MPLS Traffic Engineering over Bridge Domain Interfaces

The MPLS Traffic Engineering (TE) over Bridge Domain Interfaces (BDI) feature enables MPLS traffic engineering over Bridge Domain Interfaces.

- Prerequisites for Configuring MPLS TE over BDI, page 1
- Restrictions for MPLS TE over BDI, page 2
- Information About MPLS Traffic Engineering over BDI, page 2
- How to Configure MPLS Traffic Engineering over BDI, page 2
- Configuration Example for MPLS Traffic Engineering over BDI, page 6

Prerequisites for Configuring MPLS TE over BDI

You must have:

- Enabled MPLS TE on all relevant routers and interfaces
- Configured MPLS TE tunnels

Your network must support the following Cisco IOS features:

- IP Cisco Express Forwarding
- Multiprotocol Label Switching (MPLS)

Your network must support at least one of the following protocols:

- Intermediate System to Intermediate System (ISIS)
- Open Shortest Path First (OSPF)
Restrictions for MPLS TE over BDI

- MPLS TE - Verbatim Path Support
- Explicit Path Node exclusion
- P2MP TE Tunnels
- Auto-tunnel one-hops and backups
- Auto bandwidth
- Inter area or AS TE
- Auto route destinations
- FRR link or node protection

Information About MPLS Traffic Engineering over BDI

Features of MPLS Traffic Engineering over BDI

The MPLS Traffic Engineering over BDI feature enables MPLS TE tunnels over BDI.

Supported Features

Your network must support the following:

- MPLS TE tunnels
- Policy Routing onto MPLS TE Tunnels
- MPLS TE - Forwarding Adjacency
- MPLS TE – RSVP Hello State Timer
- MPLS TE - LSP Attributes
- MPLS TE - IP Explicit Address Exclusion
- MPLS TE - Configurable Path Calculation Metric for Tunnels
- MPLS TE - Verbatim Path Support
- Pseudo-wire mapping onto TE tunnels.

How to Configure MPLS Traffic Engineering over BDI

This section assumes that you want to configure MPLS TE over BDI.
Configuring MPLS TE over BDI

SUMMARY STEPS

1. enable
2. configure terminal
3. interface bdi30
4. mpls traffic-eng tunnels
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>interface bdi30</td>
<td>Specifies the bridge domain interface and enters interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface bdi30</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>mpls traffic-eng tunnels</td>
<td>Enables an MPLS TE tunnel to use an established tunnel for the bridge domain interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# mpls traffic-eng tunnels</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the RSVP Bandwidth

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type slot / subslot / port
4. ip rsvp bandwidth [interface-kbps [single-flow-kbps [bc1 kbps | sub-pool kbps]] | percent percent-bandwidth [single-flow-kbps]]
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type slot / subslot / port</td>
<td>Configures the interface type and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitEthernet 0/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip rsvp bandwidth [interface-kbps [single-flow-kbps [bc1 kbps</td>
<td>sub-pool kbps]]</td>
</tr>
<tr>
<td>percent percent-bandwidth [single-flow-kbps]]</td>
<td>• The optional interface-kbps and single-flow-kbps arguments specify the amount of bandwidth that can be allocated by RSVP flows or to a single flow, respectively. Values are from 1 to 10000000.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ip rsvp bandwidth 7500 7500</td>
<td>• The optional sub-pool and kbps keyword and argument specify subpool traffic and the amount of bandwidth that can be allocated by RSVP flows. Values are from 1 to 10000000.</td>
</tr>
<tr>
<td>Note Repeat this command for each interface on which you want to enable RSVP.</td>
<td></td>
</tr>
</tbody>
</table>
Verifying That MPLS TE over BDI Is Operational

To verify that MPLS TE over BDI can function, perform the following task.

SUMMARY STEPS

1. `enable`
2. `show mpls traffic-eng tunnels brief`
3. `show mpls traffic-eng tunnels summary`
4. `show mpls traffic-eng tunnels tunnel1`

DETAILED STEPS

Step 1
- `enable`
 Enables privileged EXEC mode.

Step 2
- `show mpls traffic-eng tunnels brief`
 Use this command to monitor and verify the state of the tunnels.

Step 3
- `show mpls traffic-eng tunnels summary`
 Use this command to monitor and verify the state of the tunnels.

Step 4
- `show mpls traffic-eng tunnels tunnel1`
 Use this command to verify that tunnels are up and using BDI.

Troubleshooting Tips

This section describes how you can use the `show mpls traffic-eng tunnels tunnel5` to check for issues.

```
Router# show mpls traffic-eng tunnels tunnel5
Name: router_t5 (Tunnel5) Destination: 3.3.3.3
Status:
  Admin: up     Oper: up     Path: valid     Signalling: connected
  path option 1, type dynamic (Basis for Setup, path weight 2)
Config Parameters:
```
Configuration Example for MPLS Traffic Engineering over BDI

The following example enables the BDI on the router:

Router(config)#interface bdi30
Router(config-if)#mpls traffic-eng tunnels

Configuring Interface Tunnel Example

The following example configures an interface tunnel

interface Tunnel1
ip unnumbered Loopback0
tunnel source Loopback0
tunnel mode mpls traffic-eng
tunnel destination 4.4.4.4
tunnel mpls traffic-eng path-option 1 dynamic

Configuring RSVP Bandwidth Example

The following example configures RSVP bandwidth

ip rsvp bandwidth [interface-kbps] [single-flow-kbps]

Router(config-if)# ip rsvp bandwidth 500 500