists of Device A and Device B. Serial interface 2/0 on Device A is connected to the same network as serial interface 2/0 on Device B. In order for the BFD session to come up, Device B must be configured.

Device A

configure terminal
interface Serial 2/0
ip address 10.201.201.1 255.255.255.0
bfd interval 500 min_rx 500 multiplier 5
ip route static bfd Serial 2/0 10.201.201.2
ip route 10.0.0.0 255.0.0.0 Serial 2/0 10.201.201.2
Device B

configure terminal
interface Serial 2/0
ip address 10.201.201.2 255.255.255.0
bfd interval 500 min_rx 500 multiplier 5
ip route static bfd Serial 2/0 10.201.201.1
ip route 10.1.1.1 255.255.255.255 Serial 2/0 10.201.201.1

Note that the static route on Device B exists solely to enable the BFD session between 10.201.201.1 and 10.201.201.2. If there is no useful static route that needs to be configured, select a prefix that will not affect packet forwarding, for example, the address of a locally configured loopback interface.

In the following example, there is an active static BFD configuration to reach 209.165.200.225 through Gigabit Ethernet interface 0/0/0 in the BFD group testgroup. As soon as the static route is configured that is tracked by the configured static BFD, a single hop BFD session is initiated to 209.165.200.225 through Ethernet interface 0/0. The prefix 10.0.0.0/8 is added to the RIB if a BFD session is successfully established.

configure terminal
ip route static bfd GigabitEthernet 0/0/0 209.165.200.225 group testgroup
ip route 10.0.0.0 255.255.255.224 Ethernet 0/0 209.165.200.225

In the following example, a BFD session to 209.165.200.226 through Ethernet interface 0/0.1001 is marked to use the group testgroup. That is, this configuration is a passive static BFD. Though there are static routes to be tracked by the second static BFD configuration, a BFD session is not triggered for 209.165.200.226 through Gigabit Ethernet interface 0/0/0. The existence of the prefixes 10.1.1.1/8 and 10.2.2.2/8 is controlled by the active static BFD session (Gigabit Ethernet interface 0/0/0 209.165.200.225).

configure terminal
ip route static bfd GigabitEthernet 0/0/0 209.165.200.225 group testgroup
ip route 10.0.0.0 255.255.255.224 GigabitEthernet 0/0/0 209.165.200.225
ip route static bfd Ethernet 0/0.1001 209.165.200.226 group testgroup passive
ip route 10.1.1.1 255.255.255.224 GigabitEthernet 0/0/0 209.165.200.226
ip route 10.2.2.2 255.255.255.224 GigabitEthernet 0/0/0 209.165.200.226

Micro BFD

The BFD feature on ASR 920 supports micro BFD sessions on individual port channel member links to monitor Layer 3 connectivity on those links. With micro BFD feature, BFD is able to verify the ability of each member link to be able to forward Layer 3 packets and appropriately update the load balance.

Features of Micro BFD

- Micro BFD is supported both in hardware offloaded and software offloaded.
- Timers supported on micro BFD hardware offloaded session are from 3.3 ms to 200 ms.
- Timers supported on micro BFD hardware offloaded session are from 3.3 milli seconds to 1000 milli seconds.
- Micro BFD supports Active/Active SDM template for port-channel.
- Micro BFD supported in non-video template in Cisco ASR 920.
- Micro BFD software offloaded sessions supported from 200 milli seconds to 1000 milli seconds.
• Maximum tested values include 24 sessions.
• Interior gateway protocol is not necessary for the micro BFD sessions to be up between the LAG.
• The client for micro BFD sessions is port-channel.
• Micro BFD is supported on port-channel with member links from different ASICs.
• Micro BFD is supported with LACP minimum links and LACP maximum links enabled on the port-channel.
• Minimum convergence time tested for interval 3.3 ms, with multiplier value as 3 is 56 ms.

Functions of Micro BFD

• Runs BFD session over each Link Aggregation Group (LAG) member link.
• Verifies link continuity for every member link.
• Makes BFD to control the LAG member link to be part of the Layer 2 load-balancing table of the LAG interface in the presence or the absence of Link Aggregation Control Protocol (LACP).
• Offloads the continuity check messages.
• Provides a sub 50 millisecond convergence for LAG failures.

Restrictions for Micro BFD

• Micro BFD supports single hop only.
• Micro BFD works only with IPv4.
• Micro BFD is only supported on L3 port-channel; it is not supported on sub-interfaces or EVC of port-channel.
• Micro BFD does not support ECHO mode.
• Maximum tested scale is 24 sessions.
• Micro BFD is not supported on any of the video templates.

Steps to Configure Micro BFD

Perform the following steps to configure micro BFD:

1. Configure port channel. See Configure Port-Channel, on page 36.
2. If Micro BFD needs to be enabled on an Active/Active SDM template, enable port channel, then enable the SDM template for the port channel ID before configuring the port-channel. See Configuring QoS Support on Port Channel Active Active and Selecting the SDM template.
3. Micro BFD supported on non-video template. See Configure the SDM Template.
5. Configure Micro BFD over port-channel with the template configured. See Configure Micro BFD on Port Channel, on page 37.

Configure Port-Channel

Step 1 enable

Example:

Router> enable

Enables privileged EXEC mode. Enter your password if prompted.

Step 2 configure terminal

Example:

Router# configure terminal

Enters the global configuration mode.

Step 3 Interface port channel number

Example:

Router(config)# interface port channel 48

Configures the port channel and enters the interface mode.

Step 4 ip address ip-address mask

Example:

Router(config-if)# ip address 10.201.201.1 255.255.255.0

Configures an IP address for the interface.

Step 5 Interface interface typeinterface name

Example:

Router(config)# interface gigabitethernet 0/0/0-6

Specifies the ethernet interface.

Step 6 channel group channel group number mode mode name

Example:

Router(config)# channel group 48 mode active

The following types of port channel modes can be configured:

- active
- passive
- on

Step 7 end
Exits the interface range configuration mode and returns to the configuration mode.

Verify Port Channel

Use the commands below to verify the port channel summary details:

```plaintext
Device# show etherchannel summary
Flags:  D - down    P/bndl - bundled in port-channel
        I - stand-alone s/susp - suspended
        H - Hot-standby (LACP only)
        R - Layer3    S - Layer2
        U - in use    f - failed to allocate aggregator
        M - not in use, minimum links not met
        u - unsuitable for bundling
        w - waiting to be aggregated
        d - default port
```

Number of channel-groups in use: 1
Number of aggregators: 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Port-channel</th>
<th>Protocol</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Po10(RU)</td>
<td>LACP</td>
<td>Te0/4/0(bndl)</td>
</tr>
</tbody>
</table>

Configure Micro BFD on Port Channel

Step 1

`enable`

Example:

```
Router> enable
```

Enables privileged EXEC mode.

- Enter your password if prompted.

Step 2

`configure terminal`

Example:

```
Router# configure terminal
```

Enters global configuration mode.

Step 3

`bfd-template single-hop MicroBFD_template`

Example:

```
Router(config)# bfd-template single-hop MicroBFD_template
```

Configures the BFD template and enters BFD configuration mode.

Step 4

`interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value`

Example:

```
Router(bfd-config)# interval min-tx 100 min-rx 100 multiplier 3
```
Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.

Step 5

Example:

Router(bfd-config)# end

Exits BFD configuration mode and returns the router to privileged EXEC mode.

Step 6

configure terminal

Example:

Router# configure terminal

Enters global configuration mode.

Step 7

Interface port channel number

Example:

Router(config)#interface port channel 48

Configures the port channel and enters the interface mode.

Step 8

port channel bfd destination ipv4 ip address MicroBFD_template

Example:

Router(config-if)#port channel bfd destination ipv4 48.48.48.2 MicroBFD_template

Configures micro BFD under the port channel.

Use the no form of the command to delete the Micro BFD session from the port channel.

Step 9

End

Exits interface configuration mode and returns to global configuration mode.

Verify Micro BFD Session

Use the following commands to verify that the BFD sessions established are in UP state.

```
router#show etherchannel summary
Flags:  D - down  P/bndl - bundled in port-channel
        I - stand-alone s/susp - suspended
        H - Hot-standby (LACP only)
        R - Layer3  S - Layer2
        U - in use    f - failed to allocate aggregator
        M - not in use, minimum links not met
        u - unsuitable for bundling
        w - waiting to be aggregated
        d - default port

Number of channel-groups in use: 1
Number of aggregators: 1
```

Bidirectional Forwarding Detection

Verify Micro BFD Session
Group Port-channel Protocol Ports

<table>
<thead>
<tr>
<th>Group</th>
<th>Port-channel</th>
<th>Protocol</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Po1 (RU)</td>
<td>LACP</td>
<td>Gi0/3/2 (bndl) Gi0/3/3 (bndl)</td>
</tr>
</tbody>
</table>

RU - L3 port-channel UP state
SU - L2 port-channel UP state
P/bndl - Bundled
S/susp - Suspended

router

```
show bfd summary
```

<table>
<thead>
<tr>
<th>Session</th>
<th>Up</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

router

```
show bfd clients
```

<table>
<thead>
<tr>
<th>Client</th>
<th>ClientID</th>
<th>Subtype</th>
<th>Session Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRR</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CEF</td>
<td>15</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>PIM</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSPF</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OSPFv3</td>
<td>11</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>RIP</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IPv4 Static</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RG Protocol</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Xconnect</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ISIS</td>
<td>9</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>HSRP</td>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PochIPv4</td>
<td>29</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

router

```
show bfd neighbors
```

IPv4 Sessions

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>209.165.202.129</td>
<td>8/2148073631</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/2/0</td>
</tr>
<tr>
<td>209.165.202.138</td>
<td>1028/2148073764</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/2/1</td>
</tr>
<tr>
<td>209.165.202.139</td>
<td>45/108</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/2/2</td>
</tr>
<tr>
<td>209.165.202.142</td>
<td>48/3</td>
<td>Up</td>
<td>Up</td>
<td>Te0/1/0</td>
</tr>
<tr>
<td>209.165.202.156</td>
<td>50/5</td>
<td>Up</td>
<td>Up</td>
<td>BD1000</td>
</tr>
</tbody>
</table>

IPv6 Sessions

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE80::F278:16FF:FE85:CA91</td>
<td>46/1</td>
<td>Up</td>
<td>Up</td>
<td>Te0/1/0</td>
</tr>
</tbody>
</table>

Port Channel IPv4 Sessions

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Int</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209.165.202.132</td>
<td>53/112</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/3/2</td>
</tr>
<tr>
<td>Pol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209.165.202.132</td>
<td>54/111</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/3/3</td>
</tr>
</tbody>
</table>

router

```
show bfd neighbors poch-ipv4
```

Port Channel IPv4 Sessions

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>209.165.202.132</td>
<td>53/112</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/3/2</td>
</tr>
<tr>
<td>Pol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209.165.202.132</td>
<td>54/111</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/3/3</td>
</tr>
</tbody>
</table>
Verify Micro BFD Session
Restrictions for Static Route for BFD over IPv6

Multi-hop is not supported for static route.

Information About Static Route Support for BFD over IPv6

Using the BFDv6 protocol to reach the static route next hop ensures that an IPv6 static route is inserted only in the IPv6 Routing Information Base (RIB) when the next-hop neighbor is reachable. Using the BFDv6 protocol also can remove the IPv6 static route from the IPv6 RIB when the next hop becomes unreachable.

A user can configure IPv6 static BFDv6 neighbors. These neighbors can operate in one of two modes: associated (which is the default) and unassociated. A neighbor can be transitioned between the two modes without interrupting the BFDv6 session associated with the neighbor.

BFDv6 Associated Mode

In Bidirectional Forwarding Detection for IPv6 (BFDv6) associated mode, an IPv6 static route is automatically associated with an IPv6 static BFDv6 neighbor if the static route next hop exactly matches the static BFDv6 neighbor.

An IPv6 static route requests a BFDv6 session for each static BFDv6 neighbor that has one or more associated IPv6 static routes and is configured over an interface on which BFD has been configured. The state of the BFDv6 session will be used to determine whether the associated IPv6 static routes are inserted in the IPv6 RIB. For example, static routes are inserted in the IPv6 RIB only if the BFDv6 neighbor is reachable, and the static route is removed from the IPv6 RIB if the BFDv6 neighbor subsequently becomes unreachable.

BFDv6 associated mode requires you to configure a BFD neighbor and static route on both the device on which the BFD-monitored static route is required and on the neighboring device.
BFDv6 Unassociated Mode

An IPv6 static BFD neighbor may be configured as unassociated. In this mode, the neighbor is not associated with static routes, and the neighbor always requests a BFDv6 session if the interface has been configured for BFDv6.

Unassociated mode is useful in the following situations:

- Bringing up a BFDv6 session in the absence of an IPv6 static route—This case occurs when a static route is on router A, with router B as the next hop. Associated mode requires you to create both a static BFD neighbor and static route on both routers in order to bring up the BFDv6 session from B to A. Specifying the static BFD neighbor in unassociated mode on router B avoids the need to configure an unwanted static route.

- Transition to BFD monitoring of a static route—This case occurs when existing IPv6 static routes are inserted in the IPv6 RIB. Here, you want to enable BFD monitoring for these static routes without any interruption to traffic. If you configure an attached IPv6 static BFD neighbor, then the static routes will immediately be associated with the new static BFD neighbor. However, because a static BFD neighbor starts in a down state, the associated static routes are then removed from the IPv6 RIB and are reinserted when the BFDv6 session comes up. Therefore, you will see an interruption in traffic. This interruption can be avoided by configuring the static BFD neighbor as unassociated, waiting until the BFDv6 session has come up, and then reconfiguring the static BFD neighbor as associated.

- Transition from BFD monitoring of a static route—In this case, IPv6 static routes are monitored by BFD and inserted in the RIB. Here, you want to disable BFD monitoring of the static routes without interrupting traffic flow. This scenario can be achieved by first reconfiguring the static BFD neighbor as detached (thus disassociating the neighbor from the static routes) and then deconfiguring the static BFD neighbor.

How to Configure Bidirectional Forwarding Detection for IPv6

Specifying a Static BFDv6 Neighbor

An IPv6 static BFDv6 neighbor is specified separately from an IPv6 static route. An IPv6 static BFDv6 neighbor must be fully configured with the interface and neighbor address and must be directly attached to the local router.

SUMMARY STEPS

1. enable
2. configure terminal
3. ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]

DETAILED STEPS

Step 1 enable
Example:

Device> enable
Enables privileged EXEC mode.

- Enter your password if prompted.

Step 2
`configure terminal`
Example:

```
Device# configure terminal
```

Enters global configuration mode.

Step 3
`ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]`
Example:

```
Device(config)# ipv6 route static bfd gigabitethernet 0/0/0 2001::1
```

Specifies static route IPv6 BFDv6 neighbors.

Associating an IPv6 Static Route with a BFDv6 Neighbor

IPv6 static routes are automatically associated with a static BFDv6 neighbor. A static neighbor is associated with a BFDv6 neighbor if the static next-hop explicitly matches the BFDv6 neighbor.

SUMMARY STEPS

1. enable
2. `configure terminal`
3. `ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]`
4. `ipv6 route [vrf vrf-name] ipv6-prefix / prefix-length [ipv6-address | interface-type interface-number ipv6-address] [nexthop-vrf [vrf-name I | default]] [administrative-distance] [administrative-multicast-distance | unicast | multicast] [next-hop-address] [tag tag]`

DETAILED STEPS

Step 1
`enable`
Example:

```
Device> enable
```

Enables privileged EXEC mode.

- Enter your password if prompted.

Step 2
`configure terminal`
Example:

```
Device# configure terminal
```

Enters global configuration mode.
Enters global configuration mode.

Step 3
```
ipv6 route static bfd [vrf vrf-name] interface-type interface-number ipv6-address [unassociated]
```

Example:
```
Device(config)# ipv6 route static bfd gigabitethernet 0/0/0 2001::1
```

Specified static route BFDv6 neighbors.

Step 4
```
ipv6 route [vrf vrf-name] ipv6-prefix /prefix-length {ipv6-address | interface-type interface-number ipv6-address}}
[next-hop-vrf [vrf-name1 | default]] [administrative-distance] [administrative-multicast-distance | unicast | multicast] [next-hop-address] [tag tag]
```

Example:
```
Device(config)# ipv6 route 2001:DB8::/64 gigabitethernet 0/0/0 2001::1
```

Establishes static IPv6 routes.

Configuration Examples for Static Route Support for BFD over IPv6

Example: Specifying an IPv6 Static BFDv6 Neighbor

The following example specifies a fully configured IPv6 static BFDv6 neighbor. The interface is GigabitEthernet 0/0/0 and the neighbor address is 2001::1.

```
Device(config)# ipv6 route static bfd gigabitethernet 0/0/0 2001::1
```

Example: Associating an IPv6 Static Route with a BFDv6 Neighbor

In this example, the IPv6 static route 2001:DB8::/32 is associated with the BFDv6 neighbor 2001::1 over the GigabitEthernet 0/0/0 interface:

```
Device(config)# ipv6 route static bfd gigabitethernet 0/0/0 2001::1
Device(config)# ipv6 route 2001:DB8::/32 gigabitethernet 0/0/0 2001::1
```
BFD on IP Unnumbered Interfaces

This feature module describes how to enable BFD on IP unnumbered interfaces.

Note
This feature is applicable only for Cisco ASR 900 RSP2 Module.

- Information about BFD on IP Unnumbered Interfaces, on page 45
- Prerequisites for BFD on IP Unnumbered Interfaces, on page 45
- Restrictions for BFD on IP Unnumbered Interfaces, on page 46
- Configuring BFD on IP Unnumbered Interfaces, on page 46
- Verifying BFD on IP Unnumbered Interface Configuration, on page 50
- Example: Configuration of BFD on IP Unnumbered Interfaces, on page 50
- Additional References, on page 55
- Feature Information for BFD on IP Unnumbered Interfaces, on page 56

Information about BFD on IP Unnumbered Interfaces
Cisco ASR 900 RSP2 Module supports BFD to run on IP unnumbered interfaces, which take the IP address from the loopback address. You can use the same loopback address on multiple interfaces. Physical, BDI, and Port-channel interfaces are supported for BFD on IP unnumbered interfaces. Single hop with authentication and Segment-routing (SR) are supported with BFD on IP unnumbered interfaces.

Prerequisites for BFD on IP Unnumbered Interfaces
- point-to-point keyword is mandatory for BFD on IP unnumbered interfaces:
 ip unnumbered Loopback <> poll point-to-point
- point-to-point keyword should be enabled on client protocols for ISIS and OSPF:
 ip ospf network point-to-point
 isis network point-to-point
Restrictions for BFD on IP Unnumbered Interfaces

- BFD on IP unnumbered interface is supported only with ISIS and OSPF.
- Echo mode is not supported.
- BFD on IP unnumbered interface is not supported for IPv6.
- BFD dampening is not supported.
- MHBFD is not supported for the clients of OSPF and ISIS.

Configuring BFD on IP Unnumbered Interfaces

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `bfd-template single-hop template-name`
4. `interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value`
5. `interface loopback instance`
6. `ip address address subnet mask`
7. `ip router isis area-tag`
8. `ip ospf process id area area id`
9. `interface gigabitethernet slot/subslot/port`
10. `ip unnumbered Loopback interface poll point-to-point`
11. `no ip redirects`
12. `ip router isis process tag`
13. `ip ospf network point-to-point`
14. `ip ospf bfd`
15. `ip ospf process id area area id`
16. `isis network point-to-point`
17. `bfd template template name`
18. `bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier`
19. `router ospf process id`
20. `router-id router id`
21. `bfd all-interfaces strict-mode`
22. `router isis area tag`
23. `net network entity title`
24. `is-type level-2-only`
25. `metric-style wide`
26. `log-adjacency-changes`
27. `bfd all-interfaces`
DETAILED STEPS

Step 1 enable
Example:
Device> enable
Enables privileged EXEC mode.
Enter your password if prompted.

Step 2 configure terminal
Example:
router#configure terminal
Enters global configuration mode.

Step 3 bfd-template single-hop template-name
Example:
Router(config)# bfd-template single-hop bfdtemplate1
Creates a single-hop BFD template and enters BFD configuration mode.

Step 4 interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
Example:
Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3
Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.

Step 5 interface loopback instance
Example:
router#interface loopback 0
Creates a loopback interface and enter the interface config mode.

Step 6 ip address address subnet mask
Example:
router(conig-if)#ip address 21.21.21.21 255.255.255.255
Configures an IP address for this loopback interface.

Step 7 ip router isis area-tag
Example:
router(config-if)#ip router isis 1
Configures an IS-IS routing process for the IP on the configured interface and attaches an area designator to the routing process.

Step 8 ip ospf process id area area id
Example:
```
router(config-if)# ip ospf 1 area 0
```
Enables OSPFv2 on an interface.

Step 9
```
interface gigabitethernet/slot/subslot/port
```
Example:
```
router(config-if)#interface gigabitethernet0/0/3
```
Configures the interface type as gigabitethernet.

Step 10
```
ip unnumbered Loopback interface poll point-to-point
```
Example:
```
router(config-if)# ip unnumbered Loopback 0 poll point-to-point
```
Enables IP unnumbered processing on the loopback interface with point-to-point host polling.

Step 11
```
no ip redirects
```
Example:
```
router(config-if)# no ip redirects
```
Disables ICMP redirect messages.

Step 12
```
ip router isis process tag
```
Example:
```
router(config-if)#ip router isis 1
```
Enable IS-IS as an IP routing protocol on the routers, and assign a tag to the process.

Step 13
```
ip ospf network point-to-point
```
Example:
```
router(config-if)#ip ospf network point-to-point
```
Configures an OSPFv2 point-to-point link on the interface.

Step 14
```
ip ospf bfd
```
Example:
```
router(config-if)#ip ospf bfd
```
Enables BFD on the OSPFv2 interface.

Step 15
```
ip ospf process id area area id
```
Example:
```
router(config-if)# ip ospf 1 area 0
```
Enables OSPFv2 on an interface.

Step 16
```
isis network point-to-point
```
Example:
```
router(config-if)#isis network point-to-point
```
Configures an IS-IS network into a point-to-point network.
Step 17 bfd template template name
Enables the BFD template.

Step 18 bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier
Example:
router(config-if)# bfd interval 50 min_rx 50 multiplier 3
Enables BFD on the interface.

Step 19 router ospf process id
Example:
router(config-if)# router ospf 1
Enables OSPF routing protocol on the router and attaches a process ID.

Step 20 router-id router id
Example:
routing(config-router) router-id 209.165.201.0
Assigns the router ID on the OSPF router.

Step 21 bfd all-interfaces strict-mode
Example:
routing(config-router)# bfd all-interfaces strict-mode
Enables BFD strict-mode for OSPF on all interfaces.

Step 22 router isis area tag
Example:
routing(config-router)# router isis 1
Assigns a tag to an IS-IS process. Enters router configuration mode.

Step 23 net network entity title
Example:
routing(config-router)# net 49.0001.0000.0000.0000.000a.00
Configures the NET on the device. The NET identifies the device for IS-IS.

Step 24 is-type level-2-only
Example:
routing(config-router)# is-type level-2-only
Defines the routing level of the IS-IS routing process as level 2.

Step 25 metric-style wide
Example:
routing(config-router)# metric-style wide
Configures a router running IS-IS so that it generates and accepts only new-style TLVs.

Step 26 log-adjacency-changes
Example:

router(config-router)#log-adjacency-changes

Configures the router to send a syslog message when the state of an OSPF neighbor changes.

Step 27 bfd all-interfaces

Example:

router(config-router)#bfd all-interfaces

Enables BFD for all of the interfaces for which IS-IS is routing.

Verifying BFD on IP Unnumbered Interface Configuration

To verify the BFD on IP unnumbered interface configuration, use the show commands given below:

Router#show bfd neighbors
IPv4 Sessions
 NeighAddr LD/RD RH/RS State Int
 1.1.1.1 1/3 Up Up Gi0/0/3
 3.3.3.3 1025/1025 Up Up Po10

Router#show bfd neighbors detail
IPv4 Sessions
 NeighAddr LD/RD RH/RS State Int
 1.1.1.1 1/3 Up Up Gi0/0/3
 Session state is UP and not using echo function.
 Session Host: Hardware
 OurAddr: 21.21.21.21
 Handle: 1
 Local Diag: 0, Demand mode: 0, Poll bit: 0
 MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
 Received MinRxInt: 50000, Received Multiplier: 3
 Holddown (hits): 0(0), Hello (hits): 50(0)
 Rx Count: 4304
 Tx Count: 4306
 Elapsed time watermarks: 0 0 (last: 0)
 Registered protocols: OSPF CEF ISIS FRR
 Uptime: 00:02:41
 Last packet: Version: 1 - Diagnostic: 0
 State bit: Up - Demand bit: 0
 Poll bit: 0 - Final bit: 0
 C bit: 1
 Multiplier: 3 - Length: 24
 My Discr.: 3 - Your Discr.: 1
 Min tx interval: 50000 - Min rx interval: 50000
 Min Echo interval: 0

Example: Configuration of BFD on IP Unnumbered Interfaces

Configuration on router 1:

key chain cisco
key 1
 key-string bfd

segment-routing mpls
!
set-attributes
 address-family ipv4
 sr-label-preferred
 exit-address-family
!
global-block 20000 30000
!
connected-prefix-sid-map
 address-family ipv4
 21.21.21.21/32 index 2222 range 1
 22.22.22.22/32 index 2223 range 1
 23.23.23.23/32 index 2224 range 1
 exit-address-family
!
bfd-template single-hop TEST
 interval min-tx 500 min-rx 500 multiplier 3
 authentication md5 keychain cisco

interface Loopback0
 ip address 21.21.21.21 255.255.255.255
 ip router isis 1
 ip ospf 1 area 0
!
interface Loopback1
 ip address 22.22.22.22 255.255.255.255
 ip router isis 1
 ip ospf 1 area 0
!
interface Loopback2
 ip address 23.23.23.23 255.255.255.255
 ip router isis 1
 ip ospf 1 area 0
!
interface Port-channel10
 ip unnumbered Loopback1 poll point-to-point
 no ip redirects
 ip router isis 1
 ip ospf network point-to-point
 ip ospf bfd
 ip ospf 1 area 0
 load-interval 30
 negotiation auto
 mpls ip
 bfd template TEST
 isis network point-to-point
!
interface GigabitEthernet0/0/3
 ip unnumbered Loopback0 poll point-to-point
 no ip redirects
 ip router isis 1
 ip ospf network point-to-point
 ip ospf bfd
 ip ospf 1 area 0
 load-interval 30
 negotiation auto
 mpls ip
 bfd interval 50 min_rx 50 multiplier 3
 isis network point-to-point
!
router ospf 1
 router-id 21.21.21.21
 segment-routing mpls
Example: Configuration of BFD on IP Unnumbered Interfaces

```
segment-routing prefix-sid-map advertise-local
fast-reroute per-prefix enable prefix-priority low
fast-reroute per-prefix ti-lfa area 0
fast-reroute keep-all-paths
bfd all-interfaces strict-mode

router isis 1
net 49.0001.0000.0000.0000.000a.00
is-type level-2-only
metric-style wide
log-adjacency-changes
segment-routing mpls
segment-routing prefix-sid-map advertise-local
fast-reroute per-prefix level-2 all
fast-reroute ti-lfa level-2
bfd all-interfaces

Configuration on router 2:

key chain cisco
key 1
  key-string bfd

set-attributes
  address-family ipv4
  sr-label-preferred
  exit-address-family

global-block 20000 30000

connected-prefix-sid-map
  address-family ipv4
    1.1.1.1/32 index 1111 range 1
    2.2.2.2/32 index 1112 range 1
    3.3.3.3/32 index 1113 range 1
  exit-address-family

interface Loopback0
  ip address 1.1.1.1 255.255.255.255
  ip router isis 1
  ip ospf 1 area 0

interface Loopback1
  ip address 2.2.2.2 255.255.255.255
  ip router isis 1
  ip ospf 1 area 0

interface Loopback2
  ip address 3.3.3.3 255.255.255.255
  ip router isis 1
  ip ospf 1 area 0

interface Port-channel10
  ip unnumbered Loopback2 poll point-to-point
  no ip redirects
  ip router isis 1
  ip ospf network point-to-point
  ip ospf bfd
  ip ospf 1 area 0
  load-interval 30
  negotiation auto
  mpls ip
```
bfd template TEST
isis network point-to-point
!
interface GigabitEthernet0/0/0
ip unnumbered Loopback0 poll point-to-point
no ip redirects
ip router isis 1
ip ospf network point-to-point
ip ospf bfd
ip ospf 1 area 0
load-interval 30
negotiation auto
mpls ip
bfd interval 50 min_rx 50 multiplier 3
no bfd echo
isis network point-to-point
!
router ospf 1
router-id 1.1.1.1
segment-routing mpls
segment-routing prefix-sid-map advertise-local
fast-reroute per-prefix enable prefix-priority low
fast-reroute per-prefix ti-lfa area 0
fast-reroute keep-all-paths
bfd all-interfaces strict-mode
!
router isis 1
net 49.0001.0000.0000.0000.000b.00
is-type level-2-only
metric-style wide
log-adjacency-changes
segment-routing mpls
segment-routing prefix-sid-map advertise-local
fast-reroute per-prefix level-2 all
fast-reroute ti-lfa level-2
bfd all-interfaces
!
sh bfd neighbors

IPV4 Sessions
<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11.11.11</td>
<td>1/2</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/0/3</td>
</tr>
<tr>
<td>12.12.12.12</td>
<td>1026/1025</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/0/4</td>
</tr>
<tr>
<td>13.13.13.13</td>
<td>2/1</td>
<td>Up</td>
<td>Up</td>
<td>BD111</td>
</tr>
<tr>
<td>21.21.21.21</td>
<td>3/1</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/0/0</td>
</tr>
<tr>
<td>22.22.22.22</td>
<td>1025/1025</td>
<td>Up</td>
<td>Up</td>
<td>Po10</td>
</tr>
</tbody>
</table>

BGL-PEGASUS#
sh bfd neighbors detail

IPV4 Sessions
<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.11.11.11</td>
<td>1/2</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/0/3</td>
</tr>
</tbody>
</table>

Session state is UP and not using echo function.
Session Host: Hardware
OurAddr: 1.1.1.1
Handle: 3
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holddown (hits): 0(0), Hello (hits): 50(0)
Rx Count: 2392
Tx Count: 2413
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: OSPF CEF ISIS FRR

Example: Configuration of BFD on IP Unnumbered Interfaces
Example: Configuration of BFD on IP Unnumbered Interfaces

IPv4 Sessions

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.12.12</td>
<td>1026/1025</td>
<td>Up</td>
<td>Up</td>
<td>Gi0/0/4</td>
</tr>
</tbody>
</table>

Session state is UP and not using echo function.

Session Host: Software

OurAddr: 2.2.2.2

Handle: 4

Local Diag: 0, Demand mode: 0, Poll bit: 0

MinTxInt: 500000, MinRxInt: 500000, Multiplier: 3

Received MinRxInt: 500000, Received Multiplier: 3

Holddown (hits): 1296(0), Hello (hits): 500(331)

Rx Count: 332, Rx Interval (ms) min/max/avg: 1/504/440 last: 204 ms ago

Tx Count: 332, Tx Interval (ms) min/max/avg: 1/504/439 last: 320 ms ago

Elapsed time watermarks: 0 0 (last: 0)

Registered protocols: OSPF CEF FRR ISIS

Template: TEST

Authentication(Type/Keychain): md5/cisco

last_tx_auth_seq: 4 **last_rx_auth_seq**: 6

Uptime: 00:02:25

Last packet:

- Version: 1
- Diagnostic: 0

State bit: Up - Demand bit: 0

Poll bit: 0 - Final bit: 0

C bit: 0

Multiplier: 3 - Length: 48

My Discr.: 1025 - **Your Discr.:** 1026

Min tx interval: 500000 - **Min rx interval:** 500000

Min Echo interval: 0

IPv4 Sessions

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.13.13</td>
<td>2/1</td>
<td>Up</td>
<td>Up</td>
<td>BD111</td>
</tr>
</tbody>
</table>

Session state is UP and not using echo function.

Session Host: Hardware

OurAddr: 3.3.3.3

Handle: 5

Local Diag: 0, Demand mode: 0, Poll bit: 0

MinTxInt: 300000, MinRxInt: 300000, Multiplier: 3

Received MinRxInt: 300000, Received Multiplier: 3

Holddown (hits): 0(0), Hello (hits): 300(0)

Rx Count: 502

Tx Count: 504

Elapsed time watermarks: 0 0 (last: 0)

Registered protocols: OSPF CEF FRR ISIS

Uptime: 00:02:22

Last packet:

- Version: 1
- Diagnostic: 0

State bit: Up - Demand bit: 0

Poll bit: 0 - Final bit: 0

C bit: 1

Multiplier: 3 - Length: 24

My Discr.: 1 - **Your Discr.:** 2

Min tx interval: 300000 - **Min rx interval:** 300000

Min Echo interval: 0

IPv4 Sessions
IPv4 Sessions

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.21.21.21</td>
<td>3/1</td>
<td>Up</td>
<td>Up</td>
<td>G10/0/0</td>
</tr>
</tbody>
</table>

Session state is UP and not using echo function.
Session Host: Hardware
OurAddr: 1.1.1.1
Handle: 1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holddown (hits): 0(0), Hello (hits): 50(0)
Rx Count: 4305
Tx Count: 4323
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: OSPF CEF ISIS FRR
Uptime: 00:02:59

Last packet:
- Version: 1
- State bit: Up
- Demand bit: 0
- Poll bit: 0
- Final bit: 0
- C bit: 1
- Multiplier: 3
- Length: 24
- My Discr.: 1
- Your Discr.: 3
- Min tx interval: 50000
- Min rx interval: 50000
- Min Echo interval: 50000

IPv4 Sessions

<table>
<thead>
<tr>
<th>NeighAddr</th>
<th>LD/RD</th>
<th>RH/RS</th>
<th>State</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.22.22.22</td>
<td>1025/1025</td>
<td>Up</td>
<td>Up</td>
<td>Po10</td>
</tr>
</tbody>
</table>

Session state is UP and not using echo function.
Session Host: Software
OurAddr: 3.3.3.3
Handle: 2
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 500000, MinRxInt: 500000, Multiplier: 3
Received MinRxInt: 500000, Received Multiplier: 3
Holdown (hits): 1232(0), Hello (hits): 500(393)
Rx Count: 393, Rx Interval (ms) min/max/avg: 4/504/440 last: 268 ms ago
Tx Count: 396, Tx Interval (ms) min/max/avg: 4/504/437 last: 268 ms ago
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: CEF OSPF FRR ISIS
Template: TEST
Authentication(Type/Keychain): md5/cisco
last_tx_auth_seq: 5 last_rx_auth_seq 4
Uptime: 00:02:53

Last packet:
- Version: 1
- State bit: Up
- Demand bit: 0
- Poll bit: 0
- Final bit: 0
- C bit: 0
- Multiplier: 3
- Length: 48
- My Discr.: 1025
- Your Discr.: 1025
- Min tx interval: 500000
- Min rx interval: 50000
- Min Echo interval: 0

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Command Reference</td>
<td>Cisco IOS IP Routing: Protocol-Independent Command Reference</td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 5880</td>
<td>Bidirectional Forwarding Detection (BFD)</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>

Feature Information for BFD on IP Unnumbered Interfaces

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
In Cisco IOS XE Everest 16.5.1, BFD is supported to run on IP unnumbered interfaces, which take the IP address from the loopback address. You can use the same loopback address on multiple interfaces.

In Cisco IOS XE Everest 16.5.1, support was added for the Cisco ASR 903 router.

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD on IP Unnumbered Interfaces</td>
<td>Cisco IOS XE Everest 16.5.1</td>
<td>In Cisco IOS XE Everest 16.5.1, BFD is supported to run on IP unnumbered interfaces, which take the IP address from the loopback address. You can use the same loopback address on multiple interfaces. In Cisco IOS XE Everest 16.5.1, support was added for the Cisco ASR 903 router.</td>
</tr>
</tbody>
</table>
Feature Information for BFD on IP Unnumbered Interfaces
IS-IS IPv6 Client for BFD

When Bidirectional Forwarding Detection (BFD) support is configured with Intermediate System To Intermediate System (IS-IS) as a registered protocol with BFD, IS-IS receives forwarding path detection failure messages from BFD.

- Prerequisites for IS-IS IPv6 Client for BFD, on page 59
- Restrictions for IS-IS IPv6 Client for BFD, on page 59
- Information About IS-IS IPv6 Client for BFD, on page 59
- How to Configure ISIS IPv6 Client for BFD, on page 60
- Configuration Examples for ISIS IPv6 Client for BFD, on page 63

Prerequisites for IS-IS IPv6 Client for BFD

- IS-IS must be running on all participating devices.
- The baseline parameters for BFD sessions must be configured on the interfaces that run BFD sessions to BFD neighbors.

Restrictions for IS-IS IPv6 Client for BFD

Only one IS-IS IPv6 session is supported.

Information About IS-IS IPv6 Client for BFD

IS-IS BFD Topology

When BFD support is configured with IS-IS as a registered protocol with BFD, IS-IS receives forwarding path detection failure messages from BFD. BFD support for IS-IS can be configured in either router address-family configuration mode or interface configuration mode. IS-IS IPv6 can run in single-topology or in Multi-Topology (MT) mode.

IS-IS BFD supports both IPv4 and IPv6 on the same adjacency for single-topology or multi-topology mode. If BFD is enabled for both IPv4 and IPv6, IS-IS sends two BFD session creation requests to BFD. For single-topology mode, the IS-IS adjacency state can only be UP if both BFD sessions are UP. If either of the
BFD sessions is DOWN, the associated IS-IS adjacency state is also DOWN. For MT mode, the IS-IS adjacency state can be UP as long as one of topologies has a BFD session in an UP state.

IS-IS BFD IPv6 Session Creation

IS-IS requests a BFD session for the interface and IPv6 address of the neighboring device when all of the following conditions are met:

- An IS-IS adjacency entry exists.
- The Address Family Identifier (AFI) specific peer interface address is known.
- IS-IS BFD is enabled for that AFI on an interface.
- IS-IS is enabled for that AFI on the local interface.
- If the neighboring device supports RFC 6213, BFD must be enabled for the specified Multi-Topology Identifier (MTID) or Network Layer Protocol Identifier (NLPID).

IS-IS BFD IPv6 Session Deletion

When IS-IS BFD IPv6 is disabled on an interface, IS-IS removes related BFD sessions for IPv6 from the adjacent device. When the IS-IS adjacency entry is deleted, all BFD sessions are also deleted. IS-IS requests BFD to remove each BFD session that it has requested when any of the following events occur:

- The IS-IS instance is deleted or un-configured.
- The IS-IS adjacency entry is deleted.
- IS-IS BFD is disabled on the next hop interface for an address-family.
- The neighboring device supports RFC 6213 and indicates that it no longer supports BFD for the specified MTID or NLPID.

How to Configure ISIS IPv6 Client for BFD

Configuring IS-IS IPv6 Client Support for BFD on an Interface

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ipv6 address ipv6-address/mask
5. isis ipv6 bfd
6. end
DETAILED STEPS

Step 1
enable

Example:

```
Device> enable
```
Enables privileged EXEC mode.
- Enter your password if prompted.

Step 2
configure terminal

Example:

```
Device# configure terminal
```
Enters global configuration mode.

Step 3
interface type number

Example:

```
Device(config)# interface gigabitethernet 6/0/0
```
Enters interface configuration mode.

Step 4
ipv6 address ipv6-address/mask

Example:

```
Device(config-if)# ipv6 address 19:1:1::4/64
```
Configures IPv6.

Step 5
isis ipv6 bfd

Example:

```
Device(config-if)# isis ipv6 bfd
```
Enables IPv6 BFD on a specific interface that is configured for IS-IS.

Step 6
end

Example:

```
Device(config-if)# end
```
Exits interface configuration mode and returns to privileged EXEC mode.
Configuring IS-IS IPv6 Client Support for BFD on All Interfaces

SUMMARY STEPS

1. enable
2. configure terminal
3. router isis
4. metric-style wide
5. address-family ipv6
6. multi-topology
7. bfd all-interfaces
8. end

DETAILED STEPS

Step 1 enable
Example:

Device> enable
Enables privileged EXEC mode.

• Enter your password if prompted.

Step 2 configure terminal
Example:

Device# configure terminal
Enters global configuration mode.

Step 3 router isis
Example:

Device(config)# router isis
Enables the IS-IS routing protocol and enters router configuration mode.

Step 4 metric-style wide
Example:

Device(config-router)# metric-style wide
(Optional) Configures a device that is running IS-IS so that it generates and accepts only new-style type, length, value objects (TLVs).

Step 5 address-family ipv6
Example:
Device(config-router)# address-family ipv6
Enters address family configuration mode for configuring IS-IS routing sessions that use standard IPv6 address prefixes.

Step 6 multi-topology
Example:

Device(config-router-af)# multi-topology

Step 7 bfd all-interfaces
Example:

Device(config-router-af)# bfd all-interfaces
Enables BFD for all interfaces participating in the routing process.

Step 8 end
Example:

Device(config-router-af)# end
Exits address family configuration mode and returns to privileged EXEC mode.

Configuration Examples for ISIS IPv6 Client for BFD

Example: IS-IS IPv6 Client Support for BFD on a Single Interface

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 6/0/0
Device(config-if)# ipv6 address 19:111:112::2/64
Device(config-if)# isis ipv6 bfd
Device(config-if)# end

Device> enable
Device# configure terminal
Device(config)# interface gigabitethernet 6/0
Device(config-if)# ipv6 address 19:111:112::1/64
Device(config-if)# isis ipv6 bfd
Device(config-if)# end

Example: IS-IS IPv6 Client Support for BFD on All Interfaces

Device> enable
Device# configure terminal

IP Routing: BFD Configuration Guide, Cisco IOS XE 16 (Cisco ASR 920 Series)
Device(config)# router isis
Device(config-router)# metric-style wide
Device(config-router)# address-family ipv6
Device(config-router-af)# multi-topology
Device(config-router-af)# bfd all-interfaces
Device(config-router-af)# end

The following is a sample configuration where interface 0/0/7 of Router A is connected to interface 0/4/6 of router B.

Configuration for Router A

```
bfd-template single-hop BFDM
   interval min-tx 50 min-rx 50 multiplier 3
!
interface TenGigabitEthernet0/0/7
   ipv6 address 19:1:1::1/64
   ipv6 router isis
   bfd template BFDM
   isis ipv6 bfd
!
router isis
   net 49.0001.1720.1600.1001.00
!
```

Configuration on Router B

```
Router B

bdf-template single-hop BFDM
   interval min-tx 50 min-rx 50 multiplier 3
!
interface TenGigabitEthernet0/4/6
   ipv6 address 19:1:1::2/64
   ipv6 router isis
   bfd template BFDM
   isis ipv6 bfd
!
router isis
   net 49.0000.0000.0002.00
!
```
BFD IPv6 Encapsulation Support

Bidirectional Forwarding Detection for IPv6 encapsulations are described within a session information structure. These session information structures are defined by BFDv6 for the protocols supported. BFDv6 uses information from the session information structures to determine the correct encapsulation for BFDv6 packets on that session.

• Prerequisites for BFD IPv6 Encapsulation Support, on page 65
• Restrictions for BFD IPv6 Encapsulation Support, on page 65
• Information About BFD IPv6 Encapsulation Support, on page 66
• How to Configure BFD IPv6 Encapsulation Support, on page 67
• Configuration Examples for BFD IPv6 Encapsulation Support, on page 69

Prerequisites for BFD IPv6 Encapsulation Support

• When using Bidirectional Forwarding Detection over IPv6 (BFDv6), IPv6 Cisco Express Forwarding and IPv6 unicast routing must be enabled on all participating routers.

• When you configure BFD IPv6 software sessions, you should configure the following CLI command:

 no ipv6 nd nud igp

 If the peer is also an ASR device, the above command should be configured on the peer device too.

Restrictions for BFD IPv6 Encapsulation Support

• BFDv6 supports only global IPv6 neighbor addresses if a global IPv6 address is configured on the interface.

• Only asynchronous mode is supported. In asynchronous mode, either BFDv6 peer can initiate a BFDv6 session.
Information About BFD IPv6 Encapsulation Support

Overview of the BFDv6 Protocol

This section describes the BFDv6 protocol, how it is different from BFD for IPv4, and how it works with BFD for IPv4. BFD is a detection protocol designed to provide fast forwarding path failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast forwarding path failure detection, BFD provides a consistent failure detection method for network administrators. BFDv6 provides IPv6 support by accommodating IPv6 addresses and provides the ability to create BFDv6 sessions.

BFDv6 Registration

BFD clients register with BFD using a registry application program interface (API). The registry arguments include protocol type and the address and interface description block (IDB) of the route to be monitored. These APIs and arguments are all assumed by BFD to be IPv4.

BFDv6 has registries from which these arguments have been removed, and the protocol and encapsulation are described within a session information structure. These session information structures are defined by BFDv6 for the protocols supported. BFDv6 uses information from the session information structures to determine the correct encapsulation for BFDv6 packets on that session.

BFDv6 Global and Link-Local Addresses

BFDv6 supports both global and link-local IPv6 addresses for neighbor creation. BFDv6 sessions select source addresses to match the neighbor address types (for example, global IPv6 address neighbors must be paired with global IPv6 source addresses and link-local IPv6 address neighbors must be paired with link-local IPv6 source addresses). The table below shows the address pairings that BFDv6 supports.

Table 2: BFDv6 Address Pairings for Neighbor Creation

<table>
<thead>
<tr>
<th>Source Address</th>
<th>Destination Address</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global</td>
<td>Global</td>
<td>Supported</td>
</tr>
<tr>
<td>Global</td>
<td>Link local</td>
<td>Not supported</td>
</tr>
<tr>
<td>Link local</td>
<td>Global</td>
<td>Not supported</td>
</tr>
<tr>
<td>Link local</td>
<td>Link local</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Because all IPv6-enabled interfaces have a link-local address and BFDv6 selects the source address, link-local address neighbors are always paired with a link-local interface address. The link-local source address with global destination address is not supported by Cisco Express Forwarding. Therefore, a global IPv6 address must be configured on an interface before a session with a global address neighbor may be established in BFDv6. BFDv6 rejects any sessions in which the neighbor address is global and no global address is configured on the interface.
The behavior of a unique local address (ULA) in BFDv6 is the same as a global address.

BFD for IPv4 and IPv6 on the Same Interface

BFD supports multiple IPv4 and IPv6 sessions per interface, with no restriction on the protocol of those sessions.

How to Configure BFD IPv6 Encapsulation Support

Configuring BFD Session Parameters on the Interface

The steps in this procedure show how to configure BFD on the interface by setting the baseline BFD session parameters on an interface. Repeat the steps in this procedure for each interface over which you want to run BFD sessions to BFD neighbors.

Note

RSP3 Module eysupports only the following BFD interval timers:

3.3ms, 6.6ms, 10ms, 20ms, 50ms, 100ms, 200ms, 999ms. It is recommended that peer should also configure the same timer values.

SUMMARY STEPS

1. enable
2. configure terminal
3. bfd-template single-hop template-name
4. interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
5. interface type number
6. interface gigabitethernet number
7. Perform one of the following steps:
 • ip address ipv4-address mask
 • ipv6 address ipv6-address/mask
8. bfd template template-name
9. end

DETAILED STEPS

Step 1 enable

Example:

Device> enable
Enables privileged EXEC mode.
 • Enter your password if prompted.

Step 2

```console
configure terminal
```

Example:

```
Device# configure terminal
```

Enters global configuration mode.

Step 3

```console
bfd-template single-hop template-name
```

Example:

```
Router(config)# bfd-template single-hop bfdtemplate1
```

Creates a single-hop BFD template and enters BFD configuration mode.

Step 4

```console
interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
```

Example:

```
Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3
```

Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.

Step 5

```console
interface type number
```

Example:

```
Device(config)# interface FastEthernet 6/0
```

Enters interface configuration mode.

Step 6

```console
interface gigabitethernet number
```

Example:

```
Device(config)# interface gigabitethernet 0/0/0
```

Specifies the Gigabit Ethernet interface and enters interface configuration mode.

Step 7

Perform one of the following steps:

 • `ip address ipv4-address mask`
 • `ipv6 address ipv6-address/mask`

Example:

Configuring an IPv4 address for the interface:

```
Device(config-if)# ip address 10.201.201.1 255.255.255.0
```

Configuring an IPv6 address for the interface:

```
Device(config-if)# ipv6 address 2001:db8:1:1::1/32
```

Configures an IP address for the interface.
Step 8 bfd template *template name*

Enables the BFD template.

Step 9 end

Example:

```
Device(config-if)# end
```

Exits interface configuration mode and returns to privileged EXEC mode.

Configuration Examples for BFD IPv6 Encapsulation Support

Example: Configuring BFD Session Parameters on the Interface

```
Device# show ipv6 ospf neighbor detail

Neighbor 172.16.3.3
  In the area 1 via interface GigabitEthernet0/0/0
  Neighbor: interface-id 3, link-local address FE80::205:5FFF:FED3:5808
  Neighbor priority is 1, State is FULL, 6 state changes
  DR is 172.16.6.6 BDR is 172.16.3.3
  Options is 0x63F813E9
  Dead timer due in 00:00:33
  Neighbor is up for 00:09:00
  Index 1/1/2, retransmission queue length 0, number of retransmission 2
  First 0x0(0)/0x0(0)/0x0(0) Next 0x0(0)/0x0(0)/0x0(0)
  Last retransmission scan length is 1, maximum is 2
  Last retransmission scan time is 0 msec, maximum is 0 msec

The following is a sample configuration where interface 0/0/7 of Router A is connected to interface 0/4/6 of router B.

**Configuration on Router A**

```
bfd-template single-hop BFDM
 interval min-tx 50 min-rx 50 multiplier 3

 router ospfv3 1
 router-id 2.2.2.2
 !

 address-family ipv6 unicast
 bfd all-interfaces
 !
 !
 interface TenGigabitEthernet0/0/7
 ipv6 address 19:1:1::1/64
 ospfv3 1 ipv6 area 0
 bfd template BFDM
```
Configuration on Router B

bfd-template single-hop BFDM
interval min-tx 50 min-rx 50 multiplier 3

interface TenGigabitEthernet0/4/6
ipv6 address 19::1/64
ospfv3 1 ipv6 area 0
bfd template BFDM
end
router ospfv3 1
router-id 3.3.3.3

address-family ipv6 unicast
  bfd all-interfaces
exit-address-family
Configuring BFD Debug Enhancement

The Bidirectional Forwarding Detection (BFD) Debug Enhancement feature enables logging of debugging information for critical BFD events, normal BFD events, and BFD packets. This feature enables BFD event traces and BFD event logs. This feature allows network engineers and operators to easily identify and analyze issues with BFD sessions.

- Finding Feature Information, on page 71
- Prerequisites for BFD Debug Enhancement, on page 71
- Restrictions for BFD Debug Enhancement, on page 71
- Information About BFD Debug Enhancement, on page 72
- How to Configure BFD Debug Enhancement, on page 72
- Configuration Examples for BFD Debug Enhancement, on page 75
- Additional References for BFD Debug Enhancement, on page 76
- Feature Information for BFD Debug Enhancement, on page 77

Finding Feature Information

Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Prerequisites for BFD Debug Enhancement

Bidirectional Forwarding Detection (BFD) feature must be running on the device.

Restrictions for BFD Debug Enhancement

The Bidirectional Forwarding Detection (BFD) event trace logs cannot store more than 65536 elements in a BFD instance. Once the log elements reach this limit, new log entries replace the old log entries.
Information About BFD Debug Enhancement

Overview of BFD Debug Enhancement

The Bidirectional Forwarding Detection (BFD) Debug Enhancement feature enables logging of debugging information for critical BFD events, normal BFD events, and BFD packets. This feature enables BFD event traces and BFD event logs.

BFD Debug Enhancement - Event Tracer subsystem

The Event Tracer subsystem in the BFD Debug Enhancement feature helps network engineers trace BFD events. This subsystem generates debugging information that can be extracted and analyzed. You can optionally store the traced data in a file for further analysis.

BFD Debug Enhancement - Event Log Architecture

The Event Log Architecture in the BFD Debug Enhancement feature is classified into three types:

- BFD Critical—Logs debugging information about all critical BFD event traces, whenever the BFD session attains the DOWN state.
- BFD Event—Logs debugging information about all BFD events that can be logged using the `debug bfd event` command.
- BFD Packet—Logs debugging information about all BFD packets that can be logged using the `debug bfd packet` command.

How to Configure BFD Debug Enhancement

Configuring BFD Debug Enhancement

**SUMMARY STEPS**

1. `enable`
2. `bfd-template single-hop template-name`
3. `interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value`
4. `interface type number`
5. `interface gigabitethernet number`
6. `bfd template template name`
7. `end`
8. `debug bfd event`
9. `debug bfd packet`
10. `monitor event-trace bfd event enable`
11. `monitor event-trace bfd event all enable`
12. `monitor event-trace bfd packet enable`
13. monitor event-trace bfd packet all enable
14. show monitor event-trace bfd

DETAILED STEPS

Step 1  enable
Example:
Device> enable
Enables privileged EXEC mode.
  • Enter your password if prompted.

Step 2  bfd-template single-hop template-name
Example:
Router(config)# bfd-template single-hop bfdtemplate1
Creates a single-hop BFD template and enters BFD configuration mode.

Step 3  interval min-tx milliseconds min-rx milliseconds multiplier multiplier-value
Example:
Router(bfd-config)# interval min-tx 120 min-rx 100 multiplier 3
Configures the transmit and receive intervals between BFD packets, and specifies the number of consecutive BFD control packets that must be missed before BFD declares that a peer is unavailable.

Step 4  interface type number
Example:
Device(config)# interface FastEthernet 6/0
Enters interface configuration mode.

Step 5  interface gigabitethernet number
Example:
Device(config)# interface gigabitethernet 0/0/0
Specifies the Gigabit Ethernet interface and enters interface configuration mode.

Step 6  bfd template template name
Enables the BFD template.

Step 7  end
Example:
Device(config-if)# end
Exits interface configuration mode and returns to privileged EXEC mode.

Step 8  debug bfd event
Example:
Device# debug bfd event
Enables debugging information for BFD events.

**Step 9**
**debug bfd packet**

Example:
Device# debug bfd packet
Enables debugging information for BFD packets.

**Step 10**
**monitor event-trace bfd event enable**

Example:
Device# monitor event-trace bfd event enable
Enables the event traces for normal BFD events.

**Step 11**
**monitor event-trace bfd event all enable**

Example:
Device# monitor event-trace bfd event all enable
Enables the event trace filters for normal BFD events.

**Step 12**
**monitor event-trace bfd packet enable**

Example:
Device# monitor event-trace bfd packet enable
Enables the event traces for BFD packet events.

**Step 13**
**monitor event-trace bfd packet all enable**

Example:
Device# monitor event-trace bfd packet all enable
Enables the event trace filters for BFD packet events.

**Step 14**
**show monitor event-trace bfd**

Example:
Device# show monitor event-trace bfd
Displays event trace messages for BFD events. Use the **critical**, **event**, and **packet** keywords to display event trace messages for critical BFD events, normal BFD events, and BFD packet events, respectively.
Configuration Examples for BFD Debug Enhancement

Example: Configuring BFD Debug Enhancement

```
Device> enable
Device# configure terminal
Device(config)# interface FastEthernet 6/0
Device(config-if)# bfd interval 50 min_rx 50 multiplier 5
Device(config-if)# end
Device# debug bfd event
Device# debug bfd packet
Device# monitor event-trace bfd event enable
Device# monitor event-trace bfd packet enable
Device# monitor event-trace bfd packet all enable
Device# show monitor event-trace bfd critical all
Device# show monitor event-trace bfd packet all

Device> enable
Device# configure terminal
Device(config)# interface GigabitEthernet 0/0/0
Device(config-if)# bfd interval 50 min_rx 50 multiplier 5
Device(config-if)# end
Device# debug bfd event
Device# debug bfd packet
Device# monitor event-trace bfd event enable
Device# monitor event-trace bfd packet enable
Device# monitor event-trace bfd packet all enable
Device# show monitor event-trace bfd critical all
Device# show monitor event-trace bfd packet all

The following is sample output from the `show monitor event-trace bfd` command for a critical BFD event:

```
Device# show monitor event-trace bfd critical latest
Oct  2 10:57:25.173: BFD-DEBUG CRITICAL: V1 FSM ld:1 handle:1
Event:DETECT TIMER EXPIRED state:UP Rx Count:123 Tx Count: 120
Echo Rx:[-][-][-]
Echo Tx:[-][-][-]

Oct  2 10:57:25.173: BFD-DEBUG CRITICAL: V1 FSM ld:1 handle:1
Event:ECHO FAILURE state:UP Rx Count:123 Tx Count: 120

The following is sample output from the `show monitor event-trace bfd` command for a normal BFD event:

```
```
Logs all events that are logged using the `debug bfd event` command.

**Note**

```
Device# show monitor event-trace bfd event latest

```

The following is sample output from the `show monitor event-trace bfd` command for a BFD packet event:

**Note**

```
Device# show monitor event-trace bfd packet latest

```

---

### Additional References for BFD Debug Enhancement

**Related Documents**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD Commands</td>
<td>IP Routing Protocol-Independent Commands A through R</td>
</tr>
<tr>
<td></td>
<td>IP Routing Protocol-Independent Commands S through T</td>
</tr>
<tr>
<td>Cisco IOS Commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
</tbody>
</table>

---

IP Routing: BFD Configuration Guide, Cisco IOS XE 16 (Cisco ASR 920 Series)
Feature Information for BFD Debug Enhancement

The following table provides release information about the feature or features described in this module. This table lists only the software release that introduced support for a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.
Table 3: Feature Information for BFD Debug Enhancement

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFD Debug Enhancement</td>
<td>Cisco IOS XE Release 3.10S</td>
<td>The Bidirectional Forwarding Detection (BFD) Debug Enhancement feature enables logging of debugging information for critical BFD events, normal BFD events, and BFD packets. This feature enables BFD event traces and BFD event logs. The following commands were introduced: <code>monitor event-trace bfd</code>, <code>monitor event-trace bfd event</code>, <code>monitor event-trace bfd packet</code>, and <code>show monitor event-trace bfd</code>.</td>
</tr>
</tbody>
</table>
This chapter provides information about configuring the Bidirectional Forwarding Detection (BFD) deterministic hardware offload feature on the router.

Prerequisites for BFD Deterministic Hardware Offload

- This feature must be deployed only after identifying a downtime.

Restrictions for BFD Deterministic Hardware Offload

- For existing BFD sessions (before using a new configuration command) to be made deterministic, you must recreate the sessions using the `shutdown` or `no shutdown` command, or reconfigure them.

- BFD echo with uRPF is not supported on the router for both hardware and software based BFD sessions.

- Echo based sessions—Maximum supported in hardware is 255.

- Non-echo based sessions—Maximum supported in hardware is 511.

Hardware offload BFD Echo Sessions on RSP3 Module

- Packets may get punted to CPU for hardware offload per sessions, when the BFD template is removed and added. This issue occurs on the RSP3 module with 1K BFD sessions using the same template. Some software BFD sessions might flap due to this issue.

- Hardware offloaded BFD echo packets are not punted to the ICMP queue, hence ICMP redirects are not generated.

Hardware offload BFD Echo Sessions on RSP2 Module ASR 920 Router

BFD echo packet with the same source and destination IP address are punted to the ICMP queue. This generates ICMP redirects.

- Information About BFD Deterministic Hardware Offload, on page 80
- Configuring BFD Deterministic Hardware Offload, on page 80
- Example for Configuring BFD Deterministic Hardware Offload, on page 81
Information About BFD Deterministic Hardware Offload

The BFD deterministic hardware offload feature allows you to define the BFD transmission timer value. Any BFD sessions below or equal to the set value are sent to hardware. In the conventional BFD design, sessions can be hosted in hardware or software. However, sessions hosted in hardware have the advantage of running at more aggressive timers and not being impacted by CPU spikes.

Currently the determination of which session is hosted in hardware or software is done on a first come first serve basis. The sessions are hosted in hardware till the hardware limit is reached and then the sessions are either hosted in software (if supported) or rejected. In addition, after stateful switchover (SSO) or on reloading, sessions which are hosted in hardware do not necessarily remain in hardware. A similar condition applies for software sessions. The number of BFD sessions that can be supported in the hardware are also limited.

The BFD deterministic hardware offload feature allows you to select the destination of sessions to either hardware or software. This feature allows sessions hosted in hardware to remain in hardware after SSO or reload.

Using this feature you can configure a global command which defines the BFD transmission timer below or equal to the sessions are hosted in hardware.

Note
On reaching hardware session limit, inactive BFD session do not come up when an active session is removed.

Note
Starting with Cisco IOS XE Release 3.13, the global command defines the BFD transmission timer below which the sessions are hosted in hardware; those equal to or above this value are hosted in the software.

Configuring BFD Deterministic Hardware Offload

To set the timer value below which the BFD sessions are offloaded to hardware, complete the following steps:

SUMMARY STEPS

1. enable
2. configure terminal
3. platform bfd-offload-timer timervalue
4. end

DETAILED STEPS

Step 1 enable

Example:
Router> enable
Enables privileged EXEC mode.
Step 2  configure terminal

Example:
Router# configure terminal
Enters global configuration mode.

Step 3  platform bfd-offload-timer timervalue

Example:
Router(config)# platform bfd-offload-timer 2000
Sets the timer value.

* timervalue—The valid range is from 200000-999000 microseconds.

Note There is no default value for this timer. The timer is enabled only after you specify a valid non-zero value. Starting with Cisco IOS Release 3.13, the timer value range is from 200000-999000 microseconds. For releases prior to Cisco IOS Release 3.13, the timer value range is 3300-999000 microseconds.

Step 4  end

Example:
Router(config)# end
Exits interface configuration mode and returns to privileged EXEC mode.

---

Example for Configuring BFD Deterministic Hardware Offload

The following example shows how to set the timer value to 400 microseconds:

Router> enable
Router# configure terminal
Router# configure terminal
Router(config)# platform bfd-offload-timer 400000
Router(config)# end

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bidirectional Forwarding Detection</td>
<td>Cisco IOS Software Releases 12.2 SX Bidirectional Forwarding Detection</td>
</tr>
</tbody>
</table>
## Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IETF Draft</td>
<td>Bidirectional Forwarding Detection, January 2006</td>
</tr>
<tr>
<td></td>
<td>(<a href="http://www.ietf.org/internet-drafts/draft-ietf-bfd-base-03.txt">http://www.ietf.org/internet-drafts/draft-ietf-bfd-base-03.txt</a>)</td>
</tr>
<tr>
<td>IETF Draft</td>
<td>BFD for IPv4 and IPv6 (Single Hop), March 2005</td>
</tr>
<tr>
<td></td>
<td>(<a href="http://www.ietf.org/internet-drafts/draft-ietf-bfd-v4v6-1hop-02.txt">http://www.ietf.org/internet-drafts/draft-ietf-bfd-v4v6-1hop-02.txt</a>)</td>
</tr>
</tbody>
</table>