CONTENTS

Full Cisco Trademarks with Software License 7

CHAPTER 1 1

Segment Routing Overview

How Does Segment Routing Work? 1
Examples for Segment Routing 2
Benefits of Segment Routing 4
Segment Routing Limitations 7

General Limitations of Segment Routing 8
Configuring Segment Routing 8

Configuring Segment Routing on an IGP Instance 9
Enabling Advertisement of Mapping Server Prefix Ranges 9
Disabling the Mapping Server 9

CHAPTER 2 11

Segment Routing Global Block (SRGB)

SRGB Limitations 11
Configuring the SRGB 11

Reserving a New SRGB 12
Modifying an Existing SRGB 12
Adjacency Segment Identifiers 12
Prefix Segment Identifiers 12

Types of Prefix SID Mapping 13
Export Prefix SID Mapping 13

Connected Prefix SID Mappings 13
Configuring Export Prefix SID Mapping 13
Configuring Connected Prefix SID Mapping 13
Configuring the Preferred Label 14
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring the Segment Routing Explicit Null</td>
<td>14</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td></td>
</tr>
<tr>
<td>Using Segment Routing with IS-IS</td>
<td>15</td>
</tr>
<tr>
<td>Restrictions for Using Segment Routing with IS-IS</td>
<td>15</td>
</tr>
<tr>
<td>Enabling Segment Routing</td>
<td>15</td>
</tr>
<tr>
<td>Enabling Segment Routing for IGPs</td>
<td>16</td>
</tr>
<tr>
<td>Configuring Segment Routing on IS-IS</td>
<td>16</td>
</tr>
<tr>
<td>Prefix-SID Received in LSPs from Remote routers</td>
<td>17</td>
</tr>
<tr>
<td>Limitations</td>
<td>17</td>
</tr>
<tr>
<td>Segment Routing Adjacency SID Advertisement</td>
<td>17</td>
</tr>
<tr>
<td>Multiple Adjacency-SIDs</td>
<td>18</td>
</tr>
<tr>
<td>Segment Routing Mapping Server (SRMS)</td>
<td>18</td>
</tr>
<tr>
<td>Connected Prefix SIDs</td>
<td>18</td>
</tr>
<tr>
<td>Configuring IS-IS SRMS</td>
<td>18</td>
</tr>
<tr>
<td>Configuring IS-IS SRMS Client</td>
<td>18</td>
</tr>
<tr>
<td>Configuring ISIS SID Binding TLV Domain Flooding</td>
<td>19</td>
</tr>
<tr>
<td>SRGB Range Changes</td>
<td>19</td>
</tr>
<tr>
<td>SRGB Deletion</td>
<td>19</td>
</tr>
<tr>
<td>MPLS Forwarding on an Interface</td>
<td>20</td>
</tr>
<tr>
<td>Segment Routing and LDP Preference</td>
<td>20</td>
</tr>
<tr>
<td>Segment Routing-TE</td>
<td>20</td>
</tr>
<tr>
<td>Enabling and Disabling SR-TE Announcements</td>
<td>20</td>
</tr>
<tr>
<td>RLFA LDP and SR</td>
<td>20</td>
</tr>
<tr>
<td>Topology-Independent LFA</td>
<td>21</td>
</tr>
<tr>
<td>Restrictions for the TI-LFA</td>
<td>22</td>
</tr>
<tr>
<td>Tie-breaker</td>
<td>22</td>
</tr>
<tr>
<td>Interface FRR Tiebreakers</td>
<td>23</td>
</tr>
<tr>
<td>Limitations on Tie-Beakers</td>
<td>24</td>
</tr>
<tr>
<td>Configuring T1 LFA</td>
<td>24</td>
</tr>
<tr>
<td>Configuration Example</td>
<td>25</td>
</tr>
<tr>
<td>Verifying the Tie-breaker</td>
<td>26</td>
</tr>
<tr>
<td>Verifying the Primary and Repair Paths</td>
<td>27</td>
</tr>
<tr>
<td>Verifying the IS-IS Segment Routing Configuration</td>
<td>28</td>
</tr>
<tr>
<td>Verifying the IS-IS TI-LFA Tunnels</td>
<td>29</td>
</tr>
</tbody>
</table>
SR-TE LSP Instantiation 49
SR-TE LSP Explicit Null 49
SR-TE LSP Path Verification 49
 Topology Path Validation 49
SR SID Validation 50
LSP Egress Interface 50
IP Reachability Validation 50
Tunnel Path Affinity Validation 51
Tunnel Path Resource Avoidance Validation 52
Tunnel Path Loop Validation 52
SR-TE Traffic Load Balancing 53
 Load Balancing on Port Channel TE Links 53
 Load Balancing on ECMPs 53
 Load Balancing on Multiple Tunnels 53
SR-TE Tunnel Re-optimization 54
 SR-TE With lockdown Option 55
SR-TE Tunnel Protection 56
 IP-FRR Local Repair Protection 56
 Tunnel Path Protection 56
SR-TE and TI-LFA 56
 Restrictions for Using SR-TE and TI-LFA 56
 Verifying the SR-TE With TI_LFA Configuration 58
 Configuring TI-LFA With Mapping Server 60

CHAPTER 6
SR-TE On Demand LSP 65
 Restrictions for SR-TE On Demand LSP 65
 Information About SR-TE On Demand LSP 65
 SR-TE: Setup LSP as Static Route 65
 Static SRTE over Unnumbered Interfaces 66
 How to Configure SR-TE On Demand LSP 66
 Configuring LSP as Static Route 66
 Enabling Segment Routing Auto Tunnel Static Route 67
 Verifying Segment Routing Auto-Tunnel Static Route 67
Chapter 7: SR-TE On-Demand Next Hop
- Restrictions for SR-TE On-Demand Next Hop
- Information About SR-TE On-Demand Next Hop
 - Fast Convergence Default Optimize
 - Default Optimize Values for IS-IS
 - Default Optimize Values for OSPF
- How to Configure Segment Routing On-Demand Next Hops—Layer 3 and Layer 3 VPN
 - Configuring Segment Routing On-Demand Next Hops—Layer 3 and Layer 3 VPN
- Verifying Segment Routing On-Demand Next Hop—Layer 3 and Layer 3 VPN

Chapter 8: Segment Routing OAM Support
- Restrictions for Segment Routing OAM Support
- Information About Segment Routing-OAM Support
 - Segment Routing-OAM Support
 - LSP Ping Operation for Nil FEC target
- How to Diagnose Segment Routing with LSP Ping and Trace Route Nil FEC Target
 - Use LSP Ping for Nil FEC Target
 - Using LSP Traceroute for Nil FEC Target
- Example: LSP Ping Nil_FEC Target Support

Chapter 9: Dynamic Path Computation Client
- Information About Dynamic PCC
- Configuring Dynamic PCC Globally
- Configuring Dynamic PCC on an Interface
- Verifying Dynamic PCC
Segment Routing Overview

Segment routing is a method of forwarding packets on the network based on the source routing paradigm. The forward path is determined before the packet is even sent. The path is encoded in the packet, at the source as a list of segments bearing forwarding instructions. At each hop, the top segment, which references the router information base (RIB), is used to identify the next hop. Segments are stacked in order, at the top of the packet header. When the top segment contains the identity of another node, the receiving node uses ECMP to move the packet to the next hop. When the identity is that of the receiving node, the node pops the top segment and performs the task required by the next segment.

Segment routing leverages other Interior Gateway Protocols such as IS-IS, OSPF, and MPLS for efficient and flexible forwarding. Segment routing is a faster and a more efficient way of forwarding traffic in the MPLS core network.

To understand the working of segment routing, let’s understand how MPLS traffic engineering works.

- How Does Segment Routing Work?, on page 1
- General Limitations of Segment Routing, on page 8
- Configuring Segment Routing, on page 8

How Does Segment Routing Work?

A router in a Segment Routing network can select either an explicit path or a default Interior Gateway Protocol (IGP) shortest path. Segments represent subpaths that a router can combine to form a complete route to a network destination. Each segment has an identifier (Segment Identifier) that is distributed throughout the network using new IGP extensions. The extensions are equally applicable to IPv4 and IPv6 control planes. Unlike the case for traditional MPLS networks, routers in a Segment Router network do not require Label Distribution Protocol (LDP) and Resource Reservation Protocol - Traffic Engineering (RSVP-TE) to allocate or signal their segment identifiers and program their forwarding information.

Each router (node) and each link (adjacency) has an associated segment identifier (SID). **Node segment identifiers** are globally unique and represent the shortest path to a router as determined by the IGP. The network administrator allocates a node ID to each router from a reserved block. On the other hand, **adjacency segment identifiers** are locally significant and represent a specific adjacency, such as egress interface, to a neighboring router. Routers automatically generate adjacency identifiers outside of the reserved block of node IDs. In an MPLS network, a segment identifier is encoded as an MPLS label stack entry. Segment IDs direct the data along a specified path. There are two kinds of segment IDS:

- **Prefix SID**—A segment ID that contains an IP address prefix calculated by an IGP in the service provider core network. Prefix SIDs are globally unique. A node SID is a special form of prefix SID that contains...
the loop-back address of the node as the prefix. It is advertised as an index into the node-specific SR Global Block or SRGB.

• Adjacency SID—A segment ID that contains an advertising router’s adjacency to a neighbor. An adjacency SID is a link between two routers. Since the adjacency SID is relative to a specific router, it is locally unique.

Examples for Segment Routing

The following figure illustrates an MPLS network with five routers using Segment Routing, IS-IS, a label range of 100 to 199 for node IDs, and 200 and higher for adjacency IDs. IS-IS would distribute IP prefix reachability alongside segment ID (the MPLS label) across the network.

Figure 1: An MPLS Network with Five Routers Using Segment Routing

In the previous example, any router sending traffic to router E would push label 103 (router E node segment identifier) to forward traffic using the IS-IS shortest path. The MPLS label-swapping operation at each hop preserves label 103 until the packet arrives at E (Figure 2). On the other hand, adjacency segments behave differently. For example, if a packet arrives at Router D with a top-of-stack MPLS label of 203 (D-to-E adjacency segment identifier), Router D pops the label and forward the traffic to Router E.
Segment identifiers can be combined as an ordered list to perform traffic engineering. A segment list can contain several adjacency segments, several node segments, or a combination of both depending on the forwarding requirements. In the previous example, Router A can alternatively push label stack (104, 203) to reach Router E using the shortest path and all applicable ECMPs to Router D, and then through an explicit interface onto the destination (Figure 3). Router A does not need to signal the new path, and the state information remains constant in the network. Router A ultimately enforces a forwarding policy that determines which flows destined to router E are switched through a particular path.
Benefits of Segment Routing

- Ready for SDN—Segment Routing is a compelling architecture conceived to embrace Software-Defined Network (SDN) and is the foundation for Application Engineered Routing (AER). It strikes a balance between network-based distributed intelligence, such as automatic link and node protection, and controller-based centralized intelligence, such as traffic optimization. It can provide strict network performance guarantees, efficient use of network resources, and high scalability for application-based transactions. The network uses minimal state information to meet these requirements. Segment routing can be easily integrated with a controller-based SDN architecture. The following figure illustrates a sample SDN scenario where the controller performs centralized optimization, including bandwidth admission control. In this scenario, the controller has a complete picture of the network topology and flows. A router can request a path to a destination with certain characteristics, for example, delay, bandwidth, diversity. The controller computes an optimal path and returns the corresponding segment list, such as an MPLS label stack, to the requesting router. At that point, the router can inject traffic with the segment list without any additional signaling in the network.
In addition, segment lists allow complete network virtualization without adding any application state to the network. The state is encoded in the packet as a list of segments. Because the network only maintains segment state, it can support a large number - and a higher frequency - of transaction-based application requests without creating any burden on the network.

Simplified
- When applied to the MPLS data plane, Segment Routing offers the ability to tunnel MPLS services (VPN, VPLS, and VPWS) from an ingress provider edge to an egress provider edge without any other protocol than an IGP (IS-IS or OSPF).
- Simpler operation without separate protocols for label distribution (for example, no LDP or RSVP).
- No complex LDP or IGP synchronization to troubleshoot.
- Better utilization of installed infrastructure, for lower capital expenditures (CapEx), with ECMP-aware shortest path forwarding (using node segment IDs).

Supports Fast Reroute (FRR)—Deliver automated FRR for any topology. If the link or node fails in a network, MPLS uses the FRR mechanism for convergence. With segment routing, the convergence time is sub-50-msec.

Large-scale Data Center
- BGP distributes the node segment ID, equivalent to IGP node SID.
• Any node within the topology allocates the same BGP segment for the same switch.

• The same benefits are provided as for IGP node SID: ECMP and automated FRR (BGP PIC (Prefix Independent Convergence).

• This is a building block for traffic engineering - SR TE data center fabric optimization.

• Scalable—

 • Avoid thousands of labels in LDP database.
 • Avoid thousands of MPLS Traffic Engineering LSPs in the network.
 • Avoid thousands of tunnels to configure.

• Dual-plane Networks—

 • Segment Routing provides a simple solution for disjointness enforcement within a so-called “dual-plane” network, where the route to an edge destination from a given plane stays within the plane unless the plane is partitioned.

 • An additional SID “anycast” segment ID allows the expression of macro policies such as: “Flow 1 injected in node A toward node Z must go through plane 1” and “Flow 2 injected in node A toward node Z must go through plane 2.”

• Centralized Traffic Engineering—

 • Controllers and orchestration platforms can interact with Segment Routing traffic engineering for centralized optimization, such as WAN optimization.

 • Network changes such as congestion can trigger an application to optimize (recompute) the placement of segment routing traffic engineering tunnels.

 • Segment Routing tunnels are dynamically programmed onto the network from an orchestrator using southbound protocols like PCE.

 • Agile network programming is possible since Segment Routing tunnels do not require signaling and per-flow state at midpoints and tailend routers.

• Egress Peering Traffic Engineering (EPE)—

 • Segment Routing allows centralized EPE.

 • A controller instructs an ingress provider edge and content source to use a specific egress provider edge and specific external interface to reach a destination.

 • BGP “peering” segment IDs are used to express source-routed inter-domain paths.

 • Controllers learn BGP peering SIDs and the external topology of the egress border router through BGP Link Status (BGP-LS) EPE routes.

 • Controllers program ingress points with a desired path.

• Plug-and-play deployment—Segment routing tunnels are inter-operable with existing MPLS control and data planes and can be implemented in an existing deployment.
Segment Routing Limitations

Figure 5: Segment Routing State Flow

- Segment Routing must be globally enabled on the chassis before enabling it on the IGPs, like IS-IS or OSPF.
- Segment routing must be configured on the IS-IS instance before configuring a prefix SID value.
- The prefix SID value must be removed from all the interfaces under the same IS-IS instance before disabling segment routing.
General Limitations of Segment Routing

• Segment routing is supported on the Cisco ASR 900 with RSP2 and RSP3 modules.
• The Cisco ASR 900 router with RSP2 module supports five label stacks. The Cisco ASR 900 router with RSP3 module supports four label stacks.
• The following types of services are supported:
 • VPLS
 • Layer 2 VPN
 • Layer 3 VPN
 • Global Prefixes
• To cater to scaled services, ensure that you use the following values:
 • 1500 IGP
 • 4000 L3VPN
 • 2000 L2VPN virtual circuits
• Ensure that you have the micro-loop avoidance rib-update-delay under IGP configuration as 20,000 msec.
• While configuring FRR, carrier-delay down msec 1 must be configured under interface configuration.

Configuring Segment Routing

To configure segment routing

1. Globally enable segment routing:

   ```
   enable
   configure terminal
   segment-routing mpls
   ```

2. Specify the range of MPLS labels to be used to instantiate the segment routing SIDs into MPLS data plane.

   ```
   global block
   16-8000
   ```

3. Associate SID values with local prefix values.

   ```
   connected-prefix-sid-map
   address-family ipv4
   92.0.0.0/24 index 51 range 1
   2.2.2.2/32 index 2 range 1
   ```
Configuring Segment Routing on an IGP Instance

```
enable
cfgt
sr
segment-routing
segment-routing [area N] | {mpls | disable}
```

This command enables MPLS on all interfaces and programs the MPLS labels for forwarding.

Note

If the `area` keyword is specified, segment routing is enabled only on that area.

Note

The `disable` keyword can be used only if the `area` keyword is specified.

Enabling Advertisement of Mapping Server Prefix Ranges

Global segment routing configuration may contain prefix-to-SID mapping entries for prefixes that are not local to the router. Each of these entries specifies a range of prefixes. Remote mapping entries can be used to find SIDs for prefixes connected to routers that do not support SR and hence not capable of advertising SIDs themselves. This capability is part of SR-LDP inter-working functionality. OSPF learns the ranges configured in the global SR configuration and advertises them in the Extended Prefix Range TLVs.

To permit an OSPF instance to advertise mapping entries configured in the global SR mode, use the following command in router mode.

```
segment-routing prefix-sid-map advertise-local
```

Note

By default, this command is disabled. That is, no mapping ranges are advertised by OSPF even if they are configured in the global SR mode.

Disabling the Mapping Server

When computing SIDs for prefixes, IGPs consider the prefix ranges received from mapping servers in the network by default. However, if this functionality needs to be disabled, use the following command in router mode. If the SR-LDP feature needs to be disabled, it is done in router-mode:

```
no segment-routing prefix-sid-map receive
```

Note

This command does not affect processing of 'native' SIDs, that is, those SIDs that are advertised in the Extended Prefix TLVs by routers to whom the prefix is locally connected.
Segment Routing Global Block (SRGB)

The Segment Routing Global Block (SRGB) is the range of label values reserved for Segment Routing (SR) in the Label Switching Database (LSD). These values are assigned as segment identifiers (SIDs) to SR-enabled nodes and have global significance throughout the domain. On SR-capable routers, SRGB is enabled by default so that label values are automatically reserved when the router first boots whether SR is enabled or not. The default SRGB range is 16000 to 23999, and the SRGB can be disabled if SR is not used. You can also specify separate SRGBs for IS-IS and OSPF protocols so long as the ranges do not overlap.

- SRGB Limitations, on page 11
- Configuring the SRGB, on page 11
- Adjacency Segment Identifiers, on page 12
- Prefix Segment Identifiers, on page 12

SRGB Limitations

- LSD label values 0-15,999 are reserved.
- The SRGB size cannot be more than 2¹⁶ or 65536.
- The SRGB upper bound value cannot exceed the platform capability.
- The SRGB cannot be configured to be the same value as the default SRGB. So SRGB cannot be configured for 16000 to 23999.

Note

Label values that are not previously reserved are available for dynamic assignment.

Configuring the SRGB

When SR is enabled, but the SRGB is not configured, the system reserves a default label range. After you configure the SRGB, the default label range is released.

When the SR is disabled, the corresponding label range is released and a default label range is reserved.
Reserving a New SRGB

If the SRGB is reserved successfully with the MPLS Forwarding Interface (MFI), then SR is enabled. Otherwise, SR is disabled, but the segment routing MPLS global configuration is saved.

If the MFI reserves the SRGB, but there are some dynamically allocated labels in use in that range, then SR is disabled, the SRGB is released, and the configuration is saved.

Modifying an Existing SRGB

There can be two scenarios when modifying an SRGB:

1. Extending the upper bound of an existing SRGB. For example,

 Current range—16000 to 20000

 New range—16000 to 24000

 The new SRGB range is reserved based on the conditions mentioned in Reserving a New SRGB.

 In all cases, the new configuration is always saved.

2. The new range is either a disjoint range from the existing SRGB or overlaps with existing SRGB

 In this case, SR is disabled and the previous configuration is deleted. See the figure in Segment Routing Limitations, on page 7 section.

 To configure an SRGB:

   ```
   enable
   configure terminal
   segment-routing mpls
   global-block 16000 17000
   ```

Adjacency Segment Identifiers

The Adjacency Segment Identifier (adj-SID) is a local label that points to a specific interface and a next hop out of that interface. The router in which the interface is installed automatically assigns an SR SID to the connection using values outside the range of those in its segment routing global block. This SID has local significance only and is not distributed for inclusion in the FIBs of other routers.

Only IPv4 address-family supports allocating adjacency-SIDs.

Prefix Segment Identifiers

A prefix segment identifier (SID) identifies a segment routing tunnel leading to the destination represented by a prefix. The maximum prefix SID value is \(2^{16} - 1\).
When a prefix SID value \(x \) is configured, the prefix SID translates to a label value equivalent to \(x + \) lower boundary of SRGB. For example, if the default SRGB is used, configuring a prefix-SID of 10 for interface Loopback 0 with IPv4 address 1.0.0.1/32 results in assigning the label 16010 to the prefix 1.0.0.1/32.

Types of Prefix SID Mapping

- Export Prefix SID Mapping
- Connected Prefix SID Mapping

Export Prefix SID Mapping

These are the prefix-sid mappings that the IGPs export to the segment routing nodes through the SID or the Label Binding TLVs, and define the prefix-SID bindings for the network.

Connected Prefix SID Mappings

These are the prefix SID mappings that define the Prefix SID or Node-SID of the interface. Connected prefix SID mappings are created under the mapping-server that the IGPs query to obtain the prefix SID of the interface of an SR node.

Configuring Export Prefix SID Mapping

```
segment-routing mpls
connected-prefix-sid-map
address-family ipv4
cisco
<prefix> / <masklen> [index | absolute] <label> [range <value>]
```

For example,

```
connected-prefix-sid-map
address-family ipv4
92.0.0.0/24 index 51 range 1
2.2.2.2/32 index 2 range 1
```

Note

The `index` and `absolute` keywords indicate whether the label value entered should be interpreted as an index in the SRGB or as an absolute value. By default, the value is interpreted as an index value. Regardless of the configuration mode, the value is advertised by the protocols as an index value.

Configuring Connected Prefix SID Mapping

```
segment-routing mpls
mapping-server
prefix-sid-map
address-family ipv4
cisco
<prefix> / <masklen> [index
```
The `index` and `absolute` keywords indicate whether the label value entered should be interpreted as an index in the SRGB or as an absolute value. By default, the value is interpreted as an index value. Regardless of the configuration mode, the value is advertised by the protocols as an index value.

Configuring the Preferred Label

The Cisco Express Forwarding engine (CEF) can use either the prefix labels stored in the routing information base (RIB) or the labels provided by the label distribution protocol (LDP), for forwarding.

You can set the prefix label or the LDP label as the preferred label by using:

```
segment-routing mpls
  set-attributes
    address-family ipv4
cisco
  sr-label-preferred
```

The IGPs communicate the preference to the CEF, which in turn processes the forwarding for that prefix accordingly.

Configuring the Segment Routing Explicit Null

To ensure that quality of service is maintained between the penultimate and last-hop routers, the penultimate router swaps the segment routing label with an explicit null label and forwards the packet to the last-hop router. This swapping preserves the MPLS header attributes for QoS purposes.

```
segment-routing mpls
  set-attributes
    address-family ipv4 cisco
  explicit-null
```
We know that segment routing enables a node to select any path (explicit or derived from the computations of the internal gateway protocol’s shortest path). This path is not dependent on a hop-by-hop signaling technique (through LDP or RSVP), but on a set of segments that are advertised by a routing protocol, such as IS-IS or OSPF. These segments act as topological sub-paths that can be combined to form the desired path.

Segment Routing must be enabled before any IGP, such as IS-IS or OSPF, can configure segment routing functionality. Similarly, when segment routing is disabled, all IGP-related configuration is also disabled.

- Restrictions for Using Segment Routing with IS-IS, on page 15
- Enabling Segment Routing, on page 15
- Enabling Segment Routing for IGPs, on page 16
- Prefix-SID Received in LSPs from Remote routers, on page 17
- Segment Routing Adjacency SID Advertisement, on page 17
- Segment Routing Mapping Server (SRMS), on page 18
- SRGB Range Changes, on page 19
- MPLS Forwarding on an Interface, on page 20
- Segment Routing and LDP Preference, on page 20
- Segment Routing-TE, on page 20
- RLFA LDP and SR, on page 20
- Topology-Independent LFA, on page 21

Restrictions for Using Segment Routing with IS-IS

- Effective Cisco IOS XE Release 3.16S, ISIS supports segment routing for IPv4 only.
- Segment routing must be configured at the top level before any routing protocol configuration is allowed under its router configuration sub mode.
- IS-IS protocol SR command is based on per topology (IPv4 address family).
- Only network type = point-to-point is supported.

Enabling Segment Routing

There are two levels of configuration required to enable segment routing for a routing protocol instance. The top level segment routing configuration which is managed by segment routing infrastructure component
enables segment routing, whereas, segment routing configuration at the router level enables segment routing for a specific address-family of a routing protocol instance.

There are three segment routing states:

• SR_NOT_CONFIGURED
• SR_DISABLED
• SR_ENABLED

Segment routing configuration under the IGPs is allowed only if the SR state is either SR_DISABLED or SR_ENABLED. The SR_ENABLED state indicates that there is at least a valid SRGB range reserved through the MFI successfully.

Enabling Segment Routing for IGPs

You can enable segment routing for IGPs under the router configuration sub mode, through commands. However, IGP segment routing are enabled only after the global SR is configured.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS-IS protocol SR command is based on per topology (IPv4 address family).</td>
</tr>
</tbody>
</table>

The SR_ENABLED is a necessary state for any protocol to enable SR, however, it is not a sufficient for enabling SR for a protocol instance. The reason being that the IS-IS still does not have any information about segment routing global block (SRGB) information. When the request to receive information about the SRGB is processed successfully, the IS-IS SR operational state is enabled

Segment Routing requires each router to advertise its segment routing data-plane capability and the range of MPLS label values that are used for segment routing in the case where global SIDs are allocated.

Data-plane capabilities and label ranges are advertised using the SR-capabilities sub-TLV inserted into the IS-IS Router Capability TLV-242 that is defined in RFC4971.

ISIS SR-capabilities sub TLV includes all reserved SRGB ranges. However, the Cisco implementation supports only one SRGB range.

The supported IPv4 prefix-SID sub TLV are TLV-135 and TLV-235.

Configuring Segment Routing on IS-IS

This section describes configuring segment routing IPv4 for IS-IS protocol under the router configuration sub mode.

```bash
[no] segment-routing mpls
```

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>This command is allowed only when segment routing is configured at the top level.</td>
</tr>
</tbody>
</table>

The following is an example of configuring IS-IS segment routing:

```bash
segment-routing mpls
```
Prefix-SID Received in LSPs from Remote routers

Prefix SIDs received in a label switched path (LSP) with a reachability TLV (TLV 135 and 235) are downloaded to the routing information base (RIB) if all of the following conditions are met:

- Segment routing is enabled for the topology and address-family
- Prefix-SID is valid
- The local label binding to MFI is successful.

For a prefix-SID received with reachability TLVs (TLV 135 and 235), the label is downloaded through RIB the same way as BGP downloads per prefix VPN labels.

If the path is a remote LFA path, ISIS downloads the path the same way it downloads it before adding the segment routing functionality but does not download any label with this path. This behavior ensures that remote LFA functionality is still supported using LDP.

Limitations

- For SIDs that do not fit in the specified SID range, labels are not used when updating the RIB. For cases, where SID does fit in the SID range, but does not fit the next-hop neighbor SID range, remote label associated with that path is not installed.
- Node SIDs received in an LSP with reachability TLVs (TLV 135 and 235) are downloaded to RIB only if segment routing is enabled under the corresponding address-family.
- In case of multiple best next hops, if not all next hops support segment routing, ISIS will treat this instance similar to when mismatched labels are assigned to the same prefix. That is, IS-IS ignores the labels and installs unlabeled paths for all ECMP paths into the global RIB.

Segment Routing Adjacency SID Advertisement

Effective with Cisco IOS XE Release 3.17S, IS-IS supports the advertisement of segment routing Adjacency SID. An Adjacency Segment Identifier (Adj-SID) represents a router adjacency in Segment Routing.

A segment routing-capable router may allocate an Adj-SID for each of its adjacencies and an Adj-SID sub-TLV is defined to carry this SID in the Adjacency TLVs. IS-IS adjacencies are advertised using one of the IS-Neighbor TLVs below:

- TLV-22 [RFC5305]
- TLV-23 [RFC5311]

IS-IS allocates the adjacency SID for each IS-IS neighbor only if the IS-IS adjacency state is up and IS-IS segment routing internal operational state is enabled. If an adjacency SID allocation failure is due to out-of-label resource, IS-IS retries to allocate the Adj-SID periodically in a default interval (30 seconds).
Multiple Adjacency-SIDs

Effective with Cisco IOS XE Release 3.18S, multiple adjacency-SIDs are supported. For each protected P2P/LAN adjacency, IS-IS allocates two Adj-SIDs. The backup Adj-SID is only allocated and advertised when FRR (local LFA) is enabled on the interface. If FRR is disabled, then the backup adjacency-SID is released. The persistence of protected adj-SID in forwarding plane is supported. When the primary link is down, IS-IS delays the release of its backup Adj-SID until the delay timer expires. This allows the forwarding plane to continue to forward the traffic through the backup path until the router is converged.

Cisco IOS XE Release 3.18S, IS-IS Adj-SID is changed to be per level based since the forwarding plane is unaware of protocol-specific levels. The allocated and advertised backup Adj-SIDs can be displayed in the output of `show isis neighbor detail` and `show isis data verbose` commands.

Segment Routing Mapping Server (SRMS)

Segment Routing Mapping Server (SRMS) allows configuration and maintenance of the Prefix-SID mapping policy entries. Effective with Cisco IOS XE Release 3.17S, the IGP uses the active policy of the SRMS to determine the SID values when programming the forwarding plane.

The SRMS provides prefixes to SID/Label mapping policy for the network. IGP, on the other hand, are responsible for advertising prefixes to SID/Label mapping policy through the Prefix-SID/Label Binding TLV. Active policy information and changes are notified to the IGP, which use active policy information to update forwarding information.

Connected Prefix SIDs

Sometimes, a router may install a prefix with a SID that is different than what it advertises to the LSP. For example, if more than one protocol or more than one IGP instance is announcing the same prefix with different SIDs to the SRMS, the SRMS resolves the conflict and announces the winning prefix and SID that may not be the same as the local instance. In that case, the IGP always advertises what it learns from its source LSP although it still tries to install the SID which may be different than what it learns in its LSP. This is done to prevent the IGP from redistributing the SIDs from another protocol or another protocol instance.

Configuring IS-IS SRMS

The following command enables the IS-IS SRMS and allows IS-IS to advertise local mapping entries. IS-IS does not send remote entries to the SRMS library. However, IS-IS uses the SRMS active policy, which is computed based only on the locally configured mapping entries.

```shell
[no] segment-routing prefix-sid-map advertise-local
```

Configuring IS-IS SRMS Client

By default, the IS-IS SRMS client mode is enabled. IS-IS always sends remote prefix-sid-mapping entries received through LSP, to SRMS. The SRMS active policy is calculated based on both, local and remote mapping entries.

The following command disables the prefix-sid-mapping client functionality.
segment-routing prefix-sid-map receive [disable]

This command is configured on the receiver side.

Configuring ISIS SID Binding TLV Domain Flooding

By default, the IS-IS SRMS server does not flood SID binding entries within the routing domain. In Cisco IOS XE Release 3.18S, the optional keyword `domain-wide` in the IS-IS SRMS server mode command to enable the SID and Label binding TLV flooding functionality.

segment-routing prefix-sid-map advertise-local [domain-wide]

The `domain-wide` keyword enables the IS-IS SRMS server to advertise SID binding TLV across the entire routing domain.

Note

The option is valid only if IS-IS SRMS performs in the SRMS server mode.

SRGB Range Changes

When IS-IS segment routing is configured, IS-IS must request an interaction with the SRGB before IS-IS SR operational state can be enabled. If no SRGB range is created, IS-IS will not be enabled.

When an SRGB change event occurs, IS-IS makes the corresponding changes in its sub-block entries. IS-IS also advertises the newly created or extended SRGB range in SR-capabilities sub-TLV and updates the prefix-sid sub TLV advertisement.

Note

In Cisco IOS XE Release 3.16S only one SRGB range and SRGB extension for the modification are supported.

SRGB Deletion

When IS-IS receives an SRGB deletion event, it looks for an SRGB entry in the IS-IS SRGB queue list. If an SRGB entry does not exist, IS-IS makes sure that there is no pending SRGB created event. If a pending SRGB creation event is found, then IS-IS removes the SRGB creation event, and completes the SRGB delete processing.

If an SRGB entry is found in the IS-IS SRGB queue, IS-IS locks the SRGB, redistributes the RIBs and un-advertises all prefixed-SIDs that have SID value within the pending delete SRGB range, and un-advertises the SRGB range from SR-capabilities sub TLV. Once IS-IS has completed the SRGB deletion processing, it unlocks the SRGB and deletes the SRGB from its SR sub-block entry.

If there is no valid SRGB after the deletion of the SRGB, IS-IS SR operational state becomes disabled.
MPLS Forwarding on an Interface

MPLS forwarding must be enabled before segment routing can use an interface. IS-IS is responsible for enabling MPLS forwarding on an interface.

When segment routing is enabled for an IS-IS topology, or IS-IS segment routing operational state is enabled, IS-IS enables MPLS for any interface on which the IS-IS topology is active. Similarly, when segment routing is disabled for an IS-IS topology, IS-IS disables the MPLS forwarding on all interfaces for that topology.

Segment Routing and LDP Preference

In Cisco IOS XE Release 3.16S, the command `sr-prefer` is used to tell the forwarding interface to prefer using segment routing labels over LDP labels for all prefixes in a topology.

Segment Routing-TE

Segment Routing Traffic Engineering requires the IGP to provide segment routing related information to TE. The information includes SRGB, Adjacency-SID, Prefix-SID, primary and repair paths for all nodes in the topology.

The maximum number of allowed SR-TE tunnels are 510.

Enabling and Disabling SR-TE Announcements

IS-IS announces the SR information to TE when it detects that both, IS-IS SR and TE are enabled for at least one level. IS-IS announce only the information that is obtained from the level for which TE is configured.

Similarly, IS-IS instructs TE to delete all announcements when it detects that SR is not enabled or TE is no longer configured on any level.

RLFA LDP and SR

Consider the following topology.
The traffic flows from A to D. The primary path is A-E-D and the primary next hop interface is Ge0/1. The secondary path is A-B-F-C-D, and C is the PQ node. The repair tunnel ends at PQ node C. The existing RLFA uses LDP TE tunnel for the repair path. When both LDP and SR are enabled, the LDP tunnel is used for RLFA repair path by default unless the segment routing preferred is configured through the `sr-prefer` command.

Topology-Independent LFA

When the local LFA and remote LFA are enabled, there is a good coverage of the prefixes to be protected. However, for some rare topologies that do not have a PQ intersect node, both local and remote LFA will fail to find a release node to protect the failed link. Furthermore, there is no way to prefer a post-convergence path, as the two algorithms have no knowledge of the post-convergence characteristics of the LFA.

To overcome the above limitation, effective Cisco IOS XE Release 3.18S, topology-independent LFA (TI-LFA) is supported on an SR-enabled network.

In Cisco IOS XE Release 3.18S, TI LFA supports the following:

- **Link Protection**—The LFA provides repair path for failure of the link.
- **Local LFA**—Whenever a local LFA on the post convergence path is available, it is preferred over TI-LFA because local LFA does not require additional SID for the repair path. That is, the label for the PQ node is not needed for the release node.
- **Local LFA for extended P space**—For nodes in the extended P space, local LFA is still the most economical method for the repair path. In this case, TI-LFA will not be chosen.
- **Tunnel to PQ intersect node**—This is similar to remote LFA except that the repair path is guaranteed on the post convergence path using TI-LFA.
- **Tunnel to PQ disjoint node**—This capability is unique to the TI-LFA in the case when local and remote LFA cannot find a repair path.
- **Tunnel to traverse multiple intersect or disjoint PQ nodes, up to the platform’s maximum supported labels**—TI-LFA provides complete coverage of all prefixes.
- **P2P interfaces for the protected link**—TI-LFA protects P2P interfaces.
- **Asymmetrical links**—The ISIS metrics between the neighbors are not the same.
- **Multi-homed (anycast) prefix protection**—The same prefix may be originated by multiple nodes.
- **Protected prefix filtering**—The route-map includes or excludes a list of prefixes to be protected and the option to limit the maximum repair distance to the release node.
- **Tiebreakers**—A subset of existing tiebreakers, applicable to TI-LFA, is supported.
Restrictions for the TI-LFA

- IGP throttles timers that are required for RLFA tunnel are also applicable to SR and SR-TILFA.
- In Cisco IOS XE Release 3.18S, BFD is not supported with SR and TI-LFA.
- Scale values supported for TI-LFA
 - Global prefixes: 1500
 - L3VPN: 4000 prefixes
 - L2VPN: 2000 virtual circuits
- SR and TI-LFA are supported on BDI and routed ports.
- In Cisco IOS XE Release 3.18S, four MPLS label push is supported. TI-LFA tunnel carries a maximum of two labels and the other two labels are for services.

Tie-breaker

Local and remote LFA use default or user-configured heuristics to break the tie when there is more than one path to protect the prefix. The attributes are used to trim down the number of repair paths at the end of the TI-LFA link protection computation before the load balancing.

Local LFA and remote-LFA support the following tiebreakers:

- linecard-disjoint—Prefers the line card disjoint repair path
- lowest-backup-path-metric—Prefers the repair path with lowest total metric
- node-protecting—Prefers node protecting repair path
- srlg-disjoint—Prefers SRLG disjoint repair path
- load-sharing—Distributes repair paths equally among links and prefixes

For TI-LFA link protection, the following tiebreakers are supported:

- linecard-disjoint—Prefers the line card disjoint repair path.

How it works: When there are two repair paths for a particular prefix, the path that the output port on different line card than that of the primary port is chosen as the repair path.

The following variant of the linecard-disjoint is supported:

- LC disjoint index—If both the repair paths are on the same line card as that of the primary path, then, both paths are considered as candidates. If one of the path is on a different line card, then that path is chosen as the repair path.

- srlg-disjoint—Prefers the SRLG disjoint repair path

The SRLG ID can be configured for each interface. When there are two repair paths for a prefix, the configured SRLG ID for the repair path is compared with that of the primary path SRLG ID. If the SRLG IDs for the secondary path is different than that of the primary, that path is chosen as the repair path.

Note
This policy comes into effect only when the primary path is configured with an SRLG ID.
The following variant of the srlg-disjoint is supported:

- **srlg-index**—If both the repair paths have the same SRLG ID as that of the primary path, then, both the paths are considered as candidates. If one of the path has a different srlg id, then path is chosen as the repair path.

- **node-protecting**—For TI-LFA node protection, the protected node is removed when computing the post-convergence shortest path. The repair path must direct traffic around the protected node.

It is possible to configure both node and SRLG protection modes for the same interface or the same protocol instance. In that case, an additional TI-LFA node-SRLG combination protection algorithm is run. The TI-LFA node-SRLG combination algorithm removes the protected node and all members of the interface with the same SRLG group when computing the post-convergence SPT.

For TI-LFA node protection, SRLG protection, and node-SRLG combination protection, it is likely the coverage for the protected prefixes is small. TI-LFA link protection is also run to provide coverage for the prefixes that not yet covered. However, optimization can be achieved when SRLG protection is enabled with no SRLG group on the interface. In that case, SRLG protection produces the same result as link protection and link protection is skipped. Furthermore, if node-protection is also configured in this case, TI-LFA node-SRLG combination protection produces the same result as node-protection and node-protection is skipped.

Interface FRR Tiebreakers

For TI-LFA node and SRLG protection, interface FRR tiebreakers must also be provided. Existing FRR tiebreakers are configured on a per protocol instance. Because FRR tiebreakers are not specific to TI-LFA, interface FRR tiebreakers are available for all FRR types. When both interface and protocol instance FRR tiebreakers are configured, the interface FRR tiebreakers take precedence over the protocol instance. When interface FRR tiebreakers are not configured, the interface inherits the protocol instance FRR tiebreakers. As with the existing tiebreakers, the priority must be unique among the interface and protocol instance for the tiebreakers.

The following interface FRR tiebreaker commands apply only to the particular interface.

```
isis fast-reroute tie-break
  [level-1 | level-2] linecard-disjoint
  priority
isis fast-reroute tie-break
  [level-1 | level-2] lowest-backup-metric
  priority
isis fast-reroute tie-break
  [level-1 | level-2] node-protecting
  priority
isis fast-reroute tie-break
  [level-1 | level-2] srlg-disjoint
  priority
isis fast-reroute tie-break
  [level-1 | level-2] default
```

Tie-breaker default and explicit tie-breaker on the same interface are mutually exclusive.

The following tie-breakers are enabled by default on all LFAs:

- linecard-disjoint
- lowest-backup-metric
- srlg-disjoint
Effective with Cisco IOS XE Release 3.18S, node-protecting tie-breaker is disabled by default.

Limitations on Tie-Beakers

The following tie-breakers are not applicable for these LFA scheme.

TILFA:
- broadcast-interface-disjoint
- downstream
- primary-path
- secondary-path

RLFA:
- broadcast-interface-disjoint
- node-protecting
- downstream
- primary-path
- secondary-path

Configuring T1 LFA

TI-LFA is disabled by default. There are two methods to enable TI-LFA:

1. Using protocol enablement—Enable TI-LFA in router isis mode. This enables TI-LFA for all ISIS interfaces. Optionally, use the interface command to exclude the interfaces on which TI-LFA should be disabled.

 For example, to enable TI-LFA for all IS-IS interfaces:

   ```
   router isis 1
   fast-reroute per-prefix {level-1 | level-2}
   fast-reroute ti-lfa {level-1 | level-2} [maximum-metric value]
   ```

 The `maximum-metric` option specifies the maximum repair distance which a node is still considered eligible as a release node.

 To disable TI-LFA on a particular interface:

   ```
   interface interface-name
   isis fast-reroute ti-lfa protection level-1 disable
   ```

 Note

 The `isis fast-reroute protection level-x` command enables local LFA and is required to enable TI-LFA.

2. Using interface enablement—Enable TI-LFA selectively on each interface

   ```
   interface interface-name
   isis fast-reroute protection {level-1 | level-2}
   isis fast-reroute ti-lfa protection {level-1 | level-2} [maximum-metric value]
   ```
When both interface and protocol are TI-LFA enabled, the interface configuration takes precedence over the protocol configuration.

Configuration Example

Example 1: In the following example, local LFA is configured with linecard-disjoint and srlg-disjoint tie-breakers. linecard-disjoint is given preference with a lower priority value (10) than the srlg-disjoint (11).

```
router isis access
net 49.0001.2037.0685.b002.00
metric-style wide
fast-flood 10
max-lsp-lifetime 65535
lsp-refresh-interval 65000
spf-interval 5 50 200
prc-interval 5 50 200
lsp-gen-interval 5 5 200
log-adjacency-changes
nsf ietf
segment-routing mpls
fast-reroute per-prefix level-1 all - configures the local LFA
fast-reroute per-prefix level-2 all
fast-reroute remote-lfa level-1 mpls-idp - enables rLFA (optional)
fast-reroute remote-lfa level-2 mpls-idp
fast-reroute ti-lfa level-1 - enables TI-LFA
microloop avoidance rib-update-delay 15000
bfd all-interfaces
```

Example 2—Enable TI-LFA node-protecting tie-breaker on all ISIS level-2 interfaces with priority 100. All other tie-breakers are disabled.

```
router isis
fast-reroute per-prefix level-2 all
fast-reroute ti-lfa level-2
fast-reroute tie-break level-2 node-protecting 100
```

Example 3—Enable TI-LFA node-protecting tie-breaker with priority 100 and TI-LFA SRLG protection with priority 200 on all IS-IS level-2 interfaces. All other tie-breakers are disabled because the node-protecting tie-breaker is configured.

```
router isis
fast-reroute per-prefix level-2 all
fast-reroute ti-lfa level-2
fast-reroute tie-break level-2 node-protecting 100
fast-reroute tie-break level-2 srlg-disjoint 200
```

Example 3—Enable TI-LFA node-protecting tie-breaker with priority 100 on all ISIS level-2 interfaces except on Ethernet0/0. For those IS-IS interfaces, all other tiebreakers are disabled. Ethernet0/0 overwrites the inheritance and uses the default set of tiebreakers with linecard-disjoint, lowest-backup-path-metric, srlg-disjoint enabled.

```
router isis
fast-reroute per-prefix level-2 all
fast-reroute ti-lfa level-2
fast-reroute tie-break level-2 node-protecting 100
!
interface ethernet0/0
```
Verifying the Tie-breaker

To view tiebreakers are enabled on the interface:

Router# show running-configuration | router isis access
Building configuration...
Current configuration : 702 bytes
!
Configuration of Partition - router isis access
!
router isis access
net 49.0001.2037.0685.b002.00
metric-style wide
fast-flood 10
max-lsp-lifetime 65535
lsp-refresh-interval 65000
spf-interval 5 50 200
prc-interval 5 50 200
lsp-gen-interval 5 5 200
no hello padding point-to-point
log-adjacency-changes
nsf cisco
nsf interval 0
segment-routing mpls
fast-reroute per-prefix level-1 all
fast-reroute per-prefix level-2 all
fast-reroute tie-break level-1 linecard-disjoint 12
fast-reroute remote-lfa level-1 mpls-ldp
fast-reroute remote-lfa level-2 mpls-ldp
fast-reroute ti-lfa level-1
bfd all-interfaces
mpls traffic-eng router-id Loopback0
mpls traffic-eng level-1
!
!
end
Similarly, to view the tiebreakers enabled for the router mode:

```
Router# show running-configuration | isis neighbor
Tag access:
System Id Type Interface IP Address State Holdtime Circuit Id
920-CE1 L1 Gi0/2/0 1.1.1.1 UP 25 02
9k-1 L1 Gi0/2/3 14.0.0.2 UP 27 00
```

Router(config-srmpls)# do sh run | sec interface GigabitEthernet0/2/0
```
interface GigabitEthernet0/2/0
  srlg gid 5
  srlg gid 10
  ip unnumbered Loopback0
  ip router isis access
  ip ospf network point-to-point
carrier-delay down msec 1
  negotiation auto
  ipv6 address 10:1::2/64
  mpls ip
  mpls traffic-eng tunnels
  bfd template BFD1
  cdp enable
  isis network point-to-point
```

Verifying the Primary and Repair Paths

In this example, 1.1.1.1 is the protecting neighbor and 4.4.4.4 is the neighbor on the protecting link.

```
Router# show ip cef 1.1.1.1
1.1.1.1/32
  nexthop 1.1.1.1 GigabitEthernet0/2/0 label [explicit-null|explicit-null]() - slot 2 is primary interface
  repair: attached-nexthop 24.0.0.2 TenGigabitEthernet0/3/0 - slot 3 is repair interface
    nexthop 24.0.0.2 TenGigabitEthernet0/3/0 label [explicit-null|explicit-null]()
    repair: attached-nexthop 1.1.1.1 GigabitEthernet0/2/0
```

```
Router# show ip cef 4.4.4.4
4.4.4.4/32
  nexthop 4.4.4.4 GigabitEthernet0/2/3 label [explicit-null|16004]() - slot 2 is primary interface
  repair: attached-nexthop 5.5.5.5 MPLS-SR-Tunnel2
```

```
Router# show ip cef 4.4.4.4 int
4.4.4.4/32, epoch 3, RIB[1], refcnt 6, per-destination sharing
  sources: RIB, Adj, LTE
  feature space:
    IPRM: 0x000028000
    Broker: linked, distributed at 4th priority
    LFD: 4.4.4.4/32 2 local labels
```
Verifying the IS-IS Segment Routing Configuration

Router# show isis segment-routing
IS-IS protocol is registered with MFI
ISIS MFI Client ID:0x63
Tag Null - Segment-Routing:
 SR State:SR_ENABLED
 Number of SRGB:1
 SRGB Start:14000, Range:1001, srgb_handle:0x009347888, srgb_state: created
 Address-family IPv4 unicast SR is configured
 Operational state: Enabled

The command with keyword global-block displays the SRGB and the range for LSPs.

Router# show isis segment-routing global-block
IS-IS Level-1 Segment-routing Global Blocks:
The `show isis segment-routing prefix-sid-map` command with keyword `advertise` displays the prefix-sid maps that the router advertises.

Router# `show isis segment-routing prefix-sid-map adv`

IS-IS Level-1 advertise prefix-sid maps:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>SID Index</th>
<th>Range</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.16.16.16/32</td>
<td>101</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16.16.16.17/32</td>
<td>102</td>
<td>1</td>
<td>Attached</td>
</tr>
</tbody>
</table>

The `show isis segment-routing prefix-sid-map` command with keyword `receive` displays the prefix-sid maps that the router receives.

Router #sh isis segment-routing prefix-sid-map receive

IS-IS Level-1 receive prefix-sid maps:

<table>
<thead>
<tr>
<th>Host</th>
<th>Prefix</th>
<th>SID Index</th>
<th>Range</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>utah</td>
<td>16.16.16.16/32</td>
<td>101</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16.16.16.17/32</td>
<td>102</td>
<td>1</td>
<td>Attached</td>
</tr>
</tbody>
</table>

To display the connected-SIDs found in the LSPs and passed to the mapping server component, use the `show isis segment-routing connected-sid` command.

Router# `show isis segment-routing connected-sid`

IS-IS Level-1 connected-sids

<table>
<thead>
<tr>
<th>Host</th>
<th>Prefix</th>
<th>SID Index</th>
<th>Range</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>nevada</td>
<td>* 1.1.1.2/32</td>
<td>1002</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.2.2.2/32</td>
<td>20</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100.1.1.10/32</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>colorado</td>
<td>1.1.1.3/32</td>
<td>33</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1.1.6/32</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

IS-IS Level-2 connected-sids

<table>
<thead>
<tr>
<th>Host</th>
<th>Prefix</th>
<th>SID Index</th>
<th>Range</th>
<th>Flags</th>
</tr>
</thead>
</table>

Verifying the IS-IS TI-LFA Tunnels

Router# `show isis fast-reroute ti-lfa tunnel`

Fast-Reroute TI-LFA Tunnels:

<table>
<thead>
<tr>
<th>Tunnel</th>
<th>Interface</th>
<th>Next Hop</th>
<th>End Point</th>
<th>Label</th>
<th>End Point Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1</td>
<td>Et1/0</td>
<td>30.1.1.4</td>
<td>1.1.1.2</td>
<td>41002</td>
<td>nevada</td>
</tr>
<tr>
<td>MP2</td>
<td>Et0/0</td>
<td>19.1.1.6</td>
<td>1.1.1.6</td>
<td>60006</td>
<td>colorado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.1.2</td>
<td>16</td>
<td>nevada</td>
</tr>
<tr>
<td>MP3</td>
<td>Et0/0</td>
<td>19.1.1.6</td>
<td>1.1.1.6</td>
<td>60006</td>
<td>colorado</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.1.2</td>
<td>16</td>
<td>nevada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.1.1.5</td>
<td>70005</td>
<td>wyoming</td>
</tr>
</tbody>
</table>
Verifying the IS-IS TI-LFA Tunnels
Using Segment Routing with OSPF

Using segment routing with OSPF is similar to using it with IS-IS. Before reading this chapter, see Using Segment Routing with IS-IS.

Segment Routing (SR) is a new paradigm of source routing driven by the IGPs and centered on inserting a list of instructions called segments into each packet. SR forwarding can be instantiated by MPLS or IPv6.

OSPF as an IGP propagates the segment information and may either use it internally (for example, to compute Fast Rerouting repair paths) or hand over the segment information to other clients within the router (for example, TE).

- Using OSFP with Segment Routing, on page 31
- Restrictions for Using Segment Routing with OSPF, on page 31
- Enabling Segment Routing for OSPF, on page 32
- Using OSFP Fast Reroute with Segment Routing, on page 33
- Verifying the Configuration of SR on OSPF, on page 35
- Troubleshooting Segment Routing on OSPF, on page 39
- Additional References, on page 39

Using OSFP with Segment Routing

To provide a base SR functionality, OSPF interacts with several components:

- Segment Routing Application—It handles IGP and instance-independent global commands as well as manages global resources used by the SR such as, block of static MPLS labels available for SR Node SID MPLS instantiation).
- MPLS Forwarding Infrastructure (MFI)—Supports MPLS forwarding table.
- RIBv4—Supports the IPv4 routing table

Restrictions for Using Segment Routing with OSPF

- Segment routing must be configured at the router level before enabling it at the OSPF instance.
• OSPF instance must successfully register itself with both, Segment Routing Application and MFI and retrieve resources that are necessary for operation, such as SRGB range, dynamically-assigned MPLS labels for Adjacency SIDs, and so on.
• If more than one SR router in the network advertises SID for the same prefix, then the SID values and flags must match. If conflicting attributes are found when calculating the SID for the prefix, then all SIDs for the prefix are ignored.
• Network type point-to-point and broadcast are supported.

Enabling Segment Routing for OSPF

You can enable segment routing for IGPs under the router configuration sub mode, through commands. However, IGP segment routing are enabled only after the global SR is configured.

SR functionality configurable globally, that is outside the context of any particular IGP instance, include:
• Global enabling SR on the router.
• Specifying the range of MPLS label values to be used to instantiate SR SIDs into MPLS dataplane (SRGB block)
• Associating SID index with local prefix

Configuring SR on an OSPF Instance

After SR is enabled globally on the router, it must be enabled in those OSPF instances that need to run SR.

```
segment-routing [area N] {mpls | disable}
```

This command is accepted only if SR is already enabled globally. If the `area` keyword is specified then SR is enabled in that area only, otherwise it is enabled in all areas attached to this OSPF instance. The keyword `disable` can be specified only when the `area` keyword is also present.

Enabling this command causes OSPF to originate RI LSA, Extended Prefix and Extended Link LSAs. It enables MPLS on all interfaces in area(s) enabled for SR and programs SR MPLS labels for forwarding.

Enabling Advertisement of Mapping Server Prefix Ranges

Global SR configuration may contain prefix-to-SID mapping entries for prefixes that are not local to the router. Each of these entries specify the range of prefixes. Remote mapping entries can be used to find SIDs for prefixes connected to routers that do not supporting SR and hence, are not capable of advertising SIDs themselves. This is part of SR-LDP inter-working functionality.

OSPF learns the ranges configured in the global SR configuration through the SR application and advertises them in the Extended Prefix Range TLVs.

The following command allows an OSPF instance to advertise mapping entries configured in the global SR mode:

```
[no] segment-routing prefix-sid-map advertise-local
```

This command is configurable in the router mode. Its default state is `disabled`, That is, no mapping ranges are advertised by OSPF even if they are configured in the global SR mode.
Disabling Mapping Server Functionality

By default, OSPF considers prefix ranges received from mapping servers in the network when computing SIDs for prefixes. This is the core of SR-LDP inter-working label computation. However, if the SR-LDP feature needs to be disabled, use the following command:

```
[no] segment-routing prefix-sid-map receive
```

Default state of this command is enabled. That is, OSPF processes mapping ranges received from mapping servers in the network.

When this command is configured in its non-default form, or the no form, it prohibits OSPF from considering prefix-SID mappings from mapping servers.

Note: This command does not affect processing of 'native' SIDs, that is, those SIDs that are advertised in the Extended Prefix TLVs by routers to whom the prefix is locally connected.

Interface Mode Prefix Attributes Command

Extended Prefix TLV of the Extended Prefix LSA carries flags for the prefix and one of them is N-flag (Node). The N-flag indicates that any traffic sent along to the prefix is destined to the router originating the LSA. This flag typically marks the host routes of the router's loop-back.

By default, OSPF advertises the routes of its loopback with the N-flag. If the IP address of a loopback is not unique (for example, it is part of an anycast address), then OSPF must be configured to not advertise the N-flag with the prefix.

Use the following command to cause OSPF to clear N-flag on all prefixes configured on interface in the interface-mode:

```
ip ospf prefix-attributes n-flag-clear
```

Using OSFP Fast Reroute with Segment Routing

IP Fast Reroute is a set of techniques that allow rerouting IP traffic around a failed link or a failed node in the network within a very short time (< 50ms). One of the techniques to do this is Loop Free Alternates (LFA). Effective with Cisco IOS XE Release 3.18S, OSPF supports per-prefix directly connected LFA and remote LFA (RLFA).

The per-prefix directly connected LFA provides loop-free alternate path for most triangular topologies, but does not provide good coverage for rectangular or circular topologies. However, the RLFA, which uses MPLS forwarding with LDP signaling for tunneling the rerouted traffic to an intermediate node, extends the IPFRR coverage in ring or rectangular topologies. For each link, RLFA defines the P-Space (the set of nodes reachable from the calculating node without crossing the protected link) and Q-Space (the set of nodes that can reach the neighbor on the protected link without crossing the protected link itself). The nodes that belong to both P- and Q-Spaces are called PQ nodes and can be used as the intermediate nodes for the protected traffic. However, for topologies where the P- and Q-Spaces are completely disjoint, there is still no coverage by RLFA.

Topology Independent Fast st Reroute (TI-FRR) is a technique that uses Segment Routing to provide link protection in any topology, assuming the metric on the links in the topology is symmetrical. Even TI-LFA
does not guarantee a backup in cases where the bandwidth on a single link is asymmetrical. TI-LFA only considers loop-free paths that are on the post-convergence path that helps you to better plan the capacity of the network.

Segment Routing allows creating a full explicit path through the network, but using such a fully specified path is not scalable in larger topologies due to the number of segments along the path. Specifying the whole path is, however, not necessary, and only a subset of the path is needed to carry the traffic to an intermediate node (release node) which does not loop the traffic back to the protecting node. When the release node is one of the neighbors of S (source or sender node), then we have a directly connected TI-LFA.

Effective with Cisco IOS XE Release 3.18S, an SR Tunnel is constructed to the release node (if remote) and used as the TI-LFA. The tunnel is constructed by explicitly forwarding through a set of one or more repair nodes. The tunnel is created using a SID stack consisting of one SID (Node SID or Adjacency SID) for every repair node and the corresponding label stack is pushed to the protected traffic.

Per Instance Enablement

- TI-LFA can be enabled on a per interface basis. One interface could be configured for LFA, another interface for LFA and RLFA, yet another interface for LFA and TI-LFA and another interface for LFA, RLFA, and TI-LFA.
- TI--LFA backup path is calculated only if TI-LFA protection is enabled on the output interface of the primary path.
- TI-LFA protection is not available for virtual links, sham links, and TE tunnels.
- Backup paths do not use virtual links, sham links, and TE tunnels.

Limitations of TI-LFA on OSPF

- TI-LFA is supported only on OSPFv2.
- TI-LFA only computes TI-LFA candidates that have been found based on a post-convergence path excluding the primary link. That is, TI-LFA only provides link protection. Node protection or SRLG protection is not supported.
- TI-LFA is calculated only if D and repair nodes (P, Q, PQ, or other) in the post-convergence path are segment routing capable. S does not need to be SR capable.
- TI-LFA is calculated only if Repair Nodes (P, Q, PQ, or other) in the post-convergence path have node SID. A node SID can be directed connected or one advertised by Mapping Server (SRMS).
- TI-LFA is restricted to a maximum of two or three segment tunnels, which may be lesser than the maximum labels that can be pushed by the router.
- When S is not SR capable, TI-LFA calculates a 0 or 1 segment LFA along the post-convergence path. The 1-segment LFA uses the LDP label to reach the PQ node in the post-convergence path.
- TI-LFA does not compute backup for virtual link, sham link, or TE tunnel path.
- TI-LFA does not use virtual link, sham link or TE tunnel as backup path.
- TI-LFA does not provide adjacency protection. It only protects prefixes. SR TE may provide protection for adjacency segments. Packets arriving with active adjacency segment do not have TI-LFA protection.
- TI-LFA is calculated only for prefixes having SR prefix SID or node SID.
- TI-LFA does not support Multi Topology Routing (MTR). LFA is calculated only for MTID zero.

Enabling and Disabling TI-FRR

TI-LFA can be enabled on interface, area, and process scopes. By default, TI-LFA is disabled globally.
TI-LFA can be enabled using following commands.

fast-reroute per-prefix ti-lfa

However, when TI-LFA is enabled globally, you have the option to disable it per area level, using following command:

```
[no] fast-reroute per-prefix ti-lfa [area area disable]
```

This command is accepted even if Segment-Routing is not enabled on the OSF instance or area. In this case, a TI-LFA backup path is created if the post-convergence path has a PQ node with an LDP label to reach it. That is, RLFA through a post-convergence path.

At the process level:

- **fast-reroute per-prefix ti-lfa [area area disable]**
- **fast-reroute per-prefix enable [area area] prefix-priority {high | low}**
- **fast-reroute per-prefix remote-lfa [area area] maximum-cost cost**
- **fast-reroute per-prefix remote-lfa [area area] tunnel mpls-ldp**
- **fast-reroute per-prefix remote-lfa [area area] tunnel mpls-ldp**
- **fast-reroute per-prefix tie-break attribute [required] index index**

At the interface level:

- **ip ospf fast-reroute per-prefix protection disabled**
- **ip ospf fast-reroute per-prefix candidate disable**
- **ip ospf fast-reroute per-prefix protection ti-lfa [disable]**

Verifying TI-LFA on OSPF

The following show command displays the details about TI-LFA configuration:

```
show ip ospf fast-reroute ti-lfa
```

Verifying the Configuration of SR on OSPF

- The following **show** command displays information about the new LSAs, such as router information, Extended Prefix and Extended Link LSAs:
Verifying the Configuration of SR on OSPF

show ip ospf database opaque-area type ext-link

OSPF Router with ID (13.13.13.13) (Process ID 100)
Type-10 Opaque Area Link States (Area 0)
LS age: 1378
Options: (No TOS-capability, DC)
LS Type: Opaque Area Link
Link State ID: 8.0.0.7
Opaque Type: 8 (Extended Link)
Opaque ID: 7
Advertising Router: 4.4.4.4
LS Seq Number: 80000056
Checksum: 0xFEF8
Length: 76
TLV Type: Extended Link
Length: 52
Link connected to : another Router (point-to-point)
(Link ID) Neighboring Router ID: 12.12.12.12
(Link Data) Interface IP address: 0.0.0.7
Sub-TLV Type: Adj SID
Length : 7
Flags : L-Bit, V-bit
MTID : 0
Weight : 0
Label : 27
Sub-TLV Type: Adj SID
Length : 7
Flags : L-Bit, V-bit, B-bit
MTID : 0
Weight : 0
Label : 34
Sub-TLV Type: Local / Remote Intf ID
Local Interface ID : 7
Remote Interface ID : 0

show ip ospf database opaque-area type ext-prefix

OSPF Router with ID (13.13.13.13) (Process ID 100)
Type-10 Opaque Area Link States (Area 0)
LS age: 1392
Options: (No TOS-capability, DC)
LS Type: Opaque Area Link
Link State ID: 7.0.0.0
Opaque Type: 7 (Extended Prefix)
opaque ID: 0
Advertising Router: 4.4.4.4
LS Seq Number: 80000055
Checksum: 0xD156
Length: 44
TLV Type: Extended Prefix
Length: 20
Prefix : 4.4.4.4/32
AF : 0
Route-type: Intra
Flags : N-bit
Sub-TLV Type: Prefix SID
Length: 8
Flags : None
MTID : 0
Algo : IGP metric based SPT
SID : 4

show ip ospf database opaque-area type router-information
OSPF Router with ID (13.13.13.13) (Process ID 100)
Type-10 Opaque Area Link States (Area 0)
LS age: 1402
Options: (No TOS-capability, DC)
LS Type: Opaque Area Link
Link State ID: 4.0.0.0
Opaque Type: 4 (Router Information)
Opaque ID: 0
Advertising Router: 4.4.4.4
LS Seq Number: 80000055
Checksum: 0x7B86
Length: 52
TLV Type: Router Information
Length: 4
Capabilities:
Graceful Restart Helper
Stub Router Support
Traffic Engineering Support
TLV Type: Segment Routing Algorithm
Length: 1
Algorithm: IGP metric based SPT
TLV Type: Segment Routing Range
Length: 12
Range Size: 8000
Sub-TLV Type: SID/Label
Length: 3
Label: 16000

The following show command displays the interface output, but only if segment routing auto-enabled
MPLS forwarding on the interface and SIDs were allocated to that interface

show ip ospf interface

Loopback0 is up, line protocol is up
Internet Address 13.13.13.13/32, Interface ID 29, Area 0
Attached via Interface Enable
Process ID 100, Router ID 13.13.13.13, Network Type LOOPBACK, Cost: 1
Topology-MTID Cost Disabled Shutdown Topology Name
0 1 no no Base
Enabled by interface config, including secondary ip addresses
Loopback interface is treated as a stub Host
BDI2104 is up, line protocol is up
Interface is unnumbered, Interface ID 40, Area 0
Using address of Loopback0 (13.13.13.13)
Attached via Interface Enable
Process ID 100, Router ID 13.13.13.13, Network Type POINT_TO_POINT, Cost: 1
Topology-MTID Cost Disabled Shutdown Topology Name
0 1 no no Base
Enabled by interface config, including secondary ip addresses
Transmit Delay is 1 sec, State POINT_TO_POINT, BFD enabled
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
oob-resync timeout 40
Hello due in 00:00:05
Supports Link-local Signaling (LLS)
Cisco NSF helper support enabled
IETF NSF helper support enabled
Can be protected by per-prefix Loop-Free FastReroute
Can be used for per-prefix Loop-Free FastReroute repair paths
Not Protected by per-prefix TI-LFA
Segment Routing enabled for MPLS forwarding
Index 1/3/3, flood queue length 0
Next 0x0(0)/0x0(0)/0x0(0)
Last flood scan length is 1, maximum is 2
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 1, Adjacent neighbor count is 1
Adjacent with neighbor 8.8.8.8
Suppress hello for 0 neighbor(s)

- The following show command displays the information about segment routing
- Per-instance state of the feature—whether enabled or disabled, whether operational or not
- Registration status of OSPF with the SR application and MFI
- Retrieved SRGB range

show ip ospf [AS] segment-routing

OSPF Router with ID (13.13.13.13) (Process ID 100)
Global segment-routing state: Enabled
Segment Routing enabled:
Area Topology name Forwarding
0 Base MPLS
SR Attributes
Prefer SR Labels
Do not advertise Explicit Null
Local MPLS label block (SRGB):
Range: 16000 - 23999
State: Created
Registered with SR App, client handle: 10
Connected map notifications active (handle 0x18), bitmask 0x1
Active policy map notifications active (handle 0x19), bitmask 0xC
Registered with MPLS, client-id: 100
Bind Retry timer not running
Adj Label Bind Retry timer not running
Adj Protected Label Bind Retry timer not running

- The following show command displays information about the SID database for one or for all SIDs. The output displays all prefixes that were advertised with a given SID and highlights which prefixes are local to the router.

show ip ospf [AS] segment-routing sid-database [SID]

OSPF Router with ID (13.13.13.13) (Process ID 100)
OSPF Segment Routing SIDs
Flags: L - local, N - label not programmed,
M - mapping-server
SID Prefix/Mask Adv-Rtr-Id Area-Id
----------------- ----------- -----------
8 8.8.8.8/32 8.8.8.8 0
10 10.10.10.10/32 10.10.10.10 0
13 (L) 13.13.13.13/32 13.13.13.13 0

- The following show command displays the database of local prefixes along with their SID values and flags.

Note

In the absence of a mis-configuration, there is only one prefix reported for each SID value.
This show command provides information only about locally-configured prefixes. Information about prefixes received from other routers is available either through LSDB (show ip ospf database opaque-area) or LRIB (show ip ospf rib local) show commands.

```
show ip ospf [AS] segment-routing local-prefix
```

OSPF Router with ID (13.13.13.13) (Process ID 100)
Area 0:
Prefix: Sid: Index: Interface:
13.13.13.13/32 13 0.0.0.0 Loopback0

Troubleshooting Segment Routing on OSPF

Use the following command to debug issues

- `debug ip ospf [AS] segment-routing`
- `debug ip ospf fast-reroute spf`
- `debug ip ospf fast-reroute spf detail`
- `debug ip ospf fast-reroute rib`
- `debug ip ospf fast-reroute rib [access-list]`

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>

Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No specific Standards and RFCs are supported by the features in this document.</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL:</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including</td>
<td>http://www.cisco.com/</td>
</tr>
<tr>
<td>documentation and tools for troubleshooting and resolving technical issues</td>
<td>cisco/web/support/index.html</td>
</tr>
<tr>
<td>with Cisco products and technologies.</td>
<td></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can</td>
<td></td>
</tr>
<tr>
<td>subscribe to various services, such as the Product Alert Tool (accessed from</td>
<td></td>
</tr>
<tr>
<td>Field Notices), the Cisco Technical Services Newsletter, and Really Simple</td>
<td></td>
</tr>
<tr>
<td>Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID</td>
<td></td>
</tr>
<tr>
<td>and password.</td>
<td></td>
</tr>
</tbody>
</table>
Segment Routing (SR) enables any network node, such as a Server, Provider Edge (PE), Aggregator, or Provider (P) to engineer an explicit path for each of its traffic classes.

This explicit path does not depend on a hop-by-hop signaling technique, such as Label Distribution Protocol (LDP) or Resource Reservation Protocol (RSVP); it only depends on a set of "segments" that are preprogrammed and advertised by the link-state routing protocol.

These segments act as topological sub-paths that can be combined together to form the desired path. In Segment Routing, the path is encoded in each packet itself in the form of SR Segment Identifiers (SIDs).

There are two types of segments—prefix and adjacency.

- A prefix segment represents the shortest path (as computed by IGP) to reach a specific prefix; a node segment is a special prefix segment that is bound to the loopback address of a node.
- An adjacency segment represents a specific adjacency to a neighbor node.

A node segment can be a multi-hop path while an adjacency segment is a one-hop path.

A segment is represented by a 32-bit entity called Segment ID (SID). A prefix-SID is globally unique, and the operator ensures such uniqueness. An adjacency SID is locally unique to the node, and is automatically generated by the node attached to the adjacency.

The Segment Routing control-plane can be applied to the MPLS data-plane. In this case, the prefix-SID in the MPLS data-plane is represented as an LSP whose path flows along the shortest-path to the prefix, whereas an adjacency-SID is represented as cross-connect entry pointing to a specific egress data-link.

A Traffic Engineered (TE) tunnel is a container of TE LSPs instantiated between the tunnel ingress and the tunnel destination. A TE tunnel can instantiate one or more SR-TE LSPs that are associated with the same tunnel. The SR-TE LSP path may not necessarily follow the same IGP path to a destination node. In this case, the SR-TE path can be specified through either a set of prefix-SIDs, or adjacency-SIDs of nodes, or both, and links to be traversed by the SR-TE LSP.

The headend imposes the corresponding MPLS label stack on outgoing packets to be carried over the tunnel. Each transit node along the SR-TE LSP path uses the incoming top label to select the next-hop, pop or swap the label, and forward the packet to the next node with the remainder of the label stack, until the packet reaches the ultimate destination.

The set of hops or segments that define an SR-TE LSP path are provisioned by the operator.

- Restrictions for Configuring SR-TE, on page 42
Restrictions for Configuring SR-TE

- SR-TE statistics counters not supported on the Cisco ASR 900 RSP2 module.
- The Cisco ASR 900 routers with RSP2 module support five label stacks. The Cisco ASR 900 router with RSP3 module supports four label stacks.

Note

All five labels cannot be part of the SR-TE Tunnel label stack. One label must be a service label.

- The routers do not support unequal load balancing when using the load-share option.
- ECMP across IP and MPLS paths is not supported. That is, all the paths for ECMP must either be of type IP or TAG adjacency.
- ECMP at single SR-TE tunnel level is not supported.
- ECMP across multiple SR-TE tunnels is supported.
- SR-TE FRR with PoCH as the primary path is not supported. However, you can provision SR-TE tunnel without FRR over PoCH and backup tunnel over PoCH.
- The Cisco RSP3 module supports SR-TE with a single label for SR-TE tunnel and a single label for TI-LFA repair path.

Configuring a Path Option for a TE Tunnel

The `segment-routing` keyword indicates that the specified path is programmed as an SR path.

```
Router(config)# interface tunnel 100
Router(config-if)# tunnel mpls traffic-eng path-option 1 explicit name foo segment-routing
Router(config-if)# tunnel mpls traffic-eng path-option 2 dynamic segment-routing
Router(config-if)# tunnel mpls traffic-eng path-option 3 segment-routing
```

When the path-option type for an operational SR tunnel is changed from SR to non-SR (for example, `dynamic`), the existing forwarding entry of the tunnel is deleted.

Segment Routing can be enabled or disabled on an existing secondary or an in-use path-option. If the tunnel uses a signaled RSVP-TE explicit path-option and segment routing is enabled on that tunnel, the RSVP-TE LSP is torn, and the SR-TE LSP is instantiated using the same path-option. Conversely, if segment routing is disabled on a path-option that is in use by the primary LSP, the tunnel goes down intermittently and a new RSVP-TE LSP is signaled using the same explicit path.

If the “segment-routing” path-option is enabled on a secondary path-option (that is, not in use by the tunnel’s primary LSP), the tunnel is checked to evaluate if the newly specified SR-TE LSP path-option is valid and more favorable to use for the tunnel primary LSP.
Configuring SR Explicit Path Hops

For intra-area LSPs, the explicit path can be specified as a list of IP addresses:

Router(config)# ip explicit-path name foo
Router(config-ip-expl-path)# index 10 next-address 1.1.1.1 --> node address
Router(config-ip-expl-path)# index 20 next-address 12.12.12.2 --> link address

The explicit path can also be specified as segment-routing SIDs:

(config)# ip explicit-path name foo
(config-ip-expl-path)# index 10 next-label 20

The following SR-TE explicit path hops are supported:

- IP addresses
- MPLS labels
- Mix of IP addresses and MPLS labels

Note
IP addresses cannot be used after using the label in MIXED_PATH.

Use Case: Segment Routing Traffic Engineering Basic Configuration

Consider the following topology:

![Topology Diagram]

Configuration at the headend router, R1:

interface GigabitEthernet0/02
ip address 100.101.1.1 255.255.255.0
ip router isis 1
isis network point-to-point
negotiation auto
mpls traffic-eng tunnels
Explicit Path SR-TE Tunnel 1

Consider tunnel 1 based only on IP addresses:

ip explicit-path name IP_PATH1
next-address 2.2.2.2
next-address 3.3.3.3
next-address 6.6.6.6
!
interface Tunnel1
ip unnumbered Loopback1 poll point-to-point
tunnel mode mpls traffic-eng
tunnel destination 6.6.6.6
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 6 6
tunnel mpls traffic-eng path-option 10 explicit name IP_PATH1 segment-routing
tunnel mpls traffic-eng path-selection metric igp
tunnel mpls traffic-eng 10
end

Explicit Path SR-TE Tunnel 2

Consider tunnel 2 based on node SIDs

ip explicit-path name IA_PATH
next-label 114
next-label 115
next-label 116
!
interface Tunnel2
ip unnumbered Loopback1 poll point-to-point
Explicit Path SR-TE Tunnel 3

Consider that tunnel 3 is based on a mix of IP addresses and label

```
ip explicit-path name MIXED_PATH enable
next-address 2.2.2.2
next-address 3.3.3.3
next-label 115
next-label 116
!
interface Tunnel3
  ip unnumbered Loopback1 poll point-to-point
  tunnel mode mpls traffic-eng
  tunnel destination 6.6.6.6
  tunnel mpls traffic-eng autoroute announce
  tunnel mpls traffic-eng priority 6 6
  tunnel mpls traffic-eng path-option 10 explicit name MIXED_PATH segment-routing
  tunnel mpls traffic-eng path-selection metric igp
  tunnel mpls traffic-eng 10
```

Dynamic Path SR-TE Tunnel 4

Consider that tunnel 4 is based on adjacency SIDs

```
interface Tunnel4
  ip unnumbered Loopback1 poll point-to-point
  tunnel mode mpls traffic-eng
  tunnel destination 6.6.6.6
  tunnel mpls traffic-eng autoroute announce
  tunnel mpls traffic-eng priority 6 6
  tunnel mpls traffic-eng path-option 10 dynamic segment-routing
  tunnel mpls traffic-eng path-selection metric igp
  tunnel mpls traffic-eng 10
```

Dynamic Path SR-TE Tunnel 5

Consider that tunnel 5 is based on Node SIDs

```
interface Tunnel5
  ip unnumbered Loopback1 poll point-to-point
  tunnel mode mpls traffic-eng
  tunnel destination 6.6.6.6
  tunnel mpls traffic-eng autoroute announce
  tunnel mpls traffic-eng priority 6 6
  tunnel mpls traffic-eng path-option 10 segment-routing
  tunnel mpls traffic-eng path-selection metric igp
  tunnel mpls traffic-eng 10
```
Verifying Configuration of the SR-TE Tunnels

Use the `show mpls traffic-eng tunnels tunnel-number` command to verify the configuration of the SR-TE tunnels.

Verifying Tunnel 1

Name: R1_t1 (Tunnel1) Destination: 6.6.6.6
Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 10, (SEGMENT-ROUTING) type explicit IP_PATH (Basis for Setup)
Config Parameters:
 Bandwidth: 0 kbps (Global) Priority: 6 6 Affinity: 0x0/0xFFFF
 Metric Type: IGP (interface)
 Path Selection:
 Protection: any (default)
 Path-invalidation timeout: 45000 msec (default), Action: Tear
 AutoRoute: enabled LockDown: disabled Loadshare: 10 [200000000]
 auto-bw: disabled
 Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
 State: explicit path option 10 is active
 BandwidthOverride: disabled LockDown: disabled Verbatim: disabled
History:
 Tunnel:
 Time since created: 6 days, 19 hours
 Time since path change: 2 seconds
 Number of LSP IDs (Tun_Instances) used: 1814
 Current LSP: [ID: 1814]
 Uptime: 2 seconds
 Selection: reoptimization
 Prior LSP: [ID: 1813]
 ID: path option unknown
 Removal Trigger: configuration changed
Tun_Instance: 1814
Segment-Routing Path Info (isis level-1)
 Segment0[Node]: 4.4.4.4, Label: 114
 Segment1[Node]: 5.5.5.5, Label: 115
 Segment2[Node]: 6.6.6.6, Label: 116

Verifying Tunnel 2

Name: R1_t2 (Tunnel1) Destination: 6.6.6.6
Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 10, (SEGMENT-ROUTING) type explicit IA_PATH (Basis for Setup)
Config Parameters:
 Bandwidth: 0 kbps (Global) Priority: 6 6 Affinity: 0x0/0xFFFF
 Metric Type: IGP (interface)
 Path Selection:
 Protection: any (default)
 Path-invalidation timeout: 45000 msec (default), Action: Tear
 AutoRoute: enabled LockDown: disabled Loadshare: 10 [200000000]
 auto-bw: disabled
 Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
 State: explicit path option 10 is active
 BandwidthOverride: disabled LockDown: disabled Verbatim: disabled
History:
 Tunnel:
Verifying Tunnel 3

Name: R1_t3 (Tunnel1) Destination: 6.6.6.6
Status:
 Admin: up Oper: up Path: valid Signalling: connected
path option 10, (SEGMENT-ROUTING) type explicit MIXED_PATH (Basis for Setup)
Config Parameters:
 Bandwidth: 0 kbps (Global) Priority: 6 6 Affinity: 0x0/0xFFFF
 Metric Type: IGP (interface)
 Path Selection:
 Protection: any (default)
 Path-invalidation timeout: 45000 msec (default), Action: Tear
 AutoRoute: enabled LockDown: disabled Loadshare: 10 [200000000]
 auto-bw: disabled
 Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
 State: explicit path option 10 is active
 BandwidthOverride: disabled LockDown: disabled Verbatim: disabled
History:
 Tunnel:
 Time since created: 6 days, 19 hours, 2 minutes
 Time since path change: 2 seconds
 Number of LSP IDs (Tun_Instances) used: 1816
 Current LSP: [ID: 1816]
 Uptime: 2 seconds
 Selection: reoptimization
 Prior LSP: [ID: 1815]
 ID: path option unknown
 Removal Trigger: configuration changed
Tun_Instance: 1816
Segment-Routing Path Info (isis level-1)
Segment[Node]: 2.2.2.2, Label: 112
Segment[Node]: 3.3.3.3, Label: 113
Segment2[-]: Label: 115
Segment3[-]: Label: 116

Verifying Tunnel 4

Name: R1_t4 (Tunnel1) Destination: 6.6.6.6
Status:
 Admin: up Oper: up Path: valid Signalling: connected
path option 10, (SEGMENT-ROUTING) type dynamic (Basis for Setup, path weight 30)
Config Parameters:
 Bandwidth: 0 kbps (Global) Priority: 6 6 Affinity: 0x0/0xFFFF
 Metric Type: IGP (interface)
 Path Selection:
 Protection: any (default)
Verifying Tunnel 5

Name: R1_t5 (Tunnel1) Destination: 6.6.6.6
Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 10, type segment-routing (Basis for Setup)
Config Parameters:
 Bandwidth: 0 kbps (Global) Priority: 6 Affinity: 0x0/0xFFFF
 Metric Type: IGP (interface)
 Path Selection:
 Protection: any (default)
 Path-invalidation timeout: 45000 msec (default), Action: Tear
AutoRoute: enabled LockDown: disabled Loadshare: 10 [200000000]
auto-bw: disabled
Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
 State: segment-routing path option 10 is active
 BandwidthOverride: disabled LockDown: disabled Verbatim: disabled
History:
 Tunnel:
 Time since created: 6 days, 19 hours, 4 minutes
 Time since path change: 14 seconds
 Number of LSP IDs (Tun_Instances) used: 1817
 Current LSP: [ID: 1817]
 Uptime: 14 seconds
 Selection: reoptimization
 Prior LSP: [ID: 1816]
 ID: path option unknown
 Removal Trigger: configuration changed
 Tun_Instance: 1817
Segment-Routing Path Info (isis level-1)
 Segment0[Node]: 6.6.6.6, Label: 116
SR-TE LSP Instantiation

A Traffic Engineered (TE) tunnel is a container of one or more instantiated TE LSPs. An SR-TE LSP is instantiated by configuring ‘segment-routing’ on the path-option of the TE tunnel. The traffic mapped to the tunnel is forwarded over the primary SR-TE instantiated LSP.

Multiple path-options can also be configured under the same tunnel. Each path-option is assigned a preference index or a path-option index that is used to determine the more favorable path-option for instantiating the primary LSP—the lower the path-option preference index, the more favorable the path-option. The other less favorable path-options under the same TE tunnel are considered secondary path-options and may be used once the currently used path-option is invalidated (for example, due to a failure on the path).

Note

A forwarding state is maintained for the primary LSP only.

SR-TE LSP Explicit Null

MPLS-TE tunnel headend does not impose explicit-null at the bottom of the stack. When penultimate hop popping (PHP) is enabled for SR prefix SIDs or when an adjacency SID is the last hop of the SR-TE LSP, the packet may arrive at the tailend without a transport label. However, sometimes, it is desirable that the packet arrive at the tailend with explicit-null label, and in such cases, the headend imposes an explicit-null label at the top of the label stack.

SR-TE LSP Path Verification

SR-TE tunnel functionality requires that the headend perform initial verification of the tunnel path as well as the subsequent tracking of the reachability of the tunnel tailend and traversed segments.

Path verification for SR-TE LSP paths is triggered whenever MPLS-TE is notified of any topology changes or SR SID updates.

The SR-TE LSP validation steps consist of the following checks:

Topology Path Validation

The headend validates the path of an SR-TE LSP for connectivity against the TE topology. MPLS-TE headend checks if links corresponding to the adjacency SIDs are connected in the TE topology.

For newly instantiated SR-TE LSPs, if the headend detects a discontinuity on any link of the SR-TE path, that path is considered invalid and is not used. If the tunnel has other path-options with valid paths, those paths are used to instantiate the tunnel LSP.

For TE tunnels with existing instantiated SR-TE LSP, if the headend detects a discontinuity on any link, the headend assumes that a fault has occurred on that link. In this case, the local repair protection, such as the IP FRR, comes in to effect. The IGP continues to sustain the protected adjacency label and associated forwarding after the adjacency is lost for some time. This allows the head-ends enough time to reroute the tunnels onto different paths that are not affected by the same failure. The headend starts a tunnel invalidation timer once it detects the link failure to attempt to reroute the tunnel onto other available path-options with valid paths.
If the TE tunnel is configured with other path-options that are not affected by the failure and are validated, the headend uses one of those path-options to reroute (and re-optimize) the tunnel by instantiating a new primary LSP for the tunnel using the unaffected path.

If no other valid path-options exist under the same tunnel, or if the TE tunnel is configured with only one path-option that is affected by the failure, the headend starts an invalidation timer after which it brings the tunnel state to 'down'. This action avoids black-holing the traffic flowing over the affected SR-TE LSP, and allows services riding over the tunnel to reroute over different available paths at the headend. There is an invalidation drop configuration that keeps the tunnel 'up', but drops the traffic when the invalidation timer expires.

For intra-area SR-TE LSPs, the headend has full visibility over the LSP path, and validates the path to the ultimate LSP destination. However, for interarea LSPs, the headend has partial visibility over the LSP path—only up to the first ABR. In this case, the headend can only validate the path from the ingress to the first ABR. Any failure along the LSP beyond the first ABR node is invisible to the headend, and other mechanisms to detect such failures, such as BFD over LSP are assumed.

SR SID Validation

SID hops of an SR-TE LSP are used to determine the outgoing MPLS label stack to be imposed on the outgoing packets carried over the SR-TE LSP of a TE tunnel. A database of global and local adjacency-SIDs is populated from the information received from IGP and maintained in MPLS-TE. Using a SID that is not available in the MPLS TE database invalidates the path-option using the explicit-path. The path-option, in this case, is not used to instantiate the SR TE LSP. Also, withdrawing, adding, or modifying a SID in the MPLS-TE SID-database, results in the MPLS-TE headend verifying all tunnels with SR path-options (in-use or secondary) and invokes proper handling.

LSP Egress Interface

When the SR-TE LSP uses an adjacency-SID for the first path hop, TE monitors the interface state and IGP adjacency state associated with the adjacency-SID and the node that the SR-TE LSP egresses on. If the interface or adjacency goes down, TE can assume that a fault occurred on the SR-TE LSP path and take the same reactive actions described in the previous sections.

Note

When the SR-TE LSP uses a prefix-SID for the first hop, TE cannot directly infer on which interface the tunnel egresses. TE relies on the IP reachability information of the prefix to determine if connectivity to the first hop is maintained.

IP Reachability Validation

MPLS-TE validates that the nodes corresponding to the prefix-SIDs are IP reachable before declaring the SR path valid. MPLS-TE detects path changes for the IP prefixes corresponding to the adjacency or prefix SIDs of the SR-TE LSP path. If the node announcing a specific SID loses IP reachability due to a link or node failure, MPLS-TE is notified of the path change (no path). MPLS-TE reacts by invalidating the current SR-TE LSP path, and may use other path-options with a valid path, if any to instantiate a new SR-TE LSP.
Since IP-FRR does not offer protection against failure of a node that is being traversed by an SR-TE LSP (such as, a prefix-SID failure along the SR-TE LSP path), the headend immediately reacts to IP route reachability loss for prefix-SID node by setting the tunnel state to ‘down’ and removes the tunnel forwarding entry if there are no other path-options with valid path for the affected tunnel.

Tunnel Path Affinity Validation

The affinity of a tunnel path can be specified using the command `tunnel mpls traffic-eng affinity` under the tunnel interface.

The headend validates that the specified SR path is compliant with the configured affinity. This requires that the paths of each segment of the SR path be validated against the specified constraint. The path is declared invalid against the configured affinity constraints if at least a single segment of the path does not satisfy the configured affinity.

```bash
interface Tunnel1
no ip address
tunnel mode mpls traffic-eng
tunnel destination 5.5.5.5
tunnel mpls traffic-eng priority 5 5
tunnel mpls traffic-eng bandwidth 100
  tunnel mpls traffic-eng affinity 0x1 mask 0xFFFF
  tunnel mpls traffic-eng path-option 10 dynamic segment-routing
Router# show tunnel ??
Name: R1_t1 (Tunnel1) Destination: 5.5.5.5
Status: Admin: up Oper: up Path: valid Signalling: connected
  path option 10, (SEGMENT-ROUTING) type dynamic (Basis for Setup, path weight 20)
Config Parameters:
  Bandwidth: 100 kbps (Global) Priority: 5 5  Affinity: 0x1/0xFFFF
  Metric Type: TE (default)
  Path Selection:
    Protection: any (default)
    Path-selection Tiebreaker:
      Global: not set  Tunnel Specific: not set  Effective: min-fill (default)
    Hop Limit: disabled
    Cost Limit: disabled
    Path-invalidation timeout: 10000 msec (default), Action: Tear
    AutoRoute: disabled LockDown: disabled Loadshare: 100 [0] bw-based
    auto-bw: disabled
    Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
  State: dynamic path option 10 is active
  BandwidthOverride: disabled LockDown: disabled Verbatim: disabled
Node Hop Count: 2
History:
  Tunnel:
    Time since created: 10 minutes, 54 seconds
    Time since path change: 34 seconds
    Number of LSP IDs (Tun_Instances) used: 55
    Current LSP: [ID: 55]
    Uptime: 34 seconds
    Prior LSP: [ID: 49]
      ID: path option unknown
      Removal Trigger: tunnel shutdown
    Tun_Instance: 55
  Segment-Routing Path Info (isis level-1)
```

Note

Tunnel Path Affinity Validation

The affinity of a tunnel path can be specified using the command `tunnel mpls traffic-eng affinity` under the tunnel interface.

The headend validates that the specified SR path is compliant with the configured affinity. This requires that the paths of each segment of the SR path be validated against the specified constraint. The path is declared invalid against the configured affinity constraints if at least a single segment of the path does not satisfy the configured affinity.
Configuring Affinity on an Interface

```conf
interface GigabitEthernet2
ip address 192.168.2.1 255.255.255.0
ip router isis 1
negotiation auto
mpls traffic-eng tunnels
  mpls traffic-eng attribute-flags 0x1
isis network point-to-point
ip rsvp bandwidth
```

Tunnel Path Resource Avoidance Validation

You can specify a set of addresses to be validated as excluded from being traversed by SR-TE tunnel packets. To achieve this, the headend runs the per-segment verification checks and validates that the specified node, prefix or link addresses are indeed excluded from the tunnel in the SR path. The tunnel resource avoidance checks can be enabled per path using the following commands. The list of addresses to be excluded are defined and the name of the list is referenced in the path-option.

```conf
interface tunnel100
  tunnel mpls traffic-eng path-option 1 explicit name EXCLUDE segment-routing
  ip explicit-path name EXCLUDE enable
  exclude-address 192.168.0.2
  exclude-address 192.168.0.4
  exclude-address 192.168.0.3
```

Tunnel Path Loop Validation

The SR path is a concatenation of SR segments (combination of prefix and adjacency SIDs). It is possible that any of the traversed segment’s underlying paths may traverse through the ingress of the tunnel. In this case, packets that are mapped on the SR tunnel may loop back again to the headend. To avoid this sub-optimal path, the headend detects and invalidates a looping SR path through the ingress node.

Loop path validation is implicitly enabled on SR path. However, it is possible to disable this validation by using the `verbatim` path-option keyword associated with the tunnel path-option.

The following is an example of the `verbatim` path-option keyword when IP address 6.6.6.6 is in a different area:

```conf
interface Tunnel1
  tunnel mode mpls traffic-eng
  tunnel destination 6.6.6.6
  tunnel mpls traffic-eng priority 5 5
  tunnel mpls traffic-eng bandwidth 100
  tunnel mpls traffic-eng path-option 10 explicit name NODE_PATH segment-routing verbatim

Name: R1_t1  (Tunnel1) Destination: 6.6.6.6
Status:
  Admin: up  Oper: up  Path: valid  Signalling: connected
  path option 10, (SEGMENT-ROUTING) type explicit (verbatim) NODE_PATH (Basis for Setup)
Config Parameters:
  Bandwidth: 100 kbps (Global)  Priority: 5 5  Affinity: 0x0/0xFFFF
  Metric Type: TE (default)
  Path Selection:
    Protection: any (default)
```
SR-TE Traffic Load Balancing

SR-TE tunnels support the following load-balancing options:

Load Balancing on Port Channel TE Links

Port Channel interfaces carry the SR-TE LSP traffic. This traffic load balances over port channel member links as well as over bundle interfaces on the head or mid of an SR-TE LSP.

Load Balancing on ECMPs

While using the equal cost multi path protocol (ECMP), the path to a specific prefix-SID may point to multiple next-hops. And if the SR-TE LSP path traverses one or more prefix-SIDs that have ECMP, the SR-TE LSP traffic load-balances on the ECMP paths of each traversed prefix-SID from any midpoint traversed node along the SR-TE LSP path.

Note

ECMP within a single SR-TE tunnel is not supported.

Load Balancing on Multiple Tunnels

ECMP across multiple SR-TE tunnels is not supported.
SR-TE Tunnel Re-optimization

TE tunnel re-optimization occurs when the headend determines that there is a more optimal path available than the one currently used. For example, if there is a failure along the SR-TE LSP path, the headend could detect and revert to a more optimal path by triggering re-optimization.

Tunnels that instantiate SR-TE LSP can re-optimize without affecting the traffic carried over the tunnel. Re-optimization can occur because:

• The explicit path hops used by the primary SR-TE LSP explicit path are modified,
• The headend determines the currently used path-option are invalid due to either a topology path disconnect, or a missing SID in the SID database that is specified in the explicit-path
• A more favorable path-option (lower index) becomes available

When the headend detects a failure on a protected SR adjacency-SID that is traversed by an SR-TE LSP, it starts the invalidation timer. If the timer expires and the headend is still using the failed path because it is unable to reroute on a different path, the tunnel state is brought ‘down’ to avoid black-holing the traffic. Once the tunnel is down, services on the tunnel converge to take a different path.

The following is a sample output of a manual re-optimization example. In this example, the path-option is changed from ‘10’ to ‘20’.

Router# mpls traffic-eng reoptimize tunnel 1 path-option 20
The targeted path-option is not in lock down mode. Continue? [no]: yes
Router# show mpls traffic-eng tunnels tunnel1
Name: R1_t1 (Tunnel1) Destination: 6.6.6.6
Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 20, (SEGMENT-Routing) type explicit IP_PATH (Basis for Setup)
 path option 10, (SEGMENT-Routing) type dynamic
Config Parameters:
 Bandwidth: 0 kbps (Global) Priority: 6 6 Affinity: 0x0/0xFFFF
 Metric Type: IGP (interface)
 Path Selection:
 Protection: any (default)
 Path-invalidation timeout: 45000 msec (default), Action: Tear
 AutoRoute: enabled LockDown: disabled Loadshare: 10 [200000000]
 auto-bw: disabled
 Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
 State: explicit path option 20 is active
 BandwidthOverride: disabled LockDown: disabled Verbatim: disabled
History:
 Tunnel:
 Time since created: 6 days, 19 hours, 9 minutes
 Time since path change: 14 seconds
 Number of LSP IDs (Tun_Instances) used: 1819
 Current LSP: [ID: 1819]
 Uptime: 17 seconds
 Selection: reoptimization
 Prior LSP: [ID: 1818]
 ID: path option unknown
 Removal Trigger: reoptimization completed
 Tun_Instance: 1819
 Segment-Routing Path Info (isis level-1)
 Segment0[Node]: 4.4.4.4, Label: 114
 Segment1[Node]: 5.5.5.5, Label: 115
 Segment2[Node]: 6.6.6.6, Label: 116
SR-TE does not support lossless re-optimization with multiple path options.

Note
When FRR is configured and the primary path is brought back up, re-optimization time is in the order of seconds due to microloop.

SR-TE With lockdown Option

The **lockdown** option only prevents SR-TE from re-optimizing to a better path. However, it does not prevent signaling the existence of a new path.

```
interface Tunnel1
ip unnumbered Loopback1 poll point-to-point
tunnel mode mpls traffic-eng
tunnel destination 6.6.6.6
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 6 6
tunnel mpls traffic-eng path-option 10 segment-routing lockdown
tunnel mpls traffic-eng path-option 20 segment-routing
tunnel mpls traffic-eng path-selection metric igp
tunnel mpls traffic-eng 10
```

Router# show mpls traffic-eng tunnels tunnel1
Name: csr551_t1 (Tunnel1) Destination: 6.6.6.6
Status:
- Admin: up
- Oper: up
- Path: valid
- Signalling: connected
- path option 10, (LOCKDOWN) type segment-routing (Basis for Setup)
Config Parameters:
- Bandwidth: 0 kbps (Global)
- Priority: 6 6
- Affinity: 0x0/0xFFFF
- Metric Type: IGP (interface)
- Path Selection:
 - Protection: any (default)
 - Path-invalidation timeout: 45000 msec (default), Action: Tear
 - AutoRoute: enabled
 - LockDown: enabled
 - Loadshare: 10 [200000000]
 - auto-bw: disabled
 - Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
- State: segment-routing path option 10 is active
- BandwidthOverride: disabled
- LockDown: enabled
- Verbatim: disabled
History:
- Tunnel:
 - Time since created: 6 days, 19 hours, 22 minutes
 - Time since path change: 1 minutes, 26 seconds
- Number of LSP IDs (Tun_Instance) used: 1822
- Current LSP: [ID: 1822]
 - Uptime: 1 minutes, 26 seconds
 - Selection: reoptimization
- Prior LSP: [ID: 1821]
 - ID: path option unknown
 - Removal Trigger: configuration changed
- Tun_Instance: 1822
- Segment-Routing Path Info (isis level-1)
 - Segment0(Node): 6.6.6.6, Label: 116
SR-TE Tunnel Protection

Protection for SR TE tunnels can take any of the following alternatives:

Note

50-millisecond traffic protection is not guaranteed for path protection scenarios.

IP-FRR Local Repair Protection

On an SR-TE LSP headend or mid-point node, IP-FRR is used to compute and program the backup protection path for the prefix-SID or adjacency-SID label.

With IP-FRR, backup repair paths are pre-computed and pre-programmed by IGP\s *before* a link or node failure. The failure of a link triggers its immediate withdrawal from the TE topology (link advertisement withdrawal). This allows the headend to detect the failure of an SR-TE LSP traversing the failed adjacency-SID.

When a protected adjacency-SID fails, the failed adjacency-SID label and associated forwarding are kept functional for a specified period of time (5 to 15 minutes) to allow all SR TE tunnel head-ends to detect and react to the failure. Traffic using the adjacency-SID label continues to be FRR protected even if there are subsequent topology updates that change the backup repair path. In this case, the IGP\s update the backup repair path while FRR is active to reroute traffic on the newly-computed backup path.

When the primary path of a protected prefix-SID fails, the PLR reroutes to the backup path. The headend remains transparent to the failure and continues to use the SR-TE LSP as a valid path.

IP-FRR provides protection for adjacency and prefix-SIDs against link failures only.

Tunnel Path Protection

Path protection is the instantiation of one or more standby LSP\s to protect against the failure of the primary LSP of a single TE tunnel.

Path protection protects against failures by pre-computing and pre-provisioning secondary paths that are failure diverse with the primary path-option under the same tunnel. This protection is achieved by computing a path that excludes prefix-SIDs and adjacency-SIDs traversed by the primary LSP or by computing a path that excludes SRLGs of the primary SR-TE LSP path.

If the primary SR-TE LSP fails, at least one standby SR-TE LSP is used for the tunnel. Multiple secondary path-options can be configured to be used as standby SR-TE LSP\s paths.

SR-TE and TI-LFA

Restrictions for Using SR-TE and TI-LFA

- In case of primary and secondary path switchover, a microloop is created between routers. Use the **microloop avoidance rib-update-delay** command to bring down the convergence time

Consider the following topology:

```
-----ixia-2
```
router isis ipfrr
net 49.0001.0120.1201.2012.00
is-type level-2-only
ispf level-2
metric-style wide
log-adjacency-changes
segment-routing mpls
segment-routing prefix-sid-map advertise-local
fast-reroute per-prefix level-2 all
fast-reroute ti-lfa level-2
microloop avoidance rib-update-delay 10000

• Before you configure SR-TE for TI-LFA, you must enable TI-LFA is enabled on all nodes. For more information, see Using Segment Routing with OSPF.

mpls traffic-eng tunnels
! segment-routing mpls
 connected-prefix-sid-map
 address-family ipv4
 1.1.1.1/32 index 11 range 1
 exit-address-family
!
interface Loopback1
 ip address 1.1.1.1 255.255.255.255
 ip router isis 1
!
interface Tunnel1
 ip unnumbered Loopback1 poll point-to-point
tunnel mode mpls traffic-eng
tunnel destination 6.6.6.6
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng path-option 10 explicit name IP_PATH segment-routing
!
interface GigabitEthernet2
 ip address 192.168.1.1 255.255.255.0
 ip router isis 1
 negotiation auto
mpls traffic-eng tunnels
 isis network point-to-point
!
interface GigabitEthernet3
 ip address 192.168.2.1 255.255.255.0
 ip router isis 1
 negotiation auto
mpls traffic-eng tunnels
 isis network point-to-point
!
router isis 1
net 49.0001.0010.0100.1001.00
is-type level-1
ispf level-1
metric-style wide
log-adjacency-changes
segment-routing mpls
fast-reroute per-prefix level-1 all
fast-reroute ti-lfa level-1
mpls traffic-eng router-id Loopback1
mpls traffic-eng level-1
!
ip explicit-path name IP_PATH enable
next-address 4.4.4.4
next-address 5.5.5.5
next-address 6.6.6.6

• To reduce or minimize traffic loss after a high availability (HA) switchover, MPLS TE NSR and IS-IS NSF must be enabled.

Use the mpls traffic-eng nsr command in global EXEC mode.

mpls traffic-eng nsr

Use the nsf command under IS-IS or OSPF.

router isis
nsf cisco
nsf interval 0

• The Cisco ASR routers support 500 SR-TE tunnels with two transport labels, two TI-LFA protection labels and one service label.

• SSO is not supported with SR-TE on the Cisco RSP2 Module.

• For TI-LFA restrictions, see Restrictions for the TI-LFA.

Verifying the SR-TE With TI_LFA Configuration

Router# show mpls traffic-eng tunnels tunnell
Name: PE1 (Tunnell) Destination: 6.6.6.6
Status:
Admin: up Oper: up Path: valid Signalling: connected
path option 10, (SEGMENT-ROUTING) type explicit IP_PATH (Basis for Setup)
Config Parameters:
Bandwidth: 0 kbps (Global) Priority: 7 7 Affinity: 0x0/0xFFFF
Metric Type: TE (default)
Path Selection:
Protection: any (default)
Path-invalidation timeout: 45000 msec (default), Action: Tear
AutoRoute: enabled LockDown: disabled Loadshare: 0 [0] bw-based
auto-bw: disabled
Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
State: explicit path option 10 is active
BandwidthOverride: disabled LockDown: disabled Verbatim: disabled
History:
Tunnel:
Time since created: 4 hours, 25 minutes
Time since path change: 4 hours, 21 minutes
Number of LSP IDs (Tun_Instances) used: 37
Current LSP: [ID: 37]
Uptime: 4 hours, 21 minutes
Tun_Instance: 37
Segment-Routing Path Info (isis level-1)
Segment0[Node]: 4.4.4.4, Label: 16014
Segment1[Node]: 5.5.5.5, Label: 16015
Segment2[Node]: 6.6.6.6, Label: 16016

Router# show isis fast-reroute ti-lfa tunnel

Tag 1:
Fast-Reroute TI-LFA Tunnels:

<table>
<thead>
<tr>
<th>Tunnel Interface</th>
<th>Next Hop</th>
<th>End Point</th>
<th>Label</th>
<th>End Point Host</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1 Gi2</td>
<td>192.168.1.2</td>
<td>6.6.6.6</td>
<td>16016</td>
<td>SR_R6</td>
</tr>
<tr>
<td>MP2 Gi3</td>
<td>192.168.2.2</td>
<td>6.6.6.6</td>
<td>16016</td>
<td>SR_R6</td>
</tr>
</tbody>
</table>

Router# show frr-manager client

client-name
ISIS interfaces detail
TunnelI/F: MP1
 Type: SR
 Next-hop: 192.168.1.2
 End-point: 6.6.6.6
 OutI/F: Gi2
 Adjacency State: 1
 Prefix0: 6.6.6.6 (Label: 16016)
TunnelI/F: MP2
 Type: SR
 Next-hop: 192.168.2.2
 End-point: 6.6.6.6
 OutI/F: Gi3
 Adjacency State: 1
 Prefix0: 6.6.6.6 (Label: 16016)

Router# show ip cef 6.6.6.6 internal

6.6.6.6/32, epoch 2, RIB[I], refcnt 6, per-destination sharing
sources: RIB, LTE
feature space:
 IPRM: 0x000028000
 Broker: linked, distributed at 1st priority
 LFD: 6.6.6.6/32 1 local label
 sr local label info: global/16016 [0x1A]
 contains path extension list
 sr disposition chain 0x7FC6B0BF2AF0
 label implicit-null
 IP midchain out of Tunnel1
 label 16016
 FRR Primary
 <primary: label 16015
 TAG adj out of GigabitEthernet3, addr 192.168.2.2>
 sr label switch chain 0x7FC6B0BF2BF8
 label implicit-null
 TAG midchain out of Tunnel1
 label 16016
 FRR Primary
 <primary: label 16015
 TAG adj out of GigabitEthernet3, addr 192.168.2.2>
ifnums:
 Tunnel1(13)
 path list 7FC6B0BBDE0, 3 locks, per-destination, flags 0x49 [shble, rif, hwcn]
 path 7FC7144D4300, share 1/1, type attached nexthop, for IPv4
 MPLS short path extensions: [rib | prmfi | lblmrg | srlbl] MOI flags = 0x3 label implicit-null
 nexthop 6.6.6.6 Tunnel1, IP midchain out of Tunnel1 7FC6B0BBD440
output chain:
 IP midchain out of Tunnel1 7FC6B0BBD440
 label [16016 | 16016]
 FRR Primary (0x7FC714515460)
To ensure a less than 50-msec traffic protection with TI-LFA, SR-TE with dynamic path option must use the backup adjacency SID.

To create an SR-TE with dynamic path option, use the following configuration on every router in the topology:

```plaintext
clear isis
fast-reroute per-prefix level-1 all

At the tunnel headend router:

interface Tunnel1
ip unnumbered Loopback1 poll point-to-point
tunnel mode mpls traffic-eng
tunnel destination 6.6.6.6
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng path-option 1 dynamic segment-routing
tunnel mpls traffic-eng path-selection segment-routing adjacency protected
```

Configuring TI-LFA With Mapping Server

Consider the following topology:

- IXIA-2 injects IS-IS prefixes, and IXIA-1 sends one-way traffic to IXIA-2
- In R1 10,000 prefixes are configured in the segment-routing mapping-server

The configuration on R1 is:

```plaintext
conf t
segment-routing mpls
global-block 16 20016
! connected-prefix-sid-map
address-family ipv4
11.11.11.11/32 index 11 range 1
exit-address-family
!
! mapping-server
! prefix-sid-map
address-family ipv4
120.0.0.0/24 index 2 range 1 attach
200.0.0.0/24 index 1 range 1 attach
192.168.0.0/24 index 100 range 10000 attach
exit-address-family
!
!
```
interface Loopback0
ip address 11.11.11.11 255.255.255.255
ip router isis ipfrr
!
interface GigabitEthernet0/1/0
ip address 14.0.0.1 255.255.255.0
ip router isis ipfrr
negotiation auto
isis network point-to-point
!
interface GigabitEthernet0/1/2
ip address 11.0.0.1 255.255.255.0
ip router isis ipfrr
negotiation auto
isis network point-to-point
!
interface GigabitEthernet0/1/4
ip address 200.0.0.1 255.255.255.0
ip router isis ipfrr
negotiation auto
isis network point-to-point
!
router isis ipfrr
net 49.0001.0110.1101.1011.00
is-type level-2-only
metric-style wide
log-adjacency-changes
nsf cisco
segment-routing mpls
segment-routing prefix-sid-map advertise-local
fast-reroute per-prefix level-2 all
fast-reroute ti-lfa level-2
microloop avoidance rib-update-delay 10000

On R2 the configuration is

conf t
!
segment-routing mpls
!
connected-prefix-sid-map
address-family ipv4
12.12.12.12/32 index 12 range 1
exit-address-family
!
!
interface Loopback0
ip address 12.12.12.12 255.255.255.255
ip router isis ipfrr
!
interface GigabitEthernet0/1/0
ip address 12.0.0.1 255.255.255.0
ip router isis ipfrr
negotiation auto
isis network point-to-point
!
interface GigabitEthernet0/1/1
ip address 11.0.0.2 255.255.255.0
ip router isis ipfrr
negotiation auto
isis network point-to-point
!
routing isis ipfrr
On R3 the configuration is:

```conf
conf t
mpls traffic-eng tunnels
segment-routing mpls
connected-prefix-sid-map
address-family ipv4
13.13.13.13/32 index 13 range 1
exit-address-family
!
interface Loopback0
ip address 13.13.13.13 255.255.255.255
ip router isis ipfrr
!
interface GigabitEthernet0/0/4
ip address 13.0.0.1 255.255.255.0
ip router isis ipfrr
load-interval 30
speed 1000
no negotiation auto
isis network point-to-point
!
interface GigabitEthernet0/0/5
ip address 12.0.0.2 255.255.255.0
ip router isis ipfrr
negotiation auto
isis network point-to-point
!
router isis ipfrr
net 49.0001.0130.1301.3013.00
is-type level-2-only
metric-style wide
log-adjacency-changes
nsf cisco
segment-routing mpls
segment-routing prefix-sid-map advertise-local
fast-reroute per-prefix level-2 all
fast-reroute ti-lfa level-2
microloop avoidance rib-update-delay 10000
!
```

On R4 the configuration is:

```conf
conf t
mpls traffic-eng tunnels
```
segment-routing mpls
!
connected-prefix-sid-map
address-family ipv4
exit-address-family
!
interface Loopback0
ip router isis ipfrr
!
interface GigabitEthernet0/0/0
ip address 14.0.0.2 255.255.255.0
ip router isis ipfrr
negotiation auto
isis network point-to-point
!
interface GigabitEthernet0/0/3
ip address 13.0.0.2 255.255.255.0
ip router isis ipfrr
speed 1000
no negotiation auto
isis network point-to-point
!
interface GigabitEthernet0/0/5
ip address 120.0.0.1 255.255.255.0
ip router isis ipfrr
speed 1000
no negotiation auto
isis network point-to-point
!
router isis ipfrr
net 49.0001.0140.1401.4014.00
is-type level-2-only
metric-style wide
log-adjacency-changes
nsf cisco
segment-routing mpls
segment-routing prefix-sid-map advertise-local
fast-reroute per-prefix level-2 all
fast-reroute ti-lfa level-2
microloop avoidance rib-update-delay 10000
!
CHAPTER 6

SR-TE On Demand LSP

Effective Cisco IOS XE Everest 16.6.1, SR TE On demand LSP feature provides the ability to connect Metro access rings via a static route to the destination. The static route is mapped to an explicit path that triggers an on demand LSP to the destination. The SR TE On demand LSP feature will be used to transport the VPN services between the Metro access rings.

Note

SR-TE On Demand LSP is available only on the Cisco RSP2 Module.

• Restrictions for SR-TE On Demand LSP, on page 65
• Information About SR-TE On Demand LSP, on page 65
• How to Configure SR-TE On Demand LSP, on page 66

Restrictions for SR-TE On Demand LSP

• Segment-Routing auto tunnel static route does not support ECMP.
• Metrics for IP explicit path and administrative distance change for auto tunnel SRTE static route is not supported.
• MPLS Traffic Engineering (TE) Nonstop Routing (NSR) must be configured on the active route processor (RP) for Stateful Switchover (SSO). This is because SR static auto tunnel fails to come up after SSO, unless the static route auto tunnel configuration is removed and reconfigured.
• IP unnumbered interfaces do not support dynamic path.
• When using IP unnumbered interfaces, you cannot specify next hop address as an explicit path index. It should be a node address or a label.

Information About SR-TE On Demand LSP

The SR TE On demand LSP feature provides the ability to connect Metro access rings via a static route to the destination.

SR-TE: Setup LSP as Static Route

Agile Carrier Ethernet (ACE) solution leverages Segment Routing-based transport for consolidated VPN services. In metro rings architecture, the access rings do not share their routing topologies with each other.
The SR TE On demand LSP feature provides the ability to connect Metro access rings via a static route to the destination. The static route is mapped to an explicit path and that will trigger an on demand LSP to the destination. The SR TE On demand LSP feature is used to transport the VPN services between the Metro access rings.

Figure 7: Inter-Metro LSP in ACE Solution

Inter-Metro LSPs have the following aspects:

- The source packet may not know the IP address of the destination device.
- Existing segment routing features are applicable for LSPs.
- The binding SID helps in steering the traffic in the SR-TE tunnel. In other words, ingress MPLS packet with the binding SID will be forwarded through the specific SR-TE tunnel.

Static SRTE over Unnumbered Interfaces

As explained in the previous section, you can set up LSP as static route to create an auto tunnel by specifying an IP explicit path.

The explicit path is a combination of IP addresses (or) IP address and labels. You can also configure the static SRTE tunnel over unnumbered interfaces. There are few restrictions for unnumbered interfaces against numbered interfaces.

- You must specify the node IP address, not the next hop interface address in the ip-explicit path option.
- You must not specify adjacency SID in the explicit path option. In short, the explicit path option should contain only the node IP address (/32 mask) and prefix SID labels.

How to Configure SR-TE On Demand LSP

Perform the following steps to configure SR-TE On Demand LSP.

Configuring LSP as Static Route

To avoid packet drop after RP switchover with SR TE, it is recommended to use the following command:
mpls traffic-eng nsr

If ISIS is configured, use the following command:

```
router isis
    nsf cisco
    nsf interval 0
```

Enabling Segment Routing Auto Tunnel Static Route

Perform this task to configure auto tunnel static route as follows:

- Configure IP explicit path
- Associate the auto tunnel with an IP explicit path with a static route
- Enable peer-to-peer (P2P) auto tunnel service

```
ip explicit-path name path1
    index 1 next-label 16002
    index 2 next-label 16006
    exit

mpls traffic-eng auto-tunnel p2p
mpls traffic-eng auto-tunnel p2p config unnumbered-interface loopback0
mpls traffic-eng auto-tunnel p2p tunnel-num min 10 max 100
ip route 172.16.0.1 255.240.0.0 segment-routing mpls path name path1
```

Verifying Segment Routing Auto-Tunnel Static Route

The command `show mpls traffic-eng service summary` displays all registered TE service clients and statistics that use TE auto tunnel.

```
Device# show mpls traffic-eng service summary
Service Clients Summary:
Client: BGP TE
    Client ID     : 0
    Total P2P tunnels : 1
    P2P add requests : 6
    P2P delete requests : 5
    P2P add fail : 0
    P2P delete fail : 0
    P2P notify fail : 0
    P2P notify success : 12
    P2P replays : 0
Client: ipv4static
    Client ID     : 1
    Total P2P tunnels : 1
    P2P add requests : 6
    P2P delete requests : 5
    P2P add fail : 0
    P2P delete fail : 0
    P2P notify fail : 0
    P2P notify success : 85
    P2P replays : 0
```

The command `show mpls traffic-eng auto-tunnel p2p` displays the peer-to-peer (P2P) auto tunnel configuration and operation status.
The command **show mpls traffic-eng tunnel summary** displays the status of P2P auto tunnel.

```
Device# show mpls traffic-eng auto-tunnel p2p
State: Enabled
  p2p auto-tunnels: 2 (up: 2, down: 0)
  Default Tunnel ID Range: 62336 - 64335
Config:
  unnumbered-interface: Loopback0 Tunnel ID range: 1000 - 2000
```

The command **show mpls traffic-eng tunnel summary** displays the status of P2P auto tunnel.

```
Device# show mpls traffic-eng tunnel summary
Signalling Summary:
  LSP Tunnels Process:
    Passive LSP Listener:
    RSVP Process:
      Forwarding:
        auto-tunnel:
          running
          running
          running
          enabled
  p2p   Enabled (1), id-range:1000-2000
Periodic reoptimization:
Periodic FRR Promotion:
Periodic auto-bw collection:
SR tunnel max label push:
P2P:
  every 3600 seconds, next in 1265 seconds
Not Running
  every 300 seconds, next in 66 seconds
13 labels
    Head: 11 interfaces,  5234 active signalling attempts, 1 established
    5440 activations, 206 deactivations
    1821 failed activations
    0 SSO recovery attempts, 0 SSO recovered
    Midpoints: 0, Tails: 0
P2MP:
    Head: 0 interfaces,  0 active signalling attempts, 0 established
    0 sub-LSP activations, 0 sub-LSP deactivations
    0 LSP successful activations, 0 LSP deactivations
    0 SSO recovery attempts, LSP recovered: 0 full, 0 partial, 0 fail
    Midpoints: 0, Tails: 0
Bidirectional Tunnel Summary:
  Tunnel Head: 0 total, 0 connected, 0 associated, 0 co-routed
  LSPs Head:
  LSPs Mld:
  LSPs Tail:
    0 established, 0 proceeding, 0 associated, 0 standby
    0 established, 0 proceeding, 0 associated, 0 standby
    0 established, 0 proceeding, 0 associated, 0 standby
AutoTunnel P2P Summary:
  ipv4static:
    Tunnels: 1 created, 1 up, 0 down
Total:
    Tunnels: 1 created, 1 up, 0 down
```

The command **show ip explicit-path** displays the configured IP explicit paths.

```
Device# show ip explicit-path
```
PATH path1 (strict source route, path complete, generation 5)
1: next-label 16055
2: next-label 16070
3: next-label 16010

PATH path2 (strict source route, path complete, generation 9)
1: next-label 16070
2: next-label 16010

Device# show running-config | i ip route
ip route 10.10.10.10 255.255.255.255 segment-routing mpls path name path1 verbatim
ip route 11.11.11.1 255.255.255.255 segment-routing mpls path name path2 verbatim
ip route 11.11.11.2 255.255.255.255 segment-routing mpls path name path2 verbatim

The command `show mpls traffic-eng tunnel auto-tunnel detail` only displays TE service auto tunnel.

Device# show mpls traffic-eng tunnel auto-tunnel detail
P2P TUNNELS/LSPs:
Name: R1-RSP2_t4000 (auto-tunnel for ipv4static) (Tunnel4000) Destination: 0.0.0.0 Ifhandle: 0x23
Status:
Admin: up Oper: up Path: valid Signalling: connected
path option 1, (SEGMENT-ROUTING) type explicit (verbatim) path1 (Basis for Setup)
Config Parameters:
Bandwidth: 0 kbps (Global) Priority: 7 7 Affinity: 0x0/0xFFFF
Metric Type: TE (default) Path Selection:
Protection: any (default) Path-selection Tiebreaker:
State: explicit path option 1 is active BandwidthOverride: disabled LockDown: disabled Verbatim: enabled
History:
Tunnel:
Time since created: 7 days, 22 hours, 48 minutes
Time since path change: 7 days, 22 hours, 47 minutes
Number of LSP IDs (Tun_Instances) used: 9 Current LSP: [ID: 9]
Uptime: 7 days, 22 hours, 47 minutes Tun_Instance: 9
Segment-Routing Path Info (IGP information is not used)
Segment0[First Hop]: 0.0.0.0, Label: 16055 Segment1[-]: Label: 16070 Segment2[-]: Label: 16010

The command `show mpls traffic-eng tunnel brief` displays auto tunnel information.

Device# show mpls traffic-eng tunnel brief
Signalling Summary:
auto-tunnel:
p2p Enabled (2), id-range:1000-2000
 Periodic reoptimization: every 3600 seconds, next in 406 seconds
 Periodic FRR Promotion: Not Running
 Periodic auto-bw collection: every 300 seconds, next in 107 seconds
 SR tunnel max label push: 13 labels
P2P TUNNELS/LSPs:
<table>
<thead>
<tr>
<th>TUNNEL NAME</th>
<th>DESTINATION</th>
<th>UP IF</th>
<th>DOWN IF</th>
<th>STATE/PROT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1_t1</td>
<td>66.66.66.66</td>
<td>-</td>
<td>-</td>
<td>up/down</td>
</tr>
<tr>
<td>R1_t2</td>
<td>66.66.66.66</td>
<td>-</td>
<td>-</td>
<td>up/down</td>
</tr>
<tr>
<td>R1_t3</td>
<td>66.66.66.66</td>
<td>-</td>
<td>-</td>
<td>up/down</td>
</tr>
<tr>
<td>R1_t10</td>
<td>66.66.66.66</td>
<td>-</td>
<td>-</td>
<td>up/down</td>
</tr>
<tr>
<td>SBFD tunnel</td>
<td>33.33.33.33</td>
<td>-</td>
<td>-</td>
<td>up/down</td>
</tr>
</tbody>
</table>
SBFD Session configured: 1 SBFD sessions UP: 1
SR-TE On-Demand Next Hop

When redistributing routing information across domains, provisioning of multi-domain services (Layer 2 VPN and Layer 3 VPN) has its own complexity and scalability issues. Effective Cisco IOS XE Everest 16.6.1, On-Demand Next Hop (ODN) triggers delegation of computation of an end-to-end LSP to a PCE controller including constraints and policies without doing any redistribution. It then installs the reapplied multi-domain LSP for the duration of the service into the local forwarding information base (FIB).

SR-TE On-Demand Next Hop is available only on the Cisco RSP2 Module.

Restrictions for SR-TE On-Demand Next Hop

- ODN anycast SID is not supported.
- ODN for IPv6 is not supported.
- Only BGP-LS is supported on the Cisco RSP3 Module. BGP-LS with ODN is supported on the Cisco RSP2 Module.

Information About SR-TE On-Demand Next Hop

On-Demand Next hop leverages upon BGP Dynamic SR-TE capabilities and adds the path computation (PCE) ability to find and download the end to end path based on the requirements. ODN triggers an SR-TE auto-tunnel based on the defined BGP policy. As shown in the following figure, an end-to-end path between ToR1 and AC1 can be established from both ends based on low latency or other criteria for VRF (L3VPN) or IPv4 services. The work-flow for ODN is summarized as follows:
Figure 8: ODN Operation

1. PCE controller collects topology and SIDs information via BGP Link State (BGP-LS). For more information on BGP-LS, refer BGP Link-State.

2. If NSO controller is enabled, it configures L3VPN VRF or IPv4 prefixes and requests are sent to ToR1 and AC1.

3. ToR1 and AC1 checks if an LSP toward each other exists. If not, a request is sent to the PCE controller to compute that SR-TE path that matches SR-TE policy that is carried through BGP.

4. PCE controller computes the path and replies with a label stack (18001, 18002, 16001, example in ToR1).

5. ToR1 and AC1 create an SR-TE auto-tunnel and reply to the NSO controller indicating that the LSP for VRF or IPv4 is up and operational.

Fast Convergence Default Optimize

The fast convergence "default optimize" feature modifies the default settings of all the protocols to recommended defaults for fast convergence. To revert the defaults to pre-fast-convergence settings for both IS-IS and OSPF, routing-default-optimize command is used. This command sends signals to IS-IS and OSPF and modifies the default configuration for these protocols.

By default, the fast convergence setting is enabled which means when you upgrade the software, you can automatically see the new behavior. This makes easier integration of the devices in a multivendor deployment and reduces support cases for poor convergence.

When default optimize is disabled, existing protocol default configuration is used. When default optimize is enabled, new protocol defaults are used. The show running configurations does not display configuration lines for default settings even when default settings are being used.

A configuration of a protocol overrides the default, but a change to default optimize does not override any configuration.

The following is the sample output of spf-interval command in IS-IS:

```
Device(config-if)# router isis
Device(config-router)# spf-interval 10 5500 5500
```

If a non-default value is configured, it is displayed in show running configuration output:
Device(config-router)# spf-interval 5 50 200
Device(config-router)# do show run | inc spf-interval
spf-interval 5 50 200

You can revert to the default values by configuring the default values or by removing the non-default configuration.

Default Optimize Values for IS-IS

The following table summarizes the configuration impacted by default optimize:

<table>
<thead>
<tr>
<th>IS-IS command</th>
<th>Parameters</th>
<th>Default optimize disabled</th>
<th>Default optimize enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>fast-flood</td>
<td>number of LSPs flooded back-to-back</td>
<td>Disabled</td>
<td>10</td>
</tr>
<tr>
<td>spf-interval</td>
<td>Initial (milliseconds)</td>
<td>5500</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Secondary (milliseconds)</td>
<td>5500</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Max (seconds)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>prc-interval</td>
<td>Initial (milliseconds)</td>
<td>2000</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Secondary (milliseconds)</td>
<td>5000</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Max (seconds)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>lsp-gen-interval</td>
<td>Initial (milliseconds)</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Secondary (milliseconds)</td>
<td>5000</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Max (seconds)</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>log-adjacency-changes</td>
<td></td>
<td>disabled</td>
<td>enabled</td>
</tr>
</tbody>
</table>

Default Optimize Values for OSPF

The following table summarizes the configuration impacted by default optimize for OSPFv2/v3:

<table>
<thead>
<tr>
<th>OSPF command</th>
<th>Parameters</th>
<th>Default optimize disabled</th>
<th>Default optimize enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>timers throttle spf</td>
<td>Initial (milliseconds)</td>
<td>5500</td>
<td>50</td>
</tr>
</tbody>
</table>
The following is the sample output of show ip ospf command for OSPFv2 with the default-optimize values.

```
Device# show ip ospf
Routing Process "ospf 10" with ID 1.1.1.1
Start time: 00:00:01.471, Time elapsed: 03:00:34.706
Supports only single TOS(TOS0) routes
Supports opaque LSA
Supports Link-local Signaling (LLS)
Supports area transit capability
Supports NSSA (compatible with RFC 3101)
Supports Database Exchange Summary List Optimization (RFC 5243)
Event-log enabled, Maximum number of events: 1000, Mode: cyclic
Router is not originating router-LSAs with maximum metric
Initial SPF schedule delay 50 msecs
Minimum hold time between two consecutive SPFs 200 msecs
Maximum wait time between two consecutive SPFs 5000 msecs
Incremental-SPF disabled
Initial LSA throttle delay 50 msecs
Minimum hold time for LSA throttle 200 msecs
Maximum wait time for LSA throttle 5000 msecs
Minimum LSA arrival 100 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
EXCHANGE/LOADING adjacency limit: initial 300, process maximum 300
Number of external LSA 18. Checksum Sum 0x075EB2
Number of opaque AS LSA 0. Checksum Sum 0x000000
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Number of areas transit capable is 0
External flood list length 0
IETF NSF helper support enabled
Cisco NSF helper support enabled
Reference bandwidth unit is 100 mbps
Area BACKBONE(0)
   Number of interfaces in this area is 4 (2 loopback)
   Area has RRR enabled
   Area has no authentication
   SPF algorithm last executed 02:27:23.736 ago
   SPF algorithm executed 20 times
   Area ranges are
   Number of LSA 94. Checksum Sum 0x321DCF
```
The following is the sample output of `show ospf` command for OSPFv3 with the default-optimize values.

```
Device# show ospfv3
OSPFv3 10 address-family ipv6
Router ID 11.11.11.11
Supports NSSA (compatible with RFC 3101)
Supports Database Exchange Summary List Optimization (RFC 5243)
Event-log enabled, Maximum number of events: 1000, Mode: cyclic
Router is not originating router-LSAs with maximum metric
Initial SPF schedule delay 50 msecs
Minimum hold time between two consecutive SPF's 200 msecs
Maximum wait time between two consecutive SPF's 5000 msecs
Initial LSA throttle delay 50 msecs
Minimum hold time for LSA throttle 200 msecs
Maximum wait time for LSA throttle 5000 msecs
Minimum LSA arrival 100 msecs
LSA group pacing timer 240 secs
Interface flood pacing timer 33 msecs
Retransmission pacing timer 66 msecs
Retransmission limit dc 24 non-dc 24
EXCHANGE/LOADING adjacency limit: initial 300, process maximum 300
Number of external LSA 0. Checksum Sum 0x000000
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
Graceful restart helper support enabled
Reference bandwidth unit is 100 mbps
RFC1583 compatibility enabled
Area BACKBONE(0)
    Number of interfaces in this area is 2
    SPF algorithm executed 7 times
    Number of LSA 3. Checksum Sum 0x012426
    Number of DCbitless LSA 0
    Number of indication LSA 0
    Number of DoNotAge LSA 0
    Flood list length 0
```

How to Configure Segment Routing On-Demand Next Hops—Layer 3 and Layer 3 VPN

Perform the following steps to configure on-demand next hop for SR-TE. The following figure is used as a reference to explain the configuration steps.

How to Configure Segment Routing On-Demand Next Hops—Layer 3 and Layer 3 VPN

Configuring Segment Routing On-Demand Next Hops—Layer 3 and Layer 3 VPN

Perform the following steps to configure on-demand next hop for SR-TE. The following figure is used as a reference to explain the configuration steps.
1. Configure the router (R6 tailend) with VRF interface.

```plaintext
vrf definition sr
  rd 100:100
  route-target export 100:100
  route-target import 100:100

address-family ipv4

address-family ipv6

interface gigabitEthernet0/0/11
  vrf forwarding sr
  ip address 30.30.30.1 255.255.255.0
```

2. Tags VRF prefix with BGP community on R6 (tailend).

```plaintext
route-map BGP_TE_MAP permit 9
match ip address L3VPN_ODN_ROUTES
set community 3276850
ip access-list extended L3VPN_ODN_ROUTES
  permit ip 30.30.30.1 255.255.255.0 any
```

3. Enable BGP on R6 (tailend) and R1 (headend) to advertise and receive VRF SR prefix and match on community set on R6 (tailend).

```plaintext
router bgp 100
  neighbor 10.0.0.2 remote-as 100
  no bgp default ipv4-unicast
  neighbor 10.0.0.2 update-source Loopback0
  address-family ipv4
    neighbor 10.0.0.2 send-community both
```
neighbor 10.0.0.2 next-hop-self
exit-address-family
address-family vpnv4
neighbor 10.0.0.2 activate
neighbor 10.0.0.2 send-community both
neighbor 10.0.0.2 route-map BGP_TE_MAP out
exit-address-family
address-family link-state link-state
neighbor 10.0.0.2 activate
exit-address-family
address-family ipv4 vrf sr
redistribute connected
exit-address-family
route-map BGP_TE_MAP permit 9
match ip address traffic
set community 3276850
ip access-list extended traffic
permit ip 10.0.0.1 255.255.0.0 any
router bgp 100 <-- This BGP configuration applies to the headend
bgp router-id 192.168.0.2
bgp log-neighbor-changes
bgp graceful-restart
no bgp default ipv4-unicast
neighbor 10.0.0.2 remote-as 100
neighbor 10.0.0.2 update-source Loopback0
address-family ipv4
neighbor 10.0.0.2 activate
neighbor 10.0.0.2 send-community both
neighbor 10.0.0.2 next-hop-self
exit-address-family
address-family vpnv4
neighbor 10.0.0.2 activate
neighbor 10.0.0.2 send-community both
neighbor 10.0.0.2 route-map BGP_TE_MAP in
exit-address-family
address-family link-state link-state
neighbor 10.0.0.2 activate
exit-address-family
address-family ipv4 vrf sr
redistribute connected
exit-address-family
route-map BGP_TE_MAP permit 9
match community 1
set attribute-set BGP_TE5555
ip community-list 1 permit 3276850
mpls traffic-eng lsp attributes BGP_TE5555
path-selection metric igp
pce

4. Enable route-map or attribute set on headend (R1).

 route-map BGP_TE_MAP permit 9
 match community 1
 set attribute-set BGP_TE5555
 ip community-list 1 permit 3276850
 mpls traffic-eng lsp attributes BGP_TE5555
 path-selection metric igp
 pce
 end

5. Enable PCE and auto-tunnel configurations on R1.

 mpls traffic-eng tunnels
mpls traffic-eng pcc peer 10.0.0.3 source 10.0.0.4 precedence 255
mpls traffic-eng auto-tunnel p2p tunnel-num min 2000 max 5000

6. Enable all core links with SR-TE configurations and ensure that they are enabled as point-to-point interfaces.

mpls traffic-eng tunnels
interface GigabitEthernet0/2/0
 ip address 101.102.6.1 255.255.255.0
 ip router isis 1
mpls traffic-eng tunnels
isis network point-to-point
 interface GigabitEthernet0/3/1
 vrf forwarding sr
 ip address 101.107.3.1 255.255.255.0
 negotiation auto
 end

7. Enable R3 (RR) to advertise TED to the PCE server via BGP-LS.

router isis 1
 net 49.0002.0000.0000.0003.00
 ispf level-1-2
 metric-style wide
 nsf cisco
 nsf interval 0
 distribute link-state
 segment-routing mpls
 segment-routing prefix-sid-map advertise-local
 redistribute static ip level-1-2
 mpls traffic-eng router-id Loopback0
 mpls traffic-eng level-1
 mpls traffic-eng level-2
 router bgp 100
 bgp router-id 10.0.0.2
 bgp log-neighbor-changes
 bgp graceful-restart
 no bgp default ipv4-unicast
 neighbor 10.0.0.3 remote-as 100
 neighbor 10.0.0.3 update-source Loopback0
 address-family ipv4
 neighbor 10.0.0.3 activate
 exit-address-family

8. Enable PCE server configuration and verify that BGP-LS session is properly established with RR.

Device# show bgp li li summary
BGP router identifier 10.0.0.3, local AS number 100
BGP generic scan interval 60 secs
Non-stop routing is enabled
BGP table state: Active
Table ID: Ox0 RD version: 1436
BGP main routing table version 1436
BGP NSR Initial initsync version 1 (Reached)
BGP NSR/ISSU Sync-Group versions 0/0
BGP scan interval 60 secs
BGP is operating in STANDALONE mode.
Process RcvTblVer bRIB/RIB LabelVer ImportVer SendTblVer StandbyVer
 Speaker 1436 1436 1436 1436 1436
 0
Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd
 10.0.0.2 0 100 19923 17437 1436 0 0 1w2d 103
Device# show pce ipv4 topo | b Node 3
Verifying Segment Routing On-Demand Next Hop—Layer 3 and Layer 3 VPN

The ODN verifications are based on L3VPN VRF prefixes.

1. Verify that PCEP session between R1 (headend and PCE server) is established.

 Device# show pce client peer
 PCC's peer database:

 Peer address: 10.0.0.3 (best PCE)
 State up
 Capabilities: Stateful, Update, Segment-Routing

2. Verify that PCEP session is established between all the peers (PCCs).

 Device# show pce ipv4 peer
 PCE's peer database:

 Peer address: 10.0.0.4
 State: Up
 Capabilities: Stateful, Segment-Routing, Update
 Peer address: 172.16.0.5
 State: Up
 Capabilities: Stateful, Segment-Routing, Update

3. Verify that R1 (headend) has no visibility to R6 loopback address.

 Device# show ip route 192.168.0.1
 % Network not in table

4. Verify that VRF prefix is injected via MP-BGP in R1 VRF SR routing table.

 Device# show ip route vrf sr
 Routing Table: sr

Note: The above show command is run only on the PCE server, for example the Cisco ASR 9000 Series Aggregation Services Routers.
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR

Gateway of last resort is not set

C L
B
10.0.0.6/8 is variably subnetted, 2 subnets, 2 masks
10.0.0.7/24 is directly connected, GigabitEthernet0/3/1
10.0.0.7/32 is directly connected, GigabitEthernet0/3/1
10.0.0.8/24 is subnetted, 1 subnets
10.0.0.9 [200/0] via binding label: 865, 4d21h

5. Verify that BGP is associating properly the policy and binding SID with the VRF prefix.

Device# show ip bgp vpnv4 vrf sr 106.107.4.0
BGP routing table entry for 100:100:106.107.4.0/24, version 3011
Paths: (1 available, best #1, table sr)
Not advertised to any peer
Refresh Epoch 4
Local
192.168.0.1 (metric 10) (via default) from 10.0.0.2 (10.0.0.2)
Origin incomplete, metric 0, localpref 100, valid, internal, best
Community: 3276850
Extended Community: RT:100:100
Originator: 192.168.0.1, Cluster list: 10.0.0.2
mpls labels in/out nolabel/1085
binding SID: 865 (BGP_TE5555)
rx pathid: 0, tx pathid: 0x0

6. Verify binding label association with VRF prefix.

Device# show ip route vrf sr 106.107.4.0
Routing Table: sr
Routing entry for 106.107.4.0/24
Known via "bgp 100", distance 200, metric 0, type internal
Routing Descriptor Blocks:
* Binding Label: 865, from 10.0.0.2, 4d22h ago
 Route metric is 0, traffic share count is 1
 AS Hops 0
 MPLS label: 1085
 MPLS Flags: NSF

7. Verify that VRF prefix is forwarded via ODN auto-tunnel.

Device# show ip cef label-table
Label Next Hop Interface
865 attached Tunnel2000

Device# show ip cef vrf sr 106.107.4.0 detail
10.0.0.8/24, epoch 15, flags [rib defined all labels]
 recursive via 865 label 1085
 attached to Tunnel2000

8. Verify ODN auto-tunnel status.
Device# show mpls traffic-eng tunnels
P2P TUNNELS/LSPs:
Name: R1_t2000 (Tunnel2000) Destination: 192.168.0.1 Ifhandle: 0x6F5
(auto-tunnel for BGP TE)
Status:
Admin: up Oper: up Path: valid Signalling: connected--... auto-tunnel
2000
path option 1, (SEGMENT-ROUTING) (PCE) type dynamic (Basis for Setup, path weight 10)
Config Parameters:
Bandwidth: 0 kbps (Global) Priority: 7 7 Affinity: 0x0/0xFFFF
Metric Type: IGP (interface)
Path Selection:
Protection: any (default)
Path-selection Tiebreaker:
Global: not set Tunnel Specific: not set Effective: min-fill (default)
Hop Limit: disabled
Cost Limit: disabled
Path-invalidation timeout: 10000 msec (default), Action: Tear
AutoRoute: disabled LockDown: disabled Loadshare: 0 [0] bw-based auto-bw: disabled
Attribute-set: BGP_TE5555--- attribute-set
Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No
Active Path Option Parameters:
State: dynamic path option 1 is active
BandwidthOverride: disabled LockDown: disabled Verbatim: disabled
PCEP Info:
Delegation state: Working: yes Protect: no
Working Path Info:
Request status: processed created via PCRep message
PCE metric: 30, type: IGP
Reported paths:
Tunnel Name: Tunnel2000_w LSPs:
LSP[0]:
from PCE server: 10.0.0.3-- via PCE server
source 10.0.0.4 destination 192.168.0.1, tunnel ID 2000, LSP ID 1
State: Admin up, Operation active
Binding SID: 865
Setup type: SR Bandwidth: requested 0, used 0
LSP object:
PLSP-ID 0x807D0, flags: D:0 S:0 R:0 A:1 O:2
Metric type: IGP, Accumulated Metric 0
ERO:
SID[0]: Adj, Label 2377, NAI: local 101.102.6.1 remote 10.0.0.10
SID(1): Unspecified, Label 17, NAI: n/a
SID(2): Unspecified, Label 20, NAI: n/a
History:
Tunnel:
Time since created: 4 days, 22 hours, 21 minutes
Time since path change: 4 days, 22 hours, 21 minutes
Number of LSP IDs (Tun_Instances) used: 1
Current LSP: [ID: 1]
Uptime: 4 days, 22 hours, 21 minutes
Tun_Instance: 1
Segment-Routing Path Info (isis level-1)
Segment0[Link]: 101.102.6.1 -- 10.0.0.10, Label: 2377
Segment1[-]: Label: 17
Segment2[-]: Label: 20

Device# `show pce client lsp brief`

PCC's tunnel database:

Tunnel Name: Tunnel2000_w
 LSP ID 1
Tunnel Name: Tunnel2000_p

R1# `sh pce client lsp detail`

PCC's tunnel database:

Tunnel Name: Tunnel2000_w
LSPs:
 LSP[0]:
 source 10.0.0.4, destination 192.168.0.1, tunnel ID 2000, LSP ID 1
 State: Admin up, Operation active
 Binding SID: 865
 Setup type: SR
 Bandwidth: requested 0, used 0
 LSP object:
 PLSP-ID 0x807D0, flags: D:0 S:0 R:0 A:1 O:2
 Metric type: IGP, Accumulated Metric 0
 ERO:
 SID[0]: Adj, Label 2377, NAI: local 101.102.6.1 remote 10.0.0.10
 SID[1]: Unspecified, Label 17, NAI: n/a
 SID[2]: Unspecified, Label 20, NAI: n/a

10. **Verify ODN LSP status on the PCE server.**

Device# `show pce lsp summary`

PCE's LSP database summary:

All peers:
 Number of LSPs: 1
 Operational: Up: 1 Down: 0
 Admin state: Up: 1 Down: 0
 Setup type: RSVP: 0 Segment routing: 1
Peer 10.0.0.4:
 Number of LSPs: 1
 Operational: Up: 1 Down: 0
 Admin state: Up: 1 Down: 0
 Setup type: RSVP: 0 Segment routing: 1

11. **Verify detailed LSP information on the PCE server.**

Device# `show pce lsp detail`

PCE's tunnel database:

PCC 10.0.0.4:
Tunnel Name: Tunnel2000_w
LSPs:
 LSP[0]:
 source 10.0.0.4, destination 192.168.0.1, tunnel ID 2000, LSP ID 48
 State: Admin up, Operation active
 Binding SID: 872
 PCEP information:
 plsp-id 526288, flags: D:1 S:0 R:0 A:1 O:2
 Reported path:
 Metric type: IGP, Accumulated Metric 0
 SID[0]: Adj, Label 885, Address: local 10.0.0.9 remote 10.0.0.10
 SID[1]: Unknown, Label 17,
 SID[2]: Unknown, Label 20,
 Computed path:
 Computed Time: Tue Dec 20 13:12:57 2016 (00:11:53 ago)
12. Shut down the interface that is connected to VRF SR so that the prefix is no longer advertised by MP-BGP.

```bash
Device# interface GigabitEthernet0/2
Device(config-if)# shut
```

13. Verify that VRF prefix is no longer advertised to R1 (headend) via R6 (tailend).

```bash
Device# show ip route vrf sr
```

```
Routing Table: sr
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
ia - IS-IS inter area, * - candidate default, U - per-user static route
o - ODR, P - periodic downloaded static route, H - NHRP, l - LISP
a - application route
+ - replicated route, % - next hop override, p - overrides from PfR
Gateway of last resort is not set
10.0.0.6/8 is variably subnetted, 2 subnets, 2 masks
C 10.0.0.7/24 is directly connected, GigabitEthernet0/3/1
L 10.0.0.8/32 is directly connected, GigabitEthernet0/3/1

14. Verify that no ODN auto-tunnel exists.

```bash
Device# show mpls traffic-eng tunnels
```

```
P2P TUNNELS/LSPs:
P2MP TUNNELS:
P2MP SUB-LSPS:
```
Segment Routing OAM Support

Effective Cisco IOS XE Everest 16.6.1, you can verify that the operation with Segment Routing OAM label switched protocol ping and traceroute (SR OAM LSPV).

Note

OAM Support is available only on the Cisco RSP2 Module.

• Restrictions for Segment Routing OAM Support, on page 85
• Information About Segment Routing-OAM Support , on page 85
• How to Diagnose Segment Routing with LSP Ping and Trace Route Nil FEC Target, on page 86
• Example: LSP Ping Nil_FEC Target Support, on page 87

Restrictions for Segment Routing OAM Support

• Ping and traceroute do not display proper output over SR-TE tunnels using verbatim path option.
• Ping and traceroute are unsupported with SR-TE Static auto tunnel, BGP Dynamic TE, and On-demand next hop auto tunnels.

Information About Segment Routing-OAM Support

Segment Routing-OAM Support

The Segment Routing-OAM Support feature provides support for Nil-FEC LSP Ping/Trace functionality. Nil-FEC LSP Ping/Trace functionality support Segment Routing and MPLS Static. It also acts as an additional diagnostic tool for all other LSP types. This feature allows operators to provide the ability to freely test any label stack by allowing them to specify the following:

• Label stack
• Outgoing interface
• Nexthop address

In the case of segment routing, each segment nodal label and adjacent label along the routing path is put into the label stack of an echo request message from initiator Label Switch Router (LSR); MPLS data plane forward this packet to the label stack target, and the label stack target reply the echo message back.
LSP Ping Operation for Nil FEC target

The LSP Ping/Traceroute is used in identifying LSP breakages. The nil-fec target type can be used to test the connectivity for a known label stack. Follow the existing LSP ping procedure (for more information, refer MPLS LSP Ping/Traceroute), with the following modifications:

- Build the echo request packet with the given label stack;
- Append explicit null label at the bottom of the label stack;
- Build echo request FTS TLV with target FEC Nil FEC and label value set to the bottom label of the label stack, which is explicit-null.

How to Diagnose Segment Routing with LSP Ping and Traceroute Nil FEC Target

Use LSP Ping for Nil FEC Target

The Nil-FEC LSP ping and traceroute operation are simply extension of regular MPLS ping and trace route. nil-fec labels <label, label...> is added to the ping mpls command. This command sends an echo request message with MPLS label stack as specified, and add another explicit null at bottom of the stack.

```
ping mpls
 {{ipv4 <target>/<mask> [fec-type {bgp | generic | ldp}] |
 |pseudowire <peer addr> <vc-id> [segment<segment-number>]} |
 |traffic-eng {<tunnel interface> |
 |p2p <sender> <endpoint>
 |<tun-id> <ex-tun-id > <lspid> |
 |p2mp <p2mp-id> <sender>
 |<tun-id><ex-tun-id> <lspid>}} |
 |{tp <tunnel-tp interface> lsp <working | protect | active>}} |
 |mldp {p2mp | mp2mp}
 |{(ipv4 <source> <group>) |
 |(ipv6 <source> <group>) |
 |(vpnv4 <rd> <source> <group>) |
 |(vpnv6 <rd> <source> <group>) |
 |(hex <opaque type> <opaque value>) |
 |(mdt <vpnid> <mdt-num>) |
 |{static-id <lsp-identifier> |
 |{global-id <global-identifier>}} |
 |{nil-fec [labels <comma separated labels>]} |
 |repeat <count> |
 |{size <size> | sweep <min_size> <max_size> <increment> |
 |timeout <seconds> |
 |{interval <milliseconds> |
 |{destination <addr_start> [<addr_end> [<addr_incr_mask> | <addr_incr>]]} |
 |source <addr> |
 |exp <exp-value> |
 |pad <pattern> |
 |ttl <ttl> |
 |[reply [mode [ipv4 | router-alert | no-reply]] |
 |[dscp <dscp-bits>|
 |[pad-tlv] |
 |[verbose |
 |[force-explicit-null]|
 |[force-disposition ra-label]}
```
Using LSP Traceroute for Nil FEC Target

Example: LSP Ping Nil_FEC Target Support

Node loopback IP address: 1.1.1.3 1.1.1.4 1.1.1.5
1.1.1.7
Node label: 16004 16005 16007
Nodes: Arizona --------------- Utah --------------- Wyoming
--------------- Texas
Interface: Eth1/0 Eth1/0 Interface IP address: 30.1.1.3 30.1.1.4

For more information, see traceroute mpls.
<table>
<thead>
<tr>
<th>Device#</th>
<th>show mpls forwarding-table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Outgoing Prefix</td>
</tr>
<tr>
<td>Label</td>
<td>or Tunnel Id</td>
</tr>
<tr>
<td>16</td>
<td>Pop Label 3333.3333.0000-Et1/0-30.1.1.3</td>
</tr>
<tr>
<td>17</td>
<td>Pop Label 5555.5555.5555-Et1/1-90.1.1.5</td>
</tr>
<tr>
<td>18</td>
<td>Pop Label 3333.3333.0253-Et0/2-102.102.102.2</td>
</tr>
<tr>
<td>19</td>
<td>Pop Label 9.9.9.4/32</td>
</tr>
<tr>
<td>20</td>
<td>Pop Label 1.1.1.5/32</td>
</tr>
<tr>
<td>21</td>
<td>Pop Label 1.1.1.3/32</td>
</tr>
<tr>
<td>22</td>
<td>Pop Label 16.16.16.16/32</td>
</tr>
<tr>
<td>23</td>
<td>Pop Label 16.16.16.17/32</td>
</tr>
<tr>
<td>24</td>
<td>Pop Label 17.17.17.17/32</td>
</tr>
<tr>
<td>25</td>
<td>20 9.9.9.3/32</td>
</tr>
<tr>
<td>26</td>
<td>21 1.1.1.6/32</td>
</tr>
<tr>
<td>27</td>
<td>24 1.1.1.2/32</td>
</tr>
<tr>
<td>28</td>
<td>1.1.1.2/32</td>
</tr>
<tr>
<td>29</td>
<td>18 1.1.1.7/32</td>
</tr>
<tr>
<td>30</td>
<td>27 9.9.9.7/32</td>
</tr>
<tr>
<td>31</td>
<td>Pop Label 55.1.1.0/24</td>
</tr>
<tr>
<td>Local</td>
<td>Outgoing Prefix</td>
</tr>
<tr>
<td>Label</td>
<td>or Tunnel Id</td>
</tr>
<tr>
<td>32</td>
<td>Pop Label 100.1.1.0/24</td>
</tr>
<tr>
<td>33</td>
<td>Pop Label 100.100.100.0/24</td>
</tr>
<tr>
<td>34</td>
<td>Pop Label 110.1.1.0/24</td>
</tr>
<tr>
<td>35</td>
<td>28 10.1.1.0/24</td>
</tr>
<tr>
<td>36</td>
<td>29 101.101.101.1/24</td>
</tr>
<tr>
<td>37</td>
<td>29 65.1.1.0/24</td>
</tr>
<tr>
<td>38</td>
<td>33 104.104.104.0/24</td>
</tr>
<tr>
<td>39</td>
<td>104.104.104.0/24</td>
</tr>
<tr>
<td>39</td>
<td>30 103.103.103.0/24</td>
</tr>
</tbody>
</table>

Example: LSP Ping Nil_FEC Target Support

SR231-arizona#ping mpls nil-fec labels 16005,16007 output interface ethernet 1/0 nexthop 30.1.1.4 repeat 1
Sending 1, 72-byte MPLS Echoes with Nil FEC labels 16005,16007, timeout is 2 seconds, send interval is 0 msec:
Type escape sequence to abort.

Success rate is 100 percent (1/1), round-trip min/avg/max = 1/1/1 ms
Total Time Elapsed 0 ms

SR231-arizona#traceroute mpls nil-fec labels 16005,16007 output interface ethernet 1/0 nexthop 30.1.1.4
Tracing MPLS Label Switched Path with Nil FEC labels 16005,16007, timeout is 2 seconds
Codes: '!': success, 'Q': request not sent, '.': timeout,
'L': labeled output interface, 'B': unlabeled output interface,
'D': DS Map mismatch, 'F': no FEC mapping, 'f': FEC mismatch,
'M': malformed request, 'm': unsupported tlvs, 'N': no label entry,
'P': no rx intf label prot, 'P': premature termination of LSP,
'R': transit router, 'I': unknown upstream index,
'l': Label switched with FEC change, 'd': see DDMAP for return code,
'X': unknown return code, 'x': return code 0
Type escape sequence to abort.

0 30.1.1.3 MRU 1500 [Labels: 16005/16007/explicit-null Exp: 0/0/0]
L 1 30.1.1.4 MRU 1500 [Labels: implicit-null/16007/explicit-null Exp: 0/0/0] 1 ms
L 2 90.1.1.5 MRU 1500 [Labels: implicit-null/explicit-null Exp: 0/0] 1 ms
! 3 55.1.1.7 1 ms

Example: LSP Ping Nil_FEC Target Support
Example: LSP Ping Nil FEC Target Support
CHAPTER 9

Dynamic Path Computation Client

Effective Cisco IOS XE Everest 16.6.1, the Stateful Path Computation Element Protocol (PCEP) enables a router to report and delegate Label Switched Paths (LSPs) that are established using Resource Reservation Protocol (RSVP) protocol to a stateful Path Computation Element (PCE). An LSP delegated to a PCE can be updated by the PCE and a stateful PCE can initiate an LSP on a Path Computation Client (PCC).

RSVP-TE LSPs require link-state routing protocols such as OSPF or IS-IS to distribute and learn traffic engineering topology. A stateful PCE can learn the traffic engineering topology through BGP Link-State (BGP-LS) protocol. The IGP instance running on a router feeds the traffic engineering topology information into BGP which passes that information to stateful PCE.

Note

Dynamic PCC is available only on the Cisco RSP2 Module.

Note

Path Computation Element is not supported on the Cisco RSP2 Module.

• Information About Dynamic PCC, on page 91
• Configuring Dynamic PCC Globally, on page 92
• Configuring Dynamic PCC on an Interface, on page 92
• Verifying Dynamic PCC, on page 92

Information About Dynamic PCC

PCEP functions

A PCEP session is a TCP session between a PCC and a PCE with protocol messages. The PCEP functions are verified based on the PCC functions. The configuration and verification show that the request is accepted and path computation is provided based on PCReq message from the client. The passive reporting enables a router to report a tunnel instead of delegating it to a PCE. The PCE is aware of the tunnel even though it cannot modify the tunnel.

PCEP functions are useful when a network has both router-controlled and PCE delegated tunnels. The PCE is aware of both the tunnels and can make an accurate decision on path computation.
Configuring Dynamic PCC Globally

Perform the following task to configure dynamic PCC globally:

```
enable
cfg term
mpls traffic-eng tunnels
mpls traffic-eng pcc peer 10.0.0.1 ----..(10.0.0.1 is the PCE server address)
mpls traffic-eng pcc report-all
end
```

Configuring Dynamic PCC on an Interface

Perform the following task to configure dynamic PCC on an interface

```
interface Tunnel1
ip unnumbered Loopback0
tunnel mode mpls traffic-eng
tunnel destination 7.7.7.7
tunnel mpls traffic-eng autoroute announce
tunnel mpls traffic-eng priority 5 5
tunnel mpls traffic-eng bandwidth 200
tunnel mpls traffic-eng path-option 10 dynamic pce segment-routing
end
```

Verifying Dynamic PCC

The following sample output is from the `show pce client peer detail` command.

```
Device# show pce client peer detail
PCC's peer database:

Peer address: 1.1.1.1
 State up
 Capabilities: Stateful, Update, Segment-Routing
 PCEP has been up for: 23:44:58
 PCEP session ID: local 1, remote: 0
 Sending KA every 30 seconds
 Minimum acceptable KA interval: 20 seconds
 Peer timeout after 120 seconds
Statistics:
 Keepalive messages: rx 2798 tx 2112
 Request messages: rx 0 tx 32
 Reply messages: rx 32 tx 0
 Error messages: rx 0 tx 0
 Open messages: rx 1 tx 1
 Report messages: rx 0 tx 57
 Update messages: rx 72 tx 0
```

The following sample output is from the `show tunnel` command which shows the LSP details.
Device# `show tunnel 1`
Name: d1_t1 (Tunnel1) Destination: 7.7.7.7

Status:
- Admin: up
- Oper: up
- Path: valid
- Signalling: connected
- path option 10, (SEGMENT-ROUTING) (PCE) type dynamic (Basis for Setup, path weight 0)

Config Parameters:
- Bandwidth: 200 kbps (Global)
- Priority: 5 5
- Affinity: 0x0/0xFFFF
- Metric Type: TE (default)
- Path Selection:
  - Protection: any (default)
  - Path-selection Tiebreaker:
    - Global: not set
    - Tunnel Specific: not set
    - Effective: min-fill (default)
- Hop Limit: disabled
- Cost Limit: disabled
- Path-invalidation timeout: 10000 msec (default), Action: Tear
- AutoRoute: enabled
- LockDown: disabled
- Fault-OAM: disabled, Wrap-Protection: disabled, Wrap-Capable: No

Active Path Option Parameters:
- State: dynamic path option 10 is active
- Bandwidth Override: disabled
- LockDown: disabled
- Verbatim: disabled

PCEP Info:
- Delegation state: Working: yes Protect: no
- Current Path Info:
  - Request status: processed
  - Created via PCRep message from PCE server: 1.1.1.1
- Reported paths:
  - Tunnel Name: csr551_t2001
  - LSPs:
    - LSP[0]:
      - source 2.2.2.2, destination 7.7.7.7, tunnel ID 1, LSP ID 5
      - State: Admin up, Operation active
      - Setup type: SR
      - Bandwidth: signaled 0
      - LSP object:
        - PLSP-ID 0x807D1, flags: D:0 S:0 R:0 A:1 0:2
      - Reported path:
        - Metric type: TE, Accumulated Metric 0

History:
- Tunnel:
  - Time since created: 34 minutes, 3 seconds
  - Time since path change: 1 minutes, 44 seconds
  - Number of LSP IDs (Tun_Instances) used: 5
  - Current LSP: [ID: 5]
  - Uptime: 1 minutes, 44 seconds
  - Prior LSP: [ID: 3]
  - ID: path option unknown
  - Removal Trigger: path verification failed
- Tun_Instance: 5

Segment-Routing Path Info (isis level-1)
- Segment0[Node]: 3.3.3.3, Label: 20270
- Segment1[Node]: 6.6.6.6, Label: 20120
- Segment2[Node]: 7.7.7.7, Label: 20210

The following sample output is from the `show pce client lsp detail` command.

Device# `show pce client lsp detail`
PCC's tunnel database:

```

Tunnel Name: d1_t1
LSPs:
LSP[0]:
```

Segment Routing Configuration Guide, Cisco IOS XE Fuji 16.8.x (Cisco ASR 900 Series)
source 2.2.2.2, destination 7.7.7.7, tunnel ID 1, LSP ID 5
State: Admin up, Operation active
Setup type: SR
Bandwidth: signaled 0
LSP object:
   PLSP-ID 0x807D1, flags: D:0 S:0 R:0 A:1 O:2
Reported path:
   Metric type: TE, Accumulated Metric 0

The following sample output is from the `show pce lsp detail` command which shows the tunnel is delegated.

```
Device# show pce lsp detail
Thu Jul 7 10:24:30.836 EDT
PCE's tunnel database:

PCC 102.103.2.1:
Tunnel Name: d1_t1
LSPs:
 LSP[0]:
 source 2.2.2.2, destination 7.7.7.7, tunnel ID 1, LSP ID 5
 State: Admin up, Operation active
 Binding SID: 0
 PCEP information:
 plsp-id 526289, flags: D:1 S:0 R:0 A:1 O:2
 Reported path:
 Metric type: TE, Accumulated Metric 0
 SID[0]: Node, Label 20270, Address 3.3.3.3
 SID[1]: Node, Label 20120, Address 6.6.6.6
 SID[2]: Node, Label 20210, Address 7.7.7.7
 Computed path:
 Metric type: TE, Accumulated Metric 30
 SID[0]: Node, Label 20270, Address 3.3.3.3
 SID[1]: Node, Label 20120, Address 6.6.6.6
 SID[2]: Node, Label 20210, Address 7.7.7.7
 Recorded path:
 None
```

The following sample output is from the `show pce client lsp detail` command for reported tunnel.

```
Device# show pce client lsp detail
PCC's tunnel database:

Tunnel Name: d1_t2
LSPs:
 LSP[0]:
 source 2.2.2.2, destination 7.7.7.7, tunnel ID 2, LSP ID 1
 State: Admin up, Operation active
 Setup type: SR
 Bandwidth: signaled 0
 LSP object:
 PLSP-ID 0x807D2, flags: D:0 S:0 R:0 A:1 O:2
 Reported path:
 Metric type: TE, Accumulated Metric 30
```

The following sample output is from the `show pce lsp detail` command which shows the tunnel is not delegated.

```
Device# show pce lsp detail
Thu Jul 7 10:29:48.754 EDT
PCE's tunnel database:

```
PCC 10.0.0.1:
Tunnel Name: d1_t2
LSPs:
LSP[0]:
  source 2.2.2.2, destination 7.7.7.7, tunnel ID 2, LSP ID 1
  State: Admin up, Operation active
  Binding SID: 0
  PCEP information:
    plsp-id 526290, flags: D:0 S:0 R:0 A:1 O:2
  Reported path:
    Metric type: TE, Accumulated Metric 30
    SID[0]: Adj, Label 74, Address: local 172.16.0.1 remote 172.16.0.2
    SID[1]: Adj, Label 63, Address: local 173.17.0.1 remote 173.17.0.2
    SID[2]: Adj, Label 67, Address: local 174.18.0.1 remote 174.18.0.2
    SID[3]: Node, Label unknownAddress 7.7.7.7
  Computed path:
    None
  Recorded path:
    None