System Monitoring Command Reference for Cisco ASR 9000 Series Routers

First Published: 2015-01-12
Last Modified: 2017-07-14

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OF DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2017 Cisco Systems, Inc. All rights reserved.
CONTENTS

PREFACE

Preface xi
Changes to This Document xi
Communications, Services, and Additional Information xi

CHAPTER 1

Alarm Management and Logging Correlation Commands 1
alarm 3
all-alarms 4
all-of-router 5
clear logging correlator delete 6
clear logging events delete 7
clear logging events reset 11
context-correlation 12
logging correlator apply rule 13
logging correlator apply ruleset 15
logging correlator buffer-size 17
logging correlator rule 18
logging correlator ruleset 21
logging events buffer-size 22
logging events display-location 24
logging events level 26
logging events threshold 28
logging suppress apply rule 29
logging suppress rule 30
nonrootcause 31
reissue-nonbistate 33
reparent 34
Embedded Event Manager Commands

CHAPTER 2

Embedded Event Manager Commands 63

event manager directory user 64
event manager environment 66
event manager policy 68
event manager refresh-time 71
event manager run 72
event manager scheduler suspend 74
show event manager directory user 75
show event manager environment 76
show event manager metric hardware 78
show event manager metric process 80
show event manager policy available 83
show event manager policy registered 85
show event manager refresh-time 88
show event manager statistics-table 89

IP Service Level Agreement Commands 91

CHAPTER 3

IP Service Level Agreement Commands 91

access-list 94
show ipsla twamp session 218
show ipsla twamp standards 219
source address 220
source port 222
start-time 223
statistics 225
tag (IP SLA) 227
target ipv4 229
target pseudowire 231
target traffic-eng 233
threshold 235
threshold type average 237
threshold type consecutive 239
threshold type immediate 241
threshold type xofy 243
timeout (IP SLA) 245
tos 247
ttl 249
type icmp echo 251
type icmp path-echo 252
type icmp path-jitter 253
type mpls lsp ping 254
type mpls lsp trace 256
type udp echo 258
type udp jitter 259
type udp ipv4 address 260
verify-data 261
vrf (IP SLA) 262
vrf (IP SLA MPLS LSP monitor) 264

CHAPTER 4

Logging Services Commands 265
archive-length 267
archive-size 268
clear logging 269
Onboard Failure Logging Commands

show logging onboard
Performance Management Commands

- clear logging onboard 323
- hw-module logging onboard 325

CHAPTER 6

<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor controller fabric</td>
<td>328</td>
</tr>
<tr>
<td>monitor controller sonet</td>
<td>330</td>
</tr>
<tr>
<td>monitor interface</td>
<td>332</td>
</tr>
<tr>
<td>performance-mgmt apply monitor</td>
<td>337</td>
</tr>
<tr>
<td>performance-mgmt apply statistics</td>
<td>340</td>
</tr>
<tr>
<td>performance-mgmt apply thresholds</td>
<td>343</td>
</tr>
<tr>
<td>performance-mgmt regular-expression</td>
<td>345</td>
</tr>
<tr>
<td>performance-mgmt resources dump local</td>
<td>346</td>
</tr>
<tr>
<td>performance-mgmt resources memory</td>
<td>347</td>
</tr>
<tr>
<td>performance-mgmt resources tftp-server</td>
<td>348</td>
</tr>
<tr>
<td>performance-mgmt statistics</td>
<td>350</td>
</tr>
<tr>
<td>performance-mgmt thresholds</td>
<td>353</td>
</tr>
<tr>
<td>show performance-mgmt bgp</td>
<td>362</td>
</tr>
<tr>
<td>show performance-mgmt interface</td>
<td>364</td>
</tr>
<tr>
<td>show performance-mgmt mpls</td>
<td>367</td>
</tr>
<tr>
<td>show performance-mgmt node</td>
<td>369</td>
</tr>
<tr>
<td>show performance-mgmt ospf</td>
<td>371</td>
</tr>
<tr>
<td>show running performance-mgmt</td>
<td>373</td>
</tr>
<tr>
<td>show health sysdb</td>
<td>375</td>
</tr>
</tbody>
</table>

Statistics Service Commands

- clear counters 378
- load-interval 380

CHAPTER 7

Diagnostics Commands

- diagnostic monitor 383
- diagnostic monitor interval 385
- diagnostic monitor syslog 387
- diagnostic monitor threshold 388
- diagnostic ondemand action-on-failure 390
Test TCP Utility Commands

ttpc receive 414
ttpc transmit 416
Preface

From Release 6.1.2 onwards, Cisco introduces support for the 64-bit Linux-based IOS XR operating system. Extensive feature parity is maintained between the 32-bit and 64-bit environments. Unless explicitly marked otherwise, the contents of this document are applicable for both the environments. For more details on Cisco IOS XR 64 bit, refer to the Release Notes for Cisco ASR 9000 Series Routers, Release 6.1.2 document.

The System Monitoring Command Reference for Cisco ASR 9000 Series Routers preface contains these sections:

• Changes to This Document, on page xi
• Communications, Services, and Additional Information, on page xi

Changes to This Document

This table lists the technical changes made to this document since it was first published.

Table 1: Changes to this Document

<table>
<thead>
<tr>
<th>Data</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 2015</td>
<td>Initial release of the cumulative command reference document that covers all updates from Rel. 4.3.0 onwards.</td>
</tr>
<tr>
<td>April 2016</td>
<td>Republished with the required documentation updates.</td>
</tr>
<tr>
<td>November 2016</td>
<td>Republished with documentation updates for Release 6.1.2 features.</td>
</tr>
<tr>
<td>July 2017</td>
<td>Republished for Release 6.2.2</td>
</tr>
</tbody>
</table>

Communications, Services, and Additional Information

• To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
• To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
• To submit a service request, visit Cisco Support.
• To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.

• To obtain general networking, training, and certification titles, visit Cisco Press.

• To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.
Alarm Management and Logging Correlation Commands

This module describes the commands used to manage alarms and configure logging correlation rules for system monitoring on the router.

To use commands of this module, you must be in a user group associated with a task group that includes appropriate task IDs. If the user group assignment is preventing you from using any command, contact your AAA administrator for assistance.

For detailed information about alarm management and logging correlation concepts, configuration tasks, and examples, see the Implementing and Monitoring Alarms and Logging Correlation module in the System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

For system logging commands, see the Logging Services Commands module.

For system logging concepts, see the Implementing Logging Services module in the System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

- alarm, on page 3
- all-alarms, on page 4
- all-of-router, on page 5
- clear logging correlator delete, on page 6
- clear logging events delete, on page 7
- clear logging events reset, on page 11
- context-correlation, on page 12
- logging correlator apply rule, on page 13
- logging correlator apply ruleset, on page 15
- logging correlator buffer-size, on page 17
- logging correlator rule, on page 18
- logging correlator ruleset, on page 21
- logging events buffer-size, on page 22
- logging events display-location, on page 24
- logging events level, on page 26
- logging events threshold, on page 28
- logging suppress apply rule, on page 29
- logging suppress rule, on page 30
- nonrootcause, on page 31
• reissue-nonbistate, on page 33
• reparent, on page 34
• rootcause, on page 36
• show logging correlator buffer, on page 38
• show logging correlator info, on page 40
• show logging correlator rule, on page 41
• show logging correlator ruleset, on page 44
• show logging events buffer, on page 46
• show logging events info, on page 50
• show logging suppress rule, on page 52
• show snmp correlator buffer, on page 54
• show snmp correlator info, on page 55
• show snmp correlator rule, on page 56
• show snmp correlator ruleset, on page 57
• source, on page 58
• timeout, on page 59
• timeout-rootcause, on page 61
alarm

To specify a type of alarm to be suppressed by a logging suppression rule, use the alarm command in logging suppression rule configuration mode.

```
alarm msg-category group-name msg-code
```

Syntax Description

- `msg-category` Message category of the root message.
- `group-name` Group name of the root message.
- `msg-code` Message code of the root message.

Command Default

No alarm types are configured by default.

Command Modes

Logging suppression rule configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure the logging suppression rule “commit” to suppress alarms whose root message are “MBGL”, with group name “commit” and message code “succeeded”:

```
RP/0/RSP0/CPU0:router(config) # logging suppress rule commit
RP/0/RSP0/CPU0:router(config-suppr-rule) # alarm MBGL COMMIT SUCCEEDED
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging suppress rule, on page 30</td>
<td>Creates a logging suppression rule.</td>
</tr>
</tbody>
</table>
all-alarms

To configure a logging suppression rule to suppress all types of alarms, use the **all-alarms** command in logging suppression rule configuration mode.

Syntax Description

This command has no keywords or arguments.

Command Default

No alarm types are configured by default.

Command Modes

Logging suppression rule configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.9.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

- **Task ID**: read, write

Examples

This example shows how to configure the logging suppression rule commit to suppress all alarms:

```
RP/0/RSP0/CPU0:router(config)# logging suppress rule commit
RP/0/RSP0/CPU0:router(config-suppr-rule)# all-alarms
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging suppress rule, on page 30</td>
<td>Creates a logging suppression rule.</td>
</tr>
</tbody>
</table>
all-of-router

To apply a logging suppression rule to alarms originating from all locations on the router, use the `all-of-router` command in logging suppression apply rule configuration mode.

Syntax Description

This command has no keywords or arguments.

Command Default

No scope is configured by default.

Command Modes

Logging suppression apply rule configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>execute</td>
</tr>
</tbody>
</table>

Examples

This example shows how to apply the logging suppression rule “commit” to all locations on the router:

```
RP/0/RSP0/CPU0:router(config)# logging suppress apply rule commit
RP/0/RSP0/CPU0:router(config-suppr-apply-rule)# all-of-router
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging suppress apply rule</td>
<td>Applies and activates a logging suppression rule.</td>
</tr>
</tbody>
</table>
clear logging correlator delete

To delete all messages or messages specified by a correlation ID from the logging correlator buffer, use the clear logging correlator delete command in EXEC mode.

```
clear logging correlator delete {all-in-buffer correlation-id}
```

Syntax Description
- **all-in-buffer** Clears all messages in the logging correlator buffer.
- **correlation-id** Correlation event record ID. Up to 14 correlation IDs can be specified, separated by a space. Range is 0 to 4294967294.

Command Default
No messages are automatically deleted unless buffer capacity is reached.

Command Modes
EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the show logging correlator buffer, on page 38 command to confirm that records have been cleared.
Use the logging correlator buffer-size, on page 17 command to configure the capacity of the logging correlator buffer.

Task ID

<table>
<thead>
<tr>
<th>Task</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>execute</td>
</tr>
</tbody>
</table>

Examples

This example shows how to clear all records from the logging correlator buffer:

```
RP/0/RSP0/CPU0:router# clear logging correlator delete all-in-buffer
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging correlator buffer, on page 38</td>
<td>Displays messages in the logging correlator buffer.</td>
</tr>
</tbody>
</table>
To delete messages from the logging events buffer, use the **clear logging events delete** command in EXEC mode.

clear logging events delete

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>admin-level-only</td>
<td>Deletes only events at the administrative level.</td>
</tr>
<tr>
<td>all-in-buffer</td>
<td>Deletes all event IDs from the logging events buffer.</td>
</tr>
<tr>
<td>bistate-alarms-set</td>
<td>Deletes bi-state alarms in the SET state.</td>
</tr>
<tr>
<td>category name</td>
<td>Deletes events from a specified category.</td>
</tr>
<tr>
<td>context name</td>
<td>Deletes events from a specified context.</td>
</tr>
<tr>
<td>event-hi-limit event-id</td>
<td>Deletes events with an event ID equal to or lower than the event ID specified with the <code>event-id</code> argument. Range is 0 to 4294967294.</td>
</tr>
<tr>
<td>event-lo-limit event-id</td>
<td>Deletes events with an event ID equal to or higher than the event ID specified with the <code>event-id</code> argument. Range is 0 to 4294967294.</td>
</tr>
<tr>
<td>first event-count</td>
<td>Deletes events, beginning with the first event in the logging events buffer. For the <code>event-count</code> argument, enter the number of events to be deleted.</td>
</tr>
<tr>
<td>group message-group</td>
<td>Deletes events from a specified message group.</td>
</tr>
<tr>
<td>last event-count</td>
<td>Deletes events, beginning with the last event in the logging events buffer. For the <code>event-count</code> argument, enter the number of events to be deleted.</td>
</tr>
<tr>
<td>location node-id</td>
<td>Deletes messages from the logging events buffer for the specified location. The <code>node-id</code> argument is entered in the <code>rack/slot/module</code> notation.</td>
</tr>
<tr>
<td>message message-code</td>
<td>Deletes events with the specified message code.</td>
</tr>
<tr>
<td>severity-hi-limit</td>
<td>Deletes events with a severity level equal to or lower than the severity level specified with the <code>severity</code> argument.</td>
</tr>
</tbody>
</table>
severity Severity level. Valid values are:

- alerts
- critical
- emergencies
- errors
- informational
- notifications
- warnings

Note Settings for the severity levels and their respective system conditions are listed under the “Usage Guidelines” section for the `logging events level` command. Events of lower severity level represent events of higher importance.

<table>
<thead>
<tr>
<th>severity-lo-limit</th>
<th>Deletes events with a severity level equal to or higher than the severity level specified with the <code>severity</code> argument.</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp-hi-limit</td>
<td>Deletes events with a time stamp equal to or lower than the specified time stamp.</td>
</tr>
</tbody>
</table>
Deletes events with a time stamp equal to or higher than the specified time stamp.

Command Default

No messages are automatically deleted unless buffer capacity is reached.

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
clear logging events delete

Usage Guidelines
This command is used to delete messages from the logging events buffer that match the keywords and arguments that you specify. The description is matched if all of the conditions are met.

Use the show logging events buffer, on page 46 command to verify that events have been cleared from the logging events buffer.

Use the logging events buffer-size, on page 22 command to configure the capacity of the logging events buffer.

Examples
This example shows how to delete all messages from the logging events buffer:

```
RP/0/RSP0/CPU0:router# clear logging events delete all-in-buffer
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear logging events reset, on page 11</td>
<td>Resets bi-state alarms.</td>
</tr>
<tr>
<td>show logging events buffer, on page 46</td>
<td>Displays messages in the logging events buffer.</td>
</tr>
</tbody>
</table>
clear logging events reset

To reset bi-state alarms, use the `clear logging events reset` command in EXEC mode.

```
clear logging events reset {all-in-buffer event-id}
```

Syntax Description
- `all-in-buffer` Resets all bi-state alarm messages in the event logging buffer.
- `event-id` Event ID. Resets the bi-state alarm for an event or events. Up to 32 event IDs can be specified, separated by a space. Range is 0 to 4294967294.

Command Default
None

Command Modes
EXEC mode

Command History
- **Release** 3.7.2 This command was introduced.

Usage Guidelines
This command clears bi-state alarms messages from the logging events buffer. Bi-state alarms are generated by state changes associated with system hardware, such as a change of interface state from active to inactive, or the online insertion and removal (OIR) of a Modular Service Card (MSC), or a change in component temperature.

Use the `show logging events buffer, on page 46` command to display messages in the logging events buffer.

Examples
This example shows how to reset all bi-alarms in the logging events buffer:

```
RP/0/RSP0/CPU0:router# clear logging events reset all-in-buffer
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clear logging events delete, on page 7</code></td>
<td>Deletes all bi-state alarm messages, or messages specified by correlation ID, from the logging events buffer.</td>
</tr>
<tr>
<td><code>show logging events buffer, on page 46</code></td>
<td>Displays messages in the logging events buffer.</td>
</tr>
</tbody>
</table>
context-correlation

To enable context-specific correlation, use the `context-correlation` command in either stateful or nonstateful correlation rule configuration mode. To disable correlation on context, use the `no` form of this command.

```
context-correlation
no context-correlation
```

Syntax Description
This command has no keywords or arguments.

Command Default
Correlation on context is not enabled.

Command Modes
Stateful correlation rule configuration
Nonstateful correlation rule configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command enables context-specific correlation for each of the contexts in which a given rule is applied. For example, if the rule is applied to two contexts (context1 and context2), messages that have context “context1” are correlated separately from those messages with context “context2”.

Use the `show logging correlator rule, on page 41` command to show the current setting for the context-correlation flag.

Examples
This example shows how to enable correlation on context for a stateful correlation rule:

```
RP/0/RSP0/CPU0:router (config)# logging correlator rule stateful_rule type stateful
RP/0/RSP0/CPU0:router (config-corr-rule-st)# context-correlation
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging correlator rule, on page 18</td>
<td>Defines the rules for correlating messages.</td>
</tr>
<tr>
<td>show logging correlator rule, on page 41</td>
<td>Displays one or more predefined logging correlator rules.</td>
</tr>
</tbody>
</table>
logging correlator apply rule

To apply and activate a correlation rule and enter correlation apply rule configuration mode, use the `logging correlator apply rule` command in Global Configuration mode. To deactivate a correlation rule, use the `no` form of this command.

```
logging correlator apply rule correlation-rule [{all-of-router|context name|location node-id}]
no logging correlator apply rule correlation-rule [{all-of-router|context name|location node-id}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>correlation-rule</td>
<td>Name of the correlation rule to be applied.</td>
</tr>
<tr>
<td>all-of-router</td>
<td>(Optional) Applies the correlation rule to the entire router.</td>
</tr>
<tr>
<td>context name</td>
<td>(Optional) Applies the correlation rule to the specified context. Unlimited number of contexts. The <code>name</code> string is limited to 32 characters.</td>
</tr>
<tr>
<td>location node-id</td>
<td>(Optional) Applies the correlation rule to the specified node. The <code>node-id</code> argument is entered in the <code>rack/slot/module</code> notation. Unlimited number of locations.</td>
</tr>
</tbody>
</table>

Command Default

No correlation rules are applied.

Command Modes

Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `logging correlator apply rule` command is used to either add or remove apply settings for a given rule. These settings then determine which messages are correlated for the affected rules.

If the rule is applied to `all-of-router`, then correlation occurs for only those messages that match the configured cause values for the rule to be correlated, regardless of the context or location setting of that message.

If a rule is applied to a specific set of contexts or locations, then correlation occurs for only those messages that match both the configured cause values for the rule and at least one of those contexts or locations.

Use the `show logging correlator rule, on page 41` command to show the current apply settings for a given rule.

Tip

When a rule is applied (or if a rule set that contains this rule is applied), then the rule definition cannot be modified through the configuration until the rule or rule set is once again unapplied.

Tip

It is possible to configure apply settings at the same time for both a rule and zero or more rule sets that contain the rule. In this case, the apply settings for the rule are the union of all the apply configurations.
The **logging correlator apply rule** command allows you to enter submode (config-corr-apply-rule) to apply and activate rules:

```
RP/0/RSP0/CPU0:router(config)# logging correlator apply rule stateful1
RP/0/RSP0/CPU0:router(config-corr-apply-rule)#
```

- `all-of-router`: Apply the rule to all of the router
- `clear`: Clear the uncommitted configuration
- `commit`: Commit the configuration changes to running
- `context`: Apply rule to specified context
- `describe`: Describe a command without taking real actions
- `do`: Run an exec command
- `exit`: Exit from this submode
- `location`: Apply rule to specified location
- `no`: Negate a command or set its defaults
- `pwd`: Commands used to reach current submode
- `root`: Exit to the global configuration mode
- `show`: Show contents of configuration

```
RP/0/RSP0/CPU0:router(config-corr-apply-rule)#
```

While in the submode, you can negate keyword options:

```
RP/0/RSP0/CPU0:router(config-corr-apply-rule)## no all-of-router
RP/0/RSP0/CPU0:router(config-corr-apply-rule)## no context
RP/0/RSP0/CPU0:router(config-corr-apply-rule)## no location
```

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to apply a predefined correlator rule to a location:

```
RP/0/RSP0/CPU0:router(config)# logging correlator apply rule rule1
RP/0/RSP0/CPU0:router(config-corr-apply-rule)# location 0/2/CPU0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging correlator rule, on page 18</td>
<td>Defines the rules for correlating messages.</td>
</tr>
<tr>
<td>show logging correlator rule, on page 41</td>
<td>Displays one or more predefined logging correlator rules.</td>
</tr>
<tr>
<td>show logging correlator ruleset, on page 44</td>
<td>Displays one or more predefined logging correlator rule sets.</td>
</tr>
</tbody>
</table>
logging correlator apply ruleset

To apply and activate a correlation rule set and enter correlation apply rule set configuration mode, use the `logging correlator apply ruleset` command in Global Configuration mode. To deactivate a correlation rule set, use the `no` form of this command.

```
logging correlator apply ruleset correlation-ruleset [{all-of-router|context name|location node-id}]
no logging correlator apply ruleset correlation-ruleset [{all-of-router|context name|location node-id}]
```

Syntax Description
- `correlation-ruleset` Name of the correlation rule set to be applied.
- `all-of-router` (Optional) Applies the correlation rule set to the entire router.
- `context name` (Optional) Applies the correlation rule set to the specified context. Unlimited number of contexts. The `name` string is limited to 32 characters.
- `location node-id` (Optional) Applies the correlation rule to the specified node. The `node-id` argument is entered in the `rack/slot/module` notation. Unlimited number of locations.

Command Default
No correlation rule sets are applied.

Command Modes
Global Configuration mode

Command History
- **Release** Modification
 - Release 3.7.2 This command was introduced.

Usage Guidelines
The `logging correlator apply ruleset` command is used to either add or remove apply settings for a given rule set. These settings then determine which messages are correlated for the affected rules.

If the rule set is applied to `all-of-router`, then correlation occurs for only those messages that match the configured cause values for the rule to be correlated, regardless of the context or location setting of that message.

If a rule set is applied to a specific set of contexts or locations, then correlation occurs for only those messages that match both the configured cause values for the rule and at least one of those contexts or locations.

Use the `show logging correlator ruleset, on page 44` command to show the current apply settings for a given rule set.

Tip
When a rule is applied (or if a rule set that contains this rule is applied), then the rule definition cannot be modified through the configuration until the rule or rule set is once again unapplied.

Tip
It is possible to configure apply settings at the same time for both a rule and zero or more rule sets that contain the rule. In this case, the apply settings for the rule are the union of all the apply configurations.
The **logging correlator apply ruleset** command allows you to enter the submode (config-corr-apply-ruleset) to apply and activate rule sets:

```
RP/0/RSP0/CPU0:router(config)# logging correlator apply ruleset ruleset1
RP/0/RSP0/CPU0:router(config-corr-apply-ruleset)#?
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all-of-router</td>
<td>Apply the rule to all of the router</td>
</tr>
<tr>
<td>clear</td>
<td>Clear the uncommitted configuration</td>
</tr>
<tr>
<td>clear</td>
<td>Clear the configuration</td>
</tr>
<tr>
<td>commit</td>
<td>Commit the configuration changes to running</td>
</tr>
<tr>
<td>context</td>
<td>Apply rule to specified context</td>
</tr>
<tr>
<td>describe</td>
<td>Describe a command without taking real actions</td>
</tr>
<tr>
<td>do</td>
<td>Run an exec command</td>
</tr>
<tr>
<td>exit</td>
<td>Exit from this submode</td>
</tr>
<tr>
<td>location</td>
<td>Apply rule to specified location</td>
</tr>
<tr>
<td>no</td>
<td>Negate a command or set its defaults</td>
</tr>
<tr>
<td>pwd</td>
<td>Commands used to reach current submode</td>
</tr>
<tr>
<td>root</td>
<td>Exit to the global configuration mode</td>
</tr>
<tr>
<td>show</td>
<td>Show contents of configuration</td>
</tr>
</tbody>
</table>

```
RP/0/RSP0/CPU0:router(config-corr-apply-ruleset)#
```

While in the submode, you can negate keyword options:

```
RP/0/RSP0/CPU0:router(config-corr-apply-ruleset)# no all-of-router
RP/0/RSP0/CPU0:router(config-corr-apply-ruleset)# no context
RP/0/RSP0/CPU0:router(config-corr-apply-ruleset)# no location
```

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to apply a predefined correlator rule set to the entire router:

```
RP/0/RSP0/CPU0:router(config)# logging correlator apply ruleset ruleset1
RP/0/RSP0/CPU0:router(config-corr-apply-rule)# all-of-router
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging correlator ruleset, on page 44</td>
<td>Displays one or more predefined logging correlator rule sets.</td>
</tr>
</tbody>
</table>
logging correlator buffer-size

To configure the logging correlator buffer size, use the **logging correlator buffer-size** command in Global Configuration mode. To return the buffer size to its default setting, use the **no** form of this command.

```
logging correlator buffer-size  bytes
no logging correlator buffer-size  bytes
```

Syntax Description

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bytes</td>
<td>The size, in bytes, of the circular buffer. Range is 1024 to 52428800 bytes.</td>
</tr>
</tbody>
</table>

Command Default

```
bytes: 81920 bytes
```

Command Modes

Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The **logging correlator buffer-size** command configures the size of the correlation buffer. This buffer holds all the correlation records as well as the associated correlated messages. When the size of this buffer is exceeded, older correlations in the buffer are replaced with the newer incoming correlations. The criteria that are used to recycle these buffers are:

- First, remove the oldest nonstateful correlation records from the buffer.
- Then, if there are no more nonstateful correlations present; remove the oldest stateful correlation records.

Use the **show logging correlator info, on page 40** command to confirm the size of the buffer and the percentage of buffer space that is currently used. The **show logging events buffer, on page 46 all-in-buffer** command can be used to show the details of the buffer contents.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to set the logging correlator buffer size to 90000 bytes:

```
RP/0/RSP0/CPU0:router(config)# logging correlator buffer-size 90000
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging correlator info, on page 40</td>
<td>Displays the logging correlator buffer size and the percentage of the buffer occupied by correlated messages.</td>
</tr>
</tbody>
</table>
logging correlator rule

To define the rules for correlating messages, use the `logging correlator rule` command in Global Configuration mode. To delete the correlation rule, use the `no` form of this command.

```
logging correlator rule correlation-rule type {stateful|nonstateful}
no logging correlator rule correlation-rule
```

Syntax Description

- **correlation-rule** Name of the correlation rule to be applied.
- **type** Specifies the type of rule.
 - **stateful** Enters stateful correlation rule configuration mode.
 - **nonstateful** Enters nonstateful correlation rule configuration mode.

Command Default

No rules are defined.

Command Modes

Global Configuration mode

Command History

Release 3.7.2 This command was introduced.

Usage Guidelines

The `logging correlator rule` command defines the correlation rules used by the correlator to store messages in the logging correlator buffer. A rule must, at a minimum, consist of three elements: a root-cause message, one or more non-root-cause messages, and a timeout.

When the root-cause message, or a non-root-cause message is received, the timer is started. Any non-root-cause messages are temporarily held, while the root-cause is sent to syslog. If, after the timer has expired, the root-cause and at least one non-root-cause message was received, a correlation is created and stored in the correlation buffer.

A rule can be of type stateful or nonstateful. Stateful rules allow non-root-cause messages to be sent from the correlation buffer if the bi-state root-cause alarm clears at a later time. Nonstateful rules result in correlations that are fixed and immutable after the correlation occurs.

Below are the rule parameters that are available while in stateful correlation rule configuration mode:

```
RP/0/RSP0/CPU0:router(config-corr-rule-st)# ?
context-correlation Specify enable correlation on context
nonrootcause nonrootcause alarm
reissue-nonbistate Specify reissue of non-bistate alarms on parent clear
reparent Specify reparent of alarm on parent clear
rootcause Specify root cause alarm: Category/Group/Code combos
timeout Specify timeout
timeout-rootcause Specify timeout for root-cause
```

Below are the rule parameters that are available while in nonstateful correlation rule configuration mode:
A rule cannot be deleted or modified while it is applied, so the `no logging correlator apply` command must be used to unapply the rule before it can be changed.

The name of the correlation rule must be unique across all rule types and is limited to a maximum length of 32 characters.

Use the `show logging correlator buffer`, on page 38 to display messages stored in the logging correlator buffer.

Use the `show logging correlator rule`, on page 41 command to verify correlation rule settings.

Examples

This example shows how to enter stateful correlation rule configuration mode to specify a collection duration period time for correlator messages sent to the logging events buffer:

```
RP/0/RSP0/CPU0:router(config)# logging correlator rule state_rule type stateful
RP/0/RSP0/CPU0:router(config-corr-rule-st)# timeout 50000
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging correlator buffer, on page 38</td>
<td>Displays messages in the logging correlator buffer.</td>
</tr>
<tr>
<td>show logging correlator rule, on page 41</td>
<td>Displays one or more predefined logging correlator rules.</td>
</tr>
<tr>
<td>timeout, on page 59</td>
<td>Specifies the collection period duration time for the logging correlator rule message.</td>
</tr>
<tr>
<td>timeout-rootcause, on page 61</td>
<td>Specifies an optional parameter for an applied correlation rule.</td>
</tr>
</tbody>
</table>
logging correlator ruleset

To enter correlation rule set configuration mode and define a correlation rule set, use the `logging correlator ruleset` command in Global Configuration mode. To delete the correlation rule set, use the `no` form of this command.

```
logging correlator ruleset correlation-ruleset rulename correlation-rulename
no logging correlator ruleset correlation-ruleset
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>correlation-ruleset</code></td>
<td>Name of the correlation rule set to be applied.</td>
</tr>
<tr>
<td><code>rulename</code></td>
<td>Specifies the correlation rule name.</td>
</tr>
<tr>
<td><code>correlation-rulename</code></td>
<td>Name of the correlation rule name to be applied.</td>
</tr>
</tbody>
</table>

Command Default

No rule sets are defined.

Command Modes

Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `logging correlator ruleset` command defines a specific correlation rule set. A rule set name must be unique and is limited to a maximum length of 32 characters.

To apply a logging correlator rule set, use the `logging correlator apply ruleset, on page 15` command.

Examples

This example shows how to specify a logging correlator rule set:

```
RP/0/RSP0/CPU0:router(config)# logging correlator ruleset ruleset_1
RP/0/RSP0/CPU0:router(config-corr-ruleset)# rulename state_rule
RP/0/RSP0/CPU0:router(config-corr-ruleset)# rulename state_rule2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging correlator apply ruleset, on page 15</code></td>
<td>Applies and activates a correlation rule set and enters correlation apply rule set configuration mode.</td>
</tr>
<tr>
<td><code>show logging correlator buffer, on page 38</code></td>
<td>Displays messages in the logging correlator buffer.</td>
</tr>
<tr>
<td><code>show logging correlator ruleset, on page 44</code></td>
<td>Displays defined correlation rule set names.</td>
</tr>
</tbody>
</table>
logging events buffer-size

To configure the size of the logging events buffer, use the `logging events buffer-size` command in Global Configuration mode. To restore the buffer size to the default value, use the `no` form of this command.

```
logging events buffer-size bytes
no logging events buffer-size bytes
```

Syntax Description

- `bytes` The size, in bytes, of the logging events buffer. Range is 1024 to 1024000 bytes. The default is 43200 bytes.

Command Default

`bytes`: 43200

Command Modes

Global Configuration mode

Command History

Release 3.7.2 This command was introduced.

Usage Guidelines

- The logging events buffer automatically adjusts to a multiple of the record size that is lower than or equal to the value configured for the `bytes` argument.

Use the `show logging events info`, on page 50 command to confirm the size of the logging events buffer.

Examples

This example shows how to increase the logging events buffer size to 50000 bytes:

```
RP/0/RSP0/CPU0:router(config)# logging events buffer-size 50000
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging events level, on page 26</td>
<td>Specifies a severity level for logging alarm messages.</td>
</tr>
<tr>
<td>logging events threshold, on page 28</td>
<td>Specifies the event logging buffer capacity threshold that, when surpassed, will generate an alarm.</td>
</tr>
<tr>
<td>show logging correlator info, on page 40</td>
<td>Displays information about the size of the logging correlator buffer and available capacity.</td>
</tr>
</tbody>
</table>
Alarm Management and Logging Correlation Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging events buffer, on page 46</td>
<td>Displays messages in the logging events buffer.</td>
</tr>
<tr>
<td>show logging events info, on page 50</td>
<td>Displays configuration and operational messages about the logging events buffer.</td>
</tr>
</tbody>
</table>
logging events display-location

To enable the alarm source location display field for bistate alarms in the output of the `show logging` and `show logging events buffer` command, use the `logging events display-location` command in Global Configuration mode.

`logging events display-location`
`no logging events display-location`

Syntax Description
This command has no keywords or arguments.

Command Default
The alarm source location display field in `show logging` output is not enabled.

Command Modes
Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.9.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The output of the `show logging` command for bistate alarms has been enhanced. Previously, the alarm source field in the output displayed the location of the process that logged the alarm. Use the `logging events display-location` command to configure the output of the `show logging` command to include an additional source field that displays the actual source of the alarm. The alarm source is displayed in a format that is consistent with alarm source identification in other platforms and equipment. The new alarm source display field aids accurate identification and isolation of the source of a fault.

By default, the output of the `show logging` command does not include the new alarm source identification field. If you enable the alarm source location display field in the `show logging` output, the same naming conventions are also used to display hardware locations in the `show diag` and `show inventory` command output.

Note
Customer OSS tools may rely on the default output to parse and interpret the alarm output.

Task ID
`logging` read, write

Examples
This example shows the `show logging` command output for bistate alarms before and after enabling the alarm source location display field:

```
RP/0/RSP0/CPU0:router# show logging | inc Interface

Wed Aug 13 01:30:58.461 UTC
LC/0/2/CPU0:Aug 12 01:20:54.073 : ifmgr[159]: %PKT_INFRA-LINK-5-CHANGED : Interface
```
GigabitEthernet0/2/0/0, changed state to Administratively Down
LC/0/2/CPU0:Aug 12 01:20:59.450 : ifmgr[159]: %PKT_INFRA-LINK-3-UPDOWN : Interface
GigabitEthernet0/2/0/0, changed state to Down
LC/0/2/CPU0:Aug 12 01:20:59.451 : ifmgr[159]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol
 on Interface GigabitEthernet0/2/0/0, changed state to Down
 MgmtEth0/5/CPU0/0, changed state to Administratively Down
RP/0/5/CPU0:Aug 12 01:23:23.842 : ifmgr[202]: %PKT_INFRA-LINK-3-UPDOWN : Interface
 MgmtEth0/5/CPU0/0, changed state to Down
 on Interface MgmtEth0/5/CPU0/0, changed state to Down
RP/0/5/CPU0:Aug 12 01:23:23.850 : ifmgr[202]: %PKT_INFRA-LINK-3-UPDOWN : Interface
 MgmtEth0/5/CPU0/0, changed state to Up
 on Interface MgmtEth0/5/CPU0/0, changed state to Up

RP/0/RS00/CPU0:router# config
Wed Aug 13 01:31:32.517 UTC
RP/0/RS00/CPU0:router(config)# logging events display-location
RP/0/RS00/CPU0:router(config)# commit
RP/0/RS00/CPU0:router(config)# exit
RP/0/RS00/CPU0:router# show logging | inc Interface
Wed Aug 13 01:31:48.141 UTC
LC/0/2/CPU0:Aug 12 01:20:54.073 : ifmgr[159]: %PKT_INFRA-LINK-5-CHANGED : Interface
GigabitEthernet0/2/0/0, changed state to Administratively Down
LC/0/2/CPU0:Aug 12 01:20:59.450 : ifmgr[159]: %PKT_INFRA-LINK-3-UPDOWN : interface
GigabitEthernet0/2/0/0: Interface GigabitEthernet0/2/0/0, changed state to Down
LC/0/2/CPU0:Aug 12 01:20:59.451 : ifmgr[159]: %PKT_INFRA-LINEPROTO-5-UPDOWN : interface
GigabitEthernet0/2/0/0: Line protocol on Interface GigabitEthernet0/2/0/0, changed state to Down
 MgmtEth0/5/CPU0/0, changed state to Administratively Down
RP/0/5/CPU0:Aug 12 01:23:23.842 : ifmgr[202]: %PKT_INFRA-LINK-3-UPDOWN : interface
 MgmtEth0/5/CPU0/0: Interface MgmtEth0/5/CPU0/0, changed state to Down
 MgmtEth0/5/CPU0/0: Line protocol on Interface MgmtEth0/5/CPU0/0, changed state to Down
RP/0/5/CPU0:Aug 12 01:23:23.850 : ifmgr[202]: %PKT_INFRA-LINK-3-UPDOWN : interface
 MgmtEth0/5/CPU0/0: Interface MgmtEth0/5/CPU0/0, changed state to Up
 MgmtEth0/5/CPU0/0: Line protocol on Interface MgmtEth0/5/CPU0/0, changed state to Up

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging events buffer, on page 46</td>
<td>Displays messages in the logging events buffer.</td>
</tr>
</tbody>
</table>
logging events level

To specify a severity level for logging alarm messages, use the `logging events level` command in Global Configuration mode. To return to the default value, use the `no` form of this command.

```
logging events level severity
no logging events level
```

Syntax Description

`severity` Severity level of events to be logged in the logging events buffer, including events of a higher severity level (numerically lower). Table 2: Alarm Severity Levels for Event Logging, on page 26 lists severity levels and their respective system conditions.

Command Default

All severity levels (from 0 to 6) are logged.

Command Modes

Global Configuration mode

Command History

Release 3.7.2 This command was introduced.

Usage Guidelines

This command specifies the event severity necessary for alarm messages to be logged. Severity levels can be specified by the severity level description (for example, `warnings`). When a severity level is specified, events of equal or lower severity level are also written to the logging events buffer.

Note

Events of lower severity level represent events of higher importance.

This table lists the system severity levels and their corresponding numeric values, and describes the corresponding system condition.

Table 2: Alarm Severity Levels for Event Logging

<table>
<thead>
<tr>
<th>Severity Level Keyword</th>
<th>Numeric Value</th>
<th>Logged System Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>emergencies</td>
<td>0</td>
<td>System is unusable.</td>
</tr>
<tr>
<td>alerts</td>
<td>1</td>
<td>Critical system condition exists requiring immediate action.</td>
</tr>
<tr>
<td>critical</td>
<td>2</td>
<td>Critical system condition exists.</td>
</tr>
<tr>
<td>errors</td>
<td>3</td>
<td>Noncritical errors.</td>
</tr>
<tr>
<td>warnings</td>
<td>4</td>
<td>Warning conditions.</td>
</tr>
<tr>
<td>notifications</td>
<td>5</td>
<td>Notifications of changes to system configuration.</td>
</tr>
<tr>
<td>informational</td>
<td>6</td>
<td>Information about changes to system state.</td>
</tr>
</tbody>
</table>
Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to set the severity level for notification to warnings (level 4):

```
RP/0/RSP0/CPU0:router(config)# logging events level warnings
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging events buffer-size, on page 22</td>
<td>Specifies the logging events buffer size.</td>
</tr>
<tr>
<td>logging events threshold, on page 28</td>
<td>Specifies the logging events buffer capacity threshold that, when surpassed, will generate an alarm.</td>
</tr>
</tbody>
</table>
logging events threshold

To specify the logging events buffer threshold that, when surpassed, generates an alarm, use the `logging events threshold` command in Global Configuration mode. To return to the default value, use the `no` form of this command.

```
logging events threshold percent
no logging events threshold
```

Syntax Description

- `percent` Minimum percentage of buffer capacity that must be allocated to messages before an alarm is generated. Range is 10 to 100. The default is 80 percent.

Command Default

- `percent`: 80 percent

Command Modes

- Global Configuration mode

Command History

- Release 3.7.2 This command was introduced.

Usage Guidelines

This command can be configured to generate an alarm when 10 percent or more of the event buffer capacity is available.

The logging events buffer is circular; that is, when full it overwrites the oldest messages in the buffer. Once the logging events buffer reaches full capacity, the next threshold alarm is generated when the number of overwritten events surpasses the percentage of buffer capacity allocated to messages.

Use the `show logging events info, on page 50` command to display the current threshold setting.

Task ID

- **Task ID**
 - read
 - write

Examples

This example shows how to configure the threshold setting to 95 percent of buffer capacity:

```
RP/0/RSP0/CPU0:router(config)# logging events threshold 95
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging events buffer-size, on page 22</code></td>
<td>Specifies the logging correlator buffer size.</td>
</tr>
<tr>
<td><code>logging events level, on page 26</code></td>
<td>Specifies a severity level for logging alarm messages.</td>
</tr>
<tr>
<td><code>show logging events info, on page 50</code></td>
<td>Displays configuration and operational messages about the logging events buffer.</td>
</tr>
</tbody>
</table>
logging suppress apply rule

To apply and activate a logging suppression rule, use the `logging suppress apply rule` command in Global Configuration mode. To deactivate a logging suppression rule, use the `no` form of this command.

```
logging suppress apply rule rule-name [{all-of-router|source location node-id}]
no logging suppress apply rule rule-name [{all-of-router|source location node-id}]
```

Syntax Description

- `rule-name`: Name of the logging suppression rule to activate.
- `all-of-router`: (Optional) Applies the specified logging suppression rule to alarms originating from all locations on the router.
- `source location node-id`: (Optional) Applies the specified logging suppression rule to alarms originating from the specified node. The `node-id` argument is entered in the `rack/slot/module` notation.

Command Default

No logging suppression rules are applied.

Command Modes

Global Configuration mode

Command History

- **Release 3.9.0** This command was introduced.

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

- **Task ID**
- **Operations ID**
- logging: read, write

Examples

This example shows how to apply a predefined logging suppression rule to the entire router:

```
RP/0/RSP0/CPU0:router(config)# logging suppress apply rule infobistate
RP/0/RSP0/CPU0:router(config-suppr-apply-rule)# all-of-router
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all-of-router, on page 5</td>
<td>Applies a logging suppression rule to suppress alarms originating from all sources on the router.</td>
</tr>
<tr>
<td>source, on page 58</td>
<td>Applies a logging suppression rule to alarms originating from a specific node on the router.</td>
</tr>
</tbody>
</table>
logging suppress rule

To create a logging suppression rule and enter the configuration mode for the rule, use the `logging suppress rule` command in the Global Configuration mode. To remove a logging suppression rule, use the `no` form of this command.

```
logging suppress rule rule-name [{alarm msg-category group-name msg-code|all-alarms}]
no logging suppress rule rule-name
```

Syntax Description
- `rule-name` Name of the rule.
- `alarm` (Optional) Specifies a type of alarm to be suppressed by the logging suppression rule.
- `msg-category` Message category of the root message.
- `group-name` Group name of the root message.
- `msg-code` Message code of the root message.
- `all-alarms` (Optional) Specifies that the logging suppression rule suppresses all types of alarms.

Command Default
No logging suppression rules exist by default.

Command Modes
Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.9.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
If you use the `logging suppress rule` command without specifying a non-root-cause alarm, you can do so afterwards, by entering the `alarm` keyword at the prompt.

Task ID
- `logging` read, write

Examples
This example shows how to create a logging suppression rule called infobistate:

```
RP/0/RSP0/CPU0:router(config)# logging suppress rule infobistate
RP/0/RSP0/CPU0:router(config-suppr-rule)#
```

Related Commands
- `alarm, on page 3` Specifies a type of alarm to be suppressed by a logging suppression rule.
- `all-alarms, on page 4` Configures a logging suppression rule to suppress all types of alarms.
nonrootcause

To enter the non-root-cause configuration mode and specify a non-root-cause alarm, use the `nonrootcause` command in stateful or nonstateful correlation rule configuration modes.

```plaintext
nonrootcause alarm msg-category group-name msg-code
no nonrootcause
```

Syntax Description

- **alarm**: Non-root-cause alarm.
- **msg-category** (Optional) Message category assigned to the message. Unlimited messages (identified by message category, group, and code) can be specified, separated by a space.
- **group-name** (Optional) Message group assigned to the message. Unlimited messages (identified by message category, group, and code) can be specified, separated by a space.
- **msg-code** (Optional) Message code assigned to the message. Unlimited messages (identified by message category, group, and code) can be specified, separated by a space.

Command Default

Non-root-cause configuration mode and alarm are not specified.

Command Modes

- Stateful correlation rule configuration
- Nonstateful correlation rule configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is used to enter the non-root-cause configuration mode to configure one or more non-root-cause alarms associated with a particular correlation rule.

Use the `show logging events info, on page 50` command to display the current threshold setting.

If you use the `nonrootcause` command without specifying a non-root-cause alarm, you can do so afterwards, by entering the `alarm` keyword at the prompt.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to enter non-root-cause configuration mode and display the commands that are available under this mode:

```plaintext
RP/0/RSP0/CPU0:router(config)# logging correlator rule state_rule type stateful
RP/0/RSP0/CPU0:router(config-corr-rule-st)# nonrootcause
RP/0/RSP0/CPU0:router(config-corr-rule-st-nonrc)# ?
```
alarm Specify non-root cause alarm: Category/Group/Code combos
clear Clear the uncommitted configuration
commit Commit the configuration changes to running
describe Describe a command without taking real actions
do Run an exec command
exit Exit from this submode
no Negate a command or set its defaults
pwd Commands used to reach current submode
root Exit to the global configuration mode
show Show contents of configuration

This example shows how to specify a non-root-cause alarm for Layer 2 local SONET messages with an alarm severity of 4. The non-root-cause alarm is associated with the correlation rule named state_rule.

RP/0/RSP0/CPU0:router(config-corr-rule-st-nonrc)# alarm L2 SONET_LOCAL ALARM

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging events buffer-size, on page 22</td>
<td>Specifies the logging correlator buffer size.</td>
</tr>
<tr>
<td>logging events level, on page 26</td>
<td>Specifies a severity level for logging alarm messages.</td>
</tr>
<tr>
<td>logging events threshold, on page 28</td>
<td>Specifies the logging events buffer capacity threshold that, when surpassed, will generate an alarm.</td>
</tr>
<tr>
<td>show logging events info, on page 50</td>
<td>Displays configuration and operational messages about the logging events buffer.</td>
</tr>
</tbody>
</table>
reissue-nonbistate

To reissue non-bistate alarm messages (events) from the correlator log after the root-cause alarm of a stateful rule clears, use the `reissue-nonbistate` command in stateful or nonstateful correlation rule configuration modes. To disable the reissue-nonbistate flag, use the `no` form of this command.

```
reissue-nonbistate
no reissue-nonbistate
```

Syntax Description

This command has no keywords or arguments.

Command Default

Non-bistate alarm messages are not reissued after their root-cause alarm clears.

Command Modes

- Stateful correlation rule configuration
- Nonstateful correlation rule configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, when the root-cause alarm of a stateful correlation is cleared, any non-root-cause, bistate messages being held for that correlation are silently deleted and are not sent to syslog. If the non-bistate messages should be sent, use the `reissue-nonbistate` command for the rules where this behavior is required.

Examples

This example shows how to reissue nonbistate alarm messages:

```
RP/0/RSP0/CPU0:router(config)# logging correlator rule state_rule type stateful
RP/0/RSP0/CPU0:router(config-corr-rule-st)# reissue-nonbistate
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging correlator buffer, on page 38</td>
<td>Displays messages in the logging correlator buffer.</td>
</tr>
<tr>
<td>show logging events buffer, on page 46</td>
<td>Displays messages in the logging events buffer.</td>
</tr>
</tbody>
</table>
To reparent non-root-cause messages to the next highest active rootcause in a hierarchical correlation when their immediate parent clears, use the `reparent` command in stateful correlation rule configuration mode. To disable the reparent flag, use the `no` form of this command.

```
reparent
no reparent
```

Syntax Description
This command has no keywords or arguments.

Command Default
A non-root-cause alarm is sent to syslog after a root-cause parent clears.

Command Modes
Stateful correlation rule configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `reparent` command to specify what happens to non-root-cause alarms in a hierarchical correlation after their root-cause alarm clears. The following scenario illustrates why you may want to set the reparent flag.

Rule 1 with rootcause A and non-rootcause B

Rule 2 with rootcause B and non-rootcause C

(Alarm B is a non-rootcause for Rule 1 and a rootcause for Rule 2. For the purpose of this example, all the messages are bistate alarms.)

If both Rule 1 and Rule 2 each trigger a successful correlation, then a hierarchy is constructed that links these two correlations. When alarm B clears, alarm C would normally be sent to syslog, but the operator may choose to continue suppression of alarm C (hold it in the correlation buffer); because the rootcause that is higher in the hierarchy (alarm A) is still active.

The reparent flag allows you to specify non-root-cause behavior—if the flag is set, then alarm C becomes a child of rootcause alarm A; otherwise, alarm C is sent to syslog.

Note
Stateful behavior, such as reparenting, is supported only for bistate alarms. Bistate alarms are associated with system hardware, such as a change of interface state from active to inactive.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples
This example shows how to set the reparent flag for a stateful rule:
RP/0/RSP0/CPU0:router(config)# `logging correlator rule state_rule type stateful`
RP/0/RSP0/CPU0:router(config-corr-rule-st)# `reparent`

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging correlator rule</code>, on page 18</td>
<td>Defines the rules for correlating messages.</td>
</tr>
<tr>
<td><code>show logging correlator buffer</code>, on page 38</td>
<td>Displays messages in the logging correlator buffer.</td>
</tr>
<tr>
<td><code>show logging events info</code>, on page 50</td>
<td>Displays configuration and operational messages about the logging events buffer.</td>
</tr>
</tbody>
</table>
rootcause

To specify the root-cause alarm message, use the rootcause command in stateful or nonstateful correlation rule configuration modes.

`rootcause msg-category group-name msg-code`

Syntax Description

- `msg-category`: Message category of the root message.
- `group-name`: Group name of the root message.
- `msg-code`: Message code of the root message.

Command Default

Root-cause alarm is not specified.

Command Modes

Stateful correlation rule configuration

Nonstateful correlation rule configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command is used to configure the root-cause message for a particular correlation rule. Messages are identified by their message category, group, and code. The category, group, and code each can contain up to 32 characters. The root-cause message for a stateful correlation rule should be a bi-state alarm.

Use the `show logging events info`, on page 50 command to display the root-cause and non-root-cause alarms for a correlation rule.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure a root-cause alarm for a stateful correlation rule:

```
RP/0/RSP0/CPU0:router(config)# logging correlator rule state_rule type stateful
RP/0/RSP0/CPU0:router(config-corr-rule-st)# rootcause L2 SONET_LOCAL ALARM
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging events buffer-size</code>, on page 22</td>
<td>Specifies the logging correlator buffer size.</td>
</tr>
<tr>
<td><code>logging events level</code>, on page 26</td>
<td>Specifies a severity level for logging alarm messages.</td>
</tr>
</tbody>
</table>
Alarm Management and Logging Correlation Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging events threshold, on page 28</td>
<td>Specifies the logging events buffer capacity threshold that, when surpassed, will generate an alarm.</td>
</tr>
<tr>
<td>timeout-rootcause, on page 61</td>
<td>Specifies an optional parameter for an applied correlation rule.</td>
</tr>
<tr>
<td>show logging events info, on page 50</td>
<td>Displays configuration and operational messages about the logging events buffer.</td>
</tr>
</tbody>
</table>
show logging correlator buffer

To display messages in the logging correlator buffer, use the **show logging correlator buffer** command in EXEC mode.

```
show logging correlator buffer {all-in-buffer [ruletype [{nonstateful|stateful}]] [rulesource [{internal|user}]]} [rule-name correlation-rule1 ... correlation-rule14] [correlationID correlation-id1 ... correlation-id14]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all-in-buffer</td>
<td>Displays all messages in the correlation buffer.</td>
</tr>
<tr>
<td>ruletype</td>
<td>(Optional) Displays the ruletype filter.</td>
</tr>
<tr>
<td>nonstateful</td>
<td>(Optional) Displays the nonstateful rules.</td>
</tr>
<tr>
<td>stateful</td>
<td>(Optional) Displays the stateful rules.</td>
</tr>
<tr>
<td>rulesource</td>
<td>(Optional) Displays the rulesource filter.</td>
</tr>
<tr>
<td>internal</td>
<td>(Optional) Displays the internally defined rules from the rulesource filter.</td>
</tr>
<tr>
<td>user</td>
<td>(Optional) Displays the user-defined rules from the rulesource filter.</td>
</tr>
<tr>
<td>rule-name</td>
<td>Displays a messages associated with a correlation rule name. Up to 14 correlation rules can be specified, separated by a space.</td>
</tr>
<tr>
<td>correlationID</td>
<td>Displays a message identified by correlation ID. Up to 14 correlation IDs can be specified, separated by a space. Range is 0 to 4294967294.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command displays messages from the logging correlator buffer that match the correlation ID or correlation rule name specified. When the **all-in-buffer** keyword is entered, all messages in the logging correlator buffer are displayed.

If the ruletype is not specified, then both stateful and nonstateful rules are displayed.

if the rulesource is not specified, then both user and internal rules are displayed.

Task ID

<table>
<thead>
<tr>
<th>Task</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read</td>
</tr>
</tbody>
</table>
This is the sample output from the `show logging correlator buffer` command:

```
RP/0/RSP0/CPU0:router#  show logging correlator buffer all-in-buffer

#C_id.id:Rule Name:Source :Context: Time : Text
```

This table describes the significant fields shown in the display.

Table 3: show logging correlator buffer Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_id.</td>
<td>Correlation ID assigned to an event that matches a logging correlation rule.</td>
</tr>
<tr>
<td>id</td>
<td>An ID number assigned to each event matching a particular correlation rule. This event number serves as an index to identify each individual event that has been matched for a logging correlation rule.</td>
</tr>
<tr>
<td>Rule Name</td>
<td>Name of the logging correlation rule that filters messages defined in a logging correlation rule to the logging correlator buffer.</td>
</tr>
<tr>
<td>Source</td>
<td>Node from which the event is generated.</td>
</tr>
<tr>
<td>Time</td>
<td>Date and time at which the event occurred.</td>
</tr>
<tr>
<td>Text</td>
<td>Message string that delineates the event.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging correlator info, on page 40</td>
<td>Displays the logging correlator buffer size and the percentage of the buffer occupied by correlated messages.</td>
</tr>
<tr>
<td>show logging correlator rule, on page 41</td>
<td>Displays one or more predefined logging correlator rules.</td>
</tr>
</tbody>
</table>
show logging correlator info

To display the logging correlator buffer size and the percentage of the buffer occupied by correlated messages, use the `show correlator info` command in EXEC mode.

`show logging correlator info`

Syntax Description
This command has no keywords or arguments.

Command Default
None

Command Modes
EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Release 3.7.2 This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command displays the size of the logging correlator buffer and the percentage of the buffer allocated to correlated messages.

Use the `logging correlator buffer-size, on page 17` command to set the size of the buffer.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>logging</td>
</tr>
<tr>
<td></td>
<td>read</td>
</tr>
</tbody>
</table>

Examples
In this example, the `show logging correlator info` command is used to display remaining buffer size and percentage allocated to correlated messages:

```
RP/0/RSP0/CPU0:router# show logging correlator info

Buffer-Size Percentage-Occupied
81920            0.00
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging correlator buffer-size, on page 17</code></td>
<td>Specifies the logging correlator buffer size.</td>
</tr>
<tr>
<td><code>show logging correlator buffer, on page 38</code></td>
<td>Displays messages in the logging correlator buffer.</td>
</tr>
<tr>
<td><code>show logging correlator rule, on page 41</code></td>
<td>Displays one or more predefined logging correlator rules.</td>
</tr>
</tbody>
</table>
show logging correlator rule

To display defined correlation rules, use the **show logging correlator rule** command in EXEC mode.

```
show logging correlator rule {all|correlation-rule1...correlation-rule14} [context context1...context 6] [location node-id1...node-id6] [rulesource {internal|user}] [ruletype {nonstateful|stateful}] [{summary|detail}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays all rule sets.</td>
</tr>
<tr>
<td>correlation-rule1...correlation-rule14</td>
<td>Rule set name to be displayed. Up to 14 predefined correlation rules can be specified, separated by a space.</td>
</tr>
<tr>
<td>context context1...context 6</td>
<td>(Optional) Displays a list of context rules.</td>
</tr>
<tr>
<td>location node-id1...node-id6</td>
<td>(Optional) Displays the location of the list of rules filter from the designated node. The <code>node-id</code> argument is entered in the <code>rack/slot/module</code> notation.</td>
</tr>
<tr>
<td>rulesource</td>
<td>(Optional) Displays the rulesource filter.</td>
</tr>
<tr>
<td>internal</td>
<td>(Optional) Displays the internally defined rules from the rulesource filter.</td>
</tr>
<tr>
<td>user</td>
<td>(Optional) Displays the user defined rules from the rulesource filter.</td>
</tr>
<tr>
<td>ruletype</td>
<td>(Optional) Displays the ruletype filter.</td>
</tr>
<tr>
<td>nonstateful</td>
<td>(Optional) Displays the nonstateful rules.</td>
</tr>
<tr>
<td>stateful</td>
<td>(Optional) Displays the stateful rules.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays the summary information.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed information.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

If the ruletype is not specified, then both stateful and nonstateful rules are displayed as the default.
If the rulesource is not specified, then both user and internally defined rules are displayed as the default.
If the summary or detail keywords are not specified, then detailed information is displayed as the default.
This is sample output from the `show logging correlator rule` command:

```
RP/0/RSP0/CPU0:router# show logging correlator rule test

Rule Name : test
Type : Non Stateful
Source : User
Timeout : 30000 Rule State: RULE_APPLIED_ALL
Rootcause Timeout : None
Context Correlation : disabled
Reissue Non Bistate : N/A
Reparent : N/A
Alarms :
Code Type: Category Group Message
Root: MBGL CONFIG DB_COMMIT
Leaf: L2 SONET ALARM
Apply Locations: None
Apply Contexts: None
Number of buffered alarms : 0
```

This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule Name</td>
<td>Name of defined correlation rule.</td>
</tr>
<tr>
<td>Time out</td>
<td>Configured timeout for the correlation rule.</td>
</tr>
<tr>
<td>Rule State</td>
<td>Indicates whether or not the rule has been applied. If the rule applies to the entire router, this field will display “RULE_APPLIED_ALL.”</td>
</tr>
<tr>
<td>Code Type</td>
<td>Message category, group, and code.</td>
</tr>
<tr>
<td>Root</td>
<td>Message category, group and code of the root message configured in the logging correlation rule.</td>
</tr>
<tr>
<td>Leaf</td>
<td>Message category, group and code of a non-root-cause message configured in the logging correlation rule.</td>
</tr>
<tr>
<td>Apply Locations</td>
<td>Node or nodes where the rule is applied. If the logging correlation rule applies to the entire router, this field will display “None.”</td>
</tr>
<tr>
<td>Apply Contexts</td>
<td>Context or contexts to which the rule is applied. If the logging correlation rule is not configured to apply to a context, this field will display “None.”</td>
</tr>
</tbody>
</table>
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging correlator apply rule, on page 13</td>
<td>Applies and activates correlation rules.</td>
</tr>
<tr>
<td>logging correlator rule, on page 18</td>
<td>Defines the rules for correlating messages.</td>
</tr>
<tr>
<td>show logging correlator buffer, on page 38</td>
<td>Displays messages in the logging correlator buffer.</td>
</tr>
<tr>
<td>show logging correlator info, on page 40</td>
<td>Displays the logging correlator buffer size and the percentage of the buffer occupied by correlated messages.</td>
</tr>
</tbody>
</table>
show logging correlator ruleset

To display defined correlation rule set names, use the `show logging correlator ruleset` command in EXEC mode.

```
show logging correlator ruleset {all|correlation-ruleset1 ... correlation-ruleset14} [{detail|summary}]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays all rule set names.</td>
</tr>
<tr>
<td>correlation-rule1...correlation-rule14</td>
<td>Rule set name to be displayed. Up to 14 predefined rule set names can be specified, separated by a space.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed information.</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Displays the summary information.</td>
</tr>
</tbody>
</table>

Command Default
Detail is the default, if nothing is specified.

Command Modes
EXEC mode

Command History
Release 3.7.2 This command was introduced.

Usage Guidelines
- If the rule type is not specified, then both stateful and nonstateful rules are displayed as the default.
- If the rule source is not specified, then both user and internally defined rules are displayed as the default.
- If the summary or detail options are not specified, then detailed information is displayed as the default.

Task ID
```
Task ID  Operations Task ID
logging   read
```

Examples
This is the sample output from the `show logging correlator ruleset` command:

```
RP/0/RSP0/CPU0:router# show logging correlator RuleSetOne RuleSetTwo

Rule Set Name : RuleSetOne
Rules: Rule1 : Applied
Rule2 : Applied
Rule3 : Applied
Rule Set Name : RuleSetTwo
Rules: Rule1 : Applied
Rule5 : Not Applied
```

This is the sample output from the `show logging correlator ruleset` command when the **all** option is specified:
show logging correlator ruleset all

Rule Set Name : RuleSetOne
Rules: Rule1 : Applied
Rule2 : Applied
Rule3 : Applied
Rule Set Name : RuleSetTwo
Rules: Rule1 : Applied
Rule5 : Not Applied
Rule Set Name : RuleSetThree
Rules: Rule2 : Applied
Rule3 : Applied

This is sample output from the `show logging correlator ruleset` command when the **all** and **summary** options are specified:

show logging correlator ruleset all summary

RuleSetOne
RuleSetTwo
RuleSetThree

This table describes the significant fields shown in the display.

Table 5: show logging correlator ruleset Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule Set Name</td>
<td>Name of the ruleset.</td>
</tr>
<tr>
<td>Rules</td>
<td>All rules contained in the ruleset are listed.</td>
</tr>
<tr>
<td>Applied</td>
<td>The rule is applied.</td>
</tr>
<tr>
<td>Not Applied</td>
<td>The rule is not applied.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging correlator apply rule, on page 13</td>
<td>Applies and activates correlation rules.</td>
</tr>
<tr>
<td>logging correlator rule, on page 18</td>
<td>Defines the rules for correlating messages.</td>
</tr>
<tr>
<td>show logging correlator buffer, on page 38</td>
<td>Displays messages in the logging correlator buffer.</td>
</tr>
<tr>
<td>show logging correlator info, on page 40</td>
<td>Displays the logging correlator buffer size and the percentage of the buffer occupied by correlated messages.</td>
</tr>
<tr>
<td>show logging correlator rule, on page 41</td>
<td>Displays defined correlation rules.</td>
</tr>
</tbody>
</table>
show logging events buffer

To display messages in the logging events buffer, use the `show logging events buffer` command in EXEC mode.

```
show logging events buffer [admin-level-only] [all-in-buffer] [bistate-alarms-set] [category name] [context name] [event-hi-limit event-id] [event-lo-limit event-id] [first event-count] [group message-group] [last event-count] [location node-id] [message message-code] [severity-hi-limit severity] [severity-lo-limit severity] [timestamp-hi-limit hh:mm:ss [month] [day] [year] timestamp-lo-limit hh:mm:ss [month] [day] [year]]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>admin-level-only</code></td>
<td>Displays only the events that are at the administrative level.</td>
</tr>
<tr>
<td><code>all-in-buffer</code></td>
<td>Displays all event IDs in the events buffer.</td>
</tr>
<tr>
<td><code>bistate-alarms-set</code></td>
<td>Displays bi-state alarms in the SET state.</td>
</tr>
<tr>
<td><code>category name</code></td>
<td>Displays events from a specified category.</td>
</tr>
<tr>
<td><code>context name</code></td>
<td>Displays events from a specified context.</td>
</tr>
<tr>
<td><code>event-hi-limit event-id</code></td>
<td>Displays events with an event ID equal to or lower than the event ID specified with the <code>event-id</code> argument. Range is 0 to 4294967294.</td>
</tr>
<tr>
<td><code>event-lo-limit event-id</code></td>
<td>Displays events with an event ID equal to or higher than the event ID specified with <code>event-id</code> argument. Range is 0 to 4294967294.</td>
</tr>
<tr>
<td><code>first event-count</code></td>
<td>Displays events in the logging events buffer, beginning with the first event. For the <code>event-count</code> argument, enter the number of events to be displayed.</td>
</tr>
<tr>
<td><code>group message-group</code></td>
<td>Displays events from a specified message group.</td>
</tr>
<tr>
<td><code>last event-count</code></td>
<td>Displays events, beginning with the last event in the logging events buffer. For the <code>event-count</code> argument, enter the number of events to be displayed.</td>
</tr>
<tr>
<td><code>location node-id</code></td>
<td>Displays events for the specified location. The <code>node-id</code> argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td><code>message message-code</code></td>
<td>Displays events with the specified message code.</td>
</tr>
<tr>
<td><code>severity-hi-limit</code></td>
<td>Displays events with a severity level equal to or lower than the specified severity level.</td>
</tr>
</tbody>
</table>
severity
Severity level. Valid values are:
- emergencies
- alerts
- critical
- errors
- warnings
- notifications
- informational

Note Settings for the severity levels and their respective system conditions are listed under the “Usage Guidelines” section for the **logging events level** command. Events of lower severity level represent events of higher importance.

<table>
<thead>
<tr>
<th>severity-lo-limit</th>
<th>Displays events with a severity level equal to or higher than the specified severity level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>timestamp-hi-limit</td>
<td>Displays events with a time stamp equal to or lower than the specified time stamp.</td>
</tr>
</tbody>
</table>
hh : mm : ss [month] [day] [year] Time stamp for the timestamp-hi-limit or timestamp-lo-limit keyword. The month, day, and year arguments default to the current month, day, and year if not specified.

Ranges for the hh : mm : ss month day year arguments are as follows:

• hh —Hours. Range is 00 to 23. You must insert a colon after the hh argument.
• mm —Minutes. Range is 00 to 59. You must insert a colon after the mm argument.
• ss —Seconds. Range is 00 to 59.
• month —(Optional) The month of the year. The values for the month argument are:
 • january
 • february
 • march
 • april
 • may
 • june
 • july
 • august
 • september
 • october
 • november
 • december
• day —(Optional) Day of the month. Range is 01 to 31.
• year —(Optional) Year. Enter the last two digits of the year (for example, 04 for 2004). Range is 01 to 37.

timestamp-lo-limit Displays events with a time stamp equal to or higher than the specified time stamp.

Command Default None
Command Modes EXEC mode
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines This command displays messages from the logging events buffer matching the description. The description is matched when all of the conditions are met.
This is the sample output from the `show logging events buffer all-in-buffer` command:

```
RP/0/RSP0/CPU0:router# show logging events buffer all-in-buffer
#ID :C_id:Source :Time :%CATEGORY-GROUP-SEVERITY-MESSAGECODE: Text
#1 : :RP/0/RSP0/CPU0:Jan 9 08:57:54 2004:nvram[66]: %MEDIA-NVRAM_PLATFORM-3-BAD_NVRAM_VAR : ROMMON variable-value pair: '^['19~CONFIG_FILE = disk0:config/startup, contains illegal (non-printable)characters
#2 : :RP/0/RSP0/CPU0:Jan 9 08:58:21 2004:psarb[238]: %PLATFORM-PSARB-5-GO_BID : Card is going to bid state.
#3 : :RP/0/RSP0/CPU0:Jan 9 08:58:22 2004:psarb[238]: %PLATFORM-PSARB-5-GO_ACTIVE : Card is becoming active.
#4 : :RP/0/RSP0/CPU0:Jan 9 08:58:22 2004:psarb[238]: %PLATFORM-PSARB-6-RESET_ALL_LINECARDS : RP going active; resetting all linecards in chassis
#5 : :RP/0/RSP0/CPU0:Jan 9 08:58:22 2004:redcon[245]: %HA-REDCON-6-GO_ACTIVE : this card going active
#6 : :RP/0/RSP0/CPU0:Jan 9 08:58:22 2004:redcon[245]: %HA-REDCON-6-FAILOVER_ENABLED : Failover has been enabled by config
```

This table describes the significant fields shown in the display.

Table 6: show logging correlator buffer Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>#ID</td>
<td>Integer assigned to each event in the logging events buffer.</td>
</tr>
<tr>
<td>C_id.</td>
<td>Correlation ID assigned to a event that has matched a logging correlation rule.</td>
</tr>
<tr>
<td>Source</td>
<td>Node from which the event is generated.</td>
</tr>
<tr>
<td>Time</td>
<td>Date and time at which the event occurred.</td>
</tr>
<tr>
<td>%CATEGORY-GROUP-SEVERITY-MESSAGECODE</td>
<td>The category, group name, severity level, and message code associated with the event.</td>
</tr>
<tr>
<td>Text</td>
<td>Message string that delineates the event.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging events info, on page 50</td>
<td>Displays configuration and operational messages about the logging events buffer.</td>
</tr>
</tbody>
</table>
show logging events info

To display configuration and operational information about the logging events buffer, use the `show logging events info` command in EXEC mode.

show logging events info

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>This command has no keywords or arguments.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Default</td>
<td>None</td>
</tr>
<tr>
<td>Command Modes</td>
<td>EXEC mode</td>
</tr>
<tr>
<td>Command History</td>
<td>Release 3.7.2 This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command displays information about the size of the logging events buffer, the maximum size of the buffer, the number of records being stored, the maximum allowable number of records threshold for circular filing, and message filtering.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

This is the sample output from the `show logging events info` command:

```
RP/0/RSP0/CPU0:router# show logging events info
Size (Current/Max)    #Records  Thresh  Filter
16960 /42400          37         90     Not Set
```

This table describes the significant fields shown in the display.

Table 7: show logging events info Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (Current/Max)</td>
<td>The current and maximum size of the logging events buffer. The maximum size of the buffer is controlled by the <code>logging events buffer-size</code>, on page 22 command.</td>
</tr>
<tr>
<td>#Records</td>
<td>The number of event records stored in the logging events buffer.</td>
</tr>
<tr>
<td>Thresh</td>
<td>The configured logging events threshold value. This field is controlled by the <code>logging events threshold</code>, on page 28 command.</td>
</tr>
<tr>
<td>Filter</td>
<td>The lowest severity level for events that will be displayed. This field is controlled by the <code>logging events level</code>, on page 26 command.</td>
</tr>
</tbody>
</table>
Alarm Management and Logging Correlation Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging events buffer-size, on page 22</td>
<td>Specifies the logging correlator buffer size.</td>
</tr>
<tr>
<td>logging events level, on page 26</td>
<td>Specifies a severity level for logging alarm messages.</td>
</tr>
<tr>
<td>logging events threshold, on page 28</td>
<td>Specifies the logging events buffer capacity threshold that, when surpassed, will generate an alarm.</td>
</tr>
<tr>
<td>show logging events buffer, on page 46</td>
<td>Displays information about messages in the logging events buffer according to type, time, or severity level.</td>
</tr>
</tbody>
</table>
show logging suppress rule

To display defined logging suppression rules, use the `show logging suppression rule` command in EXEC mode.

```
show logging suppress rule [\{rule-name1 [... [rule-name14]]\} all [detail] [summary] [source location node-id]]
```

Syntax Description

- `rule-name1 [... [rule-name14]]`: Specifies up to 14 logging suppression rules to display.
- `all`: Displays all logging suppression rules.
- `source location node-id`: (Optional) Displays the location of the list of rules filter from the designated node. The `node-id` argument is entered in the rack/slot/module notation.
- `detail`: (Optional) Displays detailed information.
- `summary`: (Optional) Displays the summary information.

Command Default

None

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 3.9.0 | This command was introduced.

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

- **Task ID**: logging
- **Operations ID**: read

Examples

This example displays information about a logging suppression rule that has been configured but has not been activated:

```
RP/0/RSP0/CPU0:router# show logging suppression rule test_suppression

Rule Name : test_suppression
Rule State: RULE_UNAPPLIED
Severities : informational, critical
Alarms :

  Category  Group       Message  
  CAT_C     GROUP_C     CODE_C  
  CAT_D     GROUP_D     CODE_D  

Apply Alarm-Locations: PLIM-0/2, PowerSupply-0/A/A0
Apply Sources: 0/RP0/CPU0, 1/6/SP
```
Number of suppressed alarms : 0

This example displays information about all logging suppression rules applied to a specific source location on the router:

```
RP/0/RSP0/CPU0:router# show logging suppress rule all source location 0/RP0/CPU0
```

Rule Name : test_suppression
Rule State: RULE_APPLIED_ALL
Severities : N/A
Alarms :
 Category Group Message
 CAT_E GROUP_F CODE_G

Apply Alarm-Locations: None
Apply Sources: 0/RP0/CPU0

Number of suppressed alarms : 0

This example shows summary information about all logging suppression rules:

```
RP/0/RSP0/CPU0:router# show logging suppression rule all summary
```

<table>
<thead>
<tr>
<th>Rule Name</th>
<th>Number of Suppressed Alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mike1</td>
<td>0</td>
</tr>
<tr>
<td>Mike2</td>
<td>0</td>
</tr>
<tr>
<td>Mike3</td>
<td>0</td>
</tr>
<tr>
<td>Real1</td>
<td>4</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging suppress apply rule, on page 29</td>
<td>Applies and activates a logging suppression rule.</td>
</tr>
<tr>
<td>logging suppress rule, on page 30</td>
<td>Creates a logging suppression rule.</td>
</tr>
</tbody>
</table>
show snmp correlator buffer

To display messages in SNMP correlator buffer, use the `show snmp correlator buffer` in EXEC mode.

```
show snmp correlator buffer [{all|correlation ID|rule-name name}]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays all messages in the correlator buffer.</td>
</tr>
<tr>
<td>correlation id</td>
<td>Displays a message identified by correlation ID. Range is 0 to 4294967294. Up to 14 correlation rules can be specified, separated by a space.</td>
</tr>
<tr>
<td>rule-name name</td>
<td>Displays a message associated with a SNMP correlation rule name. Up to 14 correlation rules can be specified, separated by a space.</td>
</tr>
</tbody>
</table>

Command Default
None

Command Modes
EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task</th>
<th>Operation</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp</td>
<td>read</td>
<td></td>
</tr>
</tbody>
</table>

The sample shows an output from the `show snmp correlator buffer` command:

```
RP/0/RSP0/CPU0:router# show snmp correlator buffer correlationID 10
Correlation ID : 10
Rule : ospf-trap-rule
Rootcause: 1.3.6.1.6.3.1.1.5.3
Time : Dec 14 02:32:05
Varbind(s):
  ifIndex.17 = 17
  ifDescr.17 = POS0/7/0/0
  ifType.17 = other(1)
  cieIfStateChangeReason.17 = down

Nonroot : 1.3.6.1.2.1.14.16.2.2
Time: Dec 14 02:32:04
Varbind(s):
  ospfRouterId = 1.1.1.1
  ospfNbrIpAddr = 30.0.28.2
  ospfNbrAddressLessIndex = 0
  ospfNbrRtrId = 3.3.3.3
  ospfNbrState = down(1)
```
show snmp correlator info

To display the SNMP correlator buffer size and the percentage of the buffer occupied by correlated messages, use the `show snmp correlator info` command in EXEC mode.

show snmp correlator info

Syntax Description
This command has no keywords or arguments.

Command Default
None

Command Modes
EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp</td>
<td>read</td>
</tr>
</tbody>
</table>

The sample shows an output that contains remaining buffer size and percentage allocated to correlated messages from the `show snmp correlator info` command:

```
RP/0/RSP0/CPU0:router# show snmp correlator info

Buffer-Size  Percentage-Occupied
85720          0.00
```
show snmp correlator rule

To display defined SNMP correlation rules, use the **show snmp correlator rule** command in EXEC mode.

show snmp correlator rule [{all\}rule-name]

Syntax Description

- **all** Displays all rule sets.
- **rule-name** Specifies the name of a rule. Up to 14 predefined SNMP correlation rules can be specified, separated by a space.

Command Default

None

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

- **Task ID**
 - snmp read

This sample shows an output from the **show snmp correlator rule** command:

```
RP/0/RSP0/CPU0:router# show snmp correlator rule rule_1
Rule Name : rule_1
  Time out : 888   Rule State: RULE_APPLIED_ALL
  Root: OID : 1.3.6.1.2.1.11.0.2
     vbind : 1.3.6.1.2.1.2.2.1.2 value /3\.3\.d\{1,3\}\d\{1,3\}/
     vbind : 1.3.6.1.2.1.5.8.3 index val
  Nonroot: OID : 1.3.6.1.2.1.11.3.3
```
show snmp correlator ruleset

To display defined SNMP correlation rule set names, use the `show snmp correlator ruleset` command in EXEC mode.

```
show snmp correlator ruleset [{all|ruleset-name}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Displays all rule set names.</td>
</tr>
<tr>
<td><code>ruleset-name</code></td>
<td>Specifies the name of a rule set. Up to 14 predefined rule set names can be specified, separated by a space.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>snmp</td>
<td>read</td>
</tr>
</tbody>
</table>

This sample shows an output from the `show snmp correlator ruleset` command:

```
RP/0/RSP0/CPU0:router# show snmp correlator ruleset test
Rule Set Name : test
    Rules: chris1 : Not Applied
            chris2 : Applied
```
source

To apply a logging suppression rule to alarms originating from a specific node on the router, use the `source` command in logging suppression apply rule configuration mode.

```
source location node-id
no source location node-id
```

Syntax Description

- `location node-id` Specifies a node. The `node-id` argument is entered in the `rack/slot/module` notation.

Command Default

No scope is configured by default.

Command Modes

Logging suppression apply rule configuration

Command History

- **Release** 3.9.0 This command was introduced.

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

- **Task** Operations
 - **Operations ID** logging execute

Examples

This example shows how to configure the logging suppression rule infobistate to suppress alarms from 0/RP0/CPU0:

```
RP/0/RSP0/CPU0:router(config)# logging suppress apply rule infobistate
RP/0/RSP0/CPU0:router(config-suppr-apply-rule)# source location 0/RP0/CPU0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging suppress apply rule, on page 29</td>
<td>Applies and activates a logging suppression rule.</td>
</tr>
</tbody>
</table>
timeout

To specify the collection period duration time for the logging correlator rule message, use the `timeout` command in stateful or nonstateful correlation rule configuration modes. To remove the timeout period, use the `no` form of this command.

```
timeout [milliseconds]
no timeout
```

Syntax Description

- `milliseconds`: Range is 1 to 600000 milliseconds.

Command Default

Timeout period is not specified.

Command Modes

- Stateful correlation rule configuration
- Nonstateful correlation rule configuration

Command History

```
Release   Modification
3.7.2      This command was introduced.
```

Usage Guidelines

Each correlation rule that is applied must have a timeout value, and only those messages captured within this timeout period can be correlated together.

The timeout begins when the first matching message for a correlation rule is received. If the root-cause message is received, it is immediately sent to syslog, while any non-root-cause messages are held.

When the timeout expires and the rootcause message has not been received, then all the non-root-cause messages captured during the timeout period are reported to syslog. If the root-cause message was received during the timeout period, then a correlation is created and placed in the correlation buffer.

```
Note

The root-cause alarm does not have to appear first. It can appear at any time within the correlation time period.
```

Task ID

```
Task ID     Operations
logging     read, write
```

Examples

This example shows how to define a logging correlation rule with a timeout period of 60,000 milliseconds (one minute):

```sh
RP/0/RSP0/CPU0:router(config)# logging correlator rule state_rule type stateful
RP/0/RSP0/CPU0:router(config-corr-rule-st)# timeout 60000
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging correlator rule, on page 18</code></td>
<td>Defines the rules by which the correlator logs messages to the logging events buffer.</td>
</tr>
<tr>
<td><code>timeout-rootcause, on page 61</code></td>
<td>Specifies an optional parameter for an applied correlation rule.</td>
</tr>
</tbody>
</table>
timeout-rootcause

To specify an optional parameter for an applied correlation rule, use the `timeout-rootcause` command in stateful or nonstateful correlation rule configuration modes. To remove the timeout period, use the `no` form of this command.

```
timeout-rootcause [milliseconds]
no timeout-rootcause
```

Syntax Description

- `milliseconds` Range is 1 to 60000 milliseconds.

Command Default

Root-cause alarm timeout period is not specified.

Command Modes

- Stateful correlation rule configuration
- Nonstateful correlation rule configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When a root-cause timeout is configured and a non-root-cause message is received first, the following occurs:

- When a root-cause timeout is configured and a non-root-cause message is received first, the following occurs:
 - When the root-cause message arrives before the root-cause timeout expires, then the correlation continues as normal using the remainder of the main rule timeout.
 - When the root-cause message is not received before the root-cause timeout expires, then all the non-root-cause messages held during the root-cause timeout period are sent to syslog and the correlation is terminated.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to configure a timeout period for a root cause alarm:

```
RP/0/RSP0/CPU0:router(config)# logging correlator rule state_rule type stateful
RP/0/RSP0/CPU0:router(config-corr-rule-st)# timeout-rootcause 50000
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging correlator rule, on page 18</td>
<td>Defines the rules by which the correlator logs messages to the logging events buffer.</td>
</tr>
</tbody>
</table>
timeout-rootcause
Embedded Event Manager Commands

This module describes the commands that are used to set the Embedded Event Manager (EEM) operational attributes and monitor EEM operations.

The Cisco IOS XR software EEM functions as the central clearing house for the events detected by any portion of Cisco IOS XR software High Availability Services. The EEM is responsible for fault detection, fault recovery, and process the reliability statistics in a system. The EEM is policy driven and enables you to configure the high-availability monitoring features of the system to fit your needs.

The EEM monitors the reliability rates achieved by each process in the system. You can use these metrics during testing to identify the components that do not meet their reliability or availability goals, which in turn enables you to take corrective action.

To use commands of this module, you must be in a user group associated with a task group that includes appropriate task IDs. If the user group assignment is preventing you from using any command, contact your AAA administrator for assistance.

For detailed information about the EEM concepts, configuration tasks, and examples, see the Configuring and Managing Embedded Event Manager Policies module in System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

- event manager directory user, on page 64
- event manager environment, on page 66
- event manager policy, on page 68
- event manager refresh-time, on page 71
- event manager run, on page 72
- event manager scheduler suspend, on page 74
- show event manager directory user, on page 75
- show event manager environment, on page 76
- show event manager metric hardware, on page 78
- show event manager metric process, on page 80
- show event manager policy available, on page 83
- show event manager policy registered, on page 85
- show event manager refresh-time, on page 88
- show event manager statistics-table, on page 89
event manager directory user

To specify a directory name for storing user library files or user-defined Embedded Event Manager (EEM) policies, use the `event manager directory user` command in Global Configuration mode. To disable the use of a directory for storing user library files or user-defined EEM policies, use the `no` form of this command.

```
event manager directory user {library path|policy path}
no event manager directory user {library path|policy path}
```

Syntax Description

- **library** Specifies a directory name for storing user library files.
- **path** Absolute pathname to the user directory on the flash device.
- **policy** Specifies a directory name for storing user-defined EEM policies.

Command Default

No directory name is specified for storing user library files or user-defined EEM policies.

Command Modes

Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Cisco IOS XR software supports only the policy files that are created by using the Tool Command Language (TCL) scripting language. The TCL software is provided in the Cisco IOS XR software image when the EEM is installed on the network device. Files with the .tcl extension can be EEM policies, TCL library files, or a special TCL library index file named tclindex. The tclindex file contains a list of user function names and library files that contain the user functions (procedures). The EEM searches the user library directory when the TCL starts to process the tclindex file.

User Library

A user library directory is needed to store user library files associated with authoring EEM policies. If you do not plan to write EEM policies, you do not have to create a user library directory.

To create a user library directory before identifying it to the EEM, use the `mkdir` command in EXEC mode. After creating the user library directory, use the `copy` command to copy the .tcl library files into the user library directory.

User Policy

A user policy directory is essential to store the user-defined policy files. If you do not plan to write EEM policies, you do not have to create a user policy directory. The EEM searches the user policy directory when you enter the `event manager policy policy-name user` command.

To create a user policy directory before identifying it to the EEM, use the `mkdir` command in EXEC mode. After creating the user policy directory, use the `copy` command to copy the policy files into the user policy directory.
Embedded Event Manager Commands

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>eem</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to set the pathname for a user library directory to `/usr/lib/tcl` on disk0:

```
RP/0/RSP0/CPU0:router(config)# event manager directory user library disk0:/usr/lib/tcl
```

This example shows how to set the location of the EEM user policy directory to `/usr/fm_policies` on disk0:

```
RP/0/RSP0/CPU0:router(config)# event manager directory user policy disk0:/usr/fm_policies
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event manager policy, on page 68</td>
<td>Registers an EEM policy with the EEM.</td>
</tr>
<tr>
<td>show event manager directory user, on page 75</td>
<td>Displays the directory name for storing user library and policy files.</td>
</tr>
</tbody>
</table>
event manager environment

To set an Embedded Event Manager (EEM) environment variable, use the `event manager environment` command in Global Configuration mode. To remove the configuration, use the `no` form of this command.

```
event manager environment var-name [var-value]
no event manager environment var-name
```

Syntax Description

- `var-name` Name assigned to the EEM environment configuration variable.
- `var-value` (Optional) Series of characters, including embedded spaces, to be placed in the environment variable `var-name`.

Command Default
None

Command Modes
Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Environment variables are available to EEM policies when you set the variables using the `event manager environment` command. They become unavailable when you remove them with the `no` form of this command.

By convention, the names of all the environment variables defined by Cisco begin with an underscore character (`_`) to set them apart, for example, `_show_cmd`.

Spaces can be used in the `var-value` argument. This command interprets everything after the `var-name` argument up until the end of the line in order to be a part of the `var-value` argument.

Use the `show event manager environment`, on page 76 command to display the name and value of all EEM environment variables before and after they have been set using the `event manager environment` command.

Examples

This example shows how to define a set of EEM environment variables:

```
RP/0/RSP0/CPU0:router(config)# event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7
RP/0/RSP0/CPU0:router(config)# event manager environment _show_cmd show eem manager policy registered
RP/0/RSP0/CPU0:router(config)# event manager environment _email_server alpha@cisco.com
RP/0/RSP0/CPU0:router(config)# event manager environment _email_from beta@cisco.com
RP/0/RSP0/CPU0:router(config)# event manager environment _email_to beta@cisco.com
RP/0/RSP0/CPU0:router(config)# event manager environment _email_cc
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show event manager environment, on page 76</td>
<td>Displays the name and value for all the EEM environment variables.</td>
</tr>
</tbody>
</table>
event manager policy

To register an Embedded Event Manager (EEM) policy with the EEM, use the `event manager policy` command in Global Configuration mode. To unregister an EEM policy from the EEM, use the `no` form of this command.

```
event manager policy policy-name username username [persist-time {seconds | infinite}] type

no event manager policy policy-name [username username]
```

Syntax Description

- `policy-name` Name of the policy file.
- `username username` Specifies the username used to run the script. This name can be different from that of the user who is currently logged in, but the registering user must have permissions that are a superset of the username that runs the script. Otherwise, the script is not registered, and the command is rejected.

 In addition, the username that runs the script must have access privileges to the commands issued by the EEM policy being registered.

 (Optional) The length of the username authentication validity, in seconds. The default time is 3600 seconds (1 hour). The `seconds` range is 0 to 4294967294. Enter 0 to stop the username authentication from being cached. Enter the `infinite` keyword to stop the username from being marked as invalid.

- `type` (Optional) Specifies the type of policy.
- `system` (Optional) Registers a system policy defined by Cisco.
- `user` (Optional) Registers a user-defined policy.

Command Default

The default persist time is 3600 seconds (1 hour).

Command Modes

Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The EEM schedules and runs policies on the basis of an event specification that is contained within the policy itself. When the `event manager policy` command is invoked, the EEM examines the policy and registers it to be run when the specified event occurs. An EEM script is available to be scheduled by the EEM until the `no` form of this command is entered.

Note

AAA authorization (such as the `aaa authorization` command with the `eventmanager` and `default` keywords) must be configured before the EEM policies can be registered. The `eventmanager` and `default` keywords must be configured for policy registration. See the `Configuring AAA Services on the Cisco ASR 9000 Series Routers` module of the System Security Configuration Guide for Cisco ASR 9000 Series Routers for more information on AAA authorization configuration.
Username

Enter the username that should execute the script with the `username username` keyword and argument. This name can be different from the user who is currently logged in, but the registering user must have permissions that are a superset of the username that runs the script. Otherwise, the script will not be registered, and the command will be rejected. In addition, the username that runs the script must have access privileges to the commands issued by the EEM policy being registered.

Persist-time

When a script is first registered, the configured `username` for the script is authenticated. If authentication fails, or if the AAA server is down, the script registration fails.

After the script is registered, the username is authenticated each time a script is run.

If the AAA server is down, the username authentication can be read from memory. The `persist-time` determines the number of seconds this username authentication is held in memory.

- If the AAA server is down and the `persist-time` has not expired, the username is authenticated from memory, and the script runs.
- If the AAA server is down, and the `persist-time` has expired, user authentication fails, and the script does not run.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEM attempts to contact the AAA server and refresh the username reauthenticate whenever the configured <code>refresh-time</code> expires. See the <code>event manager refresh-time</code>, on page 71 command for more information.</td>
</tr>
</tbody>
</table>

These values can be used for the `persist-time`:

- The default `persist-time` is 3600 seconds (1 hour). Enter the `event manager policy` command without the `persist-time` keyword to set the `persist-time` to 1 hour.
- Enter zero to stop the username authentication from being cached. If the AAA server is down, the username is not authenticated and the script does not run.
- Enter `infinite` to stop the username from being marked as invalid. The username authentication held in the cache will not expire. If the AAA server is down, the username is authenticated from the cache.

Type

If you enter the `event manager policy` command without specifying the `type` keyword, the EEM first tries to locate the specified policy file in the system policy directory. If the EEM finds the file in the system policy directory, it registers the policy as a system policy. If the EEM does not find the specified policy file in the system policy directory, it looks in the user policy directory. If the EEM locates the specified file in the user policy directory, it registers the policy file as a user policy. If the EEM finds policy files with the same name in both the system policy directory and the user policy directory, the policy file in the system policy directory takes precedence, and the policy file is registered as a system policy.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>eem</td>
<td>read, write</td>
</tr>
</tbody>
</table>
Examples

This example shows how to register a user-defined policy named cron.tcl located in the user policy directory:

```
RP/0/RSP0/CPU0:router(config)# event manager policy cron.tcl username joe
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event manager environment, on page 66</td>
<td>Specifies a directory for storing user library files.</td>
</tr>
<tr>
<td>event manager refresh-time, on page 71</td>
<td>Specifies the time between the system attempts to contact the AAA server and refresh the username reauthentication.</td>
</tr>
<tr>
<td>show event manager environment, on page 76</td>
<td>Displays the name and value for all EEM environment variables.</td>
</tr>
<tr>
<td>show event manager policy available, on page 83</td>
<td>Displays EEM policies that are available to be registered.</td>
</tr>
<tr>
<td>show event manager policy registered, on page 85</td>
<td>Displays the EEM policies that are already registered.</td>
</tr>
</tbody>
</table>
event manager refresh-time

To define the time between user authentication refreshes in Embedded Event Manager (EEM), use the `event manager refresh-time` command in Global Configuration mode. To restore the system to its default condition, use the `no` form of this command.

```
event manager refresh-time seconds
no event manager refresh-time seconds
```

Syntax Description

- `seconds` Number of seconds between user authentication refreshes, in seconds. Range is 10 to 4294967295.

Command Default

The default refresh time is 1800 seconds (30 minutes).

Command Modes

Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

EEM attempts to contact the AAA server and refresh the username reauthentication whenever the configured `refresh-time` expires.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>eem</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to set the refresh time:

```
RP/0/RSP0/CPU0:router(config)# event manager refresh-time 1900
```
event manager run

To manually run an Embedded Event Manager (EEM) policy, use the `event manager run` command in EXEC mode.

```
event manager run policy [argument [... [argument15]]]
```

Syntax Description

- **policy**
 - Name of the policy file.
- **[argument[...[argument15]]]**
 - Argument that you want to pass to the policy. The maximum number of arguments is 15.

Command Default

No registered EEM policies are run.

Command Modes

EXEC mode

Command History

Release 4.0.0 This command was introduced.

Usage Guidelines

EEM usually schedules and runs policies on the basis of an event specification that is contained within the policy itself. The `event manager run` command allows policies to be run manually.

You can query the arguments in the policy file by using the **TCL** command `event_reqinfo`, as shown in this example:

```
array set arr_einfo [event_reqinfo] set argc $arr_einfo(argc) set arg1 $arr_einfo(arg1)
```

Use the `event manager policy`, on page 68 command to register the policy before using the `event manager run` command to run the policy. The policy can be registered with none as the event type.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>eem</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

This example of the `event manager run` command shows how to manually run an EEM policy named policy-manual.tcl:

```
RP/0/RSP0/CPU0:router# event manager run policy-manual.tcl parameter1 parameter2 parameter3
```

```
RP/0/RSP0/CPU0:Sep 20 10:26:31.169 : user-plocy.tcl[65724]: The reqinfo of arg2 is parameter2.
RP/0/RSP0/CPU0:Sep 20 10:26:31.170 : user-plocy.tcl[65724]: The reqinfo of argc is 3.
RP/0/RSP0/CPU0:Sep 20 10:26:31.171 : user-plocy.tcl[65724]: The reqinfo of arg3 is parameter3.
RP/0/RSP0/CPU0:Sep 20 10:26:31.172 : user-plocy.tcl[65724]: The reqinfo of event_type_string is none.
RP/0/RSP0/CPU0:Sep 20 10:26:31.172 : user-plocy.tcl[65724]: The reqinfo of event_pub_sec
```
is 1190283990.
RP/0/RSP0/CPU0:Sep 20 10:26:31.173 : user-plocy.tcl[65724]: The reqinfo of event_pub_time is 1190283990.
RP/0/RSP0/CPU0:Sep 20 10:26:31.173 : user-plocy.tcl[65724]: The reqinfo of event_id is 3.
RP/0/RSP0/CPU0:Sep 20 10:26:31.174 : user-plocy.tcl[65724]: The reqinfo of arg1 is parameter1.
RP/0/RSP0/CPU0:Sep 20 10:26:31.175 : user-plocy.tcl[65724]: The reqinfo of event_type is 16.
RP/0/RSP0/CPU0:Sep 20 10:26:31.175 : user-plocy.tcl[65724]: The reqinfo of event_pub_msec is 830

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event manager policy, on page 68</td>
<td>Registers an EEM policy with the EEM.</td>
</tr>
</tbody>
</table>
event manager scheduler suspend

To suspend the Embedded Event Manager (EEM) policy scheduling execution immediately, use the **event manager scheduler suspend** command in Global Configuration mode. To restore a system to its default condition, use the **no** form of this command.

Syntax Description

This command has no keywords or arguments.

Command Default

Policy scheduling is active by default.

Command Modes

Global Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **event manager scheduler suspend** command to suspend all the policy scheduling requests, and do not perform scheduling until you enter the **no** form of this command. The **no** form of this command resumes policy scheduling and runs pending policies, if any.

It is recommended that you suspend policy execution immediately instead of unregistering policies one by one, for the following reasons:

- **Security**—If you suspect that the security of your system has been compromised.
- **Performance**—If you want to suspend policy execution temporarily to make more CPU cycles available for other functions.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>eem</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to disable policy scheduling:

```
RP/0/RSP0/CPU0:router(config)# event manager scheduler suspend
```

This example shows how to enable policy scheduling:

```
RP/0/RSP0/CPU0:router(config)# no event manager scheduler suspend
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event manager policy, on page 68</td>
<td>Registers an EEM policy with the EEM.</td>
</tr>
</tbody>
</table>
show event manager directory user

To display the current value of the EEM user library files or user-defined Embedded Event Manager (EEM) policies, use the **show event manager directory user** command in EXEC mode.

```
show event manager directory user {library|policy}
```

Syntax Description

- `library` Specifies the user library files.
- `policy` Specifies the user-defined EEM policies.

Command Default

None

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **show event manager directory user** command to display the current value of the EEM user library or policy directory.

Task ID

<table>
<thead>
<tr>
<th>Task</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>eem</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

This is a sample output of the **show event manager directory user** command:

```
RP/0/RSP0/CPU0:router# show event manager directory user library
disk0:/fm_user_lib_dir

RP/0/RSP0/CPU0:router# show event manager directory user policy
disk0:/fm_user_pol_dir
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event manager directory user, on page 64</td>
<td>Specifies the name of a directory that is to be used for storing either the user library or the policy files.</td>
</tr>
</tbody>
</table>
show event manager environment

To display the names and values of the Embedded Event Manager (EEM) environment variables, use the `show event manager environment` command in EXEC mode.

```
show event manager environment [{all environment-name}]
```

Syntax Description

- `all` (Optional) Specifies all the environment variables.
- `environment-name` (Optional) Environment variable for which data is displayed.

Command Default

All environment variables are displayed.

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show event manager environment` command to display the names and values of the EEM environment variables.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>eem</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

This is a sample output of the `show event manager environment` command:

```
RP/0/RSP0/CPU0:router# show event manager environment

No. Name Value
1 _email_cc mosnerd@cisco.com
2 _email_to mosnerd@cisco.com
3 _show_cmd show event manager policy registered
4 _cron_entry 0-59/2 0-23/1 * * 0-7
5 _email_from mosnerd@cisco.com
6 _email_server zeta@cisco.com
```

This table describes the significant fields in the display.

Table 8: show event manager environment Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Number of the EEM environment variable.</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the EEM environment variable.</td>
</tr>
</tbody>
</table>
Embedded Event Manager Commands

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Value of the EEM environment variable.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>event manager environment</code>, on page 66</td>
<td>Specifies a directory to use for storing user library files.</td>
</tr>
</tbody>
</table>
show event manager metric hardware

To display the Embedded Event Manager (EEM) reliability data for the processes running on a particular node, use the `show event manager metric hardware` command in EXEC mode.

`show event manager metric hardware location \{node-id\|all\}`

Syntax Description
- `location` Specifies the location of the node.
- `node-id` EEM reliability data for the specified node. The `node-id` argument is entered in the rack/slot/module notation.
- `all` Specifies all the nodes.

Command Default
None

Command Modes
EXEC mode

Command History
- **Release 4.0.0** This command was introduced.

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID
- **Task ID**
 - eem

Examples
This is a sample output of the `show event manager metric hardware` command:

```
RP/0/RSP0/CPU0:router# show event manager metric hardware location 0/RSP1/CPU0

===================================== node: 0/RSP1/CPU0
Most recent online: Mon Sep 10 21:45:02 2007
Number of times online: 1
Cumulative time online: 0 days, 09:01:07

Most recent offline: n/a
Number of times offline: 0
Cumulative time offline: 0 days, 00:00:00
```
This table describes the significant fields shown in the display.

Table 9: show event manager metric hardware location Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node</td>
<td>Node with processes running.</td>
</tr>
<tr>
<td>Most recent online</td>
<td>The last time the node was started.</td>
</tr>
<tr>
<td>Number of times online</td>
<td>Total number of times the node was started.</td>
</tr>
<tr>
<td>Cumulative time online</td>
<td>Total amount of time the node was available.</td>
</tr>
<tr>
<td>Most recent offline</td>
<td>The last time the process was terminated abnormally.</td>
</tr>
<tr>
<td>Number of times offline</td>
<td>Total number of times the node was terminated.</td>
</tr>
<tr>
<td>Cumulative time offline</td>
<td>Total amount of time the node was terminated.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show processes</td>
<td>Displays information about active processes.</td>
</tr>
</tbody>
</table>
show event manager metric process

To display the Embedded Event Manager (EEM) reliability metric data for processes, use the `show event manager metric process` command in EXEC mode.

```
show event manager metric process {all|job-id|process-name} location {all|node-id}
```

Syntax Description

- **all** Specifies all the processes.
- **job-id** Process associated with this job identifier. The value ranges from 0-4294967295.
- **process-name** Process associated with this name.
- **location** Specifies the location of the node.
- **all** Displays hardware reliability metric data for all the nodes.
- **node-id** Hardware reliability metric data for a specified node. Displays detailed Cisco Express Forwarding information for the designated node. The `node-id` argument is entered in the rack/slot/module notation.

Command Default

None

Command Modes

EXEC mode

Command History

- **Release**
 - 4.0.0 This command was introduced.

Usage Guidelines

The system maintains a record of when processes start and end. This data is used as the basis for reliability analysis.

Use the `show event manager metric process` command to obtain availability information for a process or group of processes. A process is considered available when it is running.

Task ID

```
Task ID  Operations
------  --------
eem     read
```

Examples

This is sample output from the `show event manager metric process` command:

```
RP/0/RSP0/CPU0:router# show event manager metric process all location all

=====================================  
job id: 88, node name: 0/4/CPU0  
process name: wd-critical-mon, instance: 1  
--------------------------------------  
last event type: process start  
```
recent normal end time: n/a
recent abnormal end time: n/a
number of times started: 1
number of times ended normally: 0
number of times ended abnormally: 0
most recent 10 process start times:

most recent 10 process end times and types:
cumulative process available time: 21 hours 1 minutes 31 seconds 46 milliseconds
cumulative process unavailable time: 0 hours 0 minutes 0 seconds 0 milliseconds
process availability: 1.000000000
number of abnormal ends within the past 60 minutes (since reload): 0
number of abnormal ends within the past 24 hours (since reload): 0
number of abnormal ends within the past 30 days (since reload): 0

job id: 54, node name: 0/4/CPU0
process name: dllmgr, instance: 1

last event type: process start
recent normal end time: n/a
recent abnormal end time: n/a
number of times started: 1
number of times ended normally: 0
number of times ended abnormally: 0
most recent 10 process start times:

most recent 10 process end times and types:
cumulative process available time: 21 hours 1 minutes 31 seconds 41 milliseconds
cumulative process unavailable time: 0 hours 0 minutes 0 seconds 0 milliseconds
process availability: 1.000000000
number of abnormal ends within the past 60 minutes (since reload): 0
number of abnormal ends within the past 24 hours (since reload): 0
number of abnormal ends within the past 30 days (since reload): 0

This table describes the significant fields shown in the display.

Table 10: show event manager metric process Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>job id</td>
<td>Number assigned as the job identifier.</td>
</tr>
<tr>
<td>node name</td>
<td>Node with the process running.</td>
</tr>
<tr>
<td>process name</td>
<td>Name of the process running on the node.</td>
</tr>
<tr>
<td>instance</td>
<td>Instance or thread of a multithreaded process.</td>
</tr>
<tr>
<td>comp id</td>
<td>Component of which the process is a member.</td>
</tr>
<tr>
<td>version</td>
<td>Specific software version or release of which the process is a member.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>last event type</td>
<td>Last event type on the node.</td>
</tr>
<tr>
<td>recent end type</td>
<td>Most recent end type.</td>
</tr>
<tr>
<td>recent start time</td>
<td>Last time the process was started.</td>
</tr>
<tr>
<td>recent normal end time</td>
<td>Last time the process was stopped normally.</td>
</tr>
<tr>
<td>recent abnormal end time</td>
<td>Last time the process was terminated abnormally.</td>
</tr>
<tr>
<td>recent abnormal end type</td>
<td>Reason for the last abnormal process termination. For example, the process was aborted or crashed.</td>
</tr>
<tr>
<td>number of times started</td>
<td>Number of times the process has been started.</td>
</tr>
<tr>
<td>number of times ended normally</td>
<td>Number of times the process has been stopped normally.</td>
</tr>
<tr>
<td>number of times ended abnormally</td>
<td>Number of times the process has stopped abnormally.</td>
</tr>
<tr>
<td>most recent 10 process start times</td>
<td>Times of the last ten process starts.</td>
</tr>
<tr>
<td>cumulative process available time</td>
<td>Total time the process has been available.</td>
</tr>
<tr>
<td>cumulative process unavailable time</td>
<td>Total time the process has been out of service due to a restart, abort, communication problems, and so on.</td>
</tr>
<tr>
<td>process availability</td>
<td>Uptime percentage of the process (time running—the duration of any outage).</td>
</tr>
<tr>
<td>number of abnormal ends within the past 60 minutes</td>
<td>Number of times the process has stopped abnormally within the last 60 minutes.</td>
</tr>
<tr>
<td>number of abnormal ends within the past 24 hours</td>
<td>Number of times the process has stopped abnormally within the last 24 hours.</td>
</tr>
<tr>
<td>number of abnormal ends within the past 30 days</td>
<td>Number of times the process has stopped abnormally within the last 30 days.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show processes</td>
<td>Displays information about active processes.</td>
</tr>
</tbody>
</table>
show event manager policy available

To display Embedded Event Manager (EEM) policies that are available to be registered, use the `show event manager policy available` command in EXEC mode.

```
show event manager policy available [{system|user}]
```

Syntax Description

```
<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>system</td>
<td>(Optional) Displays all the available system policies.</td>
</tr>
<tr>
<td>user</td>
<td>(Optional) Displays all the available user policies.</td>
</tr>
</tbody>
</table>
```

Command Default

If this command is invoked with no optional keywords, it displays information for all available system and user policies.

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show event manager policy available` command to find out what policies are available to be registered just prior to using the `event manager policy` command to register policies.

This command is also useful if you forget the exact name of a policy that is required for the `event manager policy` command.

Task ID

```
<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>eem</td>
<td>read</td>
</tr>
</tbody>
</table>
```

Examples

This is a sample output of the `show event manager policy available` command:

```
RP/0/RSP0/CPU0:router# show event manager policy available

No. Type Time Created Name
1  system Tue Jan 12 09:41:32 2004 pr_sample_cdp_abort.tcl
2  system Tue Jan 12 09:41:32 2004 pr_sample_cdp_revert.tcl
3  system Tue Jan 12 09:41:32 2004 sl_sample_intf_down.tcl
4  system Tue Jan 12 09:41:32 2004 tm_sample_cli_cmd.tcl
5  system Tue Jan 12 09:41:32 2004 tm_sample_crash_hist.tcl
6  system Tue Jan 12 09:41:32 2004 wd_sample_proc_mem_used.tcl
7  system Tue Jan 12 09:41:32 2004 wd_sample_sys_mem_used.tcl
```
This table describes the significant fields shown in the display.

Table 11: show event manager policy available Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Number of the policy.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of policy.</td>
</tr>
<tr>
<td>Time Created</td>
<td>Time the policy was created.</td>
</tr>
<tr>
<td>Name</td>
<td>Name of the policy.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event manager policy, on page 68</td>
<td>Registers an EEM policy with the EEM.</td>
</tr>
<tr>
<td>show event manager policy registered, on page 85</td>
<td>Displays the EEM policies that are already registered.</td>
</tr>
</tbody>
</table>
show event manager policy registered

To display the Embedded Event Manager (EEM) policies that are already registered, use the `show event manager policy registered` command in EXEC mode.

`show event manager policy registered[event-type type] [{system|user}] [{time-ordered|name-ordered}]`

Syntax Description
- **event-type type** (Optional) Displays the registered policies for a specific event type, where the valid type options are as follows:
 - application — Application event type
 - counter — Counter event type
 - hardware — Hardware event type
 - oir — Online insertion and removal (OIR) event type
 - process-abort — Process abort event type
 - process-start — Process start event type
 - process-term — Process termination event type
 - process-user-restart — Process user restart event type
 - process-user-shutdown — Process user shutdown event type
 - statistics — Statistics event type
 - syslog — Syslog event type
 - timer-absolute — Absolute timer event type
 - timer-countdown — Countdown timer event type
 - timer-cron — Clock daemon (cron) timer event type
 - timer-watchdog — Watchdog timer event type
 - wdsysmon — Watchdog system monitor event type
- **system** (Optional) Displays the registered system policies.
- **user** (Optional) Displays the registered user policies.
- **time-ordered** (Optional) Displays the policies according to registration time.
- **name-ordered** (Optional) Displays the policies in alphabetical order according to policy name.

Command Default
If this command is invoked with no optional keywords or arguments, it displays the registered EEM policies for all the event types. The policies are displayed according to the registration time.

Command Modes
EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The output of the `show event manager policy registered` command is most beneficial if you are writing and monitoring the EEM policies. The output displays registered policy information in two parts. The first line in each policy description lists the index number assigned to the policy, policy type (system or user), type of
Registered policy information is documented in the Cisco publication *Writing Embedded Event Manager Policies Using Tcl*.

Examples

This is a sample output of the `show event manager policy registered` command:

```
RP/0/RSP0/CPU0:router# show event manager policy registered

No.   Type     Event Type  Time Registered   Name
----  ------   -----------  -----------------  ------
  1    system   proc abort   Wed Jan 16 23:44:56 2004   test1.tcl
      version 00.00.0000 instance 1 path {cdp}
      priority normal maxrun_sec 20 maxrun_nsec 0
  2    system   timer cron   Wed Jan 16 23:44:58 2004   test2.tcl
      name (crontimer1)
      priority normal maxrun_sec 20 maxrun_nsec 0
      path {cdp}
      priority normal maxrun_sec 20 maxrun_nsec 0
  3    system   proc abort   Wed Jan 16 23:45:02 2004   test3.tcl
      path {cdp}
      priority normal maxrun_sec 20 maxrun_nsec 0
  4    system   syslog       Wed Jan 16 23:45:41 2004   test4.tcl
      occurs 1 pattern {test_pattern}
      priority normal maxrun_sec 90 maxrun_nsec 0
  5    system   timer cron   Wed Jan 16 23:45:12 2004   test5.tcl
      name (crontimer2)
      priority normal maxrun_sec 30 maxrun_nsec 0
  6    system   wdsysmon     Wed Jan 16 23:45:15 2004   test6.tcl
      timewin_sec 120 timewin_nsec 0 sub1 mem_tot_used (node {localhost} op gt val 23000)
      priority normal maxrun_sec 40 maxrun_nsec 0
  7    system   wdsysmon     Wed Jan 16 23:45:19 2004   test7.tcl
      timewin_sec 120 timewin_nsec 0 sub1 mem_proc (node {localhost} proctype procname
      (wdsysmon) op gt val 80 is_percent FALSE)
      priority normal maxrun_sec 40 maxrun_nsec 0

This table describes the significant fields displayed in the example.

**Table 12: show event manager policy registered Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>Number of the policy.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of policy.</td>
</tr>
<tr>
<td>Event Type</td>
<td>Type of the EEM event for which the policy is registered.</td>
</tr>
<tr>
<td>Time Registered</td>
<td>Time at which the policy was registered.</td>
</tr>
</tbody>
</table>
### Field | Description
---|---
Name | Name of the policy.

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show event manager policy registered</code></td>
<td>Registers an EEM policy with the EEM.</td>
</tr>
</tbody>
</table>
show event manager refresh-time

To display the time between the user authentication refreshes in the Embedded Event Manager (EEM), use the `show event manager refresh-time` command in EXEC mode.

**show event manager refresh-time**

**Syntax Description**
This command has no keywords or arguments.

**Command Default**
None

**Command Modes**
EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The output of the `show event manager refresh-time` command is the refresh time, in seconds.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>eem</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**
This is a sample output of the `show event manager refresh-time` command:

```
RP/0/RSP0/CPU0:router# show event manager refresh-time
Output:
1800 seconds
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event manager refresh-time, on page 71</td>
<td>Specifies the time between the system attempts to contact the AAA server, and refreshes the username reauthentication.</td>
</tr>
</tbody>
</table>
show event manager statistics-table

To display the currently supported statistic counters maintained by the Static Event Detector, use the **show event manager statistics-table** command in EXEC mode.

```
show event manager statistics-table {stats-name|all}
```

**Syntax Description**

- **stats-name**: Specific statistics type to be displayed. There are three statistics types:
  - generic (ifstats-generic)
  - interface table (ifstats-iftable)
  - data rate (ifstats-datarate)

- **all**: Displays the possible values for the *stats-name* argument.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the **show event manager statistics-table all** command to display the output for all the statistics types.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ecm</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

This is a sample output of the *show event manager statistics-table all* command:

```
RP/0/RSP0/CPU0:router# show event manager statistics-table all
Name Type Description
ifstats-generic bag Interface generic stats
ifstats-iftable bag Interface iftable stats
ifstats-datarate bag Interface datarate stats
```

This is a sample output providing more detailed information on the ifstats-iftable interface statistics table:

```
RP/0/RSP0/CPU0:router# show event manager statistics-table ifstats-iftable
Name Type Description
PacketsReceived uint64 Packets rcvd
BytesReceived uint64 Bytes rcvd
PacketsSent uint64 Packets sent
```
show event manager statistics-table

<table>
<thead>
<tr>
<th>BytesSent</th>
<th>uint64</th>
<th>Bytes sent</th>
</tr>
</thead>
<tbody>
<tr>
<td>MulticastPacketsReceived</td>
<td>uint64</td>
<td>Multicast pkts rcvd</td>
</tr>
<tr>
<td>BroadcastPacketsReceived</td>
<td>uint64</td>
<td>Broadcast pkts rcvd</td>
</tr>
<tr>
<td>MulticastPacketsSent</td>
<td>uint64</td>
<td>Multicast pkts sent</td>
</tr>
<tr>
<td>BroadcastPacketsSent</td>
<td>uint64</td>
<td>Broadcast pkts sent</td>
</tr>
<tr>
<td>OutputDropsCount</td>
<td>uint32</td>
<td>Total output drops</td>
</tr>
<tr>
<td>InputDropsCount</td>
<td>uint32</td>
<td>Total input drops</td>
</tr>
<tr>
<td>InputQueueDrops</td>
<td>uint32</td>
<td>Input queue drops</td>
</tr>
<tr>
<td>RuntPacketsReceived</td>
<td>uint32</td>
<td>Received runt packets</td>
</tr>
<tr>
<td>GiantPacketsReceived</td>
<td>uint32</td>
<td>Received giant packets</td>
</tr>
<tr>
<td>ThrottledPacketsReceived</td>
<td>uint32</td>
<td>Received throttled packets</td>
</tr>
<tr>
<td>ParityPacketsReceived</td>
<td>uint32</td>
<td>Received parity packets</td>
</tr>
<tr>
<td>UnknownProtocolPacketsReceived</td>
<td>uint32</td>
<td>Unknown protocol pkts rcvd</td>
</tr>
<tr>
<td>InputErrorsCount</td>
<td>uint32</td>
<td>Total input errors</td>
</tr>
<tr>
<td>CRCErrorCount</td>
<td>uint32</td>
<td>Input crc errors</td>
</tr>
<tr>
<td>InputOverruns</td>
<td>uint32</td>
<td>Input overruns</td>
</tr>
<tr>
<td>FramingErrorsReceived</td>
<td>uint32</td>
<td>Framing-errors rcvd</td>
</tr>
<tr>
<td>InputIgnoredPackets</td>
<td>uint32</td>
<td>Input ignored packets</td>
</tr>
<tr>
<td>InputAborts</td>
<td>uint32</td>
<td>Input aborts</td>
</tr>
<tr>
<td>OutputErrorsCount</td>
<td>uint32</td>
<td>Total output errors</td>
</tr>
<tr>
<td>OutputUnderruns</td>
<td>uint32</td>
<td>Output underruns</td>
</tr>
<tr>
<td>OutputBufferFailures</td>
<td>uint32</td>
<td>Output buffer failures</td>
</tr>
<tr>
<td>OutputBuffersSwappedOut</td>
<td>uint32</td>
<td>Output buffers swapped out</td>
</tr>
<tr>
<td>Appliance</td>
<td>uint32</td>
<td>Appliance</td>
</tr>
<tr>
<td>ResetCount</td>
<td>uint32</td>
<td>Number of board resets</td>
</tr>
<tr>
<td>CarrierTransitions</td>
<td>uint32</td>
<td>Carrier transitions</td>
</tr>
<tr>
<td>AvailabilityFlag</td>
<td>uint32</td>
<td>Availability bit mask</td>
</tr>
<tr>
<td>NumberOfSecondsSinceLastClearCounters</td>
<td>uint32</td>
<td>Seconds since last clear counters</td>
</tr>
<tr>
<td>LastClearTime</td>
<td>uint32</td>
<td>SysUpTime when counters were last cleared (in seconds)</td>
</tr>
</tbody>
</table>

This table describes the significant fields displayed in the example.

**Table 13: show event manager statistics-table Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the statistic. When the <strong>all</strong> keyword is specified, there are three types of statistics displayed:</td>
</tr>
<tr>
<td></td>
<td>• ifstats-generic</td>
</tr>
<tr>
<td></td>
<td>• ifstats-iftable</td>
</tr>
<tr>
<td></td>
<td>• ifstats-datarate</td>
</tr>
<tr>
<td></td>
<td>When a statistics type is specified, the statistics for the statistic type are displayed.</td>
</tr>
<tr>
<td>Type</td>
<td>Type of statistic.</td>
</tr>
<tr>
<td>Description</td>
<td>Description of the statistic.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>event manager policy, on page 68</td>
<td>Registers an EEM policy with the EEM.</td>
</tr>
</tbody>
</table>
IP Service Level Agreement Commands

This module describes the Cisco IOS XR software commands to configure IP Service Level Agreements (IP SLAs) on your router.

To use commands of this module, you must be in a user group associated with a task group that includes appropriate task IDs. If the user group assignment is preventing you from using any command, contact your AAA administrator for assistance.

For detailed information about IP SLA concepts, configuration tasks, and examples, see the Implementing IP Service Level Agreements module in the System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

- access-list, on page 94
- action (IP SLA), on page 96
- ageout, on page 98
- buckets (history), on page 99
- buckets (statistics hourly), on page 101
- buckets (statistics interval), on page 102
- control disable, on page 103
- datasync request, on page 105
- destination address (IP SLA), on page 107
- destination port, on page 108
- distribution count, on page 109
- distribution interval, on page 111
- exp, on page 113
- filter, on page 115
- force explicit-null, on page 117
- frequency (IP SLA), on page 119
- history, on page 121
- hw-timestamp disable, on page 123
- interval, on page 124
- ipsla, on page 125
- key-chain, on page 127
- life, on page 128
- lives, on page 129
- low-memory, on page 131
- lsp selector ipv4, on page 132
- lsr-path, on page 134
- maximum hops, on page 135
- maximum paths (IP SLA), on page 137
- monitor, on page 139
- mpls discovery vpn, on page 140
- mpls lsp-monitor, on page 141
- operation, on page 142
- output interface, on page 143
- output nexthop, on page 145
- packet count, on page 147
- packet interval, on page 148
- path discover, on page 149
- path discover echo, on page 150
- path discover path, on page 152
- path discover scan, on page 154
- path discover session, on page 156
- react, on page 158
- react lpd, on page 162
- reaction monitor, on page 164
- reaction operation, on page 166
- reaction trigger, on page 167
- responder, on page 168
- recurring, on page 169
- reply dscp, on page 170
- reply mode, on page 172
- responder twamp, on page 174
- samples, on page 175
- scan delete-factor, on page 177
- scan interval, on page 179
- schedule monitor, on page 181
- schedule operation, on page 182
- schedule period, on page 184
- server twamp, on page 186
- show ipsla application, on page 187
- show ipsla history, on page 189
- show ipsla mpls discovery vpn, on page 191
- show ipsla mpls lsp-monitor lpd, on page 193
- show ipsla mpls lsp-monitor scan-queue, on page 195
- show ipsla mpls lsp-monitor summary, on page 197
- show ipsla responder statistics, on page 200
- show ipsla statistics, on page 202
- show ipsla statistics aggregated, on page 205
- show ipsla statistics enhanced aggregated, on page 214
- show ipsla twamp connection, on page 217
- show ipsla twamp session, on page 218
- show ipsla twamp standards, on page 219
• source address, on page 220
• source port, on page 222
• start-time, on page 223
• statistics, on page 225
• tag (IP SLA), on page 227
• target ipv4, on page 229
• target pseudowire, on page 231
• target traffic-eng, on page 233
• threshold, on page 235
• threshold type average, on page 237
• threshold type consecutive, on page 239
• threshold type immediate, on page 241
• threshold type xofy, on page 243
• timeout (IP SLA), on page 245
• tos, on page 247
• ttl, on page 249
• type icmp echo, on page 251
• type icmp path-echo, on page 252
• type icmp path-jitter, on page 253
• type mpls lsp ping, on page 254
• type mpls lsp trace, on page 256
• type udp echo, on page 258
• type udp jitter, on page 259
• type udp ipv4 address, on page 260
• verify-data, on page 261
• vrf (IP SLA), on page 262
• vrf (IP SLA MPLS LSP monitor), on page 264
access-list

To specify an access-list name to filter provider edge (PE) addresses to restrict operations that are automatically created by MPLS LSP monitor (MPLSLM) instance, use the access-list command in the appropriate configuration mode. To return to the default value, use the no form of this command.

**Syntax**

```plaintext
access-list acl-name
no access-list
```

**Syntax Description**

- `acl-name` Filters an access-list name.

**Command Default**

No access list is configured by default.

**Command Modes**

- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

- **Release 3.7.2** This command was introduced.

**Usage Guidelines**

Access-list changes are processed before the scan interval expires to display a planned list of changes in the scan-queue.

- **Note**
  
  There is no verification check between the access list and the IPSLA configuration.

**Task ID**

- **Task ID**
  - read,
  - write

**Examples**

The following example shows how to use the access-list command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-ping)# access-list ipsla
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>scan interval, on page 179</td>
<td>Specifies the frequency at which the MPLS LSP monitor instance checks the scan queue for updates.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
**action (IP SLA)**

To specify what action or combination of actions the operation performs when you configure the `react` command or when threshold events occur, use the `action` command in the appropriate configuration mode. To clear action or combination of actions (no action can happen), use the `no` form of this command.

```
action {logging|trigger}
no action {logging|trigger}
```

**Syntax Description**

- **logging**: Sends a logging message when the specified violation type occurs for the monitored element. The IP SLA agent generates a syslog and informs SNMP. Then, it is up to the SNMP agent to generate a trap or not.

- **trigger**: Determines that the operation state of one or more target operations makes the transition from pending to active when the violation conditions are met. The target operations to be triggered are specified using the `ipsla reaction trigger` command. A target operation continues until its life expires, as specified by the lifetime value of the target operation. A triggered target operation must finish its life before it can be triggered again.

**Command Default**

None

**Command Modes**

- IP SLA reaction condition configuration
- IP SLA MPLS LSP monitor reaction configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

For the `action` command to occur for threshold events, the threshold type must be defined. Absence of threshold type configuration is considered if the threshold check is not activated.

When the `action` command is used from IP SLA MPLS LSP monitor reaction configuration mode, only the `logging` keyword is available.

If the `action` command is used in IP SLA operation mode, the action defined applies to the specific operation being configured. If the `action` command is used in IP SLA MPLS LSP monitor mode, the action defined applies to all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `action` command with the `logging` keyword:
The following example shows how to use the **action** command from the IP SLA MPLS LSP monitor reaction configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ip sla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react connection-loss
RP/0/RSP0/CPU0:router(config-ipsla-react-cond)# action logging
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>reaction monitor, on page 164</td>
<td>Configures MPLS LSP monitoring reactions.</td>
</tr>
<tr>
<td>reaction operation, on page 166</td>
<td>Configures certain actions that are based on events under the control of the IP SLA agent.</td>
</tr>
<tr>
<td>react, on page 158</td>
<td>Specifies an element to be monitored for a reaction.</td>
</tr>
<tr>
<td>threshold, on page 235</td>
<td>Sets the lower-limit and upper-limit values.</td>
</tr>
<tr>
<td>threshold type average, on page 237</td>
<td>Takes action on average values to violate a threshold.</td>
</tr>
<tr>
<td>threshold type consecutive, on page 239</td>
<td>Takes action after a number of consecutive violations.</td>
</tr>
<tr>
<td>threshold type immediate, on page 241</td>
<td>Takes action immediately upon a threshold violation.</td>
</tr>
<tr>
<td>threshold type xofy, on page 243</td>
<td>Takes action upon X violations in Y probe operations.</td>
</tr>
</tbody>
</table>
ageout

To specify the number of seconds to keep the operation in memory when it is not actively collecting information, use the `ageout` command in IP SLA schedule configuration mode. To use the default value so that the operation will never age out, use the `no` form of this command.

```
ageout seconds
no ageout
```

**Syntax Description**
- `seconds` Age-out interval in seconds. The value 0 seconds means that the collected data is not aged out.
  Range is 0 to 2073600.

**Command Default**
The default value is 0 seconds (never aged out).

**Command Modes**
IP SLA schedule configuration

**Command History**
- **Release 3.7.2** This command was introduced.

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Task ID**
- **Task ID**
  - `monitor` read,
  - `write`

**Examples**
The following example shows how to use the `ageout` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# schedule operation 1
RP/0/RSP0/CPU0:router(config-ipsla-sched)# ageout 3600
```

**Related Commands**
- **Command** | **Description**
  - `operation, on page 142` | Configures an IP SLA operation.
  - `schedule operation, on page 182` | Schedules an IP SLA operation.
bucks (history)

To set the number of history buckets that are kept during the lifetime of the IP SLA operation, use the **buckets** command in IP SLA operation history configuration mode. To use the default value, use the **no** form of this command.

```
buckets buckets
no buckets
```

**Syntax Description**

`buckets` Number of history buckets that are kept during the lifetime of an IP SLA operation. Range is 1 to 60.

**Command Default**

The default value is 15 buckets.

**Command Modes**

IP SLA operation history configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **buckets** command is supported only to configure the following operations:

- IP SLA ICMP path-echo
- IP SLA ICMP echo
- IP SLA UDP echo

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the **buckets** command in IP SLA UDP echo configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp echo
RP/0/RSP0/CPU0:router(config-ipsla-udp-echo)# history
RP/0/RSP0/CPU0:router(config-ipsla-op-hist)# buckets 30
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>history, on page 121</td>
<td>Configures the history parameters for the IP SLA operation.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
buckets (statistics hourly)

To set the number of hours for which statistics are kept, use the `buckets` command in the appropriate configuration mode. To use the default value, use the `no` form of this command.

```
buckets hours
no buckets
```

### Syntax Description

- **hours**: Number of hours for which statistics are maintained for the IP SLA operations. Range is 0 to 25 in IP SLA operation statistics configuration mode, and 0 to 2 in IP SLA MPLS LSP monitor statistics configuration mode.

### Command Default

The default value is 2.

### Command Modes

- IP SLA operation statistics configuration
- IP SLA MPLS LSP monitor statistics configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `buckets` command with the `hours` argument is valid only for the `statistics` command with the `hourly` keyword.

### Examples

The following example shows how to set the number of hours in which statistics are maintained for the IP SLA UDP jitter operation for the `buckets` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# statistics hourly
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter-stats)# buckets 10
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>statistics, page 225</td>
<td>Sets the statistics collection parameters for the operation.</td>
</tr>
</tbody>
</table>
buckets (statistics interval)

To specify the maximum number of buckets in which the enhanced history statistics are kept, use the `buckets` command in IP SLA operation statistics configuration mode. To remove the statistics collection of the specified interval, use the `no` form of this command.

```
buckets bucket-size
no buckets
```

**Syntax Description**
- `bucket-size` The bucket size is when the configured bucket limit is reached. Therefore, statistics gathering for the operation ends. Range is 1 to 100. Default is 100.

**Command Default**
- The default value is 100.

**Command Modes**
- IP SLA operation statistics configuration

**Command History**
- **Release** **Modification**
  - Release 3.7.2 This command was introduced.

**Usage Guidelines**
- The `buckets` command with the `bucket-size` argument is valid only for the `statistics` command with the `interval` keyword.

**Examples**
- The following example shows how to collect statistics for a given time interval for the IP SLA UDP jitter operation for the `buckets` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# statistics interval 60
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# buckets 50
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>statistics</code>, on page 225</td>
<td>Sets the statistics collection parameters for the operation.</td>
</tr>
</tbody>
</table>
control disable

To disable the control packets, use the control disable command in the appropriate configuration mode. To use the control packets again, use the no form of this command.

```
control disable
do control disable
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

Control packets are enabled by default.

**Command Modes**

- IP SLA UDP echo configuration
- IP SLA UDP jitter configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you configure the control disable command on the agent side, you need to configure a permanent port on the responder side or the operation returns a timeout error. If you configure the control disable command, a permanent port of the IP SLA Responder or some other functionality, such as the UDP echo server, is required on the remote device.

The control disable command is valid for operations that require a responder.

The IP SLA control protocol is disabled, which is used to send a control message to the IP SLA Responder prior to sending an operation packet. By default, IP SLA control messages are sent to the destination device to establish a connection with the IP SLA Responder.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the control disable command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# control disable
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
**datasize request**

To set the protocol data size in the request packet in the payload of an operation, use the `datasize request` command in the appropriate configuration mode. To reset the default data size, use the `no` form of this command.

`datasize request size`

`no datasize request`

**Syntax Description**

`size` Specifies the following ranges and default values that are protocol dependent:

- For a UDP jitter operation, range is 16 to 1500 B.
- For a UDP echo operation, range is 4 to 1500 B.
- For an ICMP echo operation, range is 0 to 16384 B.
- For an ICMP path-echo operation, range is 0 to 16384 B.
- For an ICMP path-jitter operation, range is 0 to 16384 B.
- For an MPLS LSP ping operation, range is 100 to 17986 B.

**Command Default**

For a UDP jitter operation, the default value is 32 B.
For a UDP echo operation, the default value is 16 B.
For an ICMP echo operation, the default value is 36 B.
For an ICMP path-echo operation, the default value is 36 B.
For an ICMP path-jitter operation, the default value is 36 B.
For an MPLS LSP ping operation, the default value is 100 B.

**Command Modes**

IP SLA UDP echo configuration
IP SLA UDP jitter configuration
IP SLA ICMP path-jitter configuration
IP SLA ICMP path-echo configuration
IP SLA ICMP echo configuration
IP SLA MPLS LSP ping configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.
The following example shows how to use the `datasize request` command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# datasize request 512
```
destination address (IP SLA)

To identify the address of the target device, use the destination address command in the appropriate configuration mode. To unset the destination address, use the no form of this command.

```
destination address ipv4-address
no destination address
```

**Syntax Description**

`ipv4-address`  IP address of the target device.

**Command Default**

None

**Command Modes**

IP SLA UDP echo configuration
IP SLA UDP jitter configuration
IP SLA ICMP path-jitter configuration
IP SLA ICMP path-echo configuration
IP SLA ICMP echo configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

You must specify the address of the target device. The configuration for the destination address command is mandatory for all operations.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to designate an IP address for the destination address command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# destination address 192.0.2.12
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
destination port

To identify the port of the target device, use the destination port command in the appropriate configuration mode. To unset the destination port, use the no form of this command.

```
destination port port
no destination port
```

**Syntax Description**

- **port** Port number of the target device. Range is 1 to 65355.

**Command Default**

None

**Command Modes**

- IP SLA UDP echo configuration
- IP SLA UDP jitter configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The destination port command is not supported when you configure an ICMP operation; it is supported only to configure UDP operations.

You must specify the port of the target device. The configuration for the destination port command is mandatory for both IP SLA UDP echo and IP SLA UDP jitter configurations.

**Examples**

The following example shows how to designate a port for the destination port command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# destination port 11111
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
distribution count

To set the number of statistics distributions that are kept for each hop during the lifetime of the IP SLA operation, use the **distribution count** command in IP SLA operation statistics configuration mode. To use the default value, use the **no** form of this command.

```
distribution count slot
no distribution count
```

**Syntax Description**
- `slot` Number of statistics distributions that are kept. Range is 1 to 20. Default is 1.

**Command Default**
The default value is 1.

**Command Modes**
- IP SLA operation statistics configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
In most situations, you do not need to change the number of statistics distributions kept or the time interval for each distribution. Only change these parameters when distributions are needed, for example, when performing statistical modeling of your network. To set the statistics distributions interval, use the **distribution interval** command in IP SLA operation statistics configuration mode. The total number of statistics distributions captured is the value set by the **distribution count** command times the value set by the **maximum hops** command times the value set by the **maximum path** command times the value set by the **buckets** command.

**Task ID**
- Task ID: Operations
- Operations ID: read, write

**Examples**
The following example shows how to set the number of statistics distribution for the **distribution count** command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# statistics hourly
RP/0/RSP0/CPU0:router(config-ipsla-op-stats)# distribution count 15
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buckets (statistics hourly), on page 101</td>
<td>Sets the number of hours in which statistics are kept.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>distribution interval, on page 111</td>
<td>Sets the time interval (in milliseconds) for each statistical distribution.</td>
</tr>
<tr>
<td>maximum hops, on page 135</td>
<td>Sets the number of hops in which statistics are maintained for each path for the IP SLA operation.</td>
</tr>
<tr>
<td>maximum paths (IP SLA), on page 137</td>
<td>Sets the number of paths in which statistics are maintained for each hour for an IP SLA operation.</td>
</tr>
<tr>
<td>statistics, on page 225</td>
<td>Sets the statistics collection parameters for the operation.</td>
</tr>
</tbody>
</table>
distribution interval

To set the time interval (in milliseconds) for each statistical distribution, use the `distribution interval` command in IP SLA operation statistics configuration mode. To use the default value, use the `no` form of this command.

```
distribution interval interval
no distribution interval
```

**Syntax Description**

- `interval`: Number of milliseconds used for each statistics distribution that is kept. Range is 1 to 100. Default is 20.

**Command Default**

The default value is 20.

**Command Modes**

IP SLA operation statistics configuration

**Command History**

```
Release Modification
3.7.2 This command was introduced.
```

**Usage Guidelines**

In most situations, you do not need to change the number of statistics distributions kept or the time interval for each distribution. Only change these parameters when distributions are needed, for example, when performing statistical modeling of your network. To set the statistics distributions count, use the `distribution count` command in IP SLA operation statistics configuration mode. The total number of statistics distributions captured is the value set by the `distribution count` command times the value set by the `maximum hops` command times the value set by the `maximum path` command times the value set by the `buckets` command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to set the time interval for the `distribution interval` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# statistics hourly
RP/0/RSP0/CPU0:router(config-ipsla-op-stats)# distribution interval 50
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distribution count, on page 109</td>
<td>Sets the number of statistics distributions that are kept for each hop during the lifetime of the IP SLA operation.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>maximum hops, on page 135</td>
<td>Sets the number of hops in which statistics are maintained for each path for the IP SLA operation.</td>
</tr>
<tr>
<td>maximum paths (IP SLA), on page 137</td>
<td>Sets the number of paths in which statistics are maintained for each hour for an IP SLA operation.</td>
</tr>
<tr>
<td>statistics, on page 225</td>
<td>Sets the statistics collection parameters for the operation.</td>
</tr>
</tbody>
</table>
exp

To specify the MPLS experimental field (EXP) value in the header of echo request packets, use the `exp` command in the appropriate configuration mode. To return to the default value, use the `no` form of this command.

```
exp exp-bits
no exp
```

**Syntax Description**

| exp-bits | Experimental field value in the header of an echo request packet. Valid values are from 0 to 7. Default is 0. |

**Command Default**
The experimental field value is set to 0.

**Command Modes**
- IP SLA MPLS ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `exp` command to set the MPLS experimental field in the headers of echo request packets in an MPLS LSP ping or MPLS LSP trace operation. The experimental (EXP) field allows for eight different quality-of-service (QoS) markings that determine the treatment (per-hop behavior) that a transit LSR node gives to a request packet. You can configure different MPLS EXP levels for different operations to create differentiated levels of response.

If the `exp` command is used in IP SLA operation mode, it acts on the headers of echo request packets for the specific operation being configured. If the `exp` command is used in IP SLA MPLS LSP monitor mode, it acts on the headers of echo request packets for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `exp` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
```
The following example shows how to use the `exp` command in MPLS LSP monitor mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lm-def)# type mpls lsp trace
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lm-lsp-trace)# exp 5
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
filter

To define the type of information that are kept in the history table for the IP SLA operation, use the filter command in IP SLA operation history configuration mode. To unset the history filter, use the no form of this command.

filter  {all|failures}
no filter

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Stores history data for all operations, if set.</td>
</tr>
<tr>
<td>failures</td>
<td>Stores data for operations that failed, if set.</td>
</tr>
</tbody>
</table>

Command Default

The default is not to collect the history unless the filter command is enabled.

Command Modes

IP SLA operation history configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The filter command is supported only to configure the following operations:

- IP SLA ICMP path-echo
- IP SLA ICMP echo
- IP SLA UDP echo

If you use the no form of the filter command, the history statistics are not collected.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>monitor  read,</td>
</tr>
<tr>
<td></td>
<td>write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to use the filter command in IP SLA UDP echo configuration mode:

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp echo
RP/0/RSP0/CPU0:router(config-ipsla-udp-echo)# history
RP/0/RSP0/CPU0:router(config-ipsla-op-hist)# filter all

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
force explicit-null

To add an explicit null label to the label stack of an LSP when an echo request is sent, use the `force explicit-null` command in the appropriate configuration mode. To return to the default value, use the `no` form of this command.

```
force explicit-null
no force explicit-null
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

An explicit null label is not added.

**Command Modes**

IP SLA MPLS LSP ping configuration

IP SLA MPLS LSP trace configuration

IP SLA MPLS LSP monitor ping configuration

IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `force explicit-null` command to force an unsolicited explicit null label to be added to the MPLS label stack of the LSP when an echo request packet is sent in an MPLS LSP ping or MPLS LSP trace operation.

If the `force explicit-null` command is used in IP SLA operation mode, it acts on the label stack of the LSP for the specific operation being configured. If the `force explicit-null` command is used in IP SLA MPLS LSP monitor mode, it acts on the label stack of all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

You cannot use the `force explicit-null` command if pseudowire is specified as the target to be used in an MPLS LSP ping operation.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `force explicit-null` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp trace
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-trace)# force explicit-null
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
frequency (IP SLA)

To set the frequency for probing, use the `frequency` command in the appropriate configuration mode. To use the default value, use the `no` form of this command.

```
frequency seconds
no frequency
```

**Syntax Description**

- `seconds` Rate at which the specific IP SLA operation is sent into the network. Range is 1 to 604800.

**Command Default**

If the `frequency` command is not used, the default value is 60 seconds.

In IP SLA MPLS LSP monitor schedule configuration mode, the default value is equal to the schedule period that is set using the `schedule period` command.

**Command Modes**

- IP SLA UDP echo configuration
- IP SLA UDP jitter configuration
- IP SLA ICMP path-jitter configuration
- IP SLA ICMP path-echo configuration
- IP SLA ICMP echo configuration
- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor schedule configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If this command is used in IP SLA MPLS LSP monitor schedule configuration mode, it represents the frequency for the schedule period. In other words, if the frequency is set to 1000 seconds and the schedule period is set to 600 seconds, every 1000 seconds the LSP operations are run. Each run takes 600 seconds. Use the `schedule period` command to specify the schedule period.

The frequency value must be greater than or equal to the schedule period.

This configuration is inherited automatically by all LSP operations that are created.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>
Examples

The following example shows how to use the `frequency` command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# frequency 300
```

The following example shows how to use the `frequency` command in IP SLA MPLS LSP monitor schedule configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# schedule monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-sched)# frequency 1200
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-sched)# schedule period 600
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>schedule period, on page 184</td>
<td>Configures the amount of time during which all LSP operations are scheduled to start or run.</td>
</tr>
</tbody>
</table>
**history**

To configure the history parameters for the IP SLA operation, use the `history` command in the appropriate configuration mode. To use the default value, use the `no` form of this command.

```
history [{buckets buckets|filter {all|failures}|lives lives}]

no history
```

**Syntax Description**

- **buckets**
  
  Sets the number of history buckets that are kept during the lifetime of the IP SLA operation.

- **buckets**
  
  Number of history buckets that are kept during the lifetime of an IP SLA operation. Range is 1 to 60.

- **filter**
  
  Defines the type of information that is kept in the history table for the IP SLA operation.

- **all**
  
  Stores history data for all operations, if set.

- **failures**
  
  Stores data for operations that failed, if set.

- **lives**
  
  Sets the number of lives that are maintained in the history table for an IP SLA operation.

- **lives**
  
  Number of lives that are maintained in the history table for an IP SLA operation. Range is 0 to 2.

**Command Default**

None

**Command Modes**

- IP SLA UDP echo configuration
- IP SLA UDP jitter configuration
- IP SLA ICMP path-jitter configuration
- IP SLA ICMP path-echo configuration
- IP SLA ICMP echo configuration
- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `history` command enters IP SLA operation history configuration mode in which you can configure more history configuration parameters.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

System Monitoring Command Reference for Cisco ASR 9000 Series Routers
The following example shows how to use the `history` command in IP SLA UDP echo configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp echo
RP/0/RSP0/CPU0:router(config-ipsla-udp-echo)# history
RP/0/RSP0/CPU0:router(config-ipsla-op-hist)#
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>buckets (history), on page 99</code></td>
<td>Sets the number of history buckets that are kept during the lifetime of the IP SLA operation.</td>
</tr>
<tr>
<td><code>filter, on page 115</code></td>
<td>Defines the type of information that are kept in the history table for the IP SLA operation.</td>
</tr>
<tr>
<td><code>operation, on page 142</code></td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td><code>schedule operation, on page 182</code></td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td><code>lives, on page 129</code></td>
<td>Sets the number of lives that are maintained in the history table for an IP SLA operation.</td>
</tr>
<tr>
<td><code>samples, on page 175</code></td>
<td>Sets the number of hop entries that are kept in the history table for an IP SLA ICMP path-echo operation.</td>
</tr>
</tbody>
</table>
hw-timestamp disable

To disable hardware time stamp configuration, use the `hw-timestamp disable` command in the IP SLA configuration mode.

### Syntax Description
This command has no keywords or arguments.

### Command Default
None

### Command Modes
IP SLA configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines
No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Example
The following example shows how to disable hardware time stamping:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# hw-timestamp disable
```
interval

To configure the refresh interval for MPLS label switched path (LSP) monitoring, use the `interval` command in IP SLA MPLS discovery VPN configuration mode. To use the default value, use the `no` form of this command.

```
interval refresh-interval
no interval
```

**Syntax Description**

- `refresh-interval` Specifies the time interval, in minutes, after which routing entries that are no longer valid are removed from the Layer 3 VPN discovery database. Range is 30 to 70560.

**Command Default**

The default refresh interval is 60 minutes.

**Command Modes**

- IP SLA MPLS discovery VPN configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

- If the total number of routes is large, there is a negative impact on the performance during the refresh of the discovery database. Therefore, the value of the `refresh-interval` argument should be large enough that router performance is not affected. If there are a very large number of routes, we recommend that you set the value of the `refresh-interval` argument to be several hours.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `interval` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls discovery vpn
RP/0/RSP0/CPU0:router(config-ipsla-mpls-discovery-vpn)# interval 120
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls discovery vpn, on page 140</td>
<td>Configures MPLS label switched path (LSP) provider edge (PE) router discovery.</td>
</tr>
</tbody>
</table>
ipsla

To enter IP SLA configuration mode and configure IP Service Level Agreements, use the `ipsla` command in Global Configuration mode. To return to the default setting, use the `no` form of this command.

```
ipsla
no ipsla
```

### Syntax Description

This command has no keywords or arguments.

### Command Default

None

### Command Modes

Global Configuration mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `ipsla` command enters IP SLA configuration mode where you can configure the various IP service level agreement options.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to enter IP SLA configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)#
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>key-chain, on page 127</td>
<td>Configures MD5 authentication for IP SLA control messages.</td>
</tr>
<tr>
<td>low-memory, on page 131</td>
<td>Configures a low-water memory mark.</td>
</tr>
<tr>
<td>mpls discovery vpn, on page 140</td>
<td>Configures MPLS label switched path (LSP) provider edge (PE) router discovery.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>reaction operation, on page 166</td>
<td>Configures certain actions that are based on events under the control of the IP SLA agent.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>reaction trigger, on page 167</td>
<td>Defines a second IP SLA operation to make the transition from a pending state to an active state when one of the trigger-type options is defined with the reaction operation command.</td>
</tr>
<tr>
<td>responder, on page 168</td>
<td>Enables the IP SLA responder for UDP echo or jitter operations.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
key-chain

Key chain commands are used to configure MD5 authentication for the IP SLA control message. To configure the keychain, use the `key-chain` command in IP SLA configuration mode. To unset the keychain name and not use MD5 authentication, use the `no` form of this command.

`key-chain` key-chain-name
`no key-chain`

**Syntax Description**

- **key-chain-name**: Name of the keychain.

**Command Default**

No default values are defined. No authentication is used.

**Command Modes**

IP SLA configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When you configure the `key-chain` command, you must also configure the `key chain` command in global configuration mode to provide MD5 authentication.

**Task ID**

- **read**, **write**

**Examples**

The following example shows how to use the `ipsla key-chain` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# key-chain ipsla-keys
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
To specify the length of time to execute, use the `life` command in IP SLA schedule configuration mode. To use the default value, use the `no` form of this command.

```
life {forever|seconds}
no life
```

**Syntax Description**

- `forever` Schedules the operation to run indefinitely.
- `seconds` Determines the number of seconds the operation actively collects information. Range is 1 to 2147483647. Default value is 3600 seconds (one hour).

**Command Default**

The default value is 3600 seconds.

**Command Modes**

IP SLA schedule configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `life` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# schedule operation 1
RP/0/RSP0/CPU0:router(config-ipsla-sched)# life forever
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
lives

To set the number of lives that are maintained in the history table for an IP SLA operation, use the `lives` command in IP SLA operation history configuration mode. To use the default value, use the `no` form of this command.

```
lives lives
no lives
```

Syntax Description

| lives | Number of lives that are maintained in the history table for an IP SLA operation. Range is 0 to 2. |

Command Default

The default value is 0 lives.

Command Modes

IP SLA operation history configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `lives` command is supported only to configure the following operations:

- IP SLA ICMP path-echo
- IP SLA ICMP echo
- IP SLA UDP echo

If you use the `no` form of the `lives` command, the history statistics are not collected.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to use the `lives` command in IP SLA UDP echo configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp echo
RP/0/RSP0/CPU0:router(config-ipsla-udp-echo)# history
RP/0/RSP0/CPU0:router(config-ipsla-udp-echo-op-hist)# lives 2
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>buckets (history), on page 99</code></td>
<td>Sets the number of history buckets that are kept during the lifetime of the IP SLA operation.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>filter, on page 115</td>
<td>Defines the type of information that are kept in the history table for the IP SLA operation.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>samples, on page 175</td>
<td>Sets the number of hop entries that are kept in the history table for an IP SLA ICMP path-echo operation.</td>
</tr>
</tbody>
</table>
low-memory

\texttt{low-memory \textit{value}}
\texttt{no \ low-memory}

\textbf{Syntax Description}
\textit{value}  Low-water memory mark value. Range is 0 to 4294967295.

\textbf{Command Default}
The default value is 20 MB (free memory).

\textbf{Command Modes}
IP SLA configuration

\textbf{Command History}

\begin{tabular}{ll}
\textbf{Release} & \textbf{Modification} \\
Release 3.7.2 & This command was introduced.
\end{tabular}

\textbf{Usage Guidelines}
IP SLA ensures that the system provides the specified memory before adding new operations or scheduling the pending operation.

When the 0 value is used, no memory limitation is enforced.

\textbf{Task ID}

\begin{tabular}{ll}
\textbf{Task ID} & \textbf{Operations} \\
monitor & read, write
\end{tabular}

\textbf{Examples}
The following example shows how to use the \texttt{low-memory} command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# low-memory 102400
```

\textbf{Related Commands}

\begin{tabular}{|l|l|}
\hline
\textbf{Command} & \textbf{Description} \\
\hline
operation, on page 142 & Configures an IP SLA operation. \\
\hline
schedule operation, on page 182 & Schedules an IP SLA operation. \\
\hline
show ipsla application, on page 187 & Displays the information for the IP SLA application. \\
\hline
\end{tabular}
## lsp selector ipv4

To specify the local host IPv4 address used to select an LSP, use the `lsp selector ipv4` command in the appropriate configuration mode. To clear the host address, use the `no` form of this command.

```
 lsp selector ipv4 ip-address
 no lsp selector ipv4
```

### Syntax Description

- `ip-address`: A local host IPv4 address used to select the LSP.

### Command Default

The local host IP address used to select the LSP is 127.0.0.1.

### Command Modes

- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use the `lsp selector ipv4` command to force an MPLS LSP ping or MPLS LSP trace operation to use a specific LSP when there are multiple equal cost paths between provider edge (PE) routers. This situation occurs when transit label switching routers (LSRs) use the destination address in IP packet headers for load balancing.

The IPv4 address configured with the `lsp selector ipv4` command is the destination address in the User Datagram Protocol (UDP) packet sent as the MPLS echo request. Valid IPv4 addresses are defined in the subnet 127.0.0.0/8 and used to:

- Force the packet to be consumed by the router where an LSP breakage occurs.
- Force processing of the packet at the terminal point of the LSP if the LSP is intact.
- Influence load balancing during forwarding when the transit routers use the destination address in the IP header for load balancing.

If the `lsp selector ipv4` command is used in IP SLA operation mode, it acts on the MPLS echo requests for the specific operation being configured. If the `lsp selector ipv4` command is used in IP SLA MPLS LSP monitor mode, it acts on the MPLS echo requests for all operations associated with the monitored provider edge (PE) routers.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to use the `lsp selector ipv4` command:
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp trace
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-trace)# lsp selector ipv4 127.10.10.1

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
lsr-path

To specify a loose source routing path in which to measure the ICMP, use the `lsr-path` command in the appropriate configuration mode. To use a path other than the specified one, use the `no` form of this command.

```
lsr-path ipaddress1 [ipaddress2 [... [ipaddress8]]]
no lsr-path
```

### Syntax Description

| `ip address` | IPv4 address of the intermediate node. Up to eight addresses can be entered. |

### Command Default

No path is configured.

### Command Modes

- IP SLA ICMP path-jitter configuration
- IP SLA ICMP path-echo configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `lsr-path` command applies only to ICMP path-echo and ICMP path-jitter operation types.

You can configure up to a maximum of eight hop addresses by using the `lsr-path` command, as shown in the following example:

```
lsr-path ipaddress1 [ipaddress2 [... [ipaddress8]]]
```

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to use the `lsr-path` command in IP SLA ICMP Path-echo configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type icmp path-echo
RP/0/RSP0/CPU0:router(config-ipsla-icmp-path-echo)# lsr-path 192.0.2.40
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
maximum hops

To set the number of hops in which statistics are maintained for each path for the IP SLA operation, use the `maximum hops` command in IP SLA operation statistics configuration mode. To use the default value, use the `no` form of this command.

```
maximum hops hops
no maximum hops
```

**Syntax Description**

- **hops**: Number of hops for which statistics are maintained for each path. Range is 1 to 30. Default value is 16 for path operations; for example, `pathecho`.

**Command Default**

The default value is 16 hops.

**Command Modes**

IP SLA operation statistics configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `maximum hops` command is supported only when you configure path operations and the IP SLA ICMP path-echo operation.

**Task ID**

- **Task**: Operations
- **ID**: read, write

**Examples**

The following example shows how to set the number of hops for the statistics for the `maximum` command:

```
RP/0/RSP0/CP00:router# configure
RP/0/RSP0/CP00:router(config)# ipsla
RP/0/RSP0/CP00:router(config-ipsla)# operation 1
RP/0/RSP0/CP00:router(config-ipsla-op)# type icmp path-echo
RP/0/RSP0/CP00:router(config-ipsla-icmp-path-echo)# statistics hourly
RP/0/RSP0/CP00:router(config-ipsla-op-stats)# maximum hops 20
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buckets (statistics hourly), on page 101</td>
<td>Sets the number of hours in which statistics are kept.</td>
</tr>
<tr>
<td>distribution count, on page 109</td>
<td>Sets the number of statistics distributions that are kept for each hop during the lifetime of the IP SLA operation.</td>
</tr>
<tr>
<td>distribution interval, on page 111</td>
<td>Sets the time interval (in milliseconds) for each statistical distribution.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>maximum paths (IP SLA), on page 137</td>
<td>Sets the number of paths in which statistics are maintained for each hour for an IP SLA operation.</td>
</tr>
<tr>
<td>statistics, on page 225</td>
<td>Sets the statistics collection parameters for the operation.</td>
</tr>
</tbody>
</table>
**maximum paths (IP SLA)**

To set the number of paths in which statistics are maintained for each hour for an IP SLA operation, use the `maximum paths` command in IP SLA operation statistics configuration mode. To use the default value, use the `no` form of this command.

`maximum paths paths`

`no maximum paths`

**Syntax Description**

- `paths` Number of paths for which statistics are maintained for each hour. Range is 1 to 128. Default value is 5 for path operations; for example, `pathecho`.

**Command Default**

The default value is 5 paths.

**Command Modes**

- IP SLA operation statistics configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `maximum paths` command is supported only when you configure path operations and the IP SLA ICMP path-echo operation.

**Examples**

The following example shows how to set the number of paths for the statistics for the `maximum paths` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type icmp path-echo
RP/0/RSP0/CPU0:router(config-ipsla-icmp-path-echo)# statistics hourly
RP/0/RSP0/CPU0:router(config-ipsla-icmp-path-echo-op-stats)# maximum paths 20
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buckets (statistics hourly), on page 101</td>
<td>Sets the number of hours in which statistics are kept.</td>
</tr>
<tr>
<td>distribution count, on page 109</td>
<td>Sets the number of statistics distributions that are kept for each hop during the lifetime of the IP SLA operation.</td>
</tr>
<tr>
<td>distribution interval, on page 111</td>
<td>Sets the time interval (in milliseconds) for each statistical distribution.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>maximum hops, on page 135</td>
<td>Sets the number of hops in which statistics are maintained for each path for the IP SLA operation.</td>
</tr>
<tr>
<td>statistics, on page 225</td>
<td>Sets the statistics collection parameters for the operation.</td>
</tr>
</tbody>
</table>
To configure an MPLS LSP monitor instance, use the `monitor` command in IP SLA LSP monitor configuration mode. To remove the monitor instance, use the `no` form of this command.

```
monitor monitor-id
no monitor [monitor-id]
```

**Syntax Description**
- **monitor-id**: Number of the IP SLA LSP monitor instance to be configured. Range is 1 to 2048.

**Command Default**
No monitor instance is configured.

**Command Modes**
IP SLA LSP monitor configuration

**Command History**
```
Release Modification
3.7.2 This command was introduced.
```

**Usage Guidelines**
The `monitor` command enters IP SLA MPLS LSP monitor configuration mode so that you can set the desired monitor type for all operations associated with the monitored provider edge (PE) routers.

To remove all monitor instances, use the `no monitor` command with no argument.

**Task ID**
```
Task ID Operations
 ID
monitor read,
 write
```

**Examples**
The following example shows how to use the `monitor` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mlpalm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mlpalm-def)#
```

**Related Commands**
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
mpls discovery vpn

To configure MPLS label switched path (LSP) provider edge (PE) router discovery, use the `mpls discovery vpn` command in IP SLA configuration mode. To use the default value, use the `no` form of this command.

```
mpls discovery vpn [interval interval]
no mpls discovery vpn
```

**Syntax Description**
- `interval`: Configures the refresh interval for MPLS label switched path (LSP) monitoring.

**Command Default**
None

**Command Modes**
- IP SLA configuration

**Command History**
- **Release 3.7.2**: This command was introduced.

**Usage Guidelines**
Use the `mpls discovery vpn` command to configure provider edge (PE) router discovery. PE Discovery discovers the LSPs used to reach every routing next hop. Routing entities are stored in a Layer 3 VPN discover database.

**Task ID**
- **Task ID**: read, write

**Examples**
The following example shows how to enter IP SLA MPLS discovery VPN mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls discovery vpn
RP/0/RSP0/CPU0:router(config-ipsla-mpls-discovery-vpn)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interval, on page 124</td>
<td>Configures the refresh interval for MPLS label switched path (LSP) monitoring.</td>
</tr>
</tbody>
</table>
mpls lsp-monitor

To configure MPLS label switched path (LSP) monitoring, use the **mpls lsp-monitor** command in IP SLA configuration mode. To use the default value, use the **no** form of this command.

```
mlps lsp-monitor
no mpls lsp-monitor
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

None

**Command Modes**

IP SLA configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the **mpls lsp-monitor** command to configure MPLS LSP PE monitoring on the router. This provides a means to configure all operations associated with the monitored provider edge (PE) routers. The configuration is inherited by all LSP operations that are created automatically by the PE discovery.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>read,</td>
<td>write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to enter IP SLA MPLS LSP monitor mode:

```
RP/0/RSP0/CP000:router# configure
RP/0/RSP0/CP000:router(config)# ipsla
RP/0/RSP0/CP000:router(config-ipsla)# mpls lsp-monitor
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpls discovery vpn, on page 140</td>
<td>Configures MPLS label switched path (LSP) provider edge (PE) router discovery.</td>
</tr>
</tbody>
</table>
operation

To configure an IP SLA operation, use the operation command in IP SLA configuration mode. To remove the operation, use the no form of this command.

```
operation operation-number
no operation operation-number
```

**Syntax Description**

- `operation-number` Operation number. Range is 1 to 2048.

**Command Default**

None

**Command Modes**

IP SLA configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Examples**

The following example shows how to use the IP SLA operation command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
**output interface**

To specify the echo request output interface to be used for LSP ping or LSP trace operations, use the `output interface` command in IP SLA MPLS LSP ping or IP SLA MPLS LSP trace configuration mode. To return the output interface to the default, use the `no` form of this command.

```
output interface type interface-path-id
no output interface
```

**Syntax Description**

- `type` Interface type. For more information, use the question mark (?) online help function.
- `interface-path-id` Physical interface or virtual interface.

**Note** Use the `show interfaces` command to see a list of all interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

**Command Default**

No default behavior or values.

**Command Modes**

- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `output interface` command to help monitor path-to-target over the path if there are some ECMP routes in a topology.

You cannot use the `output interface` command if pseudowire is specified as the target to be used in an MPLS LSP ping operation.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>read</td>
<td></td>
</tr>
<tr>
<td>write</td>
<td></td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `output interface` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
```
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls ls output interface pos 0/1/0/0

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>output nexthop, on page 145</td>
<td>Configures the next-hop address to be used for LSP ping or LSP trace operations.</td>
</tr>
<tr>
<td></td>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td></td>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
output nexthop

To specify the next-hop address to be used for a Label Switched Path (LSP) ping or LSP trace operations, use the **output nexthop** command in the appropriate configuration mode. To return the output next hop to the default, use the **no** form of this command.

```
output nexthop ip-address
no output nexthop
```

**Syntax Description**

- **ip-address** IP address of the next hop.

**Command Default**

No default behavior or values

**Command Modes**

- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

- **Release** Modification
  - Release 3.7.2 This command was introduced.

**Usage Guidelines**

When LSP Path Discovery (LPD) is enabled, the next-hop IP address is also used to filter out the paths that are not associated with the specified next-hop address.

**Note**

After you configure the output next hop, you must also configure the output interface.

**Task ID**

- **Task** Operations
- **ID**
  - read, write

**Examples**

The following example shows how to use the **output nexthop** command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp trace
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-trace)# output nexthop 10.1.1.1
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>output interface, on page 143</td>
<td>Configures the echo request output interface to be used for LSP ping or LSP trace operations.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
packet count

To specify the number of packets that are to be transmitted during a probe, such as a sequence of packets being transmitted for a jitter probe, use the **packet count** command in the appropriate configuration mode. To use the default value, use the **no** form of this command.

```
packet count count
no packet count
```

### Syntax Description

| **count** | Number of packets to be transmitted in each operation. Range for a UDP jitter operation is 1 to 60000. Range for an ICMP path-jitter operation is 1 to 100. |

### Command Default

The default packet count is 10.

### Command Modes

- IP SLA UDP jitter configuration
- IP SLA ICMP path-jitter configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to use the **packet count** command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# packet count 30
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>packet interval, on page 148</td>
<td>Specifies the interval between packets.</td>
</tr>
</tbody>
</table>
packet interval

To specify the interval between packets, use the `packet interval` command in the appropriate configuration mode. To use the default value, use the `no` form of this command.

```
packet interval interval
no packet interval
```

**Syntax Description**

*interval*  Interpacket interval in milliseconds. Range is 1 to 60000 (in milliseconds).

**Command Default**

The default packet interval is 20 ms.

**Command Modes**

- IP SLA UDP jitter configuration
- IP SLA ICMP path-jitter configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `packet interval` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# packet interval 30
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>packet count, on page 147</td>
<td>Specifies the number of packets that are to be transmitted during a probe.</td>
</tr>
</tbody>
</table>
**path discover**

To enable path discovery and enter MPLS LSP monitor (MPLSLM) LPD submode, use the `path discover` command in IP SLA MPLS LSP monitor ping configuration mode. To use the default value, use the `no` form of this command.

```
path discover
no path discover
```

Syntax Description

None

Command Default

No default behavior or values

Command Modes

IP SLA MPLS LSP monitor ping configuration

Command History

Release 3.7.2  This command was introduced.

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enter path discover submode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-ping)# path discover
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lpd)#
```
path discover echo

To configure MPLS LSP echo parameters, use the `path discover` command in the appropriate configuration mode. To use the default value, use the `no` form of this command.

```
path discover echo [interval time] [maximum lsp selector ipv4 host address] [multipath bitmap size size] [retry count] [timeout value]
no path discover echo [interval time] [maximum lsp selector ipv4 host address] [multipath bitmap size size] [retry count] [timeout value]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interval time</code></td>
<td>Configures the interval (in milliseconds) between MPLS LSP echo requests sent during path discovery. Range is 0 to 3600000. Default is 0.</td>
</tr>
<tr>
<td><code>maximum lsp selector ipv4 host-address</code></td>
<td>Configures a local host IP address (127.x.x.x) that is the maximum selector value to be used during path discovery. Default is 127.255.255.255.</td>
</tr>
<tr>
<td><code>multipath bitmap size size</code></td>
<td>Configures the maximum number of selectors sent in the downstream mapping of an MPLS LSP echo request during path discovery. Range is 1 to 256. Default is 32.</td>
</tr>
<tr>
<td><code>retry count</code></td>
<td>Configures the number of timeout retry attempts for MPLS LSP echo requests sent during path discovery. Range is 0 to 10. Default is 3.</td>
</tr>
<tr>
<td><code>timeout value</code></td>
<td>Configures the timeout value (in seconds) for MPLS LSP echo requests sent during path discovery. Range is 1 to 3600. Default is 5.</td>
</tr>
</tbody>
</table>

### Command Default

- `interval time`: 0
- `maximum lsp selector ipv4 host-address`: 127.255.255.255
- `multipath bitmap size size`: 32
- `retry count`: 3
- `timeout value`: 5

### Command Modes

- Path discover configuration
- MPLS LSP ping configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

A retry occurs when either an echo reply was not received on time for an outstanding echo request, or when no selectors are found for a given path by a transit router.

When a selector value is configured in MPLS LSLM configuration mode, the maximum selector specified must be larger than that value. In such a scenario, the range of selectors used for path discovery is set by the two values.

When the `interval time` is zero, a new echo request is sent after the previous echo retry was received.
The following example shows how to configure the path discover echo interval:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-ping)# path discover
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-lpd)# echo interval 777
```
path discover path

To configure MPLS LSP path parameters, use the `path discover path` command in MPLS LSP monitor (MPLSLM) LPD configuration submode. To use the default value, use the `no` form of this command.

```
path discover path {retry range|secondary frequency {both|connection-loss|timeout} value}
no path-discover path
```

**Syntax Description**

**retry range** Configures the number of attempts to be performed before declaring a path as down. Default is 1 (LSP group will not retry to perform the echo request if the previous attempt fails). Range is 1 to 16.

**secondary frequency** Configures a secondary frequency to use after a failure condition (that is, a connection-loss or timeout) occurs.

**both** Enable secondary frequency for a timeout and connection loss.

**connection-loss** Enable secondary frequency for only a connection loss.

**timeout** Enable secondary frequency for only a timeout.

**value** Frequency value range is 1 to 604800.

**Command Default**

None

**Command Modes**

MPLSLM LPD configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

In the event of a path failure, the secondary frequency value is used instead of the normal frequency value. The normal frequency value is determined by a frequency value or schedule period value, and the LSP operations are scheduled to start periodically at this interval. By default, the secondary frequency value is disabled. When failure condition disappears, probing resumes at the regular frequency.

```
Note
The secondary command works in tandem with the retry keyword. Both must be configured.
```

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to configure MPLS LSP path parameters:
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-ping)# path discover
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-lpd)# path retry 12
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-lpd)# path secondary frequency both 10

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path discover echo, on page 150</td>
<td>Configures MPLS LSP echo parameters.</td>
</tr>
<tr>
<td>path discover scan, on page 154</td>
<td>Configures MPLS LSP scan parameters.</td>
</tr>
<tr>
<td>path discover session, on page 156</td>
<td>Configures MPLS LSP session parameters.</td>
</tr>
</tbody>
</table>
path discover scan

To configure MPLS LSP scan parameters, use the `path discover scan` command in MPLS LSP monitor (MPLSLM) LPD configuration submode. To use the default value, use the `no` form of this command.

```
path discover scan period value
no path discover scan period value
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>period</code></td>
<td>Configures the time (in minutes) between consecutive cycles of path discovery requests per MPLSLM instance. Range is 0 to 7200. Default is 5.</td>
</tr>
<tr>
<td><code>value</code></td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**

`period value : 5`

**Command Modes**

MPLSLM LPD configuration submode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Release 3.7.2</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

MPLSLM instances periodically trigger path discovery requests for LSP groups. At certain intervals, an MPLSLM instance begins triggering path discovery requests for each group in ascending order (determined by group ID). By default, the path discovery requests are triggered sequentially, although some concurrency may occur if the session limit value is greater than 1. The cycle concludes when the last LSP group finishes path discovery.

If the duration of the discovery cycle is larger than the scan period, a new cycle starts as soon as the previous one completes.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to configure the path discovery scan period value:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-ping)# path discover
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-lpd)# scan period 2
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path discover echo, on page 150</td>
<td>Configures MPLS LSP echo parameters.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>path discover path, on page 152</td>
<td>Configures MPLS LSP path parameters.</td>
</tr>
<tr>
<td>path discover session, on page 156</td>
<td>Configures MPLS LSP session parameters.</td>
</tr>
</tbody>
</table>
path discover session

To configure MPLS LSP session parameters, use the `path discover session` command in MPLS LSP monitor (MPLSLM) LPD configuration submode. To use the default value, use the `no` form of this command.

```
path discover session {limit value|timeout value}
no path discover session {limit value|timeout value}
```

**Syntax Description**

- `limit value` Configures the number of concurrent active path discovery requests the MPLSLM instance submits to the LSPV server. Range is 1 to 15. Default is 1.
- `timeout value` Configures the time (in seconds) the MPLSLM instance will wait for the result of a path discovery request submitted to the LSPV server. Range is 1 to 900. Default is 120.

**Command Default**

```
limit value : 1
timeout value : 120
```

**Command Modes**

MPLSLM LPD configuration submode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

An MPLSLM instance considers the path discovery as a failure when it receives no response within the configured timeout configuration value.

**Task ID**

```
Task ID Operations ID
monitor read, write
```

**Examples**

The following example shows how to configure the path discovery session timeout value:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lm-def-mpls-lsp-def)# path discover
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lm-def-mpls-lsp-def-lpdp)# session timeout 22
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>path discover echo, on page 150</td>
<td>Configures MPLS LSP echo parameters.</td>
</tr>
<tr>
<td>path discover path, on page 152</td>
<td>Configures MPLS LSP path parameters.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>path discover scan, on page 154</td>
<td>Configures MPLS LSP scan parameters.</td>
</tr>
</tbody>
</table>
react

To specify an element to be monitored for a reaction, use the react command in the appropriate configuration mode. To remove the specified reaction type, use the no form of this command.

```plaintext
react {connection-loss|jitter-average [{dest-to-source|source-to-dest}]}|packet-loss
{dest-to-source|source-to-dest}|rtt|timeout|verify-error
no react {connection-loss|jitter-average [{dest-to-source|source-to-dest}]}|packet-loss
{dest-to-source|source-to-dest}|rtt|timeout|verify-error
```

### Syntax Description

- **connection-loss**
  - Specifies that a reaction occurs if there is a connection-loss for the monitored operation.

- **jitter-average**
  - Specifies that a reaction occurs if the average round-trip jitter value violates the upper threshold or lower threshold. The following options are listed for the jitter-average keyword:
  - • dest-to-source—(Optional) Specifies the jitter average destination to source (DS).
  - • source-to-dest—(Optional) Specifies the jitter average source to destination (SD).

- **packet-loss**
  - Specifies the reaction on packet loss value violation. The following options are listed for the packet-loss keyword:
  - • dest-to-source—(Optional) Specifies the packet loss destination to source (DS) violation.
  - • source-to-dest—(Optional) Specifies the packet loss source to destination (SD) violation.

- **rtt**
  - Specifies that a reaction occurs if the round-trip value violates the upper threshold or lower threshold.

- **timeout**
  - Specifies that a reaction occurs if there is a timeout for the monitored operation.

- **verify-error**
  - Specifies that a reaction occurs if there is an error verification violation.

### Command Default

If there is no default value, no reaction is configured.

### Command Modes

- IP SLA reaction configuration
- IP SLA MPLS LSP monitor reaction configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

For the connection-loss keyword, jitter-average keyword, and rtt keyword, the reaction does not occur when the value violates the upper or the lower threshold. The reaction condition is set when the upper threshold is passed, and it is cleared when values go below the lower threshold.
For the `connection-loss` keyword and `verify-error` keyword, thresholds do not apply to the monitored element.

For the `jitter-average` keyword, `packet-loss` keyword, and `rtt` keyword, if the upper threshold for `react` threshold type average is configured as 5000 ms and the last three results of the operation are 6000, 6000, and 5000 ms, the average is $6000 + 6000 + 5000 = 17000/3 = 5667$—therefore violating the 5000-ms upper threshold. The threshold type average must be configured when setting the type. These keywords are not available if connection-loss, timeout, or verify-error is specified as the monitored element, because upper and lower thresholds do not apply to these options.

In IP SLA MPLS LSP monitor reaction configuration mode, only the `connection-loss` and `timeout` keywords are available. If the `react` command is used in IP SLA MPLS LSP monitor reaction configuration mode, it configures all operations associated with the monitored provider edge (PE) routers. The configuration is inherited by all LSP operations that are created automatically by the PE discovery.

This table lists the Supported Reaction Configuration, by IP SLA Operation.

<table>
<thead>
<tr>
<th>Operation</th>
<th>ICMP Echo</th>
<th>Path Echo</th>
<th>UDP Jitter</th>
<th>UDP Echo</th>
<th>ICMP Path Jitter</th>
<th>MPLS LSP Ping</th>
<th>MPLS LSP Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>RTT</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>RTT Avg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Timeout</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>connectionLoss</td>
<td>--</td>
<td>--</td>
<td>Y</td>
<td>Y</td>
<td>--</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>verifyError</td>
<td>--</td>
<td>--</td>
<td>Y</td>
<td>Y</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>jitterSDAvg</td>
<td>--</td>
<td>--</td>
<td>Y</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>jitterDSAvg</td>
<td>--</td>
<td>--</td>
<td>Y</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>jitterAvg</td>
<td>--</td>
<td>--</td>
<td>Y</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PacketLossDS</td>
<td>--</td>
<td>--</td>
<td>Y</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PacketLossSD</td>
<td>--</td>
<td>--</td>
<td>Y</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PacketLoss</td>
<td>--</td>
<td>--</td>
<td>Y</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `react` command with the `connection-loss` keyword:

```
RP/0/RSP0/CPU0:router# configure
```
The following example shows how to use the `react` command with the `jitter-average` keyword:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react jitter-average
```

The following example shows how to use the `react` command with the `packet-loss` keyword:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react packet-loss dest-to-source
```

The following example shows how to use the `react` command with the `rtt` keyword:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react rtt
```

The following example shows how to use the `react` command with the `timeout` keyword:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react timeout
```

The following example shows how to use the `react` command with the `verify-error` keyword:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react verify-error
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>action (IP SLA), on page 96</code></td>
<td>Specifies what action or combination of actions the operation performs when you configure the <code>react</code> command or when threshold events occur.</td>
</tr>
<tr>
<td><code>operation, on page 142</code></td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>threshold, on page 235</td>
<td>Sets the lower-limit and upper-limit values.</td>
</tr>
<tr>
<td>threshold type average, on page 237</td>
<td>Takes action on average values to violate a threshold.</td>
</tr>
<tr>
<td>threshold type consecutive, on page 239</td>
<td>Takes action after a number of consecutive violations.</td>
</tr>
<tr>
<td>threshold type immediate, on page 241</td>
<td>Takes action immediately upon a threshold violation.</td>
</tr>
<tr>
<td>threshold type xofy, on page 243</td>
<td>Takes action upon X violations in Y probe operations.</td>
</tr>
</tbody>
</table>
**react lpd**

To specify that a reaction should occur if there is an LSP Path Discovery (LPD) violation, use the `react lpd` command in the appropriate configuration mode. To use the default value, use the `no` form of this command.

```
react lpd {lpd-group|tree-trace} action logging
no react lpd {lpd-group|tree-trace}
```

**Syntax Description**

- **lpd-group** Specifies that a reaction should occur if there is a status violation for the monitored LPD group.
- **tree-trace** Specifies that a reaction should occur if there is a path discovery violation for the monitored LPD group.
- **action** Configures the action to be taken on threshold violation.
- **logging** Specifies the generation of a syslog alarm on threshold violation.

**Command Default**

None

**Command Modes**

IP SLA MPLS LSP monitor configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A status violation for a monitored LPD group happens when the Label Switched Path (LSP) group status changes (with the exception of the status change from the initial state).

A path discovery violation for the monitored LPD group happens when path discovery to the target PE fails, or successful path discovery clears such a failure condition.

**Task ID**

- **Task ID**
  - monitor read, write

**Examples**

The following example shows how to specify that a reaction should occur if there is a status violation for the monitored LPD group:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# reaction monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-react)# react lpd lpd-group action logging
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>operation, on page 142</code></td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td><code>schedule operation, on page 182</code></td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
reaction monitor

To configure MPLS label switched path (LSP) monitoring reactions, use the `reaction monitor` command in IP SLA MPLS LSP monitor configuration mode. To remove the reaction so that no reaction occurs, use the `no` form of this command.

```
reaction monitor monitor-id
no reaction monitor [monitor-id]
```

**Syntax Description**

- `monitor-id`: Number of the IP SLA MPLS LSP monitor instance for the reactions to be configured. Range is 1 to 2048.

**Command Default**

No reaction is configured.

**Command Modes**

IP SLA MPLS LSP monitor configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `reaction monitor` command enters IP SLA LSP monitor reaction configuration mode so that you can set the desired threshold and action in the event of a connection loss or timeout.

To remove all reactions, use the `no reaction monitor` command with no `monitor-id` argument.

The `reaction monitor` command configures reactions for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

**Examples**

The following example shows how to use the `reaction operation` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplsml)# reaction monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplsml-react)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>action (IP SLA), on page 96</code></td>
<td>Specifies what action or combination of actions the operation performs when you configure the <code>react</code> command or when threshold events occur.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>------------------------------------------------------------------</td>
</tr>
<tr>
<td>monitor, on page 139</td>
<td>Configures an IP SLA MPLS LSP monitor instance.</td>
</tr>
<tr>
<td>react, on page 158</td>
<td>Specifies an element to be monitored for a reaction.</td>
</tr>
<tr>
<td>schedule monitor, on page 181</td>
<td>Schedules an IP SLA MPLS LSP monitor instance.</td>
</tr>
<tr>
<td>threshold type consecutive, on page 239</td>
<td>Specifies to take action after a number of consecutive violations.</td>
</tr>
<tr>
<td>threshold type immediate, on page 241</td>
<td>Specifies to take action immediately upon a threshold violation.</td>
</tr>
</tbody>
</table>
reaction operation

To configure certain actions that are based on events under the control of the IP SLA agent, use the `reaction operation` command in IP SLA configuration mode. To remove the reaction so that no reaction occurs, use the `no` form of this command.

```
reaction operation operation-id
no reaction operation operation-id
```

**Syntax Description**

- `operation-id` Number of the IP SLA operation for the reactions to be configured. Range is 1 to 2048.

**Command Default**

No reaction is configured.

**Command Modes**

IP SLA configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `reaction operation` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 1
RP/0/RSP0/CPU0:router(config-ipsla-react)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
reaction trigger

To define a second IP SLA operation to make the transition from a pending state to an active state when one of the trigger-type options is defined with the reaction operation command, use the reaction trigger command in IP SLA configuration mode. To remove the reaction trigger when the triggering-operation argument does not trigger any other operation, use the no form of this command.

**reaction trigger** triggering-operation triggered-operation

**no reaction trigger** triggering-operation triggered-operation

**Syntax Description**

- **triggering-operation**: Operation that contains a configured action-type trigger and can generate reaction events. Range is 1 to 2048.
- **triggered-operation**: Operation that is started when the triggering-operation argument generates a trigger reaction event. Range is 1 to 2048.

**Command Default**

No triggered operation is configured.

**Command Modes**

IP SLA configuration

**Command History**

- **Release**: 3.7.2
- **Modification**: This command was introduced.

**Usage Guidelines**

Both the triggering-operation and triggered-operation arguments must be configured. The triggered operation must be in the pending state.

**Examples**

The following example shows how to use the **ipsla reaction trigger** command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction trigger 1 2
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>operation</strong>, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td><strong>schedule operation</strong>, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
To enable the IP SLA responder for UDP echo or jitter operations, use the `responder` command in IP SLA configuration mode. To disable the responder, use the `no` form of this command.

```
responder
no responder
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

The IP SLA `responder` command is disabled.

**Command Modes**

IP SLA configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

An IP address and port are configured and identified as a permanent port (for example, a port to which the responder is permanently listening). If no IP address and port are configured, the responder handles only dynamic ports (for example, ports that are listened to when requested by a remote operation).

**Task ID Operations**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to enable the IP SLA responder:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# responder
RP/0/RSP0/CPU0:router(config-ipsla-resp)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>type udp ipv4 address, on page 260</td>
<td>Configures a permanent port in the IP SLA Responder for UDP echo or jitter operations.</td>
</tr>
</tbody>
</table>
To indicate that the operation starts automatically at the specified time and for the specified duration every day, use the `recurring` command in IP SLA schedule configuration mode. To not start the operation everyday, use the `no` form of this command.

**recurring**

**no recurring**

### Syntax Description
This command has no keywords or arguments.

### Command Default
Recurring is disabled.

### Command Modes
IP SLA schedule configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines
No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples
The following example shows how to use the `recurring` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# schedule operation 1
RP/0/RSP0/CPU0:router(config-ipsla-sched)# recurring
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
reply dscp

To specify the differentiated services codepoint (DSCP) value used in echo reply packets, use the `reply dscp` command in the appropriate configuration mode. To return to the default value, use the `no` form of this command.

```
reply dscp dscp-bits
no reply dscp
```

**Syntax Description**

- `dscp-bits` Differentiated services codepoint (DSCP) value for an echo reply packet. Valid values are from 0 to 63.
  - Reserved keywords such as EF (expedited forwarding) and AF11 (assured forwarding class AF11) can be specified instead of numeric values.

**Command Default**

No default behavior or values

**Command Modes**

- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `reply dscp` command to set the DSCP value used in the headers of IPv4 UDP packets sent as echo replies in an MPLS LSP ping or MPLS LSP trace operation.

The DSCP value consists of the six most significant bits of the 1-byte IP type of service (ToS) field. These bits determine the quality-of-service (QoS) treatment (per-hop behavior) that an transit LSR node gives to an echo reply packet. For information about how packets are classified and processed depending on the value you assign to the 6-bit DSCP field, refer to “The Differentiated Services Model (DiffServ)” at the following URL:


If the `reply dscp` command is used in IP SLA operation mode, it acts on the headers of echo replies for the specific operation being configured. If the `reply dscp` command is used in IP SLA MPLS LSP monitor mode, it acts on the headers of echo replies for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.
The following example shows how to use the `reply dscp` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-ping)# reply dscp 5
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
reply mode

To specify how to reply to echo requests, use the `reply mode` command in the appropriate configuration mode. To return to the default value, use the `no` form of this command.

```
reply mode {control-channel|router-alert}
no reply mode
```

**Syntax Description**
- `control-channel` Sets echo requests to reply by way of a control channel.
  - **Note** This option is available only in IP SLA MPLS LSP ping configuration mode.
- `router-alert` Sets echo requests to reply as an IPv4 UDP packet with IP router alert.

**Command Default**
The default reply mode for an echo request packet is an IPv4 UDP packet without IP router alert set.

**Command Modes**
- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `reply mode` command with the `control-channel` keyword to send echo reply packets by way of a control channel in an MPLS LSP ping operation. If the target is not set to pseudowire, the configuration of the `control-channel` keyword is rejected. Refer to the `target pseudowire` command for information about setting the target.

Use the `reply mode` command with the `router-alert` keyword to set the reply mode of echo reply packets in an MPLS LSP ping or MPLS LSP trace operation. After you enter this command, echo reply packets are set to reply as an IPv4 UDP packet with the IP router alert option in the UDP packet header.

If the `reply mode` command is used in IP SLA operation mode, it sets the reply mode of echo reply packets for the specific operation being configured. If the `reply mode` command is used in IP SLA MPLS LSP monitor mode, it sets the reply mode of echo reply packets for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

The router-alert reply mode forces an echo reply packet to be specially handled by the transit LSR router at each intermediate hop as it moves back to the destination. Because this reply mode is more expensive, it is recommended only if the headend router does not receive echo replies using the default reply mode.
The following example shows how to use the `reply mode` command with the `router-alert` keyword:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp trace
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-trace)# reply mode router-alert
```

The following example shows how to use the `reply mode` command with the `control-channel` keyword:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-ping)# target pseudowire 192.168.1.4 4211
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-ping)# reply mode control-channel
```
**responder twamp**

To configure the TWAMP responder, use the `responder twamp` command in the appropriate mode. To remove the set configuration, use the `no` form of the command.

```
responder twamp [timeout value]
no responder twamp [timeout value]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>timeout value</code></td>
<td>Inactivity timeout period (in seconds). Range is 1 to 604800.</td>
</tr>
</tbody>
</table>

**Command Default**

Default timeout is 900 seconds.

**Command Modes**

IPSLA configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to run the `responder twamp` command:

```
RP/0/RSP0/CPU0:router (config-ipsla) # responder twamp timeout 100
```
samples

To set the number of hop entries that are kept in the history table for an IP SLA ICMP path-echo operation, use the `samples` command in IP SLA operation ICMP path-echo history configuration mode. To use the default value, use the `no` form of this command.

```plaintext
samples sample-count
no samples
```

### Syntax Description

**sample-count**  
Number of history samples that are kept in the history table for an IP SLA ICMP path-echo operation. Range is 1 to 30.

### Command Default

The default value is 16.

### Command Modes

IP SLA operation ICMP path-echo history configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 3.7.2   | This command was introduced.

### Usage Guidelines

The `samples` command is supported only when you configure an IP SLA ICMP path-echo operation.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to use the `samples` command:

```plaintext
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type icmp path-echo
RP/0/RSP0/CPU0:router(config-ipsla-icmp-path-echo)# history
RP/0/RSP0/CPU0:router(config-ipsla-icmp-path-echo)# samples 30
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buckets (history), on page 99</td>
<td>Sets the number of history buckets that are kept during the lifetime of the IP SLA operation.</td>
</tr>
<tr>
<td>filter, on page 115</td>
<td>Defines the type of information that are kept in the history table for the IP SLA operation.</td>
</tr>
<tr>
<td>history, on page 121</td>
<td>Configures the history parameters for the IP SLA operation.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
scan delete-factor

To specify the frequency with which the MPLS LSP monitor (MPLSLM) instance searches for provider edge (PE) routers to delete, use the scan delete-factor command in the appropriate configuration mode. To return to the default value, use the no form of this command.

```
scan delete-factor factor-value
no scan delete-factor
```

**Syntax Description**

| factor-value | Specifies a factor that is multiplied by the scan interval to determine the frequency at which the MPLS LSP monitor instance deletes the provider edge (PE) routers that are no longer valid. Range is 0 to 2147483647. |

**Command Default**

factor-value: 1

**Command Modes**

- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The scan delete-factor command specifies a factor value for automatic PE deletion. The specified factor-value is multiplied by the scan interval to acquire the frequency at which the MPLS LSP monitoring instance deletes not-found PEs. A scan delete factor of zero (0) means that provider edge (PE) routers that are no longer valid are never removed.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the scan delete-factor command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mpls1m)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mpls1m-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mpls1m-lsp-ping)# scan delete-factor 214
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor, on page 139</td>
<td>Configures an IP SLA MPLS LSP monitor instance.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>scan interval, on page 179</td>
<td>Specifies the frequency at which the MPLSLM instance checks the scan queue for updates.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
scan interval

To specify the frequency at which the MPLS LSP monitor (MPLS LM) instance checks the scan queue for updates, use the `scan interval` command in the appropriate configuration mode. To return to the default value, use the `no` form of this command.

```
scan interval scan-interval
no scan interval
```

**Syntax Description**

- `scan-interval` Time interval between provider edge (PE) router updates. Range is 1 to 70560.

**Command Default**

- `interval`: 240 minutes

**Command Modes**

- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

- **Release**: 3.7.2 This command was introduced.

**Usage Guidelines**

Use the `scan interval` command to specify a frequency value in minutes at which the MPLS LSP monitoring instance checks the scan queue for PE updates. Updates from PE discovery are not processed immediately, but rather stored in a scan queue for batched processing at periodic intervals, specified by this value.

**Examples**

The following example shows how to use the `scan` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-ping)# scan interval 120
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>scan delete-factor, on page 177</td>
<td>Specifies the frequency with which the MPLS LM instance searches for PE routers to delete.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>--------------------------------------------------------------</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
schedule monitor

To schedule MPLS LSP monitoring instances, use the schedule monitor command in IP SLA LSP monitor configuration mode. To unschedule the monitoring instances, use the no form of this command.

```
schedule monitor monitor-id
no schedule monitor [monitor-id]
```

**Syntax Description**
- monitor-id: Number of the monitoring instance to schedule. Range is 1 to 2048.

**Command Default**
No schedule is configured.

**Command Modes**
IP SLA MPLS LSP monitor configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
The schedule monitor command enters IP SLA MPLS LSP monitor schedule configuration mode so that you can set the desired schedule parameters for the MPLS LSP monitor instance. This schedules the running of all operations created for the specified monitor instance.

To remove all configured schedulers, use the no schedule monitor command with no monitor-id argument.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**
The following example shows how to access and use the schedule monitor command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplsm)# schedule monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplsm-sched)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency (IP SLA), on page 119</td>
<td>Configures the frequency interval during which LSP groups and operations are scheduled to start.</td>
</tr>
<tr>
<td>schedule period, on page 184</td>
<td>Configures the amount of time during which all LSP operations are scheduled to start or run.</td>
</tr>
<tr>
<td>start-time , on page 223</td>
<td>Determines the time when an operation starts.</td>
</tr>
</tbody>
</table>
schedule operation

To enter schedule configuration mode, use the `schedule operation` command in IP SLA configuration mode. To remove the scheduler, use the `no` form of this command.

```
schedule operation operation-number
no schedule operation operation-number
```

### Syntax Description

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>operation-number</td>
<td>Configuration number or schedule number that is used to schedule an IP SLA operation. Range is 1 to 2048.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command Modes

IP SLA configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The `schedule operation` command enters the IP SLA schedule configuration mode. You can configure more schedule configuration parameters to schedule the operation. When an operation is scheduled, it continues collecting information until the configured life expires.

### Examples

The following example shows how to use the `ipsla schedule operation` command:

```
RP/0/RSP0/CP00:router# configure
RP/0/RSP0/CP00:router(config)# ipsla
RP/0/RSP0/CP00:router(config-ipsla)# schedule operation 1
RP/0/RSP0/CP00:router(config-ipsla-sched)#
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ageout, on page 98</td>
<td>Specifies the number of seconds to keep the operation in memory when it is not actively collecting information.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>life, on page 128</td>
<td>Specifies the length of time to execute.</td>
</tr>
<tr>
<td>recurring, on page 169</td>
<td>Indicates that the operation starts automatically at the specified time and for the specified duration every day.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td><code>start-time</code>, on page 223</td>
<td>Determines the time when the operation starts.</td>
</tr>
</tbody>
</table>
schedule period

To configure the amount of time during which all LSP operations are scheduled to start or run, use the **schedule period** command in IP SLA MPLS LSP monitor schedule configuration mode. To remove the scheduler, use the **no** form of this command.

```
schedule period seconds
no schedule period
```

**Syntax Description**
- **seconds** Amount of time in seconds for which label switched path (LSP) operations are scheduled to run. Range is 1 to 604800.

**Command Default**
None

**Command Modes**
IP SLA MPLS LSP monitor schedule configuration

**Command History**
- **Release** 3.7.2  This command was introduced.

**Usage Guidelines**
Use the **schedule period** command to specify the amount of time in seconds during which all LSP operations are scheduled to start running. All LSP operations are scheduled equally spaced throughout the schedule period.

For example, if the schedule period is 600 seconds and there are 60 operations to be scheduled, they are scheduled at 10-second intervals.

Use the **frequency** command to specify how often the entire set of operations is performed. The frequency value must be greater than or equal to the schedule period.

You must configure the schedule period before you can start MPLS LSP monitoring. Start MPLS LSP monitoring using the **start-time** command.

**Task ID**
- **Task ID**
  - **monitor** read, write

**Examples**
The following example shows how to use the **schedule period** command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplsln)# schedule monitor 20
RP/0/RSP0/CPU0:router(config-ipsla-mplsln-sched)# schedule period 6000
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>frequency (IP SLA), on page 119</td>
<td>Configures the frequency interval during which LSP groups and operations are scheduled to start.</td>
</tr>
<tr>
<td>start-time, on page 223</td>
<td>Determines the time when the operation starts.</td>
</tr>
</tbody>
</table>
server twamp

To configure the TWAMP server, use the `server twamp` command in the appropriate mode. To remove the set configuration, use the `no` form of the command.

```
server twamp [port number | timer inactivity value]
no server twamp [port number | timer inactivity value]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port</code></td>
<td>Configures the port for the server.</td>
</tr>
<tr>
<td><code>number</code></td>
<td>Port number. Range is 1 to 65535.</td>
</tr>
<tr>
<td><code>timer</code></td>
<td>Configures the timer for the server.</td>
</tr>
<tr>
<td><code>inactivity</code></td>
<td>Inactivity timer value in seconds. Range is 1 to 6000.</td>
</tr>
</tbody>
</table>

### Command Default

Default port is 862.

Default timer value is 900 seconds.

### Command Modes

IPSLA configuration mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Example

This example shows how to use the `server twamp` command:

```
RP/0/RSP0/CPU0:router (config-ipsla) # server twamp timer inactivity 100
```
show ipsla application

To display the information for the IP SLA application, use the **show ipsla application** command in EXEC mode.

```
show ipsla application
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Release 3.7.2 This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following sample output is from the **show ipsla application** command:

```
RP/0/RSP0/CPU0:router# show ipsla application

Estimated system max number of entries: 2048
Number of Entries configured: 1
Number of active Entries : 0
Number of pending Entries : 0
Number of inactive Entries : 1

Supported Operation Types: 7
 Type of Operation: ICMP ECHO
 Type of Operation: ICMP PATH JITTER
 Type of Operation: ICMP PATH ECHO
 Type of Operation: UDP JITTER
 Type of Operation: UDP ECHO
 Type of Operation: MPLS LSP PING
 Type of Operation: MPLS LSP TRACE

Number of configurable probes : 2047
SA Agent low memory water mark: 20480 (KB)
```
This table describes the significant fields shown in the display.

**Table 15: show ipsla application Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated system max number of entries</td>
<td>Maximum number of operations that are configured in the system. The low-memory configured parameter and the available memory in the system are given.</td>
</tr>
<tr>
<td>Number of Entries configured</td>
<td>Total number of entries that are configured, such as active state, pending state, and inactive state.</td>
</tr>
<tr>
<td>Number of active Entries</td>
<td>Number of entries that are in the active state. The active entries are scheduled and have already started a life period.</td>
</tr>
<tr>
<td>Number of pending Entries</td>
<td>Number of entries that are in pending state. The pending entries have a start-time scheduled in the future. These entries either have not started the first life, or the entries are configured as recurring and completed one of its life.</td>
</tr>
<tr>
<td>Number of inactive Entries</td>
<td>Number of entries that are in the inactive state. The inactive entries do not have a start-time scheduled. Either the start-time has never been scheduled or life has expired. In addition, the entries are not configured as recurring.</td>
</tr>
<tr>
<td>Supported Operation Types</td>
<td>Types of operations that are supported by the system.</td>
</tr>
<tr>
<td>Number of configurable probes</td>
<td>Number of remaining entries that can be configured. The number is just an estimated value and it may vary over time according to the available resources.</td>
</tr>
<tr>
<td>SA Agent low memory water mark</td>
<td>Available memory for the minimum system below which the IP SLA feature does not configure any more operations.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>low-memory, on page 131</td>
<td>Configures a low-water memory mark.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
</tbody>
</table>
show ipsla history

To display the history collected for all IP SLA operations or for a specified operation, use the `show ipsla history` command in EXEC mode.

```
show ipsla history [operation-number]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Operation-number</th>
<th>(Optional) Number of the IP SLA operation.</th>
</tr>
</thead>
</table>

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

By default, history statistics are not collected. To have any data displayed by using the `show ipsla history` command, you must configure the history collection.

This table lists the response return values that are used in the `show ipsla history` command.

**Table 16: Response Return Values for the show ipsla history Command**

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Okay</td>
</tr>
<tr>
<td>2</td>
<td>Disconnected</td>
</tr>
<tr>
<td>3</td>
<td>Over Threshold</td>
</tr>
<tr>
<td>4</td>
<td>Timeout</td>
</tr>
<tr>
<td>5</td>
<td>Busy</td>
</tr>
<tr>
<td>6</td>
<td>Not Connected</td>
</tr>
<tr>
<td>7</td>
<td>Dropped</td>
</tr>
<tr>
<td>8</td>
<td>Sequence Error</td>
</tr>
<tr>
<td>9</td>
<td>Verify Error</td>
</tr>
<tr>
<td>10</td>
<td>Application Specific</td>
</tr>
</tbody>
</table>

If the default tabular format is used, the response return description is displayed as code in the Sense column. The Sense field is always used as a return code.
The following sample output is from the `show ipsla history` command:

```
RP/0/RSP0/CPU0:router# show ipsla history 1

Point by point History
Multiple Lines per Entry
Line 1:
<table>
<thead>
<tr>
<th>Entry</th>
<th>LifeI</th>
<th>BucketI</th>
<th>SampleI</th>
<th>SampleT</th>
<th>CompT</th>
<th>Sense</th>
<th>TargetAddr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1134419252539</td>
<td>9</td>
<td>1</td>
<td>192.0.2.6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1134419312509</td>
<td>6</td>
<td>1</td>
<td>192.0.2.6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1134419372510</td>
<td>6</td>
<td>1</td>
<td>192.0.2.6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1134419432510</td>
<td>5</td>
<td>1</td>
<td>192.0.2.6</td>
</tr>
</tbody>
</table>
```

This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>Entry number.</td>
</tr>
<tr>
<td>LifeI</td>
<td>Life index.</td>
</tr>
<tr>
<td>BucketI</td>
<td>Bucket index.</td>
</tr>
<tr>
<td>SampleI</td>
<td>Sample index.</td>
</tr>
<tr>
<td>SampleT</td>
<td>Sample start time.</td>
</tr>
<tr>
<td>CompT</td>
<td>Completion time in milliseconds.</td>
</tr>
<tr>
<td>Sense</td>
<td>Response return code.</td>
</tr>
<tr>
<td>TargetAddr</td>
<td>IP address of intermediate hop device or destination device.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipsla statistics aggregated</code>, on page 205</td>
<td>Displays the statistical errors for all the IP SLA operations or for a specified operation.</td>
</tr>
</tbody>
</table>
show ipsla mpls discovery vpn

To display routing information relating to the BGP next-hop discovery database in the MPLS VPN network, use the `show ipsla mpls discovery vpn` command in EXEC mode.

**Syntax Description**
This command has no keywords or arguments.

**Command Default**
No default behavior or values

**Command Modes**
EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following sample output is from the `show ipsla mpls discovery vpn` command:

```
RP/0/RSP0/CPU0:router# show ipsla mpls discovery vpn

Next refresh after: 46 seconds

BGP next hop Prefix VRF PfxCount
192.255.0.4 192.255.0.4/32 red 10
 192.255.0.4/32 blue 5
 192.255.0.4/32 green 7
192.255.0.5 192.255.0.5/32 red 5
 192.255.0.5/32 green 3
192.254.1.6 192.254.1.0/24 yellow 4
```

This table describes the significant fields shown in the display.

**Table 18: show ipsla mpls discovery vpn Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP next hop</td>
<td>Identifier for the BGP next-hop neighbor.</td>
</tr>
<tr>
<td>Prefix</td>
<td>IPv4 Forward Equivalence Class (FEC) of the BGP next-hop neighbor to be used by the MPLS LSP ping or trace operation.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>VRF</td>
<td>Names of the virtual routing and forwarding instances (VRFs) that contain routing entries for the specified BGP next-hop neighbor.</td>
</tr>
<tr>
<td>PfxCount</td>
<td>Count of the routing entries that participate in the VRF for the specified BGP next-hop neighbor.</td>
</tr>
</tbody>
</table>
**show ipsla mpls lsp-monitor lpd**

To display LSP Path Discovery (LPD) operational status, use the `show ipsla mpls lsp-monitor lpd` command in EXEC mode.

```
show ipsla mpls lsp-monitor lpd {statistics [[group-ID] aggregated group-ID]|summary group}
```

- **statistics group-ID** Displays statistics for the specified LPD group, including the latest LPD start time, return code, completion time, and paths.
- **aggregated group-ID** Displays the aggregated statistics of the LPD group.
- **summary group-ID** Displays the current LPD operational status, which includes LPD start time, return code, completion time, and all ECMP path information.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

Release 3.7.2 This command was introduced.

**Usage Guidelines**

For the aggregated group ID, a maximum of two buckets are allowed.

**Examples**

The following sample output is from the `show ipsla mpls lsp-monitor lpd statistics` command:

```
RP/0/RSP0/CPU0:router# show ipsla mpls lsp-monitor lpd statistics 10001
Group ID: 100001
Latest path discovery start time : 00:41:01.129 UTC Sat Dec 10 2005
Latest path discovery return code : OK
Latest path discovery completion time (ms): 3450
Completion Time Values:
 NumOfCompT: 1 CompTMin: 3450 CompTMax : 3450 CompT Avg: 3450
Number of Paths Values:
 NumOfPaths: 10 MinNumOfPaths: 10 MaxNumOfPaths: 10
```
This table describes the significant fields shown in the display.

**Table 19: show ipsla mpls lsp-monitor lpd statistics Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group ID</td>
<td>LPD group ID number.</td>
</tr>
<tr>
<td>Latest path discovery start time</td>
<td>LPD start time.</td>
</tr>
<tr>
<td>Latest path discovery return code</td>
<td>LPD return code.</td>
</tr>
<tr>
<td>Latest path discovery completion time</td>
<td>LPD completion time.</td>
</tr>
<tr>
<td>Completion Time Values</td>
<td>Completion time values, consisting of Number of Completion Time samples and Minimum Completion Time.</td>
</tr>
<tr>
<td>Number of Paths Values</td>
<td>Number of paths values, consisting of Minimum number of paths and Maximum number of paths.</td>
</tr>
</tbody>
</table>
show ipsla mpls lsp-monitor scan-queue

To display information about BGP next-hop addresses that are waiting to be added to or deleted from the MPLS label switched path (LSP) monitor instance, use the **show ipsla mpls lsp-monitor scan-queue** command in EXEC mode.

```plaintext
show ipsla mpls lsp-monitor scan-queue [monitor-id]
```

**Syntax Description**

```
monitor-id (Optional) Number of the IP SLA MPLS LSP monitor instance.
```

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the **monitor-id** argument is not specified, the scan-queue is displayed for all MPLS LSP monitor instances.

**Task ID**

```
Task ID Operations ID
monitor read
```

**Examples**

The following sample output is from the **show ipsla mpls lsp-monitor scan-queue** command:

```
RP/0/RSP0/CPU0:router# show ipsla mpls lsp-monitor scan-queue 1

IPSLA MPLS LSP Monitor : 1
Next scan Time after : 23 seconds
Next Delete scan Time after: 83 seconds

BGP Next hop Prefix Add/Delete?
192.255.0.2 192.255.0.2/32 Add
192.255.0.3 192.255.0.5/32 Delete
```

This table describes the significant fields shown in the display.

**Table 20: show ipsla responder statistics port Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPSLA MPLS LSP Monitor</td>
<td>Monitor identifier.</td>
</tr>
<tr>
<td>Next scan Time after</td>
<td>Amount of time before the MPLS LSP monitor instance checks the scan queue for adding BGP next-hop neighbors. At the start of each scan time, IP SLA operations are created for all newly discovered neighbors.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Next delete Time after</td>
<td>Amount of time left before the MPLS LSP monitor instance checks the scan queue for deleting BGP next-hop neighbors. At the start of each delete scan time, IP SLAs operations are deleted for neighbors that are no longer valid.</td>
</tr>
<tr>
<td>BGP next hop</td>
<td>Identifier for the BGP next-hop neighbor.</td>
</tr>
<tr>
<td>Prefix</td>
<td>IPv4 Forward Equivalence Class (FEC) of the BGP next-hop neighbor to be used.</td>
</tr>
<tr>
<td>Add/Delete</td>
<td>Indicates that the specified BGP next-hop neighbor will be added or removed.</td>
</tr>
</tbody>
</table>
show ipsla mpls lsp-monitor summary

To display the list of operations that have been created automatically by the specified MPLS LSP monitor (MPLSLM) instance, use the `show ipsla mpls lsp-monitor summary` command in EXEC mode.

```
show ipsa mpls lsp-monitor summary [monitor-id [group [group-id]]]
```

**Syntax Description**

- `monitor-id` (Optional) Displays a list of LSP group, ping, and trace operations created automatically by the specified MPLSLM instance.
- `group` (Optional) Displays the ECMP LSPs found through ECMP path discovery within the specified LSP group.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show ipsla mpls lsp-monitor summary` command shows the list of LSP operations that were created automatically by the specified MPLS LSP monitor instance. It also shows the current status and the latest operation time of each operation.

If the `monitor-id` argument is not specified, the list of operations is displayed for all MPLS LSP monitor instances.

The `show ipsla mpls lsp-monitor summary` command with the `group` option shows the list of ECMP paths that are found automatically by the specified LSP path discovery (LPD). In addition, this command with option shows the current status; the number of successes, failures; the most recent round trip time (RTT); and the latest operation time of each path.

If the `group-id` argument is not specified, the list of paths is displayed for all operations created by the MPLS LSP monitor instance.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following sample output is from the `show ipsla mpls lsp-monitor summary` command. This output shows a pending status when an MPLS LSP ping operation is waiting to receive the timeout response from the LSP Verification (LSPV) process.

```
RP/0/RSP0/CPU0:router# show ipsla mpls lsp-monitor summary 1
MonID Op/GrpID TargetAddress Status Latest Operation Time
1 100001 192.255.0.4/32 up 19:33:37.915 EST Mon Feb 28 2005
```
The following sample output shows that a down status is displayed after a timeout response is received.

```
RP/0/RSP0/CPU0:router# show ipsla mpls lsp-monitor summary 1
```

<table>
<thead>
<tr>
<th>MonID</th>
<th>Op/GrpID</th>
<th>TargetAddress</th>
<th>Status</th>
<th>Latest Operation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100001</td>
<td>193.100.0.1/32</td>
<td>down</td>
<td>12:47:16.417 PST Tue Oct 23 2007</td>
</tr>
<tr>
<td>1</td>
<td>100002</td>
<td>193.100.0.2/32</td>
<td>partial</td>
<td>12:47:22.418 PST Tue Oct 23 2007</td>
</tr>
<tr>
<td>1</td>
<td>100003</td>
<td>193.100.0.3/32</td>
<td>partial</td>
<td>12:47:22.429 PST Tue Oct 23 2007</td>
</tr>
<tr>
<td>1</td>
<td>100004</td>
<td>193.100.0.4/32</td>
<td>down</td>
<td>12:47:16.429 PST Tue Oct 23 2007</td>
</tr>
</tbody>
</table>

This table describes the significant fields shown in the display.

### Table 21: show ipsla mpls lsp-monitor summary Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MonID</td>
<td>Monitor identifier.</td>
</tr>
<tr>
<td>Op/GrpID</td>
<td>Operation identifiers that have been created by this MPLS LSP monitor instance.</td>
</tr>
<tr>
<td>TargetAddress</td>
<td>IPv4 Forward Equivalence Class (FEC) to be used by this operation.</td>
</tr>
<tr>
<td>Status</td>
<td>Status of the paths. Values can be as follows:</td>
</tr>
<tr>
<td></td>
<td>- up—Indicates that the latest operation cycle was successful.</td>
</tr>
<tr>
<td></td>
<td>- down—Indicates that the latest operation cycle was not successful.</td>
</tr>
<tr>
<td></td>
<td>- pending—Indicates that the latest operation cycle is waiting for an LSP ping or trace response.</td>
</tr>
<tr>
<td>Latest Operation Time</td>
<td>Time the latest operation cycle was issued.</td>
</tr>
</tbody>
</table>

The following sample output is from the `show ipsla mpls lsp-monitor summary group` command:

```
RP/0/RSP0/CPU0:router# show ipsla mpls lsp-monitor summary 1 group 100001
```

<table>
<thead>
<tr>
<th>GrpID</th>
<th>LSP-Selector</th>
<th>Status</th>
<th>Failure</th>
<th>Success</th>
<th>RTT</th>
<th>Latest Operation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>100001</td>
<td>127.0.0.13</td>
<td>up</td>
<td>0</td>
<td>78</td>
<td>32</td>
<td>20:11:37.895 EST Feb 28 2005</td>
</tr>
<tr>
<td>100001</td>
<td>127.0.0.15</td>
<td>retry</td>
<td>1</td>
<td>77</td>
<td>0</td>
<td>20:11:37.995 EST Feb 28 2005</td>
</tr>
<tr>
<td>100001</td>
<td>127.0.0.16</td>
<td>up</td>
<td>0</td>
<td>78</td>
<td>32</td>
<td>20:11:38.067 EST Feb 28 2005</td>
</tr>
<tr>
<td>100001</td>
<td>127.0.0.26</td>
<td>up</td>
<td>0</td>
<td>78</td>
<td>32</td>
<td>20:11:38.175 EST Feb 28 2005</td>
</tr>
</tbody>
</table>

This table describes the significant fields shown in the display.

### Table 22: show ipsla mpls lsp-monitor summary group Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GrpID</td>
<td>Group identifier that has been created by this MPLS LSP monitor instance.</td>
</tr>
<tr>
<td>LSP-Selector</td>
<td>LSP selector address.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Status</td>
<td>Status of the paths. Values can be as follows:</td>
</tr>
<tr>
<td></td>
<td>• up—Indicates that all the paths were successful.</td>
</tr>
<tr>
<td></td>
<td>• down—Indicates that all the paths were not successful.</td>
</tr>
<tr>
<td></td>
<td>• partial—Indicates that only some paths were successful.</td>
</tr>
<tr>
<td></td>
<td>• unknown—Indicates that some (or all) of the paths did not complete a single LSP echo request so the group status could not be identified.</td>
</tr>
<tr>
<td>Failure</td>
<td>Number of failures.</td>
</tr>
<tr>
<td>Success</td>
<td>Number of successes.</td>
</tr>
<tr>
<td>RTT</td>
<td>Round Trip Time (RTT) in milliseconds of the latest LSP echo request for the path.</td>
</tr>
<tr>
<td>Latest Operation Time</td>
<td>Time the latest operation cycle was issued for the path.</td>
</tr>
</tbody>
</table>
show ipsla responder statistics

To display the number of probes that are received or handled by the currently active ports on the responder, use the `show ipsla responder statistics ports` command in EXEC mode.

```
show ipsla responder statistics {all|permanent} ports
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Port statistics is displayed for all ports.</td>
</tr>
<tr>
<td>permanent</td>
<td>Port statistics is displayed only for permanent ports.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command Modes

EXEC mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The output of the `show ipsla responder statistics port` command is available only for specific intervals of time in which only nonpermanent ports are being used at the responder. The reason is that the responder closes the nonpermanent ports after each operation cycle. However, if both permanent and nonpermanent ports are used, the output always contains rows for the permanent ports. The rows for the nonpermanent ports are displayed only if those nonpermanent ports are enabled at the instant the command is issued.

### Examples

The following sample output is from the `show ipsla responder statistics port` command:

```
RP/0/RSP0/CPU0:router# show ipsla responder statistics all port

Port Statistics

<table>
<thead>
<tr>
<th>Local Address</th>
<th>Port</th>
<th>Port Type</th>
<th>Probes</th>
<th>Drops</th>
<th>CtrlProbes</th>
<th>Discard</th>
</tr>
</thead>
<tbody>
<tr>
<td>172.16.5.1</td>
<td>3001</td>
<td>Permanent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>172.16.5.1</td>
<td>10001</td>
<td>Permanent</td>
<td>728160</td>
<td>0</td>
<td>24272</td>
<td></td>
</tr>
<tr>
<td>172.16.5.5</td>
<td>8201</td>
<td>Dynamic</td>
<td>12132</td>
<td>0</td>
<td>12135</td>
<td>ON</td>
</tr>
<tr>
<td>172.16.5.1</td>
<td>4441</td>
<td>Dynamic</td>
<td>207216</td>
<td>0</td>
<td>3641</td>
<td>ON</td>
</tr>
</tbody>
</table>
```
This table describes the significant fields shown in the display.

**Table 23: show ipsla responder statistics port Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Address</td>
<td>Local IP address of the responder device used to respond to IPSLA probes.</td>
</tr>
<tr>
<td>Port</td>
<td>UDP socket local to the responder device used to respond to IPSLA probes.</td>
</tr>
<tr>
<td>Port Type</td>
<td>It could be &quot;permanent&quot; or &quot;dynamic&quot;; depends upon whether a permanent port configuration is done.</td>
</tr>
<tr>
<td>Probes</td>
<td>Number of probe packets the responder has received.</td>
</tr>
<tr>
<td>Drops</td>
<td>Number of probes dropped.</td>
</tr>
<tr>
<td>CtrlProbes</td>
<td>Number of control packets the responder has received.</td>
</tr>
<tr>
<td>Discard</td>
<td>If the state is ON, the responder will not respond to probes.</td>
</tr>
</tbody>
</table>
show ipsla statistics

To display the operational data and the latest statistics for the IP SLA operation in tabular format, use the `show ipsla statistics` command in EXEC mode.

```
show ipsla statistics [operation-number]
```

**Syntax Description**

- `operation-number` (Optional) Operation for which the latest statistics are to be displayed. Range is 1 to 2048.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Examples**

The output of the `show ipsla statistics` command varies depending on the operation type.

The following sample output is from the `show ipsla statistics` command for an ICMP echo operation:

```
RP/0/RSP0/CPU0:router# show ipsla statistics 100025

Entry number: 100025
Modification time: 00:36:58.602 UTC Sat Dec 10 2007
Start time : 00:36:58.605 UTC Sat Dec 10 2007
Number of operations attempted: 5
Number of operations skipped : 0
Current seconds left in Life : Forever
Operational state of entry : Active
Connection loss occurred : FALSE
Timeout occurred : FALSE
Latest RTT (milliseconds) : 3
Latest operation start time : 00:41:01.129 UTC Sat Dec 10 2007
Latest operation return code : OK
RTT Values:
RTT Avg : 71 RTT Min: 71 RTT Max : 71
NumOfRTT: 1 RTT Sum: 71 RTT Sum 2: 729
Path Information:
<table>
<thead>
<tr>
<th>Path</th>
<th>LSP</th>
<th>Outgoing</th>
<th>Nexthop</th>
<th>Downstream</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idx</td>
<td>Sense</td>
<td>Selector</td>
<td>Interface</td>
<td>Address</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>127.0.0.13</td>
<td>PO0/2/5/0</td>
<td>192.12.1.2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>127.0.0.6</td>
<td>PO0/2/5/0</td>
<td>192.12.1.2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>127.0.0.1</td>
<td>PO0/2/5/0</td>
<td>192.12.1.2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>127.0.0.2</td>
<td>PO0/2/5/0</td>
<td>192.12.1.2</td>
</tr>
</tbody>
</table>
```
This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry number</td>
<td>Entry number.</td>
</tr>
<tr>
<td>Modification time</td>
<td>Latest time the operation was modified.</td>
</tr>
<tr>
<td>Start time</td>
<td>Time the operation was started.</td>
</tr>
<tr>
<td>Number of operations attempted</td>
<td>Number of operation cycles that were issued.</td>
</tr>
<tr>
<td>Number of operations skipped</td>
<td>Number of operation cycles that were not issued because one of the cycles</td>
</tr>
<tr>
<td></td>
<td>extended over the configured time interval.</td>
</tr>
<tr>
<td>Current seconds left in Life</td>
<td>Time remaining until the operation stops execution.</td>
</tr>
<tr>
<td>Operational state of entry</td>
<td>State of the operation, such as active state, pending state, or inactive</td>
</tr>
<tr>
<td></td>
<td>state.</td>
</tr>
<tr>
<td>Connection loss occurred</td>
<td>Whether or not a connection-loss error happened.</td>
</tr>
<tr>
<td>Timeout occurred</td>
<td>Whether or not a timeout error happened.</td>
</tr>
<tr>
<td>Latest RTT (milliseconds)</td>
<td>Value of the latest RTT sample.</td>
</tr>
<tr>
<td>Latest operation start time</td>
<td>Time the latest operation cycle was issued.</td>
</tr>
<tr>
<td>Latest operation return code</td>
<td>Return code of the latest operation cycle</td>
</tr>
<tr>
<td>RTT Avg</td>
<td>Average RTT value that is observed in the last cycle.</td>
</tr>
<tr>
<td>RTT Min</td>
<td>Minimum RTT value that is observed in the last cycle.</td>
</tr>
<tr>
<td>RTT Max</td>
<td>Maximum RTT value that is observed in the last cycle.</td>
</tr>
<tr>
<td>NumOfRTT</td>
<td>Number of successful round trips.</td>
</tr>
<tr>
<td>RTT Sum</td>
<td>Sum of all successful round-trip values in milliseconds.</td>
</tr>
<tr>
<td>RTT Sum2</td>
<td>Sum of squares of the round-trip values in milliseconds.</td>
</tr>
<tr>
<td>Path Idx</td>
<td>Path index number.</td>
</tr>
<tr>
<td>Path Sense</td>
<td>Response return code for the path. (See Table 16: Response Return Values</td>
</tr>
<tr>
<td></td>
<td>for the show ipsla history Command, on page 189, in show ipsla history</td>
</tr>
<tr>
<td></td>
<td>command.)</td>
</tr>
<tr>
<td>LSP Selector</td>
<td>LSP selector address of the path.</td>
</tr>
</tbody>
</table>
### show ipsla statistics

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outgoing Interface</td>
<td>Outgoing interface of the path.</td>
</tr>
<tr>
<td>Nexthop Address</td>
<td>Next hop address of the path.</td>
</tr>
<tr>
<td>Downstream Label Stack</td>
<td>MPLS label stacks of the path.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipsla statistics aggregated, on page 205</td>
<td>Displays the statistical errors for all the IP SLA operations or for a specified operation.</td>
</tr>
</tbody>
</table>
**show ipsla statistics aggregated**

To display the hourly statistics for all the IP SLA operations or specified operation, use the `show ipsla statistics aggregated` command in EXEC mode.

```
show ipsla statistics aggregated [detail] [operation-number]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>detail</th>
<th>Displays detailed information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation-number</td>
<td>(Optional) Number of IP SLA operations. Range is 1 to 2048.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show ipsla statistics aggregated` command displays information such as the number of failed operations and the reason for failure. Unless you configured a different amount of time for the `buckets` command (statistics command with `hourly` keyword), the `show ipsla statistics aggregated` command displays the information collected over the past two hours.

For one-way delay and jitter operations to be computed for UDP jitter operations, the clocks on local and target devices must be synchronized using NTP or GPS systems. If the clocks are not synchronized, one-way measurements are discarded. If the sum of the source to destination (SD) and the destination to source (DS) values is not within 10 percent of the round-trip time, the one-way measurement values are assumed to be faulty, and are discarded.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The output of the `show ipsla statistics aggregated` command varies depending on operation type. The following sample output shows the aggregated statistics for UDP echo operation from the `show ipsla statistics aggregated` command:

```
RP/0/RSP0/CPU0:router# show ipsla statistics aggregated 1

Entry number: 1
Hour Index: 0
Start Time Index: 21:02:32.510 UTC Mon Dec 12 2005
Number of Failed Operations due to a Disconnect: 0
Number of Failed Operations due to a Timeout: 0
Number of Failed Operations due to a Busy: 0
Number of Failed Operations due to a No Connection: 0
Number of Failed Operations due to an Internal Error: 0
```
Number of Failed Operations due to a Sequence Error : 0
Number of Failed Operations due to a Verify Error : 0
RTT Values:
- RTTAvg : 6
- RTTMin: 4
- RTTMax : 38
- NumOfRTT: 36
- RTTSum: 229
- RTTSum2: 2563

The following sample output is from the `show ipsla statistics aggregated` command in which operation 10 is a UDP jitter operation:

```
RP/0/RSP0/CPU0:router# show ipsla statistics aggregated 10
Entry number: 10
Hour Index: 0
Start Time Index: 00:35:07.895 UTC Thu Mar 16 2006
Number of Failed Operations due to a Disconnect : 0
Number of Failed Operations due to a Timeout : 0
Number of Failed Operations due to a Busy : 0
Number of Failed Operations due to a No Connection : 0
Number of Failed Operations due to an Internal Error: 0
Number of Failed Operations due to a Sequence Error : 0
Number of Failed Operations due to a Verify Error : 0
RTT Values:
- RTTAvg : 14
- RTTMin: 2
- RTTMax : 99
- NumOfRTT: 70
- RTTSum: 1034
- RTTSum2: 60610
Packet Loss Values:
- PacketLossSD : 0
- PacketLossDS: 0
- PacketOutOfSequence: 0
- PacketMIA : 0
- PacketLateArrival : 0
- Errors : 0
- Busies : 0
Jitter Values :
- MinOfPositivesSD: 1
- MaxOfPositivesSD: 19
- NumOfPositivesSD: 17
- SumOfPositivesSD: 65
- MinOfNegativesSD: 1
- MaxOfNegativesSD: 16
- NumOfNegativesSD: 24
- SumOfNegativesSD: 106
- Sum2NegativesSD : 914
- MinOfPositivesDS: 1
- MaxOfPositivesDS: 7
- NumOfPositivesDS: 17
- SumOfPositivesDS: 44
- Sum2PositivesDS : 174
- MinOfNegativesDS: 1
- MaxOfNegativesDS: 8
- NumOfNegativesDS: 24
- SumOfNegativesDS: 63
- Sum2NegativesDS : 267
- Interarrival jitterout: 0
- Interarrival jitterin: 0
One Way Values :
- NumOfOW: 0
- OWMinSD : 0
- OWMaxSD: 0
- OWSumSD: 0
- OWMinDS : 0
- OWMaxDS: 0
- OWSumDS: 0
```

This table describes the significant fields shown in the display.

### Table 25: `show ipsla statistics aggregated` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busies</td>
<td>Number of times that the operation cannot be started because the previously scheduled run was not finished.</td>
</tr>
<tr>
<td>Entry Number</td>
<td>Entry number.</td>
</tr>
<tr>
<td>Hop in Path Index</td>
<td>Hop in path index.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Errors</td>
<td>Number of internal errors.</td>
</tr>
<tr>
<td>Jitter Values</td>
<td>Jitter statistics appear on the specified lines. Jitter is defined as interpacket delay variance.</td>
</tr>
<tr>
<td>NumOfJitterSamples</td>
<td>Number of jitter samples that are collected. The number of samples are used to calculate the jitter statistics.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a Disconnect</td>
<td>Number of failed operations due to a disconnect.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a Timeout</td>
<td>Number of failed operations due to a timeout.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a Busy</td>
<td>Number of failed operations due to a busy error.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a No Connection</td>
<td>Error that refers to the case in which the control connection cannot be established.</td>
</tr>
<tr>
<td>Number of Failed Operations due to an Internal Error</td>
<td>Number of failed operations due to an internal error.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a Sequence Error</td>
<td>Number of failed operations due to a sequence error.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a Verify Error</td>
<td>Number of failed operations due to a verify error.</td>
</tr>
<tr>
<td>MaxOfNegativesSD</td>
<td>Maximum negative jitter values from the source to the destination. The absolute value is given.</td>
</tr>
<tr>
<td>MaxOfPositivesSD</td>
<td>Maximum jitter values from the source to the destination in milliseconds.</td>
</tr>
<tr>
<td>MaxOfPositivesDS</td>
<td>Maximum jitter values from the destination to the source in milliseconds.</td>
</tr>
<tr>
<td>MaxOfNegativesDS</td>
<td>Maximum negative jitter values from destination-to-source. The absolute value is given.</td>
</tr>
<tr>
<td>MinOfPositivesDS</td>
<td>Minimum jitter values from the destination to the source in milliseconds.</td>
</tr>
<tr>
<td>MinOfNegativesSD</td>
<td>Minimum negative jitter values from the source to the destination. The absolute value is given.</td>
</tr>
<tr>
<td>MinOfPositivesDS</td>
<td>Minimum jitter values from the source to the destination in milliseconds.</td>
</tr>
<tr>
<td>MinOfNegativesDS</td>
<td>Minimum negative jitter values from the destination to the source. The absolute value is given.</td>
</tr>
</tbody>
</table>
### Field | Description
--- | ---
NumOfOW | Number of successful one-way time measurements.
NumOfNegativesDS | Number of jitter values from the destination to the source that are negative; for example, network latency decreases for two consecutive test packets.
NumOfNegativesSD | Number of jitter values from the source to the destination that are negative; for example, network latency decreases for two consecutive test packets.
NumOfPositivesDS | Number of jitter values from the destination to the source that are positive; for example, network latency increases for two consecutive test packets.
NumOfPositivesSD | Number of jitter values from the source to the destination that are positive; for example, network latency increases for two consecutive test packets.
NumOfRTT | Number of successful round trips.
One Way Values | One-way measurement statistics appear on the specified lines. One Way (OW) values are the amount of time that it took the packet to travel from the source router to the target router or from the target router to the source router.
OWMaxDS | Maximum time from the destination to the source.
OWMaxSD | Maximum time from the source to the destination.
OWMinDS | Minimum time from the destination to the source.
OWMinSD | Minimum time from the source to the destination.
OWSumDS | Sum of one-way delay values from the destination to the source.
OWSumSD | Sum of one-way delay values from the source to the destination.
OWSum2DS | Sum of squares of one-way delay values from the destination to the source.
OWSum2SD | Sum of squares of one-way delay values from the source to the destination.
PacketLateArrival | Number of packets that arrived after the timeout.
PacketLossDS | Number of packets lost from the destination to the source (DS).
PacketLossSD | Number of packets lost from the source to the destination (SD).
PacketMIA | Number of packets lost in which the SD direction or DS direction cannot be determined.
PacketOutOfSequence | Number of packets that are returned out of order.
The output of the `show ipsla statistics aggregated detail` command varies depending on operation type. The following sample output is from the `show ipsla statistics aggregated detail` command in tabular format, when the output is split over multiple lines:

```
RP/0/RSP0/CPU0:router# show ipsla statistics aggregated detail 2

Captured Statistics
 Multiple Lines per Entry
Line1:
 Entry = Entry number
 StartT = Start time of entry (hundredths of seconds)
 Pth = Path index
 Hop = Hop in path index
 Dst = Time distribution index
 Comps = Operations completed
 SumCmp = Sum of RTT (milliseconds)
Line2:
```

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path Index</td>
<td>Path index.</td>
</tr>
<tr>
<td>Port Number</td>
<td>Target port number.</td>
</tr>
<tr>
<td>RTT Sum</td>
<td>Sum of all successful round-trip values in milliseconds.</td>
</tr>
<tr>
<td>RTT Sum2</td>
<td>Sum of squares of the round-trip values in milliseconds.</td>
</tr>
<tr>
<td>RTT Values</td>
<td>Round-trip time statistics appear on the specified lines.</td>
</tr>
<tr>
<td>Start Time</td>
<td>Start time, in milliseconds.</td>
</tr>
<tr>
<td>Start Time Index</td>
<td>Statistics that are aggregated for over 1-hour intervals. The value indicates the start time for the 1-hour interval that is displayed.</td>
</tr>
<tr>
<td>SumOfPositivesDS</td>
<td>Sum of the positive jitter values from the destination to the source.</td>
</tr>
<tr>
<td>SumOfPositivesSD</td>
<td>Sum of the positive jitter values from the source to the destination.</td>
</tr>
<tr>
<td>SumOfNegativesDS</td>
<td>Sum of the negative jitter values from the destination to the source.</td>
</tr>
<tr>
<td>SumOfNegativesSD</td>
<td>Sum of the negative jitter values from the source to the destination.</td>
</tr>
<tr>
<td>Sum2PositivesDS</td>
<td>Sum of squares of the positive jitter values from the destination to the source.</td>
</tr>
<tr>
<td>Sum2PositivesSD</td>
<td>Sum of squares of the positive jitter values from the source to the destination.</td>
</tr>
<tr>
<td>Sum2NegativesDS</td>
<td>Sum of squares of the negative jitter values from the destination to the source.</td>
</tr>
<tr>
<td>Sum2NegativesSD</td>
<td>Sum of squares of the negative jitter values from the source to the destination.</td>
</tr>
<tr>
<td>Target Address</td>
<td>Target IP address.</td>
</tr>
</tbody>
</table>

The output of the `show ipsla statistics aggregated detail` command varies depending on operation type. The following sample output is from the `show ipsla statistics aggregated detail` command in tabular format, when the output is split over multiple lines:
**show ipsla statistics aggregated**

SumCmp2H = Sum of RTT squared high 32 bits (milliseconds)
SumCmp2L = Sum of RTT squared low 32 bits (milliseconds)
TMax = RTT maximum (milliseconds)
TMin = RTT minimum (milliseconds)

<table>
<thead>
<tr>
<th>Entry</th>
<th>StartT</th>
<th>Pth</th>
<th>Hop</th>
<th>Dst</th>
<th>Comps</th>
<th>SumCmp</th>
<th>SumCmp2H</th>
<th>SumCmp2L</th>
<th>TMax</th>
<th>TMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1134423910701</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>367</td>
<td>0</td>
<td>1231</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1134423851116</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>129</td>
<td>0</td>
<td>2419</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>2</td>
<td>1134423070733</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>101</td>
<td>0</td>
<td>1119</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

This table describes the significant fields shown in the display.

**Table 26: show ipsla statistics aggregated detail Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>Entry number.</td>
</tr>
<tr>
<td>StartT</td>
<td>Start time of entry, in hundredths of seconds.</td>
</tr>
<tr>
<td>Pth</td>
<td>Path index.</td>
</tr>
<tr>
<td>Hop</td>
<td>Hop in path index.</td>
</tr>
<tr>
<td>Dst</td>
<td>Time distribution index.</td>
</tr>
<tr>
<td>Comps</td>
<td>Operations completed.</td>
</tr>
<tr>
<td>SumCmp</td>
<td>Sum of completion times, in milliseconds.</td>
</tr>
<tr>
<td>SumCmp2L</td>
<td>Sum of completion times squared low 32 bits, in milliseconds.</td>
</tr>
<tr>
<td>SumCmp2H</td>
<td>Sum of completion times squared high 32 bits, in milliseconds.</td>
</tr>
<tr>
<td>TMax</td>
<td>Completion time maximum, in milliseconds.</td>
</tr>
<tr>
<td>TMin</td>
<td>Completion time minimum, in milliseconds.</td>
</tr>
</tbody>
</table>

The following sample output is from the `show ipsla statistics aggregated` command when a path discovery operation is enabled. Data following the hourly index is aggregated for all paths in the group during the given hourly interval.

```
RP/0/RSP0/CPU0:router# show ipsla statistics aggregated 100041
Entry number: 100041
Hour Index: 13

<The following data after the given hourly index is aggregated for all paths in the group during the given hourly interval.>

 Start Time Index: 12:20:57.323 UTC Tue Nov 27 2007
 Number of Failed Operations due to a Disconnect : 0
```
Number of Failed Operations due to a Timeout : 249
Number of Failed Operations due to a Busy : 0
Number of Failed Operations due to a No Connection : 0
Number of Failed Operations due to an Internal Error: 0
Number of Failed Operations due to a Sequence Error : 0
Number of Failed Operations due to a Verify Error : 0

<end>

RTT Values:
RTTAvg : 21 RTTMin: 19 RTTMax : 73
NumOfRTT: 2780 RTTSum: 59191 RTTSum2: 1290993

Path Information:
Path Path LSP Outgoing Nexthop Downstream
Idx Sense Selector Interface Address Label Stack
1 1 127.0.0.1 Gi0/4/0/0 192.39.1.1 677
2 1 127.0.0.1 Gi0/4/0/0.1 192.39.2.1 677
3 1 127.0.0.1 Gi0/4/0/0.2 192.39.3.1 677
4 1 127.0.0.1 Gi0/4/0/0.3 192.39.4.1 677
5 1 127.0.0.8 Gi0/4/0/0 192.39.1.1 677
6 1 127.0.0.8 Gi0/4/0/0.1 192.39.2.1 677
7 1 127.0.0.8 Gi0/4/0/0.2 192.39.3.1 677
8 1 127.0.0.8 Gi0/4/0/0.3 192.39.4.1 677

<end>

Hour Index: 14
Number of Failed Operations due to a Disconnect : 0
Number of Failed Operations due to a Timeout : 122
Number of Failed Operations due to a Busy : 0
Number of Failed Operations due to a No Connection : 0
Number of Failed Operations due to an Internal Error: 0
Number of Failed Operations due to a Sequence Error : 0
Number of Failed Operations due to a Verify Error : 0
RTT Values:
RTTAvg : 21 RTTMin: 19 RTTMax : 73
NumOfRTT: 2780 RTTSum: 59191 RTTSum2: 1290993
Path Information:
Path Path LSP Outgoing Nexthop Downstream
Idx Sense Selector Interface Address Label Stack
1 1 127.0.0.1 Gi0/4/0/0 192.39.1.1 677
2 1 127.0.0.1 Gi0/4/0/0.1 192.39.2.1 677
3 1 127.0.0.1 Gi0/4/0/0.2 192.39.3.1 677
4 1 127.0.0.1 Gi0/4/0/0.3 192.39.4.1 677
5 1 127.0.0.8 Gi0/4/0/0 192.39.1.1 677
6 1 127.0.0.8 Gi0/4/0/0.1 192.39.2.1 677
7 1 127.0.0.8 Gi0/4/0/0.2 192.39.3.1 677
8 1 127.0.0.8 Gi0/4/0/0.3 192.39.4.1 677

This table describes the significant fields shown in the display.

Table 27: show ipsla statistics aggregated (with Path Discovery enabled) Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number</td>
<td>Entry number.</td>
</tr>
<tr>
<td>Start Time Index</td>
<td>Start time.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a Disconnect</td>
<td>Number of failed operations due to a disconnect.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Number of Failed Operations due to a</td>
<td>Number of failed operations due to a timeout.</td>
</tr>
<tr>
<td>Timeout</td>
<td></td>
</tr>
<tr>
<td>Number of Failed Operations due to a</td>
<td>Number of failed operations due to a busy error.</td>
</tr>
<tr>
<td>Busy Error</td>
<td></td>
</tr>
<tr>
<td>Number of Failed Operations due to a No</td>
<td>Error that refers to the case in which the control connection cannot be established.</td>
</tr>
<tr>
<td>Connection</td>
<td></td>
</tr>
<tr>
<td>Number of Failed Operations due to an</td>
<td>Number of failed operations due to an internal error.</td>
</tr>
<tr>
<td>Internal Error</td>
<td></td>
</tr>
<tr>
<td>Number of Failed Operations due to a</td>
<td>Number of failed operations due to a sequence error.</td>
</tr>
<tr>
<td>Sequence Error</td>
<td></td>
</tr>
<tr>
<td>Number of Failed Operations due to a</td>
<td>Number of failed operations due to a verify error.</td>
</tr>
<tr>
<td>Verify Error</td>
<td></td>
</tr>
<tr>
<td>RTT Values</td>
<td>Round-trip time statistics appear on the specified lines.</td>
</tr>
<tr>
<td>RTT Min/Avg/Max</td>
<td>Maximum values of the RTT that are observed in the latest cycle (*).</td>
</tr>
<tr>
<td>NumOfRTT</td>
<td>Number of successful round trips.</td>
</tr>
<tr>
<td>RTT Sum</td>
<td>Sum of all successful round-trip values, in milliseconds.</td>
</tr>
<tr>
<td>RTT Sum2</td>
<td>Sum of squares of the round-trip values, in milliseconds.</td>
</tr>
<tr>
<td>RTT Min/Avg/Max</td>
<td>Maximum values of the RTT that are observed in the latest cycle (*).</td>
</tr>
<tr>
<td>NumOfRTT</td>
<td>Number of successful round trips.</td>
</tr>
<tr>
<td>Path Idx</td>
<td>Path index number.</td>
</tr>
<tr>
<td>Path Sense</td>
<td>Response return code for the path. (See Table 16: Response Return Values for the show ipsla history Command, on page 189, in show ipsla history command.)</td>
</tr>
<tr>
<td>LSP Selector</td>
<td>LSP selector address of the path.</td>
</tr>
<tr>
<td>Outgoing Interface</td>
<td>Outgoing interface name of the path.</td>
</tr>
<tr>
<td>Nexthop Address</td>
<td>Next hop address of the path.</td>
</tr>
<tr>
<td>Downstream Label Stack</td>
<td>MPLS label stacks of the path.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show ipsla statistics, on page 202</td>
<td>Displays the operational data for the IP SLA operation.</td>
</tr>
</tbody>
</table>
### Command Reference

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipsla statistics enhanced aggregated</code>, on page 214</td>
<td>Displays the statistical errors for all the IP SLA operations or for a specified operation.</td>
</tr>
</tbody>
</table>
show ipsla statistics enhanced aggregated

To display the enhanced history statistics for all collected enhanced history buckets for the specified IP SLA operation, use the `show ipsla statistics enhanced aggregated` command in EXEC mode.

```
show ipsla statistics enhanced aggregated [operation-number] [interval seconds]
```

**Syntax Description**

- `operation-number` (Optional) Operation number for which to display the enhanced history distribution statistics.
- `interval seconds` (Optional) Specifies the aggregation interval in seconds for which to display the enhanced history distribution statistics.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show ipsla statistics enhanced aggregated` command displays data for each bucket of enhanced history data shown individually; for example, one after the other. The number of buckets and the collection interval is set using the `interval` keyword, `seconds` argument, `buckets` keyword, and `number-of-buckets` argument.

**Examples**

The output of the `show ipsla statistics enhanced aggregated` command varies depending on the operation type.

The following sample output is from the `show ipsla statistics enhanced aggregated` command for the UDP echo operation:

```
RP/0/RSP0/CPU0:router# show ipsla statistics enhanced aggregated 20

Entry number: 20
Interval : 300 seconds
Bucket : 1 (0 - 300 seconds)
 Start Time Index: 00:38:14.286 UTC Thu Mar 16 2006
 Number of Failed Operations due to a Disconnect : 0
 Number of Failed Operations due to a Timeout : 0
 Number of Failed Operations due to a Busy : 0
 Number of Failed Operations due to a No Connection : 0
 Number of Failed Operations due to an Internal Error: 0
 Number of Failed Operations due to a Sequence Error : 0
 Number of Failed Operations due to a Verify Error : 0
 RTT Values:
```

System Monitoring Command Reference for Cisco ASR 9000 Series Routers
RTT Avg : 2  RTT Min: 2  RTT Max: 5  
NumOfRTT: 5  RTT Sum: 13  RTT Sum2: 41  
Bucket: 2  (300 - 600 seconds)  
Start Time Index: 00:43:12.747 UTC Thu Mar 16 2006  
Number of Failed Operations due to a Disconnect : 0  
Number of Failed Operations due to a Timeout : 0  
Number of Failed Operations due to a Busy : 0  
Number of Failed Operations due to a No Connection : 0  
Number of Failed Operations due to an Internal Error: 0  
Number of Failed Operations due to a Sequence Error : 0  
Number of Failed Operations due to a Verify Error : 0  
RTT Values:  
  RTT Avg : 2  RTT Min: 2  RTT Max: 2  
  NumOfRTT: 1  RTT Sum: 2  RTT Sum2: 4  

This table describes the significant fields shown in the display.

Table 28: show ipsla statistics enhanced aggregated Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry Number</td>
<td>Entry number.</td>
</tr>
<tr>
<td>Interval</td>
<td>Multiple of the frequency of the operation. The Enhanced interval field defines the interval in which statistics displayed by the show ipsla statistics enhanced aggregated command are aggregated. This field must be configured so that the enhanced aggregated statistics are displayed.</td>
</tr>
<tr>
<td>Bucket</td>
<td>Bucket index.</td>
</tr>
<tr>
<td>Start Time Index</td>
<td>Statistics that are aggregated depend on the interval configuration mode. The value depends on the interval configuration that is displayed.</td>
</tr>
<tr>
<td>RTT Values</td>
<td>Round-trip time statistics appear on the specified lines.</td>
</tr>
<tr>
<td>RTT Min/Avg/Max</td>
<td>Maximum values of the RTT that are observed in the latest cycle (*).</td>
</tr>
<tr>
<td>NumOfRTT</td>
<td>Number of successful round trips.</td>
</tr>
<tr>
<td>RTT Sum</td>
<td>Sum of all successful round-trip values, in milliseconds.</td>
</tr>
<tr>
<td>RTT Sum2</td>
<td>Sum of squares of the round-trip values, in milliseconds.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a Disconnect</td>
<td>Number of failed operations due to a disconnect.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a Timeout</td>
<td>Number of failed operations due to a timeout.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a Busy</td>
<td>Number of failed operations due to a busy error.</td>
</tr>
<tr>
<td>Number of Failed Operations due to a No Connection</td>
<td>Error that refers to the case in which the control connection cannot be established.</td>
</tr>
</tbody>
</table>
**Field** | **Description**
---|---
Number of Failed Operations due to an Internal Error | Number of failed operations due to an internal error.
Number of Failed Operations due to a Sequence Error | Number of failed operations due to a sequence error.
Number of Failed Operations due to a Verify Error | Number of failed operations due to a verify error.

**Related Commands**

Command	Description
show ipsla statistics, on page 202 | Displays the operational data for the IP SLA operation. |
show ipsla statistics aggregated, on page 205 | Displays the statistical errors for all the IP SLA operations or for a specified operation. |
show ipsla twamp connection

To display the Two-Way Active Management Protocol (TWAMP) connections, use the `show ipsla twamp connection` command in the EXEC mode.

```
show ipsla twamp connection [detail source-ip | requests]
```

**Syntax Description**

- **detail source-ip** Displays details of the connection for a specified source-ip.
- **requests** Displays request details.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-services</td>
<td>read</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to run the `show ipsla twamp connection` command with the `requests` keyword:

```
RP/0/RSP0/CPU0:router # show ipsla twamp connection requests
```
show ipsla twamp session

To display the Two-way Active Management Protocol (TWAMP) sessions, use the `show ipsla twamp session` command in the EXEC mode.

```
show ipsla twamp session
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>source-ip</td>
<td>host-name</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
</table>

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to run `show ipsla twamp session` command:

```
RP/0/RSP0/CPU0:router # show ipsla twamp session
```
**show ipsla twamp standards**

To display the Two-way Active Management Protocol (TWAMP) standards, use the `show ipsla twamp standards` command in the EXEC mode.

The relevant RFC standards for the TWAMP server and TWAMP reflector are indicated.

### Syntax Description
This command has no keywords or arguments.

### Command Default
None

### Command Modes
EXEC mode

### Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
|         | This command was introduced.
| 5.1.1   |                            |

### Usage Guidelines
No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-services</td>
<td>read</td>
</tr>
</tbody>
</table>

### Example
This example shows how to use the `show ipsla twamp standards` command:

```
RP/0/RSP0/CPU0:router # show ipsla twamp standards
Feature Organization Standard
TWAMP Server IETF RFC5357
TWAMP Reflector IETF RFC5357
```
source address

To identify the address of the source device, use the source address command in the appropriate configuration mode. To use the best local address, use the no form of this command.

source address ipv4-address
no source address

Syntax Description

ipv4-address  IP address or hostname of the source device.

Command Default

IP SLA finds the best local address to the destination and uses it as the source address.

Command Modes

IP SLA UDP echo configuration
IP SLA UDP jitter configuration
IP SLA ICMP path-jitter configuration
IP SLA ICMP path-echo configuration
IP SLA ICMP echo configuration
IP SLA MPLS LSP ping configuration
IP SLA MPLS LSP trace configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to designate an IP address for the source address command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# source address 192.0.2.9
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
source port

To identify the port of the source device, use the `source port` command in the appropriate configuration mode. To use the unused port number, use the `no` form of this command.

```
source port port
no source port
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>port</code></td>
<td>Identifies the port number of the source device. Range is 1 to 65535.</td>
</tr>
</tbody>
</table>

**Command Default**

IP SLA uses an unused port that is allocated by system.

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `source port` command is not supported to configure ICMP operations; it is supported only to configure UDP operations.

The specified source port should not be used in other IPSLA operations configured on the same source IP address and source VRF.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to designate a port for the `source port` command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# source port 11111
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
**start-time**

To determine the time when the operation or MPLS LSP monitor instance starts, use the `start-time` command in the appropriate configuration mode. To stop the operation and place it in the default state, use the `no` form of this command.

```
start-time {hh:mm:ss [{day|month} day year]}|after hh:mm:ss|now|pending}
no start-time
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hh:mm:ss</code></td>
<td>Absolute start time in hours, minutes, and seconds. You can use the 24-hour clock notation. For example, the <code>start-time 01:02</code> is defined as 1:02 am, or <code>start-time 13:01:30</code> is defined as start at 1:01 pm and 30 seconds. The current day is used; unless, you specify a <code>month</code> and <code>day</code>.</td>
</tr>
<tr>
<td><code>month</code></td>
<td>(Optional) Name of the month to start the operation. When you use the <code>month</code> argument, you are required to specify a day. You can specify the month by using the full English name or the first three letters of the month.</td>
</tr>
<tr>
<td><code>day</code></td>
<td>(Optional) Number of the day, in the range of 1 to 31, to start the operation. In addition, you must specify a month.</td>
</tr>
<tr>
<td><code>year</code></td>
<td>(Optional) Year in the range of 1993 to 2035.</td>
</tr>
<tr>
<td><code>after</code></td>
<td>Specifies that the operation starts at <code>hh</code> hours, <code>mm</code> minutes, and <code>ss</code> seconds after the <code>start-time</code> command is used.</td>
</tr>
<tr>
<td><code>now</code></td>
<td>Specifies that the operation should start immediately.</td>
</tr>
<tr>
<td><code>pending</code></td>
<td>Specifies that no information is collected. The default value is the <code>pending</code> keyword.</td>
</tr>
</tbody>
</table>

**Command Default**

If a month and day are not specified, the current month and day are used.

**Command Modes**

- IP SLA schedule configuration
- IP SLA MPLS LSP monitor schedule configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the `start-time` command is used in IP SLA operation mode, it configures the start time for the specific operation being configured. If the `start-time` command is used in IP SLA MPLS LSP monitor mode, it configures the start time for all monitor instances associated with the monitored provider edge (PE) routers.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>read, write</td>
<td></td>
</tr>
</tbody>
</table>
Examples

The following example shows how to use the `start-time` command option for the schedule operation:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# schedule operation 1
RP/0/RSP0/CPU0:router(config-ipsla-sched)# start-time after 01:00:00
```

The following example shows how to use the `start-time` command in IP SLA MPLS LSP monitor schedule configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# schedule monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-sched)# start-time after 01:00:00
```

The following example shows how to use the `start-time` command and specify a year for a scheduled operation:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla operation 2
RP/0/RSP0/CPU0:router(config-ipsla-op)# type icmp echo
RP/0/RSP0/CPU0:router(config-ipsla-icmp-echo)# destination address 192.0.2.9
RP/0/RSP0/CPU0:router(config-ipsla-icmp-echo)# exit
RP/0/RSP0/CPU0:router(config-ipsla-op)# exit
RP/0/RSP0/CPU0:router(config-ipsla)# schedule operation 2
RP/0/RSP0/CPU0:router(config-ipsla-sched)# start 20:0:0 february 7 2008
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>life, on page 128</td>
<td>Specifies the length of time to execute.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>recurring, on page 169</td>
<td>Indicates that the operation starts automatically at the specified time and for the specified duration every day.</td>
</tr>
<tr>
<td>schedule monitor, on page 181</td>
<td>Schedules an IP SLA MPLS LSP monitoring instance.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
statistics

To set the statistics collection parameters for the operation, use the `statistics` command in the appropriate configuration mode. To remove the statistics collection or use the default value, use the `no` form of this command.

```
statistics {hourly|interval seconds}
no statistics {hourly|interval seconds}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hourly</td>
<td>Sets the distribution for statistics configuration that is aggregated for over an hour.</td>
</tr>
<tr>
<td>interval</td>
<td>Collects statistics over a specified time interval. Interval (in seconds) over which to collect statistics. Range is 1 to 3600 seconds.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command Modes**

IP SLA operation UDP jitter configuration
IP SLA MPLS LSP ping configuration
IP SLA MPLS LSP trace configuration
IP SLA MPLS LSP monitor ping configuration
IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `statistics interval` command is not supported for the configuration of ICMP path-echo and ICMP path-jitter operations, nor for the configuration of MPLS LSP monitor instances.

If the `statistics` command is used in IP SLA operation mode, it configures the statistics collection for the specific operation being configured. If the `statistics` command is used in IP SLA MPLS LSP monitor mode, it configures the statistics collection for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to set the number of hours in which statistics are maintained for the IP SLA UDP jitter operation for the `statistics` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
```
The following example shows how to collect statistics for a specified time interval, using the **statistics** command in an IP SLA UDP jitter operation:

```plaintext
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# statistics hourly
```

The following example shows how to set the number of hours in which statistics are maintained for the IP SLA MPLS LSP monitor ping operation, using the **statistics** command:

```plaintext
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-ping)# statistics hourly
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>buckets (statistics hourly), on page 101</td>
<td>Sets the number of hours in which statistics are kept.</td>
</tr>
<tr>
<td>buckets (statistics interval), on page 102</td>
<td>Refers to the data buckets in which the enhanced history statistics are kept.</td>
</tr>
<tr>
<td>distribution count, on page 109</td>
<td>Sets the number of statistics distributions that are kept for each hop during the lifetime of the IP SLA operation.</td>
</tr>
<tr>
<td>distribution interval, on page 111</td>
<td>Sets the time interval (in milliseconds) for each statistical distribution.</td>
</tr>
<tr>
<td>monitor, on page 139</td>
<td>Configures an IP SLA MPLS LSP monitor instance.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>maximum hops, on page 135</td>
<td>Sets the number of hops in which statistics are maintained for each path for the IP SLA operation.</td>
</tr>
<tr>
<td>maximum paths (IP SLA), on page 137</td>
<td>Sets the number of paths in which statistics are maintained for each hour for an IP SLA operation.</td>
</tr>
</tbody>
</table>
tag (IP SLA)

To create a user-specified identifier for an IP SLA operation, use the `tag` command in the appropriate configuration mode. To unset the tag string, use the `no` form of this command.

```
tag [text]
no tag
```

**Syntax Description**

- `text` (Optional) Specifies a string label for the IP SLA operation.

**Command Default**

No tag string is configured.

**Command Modes**

- IP SLA UDP echo configuration
- IP SLA UDP jitter configuration
- IP SLA ICMP path-jitter configuration
- IP SLA ICMP path-echo configuration
- IP SLA ICMP echo configuration
- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the `tag` command is used in IP SLA operation mode, it configures the user-defined tag string for the specific operation being configured. If the `tag` command is used in IP SLA MPLS LSP monitor mode, it configures the user-defined tag string for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

**Task ID**

- `monitor` read, write

**Examples**

The following example shows how to use the `tag` command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
```
The following example shows how to use the `tag` command in IP SLA MPLS LSP monitor ping configuration mode:

```
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 1
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-ping)# tag mplslm-tag
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>CONFIGURES AN IP SLA OPERATION.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>SCHEDULES AN IP SLA OPERATION.</td>
</tr>
</tbody>
</table>
**target ipv4**

To specify the IPv4 address of the target router to be used in an MPLS LSP ping or MPLS LSP trace operation, use the `target ipv4` command in the appropriate configuration mode. To unset the address, use the `no` form of this command.

```
target ipv4 destination-address destination-mask
no target ipv4
```

**Syntax Description**
- `destination-address`  IPv4 address of the target device to be tested.
- `destination-mask`  Number of bits in the network mask of the target address. The network mask can be specified in either of two ways:
  - The network mask can be a four-part dotted decimal address. For example, 255.0.0.0 indicates that each bit equal to 1 means the corresponding address bit belongs to the network address.
  - The network mask can be indicated as a slash (/) and number. For example, /8 indicates that the first 8 bits of the mask are ones, and the corresponding bits of the address are network address.

**Command Default**  None

**Command Modes**
- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `target ipv4` command to specify the IPv4 address of the target router at the end of the LSP to be tested or traced and to indicate the destination as an Label Distribution Protocol (LDP) IPv4 address. The target IPv4 address identifies the appropriate label stack associated with the LSP.

**Note**

Using the `target ipv4` command, you can configure only one LDP IPv4 address as the target in an MPLS LSP ping or trace operation. If you enter the command a second time and configure a different IPv4 target address, you overwrite the first IPv4 address.

An MPLS LSP ping operation tests connectivity in the LSP using verification on the specified Forwarding Equivalence Class (FEC)—in this case, LDP IPv4 prefix—between the ping origin and the egress node identified with the `target ipv4` command. This test is carried out by sending an MPLS echo request along the same data path as other packets belonging to the FEC. When the ping packet reaches the end of the path, it is sent to the control plane of the egress label switching router (LSR), which then verifies that it is indeed an egress for the LSP. The MPLS echo request contains information about the LSP that is being verified.

In an MPLS network, an MPLS LSP trace operation traces LSP paths to the target router identified with the `target ipv4` command. In the verification of LSP routes, a packet is sent to the control plane of each transit node.
LSR, which performs various checks, including one that determines if it is a transit LSR for the LSP path. Each transit LSR also returns information related to the LSP being tested (that is, the label bound to the LDP IPv4 prefix).

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `target ipv4` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-ping)# target ipv4 192.168.1.4 255.255.255.255
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
target pseudowire

To specify the pseudowire as the target to be used in an MPLS LSP ping operation, use the `target pseudowire` command in IP SLA MPLS LSP ping configuration mode. To unset the target, use the `no` form of this command.

```
target pseudowire destination-address circuit-id
no target pseudowire
```

Syntax Description

- `destination-address` IPv4 address of the target device to be tested.
- `circuit-id` Virtual circuit identifier. Range is 1 to 4294967295.

Command Default

No default behavior or values

Command Modes

IP SLA MPLS LSP ping configuration

Command History

- **Release 3.7.2** This command was introduced.

Usage Guidelines

Use the `target pseudowire` command to specify a target router and to indicate the destination as a Layer 2 VPN pseudowire in an MPLS LSP ping operation. The `target pseudowire` command identifies the target address and the virtual circuit (VC) identifier.

Note

Using the `target pseudowire` command, you can configure only one pseudowire address as the target in an MPLS LSP ping operation. If you use the command a second time and configure a different pseudowire target address, the first pseudowire address is overwritten.

A pseudowire target of the LSP ping operation allows active monitoring of statistics on Pseudowire Edge-to-Edge (PWE3) services across an MPLS network. PWE3 connectivity verification uses the Virtual Circuit Connectivity Verification (VCCV).

For more information on VCCV, refer to the VCCV draft, “Pseudowire Virtual Circuit Connectivity Verification (VCCV)” on the IETF web page.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to use the `target pseudowire` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
```
RP/0/RSP0/CPU0:router (config-ipsla-op) # type mpls lsp ping
RP/0/RSP0/CPU0:router (config-ipsla-mpls-lsp-trace) # target pseudowire 192.168.1.4 4211

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
**target traffic-eng**

To specify the target MPLS traffic engineering tunnel to be used in an MPLS LSP ping or MPLS LSP trace operation, use the `target traffic-eng` command in the appropriate configuration mode. To unset the tunnel, use the `no` form of this command.

```
target traffic-eng tunnel tunnel-interface
no target traffic-eng
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>tunnel tunnel-interface</code></td>
<td>Tunnel ID of an MPLS traffic-engineering tunnel (for example, tunnel 10) configured on the router. Range is 0 to 65535.</td>
</tr>
</tbody>
</table>

**Command Default**

No default behavior or values

**Command Modes**

IP SLA MPLS LSP ping configuration

IP SLA MPLS LSP trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `target traffic-eng` command to specify a target router and to indicate the destination as an MPLS traffic-engineering (TE) tunnel in an MPLS LSP ping or MPLS LSP trace operation. The `target traffic-eng` command identifies the tunnel interface and the appropriate label stack associated with the LSP to be pinged or traced. An LSP tunnel interface is the head-end of a unidirectional virtual link to a tunnel destination.

**Note**

Using the `target traffic-eng` command, you can configure only one MPLS TE tunnel as the target in an MPLS LSP ping or trace operation. If you enter the command a second time and configure a different tunnel interfaces, you overwrite the first tunnel ID.

An IP SLA ping operation tests connectivity in the LSP using verification on the specified Forwarding Equivalence Class (FEC)—in this case, MPLS TE tunnel—between the ping origin and the egress node identified with the `target traffic-eng` command. This test is carried out by sending an MPLS echo request along the same data path as other packets belonging to the tunnel. When the ping packet reaches the end of the path, it is sent to the control plane of the egress label switching router (LSR), which then verifies that it is indeed an egress for the MPLS TE tunnel. The MPLS echo request contains information about the tunnel whose LSP path is being verified.

In an MPLS network, an IP SLA trace operation traces the LSP paths to a target router identified with the `target traffic-eng` command. In the verification of LSP routes, a packet is sent to the control plane of each transit LSR, which performs various checks, including one that determines if it is a transit LSR for the LSP path. Each transit LSR also returns information related to the MPLS TE tunnel to see if the local forwarding information matches what the routing protocols determine as the LSP path.

MPLS traffic engineering automatically establishes and maintains LSPs across the backbone. The path that an LSP uses is determined by the LSP resource requirements and network resources, such as bandwidth.
For more information on MPLS traffic-engineering tunnels, refer to *MPLS Traffic Engineering and Enhancements*.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

The following example shows how to use the **target traffic-eng tunnel** command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp trace
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-trace)# target traffic-eng tunnel 101
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
threshold

To set the lower-limit and upper-limit values, use the `threshold` command in IP SLA reaction condition configuration mode. To use the default value, use the `no` form of this command.

```
threshold lower-limit value upper-limit value
no threshold lower-limit value upper-limit value
```

**Syntax Description**

- `lower-limit value` Specifies the threshold lower-limit value. Range is 1 to 4294967295 ms. Default `lower-limit` value is 3000 ms.

- `upper-limit value` Specifies the threshold upper-limit value. Range is 5000 to 4294967295 ms. Default `upper-limit` value is 5000 ms.

**Command Default**

- `lower-limit value`: 3000 ms
- `upper-limit value`: 5000 ms

**Command Modes**

- IP SLA reaction condition configuration

**Command History**

- **Release 3.7.2** This command was introduced.

**Usage Guidelines**

The `threshold` command is supported only when used with the `react` command and `jitter-average` and `packet-loss` keywords.

**Task ID**

- **Task ID**
  - `monitor`, `read`, `write`

**Examples**

The following example shows how to set the lower-limit and upper-limit values for the `react` command with the `jitter-average` keyword for the `threshold` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react jitter-average
RP/0/RSP0/CPU0:router(config-ipsla-react-cond)# threshold lower-limit 8000 upper-limit 10000
```

The following example shows how to set the lower-limit and upper-limit values for the `react` command with the `packet-loss` keyword for the `threshold` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
```
RP/0/RSP0/CPU0:router(config-ipsla-react)# react packet-loss dest-to-source
RP/0/RSP0/CPU0:router(config-ipsla-react-cond)# threshold lower-limit 8000 upper-limit 10000

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>reaction operation, on page 166</td>
<td>Configures certain actions that are based on events under the control of the IP SLA agent.</td>
</tr>
<tr>
<td></td>
<td>react, on page 158</td>
<td>Specifies an element to be monitored for a reaction.</td>
</tr>
<tr>
<td></td>
<td>threshold type average, on page 237</td>
<td>Takes action on average values to violate a threshold.</td>
</tr>
<tr>
<td></td>
<td>threshold type consecutive, on page 239</td>
<td>Takes action after a number of consecutive violations.</td>
</tr>
<tr>
<td></td>
<td>threshold type immediate, on page 241</td>
<td>Takes action immediately upon a threshold violation.</td>
</tr>
<tr>
<td></td>
<td>threshold type xofy, on page 243</td>
<td>Takes action upon X violations in Y probe operations.</td>
</tr>
</tbody>
</table>
threshold type average

To take action on average values to violate a threshold, use the `threshold type average` command in IP SLA reaction condition configuration mode. To clear the threshold type (reaction will never happen), use the `no` form of this command.

```
threshold type average number-of-probes
no threshold type
```

**Syntax Description**

- `number-of-probes` When the average of the last five values for the monitored element exceeds the upper threshold or the average of the last five values for the monitored element drops below the lower threshold, the action is performed as defined by the `action` command. Range is 1 to 16.

**Command Default**

If there is no default value, no threshold type is configured.

**Command Modes**

IP SLA reaction condition configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `threshold type average` command is supported only when used with the `react` command and `jitter-average`, `packet-loss`, and `rtt` keywords.

**Task ID**

- Task ID
- Operations
  - monitor
  - read, write

**Examples**

The following example shows how to set the number of probes for the `react` command with the `jitter-average` keyword for the `threshold type average` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react jitter-average
RP/0/RSP0/CPU0:router(config-ipsla-react-cond)# threshold type average 8
```

The following example shows how to set the number of probes for the `react` command with the `packet-loss` keyword for the `threshold type average` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react packet-loss dest-to-source
RP/0/RSP0/CPU0:router(config-ipsla-react-cond)# threshold type average 8
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>action (IP SLA), on page 96</td>
<td>Specifies what action or combination of actions the operation performs.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>reaction operation, on page 166</td>
<td>Configures certain actions that are based on events under the control of the IP SLA agent.</td>
</tr>
<tr>
<td>react, on page 158</td>
<td>Specifies an element to be monitored for a reaction.</td>
</tr>
<tr>
<td>threshold, on page 235</td>
<td>Sets the lower-limit and upper-limit values.</td>
</tr>
<tr>
<td>threshold type consecutive, on page 239</td>
<td>Takes action after a number of consecutive violations.</td>
</tr>
<tr>
<td>threshold type immediate, on page 241</td>
<td>Takes action immediately upon a threshold violation.</td>
</tr>
<tr>
<td>threshold type xofy, on page 243</td>
<td>Takes action upon X violations in Y probe operations.</td>
</tr>
</tbody>
</table>
threshold type consecutive

To take action after a number of consecutive violations, use the \texttt{threshold type consecutive} command in the appropriate configuration mode. To clear the threshold type (reaction will never happen), use the \texttt{no} form of this command.

\texttt{threshold type consecutive occurrences}
\texttt{no threshold type}

\textbf{Syntax Description}

\begin{tabular}{|l|}
\hline
\textit{occurrences} \hspace{1cm} When the reaction condition is set for a consecutive number of occurrences, there is no default value. The number of occurrences is set when specifying the threshold type. The number of consecutive violations is 1 to 16. \\
\hline
\end{tabular}

\textbf{Command Default}

No default behavior or values

\textbf{Command Modes}

IP SLA reaction condition configuration

IP SLA MPLS LSP monitor reaction condition configuration

\textbf{Command History}

\begin{tabular}{|l|l|}
\hline
\textit{Release} & \textit{Modification} \\
\hline
Release 3.7.2 & This command was introduced. \\
\hline
\end{tabular}

\textbf{Usage Guidelines}

If the \texttt{threshold type consecutive} command is used in IP SLA reaction condition mode, it configures the threshold for the specific operation being configured. If the \texttt{threshold type consecutive} command is used in IP SLA MPLS LSP monitor reaction condition configuration mode, it configures the threshold for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

\textbf{Task ID}

\begin{tabular}{|l|l|}
\hline
\textit{Task ID} & \textit{Operations} \\
\hline
monitor & read, write \\
\hline
\end{tabular}

\textbf{Examples}

The following example shows how to use the \texttt{threshold type consecutive} command:

\begin{verbatim}
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react jitter-average
RP/0/RSP0/CPU0:router(config-ipsla-react-cond)# threshold type consecutive 8
\end{verbatim}

The following example shows how to use the \texttt{threshold type consecutive} command in IP SLA MPLS LSP monitor reaction condition configuration mode:

\begin{verbatim}
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mlspalm)# reaction monitor 2
\end{verbatim}
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-react)# react connection-loss
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-react-cond)# threshold type consecutive 2

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>action (IP SLA), on page 96</td>
<td>Specifies what action or combination of actions the operation performs.</td>
</tr>
<tr>
<td></td>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>reaction monitor, on page 164</td>
<td>Configures MPLS LSP monitoring reactions.</td>
</tr>
<tr>
<td></td>
<td>reaction operation, on page 166</td>
<td>Configures certain actions that are based on events under the control of the IP SLA agent.</td>
</tr>
<tr>
<td></td>
<td>react, on page 158</td>
<td>Specifies an element to be monitored for a reaction.</td>
</tr>
<tr>
<td></td>
<td>threshold, on page 235</td>
<td>Sets the lower-limit and upper-limit values.</td>
</tr>
<tr>
<td></td>
<td>threshold type average, on page 237</td>
<td>Takes action on average values to violate a threshold.</td>
</tr>
<tr>
<td></td>
<td>threshold type immediate, on page 241</td>
<td>Takes action immediately upon a threshold violation.</td>
</tr>
<tr>
<td></td>
<td>threshold type xofy, on page 243</td>
<td>Takes action upon X violations in Y probe operations.</td>
</tr>
</tbody>
</table>
threshold type immediate

To take action immediately upon a threshold violation, use the threshold type immediate command in the appropriate configuration mode. To clear the threshold type (reaction will never happen), use the no form of this command.

threshold type immediate
no threshold type

Syntax Description
This command has no keywords or arguments.

Command Default
If there is no default value, no threshold type is configured.

Command Modes
IP SLA reaction condition configuration
IP SLA MPLS LSP monitor reaction condition configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
When the reaction conditions, such as threshold violations, are met for the monitored element, the action is immediately performed as defined by the action command.

If the threshold type immediate command is used in IP SLA reaction condition mode, it configures the threshold for the specific operation being configured. If the threshold type immediate command is used in IP SLA MPLS LSP monitor reaction condition configuration mode, it configures the threshold for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to use the threshold type immediate command:

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react jitter-average
RP/0/RSP0/CPU0:router(config-ipsla-react-cond)# threshold type immediate

The following example shows how to use the threshold type immediate command in IP SLA MPLS LSP monitor reaction condition configuration mode:

RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# reaction monitor 2
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-react)# react connection-loss
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-react-cond)# threshold type immediate

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>action (IP SLA), on page 96</td>
<td>Specifies what action or combination of actions the operation performs.</td>
</tr>
<tr>
<td></td>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>reaction monitor, on page 164</td>
<td>Configures MPLS LSP monitoring reactions.</td>
</tr>
<tr>
<td></td>
<td>reaction operation, on page 166</td>
<td>Configures certain actions that are based on events under the control of the IP SLA agent.</td>
</tr>
<tr>
<td></td>
<td>react, on page 158</td>
<td>Specifies an element to be monitored for a reaction.</td>
</tr>
<tr>
<td></td>
<td>threshold, on page 235</td>
<td>Sets the lower-limit and upper-limit values.</td>
</tr>
<tr>
<td></td>
<td>threshold type average, on page 237</td>
<td>Takes action on average values to violate a threshold.</td>
</tr>
<tr>
<td></td>
<td>threshold type consecutive, on page 239</td>
<td>Takes action after a number of consecutive violations.</td>
</tr>
<tr>
<td></td>
<td>threshold type xofy, on page 243</td>
<td>Takes action upon X violations in Y probe operations.</td>
</tr>
</tbody>
</table>
threshold type xofy

To take action upon X violations in Y probe operations, use the `threshold type xofy` command in IP SLA reaction condition configuration mode. To clear the threshold type (reaction will never happen), use the `no` form of this command.

```
threshold type xofy x-value y-value
no threshold type
```

**Syntax Description**

```
x-value y-value
```

When the reaction conditions, such as threshold violations, are met for the monitored element after some x number of violations within some other y number of probe operations (for example, x of y), the action is performed as defined by the `action` command. Default is 5 for both x-value and y-value; for example, `xofy 5 5`. Range is 1 to 16.

**Command Default**

If there is no default value, no threshold type is configured.

**Command Modes**

IP SLA reaction condition configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

- read
- write

**Examples**

The following example shows how to use the `threshold type xofy` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# reaction operation 432
RP/0/RSP0/CPU0:router(config-ipsla-react)# react jitter-average
RP/0/RSP0/CPU0:router(config-ipsla-react-cond)# threshold type xofy 1 5
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>action (IP SLA), on page 96</td>
<td>Specifies what action or combination of actions the operation performs.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>reaction operation, on page 166</td>
<td>Configures certain actions that are based on events under the control of the IP SLA agent.</td>
</tr>
<tr>
<td>react, on page 158</td>
<td>Specifies an element to be monitored for a reaction.</td>
</tr>
<tr>
<td>threshold, on page 235</td>
<td>Sets the lower-limit and upper-limit values.</td>
</tr>
<tr>
<td>threshold type average, on page 237</td>
<td>Takes action on average values to violate a threshold.</td>
</tr>
<tr>
<td>threshold type consecutive, on page 239</td>
<td>Takes action after a number of consecutive violations.</td>
</tr>
<tr>
<td>threshold type immediate, on page 241</td>
<td>Takes action immediately upon a threshold violation.</td>
</tr>
</tbody>
</table>
timeout (IP SLA)

To set the probe or control timeout interval, use the timeout command in the appropriate configuration mode. To use the default value, use the no form of this command.

```
timeout milliseconds
no timeout
```

**Syntax Description**

`milliseconds` Sets the amount of time (in milliseconds) that the IP SLA operation waits for a response from the request packet. Range is 1 to 604800000.

**Command Default**

None.

**Command Modes**

- IP SLA UDP echo configuration
- IP SLA UDP jitter configuration
- IP SLA ICMP path-jitter configuration
- IP SLA ICMP path-echo configuration
- IP SLA ICMP echo configuration
- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If the `timeout` command is used in IP SLA operation mode, it configures the amount of time that a specific IP SLA operation waits for a response from the request packet. If the `timeout` command is used in IP SLA MPLS LSP monitor mode, it configures the amount of time that all operations associated with the monitored provider edge (PE) routers wait for a response from the request packet. This configuration is inherited by all LSP operations that are created automatically.

**Note**

The IP SLA responder needs at least one second to open a socket and program Local Packet Transport Services (LPTS). Therefore, configure the IP SLA timeout to at least 2000 milliseconds.
**Examples**

The following example shows how to use the `timeout` command in IP SLA UDP jitter configuration mode:

```plaintext
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# timeout 10000
```

The following example shows how to use the `timeout` command in IP SLA MPLS LSP monitor configuration mode:

```plaintext
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 2
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-ping)# timeout 10000
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
**tos**

To set the type of service (ToS) in a probe packet, use the `tos` command in the appropriate configuration mode. To use the default value, use the `no` form of this command.

```
tos number
no tos
```

**Syntax Description**

- `number` Type of service number. Range is 0 to 255.

**Command Default**

The type of service number is 0.

**Command Modes**

- IP SLA UDP echo configuration
- IP SLA UDP jitter configuration
- IP SLA ICMP path-jitter configuration
- IP SLA ICMP path-echo configuration
- IP SLA ICMP echo configuration

**Command History**

- **Release 3.7.2** This command was introduced.

**Usage Guidelines**

The ToS value is an 8-bit field in IP headers. The field contains information, such as precedence and ToS. The information is useful for policy routing and for features like Committed Access Rate (CAR) in which routers examine ToS values. When the type of service is defined for an operation, the IP SLA probe packet contains the configured tos value in the IP header.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `tos` command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# tos 60
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
**ttl**

To specify the time-to-live (TTL) value in the MPLS label of echo request packets, use the `ttl` command in the appropriate configuration mode. To return to the default value, use the `no` form of this command.

```
ttl time-to-live
no ttl
```

**Syntax Description**

- `time-to-live` Maximum hop count for an echo request packet. Valid values are from 1 to 255.

**Command Default**

- For an MPLS LSP ping operation, the default time-to-live value is 255.
- For an MPLS LSP trace operations, the default time-to-live value is 30.

**Command Modes**

- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration
- IP SLA MPLS LSP monitor ping configuration
- IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Release 3.7.2</td>
</tr>
<tr>
<td></td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `ttl` command to set the maximum number of hops allowed for echo request packets in an MPLS LSP ping or MPLS LSP trace operation. Note that the number of possible hops differs depending the type of IP SLA operation:

- For MPLS LSP ping operations, valid values are from 1 to 255 and the default is 255.
- For MPLS LSP trace operations, valid values are from 1 to 30 and the default is 30.

If the `ttl` command is used in IP SLA operation mode, it configures the time-to-live value for the specific operation being configured. If the `ttl` command is used in IP SLA MPLS LSP monitor mode, it configures the time-to-live value for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read,</td>
</tr>
<tr>
<td></td>
<td>write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `ttl` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
```
RP/0/RSP0/CPU0:router (config-ipsla-op) # **type mpls lsp ping**
RP/0/RSP0/CPU0:router (config-ipsla-mpls-lsp-ping) # **ttl 200**

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
<td></td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
<td></td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
<td></td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
<td></td>
</tr>
</tbody>
</table>
**type icmp echo**

To use the ICMP echo operation type, use the `type icmp echo` command in IP SLA operation configuration mode. To remove the operation, use the `no` form of this command.

```
type icmp echo
no type icmp echo
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

No default behavior or values

**Command Modes**

IP SLA operation configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `type icmp echo` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type icmp echo
RP/0/RSP0/CPU0:router(config-ipsla-icmp-echo)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
**type icmp path-echo**

To use the ICMP path-echo operation type, use the `type icmp path-echo` command in IP SLA operation configuration mode. To remove the operation, use the `no` form of this command.

```plaintext
 type icmp path-echo
 no type icmp path-echo
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

None

**Command Modes**

IP SLA operation configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Examples**

The following example shows how to use the `type icmp path-echo` command:

```plaintext
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type icmp path-echo
RP/0/RSP0/CPU0:router(config-ipsla-icmp-path-echo)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
**type icmp path-jitter**

To use the ICMP path-jitter operation type, use the **type icmp path-jitter** command in IP SLA operation configuration mode. To remove the operation, use the **no** form of this command.

```plaintext
 type icmp path-jitter
 no type icmp path-jitter
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

No default behavior or values

**Command Modes**

IP SLA operation configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the **type icmp path-jitter** command:

```plaintext
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type icmp path-jitter
RP/0/RSP0/CPU0:router(config-ipsla-icmp-path-jitter)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
**type mpls lsp ping**

To verify the end-to-end connectivity of a label switched path (LSP) and the integrity of an MPLS network, use the `type mpls lsp ping` command in the appropriate configuration mode. To remove the operation, use the `no` form of this command.

```
type mpls lsp ping
no type mpls lsp ping
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

No default behavior or values

**Command Modes**

- IP SLA operation configuration
- IP SLA MPLS LSP monitor definition configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `type mpls lsp ping` command to configure parameters for an IP SLA LSP ping operation. After you enter the command, you enter IP SLA MPLS LSP Ping configuration mode.

An MPLS LSP ping operation tests connectivity between routers along an LSP path in an MPLS network and measures round-trip delay of the LSP by using an echo request and echo reply.

The MPLS LSP ping operation verifies LSP connectivity by using one of the supported Forwarding Equivalence Class (FEC) entities between the ping origin and egress node of each FEC. The following FEC types are supported for an MPLS LSP ping operation:

- IPv4 LDP prefixes (configured with the `target ipv4`, on page 229 command)
- MPLS TE tunnels (configured with the `target traffic-eng`, on page 233 command)
- Pseudowire (configured with the `target pseudowire`, on page 231 command)

For MPLS LSP monitor ping operations, only IPv4 LDP prefixes are supported.

If the `type mpls lsp ping` command is used in IP SLA operation configuration mode, it configures the parameters for the specific operation being configured. If the `type mpls lsp ping` command is used in IP SLA MPLS LSP monitor configuration mode, it configures the parameters for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `type mpls lsp ping` command:
The following example shows how to use the `type mpls lsp ping` command in IP SLA MPLS LSP monitor configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp ping
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-ping)#
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor, on page 139</td>
<td>Configures an IP SLA MPLS LSP monitor instance.</td>
</tr>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule monitor, on page 181</td>
<td>Schedules an IP SLA MPLS LSP monitoring instance.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
**type mpls lsp trace**

To trace LSP paths and localize network faults in an MPLS network, use the `type mpls lsp trace` command in the appropriate configuration mode. To remove the operation, use the `no` form of this command.

```
type mpls lsp trace
no type mpls lsp trace
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

None

**Command Modes**

- IP SLA operation configuration
- IP SLA MPLS LSP monitor definition configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `type mpls lsp trace` command to configure parameters for an IP SLA LSP trace operation. After you enter the command, you enter IP SLA MPLS LSP Trace configuration mode.

An MPLS LSP trace operation traces the hop-by-hop route of LSP paths to a target router and measures the hop-by-hop round-trip delay for IPv4 LDP prefixes and TE tunnel FECs in an MPLS network. Echo request packets are sent to the control plane of each transit label switching router (LSR). A transit LSR performs various checks to determine if it is a transit LSR for the LSP path. A trace operation allows you to troubleshoot network connectivity and localize faults hop-by-hop.

In an MPLS LSP trace operation, each transit LSR returns information related to the type of Forwarding Equivalence Class (FEC) entity that is being traced. This information allows the trace operation to check if the local forwarding information matches what the routing protocols determine as the LSP path.

An MPLS label is bound to a packet according to the type of FEC used for the LSP. The following FEC types are supported for an MPLS LSP trace operation:

- LDP IPv4 prefixes (configured with the `target ipv4`, on page 229 command)
- MPLS TE tunnels (configured with the `target traffic-eng`, on page 233 command)

For MPLS LSP monitor trace operations, only IPv4 LDP prefixes are supported.

If the `type mpls lsp trace` command is used in IP SLA operation configuration mode, it configures the parameters for the specific operation being configured. If the `type mpls lsp trace` command is used in IP SLA MPLS LSP monitor configuration mode, it configures the parameters for all operations associated with the monitored provider edge (PE) routers. This configuration is inherited by all LSP operations that are created automatically.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>
**Examples**

The following example shows how to use the `type mpls lsp trace` command:

```plaintext
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type mpls lsp trace
RP/0/RSP0/CPU0:router(config-ipsla-mpls-lsp-trace)#
```

The following example shows how to use the `type mpls lsp trace` command in IP SLA MPLS LSP monitor configuration mode:

```plaintext
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0:router(config-ipsla-mplslm)# monitor 2
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-def)# type mpls lsp trace
RP/0/RSP0/CPU0:router(config-ipsla-mplslm-lsp-trace)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule monitor, on page 181</td>
<td>Schedules an IP SLA MPLS LSP monitoring instance.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
**type udp echo**

To use the UDP echo operation type, use the `type udp echo` command in IP SLA operation configuration mode. To remove the operation, use the `no` form of this command.

```
type udp echo
no type udp echo
```

**Syntax Description**
This command has no keywords or arguments.

**Command Default**
None

**Command Modes**
IP SLA operation configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Examples**
The following example shows how to use the `type udp echo` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp echo
RP/0/RSP0/CPU0:router(config-ipsla-udp-echo)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
type udp jitter

To use the UDP jitter operation type, use the `type udp jitter` command in IP SLA operation configuration mode. To remove the operation, use the `no` form of this command.

```
type udp jitter
no type udp jitter
```

**Syntax Description**
This command has no keywords or arguments.

**Command Default**
None

**Command Modes**
IP SLA operation configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `type udp jitter` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
**type udp ipv4 address**

To configure a permanent port in the IP SLA responder for UDP echo or jitter operations, use the `type udp ipv4 address` command in IP SLA responder configuration mode. To remove the specified permanent port, use the `no` form of this command.

```
type udp ipv4 address ip-address port port
no type udp ipv4 address ip-address port port
```

**Syntax Description**
- `ip-address` Specifies the IPv4 address at which the operation is received.
- `port` Specifies the port number at which the operation is received. Range is identical to the one used for the subagent that is, 1 to 65355.

**Command Default**
If there is no default value, no permanent port is configured.

**Command Modes**
- IP SLA responder configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Task ID**
- Task ID
- Operations
  - monitor read, write

**Examples**
The following example shows how to configure a permanent port for the `type udp ipv4 address` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# responder
RP/0/RSP0/CPU0:router(config-ipsla-resp)# type udp ipv4 address 192.0.2.11 port 10001
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>responder, on page 168</td>
<td>Enables the IP SLA responder for a UDP echo or jitter operation.</td>
</tr>
</tbody>
</table>
verify-data

To check each IP SLA response for corruption, use the `verify-data` command in the appropriate configuration mode. To disable data corruption checking, use the `no` form of this command.

```
verify-data
no verify-data
```

**Syntax Description**
This command has no keywords or arguments.

**Command Default**
The `verify-data` command is disabled.

**Command Modes**
- IP SLA UDP echo configuration
- IP SLA UDP jitter configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mon</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**
The following example shows how to use the `verify-data` command in IP SLA UDP jitter configuration mode:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# verify-data
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
</tbody>
</table>
vrf (IP SLA)

To enable the monitoring of a Virtual Private Network (VPN) in an ICMP echo, ICMP path-echo, ICMP path-jitter, UDP echo, or UDP jitter operation, use the vrf command in the appropriate configuration mode. To disable VPN monitoring, use the no form of this command.

```
vrf vrf-name
no vrf
```

**Syntax Description**
- **vrf-name**  Name of the VPN. Maximum length is 32 alphanumeric characters.

**Command Default**
VPN monitoring is not configured for an IP SLA operation.

**Command Modes**
- IP SLA ICMP path-jitter configuration
- IP SLA ICMP path-echo configuration
- IP SLA ICMP echo configuration
- IP SLA UDP echo configuration
- IP SLA UDP jitter configuration
- IP SLA MPLS LSP ping configuration
- IP SLA MPLS LSP trace configuration

**Command History**
- **Release** 3.7.2  This command was introduced.

**Usage Guidelines**
Use the vrf command to configure a non-default VPN routing and forwarding (VRF) table for an IP SLA operation. A VPN is commonly identified using the name of a VRF table. If you use the vrf command in the configuration of an IP SLA operation, the vrf-name value is used to identify the VPN for the particular operation.

The default VRF table is used if no value is specified with the vrf command. If you enter a VPN name for an unconfigured VRF, the IP SLA operation fails and the following information is displayed in the results for the show  ipsla  statistics, on page 202 command:

```
Latest operation return code : VrfNameError
```

The vrf command is supported only to configure the following IP SLA operations:
- IP SLA ICMP echo
- IP SLA ICMP path-echo
- IP SLA ICMP path-jitter
- IP SLA UDP echo
- IP SLA UDP jitter
- IP SLA MPLS LSP ping
• IP SLA MPLS LSP trace

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `vrf` command:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# ipsla
RP/0/RSP0/CPU0:router(config-ipsla)# operation 1
RP/0/RSP0/CPU0:router(config-ipsla-op)# type udp jitter
RP/0/RSP0/CPU0:router(config-ipsla-udp-jitter)# vrf vpn2
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>operation, on page 142</td>
<td>Configures an IP SLA operation.</td>
</tr>
<tr>
<td>schedule operation, on page 182</td>
<td>Schedules an IP SLA operation.</td>
</tr>
<tr>
<td>type udp jitter, on page 259</td>
<td>Configures an IP SLA UDP jitter operation.</td>
</tr>
<tr>
<td>type icmp echo, on page 251</td>
<td>Configures an IP SLA ICMP echo operation.</td>
</tr>
<tr>
<td>type icmp path-echo, on page 252</td>
<td>Configures an IP SLA ICMP path-echo operation.</td>
</tr>
<tr>
<td>type icmp path-jitter, on page 253</td>
<td>Configures an IP SLA ICMP path-jitter operation.</td>
</tr>
<tr>
<td>type udp echo, on page 258</td>
<td>Configures an IP SLA UDP echo operation.</td>
</tr>
</tbody>
</table>
vrf (IP SLA MPLS LSP monitor)

To specify which virtual routing and forwarding instance (VRF) is monitored in an IP SLA MPLS LSP monitor ping or trace, use the `vrf` command in the the appropriate configuration mode. To revert to the monitoring of all VRFs, use the `no` form of this command.

```
vrf vrf-name
no vrf
```

**Syntax Description**

`vrf-name` Name of the VRF. Maximum length is 32 alphanumeric characters.

**Command Default**

All VRFs are monitored.

**Command Modes**

IP SLA MPLS LSP monitor ping configuration

IP SLA MPLS LSP monitor trace configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `vrf` command in IP SLA MPLS LSP monitor configuration mode specifies to monitor a specific VRF in ping and trace operations. The default is that all VRFs are monitored.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to use the `vrf` command in IP SLA MPLS LSP monitor configuration mode:

```
RP/0/RSP0/CPU0# configure
RP/0/RSP0/CPU0(config)# ipsla
RP/0/RSP0/CPU0(config-ipsla)# mpls lsp-monitor
RP/0/RSP0/CPU0(config-ipsla-mpls-lm)# monitor 2
RP/0/RSP0/CPU0(config-ipsla-mpls-lm-def)# type mpls lsp trace
RP/0/RSP0/CPU0(config-ipsla-mpls-lm-lsp-trace)# vrf vpn-lsp
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor, on page 139</td>
<td>Configures an IP SLA MPLS LSP monitor instance.</td>
</tr>
<tr>
<td>type mpls lsp ping, on page 254</td>
<td>Tests connectivity in an LSP path in an MPLS VPN.</td>
</tr>
<tr>
<td>type mpls lsp trace, on page 256</td>
<td>Traces the hop-by-hop route of an LSP path in an MPLS VPN.</td>
</tr>
</tbody>
</table>
Logging Services Commands

This module describes the Cisco IOS XR software commands to configure system logging (syslog) for system monitoring on the router.

To use commands of this module, you must be in a user group associated with a task group that includes appropriate task IDs. If the user group assignment is preventing you from using any command, contact your AAA administrator for assistance.

For detailed information about logging concepts, configuration tasks, and examples, see the Implementing Logging Services module in the System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

For alarm management and logging correlation commands, see the Alarm Management and Logging Correlation Commands module in the System Monitoring Command Reference for Cisco ASR 9000 Series Routers.

For detailed information about alarm and logging correlation concepts, configuration tasks, and examples, see the Implementing Alarm Logs and Logging Correlation module in the System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

- archive-length, on page 267
- archive-size, on page 268
- clear logging, on page 269
- device, on page 270
- discriminator (logging), on page 271
- file-size, on page 273
- frequency (logging), on page 274
- logging, on page 275
- logging archive, on page 277
- logging buffered, on page 279
- logging console, on page 281
- logging console disable, on page 283
- logging events link-status, on page 284
- logging events link-status (interface), on page 285
- logging facility, on page 288
- logging file, on page 290
- logging history, on page 292
- logging history size, on page 294
- logging hostnameprefix, on page 295
- logging ipv4/ipv6, on page 296
• logging localfilesize, on page 299
• logging monitor, on page 300
• logging source-interface, on page 301
• logging suppress deprecated, on page 303
• logging suppress duplicates, on page 304
• logging trap, on page 305
• process shutdown pam_manager, on page 306
• process start pam_manager, on page 307
• service timestamps, on page 308
• severity, on page 310
• show logging, on page 311
• show logging history, on page 315
• terminal monitor, on page 317
• threshold (logging), on page 318
archive-length

To specify the length of time that logs are maintained in the logging archive, use the `archive-length` command in logging archive configuration mode. To return to the default, use the `no` form of this command.

```
archive-length weeks
no archive-length
```

**Syntax Description**

| weeks | Length of time (in weeks) that logs are maintained in the archive. Range is 0 to 4294967295. |

**Command Default**

`weeks`: 4 weeks

**Command Modes**

Logging archive configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `archive-length` command to specify the maximum number of weeks that the archive logs are maintained in the archive. Any logs older than this number are automatically removed from the archive.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to set the log archival period to 6 weeks:

```
RP/0/RSP0/CPU0:router(config)# logging archive
RP/0/RSP0/CPU0:router(config-logging-arch)# archive-length 6
```
archive-size

To specify the amount of space allotted for syslogs on a device, use the `archive-size` command in logging archive configuration mode. To return to the default, use the `no` form of this command.

```
archive-size size
no archive-size
```

**Syntax Description**

- `size`: Amount of space (in MB) allotted for syslogs. The range is 0 to 4294967295.

**Command Default**

- `size`: 20 MB

**Command Modes**

Logging archive configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `archive-length` command to specify the maximum total size of the syslog archives on a storage device. If the size is exceeded, then the oldest file in the archive is deleted to make space for new logs.

**Task ID**

- `logging`: read, write

**Examples**

This example shows how to set the allotted space for syslogs to 50 MB:

```
RP/0/RSP0/CPU0:router(config)# logging archive
RP/0/RSP0/CPU0:router(config-logging-arch)# archive-size 50
```
clear logging

To clear system logging (syslog) messages from the logging buffer, use the **clear logging** command in EXEC mode.

**clear logging**

**Syntax Description**
This command has no keywords or arguments.

**Command Default**
None

**Command Modes**
EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the **clear logging** command to empty the contents of the logging buffer. When the logging buffer becomes full, new logged messages overwrite old messages.

Use the **logging buffered, on page 279** command to specify the logging buffer as a destination for syslog messages, set the size of the logging buffer, and limit syslog messages sent to the logging buffer based on severity.

Use the **show logging, on page 311** command to display syslog messages stored in the logging buffer.

**Examples**

This example shows how to clear the logging buffer:

```
RP/0/RSP0/CPU0:router# clear logging
Clear logging buffer [confirm] [y/n] : y
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging buffered, on page 279</td>
<td>Specifies the logging buffer as a destination for syslog messages, sets the size of the logging buffer, and limits syslog messages sent to the logging buffer based on severity.</td>
</tr>
<tr>
<td>show logging, on page 311</td>
<td>Displays syslog messages stored in the logging buffer.</td>
</tr>
</tbody>
</table>
device

To specify the device to be used for logging syslogs, use the `device` command in logging archive configuration mode. To return to the default, use the `no` form of this command.

```
device {disk0|disk1|harddisk}
no device
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>disk0</th>
<th>Uses disk0 as the archive device.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>disk1</td>
<td>Uses disk1 as the archive device.</td>
</tr>
<tr>
<td></td>
<td>harddisk</td>
<td>Uses the harddisk as the archive device.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command Modes**

Logging archive configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `device` command to specify where syslogs are logged. The logs are created under the directory `<device>/var/log`. If the device is not configured, then all other logging archive configurations are rejected. Similarly, the configured device cannot be removed until the other logging archive configurations are removed.

It is recommended that the syslogs be archived to the `harddisk` because it has more capacity.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify `disk1` as the device for logging syslog messages:

```
RP/0/RSP0/CPU0:router(config)# logging archive
RP/0/RSP0/CPU0:router(config-logging-arch)# device disk1
```
**discriminator (logging)**

To create a syslog message discriminator, use the `discriminator` command in Global Configuration mode. To disable the syslog message discriminator, use the `no` form of this command.

```
discriminator {match1|match2|match3|nomatch1|nomatch2|nomatch3} value
```

**Syntax Description**

- `match1`: Specifies the first match keyword to filter the syslog messages.
- `match2`: Specifies the second match keyword to filter the syslog messages.
- `match3`: Specifies the third match keyword to filter the syslog messages.
- `nomatch1`: Specifies the first keyword that does not match the syslog messages.
- `nomatch2`: Specifies the second keyword that does not match the syslog messages.
- `nomatch3`: Specifies the third keyword that does not match the syslog messages.
- `value`: A string when matched in the syslog message, is included as the discriminator. If the pattern contains spaces, you must enclose it in quotes (" "). Regular expressions can also be used for `value`.

**Command Default**

None

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>6.0.1</td>
<td>Discriminator for logging file was added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The discriminator can be set to system log messages which is sent to different destination like logging buffer, logging console, logging monitor and remote server.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to set the discriminator for logging buffer:

```
RP/0/RSP0/CPU0:router(config)# logging buffered discriminator match1 sample
```
This example shows how to set the discriminator for logging console:

```
RP/0/RSP0/CPU0:router(config)# logging console discriminator match1 sample
```

This example shows how to set the discriminator for logging monitor:

```
RP/0/RSP0/CPU0:router(config)# logging monitor discriminator match1 sample
```

This example shows how to set the discriminator for logging file:

```
RP/0/RSP0/CPU0:router(config)# logging file file1 discriminator match1 sample
```

This example shows how to set the discriminator for remote server:

```
RP/0/RSP0/CPU0:router(config)# logging 10.0.0.0 vrf vrf1 discriminator match1 sample
```
file-size

To specify the maximum file size for a log file in the archive, use the `file-size` command in logging archive configuration mode. To return to the default, use the `no` form of this command.

```
file-size size
no file-size
```

**Syntax Description**

- `size` Maximum file size (in MB) for a log file in the logging archive. The range is 1 to 2047.

**Command Default**

- `size`: 1 MB

**Command Modes**

- Logging archive configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `file-size` command to specify the maximum file size that a single log file in the archive can grow to. Once this limit is reached, a new file is automatically created with an increasing serial number.

**Task ID**

- `logging` read, write

**Examples**

This example shows how to set the maximum log file size to 10 MB:

```
RP/0/RSP0/CPU0:router(config)# logging archive
RP/0/RSP0/CPU0:router(config-logging-arch)# file-size 10
```
**frequency (logging)**

To specify the collection period for logs, use the `frequency` command in logging archive configuration mode. To return to the default, use the `no` form of this command.

```
frequency {daily|weekly}
no frequency
```

**Syntax Description**

- **daily**: Logs are collected daily.
- **weekly**: Logs are collected weekly.

**Command Default**
Logs are collected daily.

**Command Modes**
Logging archive configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Use the `frequency` command to specify if logs are collected daily or weekly.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**
This example shows how to specify that logs are collected weekly instead of daily:

```
RP/0/RSP0/CPU0:router(config)# logging archive
RP/0/RSP0/CPU0:router(config-logging-arch)# frequency weekly
```
logging

To specify a system logging (syslog) server host as the recipient of syslog messages, use the `logging` command in Global Configuration mode. To remove the `logging` command from the configuration file and delete a syslog server from the list of syslog server hosts, use the `no` form of this command.

```
logging {ip-address hostname} {
 vrf | severity | {alerts | critical | debugging | emergencies | error | info | notifications | warning}
}
no logging {ip-address hostname} {
 vrf | severity | {alerts | critical | debugging | emergencies | error | info | notifications | warning}
}
```

**Syntax Description**

- `ip-address` | `hostname`  
  IP address or hostname of the host to be used as a syslog server.

- `severity`  
  Set severity of messages for particular remote host/vrf.

- `alerts`  
  Specifies Immediate action needed

- `critical`  
  Specifies Critical conditions

- `debugging`  
  Specifies Debugging messages

- `emergencies`  
  Specifies System is unusable

- `error`  
  Specifies Error conditions

- `info`  
  Specifies Informational messages

- `notifications`  
  Specifies Normal but significant conditions

- `warning`  
  Specifies Warning conditions

- `vrf` | `vrf-name`  
  Name of the VRF. Maximum length is 32 alphanumeric characters.

**Command Default**

No syslog server hosts are configured as recipients of syslog messages.

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 4.1.0</td>
<td>The vrf keyword was added.</td>
</tr>
<tr>
<td>Release 4.3</td>
<td>The severity keyword was added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `logging` command to identify a syslog server host to receive messages. By issuing this command more than once, you build a list of syslog servers that receive messages.

When syslog messages are sent to a syslog server, the Cisco IOS XR software includes a numerical message identifier in syslog messages. The message identifier is cumulative and sequential. The numerical identifier
included in syslog messages sent to syslog servers provides a means to determine if any messages have been lost.

Use the logging trap, on page 305 command to limit the messages sent to snmp server.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task ID Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to log messages to a host named host1:

```
RP/0/RSP0/CPU0:router(config)# logging host1
RP/0/RSP0/CPU0:router(config)# logging A.B.C.D severity info vrf default
RP/0/RSP0/CPU0:router(config)# commit
Wed Nov 14 03:47:58.976 PST
RP/0/RSP0/CPU0:router(config)# do show run logging
Wed Nov 14 03:48:10.816 PST
logging A.B.C.D vrf default severity info
```

**Note**

Default level is severity info.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging trap, on page 305</td>
<td>Limits the messages sent to snmp server.</td>
</tr>
</tbody>
</table>
logging archive

To configure attributes for archiving syslogs, use the `logging archive` command in Global Configuration mode. To exit the `logging archive` submode, use the `no` form of this command.

```
logging archive {archive-length|archive-size|device|file-size|frequency|severity|threshold}
no logging archive
```

**Syntax Description**

- **archive-length** Maximum no of weeks that the log is maintained. Minimum number of week is 1 and the maximum number of weeks are 256. Recommended is 4 weeks.
- **archive-size** Total size of the archive. Value range from 1 MB to 2047 MB. Recommended is 20 MB.
- **device** Use configured devices (disk0 | disk1 | harddisk) as the archive device. Recommended is harddisk.
- **file-size** Maximum file size for a single log file. Value range from 1 MB to 2047 MB. Recommended is 1 MB.
- **frequency** Collection interval (daily or weekly) for logs. Recommend is daily.
- **severity** Specifies the filter levels for log messages to archive.
  - alerts - Immediate action needed (severity=1)
  - critical - Critical conditions (severity=2)
  - debugging - Debugging messages (severity=7)
  - emergencies - System is unusable (severity=0)
  - errors - Error conditions (severity=3)
  - informational - Informational messages (severity=6)
  - notifications - Normal but significant conditions (severity=5)
  - warnings - Warning conditions (severity=4)

Recommended is informational (severity=6).
- **threshold** Percentage threshold at which a syslog is generated.

**Command Default**

None

**Command Modes**

Global Configuration mode

**Command History**

- **Release 3.7.2** This command was introduced.
- **Release 5.3.2** The threshold keyword was added.
Usage Guidelines

Use the `logging archive` command to configure attributes for archiving syslogs. This command enters logging archive configuration mode and allows you to configure the commands.

Note

The configuration attributes must be explicitly configured in order to use the logging archive feature.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>logging read,</td>
</tr>
<tr>
<td></td>
<td>write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to enter logging archive configuration mode and change the device to be used for logging syslogs to disk1:

```
RP/0/RSP0/CPU0:router(config)# logging archive
RP/0/RSP0/CPU0:router(config-logging-arch)# device disk1
```
logging buffered

To specify the logging buffer as a destination for system logging (syslog) messages, use the `logging buffered` command in Global Configuration mode. To remove the `logging buffered` command from the configuration file and cancel the use of the buffer, use the `no` form of this command.

```
logging buffered {size severity}
no logging buffered {size severity}
```

**Syntax Description**

- **size**: Size of the buffer, in bytes. Range is 307200 to 125000000 bytes. The default is 307200 bytes.
- **severity**: Severity level of messages that display on the console. Possible severity levels and their respective system conditions are listed under Table 29: Severity Levels for Messages, on page 279 in the “Usage Guidelines” section. The default is `debugging`.

**Command Default**

- `size`: 307200 bytes
- `severity`: `debugging`

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 4.0.0</td>
<td>The value of size argument is changed from 4096 to 307200.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `logging buffered` command to copy messages to the logging buffer. The logging buffer is circular, so newer messages overwrite older messages after the buffer is filled. This command is related to the `show logging buffer` command, which means that when you execute a `logging buffered warnings` command, it enables the logging for all the levels below the configured level, including log for LOG_ERR, LOG_CRIT, LOG_ALERT, LOG_EMERG, and LOG WARNING messages. Use the `logging buffer size` to change the size of the buffer.

The value specified for the `severity` argument causes messages at that level and at numerically lower levels to be displayed on the console terminal. See Table 29: Severity Levels for Messages, on page 279 for a list of the possible severity level keywords for the `severity` argument.

This table describes the acceptable severity levels for the `severity` argument.

<table>
<thead>
<tr>
<th>Level Keywords</th>
<th>Level</th>
<th>Description</th>
<th>Syslog Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>emergencies</td>
<td>0</td>
<td>Unusable system</td>
<td>LOG_EMERG</td>
</tr>
<tr>
<td>alerts</td>
<td>1</td>
<td>Need for immediate action</td>
<td>LOG_ALERT</td>
</tr>
<tr>
<td>critical</td>
<td>2</td>
<td>Critical condition</td>
<td>LOG_CRIT</td>
</tr>
</tbody>
</table>
### Keywords

<table>
<thead>
<tr>
<th>Level Keywords</th>
<th>Level</th>
<th>Description</th>
<th>Syslog Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>errors</td>
<td>3</td>
<td>Error condition</td>
<td>LOG_ERR</td>
</tr>
<tr>
<td>warnings</td>
<td>4</td>
<td>Warning condition</td>
<td>LOG_WARNING</td>
</tr>
<tr>
<td>notifications</td>
<td>5</td>
<td>Normal but significant condition</td>
<td>LOG_NOTICE</td>
</tr>
<tr>
<td>informational</td>
<td>6</td>
<td>Informational message only</td>
<td>LOG_INFO</td>
</tr>
<tr>
<td>debugging</td>
<td>7</td>
<td>Debugging message</td>
<td>LOG_DEBUG</td>
</tr>
</tbody>
</table>

### Task ID

- **Task ID**: read, write

### Examples

This example shows how to set the severity level of syslog messages logged to the buffer to notifications:

```
RP/0/RSP0/CPU0:router(config)# logging buffered notifications
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>archive-size, on page 268</td>
<td>Clears messages from the logging buffer.</td>
</tr>
<tr>
<td>show logging, on page 311</td>
<td>Displays syslog messages stored in the logging buffer.</td>
</tr>
</tbody>
</table>
logging console

To enable logging of system logging (syslog) messages logged to the console by severity level, use the `logging console` command in Global Configuration mode. To return console logging to the default setting, use the `no` form of this command.

```
logging console {severity|disable}
no logging console
```

**Syntax Description**

- **severity**: Severity level of messages logged to the console, including events of a higher severity level (numerically lower). The default is `informational`. Settings for the severity levels and their respective system conditions are listed in Table 29: Severity Levels for Messages, on page 279 under the “Usage Guidelines” section for the `logging buffered`, on page 279 command.

- **disable**: Removes the `logging console` command from the configuration file and disables logging to the console terminal.

**Command Default**

By default, logging to the console is enabled.

- **severity**: `informational`

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `logging console` command to prevent debugging messages from flooding your screen.

The `logging console` is for the console terminal. The value specified for the `severity` argument causes messages at that level and at numerically lower levels (higher severity levels) to be displayed on the console.

Use the `logging console disable` command to disable console logging completely.

Use the `no logging console` command to return the configuration to the default setting.

Use the `show logging`, on page 311 command to display syslog messages stored in the logging buffer.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to change the level of messages displayed on the console terminal to `alerts` (1), which means that `alerts` (1) and `emergencies` (0) are displayed:

```
RP/0/RSP0/CPU0:router(config)# logging console alerts
```

This example shows how to disable console logging:
RP/0/RSP0/CPU0:router(config)# logging console disable

This example shows how to return console logging to the default setting (the console is enabled, severity: informational):

RP/0/RSP0/CPU0:router# no logging console

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging, on page 311</td>
<td>Displays syslog messages stored in the logging buffer.</td>
</tr>
</tbody>
</table>
logging console disable

To disable logging of system logging (syslog) messages logged to the console, use the `logging console disable` command in Global Configuration mode. To return logging to the default setting, use the `no` form of this command.

```
logging console disable
no logging console disable
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

By default, logging is enabled.

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `logging console disable` command to disable console logging completely.

Use the `no logging console disable` command to return the configuration to the default setting.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to disable syslog messages:

```
RP/0/RSP0/CPU0:router(config)# logging console disable
```
logging events link-status

To enable the logging of link-status system logging (syslog) messages for logical and physical links, use the `logging events link-status` command in Global Configuration mode. To disable the logging of link status messages, use the `no` form of this command.

```
logging events link-status {disable|software-interfaces}
no logging events link-status [{disable|software-interfaces}]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable</td>
<td>Disables the logging of link-status messages for all interfaces, including physical links.</td>
</tr>
<tr>
<td>software-interfaces</td>
<td>Enables the logging of link-status messages for logical links as well as physical links.</td>
</tr>
</tbody>
</table>

**Command Default**
The logging of link-status messages is enabled for physical links.

**Command Modes**
Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

When the logging of link-status messages is enabled, the router can generate a high volume of link-status up and down system logging messages.

Use the `no logging events link-status` command to enable the logging of link-status messages for physical links only, which is the default behavior.

**Note**

Enabling the `logging events link-status (interface), on page 285` command on a specific interface overrides the global configuration set using the `logging events link-status` command described in this section.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>read,</td>
<td>write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to disable the logging of physical and logical link-status messages:

```
RP/0/RSP0/CPU0# logging events link-status disable
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging events link-status (interface), on page 285</code></td>
<td>Enables the logging of link-status system logging (syslog) messages on a specific interface for virtual interfaces and subinterfaces.</td>
</tr>
</tbody>
</table>
logging events link-status (interface)

To enable the logging of link-status system logging (syslog) messages on a specific interface for virtual interfaces and subinterfaces, use the `logging events link-status` command in the appropriate interface or subinterface mode. To disable the logging of link status messages, use the `no` form of this command.

```plaintext
logging events link-status
no logging events link-status
```

**Syntax Description**
This command has no keywords or arguments.

**Command Default**
The logging of link-status messages is disabled for virtual interfaces and subinterfaces.

**Command Modes**
Interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
When the logging of link-status messages is enabled, the router can generate a high volume of link-status up and down system logging messages. The `logging events link-status` command enables messages for virtual interfaces and subinterfaces only.

The `logging events link-status` command allows you to enable and disable logging on a specific interface for bundles, tunnels, and VLANs.

Use the `no logging events link-status` command to disable the logging of link-status messages.

**Note**
Enabling the `logging events link-status` command on a specific interface overrides the global configuration set using the `logging events link-status`, on page 284 command in global configuration mode.

**Examples**
This example shows the results of turning on logging for a bundle interface:

```plaintext
RP/0/RSP0/CPU0:router(config)# int bundle-GigabitEthernet 1
RP/0/RSP0/CPU0:router(config-if)# logging events link-status
RP/0/RSP0/CPU0:router(config-if)# no shutdown
RP/0/RSP0/CPU0:router(config-if)# commit

LC/0/4/CPU0:Jun 29 12:51:26.887 : ifmgr[142]:
%PKT_INFRA-LINK-3-UPDOWN : Interface GigabitEthernet0/4/0/0, changed state to Up

LC/0/4/CPU0:Jun 29 12:51:26.897 : ifmgr[142]:
```
This example shows a sequence of commands for a tunnel interface with and without logging turned on:

```
RP/0/RSP0/CPU0:router(config)# int tunnel-te 1
RP/0/RSP0/CPU0:router(config-if)# commit
RP/0/RSP0/CPU0:router(config-if)# shutdown
RP/0/RSP0/CPU0:router(config-if)# commit
RP/0/RSP0/CPU0:router(config-if)# no shutdown
RP/0/RSP0/CPU0:router(config-if)# commit
RP/0/RSP0/CPU0:router(config-if)# logging events link-status
RP/0/RSP0/CPU0:router(config-if)# commit
RP/0/RSP0/CPU0:router(config-if)# shutdown
RP/0/RSP0/CPU0:router(config-if)# commit
```

This example shows the same process for a subinterface:

```
RP/0/RSP0/CPU0:router(config)# int gigabitEthernet 0/5/0/0.1
RP/0/RSP0/CPU0:router(config-subif)# commit
RP/0/RSP0/CPU0:router(config-subif)# shutdown
RP/0/RSP0/CPU0:router(config-subif)# commit
RP/0/RSP0/CPU0:router(config-subif)# no shutdown
RP/0/RSP0/CPU0:router(config-subif)# commit
RP/0/RSP0/CPU0:router(config-subif)# logging events link-status
RP/0/RSP0/CPU0:router(config-subif)# commit
RP/0/RSP0/CPU0:router(config-subif)# shutdown
RP/0/RSP0/CPU0:router(config-subif)# commit
```

This examples shows a sequence of commands for at tunnel interface with and without logging turned on:
state to Administratively Down

LC/0/5/CPU0:Jun 29 14:06:46.726 : ifmgr[142]:
%PKT_INFRA-LINK-3-UPDOWN : Interface GigabitEthernet0/5/0/0.1, changed state to
Administratively Down

RP/0/RSP0/CPU0:router(config-subif)# no shutdown
RP/0/RSP0/CPU0:router(config-subif)# commit

LC/0/5/CPU0:Jun 29 14:06:52.229 : ifmgr[142]:
%PKT_INFRA-LINK-3-UPDOWN : Interface GigabitEthernet0/5/0/0.1, changed state to Up

LC/0/5/CPU0:Jun 29 14:06:52.244 : ifmgr[142]:
%PKT_INFRA-LINEPROTO-6-UPDOWN : Line protocol on Interface GigabitEthernet0/5/0/0.1, changed
state to Down
logging facility

To configure the type of syslog facility in which system logging (syslog) messages are sent to syslog servers, use the `logging facility` command in Global Configuration mode. To remove the `logging facility` command from the configuration file and disable the logging of messages to any facility type, use the `no` form of this command.

```
logging facility [type]
no logging facility
```

**Syntax Description**

`type` (Optional) Syslog facility type. The default is `local7`. Possible values are listed under Table 30: Facility Type Descriptions, on page 288 in the “Usage Guidelines” section.

**Command Default**

`type`: `local7`

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This table describes the acceptable options for the `type` argument.

**Table 30: Facility Type Descriptions**

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auth</td>
<td>Authorization system</td>
</tr>
<tr>
<td>cron</td>
<td>Cron/at facility</td>
</tr>
<tr>
<td>daemon</td>
<td>System daemon</td>
</tr>
<tr>
<td>kern</td>
<td>Kernel</td>
</tr>
<tr>
<td>local0</td>
<td>Reserved for locally defined messages</td>
</tr>
<tr>
<td>local1</td>
<td>Reserved for locally defined messages</td>
</tr>
<tr>
<td>local2</td>
<td>Reserved for locally defined messages</td>
</tr>
<tr>
<td>local3</td>
<td>Reserved for locally defined messages</td>
</tr>
<tr>
<td>local4</td>
<td>Reserved for locally defined messages</td>
</tr>
<tr>
<td>local5</td>
<td>Reserved for locally defined messages</td>
</tr>
<tr>
<td>local6</td>
<td>Reserved for locally defined messages</td>
</tr>
<tr>
<td>local7</td>
<td>Reserved for locally defined messages</td>
</tr>
</tbody>
</table>
### Facility Type

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpr</td>
<td>Line printer system</td>
</tr>
<tr>
<td>mail</td>
<td>Mail system</td>
</tr>
<tr>
<td>news</td>
<td>USENET news</td>
</tr>
<tr>
<td>sys9</td>
<td>System use</td>
</tr>
<tr>
<td>sys10</td>
<td>System use</td>
</tr>
<tr>
<td>sys11</td>
<td>System use</td>
</tr>
<tr>
<td>sys12</td>
<td>System use</td>
</tr>
<tr>
<td>sys13</td>
<td>System use</td>
</tr>
<tr>
<td>sys14</td>
<td>System use</td>
</tr>
<tr>
<td>syslog</td>
<td>System log</td>
</tr>
<tr>
<td>user</td>
<td>User process</td>
</tr>
<tr>
<td>uucp</td>
<td>UNIX-to-UNIX copy system</td>
</tr>
</tbody>
</table>

Use the `logging, on page 275` command to specify a syslog server host as a destination for syslog messages.

### Task ID and Operations

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

This example shows how to configure the syslog facility to the `kern` facility type:

```
RP/0/RSP0/CPU0:router(config)# logging facility kern
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging, on page 275</code></td>
<td>Specifies a syslog server host as a destination for syslog messages.</td>
</tr>
</tbody>
</table>
logging file

To specify the file logging destination, use the `logging file` command in Global Configuration mode. To remove the file logging destination, use the `no` form of this command.

```
logging file filename [discriminator {match|nomatch}] [path pathname {maxfilesize|severity}]
no logging file
```

**Syntax Description**

- `filename`: Specifies the filename of the file to display.

- `discriminator`: Specifies the match or nomatch syslog discriminator. See `discriminator (logging)`, on page 271

- `path  pathname`: Specifies the location to save the logging file.

- `maxfilesize`: (optional) Specifies the maximum file size of the logging file in bytes. Range is from 1 to 2097152 (in KB). Default is 2 GB.

- `severity`: (optional) Specifies the severity level for the logging file. Default is informational.
  - alerts: Immediate action needed (severity=1)
  - critical: Critical conditions (severity=2)
  - debugging: Debugging messages (severity=7)
  - emergencies: System is unusable (severity=0)
  - errors: Error conditions (severity=3)
  - informational: Informational messages (severity=6)
  - notifications: Normal but significant conditions (severity=5)
  - warnings: Warning conditions (severity=4)

**Command Default**

None

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `logging file` command to set the logging file destination. To set the logging file discriminator you have to specify the file name. If it exceeds the maximum file size, then a wrap occurs.
Example

This example shows how to set the maximum file size for the defined file destination:

```console
RP/0/RSP0/CPU0:router(config)# logging file file1 path /harddisk:/logfiles/ maxfilesize 2048
```
logging history

To change the severity level of system logging (syslog) messages sent to the history table on the router and a Simple Network Management Protocol (SNMP) network management station (NMS), use the `logging history` command in Global Configuration mode. To remove the `logging history` command from the configuration and return the logging of messages to the default level, use the `no` form of this command.

```
logging history severity
no logging history
```

**Syntax Description**

- `severity`: Severity level of messages sent to the history table on the router and an SNMP NMS, including events of a higher severity level (numerically lower). Settings for the severity levels and their respective system conditions are listed in Table 29: Severity Levels for Messages, on page 279 under the “Usage Guidelines” section for the `logging buffered` command.

**Command Default**

- `severity`: `warnings`

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Logging of messages to an SNMP NMS is enabled by the `snmp-server enable traps` command. Because SNMP traps are inherently unreliable and much too important to lose, at least one syslog message, the most recent message, is stored in a history table on the router.

Use the `logging history` command to reflect the history of last 500 syslog messages. For example, when this command is issued, the last 500 syslog messages with severity less than warning message are displayed in the output of the `show logging history` command.

Use the `show logging history`, on page 315 command to display the history table, which contains table size, message status, and message text data.

Use the `logging history size`, on page 294 command to change the number of messages stored in the history table.

The value specified for the `severity` argument causes messages at that severity level and at numerically lower levels to be stored in the history table of the router and sent to the SNMP NMS. Severity levels are numbered 0 to 7, with 1 being the most important message and 7 being the least important message (that is, the lower the number, the more critical the message). For example, specifying the level critical with the `critical` keyword causes messages at the severity level of `critical` (2), `alerts` (1), and `emergencies` (0) to be stored in the history table and sent to the SNMP NMS.

The `no logging history` command resets the history level to the default.
Examples

This example shows how to change the level of messages sent to the history table and to the SNMP server to **alerts** (1), which means that messages at the severity level of **alerts** (1) and **emergencies** (0) are sent:

```
RP/0/RSP0/CPU0:router(config)# logging history alerts
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging history size, on page 294</td>
<td>Changes the number of messages stored in the history table.</td>
</tr>
<tr>
<td>show logging history, on page 315</td>
<td>Displays information about the state of the syslog history table.</td>
</tr>
</tbody>
</table>
logging history size

To change the number of system logging (syslog) messages that can be stored in the history table, use the `logging history size` command in Global Configuration mode. To remove the `logging history size` command from the configuration and return the number of messages to the default value, use the `no` form of this command.

```
logging history size number
no logging history number
```

**Syntax Description**

| `number` | Number from 1 to 500 indicating the maximum number of messages that can be stored in the history table. The default is 1 message. |

**Command Default**

| `number` | 1 message |

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `logging history size` command to change the number of messages that can be stored in this history table. When the history table is full (that is, when it contains the maximum number of messages specified with the command), the oldest message is deleted from the table to allow the new message to be stored.

Use the `logging history, on page 292` command to change the severity level of syslog messages stored in the history file and sent to the SNMP server.

**Examples**

This example shows how to set the number of messages stored in the history table to 20:

```
RP/0/RSP0/CPU0:router(config)# logging history size 20
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging history, on page 292</td>
<td>Changes the severity level of syslog messages stored in the history file and sent to the SNMP server.</td>
</tr>
<tr>
<td>show logging history, on page 315</td>
<td>Displays information about the state of the syslog history table.</td>
</tr>
</tbody>
</table>
logging hostnameprefix

To append a hostname prefix to system logging (syslog) messages logged to syslog servers, use the `logging hostnameprefix` command in Global Configuration mode. To remove the `logging hostnameprefix` command from the configuration file and disable the logging host name prefix definition, use the `no` form of this command.

```
logging hostnameprefix hostname
no logging hostnameprefix
```

### Syntax Description

- **hostname** Hostname that appears in messages sent to syslog servers.

### Command Default

No hostname prefix is added to the messages logged to the syslog servers.

### Command Modes

Global Configuration mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use the `logging hostnameprefix` command to append a hostname prefix to messages sent to syslog servers from the router. You can use these prefixes to sort the messages being sent to a given syslog server from different networking devices.

Use the `logging, on page 275` command to specify a syslog server host as a destination for syslog messages.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

This example shows how to add the hostname prefix `host1` to messages sent to the syslog servers from the router:

```
RP/0/RSP0/CPU0:router(config)# logging hostnameprefix host1
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging, on page 275</td>
<td>Specifies a syslog server host as a destination for syslog messages.</td>
</tr>
</tbody>
</table>
**logging ipv4/ipv6**

To configure the differentiated services code point (DSCP) or the precedence value for the IPv4 or IPv6 header of the syslog packet in the egress direction, use the `logging {ipv4 | ipv6}` command in EXEC mode. To remove the configured DSCP or precedence value, use the `no` form of this command.

```
logging {ipv4|ipv6} {dscp dscp-value|precedence {number|name}}
no logging {ipv4|ipv6} {dscp dscp-value|precedence {number|name}}
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ipv4 / ipv6</strong></td>
<td>Sets the DSCP or precedence bit for IPv4 or IPv6 packets.</td>
</tr>
<tr>
<td><strong>dscp</strong></td>
<td>Specifies differentiated services code point value or per hop behavior values (PHB). For more information on PHB values, see Usage Guideline section below. The range is from 0 to 63. The default value is 0.</td>
</tr>
<tr>
<td><strong>precedence</strong></td>
<td>Sets Type of Service (TOS) precedence value. You can specify either a precedence number or name. The range of argument <code>number</code> is between 0 to 7. The <code>name</code> argument has following keywords:</td>
</tr>
</tbody>
</table>

- *routine*—Match packets with routine precedence (0)
- *priority*—Match packets with priority precedence (1)
- *immediate*—Match packets with immediate precedence (2)
- *flash*—Match packets with flash precedence (3)
- *flash-override*—Match packets with flash override precedence (4)
- *critical*—Match packets with critical precedence (5)
- *internet*—Match packets with internetwork control precedence (6)
- *network*—Match packets with network control precedence (7)

### Command Default

None.

### Command Modes

EXEC mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 5.1.1</td>
<td>The <code>ipv4</code> and <code>ipv6</code> keywords were added.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

By specifying PHB values you can further control the format of locally generated syslog traffic on the network. You may provide these PHB values:

- af11—Match packets with AF11 DSCP (001010)
- af12—Match packets with AF12 dscp (001100)
• af13—Match packets with AF13 dscp (001110)
• af21—Match packets with AF21 dscp (010010)
• af22—Match packets with AF22 dscp (010100)
• af23—Match packets with AF23 dscp (010110)
• af31—Match packets with AF31 dscp (011010)
• af32—Match packets with AF32 dscp (011100)
• af33—Match packets with AF33 dscp (011110)
• af41—Match packets with AF41 dscp (100010)
• af42—Match packets with AF42 dscp (100100)
• af43—Match packets with AF43 dscp (100110)
• cs1—Match packets with CS1(precedence 1) dscp (001000)
• cs2—Match packets with CS2(precedence 2) dscp (010000)
• cs3—Match packets with CS3(precedence 3) dscp (011000)
• cs4—Match packets with CS4(precedence 4) dscp (100000)
• cs5—Match packets with CS5(precedence 5) dscp (101000)
• cs6—Match packets with CS6(precedence 6) dscp (110000)
• cs7—Match packets with CS7(precedence 7) dscp (111000)
• default—Match packets with default dscp (000000)
• ef—Match packets with EF dscp (10111)

Assured Forwarding (AF) PHB group is a means for a provider DS domain to offer different levels of forwarding assurances for IP packets. The Assured Forwarding PHB guarantees an assured amount of bandwidth to an AF class and allows access to additional bandwidth, if obtainable.

For example AF PHB value af11 - Match packets with AF11 DSCP (001010), displays the DSCP values as 10 and 11. The DSCP bits are shown as 001010 and 001011.

AF11 stands for:
• Assured forwarding class 1 (001)
• Drop priority 100 (1)
• Dropped last in AF1 class

Similarly AF PHB value af12 - Match packets with AF12 dscp (001100), displays the DSCP values as 12 and 13. The DSCP bits are shown as 001100 and 001101.

AF12 stands for:
• Assured forwarding class 1 (001)
• Drop priority 100 (2)
• Dropped second in AF1 class

Class Selector (CS) provides backward compatibility bits,
CS PHB value cs1 - Match packets with CS1(precedence 1) dscp (001000)
CS1 stands for:
  • CS1 DSCP bits are displayed as 001000 and 001001
  • priority stated as 1

Expedited Forwarding (EF) PHB is defined as a forwarding treatment to build a low loss, low latency, assured bandwidth, end-to-end service. These characteristics are suitable for voice, video and other realtime services.

EF PHB Value ef - Match packets with EF dscp (101110) - this example states the recommended EF value (used for voice traffic).

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read,</td>
</tr>
<tr>
<td></td>
<td>write</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to configure DSCP value as 1 for IPv4 header of syslog packet.

RP/0/RSP0/CPU0:router(config)#logging ipv4 dscp 1

This example shows how to configure DSCP value as 21 for IPv6 header of syslog packet.

RP/0/RSP0/CPU0:router(config)#logging ipv6 dscp 21

This example shows how to configure precedence value as 5 for IPv6 header of syslog packet.

RP/0/RSP0/CPU0:router(config)#logging ipv6 precedence 5
logging localfilesize

To specify the size of the local logging file, use the **logging localfilesize** command in Global Configuration mode. To remove the **logging localfilesize** command from the configuration file and restore the system to the default condition, use the **no** form of this command.

```
logging localfilesize bytes
no logging localfilesize bytes
```

**Syntax Description**

- **bytes**  Size of the local logging file in bytes. Range is 0 to 4294967295. Default is 32000 bytes.

**Command Default**

- **bytes**: 32000 bytes

**Command Modes**

- Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the **logging localfilesize** command to set the size of the local logging file.

**Task ID**

- **Task ID**: read, write

**Examples**

This example shows how to set the local logging file to 90000 bytes:

```
RP/0/RSP0/CPU0:router(config)# logging localfilesize 90000
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show logging, on page 311</td>
<td>Displays syslog messages stored in the logging buffer.</td>
</tr>
</tbody>
</table>
**logging monitor**

To specify terminal lines other than the console terminal as destinations for system logging (syslog) messages and limit the number of messages sent to terminal lines based on severity, use the `logging monitor` command in Global Configuration mode. To remove the `logging monitor` command from the configuration file and disable logging to terminal lines other than the console line, use the `no` form of this command.

```
logging monitor [severity]
no logging monitor
```

**Syntax Description**

`severity` (Optional) Severity level of messages logged to the terminal lines, including events of a higher severity level (numerically lower). The default is `debugging`. Settings for the severity levels and their respective system conditions are listed under Table 29: Severity Levels for Messages, on page 279 in the “Usage Guidelines” section for the `logging buffered` command.

**Command Default**

`severity: debugging`

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `logging monitor` is for the terminal monitoring. Use the `logging monitor` command to restrict the messages displayed on terminal lines other than the console line (such as virtual terminals). The value set for the `severity` argument causes messages at that level and at numerically lower levels to be displayed on the monitor.

Use the `terminal monitor, on page 317` command to enable the display of syslog messages for the current terminal session.

**Examples**

This example shows how to set the severity level of messages logged to terminal lines to errors:

```
RP/0/RSP0/CPU0:router(config)# logging monitor errors
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>terminal monitor, on page 317</code></td>
<td>Enables the display of syslog messages for the current terminal session.</td>
</tr>
</tbody>
</table>
logging source-interface

To set all system logging (syslog) messages being sent to syslog servers to contain the same IP address, regardless of which interface the syslog message uses to exit the router, use the **logging source-interface** command in Global Configuration mode. To remove the **logging source-interface** command from the configuration file and remove the source designation, use the **no** form of this command.

```
logging source-interface type interface-path-id
no logging source-interface
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>type</strong></td>
<td>Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td><strong>interface-path-id</strong></td>
<td>Physical interface or virtual interface.</td>
</tr>
</tbody>
</table>

**Note**

Use the **show interfaces** command to see a list of all interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

**Command Default**

No source IP address is specified.

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Normally, a syslog message contains the IP address of the interface it uses to leave the networking device. Use the **logging source-interface** command to specify that syslog packets contain the IP address of a particular interface, regardless of which interface the packet uses to exit the networking device.

Use the **logging, on page 275** command to specify a syslog server host as a destination for syslog messages.

**Examples**

This example shows how to specify that the IP address for GigabitEthernet interface 0/1/0/1 be set as the source IP address for all messages:

```
RP/0/RSP0/CPU0:router(config)# logging source-interface GigabitEthernet 0/1/0/1
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging, on page 275</code></td>
<td>Specifies a syslog server host as a destination for syslog messages.</td>
</tr>
</tbody>
</table>
Logging Services Commands

logging suppress deprecated

To prevent the logging of messages to the console to indicate that commands are deprecated, use the `logging suppress deprecated` command in Global Configuration mode. To remove the `logging suppress deprecated` command from the configuration file, use the `no` form of this command.

```
logging suppress deprecated
no logging suppress deprecated
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

Console messages are displayed when deprecated commands are used.

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `logging suppress deprecated` command affects messages to the console only.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read,</td>
</tr>
<tr>
<td></td>
<td>write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to suppress the consecutive logging of deprecated messages:

```
RP/0/RSP0/CPU0:router(config)# logging suppress deprecated
```
logging suppress duplicates

To prevent the consecutive logging of more than one copy of the same system logging (syslog) message, use the **logging suppress duplicates** command in Global Configuration mode. To remove the **logging suppress duplicates** command from the configuration file and disable the filtering process, use the **no** form of this command.

```
logging suppress duplicates
no logging suppress duplicates
```

**Syntax Description**
This command has no keywords or arguments.

**Command Default**
Duplicate messages are logged.

**Command Modes**
Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
If you use the **logging suppress duplicates** command during debugging sessions, you might not see all the repeated messages and could miss important information related to problems that you are attempting to isolate and resolve. In such a situation, you might consider disabling this command.

**Task ID**
```
Task ID: logging read, write
```

**Examples**
This example shows how to suppress the consecutive logging of duplicate messages:

```
RP/0/RSP0/CPU0:router(config)# logging suppress duplicates
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging, on page 275</td>
<td>Specifies a syslog server host as a destination for syslog messages.</td>
</tr>
<tr>
<td>logging buffered, on page 279</td>
<td>Specifies the logging buffer as a destination for syslog messages, sets the size of the logging buffer, and limits the syslog messages sent to the logging buffer based on severity.</td>
</tr>
<tr>
<td>logging monitor, on page 300</td>
<td>Specifies terminal lines other than the console terminal as destinations for syslog messages and limits the number of messages sent to terminal lines based on severity.</td>
</tr>
</tbody>
</table>
logging trap

To specify the severity level of messages logged to snmp server, use the logging trap command in Global Configuration mode. To restore the default behavior, use the no form of this command.

```
logging trap [severity]
no logging trap
```

**Syntax Description**

- `severity` (Optional) Severity level of messages logged to the snmp server, including events of a higher severity level (numerically lower). The default is informational. Settings for the severity levels and their respective system conditions are listed under Table 29: Severity Levels for Messages, on page 279 in the “Usage Guidelines” section for the logging buffered command.

**Command Default**

- `severity`: informational

**Command Modes**

- Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>4.3</td>
<td>Change in the behavior of logging trap and logging severity for snmp and syslog servers.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the logging trap command to limit the logging of messages sent to snmp servers to only those messages at the specified level.

Table 29: Severity Levels for Messages, on page 279 under the “Usage Guidelines” section for the logging buffered, on page 279 command lists the syslog definitions that correspond to the debugging message levels.

Use the logging, on page 275 command to specify a syslog server host as a destination for syslog messages.

The logging trap disable command will disable the logging of messages to both snmp server and syslog servers.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to restrict messages to notifications (5) and numerically lower levels.

```
RP/0/RSP0/CPU0:router(config)# logging trap notifications
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging, on page 275</td>
<td>Specifies a syslog server host as a destination for syslog messages.</td>
</tr>
</tbody>
</table>
process shutdown pam_manager

To disable platform automated monitoring (PAM) by shutting down the required process agents, use the `process shutdown pam_manager` command in EXEC mode.

```
process shutdown pam_manager [location {node-id|all}]
```

**Syntax Description**
- `location all`: Disables PAM agents for all RPs.

**Command Default**
None

**Command Modes**
EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
Because PAM tool process (pam_manager) is not a mandatory process, it does not restart automatically if it was manually disabled (unless in the case of a system reload). You can re-enable PAM using the `process start pam_manager` command.

If you use `process shutdown pam_manager` without any keywords, it disables PAM agents for the local RP.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>read,</td>
</tr>
<tr>
<td></td>
<td>write</td>
</tr>
</tbody>
</table>

This example shows how to disable PAM for all RPs:

```
RP/0/RSP0/CPU0:router# process shutdown pam_manager location all
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>process start pam_manager, on page 307</code></td>
<td>Re-enables platform automated monitoring (PAM) by restarting the required process agents.</td>
</tr>
</tbody>
</table>
process start pam_manager

To re-enable platform automated monitoring (PAM) by restarting the required process agents, use the process start pam_manager command in EXEC mode.

```
process start pam_manager [location {node-id|all}]
```

**Syntax Description**

- **location all** restarts PAM agents for all RPs.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you use `process start pam_manager` without any keywords, it restarts PAM agents for the local RP.

You can use these commands to check if PAM is installed in the router:

- `show processes pam_manager location all` (from Cisco IOS XR command line interface):
- `run ps auxw | egrep perl` (from router shell prompt)

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>network</td>
<td>read, write</td>
</tr>
</tbody>
</table>

This example shows how to re-enable PAM for all RPs:

```
RP/0/RSP0/CPU0:router# process start pam_manager location all
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>process shutdown pam_manager, on page 306</td>
<td></td>
</tr>
</tbody>
</table>
service timestamps

To modify the time-stamp format for system logging (syslog) and debug messages, use the `service timestamps` command in Global Configuration mode. To revert to the default timestamp format, use the `no` form of this command.

```
service timestamps [debug|log] {datetime | localtime | msec | show-timezone | year | disable | uptime}
no service timestamps [debug|log] {datetime | localtime | msec | show-timezone | year | disable | uptime}
```

### Syntax Description

- **debug** (Optional) Specifies the time-stamp format for debugging messages.
- **log** (Optional) Specifies the time-stamp format for syslog messages.
- **datetime** (Optional) Specifies that syslog messages are time-stamped with date and time.
- **localtime** (Optional) When used with the `datetime` keyword, includes the local time zone in time stamps.
- **msec** (Optional) When used with the `datetime` keyword, includes milliseconds in the time stamp.
- **show-timezone** (Optional) When used with the `datetime` keyword, includes time zone information in the time stamp.
- **year** (Optional) Adds year information to timestamp.
- **disable** (Optional) Causes messages to be time-stamped in the default format.
- **uptime** (Optional) Specifies that syslog messages are time-stamped with the time that has elapsed since the networking device last rebooted.

### Command Default

Messages are time-stamped in the month day hh:mm:ss by default.

The default for the `service timestamps log datetime localtime` and `service timestamps debug datetime localtime` forms of the command with no additional keywords is to format the time in the local time zone, without milliseconds and time zone information.

### Command Modes

Global Configuration mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>4.3</td>
<td>The keyword year was added.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Time stamps can be added to either debugging or syslog messages independently. The `uptime` keyword adds time stamps in the format hhh:mm:ss, indicating the elapsed time in hours:minutes:seconds since the networking device last rebooted. The `datetime` keyword adds time stamps in the format mmm dd hh:mm:ss, indicating the date and time according to the system clock. If the system clock has not been set, the date and...
time are preceded by an asterisk (*), which indicates that the date and time have not been set and should be verified.

The **no** form of the **service timestamps** command causes messages to be time-stamped in the default format.

Entering the **service timestamps** form of this command without any keywords or arguments is equivalent to issuing the **service timestamps debug uptime** form of this command.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>read,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to enable time stamps on debugging messages, which show the elapsed time since the networking device last rebooted:

```plaintext
RP/0/RSP0/CPU0:router(config)# service timestamps debug uptime
```

This example shows how to enable time stamps on syslog messages, which show the current time and date relative to the local time zone, with the time zone name included:

```plaintext
RP/0/RSP0/CPU0:router(config)# service timestamps log datetime localtime show-timezone
RP/0/RSP0/CPU0:router(config)# service timestamps log datetime year
```
severity

To specify the filter level for logs, use the \texttt{severity} command in logging archive configuration mode. To return to the default, use the \texttt{no} form of this command.

\begin{verbatim}
severity \{severity\}
no severity
\end{verbatim}

**Syntax Description**

\texttt{severity} Severity level for determining which messages are logged to the archive. Possible severity levels and their respective system conditions are listed under Table 29: Severity Levels for Messages, on page 279 in the “Usage Guidelines” section. The default is \texttt{informational}.

**Command Default**

Informational

**Command Modes**

Logging archive configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the \texttt{severity} command to specify the filter level for syslog messages. All syslog messages higher in severity or the same as the configured value are logged to the archive.

Table 29: Severity Levels for Messages, on page 279 describes the acceptable severity levels for the \texttt{severity} argument.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify that warning conditions and higher-severity messages are logged to the archive:

```
RP/0/RSP0/CPU0:router (config)# logging archive
RP/0/RSP0/CPU0:router (config-logging-arch)# severity warnings
```
show logging

To display the contents of the logging buffer, use the `show logging` command in EXEC mode.

```
show logging [{local location node-id|[location node-id]} [start month day hh : mm : ss] [process name] [string string] [end month day hh : mm :ss]]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| `end month day hh : mm : ss` | (Optional) Displays syslog messages with a timestamp equal to or lower than the timestamp specified with the `month day hh : mm : ss` argument. The ranges for the `month day hh : mm : ss` arguments are as follows:  
  - `month`—The month of the year. The values for the `month` argument are:  
    - `january`  
    - `february`  
    - `march`  
    - `april`  
    - `may`  
    - `june`  
    - `july`  
    - `august`  
    - `september`  
    - `october`  
    - `november`  
    - `december`  
  - `day`—Day of the month. Range is 01 to 31.  
  - `hh`—Hours. Range is 00 to 23. You must insert a colon after the `hh` argument.  
  - `mm`—Minutes. Range is 00 to 59. You must insert a colon after the `mm` argument.  
  - `ss`—Seconds. Range is 00 to 59. |
| `local location node-id` | (Optional) Displays system logging (syslog) messages from the specified local buffer. The `node-id` argument is entered in the `rack/slot/module` notation. |
| `location node-id` | (Optional) Displays syslog messages from the designated node. The `node-id` argument is entered in the `rack/slot/module` notation. |
**start month day hh : mm : ss**

(Optional) Displays syslog messages with a time stamp equal to or higher than the time stamp specified with the `month day mm : hh : ss` argument.

The ranges for the `month day hh : mm : ss` arguments are as follows:

- **month**—The month of the year. The values for the `month` argument are:
  - january
  - february
  - march
  - april
  - may
  - june
  - july
  - august
  - september
  - october
  - november
  - december

- **day**—Day of the month. Range is 01 to 31.
- **hh**—Hours. Range is 00 to 23. You must insert a colon after the `hh` argument.
- **mm**—Minutes. Range is 00 to 59. You must insert a colon after the `mm` argument.
- **ss**—Seconds. Range is 00 to 59.

**process name**

(Optional) Displays syslog messages related to the specified process.

**string string**

(Optional) Displays syslog messages that contain the specified string.

---

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

Use the `show logging` command to display the state of syslog error and event logging on the processor console. The information from the command includes the types of logging enabled and the size of the buffer.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

This is the sample output from the `show logging` command with the `process` keyword and `name` argument. Syslog messages related to the `init` process are displayed in the sample output.

```
RP/0/RSP0/CPU0:router# show logging process init
Syslog logging: enabled (24 messages dropped, 0 flushes, 0 overruns)
Console logging: level warnings, 59 messages logged
Monitor logging: level debugging, 0 messages logged
Trap logging: level informational, 0 messages logged
Buffer logging: level debugging, 75 messages logged
Log Buffer (16384 bytes):
LC/0/1/CPU0:May 24 22:20:13.043 : init[65540]: %INIT-7-INSTALL_READY : total time 47.522 seconds
SP/0/1/SP:May 24 22:18:54.925 : init[65541]: %INIT-7-MBI_STARTED : total time 7.159 seconds
SP/0/1/SP:May 24 22:20:16.737 : init[65541]: %INIT-7-INSTALL_READY : total time 88.984 seconds
SP/0/SIM1/SP:May 24 22:18:40.993 : init[65541]: %INIT-7-MBI_STARTED: total time 7.194 seconds
SP/0/SIM1/SP:May 24 22:20:17.195 : init[65541]: %INIT-7-INSTALL_READY : total time 103.415 seconds
SP/0/2/SP:May 24 22:18:55.946 : init[65541]: %INIT-7-MBI_STARTED : total time 7.152 seconds
SP/0/2/SP:May 24 22:20:18.252 : init[65541]: %INIT-7-INSTALL_READY : total time 89.473 seconds
```

This is the sample output from the `show logging` command using both the `process name` keyword argument pair and `location node-id` keyword argument pair. Syslog messages related to the “init” process emitted from node 0/1/CPU0 are displayed in the sample output.

```
RP/0/RSP0/CPU0:router# show logging process init location 0/1/CPU0
Syslog logging: enabled (24 messages dropped, 0 flushes, 0 overruns)
Console logging: level warnings, 59 messages logged
Monitor logging: level debugging, 0 messages logged
Trap logging: level informational, 0 messages logged
Buffer logging: level debugging, 75 messages logged
Log Buffer (16384 bytes):
LC/0/1/CPU0:May 24 22:20:13.043 : init[65540]: %INIT-7-INSTALL_READY : total time 47.522 seconds
```
This table describes the significant fields shown in the display.

**Table 31: show logging Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog logging</td>
<td>If enabled, system logging messages are sent to a UNIX host that acts as a syslog server; that is, the host captures and saves the messages.</td>
</tr>
<tr>
<td>Console logging</td>
<td>If enabled, the level and the number of messages logged to the console are stated; otherwise, this field displays “disabled.”</td>
</tr>
<tr>
<td>Monitor logging</td>
<td>If enabled, the minimum level of severity required for a log message to be sent to the monitor terminal (not the console) and the number of messages logged to the monitor terminal are stated; otherwise, this field displays “disabled.”</td>
</tr>
<tr>
<td>Trap logging</td>
<td>If enabled, the minimum level of severity required for a log message to be sent to the syslog server and the number of messages logged to the syslog server are stated; otherwise, this field displays “disabled.”</td>
</tr>
<tr>
<td>Buffer logging</td>
<td>If enabled, the level and the number of messages logged to the buffer are stated; otherwise, this field displays “disabled.”</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear logging, on page 269</td>
<td>Clears messages from the logging buffer.</td>
</tr>
</tbody>
</table>
show logging history

To display information about the state of the system logging (syslog) history table, use the show logging history command in EXEC mode mode.

```
show logging history
```

**Syntax Description**

This command has no keywords or arguments.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show logging history` command to display information about the syslog history table, such as the table size, the status of messages, and the text of messages stored in the table. Simple Network Management Protocol (SNMP) configuration parameters and protocol activity also are displayed.

Use the `logging history, on page 292` command to change the severity level of syslog messages stored in the history file and sent to the SNMP server.

Use the `logging history size, on page 294` to change the number of syslog messages that can be stored in the history table.

**Examples**

This is the sample output from the `show logging history` command:

```
RP/0/RSP0/CPU0:router# show logging history
Syslog History Table: '1' maximum table entries
saving level 'warnings' or higher
137 messages ignored, 0 dropped, 29 table entries flushed
SNMP notifications disabled
```

This table describes the significant fields shown in the display.

**Table 32: show logging history Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum table entries</td>
<td>Number of messages that can be stored in the history table. Set with the <code>logging history size</code> command.</td>
</tr>
</tbody>
</table>
Field | Description
---|---
saving level | Level of messages that are stored in the history table and sent to the SNMP server (if SNMP notifications are enabled). Set with the `logging history` command.
messages ignored | Number of messages not stored in the history table because the severity level is greater than that specified with the `logging history` command.
SNMP notifications | Status of whether syslog traps of the appropriate level are sent to the SNMP server. Syslog traps are either enabled or disabled through the `snmp-server enable` command.

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging history, on page 292</td>
<td>Changes the severity level of syslog messages stored in the history file and sent to the SNMP server.</td>
</tr>
<tr>
<td>logging history size, on page 294</td>
<td>Changes the number of syslog messages that can be stored in the history table.</td>
</tr>
</tbody>
</table>
**terminal monitor**

To enable the display of debug command output and system logging (syslog) messages for the current terminal session, use the `terminal monitor` command in EXEC mode.

`terminal monitor [disable]`

**Syntax Description**

| `disable`  | (Optional) Disables the display of syslog messages for the current terminal session. |

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `terminal monitor` command to enable the display of syslog messages for the current terminal session.

Syslog messages are not sent to terminal lines unless the `logging monitor`, on page 300 is enabled.

Use the `terminal monitor disable` command to disable the display of logging messages for the current terminal session. If the display of logging messages has been disabled, use the `terminal monitor` command to re-enable the display of logging messages for the current terminal session.

The `terminal monitor` command is set locally, and does not remain in effect after a terminal session has ended; therefore, you must explicitly enable or disable the `terminal monitor` command each time that you would like to monitor a terminal session.

**Examples**

This example shows how to enable the display syslog messages for the current terminal session:

```
RP/0/RSP0/CPU0:router# terminal monitor
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>logging monitor</code>, on page 300</td>
<td>Specifies terminal lines other than console terminal as destinations for syslog messages and limits the number of messages sent to terminal lines based on severity.</td>
</tr>
</tbody>
</table>
threshold (logging)

To specify the threshold percentage for archive logs, use the **threshold** command in logging archive configuration mode. To return to the default, use the **no** form of this command.

```
threshold percent
no threshold
```

**Syntax Description**

- `percent`  Threshold percentage. The range is from 1 to 99.

**Command Default**

- 100 percent

**Command Modes**

- Logging archive configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
</table>
| 5.3.2    | This command was introduced.

**Usage Guidelines**

Use this **threshold** command to specify the percentage threshold. When the total archived files' size exceeds the percentage threshold of the configured archive-size, then the syslog of critical severity is generated. If the size is exceeded, then the oldest file in the archive is deleted to make space for new logs.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Example**

This example shows how to set the threshold percent:

```
RP/0/RSP0/CPU0:router(config)# logging archive
RP/0/RSP0/CPU0:router(config-logging-arch)# threshold 70
```
Onboard Failure Logging Commands

This module describes the Cisco IOS XR software commands used to configure onboard failure logging (OBFL) for system monitoring on the router. OBFL gathers boot, environmental, and critical hardware failure data for field-replaceable units (FRUs), and stores the information in the nonvolatile memory of the FRU. This information is used for troubleshooting, testing, and diagnosis if a failure or other error occurs.

Because OBFL is on by default, data is collected and stored as soon as the card is installed. If a problem occurs, the data can provide information about historical environmental conditions, uptime, downtime, errors, and other operating conditions.

To use commands of this module, you must be in a user group associated with a task group that includes appropriate task IDs. If the user group assignment is preventing you from using any command, contact your AAA administrator for assistance.

Caution

OBFL is activated by default in all cards and should not be deactivated. OBFL is used to diagnose problems in FRUs and to display a history of FRU data.

Related Documents

For detailed information about OBFL concepts, configuration tasks, and examples, see the Onboard Failure Logging Services module in the System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

For detailed information about logging concepts, configuration tasks, and examples, see the Implementing Logging Services module in the System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

For alarm management and logging correlation commands, see the Alarm Management and Logging Correlation Commands module in the System Monitoring Command Reference for Cisco ASR 9000 Series Routers.

For detailed information about alarm and logging correlation concepts, configuration tasks, and examples, see the Implementing Alarm Logs and Logging Correlation module in the System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

- show logging onboard, on page 320
- clear logging onboard, on page 323
- hw-module logging onboard , on page 325
# show logging onboard

To display the onboard failure logging (OBFL) messages, use the **show logging onboard** command in Admin EXEC mode.

```
show logging onboard [all|cbc common|dump-all|dump-range start-address end-address] most-recent {fans fan-tray-slot|location node-id} diagnostic|environment|error|genstr|temperature|uptime|voltage}]
[all|continuous|historical|static-data] [detail|raw|summary] [location node-id] [verbose]
```

## Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>all</strong></td>
<td>Displays all file information.</td>
</tr>
<tr>
<td><strong>cbc</strong></td>
<td>Displays Can Bus Controller (CBC) OBFL commands.</td>
</tr>
<tr>
<td><strong>common</strong></td>
<td>Displays the generic OBFL message logging output of multiple clients from string application.</td>
</tr>
<tr>
<td><strong>dump-all</strong></td>
<td>Displays all OBFL records.</td>
</tr>
<tr>
<td><strong>dump-range</strong></td>
<td>Displays OBFL EEPROM data for a given range.</td>
</tr>
<tr>
<td></td>
<td>Start and end address ranges are from 0 to 4294967295.</td>
</tr>
<tr>
<td><strong>most-recent</strong></td>
<td>Displays the last five OBFL data records.</td>
</tr>
<tr>
<td><strong>fans</strong></td>
<td>Displays a specific fan tray slot.</td>
</tr>
<tr>
<td><strong>location</strong></td>
<td>Displays OBFL messages from the designated node. The node-id argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td><strong>diagnostic</strong></td>
<td>Displays diagnostic information.</td>
</tr>
<tr>
<td><strong>environment</strong></td>
<td>Displays system environment information.</td>
</tr>
<tr>
<td><strong>error</strong></td>
<td>Displays output from the message application.</td>
</tr>
<tr>
<td><strong>temperature</strong></td>
<td>Displays temperature information.</td>
</tr>
<tr>
<td><strong>uptime</strong></td>
<td>Displays the OBFL uptime.</td>
</tr>
<tr>
<td><strong>voltage</strong></td>
<td>Displays voltage information.</td>
</tr>
<tr>
<td><strong>continuous</strong></td>
<td>Displays continuous information.</td>
</tr>
<tr>
<td><strong>historical</strong></td>
<td>Displays historical information.</td>
</tr>
<tr>
<td><strong>static-data</strong></td>
<td>Display system descriptor data.</td>
</tr>
<tr>
<td><strong>detail</strong></td>
<td>Displays detailed logging information.</td>
</tr>
<tr>
<td><strong>raw</strong></td>
<td>Displays raw OBFL data.</td>
</tr>
<tr>
<td><strong>summary</strong></td>
<td>Displays a summary of OBFL logging information.</td>
</tr>
<tr>
<td><strong>verbose</strong></td>
<td>Displays internal debugging information.</td>
</tr>
</tbody>
</table>
Onboard Failure Logging Commands

Command Default
None

Command Modes
Admin EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `show logging onboard` command to display all logging messages for OBFL.

To narrow the output of the command, enter the `show logging onboard` command with one of the optional keywords.

Use the `location node-id` keyword and argument to display OBFL messages for a specific node.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>logging</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

This example displays uptime information from the OBFL feature:

```
RP/0/RSP0/0-CPU0:router(admin)# show logging onboard uptime detail location 0/7/cpu0

UPTIME CONTINUOUS DETAIL INFORMATION (Node: node0_7_CPU0)
The first record : 01/05/2007 00:58:41
The last record : 01/17/2007 16:07:13
Number of records : 478
File size : 15288 bytes
Current reset reason : 0x00
Current uptime : 0 years 0 weeks 0 days 3 hours 0 minutes
Time Stamp | MM/DD/YYYY HH:MM:SS | Users operation
01/05/2007 01:44:35 | File cleared by user request. |
```

This example displays continuous information about the temperature:

```
RP/0/RSP0/0-CPU0:router(admin)# show logging onboard temperature continuous
RP/0/RSP1/0-CPU0:ios(admin)#show logging onboard temperature continuous
Fri Dec 11 02:22:16.247 UTC

TEMPERATURE CONTINUOUS INFORMATION (Node: node0_RSP0_CPU0)

Sensor | ID |
-------|----|
Inlet0 | 0x1|
Hotspot0 | 0x2|
```
This example displays raw information about the temperature:

```
RP/0/RSP0/CPU0:router(admin)# show logging onboard temperature raw
Feature: Temperature
node: node0_2_CPU0, file name: nvram:/temp_cont, file size: 47525
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear logging onboard, on page 323</td>
<td>Clears OBFL logging messages from a node or from all nodes.</td>
</tr>
<tr>
<td>hw-module logging onboard , on page 325</td>
<td>Enables or disables OBFL.</td>
</tr>
</tbody>
</table>
clear logging onboard

To clear OBFL logging messages from a node or from all nodes, use the clear logging onboard command in Admin EXEC mode.

```
clear logging onboard [{all|cbc common|obfl {fans fan-tray-slot|[location node-id]} |corrupted-files|diagnostic|environment|error|poweron-time|temperature|uptime|voltage]}]| [location node-id]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Clears all OBFL logs.</td>
</tr>
<tr>
<td>cbc</td>
<td>Clears commands for Can Bus Controller (CBC).</td>
</tr>
<tr>
<td>common</td>
<td>Clears the generic OBFL message logging output of multiple clients from string application.</td>
</tr>
<tr>
<td>obfl</td>
<td>Clears OBFL EEPROM.</td>
</tr>
<tr>
<td>fans</td>
<td>Clears a specific fan tray slot.</td>
</tr>
<tr>
<td>fan-tray-slot</td>
<td>(Optional) Clears OBFL messages from the designated node. The node-id argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td>location node-id</td>
<td>Clears corrupted file information.</td>
</tr>
<tr>
<td>corrupted-files</td>
<td>Clears the online diagnostics information from the OBFL logs.</td>
</tr>
<tr>
<td>diagnostic</td>
<td>Clears the environmental information from the OBFL logs.</td>
</tr>
<tr>
<td>environment</td>
<td>Clear syslog information.</td>
</tr>
<tr>
<td>error</td>
<td>Clears time of first customer power on.</td>
</tr>
<tr>
<td>poweron-time</td>
<td>Clears temperature information.</td>
</tr>
<tr>
<td>temperature</td>
<td>Clears uptime information.</td>
</tr>
<tr>
<td>uptime</td>
<td>Clears voltage information.</td>
</tr>
<tr>
<td>voltage</td>
<td>Clears continuous information.</td>
</tr>
<tr>
<td>continuous</td>
<td>Clears historical information.</td>
</tr>
<tr>
<td>historical</td>
<td>All OBFL logging messages are cleared from all nodes.</td>
</tr>
<tr>
<td>Command Modes</td>
<td>Admin EXEC mode</td>
</tr>
<tr>
<td>Command History</td>
<td>Release 3.7.2 This command was introduced.</td>
</tr>
<tr>
<td></td>
<td>Release 5.2.2 The keyword common was added for the OBFL generic message logging feature.</td>
</tr>
</tbody>
</table>

System Monitoring Command Reference for Cisco ASR 9000 Series Routers
Usage Guidelines

Use the **clear logging onboard** command to clear OBFL messages from all nodes. Use the **clear logging onboard** command with the **location node-id** keyword and argument to clear OBFL messages for a specific node. If the specified node is not present, an error message is displayed.

⚠️

**Caution**

The **clear logging onboard** command permanently deletes all OBFL data for a node or for all nodes. Do not clear the OBFL logs without specific reasons, because the OBFL data is used to diagnose and resolve problems in FRUs.

⚠️

**Caution**

If OBFL is actively running on a card, issuing the **clear logging onboard** command can result in a corrupt or incomplete log at a later point in time. OBFL should always be disabled before this command is issued.

Example

In the following example, the OBFL data is cleared for all nodes in the system:

```
RP/0/RSP0/CPU0:router(admin)# clear logging onboard
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hw-module logging onboard, on page 325</td>
<td>Enables or disables OBFL.</td>
</tr>
<tr>
<td>show logging onboard, on page 320</td>
<td>Displays the OBFL messages.</td>
</tr>
</tbody>
</table>
hw-module logging onboard

To disable onboard failure logging (OBFL), use the `hw-module logging onboard` command in Admin Configuration mode. To enable OBFL again, use the `no` form of this command.

```
hw-module {all|subslot node-id} logging onboard [{disable|severity {alerts|emergencies}}]
```

```
no hw-module {all|subslot node-id} logging onboard [disable]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>all</code></td>
<td>Enables or disables OBFL for all nodes.</td>
</tr>
<tr>
<td><code>subslot node-id</code></td>
<td>Enables or disables OBFL for the designated node. The <code>node-id</code> argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td><code>disable</code></td>
<td>Enables or disables OBFL. See the Usage Guidelines for more information.</td>
</tr>
<tr>
<td><code>severity</code></td>
<td>(Optional) Specifies the severity level for the syslog message that is logged into the OBFL storage device.</td>
</tr>
<tr>
<td><code>alerts</code></td>
<td>Specifies that both emergency and alert syslog messages are logged. The default is the <code>alerts</code> keyword.</td>
</tr>
<tr>
<td><code>emergencies</code></td>
<td>Specifies that only the emergency syslog messages are logged.</td>
</tr>
</tbody>
</table>

### Command Default

By default, OBFL logging is enabled.

*severity*: 1 (alerts) and 0 (emergencies)

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Release 3.7.2 This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

Use the `hw-module logging onboard` command to enable or disable OBFL.

- To disable OBFL use the `disable` keyword. OBFL is enabled by default.
  ```
 hw-module {all | subslot node-id} logging onboard disable
  ```
- To enable OBFL, use the `no` form of the `hw-module logging onboard` command with the `disable` keyword. OBFL is enabled by default. Use this command only if you disabled OBFL:
  ```
 no hw-module {all | subslot node-id} logging onboard disable
  ```
- To enable OBFL and return the configuration to the default message severity level, use the `no` form of the `hw-module logging onboard` command with the `severity` keyword:
  ```
 no hw-module {all | subslot node-id} logging onboard severity
  ```

When the OBFL feature is disabled, existing OBFL logs are preserved. To resume OBFL data collection, enable the OBFL feature again.
If a new node is inserted, and OBFL is enabled for that slot, then OBFL is enabled for the new node. If a card is removed from a router and inserted into a different router, the card assumes the OBFL configuration for the new router.

### Examples

The following example shows how to disable OBFL for all cards:

```bash
RP/0/RSP0/CPU0:router (admin-config) # hw-module all logging onboard disable
```

The following example shows how to disable OBFL for a card:

```bash
RP/0/RSP0/CPU0:router (admin-config) # hw-module subslot 0/2/CPU0 logging onboard disable
```

The following example shows how to enable OBFL again:

```bash
RP/0/RSP0/CPU0:router (admin-config) # no hw-module all logging onboard disable
```

The following example shows how to save only the syslog message in which the severity level is set to 0 (emergency) to a storage device:

```bash
RP/0/RSP0/CPU0:router (admin-config) # hw-module subslot 0/2/CPU0 logging onboard severity emergencies
```

The following example shows how to save the syslog message in which the severity level is set to 0 (emergency) and 1 (alert) to a storage device:

```bash
RP/0/RSP0/CPU0:router (admin-config) # hw-module subslot 0/2/CPU0 logging onboard severity alerts
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear logging onboard, on page 323</td>
<td>Clears OBFL logging messages from a node or from all nodes.</td>
</tr>
<tr>
<td>show logging onboard, on page 320</td>
<td>Displays the OBFL messages.</td>
</tr>
</tbody>
</table>
**Performance Management Commands**

This module describes the performance management and monitoring commands available on the router. These commands are used to monitor, collect, and report statistics, and to adjust statistics gathering for Border Gateway Protocol (BGP), Open Shortest Path First (OSPF) protocol, generic interfaces, and individual nodes.

To use commands of this module, you must be in a user group associated with a task group that includes appropriate task IDs. If the user group assignment is preventing you from using any command, contact your AAA administrator for assistance.

For detailed information about performance management concepts, configuration tasks, and examples, see the *Implementing Performance Management* module in the *System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers*.

- monitor controller fabric, on page 328
- monitor controller sonet, on page 330
- monitor interface, on page 332
- performance-mgmt apply monitor, on page 337
- performance-mgmt apply statistics, on page 340
- performance-mgmt apply thresholds, on page 343
- performance-mgmt regular-expression, on page 345
- performance-mgmt resources dump local, on page 346
- performance-mgmt resources memory, on page 347
- performance-mgmt resources tftp-server, on page 348
- performance-mgmt statistics, on page 350
- performance-mgmt thresholds, on page 353
- show performance-mgmt bgp, on page 362
- show performance-mgmt interface, on page 364
- show performance-mgmt mpls, on page 367
- show performance-mgmt node, on page 369
- show performance-mgmt ospf, on page 371
- show running performance-mgmt, on page 373
- show health sysdb, on page 375
monitor controller fabric

To monitor controller fabric counters in real time, use the **monitor controller fabric** command in EXEC mode.

```
monitor controller fabric {plane-id|all}
```

**Syntax Description**

- **plane-id** Plane ID number of the fabric plane to be monitored. The range is 0 to 7.
- **all** Monitors all fabric planes.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the **monitor controller fabric** command to display controller fabric counters. The display refreshes every 2 seconds.

The interactive commands that are available during a controller fabric monitoring session are described in this table.

**Table 33: Interactive Commands Available for the monitor controller fabric Command**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Resets controller fabric counters to 0.</td>
</tr>
<tr>
<td>f</td>
<td>Freezes the display screen, thereby suspending the display of fresh counters.</td>
</tr>
<tr>
<td>t</td>
<td>Thaws the display screen, thereby resuming the display of fresh counters.</td>
</tr>
<tr>
<td>q</td>
<td>Terminates the controller fabric monitoring session.</td>
</tr>
<tr>
<td>s</td>
<td>Enables you to jump to a nonsequential fabric plane. You are prompted to enter the plane ID of the fabric to be monitored.</td>
</tr>
</tbody>
</table>

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>fabric</td>
<td>read</td>
</tr>
<tr>
<td>basic-services</td>
<td>execute</td>
</tr>
<tr>
<td>monitor</td>
<td>read</td>
</tr>
</tbody>
</table>
This is sample output from the `monitor controller fabric` command. The output in this example displays fabric controller counters from fabric plane 0.

```
RP/0/RSP0/CPU0:router# monitor controller fabric 0
rack3-3 Monitor
Time: 00:00:24 SysUptime: 03:37:57 Controller fabric for 0x0 Controller Fabric Stats:
Delta In Cells 0 (0 per-sec) 0 Out Cells 0 (0 per-sec) 0 CE Cells 0 (0 per-sec) 0 UCE
Cells 0 (0 per-sec) 0 PE Cells 0 (0 per-sec) 0 Quit='q', Freeze='f', Thaw='t',
Clear='c', Select controller='s'
```
monitor controller sonet

To monitor SONET controller counters, use the `monitor controller sonet` command in EXEC mode.

```
monitor controller sonet interface-path-id
```

**Syntax Description**

- `interface-path-id` Physical interface or virtual interface.

**Note**

Use the `show interfaces` command to see a list of all interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark ( ? ) online help function.

**Command Modes**

- EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `monitor controller sonet` command to display SONET controller counters. The display refreshes every 2 seconds.

The interactive commands that are available during a controller monitoring session are described in this table.

**Table 34: Interactive Commands for the monitor controller sonet Command**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Resets controller SONET counters to 0.</td>
</tr>
<tr>
<td>f</td>
<td>Freezes the display screen, thereby suspending the display of fresh counters.</td>
</tr>
<tr>
<td>t</td>
<td>Thaws the display screen, thereby resuming the display of fresh counters.</td>
</tr>
<tr>
<td>q</td>
<td>Terminates the controller SONET monitoring session.</td>
</tr>
<tr>
<td>s</td>
<td>Enables you to jump to a nonsequential SONET controller. You are prompted to enter the SONET controller to be monitored.</td>
</tr>
</tbody>
</table>

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>fabric</td>
<td>read</td>
</tr>
<tr>
<td>basic-services</td>
<td>execute</td>
</tr>
<tr>
<td>monitor</td>
<td>read</td>
</tr>
</tbody>
</table>
This is the sample output from the `monitor controller sonet` command. The output in this example displays counters from SONET controller 0/3/0/0.

```
RP/0/RSP0/CPU0:router# monitor controller sonet 0/3/0/0 rack3-3
Monitor Time: 00:00:06 SysUptime: 01:23:56 Controller for SONET0_3_0_0 Controller Stats:
 Delta Path LOP 0 (0 per-sec) 0 Path AIS 0 (0 per-sec) 0 Path RDI 0 (0 per-sec) 0
 Path BIP 0 (0 per-sec) 0 Path FEBE 0 (0 per-sec) 0 Path NEWPTR 0 (0 per-sec) 0
 Path PSE 0 (0 per-sec) 0 Path NSE 0 (0 per-sec) 0 Line AIS 0 (0 per-sec) 0 Line RDI 0 (0 per-sec) 0 Line BIP 0 (0 per-sec) 0 Line FEBE 0 (0 per-sec) 0 Section LOS 1 (0 per-sec) 1 Section LOF 0 (0 per-sec) 0 Section BIP 0 (0 per-sec) 0 Quit='q', Freeze='f', Thaw='t', Clear='c', Select controller='s'
```
**monitor interface**

To monitor interface counters in real time, use the `monitor interface` command in EXEC mode or Admin EXEC mode.

```
monitor interface [type1 interface-path-id1 [. . .] [type32 interface-path-id32]]
```

**Syntax Description**

- **type**: Interface type. For more information, use the question mark (`?`) online help function.
- **interface-path-id**: Physical interface or virtual interface.

**Note**: Use the `show interfaces` command to see a list of all interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (`?`) online help function.

**Command Default**

Use the `monitor interface` command without an argument to display statistics for all interfaces in the system.

**Command Modes**

EXEC mode

Admin EXEC mode

**Command History**

Release 3.7.2  This command was introduced.

**Usage Guidelines**

Use the `monitor interface` command without any keywords or arguments to display interface counters for all interfaces. The display refreshes every 2 seconds.

Use the `monitor interface` command with the `type interface-path-id` arguments to display counters for a single interface. For example: `monitor interface pos0/2/0/0`

To display more than one selected interface, enter the `monitor interface` command with multiple `type interface-path-id` arguments. For example: `monitor interface pos0/2/0/0 pos0/5/0/1 pos0/5/0/2`

To display a range of interfaces, enter the `monitor interface` command with a wildcard. For example: `monitor interface pos0/5/*`

You can display up to 32 specific interfaces and ranges of interfaces.

The interactive commands that are available during an interface monitoring session are described in this table.

**Table 35: Interactive Commands Available for the monitor interface Command (Functional Summary)**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the following keys to suspend or resume the counter refresh:</td>
<td></td>
</tr>
<tr>
<td><code>f</code></td>
<td>Freezes the display screen, thereby suspending the display of fresh counters.</td>
</tr>
</tbody>
</table>
Use the following key to reset the counters:

| c | Resets interface counters to 0. |

Use the following keys when displaying statistics for a single interface. These keys display counters in normal or detailed view:

d	Changes the display mode for the interface monitoring session to display detailed counters. Use the b interactive command to return to the regular display mode.
r	Displays the protocol divided by IPv4 or IPv6, and multicast and unicast. When the statistics are displayed using the r option, you can also use the k, y, or o keys to display statistics in packets (“k”), bytes (“y”) or packets and (“o”).
b	Returns the interface monitoring session to the regular display mode for counters. Statistics are not divided by protocol.

Use the following keys when displaying statistics for multiple interfaces. These keys modify the display to show statistics in bytes, packets, or bytes and packets:

k	Displays statistics in packets (“k”).
y	(Default) Displays statistics in bytes (“y”).
o	Displays statistics in both bytes and packets (“o”).

Use the following keys to display statistics for a different interface:

i	Enables you to jump to a nonsequential interface. You are prompted to enter the interface type and interface path ID to be monitored.
p	Displays the previous sequential interface in the list of available interfaces.
n	Displays the next sequential interface in the list of available interfaces.
q	Terminates the interface monitoring session.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>basic-services</td>
<td>execute</td>
</tr>
<tr>
<td>monitor</td>
<td>read</td>
</tr>
</tbody>
</table>
Examples

When more than one interface is specified, the statistics for each interface are displayed on a separate line. This display format appears anytime more than one interface is specified. For example:

- To display statistics for all interfaces, enter the command `monitor interface`.
- To display all the interfaces for an interface type, such as all POS interface, enter the command and wildcard `monitor interface pos*`.
- To display statistics for three specified interfaces, enter the command `monitor interface pos/0/2/0 pos/0/5/0/1 pos/0/5/0/2`.

This is the sample output for the `monitor interface` command entered without an argument. This command displays statistics for all interfaces in the system.

```
RP/0/RSP0/CPU0:router# monitor interface
Protocol:General
Rack6-1 Monitor Time: 00:00:01 SysUptime: 165:52:41 Interface In(bps) Out(bps)
InBytes/Delta OutBytes/Delta Mg0/0/CPU0/0 1500/ 0% 7635/ 0% 58.4M/420 8.1M/2138
PO0/4/0/0 578/ 0% 355/ 0% 367.2M/162 377.5M/150 PO0/4/0/1 278/ 0% 0/ 0% 8.1M/2138
0/ 0% 824.6G/0 1.0T/0 G10/5/0/1 3128/ 0% 2171/ 0% 382.8M/876 189.1M/608 G10/5/0/1.1 0/ 0% 824.6G/0
0% 1.0T/190 1.0T/0 G10/5/0/1.2 0/ 0% 0% 824.6G/0 824.6G/0 G10/5/0/1.3 678/ 0% 0/ 0% 350/ 0% 360.1M/0
350/ 0% 824.6G/0 1.0T/98 G10/5/0/1.4 327/ 0% 348/ 0% 824.6G/92 1.0T/98 G10/5/0/1.5 1.0T/98 824.6G/92
0% 1.0T/0 Quit='q', Clear='c', Freeze='f', Thaw='t', Next set='n', Prev set='p', Bytes='y', Packets='k'
(General='g', IPv4 Uni='4u', IPv4 Multi='4m', IPv6 Uni='6u', IPv6 Multi='6m')
```

```
RP/0/RSP0/CPU0:router# monitor interface
Protocol:IPv4 Unicast
Rack6-1 Monitor Time: 00:00:01 SysUptime: 165:52:41 Interface In(bps) Out(bps)
InBytes/Delta OutBytes/Delta Mg0/0/CPU0/0 0/ 0% 0/ 0% 85.3M/0 6.9M/0 PO0/4/0/0 0/ 0% 0/ 0% 3.1G/0
0/ 0% 224/0 PO0/4/0/1 0/ 0% 0% 3.0G/0 152582/0 G10/5/0/1 0/ 0% 0% 0/0 441174/0 G10/5/0/1.1 0/ 0% 0% 0/0
0/ 0% 462549/0 G10/5/0/1.2 0/ 0% 0% 13.4M/0 462549/0 G10/5/0/1.3 0/ 0% 0% 0% 12.2M/0 0/0 G10/5/0/1.4 0/ 0% 0% 0/0
0/ 0% 3072/0 500/0 G10/5/0/1.5 0/ 0% 0% 0/0 427747/0 G10/5/0/1.6 0/ 0% 0% 1.0T/0 824.6G/0 G10/5/0/1.7 0/ 0% 0% 0/0
0/ 0% 13.4M/0 427747/0 G10/5/0/1.8 0/ 0% 0% 8192/0 5.1M/0 Quit='q', Clear='c', Freeze='f', Thaw='t',
set='n', Prev set='p', Bytes='y', Packets='k' (General='g', IPv4 Uni='4u', IPv4 Multi='4m', IPv6 Uni='6u', IPv6 Multi='6m')
```

```
RP/0/RSP0/CPU0:router# monitor interface
Protocol:IPv4 Multicast
Rack6-1 Monitor Time: 00:00:03 SysUptime: 165:52:56 Interface In(bps) Out(bps)
InBytes/Delta OutBytes/Delta Mg0/0/CPU0/0 (statistics not available) PO0/4/0/1 (statistics not available)
G10/5/0/1 0/ 0% 0/0 441174/0 G10/5/0/1.1 0/ 0% 0/0 441174/0 G10/5/0/1.2 0/ 0% 0/0 441174/0 G10/5/0/1.3 0/ 0% 0/0 441174/0
G10/5/0/1.4 0/ 0% 0/0 441174/0 G10/5/0/1.5 0/ 0% 0/0 441174/0 G10/5/0/1.6 0/ 0% 0/0 441174/0 G10/5/0/1.7 0/ 0% 0/0 441174/0
G10/5/0/1.8 0/ 0% 0/0 8192/0 5.1M/0 Quit='q', Clear='c', Freeze='f', Thaw='t',
set='n', Prev set='p', Bytes='y', Packets='k' (General='g', IPv4 Uni='4u', IPv4 Multi='4m', IPv6 Uni='6u', IPv6 Multi='6m')
```

```
RP/0/RSP0/CPU0:router# monitor interface
Protocol:General
Rack6-1 Monitor Time: 00:00:01 SysUptime: 165:52:41 Interface In(bps) Out(bps)
InBytes/Delta OutBytes/Delta Mg0/0/CPU0/0 1500/ 0% 7635/ 0% 58.4M/420 8.1M/2138
PO0/4/0/0 578/ 0% 355/ 0% 367.2M/162 377.5M/150 PO0/4/0/1 278/ 0% 0/ 0% 8.1M/2138
0/ 0% 824.6G/0 1.0T/0 G10/5/0/1 3128/ 0% 2171/ 0% 382.8M/876 189.1M/608 G10/5/0/1.1 0/ 0% 824.6G/0
0% 1.0T/190 1.0T/0 G10/5/0/1.2 0/ 0% 0% 824.6G/0 824.6G/0 G10/5/0/1.3 678/ 0% 0/ 0% 350/ 0% 360.1M/0
350/ 0% 824.6G/0 1.0T/98 G10/5/0/1.4 327/ 0% 348/ 0% 824.6G/92 1.0T/98 G10/5/0/1.5 1.0T/98 824.6G/92
0% 1.0T/0 Quit='q', Clear='c', Freeze='f', Thaw='t', Next set='n', Prev set='p', Bytes='y', Packets='k'
(General='g', IPv4 Uni='4u', IPv4 Multi='4m', IPv6 Uni='6u', IPv6 Multi='6m')
```

```
RP/0/RSP0/CPU0:router# monitor interface
Protocol:IPv4 Unicast
Rack6-1 Monitor Time: 00:00:01 SysUptime: 165:52:41 Interface In(bps) Out(bps)
InBytes/Delta OutBytes/Delta Mg0/0/CPU0/0 0/ 0% 0/ 0% 85.3M/0 6.9M/0 PO0/4/0/0 0/ 0% 0/ 0% 3.1G/0
0/ 0% 224/0 PO0/4/0/1 0/ 0% 0% 3.0G/0 152582/0 G10/5/0/1 0/ 0% 0% 0/0 441174/0 G10/5/0/1.1 0/ 0% 0% 0/0 441174/0
0/ 0% 462549/0 G10/5/0/1.2 0/ 0% 0% 13.4M/0 462549/0 G10/5/0/1.3 0/ 0% 0% 0% 12.2M/0 0/0 G10/5/0/1.4 0/ 0% 0% 0/0
0/ 0% 3072/0 500/0 G10/5/0/1.5 0/ 0% 0% 0/0 427747/0 G10/5/0/1.6 0/ 0% 0% 1.0T/0 824.6G/0 G10/5/0/1.7 0/ 0% 0% 0/0
0/ 0% 13.4M/0 427747/0 G10/5/0/1.8 0/ 0% 0% 8192/0 5.1M/0 Quit='q', Clear='c', Freeze='f', Thaw='t',
set='n', Prev set='p', Bytes='y', Packets='k' (General='g', IPv4 Uni='4u', IPv4 Multi='4m', IPv6 Uni='6u', IPv6 Multi='6m')
```
This is the sample output for `monitor interface pos *` command that displays statistics for all POS interfaces:

```
RP/0/RSP0/CPU0:router# monitor interface pos 0/*
Protocol: General router
Monitor Time: 00:00:02 SysUptime: 186:37:44 Interface
In(bps) Out(bps) InBytes/Delta OutBytes/Delta
POS0/1/0/1 84/ 0% 0/ 0% 274.8M/22 274.6M/0
1.4M/0 POS0/6/0/1 85/ 0% 0/ 0% 2.6M/22 1.4M/0
POS0/6/4/5 85/ 0% 0/ 0% 2.6M/22 1.4M/0
0% 0% 0% 0% 0% Quit='q', Clear='c', Freeze='f', Thaw='t', Next set='n', Prev set='p', Bytes='y', Packets='k' (General='g', IPv4 Uni='4u', IPv4 Multi='4m', IPv6 Uni='6u', IPv6 Multi='6m')
```

This is the sample output for a single interface using the `monitor interface` command with the `type interface-path-id` argument. In this example, the output displays interface counters from POS interface 0/6/4/4. By default, statistics are displayed in “Brief” state (statistics are not divided by protocol).

```
RP/0/RSP0/CPU0:router# monitor interface pos0/6/4/4
Monitor Time: 00:00:24 SysUptime: 186:43:04
POS0/6/4/4 is up, line protocol is up
```
Encapsulation HDLC Traffic Stats: (2 second rates) Delta Input Packets: 232450
Input pps: 0 Input Bytes: 15179522 0 Input Kbps (rate): 0 ( 0%) Output Packets: 67068
Output pps: 0 Output Bytes: 1475484 0 Output Kbps (rate): 0 ( 0%)
Total: Input CRC: 2134 0 Input Frame: 2135 0 Input Overrun: 0 0 Output Total: 0 0 Output Underrun: 0 0 Quit='q', Freeze='f', Thaw='t', Clear='c', Interface='i', Next='n', Prev='p' Brief='b', Detail='d', Protocol(IPv4/IPv6)='r'

This is the sample output from the `monitor interface` command in the protocol state for the POS interface 0/6/4/4. Use the `r` key to display statistics by protocol:

```
RP/0/RSP0/CPU0:router# monitor interface pos0/6/4/4 router
Monitor Time: 00:00:02 SysUptime: 186:49:15 POS0/6/4/4 is up, line protocol is up
Encapsulation HDLC Traffic Stats: (2 second rates) Delta Input Bytes: 15188186
Input Kbps (rate): 0 (0%) Output Bytes: 1476298 0 Output Kbps (rate): 0 (0%) IPv4 Unicast Input Bytes: 0 0 Input Kbps (rate): 0 (0%) Output Bytes: 0 0 Output Kbps (rate): 0 (0%) IPv4 Multicast Input Bytes: 10160304 66 Input Kbps (rate): 0 (0%) Output Kbps (rate): 0 (0%) IPv6 Unicast Input Bytes: 0 0 Input Kbps (rate): 0 (0%) Output Bytes: 0 0 Output Kbps (rate): 0 (0%) IPv6 Multicast Input Bytes: 0 0 Input Kbps (rate): 0 (0%) Output Bytes: 0 0 Output Kbps (rate): 0 (0%) Errors Stats: Input Total: 2146 0 Input CRC: 2134 0 Input Frame: 2135 0 Input Overrun: 0 0 Output Total: 0 0 Output Underrun: 0 0 Quit='q', Freeze='f', Thaw='t', Clear='c', Interface='i', Next='n', Prev='p' Brief='b', Detail='d', Protocol(IPv4/IPv6)='r' (Additional options in 'Protocol'): Bytes='y', Packets='k', Both of bytes/packets='o'
```
To apply a statistics template to gather a sampling-size set of samples for a particular instance, use the `performance-mgmt apply monitor` command in Global Configuration mode. To stop monitoring statistics, use the `no` form of this command.

```
performance-mgmt apply monitor entity {ip-address |node-id |node-id |process-id |process-name} {template-name |default}
no performance-mgmt apply monitor
```

**Syntax Description**

<table>
<thead>
<tr>
<th>entity</th>
<th>Specifies an entity for which you want to apply the statistics template:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bgp</code></td>
<td>Applies a template for monitoring a Border Gateway Protocol (BGP) neighbor.</td>
</tr>
<tr>
<td><code>interface basic-counters</code></td>
<td>Applies a template for monitoring basic counters on an interface. If you enter this keyword, supply values for the <code>type</code> and <code>interface-path-id</code> arguments.</td>
</tr>
<tr>
<td><code>interface data-rates</code></td>
<td>Applies a template for monitoring data rates on an interface. If you enter this keyword, supply values for the <code>type</code> and <code>interface-path-id</code> arguments.</td>
</tr>
<tr>
<td><code>interface generic-counters</code></td>
<td>Applies a template for monitoring generic counters on an interface. If you enter this keyword, supply values for the <code>type</code> and <code>interface-path-id</code> arguments.</td>
</tr>
<tr>
<td><code>mpls ldp</code></td>
<td>Applies a template for monitoring an MPLS Label Distribution Protocol (LDP) neighbor.</td>
</tr>
<tr>
<td><code>node cpu</code></td>
<td>Applies a template for monitoring the central processing unit (CPU) on a node. Use the <code>node-id</code> argument with this entity.</td>
</tr>
<tr>
<td><code>node memory</code></td>
<td>Applies a template for monitoring memory utilization on a node. Use the <code>location</code> keyword and <code>node-id</code> argument with this entity.</td>
</tr>
<tr>
<td><code>node process</code></td>
<td>Applies a template for monitoring a process on a node. Use the <code>node-id</code> and <code>process-id</code> arguments with this entity.</td>
</tr>
<tr>
<td><code>ospf v2protocol</code></td>
<td>Applies a template for monitoring an Open Shortest Path First v2 (OSPFv2) process instance.</td>
</tr>
<tr>
<td><code>ospf v3protocol</code></td>
<td>Applies a template for monitoring an OSPFv3 process instance.</td>
</tr>
</tbody>
</table>

ip-address	IP or neighbor address. Used with the `bgp` or `ldp` keyword.
type	Interface type. For more information, use the question mark (?) online help function.
interface-path-id	Physical interface or virtual interface.

**Note** Use the `show interfaces` command to see a list of all interfaces currently configured on the router. For more information about the syntax for the router, use the question mark (?) online help function.

| node-id | Designated node. Used with the `node cpu` or `node memory` keyword. The `node-id` argument is entered in the rack/slot/module notation. |
| node-id | Designated node and process ID. Used with the `node process` keyword. The `node-id` argument is entered in the rack/slot/module notation. |
process-name  Process name of the OSPF instance. Used with the ospfv2protocol and ospfv3protocol keywords.

template-name  Name of a predefined template used for statistics collection. A template name can be any combination of alphanumeric characters, and may include the underscore character (_). Use the show running performance-mgmt command to display a list of available templates.

default  Applies the default template.

Command Default  Monitoring is disabled.

Command Modes  Global Configuration mode

Command History

Release  Modification
3.7.2  This command was introduced.
4.0.1  The interface basic-counters keyword was added to support the monitoring of basic counters on the interface.

Usage Guidelines
Use the performance-mgmt apply monitor command to apply a statistics template and enable monitoring. This command captures one cycle of a sample to analyze an instance of an entity. Rather than collect statistics for all instances, which is the purpose of the performance-mgmt apply statistics command, the performance-mgmt apply monitor command captures statistics for a specific entity instance for one sampling period.

The type and interface-path-id arguments are only to be used with the interface data-rates or interface generic-counter keyword.

For information about creating templates, see the performance-mgmt apply statistics, on page 340 command.

Examples
This example shows how to enable the BGP protocol monitoring using the criterion set in the default template:

RP/0/RSP0/CPU0:router(config)#performance-mgmt apply monitor bgp 10.0.0.0 default

This example shows how to enable monitoring for data rates according to the criterion set in the default template:

RP/0/RSP0/CPU0:router(config)#performance-mgmt apply monitor interface data-rates pos 0/2/0/0 default

This example shows how to enable memory monitoring based on the criterion set in the default template:
This example shows how to enable monitoring for counters according to the criterion set in the default template:

```
RP/0/RSP0/CPU0:router(config)# performance-mgmt apply monitor interface basic-counters hundredGigE 0/2/0/0 default
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>performance-mgmt apply statistics, on page 340</td>
<td>Applies a statistics template and enables statistics collection.</td>
</tr>
<tr>
<td></td>
<td>performance-mgmt statistics, on page 350</td>
<td>Creates a template to use for collecting performance management statistics.</td>
</tr>
<tr>
<td></td>
<td>show running performance-mgmt, on page 373</td>
<td>Displays a list of templates and the template being applied.</td>
</tr>
</tbody>
</table>
performance-mgmt apply statistics

To apply a statistics template and enable statistics collection, use the `performance-mgmt apply statistics` command in Global Configuration mode. To stop statistics collection, use the `no` form of this command.

```
performance-mgmt apply statistics entity location {all node-id} {template-name | default}
no performance-mgmt apply statistics
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Entity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>entity</td>
<td>Specifies an entity for which you want to apply a statistics template:</td>
</tr>
<tr>
<td>bgp</td>
<td>Applies a statistics collection template for Border Gateway Protocol (BGP).</td>
</tr>
<tr>
<td>interface basic-counters</td>
<td>Applies a statistics collection template for basic counters.</td>
</tr>
<tr>
<td>interface data-rates</td>
<td>Applies a statistics collection template for data rates.</td>
</tr>
<tr>
<td>interface generic-counters</td>
<td>Applies a statistics collection template for generic counters.</td>
</tr>
<tr>
<td>mpls ldp</td>
<td>Applies a template for monitoring an MPLS Label Distribution Protocol (LDP) neighbor.</td>
</tr>
<tr>
<td>node cpu</td>
<td>Applies a statistics collection template for the central processing unit (CPU). Use the <code>location</code> keyword with the <code>all</code> keyword or <code>node-id</code> argument when enabling a statistics collection template for this entity.</td>
</tr>
<tr>
<td>node memory</td>
<td>Applies a statistics collection template for memory utilization. Use the <code>location</code> keyword with the <code>all</code> keyword or <code>node-id</code> argument when enabling a statistics collection template for this entity.</td>
</tr>
<tr>
<td>node process</td>
<td>Applies a statistics collection template for processes. Use the <code>location</code> keyword with the <code>all</code> keyword or <code>node-id</code> argument when enabling a statistics collection template for this entity.</td>
</tr>
<tr>
<td>ospf v2protocol</td>
<td>Applies a statistics collection template for Open Shortest Path First v2 (OSPFv2) process instances.</td>
</tr>
<tr>
<td>ospf v3protocol</td>
<td>Applies a statistics collection template for OSPFv3 process instances.</td>
</tr>
</tbody>
</table>

**Location**

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location {all</td>
<td>Specifies all nodes or a particular node.</td>
</tr>
<tr>
<td>node-id}</td>
<td>Specify the location <code>all</code> keywords for all nodes, or the <code>node-id</code> argument to specify a particular node. The <code>node-id</code> argument is entered in the <code>rack/slot/module</code> notation. You must specify either the location <code>all</code> keywords or the <code>location</code> keyword and <code>node-id</code> argument with the node cpu, node memory, or node process entity.</td>
</tr>
</tbody>
</table>

**Template Name**

<table>
<thead>
<tr>
<th>Template Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>template-name</td>
<td>Name of a predefined template used for statistics collection. A template name can be any combination of alphanumeric characters, and may include the underscore character (_). Use the <code>show running performance-mgmt</code>, on page 373 command to display a list of available templates.</td>
</tr>
</tbody>
</table>

**Default**

<table>
<thead>
<tr>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>Applies the default template.</td>
</tr>
</tbody>
</table>

**Command Default**

Statistics collection is disabled.

**Command Modes**

Global Configuration mode
**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 4.0.1</td>
<td>The <code>interface basic-counters</code> keyword was added to support the enabling of statistics collection template for the basic counters.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `performance-mgmt apply statistics` command to apply a statistics template and enable statistics collection. Only one template for each entity can be enabled at a time. After samples are taken, the data is sent to a directory on an external TFTP server, and a new collection cycle starts. The directory where data is copied to is configured using the `performance-mgmt resources tftp-server`, on page 348 command. The statistics data in the directory contains the type of entity, parameters, instances, and samples. They are in binary format and must be viewed using a customer-supplied tool, or they can be queried as they are being collected using XML.

Use the `performance-mgmt apply statistics` command to collect data for all the instances on a continuous basis. To analyze a particular instance for a limited period of time, use the `performance-mgmt apply monitor`, on page 337 command.

Use the `no` form of the command to disable statistics collection. Because only one performance management statistics collection can be enabled for any given entity at any given time, you are not required to specify the template name with the `default` keyword or `template` keyword and `template-name` argument when disabling a performance management statistics collection.

For information about creating templates, see the `performance-mgmt statistics`, on page 350 command.

---

**Caution**

Each particular collection enabled requires a certain amount of resources. These resources are allocated for as long as the collection is enabled.

---

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write, execute</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to start statistics collection for BGP using the template named bgp1:

```
RP/0/RSP0/CPU0:router(config)#performance-mgmt apply statistics bgp template bgp1
```

This example shows how to enable statistics collection for generic counters using the default template:

```
RP/0/RSP0/CPU0:router(config)#performance-mgmt apply statistics interface generic-counters default
```

This example shows how to enable CPU statistics collection based on the settings set in the default template:
This example shows how to enable statistics collection for basic counters using the default template:

```plaintext
RP/0/RSP0/CPU0:router(config)# performance-mgmt apply statistics node cpu location all default
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>performance-mgmt apply monitor, on page 337</td>
<td>Applies a statistics template to gather one sampling-size set of samples for a particular instance.</td>
</tr>
<tr>
<td>performance-mgmt apply thresholds, on page 343</td>
<td>Applies a threshold template and enables threshold monitoring.</td>
</tr>
<tr>
<td>performance-mgmt resources tftp-server, on page 348</td>
<td>Configures a destination TFTP server for statistics collections.</td>
</tr>
<tr>
<td>performance-mgmt statistics, on page 350</td>
<td>Creates a template to use for collecting performance management statistics.</td>
</tr>
<tr>
<td>show running performance-mgmt, on page 373</td>
<td>Displays a list of templates and the template being applied.</td>
</tr>
</tbody>
</table>
performance-mgmt apply thresholds

To apply a thresholds template and enable threshold collection, use the performance-mgmt apply thresholds command in Global Configuration mode. To stop threshold collection, use the no form of this command.

performance-mgmt apply thresholds entity location {all node-id} {template-name | default}
no performance-mgmt apply thresholds

**Syntax Description**

- **entity**
  Specifies an entity for which you want to apply a threshold template:
  - `bgp`—Applies a threshold monitoring template for Border Gateway Protocol (BGP).
  - `interface basic-counters`—Applies a threshold monitoring template for basic counters.
  - `interface data-rates`—Applies a threshold monitoring template for data rates.
  - `interface generic-counters`—Applies a threshold monitoring template for generic counters.
  - `mpls ldp`—Applies a template for monitoring an MPLS Label Distribution Protocol (LDP) neighbor.
  - `node cpu`—Applies a threshold monitoring template for central processing unit (CPU) utilization. Use the `location` keyword in conjunction with the `all` keyword or `node-id` argument when enabling a statistics collection template for this entity.
  - `node memory`—Applies a threshold monitoring template for memory utilization. Use the `location` keyword in conjunction with the `all` keyword or `node-id` argument when enabling a statistics collection template for this entity.
  - `node process`—Applies a threshold monitoring template for processes. Use the `location` keyword in conjunction with the `all` keyword or `node-id` argument when enabling a statistics collection template for this entity.
  - `ospf v2protocol`—Applies a threshold monitoring template for OSPFv2.
  - `ospf v3protocol`—Applies a threshold monitoring template for OSPFv3.

- **location {all | node-id}**
  Specifies all nodes or a particular node.
  Specify the `location` `all` keywords for all nodes, or the `node-id` argument to specify a particular node. The `node-id` argument is entered in the `rack/slot/module` notation. You must specify either the `location` `all` keywords or the `location` keyword and `node-id` argument with the `node cpu`, `node memory`, or `node process` entity.

- **template-name**
  Name of a predefined template used for threshold collection. A template name can be any combination of alphanumeric characters, and may include the underscore character (_). Use the show running performance-mgmt, on page 373 command to display a list of available templates.

- **default**
  Applies the default template.

**Command Default**

Threshold collection is disabled.

**Command Modes**

Global Configuration mode
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 4.0.1</td>
<td>The <code>interface basic-counters</code> keyword was added to support the enabling of threshold monitoring template for the basic counter.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `performance-mgmt apply thresholds` command to apply a threshold template and enable threshold collection. Several templates can be configured, but only one template for each entity can be enabled at a time.

Use the `no` form of the command to disable threshold collection. Because only one performance management threshold monitoring template can be enabled for any given entity at any given time, you are not required to specify the template name with the `default` keyword or `template` keyword and `template-name` argument when disabling a performance management statistics collection.

For information about creating threshold templates, see the `performance-mgmt thresholds, on page 353` command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>read, write, execute</td>
</tr>
</tbody>
</table>

Examples

This example shows how to start threshold collection for BGP using a template named stats1:

```
RP/0/RSP0/CPU0:router(config) performance-mgmt apply thresholds bgp stats1
```

This example shows how to enable threshold collection for generic counters using a template named stats2:

```
RP/0/RSP0/CPU0:router(config) performance-mgmt apply thresholds interface generic-counters stats2
```

This example shows how to enable CPU threshold collection using the template named cpu12:

```
RP/0/RSP0/CPU0:router(config) performance-mgmt apply thresholds node cpu global cpu12
```

This example shows how to enable threshold checking for basic counters using a template named stats3:

```
RP/0/RSP0/CPU0:router(config) performance-mgmt apply thresholds interface basic-counters stats3
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>performance-mgmt thresholds, on page 353</code></td>
<td>Creates a template to use for threshold collection.</td>
</tr>
<tr>
<td><code>show running performance-mgmt, on page 373</code></td>
<td>Displays a list of templates and the template being applied.</td>
</tr>
</tbody>
</table>
performance-mgmt regular-expression

To apply a defined regular expression group to one or more statistics or threshold template, use the `performance-mgmt regular-expression regular-expression-name` command in Global Configuration mode. To stop the usage of regular expression, use the `no` form of this command.

```
performance-mgmt regular-expression regular-expression-name index number regular-expression-string
no performance-mgmt regular-expression regular-expression-name
```

**Syntax Description**

- `regular-expression-string` Specifies a defined regular expression group to one or more statistics or threshold template.
- `index` Specifies a regular expression index. Range is 1 to 100.

**Command Default**

No regular expression is configured by default.

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

This is the sample output from the `performance-mgmt regular-expression` command:

```
RP/0/RSP0/CPU0:router# performance-mgmt regular-expression reg1 index 10
```
**Performance-mgmt Resources Dump Local**

To configure the local filesystem on which the statistics data is dumped, use the `performance-mgmt resources dump local` command in Global Configuration mode. To stop dumping of statistics data on the local filesystem, use the `no` form of this command.

```
performance-mgmt resources dump local
no performance-mgmt resources dump local
```

### Syntax Description

- **`dump`** Configures data dump parameters.
- **`local`** Sets the local filesystem on which statistics data is dumped.

**Note** You can also dump the statistics data on the TFTP server location. But the configuration is rejected if you configure both local dump and TFTP server at the same time.

### Command Default

Local filesystem is disabled.

### Command Modes

Global Configuration mode

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

No specific guidelines impact the use of this command.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

This is the sample output for the `performance-mgmt resources dump local` command:

```
RP/0/RSP0/CPU0:router# performance-mgmt resources dump local
```
performance-mgmt resources memory

To configure memory consumption limits for performance management (PM), use the `performance-mgmt resources memory` command in Global Configuration mode. To restore the default memory consumption limits, use the `no` form of this command.

`performance-mgmt resources memory max-limit kilobytes min-reserved kilobytes
no performance-mgmt resources memory`

**Syntax Description**

- **max-limit kilobytes**: Specifies the maximum amount of memory (specified with the `kilobytes` argument) that the PM statistics collector can use for serving data collection requests. Range is 0 to 4294967295 kilobytes. The default is 50000 kilobytes.

- **min-reserved kilobytes**: Specifies a minimum amount of memory (specified with the `kilobytes` argument) that must remain available in the system after allowing a new PM data collection request. Range is 0 to 4294967295 kilobytes. The default is 10000 kilobytes.

**Command Default**

- **max-limit**: 50000 kilobytes
- **min-reserved**: 10000 kilobytes

**Command Modes**

Global Configuration mode

**Command History**

Release 3.7.2 This command was introduced.

**Usage Guidelines**

Use the `performance-mgmt resource memory` command to ensure that the total memory consumed by data buffers in PM does not exceed a maximum limit and that any new PM data request does not cause available memory in the system to fall below a certain threshold.

**Examples**

This example shows how to ensure that the total memory consumed by PM data buffers does not exceed 30,000 kilobytes and that any new PM data request does not cause available memory in the system to fall below 5000 kilobytes:

```
RP/0/RSP0/CPU0:router(config)# performance-mgmt resources memory max-limit 30000 min-reserved 5000
```
**performance-mgmt resources tftp-server**

To configure a destination TFTP server for PM statistics collections, use the `performance-mgmt resources tftp-server` command in Global Configuration mode. To disable the resource, use the `no` form of this command.

```
performance-mgmt resources tftp-server ip-address
{directory dir-name} {vrf | vrf_name | default} {directory dir-name}

no performance-mgmt resources tftp-server
```

**Syntax Description**

- `tftp-server ip-address` Specifies the IP address of the TFTP server.
- `directory dir-name` Specifies the directory where performance management statistics will be copied.
- `vrf vrf_name` Specifies the name of the VRF instance.
- `default` Specifies the default VRF.

**Command Default**

A destination TFTP server is not configured and data is not copied out of the system after a collection cycle (sampling-size) ends.

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `performance-mgmt resources tftp-server` command to configure a TFTP resource for performance management. By creating a directory name on the TFTP server, you create a place where statistics can be collected when statistics collection is enabled.

Use the `no` form of this command to disable the TFTP resource.

**Note**

Files copied to the TFTP server contain a timestamp in their name, which makes them unique. For that reason the TFTP server used should support creation of files as data is transferred, without requiring users to manually create them at the TFTP server host in advance.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to specify a TFTP server with the IP address 192.168.134.254 as the performance management resource and a directory named /user/perfmgmt/tftpdump as the destination for PM statistic collections:
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>performance-mgmt apply statistics, on page 340</td>
<td>Applies a statistics template and enables statistics collection.</td>
</tr>
<tr>
<td>performance-mgmt apply thresholds, on page 343</td>
<td>Applies a threshold template and enables threshold monitoring.</td>
</tr>
</tbody>
</table>

RP/0/RSP0/CPU0:router(config)# performance-mgmt resources tftp-server 192.168.134.254 directory /user/perfmgmt/tftpdump
performance-mgmt statistics

To create a template to use for collecting performance management statistics, use the `performance-mgmt statistics` command in Global Configuration mode. To remove a template, use the `no` form of this command.

```
performance-mgmt statistics entity {template template-name |default} [sample-size size] [sample-interval minutes] history-persistent regular-expression
no performance-mgmt statistics
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>entity</code></td>
<td>Specify an entity for which you want to create a statistics template:</td>
</tr>
<tr>
<td><code>template</code></td>
<td>Specifies that a template will be used for collection.</td>
</tr>
<tr>
<td><code>template-name</code></td>
<td>A template name can be any combination of alphanumeric characters, and may include the underscore character <code>_</code>.</td>
</tr>
<tr>
<td><code>default</code></td>
<td>Specifies the default template.</td>
</tr>
<tr>
<td><code>sample-size</code></td>
<td>Specifies the sample size.</td>
</tr>
<tr>
<td><code>sample-interval</code></td>
<td>Specifies the sample interval.</td>
</tr>
<tr>
<td><code>history-persistent</code></td>
<td>Enables statistics collection for a specified interval to be persistent.</td>
</tr>
<tr>
<td><code>regular-expression</code></td>
<td>A regular expression to filter the statistics data.</td>
</tr>
</tbody>
</table>

**Example**

```
performance-mgmt statistics entity interface basic-counters {template template-name |default} [sample-size size] [sample-interval minutes] history-persistent regular-expression
```

**Usage**

- `bgp`—Creates a statistics collection template for Border Gateway Protocol (BGP).
- `interface basic-counters`—Creates a statistics collection template for basic counters.
- `interface data-rates`—Creates a statistics collection template for data rates.
- `interface generic-counters`—Creates a statistics collection template for generic counters.
- `mpls ldp`—Applies a template for monitoring an MPLS Label Distribution Protocol (LDP) neighbor.
- `node cpu`—Creates a statistics collection template for the central processing unit (CPU).
- `node memory`—Creates a statistics collection template for memory utilization.
- `node process`—Creates a statistics collection template for processes.
- `ospf v2protocol`—Creates a statistics template for Open Shortest Path First v2 (OSPFv2) protocol instances.
- `ospf v3protocol`—Creates a statistics template for OSPFv3 protocol instances.

Use the `show running performance-mgmt`, on page 373 to display information about templates, and to display the templates that are being used.
Applies the settings of the default template. The default template contains the following statistics and values. Values are in minutes.

Each entity has a default template. In each default template, the sample interval is 10 minutes, and the default sample count is 5.

sample-size size  (Optional) Sets the number of samples to be taken.

sample-interval minutes  (Optional) Sets the frequency of each sample, in minutes.

history-persistent  (Optional) Maintains the history of statistics collections persistently.

regular-expression/regular-expression-group-name  (Optional) Sets instance filtering by regular expression.

**Command Default**

Statistics collections for all entities is disabled.

**Command Modes**

Global Configuration mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 4.0.1</td>
<td>The <strong>interface basic-counters</strong> keyword was added to support the creation of statistics collection templates for the basic counters. The <strong>history-persistent</strong> and <strong>regular-expression</strong> keywords were added.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

If you have not yet created a directory for the statistics, use the `performance-mgmt resources tftp-server, on page 348` command to create a directory on an external TFTP server. When you apply the template and enable statistics collection with the `performance-mgmt apply statistics, on page 340` command, the samples are collected and sent to that directory for later retrieval.

The statistics collected contain type of entity, parameters, instances, and samples. The collection files on the TFTP server are in binary format and must be viewed using a customer-supplied tool or they can be queried as they are being collected using XML.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to create a template named int_data_rates for data rate statistics collection, how to set the sample size to 25, and how to set the sample interval to 5 minutes:

```
RP/0/RSP0/CPU0:router(config)#performance-mgmt statistics interface data-rates int_data_rates
RP/0/RSP0/CPU0:router(config_stats-if-rate)# sample-size 25
```
```
RP/0/RSP0/CPU0:router(config_stats-if-rate)# \texttt{sample-interval 5}
```

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\texttt{performance-mgmt apply statistics, on page 340}</td>
<td>Applies a statistics template and enables statistics collection.</td>
</tr>
<tr>
<td></td>
<td>\texttt{performance-mgmt resources tftp-server, on page 348}</td>
<td>Configures resources for the performance management system that are independent of any particular entity.</td>
</tr>
<tr>
<td></td>
<td>\texttt{performance-mgmt thresholds, on page 353}</td>
<td>Configures a template for collecting threshold statistics.</td>
</tr>
<tr>
<td></td>
<td>\texttt{show running performance-mgmt, on page 373}</td>
<td>Displays a list of templates and the template being applied.</td>
</tr>
</tbody>
</table>
**performance-mgmt thresholds**

To configure a template for threshold checking, use the `performance-mgmt thresholds` command in Global Configuration mode. To remove a threshold template, use the `no` form of this command.

```
performance-mgmt thresholds entity {template template-name|default} attribute operation value [value2] [percent] [rearm {toggle|window window-size}] no performance-mgmt thresholds
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>entity</code></td>
<td>Specify an entity for which you want to create a template:</td>
</tr>
<tr>
<td></td>
<td>• <code>bgp</code> — Creates a template for threshold collection for Border Gateway Protocol (BGP).</td>
</tr>
<tr>
<td></td>
<td>• <code>interface basic-counters</code> — Creates a threshold monitoring template for basic counters.</td>
</tr>
<tr>
<td></td>
<td>• <code>interface data-rates</code> — Creates a threshold monitoring template for data rates.</td>
</tr>
<tr>
<td></td>
<td>• <code>interface generic-counters</code> — Creates a threshold monitoring template for generic counters.</td>
</tr>
<tr>
<td></td>
<td>• <code>mpls ldp</code> — Applies a template for monitoring an MPLS Label Distribution Protocol (LDP) neighbor.</td>
</tr>
<tr>
<td></td>
<td>• <code>node cpu</code> — Creates a threshold monitoring template for the central processing unit (CPU).</td>
</tr>
<tr>
<td></td>
<td>• <code>node memory</code> — Creates a threshold monitoring template for memory utilization.</td>
</tr>
<tr>
<td></td>
<td>• <code>node process</code> — Creates a threshold monitoring template for processes.</td>
</tr>
<tr>
<td></td>
<td>• <code>ospf v2protocol</code> — Creates a threshold monitoring template for Open Shortest Path First v2 (OSPFv2) process instances.</td>
</tr>
<tr>
<td></td>
<td>• <code>ospf v3protocol</code> — Creates a threshold monitoring template for OSPFv3 process instances.</td>
</tr>
</tbody>
</table>

| `template`        | Specifies that a template will be used for collection.                                                                                     |
| `template-name`   | Name of a predefined template used for threshold collection. A template name can be any combination of alphanumeric characters, and may include the underscore character (_). Use the `show running performance-mgmt`, on page 373 to display information about templates, and to display the templates that are being used. |

| `default`         | Applies the settings of the default template.                                                                                             |

| `attribute`       | The attributes for the entity. See Table 37: Attribute Values, on page 355 for a list of attributes.                                         |
A limiting operation for thresholding that includes:

- **EQ** — Equal to.
- **GE** — Greater than or equal to.
- **GT** — Greater than.
- **LE** — Less than or equal to.
- **LT** — Less than.
- **NE** — Not equal to.
- **RG** — Not in range.

The base value against which you want to sample.

(Optional) This value can only be used with the operator **RG**. For example, if you use **RG** for the operation argument value, you create a range between **value** and **value2**.

(Optional) Specifies a value relative to the previous sample interval value. See the “Usage Guidelines” section for more information.

(Optional) It can be used to reduce the number of events by suppressing redundant events from being reported. Normally, every time a condition is met in a sample interval, a syslog error is generated. Using the **toggle** keyword works in this manner: If a condition is true, a syslog error message is generated, but it is not generated again until the condition becomes false, and then true again. In this way, only “fresh” events are seen when the threshold is crossed.

Use the **window** keyword to specify that an event be sent only once for each window. If a condition is true, a syslog error message is generated. You set your window size by using the **window** keyword and specify the number of intervals. With a window size, you specify that you want event notification at that number of intervals. For example, if you window size is 2 and your sample interval is 10, you would want notification of the event (for each instance in an entity) only every 20 minutes when the condition has been met.

The number of intervals to use with the **rearm** keyword.

None

Global Configuration mode

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 4.0.1</td>
<td>The <strong>interface basic-counters</strong> keyword was added to support the creation of threshold monitoring template for the basic counter.</td>
</tr>
</tbody>
</table>

Use the **percent** argument to specify a value that is relative to the previous sample's interval value. When you use the **percent** argument with a **value** of 50, the calculation is performed in this manner, assuming that your current sampled value is **S1** and the value sampled in the previous sampling period is **S0**:

\[(S1 - S0) \text{ GT } 50\% \text{ of } S0\]
For example, if you wanted to check for an increase of 50 percent in the counter BGPInputErrors, you could use the following `attribute` and `operation` with the `percent` argument:

\[
\text{BGPInputErrors GT 50}
\]

This table shows threshold behavior, assuming the values for BGPInputErrors are at consecutive samplings.

**Table 36: Threshold Behavior**

<table>
<thead>
<tr>
<th>Value</th>
<th>Calculation</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>16</td>
<td>(16 - 10 = 6), which is (&gt;) than 50 percent of 10</td>
<td>Generate event</td>
</tr>
<tr>
<td>20</td>
<td>(20 - 16 = 4), which is (&lt;) than 50 percent of 16</td>
<td>No event generated</td>
</tr>
<tr>
<td>35</td>
<td>(35 - 20 = 15), which is (&gt;) than 50 percent of 20</td>
<td>Generate event</td>
</tr>
</tbody>
</table>

This table shows the attribute values supported by the entities.

**Table 37: Attribute Values**

<table>
<thead>
<tr>
<th>Entity</th>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bgp</td>
<td>ConnDropped</td>
<td>Number of times the connection was dropped.</td>
</tr>
<tr>
<td></td>
<td>ConnEstablished</td>
<td>Number of times the connection was established.</td>
</tr>
<tr>
<td></td>
<td>ErrorsReceived</td>
<td>Number of error notifications received on the connection.</td>
</tr>
<tr>
<td></td>
<td>ErrorsSent</td>
<td>Number of error notifications sent on the connection.</td>
</tr>
<tr>
<td></td>
<td>InputMessages</td>
<td>Number of messages received.</td>
</tr>
<tr>
<td></td>
<td>InputUpdateMessages</td>
<td>Number of update messages received.</td>
</tr>
<tr>
<td></td>
<td>OutputMessages</td>
<td>Number of messages sent.</td>
</tr>
<tr>
<td></td>
<td>OutputUpdateMessages</td>
<td>Number of update messages sent.</td>
</tr>
<tr>
<td>interface basic-counters</td>
<td>InOctets</td>
<td>Bytes received (64-bit).</td>
</tr>
<tr>
<td></td>
<td>InPackets</td>
<td>Packets received (64-bit).</td>
</tr>
<tr>
<td></td>
<td>InputQueueDrops</td>
<td>Input queue drops (64-bit).</td>
</tr>
<tr>
<td></td>
<td>InputTotalDrops</td>
<td>Inbound correct packets discarded (64-bit).</td>
</tr>
<tr>
<td></td>
<td>InputTotalErrors</td>
<td>Inbound incorrect packets discarded (64-bit).</td>
</tr>
<tr>
<td>Entity</td>
<td>Attributes</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>OutOctets</td>
<td>Bytes sent (64-bit).</td>
</tr>
<tr>
<td></td>
<td>OutPackets</td>
<td>Packets sent (64-bit).</td>
</tr>
<tr>
<td></td>
<td>OutputQueueDrops</td>
<td>Output queue drops (64-bit).</td>
</tr>
<tr>
<td></td>
<td>OutputTotalDrops</td>
<td>Outbound correct packets discarded (64-bit).</td>
</tr>
<tr>
<td></td>
<td>OutputTotalErrors</td>
<td>Outbound incorrect packets discarded (64-bit).</td>
</tr>
<tr>
<td>interface data-rates</td>
<td>Bandwidth</td>
<td>Bandwidth, in kbps.</td>
</tr>
<tr>
<td></td>
<td>InputDataRate</td>
<td>Input data rate in kbps.</td>
</tr>
<tr>
<td></td>
<td>InputPacketRate</td>
<td>Input packets per second.</td>
</tr>
<tr>
<td></td>
<td>InputPeakRate</td>
<td>Peak input data rate.</td>
</tr>
<tr>
<td></td>
<td>InputPeakPkts</td>
<td>Peak input packet rate.</td>
</tr>
<tr>
<td></td>
<td>OutputDataRate</td>
<td>Output data rate in kbps.</td>
</tr>
<tr>
<td></td>
<td>OutputPacketRate</td>
<td>Output packets per second.</td>
</tr>
<tr>
<td></td>
<td>OutputPeakPkts</td>
<td>Peak output packet rate.</td>
</tr>
<tr>
<td></td>
<td>OutputPeakRate</td>
<td>Peak output data rate.</td>
</tr>
<tr>
<td>Entity</td>
<td>Attributes</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>interface generic-counters</td>
<td>InBroadcastPkts</td>
<td>Broadcast packets received.</td>
</tr>
<tr>
<td></td>
<td>InMulticastPkts</td>
<td>Multicast packets received.</td>
</tr>
<tr>
<td></td>
<td>InOctets</td>
<td>Bytes received.</td>
</tr>
<tr>
<td></td>
<td>InPackets</td>
<td>Packets received.</td>
</tr>
<tr>
<td></td>
<td>InputCRC</td>
<td>Inbound packets discarded with incorrect CRC.</td>
</tr>
<tr>
<td></td>
<td>InputFrame</td>
<td>Inbound framing errors.</td>
</tr>
<tr>
<td></td>
<td>InputOverrun</td>
<td>Input overruns.</td>
</tr>
<tr>
<td></td>
<td>InputQueueDrops</td>
<td>Input queue drops.</td>
</tr>
<tr>
<td></td>
<td>InputTotalDrops</td>
<td>Inbound correct packets discarded.</td>
</tr>
<tr>
<td></td>
<td>InputTotalErrors</td>
<td>Inbound incorrect packets discarded.</td>
</tr>
<tr>
<td></td>
<td>InUcastPkts</td>
<td>Unicast packets received.</td>
</tr>
<tr>
<td></td>
<td>InputUnknownProto</td>
<td>Inbound packets discarded with unknown proto.</td>
</tr>
<tr>
<td></td>
<td>OutBroadcastPkts</td>
<td>Broadcast packets sent.</td>
</tr>
<tr>
<td></td>
<td>OutMulticastPkts</td>
<td>Multicast packets sent.</td>
</tr>
<tr>
<td></td>
<td>OutOctets</td>
<td>Bytes sent.</td>
</tr>
<tr>
<td></td>
<td>OutPackets</td>
<td>Packets sent.</td>
</tr>
<tr>
<td></td>
<td>OutputTotalDrops</td>
<td>Outbound correct packets discarded.</td>
</tr>
<tr>
<td></td>
<td>OutputTotalErrors</td>
<td>Outbound incorrect packets discarded.</td>
</tr>
<tr>
<td></td>
<td>OutUcastPkts</td>
<td>Unicast packets sent.</td>
</tr>
<tr>
<td></td>
<td>OutputUnderrun</td>
<td>Output underruns.</td>
</tr>
</tbody>
</table>
### Entity | Attributes | Description
--- | --- | ---
mpls ldp | AddressMsgsRcvd | Address messages received.
 | AddressMsgsSent | Address messages sent.
 | AddressWithdrawMsgsRcvd | Address withdraw messages received.
 | AddressWithdrawMsgsSent | Address withdraw messages sent.
 | InitMsgsSent | Initial messages sent.
 | InitMsgsRcvd | Initial messages received.
 | KeepaliveMsgsRcvd | Keepalive messages received.
 | KeepaliveMsgsSent | Keepalive messages sent.
 | LabelMappingMsgsRcvd | Label mapping messages received.
 | LabelMappingMsgsSent | Label mapping messages sent.
 | LabelReleaseMsgsRcvd | Label release messages received.
 | LabelReleaseMsgsSent | Label release messages sent.
 | LabelWithdrawMsgsRcvd | Label withdraw messages received.
 | LabelWithdrawMsgsSent | Label withdraw messages sent.
 | NotificationMsgsRcvd | Notification messages received.
 | NotificationMsgsSent | Notification messages sent.
 | TotalMsgsRcvd | Total messages received.
 | TotalMsgsSent | Total messages sent.

node cpu | AverageCPUUsed | Average system percent CPU utilization.
 | NoProcesses | Number of processes.

node memory | CurrMemory | Current application memory (in bytes) in use.
 | PeakMemory | Maximum system memory (in MB) used since bootup.

node process | AverageCPUUsed | Average percent CPU utilization.
 | NumThreads | Number of threads.
 | PeakMemory | Maximum dynamic memory (in KB) used since startup time.
<table>
<thead>
<tr>
<th>Entity</th>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ospf v2protocol</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InputPackets</td>
<td></td>
<td>Total number of packets received</td>
</tr>
<tr>
<td>OutputPackets</td>
<td></td>
<td>Total number of packets sent</td>
</tr>
<tr>
<td>InputHelloPackets</td>
<td></td>
<td>Number of Hello packets received</td>
</tr>
<tr>
<td>OutputHelloPackets</td>
<td></td>
<td>Number of Hello packets sent</td>
</tr>
<tr>
<td>InputDBDs</td>
<td></td>
<td>Number of DBD packets received</td>
</tr>
<tr>
<td>InputDBDsLSA</td>
<td></td>
<td>Number of LSA received in DBD packets</td>
</tr>
<tr>
<td>OutputDBDs</td>
<td></td>
<td>Number of DBD packets sent.</td>
</tr>
<tr>
<td>OutputDBDsLSA</td>
<td></td>
<td>Number of LSA sent in DBD packets</td>
</tr>
<tr>
<td>InputLSRequests</td>
<td></td>
<td>Number of LS requests received.</td>
</tr>
<tr>
<td>InputLSRequestsLSA</td>
<td></td>
<td>Number of LSA received in LS requests.</td>
</tr>
<tr>
<td>OutputLSRequests</td>
<td></td>
<td>Number of LS requests sent.</td>
</tr>
<tr>
<td>OutputLSRequestsLSA</td>
<td></td>
<td>Number of LSA sent in LS requests.</td>
</tr>
<tr>
<td>InputLSAUpdates</td>
<td></td>
<td>Number of LSA updates received.</td>
</tr>
<tr>
<td>InputLSAUpdatesLSA</td>
<td></td>
<td>Number of LSA received in LSA updates.</td>
</tr>
<tr>
<td>OutputLSAUpdates</td>
<td></td>
<td>Number of LSA updates sent.</td>
</tr>
<tr>
<td>OutputLSAUpdatesLSA</td>
<td></td>
<td>Number of LSA sent in LSA updates.</td>
</tr>
<tr>
<td>InputLSAAcks</td>
<td></td>
<td>Number of LSA acknowledgements received.</td>
</tr>
<tr>
<td>InputLSAAcksLSA</td>
<td></td>
<td>Number of LSA received in LSA acknowledgements.</td>
</tr>
<tr>
<td>OutputLSAAcks</td>
<td></td>
<td>Number of LSA acknowledgements sent.</td>
</tr>
<tr>
<td>OutputLSAAcksLSA</td>
<td></td>
<td>Number of LSA sent in LSA acknowledgements.</td>
</tr>
<tr>
<td>ChecksumErrors</td>
<td></td>
<td>Number of packets received with checksum errors.</td>
</tr>
</tbody>
</table>

System Monitoring Command Reference for Cisco ASR 9000 Series Routers
<table>
<thead>
<tr>
<th>Entity</th>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ospf v3protocol</td>
<td>InputPackets</td>
<td>Total number of packets received.</td>
</tr>
<tr>
<td></td>
<td>OutputPackets</td>
<td>Total number of packets sent.</td>
</tr>
<tr>
<td></td>
<td>InputHelloPackets</td>
<td>Number of Hello packets received.</td>
</tr>
<tr>
<td></td>
<td>OutputHelloPackets</td>
<td>Number of Hello packets sent.</td>
</tr>
<tr>
<td></td>
<td>InputDBDs</td>
<td>Number of DBD packets received.</td>
</tr>
<tr>
<td></td>
<td>InputDBDsLSA</td>
<td>Number of LSA received in DBD packets.</td>
</tr>
<tr>
<td></td>
<td>OutputDBDs</td>
<td>Number of DBD packets sent.</td>
</tr>
<tr>
<td></td>
<td>OutputDBDsLSA</td>
<td>Number of LSA sent in DBD packets.</td>
</tr>
<tr>
<td></td>
<td>InputLSRequests</td>
<td>Number of LS requests received.</td>
</tr>
<tr>
<td></td>
<td>InputLSRequestsLSA</td>
<td>Number of LSA received in LS requests.</td>
</tr>
<tr>
<td></td>
<td>OutputLSRequests</td>
<td>Number of LS requests sent.</td>
</tr>
<tr>
<td></td>
<td>OutputLSRequestsLSA</td>
<td>Number of LSA sent in LS requests.</td>
</tr>
<tr>
<td></td>
<td>InputLSAUpdates</td>
<td>Number of LSA updates received.</td>
</tr>
<tr>
<td></td>
<td>InputLSRequestsLSA</td>
<td>Number of LSA received in LS requests.</td>
</tr>
<tr>
<td></td>
<td>OutputLSAUpdates</td>
<td>Number of LSA updates sent.</td>
</tr>
<tr>
<td></td>
<td>OutputLSAUpdatesLSA</td>
<td>Number of LSA sent in LSA updates.</td>
</tr>
<tr>
<td></td>
<td>InputLSAAcks</td>
<td>Number of LSA acknowledgements received.</td>
</tr>
<tr>
<td></td>
<td>InputLSAAcksLSA</td>
<td>Number of LSA received in LSA acknowledgements.</td>
</tr>
<tr>
<td></td>
<td>OutputLSAAcks</td>
<td>Number of LSA acknowledgements sent</td>
</tr>
<tr>
<td></td>
<td>OutputLSAAcksLSA</td>
<td>Number of LSA sent in LSA acknowledgements.</td>
</tr>
</tbody>
</table>
Examples

This example shows how to create a template for monitoring BGP thresholds, which checks if the number of connections dropped exceeds 50 for any BGP peers. The `toggle rearm` keywords are included so that once the threshold is passed, the event will not be reported unless the value of ConnDropped is reset:

```
RP/0/RSP0/CPU0:router(config)# performance-mgmt thresholds bgp template bgp_thresh1
RP/0/RSP0/CPU0:router(config-threshold-bgp)# ConnDropped GT 50 rearm toggle
```

This example shows how to create a template for monitoring node CPU utilization that checks if there is a 25 percent increase at any given interval:

```
RP/0/RSP0/CPU0:router(config)# performance-mgmt thresholds node cpu template cpu_thresh1
RP/0/RSP0/CPU0:router(config-threshold-bgp)# AverageCPUUsed GT 25
```

This example shows how to create a template for monitoring the input CRC errors for interfaces. The rule checks whether the number of errors reach or exceed 1000 for any given interface:

```
RP/0/RSP0/CPU0:router(config)# performance-mgmt thresholds interface generic_ctr template intf_crc_thresh1
RP/0/RSP0/CPU0:router(config-threshold-bgp)# InputCRC GE 1000
```
show performance-mgmt bgp

To display performance management (PM) data from Border Gateway Protocol (BGP) entity instance monitoring or statistics collections, use the `show performance-mgmt bgp` command in EXEC mode.

```
show performance-mgmt {monitor|statistics} bgp {ip-address|all} {sample-id|all-samples|last-sample}
```

**Syntax Description**
- **monitor**: Displays the data collected for an entity instance monitoring collection. The data gathered is from one sample cycle of a BGP statistics collection template. The data is available only as the monitor data is enabled.

- **statistics**: Displays the data collected from statistics collection samples.

- **ip-address**: IP address of a BGP peer.

- **all**: Displays all BGP peer instances.

  **Note**: This option is available only with the `statistics` keyword. It is not available with the `monitor` keyword because an entity instance monitoring collection captures data from an entity instance for one sampling cycle.

- **sample-id**: Sample ID of the monitoring or statistics collection to be displayed.

- **all-samples**: Displays all collected samples.

- **last-sample**: Displays the last collected samples.

**Command Default**
None

**Command Modes**
EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**
No specific guidelines impact the use of this command.

**Task ID**
- **monitor**: read

**Examples**
This is the sample output from the `show performance-mgmt bgp` command:

```
RP/0/RSP0/CPU0:router# show performance-mgmt monitor bgp 10.0.0.0 all-samples
BGP Neighbor: 10.0.0.0 Sample no: 1
--
InputMessages: 0 OutputMessages: 0
InputUpdateMessages: 0 OutputUpdateMessages: 0 ConnEstablished: 0 ConnDropped: 0
```
ErrorsReceived: 0 ErrorsSent: 0 BGP Neighbor: 10.0.0.0 Sample no: 2
---------------------------------------------- InputMessages: 0 OutputMessages: 0
InputUpdateMessages: 0 OutputUpdateMessages: 0 ConnEstablished: 0 ConnDropped: 0
ErrorsReceived: 0 ErrorsSent: 0 BGP Neighbor: 10.0.0.0 Sample no: 3
---------------------------------------------- InputMessages: 0 OutputMessages: 0
InputUpdateMessages: 0 OutputUpdateMessages: 0 ConnEstablished: 0 ConnDropped: 0
ErrorsReceived: 0 ErrorsSent: 0

This table describes the significant fields in the display.

**Table 38: show performance-mgmt bgp Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConnDropped</td>
<td>Number of times the connection was dropped.</td>
</tr>
<tr>
<td>ConnEstablished</td>
<td>Number of times the connection was established.</td>
</tr>
<tr>
<td>ErrorsReceived</td>
<td>Number of error notifications received on the connection.</td>
</tr>
<tr>
<td>ErrorsSent</td>
<td>Number of error notifications sent on the connection.</td>
</tr>
<tr>
<td>InputMessages</td>
<td>Number of messages received.</td>
</tr>
<tr>
<td>InputUpdateMessages</td>
<td>Number of update messages received.</td>
</tr>
<tr>
<td>OutputMessages</td>
<td>Number of messages sent.</td>
</tr>
<tr>
<td>OutputUpdateMessages</td>
<td>Number of update messages sent.</td>
</tr>
</tbody>
</table>
show performance-mgmt interface

To display performance management (PM) data from interface entity instance monitoring or statistics collections, use the `show performance-mgmt interface` command in EXEC mode.

```
show performance-mgmt {monitor|statistics} interface {basic-counters|data-rates|generic-counters} {type interface-path-id|all} {sample-id|all-samples|last-sample}
```

**Syntax Description**

- `monitor` Displays the data collected for an entity instance monitoring collection. The data gathered is from one sample cycle from one instance of an interface data entity collection template.
  
  **Note** The data is available to be display only as the monitor data is collected.

- `statistics` Displays the data collected from statistics collection samples.

- `basic-counters` Displays data from interface basic counters entity collections.

- `data-rates` Displays data from interface data rates entity collections.

- `generic-counters` Displays data from interface generic counters entity collections.

- `type` (Optional) Interface type. For more information, use the question mark (?) online help function.

- `interface-path-id` (Optional) Physical interface or virtual interface.
  
  **Note** Use the `show interfaces` command to see a list of all interfaces currently configured on the router.

- `sample-id` Sample ID of the monitoring collection or statistics collection to be displayed.

- `all-samples` Displays all collected samples.

- `last-sample` Displays the last collected samples.

**Command Default**

None

**Command Modes**

EXEC mode

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
**Release**  
Modification

Release 4.0.1  The basic-counters keyword was added to support basic counters entity collections.

**Usage Guidelines**

No specific guidelines impact the use of this command.

**Examples**

This is sample output from the `show performance-mgmt interface` command:

```plaintext
RP/0/RSP0/CPU0:router# show performance-mgmt monitor interface generic-counters pos 0/3/0/0 all-samples

Interface: POS0_3_0_0 Sample no: 1

--
InPackets: 0 OutPackets: 0 InOctets: 0
OutOctets: 0 InUcastPkts: 0 OutUcastPkts: 0 InMulticastPkts: 0 OutMulticastPkts: 0
InBroadcastPkts: 0 OutBroadcastPkts: 0 InputTotalDrops: 0 OutputTotalDrops: 0
InputTotalErrors: 0 OutputTotalErrors: 0 InputOverrun: 0 OutputUnderrun: 0
InputQueueDrops: 0 InputUnknownProto: 0 InputCRC: 0 InputFrame: 0 Interface: POS0_3_0_0
Sample no: 2 -- InPackets: 0 OutPackets: 0
InOctets: 0 OutOctets: 0 InUcastPkts: 0 OutUcastPkts: 0 InMulticastPkts: 0
OutMulticastPkts: 0 InBroadcastPkts: 0 OutBroadcastPkts: 0 InputTotalDrops: 0
OutputTotalDrops: 0 InputTotalErrors: 0 OutputTotalErrors: 0 InputOverrun: 0
OutputUnderrun: 0 InputQueueDrops: 0 InputUnknownProto: 0 InputCRC: 0 InputFrame: 0

RP/0/RSP0/CPU0:router# show performance-mgmt monitor interface generic-counters hundredGigE 0/3/0/0 all-samples

Interface: HundredGigE0_3_0_0 Sample no: 1

--
InPackets: 0 OutPackets: 0 InOctets: 0
OutOctets: 0 InUcastPkts: 0 OutUcastPkts: 0 InMulticastPkts: 0 OutMulticastPkts: 0
InBroadcastPkts: 0 OutBroadcastPkts: 0 InputTotalDrops: 0 OutputTotalDrops: 0
InputTotalErrors: 0 OutputTotalErrors: 0 InputOverrun: 0 OutputUnderrun: 0
InputQueueDrops: 0 InputUnknownProto: 0 InputCRC: 0 InputFrame: 0 Interface: HundredGigE0_3_0_0
Sample no: 2 -- InPackets: 0 OutPackets: 0
InOctets: 0 OutOctets: 0 InUcastPkts: 0 OutUcastPkts: 0 InMulticastPkts: 0
OutMulticastPkts: 0 InBroadcastPkts: 0 OutBroadcastPkts: 0 InputTotalDrops: 0
OutputTotalDrops: 0 InputTotalErrors: 0 OutputTotalErrors: 0 InputOverrun: 0
OutputUnderrun: 0 InputQueueDrops: 0 InputUnknownProto: 0 InputCRC: 0 InputFrame: 0

This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InBroadcastPkts</td>
<td>Broadcast packets received.</td>
</tr>
<tr>
<td>InMulticastPkts</td>
<td>Multicast packets received.</td>
</tr>
</tbody>
</table>

Table 39: show performance-mgmt interface Field Descriptions
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InOctets</td>
<td>Bytes received.</td>
</tr>
<tr>
<td>InPackets</td>
<td>Packets received.</td>
</tr>
<tr>
<td>InputCRC</td>
<td>Inbound packets discarded with incorrect CRC.</td>
</tr>
<tr>
<td>InputFrame</td>
<td>Inbound framing errors.</td>
</tr>
<tr>
<td>InputOverrun</td>
<td>Input overruns.</td>
</tr>
<tr>
<td>InputQueueDrops</td>
<td>Input queue drops.</td>
</tr>
<tr>
<td>InputTotalDrops</td>
<td>Inbound correct packets discarded.</td>
</tr>
<tr>
<td>InputTotalErrors</td>
<td>Inbound incorrect packets discarded.</td>
</tr>
<tr>
<td>InUcastPkts</td>
<td>Unicast packets received.</td>
</tr>
<tr>
<td>InputUnknownProto</td>
<td>Inbound packets discarded with unknown proto.</td>
</tr>
<tr>
<td>OutBroadcastPkts</td>
<td>Broadcast packets sent.</td>
</tr>
<tr>
<td>OutMulticastPkts</td>
<td>Multicast packets sent.</td>
</tr>
<tr>
<td>OutOctets</td>
<td>Bytes sent.</td>
</tr>
<tr>
<td>OutPackets</td>
<td>Packets sent.</td>
</tr>
<tr>
<td>OutputTotalDrops</td>
<td>Outbound correct packets discarded.</td>
</tr>
<tr>
<td>OutputTotalErrors</td>
<td>Outbound incorrect packets discarded.</td>
</tr>
<tr>
<td>OutUcastPkts</td>
<td>Unicast packets sent.</td>
</tr>
<tr>
<td>OutputUnderrun</td>
<td>Output underruns.</td>
</tr>
</tbody>
</table>
show performance-mgmt mpls

To display performance management (PM) data for Multiprotocol Label Switching (MPLS) entity instance monitoring and statistics collections, use the `show performance-mgmt mpls` command in EXEC mode.

```
show performance-mgmt {monitor|statistics} mpls ldp {ip-address|all} {first-sample-id|all-samples|last-sample}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>monitor</code></td>
<td>Displays the data collected for an entity instance monitoring collection. The data gathered is from one sample cycle from one instance of an MPLS entity collection template.</td>
</tr>
<tr>
<td><code>Note</code></td>
<td>The data is available to be displayed only as the monitor data is collected.</td>
</tr>
<tr>
<td><code>statistics</code></td>
<td>Displays the data collected from statistics collection samples.</td>
</tr>
<tr>
<td><code>ldp</code></td>
<td>Displays data from MPLS Label Distribution Protocol (LDP) collections.</td>
</tr>
<tr>
<td><code>ip-address</code></td>
<td>IP address of LDP session instance.</td>
</tr>
<tr>
<td><code>all</code></td>
<td>Displays data from all LDP session instances.</td>
</tr>
<tr>
<td><code>Note</code></td>
<td>This option is available only with the <code>statistics</code> keyword. It is not available with the <code>monitor</code> keyword because a entity instance monitoring collection captures data from an entity instance for one sampling cycle.</td>
</tr>
<tr>
<td><code>first-sample-id</code></td>
<td>Sample ID of the monitoring or statistics collection to be displayed.</td>
</tr>
<tr>
<td><code>all-samples</code></td>
<td>Displays all collected samples.</td>
</tr>
<tr>
<td><code>last-sample</code></td>
<td>Displays the last collected samples.</td>
</tr>
</tbody>
</table>

Command Default

None

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>monitor</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

This is sample output from the `show performance-mgmt mpls` command:
RP/0/RSP0/CPU0:router# show performance-mgmt monitor mpls ldp 192.0.2.45 last-sample
LDP Neighbor: 192.0.2.45 Sample no: 2

TotalMsgsSent: 131,
TotalMsgsRcvd: 131 InitMsgsSent: 1, InitMsgsRcvd: 1 AddressMsgsSent: 1, AddressMsgsRcvd: 1
AddressWithdrawMsgsSent: 0, AddressWithdrawMsgsRcvd: 0 LabelMappingMsgsSent: 6,
LabelMappingMsgsRcvd: 7 LabelWithDrawMsgsSent: 0, LabelWithdrawMsgsRcvd: 0
LabelReleaseMsgsSent: 0, LabelReleaseMsgsRcvd: 0 NotificationMsgsSent: 0
NotificationMsgsRcvd: 0

This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InitMsgsSent</td>
<td>Initial messages sent.</td>
</tr>
<tr>
<td>InitMsgsRcvd</td>
<td>Initial messages received.</td>
</tr>
<tr>
<td>TotalMsgsSent</td>
<td>Total messages sent.</td>
</tr>
<tr>
<td>TotalMsgsRcvd</td>
<td>Total messages received.</td>
</tr>
<tr>
<td>AddressMsgsSent</td>
<td>Address messages sent.</td>
</tr>
</tbody>
</table>
show performance-mgmt node

To display performance management (PM) data for node entity monitoring and statistics collections, use the `show performance-mgmt node` command in EXEC mode.

```
show performance-mgmt {monitor|statistics} node {cpu|memory|process} location {node-id|all} {sample-id|all-samples|last-sample}
```

Syntax Description

- `monitor` Displays the data collected for an entity instance monitoring collection. The data gathered is from one sample cycle from one instance of a node entity collection template.

 Note The data is only available to be displayed as the monitor data is collected.

- `statistics` Displays the data collected from statistics collection samples.

- `cpu` Displays data from the central processing unit (CPU).

- `memory` Displays data from memory.

- `process` Displays data from processes.

- `location` Specifies the location of data origination.

- `node-id` Location of the node. The `node-id` argument is entered in the `rack/slot/module` notation.

- `all` Displays data from all LDP session instances.

 Note This option is available only with the `statistics` keyword. It is not available with the `monitor` keyword because an entity instance monitoring collection captures data from an entity instance for one sampling cycle.

- `sample-id` Sample ID of the monitoring or statistics collection to be displayed.

- `all-samples` Displays all collected samples.

- `last-sample` Displays the last collected samples.

Command Default

None

Command Modes

EXEC mode

Command History

- **Release** Modification
 - Release 3.7.2 This command was introduced.

Usage Guidelines

No specific guidelines impact the use of this command.
This is sample output from the `show performance-mgmt node` command:

```
RP/0/RSP0/CPU0:router# show performance-mgmt monitor node process location 0/RSP1/CPU0 process 614587 last-sample
Node ID: 0_RSP1_CPU0
Sample no: 1
---------------------------------------------- Process ID: 614587
NoThreads: 5
---------------------------------------------- PeakMemory: 908 AverageCPUUsed: 0
```

This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PeakMemory</td>
<td>Maximum system memory (in MB) used since bootup.</td>
</tr>
<tr>
<td>AverageCPUUsed</td>
<td>Average system percent CPU utilization.</td>
</tr>
<tr>
<td>NoThreads</td>
<td>Number of threads.</td>
</tr>
</tbody>
</table>
show performance-mgmt ospf

To display performance management (PM) data for Open Shortest Path First (OSPF) entity instance monitoring and statistics collections, use the `show performance-mgmt ospf` command in EXEC mode.

```
show performance-mgmt {monitor|statistics} ospf {v2protocol|v3protocol} instance {sample-id|all-samples|last-sample}
```

Syntax Description

- `monitor` Displays the data collected for an entity instance monitoring collection. The data gathered is from one sample cycle from one instance of an OSPF entity collection template.
 - **Note** The data is available to be displayed only as the monitor data is collected.

- `statistics` Displays the data collected from statistics collection samples.

- `v2protocol` Displays counters for an OSPF v2 protocol instance.

- `v3protocol` Displays counters for an OSPF v3 protocol instance.

- `sample-id` Sample ID of the monitoring or statistics collection to be displayed.

- `all-samples` Displays all collected samples.

- `last-sample` Displays the last collected samples.

Command Default

None

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

No specific guidelines impact the use of this command.

Examples

This is sample output from the `show performance-mgmt ospf` command:

```
RP/0/RSP0/CPU0:router(config)# show performance-mgmt statistics ospf v2protocol 100 all-samples
Mon Aug 3 06:41:15.785 PST
OSPF Instance: 100 Sample no: 1
```

show performance-mgmt ospf

InputPackets: 12323 OutputPackets: 12045
InputHelloPackets: 11281 OutputHelloPackets: 11276
InputDBDs: 18 OutputDBDs: 20
InputDBDsLSA: 508 OutputDBDsLSA: 530
InputLSRequests: 1 OutputLSRequests: 2
InputLSRequestsLSA: 11 OutputLSRequestsLSA: 0
InputLSAUpdates: 989 OutputLSAUpdates: 109
InputLSAUpdatesLSA: 28282 OutputLSAUpdatesLSA: 587
InputLSAAcks: 34 OutputLSAAcks: 638
InputLSAAcksLSA: 299 OutputLSAAcksLSA: 27995
ChecksumErrors: 0
show running performance-mgmt

To display a list of configured templates and the template being applied, use the `show running performance-mgmt` command in EXEC mode.

```
show running performance-mgmt [{apply|resources|statistics|thresholds}]
```

Syntax Description
- **apply** (Optional) Displays the list of apply template commands in the current configuration.
- **resources** (Optional) Displays the existing resource configuration commands applied.
- **statistics** (Optional) Displays the list of configured statistics templates.
- **thresholds** (Optional) Displays the list of configured threshold templates.

Command Default
None

Command Modes
EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID
- **monitor** read, write

Examples
This example shows the list of statistic and threshold templates, the configuration of each template, and at the end, which templates are enabled for collection:

```
RP/0/RSP0/CPU0:router(config)#show running performance-mgmt

performance-mgmt resources tftp-server 192.168.134.254 directory muckier/jagrelo/pmtest
performance-mgmt statistics bgp template template3
  sample-size 5
  sample-interval 60
!  performance-mgmt statistics node cpu template template4
  sample-size 30
  sample-interval 2
!  performance-mgmt statistics interface generic-counters template template2
  sample-size 3
  sample-interval 10
!  performance-mgmt statistics interface data-rates template template1
```
show running performance-mgmt

```
sample-size 10
sample-interval 5
!
performance-mgmt statistics node memory template template5
  sample-size 30
  sample-interval 2
!
performance-mgmt statistics node process template template6
  sample-size 10
  sample-interval 5
!
performance-mgmt thresholds node cpu template template20
  AverageCpuUsed GT 75
  sample-interval 5
!
performance-mgmt apply statistics interface generic-counters template2
performance-mgmt apply statistics node memory global template5
performance-mgmt apply statistics node process 0/0/CPU0 template6
performance-mgmt apply thresholds node cpu global template20
```
show health sysdb

To display the abstract view of the overall health of the system database (SysDB), use the show health sysdb command in EXEC mode.

XML schema is supported for the CLI commands.

• SysDB
 • ConfigurationSpace
 • IPCSpace
 • CPU
 • Memory
• SysdbConnections
 • NodeTable
 • Node

show health sysdb | location <node-id> | memory | cpu | ipc | config | conn location <node-id>

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>Displays the SysDB health information for a specified node. The node-id argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td>memory</td>
<td>Displays the amount of memory consumed by the SysDB processes.</td>
</tr>
<tr>
<td>cpu</td>
<td>Displays the health of CPU consumed by the SysDB processes.</td>
</tr>
<tr>
<td>ipc</td>
<td>Displays an abstract view of the health of SysDB interprocess communication (IPC) operational space.</td>
</tr>
<tr>
<td>config</td>
<td>Displays an abstract view of the health of SysDB configurational space.</td>
</tr>
<tr>
<td>conn location</td>
<td>Displays an internal breakdown of Lightweight Messaging (LWM) connections for the node.</td>
</tr>
</tbody>
</table>

Command Default
None

Command Modes
EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 6.4.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>cisco-support</td>
<td>read</td>
</tr>
<tr>
<td>interface</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show health sysdb` command to display the health of the SysDB:

```
RP/0/RSP0/CPU0:router# show health sysdb location 0/2/cpu0
sysdb memory is 32MB, memory is healthy
sysdb cpu time is 0%, cpu is healthy
sysdb operational space is healthy
sysdb configuration space is healthy
```
Statistics Service Commands

This module describes the Cisco IOS XR software commands related to the collection of interface statistics (StatsD) for system monitoring on the router. Interface statistics on the router are found in hardware (most of the time) and software (exception packets). The counters are always local (relative to the CPU) to the node on which the interface is homed. The Cisco IOS XR software provides an efficient mechanism to collect these counters from various application-specific integrated circuits (ASICs) or NetIO and assemble an accurate set of statistics for an interface. After the statistics are produced, they can be exported to interested parties (command-line interface [CLI], Simple Network Management Protocol [SNMP], and so forth).

The Cisco IOS XR software statistics collection system provides a common framework to be used by all interface owners to export the statistics for interfaces they own. The system also defines a common set of statistics that are relevant to all interfaces and thereby provides a consistent and constant set of counters that are always associated and maintained with any interface on the router.

The statistics collection system includes the statistics manager, the statistics server, one or more statistics collectors, and the necessary libraries. Each node on a router houses one statistics server.

In addition to the statistics server, each node (that has interfaces) has one or more statistics collectors. Statistics collectors are platform specific and can obtain various hardware and software counters to satisfy requests from the statistics server.

The statistics manager does not attempt to produce statistics for interfaces for which no statistics collector has registered. Requests for statistics on interfaces for which no statistics collector has registered results in an error returned to the requestor by the statistics manager.

To use commands of this module, you must be in a user group associated with a task group that includes appropriate task IDs. If the user group assignment is preventing you from using any command, contact your AAA administrator for assistance.

- clear counters, on page 378
- load-interval, on page 380
clear counters

To clear the interface counters, use the clear counters interface command in EXEC mode mode.

```
clear counters interface [{all|type interface-path-id}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>Specifies interfaces.</td>
</tr>
<tr>
<td>all</td>
<td>(Optional) Clears counters on all interfaces.</td>
</tr>
<tr>
<td>type</td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>interface-path-id</td>
<td>(Optional) Physical interface or virtual interface.</td>
</tr>
</tbody>
</table>

Note
Use the show interfaces command to see a list of all interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

Command Default

Counters for all interfaces are cleared.

Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 6.0.x</td>
<td>This command was modified. The interface was introduced</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the clear counters command to clear all the statistics counters displayed by the show interfaces command. If no optional arguments are supplied or if the all keyword is specified, then the counters for all interfaces are cleared. If an interface type is specified, then only the counters for that interface are cleared.

The clear counters command with the all option clears counters on all interfaces. When you enter this command, the system prompts you for confirmation. You must then press Enter or the y key for the clear counters command to take effect.

Note
This command does not clear counters retrieved using Simple Network Management Protocol (SNMP), but only those counters displayed with the show interfaces command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>execute</td>
</tr>
</tbody>
</table>
Examples

This example shows how to clear counters on all interfaces:

```
RP/0/RSP0/CPU0:router# clear counters interface all
Clear "show interface" counters on all interfaces [confirm]
```

This example shows how to clear the interface counters for Packet-over-SONET/SDH (POS) interface 0/1/0/0:

```
RP/0/RSP0/CPU0:router# clear counters interface POS 0/1/0/0
Clear "show interface" counters on this interface [confirm]
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces</td>
<td>Displays statistics for all interfaces configured on the networking device.</td>
</tr>
</tbody>
</table>
load-interval

To specify the interval for load calculation of an interface, use the `load-interval` command in interface configuration mode. To reset the load interval to the default setting, use the `no` form of this command.

```
load-interval  seconds
no load-interval  seconds
```

Syntax Description

- `seconds` Number of seconds for load calculation of an interface. The value range is from 0 to 600 seconds and in increments of 30 (such as 30, 60, 90, and so on). The default is 300 seconds.

Command Default

- `seconds`: 300 seconds (5 minutes)

Command Modes

- Interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When load interval is set to zero, load calculation is disabled. If you set the load interval, you must use a multiple of 30 (up to 600 seconds).

Task ID

- **Task ID**: read/write

Examples

This example shows how to configure the load interval to 30 seconds:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface pos 0/0/0
RP/0/RSP0/CPU0:router(config-if)# load-interval 30
```
Diagnostics Commands

This module provides command line interface (CLI) commands for configuring diagnostics on your router. To use commands of this module, you must be in a user group associated with a task group that includes appropriate task IDs. If the user group assignment is preventing you from using any command, contact your AAA administrator for assistance.

The command modes mentioned in this chapter is applicable for Cisco IOS XR. If you are running Cisco IOS XR 64 bit, which is supported from Release 6.1.1 onwards, then the command modes has to be changed from Admin EXEC mode to XR EXEC mode, and Administration configuration mode to XR Config mode respectively.

For example,

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Cisco IOS XR</th>
<th>Cisco IOS XR 64 bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnostic monitor</td>
<td>Administration configuration mode</td>
<td>XR Config mode</td>
</tr>
<tr>
<td>diagnostic start</td>
<td>Admin EXEC mode</td>
<td>XR EXEC mode</td>
</tr>
</tbody>
</table>

Note: Online diagnostics for Ethernet Out of Band Channel (EOBC) is not supported on Cisco IOS XR 64 bit.

- diagnostic monitor, on page 383
- diagnostic monitor interval, on page 385
- diagnostic monitor syslog, on page 387
- diagnostic monitor threshold, on page 388
- diagnostic ondemand action-on-failure, on page 390
- diagnostic ondemand iterations, on page 391
- diagnostic schedule, on page 392
- diagnostic start, on page 394
- diagnostic stop, on page 396
- show diag, on page 397
- show diagnostic bootup level, on page 400
- show diagnostic content, on page 401
- show diagnostic ondemand settings, on page 404
• show diagnostic result, on page 405
• show diagnostic schedule, on page 409
• show diagnostic status, on page 411
diagnostic monitor

To configure the health-monitoring diagnostic testing for a specified location, use the `diagnostic monitor` command in administration configuration mode. To remove the specified command from the configuration file and restore the system to its default condition, use the `no` form of this command.

```
diagnostic monitor location node-id test {id|test-name} [disable]
no diagnostic monitor location node-id test {id|test-name} [disable]
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>node-id</td>
<td>Location to enable diagnostic monitoring. The <code>node-id</code> argument is entered in the <code>rack/slot/module</code> notation.</td>
</tr>
<tr>
<td>test {id</td>
<td>test-name}</td>
</tr>
<tr>
<td></td>
<td>• <code>id</code>—Test ID, as shown in the <code>show diagnostic content</code> command.</td>
</tr>
<tr>
<td></td>
<td>• <code>test-name</code>—Name of the test.</td>
</tr>
<tr>
<td>disable</td>
<td>Disables diagnostic monitoring for a specified location.</td>
</tr>
</tbody>
</table>

Command Default

To view the default value for each test, use the `show diagnostic content` command when the diagnostic image is first installed. The default may be different for each test.

Command Modes

Administration configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `diagnostic monitor` command to enable or disable health-monitoring diagnostic testing for a specified test at the specified location.

Use the `disable` keyword to disable a health-monitoring diagnostic test that is enabled by default. For example, if test 1 is enabled by default, the `disable` keyword disables the diagnostic test. If the `no` form of the command is used, the test is set to the default condition, which is enabled.

Note

To specify a node using the `node-id` argument, use the `rack/slot/module` notation. For example, 0/0/CPU0 is a fully qualified location specification for a line card, 0/2/CPU0 is a fully qualified location specification for a line card, 0/7/CPU0 is a fully qualified location specification for a line card, 0/RSP0/CPU0 is a fully qualified location specification for a Route Switch Processor.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read, write</td>
</tr>
</tbody>
</table>
The following example shows how to enable health-monitoring diagnostic testing for 0/1/cpu0:

```
RP/0/RSP0/CPU0:router(admin-config)# diagnostic monitor location 0/1/cpu0 test 1
```
diagnostic monitor interval

To configure the health-monitoring diagnostic testing for a specified interval for a specified location, use the `diagnostic monitor interval` command in administration configuration mode. To remove the specified command from the configuration file and restore the system to its default condition, use the `no` form of this command.

```
diagnostic monitor interval location node-id test {id | test-name} number-of-days hour:minutes:seconds.milliseconds
no diagnostic monitor interval location node-id test {id | test-name} number-of-days hour:minutes:seconds.milliseconds
```

Syntax Description

<table>
<thead>
<tr>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location node-id</td>
<td>Specifies a location. The <code>node-id</code> argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td>test {id</td>
<td>test-name}</td>
</tr>
<tr>
<td>number-of-days hour:minutes:seconds.milliseconds</td>
<td>Interval between each test run.</td>
</tr>
</tbody>
</table>

The `number-of-days` argument specifies the number of days between testing. The `hour:minutes:seconds.milliseconds` argument specifies the interval, where `hour` is a number in the range from 0 through 23, `minutes` is a number in the range from 0 through 59, `seconds` is a number in the range from 0 through 59, and `milliseconds` is a number in the range from 0 through 999.

Command Default

To view the default value for each test, use the `show diagnostic content` command when the diagnostic image is first installed. The default may be different for each test.

Command Modes

Administration configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `diagnostic monitor interval` command to set the health-monitoring interval of a specified test at the specified location. The `no` version of the command resets the interval to the default setting. The `diagnostic monitor` command is used to enable health-monitoring.
To specify a node using the node-id argument, use the rack/slot/module notation. For example, 0/0/CPU0 is a fully qualified location specification for a line card, 0/2/CPU0 is a fully qualified location specification for a line card, 0/7/CPU0 is a fully qualified location specification for a line card, 0/RSP0/CPU0 is a fully qualified location specification for a Route Switch Processor, and 0/RSP0/CPU0 is also a fully qualified location specification for a Route Switch Processor.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to set the health-monitoring diagnostic testing at an interval of 1 hour, 2 minutes, 3 seconds, and 4 milliseconds for 0/1/cpu0:

```
RP/0/RSP0/CPU0:router(admin-config)# diagnostic monitor interval location 0/1/cpu0 test 0 1:2:3.4
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnostic monitor, on page 383</td>
<td>Configures the health-monitoring diagnostic testing for a specified location.</td>
</tr>
<tr>
<td>show diagnostic content, on page 401</td>
<td>Displays test information including test ID, test attributes, and supported coverage test levels for each test and for all components.</td>
</tr>
</tbody>
</table>
diagnostic monitor syslog

To enable the generation of a syslog message when any health monitoring test fails, use the `diagnostic monitor syslog` command in administration configuration mode. To remove the specified command from the configuration file and restore the system to its default condition, use the `no` form of this command.

```
diagnostic monitor syslog
no diagnostic monitor syslog
```

Syntax Description
This command has no keywords or arguments.

Command Default
Syslog is disabled.

Command Modes
Administration configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `diagnostic monitor syslog` command to enable the generation of a syslog message when a health-monitoring test fails.

Examples
The following example shows how to enable the generation of syslog messages:

```
RP/0/RSP0/CPU0:router(admin-config)# diagnostic monitor syslog
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show diagnostic content</code>, on page 401</td>
<td>Displays test information including test ID, test attributes, and supported coverage test levels for each test and for all components.</td>
</tr>
</tbody>
</table>
diagnostic monitor threshold

To configure the health-monitoring diagnostic testing failure threshold, use the `diagnostic monitor threshold` command in administration configuration mode. To remove the specified command from the configuration file and restore the system to its default condition, use the `no` form of this command.

```
diagnostic monitor threshold location node-id test {id|test-name} failure count failures
no diagnostic monitor threshold location node-id test {id|test-name} failure count failures
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location node-id</td>
<td>Specifies a location. The <code>node-id</code> argument is entered in the <code>rack/slot/module</code> notation.</td>
</tr>
<tr>
<td>test {id</td>
<td>test-name}</td>
</tr>
<tr>
<td></td>
<td>• <code>id</code>—Test ID.</td>
</tr>
<tr>
<td></td>
<td>• <code>test-name</code>—Test name, as shown in the <code>show diagnostic content</code> command.</td>
</tr>
<tr>
<td>failure count failures</td>
<td>Specifies the number of allowable test failures. Range is 1 to 99.</td>
</tr>
</tbody>
</table>

Command Default

To view the default value for each test, use the `show diagnostic content` command when the diagnostic image is first installed. The default can be different for each test.

Command Modes

Administration configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `diagnostic monitor threshold` command to specify health-monitoring diagnostic testing failure threshold.

Note

To specify a node using the `node-id` argument, use the `rack/slot/module` notation. For example, 0/0/CPU0 is a fully qualified location specification for a line card, 0/2/CPU0 is a fully qualified location specification for a line card, 0/7/CPU0 is a fully qualified location specification for a line card, 0/RSP0/CPU0 is a fully qualified location specification for a Route Switch Processor, and 0/RSP0/CPU0 is also a fully qualified location specification for a Route Switch Processor.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to set the failure threshold to 35 test failures for test 1 for 0/1/cpu0:
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show diagnostic content, on page 401</code></td>
<td>Displays test information including test ID, test attributes, and supported coverage test levels for each test and for all components.</td>
</tr>
</tbody>
</table>
diagnostic ondemand action-on-failure

To set when to stop test execution for a `diagnostic start` command, use the `diagnostic ondemand action-on-failure` command in Admin EXEC mode. This command is used in conjunction with the `diagnostic ondemand iteration` command.

```
<command>
```

Syntax Description

```
continue failure-count

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>continue</code></td>
<td>Specifies that test execution continue until the number of failures reaches the specified <code>failure-count</code>. Range is 0 to 65534. A <code>failure-count</code> of 0 indicates to not stop execution until all iterations are complete, no matter how many failures are encountered.</td>
</tr>
<tr>
<td><code>stop</code></td>
<td>Stops execution immediately when the first test failure occurs.</td>
</tr>
</tbody>
</table>
```

Command Default

`failure-count: 0`

Command Modes

Admin EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `diagnostic ondemand action-on-failure` command to specify whether or when to stop test execution if a test fails. This command is used in conjunction with the `diagnostic ondemand iterations` command.

Task ID

```
Task ID Operations
------ -----------
diag    read, write
```

Examples

The following example shows how to set the test failure action to stop:

```
RP/0/RSP0/CPU0:router (admin) # diagnostic ondemand action-on-failure stop
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnostic ondemand iterations, on page 391</td>
<td>Sets the number of times to repeat execution of the diagnostic test.</td>
</tr>
<tr>
<td>diagnostic start, on page 394</td>
<td>Runs a specified diagnostic test.</td>
</tr>
</tbody>
</table>
diagnostic ondemand iterations

To set the number of times to repeat execution of the tests specified by the `diagnostic start` command, use the `diagnostic ondemand iterations` command in Admin EXEC mode.

```
diagnostic ondemand iterations count
```

Syntax Description

- `count` Number of times to repeat the specified on-demand tests. Range is 1 to 999.

Command Default

- `count`: 1

Command Modes

Admin EXEC mode

Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```

Usage Guidelines

Use the `diagnostic ondemand iterations` command to specify the number of times the specified on-demand tests run. The on-demand tests are specified using the `diagnostic start` command.

Task ID

```
<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read, write</td>
</tr>
</tbody>
</table>
```

Examples

The following example shows how to set the number of iterations to 12:

```
RP/0/RSP0/CPU0:router(admin)# diagnostic ondemand iterations 12
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>diagnostic ondemand action-on-failure</code>, on page 390</td>
<td>Sets when to stop test execution for a diagnostic test.</td>
</tr>
<tr>
<td><code>diagnostic start</code>, on page 394</td>
<td>Runs a specified diagnostic test.</td>
</tr>
</tbody>
</table>
diagnostic schedule

To configure a diagnostic schedule, use the `diagnostic schedule` command in Admin Configuration mode. To disable the diagnostic schedule, use the `no` form of this command.

```
diagnostic schedule location node-id test {id|all|non-disruptive} {daily|on month day year|weekly day-of-week} hour:minute
no diagnostic schedule location node-id test {id|all} {daily|on month day year|weekly day-of-week} hour:minute
```

Syntax Description

- **location** node-id: Schedules a diagnostic test for a specified location. The `node-id` argument is entered in the `rack/slot/module` notation.
- **test**: Specifies a specific diagnostic test, or all diagnostic tests.
- **id**: Test ID or list of test IDs, as shown in the `show diagnostic content` command. Multiple tests can be listed if separated by semicolons (`;`) and a range of dates can be listed if separated by a hyphen (`-`), as follows:
 - `x:y-z` (for example: `1;3-4` or `1;3;4`)
- **all**: Specifies all tests.
- **non-disruptive**: Specifies the nondisruptive test suite `[Attribute = N]`.
- **daily**: Specifies a daily schedule.
- **on month day year**: Schedules an exact date.
- **weekly day-of-week**: Specifies a weekly schedule with a set day of the week. Enter the name of a day of the week or a number that specifies a day of the week in the range from 0 through 6, where 0 is today.
- **hour:minute**: Scheduled start time, where `hour` is a number in the range from 0 through 23, and `minute` is a number in the range from 0 through 59.

Command Default

No default behavior or values

Command Modes

Admin Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Usage Guidelines

To specify a node using the node-id argument, use the rack/slot/module notation. For example, 0/0/CPU0 is a fully qualified location specification for a line card, 0/2/CPU0 is a fully qualified location specification for a line card, 0/7/CPU0 is a fully qualified location specification for a line card, 0/RSP0/CPU0 is a fully qualified location specification for a Route Switch Processor, and 0/RSP0/CPU0 is also a fully qualified location specification for a Route Switch Processor.

For more information about running Cisco IOS XR diagnostics, refer to Cisco IOS XR Diagnostics.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to schedule a diagnostic test:

RP/0/RSP0/CPU0:router# admin
RP/0/RSP0/CPU0:router@admin)# configure
RP/0/RSP0/CPU0:router(admin-config)# diagnostic schedule location 0/0/CPU0 test all daily complete device 1 weekly 12:30

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show diagnostic schedule, on page 409</td>
<td>Displays the current scheduled diagnostic tasks.</td>
</tr>
</tbody>
</table>
diagnostic start

To run a specified diagnostic test, use the **diagnostic start** command in Admin EXEC mode.

```
diagnostic start location node-id test {id|all|non-disruptive}
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>Runs diagnostic testing for a specified location. The node-id argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td>node-id</td>
<td>Specifies a specific diagnostic test, or all diagnostic tests.</td>
</tr>
<tr>
<td>test</td>
<td>Test ID or list of test IDs, as shown in the show diagnostic content command. Multiple tests can be listed if separated by semicolons (;) a range of dates can be listed if separated by a hyphen (-), as follows:</td>
</tr>
<tr>
<td>id</td>
<td>x;y-z (for example: 1; 3-4 or 1;3;4)</td>
</tr>
<tr>
<td>all</td>
<td>Specifies all tests.</td>
</tr>
<tr>
<td>non-disruptive</td>
<td>Specifies the nondisruptive test suite [Attribute = N].</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values

Command Modes

Admin EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **diagnostic start** command to run a diagnostic test on a specified card.

To specify a node using the *node-id* argument, use the rack/slot/module notation. For example, 0/0/CPU0 is a fully qualified location specification for a line card, 0/2/CPU0 is a fully qualified location specification for a line card, 0/7/CPU0 is a fully qualified location specification for a line card, 0/RSP0/CPU0 is a fully qualified location specification for a Route Switch Processor, and 0/RSP0/CPU0 is also a fully qualified location specification for a Route Switch Processor.

For more information about running Cisco IOS XR diagnostics, refer to Cisco IOS XR Diagnostics.

Examples

The following example shows how to run a complete suite of diagnostic tests for a specified location:
RP/0/RSP0/CPU0:router# admin
RP/0/RSP0/CPU0:router (admin)# diagnostic start location 0/0/CPU0 test all

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>diagnostic stop, on page 396</td>
<td>Stops the diagnostic testing in progress on a node.</td>
</tr>
</tbody>
</table>
diagnostic stop

To stop the diagnostic testing in progress on a node, use the diagnostic stop command in Admin EXEC mode.

```
diagnostic stop location node-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>Stops diagnostic testing for a specified location. The node-id argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td>node-id</td>
<td></td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values

Command Modes

Admin EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the diagnostic stop command to stop a diagnostic test on a specified node. The command is used for scheduled tests, a test that is causing errors, or a test that does not finish.

Note

To specify a node using the node-id argument, use the rack/slot/module notation. For example, 0/0/CPU0 is a fully qualified location specification for a line card, 0/2/CPU0 is a fully qualified location specification for a line card, 0/7/CPU0 is a fully qualified location specification for a line card, 0/RSP0/CPU0 is a fully qualified location specification for a Route Switch Processor, and 0/RSP0/CPU0 is also a fully qualified location specification for a Route Switch Processor.

Task ID

Examples

The following example shows how to stop the diagnostic test process:

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnostic start, on page 394</td>
<td>Runs a specified diagnostic test.</td>
</tr>
</tbody>
</table>
show diag

To display details about the hardware and software on each node in a router, use the `show diag` command in the appropriate mode.

EXEC Mode

```
show diag [node-id] [details|eeprom-info|power-regs|summary]
```

Administration EXEC Mode

```
show diag [node-id] [chassis|fans|power-supply] [details|eeprom-info|power-regs|summary]
```

Syntax Description

- **node-id**: (Optional) Identifies the node whose information you want to display. The `node-id` argument is expressed in the `rack/slot/module` notation.

 Follow the `node-id` argument with one of the following optional keywords to specify specific test results:
 - `details`
 - `eeprom-info`
 - `power-regs`
 - `summary`

- **details**: (Optional) Displays detailed diagnostics information for the current node.

- **eeprom-info**: (Optional) Displays field diagnostics results from the EEPROM.

- **power-regs**: (Optional) Displays field diagnostics results from the power registers.

- **summary**: (Optional) Displays summarized diagnostics results for all nodes in the system.

- **chassis-info**: (Optional) Displays information about the chassis.

- **fans**: (Optional) Displays information about the fans tray.

- **power-supply**: (Optional) Displays information about the power supply.

Command Default

Diagnostics for all nodes installed in the router are displayed.

Command Modes

- **EXEC**
- **Administration EXEC**

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show diag` command displays detailed information on the hardware components for each node, and on the status of the software running on each node.
The following example shows excerpts of output from the `show diag details` command:

```plaintext
RP/0/RSP0/CPU0:router# show diag details

NODE module 0/RSP0/CPU0: ASR9K Fabric, Controller, 4G memory
MAIN board type 0x100302 S/N: FOC1229801R
Top Assy. Number 68-3160-04 PID A9K-RSP-4GVIDHwRev: V4.8 New Deviation Number CLEI TBD TBD
Board State IOS XR RUN Board State IOS XR RUN PLD: Motherboard: N/A, Processor: 0x8004 (rev: 2.2), Power: N/A
MONLIBQNXFFS Monlib Version 32 ROMMONVersion 1(20081208:173612) [ASR9K ROMMON] Board
FPGA/CPLD/ASIC Hardware Revision:
CompactFlash V1.0 XbarSwitch0 V1.3 XbarSwitch1 V1.3 XbarArbiter V1.0 Xbar Interface
V18.4 IntCtrl V114 CIkCtrl V1.13 Punt FPGA V1.4 HD V3. USB0 V17. USB1 V17 CIkCtrl V1.17 UTI
V1.6 LIU V1. MLAN Switch V0. EOBCSwitch V2C (active partition) V1.1C BC (inactive partition) V1.More--
```

This table describes the significant fields shown in the display.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN</td>
<td>Provides the following general information about the hardware:</td>
</tr>
<tr>
<td></td>
<td>• Board type</td>
</tr>
<tr>
<td></td>
<td>• Revision</td>
</tr>
<tr>
<td></td>
<td>• Device identifier</td>
</tr>
<tr>
<td></td>
<td>• Serial number</td>
</tr>
<tr>
<td>PCA</td>
<td>Cisco printed circuit assembly (PCA) hardware and revision number.</td>
</tr>
<tr>
<td>PID</td>
<td>Displays the product identifier (PID) revision for the specified node.</td>
</tr>
<tr>
<td>VID</td>
<td>Displays the version identifier (VID) for the specified node.</td>
</tr>
<tr>
<td>CLEI</td>
<td>Displays the common language equipment identifier (CLEI) for the specified node.</td>
</tr>
<tr>
<td>ECI</td>
<td>Displays the equipment catalog item (ECI) for the specified node.</td>
</tr>
<tr>
<td>Board State</td>
<td>Displays the current software on the board and whether or not the board is running.</td>
</tr>
<tr>
<td>PLD</td>
<td>Displays the information about the following programmable logic device (PLD) components on the current module:</td>
</tr>
<tr>
<td></td>
<td>• Processor</td>
</tr>
<tr>
<td></td>
<td>• Power</td>
</tr>
<tr>
<td></td>
<td>• MONLIB</td>
</tr>
</tbody>
</table>
Field

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEED</td>
<td>Displays speed information for the various components of the specified node, in megahertz.</td>
</tr>
<tr>
<td>MEM Size</td>
<td>Displays the memory size of the specified node, in megabytes.</td>
</tr>
<tr>
<td>RMA</td>
<td>Displays returned material adjustment (RMA) information for the specified node.</td>
</tr>
<tr>
<td>DIAGNOSTICS RESULTS</td>
<td>Provides the following information about the last diagnostics test that was run on the specified node:</td>
</tr>
<tr>
<td></td>
<td>• ENTRY 1</td>
</tr>
<tr>
<td></td>
<td>• TIMESTAMP—Time stamp for the last diagnostic test that was run on the node.</td>
</tr>
<tr>
<td></td>
<td>• VERSION</td>
</tr>
<tr>
<td></td>
<td>• PARAM1</td>
</tr>
<tr>
<td></td>
<td>• PARAM2</td>
</tr>
<tr>
<td></td>
<td>• TESTNUM—Identifies the test that was run on the node.</td>
</tr>
<tr>
<td></td>
<td>• RESULT—Displays whether the last diagnostic test passed or failed.</td>
</tr>
<tr>
<td></td>
<td>• ERRCODE</td>
</tr>
</tbody>
</table>

The following example shows how to display EEPROM information:

```
RP/0/RSP15/CPU0:router# show diag chassis eeprom-info

Rack 0 - ASR-9010 Chassis, Includes Accessories
Controller Family HW config: 0x20 SW key: ef Controller Type
: 2fePID ASR9010AC Version Identifier : 0UDI Name
chassis ASR-9010-ACUDI Description ASR9010, AC Chassis Part Number (68-bbbb-vv) :
: 68-1234-56
Part Revision : 0.1
PCB Serial Number : FOX1232H67MPCA Number (73-bbbb-vv) : 73-1159-02 PCA
Revision : 0.
Deviation Number # 1 0 CLEI Code : NOCLEI
Manufacturing Test Data : 00 00 00 00 00 00 00 00
Base MAC Address : 001d.e5eb.bfa8
MAC Address block size : 264
Hardware Revision : 0.100
Capabilities : 00
Field Diagnostics Data 00 00 00 00 00 00 00 00 Device values :
Power Usage (10mW units) : 0
ENVMON Information 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show platform</td>
<td>Displays information and status for each node in the system.</td>
</tr>
<tr>
<td>show version</td>
<td>Displays details on the hardware and software status of the system.</td>
</tr>
</tbody>
</table>
show diagnostic bootup level

To display the current diagnostic bootup level, use the `show diagnostic bootup level` command in Admin EXEC mode.

```
show diagnostic bootup level location node-id
```

Syntax Description
- `location` Specifies a card. The `node-id` argument is entered in the `rack/slot/module` notation.

Command Default
No default behavior or values.

Command Modes
Admin EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
Use the `show diagnostic bootup level` command to display the current diagnostic bootup level for a specified card.

Note
To specify a node using the `node-id` argument, use the `rack/slot/module` notation. For example, `0/0/CPU0` is a fully qualified location specification for a line card, `0/2/CPU0` is a fully qualified location specification for a line card, `0/7/CPU0` is a fully qualified location specification for a line card, `0/RSP0/CPU0` is a fully qualified location specification for a Route Switch Processor, and `0/RSP0/CPU0` is also a fully qualified location specification for a Route Switch Processor.

Examples
The following example shows how to display the current diagnostic bootup level for `0/1/cpu0`:

```
RP/0/RSP0/CPU0:router (admin) # show diagnostic bootup level location 0/1/cpu0

Current bootup diagnostic level for LC 0/1/CPU0: minimal
```
show diagnostic content

To display test information including test ID, test attributes, and supported coverage test levels for each test and for all components, use the show diagnostic content command in Admin EXEC mode.

```
show diagnostic content location node-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>Displays the diagnostic content for a specified location. The node-id argument is entered in the rack/slot/module notation.</td>
</tr>
<tr>
<td>node-id</td>
<td></td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values

Command Modes

Admin EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the show diagnostic content command to display diagnostic test information for a specific location. The test information includes the supported tests and attributes.

Note

To specify a node using the node-id argument, use the rack/slot/module notation. For example, 0/0/CPU0 is a fully qualified location specification for a line card, 0/2/CPU0 is a fully qualified location specification for a line card, 0/7/CPU0 is a fully qualified location specification for a line card, 0/RSP0/CPU0 is a fully qualified location specification for a Route Switch Processor, and 0/RSP0/CPU0 is also a fully qualified location specification for a Route Switch Processor.

For more information about running Cisco IOS XR diagnostics, refer to Cisco IOS XR Diagnostics.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to display the test information for a specified location:

For a route switch processor:

```
RP/0/RSP0/CPU0:router(admin)# show diagnostic content location 0/rsp0/cpu0
```

Wed Feb 16 09:17:07.293 PST

RP 0/RSP0/CPU0:

Diagnostics test suite attributes:

M/C/* - Minimal bootup level test / Complete bootup level test / NA
Test Interval Thresholds

<table>
<thead>
<tr>
<th>ID</th>
<th>Test Name</th>
<th>Attributes</th>
<th>Test Interval (day hh:mm:ss.ms should)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>PuntFPGAScratchRegister ---------------</td>
<td>**N****A</td>
<td>000 00:01:00.000 1</td>
</tr>
<tr>
<td>2)</td>
<td>FIAScratchRegister</td>
<td>**N****A</td>
<td>000 00:01:00.000 1</td>
</tr>
<tr>
<td>3)</td>
<td>ClkCtrlScratchRegister ----------------</td>
<td>**N****A</td>
<td>000 00:01:00.000 1</td>
</tr>
<tr>
<td>4)</td>
<td>IntCtrlScratchRegister------------------</td>
<td>**N****A</td>
<td>000 00:01:00.000 1</td>
</tr>
<tr>
<td>5)</td>
<td>CPUCtrlScratchRegister-----------------</td>
<td>**N****A</td>
<td>000 00:01:00.000 1</td>
</tr>
<tr>
<td>6)</td>
<td>FabSwitchIdRegister --------------------</td>
<td>**N****A</td>
<td>000 00:01:00.000 1</td>
</tr>
<tr>
<td>7)</td>
<td>EccSbeTest</td>
<td>**N****I</td>
<td>000 00:01:00.000 3</td>
</tr>
<tr>
<td>8)</td>
<td>SrpStandbyEobcHeartbeat----------------</td>
<td>**NS****A</td>
<td>000 00:05:00.000 3</td>
</tr>
<tr>
<td>9)</td>
<td>SrpActiveEobcHeartbeat------------------</td>
<td>**NS****A</td>
<td>000 00:05:00.000 3</td>
</tr>
<tr>
<td>10)</td>
<td>FabricLoopback</td>
<td>**N****A</td>
<td>000 00:01:00.000 3</td>
</tr>
<tr>
<td>11)</td>
<td>PuntFabricDataPath----------------------</td>
<td>**N****A</td>
<td>000 00:01:00.000 3</td>
</tr>
<tr>
<td>12)</td>
<td>FPDimageVerify</td>
<td>**N****I</td>
<td>000 00:01:00.000 3</td>
</tr>
</tbody>
</table>

For a line card:

```
RP/0/RSP0/CPU0:router(admin)# show diagnostic content location 0/1/cpu0
```

A9K-40GE-L 0/1/CPU0:

Diagnostics test suite attributes:

- **M/C/** - Minimal bootup level test / Complete bootup level test / NAab
- **P/V/** - Per port test / Per device test / NA
- **D/N/** - Disruptive test / Non-disruptive test / NA
- **S/** - Only applicable to standby unit / NA
- **X/** - Not a health monitoring test / NA
- **F/** - Fixed monitoring interval test / NA
- **E/** - Always enabled monitoring test / NA
- **A/I** - Monitoring is active / Monitoring is inactive

Table 43: show diagnostic content Field Descriptions

Table 43: show diagnostic content Field Descriptions, on page 403 describes the significant fields shown in the display.
Table 43: show diagnostic content Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M/C/* - Minimal bootup level test / Complete bootup level test / NA</td>
<td>Minimal bootup test or complete bootup test.</td>
</tr>
<tr>
<td>B/* - Basic on-demand test / NA</td>
<td>Basic on-demand test.</td>
</tr>
<tr>
<td>P/V/* - Per port test / Per device test / NA</td>
<td>Test is per port or device.</td>
</tr>
<tr>
<td>D/N/* - Disruptive test / Non-disruptive test / NA</td>
<td>Test is disruptive or nondisruptive.</td>
</tr>
<tr>
<td>S/* - Only applicable to standby unit / NA</td>
<td>Test is available for standby node only.</td>
</tr>
<tr>
<td>X/* - Not a health monitoring test / NA</td>
<td>Test is not a health-monitoring test.</td>
</tr>
<tr>
<td>F/* - Fixed monitoring interval test / NA</td>
<td>Test is a fixed monitoring interval test.</td>
</tr>
<tr>
<td>E/* - Always enabled monitoring test / NA</td>
<td>Test is an always enabled monitoring test.</td>
</tr>
<tr>
<td>A/I - Monitoring is active / Monitoring is inactive</td>
<td>Test is active or inactive.</td>
</tr>
<tr>
<td>ID</td>
<td>ID of the test.</td>
</tr>
<tr>
<td>Test Name</td>
<td>Name of the test.</td>
</tr>
<tr>
<td>Attributes</td>
<td>Attributes for the test.</td>
</tr>
<tr>
<td>Test Interval</td>
<td>Interval of the test.</td>
</tr>
<tr>
<td>Threshold</td>
<td>Failure threshold of the test.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnostic monitor interval, on page 385</td>
<td>Configures the health-monitoring diagnostic testing for a specified interval for a specified location.</td>
</tr>
<tr>
<td>diagnostic schedule, on page 392</td>
<td>Configures a diagnostic schedule.</td>
</tr>
<tr>
<td>diagnostic start, on page 394</td>
<td>Runs a specified diagnostic test.</td>
</tr>
</tbody>
</table>
show diagnostic ondemand settings

To display the current on-demand settings, use the `show diagnostic ondemand settings` command in Admin EXEC mode.

Syntax Description
This command has no keywords or arguments.

Command Default
No default behavior or values

Command Modes
Admin EXEC mode

Command History
Release 3.7.2 This command was introduced.

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID
<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to display the on-demand settings:

```
RP/0/RSP0/CPU0:router(admin)# show diagnostic ondemand settings
Test iterations = 45
Action on test failure = continue until test failure limit reaches 25
```
show diagnostic result

To display diagnostic test results, use the `show diagnostic result` command in Admin EXEC mode.

```
show diagnostic result location node-id [test {id|all}] [detail]
```

Syntax Description

- `location node-id`: Displays the diagnostic test results for a specified location. The `node-id` argument is entered in the `rack/slot/module` notation.

- `test {id | all}`: (Optional) Specifies diagnostic test selection. The following test selections are available:
 - `id`: Test ID or list of test IDs, as shown in the `show diagnostic content` command. Multiple tests can be listed if separated by semicolons (;) as follows:
 - `x; y-z` (for example: 1; 3-4 or 1;3;4)
 - `all`: Specifies all tests.

- `detail`: (Optional) Specifies detailed results.

Command Default

No default behavior or values

Command Modes

Admin EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show diagnostic result` command to display diagnostic results for a specific location.

Note

To specify a node using the `node-id` argument, use the `rack/slot/module` notation. For example, 0/0/CPU0 is a fully qualified location specification for a line card, 0/2/CPU0 is a fully qualified location specification for a line card, 0/7/CPU0 is a fully qualified location specification for a line card, 0/RSP0/CPU0 is a fully qualified location specification for a Route Switch Processor, and 0/RSP0/CPU0 is also a fully qualified location specification for a Route Switch Processor.

For more information about running Cisco IOS XR diagnostics, refer to *Cisco IOS XR Diagnostics*.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to display detailed diagnostic test results:

```
RP/0/RSP0/CPU0:router (admin) # show diagnostic result loc 0/RSP0/CPU0 test 1
Current bootup diagnostic level for RP 0/RSP0/CPU0: minimal
```
Test results: (. = Pass, F = Fail, U = Untested)
1) PuntFPGAScratchRegister ---------> .
RP/0/RSP0/CPU0:router (admin)#
RP/0/RSP0/CPU0:router (admin)# show diagnostic result loc 0/RSP0/CPU0 test all
Current bootup diagnostic level for RP 0/RSP0/CPU0: minimal
Test results: (. = Pass, F = Fail, U = Untested)
1) PuntFPGAScratchRegister ---------> .
2) XbarInterfaceScratchRegister -------> .
3) ClkCtrlScratchRegister -----------> .
4) IntCtrlScratchRegister -----------> .
5) CPUCtrlScratchRegister ---------> .
6) XbarSwitchIdRegister -----------> .
7) EccSbeTest ----------------------> U
8) SrspStandbyEobcHeartbeat ---------> U
9) SrspActiveEobcHeartbeat --------> U
10) FabricLoopback ------------------> .
11) PuntFabricDataPath --------------> .
12) FPDimageVerify ------------------> .

Here is an example of the show diagnostic results detail command run on the route switch processor labeled RSP0:

RP/0/RSP0/CPU0:router (admin)# show diagnostic result loc 0/RSP0/CPU0 detail
Current bootup diagnostic level for RP 0/RSP0/CPU0: minimal
RP 0/RSP0/CPU0:

Overall diagnostic result: PASS
Diagnostic level at card bootup: minimal
Test results: (. = Pass, F = Fail, U = Untested)

1) PuntFPGAScratchRegister ---------> .
 Error code ------------------> 0 (DIAG_SUCCESS)
 Total run count -------------> 265
 Last test execution time ----> Tue Mar 10 16:31:43 2009
 First test failure time -------> n/a
 Last test failure time -------> n/a
 Last test pass time ----------> Tue Mar 10 16:31:43 2009
 Total failure count ----------> 0
 Consecutive failure count ---> 0

2) XbarInterfaceScratchRegister -------> .
 Error code ------------------> 0 (DIAG_SUCCESS)
 Total run count -------------> 265
 Last test execution time ----> Tue Mar 10 16:31:43 2009
 First test failure time -------> n/a
 Last test failure time -------> n/a
 Last test pass time ----------> Tue Mar 10 16:31:43 2009
 Total failure count ----------> 0
 Consecutive failure count ---> 0

3) ClkCtrlScratchRegister -----------> .
 Error code ------------------> 0 (DIAG_SUCCESS)
Table 44: show diagnostic result Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test results</td>
<td>Test result options:</td>
</tr>
<tr>
<td></td>
<td>• .—Pass</td>
</tr>
<tr>
<td></td>
<td>• F—Fail</td>
</tr>
<tr>
<td></td>
<td>• U—Untested</td>
</tr>
<tr>
<td>Error code</td>
<td>Code for the error. DIAG_SUCCESS is indicated if there were no code errors.</td>
</tr>
<tr>
<td></td>
<td>DIAG_FAILURE is indicated for any failure. DIAG_SKIPPED is indicated if</td>
</tr>
<tr>
<td></td>
<td>the test was stopped.</td>
</tr>
<tr>
<td>Total run count</td>
<td>Number of times the test has run.</td>
</tr>
<tr>
<td>Last test execution</td>
<td>Last time the test was run.</td>
</tr>
</tbody>
</table>

4) IntCtrlScratchRegister ----------> .

Error code ------------------> 0 (DIAG_SUCCESS)
Total run count --------------> 265
Last test execution time ----> Tue Mar 10 16:31:43 2009
First test failure time ----> n/a
Last test failure time -------> n/a
Last test pass time ---------> Tue Mar 10 16:31:43 2009
Total failure count ---------> 0
Consecutive failure count ---> 0

5) CPUCtrlScratchRegister ----------> .

Error code ------------------> 0 (DIAG_SUCCESS)
Total run count --------------> 264
Last test execution time ----> Tue Mar 10 16:31:43 2009
First test failure time ----> n/a
Last test failure time -------> n/a
Last test pass time ---------> Tue Mar 10 16:31:43 2009
Total failure count ---------> 0
Consecutive failure count ---> 0

6) XbarSwitchIdRegister ------------> .

Error code ------------------> 0 (DIAG_SUCCESS)
Total run count --------------> 264
Last test execution time ----> Tue Mar 10 16:31:43 2009
First test failure time ----> n/a
Last test failure time -------> n/a
Last test pass time ---------> Tue Mar 10 16:31:43 2009
Total failure count ---------> 0
Consecutive failure count ---> 0
### Field	Description
First test failure time | First time the test failed.
Last test failure time | Last time the test failed.
Last test pass time | Last time the test passed.
Total failure count | Number of times the test has failed.
Consecutive failure count | Number of consecutive times the test has failed.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnostic schedule, on page 392</td>
<td>Configures a diagnostic schedule.</td>
</tr>
<tr>
<td>diagnostic start, on page 394</td>
<td>Runs a specified diagnostic test.</td>
</tr>
</tbody>
</table>
show diagnostic schedule

To display the current scheduled diagnostic tasks, use the `show diagnostic schedule` command in Admin EXEC mode.

```
show diagnostic schedule location node-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>location</code></td>
<td>Displays the diagnostic schedule for a specified location. The <code>node-id</code> argument is entered in the <code>rack/slot/module</code> notation.</td>
</tr>
<tr>
<td><code>node-id</code></td>
<td></td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values

Command Modes

Admin EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `show diagnostic schedule` command to display scheduled diagnostic tasks for a specific location.

To specify a node using the `node-id` argument, use the `rack/slot/module` notation. For example, 0/0/CPU0 is a fully qualified location specification for a line card, 0/2/CPU0 is a fully qualified location specification for a line card, 0/7/CPU0 is a fully qualified location specification for a line card, 0/RSP0/CPU0 is a fully qualified location specification for a Route Switch Processor, and 0/RSP0/CPU0 is also a fully qualified location specification for a Route Switch Processor.

For more information about running Cisco IOS XR diagnostics, refer to *Cisco IOS XR Diagnostics*.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to display scheduled diagnostic tasks:

```
RP/0/RSP0/CPU0:router# admin
RP/0/RSP0/CPU0:router(admin)# show diagnostic schedule location 0/3/CPU0

Current Time - Tue Sep 27 12:41:24 2005
Diagnostic for LC 0/3/CPU0:

Schedule #1:
  To be run daily 14:40
  Test ID(s) to be executed: 1 .
```
Table 45: show diagnostic schedule Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Time</td>
<td>Current system time.</td>
</tr>
<tr>
<td>Diagnostic for</td>
<td>Card for which the diagnostic is scheduled.</td>
</tr>
<tr>
<td>Schedule</td>
<td>Schedule number.</td>
</tr>
<tr>
<td>To be run</td>
<td>Time at which the diagnostics are scheduled to run.</td>
</tr>
<tr>
<td>Test ID(s) to be executed</td>
<td>Tests to be run at scheduled time.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>diagnostic schedule, on page 392</code></td>
<td>Configures a diagnostic schedule.</td>
</tr>
</tbody>
</table>
show diagnostic status

To display the current running tests, use the `show diagnostic status` command in Admin EXEC mode.

show diagnostic status

Syntax Description
This command has no keywords or arguments.

Command Default
No default behavior or values

Command Modes
Admin EXEC mode

Command History
Release 3.7.2 This command was introduced.

Usage Guidelines
No specific guidelines impact the use of this command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>diag</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to display the current running tests:

```
RP/0/RSP0/CPU0:router(admin)# show diagnostic status
<BU> - Bootup Diagnostics, <HM> - Health Monitoring Diagnostics, <OD> - OnDemand Diagnostics, <SCHD> - Scheduled Diagnostics

Card Description Current Running Test Run by
------------------- ------------------------------- ------
RP 0/RSP0/CPU0 N/A N/A
------------------- ------------------------------- ------
RP 0/RSP1/CPU0 N/A N/A
------------------- ------------------------------- ------
A9K-8T/4-B 0/2/CPU0 N/A N/A
------------------- ------------------------------- ------
A9K-40GE-E 0/7/CPU0 N/A N/A
------------------- ------------------------------- ------
A9K-40GE-B 0/0/CPU0 N/A N/A
------------------- ------------------------------- ------
```
show diagnostic status
Test TCP Utility Commands

This module describes the Cisco IOS XR software commands to configure the Test TCP utility (TTCP) to measure TCP throughput through an IP path.

For detailed information about the TTCP utility see the Using Test TCP (TTCP) to Test Throughput module in the System Monitoring Configuration Guide for Cisco ASR 9000 Series Routers.

- `ttcp receive`, on page 414
- `ttcp transmit`, on page 416
ttcp receive

To start the TTCP utility on the host, running as a receiver use the ttcp receive source command in EXEC mode.

```
ttcp receive
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>align</td>
<td>(Optional) Aligns the start of buffers to this modulus. The default value is 16384.</td>
</tr>
<tr>
<td>buflen</td>
<td>(Optional) Indicates the length of buffers read from or written to the network. The default value is 8192.</td>
</tr>
<tr>
<td>debug</td>
<td>(Optional) Enable socket debug mode.</td>
</tr>
<tr>
<td>format</td>
<td>(Optional) Format for rate: k,K = kilo{bit,byte}; m,M = mega; g,G = giga.</td>
</tr>
<tr>
<td>fullblocks</td>
<td>(Optional) Displays the full blocks of output as specified by buflen.</td>
</tr>
<tr>
<td>host</td>
<td>(Optional) Host name or IP address.</td>
</tr>
<tr>
<td>multi</td>
<td>(Optional) Indicates the number of connections.</td>
</tr>
<tr>
<td>nofilter</td>
<td>(Optional) Indicates not to filter ICMP errors.</td>
</tr>
<tr>
<td>nonblock</td>
<td>(Optional) Indicates the use of non-blocking sockets.</td>
</tr>
<tr>
<td>offset</td>
<td>(Optional) Starts buffers at this offset from the modulus. The default value is 0.</td>
</tr>
<tr>
<td>password</td>
<td>(Optional) Indicates the MD5 password to be used for the TCP connection.</td>
</tr>
<tr>
<td>port</td>
<td>(Optional) Indicates the port number to send to or listen at. The default value is 5001.</td>
</tr>
<tr>
<td>sockbuf</td>
<td>(Optional) Indicates the socket buffer size.</td>
</tr>
<tr>
<td>source</td>
<td>(Optional) Source a pattern to or from the network.</td>
</tr>
<tr>
<td>timeout</td>
<td>(Optional) Stop listening after timeout seconds.</td>
</tr>
<tr>
<td>touch</td>
<td>(Optional) Access each byte as it is read.</td>
</tr>
<tr>
<td>transmit</td>
<td>(Optional) Indicates transmit mode.</td>
</tr>
<tr>
<td>udp</td>
<td>(Optional) Indicates to use UDP instead of TCP.</td>
</tr>
<tr>
<td>verbose</td>
<td>(Optional) Indicates that detailed statistics be printed.</td>
</tr>
<tr>
<td>vrfid</td>
<td>(Optional) Indicates the ID of the VRF to connect.</td>
</tr>
</tbody>
</table>

Command Default

No default behavior or values.

Command Modes

EXEC mode
TCP is a connection-oriented protocol, so you must have a receiver listening before a transmitter can connect. You must ensure that there is IP connectivity between the two devices involved in the test. First start up a TTCP receiver, and the transmitter. TTCP uses the time and the amount of data transferred, to calculate the throughput between the transmitter and the receiver.

TTCP utility results at receiver end

This section displays the results using the `ttcp receive source verbose` command.

```
RP/0/0/CPU0:ios#ttcp receive source verbose
Tue Feb 25 06:57:39.935 IST
ttcp-r: thread = 1, buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp
  ttcp-r: socket
  ttcp-r: accept from 5.1.1.3
  thread 0: read 1460 bytes
  thread 0: read 2920 bytes
  thread 0: read 4380 bytes
  thread 0: read 5840 bytes
  thread 0: read 7300 bytes
  thread 0: read 8192 bytes

  thread 1: recv 8192 bytes

TTCP: +++ all threads terminated +++
ttcp-r: 8192 bytes in 0.21 real useconds = 37.91 KB/sec +++
ttcp-r: 8192 bytes in 0.00 CPU seconds = 8000.00 KB/cpu sec
ttcp-r: 7 I/O calls, msec/call = 30.87, calls/sec = 33.17
ttcp-r:
RP/0/0/CPU0:ios#
```
ttcp transmit

To start the TTCP utility on the host running as a transmitter use the ttcp transmit source command in EXEC mode.

```ttcp transmit [{align][buflen][debug][format][host][multi][nbufs][nobuffering][nofilter][nonblock][offset][password][port][receive][sockbuf][source][timeout][touch][udp][verbose][vrfid}]
```

Syntax Description

- **align** (Optional) Aligns the start of buffers to this modulus. The default value is 16384.
- **buflen** (Optional) Indicates the length of buffers read from or written to the network. The default value is 8192.
- **debug** (Optional) Enable socket debug mode.
- **format** (Optional) Format for rate: k,K = kilo{bit,byte}; m,M = mega; g,G = giga.
- **host** (Mandatory) Host name or IP address.
- **multi** (Optional) Indicates the number of connections.
- **nbufs** (Optional) Indicates the number of source buffers written to the network. The default value is 2048.
- **nobuffering** (Optional) Indicates not to buffer TCP writes (sets TCP_NODELAY socket option).
- **nofilter** (Optional) Indicates not to filter ICMP errors.
- **nonblock** (Optional) Indicates the use of non-blocking sockets.
- **offset** (Optional) Starts buffers at this offset from the modulus. The default value is 0.
- **password** (Optional) Indicates the MD5 password to be used for the TCP connections.
- **port** (Optional) Indicates the port number to send to or listen at. The default value is 5001.
- **receive** (Optional) Indicates receive mode.
- **sockbuf** (Optional) Indicates the socket buffer size.
- **source** (Optional) Source a pattern to or from the network.
- **timeout** (Optional) Stop listening after timeout seconds.
- **udp** (Optional) Indicates to use UDP instead of TCP.
- **verbose** (Optional) Indicates that detailed statistics be printed.
- **vrfid** (Optional) Indicates the ID of the VRF to connect.

Command Default

No default behavior or values.
Command Modes

EXEC mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 5.2.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

To use TTCP, start a copy of TTCP in receive mode at one place within the network, then start a second copy in transmit mode at another place within the network. The results of the transfer of data from the transmitter to the receiver indicate the approximate performance of the path between the source and destination. By selecting the source and destination at various points with the network, you can analyze critical portions of the path. You must ensure that there is IP connectivity between the two devices involved in the test.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>tcp</td>
<td>Read</td>
</tr>
</tbody>
</table>

TTCP utility results at the transmitter end

This section displays the results using the `ttcp transmit source verbose` command.

```
RP/0/0/CPU0:ios#ttcp transmit source nbufs 1 verbose host 5.1.1.2
Tue Feb 25 06:57:47.904 IST
 ttcp-t: thread = 1, buflen=8192, nbuf=1, align=16384/0, port=5001 tcp -> 5.1.1.2
 ttcp-t: socket
 ttcp-t: connect
 thread 0: nsent 8192 bytes, has 0 buffers to send

 thread 1: send 8192 bytes

 TTCP: +++ all threads terminated +++
 ttcp-t: 8192 bytes in 0.00 real useconds = 6006.01 KB/sec +++
 ttcp-t: 8192 bytes in 0.00 CPU seconds = 8000.00 KB/cpu sec
 ttcp-t: 1 I/O calls, msec/call = 1.36, calls/sec = 750.75
 ttcp-t:
 RP/0/0/CPU0:ios#
```
ttcp transmit