THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2019 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1

Using Cisco IOS XE Software 1

Understanding Command Modes 1
Understanding Diagnostic Mode 3
Accessing the CLI Using a Console 4

Accessing the CLI Using a Directly-Connected Console 4
Connecting to the Console Port 4
Using the Console Interface 4

Accessing the CLI from a Remote Console Using Telnet 5
Preparing to Connect to the Router Console Using Telnet 5
Using Telnet to Access a Console Interface 6

Accessing the CLI from a Remote Console Using a Modem 7
Using the Auxiliary Port 7
Using Keyboard Shortcuts 7
Using the History Buffer to Recall Commands 8

Getting Help 8

Finding Command Options Example 9
Using the no and default Forms of Commands 12

Saving Configuration Changes 12
Managing Configuration Files 12
Filtering Output from the show and more Commands 14

Password Recovery 14

Powering Off the Router 15

Finding Support Information for Platforms and Cisco Software Images 15

Using Cisco Feature Navigator 16
Using Software Advisor 16
Using Software Release Notes 16
CHAPTER 5

Using the Management Ethernet Interface 57

Gigabit Ethernet Management Interface Overview 57

Gigabit Ethernet Port Numbering 57

IP Address Handling in ROMmon and the Management Ethernet Port 58

Gigabit Ethernet Management Interface VRF 58

Common Ethernet Management Tasks 59

Viewing the VRF Configuration 59
CHAPTER 7

Configuring Optical Interface Modules 83

Limitations and Restrictions 83
Configuring the Controller 84
Configuring SDH 85
 Configuring SDH Mode 85
 SDH T1 Mode 85
 SDH T1 Mode 88
 Configuring SDH in POS Mode 92
 Configuring SONET Mode 93
Configuring SONET Mode 93
 Configuring SONET Mode 93
 Configuring SONET POS Mode 94
Configuring a CEM group 96
 Configuring CEM Group in SONET Mode 96
 Configuring CEM Group in SDH Mode 98
Configuring DS3 Clear Channel on OC-3 and OC-12 Interface Module 100
 Configuring DS3 Clear Channel in SONET Mode 100
 Configuring DS3 Clear Channel in SDH Mode 102
Optional Configurations 104
 Configuring the National Bit 104
 Verifying the National Bit 104
 Configuring the CRC Size for T1 105
Optional Packet over SONET Configurations 105

Encapsulation 105
MTU Value 106
CRC Value 106
Keepalive Value 106
Bandwidth 106
Scrambling 106
C2 Flag 106
J1 Flag 107

Managing Interface Naming 107
Identifying Slots and Subslot 107

Configuring Multilink Point-to-Point Protocol 107
MLPPP Configuration Guidelines 107
Creating a Multilink Bundle 108
Assigning an Interface to a Multilink Bundle 108
Configuring Fragmentation Size and Delay on an MLPPP Bundle 109
Changing the Default Endpoint Discriminator 110
Disabling Fragmentation on an MLPPP Bundle 111

Configuring BERT 111
Configuring Automatic Protection Switching 112

TU-AIS Alarms 112
Restrictions for TU-AIS Alarms 112
Configuring TU-AIS Alarms 112
Verification of TU-AIS Alarm Configuration 113
Core Failure Event Detection 113

Verifying Interface Configuration 113
Verifying Per-Port Interface Status 113

Troubleshooting 114
Framing and Encapsulation Configuration Example 115
National Bit Configuration Example 115
CRC Configuration Example 116
Facility Data Link Configuration Example 116
MLPPP Configuration Example 117
MFR Configuration Example 117
CHAPTER 11

Configuring Pseudowire 147

Pseudowire Overview 147

Limitations 148

Circuit Emulation Overview 148

Structure-Agnostic TDM over Packet 149

Circuit Emulation Service over Packet-Switched Network 150

Asynchronous Transfer Mode over MPLS 152

Transportation of Service Using Ethernet over MPLS 152

Limitations 153

Configuring CEM 153

Configuration Guidelines and Restrictions 154

Configuring a CEM Group 154

Using CEM Classes 155

Configuring a Clear-Channel ATM Interface 157

Configuring CEM Parameters 157

Configuring Payload Size (Optional) 157

Setting the Dejitter Buffer Size 158

Setting an Idle Pattern (Optional) 158

Enabling Dummy Mode 158

Setting a Dummy Pattern 158

Shutting Down a CEM Channel 158

Configuring CAS 158

Information About CAS 159
Configuring CAS 159
Verifying CAS Configuration 160
Configuration Examples for CAS 161
Configuring ATM 161
- Configuring a Clear-Channel ATM Interface 161
- Configuring ATM IMA 162
- BGP PIC with TDM Configuration 165
Configuring Structure-Agnostic TDM over Packet (SAToP) 165
Configuring Circuit Emulation Service over Packet-Switched Network (CESoPSN) 167
Configuring a Clear-Channel ATM Pseudowire 168
Configuring an ATM over MPLS Pseudowire 169
- Configuring the Controller 169
- Configuring an IMA Interface 170
- Configuring the ATM over MPLS Pseudowire Interface 172
 - Configuring 1-to-1 VCC Cell Transport Pseudowire 172
 - Configuring N-to-1 VCC Cell Transport Pseudowire 173
 - Configuring 1-to-1 VPC Cell Transport 173
 - Configuring ATM AAL5 SDU VCC Transport 175
 - Configuring a Port Mode Pseudowire 176
Optional Configurations 177
- Configuring an Ethernet over MPLS Pseudowire 179
Configuring Pseudowire Redundancy 180
- Pseudowire Redundancy with Uni-directional Active-Active 182
Restrictions 183
- Configuring Pseudowire Redundancy Active-Active—Protocol Based 184
Configuring the Working Controller for MR-APS with Pseudowire Redundancy Active-Active 184
Configuring the Protect Controller for MR-APS with Pseudowire Redundancy Active-Active 185
Verifying the Interface Configuration 185
Configuration Examples 186
 - Example: CEM Configuration 186
 - Example: BGP PIC with TDM Configuration 186
 - Example: BGP PIC with TDM-PW Configuration 188
 - Example: ATM IMA Configuration 188
 - Example: ATM over MPLS 189
| **Configuration Examples for Control Plane Policing** | 231 |
| **Verification Examples for CoPP** | 231 |
| **QoS Support on Port Channel LACP Active Active** | 232 |
| **Benefits of QoS Support on Port Channel LACP Active Active** | 232 |
| **Restrictions for QoS Support on Port Channel Active Active** | 232 |
| **Configuring QoS Support on Port Channel Active Active** | 232 |
| **Verification of QoS Support on Port Channel LACP Active Active** | 234 |
| **Match Inner DSCP on RSP3 Module** | 235 |
| **Restrictions for Match Inner DSCP on RSP3 Module** | 235 |
| **Configuring Match Inner DSCP on RSP3 Module** | 236 |
| **Verifying Match Inner DSCP on RSP3 Module** | 236 |

CHAPTER 14

Tracing and Trace Management 237

- **Tracing Overview** 237
- **How Tracing Works** 238
- **Tracing Levels** 238
- **Viewing a Tracing Level** 239
- **Setting a Tracing Level** 241
- **Viewing the Content of the Trace Buffer** 241

CHAPTER 15

Configuring and Monitoring Alarm 243

- **Monitoring Alarms** 243
 - **Network Administrator Checks Console or Syslog for Alarm Messages** 244
 - **Enabling the Logging Alarm Command** 244
 - **Examples of Alarm Messages** 244
 - **ALARMS for Router** 244
 - **Reviewing and Analyzing Alarm Messages** 248
 - **Configuring External Alarm Trigger** 248
 - **Approaches for Monitoring Hardware Alarms** 249
 - **Onsite Network Administrator Responds to Audible or Visual Alarms** 249
 - **How to Configure External Alarms** 249
 - **Example** 250
 - **Alarm Filtering Support** 251
 - **Information About Alarm Filtering Support** 251
Partial Port Mode 292
Prerequisites for Over Subscription Mode on the 8-port 10 Gigabit Ethernet Interface Module 292
Restrictions for Over Subscription Mode 8-port 10 Gigabit Ethernet Interface Module 292
Supported Features and Constraints 292
Supported Subslots 293
FPGA Operating Mode 293
Maximum Slot Population of the 8-port 10 Gigabit Ethernet Interface Module 294
Configuring Over Subscription and Partial Mode 295

CHAPTER 18
Configuring 8/16-port 1 Gigabit Ethernet (SFP / SFP) + 1-port 10 Gigabit Ethernet (SFP+) / 2-port 1 Gigabit Ethernet (CSFP) Interface Module 297
Operating Modes 298
 Full Subscription Mode 299
 Over Subscription Mode 299
SADT Mode 300
Bandwidth Mode 300
 Slot Support on Operating Modes 302
IOS Port Numbering 304
Supported Features on the Interface Module 305
Benefits 305
Restrictions 305
Configuring Interface Module 305
 Example: Configuring Full Subscription Modes 306
 Example: Configuring Over Subscription Modes 310
 Verifying Configuration 312
 Verifying High Priority and Low Priority Counters Configuration 313
Configuring Bandwidth Mode 313
 Verifying Bandwidth Mode Configuration 313
Interface Module Rules 314
Associated Commands 324
Additional References 324

CHAPTER 19
Card Protection for 48-Port T1/E1 CEM and 48-Port T3/E3 CEM Interface Modules 327
Y Cable 328
Example: Multilink with Multiple EFPs 347
Example: Multilink with QoS 348
Example: Multilink Between Cisco ASR 903 Series Routers and Cisco C7600 Series Routers 349
Example: Multilink with Maximum 10 Links 350

CHAPTER 21

Configuring Access Circuit Redundancy 355
New and Changed Information 355
Prerequisites for Configuring ACR 355
Restrictions for Configuring ACR 356
Restrictions for CEM ACR 356
Restrictions for ATM ACR 356
Information About ACR 357
CEM ACR 357
ATM ACR 357
How to Configure ACR 357
Configuring ACR (SONET Framing) 357
Configuring ACR (SDH Framing) 360
Configuring CEM (SONET Framing) 364
Configuring CEM (SDH Framing) 365
Configuring ATM-ACR on ATM VC Interface for SDH Mode 367
Configuring ATM-ACR on ATM VC Interface for SONET Mode 369
Verifying ACR Configurations 370
Troubleshooting the ACR configuration 374
UPSR Path Protection 375
Restrictions for UPSR Path Protection 376
Configuring UPSR 376
Configuring UPSR Work and Protection Path Configuration 376
Associated Commands 377
Additional References 377
Understanding Command Modes

The command modes available in the traditional Cisco IOS CLI are exactly the same as the command modes available in Cisco IOS XE.

You use the CLI to access Cisco IOS XE software. Because the CLI is divided into many different modes, the commands available to you at any given time depend on the mode that you are currently in. Entering a question mark (?) at the CLI prompt allows you to obtain a list of commands available for each command mode.

When you log in to the CLI, you are in user EXEC mode. User EXEC mode contains only a limited subset of commands. To have access to all commands, you must enter privileged EXEC mode, normally by using a password. From privileged EXEC mode, you can issue any EXEC command—user or privileged mode—or you can enter global configuration mode. Most EXEC commands are one-time commands. For example, show commands show important status information, and clear commands clear counters or interfaces. The EXEC commands are not saved when the software reboots.

Configuration modes allow you to make changes to the running configuration. If you later save the running configuration to the startup configuration, these changed commands are stored when the software is rebooted. To enter specific configuration modes, you must start at global configuration mode. From global configuration
mode, you can enter interface configuration mode and a variety of other modes, such as protocol-specific modes.

ROM monitor mode is a separate mode used when the Cisco IOS XE software cannot load properly. If a valid software image is not found when the software boots or if the configuration file is corrupted at startup, the software might enter ROM monitor mode.

Table 1: Accessing and Exiting Command Modes, on page 2 describes how to access and exit various common command modes of the Cisco IOS XE software. It also shows examples of the prompts displayed for each mode.

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Log in.</td>
<td>Router></td>
<td>Use the logout command.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, use the enable EXEC command.</td>
<td>Router#</td>
<td>To return to user EXEC mode, use the disable command.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From privileged EXEC mode, use the configure terminal privileged EXEC command.</td>
<td>Router(config)#</td>
<td>To return to privileged EXEC mode from global configuration mode, use the exit or end command.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From global configuration mode, specify an interface using an interface command.</td>
<td>Router(config-if)#</td>
<td>To return to global configuration mode, use the exit command.</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>The router boots up or accesses diagnostic mode in the following scenarios:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• In some cases, diagnostic mode will be reached when the IOS process or processes fail. In most scenarios, however, the router will reload.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A user-configured access policy was configured using the transport-map command that directed the user into diagnostic mode. See the Using Cisco IOS XE Software, on page 1 chapter of this book for information on configuring access policies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The router was accessed using a Route Switch Processor auxiliary port.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• A break signal (Ctrl-C, Ctrl-Shift-6, or the send break command) was entered and the router was configured to go into diagnostic mode when the break signal was received.</td>
<td>Router(diag)#</td>
<td>If the IOS process failing is the reason for entering diagnostic mode, the IOS problem must be resolved and the router rebooted to get out of diagnostic mode. If the router is in diagnostic mode because of a transport-map configuration, access the router through another port or using a method that is configured to connect to the Cisco IOS CLI. If the router is accessed through the Route Switch Processor auxiliary port, access the router through another port. Accessing the router through the auxiliary port is not useful for customer purposes anyway.</td>
</tr>
<tr>
<td>Command Mode</td>
<td>Access Method</td>
<td>Prompt</td>
<td>Exit Method</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>ROM monitor</td>
<td>From privileged EXEC mode, use the reload EXEC command. Press the Break key during the first 60 seconds while the system is booting.</td>
<td>></td>
<td>To exit ROM monitor mode, use the continue command.</td>
</tr>
</tbody>
</table>

Universal IOS Image

Starting with XE318SP, there are two flavors of universal images supported on Cisco ASR900 series routers:

- Universal images with the "universalk9" designation in the image name: This universal image offers the strong payload cryptography Cisco IOS feature, the IPSec VPN feature.
- Universal images with the universalk9_npe" designation in the image name: The strong enforcement of encryption capabilities provided by Cisco Software Activation satisfies requirements for the export of encryption capabilities. However, some countries have import requirements that require that the platform does not support any strong crypto functionality such as payload cryptography. To satisfy the import requirements of those countries, the 'npe' universal image does not support any strong payload encryption.

Starting with Cisco IOS XE Release 3.18SP, IPSec tunnel is supported only on the Cisco ASR903 and ASR907 routers with payload encryption (PE) images. IPSec requires an IPsec license to function.

Note

- IPsec license must be acquired and installed in the router for IPsec functionality to work. When you enable or disable the IPsec license, reboot is mandatory for the system to function properly. IPsec is not supported on Cisco IOS XE Everest 16.5.1.
- NPE images shipped for Cisco ASR 900 routers do not support data plane encryptions. However, control plane encryption is supported with NPE images, with processing done in software, without the crypto engine.

Understanding Diagnostic Mode

Diagnostic mode is supported.

The router boots up or accesses diagnostic mode in the following scenarios:

- The IOS process or processes fail, in some scenarios. In other scenarios, the RSP will simply reset when the IOS process or processes fail.
- A user-configured access policy was configured using the transport-map command that directs the user into diagnostic mode.
- A send break signal (Ctrl-C or Ctrl-Shift-6) was entered while accessing the router, and the router was configured to enter diagnostic mode when a break signal was sent.

In diagnostic mode, a subset of the commands that are also available in User EXEC mode are made available to users. Among other things, these commands can be used to:

- Inspect various states on the router, including the IOS state.
- Replace or roll back the configuration.
• Provide methods of restarting the IOS or other processes.
• Reboot hardware, such as the entire router, an RSP, an IM, or possibly other hardware components.
• Transfer files into or off of the router using remote access methods such as FTP, TFTP, SCP, and so on.

The diagnostic mode provides a more comprehensive user interface for troubleshooting than previous routers, which relied on limited access methods during failures, such as ROMmon, to diagnose and troubleshoot IOS problems.

The diagnostic mode commands are stored in the non-IOS packages on the chassis, which is why the commands are available even if the IOS process is not working properly. Importantly, all the commands available in diagnostic mode are also available in privileged EXEC mode on the router even during normal router operation. The commands are entered like any other commands in the privileged EXEC command prompts when used in privileged EXEC mode.

Accessing the CLI Using a Console

The following sections describe how to access the command-line interface (CLI) using a directly-connected console or by using Telnet or a modem to obtain a remote console:

Accessing the CLI Using a Directly-Connected Console

This section describes how to connect to the console port on the router and use the console interface to access the CLI. The console port is located on the front panel of each Route Switch Processor (RSP).

Connecting to the Console Port

Before you can use the console interface on the router using a terminal or PC, you must perform the following steps:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
</table>
| Step 1 | Configure your terminal emulation software with the following settings:
• 9600 bits per second (bps)
• 8 data bits
• No parity
• 1 stop bit
• No flow control |
| Step 2 | Connect to the port using the RJ-45-to-RJ-45 cable and RJ-45-to-DB-25 DTE adapter or using the RJ-45-to-DB-9 DTE adapter (labeled “Terminal”). |

Using the Console Interface

Every RSP has a console interface. Notably, a standby RSP can be accessed using the console port in addition to the active RSP in a dual RSP configuration.

To access the CLI using the console interface, complete the following steps:
Procedure

Step 1 After you attach the terminal hardware to the console port on the router and you configure your terminal emulation software with the proper settings, the following prompt appears:

Example:

Press RETURN to get started.

Step 2 Press Return to enter user EXEC mode. The following prompt appears:

Example:

Router>

Step 3 From user EXEC mode, enter the enable command as shown in the following example:

Example:

Router> enable

Step 4 At the password prompt, enter your system password. If an enable password has not been set on your system, this step may be skipped. The following example shows entry of the password called “enablepass”:

Example:

Password: enablepass

Step 5 When your enable password is accepted, the privileged EXEC mode prompt appears:

Example:

Router#

Step 6 You now have access to the CLI in privileged EXEC mode and you can enter the necessary commands to complete your desired tasks.

Step 7 To exit the console session, enter the quit command as shown in the following example:

Example:

Router# quit

Accessing the CLI from a Remote Console Using Telnet

This section describes how to connect to the console interface on a router using Telnet to access the CLI.

Preparing to Connect to the Router Console Using Telnet

Before you can access the router remotely using Telnet from a TCP/IP network, you need to configure the router to support virtual terminal lines (vtys) using the line vty global configuration command. You also should configure the vtys to require login and specify a password.
To prevent disabling login on the line, be careful that you specify a password with the `password` command when you configure the `login` line configuration command. If you are using authentication, authorization, and accounting (AAA), you should configure the `login authentication` line configuration command. To prevent disabling login on the line for AAA authentication when you configure a list with the `login authentication` command, you must also configure that list using the `aaa authentication login` global configuration command. For more information about AAA services, refer to the _Cisco IOS XE Security Configuration Guide_, Release 2 and _Cisco IOS Security Command Reference_ publications.

In addition, before you can make a Telnet connection to the router, you must have a valid host name for the router or have an IP address configured on the router. For more information about requirements for connecting to the router using Telnet, information about customizing your Telnet services, and using Telnet key sequences, refer to the _Cisco IOS Configuration Fundamentals Configuration Guide_, Release 12.2SR.

Using Telnet to Access a Console Interface

To access a console interface using Telnet, complete the following steps:

Procedure

1. **Step 1**
 From your terminal or PC, enter one of the following commands:

 - `connect host [port] [keyword]`
 - `telnet host [port] [keyword]`

 In this syntax, `host` is the router hostname or an IP address, `port` is a decimal port number (23 is the default), and `keyword` is a supported keyword. For more information, refer to the _Cisco IOS Configuration Fundamentals Command Reference_.

 Note If you are using an access server, then you will need to specify a valid port number such as `telnet 172.20.52.40 2004`, in addition to the hostname or IP address.

 The following example shows the `telnet` command to connect to the router named “router”:

 Example:

   ```
   unix_host% telnet router
   Trying 172.20.52.40...
   Connected to 172.20.52.40.
   Escape character is '^]'.
   unix_host% connect
   ```

2. **Step 2**
 At the password prompt, enter your login password. The following example shows entry of the password called “mypass”:

 Example:

   ```
   User Access Verification
   Password: mypass
   ```

 Note If no password has been configured, press Return.

3. **Step 3**
 From user EXEC mode, enter the `enable` command as shown in the following example:
Example:

Router> enable

Step 4 At the password prompt, enter your system password. The following example shows entry of the password called “enablepass”:

Example:

Password: enablepass

Step 5 When the enable password is accepted, the privileged EXEC mode prompt appears:

Example:

Router#

Step 6 You now have access to the CLI in privileged EXEC mode and you can enter the necessary commands to complete your desired tasks.

Step 7 To exit the Telnet session, use the exit or logout command as shown in the following example:

Example:

Router# logout

Accessing the CLI from a Remote Console Using a Modem

To access the router remotely using a modem through an asynchronous connection, connect the modem to the console port.

The console port on a chassis is an EIA/TIA-232 asynchronous, serial connection with no flow control and an RJ-45 connector. The console port is located on the front panel of the RSP.

To connect a modem to the console port, place the console port mode switch in the in position. Connect to the port using the RJ-45-to-RJ-45 cable and the RJ-45-to-DB-25 DCE adapter (labeled “Modem”).

To connect to the router using the USB console port, connect to the port using a USB Type A-to-Type A cable.

Using the Auxiliary Port

The auxiliary port on the Route Switch Processor does not serve any useful purpose for customers.

This port should only be accessed under the advisement of a customer support representative.

Using Keyboard Shortcuts

Commands are not case sensitive. You can abbreviate commands and parameters if the abbreviations contain enough letters to be different from any other currently available commands or parameters.
Table 2: Keyboard Shortcuts, on page 8 lists the keyboard shortcuts for entering and editing commands.

Table 2: Keyboard Shortcuts

<table>
<thead>
<tr>
<th>Keystrokes</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-B or the Left Arrow key</td>
<td>Move the cursor back one character</td>
</tr>
<tr>
<td>Ctrl-F or the Right Arrow key</td>
<td>Move the cursor forward one character</td>
</tr>
<tr>
<td>Ctrl-A</td>
<td>Move the cursor to the beginning of the command line</td>
</tr>
<tr>
<td>Ctrl-E</td>
<td>Move the cursor to the end of the command line</td>
</tr>
<tr>
<td>Esc B</td>
<td>Move the cursor back one word</td>
</tr>
<tr>
<td>Esc F</td>
<td>Move the cursor forward one word</td>
</tr>
</tbody>
</table>

1. The arrow keys function only on ANSI-compatible terminals such as VT100s.

Using the History Buffer to Recall Commands

The history buffer stores the last 20 commands you entered. History substitution allows you to access these commands without retyping them, by using special abbreviated commands.

Table 3: History Substitution Commands, on page 8 lists the history substitution commands.

Table 3: History Substitution Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-P or the Up Arrow key</td>
<td>Recall commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Ctrl-N or the Down Arrow key</td>
<td>Return to more recent commands in the history buffer after recalling commands with Ctrl-P or the Up Arrow key.</td>
</tr>
<tr>
<td>Router# show history</td>
<td>While in EXEC mode, list the last several commands you have just entered.</td>
</tr>
</tbody>
</table>

2. The arrow keys function only on ANSI-compatible terminals such as VT100s.

Getting Help

Entering a question mark (?) at the CLI prompt displays a list of commands available for each command mode. You can also get a list of keywords and arguments associated with any command by using the context-sensitive help feature.

To get help specific to a command mode, a command, a keyword, or an argument, use one of the following commands:
Table 4: Help Commands and Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Provides a brief description of the help system in any command mode.</td>
</tr>
<tr>
<td>abbreviated-command-entry ?</td>
<td>Provides a list of commands that begin with a particular character string. (No space between command and question mark.)</td>
</tr>
<tr>
<td>abbreviated-command-entry <Tab> ?</td>
<td>Complements a partial command name.</td>
</tr>
<tr>
<td>?</td>
<td>Lists all commands available for a particular command mode.</td>
</tr>
<tr>
<td>command ?</td>
<td>Lists the keywords or arguments that you must enter next on the command line. (Space between command and question mark.)</td>
</tr>
</tbody>
</table>

Finding Command Options Example

This section provides an example of how to display syntax for a command. The syntax can consist of optional or required keywords and arguments. To display keywords and arguments for a command, enter a question mark (?) at the configuration prompt or after entering part of a command followed by a space. The Cisco IOS XE software displays a list and brief description of available keywords and arguments. For example, if you were in global configuration mode and wanted to see all the keywords or arguments for the `rep` command, you would type `rep ?`.

The `<cr>` symbol in command help output stands for “carriage return.” On older keyboards, the carriage return key is the Return key. On most modern keyboards, the carriage return key is the Enter key. The `<cr>` symbol at the end of command help output indicates that you have the option to press Enter to complete the command and that the arguments and keywords in the list preceding the `<cr>` symbol are optional. The `<cr>` symbol by itself indicates that no more arguments or keywords are available and that you must press Enter to complete the command.

Table 5: Finding Command Options, on page 9 shows examples of how you can use the question mark (?) to assist you in entering commands.

Table 5: Finding Command Options

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router> enable Password: <password> Router#</td>
<td>Enter the enable command and password to access privileged EXEC commands. You are in privileged EXEC mode when the prompt changes to a “#” from the “>”; for example, Router> to Router#</td>
</tr>
</tbody>
</table>
Finding Command Options Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td>Enter the <code>configure terminal</code> privileged EXEC command to enter global configuration mode. You are in global configuration mode when the prompt changes to <code>Router(config)#</code>.</td>
</tr>
<tr>
<td>Router(config)# interface gigabitEthernet 0?</td>
<td>Enter interface configuration mode by specifying the serial interface that you want to configure using the <code>interface serial</code> global configuration command.</td>
</tr>
<tr>
<td>Router(config)# interface gigabitEthernet 0/0?</td>
<td>Enter ? to display what you must enter next on the command line. In this example, you must enter the serial interface slot number and port number, separated by a forward slash.</td>
</tr>
<tr>
<td>Router(config)# interface gigabitEthernet 0/0/0</td>
<td>When the <code><cr></code> symbol is displayed, you can press Enter to complete the command. You are in interface configuration mode when the prompt changes to <code>Router(config-if)#</code>.</td>
</tr>
<tr>
<td>Router(config-if)# ?</td>
<td>Enter ? to display a list of all the interface configuration commands available for the serial interface. This example shows only some of the available interface configuration commands.</td>
</tr>
</tbody>
</table>

Interface configuration commands:

Command		

.		
.		
ip	Interface Internet Protocol config commands	
keepalive	Enable keepalive	
lan-name	LAN Name command	
llc2	LLC2 Interface Subcommands	
load-interval	Specify interval for load calculation for an interface	
locaddr-priority	Assign a priority group	
logging	Configure logging for interface loopback	
loopback	Configure internal loopback on an interface	
mac-address	Manually set interface MAC address	
mls	mls router sub/interface commands	
mpoa	MPOA interface configuration commands	
mtu	Set the interface Maximum Transmission Unit (MTU)	
netbios	Use a defined NETBIOS access list or enable name-caching	
no	Negate a command or set its defaults	
nrzi-encoding	Enable use of NRZI encoding	
ntp	Configure NTP	
.		
.		
Enter the command that you want to configure for the interface. This example uses the `ip` command.

Enter `?` to display what you must enter next on the command line. This example shows only some of the available interface IP configuration commands.

Command Options Example

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# <code>ip</code> ?</td>
<td>Enter the command that you want to configure for the interface. This example uses the <code>ip</code> command.</td>
</tr>
<tr>
<td>Interface IP configuration subcommands:</td>
<td>Enter <code>?</code> to display what you must enter next on the command line. This example shows only some of the available interface IP configuration commands.</td>
</tr>
<tr>
<td><code>access-group</code></td>
<td>Specify access control for packets</td>
</tr>
<tr>
<td><code>accounting</code></td>
<td>Enable IP accounting on this interface</td>
</tr>
<tr>
<td><code>address</code></td>
<td>Set the IP address of an interface</td>
</tr>
<tr>
<td><code>authentication</code></td>
<td>authentication subcommands</td>
</tr>
<tr>
<td><code>bandwidth-percent</code></td>
<td>Set EIGRP bandwidth limit</td>
</tr>
<tr>
<td><code>broadcast-address</code></td>
<td>Set the broadcast address of an interface</td>
</tr>
<tr>
<td><code>cgmp</code></td>
<td>Enable/disable CGMP</td>
</tr>
<tr>
<td><code>directed-broadcast</code></td>
<td>Enable forwarding of directed broadcasts</td>
</tr>
<tr>
<td><code>dvmrp</code></td>
<td>DVMRP interface commands</td>
</tr>
<tr>
<td><code>hello-interval</code></td>
<td>Configures IP-EIGRP hello interval</td>
</tr>
<tr>
<td><code>helper-address</code></td>
<td>Specify a destination address for UDP broadcasts</td>
</tr>
<tr>
<td><code>hold-time</code></td>
<td>Configures IP-EIGRP hold time</td>
</tr>
<tr>
<td><code>negotiated</code></td>
<td>IP Address negotiated over PPP</td>
</tr>
<tr>
<td>Router(config-if)# <code>ip</code> address</td>
<td>Enter the command that you want to configure for the interface. This example uses the <code>ip address</code> command.</td>
</tr>
<tr>
<td>A.B.C.D</td>
<td>IP address</td>
</tr>
<tr>
<td><code>negotiated</code></td>
<td>IP Address negotiated over PPP</td>
</tr>
<tr>
<td>Router(config-if)# <code>ip</code> address</td>
<td>Enter <code>?</code> to display what you must enter next on the command line. In this example, you must enter an IP address or the <code>negotiated</code> keyword.</td>
</tr>
<tr>
<td>172.16.0.1 ?</td>
<td>A carriage return (<cr>) is not displayed; therefore, you must enter additional keywords or arguments to complete the command.</td>
</tr>
<tr>
<td>A.B.C.D</td>
<td>IP subnet mask</td>
</tr>
<tr>
<td>Router(config-if)# <code>ip</code> address 172.16.0.1</td>
<td>Enter the keyword or argument that you want to use. This example uses the 172.16.0.1 IP address.</td>
</tr>
<tr>
<td>A.B.C.D</td>
<td>IP subnet mask</td>
</tr>
<tr>
<td>Router(config-if)# <code>ip</code> address 172.16.0.1</td>
<td>Enter <code>?</code> to display what you must enter next on the command line. In this example, you must enter an IP subnet mask.</td>
</tr>
<tr>
<td>172.16.0.1 255.255.255.0 ?</td>
<td>A <cr> is not displayed; therefore, you must enter additional keywords or arguments to complete the command.</td>
</tr>
<tr>
<td>secondary</td>
<td>Make this IP address a secondary address</td>
</tr>
<tr>
<td><cr></td>
<td>A <cr> is displayed; you can press Enter to complete the command, or you can enter another keyword.</td>
</tr>
<tr>
<td>Router(config-if)# <code>ip</code> address 172.16.0.1 255.255.255.0</td>
<td>Enter the IP subnet mask. This example uses the 255.255.255.0 IP subnet mask.</td>
</tr>
<tr>
<td>secondary</td>
<td>Make this IP address a secondary address</td>
</tr>
<tr>
<td><cr></td>
<td>A <cr> is displayed; you can press Enter to complete the command, or you can enter another keyword.</td>
</tr>
</tbody>
</table>
Using the no and default Forms of Commands

Almost every configuration command has a no form. In general, use the no form to disable a function. Use the command without the no keyword to re-enable a disabled function or to enable a function that is disabled by default. For example, IP routing is enabled by default. To disable IP routing, use the no ip routing command; to re-enable IP routing, use the ip routing command. The Cisco IOS software command reference publications provide the complete syntax for the configuration commands and describe what the no form of a command does.

Many CLI commands also have a default form. By issuing the command default command-name, you can configure the command to its default setting. The Cisco IOS software command reference publications describe the function of the default form of the command when the default form performs a different function than the plain and no forms of the command. To see what default commands are available on your system, enter default? in the appropriate command mode.

Saving Configuration Changes

Use the copy running-config startup-config command to save your configuration changes to the startup configuration so that the changes will not be lost if the software reloads or a power outage occurs. For example:

Router# copy running-config startup-config
Building configuration...

It might take a minute or two to save the configuration. After the configuration has been saved, the following output appears:

[OK]
Router#

This task saves the configuration to NVRAM.

Managing Configuration Files

On the chassis, the startup configuration file is stored in the nvram: file system and the running-configuration files are stored in the system: file system. This configuration file storage setup is not unique to the chassis and is used on several Cisco router platforms.

As a matter of routine maintenance on any Cisco router, users should backup the startup configuration file by copying the startup configuration file from NVRAM onto one of the router’s other file systems and, additionally, onto a network server. Backing up the startup configuration file provides an easy method of recovering the startup configuration file in the event the startup configuration file in NVRAM becomes unusable for any reason.
The `copy` command can be used to backup startup configuration files. Below are some examples showing the startup configuration file in NVRAM being backed up:

Example 1: Copying Startup Configuration File to Bootflash

```
Router# dir bootflash:
Directory of bootflash:/
  11 drwx 16384 Feb 2 2000 13:33:40 +05:30 lost+found
15105 drwx 4096 Feb 2 2000 13:35:07 +05:30 .ssh
45313 drwx 4096 Nov 17 2011 17:36:12 +05:30 core
75521 drwx 4096 Feb 2 2000 13:35:11 +05:30 .prst_sync
90625 drwx 4096 Feb 2 2000 13:35:22 +05:30 .rollback_timer
105729 drwx 8192 Nov 21 2011 22:57:55 +05:30 .tracerlogs
30209 drwx 4096 Feb 2 2000 13:36:17 +05:30 .installer
1339412480 bytes total (1199448064 bytes free)
```

```
Router# copy nvram:startup-config bootflash:
Destination filename [startup-config]?
3517 bytes copied in 0.647 secs (5436 bytes/sec)
```

```
Router# dir bootflash:
Directory of bootflash:/
  11 drwx 16384 Feb 2 2000 13:33:40 +05:30 lost+found
15105 drwx 4096 Feb 2 2000 13:35:07 +05:30 .ssh
45313 drwx 4096 Nov 17 2011 17:36:12 +05:30 core
75521 drwx 4096 Feb 2 2000 13:35:11 +05:30 .prst_sync
90625 drwx 4096 Feb 2 2000 13:35:22 +05:30 .rollback_timer
105729 drwx 8192 Nov 21 2011 22:57:55 +05:30 .tracerlogs
30209 drwx 4096 Feb 2 2000 13:36:17 +05:30 .installer
1339412480 bytes total (1199448064 bytes free)
```

Example 2: Copying Startup Configuration File to USB Flash Disk

```
Router# dir usb0: 
Directory of usb0:/
  43261 -rwx 208904396 May 27 2008 14:10:20 -07:00 
asr903rsp1-adventerprisek9.02.01.00.122-33.XNA.bin
255497216 bytes total (40190464 bytes free)
```

```
Router# copy nvram:startup-config usb0:
Destination filename [startup-config]?
3172 bytes copied in 0.214 secs (14822 bytes/sec)
```

```
Router# dir usb0: 
Directory of usb0:/
  43261 -rwx 208904396 May 27 2008 14:10:20 -07:00 
asr903rsp1-adventerprisek9.02.01.00.122-33.XNA.bin 
43262 -rw- 1888 Nov 21 2011 23:03:17 +05:30 startup-config
1339412480 bytes total (1199439872 bytes free)
```

Example 3: Copying Startup Configuration File to a TFTP Server

```
Router# copy bootflash:startup-config tftp:
Address or name of remote host []? 172.17.16.81
Destination filename [pe24_config]?
3517 bytes copied in 0.122 secs (28828 bytes/sec)
```

For more detailed information on managing configuration files, see the Configuration Fundamentals Configuration Guide, Cisco IOS XE Release 3S.
Filtering Output from the show and more Commands

You can search and filter the output of `show` and `more` commands. This functionality is useful if you need to sort through large amounts of output or if you want to exclude output that you need not see.

To use this functionality, enter a `show` or `more` command followed by the “pipe” character (`|`); one of the keywords `begin`, `include`, or `exclude`; and a regular expression on which you want to search or filter (the expression is case sensitive):

`show command | {append | begin | exclude | include | redirect | section | tee | count} regular-expression`

The output matches certain lines of information in the configuration file. The following example illustrates how to use output modifiers with the `show interface` command when you want the output to include only lines in which the expression “protocol” appears:

```
Router# show interface | include protocol
GigabitEthernet0/0/0 is up, line protocol is up
Serial4/0/0 is up, line protocol is up
Serial4/1/0 is up, line protocol is up
Serial4/2/0 is administratively down, line protocol is down
Serial4/3/0 is administratively down, line protocol is down
```

Password Recovery

⚠️ Warning

You will loose the startup configuration by using this Password Recovery procedure.

📝 Note

The configuration register is usually set to 0x2102 or 0x102. If you can no longer access the router (because of a lost login or TACACS password), you can safely assume that your configuration register is set to 0x2102.

Before you begin

Make sure that the hyperterminal has the following settings:

- 9600 baud rate
- No parity
- 8 data bits
- 1 stop bit
- No flow control

Procedure

Step 1

Use the power switch to turn off the router, and then turn it on again.
Step 2 Press Break on the terminal keyboard within 60 seconds of power up to put the router into ROMMON. In some cases Ctrl+Break key combination can be used.

Step 3 Type confreg 0x2142 at the ROMMON.

```
1> confreg 0x2142
1> sync
```

(This step bypasses the startup configuration where the passwords are stored.)

Step 4 Type reset at the ROMMON.

```
2> reset
```

The router reboots, but ignores the saved configuration.

Step 5 The router reloads and prompts for configuration. Type no after each setup question, or press Ctrl-C to skip the initial setup procedure.

Step 6 Type enable at the Router> prompt.

You are now in enable mode and should see the Router# prompt.

Step 7 Reset the config-register from 0x2142 to 0x2102. To do so, type the following:

```
config-register configuration_register_setting
```

Where, configuration_register_setting is 0x2102. For example,

```
hostname(config)#config-register 0x2102
```

Powering Off the Router

Before you turn off a power supply, make certain the chassis is grounded and you perform a soft shutdown on the power supply. Not performing a soft shutdown will often not harm the router, but may cause problems in certain scenarios.

To perform a soft shutdown before powering off the router, enter the reload command to halt the system and then wait for ROM Monitor to execute before proceeding to the next step.

The following screenshot shows an example of this process:

```
Router# reload
Proceed with reload? [confirm]
```

Place the power supply switch in the Off position after seeing this message.

Finding Support Information for Platforms and Cisco Software Images

Cisco software is packaged in feature sets consisting of software images that support specific platforms. The feature sets available for a specific platform depend on which Cisco software images are included in a release.
To identify the set of software images available in a specific release or to find out if a feature is available in a given Cisco IOS XE software image, you can use Cisco Feature Navigator or the software release notes.

Using Cisco Feature Navigator

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which Cisco IOS XE software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to http://www.cisco.com/go/cfn. An account on Cisco.com is not required.

Using Software Advisor

To see if a feature is supported by a Cisco IOS XE release, to locate the software document for that feature, or to check the minimum software requirements of Cisco IOS XE software with the hardware installed on your router, Cisco maintains the Software Advisor tool on Cisco.com at http://www.cisco.com/cgi-bin/Support/CompNav/Index.pl.

You must be a registered user on Cisco.com to access this tool.

Using Software Release Notes

Cisco IOS XE software releases include release notes that provide the following information:

- Platform support information
- Memory recommendations
- New feature information
- Open and resolved severity 1 and 2 caveats for all platforms

Release notes are intended to be release-specific for the most current release, and the information provided in these documents may not be cumulative in providing information about features that first appeared in previous releases. Refer to Cisco Feature Navigator for cumulative feature information.
Console Port Telnet and SSH Handling

This chapter covers the following topics:

- Console Port Overview, on page 17
- Connecting Console Cables, on page 17
- Installing USB Device Drivers, on page 17
- Console Port Handling Overview, on page 18
- Telnet and SSH Overview, on page 18
- Persistent Telnet and Persistent SSH Overview, on page 18
- Configuring a Console Port Transport Map, on page 19
- Configuring Persistent Telnet, on page 21
- Configuring Persistent SSH, on page 23
- Viewing Console Port, SSH, and Telnet Handling Configurations, on page 26
- Important Notes and Restrictions, on page 30

Console Port Overview

The console port on the chassis is an EIA/TIA-232 asynchronous, serial connection with no flow control and an RJ-45 connector. The console port is used to access the chassis and is located on the front panel of the Route Switch Processor (RSP).

For information on accessing the chassis using the console port, see the “Accessing the CLI Using a Console” section on page 1-4.

Connecting Console Cables

For information about connecting console cables to the chassis, see the ASR 900 Series Hardware Installation Guides.

Installing USB Device Drivers

For instructions on how to install device drivers in order to use the USB console port, see the ASR 900 Series Hardware Installation Guides.
Console Port Handling Overview

Users using the console port to access the chassis are automatically directed to the IOS command-line interface, by default.

If a user is trying to access the router through the console port and sends a break signal (a break signal can be sent by entering \texttt{Ctrl-C} or \texttt{Ctrl-Shift-6}, or by entering the \texttt{send break} command at the Telnet prompt) before connecting to the IOS command-line interface, the user is directed into diagnostic mode by default if the non-RPIOS sub-packages can be accessed.

These settings can be changed by configuring a transport map for the console port and applying that transport map to the console interface.

Telnet and SSH Overview

Telnet and Secure Shell (SSH) can be configured and handled like Telnet and SSH on other Cisco platforms. For information on traditional Telnet, see the \texttt{line} command in the \textit{Cisco IOS Terminal Services Command Reference guide} located at http://www.cisco.com/en/US/docs/ios/12_2/termserv/command/reference/trflosho.html#wp1029818.

For information on configuring traditional SSH, see the Secure Shell Configuration Guide, Cisco IOS XE Release 3.

The chassis also supports persistent Telnet and persistent SSH. Persistent Telnet and persistent SSH allow network administrators to more clearly define the treatment of incoming traffic when users access the router through the Management Ethernet port using Telnet or SSH. Notably, persistent Telnet and persistent SSH provide more robust network access by allowing the router to be configured to be accessible through the Ethernet Management port using Telnet or SSH even when the IOS process has failed.

Persistent Telnet and Persistent SSH Overview

In traditional Cisco routers, accessing the router using Telnet or SSH is not possible in the event of an IOS failure. When Cisco IOS fails on a traditional Cisco router, the only method of accessing the router is through the console port. Similarly, if all active IOS processes have failed on a chassis that is not using persistent Telnet or persistent SSH, the only method of accessing the router is through the console port.

With persistent Telnet and persistent SSH, however, users can configure a transport map that defines the treatment of incoming Telnet or SSH traffic on the Management Ethernet interface. Among the many configuration options, a transport map can be configured to direct all traffic to the IOS command-line interface, diagnostic mode, or to wait for an IOS vty line to become available and then direct users into diagnostic mode when the user sends a break signal while waiting for the IOS vty line to become available. If a user uses Telnet or SSH to access diagnostic mode, that Telnet or SSH connection will be usable even in scenarios when no IOS process is active. Therefore, persistent Telnet and persistent SSH introduce the ability to access the router via diagnostic mode when the IOS process is not active. For information on diagnostic mode, see the “Understanding Diagnostic Mode” section on page 1-3.

For more information on the various other options that are configurable using persistent Telnet or persistent SSH transport map see the Configuring Persistent Telnet, on page 21 and the Configuring Persistent SSH, on page 23.
Configuring a Console Port Transport Map

This task describes how to configure a transport map for a console port interface.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>transport-map type console transport-map-name</td>
<td>Creates and names a transport map for handling console connections, and enter transport map configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# transport-map type console consolehandler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>connection wait [allow interruptible</td>
<td>Specifies how a console connection will be handled using this transport map:</td>
<td></td>
</tr>
<tr>
<td>none]</td>
<td>• allow interruptible—The console connection waits for an IOS vty line to become available, and also allows user to enter diagnostic mode by interrupting a console connection waiting for the IOS vty line to become available. This is the default setting.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• none—The console connection immediately enters diagnostic mode.</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# connection wait none</td>
<td>Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>banner [diagnostic</td>
<td>(Optional) Creates a banner message that will be seen by users entering diagnostic mode or waiting for the IOS vty line as a result of the console transport map configuration.</td>
<td></td>
</tr>
<tr>
<td>wait] banner-message</td>
<td>• diagnostic—Creates a banner message seen by users directed into diagnostic mode as a result of the console transport map configuration.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# banner diagnostic xxx</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6.

Cisco ASR 900 Router Series Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Examples

In the following example, a transport map to set console port access policies is created and attached to console port 0:

```
Router(config)# transport-map type console consolehandler
Router(config-tmap)# connection wait allow interruptible
Router(config-tmap)# banner diagnostic X
Enter TEXT message. End with the character 'X'.
Welcome to diagnostic mode
X
Router(config-tmap)# banner wait X
Enter TEXT message. End with the character 'X'.
Waiting for IOS vty line
X
Router(config-tmap)# exit
Router(config)# transport type console 0 input consolehandler
```
Configuring Persistent Telnet

Before you begin

For a persistent Telnet connection to access an IOS vty line on the chassis, local login authentication must be configured for the vty line (the `login` command in line configuration mode). If local login authentication is not configured, users will not be able to access IOS using a Telnet connection into the Management Ethernet interface with an applied transport map. Diagnostic mode will still be accessible in this scenario.

Procedure

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>transport-map type persistent telnet transport-map-name</code></td>
<td>Creates and names a transport map for handling persistent Telnet connections, and enters transport map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config)# transport-map type persistent telnet telnethandler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>connection wait [allow {interruptible}] none {disconnect}]</code></td>
<td>Specifies how a persistent Telnet connection will be handled using this transport map:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• allow—The Telnet connection waits for an IOS vty line to become available, and exits the router if interrupted.</td>
</tr>
<tr>
<td>Router(config-tmap)# connection wait none</td>
<td></td>
<td>• allow interruptible—The Telnet connection waits for the IOS vty line to become available, and also allows user to enter diagnostic mode by interrupting a Telnet connection waiting for the IOS vty line to become available. This is the default setting.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• none—The Telnet connection immediately enters diagnostic mode.</td>
</tr>
</tbody>
</table>

Note: Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6.
Configuring Persistent Telnet

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• none disconnect—The Telnet connection does not wait for the IOS vty line and does not enter diagnostic mode, so all Telnet connections are rejected if no vty line is immediately available in IOS.</td>
<td></td>
</tr>
<tr>
<td>Step 5 **banner [diagnostic</td>
<td>wait] banner-message**</td>
</tr>
<tr>
<td>Example: Router(config-tmap)# banner diagnostic</td>
<td>• diagnostic—creates a banner message seen by users directed into diagnostic mode as a result of the persistent Telnet configuration.</td>
</tr>
<tr>
<td>Example: Enter TEXT message. End with the character 'X'.</td>
<td>• wait—creates a banner message seen by users waiting for the vty line to become available.</td>
</tr>
<tr>
<td>Example: --Welcome to Diagnostic Mode--</td>
<td>• banner-message—the banner message, which begins and ends with the same delimiting character.</td>
</tr>
<tr>
<td>Example: X</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-tmap)#</td>
<td></td>
</tr>
<tr>
<td>Step 6 transport interface type num</td>
<td>Applies the transport map settings to the Management Ethernet interface (interface gigabitethernet 0).</td>
</tr>
<tr>
<td>Example: Router(config-tmap)# transport interface gigabitethernet 0</td>
<td>Persistent Telnet can only be applied to the Management Ethernet interface on the chassis. This step must be taken before applying the transport map to the Management Ethernet interface.</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits transport map configuration mode to re-enter global configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-tmap)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 transport type persistent telnet input transport-map-name</td>
<td>Applies the settings defined in the transport map to the Management Ethernet interface.</td>
</tr>
<tr>
<td>Example: Router(config)# transport type persistent telnet input telnethandler</td>
<td>The transport-map-name for this command must match the transport-map-name defined in the transport-map type persistent telnet command.</td>
</tr>
</tbody>
</table>
Examples

In the following example, a transport map that will make all Telnet connections wait for an IOS vty line to become available before connecting to the router, while also allowing the user to interrupt the process and enter diagnostic mode, is configured and applied to the Management Ethernet interface (interface gigabitethernet 0).

A diagnostic and a wait banner are also configured.

The transport map is then applied to the interface when the `transport type persistent telnet input` command is entered to enable persistent Telnet.

```console
Router(config)# transport-map type persistent telnet telnethandler
Router(config-tmap)# connection wait allow interruptible
Router(config-tmap)# banner diagnostic X
Enter TEXT message. End with the character 'X'.
--Welcome to Diagnostic Mode--
X
Router(config-tmap)# banner wait X
Enter TEXT message. End with the character 'X'.
--Waiting for IOS Process--
X
Router(config-tmap)# transport interface gigabitethernet 0
Router(config-tmap)# exit
Router(config)# transport type persistent telnet input telnethandler
```

Configuring Persistent SSH

This task describes how to configure persistent SSH.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Creates and names a transport map for handling persistent SSH connections, and enters transport map configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Creates and names a transport map for handling persistent SSH connections, and enters transport map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Creates and names a transport map for handling persistent SSH connections, and enters transport map configuration mode.</td>
</tr>
<tr>
<td><code>transport-map type persistent ssh transport-map-name</code></td>
<td>Creates and names a transport map for handling persistent SSH connections, and enters transport map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# transport-map type persistent ssh sshhandler</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>connection wait [allow {interruptible}</td>
</tr>
<tr>
<td></td>
<td>{disconnect}]]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config-tmap)# connection wait allow interruptible</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rsa keypair-name rsa-keypair-name</td>
<td>Names the RSA keypair to be used for persistent SSH connections.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>For persistent SSH connections, the RSA keypair name must be defined using this command in transport map configuration mode. The RSA keypair definitions defined elsewhere on the router, such as through the use of the ip ssh rsa keypair-name command, do not apply to persistent SSH connections. No rsa-keypair-name is defined by default.</td>
</tr>
<tr>
<td></td>
<td>Router(config-tmap)# rsa keypair-name sshkeys</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>authentication-retries number-of-retries</td>
<td>(Optional) Specifies the number of authentication retries before dropping the connection.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>The default number-of-retries is 3.</td>
</tr>
<tr>
<td></td>
<td>Router(config-tmap)# authentication-retries 4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>banner [diagnostic</td>
<td>wait] banner-message</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• diagnostic—Creates a banner message seen by users directed into diagnostic</td>
</tr>
<tr>
<td></td>
<td>Router(config-tmap)# banner diagnostic</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Enter TEXT message. End with the character 'X'.</td>
<td>mode as a result of the persistent SSH configuration.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--Welcome to Diagnostic Mode--</td>
<td>• wait—Creates a banner message seen by users waiting for the vty line to become active.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>• banner-message—The banner message, which begins and ends with the same delimiting character.</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>time-out timeout-interval</td>
<td>(Optional) Specifies the SSH time-out interval in seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td>The default timeout-interval is 120 seconds.</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# time-out 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>transport interface type num</td>
<td>Applies the transport map settings to the Management Ethernet interface (interface gigabitethernet 0).</td>
</tr>
<tr>
<td>Example:</td>
<td>Persistent SSH can only be applied to the Management Ethernet interface on the chassis.</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# transport interface gigabitethernet 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>exit</td>
<td>Exits transport map configuration mode to re-enter global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>transport type persistent ssh input transport-map-name</td>
<td>Applies the settings defined in the transport map to the Management Ethernet interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>The transport-map-name for this command must match the transport-map-name defined in the transport-map type persistent ssh command.</td>
<td></td>
</tr>
<tr>
<td>Router(config)# transport type persistent ssh input sshhandler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples

In the following example, a transport map that will make all SSH connections wait for the vty line to become active before connecting to the router is configured and applied to the Management Ethernet interface (interface gigabitethernet 0). The RSA keypair is named sshkeys.

This example only uses the commands required to configure persistent SSH.

Router(config)# transport-map type persistent ssh sshhandler
Router(config-tmap)# connection wait allow
Router(config-tmap)# rsa keypair-name sshkeys
Router(config-tmap)# transport interface gigabitethernet 0
In the following example, a transport map is configured that will apply the following settings to any users attempting to access the Management Ethernet port via SSH:

- Users using SSH will wait for the vty line to become active, but will enter diagnostic mode if the attempt to access IOS through the vty line is interrupted.
- The RSA keypair name is “sshkeys”
- The connection allows one authentication retry.
- The banner “--Welcome to Diagnostic Mode--” will appear if diagnostic mode is entered as a result of SSH handling through this transport map.
- The banner “--Waiting for vty line--” will appear if the connection is waiting for the vty line to become active.

The transport map is then applied to the interface when the transport type persistent ssh input command is entered to enable persistent SSH.

```
Router(config)# transport-map type persistent ssh sshhandler
Router(config-tmap)# connection wait allow interruptible
Router(config-tmap)# rsa keypair-name sshkeys
Router(config-tmap)# authentication-retries 1

Router(config-tmap)# banner diagnostic X
Enter TEXT message. End with the character 'X'.
--Welcome to Diagnostic Mode--
X

Router(config-tmap)#banner wait X
Enter TEXT message. End with the character 'X'.
--Waiting for vty line--
X
Router(config-tmap)# time-out 30
Router(config-tmap)# transport interface gigabitethernet 0
Router(config-tmap)# exit
Router(config)# transport type persistent ssh input sshhandler
```

Viewing Console Port, SSH, and Telnet Handling Configurations

Use the show transport-map all name transport-map-name | type console persistent ssh telnet]]] EXEC or privileged EXEC command to view the transport map configurations.

In the following example, a console port, persistent SSH, and persistent Telnet transport are configured on the router and various forms of the show transport-map command are entered to illustrate the various ways the show transport-map command can be entered to gather transport map configuration information.

```
Router# show transport-map all
Transport Map:
 Name: consolehandler
 Type: Console Transport
 Connection:
  Wait option: Wait Allow Interruptable
  Wait banner:
```
Waiting for the IOS CLI
 bshell banner:
Welcome to Diagnostic Mode
Transport Map:
 Name: sshhandler
 Type: Persistent SSH Transport
Interface:
 GigabitEthernet0
Connection:
 Wait option: Wait Allow Interruptable
 Wait banner:
Waiting for IOS prompt
 Bshell banner:

Welcome to Diagnostic Mode
SSH:
 Timeout: 120
 Authentication retries: 5
 RSA keypair: sshkeys
Transport Map:
 Name: telnethandler
 Type: Persistent Telnet Transport
Interface:
 GigabitEthernet0
Connection:
 Wait option: Wait Allow Interruptable
 Wait banner:
Waiting for IOS process
 Bshell banner:
Welcome to Diagnostic Mode
Transport Map:
 Name: telnethandling1
 Type: Persistent Telnet Transport
Connection:
 Wait option: Wait Allow
Router# show transport-map type console
Transport Map:
 Name: consolehandler
 Type: Console Transport
Connection:
 Wait option: Wait Allow Interruptable
 Wait banner:
Waiting for the IOS CLI
 Bshell banner:
Welcome to Diagnostic Mode
Router# show transport-map type persistent ssh
Transport Map:
 Name: sshhandler
 Type: Persistent SSH Transport
Interface:
 GigabitEthernet0
Connection:
 Wait option: Wait Allow Interruptable
 Wait banner:
Waiting for IOS prompt
 Bshell banner:
Welcome to Diagnostic Mode
SSH:
 Timeout: 120
 Authentication retries: 5
 RSA keypair: sshkeys
Router# show transport-map type persistent telnet
Transport Map:
The **show platform software configuration access policy** command can be used to view the current configurations for the handling of incoming console port, SSH, and Telnet connections. The output of this command provides the current wait policy for each type of connection, as well as any information on the currently configured banners. Unlike **show transport-map**, this command is available in diagnostic mode so it can be entered in cases when you need transport map configuration information but cannot access the IOS CLI.
Router# show platform software configuration access policy
The current access-policies
Method : telnet
Rule : wait
Shell banner:
Wait banner :
Method : ssh
Rule : wait
Shell banner:
Wait banner :
Method : console
Rule : wait with interrupt
Shell banner:
Wait banner :

In the following example, the connection policy and banners are set for a persistent SSH transport map, and the transport map is enabled.

The show platform software configuration access policy output is given both before the new transport map is enabled and after the transport map is enabled so the changes to the SSH configuration are illustrated in the output.

Router# show platform software configuration access policy
The current access-policies
Method : telnet
Rule : wait with interrupt
Shell banner:
Welcome to Diagnostic Mode
Wait banner :
Waiting for IOS Process
Method : ssh
Rule : wait
Shell banner:
Wait banner :
Method : console
Rule : wait with interrupt
Shell banner:
Wait banner :
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# transport-map type persistent ssh sshhandler
Router(config-tmap)# connection wait allow interruptible
Router(config-tmap)# banner diagnostic X
Enter TEXT message. End with the character 'X'.
Welcome to diag mode
X
Router(config-tmap)# banner wait X
Enter TEXT message. End with the character 'X'.
Waiting for IOS
X
Router(config-tmap)# rsa keypair-name sshkeys
Router(config-tmap)# transport interface gigabitethernet 0
Router(config-tmap)# exit
Router(config)# transport type persistent ssh input sshhandler
Router(config)# exit
Router# show platform software configuration access policy
The current access-policies
Method : telnet
Rule : wait with interrupt
Shell banner:
Welcome to Diagnostic Mode
Important Notes and Restrictions

- The Telnet and SSH settings made in the transport map override any other Telnet or SSH settings when the transport map is applied to the Management Ethernet interface.

- Only local usernames and passwords can be used to authenticate users entering a Management Ethernet interface. AAA authentication is not available for users accessing the router through a Management Ethernet interface using persistent Telnet or persistent SSH.

- Applying a transport map to a Management Ethernet interface with active Telnet or SSH sessions can disconnect the active sessions. Removing a transport map from an interface, however, does not disconnect any active Telnet or SSH sessions.

- Configuring the diagnostic and wait banners is optional but recommended. The banners are especially useful as indicators to users of the status of their Telnet or SSH attempts.
CHAPTER 3

Configuring the Route Switch Processor

This chapter describes how to configure the Route Switch Processor (RSP) on the Cisco ASR 900 Series Router and contains the following sections:

• Configuring Timing Ports, on page 31
• Configuring the Management Ethernet Port, on page 31
• Configuring Console Ports, on page 31
• Reloading the Route Switch Processor, on page 31
• Forcing a Route Switch Processor Switchover, on page 32

Configuring Timing Ports

For information about configuring timing ports on the RSP, see Chapter 1, “Configuring Clocking and Timing.”

Configuring the Management Ethernet Port

For information about configuring the management Ethernet port on the RSP, see Chapter 1, “Using the Management Ethernet Interface.”

Configuring Console Ports

For information about configuring console ports, see Chapter 1, “Console Port, Telnet, and SSH Handling.”

Reloading the Route Switch Processor

Use the following command in privileged EXEC mode:
Table 6: Route Switch Processor Reload

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw-module slot number {logging } reload [force]</td>
<td>Restarts, stops, or starts a slot on the router. You can also use this command to disable or enable onboard logging of the hardware.</td>
</tr>
<tr>
<td>start</td>
<td>stop [force]}</td>
</tr>
</tbody>
</table>

Note

The command is used to reload the standby RSP module. Use the `show platform` command to find active/standby slot number.

Note

The above task does not apply to Cisco ASR 902 router.

Forcing a Route Switch Processor Switchover

To force the standby RSP to assume the role of the active RSP, use the `redundancy force-switchover` command in privileged EXEC mode.

```
Router# redundancy force-switchover
```

Note

The above task does not apply to Cisco ASR 902 router.

Note

Router should be in hot standby state for executing this command. This can be verified by using the show redundancy command.
CHAPTER 4

Configuring Ethernet Interfaces

This chapter provides information about configuring the Gigabit Ethernet interface modules.

For more information about the commands used in this chapter, see the Cisco IOS XE 3S Command References.

- Configuring Ethernet Interfaces, on page 33
- Verifying the Interface Configuration, on page 45
- Verifying Interface Module Status, on page 46
- Configuring LAN/WAN-PHY Controllers, on page 47
- Configuration Examples, on page 53

Configuring Ethernet Interfaces

This section describes how to configure the Gigabit and Ten Gigabit Ethernet interface modules and includes information about verifying the configuration.

Limitations and Restrictions

- Interface module A900-IMA8Z in slot 0 with A900-RSP3C-200-S supports a maximum of 6 ports at 10GE speed and needs explicit enablement using the `hw-module subslot 0/0 A900-IMA8Z mode 6-port` command.

- VRF-Aware Software Infrastructure (VASI) interface commands `interface vasil left` and `interface vasil right` are not supported starting Cisco IOS XE Release 3.15.

- Interface modules have slot restrictions, see ASR 900 Series Hardware Installation Guides

- MPLS MTU is not supported on releases prior to Cisco IOS XE Release 3.10.2 on the router. This is not applicable for Cisco IOS XE Everest 16.5.1.

- IP MTU and MPLS MTU are supported. But MPLS MTU support is restricted only to CPU originated traffic. For the forwarded traffic, it is the IP MTU that decides the behavior.

- On the RSP3 module, MTU value configured for a BDI interface should match with the MTU configuration for all the physical interfaces, which have a service instance associated with this BDI.

- To replace the configured interface module with a different interface module in a particular slot, run the `hw-module subslot slot-num default` command.
• Only A900-IMA8Z Interface Modules support LAN/WAN-PHY mode on the Cisco ASR 900 RSP3 Module.
• SNMP support is not available for WAN-PHY in Cisco IOS XE Release 3.18.1SP.
• IEEE 1588 and SyncE are not supported in the WAN-PHY mode on A900-IMA8Z Interface Modules.
• Giant counters are not supported.
• Mixed configurations of features are not supported on the same port. For example, one OC-3 port can have only CEM (CESoP or SAToP), ATM, IMA or DS3 configurations, but not a combination of these features on a single port.
• Ingress counters are not incremented for packets of the below packet format on the RSP3 module for the 10 Gigabit Ethernet interfaces, 100 Gigabit Ethernet interfaces, and 40 Gigabit Ethernet interfaces:

 MAC header---->Vlan header---->Length/Type

 When these packets are received on the RSP3 module, the packets are not dropped, but the counters are not incremented.
• If the IM is shutdown using `hw-module subslot shutdown` command, then the IM goes out-of-service.
 You should perform a Stateful Switchover (SSO) in the interim, as the IM needs to be re-inserted for successful reactivation.
• Following are some of the IMs that are not supported on certain slots when IPsec license is enabled:
 • The below IMs are not supported on the Slot 11 on the Cisco ASR 907 router:
 • SPA_TYPE_ETHER_IM_8x10GE
 • SPA_TYPE_ETHER_IM_2x40GE
 • The below IMs are not supported on the Slot 2 on the Cisco ASR 903 router for RSP3-200 and RSP3-400:
 • SPA_TYPE_ETHER_IM_8xGE_SFP_1x10GE
 • SPA_TYPE_ETHER_IM_8xGE_CU_1x10GE
 • SPA_TYPE_ETHER_IM_1x10GE
 • SPA_TYPE_ETHER_IM_8x10GE
 • SPA_TYPE_OCX_IM_OC3OC12
 • SPA_TYPE_ETHER_IM_8xGE_SFP
 • SPA_TYPE_ETHER_IM_8xGE_CU

Configuring an Interface

This section lists the required configuration steps to configure Gigabit and Ten Gigabit Ethernet interface modules.
Configuring Ethernet Interfaces

Configuring an Interface

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Do one of the following:</td>
<td>Specifies the Gigabit Ethernet or Ten Gigabit Ethernet interface to configure and enters interface configuration mode, where:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Note The slot number is always 0.</td>
</tr>
<tr>
<td></td>
<td>• interface gigabitethernet slot/subslot/port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• interface tengigabitethernet slot/subslot/port</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface gigabitethernet 0/0/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface tengigabitethernet 0/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip address ip-address mask {secondary}</td>
<td>Sets a primary or secondary IP address for an interface that is using IPv4, where:</td>
</tr>
<tr>
<td></td>
<td>dhcp {client-id interface-name} {hostname host-name}</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>• ip-address —The IP address for the interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• mask —The mask for the associated IP subnet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• secondary—(Optional) Specifies that the configured address is a secondary IP address. If this keyword is omitted, the configured address is the primary IP address.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• dhcp—Specifies that IP addresses will be assigned dynamically using DHCP.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• client-id interface-name—Specifies the client identifier. The interface-name sets the client identifier to the hexadecimal MAC address of the named interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• hostname host-name—Specifies the hostname for the DHCP purposes. The hostname is the name of the host to be placed in the DHCP option 12 field.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip address 192.168.1.1 255.255.255.255 dhcp hostname host1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>no negotiation auto</td>
<td>(Optional) Disables automatic negotiation.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# no negotiation auto</td>
<td>Note Use the speed command only when the mode is set to no negotiation auto.</td>
</tr>
</tbody>
</table>
Configuring Ethernet Interfaces

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>speed { 10</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# speed 1000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mtu bytes</td>
<td>(As Required) Specifies the maximum packet size for an interface, where:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• bytes—The maximum number of bytes for a packet.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# mtu 1500</td>
<td>The default is 1500 bytes; the range is from 1500 to 9216.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>standby [group-number] ip [ip-address [secondary]]</td>
<td>Creates or enables the Hot Standby Router Protocol (HSRP) group using its number and virtual IP address, where:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• (Optional) group-number—The group number on the interface for which HSRP is being enabled. The range is from 0 to 255; the default is 0. If there is only one HSRP group, you do not need to enter a group number.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# standby 250 ip 192.168.10.1</td>
<td>• (Optional on all but one interface if configuring HSRP) ip-address—The virtual IP address of the hot standby router interface. You must enter the virtual IP address for at least one of the interfaces; it can be learned on the other interfaces.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• (Optional) secondary—Specifies that the IP address is a secondary hot standby router interface. If neither router is designated as a secondary or standby router and no priorities are set, the primary IP addresses are compared and the higher IP address is the active router, with the next highest as the standby router.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no shutdown</td>
<td>Enables the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no shutdown</td>
<td></td>
</tr>
</tbody>
</table>
Specifying the Interface Address on an Interface Module

To configure or monitor Ethernet interfaces, you need to specify the physical location of the interface module and interface in the CLI. The interface address format is slot/subslot/port, where:

- slot — The chassis slot number in the chassis where the interface module is installed.

Note

- subslot — The subslot where the interface module is installed. Interface module subslots are numbered from 0 to 5 for ASR 903 and from 0 to 15 for ASR 907, from bottom to top.
- port — The number of the individual interface port on an interface module.

The following example shows how to specify the first interface (0) on an interface module installed in the first interface module slot:

```
Router(config)# interface GigabitEthernet 0/0/0
no ip address
shutdown
negotiation auto
no cdp enable
```

Configuring Hot Standby Router Protocol

Hot Standby Router Protocol (HSRP) provides high network availability because it routes IP traffic from hosts without relying on the availability of any single router. You can deploy HSRP in a group of routers to select an active router and a standby router. (An active router is the router of choice for routing packets; a standby router is a router that takes over the routing duties when an active router fails, or when preset conditions are met).

HSRP is enabled on an interface by entering the `standby [group-number] ip [ip-address [secondary]]` command. The `standby` command is also used to configure various HSRP elements. This document does not discuss more complex HSRP configurations. For additional information on configuring HSRP, see the HSRP section of the Cisco IP Configuration Guide publication that corresponds to your Cisco IOS XE software release. In the following HSRP configuration, standby group 2 on Gigabit Ethernet port 0/1/0 is configured at a priority of 110 and is also configured to have a preemptive delay should a switchover to this port occur:

```
Router(config)# interface GigabitEthernet 0/1/0
Router(config-if)# standby 2 ip 192.168.1.200
Router(config-if)# standby 2 priority 110
Router(config-if)# standby 2 preempt
```

The maximum number of different HSRP groups that can be created on one physical interface is 4. If additional groups are required, create 4 groups on the physical interface, and the remaining groups on the BDI or on another physical interface.

The maximum number of HSRP or VRRP groups allowed are:

- RSP1A — 128 HSRP or VRRP groups. 128 HSRP or VRRP groups restriction implies that the maximum number of different interfaces that can be configured with VRRP or HSRP is 128. You cannot configure HSRP or VRRP for more than 128 interfaces but you can configure up to 256 HSRP or VRRP groups in those 128 interfaces.
- RSP1B — 256 HSRP or VRRP groups
• RSP2A-64 and RSP2-128—128 HSRP or VRRP groups, prior to Cisco IOS Release XE 3.15S
• RSP2A-64 and RSP2-128—256 HSRP or VRRP groups, starting Cisco IOS Release XE 3.15S
• RSP3-200 and RSP3-400—255 HSRP or VRRP groups, starting Cisco IOS Release XE 3.18.1SP

TCAM space utilization changes when HSRP groups are configured on the router. If HSRP groups are configured the TCAM space is utilized. Each HSRP group takes 1 TCAM entry. The “Out of TCAM” message may be displayed if total number of TCAM space used by HSRP groups and prefixes on the router exceeds scale limit.

Note
HSRP state flaps with sub-second “Hello” or “Dead” timers.

Verifying HSRP

To verify the HSRP information, use the show standby command in EXEC mode:

```
Router# show standby
Ethernet0 - Group 0
Local state is Active, priority 100, may preempt
Hellotime 3 holdtime 10
Next hello sent in 0:00:00
Hot standby IP address is 198.92.72.29 configured
Active router is local
Standby router is 198.92.72.21 expires in 0:00:07
Standby virtual mac address is 0000.0c07.ac00
Tracking interface states for 2 interfaces, 2 up:
UpSerial10
UpSerial11
```

Modifying the Interface MTU Size

The maximum number of unique MTU values that can be configured on the physical interfaces on the chassis is 8. Use the `show platform hardware pp active interface mtu` command to check the number of values currently configured on the router. This is not applicable on Cisco ASR 900 RSP3 Module.

The Cisco IOS software supports three different types of configurable maximum transmission unit (MTU) options at different levels of the protocol stack:

- Interface MTU—The interface module checks the MTU value of incoming traffic. Different interface types support different interface MTU sizes and defaults. The interface MTU defines the maximum packet size allowable (in bytes) for an interface before drops occur. If the frame is smaller than the interface MTU size, but is not smaller than the minimum frame size for the interface type (such as 64 bytes for Ethernet), then the frame continues to process.
- IP MTU—Can be specified on an interface. If an IP packet exceeds the IP MTU size, then the packet is fragmented.
When the value of the IP MTU is 9216 bytes and the packet is sent with 9214 bytes, 18 bytes are added to the packet by FPGA. The total size of the packet then becomes 9232 bytes. The maximum supported MTU of the packet without fragmentation in ASIC is 9232, so there is no traffic loss with a packet size of 9214. When IP MTU is 9216, and the packet is sent with either 9215 or 9216 bytes, 18 bytes are added to the packet by FPGA. The total size of the packet then becomes 9233 or 9234 bytes respectively. As the packet size exceeds the maximum supported MTU size of the packet without fragmentation, the packet is dropped.

When the traffic with packet size greater than 9216 bytes is sent and the MTU is configured as 9216 bytes, the packet is fragmented. Hence, the packet loss is prevented.

Note
The IP MTU configured on BDI should not be greater than the Layer2 MTU configured on the underlying Layer2 interface. For Cisco ASR 900 RSP3 Module the IP MTU configured on a BDI should be equal to the Layer2 MTU configured on the underlying Layer 2 interface.

- MPLS MTU—If the MPLS MTU is set to a value, for example, 1500 bytes, the value is programmed as 1504 bytes at the hardware level to allow the addition of one label. Consider the case of pseudowire. If the packet size of Layer 2 traffic sent with four bytes of Frame Check Sequence (FCS) to the pseudowire is 1500 bytes, then and four bytes of pseudowire control word and one pseudowire label (label size is four bytes) is added to the packet, the packet size is now 1508 bytes with FCS. However, note that while calculating the packet size, FCS is not considered. So the calculated packet size is 1504 bytes, which is equal to the MPLS MTU programmed in the hardware. This packet is forwarded as expected.

However, if another label is added to this packet, the packet size becomes 1508 bytes without FCS. This value is greater than programmed MTU value, so this packet is dropped. This restriction applies not only to pseudowire, but to the entire MPLS network.

To ensure that packets are not dropped, MPLS MTUs should be set considering the maximum size of the label stack that is added to the packet in the network.

Encapsulation methods and MPLS MTU labels add additional overhead to a packet. For example, Subnetwork Access Protocol (SNAP) encapsulation adds an 8-byte header, dot1q encapsulation adds a 2-byte header, and each MPLS label adds a 4-byte header (n labels x 4 bytes).

For the Gigabit Ethernet interface module on the chassis, the default MTU size is 1500 bytes. The maximum configurable MTU is 9216 bytes. The interface module automatically adds an additional 22 bytes to the configured MTU size to accommodate some of the additional overhead.

Interface MTU Configuration Guidelines

When configuring the interface MTU size, consider the following guidelines:

- The default interface MTU size accommodates a 1500-byte packet, plus 22 additional bytes to cover the following additional overhead:
 - Layer 2 header—14 bytes
 - Dot1q header—4 bytes
 - CRC—4 bytes
If you are using MPLS, ensure that the `mpls mtu` command is configured for a value less than or equal to the interface MTU. This is not applicable for Cisco ASR 900 RSP3 Module.

- If you are using MPLS labels, then you should increase the default interface MTU size to accommodate the number of MPLS labels. Each MPLS label adds 4 bytes of overhead to a packet.
- Interface MTU is not supported on BDI Interface

Configuring Interface MTU

To modify the MTU size on an interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mtu bytes</code></td>
<td>Configures the maximum packet size for an interface, where:</td>
</tr>
<tr>
<td><code>Router(config-if)# mtu bytes</code></td>
<td>• <code>bytes</code> — Specifies the maximum number of bytes for a packet. The default is 1500 bytes and the maximum configurable MTU is 9216 bytes.</td>
</tr>
</tbody>
</table>

To return to the default MTU size, use the `no` form of the command.

Note

When IP FRR over BDI is configured, the maximum allowed packet size is 1504 bytes.

When the BGP-PIC core is enabled, a packet destined to a prefix that is learnt through eBGP, is dropped if the packet size is greater than 1504 bytes. To work around this limitation, do one of the following:

- Disable the BGP-PIC core,
- Use the static route, or
- Use routed-port instead of BDI.

Verifying the MTU Size

To verify the MTU size for an interface, use the `show interfaces gigabitethernet` privileged EXEC command and observe the value shown in the “MTU” field.

The following example shows an MTU size of 1500 bytes for interface port 0 (the second port) on the Gigabit Ethernet interface module installed in slot 1:

```
Router# show interfaces gigabitethernet 0/1/0
GigabitEthernet0/1/0 is up, line protocol is up
   Hardware is A900-IMA8T , address is d0c2.8216.0590 (bia d0c2.8216.0590)
   MTU 1500 bytes , BW 1000000 Kbit/sec, DLY 10 usec,
   reliability 255/255, txload 1/255, rxload 22/255
```
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)

MPLS MTU

MPLS MTU configuration is supported starting with Cisco IOS XE Release 3.10.2 and later. The `platform mpls mtu-enable` command is introduced to enable MPLS MTU on the router.

Restrictions

- MPLS MTU is not supported if IP address is not configured on the interface.
- MPLS MTU is not supported with MPLS LDP Auto configuration.
- MPLS MTU is not supported with BGP send-label.
- IP MTU configuration on an interface does not program MPLS MTU in the hardware. MPLS MTU value is obtained from the Interface MTU or IP MTU.
- In releases prior to Cisco IOS XE Release 3.10.2, if IP MTU is changed, MPLS MTU also changes.
- If both Interface MTU and IP MTU are configured MPLS MTU is obtained from IP MTU. See Table 7: MTU Normal Behavior (Command Not Enabled), on page 41.

<table>
<thead>
<tr>
<th>Interface-MTU</th>
<th>IP MTU</th>
<th>MPLS MTU</th>
<th>MPLS MTU Value Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Interface MTU</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>IP MTU</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>IP MTU</td>
</tr>
</tbody>
</table>

- If MPLS MTU is enabled using `platform mpls mtu-enable` command, then IP MTU does not affect the MPLS MTU configuration. See Table 8: MTU Behavior with platform mpls mtu-enable Command Configured, on page 41.

<table>
<thead>
<tr>
<th>Interface MTU</th>
<th>IP MTU</th>
<th>MPLS MTU</th>
<th>MPLS MTU Value Derived</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Interface MTU</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Default value</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Interface MTU</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Default value</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>MPLS MTU</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>MPLS MTU</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>MPLS MTU</td>
</tr>
</tbody>
</table>
Configuring MPLS MTU Globally

We recommend not to toggle the command as inconsistent results may be displayed.

Note
After configuring or unconfiguring the command, we recommend that all MTU values on all the interfaces are re-configured.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>platform mpls mtu-enable</td>
<td>Configures MPLS MTU globally on the router</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router (config)# platform mpls mtu-enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>interface gigabitethernet slot /subslot /port</td>
<td>Specifies the Gigabit Ethernet or Ten Gigabit Ethernet interface to configure and enters interface configuration mode, where:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router (config)# interface GigabitEthernet 0/0/1</td>
<td>Note: The slot number is always 0.</td>
</tr>
<tr>
<td>3</td>
<td>mpls mtu mtu-value</td>
<td>Configures the MTU value.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router (config-if)# mpls mtu 700</td>
<td></td>
</tr>
</tbody>
</table>

Verifying MPLS MTU

Use the `show platform hardware pp active feature mpls mtu-table` command to display the MPLS MTU values configured on the router.

```
Router# show platform hardware pp active feature mpls mtu-table
MPLS MTU Table
Index  MTU  Ref-Count
---------  ----  -----------
0    1504    1
1     704    0
2     00     0
```
Configuring the Encapsulation Type

The only encapsulation supported by the interface modules is IEEE 802.1Q encapsulation for virtual LANs (VLANs).

Note

VLANs are only supported on Ethernet Virtual Connection (EVC) service instances and Trunk Ethernet Flow Point (EFP) interfaces.

For more information about how to configure these features, see the Configuring Ethernet Virtual Connections on the Cisco ASR 900 Series Router document.

Configuring Autonegotiation on an Interface

Gigabit Ethernet interfaces use a connection-setup algorithm called autonegotiation. Autonegotiation allows the local and remote devices to configure compatible settings for communication over the link. Using autonegotiation, each device advertises its transmission capabilities and then agrees upon the settings to be used for the link.

For the Gigabit Ethernet interfaces on the chassis, flow control is autonegotiated when autonegotiation is enabled. Autonegotiation is enabled by default.

The Copper SFP does not auto-negotiate full duplex with 8-port Gigabit Ethernet RJ45 (Copper) Interface Module (8X1GE) with speed 100 configured.

When enabling autonegotiation, consider these guidelines:

- If autonegotiation is disabled on one end of a link, it must be disabled on the other end of the link. If one end of a link has autonegotiation disabled while the other end of the link does not, the link will not come up properly on both ends.
- Flow control is enabled by default.
- Flow control will be on if autonegotiation is disabled on both ends of the link.

Enabling Autonegotiation

To enable autonegotiation on a Gigabit Ethernet interface, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>negotiation auto</td>
<td>Enables autonegotiation on a Gigabit Ethernet interface. Advertisement of flow control occurs.</td>
</tr>
</tbody>
</table>

Router(config-if)# negotiation auto
Disabling Autonegotiation

Autonegotiation is automatically enabled and can be disabled on Gigabit Ethernet interfaces. During autonegotiation, advertisement for flow control, speed, and duplex occurs, depending on the media (fiber or copper) in use.

Speed and duplex configurations can be advertised using autonegotiation. The values that are negotiated are:

- For Gigabit Ethernet interfaces using RJ-45 ports and for Copper (Cu) SFP ports—10, 100, and 1000 Mbps for speed and full-duplex mode. Link speed is not negotiated when using fiber interfaces.

To disable autonegotiation, use the following command in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>no negotiation auto</td>
<td>Disables autonegotiation on Gigabit Ethernet interfaces. No advertisement of flow control occurs.</td>
</tr>
</tbody>
</table>

Router(config-if)# no negotiation auto

Configuring Carrier Ethernet Features

For information about configuring an Ethernet interface as a layer 2 Ethernet virtual circuit (EVC) or Ethernet flow point (EFP), see the Ethernet Virtual Connections Configuration.

Saving the Configuration

To save your running configuration to NVRAM, use the following command in privileged EXEC configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>Writes the new configuration to NVRAM.</td>
</tr>
</tbody>
</table>

Router# copy running-config startup-config

For information about managing your system image and configuration files, refer to the Cisco IOS Configuration Fundamentals Configuration Guide and Cisco IOS Configuration Fundamentals Command Reference publications that correspond to your Cisco IOS software release.

Shutting Down and Restarting an Interface

You can shut down and restart any of the interface ports on an interface module independently of each other. Shutting down an interface stops traffic and enters the interface into a "administratively down" state.

If you are preparing for an OIR of an interface module, it is not necessary to independently shut down each of the interfaces prior to deactivation of the module.
PurposeCommand

shutdown

router#configure terminal
Enter configuration commands, one per line. End with CTRL/Z.
router(config)
router(config)#interface GigabitEthernet 0/1/0
router(config-if)#shutdown

no shutdown

router#configure terminal
Enter configuration commands, one per line. End with CTRL/Z.
router(config)
router(config)#interface GigabitEthernet 0/1/0
router(config-if)#no shutdown

Shutting Down and Restarting an Interface Module

You can use the following commands in EXEC mode to automatically stop traffic on the affected interfaces and deactivate them along with the interface module in preparation for OIR:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw-module subslot slot/subslot {reload [force]</td>
<td>start</td>
</tr>
</tbody>
</table>

Verifying the Interface Configuration

Besides using the show running-configuration command to display the configuration settings, you can use the show interfaces gigabitethernet command to get detailed information on a per-port basis for your Gigabit Ethernet interface module.

Verifying Per-Port Interface Status

To find detailed interface information on a per-port basis for the Gigabit Ethernet interface module, use the show interfaces gigabitethernet command.

The following example provides sample output for interface port 0 on the interface module located in slot 1:

```
Router# show interfaces GigabitEthernet0/1/0
GigabitEthernet0/1/0 is up, line protocol is up
    Hardware is A900-IMA8T , address is d0c2.8216.0590 (bia d0c2.8216.0590)
    MTU 1500 bytes, BW 1000000 Kbit/sec, DLY 10 usec,
    reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation ARPA, loopback not set
    Keepalive set (10 sec)
    Full Duplex, 1000Mbps, link type is auto, media type is RJ45
```
output flow-control is off, input flow-control is off
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output 08:59:45, output hang never
Last clearing of show interface counters 09:00:18
Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
11 packets input, 704 bytes, 0 no buffer
Received 11 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 watchdog, 0 multicast, 0 pause input
0 packets output, 0 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 unknown protocol drops
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier, 0 pause output
0 output buffer failures, 0 output buffers swapped out

Verifying Interface Module Status

You can use various `show` commands to view information specific to SFP, XFP, CWDM, and DWDM optical transceiver modules.

Note

The `show interface transceiver` command is *not* supported on the router.

To check or verify the status of an SFP Module or XFP Module, use the following `show` commands:

Use `show hw-module slot/subslot transceiver port status` or `show interfaces interface transceiver detail` to view the threshold values for temperature, voltage and so on.

For example, `show hw-module subslot 0/5 transceiver 1 status` or `show interfaces tenGigabitEthernet 0/5/1 transceiver detail`.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `show hw-module slot/subslot transceiver port idprom` | Displays information for the transceiver identification programmable read only memory (idprom).
 Note Transceiver types must match for a connection between two interfaces to become active. |
| `show hw-module slot/subslot transceiver port idprom status` | Displays information for the transceiver initialization status.
 Note The transmit and receive optical power displayed by this command is useful for troubleshooting Digital Optical Monitoring (DOM). For interfaces to become active, optical power must be within required thresholds. |
| `show hw-module slot/subslot transceiver port idprom dump` | Displays a dump of all EEPROM content stored in the transceiver. |

The following `show hw-module subslot` command sample output is for 1000BASE BX10-U:
The following `show hw-module subslot` command sample output is for an SFP+ 10GBASE-SR:

```
Router#show hw-module subslot 0/2 transceiver 8 idprom brief

IDPROM for transceiver TenGigabitEthernet0/2/8:
  Description                   = SFP or SFP+ optics (type 3)
  Transceiver Type:             = SFP+ 10GBASE-SR (273)
  Product Identifier (PID)      = SFP-10G-SR
  Vendor Revision               = 2
  Serial Number (SN)            = JUR2052G19W
  Vendor Name                   = CISCO-LUMENTUM
  Vendor OUI (IEEE company ID)  = 00.01.9C (412)
  CLEI code                     = COUIA8NCAA
  Cisco part number             = 10-2415-03
  Device State                  = Enabled.
  Date code (yy/mm/dd)          = 16/12/21
  Connector type                = LC.
  Encoding                      = 64B/66B (6)
  Nominal bitrate               = (10300 Mbits/s)
  Minimum bit rate as % of nominal bit rate = not specified
  Maximum bit rate as % of nominal bit rate = not specified

Router#
```

Note

VID for optics displayed in `show inventory` command and vendor revision shown in `idprom detail` command output are stored in different places in Idprom.

Configuring LAN/WAN-PHY Controllers

The LAN/WAN-PHY controllers are configured in the physical layer control element of the Cisco IOS XE software.
Restrictions for LAN/WAN-PHY Mode

- Effective with Cisco IOS XE Release 3.18.1SP, A900-IMA8Z Interface Modules (IM) support LAN/WAN-PHY mode on the Cisco ASR 900 RSP3 Module.
- The following A900-IMA8Z IM alarms are not supported on the Cisco ASR 900 RSP3 Module:
 - NEWPTR
 - PSE
 - NSE
 - FELCDP
 - FEAISP

Configuring LAN-PHY Mode

This section describes how to configure LAN-PHY mode on the Gigabit Ethernet interface modules.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show controllers wanphy slot/subslot/port</td>
<td>Displays the configuration mode of the LAN/WAN-PHY controller. Default configuration mode is LAN.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>If the configuration mode is WAN, complete the rest of the procedure to change the configuration mode to LAN.</td>
</tr>
<tr>
<td>Router# show controllers wanphy 0/1/0</td>
<td>TenGigabitEthernet0/1/0 Mode of Operation: WAN Mode</td>
<td></td>
</tr>
<tr>
<td>SECTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOF = 0 LOS = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIP(B1) = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIS = 0 RDI = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEBE = 0 BIP(B2) = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PATH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIS = 0 RDI = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEBE = 0 BIP(B3) = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOP = 0 NEWPTR = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSE = 0 NSE = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIS ALARMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SER = 0 FELCDP = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEAISP = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLOS = 0 PLCD = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LFEBIP = 0 FBEC = 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Alarms[All defects]: SWLOF LAIS PAIS SER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Alarms[Highest Alarms]: SWLOF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alarm reporting enabled for: SF SWLOF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1-TCA B2-TCA FLOP WLOS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rx(K1/K2): 00/00 Tx(K1/K2): 00/00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SISO - 00, C2 = 0x1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PATH TRACE BUFFER: UNSTABLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote J1 Byte :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BER thresholds: SD = 10e-6 SF = 10e-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring WAN-PHY Mode

This section describes how to configure WAN-PHY mode on the Gigabit Ethernet interface modules.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Displays the configuration mode of the WAN-PHY controller. Default configuration mode is LAN.</td>
</tr>
<tr>
<td>show controllers wanphy slot/subslot/port</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show controllers wanphy 0/1/0 TenGigabitEthernet0/1/0</td>
<td>Mode of Operation: LAN Mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures LAN-PHY mode for the Ethernet interface module.</td>
</tr>
<tr>
<td>Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• hw-module subslot slot/subslot enable LAN</td>
<td></td>
</tr>
<tr>
<td>• hw-module subslot slot/subslot interface port enable LAN</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# hw-module subslot 0/1/0 enable LAN</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Displays configuration mode for the LAN/WAN-PHY controller. The example shows the mode of operation as LAN mode for the Cisco 8-Port 10 Gigabit Ethernet LAN/WAN-PHY Controller.</td>
</tr>
<tr>
<td>show controllers wanphy slot/subslot/port</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show controllers wanphy 0/1/0 TenGigabitEthernet0/1/2</td>
<td>Mode of Operation: LAN Mode</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 Do one of the following:</td>
<td>Configures WAN-PHY mode for the Ethernet interface module.</td>
</tr>
<tr>
<td>• hw-module subslot slot/subslot enable WAN</td>
<td>• slot/subslot/port — The location of the interface.</td>
</tr>
<tr>
<td>• hw-module subslot slot/subslotinterface port enable WAN</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# hw-module subslot 0/1 enable WAN</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 5 show controllers wanphy slot/subslot/port</td>
<td>Displays configuration mode for the LAN/WAN-PHY controller. The example shows the mode of operation as WAN mode for the Cisco 8-Port 10 Gigabit Ethernet LAN/WAN-PHY Controller.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show controllers wanphy 0/1/5</td>
<td></td>
</tr>
<tr>
<td>TenGigabitEthernet0/1/5</td>
<td></td>
</tr>
<tr>
<td>Mode of Operation: WAN Mode</td>
<td></td>
</tr>
<tr>
<td>SECTION</td>
<td></td>
</tr>
<tr>
<td>LOF — 0</td>
<td>LGS — 0</td>
</tr>
<tr>
<td>BIP(B1) — 0</td>
<td></td>
</tr>
<tr>
<td>LINE</td>
<td></td>
</tr>
<tr>
<td>AIS — 0</td>
<td>RDI — 0</td>
</tr>
<tr>
<td>FEBE — 0</td>
<td>BIP(B2) — 0</td>
</tr>
<tr>
<td>PATH</td>
<td></td>
</tr>
<tr>
<td>AIS — 0</td>
<td>RDI — 0</td>
</tr>
<tr>
<td>FEBE — 0</td>
<td>BIP(B3) — 0</td>
</tr>
<tr>
<td>LOP — 0</td>
<td>NEWPTR — 0</td>
</tr>
<tr>
<td>FSE — 0</td>
<td>NSE — 0</td>
</tr>
<tr>
<td>WIS ALARMs</td>
<td></td>
</tr>
<tr>
<td>SER — 0</td>
<td>FELCDP — 0</td>
</tr>
<tr>
<td>FEAIISP — 0</td>
<td></td>
</tr>
<tr>
<td>WLOS — 0</td>
<td>PLCD — 0</td>
</tr>
<tr>
<td>LFEBIP — 0</td>
<td>PBEC — 0</td>
</tr>
</tbody>
</table>

Active Alarms[All defects]: SWLOF LAIS PAIS SER
Active Alarms[Highest Alarms]: SWLOF
Configuring the Flag for Path Trace

The 1-Port 10GE LAN/WAN-PHY Shared Port Adapter can operate in either the WAN mode or the LAN mode. To check end-to-end connectivity, J1 flag byte values can be configured on the local SPA. The configured J1 byte values are displayed at the remote end in the `show controllers wanphy interface-path-id` command output.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `configure terminal` | Enters the global configuration mode.
Example:
Router# configure terminal |
| **Step 2** | `controller wanphy interface-path-id` | Enters the controller mode of the WAN-PHY SPA. In this example, it enters slot 1 of SIP 2.
Example:
Router(config)# controller wanphy 2/1/0 |
| **Step 3** | `wanphy flag j1 transmit string` | Passes the string of J1 byte values specified to the remote end of WAN-PHY SPA. In this example, the string value `passing_string_from_localend` is transmitted to the remotely connected WAN-PHY SPA.
Example:
Router(config-controller)# wanphy flag j1 transmit passing_string_from_localend |
| **Step 4** | `exit` | Exits Controller-configuration (config) mode and enters global configuration mode.
Example:
Router(config-controller)# exit |
| **Step 5** | `exit` | Exits global-configuration (config) mode and enters privilege-exec mode.
Example:
Router(config)# exit |
| **Step 6** | `show controller wanphy <interface-path-id>` | This command must be executed on the remotely connected SPA. The command output displays the string of J1 byte values transmitted from the other end of the WAN-PHY SPA to check the path.
Example:
Example:
Router# show controller wanphy 2/2/0
TenGigabitEthernet0/2/0
Mode of Operation: WAN Mode |
Configuring WAN-PHY Error Thresholds

This section describes how to configure WAN-PHY Signal Failure (SF) and Signal Degrade (SD) Bit Error Rate (BER) reporting and thresholds.

An SF alarm is triggered if the line bit error (B2) rate exceeds a user-provisioned threshold range (over the range of 10e-3 to 10e-9).

An SD alarm is declared if the line bit error (B2) rate exceeds a user-provisioned threshold range (over the range of 10e-3 to 10e-9). If the B2 errors cross the SD threshold, a warning about link quality degradation is triggered. The WAN-PHY alarms are useful for some users who are upgrading their Layer 2 core network from a SONET ring to a 10-Gigabit Ethernet ring.

Before you begin

The controller must be in the WAN-PHY mode before configuring the SF and SD BER reporting and thresholds.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

Example:

Router# configure terminal
Command or Action

<table>
<thead>
<tr>
<th>Step 2</th>
<th>controller wanphy slot/subslot/port</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enters WAN physical controller configuration mode in which you can configure a 10-Gigabit Ethernet WAN-PHY controller.</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
Router(config)# controller wanphy 0/3/0
```

slot/subslot/port — The location of the interface.

Command or Action

| Step 3 | wanphy {delay | flag | report-alarm | threshold {b1-tca | b2-tca | sd-ber | sf-ber [bit error rate]}} |
|--------|--|
| | Configures WAN-PHY controller processing. |

Example:

```
Router(config-controller)# wanphy threshold b1-tca 6
```

delay—Delays WAN-PHY alarm triggers.

flag—Specifies byte values.

report-alarm—Configures WAN-PHY alarm reporting.

threshold—Sets BER threshold values.

- **b1-tca**—Sets B1 alarm BER threshold.
- **b2-tca**—Sets B2 alarm BER threshold.
- **sd-ber**—Sets Signal Degrade BER threshold.
- **sf-ber**—Sets Signal Fail BER threshold.

bit error rate—Specifies bit error rate.

Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>end</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exits controller configuration mode and enters privileged EXEC mode.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-controller)# end
```

Configuration Examples

Example: Basic Interface Configuration

The following example shows how to enter the global configuration mode to configure an interface, configure an IP address for the interface, and save the configuration:

```
! Enter global configuration mode.

!

Router# configure terminal

! Enter configuration commands, one per line. End with CNTL/Z.

!
```
Example: MTU Configuration

The maximum number of unique MTU values that can be configured on the physical interfaces on the chassis is eight. Use the `show platform hardware pp active interface mtu command` to check the number of values currently configured on the router.

The following example shows how to set the MTU interface to 9216 bytes.

The interface module automatically adds an additional 38 bytes to the configured MTU interface size.
! Enter global configuration mode.

!

Router# configure terminal

! Enter configuration commands, one per line. End with CNTL/Z.

!

! Specify the interface address

!

Router(config)# interface gigabitethernet 0/0/1

!

! Configure the interface MTU.

!

Router(config-if)# mtu 9216

Example: VLAN Encapsulation

The following example shows how to configure interface module port 2 (the third port) and configure the first interface on the VLAN with the ID number 268 using IEEE 802.1Q encapsulation:

! Enter global configuration mode.

!

Router# configure terminal

! Enter configuration commands, one per line. End with CNTL/Z.

!

! Enter configuration commands, one per line. End with CNTL/Z.

!

Router(config)# service instance 10 ethernet

!

! Configure dot1q encapsulation and specify the VLAN ID.

Router(config-subif)# encapsulation dot1q 268

!

Note

VLANs are supported only on EVC service instances and Trunk EFP interfaces.
Example: VLAN Encapsulation
CHAPTER 5

Using the Management Ethernet Interface

This chapter covers the following topics:

• Gigabit Ethernet Management Interface Overview, on page 57
• Gigabit Ethernet Port Numbering, on page 57
• IP Address Handling in ROMmon and the Management Ethernet Port, on page 58
• Gigabit Ethernet Management Interface VRF, on page 58
• Common Ethernet Management Tasks, on page 59

Gigabit Ethernet Management Interface Overview

The chassis has one Gigabit Ethernet Management Ethernet interface on each Route Switch Processor.

The purpose of this interface is to allow users to perform management tasks on the router; it is basically an interface that should not and often cannot forward network traffic but can otherwise access the router, often via Telnet and SSH, and perform most management tasks on the router. The interface is most useful before a router has begun routing, or in troubleshooting scenarios when the interfaces are inactive.

The following aspects of the Management Ethernet interface should be noted:

• Each RSP has a Management Ethernet interface, but only the active RSP has an accessible Management Ethernet interface (the standby RSP can be accessed using the console port, however).
• IPv4, IPv6, and ARP are the only routed protocols supported for the interface.
• The interface provides a method of access to the router even if the interfaces or the IOS processes are down.
• The Management Ethernet interface is part of its own VRF. For more information, see the Gigabit Ethernet Management Interface VRF, on page 58.

Gigabit Ethernet Port Numbering

The Gigabit Ethernet Management port is always GigabitEthernet0.

In a dual RSP configuration, the Management Ethernet interface on the active RSP will always be Gigabit Ethernet 0, while the Management Ethernet interface on the standby RSP will not be accessible using the Cisco IOS CLI in the same telnet session. The standby RSP can be accessed via console port using telnet.

The port can be accessed in configuration mode like any other port on the chassis.
IP Address Handling in ROMmon and the Management Ethernet Port

IP addresses can be configured using ROMmon (IP_ADDRESS= and IP_SUBNET_MASK= commands) and the IOS command-line interface (the ip address command in interface configuration mode).

Assuming the IOS process has not begun running on the chassis, the IP address that was set in ROMmon acts as the IP address of the Management Ethernet interface. In cases where the IOS process is running and has taken control of the Management Ethernet interface, the IP address specified when configuring the Gigabit Ethernet 0 interface in the IOS CLI becomes the IP address of the Management Ethernet interface. The ROMmon-defined IP address is only used as the interface address when the IOS process is inactive.

For this reason, the IP addresses specified in ROMmon and in the IOS CLI can be identical and the Management Ethernet interface will function properly in single RSP configurations.

In dual RSP configurations, however, users should never configure the IP address in the ROMmon on either RP0 or RP1 to match each other or the IP address as defined by the IOS CLI. Configuring matching IP addresses introduces the possibility for an active and standby Management Ethernet interface having the same IP address with different MAC addresses, which will lead to unpredictable traffic treatment or possibility of an RSP boot failure.

Gigabit Ethernet Management Interface VRF

The Gigabit Ethernet Management interface is automatically part of its own VRF. This VRF, which is named “Mgmt-intf,” is automatically configured on the chassis and is dedicated to the Management Ethernet interface; no other interfaces can join this VRF. Therefore, this VRF does not participate in the MPLS VPN VRF or any other network-wide VRF.

Placing the management ethernet interface in its own VRF has the following effects on the Management Ethernet interface:

- Many features must be configured or used inside the VRF, so the CLI may be different for certain Management Ethernet functions on the chassis than on Management Ethernet interfaces on other routers.
- Prevents transit traffic from traversing the router. Because all of the interfaces and the Management Ethernet interface are automatically in different VRFs, no transit traffic can enter the Management Ethernet interface and leave an interface, or vice versa.
- Improved security of the interface. Because the Mgmt-intf VRF has its own routing table as a result of being in its own VRF, routes can only be added to the routing table of the Management Ethernet interface if explicitly entered by a user.

The Management Ethernet interface VRF supports both IPv4 and IPv6 address families.
Common Ethernet Management Tasks

Because users can perform most tasks on a router through the Management Ethernet interface, many tasks can be done by accessing the router through the Management Ethernet interface.

This section documents common configurations on the Management Ethernet interface and includes the following sections:

Viewing the VRF Configuration

The VRF configuration for the Management Ethernet interface is viewable using the `show running-config vrf` command.

This example shows the default VRF configuration:

```
Router# show running-config vrf
Building configuration...
Current configuration : 351 bytes
vrf definition Mgmt-intf
  !
  address-family ipv4
  exit-address-family
  !
  address-family ipv6
  exit-address-family
  !
(some output removed for brevity)
```

Viewing Detailed VRF Information for the Management Ethernet VRF

To see detailed information about the Management Ethernet VRF, enter the `show vrf detail Mgmt-intf` command.

```
Router# show vrf detail Mgmt-intf
VRF Mgmt-intf (VRF Id = 4085); default RD <not set>; default VPNID <not set>
  Interfaces:
    Gi0
  Address family ipv4 (Table ID = 4085 (0xFF5)):  
    No Export VPN route-target communities
    No Import VPN route-target communities
    No import route-map
    No export route-map
    VRF label distribution protocol: not configured
    VRF label allocation mode: per-prefix
  Address family ipv6 (Table ID = 503316481 (0x1E000001)):  
    No Export VPN route-target communities
    No Import VPN route-target communities
    No import route-map
    No export route-map
    VRF label distribution protocol: not configured
    VRF label allocation mode: per-prefix
```
Setting a Default Route in the Management Ethernet Interface VRF

To set a default route in the Management Ethernet Interface VRF, enter the following command:

```
ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0 next-hop-IP-address
```

Setting the Management Ethernet IP Address

The IP address of the Management Ethernet port is set like the IP address on any other interface. Below are two simple examples of configuring an IPv4 address and an IPv6 address on the Management Ethernet interface.

IPv4 Example

```
Router(config)# interface GigabitEthernet 0
Router(config-if)# ip address A.B.C.D A.B.C.D
```

IPv6 Example

```
Router(config)# interface GigabitEthernet 0
Router(config-if)# ipv6 address X:X:X::X
```

Telnetting over the Management Ethernet Interface

Telnetting can be done through the VRF using the Management Ethernet interface. In the following example, the router telnets to 172.17.1.1 through the Management Ethernet interface VRF:

```
Router# telnet 172.17.1.1 /vrf Mgmt-intf
```

Pinging over the Management Ethernet Interface

Pinging other interfaces using the Management Ethernet interface is done through the VRF. In the following example, the router pings the interface with the IP address of 172.17.1.1 through the Management Ethernet interface.

```
Router# ping vrf Mgmt-intf 172.17.1.1
```

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.17.1.1, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 1/1/1 ms
Copy Using TFTP or FTP

To copy a file using TFTP through the Management Ethernet interface, the `ip tftp source-interface GigabitEthernet 0` command must be entered before entering the `copy tftp` command because the `copy tftp` command has no option of specifying a VRF name.

Similarly, to copy a file using FTP through the Management Ethernet interface, the `ip ftp source-interface GigabitEthernet 0` command must be entered before entering the `copy ftp` command because the `copy ftp` command has no option of specifying a VRF name.

TFTP Example

```bash
Router(config)# ip tftp source-interface gigabitethernet 0
```

FTP Example

```bash
Router(config)# ip ftp source-interface gigabitethernet 0
```

NTP Server

To allow the software clock to be synchronized by a Network Time Protocol (NTP) time server over the Management Ethernet interface, enter the `ntp server vrf Mgmt-intf` command and specify the IP address of the device providing the update.

The following CLI provides an example of this procedure.

```bash
Router(config)# ntp server vrf Mgmt-intf 172.17.1.1
```

SYSLOG Server

To specify the Management Ethernet interface as the source IPv4 or IPv6 address for logging purposes, enter the `logging host ip-address vrf Mgmt-intf` command.

The following CLI provides an example of this procedure.

```bash
Router(config)# logging host <ip-address> vrf Mgmt-intf
```

SNMP-related services

To specify the Management Ethernet interface as the source of all SNMP trap messages, enter the `snmp-server source-interface traps gigabitEthernet 0` command.

The following CLI provides an example of this procedure:

```bash
Router(config)# snmp-server source-interface traps gigabitEthernet 0
```

Domain Name Assignment

The IP domain name assignment for the Management Ethernet interface is done through the VRF.
To define the default domain name as the Management Ethernet VRF interface, enter the `ip domain-name vrf Mgmt-intf domain` command.

```
Router(config)# ip domain-name vrf Mgmt-intf cisco.com
```

DNS service

To specify the Management Ethernet interface VRF as a name server, enter the `ip name-server vrf Mgmt-intf IPv4-or-IPv6-address` command.

```
Router(config)# ip name-server vrf Mgmt-intf IPv4-or-IPv6-address
```

RADIUS or TACACS+ Server

To group the Management VRF as part of a AAA server group, enter the `ip vrf forward Mgmt-intf` command when configuring the AAA server group.

The same concept is true for configuring a TACACS+ server group. To group the Management VRF as part of a TACACS+ server group, enter the `ip vrf forwarding Mgmt-intf` command when configuring the TACACS+ server group.

Radius Server Group Configuration

```
Router(config)# aaa group server radius hello
Router(config-sg-radius)# ip vrf forwarding Mgmt-intf
```

Tacacs+ Server Group Example

```
outer(config)# aaa group server tacacs+ hello
Router(config-sg-tacacs+)# ip vrf forwarding Mgmt-intf
```

VTY lines with ACL

To ensure an access control list (ACL) is attached to vty lines that are and are not using VRF, use the `vrf-also` option when attaching the ACL to the vty lines.

```
Router(config)# line vty 0 4
Router(config-line)# access-class 90 in vrf-also
```
Configuring T1/E1 Interfaces

This chapter provides information about configuring the T1/E1 interface module on the chassis. It includes the following sections:

For information about managing your system images and configuration files, refer to the Cisco IOS Configuration Fundamentals Configuration Guide and Cisco IOS Configuration Fundamentals Command Reference publications.

For more information about the commands used in this chapter, refer to the Cisco IOS Command Reference publication for your Cisco IOS software release.

- Configuration Tasks, on page 63
- Verifying the Interface Configuration, on page 79
- Configuration Examples, on page 80

Configuration Tasks

This section describes how to configure the T1/E1 interface module for the chassis and includes the following topics:

Limitations

This section describes the software limitations that apply when configuring the T1/E1 interface module.

- The following interface modules are not supported on the RSP3 module:
 - 16-port T1/E1 interface module
 - 8-port T1/E1 interface module
 - 32-port T1/E1 interface module

- The **configure replace** command is not supported on the T1/E1 interface modules.

- The chassis does not support more than 16 IMA groups on each T1/E1 interface module.

- The chassis only supports the following BERT patterns: 2^11, 2^15, 2^20-O153, and 2^20-QRSS.

- L2TPv3 encapsulation is not supported.

- Replacing a configured interface module with a different interface module in the same slot is not supported.
• Mixed configurations of features are not supported on the same port.

• The Payload calculation per unit for T1/E1 interface module is:
 • Framed E1 / T1 with no. of time slots less than 4 → Payload = 4 x no. of time slots.
 • Framed E1 / T1 with no. of Time Slots greater than or equal 4 → Payload = 2 x no. of time slots.
 • Unframed T1, C11 → Payload = 48 (2 x 24 (all slots)).
 • Unframed E1, C12 → Payload = 64 (2 x 32(all slots))

• Channelization is not supported for serial interfaces. However, channelization is supported for CEM at the DS0 level.

Required Configuration Tasks

This section lists the required configuration steps to configure the T1/E1 interface module. Some of the required configuration commands implement default values that might be appropriate for your network. If the default value is correct for your network, then you do not need to configure the command.

Setting the Card Type

The interface module is not functional until the card type is set. Information about the interface module is not indicated in the output of any show commands until the card type has been set. There is no default card type.

Note

Mixing of T1 and E1 interface types is not supported. All ports on the interface module must be of the same type.

To set the card type for the T1/E1 interface module, complete these steps:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
</tbody>
</table>
| card type {e1 | t1} slot/subslot | Sets the serial mode for the interface module:
| Example: | • t1—Specifies T1 connectivity of 1.536 Mbps. B8ZS is the default linecode for T1.
| Router(config)# card type e1 0/3 | • e1—Specifies a wide-area digital transmission scheme used predominantly in Europe that carries data at a rate of 1.984 Mbps in framed mode and 2.048 Mbps in unframed E1 mode. |
| | • slot/subslot —Specifies the location of the interface module. |
Enabling T1 Controller

T1/T3 or E1/E3 does not require any license.

To enable T1 controller:

```
enable
cfg terminal
controller mediatype 0/4/0
mode t1
end
```

Configuring the Controller

To create the interfaces for the T1/E1 interface module, complete these steps:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Selects the controller to configure and enters controller configuration mode.</td>
</tr>
<tr>
<td>controller {t1</td>
<td>e1} slot/subslot/port</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# controller t1 0/3/0</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Sets the clock source.</td>
</tr>
<tr>
<td>clock source {internal</td>
<td>line}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# clock source internal</td>
<td></td>
</tr>
</tbody>
</table>

Note

- The slot number is always 0.

- **internal**—Specifies that the internal clock source is used.

- The clock source is set to internal if the opposite end of the connection is set to line and the clock source is set to line if the opposite end of the connection is set to internal.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• line—Specifies that the network clock source is used. This is the default for T1 and E1.</td>
<td></td>
</tr>
</tbody>
</table>

Step 4

linecode {ami | b8zs | hdb3}

Example:

Router(config-controller)# linecode ami

Selects the linecode type.

- ami—Specifies Alternate Mark Inversion (AMI) as the linecode type. Valid for T1 and E1 controllers.
- b8zs—Specifies binary 8-zero substitution (B8ZS) as the linecode type. Valid for T1 controller only. This is the default for T1 lines.
- hdb3—Specifies high-density binary 3 (HDB3) as the linecode type. Valid for E1 controller only. This is the default for E1 lines.

Step 5

For T1 Controllers:

framing {sf | esf}

Example:

Router(config-controller)# framing sf

Selects the framing type.

- sf—Specifies Super Frame as the T1 frame type.
- esf—Specifies Extended Super Frame as the T1 frame type. This is the default for E1.

For E1 Controllers:

framing {crc4 | no-crc4}

Example:

Router(config-controller)# framing crc4

- crc4—Specifies CRC4 as the E1 frame type. This is the default for E1.
- no-crc4—Specifies no CRC4 as the E1 frame type.

Step 6

cablelength {long | short}

Example:

Router(config-controller)# cablelength long

To fine-tune the pulse of a signal at the receiver for an E1 cable, use the `cablelength` command in controller configuration mode.

Step 7

exit

Example:

Router(config)# exit

Exits configuration mode and returns to the EXEC command interpreter prompt.
Verifying Controller Configuration

To verify the controller configuration, use the show controllers command:

```
Router# show controllers t1 0/3/0 brief
T1 0/3/0 is up.
  Applique type is A900-IMA16D
  Cable length is long gain36 0 db
  No alarms detected.
  alarm-trigger is not set
  Soaking time: 3, Clearance time: 10
  AIS State: Clear  LOS State: Clear  LOF State: Clear
  Framing is ESF, Line Code is B8ZS, Clock Source is Internal.
  Data in current interval (230 seconds elapsed):
    0 Line Code Violations, 0 Path Code Violations
    0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
    0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs
    0 Near-end path failures, 0 Far-end path failures, 0 SEF/AIS Secs
  Total Data (last 24 hours)
    136 Line Code Violations, 63 Path Code Violations,
    0 Slip Secs, 6 Fr Loss Secs, 4 Line Err Secs, 0 Degraded Mins,
    7 Errored Secs, 1 Bursty Err Secs, 6 Severely Err Secs, 458 Unavail Secs
    2 Near-end path failures, 0 Far-end path failures, 0 SEF/AIS Secs
```

Optional Configurations

There are several standard, but optional, configurations that might be necessary to complete the configuration of your T1/E1 interface module.

Configuring Framing

Framing is used to synchronize data transmission on the line. Framing allows the hardware to determine when each packet starts and ends. To configure framing, use the following commands.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 controller {t1</td>
<td>e1} slot/subslot/port</td>
</tr>
<tr>
<td>Example: Router(config)# controller t1 0/3/0</td>
<td>• t1—Specifies the T1 controller.</td>
</tr>
<tr>
<td></td>
<td>• e1—Specifies the E1 controller.</td>
</tr>
<tr>
<td></td>
<td>• slot/subslot/port—Specifies the location of the controller.</td>
</tr>
<tr>
<td>Note The slot number is always 0.</td>
<td></td>
</tr>
<tr>
<td>Step 3 For T1 controllers framing {sf</td>
<td>esf}</td>
</tr>
<tr>
<td>Example:</td>
<td>• sf—Specifies Super Frame as the T1 frame type.</td>
</tr>
</tbody>
</table>
Configuring T1/E1 Interfaces

Verifying Framing Configuration

Use the show controllers command to verify the framing configuration:

```
Router# show controllers t1 0/3/0 brief
T1 0/3/0 is up.
  Applique type is A900-IMA16D
  Cablelength is long gain36 0db
  No alarms detected.
  alarm-trigger is not set
  Soaking time: 3, Clearance time: 10
  AIS State:Clear  LOS State:Clear  LOF State:Clear
  Framing is ESF, Line Code is B8ZS, Clock Source is Line.
  Data in current interval (740 seconds elapsed):
    0 Line Code Violations, 0 Path Code Violations
    0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
    0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs
    0 Near-end path failures, 0 Far-end path failures, 0 SEF/AIS Secs
  Total Data (last 24 hours):
    0 Line Code Violations, 0 Path Code Violations
    0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins,
    0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs
    0 Near-end path failures, 0 Far-end path failures, 0 SEF/AIS Secs
```

Setting an IP Address

To set an IP address for the serial interface, complete these steps:

You can also set an IP address using an IMA or CEM configuration.
Configuring T1/E1 Interfaces

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>interface serial 0/subslot:port:channel-group</td>
<td>Selects the interface to configure from global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface serial 0/0/1:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 2</td>
<td>ip address address mask</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip address 192.0.2.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 3</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

- **Note**: IPv4 routing protocols, such as eigrp, ospf, bgp, and rip, are supported on serial interfaces.

Configuring Encapsulation

When traffic crosses a WAN link, the connection needs a Layer 2 protocol to encapsulate traffic.

- **Note**: L2TPv3 encapsulation is not supported.

To set the encapsulation method, use the following commands:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action	Purpose
Example: |

Step 2

`interface serial 0/subslot/port:channel-group`

Example:

Router(config)# interface serial 0/0/1:0

Example:

Selects the interface to configure from global configuration mode.

- `subslot`—Specifies the subslot in which the T1/E1 interface module is installed.
- `port`—Specifies the location of the controller. The port range for T1 and E1 is 1 to 16.
- `channel-group`—Specifies the channel group number configured on the controller. For example: interface serial 0/0/1:1.

Step 3

`encapsulation {hdlc | ppp}`

Example:

Router(config-if)# encapsulation hdlc

Set the encapsulation method on the interface.

- `hdlc`—High-Level Data Link Control (HDLC) protocol for a serial interface. This encapsulation method provides the synchronous framing and error detection functions of HDLC without windowing or retransmission. This is the default for synchronous serial interfaces.
- `ppp`—Described in RFC 1661, PPP encapsulates network layer protocol information over point-to-point links.

Step 4

`exit`

Example:

Router(config)# exit

Exits configuration mode and returns to the EXEC command interpreter prompt.

Verifying Encapsulation

Use the `show interfaces serial` command to verify encapsulation on the interface:

```
Router# show interfaces serial 0/0/1:0
Serial0/0/1:0 is up, line protocol is up
    Hardware is Multichannel T1
    MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
    reliability 255/255, txload 1/255, rxload 1/255
    Encapsulation HDLC
    , crc 16, loopback not set
    Keepalive set (10 sec)
    Last input 00:00:01, output 00:00:02, output hang never
    Last clearing of "show interface" counters never
    Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 0
    Queueing strategy: fifo
    Output queue: 0/40 (size/max)
    5 minute input rate 0 bits/sec, 0 packets/sec
    5 minute output rate 0 bits/sec, 0 packets/sec
```
60 packets input, 8197 bytes, 0 no buffer
Received 39 broadcasts (0 IP multicasts)
0 runts, 0 giants, 0 throttles
0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
64 packets output, 8357 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 unknown protocol drops
0 output buffer failures, 0 output buffers swapped out
1 carrier transitions

Configuring the CRC Size for T1 Interfaces

All T1/E1 serial interfaces use a 16-bit cyclic redundancy check (CRC) by default, but also support a 32-bit CRC. CRC is an error-checking technique that uses a calculated numeric value to detect errors in transmitted data. The designators 16 and 32 indicate the length (in bits) of the frame check sequence (FCS). A CRC of 32 bits provides more powerful error detection, but adds overhead. Both the sender and receiver must use the same setting.

CRC-16, the most widely used CRC throughout the United States and Europe, is used extensively with WANs. CRC-32 is specified by IEEE 802 and as an option by some point-to-point transmission standards.

To set the length of the cyclic redundancy check (CRC) on a T1 interface, use these commands:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>interface serial 0/subslot/port:channel-group</td>
<td>Selects the interface to configure from global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface serial 0/0/1:0</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>crc {16</td>
<td>32}</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# crc 16</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
<td>Exits configuration mode and returns to the EXEC command interpreter prompt.</td>
</tr>
</tbody>
</table>

Note: Moving from CRC 16 to 32 bit (and vice-versa) is not supported.
Verifying the CRC Size

Use the `show interfaces serial` command to verify the CRC size set on the interface:

```
Router# show interfaces serial 0/0/1:0
Serial0/0/1:0 is up, line protocol is up
  Hardware is Multichannel T1
  MTU 1500 bytes, BW 1536 Kbit/sec, DLY 20000 usec,
      reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation HDLC, crc 16,
      loopback not set
  Keepalive set (10 sec)
  Last input 00:00:01, output 00:00:02, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue: 0/40 (size/max)
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
      60 packets input, 8197 bytes, 0 no buffer
      Received 39 broadcasts (0 IP multicasts)
      0 runts, 0 giants, 0 throttles
      0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
      64 packets output, 8357 bytes, 0 underruns
      0 output errors, 0 collisions, 0 interface resets
      0 unknown protocol drops
      0 output buffer failures, 0 output buffers swapped out
      1 carrier transitions
```

Configuring a Channel Group

Follow these steps to configure a channel group:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>`controller {t1</td>
<td>e1} slot/subslot/port`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# <code>controller t1 0/3/0</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>`channel-group [t1</td>
<td>e1] number {timeslots range</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring T1/E1 Interfaces

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-controller)# channel-group t1 timeslots 1</td>
<td>numbers can be values from 1 to 28. When configuring an E1 data line, channel-group numbers can be values from 0 to 30.</td>
</tr>
<tr>
<td>timeslots range— One or more time slots or ranges of time slots belonging to the channel group. The first time slot is numbered 1. For a T1 controller, the time slot range is from 1 to 24. For an E1 controller, the time slot range is from 1 to 31.</td>
<td></td>
</tr>
<tr>
<td>unframed—Unframed mode (G.703) uses all 32 time slots for data. None of the 32 time slots are used for framing signals.</td>
<td></td>
</tr>
<tr>
<td>speed—(Optional) Specifies the speed of the underlying DS0s in kilobits per second. Valid values are 56 and 64.</td>
<td></td>
</tr>
</tbody>
</table>

Note
The default is 64. Speed is not mentioned in the configuration.
Each channel group is presented to the system as a serial interface that can be configured individually.
Once a channel group has been created with the channel-group command, the channel group cannot be changed without removing the channel group. To remove a channel group, use the **no** form of the **channel-group** command.
The unframed option is not currently supported.
DS0-level channelization is not currently supported.

Step 4
exit
Example:
Router(config)# exit

Saving the Configuration

To save your running configuration to nonvolatile random-access memory (NVRAM), use the following command in privileged EXEC configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>Writes the new configuration to NVRAM.</td>
</tr>
</tbody>
</table>
For information about managing your system images and configuration files, refer to the Cisco IOS Configuration Fundamentals Configuration Guide and Cisco IOS Configuration Fundamentals Command Reference publications.

Troubleshooting E1 and T1 Controllers

You can use the following methods to troubleshoot the E1 and T1 controllers using Cisco IOS software:

- Setting Loopbacks, on page 74
- Running Bit Error Rate Testing, on page 75

Setting Loopbacks

The following sections describe how to set loopbacks:

Setting a Loopback on the E1 Controller

To set a loopback on the E1 controller, perform the first task followed by any of the following tasks beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>controller e1 slot/subslot/port</td>
<td>Select the E1 controller and enter controller configuration mode. The slot number is always 0.</td>
</tr>
<tr>
<td>loopback diag</td>
<td>Set a diagnostic loopback on the E1 line.</td>
</tr>
<tr>
<td>loopback network {line</td>
<td>payload}</td>
</tr>
<tr>
<td>end</td>
<td>Exit configuration mode when you have finished configuring the controller.</td>
</tr>
</tbody>
</table>

Setting a Loopback on the T1 Controller

You can use the following loopback commands on the T1 controller in global configuration mode:

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller t1 slot/subslot/port</td>
<td>Selects the T1 controller and enter controller configuration mode The slot number is always 0.</td>
<td></td>
</tr>
<tr>
<td>loopback diag</td>
<td>Sets a diagnostic loopback on the T1 line.</td>
<td></td>
</tr>
<tr>
<td>loopback local {line</td>
<td>payload}</td>
<td>Sets a local loopback on the T1 line. You can select to loopback the line or the payload.</td>
</tr>
<tr>
<td>loopback remote iboc</td>
<td>Sets a remote loopback on the T1 line. This loopback setting will loopback the far end at line or payload, using IBOC (in band bit-orientated code) or the Extended Super Frame (ESF) loopback codes to communicate the request to the far end.</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits configuration mode when you have finished configuring the controller.</td>
<td></td>
</tr>
</tbody>
</table>
To remove a loopback, use the `no loopback` command.

Table 9: Loopback Descriptions

<table>
<thead>
<tr>
<th>Loopback</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loopback diag</td>
<td>Loops the outgoing transmit signal back to the receive signal. This is done using the diagnostic loopback feature in the interface module’s PMC framer. The interface module transmits AIS in this mode. Set the <code>clock source</code> command to <code>internal</code> for this loopback mode.</td>
</tr>
<tr>
<td>loopback local</td>
<td>Loops the incoming receive signal back out to the transmitter. You can specify whether to use the <code>line</code> or <code>payload</code>.</td>
</tr>
<tr>
<td>local line</td>
<td>The incoming signal is looped back in the interface module using the framer’s line loopback mode. The framer does not reclock or reframe the incoming data. All incoming data is received by the interface module driver.</td>
</tr>
<tr>
<td>local payload</td>
<td>Loops the incoming signal back in the interface module using the payload loopback mode of the framer. The framer reclocks and reframes the incoming data before sending it back out to the network. When in payload loopback mode, an all 1s data pattern is received by the local HDLC receiver and the clock source is automatically set to line (overriding the <code>clock source</code> command). When the payload loopback is ended, the clock source returns to the last setting selected by the <code>clock source</code> command.</td>
</tr>
<tr>
<td>loopback remote iboc</td>
<td>Attempts to set the far-end T1 interface into line loopback. This command sends an in-band bit-oriented code to the far-end to cause it to go into line loopback. This command is available when using ESF or SF framing mode.</td>
</tr>
<tr>
<td>network line</td>
<td>Loops the incoming signal back in the interface module using the line loopback mode of the framer. The framer does not reclock or reframe the incoming data. All incoming data is received by the interface module driver.</td>
</tr>
<tr>
<td>network payload</td>
<td>Loops the incoming signal back using the payload loopback mode of the framer. The framer reclocks and reframes the incoming data before sending it back out to the network. When in payload loopback mode, an all 1s data pattern is received by the local HDLC receiver, and the clock source is automatically set to line (overriding the <code>clock source</code> command). When the payload loopback is ended, the clock source returns to the last setting selected by the <code>clock source</code> command.</td>
</tr>
</tbody>
</table>

Running Bit Error Rate Testing

Bit error rate testing (BERT) is supported on each of the E1 or T1 links. The BERT testing is done only over a framed E1 or T1 signal and can be run only on one port at a time.

The interface modules contain onboard BERT circuitry. With this, the interface module software can send and detect a programmable pattern that is compliant with CCITT/ITU O.151, O.152, and O.153 pseudo-random and repetitive test patterns. BERTs allows you to test cables and signal problems in the field.
When running a BER test, your system expects to receive the same pattern that it is transmitting. To help ensure this, two common options are available:

- Use a loopback somewhere in the link or network
- Configure remote testing equipment to transmit the same BERT test pattern at the same time

To run a BERT on an E1 or T1 controller, perform the following optional tasks beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>controller {e1</td>
<td>t1} slot/subslot/port</td>
</tr>
<tr>
<td>bert pattern 0s</td>
<td>1s</td>
</tr>
<tr>
<td>end</td>
<td>Exit configuration mode when you have finished configuring the controller.</td>
</tr>
<tr>
<td>show controllers {e1</td>
<td>t1} slot/subslot/port</td>
</tr>
</tbody>
</table>

The following keywords list different BERT keywords and their descriptions.

Caution Currently only the 2^11, 2^15, 2^20-O153, and 2^20-QRSS patterns are supported.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0s</td>
<td>Repeating pattern of zeros (...000...).</td>
</tr>
<tr>
<td>1s</td>
<td>Repeating pattern of ones (...111...).</td>
</tr>
<tr>
<td>2^11</td>
<td>Pseudo-random test pattern that is 2,048 bits in length.</td>
</tr>
<tr>
<td>2^15</td>
<td>Pseudo-random O.151 test pattern that is 32,768 bits in length.</td>
</tr>
<tr>
<td>2^20-O153</td>
<td>Pseudo-random O.153 test pattern that is 1,048,575 bits in length.</td>
</tr>
<tr>
<td>2^20-QRSS</td>
<td>Pseudo-random QRSS O.151 test pattern that is 1,048,575 bits in length.</td>
</tr>
<tr>
<td>2^23</td>
<td>Pseudo-random 0.151 test pattern that is 8,388,607 bits in length.</td>
</tr>
</tbody>
</table>
Configuring T1/E1 Interfaces

Monitoring and Maintaining the T1/E1 Interface Module

After configuring the new interface, you can monitor the status and maintain the interface module by using `show` commands. To display the status of any interface, complete any of the following tasks in **EXEC** mode:

<table>
<thead>
<tr>
<th>Task</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show controllers {e1</td>
<td>t1} [slot/port-adapter/port/e1-line] [brief]`</td>
</tr>
<tr>
<td><code>show interface serial slot/subslot/port</code></td>
<td>Displays statistics about the serial information for a specific E1 or T1 channel group. Valid values are 0 to 30 for E1 and 0 to 23 for T1.</td>
</tr>
<tr>
<td><code>clear counters serial slot/subslot/port</code></td>
<td>Clears the interface counters</td>
</tr>
</tbody>
</table>

To change the T1/E1 card type configuration, use the `no card type` command and reload the router.

AIS on Core Failure

AIS stands for Alarm Indication Signal. Prior to Cisco IOS XE Fuji Release 16.7.1, the PDH AIS alarms were generated only when the CE would go down and an event was set in the CEM control-word by the remote provider edge (PE). AIS alarms were not generated when the pesudowire went down. Now, AIS alarm are generated when the pesudowire goes down.

This feature is only supported on the Cisco ASR 900 RSP2 module, for 8-port T1/E1 and 16-port T1/E1 interface modules and only for unframed E1 mode (SAToP) type.
Limitations of AIS

- AIS is not supported on CESoP and CEM over UDP.
- AIS is not supported on T1 mode. It is only supported on E1 mode.
- AIS is not supported on the 4-port OC3/STM-1 (OC-3) interface module (IM) and 32-port T1/E1 IM.
- AIS is supported only for MPLS core.
- AIS is not supported in pseudowire HSPW mode, when `graceful-restart` command is enabled.
- Removing the MPLS IP address from the core interfaces results in a delay of 10-12 minutes to notify the peer end. This depends on the negotiated forwarding hold timer between the routers, which is the least value of the configured LDP GR forwarding hold timer of the two routers.
- Supported CEM class range of de-jitter buffer size is between 1 to 32 ms.
- If the `shutdown unpowered` command is used to shut down the IM, an OIR must be performed to trigger the AIS alarms.

Core Failure Event Detection

AIS configuration is used to detect core defects. The core failure is detected in the following events:

- Shutdown of the PE controller or tug level.
- Removing the cross-connect feature.
- Removal of Gigabit Ethernet configuration, CEM configuration, controller configuration, or OSPF configuration.
- Shut on OSPF, CEM group, cross-connect, or Gigabit Ethernet interface.
- CE1 controller shut—AIS alarm is seen on the remote CE.
- PE1 controller shut—AIS alarm is seen on the remote CE.
- PE1 core shut—AIS alarm is seen on both the CEs.
- PE2 core shut—AIS alarm is seen on both the CEs.
- Pseudowire down—AIS alarm is seen on both the CEs.
- Core IGP down—AIS alarm is seen on both the CEs.
- Core LDP down—AIS alarm is seen on both the CEs.

Configuring AIS for Core Failure

When you enable the AIS, Plesiochronous Digital Hierarchy (PDH) AIS alarm is supported for core failure events on the 8-port T1/E1 and 16-port T1/E1 interface modules. When a core failure is detected due to any event, core flap flag is updated and the core flap event sends an event, which asserts an AIS. When the AIS is not enabled, core failure events are ignored.

Use the following procedure to enable AIS:

```
Router> enable
Router#configure terminal
```
Verifying AIS Configuration

Use the `show run | sec` command to verify the configuration of AIS:

```
Router(config-controller)#show run | sec 0/3/0
core-failure
framing unframed
cem-group 30 unframed
interface CEM0/3/0
```

Example: AIS Trigger

The following example shows a sample configuration of a controller O/P when an AIS is triggered:

```
Router#show controller e1 0/2/1
E1 0/2/1 is down.
Applique type is A900-IMA16D
Cablelength is Unknown
Transmitter is sending remote alarm.
Receiver is getting AIS. <<<<<<<<<<<<This is AIS alarm received
ais-shut is not set
alarm-trigger is not set
Framing is crc4, Line Code is HDB3, Clock Source is Line.
BER thresholds: SF = 10e-5 SD = 10e-5
International Bit: 1, National Bits: 1111
Data in current interval (0 seconds elapsed):
0 Line Code Violations, 0 Path Code Violations
0 Slip Secs, 0 Fr Loss Secs, 0 Line Err Secs, 0 Degraded Mins
0 Errored Secs, 0 Bursty Err Secs, 0 Severely Err Secs, 0 Unavail Secs
1 Near-end path failures, 0 Far-end path failures, 0 SEF/AIS Secs
```

Verifying the Interface Configuration

Besides using the `show running-configuration` command to display the configuration settings, use the `show interfaces serial` and the `show controllers serial` commands to get detailed information on a per-port basis for your T1/E1 interface module.

Verifying Per-Port Interface Status

To view detailed interface information on a per-port basis for the T1/E1 interface module, use the `show interfaces serial` command.

```
Router# show interfaces serial 0/0/1:0
Serial0/0/1:0 is up, line protocol is up
Hardware is SPA-8XCHT1/E1
Internet address is 79.1.1.2/16
MTU 1500 bytes, BW 1984 Kbit, DLY 20000 usec,
reliability 255/255, txload 240/255, rxload 224/255
Encapsulation HDLC, crc 16, loopback not set
Keepalive not set
Last input 3d21h, output 3d21h, output hang never
Last clearing of 'show interface' counters never
Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 2998712
```
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 1744000 bits/sec, 644 packets/sec
5 minute output rate 1874000 bits/sec, 690 packets/sec
180817311 packets input, 61438815508 bytes, 0 no buffer
Received 0 broadcasts (0 IP multicasts)
 0 runts, 0 giants, 0 throttles
 2 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 2 abort
180845200 packets output, 61438125092 bytes, 0 underruns
 0 output errors, 0 collisions, 2 interface resets
 0 output buffer failures, 0 output buffers swapped out
 1 carrier transitions no alarm present
Timeslot(s) Used:1-31, subrate: 64Kb/s, transmit delay is 0 flags 2

Configuration Examples

This section includes the following configuration examples:

Example: Framing and Encapsulation Configuration

The following example sets the framing and encapsulation for the controller and interface:

```bash
! Specify the controller and enter controller configuration mode
!
Router(config)# controller t1 2/0/0
!
! Specify the framing method
!
Router(config-controller)# framing esf
!
! Exit controller configuration mode and return to global configuration mode
!
Router(config-controller)# exit
!
! Specify the interface and enter interface configuration mode
!
Router(config)# interface serial 2/0/0:0
!
! Specify the encapsulation protocol
!
Router(config-if)# encapsulation ppp
!
! Exit interface configuration mode
!
Router(config-if)# exit
!
! Exit global configuration mode
!
Router(config)# exit
```

Example: CRC Configuration

The following example sets the CRC size for the interface:

```bash
! Specify the interface and enter interface configuration mode
!
Router(config)# interface serial 2/0/0:0
```
! Specify the CRC size
! Router(config-if)# crc 32
!
! Exit interface configuration mode and return to global configuration mode
! Router(config-if)# exit
!
! Exit global configuration mode
! Router(config)# exit

Example: Facility Data Link Configuration

The following example configures Facility Data Link:

! Specify the controller and enter controller configuration mode
! Router(config)# controller t1 2/0/0
!
! Specification the FDL specification
! Router(config-controller)#
fdl ansi
!
! Exit controller configuration mode and return to global configuration mode
! Router(config-controller)# exit
!
! Exit global configuration mode
! Router(config)# exit

Example: Invert Data on the T1/E1 Interface

The following example inverts the data on the serial interface:

! Enter global configuration mode
! Router# configure terminal
!
! Specify the serial interface and enter interface configuration mode
! Router(config)# interface serial 2/1/3:0
!
! Configure invert data
! Router(config-if)# invert data
!
! Exit interface configuration mode and return to global configuration mode
! Router(config-if)# exit
!
! Exit global configuration mode
! Router(config)# exit
Example: Invert Data on the T1/E1 Interface
CHAPTER 7

Configuring Optical Interface Modules

This chapter describes the most common configurations for optical interface modules on the Cisco ASR 900 Series Router.

- Limitations and Restrictions, on page 83
- Configuring the Controller, on page 84
- Configuring SDH, on page 85
- Configuring SONET Mode, on page 93
- Configuring a CEM group, on page 96
- Configuring DS3 Clear Channel on OC-3 and OC-12 Interface Module, on page 100
- Optional Configurations, on page 104
- Managing Interface Naming, on page 107
- Configuring Multilink Point-to-Point Protocol, on page 107
- Configuring BERT, on page 111
- Configuring Automatic Protection Switching, on page 112
- TU-AIS Alarms, on page 112
- Verifying Interface Configuration, on page 113
- Troubleshooting, on page 114
- Configuration Examples, on page 118
- Additional Resources, on page 119

Limitations and Restrictions

- The 4-port OC3/STM-1 (OC-3) or 1-port OC12/STM-4 (OC-12) interface module is not supported on the ASR 900 RSP3 module.

- SDH framing mode is supported; SONET framing is supported beginning in Cisco IOS XE Release 3.8.

- On the OC-3 controller, framing mode is applicable on the interface module and per port. When framing mode is set to SONET, all the 4 ports on the interface module are enabled for SONET mode. Similarly, when framing mode is set to SDH mode, all 4 ports on the interface module are enabled for SDH mode.

- The OC-3 controller supports Asynchronous mode at the V5 byte level for Plesiochronous Digital Hierarchy (PDH). This value cannot be modified. If a mismatch occurs between the V5 byte, and the peer (remote router), loss of frames may be observed at the PDH level.

- HDLC, PPP, and MLPPP encapsulation are supported. In POS mode, HDLC and PPP are supported.
• ATM Layer 2 AAL0 and AAL5 encapsulation types are supported.

• E1 unframed encapsulation is not supported except using SAToP pseudowire interfaces.

• Unframed T1 is supported only for SATOP. E1 unframed is supported.

• MPLS-TP is not supported over Packet Over Sonet (POS) interfaces.

• Multicast is not supported on OC-12 interfaces.

• QoS is supported using MLPPP interfaces and egress POS interfaces.

• MPLS is supported only on PoS interfaces; MPLS on T1/E1 MLP is supported starting with Cisco IOS XE Release 3.9. MPLS over MLP is also supported.

• Channelization is not supported for serial interfaces. However, Channelization is supported for CEM at the DS0 level.

• DS3 Clear channel is supported only on CEM.

• BERT is not supported on DS0 and DS1 CEM. It is supported only on DS3 CEM mode.

• Configurations on the interface module must be completely removed before moving the interface module to a different slot on the router.

• Mixed configurations of features are not supported on the same port. For example, one OC-3 port can have only CEM (CESoP or SAToP) or ATM or IMA or DS3 configurations, but not a combination of these features on a single port.

• CEM is not supported across OC12/ STM-4 interface module. CEM is supported on all four ports of OC-3/STM-1 interface module.

• If two CEM circuits are configured under the same OC-3 interface module, the circuits should not be configured with the same circuit-id. If two CEM circuits are configured on different OC-3 interface modules, then both circuits can be configured with the same circuit-id.

• By default, AIS-SHUT is enabled on the OC-3 SONET/SDH controller and port level shut down of SONET/SDH controller results in AIS alarm on peer node. To enable the LOS alarm on controller shut down, you must configure “no ais-shut” at SONET/SDH controller level.

• Maximum channels per OC-3/ STM interface module for T1 interfaces is 336 for RSP1 and RSP2.

• Maximum channels per OC-3/STM interface module for E1 interfaces is 252 for RSP1 and RSP2.

Configuring the Controller

Starting with Cisco IOS XE Release 3.10, OC-3 and OC-12 is licensed. For information on licensing these interfaces, see Licensing the OC-3 and OC-12 Interface Modules.

Note

When the mode is changed, the interface module reloads.
Configuring SDH

The following sections describe how to configure SDH on the optical interface module:

Configuring SDH Mode

SDH T1 Mode

To configure SDH T1 mode, complete the following steps:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>framing sdh</td>
<td>Specifies SDH as the frame type.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# framing sdh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>aug mapping {au-4}</td>
<td>Configures AUG mapping for SDH framing.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# aug mapping au-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>clock source {internal</td>
<td>line}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# clock source line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• internal—Specifies that the internal clock source is used.</td>
<td></td>
</tr>
</tbody>
</table>
SDH T1 Mode

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>au-4 au-4# tug-3 tug-3#
Example:
Router(config-controller)# au-4 1 tug-3 3
Configures AU-4, and tributary unit groups, type 3 (TUG-3) for AU-4 and enters specific configuration mode.
- au-4#—Range is from 1 to 4 for OC-12 mode and 1 for OC-3 mode
- tug-3#—Range is from 1 to 3.</td>
</tr>
</tbody>
</table>

| **Step 5** | **In SDH framing in AU-4 mode:**
Example:
mode {c-11 | c-12 | t3 | e3}
Example:
Router(config-ctrlr-tug3)# **mode {c-11 | c-12 | t3 | e3}**
(Optional) Configures mode of operation for AU-3 or AU-4 mode, where:
- **C-11 and C-12 are container level-n (SDH) channelized T3s. They are types of T3 channels that are subdivided into 28 T1 channels.**
- **c-11—Specifies an AU-3/AU-4 TUG-3 divided into seven TUG-2s. Each TUG-2 is then divided into four TU11s, each carrying a C-11 T1.**
- **c-12—Specifies an AU-3/AU-4 TUG-3 divided into seven TUG-2. Each TUG-2 is then divided into three TU12s, each carrying a C-12 E1.**
- **t3—Specifies an AU-3/AU-4 TUG-3 carrying an unchannelized (clear channel) T3.**
- **e3—Specifies an AU-3/AU-4 TUG-3 carrying an unchannelized (clear channel) E3.**
Note Only c-11 and c-12 are currently supported. |

<p>| Step 6 | SAToP CEM Group
Example:
tug-2 1 e1 1 cem-group 1 unframed
Example:
Router(config-ctrlr-tug3)# tug-2 1 e1 1 cem-group 1 unframed
Creates a CEM group, IMA group, or channel-group for the AU-3 or AU-4. Valid values are:
- e1—1–3
- tug-3—1-3
- tug-2—1-7
- unframed—Specifies that a single CEM channel is being created including all time slots and the framing structure of the line. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>tug-2 1 e1 1 cem-group 1 timeslots 1-31</td>
<td>Example:</td>
</tr>
<tr>
<td>Example: Router(config-ctrlr-tug3)# tug-2 1 e1 1 cem-group 1 timeslots 1-31</td>
<td>Example:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>IMA Group</td>
<td></td>
</tr>
<tr>
<td>Example: tug-2 1 e1 1 ima-group 1</td>
<td>Example:</td>
</tr>
<tr>
<td>Example: Router(config-ctrlr-tug3)# tug-2 1 e1 1 ima-group 1</td>
<td>Example:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Channel Group</td>
<td></td>
</tr>
<tr>
<td>Example: tug-2 1 e1 1 [[channel-group channel-group-number] [timeslots list-of-timeslots]]</td>
<td>Example:</td>
</tr>
<tr>
<td>Example: Router(config-ctrlr-tug3)# tug-2 1 e1 1 [channel-group 1 timeslots 1-31]</td>
<td>Example:</td>
</tr>
<tr>
<td>Step 7 exit</td>
<td>Exits controller configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-controller)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 8 controller t1 interface-path-id</td>
<td>Enters controller configuration mode for an individual T1 or E1.</td>
</tr>
<tr>
<td>Example: Router(config-controller)# controller t1 0/1/1/0/0/0</td>
<td></td>
</tr>
</tbody>
</table>
SDH T1 Mode

What to do next

Example

The example configures SDH E1 mode:

```
Router# configure terminal
Router(config)# controller sonet 0/1/0
Router(config-controller)# framing sdh
Router(config-controller)# aug mapping au-4
Router(config-controller)# clock source internal
Router(config-controller)# au-4 1 tug-3 2
Router(config-ctrlr-tug3)# tug-2 1 el 1 channel-group 1 timeslots 1-31
```

To configure SDH T1 mode, complete the following steps:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td>Creates a CEM group, IMA group, or channel-group on the T1 or E1 controller.</td>
</tr>
<tr>
<td>Router(config-ctrlr)# <code>t1 cem-group 1 unframed</code></td>
<td>SAToP CEM Group</td>
</tr>
<tr>
<td>Router(config-ctrlr)# <code>t1 cem-group 1 timeslots 1-24</code></td>
<td>CESoPSN CEM Group</td>
</tr>
<tr>
<td>Router(config-ctrlr-tug3)# <code>e1 1 atm</code></td>
<td>Clear-Channel ATM</td>
</tr>
<tr>
<td>Router(config-ctrlr-tug3)# <code>e1 1 ima-group 1</code></td>
<td>IMA Group</td>
</tr>
<tr>
<td>Router(config-ctrlr-tug3)# <code>t1 2 channel-group 4 (channel-group channel-group-number) [timeslots list-of-timeslots]</code></td>
<td>Channel Group</td>
</tr>
</tbody>
</table>
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>framing sdh
Example:
Router(config-controller)# framing sdh</td>
</tr>
<tr>
<td>Step 2</td>
<td>aug mapping {au-3}
Example:
Router(config-controller)# aug mapping au-3</td>
</tr>
<tr>
<td>Step 3</td>
<td>**clock source {internal</td>
</tr>
<tr>
<td>Step 4</td>
<td>au-3 au-3#
Example:
Router(config-controller)# au-3 au-3#</td>
</tr>
<tr>
<td>Step 5</td>
<td>In SDH framing in AU-4 mode:
Example:
mode {c-11</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config-ctrlr-au3)# mode {c-11</td>
<td>c-12</td>
</tr>
<tr>
<td></td>
<td>• <code>c-11</code> — Range is from 1 to 12 for OC-12 mode. For OC-3 mode, the value is 1–3.</td>
</tr>
<tr>
<td></td>
<td>• <code>tug-2</code> — 1–7</td>
</tr>
<tr>
<td></td>
<td>• <code>unframed</code> — Specifies that a single CEM channel is being created including all time slots and the framing structure of the line.</td>
</tr>
</tbody>
</table>

Step 6

SAToP CEM Group

Example:

```plaintext
tug-2 t1 cem-group unframed
```

Example:

```plaintext
Router(config-ctrlr-au3)# tug-2 t1 cem-group unframed
```

CESoPSN CEM Group

Example:

```plaintext
tug-2 e1 cem-group timeslots 1-31
```

Example:

```plaintext
Router(config-ctrlr-au3)# tug-2 e1 cem-group timeslots 1-31
```

IMA Group

Example:

```plaintext
tug-2 t1 ima-group
```

Example:

```plaintext
Router(config-ctrlr-au3)# tug-2 t1 ima-group
```

Channel Group

Example:

```plaintext
tug-2 e1 channel-group timeslots list-of-timeslots
```

Example:
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-ctrlr-tug3)# tug-2 t1 channel-group 0 timeslots 1-31</code></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 7</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-controller)# exit</td>
</tr>
<tr>
<td>Step 8</td>
<td>controller t1 interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-controller)# controller t1 0/1/1/0/0</td>
</tr>
<tr>
<td>Step 9</td>
<td>Creates a CEM group, IMA group, or channel-group on the T1 or E1 controller.</td>
</tr>
<tr>
<td>SAToP CEM Group</td>
<td>Router(config-ctrlr)# t1 cem-group 1 unframed</td>
</tr>
<tr>
<td>CESoPSN CEM Group</td>
<td>Router(config-ctrlr)# t1 cem-group 1 timeslots 1-24</td>
</tr>
<tr>
<td>Clear-Channel ATM</td>
<td>Router(config-ctrlr-tug3)# e1 atm</td>
</tr>
<tr>
<td>IMA Group</td>
<td>Router(config-ctrlr-tug3)# e1 ima-group</td>
</tr>
<tr>
<td>Channel Group</td>
<td>Router(config-ctrlr)# t1 2 channel-group 4 (channel-group channel-group-number) timeslots list-of-timeslots)</td>
</tr>
</tbody>
</table>
What to do next

The example configures SDH T1 mode:

```
Router# configure terminal
Router(config)# controller sonet 0/1/0
Router(config-controller)# framing sdh
Router(config-controller)# aug mapping au-3
Router(config-controller)# au-3 1
Router(config-ctrlr-au3)# tlg-21 t1 1 channel-group 1 timeslots 1-31
```

For information about configuring optional features, see Optional Configurations, on page 104.

Configuring SDH in POS Mode

Follow these steps to configure SDH in POS mode on the optical interface module.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>controller <code>sonet slot/subslot/port</code></td>
<td>Selects the controller to be configured.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# controller <code>sonet 0/1/0</code></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>framing `{sonet</td>
<td>sdh}`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# framing <code>sdh</code></td>
<td>Note: The interface module reloads if the framing is changed.</td>
</tr>
<tr>
<td>3</td>
<td>aug mapping `{au-3</td>
<td>au-4}`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-controller)# aug mapping <code>au-4</code></td>
<td>Note: POS mode is only supported with AU-4 mode.</td>
</tr>
<tr>
<td>4</td>
<td><code>au-4</code> <code>au-4-number pos</code></td>
<td>Selects the AU-4 to be configured in POS mode with SDH framing. The command creates a POS interface, such as POS0/0/1:1. In OC-3 mode, the value is 1; in OC-12 mode, valid values are 1-4.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-controller)# au-4 <code>1 pos</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-controller)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring SONET Mode

Example

Router# configure terminal
Router(config)# controller sonet 0/1/0
Router(config-controller)# framing sdh
Router(config-controller)# aug mapping au-4
Router(config-controller)# au-4 1 pos
Router(config-controller)# end

For information about configuring optional features, see Optional Packet over SONET Configurations, on page 105

Configuring SONET Mode

The following sections describe how to configure SONET mode on the optical interface module:

Configuring SONET Mode

To configure an interface module to use SONET mode:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>controller sonet slot/subslot/port</td>
<td>Selects the controller to be configured.</td>
</tr>
<tr>
<td>Example</td>
<td><code>Router(config)# controller sonet 0/1/0</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**framing {sonet</td>
<td>sdh}**</td>
</tr>
<tr>
<td>Example</td>
<td><code>Router(config-controller)# framing sonet</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**clock source {line</td>
<td>internal}**</td>
</tr>
<tr>
<td>Example</td>
<td><code>Router(config-if)# clock source line</code></td>
<td>• line—The link uses the recovered clock from the line. This is the default setting.</td>
</tr>
<tr>
<td></td>
<td>**sts-1 {1 - 12</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Example</td>
<td><code>Router(config-if)# clock source line</code></td>
<td></td>
</tr>
</tbody>
</table>

For information about configuring optional features, see Optional Packet over SONET Configurations, on page 105.
Configuring Optical Interface Modules

Configuring SONET POS Mode

To configure an interface module to use SONET in POS mode, perform the following procedure.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>controller sonet slot/subslot/port</td>
<td>Selects the controller to be configured.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# controller sonet 0/1/0</td>
<td></td>
</tr>
</tbody>
</table>

For information on optional SONET configurations, see [Optional Configurations, on page 104](#). For information on optional ATM, IMA, POS and Serial interface configuration, see [Optional Configurations, on page 104](#).
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>**framing {sonet</td>
</tr>
<tr>
<td>Step 3</td>
<td>**clock source {line</td>
</tr>
<tr>
<td>Step 4</td>
<td>**sts-1 {1-12</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit
Example:
Router(config-controller)# exit
Exits controller configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Do one of the following:
• interface POS slot/subslot/port
• interface POS slot/subslot/port.POS-interface
• interface POS slot/subslot/port:POS-interface
Example:
interface POS0/0/1
Example:
interface POS0/0/1.1
Example:
interface POS0/0/1:1
Use any of the following commands to access the POS interface.</td>
</tr>
</tbody>
</table>
| **Step 7** | **encapsulation encapsulation-type \{hdc | ppp\}**
Example:
Configures encapsulation; you can configure the following options:
Configuring a CEM group

Configuring CEM Group in SONET Mode

To configure a T1 CEM group in SONET mode:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>controller sonet slot/bay/port</td>
<td>Selects the controller to configure and enters controller configuration mode, where:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• slot/bay/port—Specifies the location of the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>Router(config)# controller sonet 0/4/1</td>
<td>The slot number is always 1 and the bay number is always 0.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Specifies SONET as the framing mode.</td>
<td></td>
</tr>
<tr>
<td>framing {sonet</td>
<td>sdh}</td>
<td>Example:</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# framing sonet</td>
<td></td>
</tr>
</tbody>
</table>

Step 5
| sts-1 {1 - 12 | 1 - 3 | 4 - 6 | 7 - 9 | 10 - 12} | Specifies the SONET Synchronous Transport Signal (STS) level and enters STS-1 configuration mode. The starting-number and ending-number arguments indicate the starting and ending STS value of the interface. For OC-3 interfaces, this value is 1. |
| Example: | Router(config-controller)# sts-1 1 - 3 |

Step 6
mode {t3	vt-15}	Specifies the mode of operation of an STS-1 path, where:
Example:	Note: VT-15 is the only supported mode.	
Example:	• t3—DS3 clear channel mode. STS-1 carries an unchannelized (clear channel) T3.	
Example:	• vt-15—A STS-1 is divided into seven Virtual Tributary Groups (VTG). Each VTG is then divided into four VT1.5’s, each carrying a T1.	

Step 7
SATOP CEM	Configures the T1 on the VTG, where:
Example:	• vtg_number—Specifies the VTG number. For SONET framing, values are 1 to 7.
cem-group channel-number unframed	• t1_line_number—Specifies the T1 line number. Valid range is 1 to 4.
Example:	• channel-number—Specifies the channel number. Valid range is 0 to 2015.
Example:	• list-of-timeslots—Specifies the list of timeslots. Valid range is from 1 to 24.

CeSOP CEM

Example:

vtg vtg_number t1 t1_line_number
cem-group channel-number timeslots list-of-timeslots
Example:
Configuring CEM Group in SDH Mode

To configure CEM group in SDH mode:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>controller sonet slot/bay/port</td>
</tr>
<tr>
<td></td>
<td>Selects the controller to configure and enters controller configuration mode, where:</td>
</tr>
<tr>
<td></td>
<td>• slot/bay/port—Specifies the location of the interface.</td>
</tr>
<tr>
<td></td>
<td>Note The slot number is always 1 and the bay number is always 0.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# controller sonet 0/1/0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>framing {sonet</td>
</tr>
<tr>
<td></td>
<td>Specifies SDH as the framing mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-controller)# framing sdh</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>au-4 au-4# tug-3 tug-3#</td>
</tr>
<tr>
<td></td>
<td>Configures AU-4, and tributary unit groups, type 3 (TUG-3) for AU-4 and enters specific configuration mode.</td>
</tr>
<tr>
<td></td>
<td>In SDH framing mode, each TUG-3, and AU-4 can be configured with one of these commands.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Router(config-controller)# au-4 1 tug-3</td>
<td></td>
</tr>
</tbody>
</table>

PurposeCommand or Action

Router(config-ctrlr-sts1-3)# vtg 1 t1 1
cem-group 1 timeslots 1-10

Step 8

end

Exits controller configuration mode and returns to privileged EXEC mode.

What to do next

Example

The example shows a CEM interface configuration:

Router# configure terminal
Router(config)# controller sonet 0/1/0
Router(config-controller)# framing sonet
Router(config-controller)# sts-1 1
Router(config-ctrlr-sts1)# vtg 1 t1 1 cem-group 1 timeslots 1-10
Router(config-ctrlr-sts1)# exit

Configuring CEM Group in SDH Mode

To configure CEM group in SDH mode:
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depending on currently configured AUG mapping setting, this command further specifies TUG-3, or AU-4 muxing. The CLI command parser enters into config-ctrlr-tug3 (SDH mode) or config-ctrlr-au3 (SDH mode), which makes only relevant commands visible.</td>
<td></td>
</tr>
<tr>
<td>• au-4#—Range is from 1 to 4. For OC-3 mode, the value is 1.</td>
<td></td>
</tr>
<tr>
<td>Note DS3 configuration is supported only on AuU-4.</td>
<td></td>
</tr>
<tr>
<td>• tug-3#—Range is from 1 to 3.</td>
<td></td>
</tr>
<tr>
<td>Note T1 can only be configured in au-3 mode, E1 can only be configured in the au-4 mode.</td>
<td></td>
</tr>
</tbody>
</table>

Step 6

mode {t3 | e3}

Example:

Router(config-ctrlr-tug3)# mode e3

Specifies the mode of operation.

- **t3**—Specifies an unchannelized (clear channel) T3.
- **e3**—Specifies a AU-3 or C3 that carries a unchannelized (DS3 clear channel) E3.

Note Only e3 mode is supported for SDH framing.

Step 7

cem-group group-number {unframed}

Example:

Router(config-ctrlr-tug3)# cem-group 4 unframed

Creates a CEM group.

- **unframed**—Specifies that a single CEM channel is being created including all time slots and the framing structure of the line.

Step 8

end

Example:

Router(config-ctrlr-tug3)# end

Exits controller configuration mode and returns to privileged EXEC mode.

What to do next

Example

Router# configure terminal
Router(config)# controller sonet 0/1/0
Router(config-controller)# framing sdh
Router(config-controller)# au-4 1 tug-3 1
Router(config-ctrlr-tug3)# mode e3
Router(config-ctrlr-tug3)# cem-group 4 unframed
Router(config-ctrlr-tug3)# end
Configuring DS3 Clear Channel on OC-3 and OC-12 Interface Module

DS3 clear channel is supported only on CEM.

Configuring DS3 Clear Channel in SONET Mode

To configure DS3 clear channel in SONET mode:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Enter your password if prompted</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>controller sonet slot/bay/port</code></td>
<td>Selects the controller to configure and enters controller configuration mode, where:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>slot/bay/port</code>—Specifies the location of the interface.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>The slot number is always 1 and the bay number is always 0.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config)# controller sonet 0/4/1</td>
</tr>
<tr>
<td>Step 4</td>
<td>`framing {sonet</td>
<td>sdh}`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config)# framing sonet</td>
</tr>
<tr>
<td>Step 5</td>
<td>`clock source {line</td>
<td>internal}`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>line</code>—The link uses the recovered clock from the line. This is the default setting.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• <code>internal</code>—The link uses the internal clock source.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router(config-if)# clock source internal</td>
</tr>
<tr>
<td>Step 6</td>
<td>`sts-1 {1 - 12</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# sts-1 1</td>
<td>ending-number arguments indicate the starting and ending STS value of the interface. For OC-3 interfaces, this value is 1. The 1-12 value is supported only in OC-12 mode.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mode {t3</td>
<td>vt-15}</td>
<td>Specifies the mode of operation of an STS-1 path, where:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrlr-sts1)# mode t3</td>
<td>• t3—DS3 clear channel mode. STS-1 carries an unchannelized (clear channel) T3.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cem-group channel-number {unframed}</td>
<td>Creates a CEM group.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrlr-sts1)# cem-group 4 unframed</td>
<td>• unframed—Specifies that a single CEM channel is being created including all time slots and the framing structure of the line.</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits controller configuration mode and returns to privileged EXEC mode.</td>
<td></td>
</tr>
</tbody>
</table>

What to do next

Example

The below example shows the configuration for a DS3 interface:

```
Router# configure terminal
Router(config)# controller sonet 0/1/0
Router(config-controller)# framing sonet
Router(config-controller)# clock source line
Router(config-controller)# sts-1 1 - 3
Router(config-ctrlr-sts1)# mode t3
Router(config-ctrlr-sts1)# cem-group 0 unframed
Router(config-controller)# end
```

Configuration Example

```
controller SONET 1/0/0
framing sonet
clock source internal

sts-1 1
mode t3
cem-group 0 unframed
```
Configuring DS3 Clear Channel in SDH Mode

To configure DS3 clear channel in SDH mode:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Step 3** controller sonet slot/bay/port | Selects the controller to configure and enters controller configuration mode, where:
 • **slot/bay/port**—Specifies the location of the interface.
 Note The slot number is always 1 and the bay number is always 0. |
| Example: | Router(config)# controller sdh 0/1/0 | |
| **Step 4** framing {sonet | sdh} | Specifies SDH as the framing mode. |
| Example: | Router(config-controller)# framing sdh |
| **Step 5** clock source {line | internal} | Specifies the clock source for the POS link, where:
 • **line**—The link uses the recovered clock from the line. This is the default setting.
 • **internal**—The link uses the internal clock source. |
<p>| Example: | Router(config-controller)# clock source line |
| Step 6 aug mapping au-4 | Configures AUG mapping for SDH framing. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>If the AUG mapping is configured to be AU-4, then the following muxing, alignment, and mapping will be used: TUG-3 --> VC-4 --> AU-4 --> AUG.</td>
</tr>
<tr>
<td>Step 7</td>
<td>au-4 au-4# tug-3 tug-3#</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures AU-4, and tributary unit groups, type 3 (TUG-3) for AU-4 and enters specific configuration mode. In SDH framing mode TUG-3, and AU-4 can be configured with one of these commands. Depending on currently configured AUG mapping setting, this command further specifies TUG-3, or AU-4 muxing. The CLI command parser enters into config-ctrlr-tug3 (SDH mode) or config-ctrlr-au3 (SDH mode), which makes only relevant commands visible.</td>
</tr>
<tr>
<td>Step 8</td>
<td>mode e3</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the mode of operation.</td>
</tr>
<tr>
<td>Step 9</td>
<td>cem-group channel-number {unframed}</td>
</tr>
<tr>
<td>Example:</td>
<td>Creates a CEM group.</td>
</tr>
<tr>
<td>Step 10</td>
<td>end</td>
</tr>
<tr>
<td></td>
<td>Exits controller configuration mode and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

What to do next

Example

```plaintext
Router# configure terminal
Router(config)# controller sonet 0/1/0
Router(config-controller)# framing sdh
Router(config-controller)# clock source line
Router(config-controller)# aug mapping au-4
Router(config-controller)# au-4 1 tug-3 1
Router(config-ctrlr-au4)# mode e3
```
Optional Configurations

There are several standard, but optional, configurations that might be necessary to complete the configuration of your interface module.

Configuring the National Bit

When G.751 framing is used, bit 11 of the G.751 frame is reserved for national use and is set to 1 by default.

Note Configure national bit 1 only when required for interoperability with your telephone company.

To set the national bit in the G.751 frame, use the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| Router(config)# controller {t1 | e1} slot/subslot/port | Selects the controller to configure.
 - `t1`—Specifies the T1 controller.
 - `e1`—Specifies the E1 controller.
 - slot/subslot/port—Specifies the location of the controller. |
| Router(config-controller)# national reserve {0 | 1} {0 | 1} {0 | 1} {0 | 1} {0 | 1} {0 | 1} | Sets the national bit (the first bit):
 - `0`—Sets the international bit in the G.704 frame to 0. This is the default.
 - `1`—Sets the international bit in the G.704 frame to 1.
 - **Note** When CRC4 framing is configured, the first bit is the national bit. When no-CRC4 framing is configured, the first bit becomes the international bit and should be set to 1 if crossing international borders and 0 if not crossing international borders. Sets the five national bits:
 - `0`—Set to 0 when not crossing international borders.
 - `1`—Set to 1 when crossing international borders. |

Verifying the National Bit

Use the show controllers command to verify the national bits:
Configuring the CRC Size for T1

CRC is an error-checking technique that uses a calculated numeric value to detect errors in transmitted data. The 1-Port Channelized OC-3/STM-1 SPA and 1-Port Channelized OC-12/STM-4 SPA uses a 16-bit cyclic redundancy check (CRC) by default, but also supports a 32-bit CRC. The designators 16 and 32 indicate the length (in bits) of the frame check sequence (FCS). A CRC of 32 bits provides more powerful error detection, but adds overhead. Both the sender and receiver must use the same setting.

To set the length of the cyclic redundancy check (CRC) on a T1 interface, use these commands:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
interface serial *slot/subslot/port:channel-group*

Example:

```
Router(config)# interface serial 0/0/1.1/1/1/1/0
```

- Selects the interface to configure and enters interface configuration mode.
 - *slot/subslot/port:channel-group* Specifies the location of the interface.

| **Step 2**
crc *{16 | 32}*

Example:

```
Router(config-if)# crc 16
```

- Selects the CRC size in bits, where:
 - 16—16-bit CRC. This is the default.
 - 32—32-bit CRC.

Optional Packet over SONET Configurations

The following sections describe how to configure optional settings on a packet over SONET (POS) interface.

Encapsulation

<table>
<thead>
<tr>
<th>Encapsulation</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>encapsulation encapsulation-type</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
Router(config-if)# encapsulation hdlc
```

- Configures encapsulation; you can configure the following options:
 - HDLC
 - PPP
MTU Value

mtu bytes

Configures the maximum packet size for an interface in bytes. The default packet size is 4470 bytes.

```
Router(config-if)# mtu 4000
```

CRC Value

crc size-in-bits

CRC size in bits. Valid values are 16 and 32. The default is 16.

```
Router(config-if)# crc 32
```

Keepalive Value

keepalive [period [retries]]

Specifies the frequency at which the Cisco IOS software sends messages to the other end of the line to ensure that a network interface is alive, where:

- **period**—Specifies the time interval in seconds for sending keepalive packets. The default is 10 seconds.
- **retries**—Specifies the number of times that the device continues to send keepalive packets without response before bringing the interface down. The default is 3 retries.

```
Router(config-if)# keepalive 9 4
```

Bandwidth

Use the following command to configure the bandwidth of a POS interface.

bandwidth {kbps | inherit [kbps]}

To set and communicate the current bandwidth value for an interface to higher-level protocols, use the `bandwidth` command in interface configuration mode. Valid values are from 1 to 10000000. You can apply the following keywords:

- **inherit**—Specifies how a subinterface inherits the bandwidth of its main interface.
- **receive**—Specifies the receive-side bandwidth.

```
```

Scrambling

Use the following command to enable scrambling on a POS interface.

pos scramble-atm

Enables scrambling on the interface.

C2 Flag

Use the following command to configure the C2 flag on a POS interface.
Specifying the C2 Byte Field

| **pos flag c2 value** | Specifies the C2 byte field for the interface as defined in RFC 2615. Valid values are 0-255. |

J1 Flag

Use the following command to configure the J1 flag on a POS interface.

| **pos flag j1 message word** | Specifies the value of the J1 byte in the SONET Path OverHead (POH) column. |

You can use the following commands to verify your configuration:

- `show interfaces pos`

Managing Interface Naming

The following sections describe how to manage interface naming on the Cisco ASR 900 Series Router optical interface module.

Identifying Slots and Subslot

To specify the physical address for controller or interface configuration, use the interface and controller sonet commands, where:

- **slot**—Specifies the chassis slot number where the interface module is installed; the slot number is always 0 for interface modules on the Cisco ASR 900 Series Router.
- **subslot**—Specifies the subslot where the interface module is installed.
- **port**—Specifies the SONET port number.

For example, if the optical interface module is installed in slot 0 of the chassis, the controller configuration address is specified as `controller sonet 0/0/0`.

For channelized configuration, the interface address format is: slot/subslot/port:channel-group, where:

- **channel-group**—Specifies the logical channel group assigned to the time slots within the T1 link.

Configuring Multilink Point-to-Point Protocol

Multilink Point-to-Point Protocol (MLPPP) allows you to combine interfaces which correspond to an entire T1 or E1 multilink bundle. You can choose the number of bundles and the number of T1 or E1 lines in each bundle in any combination of E1 and T1 member link interfaces.

This section describes how to configure MLPPP on the optical interface module and includes the following topics:

MLPPP Configuration Guidelines

When configuring MLPPP, consider the following guidelines:
• Only T1 and E1 links are supported in a bundle.
• Enable PPP encapsulation before configuring multilink-related commands.
• Interfaces can be grouped into the MLPPP bundle if they belong to same interface module.
• A group can have a maximum of 16 interfaces.
• Maximum MTU for MLPP is 9216. For serial links that are not part of MLPPP configuration, maximum MTU varies for OC-3 and T1/E1 interfaces. The MTU range is as follows:
 • OC-3: 64 to 7673
 • T1/E1: 64 to 9216

Creating a Multilink Bundle

To create a multilink bundle, use the following commands:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code>
Example:
Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>interface multilink group-number</code>
Example:
Router(config)# interface multilink 1</td>
<td>Creates a multilink interface and enters multilink interface mode, where:
• group-number—The group number for the multilink bundle.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip address address mask</code>
Example:
Router(config-if)# ip address 192.168.1.1 255.255.255.0</td>
<td>Sets the IP address for the multilink group, where:
• address—The IP address.
• mask—The subnet mask.</td>
</tr>
</tbody>
</table>

Assigning an Interface to a Multilink Bundle

To assign an interface to a multilink bundle, use the following commands:

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code>
Example:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Step 2 | Selects the interface to configure and enters interface configuration mode, where:
| interface serial slot/subslot/port | • slot/subslot/port — Specifies the location of the controller. |
| Example: | |
| Router(config)# interface serial | |
| 0/0/1.1/1/1/1:0 | |
| Step 3 | Enables PPP encapsulation. |
| encapsulation ppp | |
| Example: | |
| Router(config-if)# encapsulation ppp | |
| Step 4 | Assigns the interface to a multilink bundle, where:
| ppp multilink group group-number | • group-number — The multilink group number for the T1 or E1 bundle. |
| Example: | |
| Router(config-if)# ppp multilink group | |
| 1 | |
| Step 5 | end |
| What to do next | Repeat these commands for each interface you want to assign to the multilink bundle. |
| Note | |
| Router# configure terminal | |
| Router(config)# controller SONET 0/0/0 | |
| Router(config-controller)# framing sdh | |
| Router(config-controller)# aug mapping au-4| |
| Router(config-controller)# au-4 1 tug-3 1 | |
| Router(config-controller)# tug-2 1 e1 1 channel-group 0 timeslots 1-31 | |
| Router# configure terminal | |
| Router(config)# interface multilink 1 | |
| Router(config-if)# ip address 192.168.1.1 255.255.255.0 | |
| Router(config-if)# ppp multilink endpoint string string1 | |
| Router(config)# interface serial | |
| 0/0/1.1/1/1/1:0 | |
| Router(config-if)# encapsulation ppp | |
| Router(config-if)# ppp multilink group | |

Configuring Fragmentation Size and Delay on an MLPPP Bundle

To configure the fragmentation size on a multilink PPP bundle, use the following commands:
Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router # configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Creates a multilink interface and enters multilink interface mode, where:</td>
</tr>
<tr>
<td><code>interface multilink group-number</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# interface multilink 1</code></td>
<td><code>• group-number</code> — The group number for the multilink bundle. Range 1-2147483647</td>
</tr>
<tr>
<td>Step 3</td>
<td>Sets the fragmentation size in bytes. Fragmentation is disabled by default. Valid values are 42 to 65535 bytes.</td>
</tr>
<tr>
<td><code>ppp multilink fragment size fragment-size</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ppp multilink fragment size 512</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Sets the configured delay on the multilink bundle that satisfies the fragmentation size, where:</td>
</tr>
<tr>
<td><code>ppp multilink fragment-delay delay</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# ppp multilink fragment-delay 20</code></td>
<td><code>• delay</code> — Delay in milliseconds.</td>
</tr>
</tbody>
</table>

What to do next

The following example of the `show ppp multilink` command shows the MLPPP type and the fragmentation size:

`Router # show ppp multilink`

```
Multilink1, bundle name is test2Bundle up for 00:00:13Bundle is Distributed0 lost fragments, 0 reordered, 0 unassigned discarded, 0 lost received, 206/255 load 0x0 received sequence, 0x0 sent sequence Member links: 2 active, 0 inactive (max not set, min not set)Se4/2/0/1:0, since 00:00:13, no frags rcvdSe4/2/0/2:0, since 00:00:10, no frags rcvdDistributed fragmentation on. Fragment size 512. Multilink in Hardware.
```

Changing the Default Endpoint Discriminator

To override or change the default endpoint discriminator, use the following command in interface configuration mode:
Disabling Fragmentation on an MLPPP Bundle

By default, PPP multilink fragmentation is enabled. To disable fragmentation on a multilink bundle, use the following commands:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Specifies the multilink interface and enters multilink interface mode, where:</td>
</tr>
<tr>
<td>interface multilink group-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>group-number—The group number for the multilink bundle. Range 1-2147483647</td>
</tr>
<tr>
<td>Router(config)# interface multilink 1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Disables PPP multilink fragmentation.</td>
</tr>
<tr>
<td>ppp multilink fragment disable</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ppp multilink fragment disable</td>
<td></td>
</tr>
</tbody>
</table>

Configuring BERT

BERT (Bit-Error Rate Testing) is used for analyzing quality and for problem resolution of digital transmission equipment. BERT tests the quality of an interface by directly comparing a pseudorandom or repetitive test pattern with an identical locally generated test pattern.

The BERT operation is data-intensive. Regular data cannot flow on the path while the test is in progress. The path is reported to be in alarm state when BERT is in progress and restored to a normal state after BERT has been terminated.

The supported BERT patterns are 2^{15}, 2^{23}, all 0s and all 1s.
Configuring Automatic Protection Switching

For information on how to configure Automatic Protection Switching (APS) on the optical interface module, see the Time Division Multiplexing Configuration Guide.

TU-AIS Alarms

Tributary Unit-Alarm Indication Signal (TU-AIS) alarms are higher order alarms compared to the AIS alarms. Prior to Cisco IOS-XE Everest 16.6.1, the PDH AIS alarms were generated when the TDM circuits went down. But, the SDH devices are unable to detect the PDH AIS alarms. This feature enables the SDH device to detect the PDH AIS alarm. Effective Cisco IOS-XE Everest 16.6.1, TU-AIS alarms are generated and detected when the TDM circuits go down on the access layer of the network topology or a failure occurs in MPLS domain due to which SAToP connectivity goes down. TU-AIS alarms are supported on the OC3 IM in Cisco ASR 903 RSP1 and RSP2 modules according to TU-12 section as defined in ITU-G. 707 (8.3.2). TU-AIS means that all TU-12 (i.e. all 144B) carries all "1" according to ITU-T G.707 (6.2.4.1.3).

The following are some expected behaviour after configuring TU-AIS alarms:

- CE tugu shut first displays AIS alarm and then TU-AIS alarms.
- After TU-AIS alarm gets cleared the RDI alarm is displayed for 11-12 seconds and gets cleared.
- If there is a change in dejitter on the CEM circuit and TU-AIS is not configured, it displays AIS alarms for 200-300 milliseconds. If TU-AIS is configured, it displays AIS alarms for 20-30 milliseconds.
- On cable pull in PE2 LOS is displayed and after connecting back it displays RDI and then clears.

Restrictions for TU-AIS Alarms

- TU-AIS is not supported on the CEMoUDP.
- The interface modules reset after you enable or disable the TU-AIS alarms under OC3 Controller.
- TU-AIS configuration takes effect on all 4 ports of A900-IMA4OS IM.
- TU_AIS alarm verification can be done by only using ANT-20 analyzer. ASR903 cannot display this alarm.

Configuring TU-AIS Alarms

Use the following commands to configure TU-AIS alarms:

```
  enable
  configure terminal
  controller sonet 0/1/2
  tu-a1s
  end
```
Verification of TU-AIS Alarm Configuration

Use the `show run | se` command to verify the configuration of TU-AIS alarm:

```
PE#show run | se SONET 0/1/2
platform enable controller SONET 0/1/2
controller SONET 0/1/2
  no ais-shut
  TU-AIS
  framing sdh
  clock source internal
  aug mapping au-4
  !
  au-4 1 tug-3 1
    mode c-12
    tug-2 1 e1 1 cem-group 555 unframed
    tug-2 1 e1 1 framing unframed
  !
  au-4 1 tug-3 2
    mode c-12
  !
  au-4 1 tug-3 3
    mode c-12
site1-PE#
```

Core Failure Event Detection

Effective Cisco IOS XE Everest 16.6.1, TU-AIS configuration can be used to detect core defects. This feature is applicable only on Cisco ASR 900 RSP2 Module. The core failure is detected in the following events:

- Shut on PE controller/tug level
- Unconfiguration of Xconnect
- Removal of GigE configuration, CEM configuration, controller configuration, or OSPF configuration
- Shut on OSPF, CEM group, Xconnect, or GigE interface

Verifying Interface Configuration

Besides using the `show running-configuration` command to display your Cisco ASR 900 Series Router configuration settings, you can use the `show interface serial` and the `show controllers sonet` commands to get detailed information on a per-port basis.

Verifying Per-Port Interface Status

To find detailed interface information on a per-port basis on an optical interface module, use the `show interface serial` and `show controllers sonet` commands.

For examples of the show commands here, see the `Cisco IOS Interface and Hardware Component Command Reference`.
Troubleshooting

You can use the following commands to verify your configuration:

- **show cem circuit**—shows information about the circuit state, administrative state, the CEM ID of the circuit, and the interface on which it is configured. If **xconnect** is configured under the circuit, the command output also includes information about the attached circuit.

- **show cem circuit 0-504**—Displays the detailed information about that particular circuit.

- **show cem circuit summary**—Displays the number of circuits which are up or down per interface basis.

- **show controller sonet x/y/z**—Displays the alarm information.

- **show hw-module subslot transceiver**—Displays information about the optical transceiver.

- **show mpls l2transport vc**—Displays the state of local and peer access circuits.

- **show running configuration**—Shows detail on each CEM group.

- **show xconnect all**—Displays the state of the pseudowire and local and peer access circuits.

- **show interfaces pos**—Displays all the current interface processors and their interfaces.

The **show controllers** command output reports the following alarms:

- SLOS
- SLOF
- B1-
- TCA
- B2-TCA

When SLOS is reported, all the other alarms are masked.

Router(config-controller)# show controller sonet 0/5/2
SONET 0/5/2 is down.
 Hardware is A900-IMA40S
 Applique type is Channelized Sonet/SDH
 Clock Source is Line, AUG mapping is AU4.
 .
 .
 .
 Multiplex Section:
 AIS = 6 RDI = 0 REI = 0 BIP(B2) = 0
 Active Defects: None
 Detected Alarms: SLOS SLOF LAIS B1-TCA B2-TCA<shows all alarms reported>
 Asserted/Active Alarms: SLOS B1-TCA B2-TCA..........<shows hierarchy>
 Alarm reporting enabled for: SLOS SLOF SF B1-TCA B2-TCA
 BER thresholds: SF = 10e-3 SD = 10e-6
 TCA thresholds: B1 = 10e-6 B2 = 10e-6
To provide information about system processes, the Cisco IOS software includes an extensive list of EXEC commands that begin with the word show, which, when executed, display detailed tables of system information. Following is a list of some of the common show commands for the APS feature.

To display the information described, use these commands in privileged EXEC mode.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show aps</td>
<td>Displays information about the automatic protection switching feature.</td>
</tr>
<tr>
<td>Router# show controller sonet slot/port-adapter/port</td>
<td>Displays information about the hardware.</td>
</tr>
<tr>
<td>Router# show interfaces</td>
<td>Displays information about the interface.</td>
</tr>
</tbody>
</table>

For examples of the show commands here, see the *Cisco IOS Interface and Hardware Component Command Reference*.

Framing and Encapsulation Configuration Example

The following example sets the framing and encapsulation for the controller and interface:

```
! Specify the controller and enter controller configuration mode
!
Router(config)# controller sonet 6/0/0
!
! Specify the framing method
!
Router(config-controller)# framing esf
!
! Exit controller configuration mode and return to global configuration mode
!
Router(config-controller)# exit
!
! Specify the interface and enter interface configuration mode
!
Router(config)# interface serial 6/0/0:0
!
! Specify the encapsulation protocol
!
Router(config-if)# encapsulation ppp
!
! Exit interface configuration mode
!
Router(config-if)# exit
!
! Exit global configuration mode
!
Router(config)# exit
Router#
```

National Bit Configuration Example

The following example sets the National Bits for the controller:

```
```
CRC Configuration Example

The following example sets the CRC size for the interface:

```sh
! Specify the interface and enter interface configuration mode
! Router(config)# interface serial 6/0/0:0
! ! Specify the CRC size
! Router(config-if)# crc 32
! ! Exit interface configuration mode and return to global configuration mode
! Router(config-if)# exit
! ! Exit global configuration mode
! Router(config)# exit
Router#
```

Facility Data Link Configuration Example

The following example configures Facility Data Link:

```sh
! Specify the controller and enter controller configuration mode
! Router(config)# controller sonet 6/0/0
! ! Specify the FDL specification
! Router(config-controller)#
fdl ansi
! ! Exit controller configuration mode and return to global configuration mode
! Router(config-controller)# exit
! ! Exit global configuration mode
! Router(config)# exit
Router#
```
MLPPP Configuration Example

The following example creates a PPP Multilink bundle:

```
! Enter global configuration mode
!
Router# configure terminal
!
! Create a multilink bundle and assign a group number to the bundle
!
Router(config)# interface multilink 1
!
! Specify an IP address for the multilink group
!
Router(config-if)# ip address 123.456.789.111 255.255.255.0
!
! Enable Multilink PPP
!
Router(config-if)# ppp multilink
!
! Leave interface multilink configuration mode
!
Router(config)# exit
!
! Specify the interface to assign to the multilink bundle
!
Router(config)# interface serial 3/1/0:1
!
! Enable PPP encapsulation on the interface
!
Router(config-if)# encapsulation PPP
!
! Assign the interface to a multilink bundle
!
Router(config-if)# multilink-group 1
!
! Enable Multilink PPP
!
Router(config-if)# ppp multilink
!
! Exit interface configuration mode
!
Router(config)# exit
!
! Exit global configuration mode
!
Router(config)# exit
Router#
```

MFR Configuration Example

The following example configures Multilink Frame Relay (MFR):

```
! Create a MFR interface and enter interface configuration mode
!
Router(config)# interface mfr 49
```
Assign the bundle identification (BID) name ‘test’ to a multilink bundle.

Router(config-if)# frame-relay multilink bid test

! Exit interface configuration mode and return to global configuration mode

Router(config-if)# exit

! Specify the serial interface to assign to a multilink bundle

Router(config)# interface serial 5/1/3:0

! Creates a multilink Frame Relay bundle link and associates the link with a multilink bundle

Router(config-if)# encapsulation frame-relay mfr 49

! Assigns a bundle link identification (LID) name with a multilink bundle link

Router(config-if)# frame-relay multilink lid test

! Configures the interval at which the interface will send out hello messages

Router(config-if)# frame-relay multilink hello 15

! Configures the number of seconds the interface will wait for a hello message acknowledgement before resending the hello message

Router(config-if)# frame-relay multilink ack 6

! Configures the maximum number of times the interface will resend a hello message while waiting for an acknowledgement

Router(config-if)# frame-relay multilink retry 5

! Exit interface configuration mode and return to global configuration mode

Router(config-if)# exit

Router(config)# exit

Configuration Examples

This section includes the following configuration examples:

Example of Cyclic Redundancy Check Configuration

The following example configures CRC on a T1 interface:

! Specify the interface to configure and enter interface configuration mode.

Router(config)# interface serial 2/0/0.1

Configuration Examples

Cisco ASR 900 Router Series Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Example of Facility Data Link Configuration

The following example configures FDL on a T1 interface:

```bash
! Specify the interface to configure and enter interface configuration mode.
! Router(config)# interface serial 1/0/0.2
! Specify the T1 number and select fdl.
! Router(config-controller)# t1 2 fdl ansi
```

Example of Invert Data on T1/E1 Interface

The following example inverts the data on the serial interface:

```bash
! Specify the interface to configure and enter interface configuration mode.
! Router(config)# interface serial 3/0/0.1/2/1:0
! Configure invert data.
! Router(config-if)# invert data
```

Additional Resources

For more information about configuring ATM, see

- Asynchronous Transfer Mode Configuration Guide, Cisco IOS XE Release 3S(ASR 900 Series)

For additional information on configuring optical interfaces, see

- Cisco IOS Asynchronous Transfer Mode Command Reference
- Interface and Hardware Component Configuration Guide, Cisco IOS XE Release 3S
- Wide-Area Networking Configuration Guide Library, Cisco IOS XE Release 3S
CHAPTER 8

Configuring Serial Interfaces

This chapter configures the serial interface module (PN: A900-IMASER14A/S) Async/Sync R232 serial data using Transparent Pseudowire (PW) over MPLS network and raw socket. It includes the following sections:

For information about managing your system images and configuration files, refer to the Cisco IOS Configuration Fundamentals Configuration Guide and Cisco IOS Configuration Fundamentals Command Reference publications.

For more information about the commands used in this chapter, refer to the Cisco IOS Command Reference publication for your Cisco IOS software release.

- Information About Serial Interface Module, on page 121
- Restrictions, on page 122
- How to Configure Serial Interface, on page 123
- Verifying the Serial Interface Configuration, on page 132
- Configuration Examples, on page 133

Information About Serial Interface Module

The serial interface module supports pseudowire transport over MPLS and raw socket for Async and Sync traffic. The Serial IM interfaces monitor and detect cable connections, cable types and also monitors modem control signals periodically.
The A900-IMASER14A/S interface provides a direct connection between the Cisco ASR 903 router and external networks.

Note

We recommend that you use a smart serial or 4-port octopus cable to connect the A900-IMASER14A/S with the external network.

Out of 14 ports, 6 ports support sync interfaces and 8 ports support async interfaces. RS232 Async data is carried over Raw Socket and Transparent byte mode and RS232 Sync data is carried over Raw Socket.

Restrictions

Note

Serial interfaces are *not* supported on the ASR 900 RSP3 Module.

This section describes the port restrictions for Serial interface module:

- Ports 0-7 are Async ports on the 68-pin connector
- Ports 8-13 are Sync or Async on the 12-in-1 connector

Note

Sync is *not* supported in Cisco IOS XE Release 3.14S. Sync ports cannot be configured in Cisco IOS XE Release 3.14S.
This section describes the software limitations that apply when configuring the Serial interface module:

- The router can only be configured as data circuit-terminating equipment (DCE).
- Configuration of pseudowire between local and remote PE with different speed on Sync and Async ports is not supported.
- Sub-rate (below DS0 bandwidth) Async (R232) data over MPLS using T1/E1 CESoP is not supported.
- Pseudowire ping is not supported for the pseudowire configured on the serial interface module.
- Only two serial interface modules can come up on the router in release prior to Cisco IOS XE Release 3.14. Starting with Cisco IOS XE Release 3.14, all 6 bays on the router are available for insertion of interface modules simultaneously.
- Only Trans encapsulation is supported in Cisco IOS XE Release 3.14S.
- If you installed a new A900-IMASER14A/S or if you want to change the configuration of an existing interface, you must enter configuration mode to configure the new interfaces. If you replaced an A900-IMASER14A/S that was previously configured, the system recognizes the new interfaces and brings each of them up in their existing configuration.
- Pseudowire ping is not supported for cross-connect configured on A900-IMA14A/S interface module.
- A maximum speed of 64 kbps between PE and DTE is supported for RS232 Sync ports.
- PE can act only as DCE and provides the clock to DTE.
- Serial IM Sync signaling transport does not interoperate with the third party equipments. HLDC frames used for transport of these signals are Cisco-specific.

How to Configure Serial Interface

Required Configuration Tasks

Configuring the Controller

To create the interfaces for the Serial interface module, complete these steps:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Serial Interfaces

Example: Controller Configuration

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>controller serial slot/subslot/port</td>
<td>Selects the controller to configure and enters controller configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# controller serial 0/4/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>physical-layer async</td>
<td>sync</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# physical-layer async</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits configuration mode and returns to the EXEC command interpreter prompt.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Note: The slot number is always 0.

Optional Configurations

Configuring Layer 1 on Sync and Async Interface Server

The RS232 which is enabled by default on the async interface, supports RS232 DCE cable with the DB-25 connector. The Cisco smart serial cable with the DB-25 connector supports RS232 and RS485. The RJ45 cable type supports only RS485.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>0/4/1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# physical-layer async</td>
<td></td>
</tr>
<tr>
<td>Router(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>line slot/bay/port</td>
<td>Select the controller to configure and enters serial interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• slot/subslot/port—Specifies the location of the interface.</td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>databits {5</td>
<td>6</td>
</tr>
</tbody>
</table>

Example:

```bash
Router(config-line)# databits 8
```

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>stopbits {1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Example:

```bash
Router(config-line)# stopbits 2
```

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed speed-value</td>
<td>Specifies the serial interface speed. The valid range is from 300 to 230400. The default is 9600.</td>
</tr>
</tbody>
</table>

Example:

```bash
Router(config-line)# speed 9600
```

Step 6

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw-socket tcp server port server ip address</td>
<td>Specifies raw-tcp server configuration.</td>
</tr>
</tbody>
</table>

Example:

```bash
Router(config-line)# raw-socket tcp server 5000 1.1.1.1
```

Step 7

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>raw-socket packet length packet length</td>
<td>Specifies raw-tcp packet length configuration options.</td>
</tr>
</tbody>
</table>

Example:

```bash
Router(config-line)# raw-socket packet-length 32
```

Step 8

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>flowcontrol /none</td>
<td>Sets the flowcontrol.</td>
</tr>
</tbody>
</table>

• none

• software

• hardware

Example:

```bash
Router(config-line)# flowcontrol none
```

Step 9

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>parity {even</td>
<td>mark</td>
</tr>
</tbody>
</table>

Example:

```bash
Router(config-line)# parity none
```

Step 10

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>sig-transport u-frame pattern pattern</td>
<td>This step is specific to Sync mode only. Specifies the u-frame format used for internal signal transport.</td>
</tr>
</tbody>
</table>

Example:

```bash
Router(config-line)#sig-transport u-frame pattern NR0
```
Example: Async Layer 1 Parameters

Router# configure terminal
Router(config)# line 0/4/1
Router(config-line)# databits 8
Router(config-line)# stopbits 2
Router(config-line)# speed 9600
Router(config-line)# flow-control none
Router(config-line)# parity none
Router(config-line)# exit

Configuring Layer 1 on Sync and Async Interface Client

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2</td>
<td>Select the controller to configure and enters serial interface configuration mode.</td>
</tr>
<tr>
<td><code>line slot/bay/port</code></td>
<td>Selects the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# line 0/4/1</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Sets the databit configuration. The default is 8.</td>
</tr>
<tr>
<td>`databits {5</td>
<td>6</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-line)# databits 8</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Sets the stopbit configuration. The default is 2.</td>
</tr>
<tr>
<td>`stopbits {1</td>
<td>1.5</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-line)# stopbits 2</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Specifies the serial interface speed. The valid range is from 300 to 230400. The default is 9600.</td>
</tr>
<tr>
<td><code>speed speed-value</code></td>
<td>Specifies the speed.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-line)# speed 9600</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>Specifies raw-tcp client configuration.</td>
</tr>
<tr>
<td><code>raw-socket tcp client server ip address server port client ip address client port</code></td>
<td>Specifies the raw-tcp client configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-line)# raw-socket tcp client 1.1.1.1 5000 10.10.10.10 9000</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>Specifies raw-tcp packet length configuration options.</td>
</tr>
<tr>
<td><code>raw-socket packet length packet length</code></td>
<td>Specifies the packet length.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-line)# raw-socket packet-length 32</code></td>
</tr>
<tr>
<td>Step 8</td>
<td>Sets the flowcontrol.</td>
</tr>
<tr>
<td>`flowcontrol /none</td>
<td>software [lock</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-line)# flowcontrol none</code></td>
</tr>
<tr>
<td>Step 9</td>
<td>Sets the parity.</td>
</tr>
<tr>
<td>`parity {even</td>
<td>mark</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-line)# parity none</code></td>
</tr>
<tr>
<td>Step 10</td>
<td>Exits configuration mode and returns to the EXEC command interpreter prompt.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits configuration mode.</td>
</tr>
</tbody>
</table>
Configuring a Channel Group

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>controller serial slot/bay/port</td>
<td>Configures the controller.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# controller serial 0/4/1</td>
<td>slot/subslot/port—Specifies the location of the interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>channel-group channel-group</td>
<td>Configures the channel group with specified NxDS0 time slots.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-controller)# channel-group 0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits configuration mode and returns to the EXEC command interpreter prompt.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-controller)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Example: Channel Group

Router# configure terminal
Router(config)# controller serial 0/4/1
Router(config-controller)# channel-group 0
Router(config-controller)# exit

Configuring Encapsulation

When traffic crosses a WAN link, the connection needs a Layer 2 protocol to encapsulate traffic.

Note

L2TPv3 encapsulation is *not* supported on the Cisco ASR 900 Series router. Trans encapsulation is only supported in Cisco IOS XE Release 3.14S.
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>interface serial slot/bay/port</td>
<td>Selects the interface to configure from global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface serial 0/4/1</td>
<td>Specifies the location of the interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>encapsulation {ppp</td>
<td>raw-tcp</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# encapsulation raw-tcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ppp—Described in RFC 1661, PPP encapsulates network layer protocol information over point-to-point links.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• trans—Transparent encapsulation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sdmc—Switched Multimegabit Data Services (SDMC) for serial interface.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
<td>Exits configuration mode and returns to the EXEC command interpreter prompt.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Example: Encapsulation

Router# configure terminal
Router(config)# interface serial 0/4/1
Router(config-if)# encapsulation raw-tcp
Router(config-if)# exit

Configuring Transparent Pseudowire (PW) Cross-Connect

Transparent PW mode provides a facility to configure the speed between 300 bps to 230400 bps.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Example: Transparent Pseudowire on Cross Connect

Router# configure terminal
Router(config)# interface serial 0/4/1
Router(config-if)# xconnect 1.1.1.1 1001 encapsulation mpls
Router(config)# exit

Configuring Invert Clock Signal

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 controller serial slot/bay/port</td>
<td>Configures the controller.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# controller serial 0/4/1</td>
<td></td>
</tr>
<tr>
<td>slot/subslot/port—Specifies the location of the interface.</td>
<td></td>
</tr>
</tbody>
</table>
Example: Invert Data on the Serial Interface

The following example shows invert data configuration on the serial interface.

```
Router# configure terminal
Router(config)# controller serial 0/4/1
Router(config-controller)# invert data
Router(config-controller)# exit
```

Configuring NRZI Formats

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 interfaceserial slot/bay/port</td>
<td>Select the controller to configure and enters serial interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface serial 0/4/1</td>
<td>• slot/subslot/port—Specifies the location of the interface.</td>
</tr>
<tr>
<td>Step 3 nrzi-encoding</td>
<td>Enable NRZI encoding.</td>
</tr>
<tr>
<td>Example:</td>
<td>To disable NRZI encoding, use the no form of the command.</td>
</tr>
<tr>
<td>Router(config-if)# nrzi-encoding</td>
<td></td>
</tr>
</tbody>
</table>

Saving the Configuration

To save your running configuration to nonvolatile random-access memory (NVRAM), use the following command in privileged EXEC configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy running-config startup-config</td>
<td>Writes the new configuration to NVRAM.</td>
</tr>
</tbody>
</table>
Verifying the Serial Interface Configuration

Use the following commands to verify the configuration the serial interface

- `show controllers serial slot/bay/port`

Use the `show controllers serial slot/bay/port` command to display serial interface configuration on the router.

```
Router# show controllers serial 0/1/0
Serial0/1/0 - (A900-IMASER14A/S) is up
 Encapsulation : RAW-TCP
 Cable type: RS-232 DCE
 mtu 1500, max_buffer_size 1524, max_pak_size 1524 enc 84
 loopback: Off, crc: 16, invert_data: Off
 nrzi: Off, idle char: Flag
dce_terminal_timing_enable: Off ignore_dtr: Off
 serial_clockrate: 64000bps, serial_clock_index: 14 serial_restartdelay:30000,
 serial_restartdelay_def:30000

 DCD=up DSR=up DTR=up RTS=up CTS=up
```

- `show interfaces serial slot/bay/port`

Use the `show interfaces serial slot/bay/port` command to display serial interface packet status information, model control signal status information on the router.

```
Router# show interfaces serial 0/1/0
Serial0/1/0 is up, line protocol is up
 Hardware is A900-IMASER14A/S
 MTU 1500 bytes, BW 64 Kbit/sec, DLY 20000 usec,
 reliability 255/255, txload 47/255, rxload 103/255
 Encapsulation RAW-TCP, loopback not set
 Keepalive not supported
 Last input never, output 00:00:00, output hang never
 Last clearing of "show interface" counters 00:38:06
 Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue: 0/40 (size/max)
 5 minute input rate 26000 bits/sec, 69 packets/sec
 5 minute output rate 12000 bits/sec, 69 packets/sec
 157782 packets input, 7562229 bytes, 0 no buffer
 Received 0 broadcasts (0 IP multicasts)
 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 156862 packets output, 3460471 bytes, 0 underruns
 0 output errors, 0 collisions, 0 interface resets
 0 unknown protocol drops
 0 output buffer failures, 0 output buffers swapped out
 0 carrier transitions
 DCD=up DSR=up DTR=up RTS=up CTS=up
```

- `show running-config interface serial slot/bay/port`

Use the `show running-config interface serial slot/bay/port` command to display serial interface IP address information, keep alive and cross-connect status information on the router.
Router# show running-config interface serial 0/1/0
Building configuration...
Current configuration : 107 bytes
!
interface Serial0/1/0
 no ip address
 encapsulation trans
 xconnect 1.1.1.1 1001 encapsulation mpls
End

• show xconnet all

Use the show xconnect all to command to display all cross connect status on the router.

Router# show xconnect all
Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
 UP=Up DN=Down AD=Admin Down IA=Inactive
 SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware
XC ST Segment 1 S1 Segment 2 S2
+---------------------------------+---------------------------------+--
UP pri ac Se0/1/0(HDLC) UP mpls 1.1.1.1:1001 UP

Use the show raw-socket tcp sessions and show raw-socket tcp statistic commands to display the raw socket status.

Router#show raw-socket tcp sessions
------------------------------------ TCP Sessions

<table>
<thead>
<tr>
<th>Interface tty</th>
<th>dest_ip_addr</th>
<th>dest_port</th>
<th>socket mode</th>
<th>up_time</th>
<th>idle_time/timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/3/12 154</td>
<td>10.10.10.10</td>
<td>9000</td>
<td>listening</td>
<td>00:20:49</td>
<td>00:00:00/5 min</td>
</tr>
<tr>
<td>0/3/12 154</td>
<td>20.20.20.20</td>
<td>5000</td>
<td>server</td>
<td>00:00:00</td>
<td></td>
</tr>
<tr>
<td>10.10.10.10</td>
<td>20.20.20.20</td>
<td>5000</td>
<td>server</td>
<td>00:00:00</td>
<td></td>
</tr>
</tbody>
</table>

Router#show raw-socket tcp statistic
------------------------------------ TCP-Serial Statistics

<table>
<thead>
<tr>
<th>Interface tty</th>
<th>tcp_out_bytes</th>
<th>tcp_to_tty_frames</th>
<th>tty_to_tcp_frames</th>
<th>tcp_in_bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/3/12 154</td>
<td>4640310</td>
<td>87709</td>
<td>87671</td>
<td>1847204</td>
</tr>
</tbody>
</table>

Configuration Examples

This section includes the following configuration examples:

Example: Encapsulation Configuration

The following example sets encapsulation for the controller and interface:
Example: Encapsulation Configuration

PE1 CONFIG

controller SERIAL 0/1/0
physical-layer async
channel-group 0
interface Serial0/1/0
no ip address
encapsulation trans
xconnect 2.2.2.2 1001 encapsulation mpls

PE2 CONFIG

controller SERIAL 0/2/0
physical-layer async
channel-group 0
interface Serial0/2/0
no ip address
encapsulation trans
xconnect 1.1.1.1 1001 encapsulation mpls
Enabling Support for Tunable DWDM-XFP-C

The dense wavelength-division multiplexing (DWDM) wavelengths of the DWDM-XFP-C module on the Cisco ASR 900 Series router is tunable. You can configure the DWDM ITU wavelengths using the `itu channel` command in the interface configuration mode. The `itu channel` command ensures that the traffic continues to flow.

Table 11: DWDM-XFP-C Wavelength Mapping, on page 135 contains the wavelength mapping information for the DWDM-XFP-C module.

<table>
<thead>
<tr>
<th>Channel no</th>
<th>wavelength [nm]</th>
<th>Frequency [THz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1561.79</td>
<td>191.95</td>
</tr>
<tr>
<td>2</td>
<td>1561.46</td>
<td>192</td>
</tr>
<tr>
<td>3</td>
<td>1560.98</td>
<td>192.05</td>
</tr>
<tr>
<td>4</td>
<td>1560.65</td>
<td>192.1</td>
</tr>
<tr>
<td>5</td>
<td>1560.17</td>
<td>192.15</td>
</tr>
<tr>
<td>6</td>
<td>1559.83</td>
<td>192.2</td>
</tr>
<tr>
<td>7</td>
<td>1559.35</td>
<td>192.25</td>
</tr>
<tr>
<td>8</td>
<td>1559.02</td>
<td>192.3</td>
</tr>
<tr>
<td>9</td>
<td>1558.54</td>
<td>192.35</td>
</tr>
<tr>
<td>10</td>
<td>1558.21</td>
<td>192.4</td>
</tr>
<tr>
<td>11</td>
<td>1557.73</td>
<td>192.45</td>
</tr>
<tr>
<td>12</td>
<td>1557.4</td>
<td>192.5</td>
</tr>
<tr>
<td>13</td>
<td>1556.92</td>
<td>192.55</td>
</tr>
<tr>
<td>14</td>
<td>1556.59</td>
<td>192.6</td>
</tr>
<tr>
<td>Channel no</td>
<td>wavelength [nm]</td>
<td>Frequency [THz]</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>15</td>
<td>1556.11</td>
<td>192.65</td>
</tr>
<tr>
<td>16</td>
<td>1555.79</td>
<td>192.7</td>
</tr>
<tr>
<td>17</td>
<td>1555.31</td>
<td>192.75</td>
</tr>
<tr>
<td>18</td>
<td>1554.98</td>
<td>192.8</td>
</tr>
<tr>
<td>19</td>
<td>1554.4</td>
<td>192.85</td>
</tr>
<tr>
<td>20</td>
<td>1554.17</td>
<td>192.9</td>
</tr>
<tr>
<td>21</td>
<td>1553.7</td>
<td>192.95</td>
</tr>
<tr>
<td>22</td>
<td>1553.37</td>
<td>193</td>
</tr>
<tr>
<td>23</td>
<td>1552.89</td>
<td>193.05</td>
</tr>
<tr>
<td>24</td>
<td>1552.57</td>
<td>193.1</td>
</tr>
<tr>
<td>25</td>
<td>1552.09</td>
<td>193.15</td>
</tr>
<tr>
<td>26</td>
<td>1551.76</td>
<td>193.2</td>
</tr>
<tr>
<td>27</td>
<td>1551.28</td>
<td>193.25</td>
</tr>
<tr>
<td>28</td>
<td>1550.96</td>
<td>193.3</td>
</tr>
<tr>
<td>29</td>
<td>1550.48</td>
<td>193.35</td>
</tr>
<tr>
<td>30</td>
<td>1550.16</td>
<td>193.4</td>
</tr>
<tr>
<td>31</td>
<td>1549.68</td>
<td>193.45</td>
</tr>
<tr>
<td>32</td>
<td>1549.35</td>
<td>193.5</td>
</tr>
<tr>
<td>33</td>
<td>1548.88</td>
<td>193.55</td>
</tr>
<tr>
<td>34</td>
<td>1548.55</td>
<td>193.6</td>
</tr>
<tr>
<td>35</td>
<td>1548.08</td>
<td>193.65</td>
</tr>
<tr>
<td>36</td>
<td>1548.75</td>
<td>193.7</td>
</tr>
<tr>
<td>37</td>
<td>1546.95</td>
<td>193.75</td>
</tr>
<tr>
<td>38</td>
<td>1546.95</td>
<td>193.8</td>
</tr>
<tr>
<td>39</td>
<td>1546.48</td>
<td>193.85</td>
</tr>
<tr>
<td>40</td>
<td>1546.16</td>
<td>193.9</td>
</tr>
<tr>
<td>41</td>
<td>1545.69</td>
<td>193.95</td>
</tr>
<tr>
<td>Channel no</td>
<td>wavelength [nm]</td>
<td>Frequency [THz]</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>42</td>
<td>1545.36</td>
<td>194</td>
</tr>
<tr>
<td>43</td>
<td>1544.89</td>
<td>194.05</td>
</tr>
<tr>
<td>44</td>
<td>1544.56</td>
<td>194.1</td>
</tr>
<tr>
<td>45</td>
<td>1544.09</td>
<td>194.15</td>
</tr>
<tr>
<td>46</td>
<td>1543.77</td>
<td>194.2</td>
</tr>
<tr>
<td>47</td>
<td>1543.3</td>
<td>194.25</td>
</tr>
<tr>
<td>48</td>
<td>1542.97</td>
<td>194.3</td>
</tr>
<tr>
<td>49</td>
<td>1542.5</td>
<td>194.35</td>
</tr>
<tr>
<td>50</td>
<td>1542.18</td>
<td>194.4</td>
</tr>
<tr>
<td>51</td>
<td>1541.71</td>
<td>194.45</td>
</tr>
<tr>
<td>52</td>
<td>1541.39</td>
<td>194.5</td>
</tr>
<tr>
<td>53</td>
<td>1540.92</td>
<td>194.55</td>
</tr>
<tr>
<td>54</td>
<td>1540.6</td>
<td>194.6</td>
</tr>
<tr>
<td>55</td>
<td>1540.13</td>
<td>194.65</td>
</tr>
<tr>
<td>56</td>
<td>1539.8</td>
<td>194.7</td>
</tr>
<tr>
<td>57</td>
<td>1539.34</td>
<td>194.75</td>
</tr>
<tr>
<td>58</td>
<td>1539.01</td>
<td>194.8</td>
</tr>
<tr>
<td>59</td>
<td>1538.55</td>
<td>194.85</td>
</tr>
<tr>
<td>60</td>
<td>1538.22</td>
<td>194.9</td>
</tr>
<tr>
<td>61</td>
<td>1537.76</td>
<td>194.95</td>
</tr>
<tr>
<td>62</td>
<td>1537.43</td>
<td>195</td>
</tr>
<tr>
<td>63</td>
<td>1536.97</td>
<td>195.05</td>
</tr>
<tr>
<td>64</td>
<td>1536.65</td>
<td>195.1</td>
</tr>
<tr>
<td>65</td>
<td>1536.18</td>
<td>195.15</td>
</tr>
<tr>
<td>66</td>
<td>1535.86</td>
<td>195.2</td>
</tr>
<tr>
<td>67</td>
<td>1535.396</td>
<td>195.25</td>
</tr>
<tr>
<td>68</td>
<td>1535.07</td>
<td>195.3</td>
</tr>
</tbody>
</table>
Configuring the DWDM-XFP-C Module

Perform the following procedure to configure the DWDM-XFP-C module.

Procedure

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables the privileged EXEC mode. If prompted, enter your password.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 3 | `interface tengigabitethernet slot/port`
Example:
  ```
  Router(config)# interface tengigabitethernet 0/3
  ``` | Specifies the 10-Gigabit Ethernet interface to be configured.<br>  - slot/port—Specifies the location of the interface. |
| Step 4 | `itu channel number`
Example:
  ```
  Router(config-if)# itu channel 28
  ``` | Sets the ITU channel.<br>  - number—Specifies the ITU channel number. The acceptable values are from 1–82. |

Verifying the ITU Configuration

The following example shows how to use the `show hw-module subslot` command to check an ITU configuration:

```
Router# show hw-module subslot 0/2 transceiver 0 idprom dump
Description = XFP optics (type 6)
Transceiver Type: = TUNABLE DWDM XFP (194)
Product Identifier (PID) = DWDM-XFP-C
Frequency Set for Tunable DWDM = 195.5 THz
Vendor Revision = 00
Serial Number (SN) = JFX1617800W
Vendor Name = CISCO-JDSU
Vendor OUI (IEEE company ID) = 00.01.9C (412)
CLEI code = IP9IAGGCB
Cisco part number = 10-2544-02
Device State = Disabled.
XFP IDPROM Page 0x0:
  000: 0C 00 49 00 F8 00 46 00 FB 00
  010: 00 00 00 00 00 00 00 00 A6 04
  020: 09 C4 8C A0 13 88 9B 83 13 93
  030: 62 1F 07 0F 8D 00 0A 09 CF
  040: 00 10 00 18 FF E6 00 OC FF F4
  050: 00 00 00 00 00 00 00 00 00 00
  060: 00 BF 25 1C 00 C4 00 00 01 F4
  070: 00 00 00 00 00 00 00 00 00 00
  080: 00 00 00 00 00 00 00 01 00 00
  090: 00 00 00 00 00 00 00 01 E 7C 00 00
  100: 00 00 00 01 00 00 00 00 00 00
  110: E2 98 00 14 00 00 00 00 00 00 00<<See byte 113, the hexa decimal equivalent for ITU channel 20>>
  120: 00 00 00 00 00 00 00 00 01

XFP IDPROM Page 0x1:
  128: 0C 98 07 00 00 00 00 00 00 00
  138: 08 B4 63 71 50 00 00 00 00 9F
  148: 43 49 53 43 4F 2D 4A 44 53
```
Verifying the ITU Configuration
Dying Gasp Support for Loss of Power Supply via SNMP, Syslog and Ethernet OAM

Dying Gasp—One of the following unrecoverable condition has occurred:

- Interface error-disable
- Reload
- Power failure or removal of power supply cable

This type of condition is vendor specific. An Ethernet Operations, Administration, and Maintenance (OAM) notification about the condition may be sent immediately.

Prerequisites for Dying Gasp Support

Dying Gasp via ethernet OAM is not supported on Cisco RSP3 module.

You must enable Ethernet OAM on interface that requires Dying Gasp notification via Ethernet OAM. For more information, see *Enabling Ethernet OAM on an interface*.

You must enable SNMP global configurations to get notification via SNMP trap. For more information, see *Configuration Examples for Dying Gasp support via SNMP*.

Restrictions for Dying Gasp Support

- The Dying Gasp feature is not supported if you remove the power supply unit (PSU) from the system.
- SNMP trap is sent only on power failure that results in the device to shut down.
- The Dying Gasp support feature cannot be configured using CLI. To configure hosts using SNMP, refer to the SNMP host configuration examples below.
Dying Gasp via SNMP Trap is not supported on Management Port Gig0/Management-interface vrf on Cisco RSP3 module and Cisco ASR 920 routers.

Configuration Examples for Dying Gasp Support

Configuring SNMP Community Strings on a Router

Setting up the community access string to permit access to the SNMP:

```
Router> enable
Router# configure terminal
Router(config)# snmp-server community public RW
Router(config)# exit
```

For more information on command syntax and examples, refer to the Cisco IOS Network Management Command Reference.

Configuring SNMP-Server Host Details on the Router Console

Specifying the recipient of a SNMP notification operation:

```
Router> enable
Router# configure terminal
Router(config)# snmp-server host X.X.X.XXX vrf mgmt-intf version 2c public udp-port 9800
Router(config)# exit
```

For more information on command syntax and examples, refer to the Cisco IOS Network Management Command Reference.

Dying Gasp Trap Support for Different SNMP Server Host/Port Configurations

Note

You can configure up to five different SNMP server host/port configurations.

Environmental Settings on the Network Management Server

```
setenv SR_TRAP_TEST_PORT=UDP port
setenv SR_UTIL_COMMUNITY=public
setenv SR_UTIL_SNMP_VERSION=v2c
setenv SR_MGR_CONF_DIR=Path to the executable snmpinfo.DAT file
```

The following example shows SNMP trap configuration on three hosts:

Configuration example for the first host:
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#
Router(config)# snmp-server host 7.0.0.149 vrf Mgmt-intf version 2c public udp-port 6264
Configuration example for the second host:
Router(config)#
Router(config)# snmp-server host 7.0.0.152 vrf Mgmt-intf version 2c public udp-port 9988
Configuration example for the third host:
Router(config)# snmp-server host 7.0.0.166 vrf Mgmt-intf version 2c public udp-port 9800
Router(config)# ^Z
Router#

After performing a power cycle, the following output is displayed on the router console:

This is not supported on Cisco RSP1 and Cisco RSP2 modules.

Router#
System Bootstrap, Version 15.3(2r)S, RELEASE SOFTWARE (fc1)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 2012 by Cisco Systems, Inc.
Compiled Wed 17-Oct-12 15:00
Current image running: Boot ROM1
Last reset cause: PowerOn
UEA platform with 2097152 Kbytes of main memory
rommon 1 >
=======================================
Dying Gasp Trap Received for the Power failure event:

+ snmp-server host = 7.0.0.149 (nms1-lnx) and SR_TRAP_TEST_PORT=6264
/auto/sw/packages/snmpr/15.4.1.9/bin> /auto/sw/packages/snmpr/15.4.1.9/bin/traprcv
Waiting for traps.
Received SNMPv2c Trap:
Community: public
From: 7.29.25.101
snmpTrapOID.0 = ciscoMgmt.305.1.3.5.0.2
ciscoMgmt.305.1.3.6 = Dying Gasp - Shutdown due to power loss

+ snmp-server host = 7.0.0.152 (nms2-lnx) and SR_TRAP_TEST_PORT=9988
/auto/sw/packages/snmpr/15.4.1.9/bin> /auto/sw/packages/snmpr/15.4.1.9/bin/traprcv
Waiting for traps.
Received SNMPv2c Trap:
Community: public
From: 7.29.25.101
snmpTrapOID.0 = ciscoMgmt.305.1.3.5.0.2
ciscoMgmt.305.1.3.6 = Dying Gasp - Shutdown due to power loss

+ snmp-server host = 7.0.0.166 (erbusnmp-dc-lnx) and SR_TRAP_TEST_PORT=9800
/auto/sw/packages/snmpr/15.4.1.9/bin> /auto/sw/packages/snmpr/15.4.1.9/bin/traprcv
Waiting for traps.
Received SNMPv2c Trap:
Community: public
From: 7.29.25.101
Dying Gasp Support for Loss of Power Supply via SNMP, Syslog and Ethernet OAM

Message Displayed on the Peer Router on Receiving Dying Gasp Notification

001689: *May 30 14:16:47.746 IST: %ETHERNET_OAM-6-RFI: The client on interface Gi4/2 has received a remote failure indication from its remote peer(failure reason = remote client power failure action =)

Displaying SNMP Configuration for Receiving Dying Gasp Notification

Use the show running-config command to display the SNMP configuration for receiving dying gasp notification:

Router# show running-config | i snmp
snmp-server community public RW
snmp-server host 7.0.0.149 vrf Mgmt-intf version 2c public udp-port 6264
snmp-server host 7.0.0.152 vrf Mgmt-intf version 2c public udp-port 9988
snmp-server host 7.0.0.166 vrf Mgmt-intf version 2c public udp-port 9800
Router#

Dying GASP via SNMP Trap Support on Cisco RSP3 Module

Dying GASP via SNMP trap feature is supported on Cisco RSP3 module. The supported modules are A900-RSP3C-200-S, A900-RSP3C-400-S, and RSP3–690t for ASR 907 routers.

For Cisco RSP3 module, CPU holdup time is 6.5 ms for Cisco ASR 900 Series routers. Hence, no packets can be processed in this time by CPU. To avoid this, this feature pre-constructs and installs the event packet in FPGA. When FPGA receives the power failure notification, it transfers the pre-constructed packet and thus the packet is forwarded to the required egress interface.

The feature helps to quickly notify a network administrator whenever a node undergoes power shutdown. The node undergoing power shutdown sends a SNMP DG trap message to the configured SNMP server.

The feature is supported on global MPLS and L3VPN. It uses UDP port 49151 as source port and 162 as destination port.

Restrictions for Dying GASP via SNMP Trap Support on Cisco RSP3 Module

- The feature is enabled by default in Cisco RSP3C Port Expansion Mode when the channelized IMs (A900-IMA8(S/T) or A900-IMA8(S/T)1Z) are inserted in the device with the following conditions:
 - For ASR 903 routers, the above-mentioned IMs can be present in any slot.
 - For ASR 907 routers, the above-mentioned IMs need to be present on odd-numbered slots (1, 3, 5, 7, and so on)
If the above-mentioned IMs are not inserted in the above-mentioned slots, you can still connect by enabling the following command in the global configurations:

```
platform dying-gasp-port-enable
```

Note
The above command only supported in Cisco RSP3C Port Expansion Mode.

But, some IMs in some slot can no longer be online. The enabled command checks if these slots are free of those IMs, if they are not, it rejects the implementation and error message is displayed. The same scenario is experienced when the command is enabled and incompatible IM is inserted. For information on incompatible IMs, refer the IM Compatibility Tool.

- Only SNMP Dying Gasp traps are received in an event of power failure.
 The SNMP Dying Gasp traps are only received for the first five configured SNMP hosts. Only five SNMP server hosts are notified about SNMP trap.

- Generation of SNMP trap for host via management VRF for a Dying GASP event is not supported in Cisco RSP3 Module.

- Reachability to the host must be present and Address Resolution Protocol (ARP) must be resolved before the event.

- Dying GASP support for loss of power supply via syslog and Ethernet OAM is not supported.

Enabling Dying GASP Support on Cisco RSP3 Module

To enable Dying GASP feature for Cisco RSP3 module in Cisco RSP3C Port Expansion Mode:

```
enable
configure terminal
platform dying-gasp-port-enable
end
```

To enable the feature in Cisco RSP3C XFI-Pass Through Mode:

```
enable
configure terminal
license feature service-offload enable
Reload the device. If present, IM A-900-IMA8S goes out of service. If not, deactivate the IM.
license feature service-offload bandwidth 10gbps npu-[0 | 1]
Reload the device.
end
```

Verifying SNMP Host Configuration

Use `show snmp host` command to verify all SNMP hosts configured.

```
#show snmp host
Notification host: 20.20.20.21 udp-port: 162 type: trap
user: public security model: v2c

Notification host: 30.30.30.31 udp-port: 162 type: trap
user: public security model: v2c
```
Verifying SNMP Configurations

Use `show running | i snmp` command to verify all SNMP hosts configured.

```plaintext
#show running | i snmp
snmp-server group public v3 noauth
snmp-server community public RO
snmp-server community private RW
snmp-server trap-source Loopback0
snmp-server host 20.20.20.21 version 2c public
snmp-server host 30.30.30.31 version 2c public
snmp-server host 5000::2 vrf vrf1 version 3 noauth public
snmp-server host 6000::2 vrf vrf1 version 3 noauth public
snmp-server host 8000::2 version 2c public
```
Configuring Pseudowire

This chapter provides information about configuring pseudowire (PW) features on the router.

- Pseudowire Overview, on page 147
- Limitations, on page 153
- Configuring CEM, on page 153
- Configuring CAS, on page 158
- Configuring ATM, on page 161
- Configuring Structure-Agnostic TDM over Packet (SAToP), on page 165
- Configuring Circuit Emulation Service over Packet-Switched Network (CESoPSN), on page 167
- Configuring a Clear-Channel ATM Pseudowire, on page 168
- Configuring an ATM over MPLS Pseudowire, on page 169
- Configuring an Ethernet over MPLS Pseudowire, on page 179
- Configuring Pseudowire Redundancy, on page 180
- Pseudowire Redundancy with Uni-directional Active-Active, on page 182
- Restrictions, on page 183
- Configuring Pseudowire Redundancy Active-Active—Protocol Based, on page 184
- Configuring the Working Controller for MR-APS with Pseudowire Redundancy Active-Active, on page 184
- Configuring the Protect Controller for MR-APS with Pseudowire Redundancy Active-Active, on page 185
- Verifying the Interface Configuration, on page 185
- Configuration Examples, on page 186

Pseudowire Overview

The following sections provide an overview of pseudowire support on the router.

Effective Cisco IOS XE Release 3.18S:

- BGP PIC with TDM Pseudowire is supported on the ASR 900 router with RSP2 module.
- BGP PIC for Pseudowires, with MPLS Traffic Engineering is supported on the ASR 900 router with RSP1 and RSP2 modules.

Starting Cisco IOS XE Release 3.18.1SP, Pseudowire Uni-directional Active-Active is supported on the RSP1 and RSP3 modules.
Limitations

If you are running Cisco IOS XE Release 3.17S, the following limitation applies:

- BGP PIC with TDM Pseudowire is supported only on the ASR 900 router with RSP1 module.

If you are running Cisco IOS XE Release 3.17S and later releases, the following limitations apply:

- Channel associated signaling (CAS) is not supported on the T1/E1 and OC-3 interface modules on the router.
- BGP PIC is not supported for MPLS/LDP over MLPPP and POS in the core.
- BGP PIC is not supported for Multi-segment Pseudowire or Pseudowire switching.
- BGP PIC is not supported for VPLS and H-VPLS
- BGP PIC is not supported for IPv6.
- If BGP PIC is enabled, Multi-hop BFD should not be configured using the `bfd neighbor fall-over` command.
- If BGP PIC is enabled, `neighbor ip-address weight` command should not be configured.
- If BGP PIC is enabled, `bgp nexthop trigger delay 6` under the address-family `ipv4` command and `bgp nexthop trigger delay 7` under the address-family `vpnv4` command should be configured. For information on the configuration examples for BGP PIC–TDM, see Example: BGP PIC with TDM-PW Configuration, on page 188.
- If BGP PIC is enabled and the targeted LDP for VPWS cross-connect services are established over BGP, perform the following tasks:
 - configure Pseudowire-class (pw-class) with encapsulation "mpls"
 - configure `no status control-plane route-watch` under the pw-class
 - associate the pw-class with the VPWS cross-connect configurations

If you are running Cisco IOS-XE 3.18S, the following restrictions apply for BGP PIC with MPLS TE for TDM Pseudowire:

- MPLS TE over MLPPP and POS in the core is not supported.
- Co-existence of BGP PIC with MPLS Traffic Engineering Fast Reroute (MPLS TE FRR) is not supported.

Circuit Emulation Overview

Circuit Emulation (CEM) is a technology that provides a protocol-independent transport over IP networks. It enables proprietary or legacy applications to be carried transparently to the destination, similar to a leased line.

The Cisco ASR 903 Series Router supports two pseudowire types that utilize CEM transport: Structure-Agnostic TDM over Packet (SAToP) and Circuit Emulation Service over Packet-Switched Network (CESoPSN). The following sections provide an overview of these pseudowire types.
Starting with Cisco IOS XE Release 3.15, the 32xT1E1 and 8x T1/E1 interface modules support CEM CESoP and SATOP configurations with fractional timeslots.

With the 32xT1/E1 and 8xT1/E1 interface modules, the channelized CEM circuits configured under a single port (fractional timeslot) cannot be deleted or modified, unless the circuits created after the first CEM circuits are deleted or modified.

The following CEM circuits are supported on the 32xT1/E1 interface module:

T1 mode
- 192 CESOP circuits with fractional timeslot
- 32 CESOP circuit full timeslot
- 32 SATOP circuits.

E1 mode
- 256 CESOP circuit with fractional timeslot.
- 32 CESOP circuit full timeslot
- 32 SATOP circuit

Structure-Agnostic TDM over Packet

SAToP encapsulates time division multiplexing (TDM) bit-streams (T1, E1, T3, E3) as PWs over public switched networks. It disregards any structure that may be imposed on streams, in particular the structure imposed by the standard TDM framing.

The protocol used for emulation of these services does not depend on the method in which attachment circuits are delivered to the provider edge (PE) devices. For example, a T1 attachment circuit is treated the same way for all delivery methods, including copper, multiplex in a T3 circuit, a virtual tributary of a SONET/SDH circuit, or unstructured Circuit Emulation Service (CES).

In SAToP mode the interface is considered as a continuous framed bit stream. The packetization of the stream is done according to IETF RFC 4553. All signaling is carried out transparently as a part of a bit stream. Figure 2: Unstructured SAToP Mode Frame Format, on page 149 shows the frame format in Unstructured SAToP mode.

![Figure 2: Unstructured SAToP Mode Frame Format](image)

#unique_255 unique_255_Connect_42_tab_1729930 shows the payload and jitter limits for the T1 lines in the SAToP frame format.
#unique_255 unique_255_Connect_42_tab_1729963 shows the payload and jitter limits for the E1 lines in the SAToP frame format.

Table 13: SAToP E1 Frame: Payload and Jitter Limits

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1280</td>
<td>320</td>
<td>10</td>
<td>256</td>
<td>64</td>
<td>2</td>
</tr>
</tbody>
</table>

For instructions on how to configure SAToP, see Configuring Structure-Agnostic TDM over Packet (SAToP), on page 165.

Circuit Emulation Service over Packet-Switched Network

CESoPSN encapsulates structured TDM signals as PWs over public switched networks (PSNs). It complements similar work for structure-agnostic emulation of TDM bit streams, such as SAToP. Emulation of circuits saves PSN bandwidth and supports DS0-level grooming and distributed cross-connect applications. It also enhances resilience of CE devices due to the effects of loss of packets in the PSN.

CESoPSN identifies framing and sends only the payload, which can either be channelized T1s within DS3 or DS0s within T1. DS0s can be bundled to the same packet. The CESoPSN mode is based on IETF RFC 5086.

Each supported interface can be configured individually to any supported mode. The supported services comply with IETF and ITU drafts and standards.

Figure 3: Structured CESoPSN Mode Frame Format, on page 150 shows the frame format in CESoPSN mode.

Table 14: CESoPSN DS0 Lines: Payload and Jitter Limits, on page 151 shows the payload and jitter for the DS0 lines in the CESoPSN mode.
Table 14: CESoPSN DS0 Lines: Payload and Jitter Limits

<table>
<thead>
<tr>
<th>DS0</th>
<th>Maximum Payload</th>
<th>Maximum Jitter</th>
<th>Minimum Jitter</th>
<th>Minimum Payload</th>
<th>Maximum Jitter</th>
<th>Minimum Jitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>320</td>
<td>10</td>
<td>32</td>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>320</td>
<td>10</td>
<td>32</td>
<td>128</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>320</td>
<td>10</td>
<td>33</td>
<td>128</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>320</td>
<td>10</td>
<td>32</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>320</td>
<td>10</td>
<td>40</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>240</td>
<td>320</td>
<td>10</td>
<td>48</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>280</td>
<td>320</td>
<td>10</td>
<td>56</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>320</td>
<td>320</td>
<td>10</td>
<td>64</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>360</td>
<td>320</td>
<td>10</td>
<td>72</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>400</td>
<td>320</td>
<td>10</td>
<td>80</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>440</td>
<td>320</td>
<td>10</td>
<td>88</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>480</td>
<td>320</td>
<td>10</td>
<td>96</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>520</td>
<td>320</td>
<td>10</td>
<td>104</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>560</td>
<td>320</td>
<td>10</td>
<td>112</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>600</td>
<td>320</td>
<td>10</td>
<td>120</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>640</td>
<td>320</td>
<td>10</td>
<td>128</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>680</td>
<td>320</td>
<td>10</td>
<td>136</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>720</td>
<td>320</td>
<td>10</td>
<td>144</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>760</td>
<td>320</td>
<td>10</td>
<td>152</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>800</td>
<td>320</td>
<td>10</td>
<td>160</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>840</td>
<td>320</td>
<td>10</td>
<td>168</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>880</td>
<td>320</td>
<td>10</td>
<td>176</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>23</td>
<td>920</td>
<td>320</td>
<td>10</td>
<td>184</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>960</td>
<td>320</td>
<td>10</td>
<td>192</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>1000</td>
<td>320</td>
<td>10</td>
<td>200</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>26</td>
<td>1040</td>
<td>320</td>
<td>10</td>
<td>208</td>
<td>64</td>
<td>2</td>
</tr>
</tbody>
</table>
Asynchronous Transfer Mode over MPLS

An ATM over MPLS (AToM) PW is used to carry Asynchronous Transfer Mode (ATM) cells over an MPLS network. It is an evolutionary technology that allows you to migrate packet networks from legacy networks, while providing transport for legacy applications. AToM is particularly useful for transporting 3G voice traffic over MPLS networks.

You can configure AToM in the following modes:

- **N-to-1 Cell**—Maps one or more ATM virtual channel connections (VCCs) or virtual permanent connection (VPCs) to a single pseudowire.
- **1-to-1 Cell**—Maps a single ATM VCC or VPC to a single pseudowire.
- **Port**—Maps a single physical port to a single pseudowire connection.

The Cisco ASR 903 Series Router also supports cell packing and PVC mapping for AToM pseudowires.

Note

This release does not support AToM N-to-1 Cell Mode or 1-to-1 Cell Mode.

For more information about how to configure AToM, see Configuring an ATM over MPLS Pseudowire, on page 169.

Transportation of Service Using Ethernet over MPLS

Ethernet over MPLS (EoMPLS) PWs provide a tunneling mechanism for Ethernet traffic through an MPLS-enabled Layer 3 core network. EoMPLS PWs encapsulate Ethernet protocol data units (PDUs) inside MPLS packets and use label switching to forward them across an MPLS network. EoMPLS PWs are an evolutionary technology that allows you to migrate packet networks from legacy networks while providing transport for legacy applications. EoMPLS PWs also simplify provisioning, since the provider edge equipment only requires Layer 2 connectivity to the connected customer edge (CE) equipment. The Cisco ASR 903 Series Router implementation of EoMPLS PWs is compliant with the RFC 4447 and 4448 standards.

The Cisco ASR 903 Series Router supports VLAN rewriting on EoMPLS PWs. If the two networks use different VLAN IDs, the router rewrites PW packets using the appropriate VLAN number for the local network.
For instructions on how to create an EoMPLS PW, see Configuring an Ethernet over MPLS Pseudowire, on page 179.

Limitations

If you are running Cisco IOS XE Release 3.17S, the following limitation applies:

- BGP PIC with TDM Pseudowire is supported only on the ASR 900 router with RSP1 module.

If you are running Cisco IOS XE Release 3.17S and later releases, the following limitations apply:

- Channel associated signaling (CAS) is not supported on the T1/E1 and OC-3 interface modules on the router.
- BGP PIC is not supported for MPLS/LDP over MLPPP and POS in the core.
- BGP PIC is not supported for Multi-segment Pseudowire or Pseudowire switching.
- BGP PIC is not supported for VPLS and H-VPLS
- BGP PIC is not supported for IPv6.
- If BGP PIC is enabled, Multi-hop BFD should not be configured using the `bfd neighbor fall-over: bfd` command.
- If BGP PIC is enabled, `neighbor ip-address weight weight` command should not be configured.
- If BGP PIC is enabled, `bgp nexthop trigger delay 6` under the `address-family ipv4` command and `bgp nexthop trigger delay 7` under the `address-family vpnv4` command should be configured. For information on the configuration examples for BGP PIC–TDM, see Example: BGP PIC with TDM-PW Configuration, on page 188.
- If BGP PIC is enabled and the targeted LDP for VPWS cross-connect services are established over BGP, perform the following tasks:
 - configure Pseudowire-class (pw-class) with encapsulation "mpls"
 - configure `no status control-plane route-watch` under the pw-class
 - associate the pw-class with the VPWS cross-connect configurations

If you are running Cisco IOS-XE 3.18S, the following restrictions apply for BGP PIC with MPLS TE for TDM Pseudowire:

- MPLS TE over MLPPP and POS in the core is not supported.
- Co-existence of BGP PIC with MPLS Traffic Engineering Fast Reroute (MPLS TE FRR) is not supported.

Configuring CEM

This section provides information about how to configure CEM. CEM provides a bridge between a time-division multiplexing (TDM) network and a packet network, such as Multiprotocol Label Switching (MPLS). The
router encapsulates the TDM data in the MPLS packets and sends the data over a CEM pseudowire to the remote provider edge (PE) router. Thus, function as a physical communication link across the packet network.

The following sections describe how to configure CEM:

Configuration Guidelines and Restrictions

Not all combinations of payload size and dejitter buffer size are supported. If you apply an incompatible payload size or dejitter buffer size configuration, the router rejects it and reverts to the previous configuration.

Configuring a CEM Group

The following section describes how to configure a CEM group on the Cisco ASR 903 Series Router.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>controller {t1</td>
<td>e1} slot/subslot/port</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config)# controller t1 1/0</td>
<td>• Use the slot and port arguments to specify the slot number and port number to be configured.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td>The slot number is always 0.</td>
</tr>
<tr>
<td>Step 4</td>
<td>cem-group group-number {unframed</td>
<td>Creates a circuit emulation channel from one or more time slots of a T1 or E1 line.</td>
</tr>
<tr>
<td></td>
<td>timeslots timeslot}</td>
<td>• The group-number keyword identifies the channel number to be used for this channel. For T1 ports, the range is 0 to 23. For E1 ports, the range is 0 to 30.</td>
</tr>
<tr>
<td></td>
<td>Example: Router(config-controller)# cem-group 6 timeslots 1-4,9,10</td>
<td>• Use the unframed keyword to specify that a single CEM channel is being created</td>
</tr>
</tbody>
</table>
Using CEM Classes

A CEM class allows you to create a single configuration template for multiple CEM pseudowires. Follow these steps to configure a CEM class:

Note

The CEM parameters at the local and remote ends of a CEM circuit must match; otherwise, the pseudowire between the local and remote PE routers will not come up.

Note

You cannot apply a CEM class to other pseudowire types such as ATM over MPLS.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Creates a new CEM class</td>
</tr>
<tr>
<td><code>class cem cem-class</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# class cem mycemclass</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring Pseudowire Using CEM Classes

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Enter the configuration commands common to the CEM class. This example specifies a sample rate, payload size, dejitter buffer, and idle pattern.</td>
</tr>
<tr>
<td>payload-size <code>size</code></td>
<td>Returns to the config prompt.</td>
</tr>
<tr>
<td>dejitter-buffer <code>buffer-size</code></td>
<td></td>
</tr>
<tr>
<td>idle-pattern <code>pattern</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-cem-class)# payload-size 512</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-cem-class)# dejitter-buffer 10</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-cem-class)# idle-pattern 0x55</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Configure the CEM interface that you want to use for the new CEM class.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>The use of the <code>xconnect</code> command can vary depending on the type of pseudowire you are configuring.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-cem-class)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>interface cem <code>slot/subslot</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface cem 0/0</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# no ip address</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# cem 0</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-cem)# cem class mycemclass</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-cem)# xconnect 10.10.10.10 200 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>Step 7</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-cem)# exit</td>
</tr>
<tr>
<td>Step 8</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# exit</td>
</tr>
</tbody>
</table>

Configuring a Clear-Channel ATM Interface

Configuring CEM Parameters

The following sections describe the parameters you can configure for CEM circuits.

Note

The CEM parameters at the local and remote ends of a CEM circuit must match; otherwise, the pseudowire between the local and remote PE routers will not come up.

Configuring Payload Size (Optional)

To specify the number of bytes encapsulated into a single IP packet, use the payload size command. The size argument specifies the number of bytes in the payload of each packet. The range is from 32 to 1312 bytes.

Default payload sizes for an unstructured CEM channel are as follows:

- $E1 = 256$ bytes
- $T1 = 192$ bytes
- $DS0 = 32$ bytes

Default payload sizes for a structured CEM channel depend on the number of time slots that constitute the channel. Payload size (L in bytes), number of time slots (N), and packetization delay (D in milliseconds) have the following relationship: $L = 8*N*D$. The default payload size is selected in such a way that the packetization delay is always 1 millisecond. For example, a structured CEM channel of $16xDS0$ has a default payload size of 128 bytes.

The payload size must be an integer of the multiple of the number of time slots for structured CEM channels.
Setting the Dejitter Buffer Size

To specify the size of the dejitter buffer used to compensate for the network filter, use the dejitter-buffer size command. The configured dejitter buffer size is converted from milliseconds to packets and rounded up to the next integral number of packets. Use the size argument to specify the size of the buffer, in milliseconds. The range is from 1 to 32 ms; the default is 5 ms.

Setting an Idle Pattern (Optional)

To specify an idle pattern, use the [no] idle-pattern pattern1 command. The payload of each lost CESoPSN data packet must be replaced with the equivalent amount of the replacement data. The range for pattern is from 0x0 to 0xFF; the default idle pattern is 0xFF.

Enabling Dummy Mode

Dummy mode enables a bit pattern for filling in for lost or corrupted frames. To enable dummy mode, use the dummy-mode [last-frame | user-defined] command. The default is last-frame. The following is an example:

Router(config-cem)# dummy-mode last-frame

Setting a Dummy Pattern

If dummy mode is set to user-defined, you can use the dummy-pattern pattern command to configure the dummy pattern. The range for pattern is from 0x0 to 0xFF. The default dummy pattern is 0xFF. The following is an example:

Router(config-cem)# dummy-pattern 0x55

Note

The dummy-pattern command is *not* supported on the following interface modules:

- 48-Port T3/E3 CEM interface module
- 48-Port T1/E1 CEM interface module
- 1-port OC-192 Interface module or 8-port Low Rate interface module

Shutting Down a CEM Channel

To shut down a CEM channel, use the shutdown command in CEM configuration mode. The shutdown command is supported only under CEM mode and not under the CEM class.

Configuring CAS

This section provides information about how to configure Channel Associated Signaling (CAS).
Information About CAS

The CAS is a method of signaling, where the signaling information is carried over a signaling resource that is specific to a particular channel. For each channel there is a dedicated and associated signaling channel.

The Cisco ASR Router with RSP2 module supports CAS with 8-port T1/E1 interface modules and is interoperable with 6-port Ear and Mouth (E&M) interface modules.

Note

The Cisco ASR Router supports CAS only in the E1 mode for the 8-port T1/E1 interface cards. Use the `card type e1 slot/subslot` command to configure controller in the E1 mode.

In the E1 framing and signaling, each E1 frame supports 32 timeslots or channels. From the available timeslots, the timeslot 17 is used for signaling information and the remaining timeslots are used for voice and data. Hence, this kind of signaling is often referred as CAS.

In the E1 frame, the timeslots are numbered from 1 to 32, where the timeslot 1 is used for frame synchronization and is unavailable for traffic. When the first E1 frame passes through the controller, the first four bits of signaling channel (timeslot 17) are associated with the timeslot 2 and the second four bits are associated with the timeslot 18. In the second E1 frame, the first four bits carry signaling information for the timeslot 3 and the second four bits for the timeslot 19.

Configuring CAS

To configure CAS on the controller interface, perform the following steps:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>controller e1 slot/subslot/port</code></td>
<td>Enters controller configuration mode to configure the E1 interface.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# controller E1 0/4/2</code></td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The CAS is supported only in the E1 mode. Use the <code>card type e1 slot/subslot</code> command to configure controller in the E1 mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>cas</code></td>
<td>Configures CAS on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-controller)# cas</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Step 4

- `clock source internal`

 Example:

  ```
  Router(config-controller)# clock source internal
  ```

 Sets the clocking for individual E1 links.

Step 5

- `cem-group group-number timeslots time-slot-range`

 Example:

  ```
  Router(config-controller)# cem-group 0 timeslots 1-31
  ```

 Creates a Circuit Emulation Services over Packet Switched Network circuit emulation (CESoPSN) CEM group.

 - `cem-group`—Creates a circuit emulation (CEM) channel from one or more time slots of an E1 line.
 - `group-number`—CEM identifier to be used for this group of time slots. For E1 ports, the range is from 0 to 30.
 - `timeslots`—Identifies a list of time slots to be included in the CEM channel. The list of time slots may include commas and hyphens with no spaces between the numbers.
 - `time-slot-range`— Specifies that a list of timeslots is to be used as specified by the `time-slot-range` argument.

Step 6

- `end`

 Example:

  ```
  Router(config-controller)# end
  ```

 Exits the controller session and returns to the configuration mode.

What to do next

You can configure CEM interface and parameters such as xconnect.

Verifying CAS Configuration

Use the `show cem circuit cem-group-id` command to display CEM statistics for the configured CEM circuits. If xconnect is configured under the circuit, the command output also includes information about the attached circuit.

Following is a sample output of the `show cem circuit` command to display the detailed information about CEM circuits configured on the router:

```
Router# show cem circuit 0
CEM0/3/0, ID: 0, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, T1/E1 state: up
```
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 8 (In use: 0)
Payload Size: 32
Framing: Framed (DS0 channels: 1)
CEM Defects Set
None

Signalling: No CAS
RTP: No RTP

Ingress Pkts: 5001 Dropped: 0
Egress Pkts: 5001 Dropped: 0

CEM Counter Details
- Input Errors: 0
- Pkts Missing: 0
- Misorder Drops: 0
- Error Sec: 0
- Unavailable Sec: 0
- Pkts Malformed: 0

Output Errors: 0
Pkt Reordered: 0
JitterBuf Underrun: 0
Severly Errored Sec: 0
Failure Counts: 0
JitterBuf Overrun: 0

Note

The `show cem circuit` command displays No CAS for the Signaling field. The No CAS is displayed since CAS is not enabled at the CEM interface level. The CAS is enabled for the entire port and you cannot enable or disable CAS at the CEM level. To view the CAS configuration, use the `show running-config` command.

Configuration Examples for CAS

The following example shows how to configure CAS on a CEM interface on the router:

Router# configure terminal
Router(config)# controller E1 0/4/2
Router(config-controller)# cas
Router(config-controller)# clock source internal
Router(config-controller)# cem-group 0 timeslots 1
Router(config-controller)# exit

Configuring ATM

The following sections describe how to configure ATM features on the T1/E1 interface module:

Configuring a Clear-Channel ATM Interface

To configure the T1 interface module for clear-channel ATM, follow these steps:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
</tbody>
</table>

Step 2

configure terminal

Example:

```
Router# configure terminal
```

Enters global configuration mode.

Step 3

controller {t1} slot/subslot/port

Example:

```
Router(config)# controller t1 0/3/0
```

Selects the T1 controller for the port you are configuring (where slot/subslot identifies the location and /port identifies the port).

Step 4

atm

Example:

```
Router(config-controller)# atm
```

Configures the port (interface) for clear-channel ATM. The router creates an ATM interface whose format is atm/slot/subslot/port.

Note The slot number is always 0.

Step 5

end

Example:

```
Router(config-controller)# end
```

Exits configuration mode.

What to do next

To access the new ATM interface, use the `interface atm slot/subslot/port` command.

This configuration creates an ATM interface that you can use for a clear-channel pseudowire and other features. For more information about configuring pseudowires, see Configuring Pseudowire, on page 147

Configuring ATM IMA

Inverse multiplexing provides the capability to transmit and receive a single high-speed data stream over multiple slower-speed physical links. In Inverse Multiplexing over ATM (IMA), the originating stream of ATM cells is divided so that complete ATM cells are transmitted in round-robin order across the set of ATM links. Follow these steps to configure ATM IMA on the Cisco ASR 903 Series Router.

Note

ATM IMA is used as an element in configuring ATM over MPLS pseudowires. For more information about configuring pseudowires, see Configuring Pseudowire, on page 147

Note

The maximum ATM over MPLS pseudowires supported per T1/E1 interface module is 500.
To configure the ATM interface on the router, you must install the ATM feature license using the `license install atm` command. To activate or enable the configuration on the IMA interface after the ATM license is installed, use the `license feature atm` command.

For more information about installing licenses, see the Software Activation Configuration Guide, Cisco IOS XE Release 3S.

Note

You can create a maximum of 16 IMA groups on each T1/E1 interface module.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td><code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>`card type {t1</td>
<td>e1} slot [bay]`</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# card type e1 0 0</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>`controller {t1</td>
<td>e1} slot/subslot/port`</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# controller e1 0/0/4</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>clock source internal</code></td>
<td>Sets the clock source to internal.</td>
</tr>
<tr>
<td></td>
<td><code>Example:</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-controller)# clock source internal</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>ima group group-number</code></td>
<td>Assigns the interface to an IMA group, and sets the scrambling-payload parameter to randomize the ATM cell payload frames. This</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 7</th>
<th>exit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-controller)# exit</td>
</tr>
</tbody>
</table>

Purpose

- Exits the controller interface.

<table>
<thead>
<tr>
<th>Step 8</th>
<th>interface ATM slot/subslot/IMA group-number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# interface atm0/1/ima0</td>
</tr>
</tbody>
</table>

Purpose

- Specify the slot location and port of IMA interface group.
 - slot—The location of the ATM IMA interface module.
 - group-number—The IMA group.

Note

- To explicitly configure the IMA group ID for the IMA interface, use the optional `ima group-id` command. You cannot configure the same IMA group ID on two different IMA interfaces; therefore, if you configure an IMA group ID with the system-selected default ID already configured on an IMA interface, the system toggles the IMA interface to make the user-configured IMA group ID the effective IMA group ID. The system toggles the original IMA interface to select a different IMA group ID.

<table>
<thead>
<tr>
<th>Step 9</th>
<th>no ip address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-if)# no ip address</td>
</tr>
</tbody>
</table>

Purpose

- Disables the IP address configuration for the physical layer interface.

<table>
<thead>
<tr>
<th>Step 10</th>
<th>atm bandwidth dynamic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

Purpose

- Specifies the ATM bandwidth as dynamic.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# atm bandwidth dynamic</code></td>
<td>Enables the Interim Local Management Interface (ILMI) keepalive parameters. ILMI is not supported on the router starting with Cisco IOS XE Release 3.15S.</td>
</tr>
</tbody>
</table>

Step 11

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>no atm ilmi-keepalive</code></td>
<td>Exits configuration mode.</td>
</tr>
</tbody>
</table>

Step 12

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit</code></td>
<td>Exits configuration mode.</td>
</tr>
</tbody>
</table>

What to do next
The above configuration has one IMA shorthaul with two member links (atm0/0 and atm0/1).

BGP PIC with TDM Configuration

To configure the TDM pseudowires on the router, see Configuring CEM, on page 153.

To configure BGP PIC on the router, see IP Routing: BGP Configuration Guide, Cisco IOS XE Release 3S (Cisco ASR 900 Series).

See the configuration example, Example: BGP PIC with TDM Configuration, on page 186.

Configuring Structure-Agnostic TDM over Packet (SAToP)

Follow these steps to configure SAToP on the Cisco ASR 903 Series Router:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Router> enable</code></td>
<td>Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`controller [t1</td>
<td>e1] slot/sublot`</td>
</tr>
<tr>
<td><code>Example:</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose
Command or Action | Purpose
--- | ---
Router(config-controller)# controller t1 0/4 |
Step 4
cem-group group-number {unframed | timeslots timeslot}
Example:
Router(config-if)# cem-group 4 unframed | Assigns channels on the T1 or E1 circuit to the CEM channel. This example uses the unframed parameter to assign all the T1 timeslots to the CEM channel.

Step 5
interface cem slot/subslot
Example:
Router(config)# interface CEM 0/4
Example:
Router(config-if)# no ip address
Example:
Router(config-if)# cem 4 | Defines a CEM group.

Step 6
xconnect ip_address encapsulation mpls
Example:
Router(config-if)# xconnect 10.10.2.204 encapsulation mpls | Binds an attachment circuit to the CEM interface to create a pseudowire. This example creates a pseudowire by binding the CEM circuit 304 to the remote peer 10.10.2.204.

Step 7
exit
Example:
Router(config)# exit | Exits configuration mode.

Note
When creating IP routes for a pseudowire configuration, we recommend that you build a route from the cross-connect address (LDP router-id or loopback address) to the next hop IP address, such as ip route 10.10.10.2 255.255.255.254 10.2.3.4.
Configuring Circuit Emulation Service over Packet-Switched Network (CESoPSN)

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.
 Example: Enter your password if prompted.
  ```
  Router> enable
  ``` |
| **Step 2** | configure terminal | Enters global configuration mode.
 Example:
  ```
  Router# configure terminal
  ``` |
| **Step 3** | controller [e1 | t1] slot/subslot | Enters configuration mode for the E1 or T1 controller.
 Example:
  ```
  Router(config)# controller e1 0/0
  ``` |
| **Step 4** | cem-group group-number timeslots timeslots | Assigns channels on the T1 or E1 circuit to the circuit emulation (CEM) channel. This example uses the `timeslots` parameter to assign specific timeslots to the CEM channel.
 Example:
  ```
  Router(config-controller)# cem-group 5 timeslots 1-24
  ``` |
| **Step 5** | exit | Exits controller configuration.
 Example:
  ```
  Router(config-controller)# exit
  ``` |
| **Step 6** | interface cem slot/subslot | Defines a CEM channel.
 Example:
  ```
  Router(config)# interface CEM0/5
  ```  
  ```
  Router(config-if-cem)# cem 5
  ``` |
Command or Action | Purpose
--- | ---
Step 7 | Binds an attachment circuit to the CEM interface to create a pseudowire. This example creates a pseudowire by binding the CEM circuit 304 to the remote peer 10.10.2.204.

table

Example:

```
Router(config-if)# xconnect 10.10.2.204
```

Step 8 | Exits the CEM interface.

Example:

```
Router(config-if-cem)# exit
```

Step 9 | Exits configuration mode.

Example:

```
Router(config)# exit
```

Configuring a Clear-Channel ATM Pseudowire

To configure the T1 interface module for clear-channel ATM, follow these steps:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `controller {t1} slot/subslot/port` | Selects the T1 controller for the port you are configuring.
Example:

```
Router(config)# controller t1 0/4
```

Note
The slot number is always 0.

| **Step 2** | `atm` | Configures the port (interface) for clear-channel ATM. The router creates an ATM interface whose format is `atm/slot/subslot/port`.
Example:

```
Router(config-controller)# atm
```

Note
The slot number is always 0.

| **Step 3** | `exit` | Returns you to global configuration mode.
Example:

```
Router(config-controller)# exit
```

| **Step 4** | `interface atm slot/subslot/port` | Selects the ATM interface in Step 2.
Example:

```
Router(config)# interface atm 0/3/0
```
Configuring an ATM over MPLS Pseudowire

ATM over MPLS pseudowires allow you to encapsulate and transport ATM traffic across an MPLS network. This service allows you to deliver ATM services over an existing MPLS network.

The following sections describe how to configure transportation of service using ATM over MPLS:

- Configuring the Controller, on page 169
- Configuring an IMA Interface, on page 170
- Configuring the ATM over MPLS Pseudowire Interface, on page 172

Configuring the Controller

<table>
<thead>
<tr>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command or Action</td>
</tr>
<tr>
<td>Step 1</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2</td>
</tr>
<tr>
<td>Example:</td>
</tr>
<tr>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
</tr>
<tr>
<td>Example:</td>
</tr>
</tbody>
</table>
Configuring an IMA Interface

If you want to use ATM IMA backhaul, follow these steps to configure the IMA interface.

Note

You can create a maximum of 16 IMA groups on each T1/E1 interface module.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Enables privileged EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface ATM slot / IMA group-number</td>
<td>Specifies the slot location and port of IMA interface group. The syntax is as follows:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-controller)# interface atm0/ima0</td>
<td>• slot—The slot location of the interface module.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• group-number—The group number of the IMA group.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)#</td>
<td></td>
</tr>
</tbody>
</table>

Note To explicitly configure the IMA group ID for the IMA interface, you may use the optional `ima group-id` command. You cannot configure the same IMA group ID on two different IMA interfaces; therefore, if you configure an IMA group ID with the system-selected default ID already configured on an IMA interface, the system toggles the IMA interface to make the user-configured IMA group ID the effective IMA group ID. At the same, the system toggles the original IMA interface to select a different IMA group ID.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no ip address</td>
<td>Disables the IP address configuration for the physical layer interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip address</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>atm bandwidth dynamic</td>
<td>Specifies the ATM bandwidth as dynamic.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# atm bandwidth dynamic</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no atm ilmi-keepalive</td>
<td>Disables the ILMI keepalive parameters.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no atm ilmi-keepalive</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>exit</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring the ATM over MPLS Pseudowire Interface

You can configure ATM over MPLS in several modes according to the needs of your network. Use the appropriate section according to the needs of your network. You can configure the following ATM over MPLS pseudowire types:

- **Configuring 1-to-1 VCC Cell Transport Pseudowire, on page 172**—Maps a single VCC to a single pseudowire
- **Configuring N-to-1 VCC Cell Transport Pseudowire, on page 173**—Maps multiple VCCs to a single pseudowire
- **Configuring 1-to-1 VPC Cell Transport, on page 173**—Maps a single VPC to a single pseudowire
- **Configuring ATM AAL5 SDU VCC Transport, on page 175**—Maps a single ATM PVC to another ATM PVC
- **Configuring a Port Mode Pseudowire, on page 176**—Maps one physical port to a single pseudowire connection
- **Optional Configurations, on page 177**

Configuring 1-to-1 VCC Cell Transport Pseudowire

A 1-to-1 VCC cell transport pseudowire maps one ATM virtual channel connection (VCC) to a single pseudowire. Complete these steps to configure a 1-to-1 pseudowire.

Note

When creating IP routes for a pseudowire configuration, build a route from the xconnect address (LDP router-id or loopback address) to the next hop IP address, such as `ip route 10.10.10.2 255.255.255.255 10.2.3.4`.

Mapping a Single PVC to a Pseudowire

To map a single PVC to an ATM over MPLS pseudowire, use the `xconnect` command at the PVC level. This configuration type uses AAL0 and AAL5 encapsulations. Complete these steps to map a single PVC to an ATM over MPLS pseudowire.

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# exit</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures the ATM IMA interface.</td>
</tr>
<tr>
<td>interface ATM slot / IMA group-number</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-controller)# interface atm0/ima0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Defines a PVC. Use the l2transport keyword to configure the PVC as a layer 2 virtual circuit.</td>
</tr>
<tr>
<td>pvc slot/subslot l2transport</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm)# pvc 0/40 l2transport</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Defines the encapsulation type for the PVC. The default encapsulation type for the PVC is AAL5.</td>
</tr>
<tr>
<td>encapsulation aal0</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# encapsulation aal0</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Binds an attachment circuit to the ATM IMA interface to create a pseudowire. This example creates a pseudowire by binding PVC 40 to the remote peer 1.1.1.1.</td>
</tr>
<tr>
<td>xconnect router_ip_address veid encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvc)# xconnect 1.1.1.1 40 encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>end</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-atm-l2trans-pvp-xconn)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring N-to-1 VCC Cell Transport Pseudowire

An N-to-1 VCC cell transport pseudowire maps one or more ATM virtual channel connections (VCCs) to a single pseudowire. Complete these steps to configure an N-to-1 pseudowire.

Configuring 1-to-1 VPC Cell Transport

A 1-to-1 VPC cell transport pseudowire maps one or more virtual path connections (VPCs) to a single pseudowire. While the configuration is similar to 1-to-1 VPC cell mode, this transport method uses the 1-to-1
VPC pseudowire protocol and format defined in RFCs 4717 and 4446. Complete these steps to configure a 1-to-1 VPC pseudowire.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface ATM slot / IMA group-number</td>
<td>Configures the ATM IMA interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-controller)# interface atm0/ima0</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>atm pvp vpi l2transport</td>
<td>Maps a PVP to a pseudowire.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm)# atm pvp 10 l2transport</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if-atm-l2trans-pvp)#</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>xconnect peer-router-id vcid</td>
<td>Binds an attachment circuit to the ATM IMA interface to create a pseudowire. This example creates a pseudowire by binding the ATM circuit 305 to the remote peer 30.30.30.2.</td>
</tr>
<tr>
<td>encapsulation mpls</td>
<td>Router(config-if-atm-l2trans-pvp)# xconnect 10.10.10.2 305 encapsulation mpls</td>
<td></td>
</tr>
</tbody>
</table>

Multiple 1-to-1 VCC pseudowire mapping on an interface is supported.
Configuring ATM AAL5 SDU VCC Transport

An ATM AAL5 SDU VCC transport pseudowire maps a single ATM PVC to another ATM PVC. Follow these steps to configure an ATM AAL5 SDU VCC transport pseudowire.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
- Enter your password if prompted. |
<p>| Example: Router> enable |
| Step 2 configure terminal | Enters global configuration mode. |
| Example: Router# configure terminal |
| Step 3 interface ATM slot / IMA group-number | Configures the ATM IMA interface. |
| Example: Router(config-controller)# interface atm0/ima0 |
| Example: Router(config-if)# |
| Step 4 atm pvp vpi l2transport | Configures a PVC and specifies a VCI or VPI. |
| Example: |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config-if)# **pvc 0/12** l2transport **Example:**
 Router(config-if-atm-l2trans-pvc)# | | |
| **Step 5** encapsulation aal5 **Example:**
 Router(config-if-atm-l2trans-pvc)# encapsulation aal5 | Sets the PVC encapsulation type to AAL5. **Note** You must use the AAL5 encapsulation for this transport type. |
| **Step 6** xconnect peer-router-id vcid encapsulation mpls **Example:**
 Router(config-if-atm-l2trans-pvc)# xconnect 10.10.10.2 125 encapsulation mpls | Binds an attachment circuit to the ATM IMA interface to create a pseudowire. This example creates a pseudowire by binding the ATM circuit 125 to the remote peer 25.25.25.25. |
| **Step 7** exit **Example:**
 Router(config)# exit | Exits configuration mode. |

Configuring a Port Mode Pseudowire

A port mode pseudowire allows you to map an entire ATM interface to a single pseudowire connection.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable **Example:**
 Router> enable | Enables privileged EXEC mode.
 * Enter your password if prompted. |
| **Step 2** configure terminal **Example:**
 Router# configure terminal | Enters global configuration mode. |
| **Step 3** interface ATM **slot / IMA group-number** **Example:** | Configures the ATM interface. |
Configuring Pseudowire

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-controller)# interface atm0/ima0</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Router(config-if)#</code></td>
<td>Example:</td>
</tr>
<tr>
<td><code>Router(config-if)#</code></td>
<td>Example:</td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>xconnect peer-router-id vcid encapsulation mpls</code></td>
<td>Binds an attachment circuit to the ATM IMA interface to create a pseudowire. This example creates a pseudowire by binding the ATM circuit 125 to the remote peer 10.10.10.2.</td>
</tr>
<tr>
<td><code>Router(config-if-atm-l2trans-pvc)# xconnect 10.10.10.2 125 encapsulation mpls</code></td>
<td>Example:</td>
</tr>
</tbody>
</table>

Step 5

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit</code></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td><code>Router(config)# exit</code></td>
<td>Example:</td>
</tr>
</tbody>
</table>

Optional Configurations

You can apply the following optional configurations to a pseudowire link.

Configuring Cell Packing

Cell packing allows you to improve the efficiency of ATM-to-MPLS conversion by packing multiple ATM cells into a single MPLS packet. Follow these steps to configure cell packing.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| `enable` | Enables privileged EXEC mode. |
| `Router> enable` | • Enter your password if prompted. |
| **Step 2**
<p>| <code>configure terminal</code> | Enters global configuration mode. |
| <code>Router# configure terminal</code> | Example: |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><code>interface ATM slot / IMA group-number</code></td>
<td>Configures the ATM interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| | ```
| | Router(config-controller)# interface atm0/ima0
| | ``` | |
| | Example: | |
| | ```
| | Router(config-if)#
| | ``` | |
| 4 | `atm mcpt-timers timer1 timer2 timer3` | Defines the three Maximum Cell Packing Timeout (MCPT) timers under an ATM interface. The three independent MCPT timers specify a wait time before forwarding a packet. |
| | Example: | |
| | ```
| | Router(config-if)# atm mcpt-timers 1000 2000 3000
| | ``` | |
| 5 | `atm pvp vpi l2transport` | Configures a PVC and specifies a VCI or VPI. |
| | Example: | |
| | ```
| | Router(config-if)# pvc 0/12
| | l2transport
| | ``` | |
| | Example: | |
| | ```
| | Router(config-if-atm-l2trans-pvc)#
| | ``` | |
| 6 | `encapsulation aal5` | Sets the PVC encapsulation type to AAL5. |
| | Example: | |
| | ```
| | Router(config-if-atm-l2trans-pvc)# encapsulation aal5
| | ``` | |
| | Note You must use the AAL5 encapsulation for this transport type. |
| 7 | `cell-packing maxcells mcpt-timer timer-number` | Specifies the maximum number of cells in PW cell pack and the cell packing timer. This example specifies 20 cells per pack and the third MCPT timer. |
| | Example: | |
| | ```
| | Router(config-if-atm-l2trans-pvc)# cell-packing 20 mcpt-timer 3
| | ``` | |
| 8 | `end` | Exits the configuration mode. |
| | Example: | |
| | ```
| | Router(config-if-atm-l2trans-pvc)# end
| | ``` | |
Configuring an Ethernet over MPLS Pseudowire

Ethernet over MPLS PWs allow you to transport Ethernet traffic over an existing MPLS network. The router supports EoMPLS pseudowires on EVC interfaces.

For more information about Ethernet over MPLS Pseudowires, see Transportation of Service Using Ethernet over MPLS, on page 152.

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
enable
Example:
Router> enable</td>
<td>Enables privileged EXEC mode.
• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2
configure terminal
Example:
Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3
interface interface-id
Example:
Router(config)# interface gigabitethernet 0/0/4</td>
<td>Specifies the port on which to create the pseudowire and enters interface configuration mode. Valid interfaces are physical Ethernet ports.</td>
</tr>
<tr>
<td>Step 4
service instance number ethernet [name]
Example:
Router(config-if)# service instance 2 ethernet</td>
<td>Configure an EFP (service instance) and enter service instance configuration mode.
• The number is the EFP identifier, an integer from 1 to 4000.
• (Optional) ethernet name is the name of a previously configured EVC. You do not need to use an EVC name in a service instance.</td>
</tr>
<tr>
<td>Note You can use service instance settings such as encapsulation, dot1q, and rewrite to configure tagging properties for a specific traffic flow within a given pseudowire session. For more information, see http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/cether/configuration/xe-3s/asr903-ce-xe-3s-asr903-book/ce-evc.html</td>
<td></td>
</tr>
<tr>
<td>Step 5
encapsulation {default</td>
<td>dot1q</td>
</tr>
</tbody>
</table>
Command or Action

Example:

```
Router(config-if-srv)# encapsulation dot1q 2
```

Purpose

- **default** — Configure to match all unmatched packets.
- **dot1q** — Configure 802.1Q encapsulation.
- **priority-tagged** — Specify priority-tagged frames, VLAN-ID 0 and CoS value of 0 to 7.
- **untagged** — Map to untagged VLANs. Only one EFP per port can have untagged encapsulation.

Step 6

**xconnect peer-ip-address vc-id {encapsulation {l2tpv3 [manual] | mpls [manual] | pw-class pw-class-name } [pw-class pw-class-name] [sequencing {transmit | receive | both}]

Example:

```
Router(config-if-srv)# xconnect peer-ip-address vc-id encapsulation mpls
```

Binds the Ethernet port interface to an attachment circuit to create a pseudowire. This example uses virtual circuit (VC) 101 to uniquely identify the PW. Ensure that the remote VLAN is configured with the same VC.

Note When creating IP routes for a pseudowire configuration, we recommend that you build a route from the xconnect address (LDP router-id or loopback address) to the next hop IP address, such as `ip route 10.10.10.2 255.255.255.255 10.2.3.4`.

Step 7

exit

Example:

```
Router(config-if-srv)# exit
```

Exits configuration mode.

Configuring Pseudowire Redundancy

A backup peer provides a redundant pseudowire (PW) connection in the case that the primary PW loses connection; if the primary PW goes down, the Cisco ASR 903 Series Router diverts traffic to the backup PW. This feature provides the ability to recover from a failure of either the remote PE router or the link between the PE router and CE router.

Figure 4: Pseudowire Redundancy, on page 181 shows an example of pseudowire redundancy.
You must configure the backup pseudowire to connect to a router that is different from the primary pseudowire.

Follow these steps to configure a backup peer:

Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
</tbody>
</table>
| **Example:**

 Router> enable |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:**

 Router# configure terminal |
| **Step 3** pseudowire-class [pw-class-name] | Specify the name of a Layer 2 pseudowire class and enter pseudowire class configuration mode. |
| **Example:**

 Router(config)# pseudowire-class mpls |
| **Step 4** encapsulation mpls | Specifies MPLS encapsulation. |
| **Example:**

 Router(config-pw-class)# encapsulation mpls |
| **Step 5** interface serial slot/subslot/port | Enters configuration mode for the serial interface. |
| **Example:**

 Router(config)# interface serial0/0 |
| **Step 6** backup delay enable-delay {disable-delay | never} | Configures the backup delay parameters. |
| **Example:**

 Where:
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config)# backup delay 0 10 | • enable-delay—Time before the backup PW takes over for the primary PW.
 • disable-delay—Time before the restored primary PW takes over for the backup PW.
 • never—Disables switching from the backup PW to the primary PW. |

Step 7

\textbf{xconnect} router-id encapsulation mpls

Example:

Router(config-if)# xconnect 10.10.10.2 101 encapsulation mpls

Binds the Ethernet port interface to an attachment circuit to create a pseudowire.

Step 8

\textbf{backup peer peer-router-ip-address vcid [pw-class pw-class name]}

Example:

Router(config)# backup peer 10.10.10.1 104 pw-class pw1

Defines the address and VC of the backup peer.

Step 9

\textbf{exit}

Example:

Router(config)# exit

Exits configuration mode.

Pseudowire Redundancy with Uni-directional Active-Active

Pseudowire redundancy with uni-directional active-active feature configuration allows, pseudowires (PW) on both the working and protect circuits to remain in UP state to allow traffic to flow from the upstream. The \texttt{aps l2vpn-state detach} command and \texttt{redundancy all-active replicate} command is introduced to configure uni-directional active-active pseudowire redundancy.

In pseudowire redundancy Active-Standby mode, the designation of the active and standby pseudowires is decided either by the endpoint PE routers or by the remote PE routers when configured with MR-APS. The active and standby routers communicate via Protect Group Protocol (PGP) and synchronize their states. The PEs are connected to a Base Station Controller (BSC). APS state of the router is communicated to the Layer2 VPN, and is thereby coupled with the pseudowire status.
BSC monitors the status of the incoming signal from the working and protect routers. In the event of a switchover at the BSC, the BSC fails to inform the PE routers, hence causing traffic drops.

With pseudowire redundancy Active-Active configuration, the traffic from the upstream is replicated and transmitted over both the primary and backup pseudowires. The PE routers forwards the received traffic to the working and protect circuits. The BSC receives the same traffic on both the circuits and selects the better Rx link, ensuring the traffic is not dropped.

If the ASR 900 router is configured with the `aps l2vpn-state detach` command but, the ASR 901 router is not enabled with `redundancy all-active replicate` command, the protect PW is active after APS switchover. On the ASR 901 router, the PW state is UP and the data path status displays standby towards protect node.

On an APS switchover on the ASR 900 router, the status is not communicated to ASR 901 router, and the VC data path state towards the protect node remains in the standby state.

Restrictions

The following restrictions apply on the router:

- If the `aps l2vpn-state detach` command is enabled on the ASR 900 router, but the `redundancy all-active replicate` command not enabled on the ASR 901 router, the pseudowire status on the router displays UP, and the data path status for the protect node state displays Standby.
• After APS switchover on the ASR 900 router, the status is *not* communicated to ASR 901 router, and the virtual circuit data path state towards the protect node remains in the Standby state.

• The `aps l2vpn-state detach` command takes effect after a controller `shutdown` command, followed by a `no shutown` command is performed. Alternately, the command can be configured when the controller is in shut state.

• The `status peer topology dual-homed` command in pseudowire-class configuration mode should *not* be configured on the ASR 900 router, irrespective of unidirectional or bidirectional mode. The command *must* be configured on the ASR 901 router.

• Traffic outages from the BSC to the BTS on PGP and ICRM failures at the working Active node, is same as the configured hold time.

Note

APS switchover may be observed on the protect node, when PGP failure occurs on the working Active node.

• Convergence may be observed on performing a power cycle on the Active (whether on the protect or working) node. The observed convergence is same as the configured hold time.

Configuring Pseudowire Redundancy Active-Active—Protocol Based

```plaintext
encapsulation mpls
status peer topology dual-homed

controller E1 0/1
framing unframed
cem-group 8 unframed
```

Configuring the Working Controller for MR-APS with Pseudowire Redundancy Active-Active

The following configuration shows pseudowire redundancy active-active for MR-APS working controller:

```plaintext
controller sonet 0/1/0
aps group 2
aps adm
aps working 1
aps timers 1 3
aps l2vpn-state detach
aps hspw-icrm-grp 1
```
Configuring the Protect Controller for MR-APS with Pseudowire Redundancy Active-Active

Following example shows pseudowire redundancy active-active on MR-APS protect controller:

```plaintext
controller sonet 0/1/0
aps group 2
aps adm
aps unidirectional
aps protect 10 10.10.10.1
aps timers 1 3
aps l2vpn-state detach
aps hspw-icrm-grp 1
```

Verifying the Interface Configuration

You can use the following commands to verify your pseudowire configuration:

- **show cem circuit**—Displays information about the circuit state, administrative state, the CEM ID of the circuit, and the interface on which it is configured. If `xconnect` is configured under the circuit, the command output also includes information about the attached circuit.

```
Router# show cem circuit

CEM Int. ID Line Admin Circuit AC
--------------------------------------------------------------
CEM0/1/0 1 UP UP ACTIVE --/--
CEM0/1/0 2 UP UP ACTIVE --/--
CEM0/1/0 3 UP UP ACTIVE --/--
CEM0/1/0 4 UP UP ACTIVE --/--
CEM0/1/0 5 UP UP ACTIVE --/--
```

- **show cem circuit**—Displays the detailed information about that particular circuit.

```
Router# show cem circuit 1

CEM0/1/0, ID: 1, Line State: UP, Admin State: UP, Ckt State: ACTIVE
Idle Pattern: 0xFF, Idle cas: 0x8, Dummy Pattern: 0xFF
Dejitter: 5, Payload Size: 40
Framing: Framed, (DS0 channels: 1-5)
Channel speed: 56
CEM Defects Set
Excessive Pkt Loss Rate Packet Loss
Signalling: No CAS
Ingress Pkts: 25929 Dropped: 0
Egress Pkts: 0 Dropped: 0
CEM Counter Details
```
Configuration Examples

The following sections contain sample pseudowire configurations.

Example: CEM Configuration

The following example shows how to add a T1 interface to a CEM group as a part of a SAToP pseudowire configuration. For more information about how to configure pseudowires, see Configuring Pseudowire, on page 147

Note

This section displays a partial configuration intended to demonstrate a specific feature.

```
controller T1 0/0/0
  framing unframed
  clock source internal
  linecode b8zs
  cablelength short 110
  cem-group 0 unframed
  interface CEM0/0/0
  no ip address
  cem 0
  xconnect 18.1.1.1 1000 encapsulation mpls
```

Example: BGP PIC with TDM Configuration

CEM Configuration

```
pseudowire-class pseudowire1
  encapsulation mpls
  control-word
  no status control-plane route-watch
```

description connected to CE2 SONET 4/0/0
framing sdh
clock source line
aug mapping au-4
!
au-4 1 tug-3 1
 mode c-12
 tug-2 1 e1 1 cem-group 1101 unframed
 tug-2 1 e1 1 framing unframed
 tug-2 1 e1 2 cem-group 1201 timeslots 1-10
!
au-4 1 tug-3 2
 mode c-12
 tug-2 5 e1 1 cem-group 1119 unframed
 tug-2 5 e1 1 framing unframed
 tug-2 5 e1 2 cem-group 1244 timeslots 11-20
!
au-4 1 tug-3 3
 mode c-12
 tug-2 5 e1 3 cem-group 1130 unframed
 tug-2 5 e1 3 framing unframed
 tug-2 7 e1 3 cem-group 1290 timeslots 21-30
!
interface CEM0/2/3
no ip address
cem 1101
 xconnect 17.1.1.1 1101 encapsulation mpls pw-class pseudowire1
!
cem 1201
 xconnect 17.1.1.1 1201 encapsulation mpls pw-class pseudowire1
!
cem 1119
 xconnect 17.1.1.1 1119 encapsulation mpls pw-class pseudowire1
!
cem 1244
 xconnect 17.1.1.1 1244 encapsulation mpls pw-class pseudowire1
!
cem 1130
 xconnect 17.1.1.1 1130 encapsulation mpls pw-class pseudowire1
!
cem 1290
 xconnect 17.1.1.1 1290 encapsulation mpls pw-class pseudowire1

BGP PIC Configuration

cef table output-chain build favor convergence-speed
!
router bgp 1
bgp log-neighbor-changes
bgp graceful-restart
neighbor 18.2.2.2 remote-as 1
neighbor 18.2.2.2 update-source Loopback0
neighbor 18.3.3.3 remote-as 1
neighbor 18.3.3.3 update-source Loopback0
!
address-family ipv4
 bgp additional-paths receive
 bgp additional-paths install
 bgp nexthop trigger delay 0
 network 17.5.5.5 mask 255.255.255.255
 neighbor 18.2.2.2 activate
 neighbor 18.2.2.2 send-community both
 neighbor 18.2.2.2 send-label
Example: BGP PIC with TDM-PW Configuration

This section lists the configuration examples for BGP PIC with TDM and TDM–Pseudowire.

The below configuration example is for BGP PIC with TDM:

```
neighbor 18.3.3.3 activate
neighbor 18.3.3.3 send-community both
neighbor 18.3.3.3 send-label
exit-address-family
```

Example: ATM IMA Configuration

The following example shows how to add a T1/E1 interface to an ATM IMA group as a part of an ATM over MPLS pseudowire configuration. For more information about how to configure pseudowires, see Configuring Pseudowire, on page 147

```
pseudowire-class pseudowire1
encapsulation mpls
control-word
no status control-plane route-watch
status peer topology dual-homed
!
Interface CEM0/0/0
cem 1
    xconnect 17.1.1.1 4101 encapsulation mpls pw-class pseudowire1
```
This section displays a partial configuration intended to demonstrate a specific feature.

controller t1 4/0/0
ima-group 0
clock source line
interface atm4/0/ima0
pvc 1/33 l2transport
encapsulation aal0
xconnect 1.1.1.1 33 encapsulation mpls

Example: ATM over MPLS

The following sections contain sample ATM over MPLS configurations:

Cell Packing Configuration Examples

The following sections contain sample ATM over MPLS configuration using Cell Relay:

VC Mode

CE 1 Configuration

interface Gig4/3/0
no negotiation auto
load-interval 30
interface Gig4/3/0
ip address 20.1.1.1 255.255.255.0
interface ATM4/2/4
no shut
exit
!
interface ATM4/2/4.10 point
ip address 50.1.1.1 255.255.255.0
pvc 20/101
encapsulation aal5snap
!
ip route 30.1.1.2 255.255.255.255 50.1.1.1

CE 2 Configuration

interface Gig8/8
no negotiation auto
load-interval 30
interface Gig8/8
ip address 30.1.1.1 255.255.255.0
interface ATM6/2/1
no shut
!
interface ATM6/2/1.10 point
ip address 50.1.1.2 255.255.255.0
pvc 20/101
encapsulation aal5snap
!
ip route 20.1.1.2 255.255.255.255 50.1.1.2
PE 1 Configuration

interface Loopback0
ip address 192.168.37.3 255.255.255.255
!
interface ATM0/0/0
no shut
!
interface ATM0/0/0
atm mcpt-timers 150 1000 4095
interface ATM0/0/0/10 point
pvc 20/101 l2transport
encapsulation aal0
cell-packing 20 mcpt-timer 1
xconnect 192.168.37.2 100 encapsulation mpls
!
interface Gig0/3/0
no shut
ip address 40.1.1.1 255.255.0.0
mpls ip
!
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp graceful-restart
router ospf 1
network 40.1.0.0 0.0.255.255 area 1
network 192.168.37.0 0.0.0.255 area 1
nsf

PE 2 Configuration

interface Loopback0
ip address 192.168.37.2 255.255.255.255
!
interface ATM9/3/1
no shut
!
interface ATM9/3/1
atm mcpt-timers 150 1000 4095
interface ATM9/3/1.10 point
pvc 20/101 l2transport
encapsulation aal0
cell-packing 20 mcpt-timer 1
xconnect 192.168.37.3 100 encapsulation mpls
!
interface Gig6/2
no shut
ip address 40.1.1.2 255.255.0.0
mpls ip
!
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp graceful-restart
router ospf 1
network 40.1.0.0 0.0.255.255 area 1
network 192.168.37.0 0.0.0.255 area 1
nsf
VP Mode

CE 1 Configuration

interface Gig4/3/0
no negotiation auto
load-interval 30
interface Gig4/3/0
ip address 20.1.1.1 255.255.255.0
interface ATM4/2/4
! interface ATM4/2/4.10 point
ip address 50.1.1.1 255.255.255.0
pvc 20/101
encapsulation aal5snap
! ip route 30.1.1.2 255.255.255.255 50.1.1.2

CE 2 Configuration

! interface Gig8/8
no negotiation auto
load-interval 30
interface Gig8/8
ip address 30.1.1.1 255.255.255.0
interface ATM6/2/1
no shut
! interface ATM6/2/1.10 point
ip address 50.1.1.2 255.255.255.0
pvc 20/101
encapsulation aal5snap
! ip route 20.1.1.2 255.255.255.255 50.1.1.1

PE 1 Configuration

interface Loopback0
ip address 192.168.37.3 255.255.255.255
! interface ATM0/0/0
no shut
! interface ATM0/0/0
atm mcpt-timers 150 1000 4095
interface ATM0/0/0.50 multipoint
atm pvp 20 l2transport
cell-packing 10 mcpt-timer 1
xconnect 192.168.37.2 100 encapsulation mpls
! interface Gig0/3/0
no shut
ip address 40.1.1.1 255.255.0.0
mpls ip
! mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp graceful-restart
router ospf 1
network 40.1.0.0 0.0.255.255 area 1
network 192.168.37.0 0.0.0.255 area 1
nsf

PE 2 Configuration

! interface Loopback0
ip address 192.168.37.2 255.255.255.255
! interface ATM9/3/1
no shut
! interface ATM9/3/1
atm mcpt-timers 150 1000 4095
interface ATM9/3/1.50 multipoint
atm pvp 20 l2transport
cell-packing 10 mcpt-timer 1
xconnect 192.168.37.3 100 encapsulation mpls
! interface Gig6/2
no shut
ip address 40.1.1.2 255.255.0.0
mpls ip
! mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp graceful-restart
router ospf 1
network 40.1.0.0 0.0.255.255 area 1
network 192.168.37.0 0.0.0.255 area 1
nsf

Cell Relay Configuration Examples

The following sections contain sample ATM over MPLS configuration using Cell Relay:

VC Mode

CE 1 Configuration

! interface gigabitethernet4/3/0
no negotiation auto
load-interval 30
interface gigabitethernet4/3/0
ip address 20.1.1.1 255.255.255.0
! interface ATM4/2/4
! interface ATM4/2/4.10 point
ip address 50.1.1.1 255.255.255.0
pvc 20/101
encapsulation aal5snap
! ip route 30.1.1.2 255.255.255.255 50.1.1.2
!
CE 2 Configuration

interface gigabitethernet8/8
no negotiation auto
load-interval 30
interface gigabitethernet8/8
ip address 30.1.1.1 255.255.255.0
interface ATM6/2/1
! interface ATM6/2/1.10 point
ip address 50.1.1.2 255.255.255.0
pvc 20/101
encapsulation aal5snap
! ip route 20.1.1.2 255.255.255.255 50.1.1.1

PE 1 Configuration

! interface Loopback0
ip address 192.168.37.3 255.255.255.255
! interface ATM0/0/0
! interface ATM0/0/0.10 point
pvc 20/101 l2transport
encapsulation aal0
xconnect 192.168.37.2 100 encapsulation mpls
! interface gigabitethernet0/3/0
ip address 40.1.1.1 255.255.0.0
mpls ip
!
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp graceful-restart
router ospf 1
network 40.1.0.0 0.0.255.255 area 1
network 192.168.37.0 0.0.0.255 area 1
nsf

PE 2 Configuration

! interface Loopback0
ip address 192.168.37.2 255.255.255.255
! interface ATM9/3/1
! interface ATM9/3/1.10 point
pvc 20/101 l2transport
encapsulation aal0
xconnect 192.168.37.3 100 encapsulation mpls
! interface gigabitethernet6/2
ip address 40.1.1.2 255.255.0.0
mpls ip
!
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp graceful-restart
router ospf 1
network 40.1.0.0 0.0.255.255 area 1
network 192.168.37.0 0.0.0.255 area 1
nsf

CE 1 Configuration

interface gigabitethernet4/3/0
no negotiation auto
load-interval 30
interface gigabitethernet4/3/0
ip address 20.1.1.1 255.255.255.0
!
interface ATM4/2/4
!
interface ATM4/2/4.10 point
ip address 50.1.1.1 255.255.255.0
pvc 20/101
encapsulation aal5snap
!
ip route 30.1.1.2 255.255.255.255 50.1.1.2

CE 2 Configuration

interface gigabitethernet8/8
no negotiation auto
load-interval 30
interface gigabitethernet8/8
ip address 30.1.1.1 255.255.255.0
interface ATM6/2/1
!
interface ATM6/2/1.10 point
ip address 50.1.1.2 255.255.255.0
pvc 20/101
encapsulation aal5snap
!
ip route 20.1.1.2 255.255.255.255 50.1.1.1

PE 1 Configuration

interface Loopback0
ip address 192.168.37.3 255.255.255.255
!
interface ATM0/0/0
interface ATM0/0/0.50 multipoint
atm pvp 20 12transport
xconnect 192.168.37.2 100 encapsulation mpls
!
interface gigabitethernet0/3/0
ip address 40.1.1.1 255.255.0.0
mpls ip
PE 2 Configuration

interface Loopback0
ip address 192.168.37.2 255.255.255.255
!
interface ATM9/3/1
interface ATM9/3/1.50 multipoint
atm pvp 20 12transport
xconnect 192.168.37.3 100 encapsulation mpls
!
interface gigabitethernet6/2
ip address 40.1.1.2 255.255.0.0
mpls ip
!
mpls ip
mpls label protocol ldp
mpls ldp router-id Loopback0 force
mpls ldp graceful-restart
router ospf 1
network 40.1.0.0 0.0.255.255 area 1
network 192.168.37.0 0.0.0.255 area 1
nsf

Example: Ethernet over MPLS

PE 1 Configuration

!
mpls label range 16 12000 static 12001 16000
mpls label protocol ldp
mpls ldp neighbor 10.1.1.1 targeted ldp
mpls ldp graceful-restart
multilink bundle-name authenticated
!
!
redundancy
mode sso
!
!
ip tftp source-interface GigabitEthernet0
!
interface Loopback0
ip address 10.5.5.5 255.255.255.255
!
interface GigabitEthernet0/0/4
no ip address
negotiation auto

! service instance 2 ethernet
 encapsulation dot1q 2
 xconnect 10.1.1.1 1001 encapsulation mpls
!
! service instance 3 ethernet
 encapsulation dot1q 3
 xconnect 10.1.1.1 1002 encapsulation mpls
!
!
interface GigabitEthernet0/0/5
 ip address 172.7.7.77 255.0.0.0
 negotiation auto
 mpls ip
 mpls label protocol ldp
!
router ospf 1
 router-id 5.5.5.5
 network 5.5.5.5 0.0.0.0 area 0
 network 172.0.0.0 0.255.255.255 area 0
 network 10.33.33.33 0.0.0.0 area 0
 network 192.0.0.0 0.255.255.255 area 0
!

PE 2 Configuration
!
 mpls label range 16 12000 static 12001 16000
 mpls label protocol ldp
 mpls ldp neighbor 10.5.5.5 targeted ldp
 mpls ldp gracefull-restart
 multilink bundle-name authenticated
!
 redundancy
 mode sso
 !
 ip tftp source-interface GigabitEthernet0
 !
 interface Loopback0
 ip address 10.1.1.1 255.255.255.255
 !
 interface GigabitEthernet0/0/4
 no ip address
 negotiation auto
 !
 service instance 2 ethernet
 encapsulation dot1q 2
 xconnect 10.5.5.5 1001 encapsulation mpls
 !
 service instance 3 ethernet
 encapsulation dot1q 3
 xconnect 10.5.5.5 1002 encapsulation mpls
 !
 interface GigabitEthernet0/0/5
 ip address 172.7.7.7 255.0.0.0
 negotiation auto
 mpls ip
mpls label protocol ldp
!
router ospf 1
 router-id 10.1.1.1
 network 10.1.1.1 0.0.0.0 area 0
 network 172.0.0.0 0.255.255.255 area 0
 network 10.33.33.33 0.0.0.0 area 0
 network 192.0.0.0 0.255.255.255 area 0
!

Example: Ethernet over MPLS
Example: Ethernet over MPLS
Starting with release Cisco IOS XE Release 3.13, Digital Optical Monitoring (DOM) is supported for the SFP, SFP+, and XFP transceiver modules.

DOM is supported for ASR 900 RSP3 Module.

For information on DOM supported transceivers, see https://supportforums.cisco.com/document/75181/digital-optical-monitoring-dom.

For a list of modules, see Cisco ASR 903 Series Aggregation Services Router Hardware Installation Guide.

Real time DOM data is collected from SFPs, SFP+, and XFPs periodically and compared with warning and alarm threshold table values.

The DOM data collected are transceiver transmit bias current, transceiver transmit power, transceiver receive power, and transceiver power supply voltage.

The syslog messages are displayed when alarm threshold values are crossed.

Note

The transceiver parameters are not monitored when the port is in ADMIN-DOWN.
CHAPTER 13

Configuring the SDM Template

This section details the approximate number of resources supported in each template for a router running the license.

- Prerequisites for the SDM Template, on page 201
- Restrictions for the SDM Template, on page 201
- Information About the SDM Template, on page 203
- Selecting the SDM Template, on page 214
- Verifying the SDM Template, on page 216
- SDM Template Supported Features on RSP3 Module, on page 218

Prerequisites for the SDM Template

Before using an SDM template, you must set the license boot level.

For IPv6 QoS template, the license to use should be metroipaccess. You can view the license level using the show version | in License Level command

Note

If you use advancedmetroipaccess, then your options may vary.

Restrictions for the SDM Template

- Do not configure CoPP and BDI-MTU SDM templates together, as it may result in a resource depletion on the device and can lead to a reload.

- If you do not enable the EFP feature template, then there is no traffic flow between EFP and VFI (when EFP is with Split Horizon group and VFI is default). But when you enable the EFP feature template, then there is traffic flow between EFP and VFI because of design limitations.

- You cannot edit individual values in a template category as all templates are predefined.

- You cannot use a new SDM template without reloading the router.

- SDM templates are supported only by the Metro Aggregation Services license. Use the help option of the sdm prefer command to display the supported SDM templates.
Restrictions for the SDM Template

- A mismatch in an SDM template between an active RSP and standby RSP results in a reload of the standby RSP. During reload, SDM template of the standby RSP synchronizes with the SDM template of the active RSP.

- To revert to the current SDM template after using the `sdmprefer` command (which initiates reload of a new SDM template), you must wait for the reload to complete.

- Using the `configure replace` command which results in changes in the current SDM template is not supported.

- The supported group numbers are for scaling in uni-dimension. When scaling in multidimension, the numbers can vary as certain features may share resources.

- When scaling, features using Multiprotocol Label Switching (MPLS) are limited by the number of MPLS labels.

- Internal TCAM usage that is reserved for IPv6 is 133-135 entries. TCAM space that is allotted for SDM template is 135 entries on the router.

- EAID Exhaust occurs when two paths are MPLS and two are IP. It does not occur if all the four paths are IP.

- The following restrictions apply to the maximum IPv6 QoS ACL SDM template:
 - The number of QoS ACL class maps and policy maps that are supported depends on the maximum TCAM entries available.
 - The software solution with expansion is applicable only for maximum QoS SDM template and more than eight Layer 4-port matches are supported for the maximum QoS SDM template. For other templates, due to hardware restriction, a maximum of eight Layer 4-port operators is supported per interface.
 - Ethernet CFM, Ethernet OAM, and Y.1731 protocols are not supported. Features dependent on these protocols are impacted.
 - Layer 2 monitoring features are not supported.
 - The S-TAG based fields are not supported for classification, if IPv6 address match exists in the policy-map.
 - Only eight Layer 4 operations are supported in templates other than maximum IPv6 QoS ACL template.
Information About the SDM Template

The SDM templates are used to optimize system resources in the router to support specific features, depending on how the router is used in the network. The SDM templates allocate Ternary Content Addressable Memory (TCAM) resources to support different features. You can select the default template to balance system resources or select specific templates to support the required features.

The following table shows the approximate number of each resource supported in each of the templates for a router running the Metro Aggregation Services license on RSP3.

Table 15: Approximate Number of Feature Resources Allowed by Each SDM Template (RSP3)

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Default Template (RPF)</th>
<th>IPv4 Template (No RPF)</th>
<th>IPv6 Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC table</td>
<td>200K</td>
<td>200K</td>
<td>200K</td>
</tr>
<tr>
<td>IPv4/VPNV4 Routes</td>
<td>Without MPLS</td>
<td>Without MPLS</td>
<td>Without MPLS</td>
</tr>
<tr>
<td></td>
<td>32k urpf ipv4 routes</td>
<td>192k ipv4 routes</td>
<td>76k ipv4 routes</td>
</tr>
<tr>
<td></td>
<td>+ 160k ipv4 routes</td>
<td>With MPLS</td>
<td>With MPLS</td>
</tr>
<tr>
<td></td>
<td>With MPLS</td>
<td>192k (ipv4 routes + mpls</td>
<td>76k (ipv4 routes + mpls</td>
</tr>
<tr>
<td></td>
<td>32k urpf ipv4 routes</td>
<td>labels)</td>
<td>labels)</td>
</tr>
<tr>
<td></td>
<td>+ 160k (ipv4 routes + mpls</td>
<td>MPLS Labels = 32000</td>
<td>MPLS Labels = 32000</td>
</tr>
<tr>
<td></td>
<td>labels)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6/VPNV6 Routes</td>
<td>8192</td>
<td>8192</td>
<td>65536</td>
</tr>
<tr>
<td>IPv4 mcast routes</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>(mroutes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPv6 mcast routes</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(mroutes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Domains</td>
<td>4094</td>
<td>4094</td>
<td>4094</td>
</tr>
<tr>
<td>Functionality</td>
<td>Default Template (RPF)</td>
<td>IPv4 Template (No RPF)</td>
<td>IPv6 Template</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>EoMPLS Tunnels</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>MPLS VPN</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>VRF Lite</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>VPLS Instances</td>
<td>3500</td>
<td>3500</td>
<td>3500</td>
</tr>
<tr>
<td>IPv4 ACL entries</td>
<td>1000 (984 user configurable)</td>
<td>1000 (984 user configurable)</td>
<td>1000 (984 user configurable)</td>
</tr>
<tr>
<td>IPv6 ACL entries</td>
<td>128 (124 user configurable)</td>
<td>128 (124 user configurable)</td>
<td>128 (124 user configurable)</td>
</tr>
<tr>
<td>v4 QOS Classifications</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>v6 QoS Classifications</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Egress policers per ASIC</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>OAM sessions</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>IPSLA sessions</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>EFP</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>Maximum VLANs per port</td>
<td>4,000 per ASIC</td>
<td>4,000 per ASIC</td>
<td>4,000 per ASIC</td>
</tr>
<tr>
<td>Maximum VPLS neighbors</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Maximum attachment circuit per BD</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>STP Instances</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Maximum Etherchannel groups</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Maximum Interfaces per Etherchannel groups</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Maximum VRRP per system</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Maximum HSRP per system</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Maximum Ingress MPLS labels</td>
<td>32000</td>
<td>32000</td>
<td>32000</td>
</tr>
<tr>
<td>Maximum FRR/TE Headend</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>
Configuring the SDM Template

Information About the SDM Template

<table>
<thead>
<tr>
<th>Functionality</th>
<th>Default Template (RPF)</th>
<th>IPv4 Template (No RPF)</th>
<th>IPv6 Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum FRR/TE Midpoints</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Maximum E-LMI sessions</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Maximum BFD sessions</td>
<td>1023</td>
<td>1023</td>
<td>1023</td>
</tr>
<tr>
<td>Maximum SPAN/RSPAN sessions</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Maximum Queue counters per ASIC/system</td>
<td>40000/48000</td>
<td>40000/48000</td>
<td>40000/48000</td>
</tr>
<tr>
<td>Maximum Policer counters per ASIC/system</td>
<td>12000/24000</td>
<td>12000/24000</td>
<td>12000/24000</td>
</tr>
<tr>
<td>Max BDI for L3</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Multicast OIF per group for VF Lite or mVPN</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Multicast OIF per group for native multicast</td>
<td>255</td>
<td>255</td>
<td>255</td>
</tr>
<tr>
<td>Queues per ASIC/system</td>
<td>40000/48000</td>
<td>40000/48000</td>
<td>40000/48000</td>
</tr>
<tr>
<td>Max Queues per EFP</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Ingress Classifications</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>Egress Classifications</td>
<td>48000</td>
<td>48000</td>
<td>48000</td>
</tr>
<tr>
<td>Max Ingress Policers per ASIC/system</td>
<td>12000/24000</td>
<td>12000/24000</td>
<td>12000/24000</td>
</tr>
<tr>
<td>Max Egress Policers per ASIC/system</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Maximum EFPs per BD</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Maximum number of BDI for PW</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Maximum Layer 3 interfaces</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Max REP segments</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Maximum class-maps</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum policy maps</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Functionality</td>
<td>Default Template (RPF)</td>
<td>IPv4 Template (No RPF)</td>
<td>IPv6 Template</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Max number of OSPF Neighbors</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Max number of ISIS neighbors</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Max number of ISIS instances</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Max number of BGP neighbors</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>Max number IEEE 802.1ag/Y.1731(CFM)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>instances at 1sec for xconnect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max number IEEE 802.1ag/Y.1731(CFM)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>instances at 3.3 ms for BD & xconnect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max number IEEE 802.1ag/Y.1731(CFM)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>instances at 100 ms for BD & xconnect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max number of Y.1731 instances</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum Class-maps in policy-map</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Max number of match statements per class-map</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Max number of BFD sessions at 3.3ms</td>
<td>1023</td>
<td>1023</td>
<td>1023</td>
</tr>
<tr>
<td>Max number of BFD sessions at 100ms</td>
<td>1023</td>
<td>1023</td>
<td>1023</td>
</tr>
<tr>
<td>Max number of BFD sessions at 1S</td>
<td>1023</td>
<td>1023</td>
<td>1023</td>
</tr>
<tr>
<td>Max number of IGP Prefixes protected via LFA-FRR</td>
<td>1500</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Functionality</td>
<td>Default Template (RPF)</td>
<td>IPv4 Template (No RPF)</td>
<td>IPv6 Template</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Max number of L3VPN Prefixes protected via LFA-FRR</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>Max number of L2VPN sessions protected via LFA-FRR</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
</tr>
</tbody>
</table>

3 From release 16.7.x the VPLS backup PW feature is supported, so if VPLS instance is configured then the maximum VPLS session is limited to 1000 instead of 3500.

The following table shows the approximate number of each resource supported in each of the templates for a router running the Metro Aggregation Services license on RSP2.

Table 16: Approximate Number of Feature Resources Allowed by Each SDM Template (RSP2)

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default Template</th>
<th>Video Template</th>
<th>IP Template</th>
<th>Maximum IPv6 QoS Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Qos TCAM</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>Egress Qos TCAM</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>IPv6 ACL TCAM</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>ACL TCAM</td>
<td>4000</td>
<td>2000</td>
<td>4000</td>
<td>2000</td>
</tr>
<tr>
<td>MAC table</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>Virtual local area network (VLAN) mapping</td>
<td>4000</td>
<td>4000</td>
<td>65536</td>
<td>4000</td>
</tr>
<tr>
<td>IPv4 routes</td>
<td>20000</td>
<td>12000</td>
<td>24000</td>
<td>20000</td>
</tr>
<tr>
<td>IPv6 routes</td>
<td>3962</td>
<td>3962</td>
<td>1914</td>
<td>3962</td>
</tr>
<tr>
<td>VPNv4 routes</td>
<td>20000</td>
<td>12000</td>
<td>24000</td>
<td>20000</td>
</tr>
<tr>
<td>VPNv6 routes</td>
<td>3962</td>
<td>3962</td>
<td>1914</td>
<td>3962</td>
</tr>
<tr>
<td>IPv4 multicast routes (mroutes)</td>
<td>1000</td>
<td>2000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Layer 2 multicast groups</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bridge Domains (BD)</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>MAC-in-MAC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resource</td>
<td>Default Template</td>
<td>Video Template</td>
<td>IP Template</td>
<td>Maximum IPv6 QoS Template</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Ethernet over MPLS (EoMPLS) tunnels</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>MPLS Virtual Private Network (VPN)</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Virtual Routing and Forwarding (VRF) lite</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Access Control List (ACL) entries²</td>
<td>2000</td>
<td>4000</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Queues per Application-Specific Integrated Circuit (ASIC)³</td>
<td>4095</td>
<td>4095</td>
<td>4095</td>
<td>4095</td>
</tr>
<tr>
<td>IPv4 Quality of Service (QoS) classifications</td>
<td>4096</td>
<td>2048</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>Policers</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>Ethernet Operations, Administration, and Maintenance (OAM) sessions</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>IP Service Level Agreements (IPSLA) sessions</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Ethernet Flow Point (EFP)</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>Maximum VLANs per port</td>
<td>4094</td>
<td>4094</td>
<td>4094</td>
<td>4094</td>
</tr>
<tr>
<td>Maximum I-TAG per system</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Maximum VPLS neighbors</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>
Configuring the SDM Template

Information About the SDM Template

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default Template</th>
<th>Video Template</th>
<th>IP Template</th>
<th>Maximum IPv6 QoS Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum attachment circuit per BD</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>STP Instances</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Maximum Etherchannel groups</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Maximum Interfaces per Etherchannel groups</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Maximum Hot Standby Router Protocol (HSRP)</td>
<td>128 (For Cisco IOS-XE Release 3.14 and earlier) 256 (For Cisco IOS-XE Release 3.15 and later)</td>
<td>128 (For Cisco IOS-XE Release 3.14 and earlier) 256 (For Cisco IOS-XE Release 3.15 and later)</td>
<td>128 (For Cisco IOS-XE Release 3.14 and earlier) 256 (For Cisco IOS-XE Release 3.15 and later)</td>
<td>128 (For Cisco IOS-XE Release 3.14 and earlier) 256 (For Cisco IOS-XE Release 3.15 and later)</td>
</tr>
<tr>
<td>Maximum Virtual Router Redundancy Protocol (VRRP)</td>
<td>128 (For Cisco IOS-XE Release 3.14 and earlier) 255 (For Cisco IOS-XE Release 3.15 and later)</td>
<td>128 (For Cisco IOS-XE Release 3.14 and earlier) 255 (For Cisco IOS-XE Release 3.15 and later)</td>
<td>128 (For Cisco IOS-XE Release 3.14 and earlier) 255 (For Cisco IOS-XE Release 3.15 and later)</td>
<td>128 (For Cisco IOS-XE Release 3.14 and earlier) 255 (For Cisco IOS-XE Release 3.15 and later)</td>
</tr>
<tr>
<td>Maximum Ingress MPLS labels</td>
<td>32000</td>
<td>32000</td>
<td>32000</td>
<td>32000</td>
</tr>
<tr>
<td>Maximum Egress MPLS labels</td>
<td>28500</td>
<td>28500</td>
<td>28500</td>
<td>28500</td>
</tr>
<tr>
<td>Maximum Fast Reroute (FRR)/Traffic Engineering (TE) headend</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Maximum FRR/TE midpoints</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Maximum Enhanced Local Management Interface (E-LMI) sessions</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Information About the SDM Template

The following table shows the approximate number of each resource supported in each of the templates for a router running the Metro Aggregation Services license on RSP1A.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Default Template</th>
<th>Video Template</th>
<th>IP Template</th>
<th>Maximum IPv6 QoS Template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Bidirectional Forwarding Detection (BFD) sessions</td>
<td>1023</td>
<td>1023</td>
<td>1023</td>
<td>1023</td>
</tr>
<tr>
<td>Maximum Switched Port Analyzer (SPAN)/Remote SPAN (RSPAN) sessions</td>
<td>32</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Maximum Queue counters (packet & byte)</td>
<td>65536</td>
<td>65536</td>
<td>65536</td>
<td>65536</td>
</tr>
<tr>
<td>Maximum Policer counters (packet & byte)</td>
<td>49152</td>
<td>49152</td>
<td>49152</td>
<td>49152</td>
</tr>
<tr>
<td>Maximum number of BDI for Layer 3</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>IPv6 ACL</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>IPv6 QoS classification</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>Maximum Number of Layer 4 Source/Destination matches per interface</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>NA</td>
</tr>
</tbody>
</table>

4. Using IPv4 and VPNv4 routes concurrently reduces the maximum scaled value as both the routes use the same TCAM space.
5. Due to label space limitation of 16000 VPNv4 routes, to achieve 24000 VPNv4 routes in IP template use per VRF mode.
6. Using Layer 2 and Layer 3 multicast groups concurrently reduces the scale number to 1947.
7. ACLs contend for TCAM resources with Multicast Virtual Private Network (MVPN).
8. User available queues are 1920.
9. TCAM consumption for IPv6 QoS ACL Layer 4 port match operations increase with Maximum IPv6 QoS SDM template.
<table>
<thead>
<tr>
<th>Resource</th>
<th>IP template</th>
<th>Video template</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC table</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>Virtual local area network (VLAN) mapping</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>IPv4 routes</td>
<td>24000</td>
<td>12000</td>
</tr>
<tr>
<td>IPv6 routes</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>VPNv4 routes</td>
<td>24000</td>
<td>12000</td>
</tr>
<tr>
<td>VPNv6 routes</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>IPv4 multicast routes (mroutes)</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Layer 2 multicast groups</td>
<td>1000</td>
<td>2000</td>
</tr>
<tr>
<td>Bridge Domains (BD)</td>
<td>4094</td>
<td>4094</td>
</tr>
<tr>
<td>MAC-in-MAC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ethernet over MPLS (EoMPLS) tunnels</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>MPLS Virtual Private Network (VPN)</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Virtual Routing and Forwarding (VRF) lite</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Virtual Private LAN Services (VPLS) instances</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Access Control List (ACL) entries</td>
<td>2000</td>
<td>4000</td>
</tr>
<tr>
<td>Queues per Application-Specific Integrated Circuit (ASIC)</td>
<td>2048</td>
<td>2048</td>
</tr>
<tr>
<td>Ipv4 Quality of Service (QoS) classifications</td>
<td>4096</td>
<td>2048</td>
</tr>
<tr>
<td>Policers</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>Ethernet Operations, Administration, and Maintenance (OAM)</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>IP Service Level Agreements (IPSLA) sessions</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Ethernet Flow Point (EFP)</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>Maximum VLANs per port</td>
<td>4094</td>
<td>4094</td>
</tr>
<tr>
<td>Maximum I-TAG per system</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Maximum VPLS neighbors</td>
<td>62</td>
<td>62</td>
</tr>
</tbody>
</table>
Information About the SDM Template

<table>
<thead>
<tr>
<th>Resource</th>
<th>IP template</th>
<th>Video template</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum attachment circuit per BD</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>STP Instances</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Maximum Etherchannel groups</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Maximum Interfaces per Etherchannel groups</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Maximum Hot Standby Router Protocol (HSRP)/Virtual Router Redundancy Protocol (VRRP)</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>Maximum Ingress MPLS labels</td>
<td>16000</td>
<td>16000</td>
</tr>
<tr>
<td>Maximum Egress MPLS labels</td>
<td>28500</td>
<td>28500</td>
</tr>
<tr>
<td>Maximum Fast Reroute (FRR)/Traffic Engineering (TE) headend</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>Maximum FRR/TE midpoints</td>
<td>5000</td>
<td>5000</td>
</tr>
<tr>
<td>Maximum Enhanced Local Management Interface (E-LMI) sessions</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum Bidirectional Forwarding Detection (BFD) sessions</td>
<td>511</td>
<td>511</td>
</tr>
<tr>
<td>Maximum Switched Port Analyzer (SPAN)/Remote SPAN (RSPAN) sessions</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Maximum Queue counters (packet & byte)</td>
<td>65536</td>
<td>65536</td>
</tr>
<tr>
<td>Maximum Policer counters (packet & byte)</td>
<td>49152</td>
<td>49152</td>
</tr>
<tr>
<td>Maximum number of BDI for Layer 3</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>IPv6 ACL</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>IPv6 QoS classification</td>
<td>4096</td>
<td>2048</td>
</tr>
</tbody>
</table>

10 Using IPv4 and VPNv4 routes concurrently reduces the maximum scaled value as both the routes use the same TCAM space.
11 User available routes are 3967.
12 Due to label space limitation of 16000 VPNv4 routes, to achieve 24000 VPNv4 routes in IP template use per VRF mode.
13 Using Layer 2 and Layer 3 multicast groups concurrently reduces the scale number to 1947.
14 ACLs contend for TCAM resources with Multicast Virtual Private Network (MVPN).
15 User available queues are 1920.
The following table shows the approximate number of each resource supported in each of the templates for a router running the Metro Aggregation Services license on RSP1B.

Table 18: Approximate Number of Feature Resources Allowed by Each SDM Template (RSP1B)

<table>
<thead>
<tr>
<th>Resource</th>
<th>VPNv4/v6 template</th>
<th>Video template</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC table</td>
<td>256000</td>
<td>256000</td>
</tr>
<tr>
<td>IVLAN mapping</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>EVLAN mapping</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>Maximum VLANS per port</td>
<td>4094</td>
<td>4094</td>
</tr>
<tr>
<td>Maximum security addresses per EFP</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum security addresses per BD</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>Maximum security addresses</td>
<td>256000</td>
<td>256000</td>
</tr>
<tr>
<td>Maximum security configuration</td>
<td>256000</td>
<td>256000</td>
</tr>
<tr>
<td>EFPs per BD</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>IPv4 routes</td>
<td>80000</td>
<td>80000</td>
</tr>
<tr>
<td>IPv6 routes</td>
<td>40000</td>
<td>8000</td>
</tr>
<tr>
<td>Maximum BD interfaces</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum ITAG per system</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>IPv4 routing groups(^{16})</td>
<td>2000</td>
<td>8000</td>
</tr>
<tr>
<td>IPv6 routing groups(^{17})</td>
<td>2000</td>
<td>8000</td>
</tr>
<tr>
<td>IPv4 multicast groups(^{18})</td>
<td>2000</td>
<td>10000</td>
</tr>
<tr>
<td>IPv6 multicast groups(^{19})</td>
<td>2000</td>
<td>10000</td>
</tr>
<tr>
<td>BDs</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>MAC-in-MAC</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>EoMPLS tunnels</td>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>MPLS VPN</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Virtual Routing and Forwarding Scale (VRFS)</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>VPLS instances</td>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>Maximum VPLS neighbors</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>ACL entries</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>IPv6 ACL entries</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Queues per ASIC</td>
<td>16384</td>
<td>16384</td>
</tr>
<tr>
<td>Resource</td>
<td>VPNv4/v6 template</td>
<td>Video template</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Classifications</td>
<td>12288</td>
<td>12288</td>
</tr>
<tr>
<td>Ingress policers per ASIC</td>
<td>8192</td>
<td>8192</td>
</tr>
<tr>
<td>Egress policers per ASIC</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>Maximum class maps</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>Maximum policy maps</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>Maximum queue counters</td>
<td>65536</td>
<td>65536</td>
</tr>
<tr>
<td>Maximum policer counters</td>
<td>48152</td>
<td>48152</td>
</tr>
<tr>
<td>OAM sessions</td>
<td>4000</td>
<td>4000</td>
</tr>
<tr>
<td>ELMI sessions</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>SLA sessions</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>EFPs</td>
<td>8000</td>
<td>8000</td>
</tr>
<tr>
<td>MPLS ingress labels</td>
<td>64000</td>
<td>64000</td>
</tr>
<tr>
<td>MPLS egress labels</td>
<td>80000</td>
<td>80000</td>
</tr>
<tr>
<td>FRR TE headend</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>FRR TE midpoints</td>
<td>7000</td>
<td>7000</td>
</tr>
<tr>
<td>STP instances</td>
<td>128</td>
<td>128</td>
</tr>
<tr>
<td>BFD sessions</td>
<td>511</td>
<td>511</td>
</tr>
<tr>
<td>HSRP VRRP sessions</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Maximum EC groups</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Maximum interfaces per EC groups</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Maximum SPAN RSPAN sessions</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>IPv4 tunnel entries</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>Maximum VPNv4 and VPNv6 pre-fixes<sup>20</sup></td>
<td>64000</td>
<td>64000</td>
</tr>
</tbody>
</table>

Overall multicast groups in video template can be scaled to 8000 individually or in combination with other multicast features. For example: IPv4 routing groups can be scaled to 8000 or IPv4 routing groups and IPv6 routing groups together can be scaled to 8000.

See footnote 7.

VPNv4 and VPNv6 together can be scaled up to 64000 in per-prefix mode.

Selecting the SDM Template

To select an SDM template, complete the following steps:
Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.
 Example:
 Router> enable |
| Step 2 | configure terminal | Enters global configuration mode.
 Example:
 Router# configure terminal |
| Step 3 | sdm prefer \{default | video | ip | mvpn_rsp1a | VPNv4/v6 | max-ipv6-acl | enable_8k_efp | enable_copp | ipv4 | ipv6 | efp_feat_ext | enable_8k_efp | enable_copp | enable_l3vpn_cm | enable_l3vpn_cm | enable_match inner dscp | enable_portchannel_qos_multiple_active | vpls_stats_enable} | Specifies the SDM template to be used on the router.
 Example:
 Router(config)# sdm prefer default |

The maximum IPv6 QoS ACL template works in metro IP services license for RSP2.

- **default**—Balances all functions.
- **video**—Increases multicast routes and ACLs.
- **ip**—Increases IPv4/VPNv4 routes. This option is available only on RSP1A.
- **mvpn_rsp1a**—Supports MVPN. This option is available only on RSP1A.
- **VPNv4/v6**—Increases IPv4/VPNv4 routes. This option is available only on RSP1B.
- **max-ipv6-acl**—Supports IPv6 QoS ACL routes. The NEQ Layer 4 operation is supported in maximum IPv6 QoS ACL template.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• enable_l3vpn_cm—Enables the L3VPN conditional marking feature template. This is supported on the RSP3 module.</td>
<td></td>
</tr>
<tr>
<td>• enable_match_inner_dscp—Enables the match inner dscp feature template. This is supported on the RSP3 module.</td>
<td></td>
</tr>
<tr>
<td>• enable_portchannel_qos_multiple_active—Enables the port channel QoS multiple active feature template. This is supported on the RSP3 module.</td>
<td></td>
</tr>
<tr>
<td>• vpls_stats_enable—Enables the VPLS statistics feature template. This is supported on the RSP3 module.</td>
<td></td>
</tr>
</tbody>
</table>

Note
- When changing the SDM template, the router waits for two minutes before reloading. Do not perform any operation till the router reloads.
- For the new SDM template to take effect, you must save and reload the new configuration, otherwise the current SDM template is retained.

Verifying the SDM Template

You can use the following `show` commands to verify configuration of your SDM template:

- **show sdm prefer**—Displays the resource numbers supported by the specified SDM template.
- **show sdm prefer current**—Displays information about the active SDM template.

Following is a sample output using the `show sdm prefer current` command to display the current template configured on the router:

```
Router# show sdm prefer current
The current template is "video" template.
```

```
Router# show sdm prefer current
The current template is "max-ipv6-qos" template.
```

```
Router# show sdm prefer current
The current template is "max-qos-video" template.
```

```
Router# show platform hardware pp active sdm current
Tcam blocks
CYLON_TCAM_VLAN_MAPPING_INGRESS        -   4
CYLON_TCAM_VLAN_MAPPING_EGRESS          -   4
CYLON_TCAM_IPV4_UCAST                  -   12
CYLON_TCAM_IPV4_MCAST                   -   8
CYLON_TCAM_IPV4_TUNNEL                  -   4
```
<table>
<thead>
<tr>
<th>Feature Scale value:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CYLON_NUM_MAC_TABLE_ENTRIES = 16000</td>
</tr>
<tr>
<td>CYLON_NUM_IVLAN_MAPPING_ENTRIES = 4001</td>
</tr>
<tr>
<td>CYLON_NUM_EVLAN_MAPPING_ENTRIES = 4000</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_VLANS_PER_PORT = 4094</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_SEC_ADDR_PER_EFP = 1000</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_SEC_ADDR_PER_BD = 10000</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_SEC_ADDR = 16000</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_SEC_CONFIG_ADDR = 16000</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_EFPS_PER_BD = 128</td>
</tr>
<tr>
<td>CYLON_NUM_IPV4_ROUTES = 12000</td>
</tr>
<tr>
<td>CYLON_NUM_IPV6_ROUTES = 4000</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_L3_INTERFACES = 1000</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_ITAG_PER_SYSTEM = 500</td>
</tr>
<tr>
<td>CYLON_NUM_ROUTING_GROUPS = 2000</td>
</tr>
<tr>
<td>CYLON_NUM_MULTICAST_GROUPS = 2000</td>
</tr>
<tr>
<td>CYLON_NUM_IPV6_ROUTING_GROUPS = 0</td>
</tr>
<tr>
<td>CYLON_NUM_IPV6_MULTICAST_GROUPS = 1000</td>
</tr>
<tr>
<td>CYLON_NUM_BRIDGE_DOMAINS = 4096</td>
</tr>
<tr>
<td>CYLON_NUM_MAC_IN_MAC = 0</td>
</tr>
<tr>
<td>CYLON_NUM_PSEUDO_WIRES = 2000</td>
</tr>
<tr>
<td>CYLON_NUM_ROUTED_PSEUDO_WIRES = 128</td>
</tr>
<tr>
<td>CYLON_NUM_MPLS_VPN = 128</td>
</tr>
<tr>
<td>CYLON_NUM_VRPS = 128</td>
</tr>
<tr>
<td>CYLON_NUM_ACL_ENTRIES = 4000</td>
</tr>
<tr>
<td>CYLON_NUM_IPV6_ACL_ENTRIES = 1000</td>
</tr>
<tr>
<td>CYLON_NUM_EGRESS_ACL_ENTRIES = 1000</td>
</tr>
<tr>
<td>CYLON_NUM_QUEUES_PER_ASIC = 4095</td>
</tr>
<tr>
<td>CYLON_NUM_CLASSIFICATIONS = 2048</td>
</tr>
<tr>
<td>CYLON_NUM_SH_ING_EGR_POLICERS_PER_ASIC = 4096</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_CLASS_MAPS = 4096</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_POLICY_MAPS = 1024</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_QUEUE_COUNTERS = 65536</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_POLICER_COUNTERS = 49152</td>
</tr>
<tr>
<td>CYLON_NUM_OAM_SESSIONS = 1000</td>
</tr>
<tr>
<td>CYLON_NUM_EELMT_SESSIONS = 1000</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_ITAG_SESSIONS = 1000</td>
</tr>
<tr>
<td>CYLON_NUM_EFIPS = 4000</td>
</tr>
<tr>
<td>CYLON_NUM_MPLS_SERVICES = 512</td>
</tr>
<tr>
<td>CYLON_NUM_MPLS_INGRESS_LABELS = 38912</td>
</tr>
<tr>
<td>CYLON_NUM_MPLS_egress_LABELS = 28500</td>
</tr>
<tr>
<td>CYLON_NUM_FRR_TE_HEADEND = 512</td>
</tr>
<tr>
<td>CYLON_NUM_FRR_TE_MIDPOINTS = 5000</td>
</tr>
<tr>
<td>CYLON_NUM_STP_INSTANCES = 16</td>
</tr>
<tr>
<td>CYLON_NUM_HSRP_VRRP_SESSIONS = 256</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_EC_GROUPS = 64</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_INTF_PER_EC_GROUP = 8</td>
</tr>
<tr>
<td>CYLON_NUM_MAX_SPAN_RSPAN_SESSIONS = 32</td>
</tr>
<tr>
<td>CYLON_NUM_IPV4_TUNNEL_ENTRIES = 2000</td>
</tr>
</tbody>
</table>
SDM Template Supported Features on RSP3 Module

This section details the supported SDM template features on the RSP3 module. The sdm prefer command provides the following templates:

Table 19: SDM Templates and Supported Features

<table>
<thead>
<tr>
<th>SDM Template</th>
<th>Supported Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>sdm prefer vpls_stats_enable</td>
<td>VPLS Statistics</td>
</tr>
<tr>
<td>sdm prefer efp_feat_ext</td>
<td>Split-Horizon Groups</td>
</tr>
<tr>
<td>sdm prefer enable_8k_efp</td>
<td>8K EFP (4 Queue Model)</td>
</tr>
<tr>
<td>sdm prefer enable_match_inner_dscp</td>
<td>Match Inner DSCP</td>
</tr>
<tr>
<td>sdm prefer enable_copp</td>
<td>Control Plane Policing</td>
</tr>
<tr>
<td>sdm prefer enable_portchannel_qos_multiple_active</td>
<td>QoS Support on Port Channel LACP Active Active</td>
</tr>
<tr>
<td></td>
<td>16K EFP Support on Port Channel</td>
</tr>
</tbody>
</table>

VPLS Statistics

VPLS statistic feature supports packet and byte count in ingress and egress directions. The following are the required criteria to enable this feature:

- Metro Aggregation services license
- Special SDM template

Use the following commands to enable or disable VPLS statistics feature:

```
sdm prefer vpls_stats_enable
sdm prefer vpls_stats_disable
```

After template configuration, the node is auto reloaded.

Restrictions

- EFP statistics is not supported when VPLS statistics is enabled.
- Transit packet drops data is not supported.
- There is a sync time of 10 seconds between the software and the hardware for fetching the statistics.
- If access rewrite is configured (pop 1), VC statistics show 4 bytes less than the actual size (in both imposition and disposition node) because pop 1 removes the VLAN header.
- VC statistics do not account LDP and VC label. It displays what is received from access in both imposition and disposition node.

Example

The following example shows a sample VPLS Statics counter output:
Split Horizon Enhancements on the RSP3 Module

Starting with Cisco IOS XE Release 16.6.1, the efp_feat_ext template is introduced. This template when enabled allows configuration of two split-horizon groups on the EVC bridge-domain.

- Two Split-horizon groups—Group 0 and Group 1 are configured through using the bridge-domain bd number split-horizon group 0-1 command.

Prerequisites for Split-Horizon Groups on the RSP3 Module

- The efp_feat_ext template must be configured to enable the feature.
- Metro services license must be enabled; LICENSE_ACTIVE_LEVEL=metroaggrservices,all:ASR-903;

Restrictions for Split-Horizon Groups on the RSP3 Module

- The overall scale of EFPs is 8K, only if the split-horizon groups are configured. For information, see supported scale.
If split-horizon based-EFPs are not configured, the total EFPs supported are 4K.

- EFPs configured on the same bridge domain and same split-horizon group, cannot forward to or recieve traffic from each other.
- We do not recommend configuration of Y.1564 and split-horizon group on the same EFP.
- We do not recommend configuring MAC security with split-horizon group.
- Split-horizon group is not supported for CFM on this template. Configuring split-horizon groups on CFM based MEPs may result in MEPs being unlearnt, and unexpected behavior may be observed.
- If ethernet loopback is configured, and if a dynamic change in split-horizon group occurs on the EFP-BD, the ELB session must be restarted.
- A change in the split-horizon group configuration on a regular EFP results in hardware programming update and may impact L2 traffic. This results in a MAC-flush and re-learn of traffic with new MAC address.

Following are known behavior of split-horizon groups:
- Changing the split-horizon group on any EFP, results in traffic flooding back to same EFP for few milliseconds.
- A small traffic leak may be observed on defaulting an interface with higher number of EFP with split-horizon configured.
- BFD flaps and underlying IGP flaps may be observed upon changing split-horizon groups, if BFD is hardware based.

Split-Horizon Supported Scale

8K EFPs are supported across RSP3-400 and 4K EFPs on RSP3-200.

Note

If split-horizon configuration does not exist, number of EFPs supported are reduced to 4K EFPs.

<table>
<thead>
<tr>
<th>Split-Horizon Group</th>
<th>RSP3-400</th>
<th>RSP3-200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default (No config)</td>
<td>4K EFP</td>
<td>2K EFP</td>
</tr>
<tr>
<td>Group 0</td>
<td>2K EFP</td>
<td>1K EFP</td>
</tr>
<tr>
<td>Group 1</td>
<td>2K EFP</td>
<td>1K EFP</td>
</tr>
</tbody>
</table>

Note

Port-channel scale is half the regular scale of the EFP.
Configuring Split-Horizon Group on the RSP3 Module

interface GigabitEthernet0/2/2
service instance 1 ethernet
capsulation dot1q 100
bridge-domain 100 split-horizon group 0

interface GigabitEthernet0/2/2
service instance 2 ethernet
capsulation dot1q 102
bridge-domain 102 split-horizon group 1

8K EFP (4 Queue Model)

In Cisco IOS XE Release 3.18SP, the 8K EFP (4 Queue Model) support allows up to 8000 EFPs at the system level. EFP scale implementation follows the static model, that is, eight queues are created per EFP by default.

Information About 8000 (8K) EFP

- In default model, 5000 EFPs can be configured on Cisco ASR 903 RSP3 module.
- The Switch Database Management (SDM) template feature can be used to configure 8000 EFPs across ASIC (4000 EFPs per ASIC interfaces).
- In 8K EFP model, each EFP consumes four Egress queues. If 8K EFP SDM template is not enabled, each EFP consumes eight Egress queues.
- Ingress policy map can specify more than eight traffic classes based on PHB matches, which remains the same. However, Egress policy map can have three user defined class and class-default class.
- Each Egress class-maps can be mapped to a single or multiple traffic classes and each class-map mapped to a single queue.
- Maximum of two queues are set to Priority according to policy configuration.
- All the existing QOS restrictions that apply in default model are also applicable to 8K EFP model.

Prerequisites for 8000 (8K) EFP

- Activate the Metro Aggregation Services license on the device.
- To configure 8000 EFPs, enable the SDM template using CLI `sdmprefer enable_8k_efp`.
- Reset the SDM template using the CLI `sdmprefer disable_8k_efp`.

Restrictions for 8000 (8K) EFP

- Traffic class to Queue mapping is done per interface and not per EVC.
- Four traffic classes including class-default can be supported in Egress policy.
- Same three traffic classes or subset of three traffic classes match is supported on EVCs of an interface.
- Traffic classes to queue mapping profiles are limited to four in global, hence excluding class-default, only three mode unique combinations can be supported across interfaces.
• TRTCM always operates with conform-action transmit, exceed-action transmit and violate-action drop.
• By default, 1R2C Policer will behave as 1R3C Policer in 4 Queue model.
• All the QOS restrictions that is applicable in default mode is also applicable in 8k EFP mode

Configuring 8K Model

Configuring 8K EFP Template

Below is the sample configuration to enable 8K EFP or 4 Queue mode template. On enabling `sdm prefer enable_8k_efp`, the router reloads and boots up with 8K EFP template.

```bash
RSP3-903(config)#sdm prefer enable_8k_efp
```

Template configuration has been modified. Save config and Reload? [yes/no]: yes

Building configuration...

Jul 22 05:58:30.774 IST: Changes to the EFP template preferences have been stored[OK]
Proceeding with system reload...
Reload scheduled for 06:00:38 IST Fri Jul 22 2016 (in 2 minutes) by console
Reload reason: EFP template change

Verifying 8K EFP Template

You can verify the current template as below.

```bash
Device#sh sdm prefer current
```

The current sdm template is "default" template and efp template is "enable_8k_efp" template

Configuring QOS in 8K EFP Model

Below is sample configuration to configure egress policy map when 4Q mode is enabled.

```bash
Device#enable
Device#configure terminal
Device(config)#interface GigabitEthernet0/3/0
Device(config-if)#service instance 10 e
Device(config-if-srv)#service-policy output egress
```

```bash
Current configuration : 193 bytes
!
policy-map egress
  class qos2
    shape average 2000000
  class qos3
    shape average 3000000
  class qos4
    shape average 4000000
  class class-default
    shape average 5000000
!
end
```

Device#sh run class-map qos2
Building configuration...

Current configuration : 54 bytes
!
class-map match-all qos2
match qos-group 2
!
end

Device#sh run class-map qos3
Building configuration...

Current configuration : 54 bytes
!
class-map match-all qos3
match qos-group 3
!
end

Device#sh run class-map qos4
Building configuration...

Current configuration : 54 bytes
!
class-map match-all qos4
match qos-group 4
!
end

Verifying QOS in 8K EFP Model

You need to verify the interface and policy-map details to check 8K model queue is working.

Device# show run interface g0/3/0
Building configuration...

Current configuration : 217 bytes
!
interface GigabitEthernet0/3/0
no ip address
negotiation auto
service instance 10 ethernet
 encapsulation dot1q 10
 rewrite ingress tag pop 1 symmetric
 service-policy output egress
 bridge-domain 10
!
end

Router#show running-config policy-map egress
Building configuration...

Current configuration : 193 bytes
!
policy-map egress
 class qos2
 shape average 2000000
 class qos3
 shape average 3000000
 class qos4
 shape average 4000000
 class class-default
 shape average 5000000
!
end
Device#sh policy-map int g0/3/0 serv inst 10
Port-channel10: EFP 10

Service-policy output: egress

Class-map: qos2 (match-all)
122566 packets, 125262452 bytes
30 second offered rate 0000 bps, drop rate 0000 bps
Match: qos-group 2
Queueing
queue limit 4096000 us/ 1024000 bytes
(queue depth/total drops/no-buffer drops) 1032720/119746/0
(pkts output/bytes output) 2820/2882040
shape (average) cir 2000000, bc 8000, be 8000
target shape rate 2000000

Class-map: qos3 (match-all)
122566 packets, 125262452 bytes
30 second offered rate 0000 bps, drop rate 0000 bps
Match: qos-group 3
Queueing
queue limit 2730666 us/ 1024000 bytes
(queue depth/total drops/no-buffer drops) 1032720/118806/0
(pkts output/bytes output) 3760/3842720
shape (average) cir 3000000, bc 12000, be 12000
target shape rate 3000000

Class-map: qos4 (match-all)
245131 packets, 250523882 bytes
30 second offered rate 0000 bps, drop rate 0000 bps
Match: qos-group 4
Queueing
queue limit 2048000 us/ 1024000 bytes
(queue depth/total drops/no-buffer drops) 1032720/239961/0
(pkts output/bytes output) 5170/5283740
shape (average) cir 4000000, bc 16000, be 16000
target shape rate 4000000

Class-map: class-default (match-any)
245131 packets, 250523882 bytes
30 second offered rate 0000 bps, drop rate 0000 bps
Match: any
Queueing
queue limit 1638400 us/ 1024000 bytes
(queue depth/total drops/no-buffer drops) 1032720/239961/0
(pkts output/bytes output) 5170/5283740
shape (average) cir 5000000, bc 20000, be 20000
target shape rate 5000000

Device#

16K EFP Support on Port Channel

Starting with Cisco IOS XE 16.8.1 release, 16K EFPs on port channel are supported on the RSP3 module. The following are the key features supported:

- In order to enable 16K EFP over a port channel, you need to enable the following template:

  ```
  enable_portchannel_qos_multiple_active
  ```

- 16000 EFPs are supported on the RSP3 module (8K EFPs are supported per ASIC). Each port can have a maximum of 8K EFPs configured.
8K bridge domains are supported.

On the RSP3 module, 1024 BDI interfaces that include physical interface, port channel interface, and BDI are available, and these interfaces can be configured up to 4096 BDI interfaces.

If a port channel is configured on an application-specific integrated circuit (ASIC), for example ASIC 0, then ensure that physical members to be added to port channel also should be in the same ASIC.

Restrictions for 16K EFP on Port Channel

- G.8032, SADT, CFM, and TEFP are not supported on the port channel.
- 16k EFP scale is not supported if SDM template is enabled for split horizon scale.
- Minimal traffic outage (for example, in milliseconds) is observed, when a policy map is applied or removed.
- In a complete scale environment, the EFP statistics update requires more than 1 minute to complete.

Configuring 16K EFP on Port Channel

To configure 16K EFP on port channel, use the following commands:

```
router>enable
router#configure terminal
router(config)# sdm prefer enable_portchannel_qos_multiple_active
router(config)# platform port-channel 10 members-asic-id 1
router(config)# platform qos-port-channel_multiple_active port-channel 10
router(config)# interface port-channel 10
router(config-if)# end
```

After the SDM template update, the device reloads automatically and you need to enter yes to save the configuration.

Verifying 16k EFP on Port Channel

The following are examples to verify for 16K EFP configuration on port channel.

```
Router# show etherchannel summary
Flags: D - down P/bndl - bundled in port-channel
I - stand-alone s/susp - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
U - in use f - failed to allocate aggregator
M - not in use, minimum links not met
u - unsuitable for bundling
w - waiting to be aggregated
d - default port
Number of channel-groups in use: 1
Number of aggregators: 1
Group Port-channel Protocol Ports
---------------------------------------------
10 Po10(RU) LACP Te0/5/0(bndl) Te0/5/1(bndl)
```
show ethernet service instance id interface stats

Router# show ethernet service instance id 12000 interface port-channel 10 stats
Port maximum number of service instances: 16000
Service Instance 12000, Interface port-channel 10
Pkts In Bytes In Pkts Out Bytes Out
252 359352 252 359352

show ethernet service instance summary

Router# show ethernet service instance summary
System summary

Associated interface: port-channel 10

Control Plane Policing

The Control Plane Policing feature allows you to configure a quality of service (QoS) filter that manages the traffic flow of control plane packets to protect the control plane of routers and switches against reconnaissance and denial-of-service (DoS) attacks. In this way, the control plane (CP) can help maintain packet forwarding and protocol states despite an attack or heavy traffic load on the router or switch.

Restrictions for Control Plane Policing

Input Rate-Limiting Support

Input rate-limiting is performed in silent (packet discard) mode. Silent mode enables a router to silently discard packets using policy maps applied to input control plane traffic with the service-policy input command. For more information, see the “Input Rate-Limiting and Silent Mode Operation” section.
MQC Restrictions

The Control Plane Policing feature requires the Modular QoS CLI (MQC) to configure packet classification and traffic policing. All restrictions that apply when you use the MQC to configure traffic policing also apply when you configure control plane policing.

Match Criteria Support

Only the extended IP access control lists (ACLs) classification (match) criteria is supported.

Restrictions for CoPP on the RSP3

- $sdm\ prefer\ enable_copp\ template$ must be enabled on the the RSP3 module to activate COPP.
- Ingress and Egress marking are not supported.
- Egress COPP is not supported. COPP with marking is not supported.
- CPU bound traffic (punted traffic) flows is supported via the same queue with or without CoPP.
- Only match on access group is supported on a CoPP policy.
- Hierarchical policy is not supported with CoPP.
- Class-default is not supported on CoPP policy.
- User defined ACLs are not subjected to CoPP classified traffic.
- A CoPP policy map applied on a physical interface is functional.
- When COPP template is enabled, classification on outer Vlan, inner Vlan, Inner Vlan Cos, destination MAC address, source IP address, and destination IP address are not supported.

 The template-based model is used to enable COPP features and disable some of the above mentioned QOS classifications.

 - When $sdm\ prefer\ enable_copp\ template$ is enabled, $sdm\ prefer\ enable_match_inner_dscp\ template$ is not supported.

 - Only IP ACLs based class-maps are supported. MAC ACLs are not supported.

 - Multicast protocols like PIM, IGMP are not supported.

 - Only CPU destined Unicast Layer3 protocols packets are matched as part of COPP classification.

Restrictions on Firmware

- Port ranges are not supported.
- Only exact matches are supported, greater than, less than and not equal are not supported.
- Internet Control Message Protocol (ICMP) inner type’s classification not supported.
- Match any is only supported at class-map level.
- Policing action is supported on a CoPP policy map.
Supported Protocols

The following table lists the protocols supported on Control Plane Policing feature.

<table>
<thead>
<tr>
<th>Supported Protocols</th>
<th>Criteria</th>
<th>Match</th>
<th>Queue#</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFTP - Trivial FTP</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-tftp permit udp any any eq 69</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>TELNET</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-telnet permit tcp any any eq telnet</td>
<td>NQ_CPU_CONTROL_Q</td>
</tr>
<tr>
<td>NTP - Network Time Protocol</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-ntp permit udp any any eq ntp</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>FTP - File Transfer Protocol</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-ftp permit tcp host any any eq ftp</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>SNMP - Simple Network Management</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-snmp permit udp any any eq snmp</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>TACACS - Terminal Access Controller</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-tacacs permit tcp any any tacacs</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>FTP-DATA</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-ftpdata permit tcp any any eq 20</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>HTTP - Hypertext Transfer Protocol</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-http permit tcp any any eq www</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>WCCP - Web Cache Communication</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-wccp permit udp any eq 2048 any eq 2048</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>Supported Protocols</td>
<td>Criteria</td>
<td>Match</td>
<td>Queue#</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>SSH - Secure Shell</td>
<td>Port Match</td>
<td>IP access list ext copp-system-acl-ssh permit tcp any eq 22</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>ICMP - Internet Control Message Protocol</td>
<td>Protocol Match</td>
<td>IP access list copp-system-acl-icmp permit icmp any any</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>DHCP - Dynamic Host Configuration Protocol</td>
<td>Port Match</td>
<td>IP access list copp-system-acl-dhcp permit udp any eq bootps</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>MPLS- OAM</td>
<td>Port Match</td>
<td>IP access list copp-system-acl-mplsoam permit udp any eq 3503 any</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
<tr>
<td>LDP - Label Distribution Protocol</td>
<td>Port Match</td>
<td>IP access list copp-system-acl-ldp permit udp any eq 646 any eq 646 permit tcp any eq 646</td>
<td>NQ_CPU_CFМ_Q</td>
</tr>
<tr>
<td>RADIUS - Remote Authentication Dial In User Service</td>
<td>Port Match</td>
<td>IP access list copp-system-radius permit udp any eq 1812 permit udp any eq 1813 permit udp any eq 1813 permit udp any eq 1645 permit udp any eq 1646 permit udp any eq 1812 any permit udp any eq 1813 any permit udp any eq 1645 any</td>
<td>NQ_CPU_HOST_Q</td>
</tr>
</tbody>
</table>
Input Rate-Limiting and Silent Mode Operation

A router is automatically enabled to silently discard packets when you configure input policing on control plane traffic using the `service-policy input policy-map-name` command.

Rate-limiting (policing) of input traffic from the control plane is performed in silent mode. In silent mode, a router that is running Cisco IOS XE software operates without receiving any system messages. If a packet that is entering the control plane is discarded for input policing, you do not receive an error message.

How to Use Control Plane Policing

Defining Control Plane Services

Perform this task to define control plane services, such as packet rate control and silent packet discard for the RP.

Before you begin

Before you enter control-plane configuration mode to attach an existing QoS policy to the control plane, you must first create the policy using MQC to define a class map and policy map for control plane traffic.

- Platform-specific restrictions, if any, are checked when the service policy is applied to the control plane interface.
- Input policing does not provide any performance benefits. It simply controls the information that is entering the device.

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device> enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>control-plane</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Device(config)# control-plane</td>
</tr>
<tr>
<td></td>
<td>Enters control-plane configuration mode (which is a prerequisite for defining control plane services).</td>
</tr>
<tr>
<td>4</td>
<td>service-policy [input</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
</tbody>
</table>
Device(config-cp)# service-policy input control-plane-policy
Attaches a QoS service policy to the control plane.

- **input**—Applies the specified service policy to packets received on the control plane.
- **policy-map-name**—Name of a service policy map (created using the `policy-map` command) to be attached.

Step 5

end

Example:

Device(config-cp)# end

(Optional) Returns to privileged EXEC mode.

Configuration Examples for Control Plane Policing

Example: Configuring Control Plane Policing on Input Telnet Traffic

```
! Rate-limit all other Telnet traffic.
Device(config)# access-list 140 permit tcp any any eq telnet

! Define class-map "telnet-class."
Device(config)# class-map telnet-class
Device(config-cmap)# match access-group 140
Device(config-cmap)# exit
Device(config)# policy-map control-plane-in
Device(config-pmap)# class telnet-class
Device(config-pmap-c)# police 80000 conform transmit exceed drop
Device(config-pmap-c)# exit
Device(config-pmap)# exit

! Define aggregate control plane service for the active route processor.
Device(config)# control-plane
Device(config-cp)# service-policy input control-plane-in
Device(config-cp)# end
```

Verification Examples for CoPP

The following example shows how to verify control plane policing on a policy map.

```
Router# show policy-map control-plane
Control Plane
Service-policy input: control-plane-in
Class-map: telnet-class (match-all)
  10521 packets, 673344 bytes
5 minute offered rate 18000 bps, drop rate 15000 bps
Match: access-group 102
police: cir 64000 bps, bc 8000 bytes
conformed 1430 packets, 91520 bytes; actions: transmit
exceeded 9091 packets, 581824 bytes; actions: drop
conformed 2000 bps, exceeded 15000 bps
Class-map: class-default (match-any)
  0 packets, 0 bytes
```
5 minute offered rate 0000 bps, drop rate 0000 bps
Match: any

The following command is used to verify the TCAM usage on the router.

Router# show platform hardware pp active feature qos resource-summary 0
RSP3 QoS Resource Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Total</th>
<th>Used</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS TCAM</td>
<td>2048</td>
<td>2</td>
<td>2046</td>
</tr>
<tr>
<td>VOQs</td>
<td>49152</td>
<td>808</td>
<td>48344</td>
</tr>
<tr>
<td>QoS Policers</td>
<td>32768</td>
<td>2</td>
<td>32766</td>
</tr>
<tr>
<td>QoS Policer Profiles</td>
<td>1023</td>
<td>1</td>
<td>1022</td>
</tr>
<tr>
<td>Ingress CoS Marking Profiles</td>
<td>16 15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Egress CoS Marking Profiles</td>
<td>16 15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Ingress Exp & QoS-Group Marking Profiles</td>
<td>64 61</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Ingress QOS LPM Entries</td>
<td>32768 0</td>
<td>32768</td>
<td></td>
</tr>
</tbody>
</table>

QoS Support on Port Channel LACP Active Active

Link Aggregation Control Protocol (LACP) supports the automatic creation of ether channels by exchanging LACP packets between LAN ports. Cisco IOS XE Everest 16.6.1 release introduces the support of QoS on port channel LACP active active mode. A maximum of eight member links form a port channel and thus the traffic is transported through the port channel. This feature is supported on Cisco RSP3 Module.

Benefits of QoS Support on Port Channel LACP Active Active

- This feature facilitates increased bandwidth.
- The feature supports load balancing.
- This feature allows support on QoS on Port Channel with one or more active member links.

Restrictions for QoS Support on Port Channel Active Active

- Policy-map on member links is not supported.
- 100G ports and 40G ports cannot be a part of the port channel.
- Total number of port channel bandwidth supported on a given ASIC should not exceed 80G.
- This feature is not supported on multicast traffic.
- Only 3k service instance (EFP) scale is supported on port channel active active.

Configuring QoS Support on Port Channel Active Active

Enabling Port Channel Active/Active

Use the following commands to enable port channel active active:

```
enable
configure terminal
sdm prefer enable_portchannel_qos_multiple_active
end
```
The device restarts after enabling the `sdm prefer enable_portchannel_qos_multiple_active` command. After a successful reboot, verify the configuration using the command `show sdm prefer current`.

Disabling Port Channel Active/Active
Use the following commands to disable port channel active active:

```
enable
configure terminal
sdm prefer disable_portchannel_qos_multiple_active
end
```

Configuring Active Active Port Channel per bundle
Use the following commands to configure active active port channel per bundle:

```
enable
configure terminal
platform qos-port-channel_multiple_active 10
end
```

Creating Port Channel Interface
Use the following commands to configure the port channel interface:

```
enable
configure terminal
interface port-channel 10
no shutdown
end
```

Attaching member link to port channel
Use the following commands to attach a member link to the port channel:

```
enable
configure terminal
interface Te0/4/0
channel-group 10 mode active
end
```

Configuring QoS Class Map and Policy Map
Use the following commands to configure QoS class map and policy map:

```
enable
configure terminal
class-map match-any qos1
match qos-group 1
class-map match-any qos2
match qos-group 2
policy-map policymapqos
class qos1
shape average 10000 k
class qos2
shape average 20000 k
end
```

Attaching Configured Policy Map (policymapqos) on Port Channel Interface on Egress Direction
Use the following commands to attach the configured policy map (policymapqos) on the port channel interface on egress direction:
enable
cfg-term
int port-channel 10
svc-policy output policymapqos
end

Verification of QoS Support on Port Channel LACP Active Active

Use the commands below to verify the port channel summary details:

```
Device#show etherchannel summary
Flags:  D - down   P/bndl - bundled in port-channel
       I - stand-alone s/susp - suspended
       H - Hot-standby (LACP only)
       R - Layer3    S - Layer2
       U - in use    f - failed to allocate aggregator
       M - not in use, minimum links not met
       u - unsuitable for bundling
       w - waiting to be aggregated
       d - default port

Number of channel-groups in use: 1
Number of aggregators: 1

Group  Port-channel  Protocol  Ports
-------+--------------+-----------+-----------------------------------------------
  10    Po10(RU)   LACP     Te0/4/0(bndl)
```

Use the commands below to verify the attached policy map on the port channel interface:

```
Device#show policy-map interface brief
Service-policy input: ingress
TenGigabitEthernet0/4/0
Service-policy output: policymapqos
Port-channel10

Device#show policy-map interface po10
Port-channel10

Service-policy output: policymapqos

Class-map: qos1 (match-any)
1027951 packets, 156451422 bytes
30 second offered rate 50063000 bps, drop rate 40020000 bps
Match: qos-group 1
Queueing
queue limit 819200 us/ 1024000 bytes
(queue depth/total drops/no-buffer drops) 0/821727/0
(pkt size output(bytes output) 206224/313872928
shape (average) cir 10000000, bc 40000, be 40000
target shape rate 10000000

Class-map: qos2 (match-any)
852818 packets, 1297988996 bytes
30 second offered rate 41534000 bps, drop rate 21447000 bps
Match: qos-group 2
Queueing
queue limit 409600 us/ 1024000 bytes
(queue depth/total drops/no-buffer drops) 0/440370/0
(pkt size output(bytes output) 412448/627745856
shape (average) cir 20000000, bc 80000, be 80000
target shape rate 20000000
```
Match Inner DSCP on RSP3 Module

Starting with Cisco IOS XE Release 16.6.1, the match_inner_dscp template is introduced. This template allows DSCP policy map configuration on the RSP3 module for MPLS and tunnel terminated traffic.

Restrictions for Match Inner DSCP on RSP3 Module

- The IPv4 DSCP policy map configuration is not preserved in case of protection scenarios, where either primary or backup path is plane IP path and backup or primary is MPLS label path.

- Match on Inner DSCP for IPv6 is not supported.

- Only 1024 entries IPv4 TCAM entries are available. Hence, optimized usage of classes is recommended for configuration when policy map is applied on port channel or port or EFP.

- To support match on Inner DSCP for IPv4 when packets have MPLS forwarding type, three TCAM entries are added whenever there is a class map with match DSCP is configured.

 One match is for normal DSCP scenario, one entry for Inner DSCP when outer header is MPLS header and other entry is when there is tunnel termination.

 In Split Horizon template, each match DSCP class consumes 3 TCAM entries. For non-Split Horizon template, TCAM entries are one. For Class default, number of entries consumed is one. For TEFP, six entries are required for each match DSCP Class Map and two for class default.

Note

Some of the IPv4 qualifiers are not supported when Split Horizon template is configured as there are limitation of Copy Engines in IPv4 Resource database. Whenever Split Horizon template is enabled, four new qualifiers are added in IPV4 QoS Field Group.

RSP3-400 High Availability

z
Table 21:

<table>
<thead>
<tr>
<th>Release Notes</th>
<th>Activity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.6.x</td>
<td>49-50 min</td>
<td>SSO bulk sync state</td>
</tr>
</tbody>
</table>

Configuring Match Inner DSCP on RSP3 Module

```text
Class-map match-any dscp
Match dscp af13
exit
policy-map matchdscp
Class dscp
Police cir 1000000end
```

Verifying Match Inner DSCP on RSP3 Module

```text
Router# show platform hardware pp active feature qos resource-summary 0
PE1#res
RSP3 QoS Resource Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Total</th>
<th>Used</th>
<th>Free</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS TCAM</td>
<td>1024</td>
<td>0</td>
<td>1024</td>
</tr>
<tr>
<td>VOQs</td>
<td>49152</td>
<td>408</td>
<td>48744</td>
</tr>
<tr>
<td>QoS Policers</td>
<td>32768</td>
<td>0</td>
<td>32768</td>
</tr>
<tr>
<td>QoS Policer Profiles</td>
<td>1023</td>
<td>0</td>
<td>1023</td>
</tr>
<tr>
<td>Ingress CoS Marking Profiles</td>
<td>16</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Egress CoS Marking Profiles</td>
<td>16</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Ingress Exp &amp; QoS-Group Marking Profiles</td>
<td>64</td>
<td>3</td>
<td>61</td>
</tr>
<tr>
<td>Ingress QOS LPM Entries</td>
<td>32768</td>
<td>0</td>
<td>32768</td>
</tr>
</tbody>
</table>
```
Tracing and Trace Management

This chapter contains the following sections:

- Tracing Overview, on page 237
- How Tracing Works, on page 238
- Tracing Levels, on page 238
- Viewing a Tracing Level, on page 239
- Setting a Tracing Level, on page 241
- Viewing the Content of the Trace Buffer, on page 241

Tracing Overview

Tracing is a function that logs internal events. Trace files are automatically created and saved to the tracelogs directory on the harddisk: file system on the chassis, which stores tracing files in bootflash:. Trace files are used to store tracing data.

Note

Starting release Cisco IOS XE Release 3.14 and later, logs are stored in compressed format.

The logs in the bootflash are stored in compressed format with .gz file extension. Use the archiving tools such as gunzip, gzip, 7-zip to extract the files.

- If the system reloads unexpectedly, some of the files may not be in compressed format.
- Extraction of log files may lead to time hogs or CPU logs. We recommend to perform this by copying the files to the PC.
- Extraction of files cannot be performed at the IOS prompt.
- Log files not handled by the bootflash trace are not stored in the compressed format (for example, system_shell_R*.log).

The contents of trace files are useful for the following purposes:

- Troubleshooting—If a chassis is having an issue, the trace file output may provide information that is useful for locating and solving the problem. Trace files can almost always be accessed through diagnostic mode even if other system issues are occurring.
• Debugging—The trace file outputs can help users get a more detailed view of system actions and operations.

How Tracing Works

The tracing function logs the contents of internal events on the chassis. Trace files with all trace output for a module are periodically created and updated and are stored in the trace log directory. Trace files can be erased from this directory to recover space on the file system without impacting system performance.

The most recent trace information for a specific module can be viewed using the show platform software trace message privileged EXEC and diagnostic mode command. This command can be entered to gather trace log information even during an IOS failure because it is available in diagnostic mode.

Trace files can be copied to other destinations using most file transfer functions (such as FTP, TFTP, and so on) and opened using a plaintext editor.

Tracing cannot be disabled on the chassis. Trace levels, however, which set the message types that generate trace output, are user-configurable and can be set using the set platform software trace command. If a user wants to modify the trace level to increase or decrease the amount of trace message output, the user should set a new tracing level using the set platform software trace command. Trace levels can be set by process using the all-modules keyword within the set platform software trace command, or by module within a process. See the set platform software trace command reference for more information on this command, and the Tracing Levels, on page 238 of this document for additional information on tracing levels.

Tracing Levels

Tracing levels determine how much information about a module should be stored in the trace buffer or file. Table 22: Tracing Levels and Descriptions, on page 238 shows all of the trace levels that are available and provides descriptions of what types of messages are displayed with each tracing level. Table 22: Tracing Levels and Descriptions

<table>
<thead>
<tr>
<th>Trace Level</th>
<th>Level Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>0</td>
<td>The message is regarding an issue that makes the system unusable.</td>
</tr>
<tr>
<td>Alert</td>
<td>1</td>
<td>The message is regarding an action that must be taken immediately.</td>
</tr>
<tr>
<td>Critical</td>
<td>2</td>
<td>The message is regarding a critical condition. This is the default setting.</td>
</tr>
<tr>
<td>Error</td>
<td>3</td>
<td>The message is regarding a system error.</td>
</tr>
<tr>
<td>Warning</td>
<td>4</td>
<td>The message is regarding a system warning</td>
</tr>
<tr>
<td>Notice</td>
<td>5</td>
<td>The message is regarding a significant issue, but the router is still working normally.</td>
</tr>
<tr>
<td>Informational</td>
<td>6</td>
<td>The message is useful for informational purposes only.</td>
</tr>
<tr>
<td>Debug</td>
<td>7</td>
<td>The message provides debug-level output.</td>
</tr>
</tbody>
</table>
Trace level settings are leveled, meaning that every setting will contain all messages from the lower setting plus the messages from its own setting. For instance, setting the trace level to 3 (error) ensures that the trace file will contain all output for the 0 (emergencies), 1 (alerts), 2 (critical), and 3 (error) settings. Setting the trace level to 4 (warning) will ensure that all trace output for the specific module will be included in that trace file.

The default tracing level for every module on the chassis is notice.

All trace levels are not user-configurable. Specifically, the alert, critical, and notice tracing levels cannot be set by users. If you wish to trace these messages, set the trace level to a higher level that will collect these messages.

When setting trace levels, it is also important to remember that the setting is not done in a configuration mode, so trace level settings are returned to their defaults after every router reload.

Caution

Setting tracing of a module to the debug level or higher can have a negative performance impact. Setting tracing to this level or higher should be done with discretion.

Caution

Setting a large number of modules to high tracing levels can severely degrade performance. If a high level of tracing is needed in a specific context, it is almost always preferable to set a single module on a higher tracing level rather than setting multiple modules to high tracing levels.

Viewing a Tracing Level

By default, all modules on the chassis are set to notice. This setting will be maintained unless changed by a user.

To see the tracing level for any module on the chassis, enter the `show platform software trace level` command in privileged EXEC or diagnostic mode.

In the following example, the `show platform software trace level` command is used to view the tracing levels of the Forwarding Manager processes on the active RSP:

```
Router# show platform software trace level forwarding-manager rp active
Module Name                        Trace Level
-----------------------------------------------
acl                                Notice
binos                              Notice
binos/brand                        Notice
bipc                                Notice
```

Cisco ASR 900 Router Series Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
<table>
<thead>
<tr>
<th>bsignal</th>
<th>Notice</th>
</tr>
</thead>
<tbody>
<tr>
<td>btrace</td>
<td>Notice</td>
</tr>
<tr>
<td>cce</td>
<td>Notice</td>
</tr>
<tr>
<td>cdllib</td>
<td>Notice</td>
</tr>
<tr>
<td>cef</td>
<td>Notice</td>
</tr>
<tr>
<td>chasfs</td>
<td>Notice</td>
</tr>
<tr>
<td>chasutil</td>
<td>Notice</td>
</tr>
<tr>
<td>erspan</td>
<td>Notice</td>
</tr>
<tr>
<td>ess</td>
<td>Notice</td>
</tr>
<tr>
<td>ether-channel</td>
<td>Notice</td>
</tr>
<tr>
<td>evlib</td>
<td>Notice</td>
</tr>
<tr>
<td>evutil</td>
<td>Notice</td>
</tr>
<tr>
<td>file_alloc</td>
<td>Notice</td>
</tr>
<tr>
<td>fman_rp</td>
<td>Notice</td>
</tr>
<tr>
<td>fps</td>
<td>Notice</td>
</tr>
<tr>
<td>fw</td>
<td>Notice</td>
</tr>
<tr>
<td>icmp</td>
<td>Notice</td>
</tr>
<tr>
<td>interfaces</td>
<td>Notice</td>
</tr>
<tr>
<td>iosd</td>
<td>Notice</td>
</tr>
<tr>
<td>ipc</td>
<td>Notice</td>
</tr>
<tr>
<td>ipclog</td>
<td>Notice</td>
</tr>
<tr>
<td>iphc</td>
<td>Notice</td>
</tr>
<tr>
<td>ipsec</td>
<td>Notice</td>
</tr>
<tr>
<td>mgmte-acl</td>
<td>Notice</td>
</tr>
<tr>
<td>mlp</td>
<td>Notice</td>
</tr>
<tr>
<td>mqipc</td>
<td>Notice</td>
</tr>
<tr>
<td>nat</td>
<td>Notice</td>
</tr>
<tr>
<td>nbar</td>
<td>Notice</td>
</tr>
<tr>
<td>netflow</td>
<td>Notice</td>
</tr>
<tr>
<td>om</td>
<td>Notice</td>
</tr>
<tr>
<td>peer</td>
<td>Notice</td>
</tr>
<tr>
<td>qos</td>
<td>Notice</td>
</tr>
<tr>
<td>route-map</td>
<td>Notice</td>
</tr>
<tr>
<td>sbc</td>
<td>Notice</td>
</tr>
<tr>
<td>services</td>
<td>Notice</td>
</tr>
<tr>
<td>sw_wdog</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_acl_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_acl_db_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_cd1core_message</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_cef_config_common_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_cef_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_dpidb_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_fman_rp_comm_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_fman_rp_message</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_fw_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_hapi_tdl_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_icmp_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_ip_options_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_ipc_ack_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_ipsec_db_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_mcp_comm_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_mlp_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_mlp_db_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl om_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl ui_message</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl ui_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl urpf_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdllib</td>
<td>Notice</td>
</tr>
<tr>
<td>trans avl</td>
<td>Notice</td>
</tr>
<tr>
<td>uihandler</td>
<td>Notice</td>
</tr>
<tr>
<td>uipeer</td>
<td>Notice</td>
</tr>
<tr>
<td>uistatus</td>
<td>Notice</td>
</tr>
<tr>
<td>urpf</td>
<td>Notice</td>
</tr>
</tbody>
</table>
Setting a Tracing Level

To set a tracing level for any module on the chassis, or for all modules within a process, enter the `set platform software trace` privileged EXEC and diagnostic mode command.

In the following example, the trace level for the ACL module in the Forwarding Manager of the ESP processor in slot 0 is set to info.

```
set platform software trace forwarding-manager F0 acl info
```

See the `set platform software trace` command reference for additional information about the options for this command.

Viewing the Content of the Trace Buffer

To view the trace messages in the trace buffer or file, enter the `show platform software trace message` privileged EXEC and diagnostic mode command.

In the following example, the trace messages for the Host Manager process in Route Switch Processor slot 0 are viewed using the `show platform software trace message` command:

```
Router# show platform software trace message host-manager R0
08/23 12:09:14.408 [uipeer]: (info): Looking for a ui_req msg
08/23 12:09:14.408 [uipeer]: (info): Start of request handling for con 0x100a61c8
08/23 12:09:14.399 [uipeer]: (info): Accepted connection for 14 as 0x100a61c8
08/23 12:09:14.399 [uipeer]: (info): Received new connection 0x100a61c8 on descriptor 14
08/23 12:09:14.398 [uipeer]: (info): Going to send a status update to the shell manager in slot 0
08/23 11:53:57.440 [uipeer]: (info): Going to send a status update to the shell manager in slot 0
```
Viewing the Content of the Trace Buffer
CHAPTER 15

Configuring and Monitoring Alarm

This chapter describes monitoring alarms, alarms filtering support and configuring external alarms for fan tray alarm port.

This chapter includes the following sections:
- Monitoring Alarms, on page 243
- Configuring External Alarm Trigger, on page 248
- Alarm Filtering Support, on page 251

Monitoring Alarms

Once hardware is installed and operational, use alarms to monitor hardware status on a daily basis.

The routers are designed to send alarm notifications when problems are detected. Network administrators do not need to use show commands to poll devices on a routine basis and can monitor the network remotely. However, network administrators can perform onsite monitoring if they so choose.

Use `snmp-server enable traps alarms <severity>` command to enable the entity related Traps.

The default severity level is informational, which shows all alarms. Severity levels are defined as the following:

- 1—Critical. The condition affects service.
- 2—Major. Immediate action is needed.
- 3—Minor. Minor warning conditions.
- 4—Informational. No action is required. This is the default.

The entity notifications `ceAlarmAsserted` and `ceAlarmCleared` are used to report the condition for e.g. when a physical entity asserted or cleared an alarm.

Note

Effective from Cisco IOS XE Everest 16.6.1, on RSP3 module, alarm notification is enabled on 900 watts DC power supply. There are 2 input feeds for 900 watts DC power supply, if one of the input voltage is lesser than the operating voltage, critical alarm is generated for that particular feed and clears (stops) once the voltage is restored but the power supply state remains in OK state as the other power supply is operationally up.
Network Administrator Checks Console or Syslog for Alarm Messages

The network administrator can monitor alarm messages by reviewing alarm messages sent to the system console or to a syslog.

Enabling the Logging Alarm Command

The logging alarm command must be enabled for the system to send alarm messages to a logging device, such as the console or a syslog. This command is not enabled by default.

You can specify the severity level of alarm to log. All alarms at and above the specified threshold generate alarm messages. For example, the following command sends only critical alarm messages to logging devices:

```
Router(config)# logging alarm critical
```

If alarm severity is not specified, alarm messages for all severity levels are sent to logging devices.

Examples of Alarm Messages

The following alarm messages are examples of alarm messages that are sent to the console when a SPA is removed without first doing a graceful deactivation of the SPA. The alarm is cleared when the SPA is re-inserted.

SPA REMOVED

May 18 14:50:48.540: %TRANSCEIVER-6-REMOVED: SIP0: iomd: Transceiver module removed from TenGigabitEthernet0/0/1

May 18 14:50:49.471: %IOSXE_OIR-6-REMSPA: SPA removed from subslot 0/0, interfaces disabled

May 18 14:50:49.490: %SPA_OIR-6-OFFLINECARD: SPA (A900-IMA2Z) offline in subslot 0/0

SPA RE-INSERTED

May 18 14:52:11.803: %IOSXE_OIR-6-INSSPA: SPA inserted in subslot 0/0

May 18 14:52:52.807: %SPA_OIR-6-ONLINECARD: SPA (A900-IMA2Z) online in subslot 0/0

May 18 14:52:53.543: %TRANSCEIVER-6-INSERTED: SIP0: iomd: transceiver module inserted in TenGigabitEthernet0/0/0

May 18 14:52:53.551: %TRANSCEIVER-6-INSERTED: SIP0: iomd: transceiver module inserted in TenGigabitEthernet0/0/1

May 18 14:52:54.780: %LINK-3-UPDOWN: Interface TenGigabitEthernet0/0/0, changed state to down

May 18 14:52:54.799: %LINK-3-UPDOWN: Interface TenGigabitEthernet0/0/1, changed state to down

May 18 14:53:06.578: %LINEPROTO-5-UPDOWN: Line protocol on Interface TenGigabitEthernet0/0/1, changed state to up

May 18 14:53:08.482: %LINK-3-UPDOWN: Interface TenGigabitEthernet0/0/1, changed state to up

ALARMS for Router

To view the alarms on router, use the show facility-alarm status command. The example shows a critical alarm for Power supply along with the description:

SPA Removed
Router# show facility-alarm status
System Totals Critical: 22 Major: 0 Minor: 0
Source Time Severity Description [Index]
------ ------ -------- -------------------
subslot 0/0 May 18 2016 14:50:49 CRITICAL Active Card Removed OIR
[0]
GigabitEthernet0/1/0 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
GigabitEthernet0/1/1 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
GigabitEthernet0/1/2 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
GigabitEthernet0/1/5 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
GigabitEthernet0/1/6 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
GigabitEthernet0/1/7 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
gxvr container 0/2/0 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
gxvr container 0/2/2 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
gxvr container 0/2/4 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
GigabitEthernet0/2/6 May 11 2016 18:54:25 CRITICAL Physical Port Link Down [1]
SONET 0/3/0 May 11 2016 18:54:25 INFO Physical Port Administrative State Down [36]
xcvr container 0/3/1 May 11 2016 18:53:44 INFO Transceiver Missing [0]
xcvr container 0/3/2 May 11 2016 18:53:44 INFO Transceiver Missing [0]
xcvr container 0/3/3 May 11 2016 18:53:44 INFO Transceiver Missing [0]
xcvr container 0/4/0 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
xcvr container 0/4/1 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
xcvr container 0/4/2 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
xcvr container 0/4/4 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
xcvr container 0/4/5 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
xcvr container 0/4/6 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
xcvr container 0/4/7 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
GigabitEthernet0/4/3 May 11 2016 18:54:25 CRITICAL Physical Port Link Down [1]
xcvr container 0/4/8 May 11 2016 18:54:25 CRITICAL Physical Port Link Down [35]

SPA Re-Inserted

Router# show facility-alarm status
System Totals Critical: 22 Major: 0 Minor: 0
Source Time Severity Description [Index]
------ ------ -------- -------------------
TenGigabitEthernet0/0/0 May 18 2016 14:53:02 CRITICAL Physical Port Link Down
[35]
GigabitEthernet0/1/0 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
GigabitEthernet0/1/1 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
GigabitEthernet0/1/2 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
GigabitEthernet0/1/5 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [3]
GigabitEthernet0/1/6 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
GigabitEthernet0/1/7 May 11 2016 18:53:36 CRITICAL Physical Port Link Down [1]
xcvr container 0/2/0 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
dxvr container 0/2/2 May 11 2016 18:54:25 CRITICAL Transceiver Missing - Link
Down [1]
To view critical alarms specifically, use the show facility-alarm status critical command:

```
Router# show facility-alarm status critical
```

<table>
<thead>
<tr>
<th>Source</th>
<th>Time</th>
<th>Severity</th>
<th>Description [Index]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TenGigabitEthernet0/0/0</td>
<td>May 18 2016 14:53:02</td>
<td>CRITICAL</td>
<td>Physical Port Link Down [35]</td>
</tr>
<tr>
<td>GigabitEthernet0/0/1</td>
<td>May 11 2016 18:53:36</td>
<td>CRITICAL</td>
<td>Physical Port Link Down [1]</td>
</tr>
<tr>
<td>GigabitEthernet0/1/1</td>
<td>May 11 2016 18:53:36</td>
<td>CRITICAL</td>
<td>Physical Port Link Down [1]</td>
</tr>
<tr>
<td>GigabitEthernet0/1/2</td>
<td>May 11 2016 18:53:36</td>
<td>CRITICAL</td>
<td>Physical Port Link Down [1]</td>
</tr>
<tr>
<td>GigabitEthernet0/1/5</td>
<td>May 11 2016 18:53:36</td>
<td>CRITICAL</td>
<td>Physical Port Link Down [1]</td>
</tr>
<tr>
<td>GigabitEthernet0/1/6</td>
<td>May 11 2016 18:53:36</td>
<td>CRITICAL</td>
<td>Physical Port Link Down [1]</td>
</tr>
<tr>
<td>GigabitEthernet0/1/7</td>
<td>May 11 2016 18:53:36</td>
<td>CRITICAL</td>
<td>Physical Port Link Down [1]</td>
</tr>
<tr>
<td>xcvr container 0/2/0</td>
<td>May 11 2016 18:54:25</td>
<td>CRITICAL</td>
<td>Transceiver Missing - Link [1]</td>
</tr>
<tr>
<td>xcvr container 0/2/2</td>
<td>May 11 2016 18:54:25</td>
<td>CRITICAL</td>
<td>Transceiver Missing - Link [1]</td>
</tr>
<tr>
<td>xcvr container 0/2/3</td>
<td>May 11 2016 18:54:25</td>
<td>CRITICAL</td>
<td>Transceiver Missing - Link [1]</td>
</tr>
<tr>
<td>xcvr container 0/2/5</td>
<td>May 11 2016 18:54:25</td>
<td>CRITICAL</td>
<td>Transceiver Missing - Link [1]</td>
</tr>
<tr>
<td>GigabitEthernet0/2/6</td>
<td>May 11 2016 18:54:25</td>
<td>CRITICAL</td>
<td>Physical Port Link Down [1]</td>
</tr>
<tr>
<td>xcvr container 0/4/0</td>
<td>May 11 2016 18:54:25</td>
<td>CRITICAL</td>
<td>Transceiver Missing - Link [1]</td>
</tr>
<tr>
<td>xcvr container 0/4/1</td>
<td>May 11 2016 18:54:25</td>
<td>CRITICAL</td>
<td>Transceiver Missing - Link [1]</td>
</tr>
<tr>
<td>GigabitEthernet0/4/3</td>
<td>May 11 2016 18:54:25</td>
<td>CRITICAL</td>
<td>Physical Port Link Down [1]</td>
</tr>
<tr>
<td>xcvr container 0/4/5</td>
<td>May 11 2016 18:54:25</td>
<td>CRITICAL</td>
<td>Transceiver Missing - Link [1]</td>
</tr>
</tbody>
</table>

```
Cisco ASR 900 Router Series Configuration Guide, Cisco IOS XE Gibraltar 16.11.x

246
To view the operational state of the major hardware components on the router, use the `show platform diag` command. This example shows the Power supply P0 has failed:

```
Router# show platform diag
Chassis type: ASR903
Slot: 1, A900-RSP2A-128
 Running state : ok
 Internal state : online
 Internal operational state : ok
 Physical insert detect time : 00:02:33 (00:57:31 ago)
 Software declared up time : 00:03:41 (00:56:24 ago)
 CPLD version : 15092360
 Firmware version : 15.4(3r)S2
Sub-slot: 0/0, A900-IMA2Z
 Operational status : ok
 Internal state : inserted
 Physical insert detect time : 00:04:46 (00:55:19 ago)
 Logical insert detect time : 00:04:46 (00:55:19 ago)
Sub-slot: 0/1, A900-IMA8T
 Operational status : ok
 Internal state : inserted
 Physical insert detect time : 00:04:46 (00:55:19 ago)
 Logical insert detect time : 00:04:46 (00:55:19 ago)
Sub-slot: 0/2, A900-IMA8S
 Operational status : ok
 Internal state : inserted
 Physical insert detect time : 00:04:46 (00:55:19 ago)
 Logical insert detect time : 00:04:46 (00:55:19 ago)
Sub-slot: 0/3, A900-IMA4OS
 Operational status : ok
 Internal state : inserted
 Physical insert detect time : 00:04:46 (00:55:18 ago)
 Logical insert detect time : 00:04:46 (00:55:18 ago)
Sub-slot: 0/4, A900-IMA8S1Z
 Operational status : ok
 Internal state : inserted
 Physical insert detect time : 00:04:46 (00:55:18 ago)
 Logical insert detect time : 00:04:46 (00:55:18 ago)
Sub-slot: 0/5, A900-IMASER14A/S
 Operational status : ok
 Internal state : inserted
 Physical insert detect time : 00:04:46 (00:55:18 ago)
 Logical insert detect time : 00:04:46 (00:55:18 ago)
Slot: R0, A900-RSP2A-128
 Running state : ok, standby
 Internal state : online
 Internal operational state : ok
 Physical insert detect time : 00:24:37 (00:35:28 ago)
 Software declared up time : 00:31:28 (00:28:36 ago)
 CPLD version : 15092360
 Firmware version : 15.4(3r)S2
Slot: R1, A900-RSP2A-128
 Running state : ok, active
 Internal state : online
 Internal operational state : ok
 Physical insert detect time : 00:02:33 (00:57:31 ago)
 Software declared up time : 00:02:33 (00:57:31 ago)
```
Reviewing and Analyzing Alarm Messages

To facilitate the review of alarm messages, you can write scripts to analyze alarm messages sent to the console or syslog. Scripts can provide reports on events such as alarms, security alerts, and interface status.

Syslog messages can also be accessed through Simple Network Management Protocol (SNMP) using the history table defined in the CISCO-SYSLOG-MIB.

Configuring External Alarm Trigger

For Cisco ASR 902 Series Router, the fan tray includes an alarm port that maps to two (0 and 1) dry contact alarm inputs. For Cisco ASR 903 Series Router, the fan tray includes an alarm port that maps to four (0 - 3) dry contact alarm inputs.

The pins on the alarm port are passive signals and can be configured as Open (an alarm generated when current is interrupted) or Closed (an alarm is generated when a circuit is established) alarms. You can configure each alarm input as critical, major, or minor. An alarm triggers alarm LEDs and alarm messages. The relay contacts can be controlled through any appropriate third-party relay controller. The open/close configuration is an option controlled in IOS.
Approaches for Monitoring Hardware Alarms

Onsite Network Administrator Responds to Audible or Visual Alarms

An external element can be connected to a power supply using the DB-25 alarm connector on the power supply. The external element is a DC light bulb for a visual alarm and a bell for an audible alarm.

If an alarm illuminates the CRIT, MIN, or MAJ LED on the Cisco ASR 900 Series Route Processor (RP) faceplate, and a visual or audible alarm is wired, the alarm also activates an alarm relay in the power supply DB-25 connector. The bell rings or the light bulb flashes.

Clearing Audible and Visual Alarms

To clear an audible alarm, do one of the following:

- Press the Audible Cut Off button on the RP faceplate.

To clear a visual alarm, you must resolve the alarm condition. For example, if a critical alarm LED is illuminated because an active SPA was removed without a graceful deactivation of the SPA, the only way to resolve that alarm is to replace the SPA.

Note

The clear facility-alarm command is not supported. The clear facility-alarm command does not clear an alarm LED on the RP faceplate or turn off the DC light bulb.

How to Configure External Alarms

Procedure

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>alarm-contact contact-number description</td>
<td>(Optional) Configures a description for the alarm contact number.</td>
</tr>
<tr>
<td></td>
<td>string</td>
<td>• The contact-number can be from 1 to 4.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>• The description string can be up to 80 alphanumeric characters in</td>
</tr>
<tr>
<td></td>
<td>Router(config)#alarm-contact 2</td>
<td>length and is included in any generated system messages</td>
</tr>
<tr>
<td></td>
<td>description door sensor</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
|        | `alarm-contact {contact-number | all`  
|        | `{severity {critical | major | minor}} | trigger {closed | open}}`  
|        | Example:         |         |
|        | `Router(config)#alarm-contact 2 severity major` |         |

**Example:**

Router(config)#alarm-contact 2 severity major

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>exit</code></td>
<td>Exits the configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

Router#exit

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>show facility-alarm status</code></td>
<td>Displays configured alarms status.</td>
</tr>
</tbody>
</table>

**Example:**

Router#show facility-alarm status

<table>
<thead>
<tr>
<th>Source</th>
<th>Time</th>
<th>Severity</th>
<th>Description [Index]</th>
</tr>
</thead>
<tbody>
<tr>
<td>subslot 0/0</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>15:19:55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subslot 0/1</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>15:19:12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subslot 0/2</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>15:16:59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subslot 0/3</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>15:18:10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subslot 0/5</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>15:16:11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subslot 0/6</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>15:15:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subslot 0/7</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>15:14:22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subslot 0/8</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>15:10:33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subslot 0/9</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>12:00:43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>subslot 0/10</td>
<td>Sep 21 2016</td>
<td>CRITICAL</td>
<td>Active Card Removed OIR</td>
</tr>
<tr>
<td>Alarm [0]</td>
<td>15:11:49</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alarm Filtering Support

The Alarm Filtering Support in the Cisco Entity Alarm MIB feature implements the alarm filter profile capability defined in CISCO-ENTITY-ALARM-MIB. Also implemented are configuration commands to control the severity of syslog messages and SNMP notifications triggered by the alarms.

Information About Alarm Filtering Support

Overview of Alarm Filtering Support

To configure alarm filtering in the Cisco Entity Alarm MIB, you should understand the following concepts:

CISCO-ENTITY-ALARM-MIB

The CISCO-ENTITY-ALARM-MIB provides a management client with the capability to monitor alarms generated by physical entities in a network that are identified in the entPhysicalTable of the Entity-MIB (RFC 2737). Examples of these physical entities are chassis, fans, modules, ports, slots, and power supplies. The management client interfaces with an SNMP agent to request access to objects defined in the CISCO-ENTITY-ALARM-MIB.

ceAlarmGroup

The ceAlarmGroup is a group in the CISCO-ENTITY-ALARM-MIB that defines objects that provide current statuses of alarms and the capability to instruct an agent to stop (cut off) signaling for any or all external audible alarms.

Following are the objects in ceAlarmGroup:

- ceAlarmCriticalCount
- ceAlarmMajorCount
- ceAlarmMinorCount
- ceAlarmCutoff
- ceAlarmFilterProfile
- ceAlarmSeverity
- ceAlarmList
The `ceAlarmFilterProfileTable` filters alarms according to configured alarm lists. The filtered alarms are then sent out as SNMP notifications or syslog messages, based on the alarm list enabled for each alarm type. This table is defined in the CISCO-ENTITY-ALARM-MIB and implemented in the group ceAlarmGroup.

An alarm filter profile controls the alarm types that an agent monitors and signals for a corresponding physical entity. The `ceAlarmFilterProfile` object holds an integer value that uniquely identifies an alarm filter profile associated with a corresponding physical entity. When the value is zero, the agent monitors and signals all alarms associated with the corresponding physical entity.

This table contains the history of `ceAlarmAsserted` and `ceAlarmCleared` traps generated by the agent. Each entry to the table will have physical index from `entPhysicalTable` and the severity of the alarm.

The `ceAlarmAsserted` and `ceAlarmCleared` trap varbinds are mostly from this table and the description from `ceAlarmDescrTable`.

This table contains a description for each alarm type defined by each vendor type employed by the system. This table has the list of possible severity levels and the description for the physical entity, Object "ceAlarmDescrSeverity" indicates the severity of an alarm (1 to 4 as above).

This table specifies alarm control and status information related to each physical entity contained by the system, including the alarms currently being asserted by each physical entity capable of generating alarms.

**Prerequisites for Alarm Filtering Support**

- SNMP is configured on your routing devices.
- Familiarity with the ENTITY-MIB and the CISCO-ENTITY-ALARM-MIB.

**Restrictions for Alarm Filtering Support**

- The CISCO-ENTITY-ALARM-MIB supports reporting of alarms for physical entities only, including chassis, slots, modules, ports, power supplies, and fans. In order to monitor alarms generated by a physical entity, it must be represented by a row in the `entPhysicalTable`.

**How to Configure Alarm Filtering for Syslog Messages and SNMP Notifications**

**Configuring Alarm Filtering for Syslog Messages**

This task describes how to configure the alarm severity threshold for generating syslog messages. When you use this command, the alarm severity threshold is included in the running configuration and automatically applied when the configuration is reloaded.

```
enable
configure terminal
```
logging alarm 2
show facility-alarm status

Configuring Alarm Filtering for SNMP Notifications

This task describes how to configure the alarm severity threshold for generating SNMP notifications. When you use this command, the alarm severity threshold is included in the running configuration and automatically applied when the configuration is reloaded.

enable
configure terminal
snmp-server enable traps alarms 2
show facility-alarm status

Configuration Examples for Alarm Filtering Support

Configuring Alarm Filtering for Syslog Messages: Example

The following example shows how to configure an alarm filter for syslog messages:

```
Router# enable
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# snmp-server enable traps alarms 2
Router(config)# exit
Router# show facility-alarm status
```

```
System Totals Critical: 2 Major: 1 Minor: 0
Source Time Severity Description [Index]
------- ------ -------- -------------------
Power Supply Bay 0 Jun 07 2016 13:36:49 CRITICAL Power Supply/FAN Module Missing [0]
xcvr container 0/5/0 Jun 07 2016 13:37:43 CRITICAL Transceiver Missing - Link Down [1]
xcvr container 0/5/1 Jun 07 2016 13:37:43 INFO Transceiver Missing [0]
xcvr container 0/5/2 Jun 07 2016 13:37:43 INFO Transceiver Missing [0]
xcvr container 0/5/3 Jun 07 2016 13:37:43 INFO Transceiver Missing [0]
xcvr container 0/5/4 Jun 07 2016 13:37:43 INFO Transceiver Missing [0]
xcvr container 0/5/5 Jun 07 2016 13:37:43 INFO Transceiver Missing [0]
xcvr container 0/5/6 Jun 07 2016 13:37:43 INFO Transceiver Missing [0]
xcvr container 0/5/7 Jun 07 2016 13:37:43 INFO Transceiver Missing [0]
```

Configuring Alarm Filtering for SNMP Notifications: Example

The following example shows how to configure an alarm filter for SNMP notifications:

```
Router# enable
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# snmp-server enable traps alarms 2
Router(config)# exit
Router# show facility-alarm status
```
Configuring Alarm Filtering for SNMP Notifications: Example
OTN Wrapper Overview

Optical Transport Network (OTN) Wrapper feature provides robust transport services that leverage many of the benefits such as resiliency and performance monitoring, while adding enhanced multi-rate capabilities in support of packet traffic, plus the transparency required by Dense Wavelength Division Multiplexing (DWDM) networks. OTN is the ideal technology to bridge the gap between next generation IP and legacy Time Division Multiplexing (TDM) networks by acting as a converged transport layer for newer packet-based and existing TDM services. OTN is defined in ITU G.709 and allows network operators to converge networks through seamless transport of the numerous types of legacy protocols, while providing the flexibility required to support future client protocols.

OTN Wrapper feature is supported on the following interface modules:

- 8-port 10 Gigabit Ethernet Interface Module (8x10GE) (A900-IMA8Z) - The encapsulation type is OTU1e and OTU2e.
- 2-port 40 Gigabit Ethernet QSFP Interface Module (2x40GE) (A900-IMA2F) - The encapsulation type is OTU3.
- 1-port 100 Gigabit Ethernet Interface Module (1X100GE) (A900-IMA1C) - The encapsulation type is OTU4.

The chassis acts as an aggregator for ethernet, TDM, and SONET traffic to connect to an OTN network and vice versa. The ports on the interface modules are capable of OTN functionality. The OTN controller mode enables the IPoDWDM technology in the interface modules. The OTN Wrapper encapsulates 10G LAN, 40G LAN, and 100G LAN into the corresponding OTU1e or OTU2e, OTU3, and OTU4 containers, respectively. This enables the ports of the interface modules to work in layer 1 optical mode in conformance with standard G.709.
The key sections of the OTN frame are the Optical Channel Transport Unit (OTU) overhead section, Optical Channel Data Unit (ODU) overhead section, Optical Channel Payload Unit (OPU) overhead section, OPU payload section, and Forward Error Correction (FEC) overhead section. The network routes these OTN frames across the network in a connection-oriented way. The Overhead carries the information required to identify, control and manage the payload, which maintains the deterministic quality. The Payload is simply the data transported across the network, while the FEC corrects errors when they arrive at the receiver. The number of correctable errors depends on the FEC type.

- Advantages of OTN, on page 257
- ODU and OTU, on page 257
- OTU1e and OTU 2e Support on 8x10GE Interface Module, on page 257
- Deriving OTU1e and OTU2e Rates, on page 258
- OTU3 Support in 2x40GE Interface Module, on page 259
- Supported Transceivers, on page 259
- OTN Specific Functions, on page 259
- Standard MIBS, on page 260
- Restrictions for OTN, on page 260
- DWDM Provisioning, on page 261
- Configuring Transport Mode in 8x10GE and 2x40GE Interface Modules, on page 261
- OTN Alarms, on page 264
- OTN Threshold, on page 267
- Configuring OTU Alerts, on page 269
- Configuring ODU Alerts, on page 269
- Configuring ODU Alerts, on page 269
- Loopback, on page 271
- Configuring Loopback, on page 271
- SNMP Support, on page 275
- Performance Monitoring, on page 276
- Troubleshooting Scenarios, on page 283
- Associated Commands, on page 283
Advantages of OTN

The following are the advantages of OTN:

• Provides multi-layer performance monitoring and enhanced maintenance capability for signals traversing multi-operator networks.

• Allows Forward Error Correction (FEC) to improve the system performance.

• Provides enhanced alarm handling capability.

• Insulates the network against uncertain service mix by providing transparent native transport of signals encapsulating all client-management information.

• Performs multiplexing for optimum capacity utilization, thereby improving network efficiency.

• Enables network scalability as well as support for dedicated Ethernet services with service definitions.

ODU and OTU

Optical Channel Transport Unit (OTU) and Optical Channel Data Unit (ODU) are the two digital layer networks. All client signals are mapped into the optical channel via the ODU and OTU layer networks.

OTU

The OTU section is composed of two main sections: the Frame Alignment section and the Section Monitoring (SM) section. The OTU Overhead (OH) provides the error detection correction as well as section-layer connection and monitoring functions on the section span. The OTU OH also includes framing bytes, enabling receivers to identify frame boundaries. For more information, see G.709 document.

ODU

The ODU section is an internal element allowing mapping or switching between different rates, which is important in allowing operators the ability to understand how the end user pipe is transferred through to the higher network rates. The ODU OH contains path overhead bytes allowing the ability to monitor the performance, fault type and location, generic communication, and six levels of channel protection based on Tandem Connection Monitoring (TCM). For more information, see G.709 document.

OTU1e and OTU 2e Support on 8x10GE Interface Module

The OTU1e and OTU2e are mapping mechanisms to map a client 10G Base-R signal to OTN frames transparently as per ITU-T G series Supplement 43 specification. Both these modes are over-clocked OTN modes. These mechanisms provide real bit transparency of 10 GbE LAN signals and are useful for deployment of 10G services.

The OTU1e and OTU2e are inherently intra-domain interfaces (IaDI) and are generally applicable only to a single vendor island within an operator's network to enable the use of unique optical technology. The OTU1e and OTU2e are not standard G.709 bit-rate signals and they do not interwork with the standard mappings of Ethernet using GFP-F. These two over-clocked mechanisms do not interwork with each other. As a result, such signals are only deployed in a point-to-point configuration between equipment that implements the same mapping.
The standard 10 GbE LAN has a data rate of 10.3125 Gbps. In the OTU1e and OTU2e mapping schemes, the full 10.3125 Gbit/s is transported including the 64B/66B coded information, IPG, MAC FCS, preamble, start-of-frame delimiter (SFD) and the ordered sets (to convey fault information). So, the effective OTU2e and OTU1e rates are:

- OTU1e: 11.0491 Gbits/s +/- 100ppm
- OTU2e: 11.0957 Gbits/s +/- 100ppm

The 10GBase-R client signal with fixed stuff bytes is accommodated into an OPU-like signal, then into an ODU-like signal, and further into an OTU-like signal. These signals are denoted as OPU2e, ODU2e and OTU2e, respectively. The OTU1e does not add 16 columns of fixed stuff bytes and hence overall data rate is relatively lesser at 11.0491 Gbps as compared to OTU2e which is 11.0957 Gbps.

The following table shows the standard OTU rates:

<table>
<thead>
<tr>
<th>G.709 Interface</th>
<th>Line Rate</th>
<th>Corresponding Ethernet Rate</th>
<th>Line Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTU-1e</td>
<td>11.0491 Gbit/s without stuffing bits</td>
<td>10 Gig E-LAN</td>
<td>10.3125 Gbit/s</td>
</tr>
<tr>
<td>OTU-2e</td>
<td>11.0957 Gbit/s without stuffing bits</td>
<td>10 Gig E-LAN</td>
<td>10.3125 Gbit/s</td>
</tr>
<tr>
<td>OTU-3</td>
<td>43.018 Gbit/s</td>
<td>STM-256 or OC-768</td>
<td>39.813 Gbit/s</td>
</tr>
</tbody>
</table>

### Deriving OTU1e and OTU2e Rates

A standard OTN frame consists of 255 16-column blocks and the payload rate is 9953280 Kbit/s. This is because the overhead and stuffing in the OTN frames happen at a granularity of 16-column blocks. Thus, OPU payload occupies \((3842\times16)/16=237\) blocks. The ODU occupies 239 blocks and the OTU (including FEC) occupies 255 blocks. Hence, the multiplication factor in the G.709 spec is specified using numbers like 237, 238, 255.

Since OPU2e uses 16 columns that are reserved for stuffing and also for payload, the effective OPU2e frequency is:

- OPU2e = \(\frac{238}{237} \times 10312500\) Kbit/s = 10.356012 Gbit/s
- ODU2e = \(\frac{239}{237} \times 10312500\) Kbit/s = 10.399525 Gbit/s
- OTU2e = \(\frac{255}{237} \times 10312500\) Kbit/s = 11.095727 Gbit/s

Since OPU1e uses 16 columns that are reserved for stuffing and also for payload, the effective OPU1e frequency is:

- OPU1e = \(\frac{238}{238} \times 10312500\) Kbit/s = 10.3125 Gbit/s
- ODU1e = \(\frac{239}{238} \times 10312500\) Kbit/s = 10.355829 Gbit/s
- OTU1e = \(\frac{255}{238} \times 10312500\) Kbit/s = 11.049107 Gbit/s
OTU3 Support in 2x40GE Interface Module

When 40GbE LAN is transported over OTN, there is no drop in line rate when the LAN client is mapped into the OPU3 using the standard CBR40G mapping procedure as specified in G.709 clause 17.2.3. The 40G Ethernet signal (41.25 Gbit/s) uses 64B/66B coding making it slightly larger than the OPU3 payload rate that is 40.15 Gbit/s. Hence, to transport 40G Ethernet service over ODU3, the 64B/66B blocks are transcoded into 1024B/1027B block code to reduce their size. The resulting 40.117 Gbit/s transcoded stream is then mapped in standard OPU3.

Supported Transceivers

The OTN wrapper feature works with the standard transceiver types that are supported for the LAN mode of 10G, 40G and 100G on the interface modules. The SFP-10G-LR-X, QSFP-40G-LR4, and CPAK-100G-SR10 are used for 8x10GE, 2x40GE, and 1X100GE interface modules, respectively.

OTN Specific Functions

The following figure shows the OTN specific functions related to overhead processing, alarm handling, FEC and TTI:
Standard MIBS

The following are the standard MIBs:

- RFC2665
- RFC1213
- RFC2907
- RFC2233
- RFC3591

Restrictions for OTN

The following are the restrictions for OTN:
• OTL alarms are not supported.
• FECMISMATCH alarm is not supported.
• Enhanced FEC is not supported.
• Alarm and error counters are visible when the controller is in shutdown state.

DWDM Provisioning

All DWDM provisioning configurations take place on the controller. To configure a DWDM controller, use the controller dwdm command in global configuration mode.

Prerequisites for DWDM Provisioning

The g709 configuration commands can be used only when the controller is in the shutdown state. Use the no shutdown command after configuring the parameters, to remove the controller from shutdown state and to enable the controller to move to up state.

Configuring DWDM Provisioning

Use the following commands to configure DWDM provisioning:

```
enable
cfguniciple termlnal
controller dwdm 0/1/0
```

Configuring Transport Mode in 8x10GE and 2x40GE Interface Modules

Use the transport-mode command in interface configuration mode to configure LAN and OTN transport modes in 8x10GE and 2x40GE interface modules. The transport-mode command otn option has the bit-transparent sub-option, using which bit transparent mapping into OPU1e or OPU2e can be configured.

Use the following commands to configure LAN and OTN transport modes:

```
enable
cfguniciple termlnal
controller dwdm 0/0/0
transport-mode otn bit-transparent opu1e
```

**Note**

LAN transport mode is the default mode.

To configure the transport administration state on a DWDM port, use the admin-state command in DWDM configuration mode. To return the administration state from a DWDM port to the default, use the no form of this command.
Verification of LAN Transport Mode Configuration

Use the `show interfaces` command to verify the configuration of LAN transport mode:

```plaintext
Router#sh int te0/1/0
TenGigabitEthernet0/1/0 is up, line protocol is up
 MTU 1500 bytes, BW 10000000 Kbit/sec, DLY 10 usec,
 reliability 255/255, txload 8/255, rxload 193/255
 Encapsulation ARPA, loopback not set
 Keepalive set (10 sec)
 Full Duplex, 10000Mbps, link type is force-up, media type is SFP-SR
 output flow-control is unsupported, input flow-control is on
 Transport mode LAN
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input 04:02:09, output 04:02:09, output hang never
 Last clearing of "show interface" counters 00:29:47
 Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue: 0/40 (size/max)
 5 minute input rate 7605807000 bits/sec, 14854906 packets/sec
 26571883351 packets input, 170060465344 bytes, 0 no buffer
 Received 0 broadcasts (0 IP multicasts)
 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 0 watchdog, 0 multicast, 0 pause input
 1076663813 packets output, 689064271464 bytes, 0 underruns
 0 output errors, 0 collisions, 0 interface resets
 0 unknown protocol drops
 0 babbles, 0 late collision, 0 deferred
 0 lost carrier, 0 no carrier, 0 pause output
 0 output buffer failures, 0 output buffers swapped out
Router#
```

Verification of OTN Transport Mode Configuration in 8x10GE Interface Modules

Use the `show interfaces` command to verify the configuration of OTN transport mode in 8x10GE interface modules:

```plaintext
Router#sh int te0/1/1
TenGigabitEthernet0/1/1 is up, line protocol is up
 MTU 1500 bytes, BW 10000000 Kbit/sec, DLY 10 usec,
 reliability 255/255, txload 193/255, rxload 7/255
 Encapsulation ARPA, loopback not set
 Keepalive set (10 sec)
 Full Duplex, 10000Mbps, link type is force-up, media type is SFP-SR
 output flow-control is unsupported, input flow-control is on
 Transport mode OTN (10GBASE-R over OPU1e w/o fixed stuffing, 11.0491Gb/s)
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input 03:28:14, output 03:28:14, output hang never
 Last clearing of "show interface" counters 00:30:47
 Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
 Queueing strategy: fifo
 Output queue: 0/40 (size/max)
 5 minute input rate 281326000 bits/sec, 549608 packets/sec
 26571883351 packets input, 170060465344 bytes, 0 no buffer
 Received 0 broadcasts (0 IP multicasts)
 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 0 watchdog, 0 multicast, 0 pause input
```

Cisco ASR 900 Router Series Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Verification of OTN Transport Mode Configuration in 2x40GE Interface Modules

Use the `show interfaces` command to verify the configuration of OTN transport mode in 2x40GE interface modules:

```
Router# show int fo0/4/0
FortyGigabitEthernet0/4/0 is up, line protocol is up
MTU 1500 bytes, BW 40000000 Kbit/sec, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full Duplex, 40000 Mbps, link type is force-up, media type is QSFP_40GE_SR
output flow-control is unsupported, input flow-control is on
Transport mode OTN OTU3 (43.018 Gb/s)
ARP type: ARPA, ARP Timeout 04:00:00
Last input never, output never, output hang never
Last clearing of "show interface" counters never
Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue: 0/40 (size/max)
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
 0 packets input, 0 bytes, 0 no buffer
 Received 0 broadcasts (0 IP multicasts)
 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
 0 watchdog, 0 multicast, 0 pause input
 0 packets output, 0 bytes, 0 underruns
 0 output errors, 0 collisions, 2 interface resets
 0 unknown protocol drops
 0 babbles, 0 late collision, 0 deferred
 0 lost carrier, 0 no carrier, 0 pause output
 0 output buffer failures, 0 output buffers swapped out
```

Changing from OTN to LAN Mode

Use the following methods to change from OTN mode to LAN mode:

- Use the following commands to make the transport mode as LAN mode:
  ```
 enable
 configure terminal
 controller dwdm 0/0/0
 transport-mode lan
  ```
- Use the following commands to set the controller default transport mode as LAN mode:
  ```
 enable
 configure terminal
  ```
Verification of Enabled Ports for Controller Configuration

Use the show controllers command to verify the enabled ports for the controller configuration:

```
#show controllers
TenGigabitEthernet0/0/0
TenGigabitEthernet0/0/1
TenGigabitEthernet0/0/2
TenGigabitEthernet0/0/3
TenGigabitEthernet0/0/4
TenGigabitEthernet0/0/5
TenGigabitEthernet0/0/6
TenGigabitEthernet0/0/7
TenGigabitEthernet0/1/0
TenGigabitEthernet0/1/1
FortyGigabitEthernet0/4/0
FortyGigabitEthernet0/4/1
TenGigabitEthernet0/5/0
TenGigabitEthernet0/5/1
TenGigabitEthernet0/5/2
TenGigabitEthernet0/5/3
TenGigabitEthernet0/5/4
TenGigabitEthernet0/5/5
TenGigabitEthernet0/5/6
TenGigabitEthernet0/5/7
#
```

OTN Alarms

OTN supports alarms in each layer of encapsulation. All the alarms follow an alarm hierarchy and the highest level of alarm is asserted and presented as a Syslog message or on the CLI.

OTU Alarms

The types of alarms enabled for reporting:

- **AIS** - Alarm indication signal (AIS) alarms
- **BDI** - Backward defect indication (BDI) alarms
- **IAE** - Incoming alignment error (IAE) alarms
- **LOF** - Loss of frame (LOF) alarms
- **LOM** - Loss of multiple frames (LOM) alarms
- **LOS** - Loss of signal (LOS) alarms
- **TIM** - Type identifier mismatch (TIM) alarms
- **SM** - TCA - SM threshold crossing alert
- **SD-BER** - SM BER is in excess of the SD BER threshold
- **SF-BER** - SM BER is in excess of the SF BER threshold
ODU Alarms

The types of alarms enabled for reporting:

- AIS - Alarm indication signal (AIS) alarms
- BDI - Backward defect indication (BDI) alarms
- LCK - Upstream connection locked (LCK) error status
- OCI - Open connection indication (OCI) error status
- PM-TCA - Performance monitoring (PM) threshold crossing alert (TCA)
- PTIM - Payload TIM error status
- SD-BER - SM BER is in excess of the SD BER threshold
- SF-BER - SM BER is in excess of the SF BER threshold
- TIM - Type identifier mismatch (TIM) alarms

Configuring OTN Alarm Reports

By default, all the OTN alarm reports are enabled. To control OTN alarm reports, disable all the alarms and enable the specific alarms.

Note

You need to shutdown the interface using the shut command to configure the alarms.

Configuring OTU Alarm Reports

Use the following commands to configure OTU alarm reports:

```
enable
cconfigure terminal
ccontroller dwdm 0/4/1
shut
g709 otu report bdi
no shut
end
```

Note

Fecmismatch is not supported.

Note

Use no g709 otu report command to disable the OTU alarm reports.

Verification of OTU Alarm Reports Configuration

Use the show controllers command to verify OTU alarm reports configuration:
#show controllers dwdm 0/4/1
G709 Information:

Controller dwdm 0/4/1, is up (no shutdown)

Transport mode OTN OTU3
Loopback mode enabled: None

TAS state is: IS
G709 status: Enabled

(Alarms and Errors)

OTU

Alarm Type	Value
LOS	3
LOF	1
LOM	0
AIS	0
BDI	0
BIP	74444
TIM	0
IAE	0
BEI	37032

ODU

Alarm Type	Value
AIS	0
BDI	0
TIM	0
OCI	0
LCK	0
PTIM	0
BIP	2

FEC Mode: FEC

Remote FEC Mode: Unknown

Mode	Value
FECM	0
EC	0
UC	186
UC	10695

Detected Alarms: NONE
Assured Alarms: NONE
Detected Alerts: NONE
Assured Alerts: NONE

Alarm reporting enabled for: LOS LOF LOM OTU-AIS OTU-IAE OTU-BDI ODU-AIS ODU-OCI ODU-LCK ODU-BDI ODU-PTIM ODU-BIP
Alert reporting enabled for: OTU-SD-BER OTU-SF-BER OTU-SM-TCA ODU-SD-BER ODU-SF-BER ODU-PM-TCA BER thresholds: ODU-SF = 10^-3 ODU-SD = 10^-6 OTU-SF = 10^-3 OTU-SD = 10^-6 

TCA thresholds: SM = 10^-3 PM = 10^-3

OTU TTI Sent String SAPI ASCII : Tx TTI Not Configured
OTU TTI Sent String DAPI ASCII : Tx TTI Not Configured
OTU TTI Sent String OPERATOR ASCII : Tx TTI Not Configured
OTU TTI Expected String SAPI ASCII : Exp TTI Not Configured
OTU TTI Expected String DAPI ASCII : Exp TTI Not Configured
OTU TTI Expected String OPERATOR ASCII : Exp TTI Not Configured
OTU TTI Received String HEX : 000000000000000000000000000000000000000000000000000000000000000000

ODU TTI Sent String SAPI ASCII : Tx TTI Not Configured
ODU TTI Sent String DAPI ASCII : Tx TTI Not Configured
ODU TTI Sent String OPERATOR ASCII : Tx TTI Not Configured
ODU TTI Expected String SAPI ASCII : Exp TTI Not Configured
ODU TTI Expected String DAPI ASCII : Exp TTI Not Configured
ODU TTI Expected String OPERATOR ASCII : Exp TTI Not Configured
ODU TTI Received String HEX : 000000000000000000000000000000000000000000000000000000000000000000

Cisco ASR 900 Router Series Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
Syslog Generation for LOS Alarm

The following example shows the syslog generation for LOS alarm:

```
(config-if)#
*Jan 16 06:32:50.487 IST: %DWDM-4-G709ALARM: dwdm-0/4/1: LOS declared
*Jan 16 06:32:51.048 IST: %LINK-3-UPDOWN: Interface FortyGigabitEthernet0/4/1, changed state to down
*Jan 16 06:32:51.489 IST: %DWDM-4-G709ALARM: dwdm-0/4/1: LOF declared
*Jan 16 06:32:51.495 IST: %DWDM-4-G709ALARM: dwdm-0/4/1: LOS cleared
```

Configuring ODU Alarm Report

Use the following commands to configure ODU alarm reports:

```
enable
configure terminal
controller dwdm 0/4/1
shut
g709 odu report ais
no shut
end
```

Note

Use `no g709 odu report` command to disable the ODU alarm reports.

OTN Threshold

The signal degrade and signal failure thresholds are configured for alerts.

The following types of thresholds are configured for alerts for OTU and ODU layers:

- **SD-BER**—Section Monitoring (SM) bit error rate (BER) is in excess of the signal degradation (SD) BER threshold.
- **SF-BER**—SM BER is in excess of the signal failure (SF) BER threshold.
- **PM-TCA**—Performance monitoring (PM) threshold crossing alert (TCA).
- **SM-TCA**—SM threshold crossing alert.

Configuring OTU Threshold

To configure OTU threshold:

```
enable
configure terminal
controller dwdm 0/4/1
shut
g709 otu threshold sm-tca 3
no shut
end
```

Note

Use `no g709 otu threshold` command to disable OTU threshold.
Configuring ODU Threshold

To configure ODU threshold:

```
enable
configure terminal
controller dwdm 0/4/1
shut
g709 odu threshold sd-ber 3
no shut
end
```

Use `no g709 odu threshold` command to disable configuration of ODU threshold.

Verification of OTU and ODU Threshold Configuration

Use the `show controllers` command to verify OTU and ODU threshold configuration:

```
Router#show controllers dwdm 0/1/2
G709 Information:
Controller dwdm 0/1/2, is up (no shutdown)
Transport mode OTN (10GBASE-R over OFU1e w/o fixed stuffing, 11.0491Gb/s)
Loopback mode enabled : None
TAS state is : UNKNOWN
G709 status : Enabled

OTU
 LOS = 0 LOF = 0 LOM = 0
 AIS = 0 BDI = 0 BIP = 0
 TIM = 0 IAE = 0 BEI = 0

ODU
 AIS = 0 BDI = 0 TIM = 0
 OCI = 0 LCK = 0 PTIM = 0
 BIP = 0 BEI = 0

FEC Mode: FEC

Remote FEC Mode: Unknown
 FECM = 0
 EC(current second) = 0
 EC = 0
 UC = 0

Detected Alarms: NONE
Asserted Alarms: NONE
Detected Alerts: NONE
Asserted Alerts: NONE
Alarm reporting enabled for: LOS LOF LOM OTU-AIS OTU-IAE OTU-BDI OTU-TIM ODU-AIS ODU-OCI ODU-LCK ODU-BDI ODU-PTIM ODU-TIM ODU-BIP
Alert reporting enabled for: OTU-SD-BER OTU-SF-BER OTU-SM-TCA ODU-SD-BER ODU-SF-BER ODU-PM-TCA
BER thresholds: ODU-SF = 10e-3 ODU-SD = 10e-6 OTU-SF = 10e-3 OTU-SD = 10e-6
TCA thresholds: SM = 10e-3 PM = 10e-3
```
Configuring OTU Alerts

To configure OTU alerts:

```
enable
cfg ter
con dwdm 0/4/1
shut
g709 otu
g709 otu threshold
no shut
end
```

Configuring ODU Alerts

To configure ODU alerts:

```
enable
cfg ter
con dwdm 0/4/1
shut
g709 otu
g709 otu threshold pm-tca
no shut
end
```

Configuring ODU Alerts

To configure ODU alerts:

```
enable
cfg ter
```
OTN Wrapper Overview
Verifying Alerts Configuration

controller dwdm 0/4/1
shutdown
g709 otu
g709 otu threshold
g709 otu threshold pm-tca
no shutdown
end

Verifying Alerts Configuration
Use the show controllers command to verify the alerts configuration:
#show controllers dwdm 0/4/1
G709 Information:
Controller dwdm 0/4/1, is down (shutdown)
Transport mode OTN OTU3
Loopback mode enabled : Line
TAS state is : IS
G709 status : Enabled
OTU
LOS = 5
AIS = 0
TIM = 0

LOF = 1
BDI = 0
IAE = 0

LOM = 0
BIP = 149549
BEI = 74685

AIS = 0
OCI = 0
BIP = 2

BDI = 0
LCK = 0
BEI = 0

TIM = 0
PTIM = 0

ODU

FEC Mode: FEC
Remote FEC Mode: Unknown
FECM
EC(current second)
EC
UC

=
=
=
=

0
0
856
23165

Detected Alarms: NONE
Asserted Alarms: NONE
Detected Alerts: NONE
Asserted Alerts: NONE
Alarm reporting enabled for: LOS LOF LOM OTU-AIS OTU-IAE OTU-BDI ODU-AIS ODU-OCI ODU-LCK
ODU-BDI ODU-PTIM ODU-BIP
Alert reporting enabled for: OTU-SD-BER OTU-SF-BER OTU-SM-TCA ODU-SD-BER ODU-SF-BER ODU-PM-TCA
BER thresholds: ODU-SF = 10e-3 ODU-SD = 10e-6 OTU-SF = 10e-3 OTU-SD = 10e-5
TCA thresholds: SM = 10e-3 PM = 10e-4
OTU
OTU
OTU
OTU
OTU
OTU
OTU

TTI
TTI
TTI
TTI
TTI
TTI
TTI

Sent
Sent
Sent
Expected
Expected
Expected
Received

String
String
String
String
String
String
String

SAPI ASCII
: Tx TTI Not Configured
DAPI ASCII
: Tx TTI Not Configured
OPERATOR ASCII : Tx TTI Not Configured
SAPI ASCII
: Exp TTI Not Configured
DAPI ASCII
: Exp TTI Not Configured
OPERATOR ASCII : Exp TTI Not Configured
HEX : 0000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000
000000000000000000000000000000

Cisco ASR 900 Router Series Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
270


Loopback

Loopback provides a means for remotely testing the throughput of an Ethernet port on the router. You can verify the maximum rate of frame transmission with no frame loss. Two types of loopback is supported:

- Internal Loopback - All packets are looped back internally within the router before reaching an external cable. It tests the internal Rx to Tx path and stops the traffic to egress out from the Physical port.
- Line Loopback - Incoming network packets are looped back through the external cable.

Configuring Loopback

To configure loopback:

```
 enable
 configure terminal
 controller dwdm 0/4/1
 shutdown
 loopback line
 no shutdown
 end
```

Forward Error Connection

Forward error correction (FEC) is a method of obtaining error control in data transmission in which the source (transmitter) sends redundant data and the destination (receiver) recognizes only the portion of the data that contains no apparent errors. FEC groups source packets into blocks and applies protection to generate a desired number of repair packets. These repair packets may be sent on demand or independently of any receiver feedback.

Standard FEC is supported on 8x10GE and 2x40GE interface modules.

The packets that can be corrected by FEC are known as Error Corrected Packets. The packets that cannot be corrected by FEC due to enhanced bit errors are known as Uncorrected Packets.

Benefits of FEC

The following are the benefits of FEC:

- FEC reduces the number of transmission errors, extends the operating range, and reduces the power requirements for communications systems.
- FEC increases the effective systems throughput.
• FEC supports correction of bit errors occurring due to impairments in the transmission medium.

Configuring FEC

To configure FEC:

```
enable
cr
controller dwdm 0/4/1
shutdown
g709 fec standard
no shutdown
end
```

Verifying FEC Configuration

Use the `show controllers` command to verify FEC configuration:

```
G709 Information:
Controller dwdm 0/4/1, is up (no shutdown)
Transport mode OTN OTU3
Loopback mode enabled : Line
TAS state is : IS
G709 status : Enabled

OTU
 LOS = 5 LOF = 1 LOM = 0
 AIS = 0 BDI = 0 BIP = 149549
 TIM = 0 IAЕ = 0 BEI = 74685

ODU
 AIS = 0 BDI = 0 TIM = 0
 OCI = 0 LCK = 0 PTIM = 0
 BIP = 2 BEI = 0

FEC Mode: FEC
Remote FEC Mode: Unknown <- This is a limitation by which we do not show the remote FEC mode
 FECM = 0
 EC(current second) = 0
 EC corrected bits = 856 <- This is the counter for Error
 UC = 23165 <- this is the counter for Uncorrected alarms.

Detected Alarms: NONE
Asserted Alarms: NONE
Detected Alerts: NONE
Asserted Alerts: NONE
Alarm reporting enabled for: LOS LOF LOM OTU-AIS OTU-IAE OTU-BDI ODU-AIS ODU-OCI ODU-LCK ODU-BDI ODU-PTIM ODU-BIP
Alert reporting enabled for: OTU-SD-BER OTU-SF-BER OTU-SM-TCA ODU-SD-BER ODU-SF-BER ODU-PM-TCA
BER thresholds: ODU-SF = 10e-3 ODU-SD = 10e-6 OTU-SF = 10e-3 OTU-SD = 10e-5
TCA thresholds: SM = 10e-3 PM = 10e-4

OTU TTI Sent String SAPI ASCII : Tx TTI Not Configured
```
Trail Trace Identifier

The Trail Trace Identifier (TTI) is a 64-Byte signal that occupies one byte of the frame and is aligned with the OTUk multiframe. It is transmitted four times per multiframe. TTI is defined as a 64-byte string with the following structure:

- TTI[0] contains the Source Access Point Identifier (SAPI)[0] character, which is fixed to all-0s.
- TTI[16] contains the Destination Access Point Identifier (DAPI)[0] character, which is fixed to all-0s.
- TTI[17] to TTI[31] contain the 15-character destination access point identifier (DAPI[1] to DAPI[15]).
- TTI[32] to TTI[63] are operator specific.

TTI Mismatch

TTI mismatch occurs when you have enabled path trace and the "received string" is different from the "expected string". This alarm condition stops traffic.

When TTI mismatch occurs, the interface is brought to down state. This is only supported for SAPI and DAPI and is not supported for User Operator Data field.

Configuring TTI

To configure TTI:

```
enable
configure terminal
controller dwdm 0/1/1
shutdown
g709 tti-processing enable
no shutdown
end
```

Trace Identifier Mismatch (TIM) is reported in the Detected Alarms where there is a mismatch in the expected and received string. Action on detection of TIM can be configured in ODU and OTU layers as follows:

```
enable
configure terminal
controller dwdm 0/1/1
shutdown
g709 tti-processing enable otu
```
Configuring TTI for SAPI DAPI Operator Specific Fields

To configure TTI SAPI, DAPI, and operator specific fields for OTU and ODU layers:

```plaintext
no shutdown
end
```

Verification of TTI SAPI DAPI Operator Specific Fields Configuration

Use the show controller command to verify TTI SAPI, DAPI, Operator Specific fields configuration:

```
Router#show controllers dwdm 0/1/1
G709 Information:
Controller dwdm 0/1/1, is up (no shutdown)
Transport mode OTN (10GBASE-R over OPU1e w/o fixed stuffing, 11.0491Gb/s)
<<truncated other output >>
OTU TTI Sent String SAPI ASCII : AABBCCDD
OTU TTI Sent String DAPI ASCII : AABBCCDD
OTU TTI Sent String OPERATOR ASCII : AABBCCDD
OTU TTI Expected String SAPI ASCII : AABBCCDD
OTU TTI Expected String DAPI ASCII : AABBCCDD
OTU TTI Expected String OPERATOR HEX : AABBCCDD
OTU TTI Received String HEX : 0052414D45534800000000000000000052414D455348000
00000000000000000000000000000000
00000000000000000000000000000000
00000000000000000000000000000000
ODU TTI Sent String SAPI ASCII : AABBCCDD
ODU TTI Sent String DAPI ASCII : AABBCCDD
ODU TTI Sent String OPERATOR HEX : 11223344
ODU TTI Expected String SAPI ASCII : AABBCCDD
```

Verifying Loopback Configuration

Use the `show controllers` command to verify the loopback configuration:

```
#show controllers dwdm 0/4/1
G709 Information:
Controller dwdm 0/4/1, is up (no shutdown)
Transport mode OTN OTU3
Loopback mode enabled : Line
TAS state is : IS
G709 status : Enabled

OTU
| LOS - 5 | LOF - 1 | LOM - 0 |
| AIS - 0 | BDI - 0 | BIP - 149549 |
| TIM - 0 | IAE - 0 | BEI - 74685 |

ODU
| AIS - 0 | BDI - 0 | TIM - 0 |
```
FEC Mode: FEC
Remote FEC Mode: Unknown
   FECM = 0
   EC(current second) = 0
   EC = 856
   UC = 23165

Detected Alarms: NONE
Asserted Alarms: NONE
Detected Alerts: NONE
Asserted Alerts: NONE
Alarm reporting enabled for: LOS LOF LOM OTU-AIS OTU-IAE OTU-BDI ODU-AIS ODU-OCI ODU-LCK ODU-SD-BER ODU-PM-TIM ODU-BIP
Alert reporting enabled for: OTU-SD-BER OTU-SF-BER OTU-SM-TCA ODU-SD-BER ODU-SF-BER ODU-PM-TCA
BER thresholds: ODU-SF = 10e-3  ODU-SD = 10e-6  OTU-SF = 10e-3  OTU-SD = 10e-4
TCA thresholds: SM = 10e-3  PM = 10e-3

Berthoud Sent String SAPI ASCII : Tx TTI Not Configured
OTU TTI Sent String DAPI ASCII : Tx TTI Not Configured
OTU TTI Sent String OPERATOR ASCII : Tx TTI Not Configured
OTU TTI Expected String SAPI ASCII : Exp TTI Not Configured
OTU TTI Expected String DAPI ASCII : Exp TTI Not Configured
OTU TTI Expected String OPERATOR ASCII : Exp TTI Not Configured
OTU TTI Received String HEX : 0000000000000000000000000000000000000000000000000

ODU TTI Sent String SAPI ASCII : Tx TTI Not Configured
ODU TTI Sent String DAPI ASCII : Tx TTI Not Configured
ODU TTI Sent String OPERATOR ASCII : Tx TTI Not Configured
ODU TTI Expected String SAPI ASCII : Exp TTI Not Configured
ODU TTI Expected String DAPI ASCII : Exp TTI Not Configured
ODU TTI Expected String OPERATOR ASCII : Exp TTI Not Configured
ODU TTI Received String HEX : 0000000000000000000000000000000000000000000000000

#

SNMP Support

Simple Network Management Protocol (SNMP) is an application-layer protocol that provides a message format for communication between SNMP managers and agents. SNMP provides a standardized framework and a common language that is used for monitoring and managing devices in a network.

SNMP sets are not supported for the following tables:

- coiIfControllerTable
- coiOtnNearEndThresholdsTable
- coiOtnFarEndThresholdsTable
- coiFECThresholdsTable

Refer to CISCO-OTN-IF-MIB and SNMP Configuration Guide for SNMP support.
Performance Monitoring

Performance monitoring (PM) parameters are used by service providers to gather, store, set thresholds for, and report performance data for early detection of problems. Thresholds are used to set error levels for each PM parameter. During the accumulation cycle, if the current value of a performance monitoring parameter reaches or exceeds its corresponding threshold value, a threshold crossing alert (TCA) is generated. The TCAs provide early detection of performance degradation. PM statistics are accumulated on a 15-minute basis, synchronized to the start of each quarter-hour. Historical counts are maintained for 33 15-minutes intervals and 2 daily intervals. PM parameters are collected for OTN and FEC.

Calculation and accumulation of the performance-monitoring data is in 15-minute and 24-hour intervals.

PM parameters require the errored ratio to be less than the standard reference that is dependent on the encapsulation. If any loss or error event does not happen within a second, it is called an error free second. If some error in transmission or alarm happens in a second, the second is called Errored Second. The error is termed as Errored Second or Severely Errored Second or Unavailable Second depending upon the nature of error. The error calculation depends on the Errored Blocks. Errored second is a second where one BIP error or BEI error occurs. Severely Errored Second occurs when the errored frames crosses a threshold or there is an alarm is generated. Unavailable Second occurs when there are 10 consecutive severely errored seconds.

Figure 9: Performance Monitoring

PM occurs in near end and far end for both encapsulations for ODUk and OTUk. ODU is referred as Path Monitoring (PM) and OTU is referred to as Section Monitoring (SM).

The following table shows the details of each type of PM parameter for OTN:

Table 24: PM Parameters for OTN

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBE-PM</td>
<td>Path Monitoring Background Block Errors (BBE-PM) indicates the number of background block errors recorded in the optical transport network (OTN) path during the PM time interval.</td>
</tr>
<tr>
<td>BBE-SM</td>
<td>Section Monitoring Background Block Errors (BBE-SM) indicates the number of background block errors recorded in the OTN section during the PM time interval.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>BBER-PM</td>
<td>Path Monitoring Background Block Errors Ratio (BBER-PM) indicates the background block errors ratio recorded in the OTN path during the PM time interval.</td>
</tr>
<tr>
<td>BBER-SM</td>
<td>Section Monitoring Background Block Errors Ratio (BBER-SM) indicates the background block errors ratio recorded in the OTN section during the PM time interval.</td>
</tr>
<tr>
<td>ES-PM</td>
<td>Path Monitoring Errored Seconds (ES-PM) indicates the errored seconds recorded in the OTN path during the PM time interval.</td>
</tr>
<tr>
<td>ESR-PM</td>
<td>Path Monitoring Errored Seconds Ratio (ESR-PM) indicates the errored seconds ratio recorded in the OTN path during the PM time interval.</td>
</tr>
<tr>
<td>ESR-SM</td>
<td>Section Monitoring Errored Seconds Ratio (ESR-SM) indicates the errored seconds ratio recorded in the OTN section during the PM time interval.</td>
</tr>
<tr>
<td>ES-SM</td>
<td>Section Monitoring Errored Seconds (ES-SM) indicates the errored seconds recorded in the OTN section during the PM time interval.</td>
</tr>
<tr>
<td>FC-PM</td>
<td>Path Monitoring Failure Counts (FC-PM) indicates the failure counts recorded in the OTN path during the PM time interval.</td>
</tr>
<tr>
<td>FC-SM</td>
<td>Section Monitoring Failure Counts (FC-SM) indicates the failure counts recorded in the OTN section during the PM time interval.</td>
</tr>
<tr>
<td>SES-PM</td>
<td>Path Monitoring Severely Errored Seconds (SES-PM) indicates the severely errored seconds recorded in the OTN path during the PM time interval.</td>
</tr>
<tr>
<td>SES-SM</td>
<td>Section Monitoring Severely Errored Seconds (SES-SM) indicates the severely errored seconds recorded in the OTN section during the PM time interval.</td>
</tr>
<tr>
<td>SESR-PM</td>
<td>Path Monitoring Severely Errored Seconds Ratio (SESR-PM) indicates the severely errored seconds ratio recorded in the OTN path during the PM time interval.</td>
</tr>
</tbody>
</table>
**Table 25: PM Parameters for FEC**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESR-SM</td>
<td>Section Monitoring Severely Errored Seconds Ratio (SESR-SM) indicates the severely errored seconds ratio recorded in the OTN section during the PM time interval.</td>
</tr>
<tr>
<td>UAS-PM</td>
<td>Path Monitoring Unavailable Seconds (UAS-PM) indicates the unavailable seconds recorded in the OTN path during the PM time interval.</td>
</tr>
<tr>
<td>UAS-SM</td>
<td>Section Monitoring Unavailable Seconds (UAS-SM) indicates the unavailable seconds recorded in the OTN section during the PM time interval.</td>
</tr>
</tbody>
</table>

The following table shows the details of each type of PM parameter for FEC:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC</td>
<td>Bit Errors Corrected (BIEC) indicated the number of bit errors corrected in the DWDM trunk line during the PM time interval.</td>
</tr>
<tr>
<td>UC-WORDS</td>
<td>Uncorrectable Words (UC-WORDS) is the number of uncorrectable words detected in the DWDM trunk line during the PM time interval.</td>
</tr>
</tbody>
</table>

**OTUk Section Monitoring**

Section Monitoring (SM) overhead for OTUk is terminated as follows:

- TTI
- BIP
- BEI
- BDI
- IAE
- BIAE

BIP and BEI counters are block error counters (block size equal to OTUk frame size). The counters can be read periodically by a PM thread to derive one second performance counts. They are sufficiently wide for software to identify a wrap-around with up to 1.5 sec between successive readings.

The following OTUk level defects are detected:

- dAIS
- dTIM
- dBDI
• dIAE
• dBIAE

Status of the defects is available through CPU readable registers, and a change of status of dLOF, dLOM, and dAIS will generate an interruption.

**ODUk Path Monitoring**

Path Monitoring (PM) overhead for higher order ODUk and lower order ODUk is processed as follows:

• TTI
• BIP
• BEI
• BDI
• STAT including ODU LCK/OCI/AIS

The following ODUk defects are detected:

• dTIM
• dLCK and dAIS (from STAT field)
• dBDI

LOS, OTU LOF, OOF and ODU-AIS alarms bring down the interface in system.

**Configuring PM Parameters for FEC**

To set TCA report status on FEC layer in 15-minute interval:

```
enable
cfg t
ctrl dwdm 0/1/0
pm 15-min fec report ec-bits enable
pm 15-min fec report uc-words enable
end
```

To set TCA report status on FEC layer in 24-hour interval:

```
enable
cfg t
ctrl dwdm 0/1/0
pm 24-hr fec report ec-bits enable
pm 24-hr fec report uc-words enable
end
```

To set threshold on FEC layer in 15-minute interval:

```
enable
cfg t
ctrl dwdm 0/1/0
pm 15-min fec threshold ec-bits
pm 15-min fec threshold uc-words
end
```
To set threshold on FEC layer in 24-hour interval:

```plaintext
to set threshold on FEC layer in 24-hour interval:

 enable
 configure terminal
 controller dwdm 0/1/0
 pm 24-hr fec threshold ec-bits
 pm 24-hr fec threshold uc-words
 end
```

### Configuring PM Parameters for OTN

To set OTN report status in 15-minute interval:

```plaintext
to set OTN report status in 15-minute interval:

 enable
 configure terminal
 controller dwdm 0/1/0
 pm 15-min otn report es-pm-ne enable
 end
```

To set OTN report status in 24-hour interval:

```plaintext
to set OTN report status in 24-hour interval:

 enable
 configure terminal
 controller dwdm slot/bay/port
 pm 24-hr otn report es-pm-ne enable
 end
```

To set OTN threshold in 15-minute interval:

```plaintext
to set OTN threshold in 15-minute interval:

 enable
 configure terminal
 controller dwdm 0/1/0
 pm 15-min otn threshold es-pm-ne
 end
```

To set OTN threshold in 24-hour interval:

```plaintext
to set OTN threshold in 24-hour interval:

 enable
 configure terminal
 controller dwdm 0/1/0
 pm 24-hr otn threshold es-pm-ne
 end
```

### Verifying PM Parameters Configuration

Use the `show controllers` command to verify PM parameters configuration for FEC in 15-minute interval:

```plaintext
Router#show controllers dwdm 0/1/0 pm interval 15-min fec 0
get FEC in the current interval [9:15:00 - 09:16:40 Thu Jun 9 2016]

 FEC current bucket type : INVALID
 EC-BITS : 0 Threshold : 200 TCA(enable) : YES
 UC-WORDS : 0 Threshold : 23 TCA(enable) : YES
```

Use the `show controllers` command to verify PM parameters configuration for FEC in 24-hour interval:

```plaintext
Router#show controllers dwdm 0/1/0 pm interval 15-min fec 1
g709 FEC in interval 1 [9:00:00 - 9:15:00 Thu Jun 9 2016]

 FEC current bucket type : VALID
 EC-BITS : 0 UC-WORDS : 0
```
Router#show controllers dwdm 0/1/0 pm interval 24 fec 0

g709 FEC in the current interval [00:00:00 - 09:17:01 Thu Jun 9 2016]

FEC current bucket type : INVALID
  EC-BITS : 0     Threshold : 0   TCA(enable) : NO
  UC-WORDS : 0     Threshold : 0   TCA(enable) : NO

Router#show controllers dwdm 0/1/0 pm interval 24 fec 1

g709 FEC in interval 1 [00:00:00 - 24:00:00 Wed Jun 8 2016]

FEC current bucket type : VALID
  EC-BITS : 717   UC-WORDS : 1188574

Use the show controllers command to verify PM parameters configuration for OTN in 15-minute interval:

Router#show controllers dwdm 0/1/0 pm interval 15-min otn 0

g709 OTN in the current interval [9:15:00 - 09:15:51 Thu Jun 9 2016]

OTN current bucket type: INVALID

OTN Near-End Valid : YES
  ES-SM-NE : 0     Threshold : 0   TCA(enable) : NO
  ESR-SM-NE : 0.00000   Threshold : 0.00010  TCA(enable) : YES
  SES-SM-NE : 0     Threshold : 0   TCA(enable) : NO
  SESR-SM-NE : 0.00000   Threshold : 0.02300  TCA(enable) : NO
  UAS-SM-NE : 0     Threshold : 0   TCA(enable) : NO
  BBE-SM-NE : 0     Threshold : 0   TCA(enable) : NO
  BBER-SM-NE : 0.00000   Threshold : 0.02300  TCA(enable) : NO
  FC-SM-NE : 0     Threshold : 0   TCA(enable) : NO
  ES-PM-NE : 0     Threshold : 200  TCA(enable) : YES
  ESR-PM-NE : 0.00000   Threshold : 1.00000  TCA(enable) : NO
  SES-PM-NE : 0     Threshold : 0   TCA(enable) : NO
  SESR-PM-NE : 0.00000   Threshold : 0.02300  TCA(enable) : NO
  UAS-PM-NE : 0     Threshold : 0   TCA(enable) : NO
  BBE-PM-NE : 0     Threshold : 0   TCA(enable) : NO
  BBER-PM-NE : 0.00000   Threshold : 0.02300  TCA(enable) : NO
  FC-PM-NE : 0     Threshold : 0   TCA(enable) : NO

OTN Far-End Valid : YES
  ES-SM-FE : 0     Threshold : 0   TCA(enable) : NO
  ESR-SM-FE : 0.00000   Threshold : 1.00000  TCA(enable) : NO
  SES-SM-FE : 0     Threshold : 0   TCA(enable) : NO
  SESR-SM-FE : 0.00000   Threshold : 0.02300  TCA(enable) : NO
  UAS-SM-FE : 0     Threshold : 0   TCA(enable) : NO
  BBE-SM-FE : 0     Threshold : 0   TCA(enable) : NO
  BBER-SM-FE : 0.00000   Threshold : 0.02300  TCA(enable) : NO
  FC-SM-FE : 0     Threshold : 0   TCA(enable) : NO
  ES-PM-FE : 0     Threshold : 0   TCA(enable) : NO
  ESR-PM-FE : 0.00000   Threshold : 0.00010  TCA(enable) : YES
  SES-PM-FE : 0     Threshold : 0   TCA(enable) : NO
  SESR-PM-FE : 0.00000   Threshold : 0.02300  TCA(enable) : NO
  UAS-PM-FE : 0     Threshold : 0   TCA(enable) : NO
  BBE-PM-FE : 0     Threshold : 0   TCA(enable) : NO
  BBER-PM-FE : 0.00000   Threshold : 0.02300  TCA(enable) : NO
  FC-PM-FE : 0     Threshold : 0   TCA(enable) : NO

Router#show controllers dwdm 0/1/0 pm interval 15-min otn 1

g709 OTN in interval 1 [9:00:00 - 9:15:00 Thu Jun 9 2016]

OTN current bucket type: VALID
Use the `show controllers` command to verify PM parameters configuration for OTN in 24-hour interval:

```
Router#show controllers dwdm 0/1/0 pm interval 24-hour otn 0
g709 OTN in the current interval [00:00:00 - 09:16:10 Thu Jun 9 2016]
```

**OTN Near-End Valid : YES**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Threshold</th>
<th>TCA (enable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-SM-NE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>SES-SM-NE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>SESR-SM-NE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>UAS-SM-NE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>BBE-SM-NE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>BBER-SM-NE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>FC-SM-NE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
</tbody>
</table>

**OTN Far-End Valid : YES**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Threshold</th>
<th>TCA (enable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-SM-FE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>SES-SM-FE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>SESR-SM-FE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>UAS-SM-FE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>BBE-SM-FE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>BBER-SM-FE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
<tr>
<td>FC-SM-FE</td>
<td>0.00000</td>
<td>0</td>
<td>NO</td>
</tr>
</tbody>
</table>
If TCA is enabled for OTN or FEC alarm, a syslog message is displayed for the 15-minute or 24-hour interval as follows:

*Jun 9 09:18:02.274: %PMDWDM-4-TCA: dwdm-0/1/0: G709 ESR-SM NE value (540) threshold (10) 15-min

### Troubleshooting Scenarios

The following table shows the troubleshooting solutions for the feature.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link is not coming up</td>
<td>Perform shut and no shut actions of the interface.</td>
</tr>
<tr>
<td></td>
<td>Check for TTI Mismatch.</td>
</tr>
<tr>
<td></td>
<td>Verify the major alarms.</td>
</tr>
<tr>
<td></td>
<td>Verify the FEC mode.</td>
</tr>
<tr>
<td></td>
<td>Verify that Cisco supported transreceiver list is only used on both sides</td>
</tr>
<tr>
<td>Incrementing BIP Error</td>
<td>Verify FEC Mismatch.</td>
</tr>
<tr>
<td>FEC contains UC and EC errors and</td>
<td></td>
</tr>
<tr>
<td>link is not coming up</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verify the FEC Mismatch.</td>
</tr>
</tbody>
</table>

### Associated Commands

The following commands are used to configure OTN Wrapper:
<table>
<thead>
<tr>
<th>Commands</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-c2.html#wp1680149833</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-f1.html#wp7175256270</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-f1.html#wp3986227580</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-f1.html#wp3893551740</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-f1.html#wp3365653610</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-f1.html#wp3306168000</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-f1.html#wp2500217585</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-f1.html#wp6997702360</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-f1.html#wp3679037909</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-o1.html#wp8624772760</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-o1.html#wp2518071708</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-o1.html#wp1512678519</td>
</tr>
<tr>
<td></td>
<td>interface/command/ir-cr-book/ir-s2.html#wp7346292950</td>
</tr>
<tr>
<td>Commands</td>
<td>Links</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
CHAPTER 17

Configuring 1G Traffic on 8-port 10 Gigabit Ethernet Interface Module

The 8-port 10 Gigabit Ethernet Interface Module (8X10GE) has eight ports and is supported on the RSP3 module. Prior to Cisco IOS XE Everest 16.5.1, 1G traffic support was provided only with the devices placed in the access layer. Effective Cisco IOS XE Everest 16.5.1, 1G traffic support is provided to devices in the distribution layer. Thus, all the eight port provide support for 1G mode as well as 10G mode.

The configuration of 1G traffic on 8X10GE interface module provides cost-effective solution during migration from 1G mode to 10G mode as a single device supports both the modes.

By default, the 8X10GE interface module comes up in the 10G mode after reboot.

Restrictions for 1G Mode on 8X10 GE Interface Module

- SFP+ is not supported on 1G mode, but the physical link with SFP+ in 1G mode comes up.
- Support of 1G mode on a port and 10G mode on another port in the same interface module is not supported.
- Precision Time Protocol (PTP) is not supported.
- Sync-E is not supported. However, Sync-E is supported in over subscription mode on the interface module.
- Port channel bundling on 1G mode is not supported.
- Although 1G mode is supported on the interface module, the interface is displayed as "Te0/X/Y" depending on the port numbers for both 1G and 10G modes.
- 10G mode support on 8X10GE interface module does not change with dual-rate support.
Configuring 1G Mode

Defaulting the Interface Module:

```
enable
hw-module subslot 0/4 default
end
```

Changing the Mode:

```
enable
configure terminal
hw-module subslot 0/4 ether-mode 1G
end
```

Configuring the Ports:

```
enable
configure terminal
interface te0/4/0
ip address 63.0.0.1 255.0.0.0
end
```

Verifying 1G Mode Configuration

The transport mode is LAN (1GB/s). The speed and bandwidth are 1000 Mbps and 1000000 Kbit/sec, respectively.

To verify the configuration, use `show interface` command in privileged EXEC mode:

```
Router#show interface tengigabitethernet0/4/0
```

```
TenGigabitEthernet0/4/0 is up, line protocol is up
Hardware is A900-IMA8Z, address is c8f9.f98d.2024 (bia c8f9.f98d.2024)
Internet address is 50.0.0.1/8
MTU 1500 bytes, te0/4/0, DLY 10 usec,
 reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full Duplex, 1000Mbps, link type is auto, media type is SX
output flow-control is off, input flow-control is off
Transport mode LAN (1Gb/s)
ARP type: ARPA, ARP Timeout 04:00:00
Last input 00:08:24, output 00:08:24, output hang never
Last clearing of "show interface" counters 00:07:59
Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
```

To verify the slots configured in 1G mode, use the `show running-config | i ether-mode` command in privileged EXEC mode:

```
Router#show running-config | i ether-mode
```

```
hw-module subslot 0/3 ether-mode 1g
hw-module subslot 0/4 ether-mode 1g
hw-module subslot 0/11 ether-mode 1g
```

To verify the bandwidth and port speed, use the `show platform hardware pp active interface all` in privileged EXEC mode:
**Configuring 10G Mode from 1G Mode**

**Defaulting the Interface Module:**

```
enable
hw-module subslot 0/4 default
end
```

**Changing the Mode:**

```
enable
configure terminal
hw-module subslot 0/4 ether-mode 10G
end
```

**Note**

The default is 10G mode.

**Configuring the Ports:**

```
enable
configure terminal
interface te0/4/0
ip address 63.0.0.1 255.0.0.0
end
```

**Verifying 10G Mode Configuration**

To verify the configuration, use `show interface` command in privileged EXEC mode:

```
Router#show interface tengigabitethernet0/4/0
TenGigabitEthernet0/4/0 is up, line protocol is up
```

---

```
Router#show platform hardware pp active interface all
Interface manager platform keys

Name: TenGigabitEthernet0/4/7, Asic: 0, hwidx: 9
lpn: 0, ppn: 9, gid: 9, mac: c8f9.f98d.202b
InLportId: 0, EPortId: 0, dpidx: 31, l3ID: 25
port_flags: 0, **port_speed: 1000 Mbps**, efp_count: 0, destIndex: 9, intType: 1
etherchnl: 0, efp: 0, bdi: 0, l2PhyIf: 0, l3PhyIf: 1, l3TDM: 0, loopBack: 0
tunnel: 0, tunneltlp: 0, icmp_flags: 0, icmp6_flags: 0
bandwidth: 1000000, fcid: 0, cid: 0, mpls_tbid: 0, protocols: 4
v4_netsmask: 8, v4_tableid: 8, v6_tableid: 65535, vrf_tbid_dstrm: , snmp_index: 0
bd_id: 0, encapec: 1, ip_mtu: 1500, l2_max_tu: 1500, l2_min_tu: 0
vrfid: 8, enctype: 0, admin_state: 1, admin_state_oir: 0

Name: TenGigabitEthernet0/4/6, Asic: 0, hwidx: 10
lpn: 0, ppn: 10, gid: 10, mac: c8f9.f98d.202a
InLportId: 0, EPortId: 0, dpidx: 30, l3ID: 24
port_flags: 0, **port_speed: 1000 Mbps**, efp_count: 0, destIndex: 10, intType: 1
etherchnl: 0, efp: 0, bdi: 0, l2PhyIf: 0, l3PhyIf: 1, l3TDM: 0, loopBack: 0
tunnel: 0, tunneltlp: 0, icmp_flags: 0, icmp6_flags: 0
bandwidth: 1000000, fcid: 0, cid: 0, mpls_tbid: 0, protocols: 4
v4_netsmask: 8, v4_tableid: 6, v6_tableid: 65535, vrf_tbid_dstrm: , snmp_index: 0
bd_id: 0, encapec: 1, ip_mtu: 1500, l2_max_tu: 1500, l2_min_tu: 0
vrfid: 6, enctype: 0, admin_state: 1, admin_state_oir: 0
```
Hardware is A900-IMA8Z, address is c8f9.f98d.2024 (bia c8f9.f98d.2024)
Internet address is 50.0.0.1/8
MTU 1500 bytes, BW 10000000 Kbit/sec, DLY 10 usec,
reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)
Full Duplex, 10000Mbps, link type is auto, media type is SX
output flow-control is off, input flow-control is off

**Transport mode LAN**
ARP type: ARPA, ARP Timeout 04:00:00
Last input 00:08:24, output 00:08:24, output hang never
Last clearing of "show interface" counters 00:07:59
Input queue: 0/375/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo

For 10G mode, the **hw-module subslot 0/x ether-mode 10G** command is not displayed when you use **show running-config** command.

To verify the bandwidth and port speed, use the **show platform hardware pp active interface all** in privileged EXEC mode:

```
Router#show platform hardware pp active interface all
Interface manager platform keys

Name: TenGigabitEthernet0/4/7, Asic: 0, hwidx: 9
lpn: 0, ppn: 9, gid: 9, mac: c8f9.f98d.202b
InLportId: 0, ELportId: 0, dpidx: 31, l3ID: 25
port_flags: 0, **port_speed: 10000 Mbps**, efp_count: 0, destIndex: 9, intType: 1
etherchnl: 0, efp: 0, bidi: 0, l2Phys: 0, l3Phys: 1, l3TDM: 0, loopBack: 0
tunnel: 0, tunneltp: 0, icmp_flags: 0, icmp6_flags: 0
bandwidth: 10000000, fcid: 0, cid: 0, mpls_tbid: 0, protocols: 4
v4_netsmask: 8, v4_tableid: 8, v6_tableid: 65535, vrf_tbid_dstrm: , snmp_index: 0
bd_id: 0, encap: 1, ip_mtu: 1500, l2_max_tu: 1500, l2_min_tu: 0
vrfid: 8, enc_type: 0, admin_state: 1, admin_state_oir: 0

Name: TenGigabitEthernet0/4/6, Asic: 0, hwidx: 10
lpn: 0, ppn: 10, gid: 10, mac: c8f9.f98d.202a
InLportId: 0, ELportId: 0, dpidx: 30, l3ID: 24
port_flags: 0, **port_speed: 10000 Mbps**, efp_count: 0, destIndex: 10, intType: 1
etherchnl: 0, efp: 0, bidi: 0, l2Phys: 0, l3Phys: 1, l3TDM: 0, loopBack: 0
tunnel: 0, tunneltp: 0, icmp_flags: 0, icmp6_flags: 0
bandwidth: 10000000, fcid: 0, cid: 0, mpls_tbid: 0, protocols: 4
v4_netsmask: 8, v4_tableid: 6, v6_tableid: 65535, vrf_tbid_dstrm: , snmp_index: 0
bd_id: 0, encap: 1, ip_mtu: 1500, l2_max_tu: 1500, l2_min_tu: 0
vrfid: 6, enc_type: 0, admin_state: 1, admin_state_oir: 0
```

**Associated Commands**

The following commands are used to configure 8-port 10 Gigabit Ethernet Interface Module (8X10GE):

<table>
<thead>
<tr>
<th>Commands</th>
<th>Links</th>
</tr>
</thead>
</table>
Overview of Over Subscription and Partial Port Modes on the 8-port 10 Gigabit Ethernet Interface Module

The 8-port 10 Gigabit Ethernet interface module (8X10GE) requires eight backplane XFI lines to the ASIC to operate efficiently. The chassis has different backplane capacity or bandwidth on each of its subslot. The 8X10GE interface module could only be used in sublots that offered the eight XFI backplane lines. The following table shows the slots that 8X10GE interface module support without over subscription mode:

<table>
<thead>
<tr>
<th>Slot No</th>
<th>Slot 0</th>
<th>Slot 1</th>
<th>Slot 2</th>
<th>Slot 3</th>
<th>Slot 4</th>
<th>Slot 5</th>
<th>Slot 6</th>
<th>Slot 7</th>
<th>Slot 8</th>
<th>Slot 9</th>
<th>Slot 10</th>
<th>Slot 11</th>
<th>Slot 12</th>
<th>Slot 13</th>
<th>Slot 14</th>
<th>Slot 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>8X10GE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

The router supports the 8X10GE interface module individually on the above slots, and offer eight XFI/SFI lines. But as a combination of slots to support 400G bandwidth, only five slots are supported for the 8X10GE interface module. With over subscription or partial mode enabled on the router six slots are available to support the bandwidth.

Over subscription mode enables the operation of the 8X10GE interface module in all subslots with a lesser backplane capacity. Hence, with over subscription mode enabled, all the front plane ports of the interface module are able to receive and transmit traffic.

Partial port mode is used to free the used serializer/deserializer (SerDes) lines to accommodate interface modules that support over subscription in those slots that may utilize the shared SerDes. The advantage of this mode is that the Channelized Network Interface Scheduler (CNIS) of ASIC, a limited resource, is not utilized, as compared to the over subscription mode.

Both these modes aid in increasing the number of interface modules in the maximum number of subslots on the chassis.

Over Subscription Mode

Over subscription mode is introduced to support population of maximum number of interface modules on the chassis.

The 8X10GE interface module requires eight backplane XFI lines to operate, where each front plane port fully utilizes a backplane XFI line. Hence, it operates with an overall bandwidth of 80Gbps. When over subscription is enabled, a group of front plane ports are channelized onto a single backplane XFI line, which reduces the bandwidth based on the number of ports multiplexed onto the backplane XFI line.

When the 8X10GE interface module is in over subscribed mode, all the eight front plane ports are functional.
2:1 — Two front plane ports are multiplexed onto one backplane XFI. The overall bandwidth of the interface module is 40Gbps.

**Partial Port Mode**

Partial port mode is also introduced to support maximum number of interface modules on the chassis. This mode, unlike over subscription mode does not multiplex the front plane port, but blocks some front plane ports to free up the backplane XFI lines used by them.

Partial Port mode has one variant:

4 port mode — Only four front plane ports are enabled. Each port uses one backplane XFI line. Hence each port supports 10Gbps data rate, and the interface module supports 40Gbps datarate.

**Prerequisites for Over Subscription Mode on the 8-port 10 Gigabit Ethernet Interface Module**

- FPGA must be upgraded to version 0.22. Use the `upgrade hw-module subslot 0/x fpd bundled reload` command to upgrade manually, before configuring over-subscription mode.

**Restrictions for Over Subscription Mode 8-port 10 Gigabit Ethernet Interface Module**

The following restrictions are applicable for the over subscription mode on the 8-port 10 Gigabit Ethernet Interface Module (A900-IMA8Z) on the ASR 907 Router:

- Traffic prioritization is supported, but policing is not supported.
- PTP over over subscription mode is not supported.
- Dynamic over subscription mode change does not work. Reload the router after any mode change.

**Supported Features and Constraints**

Following are the supported features and constraints for configuring over subscription and partial port mode on the 8X10 GE interface module.

**Table 26: Over Subscription Mode and Partial Port Mode Support Features and Constraints**

<table>
<thead>
<tr>
<th>Supported Platforms</th>
<th>8X10 GE Over Subscription Mode</th>
<th>4 X10 G Partial Port Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASR 907 RSP3-400</td>
<td>ASR 907 RSP3-400</td>
<td></td>
</tr>
<tr>
<td>FPGA Mode</td>
<td>Supported only with XFI passthrough mode</td>
<td>Supported on both XFI passthrough and port expansion mode</td>
</tr>
<tr>
<td></td>
<td>Minimum version 0.22</td>
<td></td>
</tr>
<tr>
<td>Subslots</td>
<td>Supported on only selected subslots</td>
<td>Supported on only selected subslots</td>
</tr>
</tbody>
</table>
Supported Subslots

The table shows the subslots of the different over subscription modes and also provides information about the SerDes line from the ASIC (multiplexed) to the frontplane ports on the chassis:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Supported Slots</th>
<th>SerDes Lines Used</th>
<th>Enabled Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:1 over subscription mode</td>
<td>3, 4</td>
<td>2, 3, 6, 7</td>
<td>All ports</td>
</tr>
<tr>
<td></td>
<td>11, 12</td>
<td>0, 1, 2, 3</td>
<td></td>
</tr>
<tr>
<td>4 Port Mode (Partial Port mode)</td>
<td>3, 4</td>
<td>2, 3, 6, 7</td>
<td>0, 1, 4, 5</td>
</tr>
</tbody>
</table>

Note: Serializer/Deserializer (SerDes) is not released when dependant slot interface modules are in shutdown unpowered state.

FPGA Operating Mode

The FPGA operates in the following modes. The FPGA operating modes are selected by configuration.

- Port Expansion Mode — Allows port expansion on QSGMII based interface module such as the 8X1G interface module or 8x1G+10G combo interface module. The FPGA consumes the port expansion quad on ASIC.
- XFI Passthrough Mode — Supports XFI passthrough for enabling new XFI lines in certain slots of the chassis.

Note: System reload is required after changing the FPGA mode.
Oversubscription on the 8X10GE interface module is supported only with the XFI Passthrough mode.

The `license feature service-offload enable` command is used to change the FPGA mode to the XFI Passthrough mode.

The default setting of this command is the `no` form of the command. The default FPGA operation mode is XLAUI-QSGMI Port expansion mode.

**Maximum Slot Population of the 8-port 10 Gigabit Ethernet Interface Module**

Over subscription and partial port mode is implemented to free up the shared SerDes lines to other interface modules, and to also populate the 8X10GE interface modules in maximum possible slots with an optimum bandwidth support.

A total of six 8x10GE interface modules are populated on the ASR 907 chassis with the RSP3-400 module.

The following table shows the modes selected on each subslot, and the CNIS utilized in that subslot in order to realise the maximum slot population of 8X10GE interface module.

<table>
<thead>
<tr>
<th>Subslot</th>
<th>8X10 GE Interface Module Mode</th>
<th>Port Numbers</th>
<th>SerDes Numbers</th>
<th>ASIC No.</th>
<th>CNIS Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4X10G Partial Port</td>
<td>0</td>
<td>27</td>
<td>ASIC-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8X10G Fully Subscribed Mode</td>
<td>0</td>
<td>7</td>
<td>ASIC-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Over Subscription and Partial Mode

Use the `platform hw-module configuration` to configure the mode on the chassis.

- **Example: Configuring over subscription mode**
  ```
 Router(config)#platform hw-module configuration
 Router(conf-plat-hw-conf)# hw-module 0/12 A900-IMA8Z mode 8x10G-2:1-OS
  ```

- **Example: Configuring partial port mode**

<table>
<thead>
<tr>
<th>Subslot</th>
<th>8X10 GE Interface Module Mode</th>
<th>Port Numbers</th>
<th>SerDes Numbers</th>
<th>ASIC No.</th>
<th>CNIS Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>4X10G Partial Port</td>
<td>4</td>
<td>11</td>
<td>ASIC-1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4X10G Partial Port</td>
<td>0</td>
<td>27</td>
<td>ASIC-0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8X10G Fully Subscribed</td>
<td>0</td>
<td>7</td>
<td>ASIC-0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4X10G Partial Port</td>
<td>4</td>
<td>11</td>
<td>ASIC-0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: Router(config)#platform hw-module configuration
Router(conf-plat-hw-conf)# hw-module 0/3 A900-IMA8Z mode 4-ports-only
CHAPTER 18

Configuring 8/16-port 1 Gigabit Ethernet (SFP / SFP) + 1-port 10 Gigabit Ethernet (SFP+) / 2-port 1 Gigabit Ethernet (CSFP) Interface Module

The 8/16-port 1 Gigabit Ethernet (SFP / SFP) + 1-port 10 Gigabit Ethernet (SFP+) / 2-port 1 Gigabit Ethernet (CSFP) Interface Module has 8 ports of 1 Gigabit Ethernet and 1 port of 10 Gigabit, similar to the Cisco ASR 900 Series 8-Port 1GE SFP and 1-Port 10GE SFP+ Module. The 8/16-port 1 Gigabit Ethernet (SFP / SFP) + 1-port 10 Gigabit Ethernet (SFP+) / 2-port 1 Gigabit Ethernet (CSFP) Interface Module operates on multiple port densities and operating modes. Each physical port can be extended to have 2 ports of 1 Gigabit Ethernet with the use of Compact Small Form-Factor Pluggable (CSFP) module to address high-density port requirements in FTTx deployments.

*Figure 10: 8/16-port 1 Gigabit Ethernet (SFP / SFP) + 1-port 10 Gigabit Ethernet (SFP+)/2-port 1 Gigabit Ethernet (CSFP) Interface Module*

Each port on CSFP acts as Transmitter or Receiver and connects to GLC-BX-U SFPs using a single strand fiber. GLC-BX-U SFPs support digital optical monitoring (DOM) functions according to the industry-standard...
SFF-8472 multisource agreement (MSA). This feature gives the end user the ability to monitor real-time parameters of the SFP, such as optical output power, optical input power, temperature, laser bias current, and transceiver supply voltage.

**Note**

CSFP must be connected only to GLC-BX-U.

This interface module has 8 physical ports of 1 Gigabit Ethernet and 1 physical port of 10 Gigabit Ethernet, but with the support of CSFP, it can support a maximum of 18 ports of 1 Gigabit Ethernet. Thus, the interface module offers enhanced bandwidth.

The following table shows the type of SFPs for 1G and 10G Modules.

**Table 29: Type of SFPs for 1G and 10G Modules**

<table>
<thead>
<tr>
<th>Module</th>
<th>Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1G Module</td>
<td>SFP</td>
</tr>
<tr>
<td></td>
<td>CSFP</td>
</tr>
<tr>
<td>10G Module</td>
<td>SFP+</td>
</tr>
<tr>
<td></td>
<td>SFP</td>
</tr>
<tr>
<td></td>
<td>CSFP</td>
</tr>
</tbody>
</table>

- Operating Modes, on page 298
- SADT Mode, on page 300
- Bandwidth Mode, on page 300
- IOS Port Numbering, on page 304
- Supported Features on the Interface Module, on page 305
- Benefits, on page 305
- Restrictions, on page 305
- Configuring Interface Module, on page 305
- Configuring Bandwidth Mode, on page 313
- Interface Module Rules, on page 314
- Associated Commands, on page 324
- Additional References, on page 324

### Operating Modes

The interface module supports the following two operating modes:

- Full Subscription
- Over Subscription
The interface module supports 8 ports of 1 Gigabit Ethernet + 1 port of 10 Gigabit Ethernet mode by default (except the slots 0, 1, 6, and 9 with XFI Pass through mode).

**Full Subscription Mode**

Full subscription operating mode supports the bandwidth equal to the number of ports configured.

For example, if you configure 8-port 1GE + 1-port 10GE in full subscription operating mode, then the supported bandwidth is 8 Gigabit Ethernet and 10 Gigabit Ethernet.

The supported operating modes of Full Subscription for ASR 903 Routers are:

- 16-port 1GE + 1-port 10GE
- 8-port 1GE + 1-port 10GE
- 18-port 1GE

The supported operating modes of Full Subscription for ASR 907 Routers are:

- 8-port 1GE + 1-port 10GE
- 8-port 1GE + 1-port 1GE
- 8-port 1GE
- 1-port 10GE

**Over Subscription Mode**

Over Subscription operating mode is applicable to 1 Gigabit Ethernet ports only. 16-port 1GE and 16-port 1GE + 1-port 10GE operating modes support 8 Gigabit Ethernet and 18 Gigabit Ethernet bandwidth, respectively. 18-port 1GE supports 9 Gigabit Ethernet bandwidth. But, if the total bandwidth exceeds the supported bandwidth, it results in low priority traffic drop.

For example, if you configure 16-port 1GE + 1-port 10GE over subscription operating mode, then 8GE bandwidth is supported for 16 ports of 1 Gigabit Ethernet and 10GE bandwidth is supported for 10 Gigabit Ethernet ports.

The following are the supported operating modes of Over Subscription for ASR 907 Routers:

- 16-port 1GE
- 16-port 1GE + 1-port 10GE
- 18-port 1GE

In 18-port 1GE mode, 10 Gigabit Ethernet physical port slot becomes 2 ports of 1 Gigabit Ethernet with insertion of CSFP.
By default, the interface module loads in 8-port 1GE + 1-port 10 GE modes (except the slots 0, 1, 6, and 9 with XFI-Pass Through mode. For more information, refer Optics Matrix.

Note

Over subscription mode is not supported on ASR 903 Routers.

Traffic is classified as follows:

- High Priority Traffic — Has high priority queue
  
  This is classified as follows:
  
  - DMAC=01-80-C2-xx-xx-xx
  - Etype=0x8100, 9100, 9200, 88A8 Cos values=5, 6, 7
  - Etype=0806 (ARP), 88F7 (PTP)
  - Etype=0x800, TOS 5, 6, 7
  - Etype=0x8847, MPLS EXP 5, 6, 7

- Low Priority Traffic — Traffic that does not satisfy the above conditions has low priority queue

### SADT Mode

For more information on SADT mode, see IP SLA—Service Performance Testing.

### Bandwidth Mode

Each interface module subslot can be assigned a bandwidth. You can reserve the slots with specific bandwidth so that the interface module that consumes more than the configured bandwidth is not used.

Note

The bandwidth mode is not supported on ASR 903 Routers and is only supported on ASR 907 Routers.

The following table shows the interface module slots for the bandwidth mode.

<table>
<thead>
<tr>
<th>IM Subslot</th>
<th>Bandwidth Mode</th>
<th>SADT Operating Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>XFI-Pass Through Mode</td>
</tr>
</tbody>
</table>

Cisco ASR 900 Router Series Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
<table>
<thead>
<tr>
<th>IM Subslot</th>
<th>Bandwidth Mode</th>
<th>SADT Operating Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>XFI-Pass Through Mode</td>
</tr>
<tr>
<td>2</td>
<td>8 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>18 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>20 Gbps</td>
<td>XFI-Pass Through Mode</td>
</tr>
<tr>
<td>3</td>
<td>Not Available</td>
<td>NA</td>
</tr>
<tr>
<td>4</td>
<td>Not Available</td>
<td>NA</td>
</tr>
<tr>
<td>5</td>
<td>8 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>18 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>20 Gbps</td>
<td>XFI-Pass Through Mode</td>
</tr>
<tr>
<td>6</td>
<td>8 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>18 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td>7</td>
<td>80 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>100 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td>8</td>
<td>80 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>100 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td>9</td>
<td>8 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>18 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
</tbody>
</table>
## Slot Support on Operating Modes

The following table shows the slots supported on different operating modes on ASR 907 Routers.

<table>
<thead>
<tr>
<th>IM Subslot</th>
<th>Bandwidth Mode</th>
<th>SADT Operating Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>18 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>20 Gbps</td>
<td>XFI-Pass Through Mode</td>
</tr>
<tr>
<td>11</td>
<td>Not Available</td>
<td>NA</td>
</tr>
<tr>
<td>12</td>
<td>Not Available</td>
<td>NA</td>
</tr>
<tr>
<td>13</td>
<td>8 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>18 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>20 Gbps</td>
<td>XFI-Pass Through Mode</td>
</tr>
<tr>
<td>14</td>
<td>8 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>18 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>20 Gbps</td>
<td>XFI-Pass Through Mode</td>
</tr>
<tr>
<td>15</td>
<td>8 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>10 Gbps</td>
<td>Port Expansion Mode or XFI-Pass Through Mode</td>
</tr>
<tr>
<td></td>
<td>18 Gbps</td>
<td>Port Expansion Mode</td>
</tr>
<tr>
<td></td>
<td>20 Gbps</td>
<td>XFI-Pass Through Mode</td>
</tr>
<tr>
<td>IM Subslot</td>
<td>SADT Operating Mode</td>
<td>IM Operating Modes</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>0, 1</td>
<td>Port Expansion Mode</td>
<td>Unsupported</td>
</tr>
<tr>
<td></td>
<td>XFI-Pass Through Mode</td>
<td>8-port 1GE + 1-port 1GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-port 1GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-port 1GE Over Subscribed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-port 1GE Over Subscribed</td>
</tr>
<tr>
<td>2, 5, 10, 13, 14, 15</td>
<td>XFI-Pass Through Mode</td>
<td>8-port 1GE + 1-port 10GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-port 1GE + 1-port 10GE Over Subscribed</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>8-port 1GE + 1-port 1GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-port 1GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-port 1GE Over Subscribed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-port 1GE Over Subscribed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-port 10GE</td>
</tr>
<tr>
<td>3, 4, 7, 8, 11, 12</td>
<td>Any</td>
<td>8-port 1GE + 1-port 10GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-port 1GE + 1-port 1GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-port 1GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-port 10GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-port 1GE + 1-port 10GE Over Subscribed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-port 1GE Over Subscribed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-port 1GE Over Subscribed</td>
</tr>
<tr>
<td>6, 9</td>
<td>Any</td>
<td>8-port 1GE + 1-port 1GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-port 1GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-port 10GE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-port 1GE Over Subscribed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18-port 1GE Over Subscribed</td>
</tr>
</tbody>
</table>

The following table shows the slots supported for different operating modes for ASR 903 routers.
### IOS Port Numbering

The IOS port numbers are different from other typical interface module because of the flexibility of optics choices and operating modes. The IOS port number is even numbered for SFP optics (for example, Gigabit Ethernet 0/x/0) and the additional port on CSFP insertion introduces the odd number (for example, Gigabit Ethernet 0/x/0 and Gigabit Ethernet 0/x/1) as enumerated in the table below.

**Table 30: IOS Port Number**

<table>
<thead>
<tr>
<th>1G Face Plate Port</th>
<th>SFP Optics</th>
<th>CSFP Optics</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Gigabit Ethernet 0/x/0</td>
<td>Gigabit Ethernet 0/x/0 and Gigabit Ethernet 0/x/1</td>
</tr>
<tr>
<td>1</td>
<td>Gigabit Ethernet 0/x/2</td>
<td>Gigabit Ethernet 0/x/2 and Gigabit Ethernet 0/x/3</td>
</tr>
<tr>
<td>2</td>
<td>Gigabit Ethernet 0/x/4</td>
<td>Gigabit Ethernet 0/x/4 and Gigabit Ethernet 0/x/5</td>
</tr>
<tr>
<td>3</td>
<td>Gigabit Ethernet 0/x/6</td>
<td>Gigabit Ethernet 0/x/6 and Gigabit Ethernet 0/x/7</td>
</tr>
<tr>
<td>4</td>
<td>Gigabit Ethernet 0/x/8</td>
<td>Gigabit Ethernet 0/x/8 and Gigabit Ethernet 0/x/9</td>
</tr>
<tr>
<td>5</td>
<td>Gigabit Ethernet 0/x/10</td>
<td>Gigabit Ethernet 0/x/10 and Gigabit Ethernet 0/x/11</td>
</tr>
<tr>
<td>6</td>
<td>Gigabit Ethernet 0/x/12</td>
<td>Gigabit Ethernet 0/x/12 and Gigabit Ethernet 0/x/13</td>
</tr>
<tr>
<td>7</td>
<td>Gigabit Ethernet 0/x/14</td>
<td>Gigabit Ethernet 0/x/14 and Gigabit Ethernet 0/x/15</td>
</tr>
</tbody>
</table>

Similarly, the IOS port number on the 10G module also has an even number and the additional port on CSFP insertion is odd numbered as listed in the table below.
Suported Features on the Interface Module

- Supports PTP implementation. PTP is supported on 1G SFP, 10G SFP+, and CSFP ports.
- Supports SyncE.
- Supports both full subscription and over subscription modes.
- Provides multiple combinations of port density in Full subscription and Over Subscription modes.

Benefits

- The interface module has enhanced port density.
- 10 GE port can also operate in 1GE mode.

Restrictions

- In XFI Pass through mode, the interface module goes out of service without any mode configuration on slots 0, 1, 6, and 9. Configure the supported modes on the slots before inserting the interface module.
- This interface module is only supported on Cisco ASR 900 RSP3 module.
- OTN, Wan Phy, and MACsec are not supported.
- High Priority Traffic with frame size more than 4500 bytes is not supported for oversubscription mode.
- COS, EXP, and DSCP fields in frames with values 5, 6, and 7 respectively, are considered as High Priority Traffic for Oversubscription mode than all other control packets.
- This interface module is not supported on Cisco ASR 902 Routers.

Configuring Interface Module

To configure interface module:

```
enable
hw-module subslot 0/4 default
Proceed with setting all interfaces as default for the module? [confirm]
%Setting all interfaces in 0/4 to default state
```
Example: Configuring Full Subscription Modes

The following are the examples to configure different modes of full subscription.

8-port 1GE + 1-port 10GE Full Subscription Mode Configuration:

Router# enable
Router# hw-module subslot 0/4 default
Proceed with setting all interfaces as default for the module? [confirm]%Setting all interfaces in 0/4 to default state
Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface GigabitEthernet 0/4/16 set to default configuration
Interface GigabitEthernet 0/4/17 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration
Interface GigabitEthernet 0/4/17 set to default configuration

Router# configure terminal
Router(config)# platform hw-module configuration
Router(conf-plat-hw-conf)# hw-module 0/4 A900-IMA8CS1Z-M mode 8x1G+1x10G-FS

Interface configs would be defaulted before mode change followed by a soft reset of IM, will take ~3min to complete initialization.
----------Do you wish to continue?----------? [yes]: y
Please wait ~3 mins before applying any configs on the IM
Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration
Interface GigabitEthernet 0/4/17 set to default configuration

# 8-port 1GE + 1-port 1GE Full Subscription Mode Configuration:

Router# enable
Router#hw-module subslot 0/4 default
Proceed with setting all interfaces as default for the module? [confirm] % Setting all interfaces in 0/4 to default state
Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration
Interface GigabitEthernet 0/4/17 set to default configuration
Example: Configuring Full Subscription Modes

8-port 1GE Full Subscription Mode Configuration:

```
Router# config terminal
Router(config)# platform hw-module configuration
Router(config-hw-module)# hw-module 0/4 A900-IMA8CS1Z-M mode 8x1G+1x1G-FS

Interface configs would be defaulted before mode change followed by a soft reset of IM, will take ~3 min to complete initialization.
----------Do you wish to continue?----------? [yes]: y
Please wait ~3 mins before applying any configs on the IM
Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration
Interface GigabitEthernet 0/4/17 set to default configuration
```

```
Router# enable
Router#hw-module subslot 0/4 default
Proceed with setting all interfaces as default for the module? [confirm]%Setting all interfaces in 0/4 to default state
Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration
Interface GigabitEthernet 0/4/17 set to default configuration
```

```
Router# config terminal
Router(config)# platform hw-module configuration
Router(config-hw-module)# hw-module 0/4 A900-IMA8CS1Z-M mode 8x1G-FS

Interface configs would be defaulted before mode change followed by a soft reset of IM, will take ~3 min to complete initialization.
----------Do you wish to continue?----------? [yes]: y
Please wait ~3 mins before applying any configs on the IM
Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration
Interface GigabitEthernet 0/4/17 set to default configuration
```
1-port 10GE Full Subscription Mode Configuration:

Router# enable
Router#hw-module subslot 0/4 default
Proceed with setting all interfaces as default for the module? [confirm]

Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration

Router# configure terminal
Router(config)# platform hw-module configuration
Router(conf-plat-hw-conf)# hw-module 0/4 A900-IMA8CS1Z-M 1x10G-FS

Interface configs would be defaulted before mode change followed by a soft reset of IM, will take ~3min to complete initialization.

----------Do you wish to continue?----------? [yes]: y
Please wait ~3 mins before applying any configs on the IM

Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration

Interface TenGigabitEthernet 0/4/16 set to default configuration
Example: Configuring Over Subscription Modes

The following are the examples to configure different modes of over subscription.

16-port 1GE + 1-port 10GE Over Subscription Mode Configuration:

Router# enable
Router# configure terminal
Router(config)# platform hw-module configuration
Router(config-hw-module)# hw-module 0/4 A900-IMA8CS1Z-M mode 16x1G+1x10G-OS

----------Do you wish to continue?----------? [yes]: y
Please wait ~3 mins before applying any configs on the IM

18-port 1GE Over Subscription Mode Configuration:
Router# enable
Router# hw-module subslot 0/4 default
Proceed with setting all interfaces as default for the module? [confirm] % Setting all interfaces in 0/4 to default state
Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration
Interface GigabitEthernet 0/4/17 set to default configuration

Router# configure terminal
Router(config)# platform hw-module configuration
Router(config-plat-hw-conf)# hw-module 0/4 A900-IMA8CS1Z-M mode 18x1G-OS
Interface configs would be defaulted before mode change followed by a soft reset of IM, will take ~3 min to complete initialization.
----------Do you wish to continue?----------? [yes]: y
Please wait ~3 mins before applying any configs on the IM
Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Interface GigabitEthernet 0/4/7 set to default configuration
Interface GigabitEthernet 0/4/8 set to default configuration
Interface GigabitEthernet 0/4/9 set to default configuration
Interface GigabitEthernet 0/4/10 set to default configuration
Interface GigabitEthernet 0/4/11 set to default configuration
Interface GigabitEthernet 0/4/12 set to default configuration
Interface GigabitEthernet 0/4/13 set to default configuration
Interface GigabitEthernet 0/4/14 set to default configuration
Interface GigabitEthernet 0/4/15 set to default configuration
Interface TenGigabitEthernet 0/4/16 set to default configuration
Interface GigabitEthernet 0/4/17 set to default configuration
#

16-port 1GE Over Subscription Mode Configuration:

Router# enable
Router# hw-module subslot 0/4 default
Proceed with setting all interfaces as default for the module? [confirm] % Setting all interfaces in 0/4 to default state
Interface GigabitEthernet 0/4/0 set to default configuration
Interface GigabitEthernet 0/4/1 set to default configuration
Interface GigabitEthernet 0/4/2 set to default configuration
Interface GigabitEthernet 0/4/3 set to default configuration
Interface GigabitEthernet 0/4/4 set to default configuration
Interface GigabitEthernet 0/4/5 set to default configuration
Interface GigabitEthernet 0/4/6 set to default configuration
Verifying Configuration

Use the `show platform hw-configuration` command to verify the operating modes configured on the interface module.

```
Router# show platform hw-configuration
Slot Cfg IM Type Actual IM Type Op State Ad State Op Mode
BW ----------------- ------------------- --------------- -------- -------- --------
0/0 - - Empty N/A -
0/1 A900-IMA8CS1Z-M A900-IMA8CS1Z-M IS-NR IS 16x1G-OS
0/2 A900-IMA8CS1Z-M A900-IMA8CS1Z-M IS-NR IS 18x1G-OS
0/3 A900-IMA8CS1Z-M A900-IMA8CS1Z-M IS-NR IS 16x1G+1x10G
0/4 - - Empty N/A -
0/5 A900-IMA8CS1Z-M A900-IMA8CS1Z-M IS-NR IS 18x1G-OS
0/6 A900-IMA8CS1Z-M A900-IMA8CS1Z-M IS-NR IS 16x1G-OS
```
Verifying High Priority and Low Priority Counters Configuration

Use `show platform software agent iomd [IM module] fpga dump [port number]` to display the packets of High Priority and Low Priority traffic queue in Over Subscription mode.

```
show platform software agent iomd 0/8 fpga dump 4
OS LP Drop Q Pkt Cnt :0x0
OS HP Drop Q Pkt Cnt :0x0
OS LP Q Pkt Cnt :0x22906bd0
OS HP Q Pkt Cnt :0x55fdd731
```

Use `show platform software agent iomd [IM module] fpga clear [port number]` to clear High Priority and Low Priority counters in Over Subscription mode.

```
show platform software agent iomd 0/8 fpga clear 4
OS LP Drop Q Pkt Cnt :0x0
OS HP Drop Q Pkt Cnt :0x0
OS LP Q Pkt Cnt :0x0
OS HP Q Pkt Cnt :0x0
```

Configuring Bandwidth Mode

To configure bandwidth mode:
```
enable
configure terminal
platform hw-module configuration
bandwidth 0/0 8-gbps
end
```

Verifying Bandwidth Mode Configuration

Use `show platform hw-configuration` command to verify bandwidth mode configuration.

```
show platform hw-configuration
Slot Cfg IM Type Actual IM Type Op State Ad State Op Mode BW
------- -------------- -------------- -------- -------------- --
0/0 - - Empty N/A -
```
## Interface Module Rules

### ASR 903 Routers or Cisco RSP3C-400-S Rules for A900-IMA8CS1Z

<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>- 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed</td>
<td>The IM cannot be in slot 0 if IMA1C is in slot 4</td>
</tr>
<tr>
<td></td>
<td>- 16 x 1GigE (CSFP) + 1 x 10GigE (SFP+) Fully subscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 18-port 1GE Fully subscribed</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Not Supported</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Not Supported</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 16-port 1GE (CSFP) + 1 x 10GE (SFP+) Fully subscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 18-port 1GE Fully subscribed</td>
<td></td>
</tr>
</tbody>
</table>
### Interface Module Rules

<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>• 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed&lt;br&gt;• 16-port 1GE (CSFP) + 1-port 10GE (SFP+) Fully subscribed&lt;br&gt;• 18-port 1GE Fully subscribed</td>
<td>—</td>
</tr>
<tr>
<td>5</td>
<td>• 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed&lt;br&gt;• 16-port 1GE (CSFP) + 1-port 10GE (SFP+) Fully subscribed&lt;br&gt;• 18-port 1GE Fully subscribed</td>
<td>—</td>
</tr>
</tbody>
</table>

**ASR 907 Routers or Cisco RSP3C (Port Expansion Mode) Rules for A900-IMA8CS1Z**

**Note**

- If IMA8S, IMA8T, IMA8S1Z, and IMA8T1Z are in any slot, SADT cannot be configured.
- If the IMA8CS1Z interface module is not present in a slot, mode update through hw sub-slot mode is not allowed. The existing mode configuration applies to the interface module that is reinserted, and you can subsequently update the mode.

<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not supported</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>Not supported</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>• 8-port 1GE (SFP) Fully subscribed&lt;br&gt;• 16-port 1GE (CSFP) Oversubscribed&lt;br&gt;• 18-port 1GE (CSFP) Oversubscribed&lt;br&gt;• 8-port 1GE + 1-port 1GE Fully subscribed&lt;br&gt;• 1-port 10GE Fully subscribed</td>
<td>For Slot 2 in 8-port 1GE Fully Subscribed or 16-port/18-port 1GE Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode or 1-port 10GE Fully subscribed mode, IMA8Z or IMA2F cannot be in slot 4.</td>
</tr>
<tr>
<td>Slot Number</td>
<td>Supported IM Operating Modes</td>
<td>Restrictions</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>3</td>
<td>All modes are supported</td>
<td>If IMA8Z or IMA2F is present in slot 3, the IM cannot be used in slots 5, 9, 13 and 15.</td>
</tr>
<tr>
<td>4</td>
<td>All modes are supported</td>
<td>If IMA8Z or IMA2F is present in slot 4, the IM cannot be used in slots 2, 6, 10 and 14.</td>
</tr>
<tr>
<td>5</td>
<td>• 8-port 1GE (SFP) Fully subscribed</td>
<td>If IMA8Z or IMA2F is present in slot 3, the IM cannot be used in slots 5, 9, 13 and 15.</td>
</tr>
<tr>
<td></td>
<td>• 16-port 1GE (CSFP) Oversubscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 18-port 1GE (CSFP) Oversubscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8-port 1GE + 1-port 1GE Fully subscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1-port 10G Fully subscribed</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>• 8-port 1GE (SFP) Fully subscribed</td>
<td>If IMA8Z or IMA2F is present in slot 4, the IM cannot be used in slots 2, 6, 10 and 14.</td>
</tr>
<tr>
<td></td>
<td>• 16-port 1GE (CSFP) Oversubscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 18-port 1GE (CSFP) Oversubscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8-port 1GE + 1-port 1GE Fully subscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1-port 10G Fully subscribed</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>All modes are supported</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>All modes are supported</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>• 8-port 1GE (SFP) Fully subscribed</td>
<td>If IMA8Z or IMA2F is present in slot 3, the IM cannot be used in slots 5, 9, 13 and 15.</td>
</tr>
<tr>
<td></td>
<td>• 16-port 1GE (CSFP) Oversubscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 18-port 1GE (CSFP) Oversubscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 8-port 1GE + 1-port 1GE Fully subscribed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 1-port 10G Fully subscribed</td>
<td></td>
</tr>
<tr>
<td>Slot Number</td>
<td>Supported IM Operating Modes</td>
<td>Restrictions</td>
</tr>
<tr>
<td>-------------</td>
<td>---------------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>• 8-port 1GE (SFP) Fully subscribed&lt;br&gt;• 16-port 1GE (CSFP) Oversubscribed&lt;br&gt;• 18-port 1GE (CSFP) Oversubscribed&lt;br&gt;• 8-port 1GE + 1-port 1GE Fully subscribed&lt;br&gt;• 1-port 10G Fully subscribed</td>
<td>If IMA8Z or IMA2F is present in slot 4, the IM cannot be used in slots 2, 6, 10 and 14.</td>
</tr>
<tr>
<td>11</td>
<td>All modes are supported</td>
<td>If the IM is in slot 11, IMA8S, IMA8T, IMA8S1Z, and IMA8T1Z cannot be used in slots 1, 5, 9, 13 and 15.</td>
</tr>
<tr>
<td>12</td>
<td>All modes are supported</td>
<td>If the IM is in slot 12, IMA8S, IMA8T, IMA8S1Z, and IMA8T1Z cannot be used in slots 0, 2, 6, 10 and 14.</td>
</tr>
<tr>
<td>13</td>
<td>• 8-port 1GE (SFP) Fully subscribed&lt;br&gt;• 16-port 1GE (CSFP) Oversubscribed&lt;br&gt;• 18-port 1GE (CSFP) Oversubscribed&lt;br&gt;• 8-port 1GE + 1-port 1GE Fully subscribed&lt;br&gt;• 1-port 10G Fully subscribed</td>
<td>If IMA8Z or IMA2F is present in slot 3, the IM cannot be used in slots 5, 9, 13 and 15.</td>
</tr>
<tr>
<td>14</td>
<td>• 8-port 1GE (SFP) Fully subscribed&lt;br&gt;• 16-port 1GE (CSFP) Oversubscribed&lt;br&gt;• 18-port 1GE (CSFP) Oversubscribed&lt;br&gt;• 8-port 1GE + 1-port 1GE Fully subscribed&lt;br&gt;• 1-port 10G Fully subscribed</td>
<td>If IMA8Z or IMA2F is present in slot 4, the IM cannot be used in slots 2, 6, 10 and 14.</td>
</tr>
</tbody>
</table>
### Interface Module Rules

<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
</table>
| 15          | • 8-port 1GE (SFP) Fully subscribed  
  • 16-port 1GE (CSFP) Oversubscribed  
  • 18-port 1GE (CSFP) Oversubscribed  
  • 8-port 1GE + 1-port 1GE Fully subscribed  
  • 1-port 10G Fully subscribed | If IMA8Z or IMA2F is present in slot 3, the IM cannot be used in slots 5, 9, 13 and 15. |

**ASR 907 Routers or Cisco RSP3C (XFI-Pass Through Mode) for A900-IMA8CS1Z**

**Note**
IMA8S, IMA8T, IMA8S1Z, and IMA8T1Z cannot be used in any slot.

<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
</table>
| 0           | • 8-port 1GE (SFP) Fully subscribed  
  • 16-port 1GE (CSFP) Oversubscribed  
  • 18-port 1GE (CSFP) Oversubscribed  
  • 8-port 1GE + 1-port 1GE Fully subscribed | • If the IM is in slot 0 in 8-port 1GE Fully subscribed mode or in 16-port/18-port 1GE Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode, the IM in Slot 12 can only be in 8-port 1GE (SFP) Fully subscribed mode or in 16-port/18-port 1GE (CSFP) Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode, 1-port 10GE Fully subscribed mode.  
• If Slot 0 is in 8-port 1G Fully subscribed mode or 16-port/18-port 1GE, or 16-port/18-port 1G Over subscribed or 1-port 10G Fully subscribed mode or 8-port 1G + 1-port 1G Fully subscribed mode.  
• If Slot 0 is in 8-port 1G Fully subscribed mode or 16-port/18-port 1GE Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode, then IMA8Z or IMA2F cannot be in slot 12. |
| 1           | • 8-port 1GE (SFP) Fully subscribed  
  • 16-port 1GE (CSFP) Oversubscribed  
  • 18-port 1GE (CSFP) Oversubscribed  
  • 8-port 1GE + 1-port 1GE Fully subscribed | • If Slot 1 is in 8-port 1G Fully subscribed or 16-port/18-port 1GE Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode, the IMA8Z or IMA2F or IMA2Z cannot be in slot 11. |
<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
</table>
| 2           | • 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed  
             • 16-port 1GE (CSFP) + 1-port 10GE (SFP+) Oversubscribed  
             • 16-port/18-port 1GE (CSFP) Oversubscribed  
             • 8-port 1GE + 1-port 1GE Fully subscribed  
             • 1-port 10GE Fully subscribed  
             • 8-port 1GE Fully subscribed | • If Slot 2 is in 8-port 1G + 1-port 10G Fully subscribed mode, or 16-port 1G + 1-port 10G Over subscribed mode, then no IM can be present in slot 12.  
             • If Slot 2 is in 8-port 1G + 1-port 10G Fully subscribed mode, or 16-port 1G + 1-port 10G Over subscribed mode, then IMA8Z or IMA2F cannot be in slot 4. |
| 3           | All modes are supported.     | • If IMA8Z or IMA2F is in slot 3, then the IM is not supported on slots 5, 9, 13, and 15.  
             • If Slot 3 has IMA8Z or IMA2F, then no IM can be present in slots 5, 9, 13, and 15. |
| 4           | All modes are supported.     | • If IMA8Z or IMA2F is in slot 4, then the IM is not supported in slots 2, 6, 10, and 14.  
             • If Slot 4 has IMA8Z or IMA2F, then no IM can be present in slots 2, 6, 10, and 14. |
| 5           | • 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed  
             • 16-port 1GE (CSFP) + 1-port 10GE (SFP+) Oversubscribed  
             • 16-port 1GE (CSFP) Oversubscribed  
             • 18-port 1GE (CSFP) Oversubscribed  
             • 8-port 1GE + 1-port 1GE Fully subscribed  
             • 1-port 10GE Fully subscribed  
             • 8-port 1GE Fully subscribed | • If the IM is in slot 5 in 8-port 1G + 1-port 10G Fully subscribed mode or in 16-port 1G + 1-port 10G Oversubscribed mode, the the IM in slot 11 can only be in 8-port 1GE Fully subscribed mode or in 16-port/18-port 1GE (CSFP) Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode, or 1-port 10 GE Fully subscribed mode.  
             • If Slot 5 is in 8-port 1G + 1-port 10G Fully subscribed, or 16-port 1G + 1-port 10G Over subscribed mode, then IMA8Z or IMA2F cannot be in slot 3. |
<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
</table>
| 6           | • 8-port 1GE (SFP) Fully subscribed mode  
                           • 16-port 1GE (CSFP) Oversubscribed  
                           • 18-port 1GE (CSFP) Oversubscribed  
                           • 8-port 1GE + 1-port 1GE Fully subscribed  
                           • 1-port 10 GE Fully subscribed  | • If Slot 6 is in 8-port 1GE fully subscribed, or 16-port 1GE Over subscribed or 8-port 1GE + 1-port 1GE fully subscribed or 1-port 10GE Fully subscribed mode, then IMA8Z or IMA2F cannot be in slot 4. |
| 7           | All modes are supported  | — |
| 8           | All modes are supported  | — |
| 9           | • 8-port 1GE (SFP) Fully subscribed  
                           • 16-port/18-port 1GE (CSFP) Oversubscribed  
                           • 16-port 1GE (CSFP) Oversubscribed  
                           • 8-port 1GE + 1-port 1GE Fully subscribed  
                           • 1-port 10 GE Fully subscribed  | If Slot 9 is in 8-port 1GE fully subscribed, or 16-port 1GE Over subscribed mode, or 18-port 1GE Over subscribed mode or 8-port 1GE + 1-port 1GE fully subscribed or 1-port 10GE Fully subscribed mode, then IMA8Z or IMA2F cannot be in slot 3. |
| 10          | • 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed  
                           • 16-port 1GE (CSFP) + 1-port 10GE (SFP+) Oversubscribed  
                           • 16-port/18-port 1GE (CSFP) Oversubscribed  
                           • 8-port 1GE+1-port 1GE Fully subscribed  
                           • 1-port 10 GE Fully subscribed  | • If Slot 10 and 14 are in 8-port 1GE + 1-port 10GE Fully subscribed, or 16-port 1GE + 1-port 10GE Over subscribed mode, then IMA8Z IMA2F cannot be in Slot 4. |
<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
</table>
| 11          | All modes are supported      | • IM can be in slot 11, only in 8-port 1GE (SFP) Fully subscribed mode, or in 16-port/18-port 1GE (CSFP) Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode, or 1-port 10 GE Fully subscribed mode if IPSEC is used (FLSASR907-IPSEC).  

• If the IM is slot 11, and in 8-port 1GE + 1 x 10GigE Fully subscribed mode, or in 16-port 1GE + 1-port 10GE Oversubscribed mode, then the IM in Slots 5 and 15 only be in 8-port 1GE (SFP) Fully subscribed mode, or in 16-port/18-port 1GE (CSFP) Oversubscribed mode or 8-port 1GE +1-port 1GE Fully subscribed or 1-port 10GE Fully subscribed mode.  

• If the IM is in slot 11, and in 8-port 1GE Fully subscribed mode, or in 16-port 1GE Oversubscribed mode, or in 18-port 1GE Oversubscribed mode or in 8-port 1GE + 1-port 1GE Fully subscribed or 1-port 10GE Fully subscribed, then the IM in Slot 15 can only be in 8-port 1GE (SFP) Fully subscribed mode, OR in 16-port/18-port 1GE (CSFP) Oversubscribed mode or 1-port 10GE Fully subscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode.  

• IF IMA2Z is in slot 11, then the IM is in slot 15 only in 8-port 1GE (SFP) Fully subscribed mode, OR in 16-port/18-port 1GE (CSFP) Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode or 1-port 10GE Fully subscribed mode, and no IM can be present in slot 1.  

• If IMA8Z or IMA2F is in slot 11, then the IM is in slots 5, 13 and 15 in 8-port 1GE Fully Subscribed, or in 16-port/18-port 1GE Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode or 1-port 10GE Fully subscribed mode, and no IM can be present in slot 1. |
### Interface Module Rules

<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>All modes are supported</td>
<td>• If the IM is in slot 12, and in 8-port 1GE + 1-port 10GE Fully subscribed mode, or in 16-port 1GE + 1-port 10GE Oversubscribed mode, then no IM can be present in Slot 0, and the IM in Slot 2 can only be in 8-port 1GE (SFP) Fully subscribed mode, OR in 16-port/18-port 1GE (CSFP) Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode or 1-port 10GE Fully subscribed mode.</td>
</tr>
</tbody>
</table>

• If the IM is in slot 12 and in 8-port 1GE Fully subscribed mode or in 16-port 1GE Oversubscribed mode, or in 18-port 1GE Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode or 1-port 10GE Fully subscribed mode, then the IM in Slot 2 can only be in 8-port 1GE (SFP) Fully subscribed mode, OR in 16-port/18-port 1GE (CSFP) Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode or 1-port 10GE Fully subscribed mode. |

• IF IMA2Z is in slot 12, then the IM is in slots 2 and 10 in 8-port 1GE (SFP) Fully subscribed mode, or in 16-port/18-port 1GE (CSFP) Oversubscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode or 1-port 10GE Fully subscribed mode. |

• If Slot 12 has IMA2Z, then slots 2 and 10 in 8-port 1GE Fully subscribed mode, or 16-port/18-port 1GE Over subscribed mode or 1-port 10GE Fully subscribed mode or 8-port 1G + 1-port 1GE Fully subscribed mode. |

• If IMA8Z OR IMA2F is in slot 12, then the IM in slots 2, 10 and 14 in 8-port 1GE Fully Subscribed, or in 16-port/18-port 1GE Oversubscribed mode and 1-port 10GE Fully subscribed mode or 8-port 1GE + 1-port 1GE Fully subscribed mode, and no IM can be present from Slot 1 to Slot 0. |
<table>
<thead>
<tr>
<th>Slot Number</th>
<th>Supported IM Operating Modes</th>
<th>Restrictions</th>
</tr>
</thead>
</table>
| 13          | • 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed  
• 16-port 1GE (CSFP) + 1-port 10GE (SFP+) Oversubscribed  
• 16-port/18-port 1GE (CSFP) Oversubscribed  
• 8-port 1GE + 1-port 1GE Fully subscribed  
• 1-port 10 GE Fully subscribed  
• 8-port 1G Fully subscribed | • If IPSEC is used (FLSASR907-IPSEC) then the IM can be in slot 13, only in 8-port 1GE (SFP) Fully subscribed mode, or in 16-port/18-port 1GE (CSFP) Oversubscribed mode.  
• If the IM in slot 13 is configured in 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed mode, or in 16-port 1GE (CSFP) + 1-port 10GE (SFP+) Oversubscribed mode, or Fully Subscribed mode, then IPSEC cannot be configured.  
If Slot 13 is in 8-port 1GE + 1-port 10GE Fully subscribed mode, or 16-port 1GE + 1-port 10GE Oversubscribed mode, then IMA8Z or IMA2F cannot be in slot 3. |
| 14          | • 8-port 1GE (SFP) + 1-port 10GE (SFP+) Fully subscribed  
• 16-port 1GE (CSFP) + 1-port 10GE (SFP+) Oversubscribed  
• 16-port/18-port 1GE (CSFP) Oversubscribed  
• 8-port 1GE + 1-port 1GE Fully subscribed  
• 1-port 10 GE Fully subscribed  
• 8-port 1G Fully subscribed | • IF 10G Y.1564/SADT is used, then the IM can be in slot 14 only in 8-port 1GE (SFP) Fully subscribed mode, or in 16-port/18-port 1GE (CSFP) Oversubscribed mode, or 8-port 1GE + 1-port 1GE Fully subscribed mode, or 1-port 10GE Fully subscribed mode.  
• If Slot 14 is in 8-port 1GE + 1-port 10GE Fully subscribed mode or 16-port 1GE + 1-port 10GE Oversubscribed mode, then IMA8Z or IMA2F cannot be in slot 4. |
### Associated Commands

The following table shows the Associated Commands for interface module configuration:

<table>
<thead>
<tr>
<th>Commands</th>
<th>Links</th>
</tr>
</thead>
</table>

### Additional References

#### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>There are no standards and RFCs for this feature.</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>There are no MIBs for this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>
Card Protection for 48-Port T1/E1 CEM and 48-Port T3/E3 CEM Interface Modules

The Card Protection feature is introduced for the 48-Port T1/E1 and 48-port T3/E3 interface modules. In this feature, the interface module bay is protected by another interface module of the same type.

The Card Protection feature is required to protect traffic flow either when an interface module is out of service, when the software fails or a hardware component has issues. Because card protection is supported only on redundant interface modules, traffic is switched to the protect interface module when the active interface module does not respond, and vice-versa.

Note

This feature does not require any change in the patch panel of the interface modules.

In card protection, a Y Cable is used to multiplex the signal from the patch panel to both the ports of active and protect interface modules. Both ports receive the signal, but only the active interface module transmits the signal from its port.

Figure 11: Y Cable

To support the Card Protection feature, the configuration on the active and protect interface module must be same. To achieve this, a virtual interface module is created with the same interface module type as the active interface module. A virtual controller is also created, which broadcasts the configuration to both the interface modules. The configuration on the physical controllers is then blocked and you can make configuration changes only on the virtual controller. The user configuration can only be performed on the virtual controller.

The virtual controller supports CEM level configuration and all other configurations. These configurations are blocked on physical controllers.
Figure 12: Card Protection Topology

Y Cable

In card protection, a Y cable is used to multiplex the signal from the patch panel to both the ports of active and standby interface modules. Both the active and protect ports receive the signal, but only the active port transmits the signal from its port. Protect port transmitter is disabled.

Card Protection Switchover

The following table shows the card protection switchover trigger and time to complete the switchover between the working and protect interface module.

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Module Reload with CLI OIR</td>
<td>Less than 50 millisecond</td>
</tr>
<tr>
<td>Non-responsive Interface Module Process (interface module reloaded on its own, the reload is initiated due to software error)</td>
<td>100 millisecond to 200 millisecond</td>
</tr>
<tr>
<td>Interface Module shuts down due to high temperature</td>
<td>Less than 50 millisecond</td>
</tr>
<tr>
<td>Interface Module shuts down using CLI</td>
<td>Less than 50 millisecond</td>
</tr>
</tbody>
</table>
### Alarm Based Switchover

Alarm based switchover is only applicable for Loss Of Signal (LOS) alarm. Switchover happens only when the number of ports with LOS alarm in working interface module is greater than that on the protect interface module.

Each card protection group maintains a weight for each working and protect interface module. This weight is updated when the LOS alarms are asserted or cleared. The switchover happens only if the weight of working interface module and protect interface module stays same for a certain amount of time called soak time.

When there is any issue with the Patch Panel, both working interface module and protect interface module have the same number of LOS alarms (weights are same). Hence, switchover does not happen.

### Restrictions

- Card physical jack out convergence time for card protection switchover is more than 50 milliseconds.
- The time taken to restart the interface module due to any software error is more than 50 milliseconds.
- Alarm toggle on active or backup card causes at least one card protection switch.
- When BERT is started from the virtual controllers, the syslog displays the physical controllers instead of the virtual controller port.

### Supported Features on Interface Module

The supported features are:

- Switching Mode
  - Non-revertive mode
  - Revertive mode
- Alarm Based Switchover
- SerDes Based Switchover
- Adaptive Clock Recovery (ACR) on virtual CEM

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface Module stops using CLI</td>
<td>Less than 50 millisecond</td>
</tr>
<tr>
<td>Card Physical Jackout</td>
<td>100 millisecond to 200 millisecond</td>
</tr>
<tr>
<td>Serializer/Deserializer (SerDes) Failures</td>
<td>250 millisecond to 1 second</td>
</tr>
<tr>
<td>Alarm Based Switchoner</td>
<td>Based on Hold Over Time or Soak Time</td>
</tr>
<tr>
<td>Card Protection Commands</td>
<td>20 millisecond to 30 millisecond</td>
</tr>
</tbody>
</table>
• Differential Clock Recovery (DCR) on virtual CEM
• Maintenance Commands
  • Lockout
  • Force
  • Manual

Note
All controller configurations are performed on the virtual controller.

You can create card protection with one slot (either primary or backup) and the remaining slots can be added later.

Configuring Maintenance Commands

To configure maintenance commands:

```
enable
configure terminal
card-protection 4
primary slot 0 bay 1
backup slot 0 bay 5
end
card-protection 4
card-protection [manual {backup|primary} | force {backup|primary} | lockout]
end
```

Priority Table

The following table shows the priority of the actions:

<table>
<thead>
<tr>
<th>Priority</th>
<th>Configurations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lockout</td>
</tr>
<tr>
<td>2</td>
<td>Force</td>
</tr>
<tr>
<td>3</td>
<td>Alarm or Card Failure</td>
</tr>
<tr>
<td>4</td>
<td>Manual Switch</td>
</tr>
<tr>
<td>5</td>
<td>Revert</td>
</tr>
</tbody>
</table>

Configuring T3/E3 Card Protection

Pre-requisites
The interface module should be free from any configuration.
Configuring Card Protection Group:

```
enable
cfg terminal
card-protection 1-16
primary slot 0 bay 0
backup slot 0 bay 5
end
```

Note
The card protection number 1 to 16 refers to the Card Protection Group Number (CPGN).

Note
This is a non-revertive mode.

Configuring Virtual Card and Virtual Controller:

When card protection group is configured, it creates virtual card for card protection object, denoted by 8/x/port. Slot 8 is a fixed slot number for all card protection-created virtual card. Bay number ‘x’ is derived from the CPGN, where x=CPGN-1. Since card protection group number ranges from 1 to 16, bay number ranges from 0 to 15. Virtual controllers can be configured from 8/x/0 to 8/x/47.

Physical Card Configuration:

Configures mode T3/E3 on physical controllers of both primary (0/0) and backup (0/5) card.

```
able
cfg terminal
ctrlr mediatype 8/0/0
mode t3
end
```

Virtual Card Configuration:

- Configures mode T3/E3 on virtual controllers.
- Configures CEM on virtual controller (8/x/port).
- Configures xconnect and local connect on CEM interface.

```
able
cfg terminal
ctrlr t3 8/0/0
cem 0 unframed
intf cem 8/0/0
cem 0
xconnect 11.1.1.1 112 encasualtion mpls
end
```

Note
This is a non-revertive mode.
To configure a CEM group under a virtual controller, first perform shutdown of the virtual controller and then un-configure the CEM group.

**Configuring Revertive Mode**

To configure revertive mode:

```
enable
configure terminal
card-protection 4
primary slot 0 bay 0
backup slot 0 bay 5
end
card-protection 4
revertive time [30-720]
end
```

The revertive time ranges from 30 to 720 seconds.

**Verifying T3/E3 Card Protection Configuration**

Use `show card-protection detail` command to verify card protection group configuration.

```
#show card-protection 2 detail
Working(0/1:A900-IMA48T-C):
 Number of LOS Alarms:7
 ok,Active
 1:1, Revertive

Protect(0/2:A900-IMA48T-C):
 Number of LOS Alarms:7
 ok,Inactive
 1:1, Revertive

Revert Timer : (Not Started)
Last switchover reason :None

#show card-protection 4
CPGN Primary Card Backup Card Active

 4 0/1 0/2 Primary
```

Use `show xconnect all` command to verify xconnect configuration.

```
#show xconnect all
XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
UP=Up DN=Down AD=Admin Down IA=Inactive
```
Configuring T1/E1 Card Protection

Configuring Card Protection Group:

```plaintext
enable
configure terminal
card type t1 0 2
card type t1 0 1
card-protection [1-16]
primary slot 0 bay 1
backup slot 0 bay 2
end
```

The card protection number 1 to 16 refers to CPGN.

Configuring Virtual Card and Virtual Controller:

When card protection group is configured, it creates virtual card for card protection object, denoted by 8/x/port. Slot 8 is a fixed slot number for all card protection created virtual card. Bay number ‘x’ for virtual card is x = CPGN - 1 = 15. Virtual controllers can be configured from 8/15/0 to 8/15/47.

Physical Card Configuration:

• No configuration is required for traffic.

Virtual Card Configuration:

• Configures CEM on virtual controller (8/x/port).

```plaintext
enable
configure terminal
controller t1 8/15/0
cem 0 unframed
interface cem 8/15/0
cem 0
xconnect 11.1.1.1 212 encasulation mpls
end
```

```plaintext
enable
configure terminal
controller t1 8/15/1

cem 0 unframed
interface cem 8/15/11
cem 0
connect testLC cem 8/15/0 0 cem 8/15/11 0
end
```
To configure a CEM group under a virtual controller, first perform shutdown of the virtual controller and then un-configure the CEM group.

Configuring Revertive Mode

To configure revertive mode:

```
enable
configure terminal
card-protection 4
primary slot 0 bay 0
backup slot 0 bay 5
end
card-protection 4
revertive time [30-720]
end
```

The revertive time ranges from 30 to 720 seconds.

Verification of T1/E1 Card Protection Configuration

Use `show card-protection` command to verify card protection group configuration.

```
show card-protection 2 detail
Working(0/1:A900-IMA48T-C):
 Number of LOS Alarms:7
 ok,Active
 1:1, Revertive
Protect(0/2:A900-IMA48T-C):
 Number of LOS Alarms:7
 ok,Inactive
 1:1, Revertive

Revert Timer : (Not Started)
Last switchover reason :None
```

Use `show xconnect all` command to verify xconnect configuration.

```
show xconnect all | I CE8/15/
UP pri ac CE8/15/0:0(SATOP T1) UP mpls 11.1.1.1:212 UP
#
show xconnect all | I CE8/15/
72 testLC CE8/15/11 SAT1 0 CE8/15/12 SAT1 0 UP
#
```

Associated Commands

The following table shows the commands for the IM configuration:
### Card Protection Creation Commands:

- `card-protection CPGN`
- `card-protection {primary | backup}`
- `card-protection revertive time`

### Card Protection Maintenance Commands:

- `card-protection CPGN [manual {primary | backup} | force {primary | backup} | lockout ]`

### show card-protection CPGN detail

---

## Additional References

### Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
<tr>
<td>Compact-SFP</td>
<td>Cisco SFP Modules for Gigabit Ethernet Applications Data Sheet</td>
</tr>
</tbody>
</table>

### Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>There are no standards and RFCs for this feature.</td>
</tr>
</tbody>
</table>

### MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>There are no MIBs for this feature.</td>
</tr>
</tbody>
</table>

---
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td><a href="http://www.cisco.com/cisco/web/support/index.html">http://www.cisco.com/cisco/web/support/index.html</a></td>
</tr>
</tbody>
</table>
CHAPTER 20

BCP Support on MLPPP

This feature module describes how to configure Bridge Control Protocol (BCP) Support over Multilink PPP (MLPPP).

**Note**

This feature is only applicable for Cisco ASR 900 RSP2 Module.

- Prerequisites for BCP Support on MLPPP, on page 337
- Restrictions for BCP Support on MLPPP, on page 337
- Information About BCP Support on MLPPP, on page 338
- How to Configure BCP Support on MLPPP, on page 339
- Configuration Examples for BCP Support on MLPPP, on page 346

**Prerequisites for BCP Support on MLPPP**

- Cisco IOS XE Everest 16.5.1 or a later release that supports the BCP Support on MLPPP feature must be installed previously on the Cisco ASR 900.

**Restrictions for BCP Support on MLPPP**

- IPv6 is not supported.
- Routing is not supported, hence, BDI is also not supported on BCP over MLPPP.
- Spanning Tree Protocol (STP) and Resilient Ethernet Protocol (REP) are not supported.
- Jumbo frames are not supported.
- Supports 16 T1/E1 and OC3 IM only. A maximum number of 16 (0-15) links per MLPPP bundle are supported, where traffic rate is not beyond MLPPP bandwidth. For E1 link, 16 E1 serial interfaces can be in one MLPPP bundle. For T1, 16 T1 links can be in one MLPPP bundle.
- The following encapsulations are not supported: QinQ, dot1ad, and dot1ad-dot1q.
- You cannot configure default or untagged encapsulations on two different multilinks. When default is configured on a multilink, you can configure another EFP as untagged on the same multilink. For untagged, the same multilink cannot have another EFP configured as untagged.
- Two different multilinks cannot bridge the same encapsulated VLAN.
• The same bridge domain cannot be configured twice on the same interface.
• Connectivity Fault Management (CFM), Y.1731, and Layer 2 protocol forward tagged are not supported.
• Set qos-group is not supported in the output policy of physical Gigabit interface and EVC of the multilink interface. Set qos-group on ASR 903 will not mark the packet. The scope of the set qos-group is limited to the router.
• QoS policy is not supported on multilink at the interface level. However, it is supported on different EVCs of the multilink interfaces.
• Qos-group classification will work only on the egress interface or EFP interface.
• The MLPPP interface bundle supports only a maximum of 64 EVCs.
• A minimum of 64 VLANs are supported across all the MLPPPs.
• Layer 3 traffic with default encapsulation is not supported.
• Multicast and IGMP is not supported.
• For ingress classification to work, it should be classified based on “match cos inner <>” or “match vlan inner <>”.
• Layer 2 QoS behavior is supported only on tagged/priority tagged packets. It is not supported for untagged packets.
• Only 1r2C policer is supported at the egress.
• With BCP on MLPPP, the COS bits in the payload are not preserved end to end.

Information About BCP Support on MLPPP

The BCP, as described in RFC 3518, is responsible for configuring, enabling and disabling the bridge protocol modules on both ends of the point-to-point link. The BCP feature enables forwarding of Ethernet frames over serial networks, and provides a high-speed extension of enterprise LAN backbone traffic through a metropolitan area.

When BCP is supported on MLPPP, it enables transport of Ethernet Layer 2 frames through MLPPP. In the following diagram, Bridge-A is connected to Bridge-B using MLPPP. The MLPPP bundle acts as a trunk link connecting Bridge-A and Bridge-B, transporting multiple VLANs. Using this feature, the hosts in VLAN 100, who are connected to Bridge-A, can talk to the hosts in VLAN 200, who are connected to Bridge-B.

Figure 13: BCP over MLPPP
Supported Profiles and Protocols

- Ethernet II frames
- 802.1Q tagged frames
- IPv4 packets
- Frame sizes from 64 to 1522 octets

Quality of Service

The Ethernet Layer 2 traffic is classified on the egress at the EVC of the Multilink interface based on IP DSCP or VLAN CoS bits. Based on this classification, egress policing (bandwidth percent or priority percent) is achieved. You can also re-mark the QoS field. The following table lists the options available for re-marking.

Table 32: Re-Marking Options

<table>
<thead>
<tr>
<th>IP DSCP</th>
<th>VLAN CoS or PCP Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set IP DSCP (re-mark IP DSCP)</td>
<td>Set IP DSCP</td>
</tr>
<tr>
<td>Set VLAN CoS or Priority Code Point (PCP) Bits</td>
<td>Set VLAN CoS Bits (re-mark VLAN CoS or PCP Bits)</td>
</tr>
<tr>
<td>Bandwidth Percent or Priority Percent</td>
<td>Bandwidth Percent or Priority Percent</td>
</tr>
</tbody>
</table>

How to Configure BCP Support on MLPPP

Configuring Multiple EFPs Bridged Through the Same Link

To bridge multiple EFPs through the same multilink, you should create two EFPs and add them to the multilink. To configure an EFP and a multilink, complete the following tasks:

Configuring an EFP

To configure an EFP, complete the following steps:

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
### Adding an EFP to a Multilink

To add an EFP to a multilink, complete the following steps:

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and places the device in interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface Multilink 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> service instance number ethernet</td>
<td>Configures an EFP (service instance) and enters service instance configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>

### Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> interface type number</td>
<td>Specifies an interface type and number, and places the device in interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface GigabitEthernet 0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> service instance number ethernet</td>
<td>Configures an EFP (service instance) and enters service instance configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>

---

### Adding an EFP to a Multilink

To add an EFP to a multilink, complete the following steps:

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Specifies an interface type and number, and places the device in interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface GigabitEthernet 0/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> service instance number ethernet</td>
<td>Configures an EFP (service instance) and enters service instance configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring Multiple Encapsulated VLANs Bridged Through Different Multilinks

You should create two encapsulated VLANs and add them to two multilinks for this configuration to work.

To configure multiple encapsulated VLANs bridged through different multilinks, complete the following tasks:

**Adding an Encapsulated VLAN to Multilinks**

To add an encapsulated VLAN to separate multilinks, complete the following steps:

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>--------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| **Step 3**                                 | **interface type number**  
**Example:**  
Router(config)# interface Multilink 5  
Specifies an interface type and number, and places the device in interface configuration mode. |
| **Step 4**                                 | **service instance number ethernet**  
**Example:**  
Router(config-if)# service instance 10 ethernet  
Configures an EFP (service instance) and enters service instance configuration mode.  
*number*—EFP identifier; an integer from 1 to 4000. |
| **Step 5**                                 | **encapsulation dot1q vlan-id**  
**Example:**  
Router(config-if-srv)# encapsulation dot1q 60  
Configures encapsulation type for the service instance.  
*vlan-id*—Virtual LAN identifier. The valid range is from 1 to 4094. |
| **Step 6**                                 | **rewrite ingress tag pop 1 symmetric**  
**Example:**  
Router(config-if-srv)# rewrite ingress tag pop 1 symmetric  
Specifies that encapsulation modification occurs on packets at ingress. |
| **Step 7**                                 | **bridge-domain bridge-id**  
**Example:**  
Router(config-if-srv)# bridge-domain 100  
Configures the bridge domain ID.  
*bridge-id*—Bridge domain number. The valid range is from 1 to 4094. |
| **Step 8**                                 | **exit**  
**Example:**  
Router(config-if-srv)# exit  
Exits service instance configuration mode and enters the interface configuration mode.  
**Note**  
Repeat steps 3 to 7 to create another multilink and add the VLAN information. |

### Configuring QoS for BCP Support on MLPPP

The egress policy at the EVC of the multilink interface matches the IP DSCP value and VLAN CoS bits. Based on this classification it re-marks these values and performs egress policing (Priority percent or Bandwidth percent), shaping, priority shaper, BRR/BRP.

To configure QoS for BCP Support on MLPPP, complete the following tasks:

**Note**  
Define a QoS policy, and apply it to the MLPPP interface, and configure a matching policy on the EFP interface.

### Defining a QoS Policy

To define a QoS policy, complete the following steps:
## Defining a QoS Policy

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable | Enables privileged EXEC mode.  
- Enter your password if prompted. |
| | Example: | Router> enable |
| **Step 2** | configure terminal | Enters global configuration mode. |
| | Example: | Router# configure terminal |
| **Step 3** | class-map match-any class-map-name | Creates a class map to be used for matching packets to a specified class and enters QoS class-map configuration mode.  
- class-map-name—Name of the class for the class map. The class name is used for both the class map and to configure a policy for the class in the policy map. |
| | Example: | Router(config)# class-map match-any dscpaf11 |
| **Step 4** | match ip dscp dscp-list | Matches IP DSCP packeting using Assured Forwarding (AF) by entering the binary representation of the DSCP value. |
| | Example: | Router(config-cmap)# match ip dscp af11 |
| **Step 5** | class-map match-any class-map-name | Creates a class map to be used for matching packets to a specified class. |
| | Example: | Router(config-cmap)# class-map match-any qos-group3 |
| **Step 6** | match qos-group qos-group-value | Identifies a specific quality of service (QoS) group value as a match criterion.  
- qos-group-value—The exact value used to identify a QoS group value. The valid range is from 0 to 7. |
| | Example: | Router(config-cmap)# match qos-group 3 |
| **Step 7** | policy-map policy-map-name | Creates a policy map that can be attached to one or more interfaces.  
- policy-map-name—Name of the policy map. |
| | Example: | Router(config-cmap)# policy-map bcpmlpppqos |
| **Step 8** | class class-name | Specifies the name of the class whose policy you want to create or change. Alternatively, is used to specify the default class (commonly known as the class-default class) before you configure its policy.  
- class-name—Name of the class to be configured or whose policy is to be modified. The class name is used for both |
| | Example: | Router(config-pmap)# class dscpaf11 |
Applying a QoS Policy on an MLPPP Interface

To apply a QoS policy on an MLPPP interface, complete the following steps:

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

**Applying a QoS Policy on an MLPPP Interface**

To apply a QoS policy on an MLPPP interface, complete the following steps:

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 9</strong> priority percent percentage</td>
<td>Provides priority to a class of traffic belonging to a policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)# priority percent 20</td>
<td>• percentage—Total available bandwidth to be set aside for the priority class. The valid range is from 1 to 100.</td>
</tr>
<tr>
<td><strong>Step 10</strong> set ip dscp ip-dscp-value</td>
<td>Marks a packet by setting the IP DSCP value in the type of service (ToS) byte.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)# set ip dscp ef</td>
<td>• ip-dscp-value—IP DSCP value; The valid values are from 0 to 63.</td>
</tr>
<tr>
<td><strong>Step 11</strong> class class-name</td>
<td>Specifies the name of the class whose policy you want to create or change. Alternatively, is used to specify the default class (commonly known as the class-default class) before you configure its policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)# class qos-group3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong> bandwidth percent percentage</td>
<td>Specifies the bandwidth allocated for a class belonging to a policy map.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)# bandwidth percent 20</td>
<td>• percentage—Specifies the percentage of guaranteed bandwidth based on an absolute percent of available bandwidth to be set aside for the priority class or on a relative percent of available bandwidth. The valid range is from 1 to 100.</td>
</tr>
<tr>
<td><strong>Step 13</strong> set qos-group group-id</td>
<td>Sets a QoS group identifier (ID) that can be used later to classify packets.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-pmap-c)# set qos-group 4</td>
<td>• group-id—group-id—Group ID number. The valid range is from 0 to 99.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Specifies an interface type and number, and places the device in interface configuration mode.</td>
</tr>
</tbody>
</table>

**Step 3**

**interface type number**

**Example:**

Router(config)# interface Multilink 5

Configures an EFP (service instance) and enters service instance configuration mode.

**Step 4**

**service instance number ethernet**

**Example:**

Router(config-if)# service instance 20 ethernet

Attaches a policy map to an input interface, a virtual circuit (VC), an output interface, or a VC that will be used as the service policy for the interface or VC.

**Step 5**

**service-policy output policy-map-name**

**Example:**

Router(config-if)# service-policy output bcpmlpppqos

Verifying BCP Support on MLPPP

To display the Multilink PPP bundle information on various interfaces on a router, use the `show` command, as described in the following example:

Router# show ppp multilink interface multilink 1

Multilink1
Bundle name: ASR1
Remote Endpoint Discriminator: [1] ASR1
Local Endpoint Discriminator: [1] ASR2
Bundle up for 17:06:50, total bandwidth 20480, load 6/255
  2 receive classes, 2 transmit classes
Receive buffer limit 123040 bytes per class, frag timeout 1000 ms
Bundle is Distributed
Receive Class 0:
  0/0 fragments/bytes in reassembly list
Configuration Examples for BCP Support on MLPPP

Example: Configuring an EFP

The following are the examples of two ways in which you can configure an EFP.

**Method 1**

```
enable
configure terminal
interface GigabitEthernet 0/0
service instance 10 ethernet
encapsulation dot1q 50
rewrite ingress tag pop 1 symmetric
bridge-domain 100
```

**Method 2**

```
enable
configure terminal
interface GigabitEthernet 0/0
service instance 10 ethernet
encapsulation dot1q 50
rewrite ingress tag pop 1 symmetric
exit
configure terminal
bridge-domain 100
member Multilink1 service-instance 100
```
Example: Multilink with a Single EFP

The following is a sample configuration of a multilink with a single EFP.

Figure 14: Multilink with a Single EFP

Example: Multilink with Multiple EFPs

The following is a sample configuration of a multilink with multiple EFPs.
Example: Multilink with QoS

The following is a sample configuration of Multilink with QoS:
Example: Multilink Between Cisco ASR 903 Series Routers and Cisco C7600 Series Routers

The following is a sample configuration of multilink between a Cisco ASR 903 Series Routers and Cisco C7600 Series Routers:
Example: Multilink with Maximum 10 Links

The following is a sample configuration of multilink with maximum 10 links.

```
class-map match-any qos-group1
 match qos-group 1

class-map match-any qos-group2
 match qos-group 2

class-map match-any qos-group3
```

The following sample configurations show how to configure multilink with maximum 10 links.

Policy Map 1
match qos-group 3
class-map match-any qos-group4
match qos-group 4
class-map match-any qos-group5
match qos-group 5
class-map match-any qos-group6
match qos-group 6
class-map match-any qos-group7
match qos-group 7
	policy-map bcpmlpppqos
	class qos-group1
	priority percent 20
	set qos-group 2

class qos-group2
	bandwidth percent 20
	set qos-group 3

class qos-group3
	bandwidth percent 10
	set qos-group 4

class qos-group4
	bandwidth percent 5
	set qos-group 5

class qos-group5
	bandwidth percent 30
	set qos-group 6

class qos-group6
	bandwidth percent 15
	set qos-group 1

Policy Map 2

class-map match-any dscpaf11
match ip dscp af11

class-map match-any dscpaf12
match ip dscp af12

class-map match-any dscpaf21
match ip dscp af21

class-map match-any dscpaf31
match ip dscp af31

class-map match-any dscpcs1
match ip dscp cs1

class-map match-any dscpef
match ip dscp ef

class-map match-any dscpdefault
match ip dscp default
	policy-map bcpmlpppdscp
	class dscpaf11
	priority percent 20
	set ip dscp af12

class dscpaf12
	speed bandwidth percent 20
	set ip dscp af13

class dscpaf21
	speed bandwidth percent 10
	set ip dscp af22

class dscpaf31
	speed bandwidth percent 5
	set ip dscp af32

class dscpcs1
	speed bandwidth percent 30
```bash
set ip dscp cs2
class dsceff
bandwidth percent 10
set ip dscp cs7
class dscpdefault
bandwidth percent 5
set ip dscp cs5

MLPPP-GIG - 1

interface Multilink1
service instance 1 ethernet
service-policy output bcpmlpppqos
 encapsulation untagged
 bridge-domain 3000

interface Multilink2
service instance 1 ethernet
service-policy output bcpmlpppqos
 encapsulation dot1q 50
 bridge-domain 2000
service instance 2 ethernet
 encapsulation dot1q 60
 bridge-domain 2001

interface gigabitethernet 0/5
service instance 1 ethernet
 encapsulation dot1q 50
 bridge-domain 2000
service instance 2 ethernet
 encapsulation dot1q 60
 bridge-domain 2001
service instance 3 ethernet
 encapsulation untagged
 bridge-domain 3000

ADD-MLPPP-GIG - 1

interface Multilink1
service instance 2 ethernet
service-policy output bcpmlpppqos
 encapsulation dot1q 70
 bridge-domain 3001

interface gigabitethernet 0/5
service instance 4 ethernet
 encapsulation dot1q 70
 bridge-domain 3001

MLPPP-GIG-2

interface Multilink1
service instance 1 ethernet
service-policy output bcpmlpppdscp
 encapsulation untagged
 bridge-domain 3000
```
interface Multilink2
  service instance 2 ethernet
  service-policy output bcpmlpppdscp
      encapsulation dot1q any
      bridge-domain 3001

interface gigabitethernet 0/5
  service instance 1 ethernet
  encapsulation untagged
  bridge-domain 3000
  service instance 2 ethernet
  encapsulation dot1q any
  bridge-domain 3001

MLPPP-GIG-3

interface Multilink1
  service instance 1 ethernet
  service-policy output bcpmlpppdscp
      encapsulation default
      bridge-domain 3000

interface gigabitethernet 0/5
  service instance 1 ethernet
  encapsulation default
  bridge-domain 3000

Sample Configuration of MLPPP Bundled 10 Member Links

interface Multilink1
  no ip address
  load-interval 30
  ppp pfc local request
  ppp pfc remote apply
  ppp acfc local request
  ppp acfc remote apply
  ppp multilink
  ppp multilink interleave
  ppp multilink group 1
  ppp multilink fragment size 256
  ppp multilink multiclass
  service instance 102 ethernet
  service-policy output bcpmlpppqos
      encapsulation dot1q 102
      rewrite ingress tag pop 1 symmetric
      bridge-domain 102

! interface Serial0/0:0
  no ip address
  encapsulation ppp
  ppp multilink
  ppp multilink group 1
interface Serial0/1:0
  no ip address
  encapsulation ppp
  ppp multilink
Example: Multilink with Maximum 10 Links

```plaintext
ppp multilink group 1
interface Serial0/2:0
 no ip address
 encapsulation ppp
 ppp multilink
ppp multilink group 1
interface Serial0/3:0
 no ip address
 encapsulation ppp
 ppp multilink
ppp multilink group 1
interface Serial0/4:0
 no ip address
 encapsulation ppp
 ppp multilink
ppp multilink group 1
interface Serial0/5:0
 no ip address
 encapsulation ppp
 ppp multilink
ppp multilink group 1
interface Serial0/6:0
 no ip address
 encapsulation ppp
 ppp multilink
ppp multilink group 1
interface Serial0/7:0
 no ip address
 encapsulation ppp
 ppp multilink
ppp multilink group 1
interface Serial0/8:0
 no ip address
 encapsulation ppp
 ppp multilink
ppp multilink group 1
interface Serial0/9:0
 no ip address
 encapsulation ppp
 ppp multilink
ppp multilink group 1
```
CHAPTER 21

Configuring Access Circuit Redundancy

This chapter provides information about the Access Circuit Redundancy (ACR) feature on the Cisco ASR 903 Router.

- New and Changed Information, on page 355
- Prerequisites for Configuring ACR, on page 355
- Restrictions for Configuring ACR, on page 356
- Information About ACR, on page 357
- How to Configure ACR, on page 357
- Troubleshooting the ACR configuration, on page 374
- UPSR Path Protection, on page 375
- Additional References, on page 377

New and Changed Information

<table>
<thead>
<tr>
<th>Feature</th>
<th>ASR 903 RSP1 Module</th>
<th>ASR 903 RSP2 Module</th>
<th>ASR 902 Router</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM</td>
<td>Cisco IOS XE Release 3.10S</td>
<td>Cisco IOS Release 3.14S</td>
<td>Cisco IOS XE Release 3.12S</td>
<td></td>
</tr>
<tr>
<td>ACR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATM</td>
<td>Cisco IOS XE Release 3.12</td>
<td>NA</td>
<td>Cisco IOS XE Release 3.12S</td>
<td></td>
</tr>
<tr>
<td>ACR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites for Configuring ACR

- When configured as a part of the ACR group, the Working and Protect interfaces should be of same framing type.
- When Circuit Emulation (CEM) interfaces are created, they are not ACR enabled. You must configure CEM only under the virtual Synchronous Optical Networking (SONET) controller to enable ACR.
Restrictions for Configuring ACR

- Physical or soft IM OIR causes the APS switchover time to be higher (500 to 600 ms). Shut or no shut of the port and removal of the active working or protect also cause the APS switchover time to be high. To overcome these issues, force the APS switchover.
- On the RSP3 module, it takes a long time (more than half an hour) to copy scale configuration (8064 VT CEP) from bootflash to running configuration. To overcome this issue, you can copy the configuration one by one from the CLI.

Restrictions for CEM ACR

- ACR configuration is only supported with a Single Router Automatic Protection Switching (SR-APS) configuration. For more information about APS, see Time Division Multiplexing Guide
- Maximum of 12 ACR groups are supported on the router. A single IM supports only 2 ACR groups.
- Only one virtual controller is available for every ACR group.
- An ACR group supports only two member interfaces; Working interface and Protect interface.
- CEM-ACR interfaces cannot simultaneously support both Circuit Emulation Services over Packet (CESoP) and Structure-Agnostic Time Division Multiplexing over Packet (SAToP).
- Quality of Service (QoS) is not supported on a CEM-ACR interface except for default experimental bits (EXP) marking for Multiprotocol Label Switching (MPLS) pseudowires.
- CEM ACR is not supported on the RSP3 module in Cisco IOS XE Release 3.16.1S.

Restrictions for ATM ACR

- ATM ACR is not supported on the RSP3 module in Cisco IOS XE Release 3.16.1S.
- ACR configuration is only supported with a Single Router Automatic Protection Switching (SR-APS) configuration. For more information about APS, see.
- Maximum of 12 ACR groups are supported on the router. A single IM supports only 2 ACR groups.
- Only one virtual controller is available for every ACR group.
- An ACR group supports only two member interfaces; Working interface and Protect interface.
- Quality of Service (QoS) is not supported on a ATM-ACR interface except for default experimental bits (EXP) marking for Multiprotocol Label Switching (MPLS) pseudowires.
- For successful ATM ACR switchover, configuration of VCs must be the same for both working and protect interfaces. The switchover time is less than 200 ms.
- ATM-ACR PVP mode is not supported in Cisco IOS XE Release 3.12S.
- A delay of 8 seconds per PVC is required between every ACR switchover. For N number of PVCs, N*8 seconds of delay is required between every ACR switchover. Following are the trigger for ACR switchover:
  - Reloading the IM with ACR port configuration
  - Executing shutdown command followed by a no shutdown command
  - Flapping of active port link
  - Removing or inserting a cable of active port.
• The maximum number of ACR-ATM interfaces supported in SONET mode is 84.
• The maximum number of ACR-ATM interfaces supported in SDH mode is 63.
• Configuring ATM followed by ACR-ATM configuration results in Standby RSP crashes. To migrate the ATM configuration to ACR-ATM or vice-versa, perform the following:
  • Remove the ATM configuration
  • Save the configuration and perform a reload
  • Upload a new image on the router
  • Configure the ACR-ATM feature

• Unidirectional traffic may drop after multiple ACR switchovers and when SSO is performed.
• Maintenance tasks such as performing `shutdown` followed by a `no shutdown` at the virtual controller or interface are not allowed.

### Information About ACR

#### CEM ACR

ACR enables local switching for CEM interfaces by creating a virtual CEM-ACR interface. All configuration changes made on the virtual CEM-ACR interface are applied automatically on both the working and protect interfaces. Switching from working to protect or protect to working interface occurs within 250 milliseconds at different scaled levels with line rate traffic.

The virtual CEM-ACR interface provides the simplicity of a single point of configuration and the flexibility of not running a backup pseudowire for the protect interface in a failure.

#### ATM ACR

ATM ACR interfaces are created at the ACR controller and the PVC are created at the virtual ACR interface. For each virtual interface one working and one protect interface (physical) exist. At any instance, only one interface is active.

The virtual interface state represents the active interface state. PVC’s are created in the virtual interfaces.

### How to Configure ACR

#### Configuring ACR (SONET Framing)

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1    | enable            | Enables privileged EXEC mode.  
  | Example:          | • Enter your password if prompted.  
<p>| Router&gt; enable    |         |</p>
<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>controller sonet slot/subslot/port</td>
<td>Selects the work controller to configure and enters controller configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router (config)# controller sonet 0/1/0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>framing sonet</td>
<td>Configures the framing mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router (config-controller)# framing sonet</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>clock source {internal</td>
<td>line}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router (config-controller)# clock source internal</td>
<td></td>
</tr>
</tbody>
</table>

Note	The clock source is set to internal if the opposite end of the connection is set to line and the clock source is set to line if the opposite end of the connection is set to internal.
	• internal—Specifies that the internal clock source is used.
	• line—Specifies that the network clock source is used. This is the default for T1 and E1.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aps group acr acr-no</td>
<td>Configures the APS group for the controller.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-controller)# aps group acr 1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Note | The APS group can be either active or inactive: |
|      | • For Cisco ASR 900 RSP1 Module, the valid group number is between 1 and 96. Any group number exceeding this range is not supported. |
|      | • For Cisco ASR 900 RSP2 Module, the valid group number is between 1 and 192. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| *Active*—The interface that is currently sending and receiving data.  
*Inactive*—The interface that is currently standing by to take over when the active fails. |
| Step 7 | **aps working** *circuit-number*  
**Example:**  
Router (config-controller)# **aps working 1** |
| Identifies the interface as the Working interface.  
* *circuit-number*—Identification number for this particular channel in the APS pair. Since the interface only supports 1+1 redundancy, the only valid and the default value for working interface is 1. |
| Step 8 | **exit**  
**Example:**  
Router (config-controller)# **exit** |
| Exits controller configuration mode. |
| Step 9 | **controller sonet** *slot/subslot/port*  
**Example:**  
Router (config)# **controller sonet 0/2/0** |
| Selects the protect controller to configure and enters controller configuration mode.  
**Note** The controller selected for protect must be different from the work controller.  
* *slot/subslot/port*—Specifies the location of the interface. |
| Step 10 | **aps group** **acr** *acr-no*  
**Example:**  
Router (config-controller)# **aps group acr 1** |
| Configures the APS group for the controller.  
* *acr*—Configures the ACR group on top of APS.  
* *acr-no*—A group number that is valid between 1 and 96. Any group number exceeding this range is not supported.  
**Note**  
* For Cisco ASR 900 RSP1 Module, the valid group number is between 1 and 96.  
* For Cisco ASR 900 RSP2 Module, the valid group number is between 1 and 192.  
The APS group can be either active or inactive:  
* Active—The interface that is currently sending and receiving data.  
* Inactive—The interface that is currently standing by to take over when the active fails. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 11</strong></td>
<td></td>
</tr>
<tr>
<td><code>aps protect circuit-number ip-address</code></td>
<td>Identifies the interface as the Protect interface.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# aps protect 1 4.1.1.1</code></td>
<td></td>
</tr>
<tr>
<td>- <strong>circuit-number</strong> — Identification number for this particular channel in the APS pair. Because only 1+1 redundancy is supported, the only valid value is 1, and the Protect interface defaults to 1.</td>
<td></td>
</tr>
<tr>
<td>- <strong>ip-address</strong> — IP address for the loopback interface. The Protect interface uses this IP address to communicate with the Working interface.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td></td>
</tr>
<tr>
<td><code>aps revert minutes</code></td>
<td>(Optional) Configures the ACR interface as revert.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# aps revert 2</code></td>
<td></td>
</tr>
<tr>
<td>- <strong>minutes</strong> — Specifies the time, in minutes, after which the revert process begins.</td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Use the <code>aps revert</code> command only under the <code>protect</code> member of the ACR group.</td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits controller configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config-controller)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

**What to do next**

The following is a sample configuration of ACR using SONET framing:

```
Router# Configure terminal
Router(config)# Controller sonet 0/1/0
Router(config-controller)# aps group acr 1
Router(config-controller)# aps working 1
Router(config-controller)# exit
Router(config)# Controller sonet 0/2/0
Router(config-controller)# aps group acr 1
Router(config-controller)# aps protect 1 4.1.1.1
Router(config-controller)# do show ip interface brief | incl Loop
Loopback0 4.1.1.1 YES NVRAM up up
Router(config-controller)# end
```

**Configuring ACR (SDH Framing)**

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# enable</code></td>
<td></td>
</tr>
<tr>
<td>- <strong>Enter your password if prompted.</strong></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> controller sonet slot/subslot/port</td>
<td>Selects the work controller to configure and enters controller configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> framing sdh</td>
<td>Configures the framing mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> clock source {internal</td>
<td>line}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> aps group acr acr-no</td>
<td>Configures the APS group for the controller.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
## Configuring Access Circuit Redundancy

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
|                  | • Active—The interface that is currently sending and receiving data.  
|                  | • Inactive—The interface that is currently standing by to take over when the active fails. |

### Step 7

**aps working circuit-number**

**Example:**

```
Router (config-controller)# aps working 1
```

Identifies the interface as the Working interface.

- **circuit-number**—Identification number for this particular channel in the APS pair. Since the interface only supports 1 + 1 redundancy, the only valid and the default value for working interface is 1.

### Step 8

**exit**

**Example:**

```
Router (config-controller)# exit
```

Exits controller configuration mode.

### Step 9

**controller sonet slot/subslot/port**

**Example:**

```
Router (config)# controller sonet 0/2/0
```

Selects the protect controller to configure and enters controller configuration mode.

**Note**

The controller selected for protect must be different from the work controller.

- **slot/subslot/port**—Specifies the location of the interface.

### Step 10

**aps group acr acr-no**

**Example:**

```
Router(config-controller)# aps group acr 1
```

Configures the APS group for the controller.

- **acr**—Configures the ACR group on top of APS.
- **acr-no**—A group number that is valid between 1 and 96. Any group number exceeding this range is not supported.

**Note**

- For Cisco ASR 900 RSP1 Module, the valid group number is between 1 and 96.
- For Cisco ASR 900 RSP2 Module, the valid group number is between 1 and 192.

The APS group can be either active or inactive:

- **Active**—The interface that is currently sending and receiving data.
- **Inactive**—The interface that is currently standing by to take over when the active fails.
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 11</strong></td>
<td><strong>aps protect circuit-number ip-address</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router (config-controller)# <em>aps protect 1 4.1.1.1</em></td>
</tr>
<tr>
<td></td>
<td>Identifies the interface as the Protect interface.</td>
</tr>
<tr>
<td></td>
<td>• <em>circuit-number</em> — Identification number for this particular channel in the APS pair. Because only 1+1 redundancy is supported, the only valid value is 1, and the Protect interface defaults to 1.</td>
</tr>
<tr>
<td></td>
<td>• <em>ip-address</em> — IP address for the loopback interface. The Protect interface uses this IP address to communicate with the Working interface.</td>
</tr>
<tr>
<td><strong>Step 12</strong></td>
<td><strong>aps revert minutes</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router (config-controller)# <em>aps revert 2</em></td>
</tr>
<tr>
<td></td>
<td>(Optional) Configures the ACR interface as revert.</td>
</tr>
<tr>
<td></td>
<td>• <em>minutes</em> — Specifies the time, in minutes, after which the revert process begins.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>Use the <em>aps revert</em> command only under the protect member of the ACR group.</td>
</tr>
<tr>
<td><strong>Step 13</strong></td>
<td><strong>exit</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router (config-controller)# <em>exit</em></td>
</tr>
<tr>
<td></td>
<td>Exits controller configuration mode.</td>
</tr>
</tbody>
</table>

### What to do next

The following is a sample configuration of ACR interface using SDH framing:

```
Router# configure terminal
Router(config)# controller sonet 0/0/2
Router(config-controller)# framing sdh
Router(config-controller)# clock source internal
Router(config-controller)# aps group acr 10
Router(config-controller)# aps working 1
Router(config-controller)# exit
Router# configure terminal
Router(config)# controller sonet 0/0/3
Router(config-controller)# framing sdh
Router(config-controller)# clock source internal
Router(config-controller)# aps group acr 10
Router(config-controller)# aps protect 1 22.22.22.22
Router(config-controller)# exit
```
## Configuring CEM (SONET Framing)

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>enable</code></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
</tbody>
</table>

**Step 2**	Enters global configuration mode.
`configure terminal`	
Example:	Router# configure terminal

**Step 3**	Selects the controller to configure.
`controller sonet-acr acr_no`	• acr_no — Specifies the controller unit number.
Example:	Router (config)# controller sonet-acr 1

**Step 4**	Specifies the STS identifier.
`sts-1 number`	
Example:	Router (config-controller)# sts-1 1

**Step 5**	Creates a single Structure-Agnostic TDM over Packet (SAToP) CEM group.
`vtg vtg-number t1 tl-line-number cem-group group number unframed`	• vtg — Specifies the vtg number from 1-7.
	• tl-line-number — Identifies the T1 line number from 1 to 4.
	• cem-group — Creates a circuit emulation channel from one or more timeslots of a T1 or E1 line.
	• group-number — Identifies the channel number to be used for this channel from 0-215.
	• unframed — Specifies that a single CEM channel is being created including all timeslots and the framing structure of the line.
Example:	Router (config-ctrlr-sts1)# vtg 1 tl 1 cem-group 1 unframed

**Step 6**	Creates a Circuit Emulation Services over Packet Switched Network (CESoPSN) CEM group.
OR,	
`vtg vtg-number t1 tl-line-number cem-group group number timeslots timeslot-range`	
Example:	

---

Cisco ASR 900 Router Series Configuration Guide, Cisco IOS XE Gibraltar 16.11.x
### Configuring CEM (SDH Framing)

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
**enable**  
**Example:**  
Router> enable | Enables privileged EXEC mode.  
• Enter your password if prompted. |
| **Step 2**  
**configure terminal**  
**Example:**  
Router# configure terminal | Enters global configuration mode. |
| **Step 3**  
**controller sonet-acr acr_no**  
**Example:**  
Router (config)# controller sonet-acr 1 | Selects the virtual controller to configure and enters controller configuration mode.  
• acr_no—A group number that is valid between 1 and 96. Any group number exceeding this range is not supported. |
| **Step 4**  
**framing sdh**  
**Example:**  
Router (config-controller)# framing sdh | Configures the framing mode.  
• sdh—Enables SDH framing for STM rates. |

#### Purpose Command or Action

**Example:**

- `vtg 1 t1 1 cem-group 1 timeslots 1-10`
- `exit`

**What to do next**

The following is a sample configuration of CEM interface using SONET framing:

Router# Configure terminal
Router(config)# controller sonet-acr 1
Router(config-ctrlr-sts1)# sts-1 1
Router(config-ctrlr-sts1)# vtg 1 t1 1 cem-group 1 timeslots 1-10
Router(config-ctrlr-sts1)# end
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong></td>
<td></td>
</tr>
<tr>
<td>aug mapping au-4</td>
<td>Selects AU-4 Administrative Unit Group (AUG) mapping.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-controller)# aug mapping</td>
<td></td>
</tr>
<tr>
<td>au-4</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td></td>
</tr>
<tr>
<td>au-4 au-4-number tug-3 tug-3-number</td>
<td>Specifies the AU-4 and TUG-3 number of an E1 line that has been mapped to an AU-4.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-controller)# au-4 1</td>
<td></td>
</tr>
<tr>
<td>tug-3 2</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td></td>
</tr>
<tr>
<td>Do one of the following:</td>
<td>Creates a CEM group for the AU-4. Valid E1 values are from 1 to 3.</td>
</tr>
<tr>
<td>• tug-2 tug-2 number e1 e1-line-number</td>
<td></td>
</tr>
<tr>
<td>cem-group group number timeslots</td>
<td></td>
</tr>
<tr>
<td>timeslot-range</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-controller)# tug-2 1 el</td>
<td></td>
</tr>
<tr>
<td>2 cem-group 1 timeslots 1-8</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>tug-2 tug-2 number e1 e1-line-number</td>
<td></td>
</tr>
<tr>
<td>cem-group group number unframed</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router (config-controller)# tug-2 1 el</td>
<td></td>
</tr>
<tr>
<td>2 cem-group 1 unframed</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>tug-2 tug-2 number e1 e1-line-number</td>
<td></td>
</tr>
<tr>
<td>framing unframed</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits controller configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring ATM-ACR on ATM VC Interface for SDH Mode

#### Procedure

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Router(config)# controller sonet-acr 1</td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrlr-sts1)# framing sdh</td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrlr-sts1)# aug mapping au-4</td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrlr-sts1)# au-4 1 tug-3 1</td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrlr-sts1)# tug-2 1 e1 1 cem-group 0 timeslots 1-31</td>
<td></td>
</tr>
<tr>
<td>Router(config-ctrlr-sts1)# end</td>
<td></td>
</tr>
</tbody>
</table>

```
Router# configure terminal
Router(config)# controller sonet-acr 1
Router(config-ctrlr-sts1)# framing sdh
Router(config-ctrlr-sts1)# aug mapping au-4
Router(config-ctrlr-sts1)# au-4 1 tug-3 1
Router(config-ctrlr-sts1)# tug-2 1 e1 1 cem-group 0 timeslots 1-31
Router(config-ctrlr-sts1)# end
```

```
Router# configure terminal
Router(config)# controller sonet 0/2/1
Router(config-ctrlr-sts1)# framing sdh
Router(config-ctrlr-sts1)# aps group acr 1
Router(config-ctrlr-sts1)# aps working 1
Router(config-ctrlr-sts1)# end
Router# configure terminal
Router(config)# controller sonet 0/2/2
Router(config-ctrlr-sts1)# framing sdh
Router(config-ctrlr-sts1)# clock source internal
Router(config-ctrlr-sts1)# aps group acr 1
Router(config-ctrlr-sts1)# aps protect 1 22.22.22.22
Router(config-ctrlr-sts1)# end
Router# configure terminal
Router(config)# controller sonet-acr 1
Router(config-ctrlr-sts1)# tug-2 1 t1 1 cem-group 0 timeslot 1-24
Router(config-ctrlr-sts1)# end
Router(config-controller)# do show ip interface brief | incl Loop
Loopback0 22.22.22.22 YES NVRAM up up
Router(config-controller)# end
```
### Configuring Access Circuit Redundancy

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3** | **controller** sonet-acr *acr_no*  
**Example:**  
Router (config)# controller sonet-acr 1 | Configures ACR controller level.  
  *acr_no* — Specifies the controller unit number. |
| **Step 4** | **au-4** *au-4-number* **tug-3** *tug-3-number*  
**Example:**  
Router (config-controller)# au-4 1 tug-3 2 | Specifies the AU-4 and TUG-3 number of an E1 line that has been mapped to an AU-4.  
  *au-4* — Specifies administrative unit  
  *au-4-number* — A number in the range of 1 to 3.  
  *tug-3* — Specifies tributary unit group  
  *tug-3-number* — A number in the range of 1 to 7. |
| **Step 5** | **tug-2** *tug-2-number* **el** *el-line-number* atm  
**Example:**  
Router (config-controller)# tug-2 1 el 2 atm | Creates a group for the AU-4. Valid E1 values are from 1 to 3. |
| **Step 6** | **interface** atm-acr atm-acr-interface-number  
**Example:**  
Router(config)# interface atm-acr 1.1/1/1/1 | Configures the ATM-ACR interface level. |
| **Step 7** | **pvc** vpi/vpc  
**Example:**  
Router(config-if)# pvc 1/99 l2transport | Configures a PVC for the interface and assigns the PVC a VPI and VCI. Do not specify 0 for both the VPI and VCI. |
| **Step 8** | **xconnect** peer-router-id vcid encapsulation mpls  
**Example:**  
Router (config-if)# xconnect 2.2.2.2 15 encapsulation mpls | Configures a pseudowire to transport the data across the MPLS network.  
  *peer-router-id* — IP address of the remote provider edge (PE) peer router.  
  *vcid* — A 32-bit identifier to assign to the pseudowire. The same vcid must be used for both ends of the pseudowire. The valid vcid values are 1-4294967295.  
  *encapsulation mpls* — Sets MPLS for tunneling mode. |
Purpose
Command or Action | Purpose
---|---
Step 9 | exit
Example: Router (config-if)# exit
| Exits controller configuration mode.

What to do next
The following examples show ACR virtual interface for ATM PVC in SR-APS environment

```
Router(config)# controller SONET-ACR 10
Router(config-controller)# au-4 1 tu 1
Router(config-ctrlr-tug3)# tu 1 el 1 atm
Router(config)# interface ATM-ACR1.1/1/1/1
Router(config-if)# pvc 1/99 l2transport
Router(config-if)# xconnect 2.2.2.2 15 encapsulation mpls
Router(config-if)# exit
```

Configuring ATM-ACR on ATM VC Interface for SONET Mode

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | enable
Example: Router> enable
| Enables privileged EXEC mode.
• Enter your password if prompted.
| **Step 2** | configure terminal
Example: Router# configure terminal
| Enters global configuration mode.
| **Step 3** | controller sonet-acr acr_no
Example: Router (config)# controller sonet-acr 1
| Configures ACR controller level.
• acr_no — Specifies the controller unit number.
| **Step 4** | sts-1 number
Example: Router (config-controller)# sts-1 1
| Specifies the STS identifier.
| **Step 5** | vtg vtg-number t1 t1-line-number atm
Example: | Creates a single Structure-Agnostic TDM over ATM.
• vtg — Specifies the vtg number from 1-7.
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router (config-ctrlr-sts1)# vtg 1 tl1 atm</td>
<td><em>tl-line-number</em>—Identifies the T1 line number from 1 to 4.</td>
</tr>
</tbody>
</table>

**Step 6**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface atm-acr atm-acr-interface-number</td>
<td>Specifies the ATM-ACR interface and enters interface configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config)# interface atm-acr 1.1/1/1
```

**Step 7**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>pvc vpi/vci</td>
<td>Configures a PVC for the interface and assigns the PVC a VPI and VCI. Do not specify 0 for both the VPI and VCI.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-if)# pvc 1/99 l2transport
```

**Step 8**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>xconnect peer-router-id vcid encapsulation mpls</td>
<td>Configures a pseudowire to transport the data across the MPLS network.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-if)# xconnect 2.2.2.2 15 encapsulation mpls
```

**Step 9**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>exit</td>
<td>Exits controller configuration mode.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router(config-if)# exit
```

### What to do next

The following example show ACR virtual interface for ATM PVC in SR-APS environment

```
Router(config)# controller SONET-ACR 10
Router(config-controller)# sts-1 l
Router(config-ctrlr-tug3)# vtg 1 el1 atm
Router(config)# interface atm-acr1.1/1/1
Router(config-if)# pvc 1/99 12transport
Router(config-if)# xconnect 2.2.2.2 15 encapsulation mpls
Router(config-if)# exit
```

## Verifying ACR Configurations

This section includes show commands for ACR:

The following example shows the acr groups that have been configured or deleted:
Router# `show acr group`
ACR Group	Working I/f	Protect I/f	Currently Active	Status
1 | SONET 4/1/0 | SONET 3/1/0 | SONET 4/1/0 |
The following example shows the configured working and protect cem interfaces under the ACR controller:

Router# `show acr group 1 detail cem`
ACR Group	Working I/f	Protect I/f	Currently Active	Status
CE1 | CEM4/1/0 | CEM3/1/0 | CEM4/1/0 |

CEM CKT Details
Cktid	State on Working	State on Protect
1 | Provision Success | Provision Success

The following example shows the configuration under the ACR controller:

Example of a configuration using CESoP:

Router# `show running-config | sec SONET-ACR 1`
controller SONET-ACR 1
framing sdh
aug mapping au-4
!
au-4 1 tug-3 1
tug-2 1 e1 1 cem-group 0 timeslots 1-31

Example of a configuration using SAToP:

Router# `show running-config | sec SONET-ACR 2`
controller SONET-ACR 2
framing sdh
aug mapping au-4
!
au-4 1 tug-3 1
tug-2 1 e1 1 cem-group 1001 unframed

The following example shows the loopback ip address for the router:

Router# `show ip interface brief | i Loopback`
Loopback0 | 22.22.22.22 | YES | NVRAM | up | up

The following example shows the cem-acr circuit status:

Router# `show cem circuit`
CEM Int.	ID	Ctrlr	Admin	Circuit	AC
CEM-ACR1 | 1 | UP | UP | Active | UP
CEM-ACR1 | 2 | UP | UP | Active | UP
CEM-ACR1 | 3 | UP | UP | Active | UP
CEM-ACR1 | 4 | UP | UP | Active | UP
CEM-ACR1 | 5 | UP | UP | Active | UP
CEM-ACR1 | 6 | UP | UP | Active | UP
CEM-ACR1 | 7 | UP | UP | Active | UP
CEM-ACR1 | 8 | UP | UP | Active | UP

The following example shows the cem-acr circuit details for cem-group 0 under the CEM-ACR interface:

Router# `show cem circuit int cem-acr 1 0`
CEM-ACR1, ID: 0, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, T1/E1 state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 8 (In use: 0)
Payload Size: 32
Framing: Framed (DS0 channels: 1)
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 774186 | Dropped: 0
Egress Pkts: 774187 | Dropped: 0
CEM Counter Details
Input Errors: 0 | Output Errors: 0
The following example shows the cem-acr circuit details for cem-group 1001 under the CEM-ACR interface:

```
Router# show cem circuit int cem-acr 1 1001
CEM-ACR1, ID: 1001, Line: UP, Admin: UP, Ckt: ACTIVE
Controller state: up, T1/E1 state: up
Idle Pattern: 0xFF, Idle CAS: 0x8
Dejitter: 5 (In use: 0)
Payload Size: 256
Framing: Unframed
CEM Defects Set
None
Signalling: No CAS
RTP: No RTP
Ingress Pkts: 3096748 Dropped: 0
Egress Pkts: 3096748 Dropped: 0
CEM Counter Details
Input Errors: 0 Output Errors: 0
Pkts Missing: 0 Pkts Reordered: 0
Misorder Drops: 0 JitterBuf Underrun: 0
Error Sec: 0 Severly Errored Sec: 0
Unavailable Sec: 0 Failure Counts: 0
Pkts Malformed: 0 JitterBuf Overrun: 0
```

The following example shows the mpls l2 transport vc details for the specified vc. In this case it is the vc with vc-id = 1001:

```
Router# show mpls l2 vc 1001 det
Local interface: CE1 up, line protocol up, CESoPSN Basic 0 up
 Destination address: 66.66.66.66, VC ID: 1001, VC status: up
 Preferred path: not configured
 Default path: active
 Next hop: 61.1.1.2
Create time: 03:28:57, last status change time: 03:27:37
 Last label FSM state change time: 00:51:41
 Signaling protocol: LDP, peer 66.66.66.66:0 up
 Targeted Hello: 22.22.22.22(LDP Id) -> 66.66.66.66, LDP is UP
 Graceful restart: configured and enabled
 Non stop routing: not configured and not enabled
 Status TLV support (local/remote) : enabled/supported
 LDP route watch : enabled
 Label/status state machine : established, LruRru
 Last local dataplane status rcvd: No fault
 Last BFD dataplane status rcvd: Not sent
 Last BFD peer monitor status rcvd: No fault
 Last local AC circuit status rcvd: No fault
 Last local PW i/f circl status rcvd: No fault
 Last local LDP TLV status sent: No fault
 Last remote LDP TLV status rcvd: No fault
 Last remote LDP ADJ status rcvd: No fault
MPLS VC labels: local 586, remote 1629
 Group ID: local 0, remote 0
 MTU: local 0, remote 0
 Remote interface description:
 Sequencing: receive disabled, send disabled
 Control Word: On (configured: autosense)
```
SSO Descriptor: 66.66.66.66/1001, local label: 586
Dataplane:
  SSM segment/switch IDs: 1410842/2339386 (used), PWID: 571
VC statistics:
  transit packet totals: receive 3119684, send 3112390
  transit byte totals: receive 155984200, send 130720380
  transit packet drops: receive 0, seq error 0, send 0

The following example shows the mpls l2 transport vc details for the specified vc. In this case it is the vc with vc-id = 5001:

Router# show mpls l2 vc 5001 det
Local interface: CE1 up, line protocol up, SATOP E1 1001 up
  Destination address: 66.66.66.66, VC ID: 5001, VC status: up
  Output interface: Te0/2/0, imposed label stack {1613}
  Preferred path: not configured
  Default path: active
  Next hop: 61.1.1.2
  Create time: 03:29:05, last status change time: 03:27:45
  Last label FSM state change time: 00:51:49
  Signaling protocol: LDP, peer 66.66.66.66:0 up
  Targeted Hello: 22.22.22.22(LDP Id) -> 66.66.66.66, LDP is UP
  Graceful restart: configured and enabled
  Non stop routing: not configured and not enabled
  Status TLV support (local/remote) : enabled/supported
  LDP route watch : enabled
  Label/status state machine : established, LruRru
  Last local dataplane status rcvd: No fault
  Last BFD dataplane status rcvd: Not sent
  Last BFD peer monitor status rcvd: No fault
  Last local AC circuit status rcvd: No fault
  Last local PW i/f circuit status rcvd: No fault
  Last local LDP TLV status sent: No fault
  Last local LDP TLV status rcvd: No fault
  Last remote LDP TLV status rcvd: No fault
  Last remote LDP ADJ status rcvd: No fault
  MPLS VC labels: local 865, remote 1613
  Group ID: local 0, remote 0
  MTU: local 0, remote 0
  Remote interface description:
    Sequencing: receive disabled, send disabled
  Control Word: On (configured: autosense)
  SSO Descriptor: 66.66.66.66/5001, local label: 865
Dataplane:
  SSM segment/switch IDs: 2176983/3482449 (used), PWID: 850
VC statistics:
  transit packet totals: receive 12488973, send 12445403
  transit byte totals: receive 3347044764, send 3285586392
  transit packet drops: receive 0, seq error 0, send 0

The following example shows the currently configured APS groups on the router:

Router# show aps
SONET 0/5/2 APS Group 25: protect channel 0 (Inactive) (HA)
  Working channel 1 at 1.1.1.1 (Enabled) (HA)
  bidirectional, non-revertive
  PGP timers (extended for HA): hello time=1; hold time=10
  hello fail revert time=120
  SDH framing; SDH MSP signalling by default
  Received K1K2: 0x00 0x05
  No Request (Null)
  Transmitted K1K2: 0x00 0x00
  No Request (Null)
Remote APS configuration: (null)
SONET 0/0/2 APS Group 25: working channel 1 (Active) (HA)
  Protect at 1.1.1.1
  PGP timers (from protect): hello time=1; hold time=10
  SDH framing
Remote APS configuration: (null)

The following example shows ATM ACR configuration on the router:

Router# show running-config | sec ACR
  controller SONET-ACR 1
  framing sdh
  aug mapping au-4

  au-4 1 tug-3 1
    mode c-12
  tug-2 1 el 1 atm

  au-4 1 tug-3 2
    mode c-12

  au-4 1 tug-3 3
    mode c-12
  interface ATM-ACR1.1/1/1/1
    no ip address
    pvp 1/99 l2transport
    xconnect 51.1.1.2 3 encapsulation mpls

The following example shows ATM ACR interfaces on the router:

Router# show interface ATM0/1.1/1/1/1 | in pac
  5 minute input rate 4000 bits/sec, 10 packets/sec
  5 minute output rate 4000 bits/sec, 10 packets/sec
  3000 packets input, 156000 bytes, 0 no buffer
  3000 packets output, 156000 bytes, 0 underruns
Router# show xconnect all
Legend: XC ST=Xconnect State S1=Segment1 State S2=Segment2 State
  UP=Up DN=Down AD=Admin Down IA=Inactive
  SB=Standby HS=Hot Standby RV=Recovering NH=No Hardware
  XC ST Segment 1 S1 Segment 2 S2
  +---------------------------------------------------------------------+
  PN pri ac AT1.1/1/1:10/10(ATM AAL5) UP mpls 3.3.3.3:1 UP
  Router# show atm pvc
  Keys: CI - ATM0/3/2.1/1/1, CH - ATM0/4/2.1/1/1, CG - ATM-ACR1.1/1/1,
  VCD / Peak Av/Min Burst
  Interface Name VPI VCI Type Encaps SC Kbps Kbps Cells St
  CG 1 10 10 PVC AAL5 UBR 1536 UP

Troubleshooting the ACR configuration

This section provides the supported debug commands to troubleshoot the ACR configuration:

⚠️ **Caution**

We suggest you do not use these debug commands without TAC supervision.

- **debug acr events**: Provides details on all events occurring on the ACR interface.
- **debug acr errors**: Provides debugging information on errors.
- **debug acr state**: Provides debugging information on state change – when there is a switchover.
• **debug cem events**: Provides debugging information to create and delete CEM circuits.
• **debug cem errors**: Provides debugging information about possible errors while creating and deleting of CEM circuits.
• **debug cem states**: Debugs to show the state changes of CEM circuits.
• **debug atm events**: Provides details on all events occurring on the ATM interface
• **debug atm error**: Provides debugging information on errors.
• **debug atm state**: Provides debugging information on state change – when there is a switchover.

## UPSR Path Protection

A Unidirectional Path Switching Ring (UPSR) is a unidirectional network with two rings, one ring used as the working ring and the other as the protection ring. The same signal flows through both rings, one clockwise and the other counterclockwise. It is called UPSR because monitoring is done at the path layer. A node receives two copies of the electrical signals at the path layer, compares them, and chooses the one with the better quality. If part of a ring between two ADMs fails, the other ring still can guarantee the continuation of data flow. UPSR, like the one-plus-one scheme, has fast failure recovery.

UPSR Path Protection is supported at VT level and STS level.

Once a signal fail condition or a signal degrade condition is detected, the hardware initiates an interrupt to software that switches from the working path to the protection path. Non-revertive options are valid for UPSR path protection.

### Note
1X OC-192 and 8X OC-48 interface modules only supports the non-revertive option. The non-revertive option is the default mode.

### Note
When active link of UPSR and APS is configured on the same interface module and the interface module reloaded, the convergence number for UPSR circuits to switch to backup is high ranging from 100 ms to 200 ms. When each circuit is configured separately, the convergence time is always under 50 ms.

The below table gives the maximum number of path level circuits supported in each mode.

<table>
<thead>
<tr>
<th>Modes</th>
<th>Supported Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT 1.5</td>
<td>84</td>
</tr>
<tr>
<td>STS-1</td>
<td>48</td>
</tr>
<tr>
<td>STS 3c</td>
<td>16</td>
</tr>
<tr>
<td>STS 12c</td>
<td>4</td>
</tr>
<tr>
<td>STS 48c</td>
<td>1</td>
</tr>
</tbody>
</table>

The following feature is supported on UPSR Path Protection:

• SONET local connect and cross connect are supported at VT15 CEP, STS-1c, STS-3c, STS-12c, and STS-48c levels. UPSR is also supported on TDM endpoints that are mapped to a pseudowire. T1 SAToP, T3
SAToP, and CT3 are supported on an UPSR ring only with local connect mode. Cross connect of T1, T3, and CT3 circuits to UPSR are not supported.

Restrictions for UPSR Path Protection

- UPSR Dual Ring Interconnect (DRI) is not supported.
- UPSR Dual Node Interconnect (DNI) is not supported.

Configuring UPSR

Protection Group Configuration:

```bash
enable
configure terminal
protection-group 401 type STS48c
controller protection-group 401
type STS48c
cem-group 19001 cep
end
```

Configuring UPSR Work and Protection Path Configuration

UPSR Work Path Configuration:

```bash
enable
configure terminal
controller MediaType 0/3/6
mode sonet
controller sonet 0/3/6
rate oc48
sts-1 1 - 48 mode sts-48c
protection-group 401 working
end
```

UPSR Protect Path Configuration:

```bash
enable
configure terminal
controller MediaType 0/12/6
mode sonet
controller sonet 0/12/6
rate oc48
sts-1 1 - 48 mode sts-48c
protection-group 401 protect
end
```

Verification of UPSR Configuration

Use the `show protection-group` command to verify UPSR configuration:

```bash
show protection-group
PGN Type Working I/f Protect I/f Active Status

401 STS48C SONET/3.6.1-48 SONET/12.6.1-48 W A

Status legend:D=Deleted FO=Force SF=SignalFailure SD=SignalDegrade
FL=Fail M=Manual L=Lockout C=Clear A=Auto
(W)=working, (P)=protect`
Associated Commands

The following table shows the Associated Commands for UPSR configuration:

<table>
<thead>
<tr>
<th>Commands</th>
<th>Links</th>
</tr>
</thead>
</table>

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Commands List, All Releases</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>To locate and download MIBs for selected platforms, Cisco software releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>—</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>