THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.

Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1721R)

© 2016 Cisco Systems, Inc. All rights reserved.
CONTENTS

PREFACE

Preface xix
Communications, Services, and Additional Information xix

CHAPTER 1

New and Changed MPLS Features 1
New and Changed Feature Information in Cisco IOS XR Release 6.0.x 1

CHAPTER 2

Implementing MPLS Label Distribution Protocol 3
Prerequisites for Implementing Cisco MPLS LDP 4
Information About Implementing Cisco MPLS LDP 4
Overview of Label Distribution Protocol 4
Label Switched Paths 5
LDP Control Plane 5
Exchanging Label Bindings 5
LDP Forwarding 6
LDP Graceful Restart 7
Control Plane Failure 8
Phases in Graceful Restart 9
Recovery with Graceful-Restart 9
Label Advertisement Control (Outbound Filtering) 11
Label Acceptance Control (Inbound Filtering) 11
Local Label Allocation Control 11
Session Protection 12
IGP Synchronization 13
IGP Auto-configuration 13
LDP Nonstop Routing 14
IP LDP Fast Reroute Loop Free Alternate 14
Downstream on Demand 16
Explicit-Null and Implicit-Null Labels 16
MPLS over IRB 17
MPLS LDP Carrier Supporting Carrier for Multiple VRFs 17
 MPLS Carrier Supporting Carrier L3VPN: Introduction 18
 Benefits of MPLS LDP CSC 18
 Multiple VRF Support 19
 Restrictions and Recommendations 20
IPv6 Support in MPLS LDP 21
 LDP IPv6 Functionality 21
 Restrictions 24
 Features Supported in LDP IPv6 25
 Implicit IPv4 Disable 28
 IPv6 Label Bindings 28
 IPv6 Address Bindings 28
 Default Transport Address 29
 LDP Control Plane: Bindings Advertisement 29
 LSP Mapping 29
 Label Policies 29
 IS-IS 30
 Dual-Stack Capability TLV 30
 Compliance Check 31
How to Implement MPLS LDP 31
 Configuring LDP Discovery Parameters 31
 Configure Label Distribution Protocol Targeted Neighbor 33
 Configuration Example 33
 Running Configuration 33
 Configuring LDP Discovery Over a Link 34
 Configuring LDP Discovery for Active Targeted Hellos 36
 Configuring LDP Discovery for Passive Targeted Hellos 38
 Configuring Label Advertisement Control (Outbound Filtering) 40
 Setting Up LDP Neighbors 41
 Setting Up LDP Forwarding 44
 Configuring Global Transport Address 47
LSP Setup 128
High Availability 129
Graceful Restart 129
 Graceful Restart: Standard and Interface-Based 130
 Graceful Restart: Figure 130
ACL-based Prefix Filtering 132
RSVP MIB 132
 Bandwidth Reservation Percentage 132
Information About Implementing RSVP Authentication 133
 RSVP Authentication Functions 133
 RSVP Authentication Design 133
 Global, Interface, and Neighbor Authentication Modes 134
 Security Association 135
 Key-source Key-chain 136
 Guidelines for Window-Size and Out-of-Sequence Messages 137
 Caveats for Out-of-Sequence 137
How to Implement RSVP 137
 Configuring Traffic Engineering Tunnel Bandwidth 137
 Confirming DiffServ-TE Bandwidth 138
 Enabling Graceful Restart 139
 Configuring ACL-based Prefix Filtering 140
 Configuring ACLs for Prefix Filtering 140
 Configuring RSVP Packet Dropping 141
 Verifying RSVP Configuration 142
 Enabling RSVP Traps 145
How to Implement RSVP Authentication 146
 Configuring Global Configuration Mode RSVP Authentication 146
 Enabling RSVP Authentication Using the Keychain in Global Configuration Mode 146
 Configuring a Lifetime for RSVP Authentication in Global Configuration Mode 147
 Configuring the Window Size for RSVP Authentication in Global Configuration Mode 148
 Configuring an Interface for RSVP Authentication 148
 Specifying the RSVP Authentication Keychain in Interface Mode 148
 Configuring a Lifetime for an Interface for RSVP Authentication 149
 Configuring the Window Size for an Interface for RSVP Authentication 150
Configuring RSVP Neighbor Authentication 151

Specifying the Keychain for RSVP Neighbor Authentication 151

Configuring a Lifetime for RSVP Neighbor Authentication 152

Configuring the Window Size for RSVP Neighbor Authentication 153

Verifying the Details of the RSVP Authentication 154

Eliminating Security Associations for RSVP Authentication 154

Configuration Examples for RSVP 154

Bandwidth Configuration (Prestandard): Example 155

Bandwidth Configuration (MAM): Example 155

Bandwidth Configuration (RDM): Example 155

Refresh Reduction and Reliable Messaging Configuration: Examples 156

Refresh Interval and the Number of Refresh Messages Configuration: Example 156

Retransmit Time Used in Reliable Messaging Configuration: Example 156

Acknowledgement Times Configuration: Example 156

Summary Refresh Message Size Configuration: Example 156

Disable Refresh Reduction: Example 157

Configure Graceful Restart: Examples 157

Enable Graceful Restart: Example 157

Enable Interface-Based Graceful Restart: Example 157

Change the Restart-Time: Example 157

Change the Hello Interval: Example 157

Configure ACL-based Prefix Filtering: Example 158

Set DSCP for RSVP Packets: Example 158

Enable RSVP Traps: Example 158

Configuration Examples for RSVP Authentication 159

RSVP Authentication Global Configuration Mode: Example 159

RSVP Authentication for an Interface: Example 159

RSVP Neighbor Authentication: Example 160

RSVP Authentication by Using All the Modes: Example 160

Additional References 161

CHAPTER 5

Implementing MPLS Forwarding 163

Prerequisites for Implementing Cisco MPLS Forwarding 163

Restrictions for Implementing Cisco MPLS Forwarding 164
Information About Implementing MPLS Forwarding 164
 MPLS Forwarding Overview 164
 Label Switching Functions 164
 Distribution of Label Bindings 165
 MFI Control-Plane Services 165
 MFI Data-Plane Services 165
 MPLS Maximum Transmission Unit 166
 Label Security for BGP Inter-AS Option-B 166
How to Implement MPLS Forwarding 166
 Configuring MPLS Label Security 166
Additional References 167

CHAPTER 6
Implementing MPLS Traffic Engineering 169
 Prerequisites for Implementing Cisco MPLS Traffic Engineering 170
 Information About Implementing MPLS Traffic Engineering 171
 Overview of MPLS Traffic Engineering 171
 Benefits of MPLS Traffic Engineering 171
 How MPLS-TE Works 171
 MPLS Traffic Engineering 172
 Backup AutoTunnels 173
 Periodic Backup Promotion 176
 Protocol-Based CLI 176
 Differentiated Services Traffic Engineering 176
 Prestandard DS-TE Mode 177
 IETF DS-TE Mode 177
 Bandwidth Constraint Models 177
 TE Class Mapping 178
 Flooding 179
 Flooding Triggers 179
 Flooding Thresholds 179
 Fast Reroute 179
 MPLS-TE and Fast Reroute over Link Bundles 180
 Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE 180
 Flexible Name-based Tunnel Constraints 181
Contents

- MPLS Traffic Engineering Interarea Tunneling 182
 - Interarea Support 182
 - Multiarea Support 183
 - Loose Hop Expansion 183
 - Loose Hop Reoptimization 184
 - ABR Node Protection 184
 - Fast Reroute Node Protection 184
- Make-Before-Break 185
- MPLS-TE Forwarding Adjacency 185
 - MPLS-TE Forwarding Adjacency Benefits 185
 - MPLS-TE Forwarding Adjacency Restrictions 185
 - MPLS-TE Forwarding Adjacency Prerequisites 185
- Path Computation Element 186
- Policy-Based Tunnel Selection 187
 - Policy-Based Tunnel Selection 187
 - Policy-Based Tunnel Selection Functions 187
 - PBTS Restrictions 188
 - Set DF Bit 188
- Policy-Based Tunnel Selection for IPv6 188
- Service Path Preference for MPLS VPN Sessions 188
 - Features of Service Path Preference 189
 - Understanding How Service Path Preference Works 189
 - Configuring Service Path Preference 190
 - Sample Routing Policies to Configure Service Path Preference 191
- Path Protection 193
 - Pre-requisites for Path Protection 194
 - Restrictions for Path Protection 195
 - Restrictions for Explicit Path Protection 195
- Co-existence of Path Protection with Fast Reroute 196
- MPLS-TE Automatic Bandwidth 196
 - MPLS-TE Automatic Bandwidth Overview 196
 - Adjustment Threshold 197
 - Overflow Detection 198
 - Underflow Detection 198
Fast Repair 219
Optional Vendor Specific PCEP Extension 219
Automatic Bandwidth Support for Delegated Tunnels 219
New Style Affinities 220
Binding Segment-ID 220
MPLS TE Usability Enhancements 221
MPLS TE IPv6 Autoroute 221
MPLS TE IPv6 Autoroute Restrictions 221
MPLS TE Path Cost Limit 221
Soft-preemption over FRR Backup Tunnels 222
MPLS TE Auto-tunnel Mesh One-hop 223
Inter-area Traffic Engineering with Dynamic ABR Discovery 223
How to Implement Traffic Engineering 223
Building MPLS-TE Topology 223
Creating an MPLS-TE Tunnel 225
Configuring Forwarding over the MPLS-TE Tunnel 227
Protecting MPLS Tunnels with Fast Reroute 229
Enabling an AutoTunnel Backup 233
Removing an AutoTunnel Backup 234
Establishing MPLS Backup AutoTunnels to Protect Fast Reroutable TE LSPs 234
Establishing Next-Hop Tunnels with Link Protection 235
Configuring a Prestandard DS-TE Tunnel 237
Configuring an IETF DS-TE Tunnel Using RDM 238
Configuring an IETF DS-TE Tunnel Using MAM 240
Configuring MPLS -TE and Fast-Reroute on OSPF 243
Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE 244
Configuring Flexible Name-based Tunnel Constraints 245
Assigning Color Names to Numeric Values 245
Associating Affinity-Names with TE Links 246
Associating Affinity Constraints for TE Tunnels 247
Configuring IS-IS to Flood MPLS-TE Link Information 248
Configuring an OSPF Area of MPLS-TE 249
Configuring Explicit Paths with ABRs Configured as Loose Addresses 250
Configuring MPLS-TE Forwarding Adjacency 251
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuring a Path Computation Client and Element</td>
<td>252</td>
</tr>
<tr>
<td>Configuring a Path Computation Client</td>
<td>252</td>
</tr>
<tr>
<td>Configuring a Path Computation Element Address</td>
<td>253</td>
</tr>
<tr>
<td>Configuring PCE Parameters</td>
<td>253</td>
</tr>
<tr>
<td>Configuring Fast Repair</td>
<td>256</td>
</tr>
<tr>
<td>Enabling PCEP Cisco Extension</td>
<td>257</td>
</tr>
<tr>
<td>Configuring Forwarding Path</td>
<td>258</td>
</tr>
<tr>
<td>Configuring Path Protection on MPLS-TE</td>
<td>258</td>
</tr>
<tr>
<td>Enabling Path Protection for an Interface</td>
<td>258</td>
</tr>
<tr>
<td>Assigning a Dynamic Path Option to a Tunnel</td>
<td>259</td>
</tr>
<tr>
<td>Forcing a Manual Switchover on a Path-Protected Tunnel</td>
<td>260</td>
</tr>
<tr>
<td>Configuring the Delay the Tunnel Takes Before Reoptimization</td>
<td>261</td>
</tr>
<tr>
<td>Configuring the Automatic Bandwidth</td>
<td>262</td>
</tr>
<tr>
<td>Configuring the Collection Frequency</td>
<td>262</td>
</tr>
<tr>
<td>Forcing the Current Application Period to Expire Immediately</td>
<td>263</td>
</tr>
<tr>
<td>Configuring the Automatic Bandwidth Functions</td>
<td>264</td>
</tr>
<tr>
<td>Configuring the Shared Risk Link Groups</td>
<td>266</td>
</tr>
<tr>
<td>Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link</td>
<td>266</td>
</tr>
<tr>
<td>Creating an Explicit Path With Exclude SRLG</td>
<td>267</td>
</tr>
<tr>
<td>Using Explicit Path With Exclude SRLG</td>
<td>268</td>
</tr>
<tr>
<td>Creating a Link Protection on Backup Tunnel with SRLG Constraint</td>
<td>271</td>
</tr>
<tr>
<td>Creating a Node Protection on Backup Tunnel with SRLG Constraint</td>
<td>273</td>
</tr>
<tr>
<td>Configuring Default Admin Weight</td>
<td>276</td>
</tr>
<tr>
<td>Configuring Static SRLG Value to Topology Link</td>
<td>276</td>
</tr>
<tr>
<td>Configuring Admin-Weight Associated with an SRLG Value</td>
<td>277</td>
</tr>
<tr>
<td>Configuring Point-to-Multipoint TE</td>
<td>278</td>
</tr>
<tr>
<td>Enabling Multicast Routing on the Router</td>
<td>278</td>
</tr>
<tr>
<td>Configuring the Static Group for the Point-to-Multipoint Interface</td>
<td>280</td>
</tr>
<tr>
<td>Configuring Destinations for the Tunnel Interface</td>
<td>281</td>
</tr>
<tr>
<td>Disabling Destinations</td>
<td>284</td>
</tr>
<tr>
<td>Logging Per Destinations for Point-to-Multipoint</td>
<td>285</td>
</tr>
<tr>
<td>Enabling Soft-Preemption on a Node</td>
<td>287</td>
</tr>
<tr>
<td>Enabling Soft-Preemption on a Tunnel</td>
<td>288</td>
</tr>
<tr>
<td>Configuring Attributes within a Path-Option Attribute</td>
<td>289</td>
</tr>
</tbody>
</table>
Configuring Auto-Tunnel Mesh Tunnel ID 290
Configuring Auto-tunnel Mesh Unused Timeout 291
Configuring Auto-Tunnel Mesh Group 292
Configuring Tunnel Attribute-Set Templates 294
Enabling LDP on Auto-Tunnel Mesh 295
Enabling Stateful PCE Client 296
Configuring VRF Redirection 297
Configuring IPv6 Routing Over IPv4 MPLS-TE Tunnels 298
Using ePBR for MPLS Packets on Subscriber Interfaces 300
 Use Case: Using ePBR for MPLS Packets on Subscriber Interfaces 300
Configuring ePBR-Based MPLS Redirection 301
Multi Nexthop Tracking 303
 Configuring Multi Nexthop Tracking for IPv4 303
 Configuring Multi Nexthop Tracking for IPv6 304
 Verifying Multi Nexthop Tracking Configuration 306
Configuring Path-selection Cost Limit 306
 Configuring Global Path-selection Cost Limit on MPLS TE Tunnels 306
 Configuring Path-selection Cost Limit per TE Tunnel 307
 Configuring Path-selection Cost Limit per Path-option Attribute-set 307
Enabling Soft-preemption over FRR Backup Tunnels 308
Enabling Auto-onehop Tunnels to Next-hop Neighbors 309
Implementing Associated Bidirectional Label Switched Paths 310
 Signaling Methods and Object Association for Bidirectional LSPs 310
 Associated Bidirectional Non-Co-routed and Co-routed LSPs 311
 Configure Associated Bidirectional Co-routed LSPs 313
Path Protection 315
 OAM Support for Associated Bidirectional LSPs 317
Pseudowire Call Admission Control 319
Configuration Examples for Cisco MPLS-TE 319
 Build MPLS-TE Topology and Tunnels: Example 319
 Configure IETF DS-TE Tunnels: Example 320
 Configure MPLS-TE and Fast-Reroute on OSPF: Example 321
 Configure the Ignore IS-IS Overload Bit Setting in MPLS-TE: Example 321
 Configure Flexible Name-based Tunnel Constraints: Example 322
CHAPTER 7

Implementing GMPLS UNI

Prerequisites for Implementing GMPLS UNI
Restrictions for Implementing GMPLS UNI
Information About Implementing GMPLS UNI

GMPLS UNI vs GMPLS NNI
GMPLS LSP Signaling
 Path Message without an ERO
 XRO Attribute-set
 Connection Diversity
 DWDM Transponder Integration
nLight Enhancements
Explicit Route Object
Wavelength Specification
Multiple Path Options 353
Reoptimization 353
 Manual Reoptimization 353
SRLG Discovery 353
 Provision of Discovered SRLGs to RSI 354
SRLG Announce 354
SRLG Diversity 355
 Head UNI-C Behavior 355
 Tail UNI-C Behavior 355
Multi-Layer Restoration - Optical 355
 Optical Restoration: Same Wavelength 355
 Optical Restoration: Wavelength Change 356
How to Implement GMPLS UNI 356
 Configuring TE for GMPLS UNI 356
 Enabling GMPLS UNI Submode 356
 Configuring GMPLS UNI Controller 357
 Configuring the GMPLS UNI Controller as a Tunnel Head 358
 Configuring Other Tunnel Properties for a GMPLS UNI Tunnel 359
 Configuring LSP Diversity 361
 Configuring LMP for GMPLS UNI 363
 Configuring Optical Router ID 363
 Configuring an LMP Neighbor 364
 Configuring an LMP Controller 365
 Configuring RSVP Optical Refresh Interval and Missed Count 366
nLight Enhancements: Configurations and Verifications 367
 Configuring an ERO for a GMPLS Tunnel 367
 Verifying an ERO Configuration: Example 369
 Configuring Wavelength for a Path Option 370
 Configuring and Verifying Wavelength Configuration: Examples 371
 Configuring Multiple Path Options 374
 Configuring and Verifying Multiple Path Options: Examples 377
 Enabling SRLG Discovery 378
 Verifying SRLG Discovery Configuration: Examples 380
 Enabling SRLG Announce 381
Preface

From Release 6.1.2 onwards, Cisco introduces support for the 64-bit Linux-based IOS XR operating system. Extensive feature parity is maintained between the 32-bit and 64-bit environments. Unless explicitly marked otherwise, the contents of this document are applicable for both the environments. For more details on Cisco IOS XR 64 bit, refer to the Release Notes for Cisco ASR 9000 Series Routers, Release 6.1.2 document.

The preface contains these sections:

- Communications, Services, and Additional Information, on page xix

Communications, Services, and Additional Information

- To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.
- To get the business impact you’re looking for with the technologies that matter, visit Cisco Services.
- To submit a service request, visit Cisco Support.
- To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco Marketplace.
- To obtain general networking, training, and certification titles, visit Cisco Press.
- To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products and software. BST provides you with detailed defect information about your products and software.
New and Changed MPLS Features

This table summarizes the new and changed feature information for the *Cisco ASR 9000 Series Aggregation Services Router MPLS Configuration Guide* and tells you where they are documented.

- New and Changed Feature Information in Cisco IOS XR Release 6.0.x, on page 1

New and Changed Feature Information in Cisco IOS XR Release 6.0.x

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual-Stack Capability TLV</td>
<td>This feature was introduced.</td>
<td>Release 6.0.1</td>
<td>Implementing MPLS Label Distribution Protocol chapter: Dual-Stack Capability TLV, on page 30</td>
</tr>
<tr>
<td>nLight Enhancements</td>
<td>nLight enhancements were introduced.</td>
<td>Release 6.0.1</td>
<td>Implementing GMPLS UNI chapter: nLight Enhancements, on page 352</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Changed in Release</td>
<td>Where Documented</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------------------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Service Path Preference</td>
<td>This feature is introduced.</td>
<td>Release 6.0.1</td>
<td>Implementing Service Path Preference</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Service Path Preference for MPLS VPN Sessions, on page 188</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refer MPLS Traffic Engineering Commands chapter in Cisco ASR 9000 Series Aggregation Services Router MPLS Command Reference, for information on the commands used for MPLS Traffic Engineering.</td>
</tr>
<tr>
<td>Label Security for BGP Inter-AS Option-B</td>
<td>This feature was introduced</td>
<td>Release 6.0.1</td>
<td>Implementing MPLS forwarding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Label Security for BGP Inter-AS Option-B, on page 166</td>
</tr>
<tr>
<td>Point-to-Multipoint Implicit Null</td>
<td>This feature was introduced.</td>
<td>Release 6.0.1</td>
<td>Implementing MPLS Traffic Engineering chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Point-to-Multipoint Implicit Null, on page 203</td>
</tr>
</tbody>
</table>
Implementing MPLS Label Distribution Protocol

The Multiprotocol Label Switching (MPLS) is a standards-based solution driven by the Internet Engineering Task Force (IETF) that was devised to convert the Internet and IP backbones from best-effort networks into business-class transport mediums.

MPLS, with its label switching capabilities, eliminates the need for an IP route look-up and creates a virtual circuit (VC) switching function, allowing enterprises the same performance on their IP-based network services as with those delivered over traditional networks such as Frame Relay or ATM.

Label Distribution Protocol (LDP) performs label distribution in MPLS environments. LDP provides the following capabilities:

• LDP performs hop-by-hop or dynamic path setup; it does not provide end-to-end switching services.
• LDP assigns labels to routes using the underlying Interior Gateway Protocols (IGP) routing protocols.
• LDP provides constraint-based routing using LDP extensions for traffic engineering.

Finally, LDP is deployed in the core of the network and is one of the key protocols used in MPLS-based Layer 2 and Layer 3 virtual private networks (VPNs).

Feature History for Implementing MPLS LDP

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>No modification.</td>
</tr>
<tr>
<td>Release 4.0.1</td>
<td>Support was added for these features:</td>
</tr>
<tr>
<td>Release 4.2.1</td>
<td>Support was added for LDP Implicit Null for IGP Routes.</td>
</tr>
<tr>
<td>Release 5.1</td>
<td>Support was added for MPLS over IRB.</td>
</tr>
<tr>
<td>Release 5.1.1</td>
<td>The feature MPLS LDP Carrier Supporting Carrier for Multiple VRFs was introduced.</td>
</tr>
<tr>
<td>Release 5.3.0</td>
<td>IPv6 Support in MPLS LDP was introduced.</td>
</tr>
</tbody>
</table>
Prerequisites for Implementing Cisco MPLS LDP

These prerequisites are required to implement MPLS LDP:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- You must be running Cisco IOS XR software.
- You must install a composite mini-image and the MPLS package.
- You must activate IGP.
- We recommend to use a lower session holdtime bandwidth such as neighbors so that a session down occurs before an adjacency-down on a neighbor. Therefore, the following default values for the hello times are listed:
 - Holdtime is 15 seconds.
 - Interval is 5 seconds.

For example, the LDP session holdtime can be configured as 30 seconds by using the `holdtime` command.

Information About Implementing Cisco MPLS LDP

To implement MPLS LDP, you should understand these concepts:

Overview of Label Distribution Protocol

LDP performs label distribution in MPLS environments. LDP uses hop-by-hop or dynamic path setup, but does not provide end-to-end switching services. Labels are assigned to routes that are chosen by the underlying IGP routing protocols. The Label Switched Paths (LSPs) that result from the routes, forward labeled traffic across the MPLS backbone to adjacent nodes.
Label Switched Paths

LSPs are created in the network through MPLS. They can be created statically, by RSVP traffic engineering (TE), or by LDP. LSPs created by LDP perform hop-by-hop path setup instead of an end-to-end path.

LDP Control Plane

The control plane enables label switched routers (LSRs) to discover their potential peer routers and to establish LDP sessions with those peers to exchange label binding information.

Related Topics

- Configuring LDP Discovery Parameters, on page 31
- Configuring LDP Discovery Over a Link, on page 34
- Configuring LDP Link: Example, on page 87
- Configuring LDP Discovery for Active Targeted Hellos, on page 36
- Configuring LDP Discovery for Passive Targeted Hellos, on page 38
- Configuring LDP Discovery for Targeted Hellos: Example, on page 87

Exchanging Label Bindings

LDP creates LSPs to perform the hop-by-hop path setup so that MPLS packets can be transferred between the nodes on the MPLS network.

Figure 1: Setting Up Label Switched Paths

This figure illustrates the process of label binding exchange for setting up LSPs.

For a given network (10.0.0.0), hop-by-hop LSPs are set up between each of the adjacent routers (or, nodes) and each node allocates a local label and passes it to its neighbor as a binding:

1. R4 allocates local label L4 for prefix 10.0.0.0 and advertises it to its neighbors (R3).
2. R3 allocates local label L3 for prefix 10.0.0.0 and advertises it to its neighbors (R1, R2, R4).
3. R1 allocates local label L1 for prefix 10.0.0.0 and advertises it to its neighbors (R2, R3).
4. R2 allocates local label L2 for prefix 10.0.0.0 and advertises it to its neighbors (R1, R3).
5. R1’s label information base (LIB) keeps local and remote labels bindings from its neighbors.
6. R2’s LIB keeps local and remote labels bindings from its neighbors.
7. R3’s LIB keeps local and remote labels bindings from its neighbors.
8. R4’s LIB keeps local and remote labels bindings from its neighbors.

Related Topics
 Setting Up LDP Neighbors, on page 41
 Configuring LDP Neighbors: Example, on page 89

LDP Forwarding

Once label bindings are learned, the LDP control plane is ready to setup the MPLS forwarding plane as shown in the following figure.

Figure 2: Forwarding Setup

Once label bindings are learned, the LDP control plane is ready to setup the MPLS forwarding plane as shown in this figure.

1. Because R3 is next hop for 10.0.0.0 as notified by the FIB, R1 selects label binding from R3 and installs forwarding entry (Layer 1, Layer 3).
2. Because R3 is next hop for 10.0.0.0 (as notified by FIB), R2 selects label binding from R3 and installs forwarding entry (Layer 2, Layer 3).
3. Because R4 is next hop for 10.0.0.0 (as notified by FIB), R3 selects label binding from R4 and installs forwarding entry (Layer 3, Layer 4).
4. Because next hop for 10.0.0.0 (as notified by FIB) is beyond R4, R4 uses NO-LABEL as the outbound and installs the forwarding entry (Layer 4); the outbound packet is forwarded IP-only.
5. Incoming IP traffic on ingress LSR R1 gets label-imposed and is forwarded as an MPLS packet with label L3.
6. Incoming IP traffic on ingress LSR R2 gets label-imposed and is forwarded as an MPLS packet with label L3.

7. R3 receives an MPLS packet with label L3, looks up in the MPLS label forwarding table and switches this packet as an MPLS packet with label L4.

8. R4 receives an MPLS packet with label L4, looks up in the MPLS label forwarding table and finds that it should be Unlabeled, pops the top label, and passes it to the IP forwarding plane.

9. IP forwarding takes over and forwards the packet onward.

Note
For local labels, only up to 12000 rewrites are supported. If the rewrites exceed this limit, MPLS LSD or MPLS LDP or both the processes may crash.

Related Topics
- Setting Up LDP Forwarding, on page 44
- Configuring LDP Forwarding: Example, on page 89

LDP Graceful Restart

LDP (Label Distribution Protocol) graceful restart provides a control plane mechanism to ensure high availability and allows detection and recovery from failure conditions while preserving Nonstop Forwarding (NSF) services. Graceful restart is a way to recover from signaling and control plane failures without impacting forwarding.

Without LDP graceful restart, when an established session fails, the corresponding forwarding states are cleaned immediately from the restarting and peer nodes. In this case LDP forwarding restarts from the beginning, causing a potential loss of data and connectivity.

The LDP graceful restart capability is negotiated between two peers during session initialization time, in FT SESSION TLV. In this typed length value (TLV), each peer advertises the following information to its peers:

Reconnect time
Advertises the maximum time that other peer will wait for this LSR to reconnect after control channel failure.

Recovery time
Advertises the maximum time that the other peer has on its side to reinstates or refresh its states with this LSR. This time is used only during session reestablishment after earlier session failure.

FT flag
Specifies whether a restart could restore the preserved (local) node state for this flag.

Once the graceful restart session parameters are conveyed and the session is up and running, graceful restart procedures are activated.

When configuring the LDP graceful restart process in a network with multiple links, targeted LDP hello adjacencies with the same neighbor, or both, make sure that graceful restart is activated on the session before any hello adjacency times out in case of neighbor control plane failures. One way of achieving this is by configuring a lower session hold time between neighbors such that session timeout occurs before hello adjacency timeout. It is recommended to set LDP session hold time using the following formula:
Session Holdtime <= (Hello holdtime - Hello interval) * 3

This means that for default values of 15 seconds and 5 seconds for link Hello holdtime and interval respectively, session hold time should be set to 30 seconds at most.

For more information about LDP commands, see *MPLS Label Distribution Protocol Commands* module of the *MPLS Command Reference for Cisco ASR 9000 Series Routers*.

Related Topics
- Phases in Graceful Restart, on page 9
- Recovery with Graceful-Restart, on page 9
- Setting Up LDP NSF Using Graceful Restart, on page 48
- Configuring LDP Nonstop Forwarding with Graceful Restart: Example, on page 89

Control Plane Failure

When a control plane failure occurs, connectivity can be affected. The forwarding states installed by the router control planes are lost, and the in-transit packets could be dropped, thus breaking NSF.

Figure 3: Control Plane Failure

This figure illustrates a control plane failure and shows the process and results of a control plane failure leading to loss of connectivity.

1. The R4 LSR control plane restarts.
2. LIB is lost when the control plane restarts.
3. The forwarding states installed by the R4 LDP control plane are immediately deleted.
4. Any in-transit packets flowing from R3 to R4 (still labeled with L4) arrive at R4.
5. The MPLS forwarding plane at R4 performs a lookup on local label L4 which fails. Because of this failure, the packet is dropped and NSF is not met.

6. The R3 LDP peer detects the failure of the control plane channel and deletes its label bindings from R4.

7. The R3 control plane stops using outgoing labels from R4 and deletes the corresponding forwarding state (rewrites), which in turn causes forwarding disruption.

8. The established LSPs connected to R4 are terminated at R3, resulting in broken end-to-end LSPs from R1 to R4.

9. The established LSPs connected to R4 are terminated at R3, resulting in broken LSPs end-to-end from R2 to R4.

Phases in Graceful Restart

The graceful restart mechanism is divided into different phases:

Control communication failure detection

Control communication failure is detected when the system detects either:

- Missed LDP hello discovery messages
- Missed LDP keepalive protocol messages
- Detection of Transmission Control Protocol (TCP) disconnection a with a peer

Forwarding state maintenance during failure

Persistent forwarding states at each LSR are achieved through persistent storage (checkpoint) by the LDP control plane. While the control plane is in the process of recovering, the forwarding plane keeps the forwarding states, but marks them as stale. Similarly, the peer control plane also keeps (and marks as stale) the installed forwarding rewrites associated with the node that is restarting. The combination of local node forwarding and remote node forwarding plane states ensures NSF and no disruption in the traffic.

Control state recovery

Recovery occurs when the session is reestablished and label bindings are exchanged again. This process allows the peer nodes to synchronize and to refresh stale forwarding states.

Related Topics

- [LDP Graceful Restart](#), on page 7
- [Recovery with Graceful-Restart](#), on page 9
- [Setting Up LDP NSF Using Graceful Restart](#), on page 48
- [Configuring LDP Nonstop Forwarding with Graceful Restart: Example](#), on page 89

Recovery with Graceful-Restart

Figure 4: Recovering with Graceful Restart

This figure illustrates the process of failure recovery using graceful restart.
1. The router R4 LSR control plane restarts.

2. With the control plane restart, LIB is gone but forwarding states installed by R4’s LDP control plane are not immediately deleted but are marked as stale.

3. Any in-transit packets from R3 to R4 (still labeled with L4) arrive at R4.

4. The MPLS forwarding plane at R4 performs a successful lookup for the local label L4 as forwarding is still intact. The packet is forwarded accordingly.

5. The router R3 LDP peer detects the failure of the control plane and channel and deletes the label bindings from R4. The peer, however, does not delete the corresponding forwarding states but marks them as stale.

6. At this point there are no forwarding disruptions.

7. The peer also starts the neighbor reconnect timer using the reconnect time value.

8. The established LSPs going toward the router R4 are still intact, and there are no broken LSPs.

When the LDP control plane recovers, the restarting LSR starts its forwarding state hold timer and restores its forwarding state from the checkpointed data. This action reinstates the forwarding state and entries and marks them as old.

The restarting LSR reconnects to its peer, indicated in the FT Session TLV, that it either was or was not able to restore its state successfully. If it was able to restore the state, the bindings are resynchronized.

The peer LSR stops the neighbor reconnect timer (started by the restarting LSR), when the restarting peer connects and starts the neighbor recovery timer. The peer LSR checks the FT Session TLV if the restarting peer was able to restore its state successfully. It reinstates the corresponding forwarding state entries and receives binding from the restarting peer. When the recovery timer expires, any forwarding state that is still marked as stale is deleted.
If the restarting LSR fails to recover (restart), the restarting LSR forwarding state and entries will eventually timeout and is deleted, while neighbor-related forwarding states or entries are removed by the Peer LSR on expiration of the reconnect or recovery timers.

Related Topics
- LDP Graceful Restart, on page 7
- Phases in Graceful Restart, on page 9
- Setting Up LDP NSF Using Graceful Restart, on page 48
- Configuring LDP Nonstop Forwarding with Graceful Restart: Example, on page 89

Label Advertisement Control (Outbound Filtering)

By default, LDP advertises labels for all the prefixes to all its neighbors. When this is not desirable (for scalability and security reasons), you can configure LDP to perform outbound filtering for local label advertisement for one or more prefixes to one more peers. This feature is known as *LDP outbound label filtering*, or *local label advertisement control*.

Related Topics
- Configuring Label Advertisement Control (Outbound Filtering), on page 40
- Configuring Label Advertisement (Outbound Filtering): Example, on page 88

Label Acceptance Control (Inbound Filtering)

By default, LDP accepts labels (as remote bindings) for all prefixes from all peers. LDP operates in liberal label retention mode, which instructs LDP to keep remote bindings from all peers for a given prefix. For security reasons, or to conserve memory, you can override this behavior by configuring label binding acceptance for set of prefixes from a given peer.

The ability to filter remote bindings for a defined set of prefixes is also referred to as *LDP inbound label filtering*.

Note

Inbound filtering can also be implemented using an outbound filtering policy; however, you may not be able to implement this system if an LDP peer resides under a different administration domain. When both inbound and outbound filtering options are available, we recommend that you use outbound label filtering.

Related Topics
- Configuring Label Acceptance Control (Inbound Filtering), on page 51
- Configuring Label Acceptance (Inbound Filtering): Example, on page 90

Local Label Allocation Control

By default, LDP allocates local labels for all prefixes that are not Border Gateway Protocol (BGP) prefixes. This is acceptable when LDP is used for applications other than Layer 3 virtual private networks (L3VPN) core transport. When LDP is used to set up transport LSPs for L3VPN traffic in the core, it is not efficient or even necessary to allocate and advertise local labels for, potentially, thousands of IGP prefixes. In such a case, LDP is typically required to allocate and advertise local label for loopback/32 addresses for PE routers. This

1. For L3VPN Inter-AS option C, LDP may also be required to assign local labels for some BGP prefixes.
is accomplished using LDP local label allocation control, where an access list can be used to limit allocation of local labels to a set of prefixes. Limiting local label allocation provides several benefits, including reduced memory usage requirements, fewer local forwarding updates, and fewer network and peer updates.

Tip
You can configure label allocation using an IP access list to specify a set of prefixes that local labels can allocate and advertise.

Related Topics
Configuring Local Label Allocation Control, on page 52
Configuring Local Label Allocation Control: Example, on page 90

Session Protection

When a link comes up, IP converges earlier and much faster than MPLS LDP and may result in MPLS traffic loss until MPLS convergence. If a link flaps, the LDP session will also flap due to loss of link discovery. LDP session protection minimizes traffic loss, provides faster convergence, and protects existing LDP (link) sessions by means of “parallel” source of targeted discovery hello. An LDP session is kept alive and neighbor label bindings are maintained when links are down. Upon reestablishment of primary link adjacencies, MPLS convergence is expedited as LDP need not relearn the neighbor label bindings.

LDP session protection lets you configure LDP to automatically protect sessions with all or a given set of peers (as specified by peer-acl). When configured, LDP initiates backup targeted hellos automatically for neighbors for which primary link adjacencies already exist. These backup targeted hellos maintain LDP sessions when primary link adjacencies go down.

The Session Protection figure illustrates LDP session protection between neighbors R1 and R3. The primary link adjacency between R1 and R3 is directly connected link and the backup; targeted adjacency is maintained between R1 and R3. If the direct link fails, LDP link adjacency is destroyed, but the session is kept up and running using targeted hello adjacency (through R2). When the direct link comes back up, there is no change in the LDP session state and LDP can converge quickly and begin forwarding MPLS traffic.

Figure 5: Session Protection

Note
When LDP session protection is activated (upon link failure), protection is maintained for an unlimited period time.
IGP Synchronization

Lack of synchronization between LDP and IGP can cause MPLS traffic loss. Upon link up, for example, IGP can advertise and use a link before LDP convergence has occurred; or, a link may continue to be used in IGP after an LDP session goes down.

LDP IGP synchronization synchronizes LDP and IGP so that IGP advertises links with regular metrics only when MPLS LDP is converged on that link. LDP considers a link converged when at least one LDP session is up and running on the link for which LDP has sent its applicable label bindings and received at least one label binding from the peer. LDP communicates this information to IGP upon link up or session down events and IGP acts accordingly, depending on sync state.

In the event of an LDP graceful restart session disconnect, a session is treated as converged as long as the graceful restart neighbor is timed out. Additionally, upon local LDP restart, a checkpointed recovered LDP graceful restart session is used and treated as converged and is given an opportunity to connect and resynchronize.

Under certain circumstances, it might be required to delay declaration of resynchronization to a configurable interval. LDP provides a configuration option to delay declaring synchronization up for up to 60 seconds. LDP communicates this information to IGP upon linkup or session down events.

Note

The configuration for LDP IGP synchronization resides in respective IGPs (OSPF and IS-IS) and there is no LDP-specific configuration for enabling of this feature. However, there is a specific LDP configuration for IGP sync delay timer.

IGP Auto-configuration

To enable LDP on a large number of interfaces, IGP auto-configuration lets you automatically configure LDP on all interfaces associated with a specified IGP interface; for example, when LDP is used for transport in the core network. However, there needs to be one IGP set up to enable LDP auto-configuration.

Typically, LDP assigns and advertises labels for IGP routes and must often be enabled on all active interfaces by an IGP. Without IGP auto-configuration, you must define the set of interfaces under LDP, a procedure that is time-intensive and error-prone.

Note

LDP auto-configuration is supported for IPv4 unicast family in the default VRF. The IGP is responsible for verifying and applying the configuration.
You can also disable auto-configuration on a per-interface basis. This permits LDP to enable all IGP interfaces except those that are explicitly disabled and prevents LDP from enabling an interface when LDP auto-configuration is configured under IGP.

Related Topics
- Enabling LDP Auto-Configuration for a Specified OSPF Instance, on page 58
- Enabling LDP Auto-Configuration in an Area for a Specified OSPF Instance, on page 59
- Disabling LDP Auto-Configuration, on page 61
- Configuring LDP Auto-Configuration: Example, on page 91

LDP Nonstop Routing

LDP nonstop routing (NSR) functionality makes failures, such as Route Processor (RP) or Distributed Route Processor (DRP) failover, invisible to routing peers with minimal to no disruption of convergence performance. By default, NSR is globally enabled on all LDP sessions except AToM.

A disruption in service may include any of these events:
- Route processor (RP) or distributed route processor (DRP) failover
- LDP process restart
- In-service system upgrade (ISSU)
- Minimum disruption restart (MDR)

Note

Unlike graceful restart functionality, LDP NSR does not require protocol extensions and does not force software upgrades on other routers in the network, nor does LDP NSR require peer routers to support NSR.

Process failures of active TCP or LDP results in session loss and, as a result, NSR cannot be provided unless RP switchover is configured as a recovery action. For more information about how to configure switchover as a recovery action for NSR, see Configuring Transports module in IP Addresses and Services Configuration Guide for Cisco ASR 9000 Series Routers.

Related Topics
- Configuring LDP Nonstop Routing, on page 61

IP LDP Fast Reroute Loop Free Alternate

The IP Fast Reroute is a mechanism that enables a router to rapidly switch traffic, after an adjacent link failure, node failure, or both, towards a pre-programmed loop-free alternative (LFA) path. This LFA path is used to switch traffic until the router installs a new primary next hop again, as computed for the changed network topology.

The goal of LFA FRR is to reduce failure reaction time to 50 milliseconds by using a pre-computed alternate next hop, in the event that the currently selected primary next hop fails, so that the alternate can be rapidly used when the failure is detected.

This feature targets to address the fast convergence ability by detecting, computing, updating or enabling prefix independent pre-computed alternate loop-free paths at the time of failure.
IGP pre-computes a backup path per IGP prefix. IGP selects one and only one backup path per primary path. RIB installs the best path and download path protection information to FIB by providing correct annotation for protected and protecting paths. FIB pre-installs the backup path in dataplane. Upon the link or node failure, the routing protocol detects the failure, all the backup paths of the impacted prefixes are enabled in a prefix-independent manner.

Prerequisites

The Label Distribution Protocol (LDP) can use the loop-free alternates as long as these prerequisites are met:

The Label Switching Router (LSR) running LDP must distribute its labels for the Forwarding Equivalence Classes (FECs) it can provide to all its neighbors, regardless of whether they are upstream, or not.

There are two approaches in computing LFAs:

- **Link-based (per-link)**—In link-based LFAs, all prefixes reachable through the primary (protected) link share the same backup information. This means that the whole set of prefixes, sharing the same primary, also share the repair or fast reroute (FRR) ability. The per-link approach protects only the next hop address. The per-link approach is suboptimal and not the best for capacity planning. This is because all traffic is redirected to the next hop instead of being spread over multiple paths, which may lead to potential congestion on link to the next hop. The per-link approach does not provide support for node protection.

- **Prefix-based (per-prefix)**—Prefix-based LFAs allow computing backup information per prefix. It protects the destination address. The per-prefix approach is the preferred approach due to its greater applicability, and the greater protection and better bandwidth utilization that it offers.

 Note

 The repair or backup information computed for a given prefix using prefix-based LFA may be different from the computed by link-based LFA.

The per-prefix LFA approach is preferred for LDP IP Fast Reroute LFA for these reasons:

- Better node failure resistance
- Better capacity planning and coverage

Features Not Supported

These interfaces and features are not supported for the IP LDP Fast Reroute Loop Free Alternate feature:

- BVI interface (IRB) is not supported either as primary or backup path.
- GRE tunnel is not supported either as primary or backup path.
- Cisco ASR 9000 Series SPA Interface Processor-700 POS line card on Cisco ASR 9000 Series Router is not supported as primary link. It can be used as LFA backup only on main interface.
- In a multi-topology scenerio, the route in topology T can only use LFA within topology T. Hence, the availability of a backup path depends on the topology.

For more information about configuring the IP Fast Reroute Loop-free alternate, see Implementing IS-IS on Cisco IOS XR Software module of the *Routing Configuration Guide for Cisco ASR 9000 Series Routers*.

Related Topics

Configure IP LDP Fast Reroute Loop Free Alternate: Examples, on page 92
Downstream on Demand

This Downstream on demand feature adds support for downstream-on-demand mode, where the label is not advertised to a peer, unless the peer explicitly requests it. At the same time, since the peer does not automatically advertise labels, the label request is sent whenever the next-hop points out to a peer that no remote label has been assigned.

To enable downstream-on-demand mode, this configuration must be applied at mpls ldp configuration mode:

```
mls ldp downstream-on-demand with ACL
```

The ACL contains a list of peer IDs that are configured for downstream-on-demand mode. When the ACL is changed or configured, the list of established neighbors is traversed. If a session's downstream-on-demand configuration has changed, the session is reset in order that the new down-stream-on-demand mode can be configured. The reason for resetting the session is to ensure that the labels are properly advertised between the peers. When a new session is established, the ACL is verified to determine whether the session should negotiate for downstream-on-demand mode. If the ACL does not exist or is empty, downstream-on-demand mode is not configured for any neighbor.

For it to be enabled, the Downstream on demand feature has to be configured on both peers of the session. If only one peer in the session has downstream-on-demand feature configured, then the session does not use downstream-on-demand mode.

If, after, a label request is sent, and no remote label is received from the peer, the router will periodically resend the label request. After the peer advertises a label after receiving the label request, it will automatically readvertise the label if any label attribute changes subsequently.

Related Topics

- Configuring LDP Downstream on Demand mode, on page 64

Explicit-Null and Implicit-Null Labels

Cisco MPLS LDP uses null label, implicit or explicit, as local label for routes or prefixes that terminate on the given LSR. These routes include all local, connected, and attached networks. By default, the null label is **implicit-null** that allows LDP control plane to implement penultimate hop popping (PHOP) mechanism. When this is not desirable, you can configure **explicit-null** that allows LDP control plane to implement ultimate hop popping (UHOP) mechanism. You can configure this explicit-null feature on the ultimate hop LSR. This configuration knob includes an access-list to specify the IP prefixes for which PHOP is desired.

This new enhancement allows you to configure implicit-null local label for **non-egress (ultimate hop LSR)** prefixes by using the **implicit-null-override** command. This enforces implicit-null local label for a specific prefix even if the prefix requires a non-null label to be allocated by default. For example, by default, an LSR allocates and advertises a non-null label for an IGP route. If you wish to terminate LSP for this route on penultimate hop of the LSR, you can enforce implicit-null label allocation and advertisement for this prefix using **implicit-null-override** feature.

Note

If a given prefix is permitted in both explicit-null and implicit-null-override feature, then implicit-null-override supercedes and an implicit-null label is allocated and advertised for the prefix.
In order to enable implicit-null-override mode, this configuration must be applied at MPLS LDP label configuration mode:

```bash
mpls ldp
  label
    implicit-null-override for <prefix><ACL>
```

This feature works with any prefix including static, IGP, and BGP, when specified in the ACL.

MPLS over IRB

The Integrated Routing and Bridging (IRB) feature in Cisco IOS XR Software enables routing of a given protocol between routed interfaces and bridge groups within a single router. IRB support for MPLS introduces these capabilities:

- Bridge-Group Virtual Interface (BVI) support under MPLS LDP
- Targeted LDP session to BVI neighbor
- MPLS OAM for BVI interfaces
- Netflow for BVI interfaces while MPLS is enabled
- L2VPN using targeted MPLS LDP to BVI destination
- L3VPN
- 6PE/6VPE

MPLS over IRB is supported completely on ASR 9000 Enhanced Ethernet Line Card and Cisco ASR 9001. MPLS over IRB is not supported on ASR 9000 Ethernet Line Card.

MPLS over IRB is supported on:

- RSP2 based system
- RSP3 based system
- Megatron chassis
- Cisco ASR 9001
- Cluster scenario

MPLS LDP Carrier Supporting Carrier for Multiple VRFs

The carrier supporting carrier (CSC) support for MPLS LDP feature enables MPLS label distribution protocol (LDP) to provide CSC support for Layer 3 Virtual Private Networks (L3VPN). To support LDP as label distribution protocol between PE-CE devices in an MPLS CSC L3VPN, LDP is required to operate in multiple Virtual Private Network routing and forwarding (VRF) contexts.
MPLS Carrier Supporting Carrier L3VPN: Introduction

The carrier supporting carrier feature enables one MPLS VPN-based service provider to allow other service providers to use a segment of its backbone network. The service provider that provides the segment of the backbone network to the other provider is called the backbone carrier. The service provider that uses the segment of the backbone network is called the customer carrier.

A backbone carrier offers Border Gateway Protocol and Multiprotocol Label Switching (BGP/MPLS) VPN services. The customer carrier can be either:

- An Internet service provider (ISP)
- A BGP/MPLS VPN service provider

In either case, MPLS is run in the backbone network and between the backbone and customer carrier (the PE-CE link).

Figure 6: MPLS Carrier Supporting Carrier L3VPN

This figure illustrates an MPLS CSC L3VPN.

The figure shows two customers, A and X, connecting their remote sites through the backbone carrier. The PE device of the backbone network connects with both customers through MPLS but under different VRFs according to interface-VRF mapping. The MPLS label distribution protocol for PE-CE connectivity can be either BGP or LDP, and requires them to run in a customer VRF context on the PE device.

Benefits of MPLS LDP CSC

The MPLS LDP CSC provides the following benefits to service providers who are backbone carriers and to customer carriers.

Benefits to the Backbone Carrier

- The backbone carrier can accommodate many customer carriers and give them access to its backbone. The backbone carrier does not need to create and maintain separate backbones for its customer carriers. Using one backbone network to support multiple customer carriers simplifies the backbone carrier's VPN operations. The backbone carrier uses a consistent method for managing and maintaining the backbone network. This is also cheaper and more efficient than maintaining separate backbones.

- The MPLS LDP CSC feature is scalable. CSC can change the VPN to meet changing bandwidth and connectivity needs. The feature can accommodate unplanned growth and changes. The CSC feature
enables tens of thousands of VPNs to be configured over the same network, and it allows a service provider to offer both VPN and internet services.

- The MPLS LDP CSC feature is a flexible solution. The backbone carrier can accommodate many types of customer carriers. The backbone carrier can accept customer carriers who are ISPs or VPN service providers or both. The backbone carrier can accommodate customer carriers that require security and various bandwidths.

Benefits to the Customer Carriers

- The MPLS LDP CSC feature removes from the customer carrier the burden of configuring, operating, and maintaining its own backbone. The customer carrier uses the backbone network of a backbone carrier, but the backbone carrier is responsible for network maintenance and operation.

- Customer carriers who use the VPN services provided by the backbone carrier receive the same level of security that Frame Relay or ATM-based VPNs provide. Customer carriers can also use IPSec in their VPNs for a higher level of security; it is completely transparent to the backbone carrier.

- Customer carriers can use any link layer technology (SONET, Digital Subscriber Line, Frame Relay, and so on) to connect the CE routers to the PE routers and the PE routers to the P routers. The MPLS LDP CSC feature is link layer independent. The CE routers and PE routers use IP or MPLS to communicate, and the backbone carrier uses MPLS.

- The customer carrier can use any addressing scheme and still be supported by a backbone carrier. The customer address space and routing information are independent of the address space and routing information of other customer carriers or the backbone provider.

Multiple VRF Support

To support multiple VRFs, IOS XR LDP configuration model is extended to allow VRF submode and per-VRF configuration and feature or interface enabling.

IOS XR LDP process is not distributed nor it is multi-instance, hence the single LDP process services all the configured VRFs. In large scale VRF deployment, it is recommended to enable VRF under LDP with appropriate policies and label filtering.

RSI

To obtain VRF and routing tables’ related information, LDP interacts with the router space infrastructure (RSI) server. For every LDP enabled non-default VRF, LDP registers with RSI to get notifications upon VRF default (IPv4/IPv6) tables getting created or deleted, and populate the LDP VRF database accordingly.

VRF Table ID Database

A new database is added in the LDP process to keep track of all VRFs enabled under LDP. This database holds both active as well as forward-reference VRF records. In addition to serving as an LDP context, each active record of this database also holds VRF’s default (IPv4/IPv6 unicast) table IDs.

VRF-Interface Mapping

To enable LDP on an interface for a given address family under a VRF context, it is required to list interface and its address family explicitly under a LDP VRF submode. LDP does not enforce or check correctness of the interface and VRF mapping at the time of configuration, and hence configuration may be accepted by LDP. The interface with incorrect VRF mapping is not made operational by LDP and remains down from the LDP point of view.
This means that an interface remains LDP operationally down for which either:

- LDP has not received any address update, or
- LDP has received update with different table-id (VRF) than configured under LDP.

Also, a user must not configure the same LDP interface under more than one VRF.

Context Isolation

Each active VRF under LDP points to a separate context under which LDP runs. This means that various variables, database, tables, FSM are kept separate in their respective VRF contexts and do not interfere or interact with each other. This allows the LDP to provide per-VRF isolation and support CSC with customers with overlapping addresses or routing information.

Default Context

The default (global) context is enabled at the time of the LDP process startup and remains enabled always. It is not possible to disable IPv4 for the default context. Also, it is required to explicitly enable IPv4 for non-default context. Therefore you can effectively disable IPv4 for non-default context by not configuring it. This means that, it is possible to enable or disable the non-default context under LDP, whereas the same is not possible for a default context.

Restrictions and Recommendations

The following restrictions and recommendations apply to the MPLS LDP CSC feature:

- Only IPv4 address family is supported for a default or a non-default VRF.
- No T-LDP support in a VRF context.
- An address family under VRF and VRF interface must be configured for non-default VRFs.
- Following scenarios are not supported:
 - Different VRFs between a given PE-CE device pair (VRFs configured on different links and interfaces)
 - LDP/BGP CSC co-existence on a given VRF between a given PE-CE device pair:
 - Single link
 - Parallel links: LDP CSC on one link and BGP CSC on the other
 - LDP router-id must be configured per-VRF. If not configured for non-default VRF, LDP computes router-id from available loopback interfaces under the VRF.
 - It is recommended to configure a routable discovery transport address under a VRF IPv4 address-family submode for deterministic transport endpoint and connection.
 - When LDP CSC is configured and in use:
 - BGP label allocation policy for VRF prefixes must be per-prefix
 - Selective VRF Download (SVD) feature must be disabled
IPv6 Support in MPLS LDP

Internet Protocol version 6 (IPv6) support in MPLS LDP (Label Distribution Protocol) feature makes the LDP control plane to run on IPv6 in order to setup LSPs for IPv6 prefixes. This support enables most of the LDP functions supported on IPv4 to be extended to IPv6. In this context, support for native MPLS LDP over IPv6 is provided in order to seamlessly continue providing existing services while enabling new ones.

LDP associates a forwarding equivalence class (FEC) with each label switched path (LSP) it creates. The FEC associated with an LSP specifies which packets are mapped to that LSP. LDP establishes sessions with peers and exchanges FEC label bindings with them to enable creation of LSPs to carry MPLS traffic destined to IP prefixes.

LDP base specification, RFC 5036 defines procedures and messages for exchanging bindings for IPv4 and IPv6 addresses and routing prefixes. LDP IPv6 specification (draft-ietf-mpls-ldp-ipv6) updates LDP base specifications for IPv6 support, and further clarifies and focuses on the procedures for supporting LDP IPv6 control plane and binding advertisement.

The procedures of address bindings, label bindings, and forwarding setup are same for IPv4 and IPv6 address families in LDP. The only difference is that, a different address format is used according to the IP address family. While a single-stack IP address family (IPv4-only or IPv6-only) enabled interfaces between a set of routers is the most typical deployment, scenarios for LSR interconnections using both IPv4 and IPv6 interfaces are also supported.

IPv6 support in MPLS LDP implements draft-ietf-mpls-ldp-ipv6 version 12 issued by the Internet Engineering Task Force (IETF).

LDP IPv6 Functionality

LDP functionality can be broadly divided into two categories:

- Control Plane

 Control plane includes functions such as: neighbor discovery (hello adjacencies), transport connection/endpoint (TCP connection), session and peering, and bindings exchange.

- LSP Setup

 LSP setup includes functions such as: acquire FEC information through RIB, assign and advertise local label bindings for FEC, advertise local (interface) IP address bindings and setup forwarding rewrites.

For the control plane, the underlying address family can be either IPv4-only, IPv6-only or both. Whereas for the LSP setup, an LSP is setup for IPv4 or IPv6 FEC prefix.

Figure 7: LDP IPv6 Architecture

This figure illustrates the main components that collaborate to achieve the required functionality for the LDP IPv6 feature.
The functions of LDP in the MPLS LDP IPv6 setup are as follows:

- Receive routing updates from routing information base (RIB) for global IPv6 prefixes
- Assign local labels for IPv6 prefixes
- Receive IPv6 address or state notifications for local IPv6 enabled interfaces from IP Address Repository Manager (IP-ARM/IM) and LAS for IPv6 link-local unicast addresses
- Advertise/Accept IPv6 label bindings and address bindings to/from peers
- Setup MPLS forwarding to create IPv6 LSPs
- Provide IPv6 LSP information to MPLS OAM as and when requested
- Service MIB requests for IPv6 control plane queries and generate MIB traps
- Provide LDPv6 convergence status for a link to IGP for LDP-IGP Sync feature for IPv6
- Support IPv6 address family for all existing LDP features that intersect with prefixes and/or addresses

Figure 8: LDP IPv6 Control Plane and LSP Setup

This figure illustrates the high level functionality of LDP in terms of control plane and LSP setup in an IPv6 environment.
Topological Scenarios

A typical deployment scenario consists of single-stack IP address-family (IPv4-only or IPv6-only) enabled interfaces between a set of routers.

Three topology scenarios in which the LSRs are connected through one or more dual-stack LDP enabled interfaces, or one or more single-stack LDP enabled interfaces are defined as follows:

1. **One dual-stack interface/same neighbor:**

 \[R_1 \quad _{-\text{IPv4+IPv6}} \quad R_2 \]

2. **Two single-stack interfaces/same neighbor:**

 1. (IPv4)
 \[R_1 \quad _{-\text{IPv4}} \quad R_2 \]
 2. (IPv6)

3. **Two single-stack interfaces/different neighbors with different address families:**

 1. (IPv4)
 \[R_1 \quad _{-\text{IPv4}} \quad R_2 \quad _{-\text{IPv6}} \quad R_3 \]

Case Study
A description of the control plane and LSP setup scenarios for the previously shown three configurations are as follows:

Case 1:
Neighbor Discovery: Both IPv4 and IPv6 Hellos sent on the interface to R1.
Transport Connection: IPv4 endpoints or IPv6 endpoints (as per user preference).
Label binding exchange: Both IPv4 and IPv6 prefixes.
Address binding exchange: Both IPv4 and IPv6 addresses.
LSPs: Both IPv4 and IPv6 over the same next-hop interface to R1.

Case 2:
Neighbor Discovery: IPv4 Hellos on interface-1 to R1 and IPv6 Hellos on interface-2 to R1.
Transport Connection: IPv4 endpoints or IPv6 endpoints (as per user preference).
Label binding exchange: Both IPv4 and IPv6 prefixes.
Address binding exchange: Both IPv4 and IPv6 addresses.
LSPs: IPv4 over next-hop interface-1 to R1 and IPv6 over next-hop interface-2 to R1.

Case 3:
Neighbor Discovery: IPv4 Hellos on interface-1 to R1 and IPv6 Hellos on interface-2 to R3.
Transport Connection: IPv4 endpoints with R1 and IPv6 endpoints with R3.
Label binding exchange: Both IPv4 and IPv6 prefixes to R1 and R3.

Note

Even if all the three LSRs are dual-stack, traffic from R1 to R3 will not be completely labeled.

- If there is IPv6 traffic, it is unlabeled from R1 to R2. Labels are imposed only at R2 (although in this specific case implicit null imposition) to R3.
- If there is IPv4 traffic, it is labeled from R1 to R2. But the traffic will go unlabeled between R2 and R3 given that no IPv4 adjacency exists between R2 and R3.

Address binding exchange: Both IPv4 and IPv6 addresses to R1 and R3.

LSPs: IPv4 over next-hop interface-1 to R1 and IPv6 over next-hop interface-2 to R3.

Restrictions

IPv6 support in MPLS LDP has the following restrictions and constraints:

- IPv6 address family is supported only under default VRF
- Implicit enabling of IPv6 address family is not allowed. It needs explicit enabling.
- It is recommended to configure a routable IPv6 **discovery transport address** when only LDP IPv6 is configured without explicitly specifying a router-id
Features Supported in LDP IPv6

The following features are supported in LDP IPv6:

- Single-stack (native IPv6) and dual-stack (IPv4+IPv6) topologies
- New operating modes in LDP:
 - Native LDP IPv6
 - LDP IPv6 over IPv4 and LDP IPv4 over IPv6 connection endpoints

LDP Hellos carry optional transport address type length value (TLV) to notify a peer about TCP or transport connection endpoint. An LSR can include either IPv4 or IPv6 transport address TLV in an IPv4 or IPv6 Hello message. There is no difference in the TLV format of transport address for IPv4 and IPv6.

Only one transport connection is established between two discovered peers, whether there be single address family Hello adjacencies or multi-address family (both IPv4 and IPv6) Hello adjacencies.

In a dual-stack setup, when LDP has the option to establish transport connection either using IPv4 endpoints or IPv6 endpoints, IPv6 connection is preferred over IPv4 connection. If LDP is locally enabled for both IPv4 and IPv6 address families, every new session is treated as potential dual-stack connection. Under such circumstances, IPv6 preference is kept in place for maximum fifteen seconds for the session to establish, after which the LDP tries to establish a connection with the peer using IPv4. A user can override this default behavior by specifying the preference for a set of dual-stack peers to use IPv4 transport for the connection. Furthermore, a user may also specify maximum wait time to wait to establish the preferred transport connection. If the preferred transport establishment times out, LDP tries to establish connection with other non-preferred transport address families. This applies to both the cases when an LSR acts as active side or passive side for the TCP connection.

To override default IPv6 transport preference for dual-stack cases, use the `mpls ldp neighbor dual-stack transport-connection prefer ipv4 for-peers` command. To specify the maximum time the preferred address family connection must wait to establish a connection before resorting to a non-preferred address family, use the `mpls ldp neighbor dual-stack transport-connection max-wait` command.

Once a transport connection is established, it is not torn down depending on preferences. If the address family related to established transport connection is disabled under LDP, the corresponding transport connection is reset to reestablish the connection.

For a single-stack setup, there is no contention; the transport connection uses the given address family.

- LDP Control Plane is IPv6 aware
- LDP IPv6 LSP forwarding setup

LDP interacts with LSD in order to setup IPv6 LSP forwarding. The steps involved in this interaction are:

- Label allocation for an IPv6 prefix is learnt from RIB.
- Setup imposition and label switching forwarding path for a given IPv6 prefix by creating IPv6 forwarding rewrites.
- Like LDP IPv4, rewrite delete and label free operations are performed when a route disappears or is disallowed under LDP due to label policy.
• There is no new requirement related to MPLS enabling or disabling. LDP also MPLS-enables in LSD (if not already) any LDP enabled interface, which is in the UP state for IP4 and/or IPv6 and has IPv4 and/or IPv6 addresses assigned.

• In case of dual-stack LDP, a single Resource-Complete is sent by LDP to LSD once RIB-Converged notification is received for both IPv4 and IPv6 redistribute tables.

• Distribution of IPv4 and IPv6 bindings over a single LDP session established over IPv4 or IPv6

• LDP Downstream on Demand

• LDP session protection

LDP session protection is a feature to protect an IPv6 LDP session. In case of dual-stack hello adjacencies with a peer, there is only a single targeted hello adjacency to protect the session. Session protection forms targeted adjacency of address family same as the transport connection. For IPv6, the target of the session protection is the remote transport connection endpoint. For IPv4, the target of the session protection is remote LSR ID.

• LDP IGPv6 sync on IPv6 interface

This feature lets IGP support LDP IGP Sync feature for IPv6 address family. This means that Intermediate System-to-Intermediate System (IS-IS) allows IGP under an interface’s IPv6 address family, whereas OSPFv3 implements it just like existing support in OSPF for IPv4. When the IGP Sync feature is enabled, LDP convergence status on an interface is considered by the IGP under the context of a given address family. This behavior applies to IGP Sync for both non-TE as well as TE tunnel interfaces.

• LDP Typed Wildcard for IPv6 prefix FEC

This feature adds support for Typed Wildcard for IPv6 Prefix FEC. The support includes:

• Being able to send or receive IPv6 Prefix Typed Wildcard FEC element in label messages.

• Respond to Typed Wildcard Label Requests received from peer by replaying its label database for IPv6 prefixes.

• Make use of Typed Wildcard Label Requests towards peers to request replay of peer label database for IPv6 prefixes. For example, on local inbound policy changes.

• Label allocation, advertisement and accept policies for IPv6 prefixes

• Local label assignment and advertisement for IPv6 default-route (::/0)

• Session MD5 authentication for IPv6 transport

• IPv6 Explicit-Null label

IPv6 explicit null label feature support includes:

• Advertisement and receipt of IPv6 explicit-null label to and from peers.

• IPv6 explicit-null outgoing label in forwarding setup.

• Explicit-null advertisement policy for a set of IPv6 prefixes and/or set of peers.

• Explicit-null configuration change. Change in explicit-null configuration is handled by first transferring a wildcard withdraw with null label to peer(s), followed by advertising the appropriate null (implicit or explicit) label to the peer(s) again. This works without any issue as long as a single IP address family is enabled. In case of a dual-stack LSR peer, a change of configuration related to
explicit-null advertisement for a given address family may cause unnecessary mix-up in the other address family.

• LDP IPv6 LFA FRR
 Local LFA FRR for IPv6 is supported. However, it is required that the primary and backup paths are of the same address family type, that is, an IPv4 primary path must not have an IPv6 backup path.

• NSF for LDP IPv6 traffic
 Non-stop forwarding (NSF) support is either provided through LDP NSR or graceful restart mechanisms.

• IGP/LDP NSR for IPv6

• IGP/LDP Graceful Restart for IPv6

• LDP ICCP IPv6 neighbor node
 LDP Inter-Chassis Communication Protocol (ICCP) is supported with IPv6 neighbor node. ICCP is used as a mechanism for multi-chassis LACP.

• SSO/ISSU for LDP IPv6

• MPLS OAM: New FECs
 LSPV supports two new FECs.
 • LDP IPv6 Prefix FEC Encoding/Decoding
 Label Switched Path Verification (LSPV) encodes/decodes the LDP IPv6 Prefix FEC. Prefix is in the network byte order and the trailing bits are to be set to zero when prefix length is shorter than 128 bits.
 • Generic IPv6 Prefix FEC Encoding/Decoding
 LSPV encodes/decodes the generic IPv6 Prefix FEC. Prefix is in the network byte order and the trailing bits are to be set to zero when prefix length is shorter than 128 bits.

Generic IPv6 FEC is used in addition to the LDP IPv6 FEC. This serves the following primary purposes:
 • Allows user to perform LSP ping and traceroute to verify data plane without involving control plane of the FEC in echo request and response.
 • If support for a new FEC is preferred in the future, the generic FEC can be used until corresponding control plane is explicitly supported by LSPV.

• IPv6 LSR MIB
 MPLS OAM LDP MIBS is extended to support IPv6. All LSR MIB objects that reference an InSegment prefix and OutSegment next hop address are modified to support IPv6.

• LSP ping support for LDP IPv6
• LSP trace-route support for LDP IPv6
• LSP tree-trace support for LDP IPv6

The following features are not supported in LDP IPv6:
Implicit IPv4 Disable

The LDP configuration model was changed with the introduction of explicit address family enabling under LDP (VRF) global and LDP (VRF) interfaces. However, in order to support backward compatibility, the old configuration model was still supported for default VRF. There was, however, no option to disable the implicitly enabled IPv4 address family under default VRF’s global or interface level.

A new configuration `mpls ldp default-vrf implicit-ipv4 disable` is now available to the user to disable the implicitly enabled IPv4 address family for the default VRF. The new configuration provides a step towards migration to new configuration model for the default VRF that mandates enabling address family explicitly. This means that if the new option is configured, the user has to explicitly enable IPv4 address family for default VRF global and interface levels. It is recommended to migrate to this explicitly enabled IPv4 configuration model.

For detailed configuration steps, see Disabling Implicit IPv4, on page 83

IPv6 Label Bindings

LDP stores label bindings associated with FEC prefix in its Label Information Base (LIB) [TIB in Cisco LDP]. An entry in LIB corresponds to a prefix and holds the following bindings:

- Local binding: Local label assigned for this prefix (which is learnt through local RIB).
- Remote bindings: Array of peer labels (prefix-label bindings received in label mapping message from peer(s)).

An entry in LIB can exist due to local binding presence, or due to remote binding(s) presence, or due to both local and remote bindings presence. The forwarding setup, however, mandates that local binding be present for a prefix.

Extensions have been implemented to support IPv6 prefixes for LIB in LDP. For per-address family convergence or preference reasons, separate or new LIB is implemented to keep and maintain IPv6 prefixes. In case of dual-stack LDP, LIBv4 is preferred over LIBv6 wherever possible. For example, during background housekeeping function, LIBv4 is processed before LIBv6.

IPv6 Address Bindings

LDP needs to maintain IPv6 address database for local and peer interface addresses. The IPv4 address module for local/peer addresses is extended to keep IPv4/IPv6 addresses in their respective databases, much like LIB.
database. In case of a dual-stack LDP, IPv4 local address database function is preferred over IPv6 local address database function wherever possible.

Default Transport Address

LDP computes default local transport address for IPv6 from its IPv6 interface or address database by picking the lowest operational loopback interface with global unicast IPv6 address. This means that any change in this loopback state or address, flaps or changes the default transport address for IPv6 and may cause session flaps using such an address as transport endpoint. For example, if a session is currently active on Loopback2 as during its inception it was the lowest loopback with an IPv6 address, and a lower loopback, Loopback0, is configured with an IPv6 address, the session does not flap. However, if it does flap, the next time the session is attempted, Loopback0 is used.

The session flaps when configuring discovery transport address explicitly.

Use the `discovery transport-address` command under the LDP address family submode to specify the global transport address for IPv4 or IPv6.

It is recommended to configure global transport-address for IPv6 address family to avoid a potentially unstable default transport address.

LDP Control Plane: Bindings Advertisement

LDP base specification allows exchange of IPv4/IPv6 bindings (address/label) on an established session. When both IPv4 and IPv6 address families are enabled under LDP, LDP distributes address/label bindings for both address families to its established peer according to local policies. Following are a few significant points pertaining to bindings support for IPv6:

- LDP allocates/advertises local label bindings for link-local IPv6 address prefixes. If received, such FEC bindings are ignored.
- LDP sends only the Prefix FEC of the single address family type in a FEC TLV and not include both. If such a FEC binding is received, the entire message is ignored.
- LDP sends only the addresses belonging to same address family in a single address list TLV (in address or address withdraw message).

If an address family is not enabled on receiving LSR, LDP discards any bindings received from peer(s) for the address family. This means that when address family is enabled, LDP needs to reset existing sessions with the peers in order to re-learn the discarded bindings. The implementation is optimized to reset only those sessions which were previously known to be dual-stack and had sent bindings for both address families.

LSP Mapping

LDP uses IPv6 adjacency information instead of IP address to map an IPv6 link-local nexthop to an LDP peer.

In addition to other usual checks before using a label from nexthop LDP peer, LDP uses the nexthop label for a prefix of a given address family, if there are one or more LDP hello adjacencies of the same address family type established with the peer.

Label Policies

LDP allows a user to configure label policies for allocation, acceptance, receipt, and advertisement of labels for the given prefixes.
Following are the significant points pertaining to the IPv6 support for label policies:

- Label policies and their configurations are allowed under address family IPv6.
- Any policy that specifies prefix or a set of prefixes through an ACL, supports both IPv4 and IPv6 variants for address(s) or ACLs.
- Any policy that specifies peer address or set of peer addresses through an ACL, supports both IPv4 and IPv6 variant for peer address(s) or ACL.
- Any policy that specifies the peer’s LSR ID in a peer ACL continues to take IPv4 ACL based policy irrespective of the feature configuration.

IS-IS

Intermediate System-to-Intermediate System (IS-IS) is an Interior Gateway Protocol (IGP) that advertises link-state information throughout the network to create a picture of the network topology. IPv6 IS-IS extends the address families supported by IS-IS to include IPv6, in addition to IPv4.

Previously, IS-IS supported registration of only LDP IPv4 sync status change. This has now been enhanced to support registration of notifications of LDP IPv6 sync status change. IS-IS determines the link-metrics to be advertised based on the LDP-IGP sync status on the IPv4 and IPv6 address families.

IS-IS supports non-stop forwarding (NSF) by preserving the LDPv6-IGP sync status across high availability (HA) events of IS-IS process restarts and failover.

IS-IS also supports LDPv6-IGP sync for LFA-FRR by checking the sync status of the backup interface (if it is configured with LDP IPv6 sync).

Dual-Stack Capability TLV

Clear rules are specified in RFC 5036 to determine transport connection roles in setting up a TCP connection for single-stack LDP. But RFC 5036 is not clear about dual-stack LDP, in which an LSR may assume different roles for different address families, causing issues in establishing LDP sessions.

To ensure a deterministic transport connection role for the dual-stack LDP, the dual-stack LSR conveys its transport connection preference in every LDP Hello message. This preference is encoded in a new TLV (Type Length Value) called the Dual-Stack Capability TLV. Dual-stack LSR always checks for the presence of the dual-stack capability TLV in the received LDP Hello messages and takes appropriate action for establishing or maintaining sessions.

RFC 7552 specifies more details about updates to LDP for IPv6.

Dual-Stack Capability TLV Format

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-------------------------------------------+
|1|1| Dual-Stack Capability | Length |
|-------------------------------------------|
| TR | Reserved | MBZ |
```

Dual-Stack Capability TLV Fields
Compliance Check

The compliance check prevents sessions being formed with prior RFC 7552 implementation of LDP IPv6.

If the dual-stack capability TLV is not present in the received Hellos and the compliance check is configured, the local and remote preferences must match to establish a session. If the preferences do not match, the LDP Hellos are dropped and the session is not established. Compliance check has therefore been disabled by default.

Use the command `neighbor dual-stack tlv-compliance` in MPLS LDP configuration to enable the compliance check.

How to Implement MPLS LDP

A typical MPLS LDP deployment requires coordination among several global neighbor routers. Various configuration tasks are required to implement MPLS LDP:

Configuring LDP Discovery Parameters

Perform this task to configure LDP discovery parameters (which may be crucial for LDP operations).

Note

The LDP discovery mechanism is used to discover or locate neighbor nodes.

SUMMARY STEPS

1. `configure`
2. `mpls ldp`
3. `[vrf vrf-name] router-id ip-address lsr-id`
4. `discovery { hello | targeted-hello } holdtime seconds`
5. `discovery { hello | targeted-hello } interval seconds`
6. `commit`
7. (Optional) `show mpls ldp [vrf vrf-name] parameters`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
</tr>
<tr>
<td>Step 3</td>
<td>[vrf vrf-name] router-id ip-address lsr-id</td>
<td>(Optional) Specifies a non-default VRF. Specifies the router ID of the local node.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# router-id 192.168.70.1</td>
</tr>
<tr>
<td>Step 4</td>
<td>discovery { hello</td>
<td>targeted-hello } holdtime seconds</td>
</tr>
</tbody>
</table>
| Example: | | RP/0/RSP0/CPU0:router(config-ldp)# discovery hello holdtime 30
RP/0/RSP0/CPU0:router(config-ldp)# discovery targeted-hello holdtime 180 |
| **Step 5** | discovery { hello | targeted-hello } interval seconds | Selects the period of time between the transmission of consecutive hello messages. The default value for the `seconds` argument is 5 seconds for link hello messages and 10 seconds for targeted hello messages. |
| Example: | | RP/0/RSP0/CPU0:router(config-ldp)# discovery hello interval 15
RP/0/RSP0/CPU0:router(config-ldp)# discovery targeted-hello interval 20 |
| **Step 6** | commit | |
| **Step 7** | (Optional) show mpls ldp [vrf vrf-name] parameters | Displays all the current MPLS LDP parameters. Displays the LDP parameters for the specified VRF. |
| Example: | | RP/0/RSP0/CPU0:router
show mpls ldp parameters

RP/0/RSP0/CPU0:router
show mpls ldp vrf red parameters |

Related Topics
- LDP Control Plane, on page 5
Configure Label Distribution Protocol Targeted Neighbor

LDP session between LSRs that are not directly connected is known as targeted LDP session. For LDP neighbors which are not directly connected, you must manually configure the LDP neighborship on both the routers.

Configuration Example

This example shows how to configure LDP for non-directly connected routers.

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# mpls ldp
RP/0/RSP0/CPU0:router(config-ldp)# router-id 192.0.2.1
RP/0/RSP0/CPU0:router(config-ldp)# neighbor 198.51.100.1:0 password encrypted 13061E010803
RP/0/RSP0/CPU0:router(config-ldp)# address-family ipv4
RP/0/RSP0/CPU0:router(config-ldp-af)# discovery targeted-hello accept
RP/0/RSP0/CPU0:router(config-ldp-af)# neighbor 198.51.100.1 targeted
RP/0/RSP0/CPU0:router(config-ldp-af)# commit
```

Running Configuration

This section shows the LDP targeted neighbor running configuration.

```
mpls ldp
    router-id 192.0.2.1
    neighbor 198.51.100.1:0 password encrypted 13061E010803
    address-family ipv4
        discovery targeted-hello accept
        neighbor 198.51.100.1 targeted
```

Verification

Verify LDP targeted neighbor configuration.

```
RP/0/RSP0/CPU0:router# show mpls ldp discovery
Wed Nov 28 04:30:31.862 UTC
Local LDP Identifier: 192.0.2.1:0
Discovery Sources:
    Targeted Hellos: <<< targeted hellos based session
        192.0.2.1 -> 198.51.100.1(active/passive), xmit/recv <<< both transmit and receive
    of targeted hellos between the neighbors
        LDP Id: 198.51.100.1:0
        Hold time: 90 sec (local:90 sec, peer:90 sec)
        Established: Nov 28 04:19:55.340 (00:10:36 ago)
```

```
RP/0/RSP0/CPU0:router# show mpls ldp neighbor
Wed Nov 28 04:30:38.272 UTC
Peer LDP Identifier: 198.51.100.1:0
    TCP connection: 198.51.100.1:0:13183 - 192.0.2.1:646; MD5 on
    Graceful Restart: No
    Session Holdtime: 180 sec
    State: Oper; Msgs sent/rcvd: 20/20; Downstream-Unsolicited
    Up time: 00:10:30
    LDP Discovery Sources:
        IPv4: (1)
```
Targeted Hello (192.0.2.1 -> 198.51.100.1, active/passive) <<< targeted LDP based session
IPv6: (0)
Addresses bound to this peer:
IPv4: (4)
198.51.100.1 10.0.0.1 172.16.0.1 192.168.0.1
IPv6: (0)

Configuring LDP Discovery Over a Link

Perform this task to configure LDP discovery over a link.

Note
There is no need to enable LDP globally.

Before you begin
A stable router ID is required at either end of the link to ensure the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system will default to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

1. configure
2. mpls ldp
3. [vrf vrf-name] router-id ip-address lsr-id
4. interface type interface-path-id
5. commit
6. (Optional) show mpls ldp discovery
7. (Optional) show mpls ldp vrf vrf-name discovery
8. (Optional) show mpls ldp vrf all discovery summary
9. (Optional) show mpls ldp vrf all discovery brief
10. (Optional) show mpls ldp vrf all ipv4 discovery summary
11. (Optional) show mpls ldp discovery summary all

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3 [vrf vrf-name] router-id ip-address lsr-id</td>
<td>(Optional) Specifies a non-default VRF.</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies the router ID of the local node.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>router-id</code></td>
<td>In Cisco IOS XR software, the router ID is specified as an interface name or IP address. By default, LDP uses the global router ID (configured by the global router ID process).</td>
</tr>
</tbody>
</table>

Step 4

Interface type
`interface-type interface-path-id`

Example:
`RP/0/RSP0/CPU0:router(config-ldp)# interface tunnel-te 12001`
`RP/0/RSP0/CPU0:router(config-ldp-if)#`

Purpose: Enters interface configuration mode for the LDP protocol. Interface type must be Tunnel-TE.

Step 5

commit

Example:

Step 6

(Optional) **show mpls ldp discovery**

Example:

Step 7

(Optional) **show mpls ldp vrf vrf-name discovery**

Example:

Step 8

(Optional) **show mpls ldp vrf all discovery summary**

Example:

Step 9

(Optional) **show mpls ldp vrf all discovery brief**

Example:

Step 10

(Optional) **show mpls ldp vrf all ipv4 discovery summary**

Example:

Step 11

(Optional) **show mpls ldp discovery summary all**

Example:

Displays the status of the LDP discovery process. This command, without an interface filter, generates a list of interfaces over which the LDP discovery process is running. The output information contains the state of the link (xmt/rcvhellos), local LDP identifier, the discovered peer’s LDP identifier, and holdtime values.

Displays the status of the LDP discovery process for the specified VRF.

Displays the summarized status of the LDP discovery process for all VRFs.

Displays the brief status of the LDP discovery process for all VRFs.

Displays the summarized status of the LDP discovery process for all VRFs for the IPv4 address family.

Displays the aggregate summary across all the LDP discovery processes.
Configuring LDP Discovery for Active Targeted Hellos

Perform this task to configure LDP discovery for active targeted hellos.

Note
The active side for targeted hellos initiates the unicast hello toward a specific destination.

Before you begin
These prerequisites are required to configure LDP discovery for active targeted hellos:

- Stable router ID is required at either end of the targeted session. If you do not assign a router ID to the routers, the system will default to the global router ID. Please note that default router IDs are subject to change and may cause an unstable discovery.

- One or more MPLS Traffic Engineering tunnels are established between non-directly connected LSRs.

SUMMARY STEPS

1. configure
2. mpls ldp
3. [vrf vrf-name] router-id ip-address lsr-id
4. interface type interface-path-id
5. commit
6. (Optional) show mpls ldp discovery
7. (Optional) show mpls ldp vrf vrf-name discovery
8. (Optional) show mpls ldp vrf all discovery summary
9. (Optional) show mpls ldp vrf all discovery brief
10. (Optional) show mpls ldp vrf all ipv4 discovery summary
11. (Optional) show mpls ldp discovery summary all

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls ldp</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>mpls ldp</td>
<td></td>
</tr>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a non-default VRF. Specifies the router ID of the local node. In Cisco IOS XR software, the router ID is specified as an interface name or IP address or LSR ID. By default, LDP uses the global router ID (configured by global router ID process).</td>
</tr>
<tr>
<td>ip-address</td>
<td></td>
</tr>
<tr>
<td>lsr-id</td>
<td></td>
</tr>
</tbody>
</table>

Step 3

Example:

```
RP/0/RSP0/CPU0:router(config-ldp)# router-id 192.168.70.1
```

Step 4

Example:

```
interface tunnel-te 12001
```

Step 5

```
commit
```

Step 6

```
show mpls ldp discovery
```

Step 7

```
show mpls ldp vrf vrf-name discovery
```

Step 8

```
show mpls ldp vrf all discovery summary
```

Step 9

```
show mpls ldp vrf all discovery brief
```

Step 10

```
show mpls ldp vrf all ipv4 discovery summary
```
Configuring LDP Discovery for Passive Targeted Hellos

Perform this task to configure LDP discovery for passive targeted hellos.

A passive side for targeted hello is the destination router (tunnel tail), which passively waits for an incoming hello message. Because targeted hellos are unicast, the passive side waits for an incoming hello message to respond with hello toward its discovered neighbor.

Before you begin

Stable router ID is required at either end of the link to ensure that the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

1. configure
2. mpls ldp
3. [vrf vrf-name] router-id ip-address lsr-id
4. discovery targeted-hello accept
5. commit
6. (Optional) show mpls ldp discovery
7. (Optional) show mpls ldp vrf vrf-name discovery
8. (Optional) show mpls ldp vrf all discovery summary
9. (Optional) show mpls ldp vrf all discovery brief
10. (Optional) show mpls ldp vrf all ipv4 discovery summary
11. (Optional) show mpls ldp discovery summary all

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls ldp</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Step 3</td>
<td>[vrf vrf-name] router-id ip-address lsr-id
Example: RP/0/RSP0/CPU0:router(config-ldp)# router-id 192.168.70.1</td>
</tr>
<tr>
<td>Step 4</td>
<td>discovery targeted-hello accept
Example: RP/0/RSP0/CPU0:router(config-ldp)# discovery targeted-hello accept</td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) show mpls ldp discovery
Example: RP/0/RSP0/CPU0:router# show mpls ldp discovery</td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) show mpls ldp vrf vrf-name discovery
Example: RP/0/RSP0/CPU0:router# show mpls ldp vrf red discovery</td>
</tr>
<tr>
<td>Step 8</td>
<td>(Optional) show mpls ldp vrf all discovery summary
Example: RP/0/RSP0/CPU0:router# show mpls ldp vrf all discovery summary</td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) show mpls ldp vrf all discovery brief
Example: RP/0/RSP0/CPU0:router# show mpls ldp vrf all discovery brief</td>
</tr>
<tr>
<td>Step 10</td>
<td>(Optional) show mpls ldp vrf all ipv4 discovery summary
Example:</td>
</tr>
</tbody>
</table>
Configuring Label Advertisement Control (Outbound Filtering)

Perform this task to configure label advertisement (outbound filtering).

By default, a label switched router (LSR) advertises all incoming label prefixes to each neighboring router. You can control the exchange of label binding information using the `mpls ldp label advertise` command. Using the optional keywords, you can advertise selective prefixes to all neighbors, advertise selective prefixes to defined neighbors, or disable label advertisement to all peers for all prefixes.

Note
Prefixes and peers advertised selectively are defined in the access list.

Before you begin
Before configuring label advertisement, enable LDP and configure an access list.

SUMMARY STEPS

1. configure
2. mpls ldp
3. `[vrf vrf-name] address-family { ipv4 | ipv6}`
4. label local advertise `[to ldp-id for prefix-acl | interface type interface-path-id]`
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config)# mpls ldp</code></td>
<td></td>
</tr>
</tbody>
</table>
Setting Up LDP Neighbors

Perform this task to set up LDP neighbors.

Before you begin

Stable router ID is required at either end of the link to ensure the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system will default to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

1. configure
2. mpls ldp
3. interface type interface-path-id
4. address-family {ipv4 | ipv6}
5. discovery transport-address {ip-address | interface}
6. exit
7. holdtime seconds
8. [vrf vrf-name] neighbor ldp-id password [encrypted] password
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls ldp</td>
</tr>
<tr>
<td>Example:</td>
<td>mpls ldp</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 3</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# interface POS 0/1/0/0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
</tr>
<tr>
<td></td>
<td>Step 4</td>
</tr>
<tr>
<td>Step 4</td>
<td>**address-family {ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>**address-family {ipv4</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>Purpose</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)# address-family ipv6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Step 5</td>
</tr>
<tr>
<td>Step 5</td>
<td>**discovery transport-address [ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td>**discovery transport-address [ip-address</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if-af)# discovery transport-address 192.168.1.42</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if-af)# discovery transport-address 5:6::78</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>Purpose</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if-af)# discovery transport-address interface</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)# exit</td>
</tr>
<tr>
<td>Step 7</td>
<td>holdtime seconds</td>
</tr>
<tr>
<td>Example:</td>
<td>Changes the time for which an LDP session is maintained in the absence of LDP messages from the peer.</td>
</tr>
<tr>
<td></td>
<td>• Outgoing keepalive interval is adjusted accordingly (to make three keepalives in a given holdtime) with a change in session holdtime value.</td>
</tr>
<tr>
<td></td>
<td>• Session holdtime is also exchanged when the session is established.</td>
</tr>
<tr>
<td></td>
<td>• In this example holdtime is set to 30 seconds, which causes the peer session to timeout in 30 seconds, as well as transmitting outgoing keepalive messages toward the peer every 10 seconds.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# holdtime 30</td>
</tr>
<tr>
<td>Step 8</td>
<td>[vrf vrf-name] neighbor ldp-id password [encrypted] password</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Specifies a non-default VRF.</td>
</tr>
<tr>
<td></td>
<td>Configures password authentication (using the TCP MD5 option) for a given neighbor.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# neighbor 192.168.2.44:0 password secretpasswd</td>
</tr>
<tr>
<td>Step 9</td>
<td>backoff initial maximum</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures the parameters for the LDP backoff mechanism. The LDP backoff mechanism prevents two incompatibly configured LSRs from engaging in an unthrottled sequence of session setup failures. If a session setup attempt fails due to such incompatibility, each LSR delays its next attempt (backs off), increasing the delay exponentially with each successive failure until the maximum backoff delay is reached.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# backoff 10 20</td>
</tr>
<tr>
<td>Step 10</td>
<td>commit</td>
</tr>
<tr>
<td>Step 11</td>
<td>(Optional) show mpls ldp neighbor</td>
</tr>
<tr>
<td>Example:</td>
<td>Displays the status of the LDP session with its neighbors. This command can be run with various filters as well as with the brief option.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router# show mpls ldp neighbor</td>
</tr>
<tr>
<td>Step 12</td>
<td>(Optional) show mpls ldp vrf vrf-name neighbor</td>
</tr>
<tr>
<td>Example:</td>
<td>Displays the status of the LDP session with its neighbors for the specified VRF. This command can be run with the brief option.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router# show mpls ldp vrf red neighbor</td>
</tr>
</tbody>
</table>
Setting Up LDP Forwarding

Perform this task to set up LDP forwarding.

By default, the LDP control plane implements the penultimate hop popping (PHOP) mechanism. The PHOP mechanism requires that label switched routers use the implicit-null label as a local label for the given Forwarding Equivalence Class (FEC) for which LSR is the penultimate hop. Although PHOP has certain advantages, it may be required to extend LSP to the ultimate hop under certain circumstances (for example, to propagate MPL QoS). This is done using a special local label (explicit-null) advertised to the peers after which the peers use this label when forwarding traffic toward the ultimate hop (egress LSR).

Before you begin

Stable router ID is required at either end of the link to ensure the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system will default to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

1. configure
2. mpls ldp
3. [vrf vrf-name] address-family {ipv4 | ipv6}
4. label local advertise explicit-null
5. commit
6. (Optional) show mpls ldp forwarding
7. (Optional) show mpls ldp vrf all forwarding
8. (Optional) show mpls ldp vrf all forwarding summary
9. (Optional) show mpls ldp vrf vrf-name ipv4 forwarding
10. (Optional) show mpls ldp forwarding summary all
11. (Optional) clear mpls ldp vrf vrf-name ipv4 forwarding
12. (Optional) clear mpls ldp [ipv4 | ipv6]forwarding
13. (Optional) show mpls ldpafi-all forwarding
14. (Optional) show mpls ldpipv6 forwarding
15. (Optional) show mpls forwarding
16. (Optional) ping ip-address

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls ldp</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>[vrf vrf-name] address-family {ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Specifies a non-default VRF. Enables the LDP IPv4 or IPv6 address family.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# address-family ipv6</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>label local advertise explicit-null</td>
</tr>
<tr>
<td>Example:</td>
<td>Causes a router to advertise an explicit null label in situations where it normally advertises an implicit null label (for example, to enable an ultimate-hop disposition instead of PHOP).</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-af)# label local advertise explicit-null</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) show mpls ldp forwarding</td>
</tr>
<tr>
<td>Example:</td>
<td>Displays the MPLS LDP view of installed forwarding states (rewrites).</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# show mpls ldp forwarding</td>
<td></td>
</tr>
</tbody>
</table>

Note For local labels, only up to 12000 rewrites are supported. If the rewrites exceed this limit, MPLS LSD or MPLS LDP or both the processes may crash.
Setting Up LDP Forwarding

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 7** (Optional) **show mpls ldp vrf all forwarding**
Example:
RP/0/RSP0/CPU0:router# show mpls ldp vrf all forwarding | Displays the forwarding setup information of all LDP configured VRFs. |
| **Step 8** (Optional) **show mpls ldp vrf all forwarding summary**
Example:
RP/0/RSP0/CPU0:router# show mpls ldp vrf all forwarding summary | Displays the forwarding setup summary of all LDP configured VRFs. |
| **Step 9** (Optional) **show mpls ldp vrf vrf-name ipv4 forwarding**
Example:
RP/0/RSP0/CPU0:router# show mpls ldp vrf red ipv4 forwarding | Displays the forwarding setup information for the specified VRF for IPv4. |
| **Step 10** (Optional) **show mpls ldp forwarding summary all**
Example:
RP/0/RSP0/CPU0:router# show mpls ldp forwarding summary all | Displays the aggregate summary across LDP processes and all VRFs. |
| **Step 11** (Optional) **clear mpls ldp vrf vrf-name ipv4 forwarding**
Example:
RP/0/RSP0/CPU0:router# clear mpls ldp vrf red ipv4 forwarding | Resets the MPLS forwarding rewrites for the specified VRF for IPv4. |
| **Step 12** (Optional) **clear mpls ldp [ipv4 | ipv6]forwarding**
Example:
RP/0/RSP0/CPU0:router# clear mpls ldp ipv4 forwarding
or
RP/0/RSP0/CPU0:router# clear mpls ldp ipv6 forwarding | Resets the MPLS forwarding rewrites for either IPv4 or IPv6 addresses. |
| **Step 13** (Optional) **show mpls ldp afi-all forwarding**
Example:
RP/0/RSP0/CPU0:router# show mpls ldp afi-all forwarding | Displays the forwarding setup information of all address families. |
Configuring Global Transport Address

Perform this task to configure global transport address for the IPv4 address family.

SUMMARY STEPS

1. configure
2. mpls ldp
3. address-family ipv4
4. discovery transport-address *ip-address*
5. end or commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3 address-family ipv4</td>
<td>Enables LDP IPv4 address family.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# address-family</td>
<td></td>
</tr>
</tbody>
</table>
Setting Up LDP NSF Using Graceful Restart

Perform this task to set up NSF using LDP graceful restart.

LDP graceful restart is a way to enable NSF for LDP. The correct way to set up NSF using LDP graceful restart is to bring up LDP neighbors (link or targeted) with additional configuration related to graceful restart.

Before you begin

Stable router ID is required at either end of the link to ensure the link discovery (and session setup) is successful. If you do not assign a router ID to the routers, the system will default to the global router ID. Default router IDs are subject to change and may cause an unstable discovery.

SUMMARY STEPS

1. configure
2. mpls ldp
3. interface type interface-path-id
4. exit
5. graceful-restart
6. graceful-restart forwarding-state-holdtime seconds
7. graceful-restart reconnect-timeout seconds
8. commit
9. (Optional) show mpls ldp [vrf vrf-name] parameters
10. (Optional) show mpls ldp neighbor
11. (Optional) show mpls ldp graceful-restart
12. (Optional) show mpls ldp vrf all graceful-restart
13. (Optional) show mpls ldp vrf vrf-name graceful-restart

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters interface configuration mode for the LDP protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enters the current configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# interface POS 0/1/0/0</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 5 graceful-restart</td>
<td>Enables the LDP graceful restart feature.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# graceful-restart</td>
<td></td>
</tr>
<tr>
<td>Step 6 graceful-restart forwarding-state-holdtime seconds</td>
<td>Specifies the length of time that forwarding can keep LDP-installed forwarding states and rewrites, and specifies when the LDP control plane restarts.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# graceful-restart forwarding-state-holdtime 180</td>
<td></td>
</tr>
<tr>
<td>• After restart of the control plane, when the forwarding state holdtime expires, any previously installed LDP forwarding state or rewrite that is not yet refreshed is deleted from the forwarding.</td>
<td></td>
</tr>
<tr>
<td>• Recovery time sent after restart is computed as the current remaining value of the forwarding state hold timer.</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Step 7 graceful-restart reconnect-timeout seconds</td>
<td>Specifies the length of time a neighbor waits before restarting the node to reconnect before declaring an earlier graceful restart session as down. This command is used to start a timer on the peer (upon a neighbor restart). This timer is referred to as Neighbor Liveness timer.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-ldp)# graceful-restart reconnect-timeout 169</td>
<td></td>
</tr>
<tr>
<td>Step 8 commit</td>
<td></td>
</tr>
<tr>
<td>Step 9 (Optional) show mpls ldp [vrf vrf-name] parameters</td>
<td>Displays the LDP parameters for the specified VRF.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# show mpls ldp parameters</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# show mpls ldp vrf red parameters</td>
<td></td>
</tr>
<tr>
<td>Step 10 (Optional) show mpls ldp neighbor</td>
<td>Displays the status of the LDP session with its neighbors. This command can be run with various filters as well as with the brief option.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# show mpls ldp neighbor</td>
<td></td>
</tr>
<tr>
<td>Step 11 (Optional) show mpls ldp graceful-restart</td>
<td>Displays the status of the LDP graceful restart feature. The output of this command not only shows states of different graceful restart timers, but also a list of graceful restart neighbors, their state, and reconnect count.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# show mpls ldp graceful-restart</td>
<td></td>
</tr>
<tr>
<td>Step 12 (Optional) show mpls ldp vrf all graceful-restart</td>
<td>Displays the status of the LDP graceful restart for all VRFs.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# show mpls ldp vrf all graceful-restart</td>
<td></td>
</tr>
<tr>
<td>Step 13 (Optional) show mpls ldp vrf vrf-name graceful-restart</td>
<td>Displays the status of the LDP graceful restart for the specified VRF.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# show mpls ldp vrf red graceful-restart</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- LDP Graceful Restart, on page 7
- Phases in Graceful Restart, on page 9
- Recovery with Graceful-Restart, on page 9
- Configuring LDP Nonstop Forwarding with Graceful Restart: Example, on page 89
Configuring Label Acceptance Control (Inbound Filtering)

Perform this task to configure LDP inbound label filtering.

Note
By default, there is no inbound label filtering performed by LDP and thus an LSR accepts (and retains) all remote label bindings from all peers.

SUMMARY STEPS

1. `configure`
2. `mpls ldp`
3. `label accept for prefix-acl from ip-address`
4. `[vrf vrf-name] address-family { ipv4 | ipv6}`
5. `label remote accept from ldp-id for prefix-acl`
6. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
</tr>
</tbody>
</table>
| **Step 2** | `mpls ldp`
Example:

```
RP/0/RSP0/CPU0:router(config)# mpls ldp
``` |

Enters the MPLS LDP configuration mode.

| **Step 3** | `label accept for prefix-acl from ip-address`
Example:

```
RP/0/RSP0/CPU0:router(config-ldp)# label accept for pfx_acl_1 from 192.168.1.1
RP/0/RSP0/CPU0:router(config-ldp)# label accept for pfx_acl_2 from 192.168.2.2
``` |

Configures inbound label acceptance for prefixes specified by prefix-acl from neighbor (as specified by its IP address).

| **Step 4** | `[vrf vrf-name] address-family { ipv4 | ipv6}`
Example:

```
RP/0/RSP0/CPU0:router(config-ldp)# address-family ipv4
RP/0/RSP0/CPU0:router(config-ldp)# address-family ipv6
``` |

(Optional) Specifies a non-default VRF. Enables the LDP IPv4 or IPv6 address family.
Configuring Local Label Allocation Control

Perform this task to configure label allocation control.

Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters the MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step 3 [vrf vrf-name] address-family { ipv4</td>
<td>ipv6}</td>
</tr>
</tbody>
</table>

Note

By default, local label allocation control is disabled and all non-BGP prefixes are assigned local labels.

SUMMARY STEPS

1. configure
2. mpls ldp
3. [vrf vrf-name] address-family \{ ipv4 | ipv6\}
4. label local allocate for prefix-acl
5. commit

RELATED TOPICS

- Label Acceptance Control (Inbound Filtering), on page 11
- Configuring Label Acceptance (Inbound Filtering): Example, on page 90

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters the MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step 3 [vrf vrf-name] address-family { ipv4</td>
<td>ipv6}</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config-ldp)# label remote accept from 192.168.1.1:0 for pfx_acl_1
```

Example:

```
RP/0/RSP0/CPU0:router(config-ldp)# address-family ipv4
RP/0/RSP0/CPU0:router(config-ldp)# address-family ipv6
```
Configuring Session Protection

Perform this task to configure LDP session protection. By default, there is no protection done for link sessions by means of targeted hellos.

SUMMARY STEPS

1. configure
2. mpls ldp
3. session protection [for peer-acl] [duration seconds]
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters the MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config) # mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3 session protection [for peer-acl] [duration seconds]</td>
<td>Configures LDP session protection for peers specified by peer-acl with a maximum duration, in seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# session protection for peer_acl_1 duration 60</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring LDP IGP Synchronization: OSPF

Perform this task to configure LDP IGP Synchronization under OSPF.

Note

By default, there is no synchronization between LDP and IGPs.

SUMMARY STEPS

1. configure
2. router ospf process-name
3. (Optional) vrf vrf-name
4. Use one of the following commands:
 • mpls ldp sync
 • area area-id mpls ldp sync
 • area area-id interface name mpls ldp sync
5. (Optional) Use one of the following commands:
 • mpls ldp sync
 • area area-id mpls ldp sync
 • area area-id interface name mpls ldp sync
6. commit
7. (Optional) show mpls ldp vrf vrf-name ipv4 igp sync
8. (Optional) show mpls ldp vrf all ipv4 igp sync
9. (Optional) show mpls ldp { ipv4 | ipv6 } igp sync

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
| Step 2 router ospf process-name Example:
RP/0/RSP0/CPU0:router(config)# router ospf 100 | Identifies the OSPF routing process and enters OSPF configuration mode. |
| Step 3 (Optional) vrf vrf-name Example:
RP/0/RSP0/CPU0:router(config-ospf)# vrf red | Specifies the non-default VRF. |
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 4 | Use one of the following commands:
 - `mpls ldp sync`
 - `area area-id mpls ldp sync`
 - `area area-id interface name mpls ldp sync`
 Example:
 RP/0/RSP0/CPU0:router(config-ospf)# mpls ldp sync |
| | Enables LDP IGP synchronization on an interface. |
| 5 | (Optional) Use one of the following commands:
 - `mpls ldp sync`
 - `area area-id mpls ldp sync`
 - `area area-id interface name mpls ldp sync`
 Example:
 RP/0/RSP0/CPU0:router(config-ospf-vrf)# mpls ldp sync
 RP/0/RSP0/CPU0:router(config-ospf-vrf)# area 1 mpls ldp sync
 RP/0/RSP0/CPU0:router(config-ospf-vrf)# area 1 interface POS 0/2/0/0 mpls ldp sync |
| | Enables LDP IGP synchronization on an interface for the specified VRF. |
| 6 | `commit` |
| 7 | (Optional) `show mpls ldp vrf vrf-name ipv4 igp sync`
 Example:
 RP/0/RSP0/CPU0:router# show mpls ldp vrf red ipv4 igp sync |
| | Displays the LDP IGP synchronization information for the specified VRF for address family IPv4. |
| 8 | (Optional) `show mpls ldp vrf all ipv4 igp sync`
 Example:
 RP/0/RSP0/CPU0:router# show mpls ldp vrf all ipv4 igp sync |
| | Displays the LDP IGP synchronization information for all VRFs for address family IPv4. |
| 9 | (Optional) `show mpls ldp { ipv4 | ipv6 } igp sync`
 Example:
 RP/0/RSP0/CPU0:router# show mpls ldp ipv4 igp sync
 RP/0/RSP0/CPU0:router# show mpls ldp ipv6 igp sync |
| | Displays the LDP IGP synchronization information for IPv4 or IPv6 address families. |
Disabling LDP IGP Synchronization: OSPF

Perform this task to disable LDP IGP Synchronization under OSPF.

You can disable LDP IGP synchronization on a per-interface basis. This lets LDP enable all IGP interfaces except those that are explicitly disabled.

SUMMARY STEPS

1. `configure`
2. `router ospf process-name`
3. (Optional) `vrf vrf-name`
4. Use one of the following commands:
 - `area area-id mpls ldp sync disable`
 - `area area-id interface name mpls ldp sync disable`
5. (Optional) Use one of the following commands:
 - `area area-id mpls ldp sync disable`
 - `area area-id interface name mpls ldp sync disable`
6. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
</tr>
</tbody>
</table>
| **Step 2** | `router ospf process-name`
 | Example:
 | `RP/0/RSP0/CPU0:router(config)# router ospf 109` |
| **Step 3** | (Optional) `vrf vrf-name`
 | Example:
 | `RP/0/RSP0/CPU0:router(config-ospf)# vrf red` |
| **Step 4** | Use one of the following commands:
 | - `area area-id mpls ldp sync disable`
 | - `area area-id interface name mpls ldp sync disable`
<pre><code> | Disables LDP IGP synchronization on an interface. |
</code></pre>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ospf)# area 1 mpls ldp sync disable</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ospf)# area 1 interface POS 0/2/0/0 mpls ldp sync disable</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>(Optional) Use one of the following commands:</td>
</tr>
<tr>
<td></td>
<td>• area area-id mpls ldp sync disable</td>
</tr>
<tr>
<td></td>
<td>• area area-id interface name mpls ldp sync disable</td>
</tr>
<tr>
<td>Example:</td>
<td>Disables LDP IGP synchronization on an interface for the specified VRF.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ospf-vrf)# area 1 mpls ldp sync disable</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ospf-vrf)# area 1 interface POS 0/2/0/0 mpls ldp sync disable</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring LDP IGP Synchronization: ISIS

Perform this task to configure LDP IGP Synchronization under ISIS.

By default, there is no synchronization between LDP and ISIS.

SUMMARY STEPS

1. configure
2. router isis instance-id
3. interface type interface-path-id
4. address-family {ipv4 | ipv6} unicast
5. mpls ldp sync
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# <code>router isis 100</code></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-isis)#</td>
</tr>
<tr>
<td>3</td>
<td><code>interface type interface-path-id</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-isis)# <code>interface POS 0/2/0/0</code></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-isis-if)#</td>
</tr>
<tr>
<td>4</td>
<td>`address-family {ipv4</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-isis-if)# <code>address-family ipv4 unicast</code></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-isis-if-af)#</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-isis-if)# <code>address-family ipv6 unicast</code></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-isis-if-af)#</td>
</tr>
<tr>
<td>5</td>
<td><code>mpls ldp sync</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-isis-if-af)# <code>mpls ldp sync</code></td>
</tr>
<tr>
<td>6</td>
<td><code>commit</code></td>
</tr>
</tbody>
</table>

Enabling LDP Auto-Configuration for a Specified OSPF Instance

Perform this task to enable IGP auto-configuration globally for a specified OSPF process name. You can disable auto-configuration on a per-interface basis. This lets LDP enable all IGP interfaces except those that are explicitly disabled.

Note This feature is supported for IPv4 unicast family in default VRF only.
SUMMARY STEPS

1. configure
2. router ospf process-name
3. mpls ldp auto-config
4. area area-id
5. interface type interface-path-id
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>router ospf process-name</td>
<td>Enters a uniquely identifiable OSPF routing process. The process name is any alphanumeric string no longer than 40 characters without spaces.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# router ospf 190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ospf)#</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mpls ldp auto-config</td>
<td>Enables LDP auto-configuration.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ospf)# mpls ldp auto-config</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>area area-id</td>
<td>Configures an OSPF area and identifier.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ospf)# area 8</td>
<td>Either a decimal value or an IP address.</td>
</tr>
<tr>
<td>5</td>
<td>interface type interface-path-id</td>
<td>Enables LDP auto-configuration on the specified interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ospf-ar)# interface pos 0/6/0/0</td>
<td>LDP configurable limit for maximum number of interfaces does not apply to IGP auto-configuration interfaces.</td>
</tr>
<tr>
<td>6</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- IGP Auto-configuration, on page 13
- Configuring LDP Auto-Configuration: Example, on page 91
- Disabling LDP Auto-Configuration, on page 61

Enabling LDP Auto-Configuration in an Area for a Specified OSPF Instance

Perform this task to enable IGP auto-configuration in a defined area with a specified OSPF process name. You can disable auto-configuration on a per-interface basis. This lets LDP enable all IGP interfaces except those that are explicitly disabled.
SUMMARY STEPS

1. `configure`
2. `router ospf process-name`
3. `area area-id`
4. `mpls ldp auto-config`
5. `interface type interface-path-id`
6. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td>Enters a uniquely identifiable OSPF routing process. The process name is any alphanumeric string no longer than 40 characters without spaces.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router ospf process-name</code></td>
<td>Configures an OSPF area and identifier. <code>area-id</code> Either a decimal value or an IP address.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>area area-id</code></td>
<td>Enables LDP auto-configuration.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>mpls ldp auto-config</code></td>
<td>Enables LDP auto-configuration on the specified interface. The LDP configurable limit for maximum number of interfaces does not apply to IGP auto-config interfaces.</td>
</tr>
</tbody>
</table>
| Step 5 | `interface type interface-path-id` | Related Topics
 - IGP Auto-configuration, on page 13
 - Configuring LDP Auto-Configuration: Example, on page 91
 - Disabling LDP Auto-Configuration, on page 61 |
Disabling LDP Auto-Configuration

Perform this task to disable IGP auto-configuration.

You can disable auto-configuration on a per-interface basis. This lets LDP enable all IGP interfaces except those that are explicitly disabled.

SUMMARY STEPS

1. configure
2. mpls ldp
3. interface type interface-path-id
4. igp auto-config disable
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>mpls ldp</td>
<td>Enters the MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface type interface-path-id</td>
<td>Enters interface configuration mode and configures an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# interface pos 0/6/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>igp auto-config disable</td>
<td>Disables auto-configuration on the specified interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)# igp auto-config disable</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

IGP Auto-configuration, on page 13
Configuring LDP Auto-Configuration: Example, on page 91

Configuring LDP Nonstop Routing

Perform this task to configure LDP NSR.
By default, NSR is globally-enabled on all LDP sessions except AToM.

SUMMARY STEPS

1. `configure`
2. `mpls ldp`
3. `nsr`
4. `commit`
5. (Optional) `show mpls ldp [vrf vrf-name] nsr statistics`
6. (Optional) `show mpls ldp vrf vrf-name nsr statistics neighbor`
7. (Optional) `show mpls ldp [vrf vrf-name] nsr summary`
8. (Optional) `show mpls ldp [vrf vrf-name] nsr pending`
9. (Optional) `show mpls ldp vrf vrf-name nsr pending neighbor`
10. (Optional) `show mpls ldp vrf all nsr summary`
11. (Optional) `show mpls ldp nsr summary all`
12. (Optional) `clear mpls ldp vrf vrf-name nsr statistics neighbor`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the MPLS LDP configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** mpls ldp
 Example:
 `RP/0/RSP0/CPU0:router(config)# mpls ldp` | Enables LDP nonstop routing. |
| **Step 3** nsr
 Example:
 `RP/0/RSP0/CPU0:router(config-ldp)# nsr` | Displays MPLS LDP NSR statistics.
 Displays LDP NSR statistics for the specified VRF. |
| **Step 4** commit | |
| **Step 5** (Optional) `show mpls ldp [vrf vrf-name] nsr statistics`
 Example:
 `RP/0/RSP0/CPU0:router# show mpls ldp nsr statistics`
 `RP/0/RSP0/CPU0:router# show mpls ldp vrf red nsr statistics` | |

Note: By default, NSR is globally-enabled on all LDP sessions except AToM.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>(Optional) <code>show mpls ldp vrf vrf-name nsr statistics neighbor</code></td>
<td>Displays LDP NSR statistics for the specified VRF for a given neighbor.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# <code>show mpls ldp vrf vrf-name nsr statistics neighbor</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) <code>show mpls ldp [vrf vrf-name] nsr summary</code></td>
<td>Displays MPLS LDP NSR summarized information. Displays LDP NSR summarized information for the specified VRF.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# <code>show mpls ldp nsr summary</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router# <code>show mpls ldp vrf vrf-name nsr summary</code></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>(Optional) <code>show mpls ldp [vrf vrf-name] nsr pending</code></td>
<td>Displays MPLS LDP NSR pending information. Displays LDP NSR pending information for the specified VRF.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# <code>show mpls ldp nsr pending</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router# <code>show mpls ldp vrf vrf-name nsr pending</code></td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>(Optional) <code>show mpls ldp vrf vrf-name nsr pending neighbor</code></td>
<td>Displays LDP NSR pending information for the specified VRF for a given neighbor.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# <code>show mpls ldp vrf vrf-name nsr pending neighbor</code></td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>(Optional) <code>show mpls ldp vrf all nsr summary</code></td>
<td>Displays all LDP configured VRF (including default VRF) summarized information.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# <code>show mpls ldp vrf all nsr summary</code></td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>(Optional) <code>show mpls ldp nsr summary all</code></td>
<td>Displays aggregate summary across LDP processes and all VRFs.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# <code>show mpls ldp nsr summary all</code></td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>(Optional) <code>clear mpls ldp vrf vrf-name nsr statistics neighbor</code></td>
<td>Resets LDP NSR statistics for the specified VRF for neighbor.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring LDP Downstream on Demand mode

SUMMARY STEPS

1. `configure`
2. `mpls ldp`
3. `[vrf vrf-name session] downstream-on-demand`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>mpls ldp</code></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# <code>mpls ldp</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>[vrf vrf-name session] downstream-on-demand</code></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# <code>vrf red session downstream-on-demand with ABC</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>commit</code></td>
</tr>
</tbody>
</table>

Related Topics

[LDP Nonstop Routing](#), on page 14

Setting Up Implicit-Null-Override Label

Perform this task to configure implicit-null label for non-egress prefixes.

SUMMARY STEPS

1. `configure`
2. `mpls ldp`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>(Optional) Specifies a non-default VRF. Enables the LDP IPv4 or IPv6 address family.</td>
</tr>
<tr>
<td>Step 3 [vrf vrf-name] address-family {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Step 4 label</td>
<td>Configures implicit-null local label for non-egress prefixes. Note: This feature works with any prefix including static, IGP, and BGP, when specified in the ACL.</td>
</tr>
<tr>
<td>Step 5 local implicit-null-override for access-list</td>
<td></td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
</tbody>
</table>

Enabling MLDP

Perform this task to enable Multicast Label Distribution Protocol (MLDP) in MPLS LDP.

Summary Steps

1. configure
2. mpls ldp
3. mldp
4. end or commit
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>mpls ldp</td>
<td>Enters the MPLS LDP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>(Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mldp</td>
<td>Enables MLDP.</td>
</tr>
<tr>
<td></td>
<td>(Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# mldp)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp-mldp)#</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>end or commit</td>
<td>• When you issue the <code>end</code> command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td></td>
<td>(Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP/0/RSP0/CPU0:router (config-ldp-mldp)# end or</td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RP/0/RSP0/CPU0:router (config-ldp-mldp)# commit</td>
<td>• Entering <code>yes</code> saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Entering <code>no</code> exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Entering <code>cancel</code> leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the <code>commit</code> command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
</tr>
</tbody>
</table>

Enabling MLDP Make-Before-Break

Perform this task to enable the make-before-break (MBB) feature in MPLS MLDP.

SUMMARY STEPS

1. configure
2. mpls ldp
3. mldp
4. address-family ipv4
5. make-before-break [delay `seconds`]
6. end or commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | configure
Example:
RP/0/RSP0/CPU0:router# configure | Enters Global Configuration mode. |
| **Step 2** | mpls ldp
Example:
RP/0/RSP0/CPU0:router(config)# mpls ldp | Enters MPLS LDP configuration mode. |
| **Step 3** | mldp
Example:
RP/0/RSP0/CPU0:router(config-ldp)# mldp | Enables MLDP. |
| **Step 4** | address-family ipv4
Example:
RP/0/RSP0/CPU0:router(config-ldp-mldp)# address-family ipv4 | Enables MLDP for IPv4 address family. |
| **Step 5** | make-before-break [delay seconds]
Example:
RP/0/RSP0/CPU0:router(config-ldp-mldp-af)# make-before-break delay 10 | Enables the make-before-break feature. (Optional) Configures the MBB forwarding delay in seconds. Range is 0 to 600. |
| **Step 6** | end or commit
Example:
RP/0/RP/0/RSP0/CPU0:router (config-ldp-mldp-af)# end
or
RP/0/RP/0/RSP0/CPU0:router (config-ldp-mldp-af)# commit | • When you issue the `end` command, the system prompts you to commit changes:
Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:
• Entering `yes` saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
• Entering `no` exits the configuration session and returns the router to EXEC mode without committing the configuration changes. |
Enabling MLDP MoFRR

Perform this task to enable multicast only fast reroute (MoFRR) support in MPLS MLDP.

SUMMARY STEPS

1. configure
2. mpls ldp
3. mldp
4. address-family ipv4
5. mofrr
6. end or commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3 mldp</td>
<td>Enables MLDP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# mldp</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables MLDP for IPv4 address family.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-mldp)# address-family ipv4</td>
<td></td>
</tr>
</tbody>
</table>
Enabling MLDP Recursive FEC

Perform this task to enable recursive forwarding equivalence class (FEC) support in MPLS MLDP.

SUMMARY STEPS

1. configure
2. mpls ldp
3. mldp
4. address-family ipv4
5. recursive-fec
6. end or commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters Global Configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mofrr</td>
<td>Enables MoFRR support.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-mldp-af)# mofrr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end or commit</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>Uncommitted changes found, commit them before exiting (yes/no/cancel)? [cancel]:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP/0/RSP0/CPU0:router(config-ldp-mldp-af)# end</td>
<td>• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td>• Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
<td></td>
</tr>
<tr>
<td>RP/0/RP/0/RSP0/CPU0:router(config-ldp-mldp-af)# commit</td>
<td>• Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
<td></td>
</tr>
<tr>
<td>• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Enabling MLDP Recursive FEC

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enables MLDP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3 mldp</td>
<td>Enables MLDP for IPv4 address family.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# mldp</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables recursive FEC support.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-mldp)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 recursive-fec</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-mldp-af)# recursive-fec</td>
<td></td>
</tr>
<tr>
<td>Step 6 end or commit</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>Example:</td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</td>
</tr>
<tr>
<td>RP/0/RP/0/RSP0/CPU0:router (config-ldp-mldp-af)# end</td>
<td>• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td>or</td>
<td>• Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td>RP/0/RP/0/RSP0/CPU0:router (config-ldp-mldp-af)# commit</td>
<td>• Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
</tr>
</tbody>
</table>
Enabling MLDP Static Multipoint to Multipoint LSP

Perform this task to enable static multipoint to multipoint (MP2MP) LSP support in MPLS MLDP.

SUMMARY STEPS

1. `configure`
2. `mpls ldp`
3. `mldp`
4. `address-family ipv4`
5. `static mp2mp ip-address`
6. `end` or `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>Example: <code>configure</code></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router# configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example: <code>mpls ldp</code></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config)# mpls ldp</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 mldp</td>
<td>Enables MLDP.</td>
</tr>
<tr>
<td>Example: <code>mldp</code></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-ldp)# mldp</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables MLDP for IPv4 address family.</td>
</tr>
<tr>
<td>Example: <code>address-family ipv4</code></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-ldp-mldp)# address-family ipv4</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 static mp2mp <code>ip-address</code></td>
<td>Enables static MP2MP LSP support and specifies MP2MP LSP root IP address followed by the number of LSPs in the range 1 to 1000.</td>
</tr>
<tr>
<td>Example: <code>static mp2mp 10.10.10.10 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>end</code> or <code>commit</code></td>
<td>* When you issue the <code>end</code> command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-ldp-mldp-af)# static mp2mp 10.10.10.10 1</code></td>
<td></td>
</tr>
</tbody>
</table>

Cisco ASR 9000 Series Aggregation Services Router MPLS Configuration Guide, Release 6.0.x
Enabling MLDP Static Point to Multipoint LSP

Perform this task to enable static point to multipoint (P2MP) LSP support in MPLS MLDP.

SUMMARY STEPS

1. `configure`
2. `mpls ldp`
3. `mldp`
4. `address-family ipv4`
5. `static p2mp ip-address`
6. `end` or `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure</code></td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router# configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2: <code>mpls ldp</code></td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config)# mpls ldp</code></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>3</td>
<td><code>mldp</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-ldp)# mldp</code></td>
</tr>
<tr>
<td>4</td>
<td><code>address-family ipv4</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-ldp-mldp)# address-family ipv4</code></td>
</tr>
<tr>
<td>5</td>
<td><code>static p2mp ip-address</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-ldp-mldp-af)# static p2mp 1.1.1.1 1</code></td>
</tr>
<tr>
<td>6</td>
<td><code>end</code> or <code>commit</code></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP/0/RSP0/CPU0:router(config-ldp-mldp-af)# end</code></td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RP/0/RSP0/CPU0:router(config-ldp-mldp-af)# commit</code></td>
</tr>
<tr>
<td></td>
<td>• When you issue the <code>end</code> command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td></td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? (cancel):</td>
</tr>
<tr>
<td></td>
<td>• Entering <code>yes</code> saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Entering <code>no</code> exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• Entering <code>cancel</code> leaves the router in the current configuration session without exiting or committing the configuration changes.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>commit</code> command to save the configuration changes to the running configuration file and remain within the configuration session.</td>
</tr>
</tbody>
</table>

Disabling MLDP

Perform this task to disable MLDP on Label Distribution Protocol (LDP) enabled interfaces.

SUMMARY STEPS

1. `configure`
Implementing MPLS Label Distribution Protocol

Disabling MLDP

2. `mpls ldp`
3. `interface type interface-path-id`
4. `address-family {ipv4 | ipv6 }`
5. `igp mldp disable`
6. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enters interface configuration mode for the LDP protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# interface POS 0/1/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)# address-family ipv6</td>
<td></td>
</tr>
<tr>
<td>Step 5 igp mldp disable</td>
<td>Disables MLDP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp-if-af)# igp mldp disable</td>
<td></td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LDP IPv6 Configuration

The LDP configuration model is extended to introduce IPv6 as an option under the address family submodes that reside under LDP global and interface configurations. Address family IPv6 is available as a submode under LDP global, LDP VRF global and interface configurations. LDP IPv6 is supported only under default VRF.

Enabling LDP IPv6 Native

Perform this task to enable LDP IPv6 native under LDP.

The user must enable IPv6 address family under LDP submodes.

SUMMARY STEPS

1. configure
2. mpls ldp
3. address-family ipv6
4. end or commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>address-family ipv6</td>
<td>Enables native LDP IPv6 address family.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# address-family ipv6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp-af)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>end or commit</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP/0/RSP0/CPU0:router (config-ldp-af)# end or</td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? (cancel):</td>
</tr>
</tbody>
</table>
Enabling LDP IPv6 Control Plane

Perform this task to enable LDP IPv6 control plane on an LDP interface.

SUMMARY STEPS

1. configure
2. mpls ldp
3. interface type interface-path-id
4. address-family ipv6
5. end or commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>interface type interface-path-id</td>
<td>Enters interface configuration mode for the LDP protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# interface pos 0/6/0/0</td>
<td>Enters interface configuration mode for the LDP protocol.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>address-family ipv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)# address-family ipv6</td>
</tr>
</tbody>
</table>

Enables LDP IPv6 control plane.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>end or commit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RP/0/RSP0/CPU0:router (config-ldp-if-af)# end</td>
</tr>
<tr>
<td>or</td>
<td>RP/0/RP/0/RSP0/CPU0:router (config-ldp-if-af)# commit</td>
</tr>
</tbody>
</table>

Note

This configuration will be rejected if (mpls-ldp-af) for the given address family is not already enabled.

- When you issue the end command, the system prompts you to commit changes:

 Uncommitted changes found, commit them before exiting(yes/no/cancel)?

 (cancel):

 - Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
 - Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
 - Entering cancel leaves the router in the current configuration session without exiting or committing the configuration changes.
 - Use the commit command to save the configuration changes to the running configuration file and remain within the configuration session.

Configuring IPv6-only LSR

Perform this task to configure IPv6-only LSR.

IPv4 is implicitly enabled under default VRF and any LDP interface under default VRF. In order to operate as an IPv6-only LSR, the user must also explicitly disable IPv4 address family.

SUMMARY STEPS

1. configure
2. interface loopback number
3. ipv6 address prefix
4. exit
5. interface type interface-path-id
6. ipv6 address prefix
7. exit
8. `router isis process-id`
9. `net network-entity-title`
10. `interface loopback number`
11. `address-family ipv6 unicast`
12. `exit`
13. `exit`
14. `interface type interface-path-id`
15. `address-family ipv6 unicast`
16. `exit`
17. `exit`
18. `mpls ldp`
19. `default-vrf implicit-ipv4 disable`
20. `router-id lsr id`
21. `address-family ipv6`
22. `exit`
23. `interface type interface-path-id`
24. `address-family ipv6`
25. `end or commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | `configure`
Example: `RP/0/RSP0/CPU0:router# configure` | Enters global configuration mode. |
| Step 2 | `interface loopback number`
Example: `RP/0/RSP0/CPU0:router(config)# interface Loopback 0` | Enters interface configuration mode. |
| Step 3 | `ipv6 address prefix`
Example: `RP/0/RSP0/CPU0:router(config-if)# ipv6 address 6:6::6/128` | Configures IPv6 address on interface. |
| Step 4 | `exit`
Example: `RP/0/RSP0/CPU0:router(config-if)# exit` | Exits interface configuration mode and enters global configuration mode. |
<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>interface type interface-path-id</code></td>
<td>Enters interface configuration mode for the LDP protocol.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config)# interface GigabitEthernet 0/0/0/0</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>ipv6 address prefix</code></td>
<td>Configures IPv6 address on interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-if)# ipv6 address 16::1::6/120</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>exit</code></td>
<td>Exits interface configuration mode and enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-if)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>router isis process-id</code></td>
<td>Enables IS-IS routing for the specified routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config)# router isis 100</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>net network-entity-title</code></td>
<td>Configures the NET on the router. The NET identifies the router for IS-IS.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-isis)# net 49.0000.0000.0000.0006.00</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 10</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>interface loopback number</code></td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-isis)# interface Loopback 0</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 11</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>address-family ipv6 unicast</code></td>
<td>Enters the IS-IS interface IPv6 address family configuration submode. Specifies unicast topology.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-isis-if)# address-family ipv6 unicast</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>exit</code></td>
<td>Exits address family configuration submode and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><code>interface type interface-path-id</code></td>
<td>Enters interface configuration mode for the LDP protocol.</td>
<td></td>
</tr>
<tr>
<td><code>address-family ipv6 unicast</code></td>
<td>Enters the IS-IS interface IPv6 address family configuration submode. Specifies unicast topology.</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits address family configuration submode and enters interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Exits interface configuration mode.</td>
<td></td>
</tr>
<tr>
<td><code>mpls ldp</code></td>
<td>Enters MPLS LDP configuration mode.</td>
<td></td>
</tr>
<tr>
<td><code>default-vrf implicit-ipv4 disable</code></td>
<td>Disables the implicitly enabled IPv4 address family for default VRF.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>20</td>
<td><code>router-id lsr id</code></td>
<td>Configures router ID.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# <code>router-id</code> 5.5.5.5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td><code>address-family ipv6</code></td>
<td>Enables native LDP IPv6 address family.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# <code>address-family ipv6</code></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td><code>exit</code></td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp-af)# <code>exit</code></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td><code>interface type interface-path-id</code></td>
<td>Enters interface configuration mode for the LDP protocol.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# <code>interface GigabitEthernet 0/0/0/0</code></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td><code>address-family ipv6</code></td>
<td>Enables LDP IPv6 control plane.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp-if)# <code>address-family ipv6</code></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td><code>end</code> or <code>commit</code></td>
<td>When you issue the <code>end</code> command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP/0/RSP0/CPU0:router (config-ldp-if-af)# <code>end</code></td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RP/0/RSP0/CPU0:router (config-ldp-if-af)# <code>commit</code></td>
<td>• Entering yes saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Entering no exits the configuration session and returns the router to EXEC mode without committing the configuration changes.</td>
</tr>
</tbody>
</table>
Configuring Global Transport Address for IPV6

Perform this task to configure global transport address for IPv6 address family.

SUMMARY STEPS

1. configure
2. mpls ldp
3. address-family ipv6
4. discovery transport-address ip-address
5. end or commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>configure</td>
<td>Example:</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>mpls ldp</td>
<td>Example:</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables native LDP IPv6 address family.</td>
</tr>
<tr>
<td>address-family ipv6</td>
<td>Example:</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ldp)# address-family ipv6</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures the global transport address for the specified IPv6 address.</td>
</tr>
<tr>
<td>discovery transport-address ip-address</td>
<td>Example:</td>
</tr>
</tbody>
</table>
Disabling Implicit IPv4

Perform this task to disable the implicitly enabled IPv4 address family for default VRF.

SUMMARY STEPS

1. configure
2. mpls ldp
3. default-vrf implicit-ipv4 disable
4. end or commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring IPv4 as Transport Preference

Perform this task to configure IPv4 as the preferred transport (overriding the default setting of IPv6 as preferred transport) to establish connection for a set of dual-stack peers.

SUMMARY STEPS

1. configure
2. mpls ldp
3. neighbor dual-stack transport-connection prefer ipv4 for-peers peer lsr-id
4. end or commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 - configure
 - Example:
 - RP/0/RSP0/CPU0:router# configure |
 | Enters global configuration mode. |
| **Step 2**
 - mpls ldp
 - Example:
 - RP/0/RSP0/CPU0:router(config)# mpls ldp |
 | Enters MPLS LDP configuration mode. |
| **Step 3**
 - neighbor dual-stack transport-connection prefer ipv4 for-peers peer lsr-id
 - Example:
 - RP/0/RSP0/CPU0:router(config-ldp)# neighbor dual-stack transport-connection prefer ipv4 for-peers 5.5.5.5 |
 | Configures IPv4 as the preferred transport connection for the specified peer. |
| **Step 4**
 - end or commit
 - Example:
 - RP/0/RP/0/RSP0/CPU0:router (config-ldp)# end or
 - RP/0/RP/0/RSP0/CPU0:router (config-ldp)# commit |
 | • When you issue the **end** command, the system prompts you to commit changes:
 - Uncommitted changes found, commit them before exiting(yes/no/cancel)? (cancel):
 | • Entering **yes** saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
 | • Entering **no** exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
 | • Entering **cancel** leaves the router in the current configuration session without exiting or committing the configuration changes.
 | • Use the **commit** command to save the configuration changes to the running configuration file and remain within the configuration session. |

Configuring Transport Preference Maximum Wait Time

Perform this task to configure the maximum time (in seconds) the preferred address family connection must wait to establish transport connection before resorting to non-preferred address family.
SUMMARY STEPS

1. configure
2. mpls ldp
3. neighbor dual-stack transport-connection max-wait *seconds*
4. end or commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>mpls ldp</td>
<td>Enters MPLS LDP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# mpls ldp</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>neighbor dual-stack transport-connection max-wait seconds</td>
<td>Configures the maximum wait time.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ldp)# neighbor dual-stack transport-connection max-wait 5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>end or commit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RF0/RSP0/CPU0:router (config-ldp)# end or commit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RF0/RSP0/CPU0:router (config-ldp)# commit</td>
<td></td>
</tr>
</tbody>
</table>

- When you issue the **end** command, the system prompts you to commit changes:

 Uncommitted changes found, commit them before exiting(yes/no/cancel)? [cancel]:

- Entering **yes** saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

- Entering **no** exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

- Entering **cancel** leaves the router in the current configuration session without exiting or committing the configuration changes.

- Use the **commit** command to save the configuration changes to the running configuration file and remain within the configuration session.
Configuration Examples for Implementing MPLS LDP

These configuration examples are provided to implement LDP:

Configuring LDP with Graceful Restart: Example

The example shows how to enable LDP with graceful restart on the POS interface 0/2/0/0.

```conf
mpls ldp
   graceful-restart
   interface pos0/2/0/0

show mpls ldp parameters
show mpls ldp discovery
```

Configuring LDP Discovery: Example

The example shows how to configure LDP discovery parameters.

```conf
mpls ldp
   router-id 192.168.70.1
   discovery hello holdtime 15
   discovery hello interval 5

show mpls ldp discovery
```

Configuring LDP Link: Example

The example shows how to configure LDP link parameters.

```conf
mpls ldp
   interface pos 0/1/0/0

show mpls ldp discovery
```

Related Topics
- Configuring LDP Discovery Over a Link, on page 34
- LDP Control Plane, on page 5

Configuring LDP Discovery for Targeted Hellos: Example

The examples show how to configure LDP Discovery to accept targeted hello messages.
Active (tunnel head)

```plaintext
mpls ldp
  router-id 192.168.70.1
  interface tunnel-te 12001

Passive (tunnel tail)

```plaintext
mpls ldp
 router-id 192.168.70.2
 discovery targeted-hello accept

Related Topics
- Configuring LDP Discovery for Active Targeted Hellos, on page 36
- Configuring LDP Discovery for Passive Targeted Hellos, on page 38
- LDP Control Plane, on page 5

Configuring Label Advertisement (Outbound Filtering): Example

The example shows how to configure LDP label advertisement control.

```plaintext
mpls ldp
  address-family ipv4
    label local advertise
      disable
        for pfx_acl_1 to peer_acl_1
        for pfx_acl_2 to peer_acl_2
        for pfx_acl_3
        interface POS 0/1/0/0
        interface POS 0/2/0/0

show mpls ldp binding
```

Related Topics
- Configuring Label Advertisement Control (Outbound Filtering), on page 40
Configuring LDP Neighbors: Example

The example shows how to disable label advertisement.

```conf
mpls ldp
  address-family ipv4
    label local advertise
disable
!
!
```

Related Topics

- Setting Up LDP Neighbors, on page 41

Configuring LDP Forwarding: Example

The example shows how to configure LDP forwarding.

```conf
mpls ldp
  address-family ipv4
    label local advertise explicit-null
!
show mpls ldp forwarding
show mpls forwarding
```

Related Topics

- Setting Up LDP Forwarding, on page 44
- LDP Forwarding, on page 6

Configuring LDP Nonstop Forwarding with Graceful Restart: Example

The example shows how to configure LDP nonstop forwarding with graceful restart.

```conf
mpls ldp
log
graceful-restart
!
graceful-restart forwarding state-holdtime 180
graceful-restart reconnect-timeout 15
interface pos0/1/0/0
!
show mpls ldp graceful-restart
show mpls ldp neighbor gr
show mpls ldp forwarding
show mpls forwarding
```
Related Topics

- Setting Up LDP NSF Using Graceful Restart, on page 48
- LDP Graceful Restart, on page 7
- Phases in Graceful Restart, on page 9
- Recovery with Graceful-Restart, on page 9

Configuring Label Acceptance (Inbound Filtering): Example

The example shows how to configure inbound label filtering.

```mpls ldp
label
accept
for pfx_acl_2 from 192.168.2.2
```

```mpls ldp
address-family ipv4
label remote accept from 192.168.1.1:0 for pfx_acl_2
```

Related Topics

- Configuring Label Acceptance Control (Inbound Filtering), on page 51
- Label Acceptance Control (Inbound Filtering), on page 11

Configuring Local Label Allocation Control: Example

The example shows how to configure local label allocation control.

```mpls ldp
address-family ipv4
label local allocate for pfx_acl_1
```

Related Topics

- Configuring Local Label Allocation Control, on page 52
- Local Label Allocation Control, on page 11

Configuring LDP Session Protection: Example

The example shows how to configure session protection.

```mpls ldp
session protection duration 60 for peer_acl_1
```
Related Topics

Configuring Session Protection, on page 53
Session Protection, on page 12

Configuring LDP IGP Synchronization—OSPF: Example

The example shows how to configure LDP IGP synchronization for OSPF.

```
router ospf 100
  mpls ldp sync

mpls ldp
  igp sync delay 30
```

Related Topics

Configuring LDP IGP Synchronization: OSPF, on page 54
IGP Synchronization, on page 13

Configuring LDP IGP Synchronization—ISIS: Example

The example shows how to configure LDP IGP synchronization.

```
router isis 100
  interface POS 0/2/0/0
  address-family ipv4 unicast
  mpls ldp sync

mpls ldp
  igp sync delay 30
```

Related Topics

Configuring LDP IGP Synchronization: ISIS, on page 57
IGP Synchronization, on page 13

Configuring LDP Auto-Configuration: Example

The example shows how to configure the IGP auto-configuration feature globally for a specific OSPF interface ID.

```
router ospf 100
  mpls ldp auto-config
  area 0
    interface pos 1/1/1
```
The example shows how to configure the IGP auto-configuration feature on a given area for a given OSPF interface ID.

```
router ospf 100
  area 0
    mpls ldp auto-config
    interface pos 1/1/1/1
```

Related Topics

- Enabling LDP Auto-Configuration for a Specified OSPF Instance, on page 58
- Enabling LDP Auto-Configuration in an Area for a Specified OSPF Instance, on page 59
- Disabling LDP Auto-Configuration, on page 61
- IGP Auto-configuration, on page 13

Configure IP LDP Fast Reroute Loop Free Alternate: Examples

This example shows how to configure LFA FRR with default tie-break configuration:

```
router isis TEST
  net 49.0001.0000.0000.0001.00
  address-family ipv4 unicast
  metric-style wide

interface GigabitEthernet0/6/0/13
  point-to-point
  address-family ipv4 unicast
  fast-reroute per-prefix
  # primary path GigabitEthernet0/6/0/13 will exclude the interface
  # GigabitEthernet0/6/0/33 in LFA backup path computation.
  fast-reroute per-prefix exclude interface GigabitEthernet0/6/0/33

interface GigabitEthernet0/6/0/23
  point-to-point
  address-family ipv4 unicast

interface GigabitEthernet0/6/0/24
  point-to-point
  address-family ipv4 unicast

interface GigabitEthernet0/6/0/33
  point-to-point
  address-family ipv4 unicast
```

This example shows how to configure TE tunnel as LFA backup:

```
router isis TEST
  net 49.0001.0000.0000.0001.00
  address-family ipv4 unicast
  metric-style wide
```
interface GigabitEthernet0/6/0/13
 point-to-point
 address-family ipv4 unicast
 fast-reroute per-prefix
 # primary path GigabitEthernet0/6/0/13 will exclude the interface
 # GigabitEthernet0/6/0/33 in LFA backup path computation. TE tunnel 1001
 fast-reroute per-prefix exclude interface GigabitEthernet0/6/0/33
 fast-reroute per-prefix lfa-candidate interface tunnel-te1001

interface GigabitEthernet0/6/0/33
 point-to-point
 address-family ipv4 unicast

This example shows how to configure LFA FRR with configurable tie-break configuration:

router isis TEST
 net 49.0001.0000.0000.0001.00
 address-family ipv4 unicast
 metric-style wide
 fast-reroute per-prefix tiebreaker ?
 downstream Prefer backup path via downstream node
 lc-disjoint Prefer line card disjoint backup path
 lowest-backup-metric Prefer backup path with lowest total metric
 node-protecting Prefer node protecting backup path
 primary-path Prefer backup path from ECMF set
 secondary-path Prefer non-ECMP backup path

 fast-reroute per-prefix tiebreaker lc-disjoint index ?
 <1-255> Index
 fast-reroute per-prefix tiebreaker lc-disjoint index 10

Sample configuration:

router isis TEST
 net 49.0001.0000.0000.0001.00
 address-family ipv4 unicast
 metric-style wide
 fast-reroute per-prefix tiebreaker downstream index 60
 fast-reroute per-prefix tiebreaker lc-disjoint index 10
 fast-reroute per-prefix tiebreaker lowest-backup-metric index 40
 fast-reroute per-prefix tiebreaker node-protecting index 30
 fast-reroute per-prefix tiebreaker primary-path index 20
 fast-reroute per-prefix tiebreaker secondary-path index 50

! interface GigabitEthernet0/6/0/13
 point-to-point
 address-family ipv4 unicast
 fast-reroute per-prefix
!
! interface GigabitEthernet0/1/0/13
 point-to-point
 address-family ipv4 unicast
 fast-reroute per-prefix
!
! interface GigabitEthernet0/3/0/0.1
 point-to-point
 address-family ipv4 unicast
!
! interface GigabitEthernet0/3/0/0.2
 point-to-point
 address-family ipv4 unicast
Verify IP LDP Fast Reroute Loop Free Alternate: Example

The following examples show how to verify the IP LDP FRR LFA feature on the router.

The following example shows how to verify ISIS FRR output:

```
RP/0/RSP0/CPU0:router#show isis fast-reroute summary

IS-IS 1 IPv4 Unicast FRR summary

<table>
<thead>
<tr>
<th>Priority</th>
<th>Priority</th>
<th>Priority</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prefixes reachable in L1</td>
<td>Critical</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>All paths protected</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Some paths protected</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unprotected</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Protection coverage</td>
<td>0.00%</td>
<td>0.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Prefixes reachable in L2

<table>
<thead>
<tr>
<th>Priority</th>
<th>Priority</th>
<th>Priority</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>All paths protected</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Some paths protected</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unprotected</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Protection coverage</td>
<td>0.00%</td>
<td>0.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>
```

The following example shows how to verify the IGP route 211.1.1.1/24 in ISIS Fast Reroute output:

```
RP/0/RSP0/CPU0:router#show isis fast-reroute 211.1.1.1/24

L1 211.1.1.1/24 [40/115]
via 12.0.0.2, GigabitEthernet0/6/0/13, NORTH
FRR backup via 14.0.2.2, GigabitEthernet0/6/0/0.3, SOUTH

RP/0/RSP0/CPU0:router#show isis fast-reroute 211.1.1.1/24 detail

L1 211.1.1.1/24 [40/115] low priority
via 12.0.0.2, GigabitEthernet0/6/0/13, NORTH
FRR backup via 14.0.2.2, GigabitEthernet0/6/0/0.3, SOUTH
P: No, TM: 130, LC: No, NP: Yes, D: Yes
src srl.00-00, 173.1.1.2
L2 adv [40] native, propagated
```

The following example shows how to verify the IGP route 211.1.1.1/24 in RIB output:

```
RP/0/RSP0/CPU0:router#show route 211.1.1.1/24

Routing entry for 211.1.1.0/24
Known via "isis 1", distance 115, metric 40, type level-1
Installed Nov 27 10:22:20.311 for 1d08h
Routing Descriptor Blocks
12.0.0.2, from 173.1.1.2, via GigabitEthernet0/6/0/13, Protected
Route metric is 40
14.0.2.2, from 173.1.1.2, via GigabitEthernet0/6/0/0.3, Backup
Route metric is 0
```
The following example shows how to verify the IGP route 211.1.1.1/24 in FIB output:

```
RP/0/RSP0/CPU0:router#show cef 211.1.1.1/24
211.1.1.0/24, version 0, internal 0x40040001 (ptr 0x9d9e1a68) [1], 0x0
  (0x9ce0ec40), 0x4500 (0x9e2c69e4)
  remote adjacency to GigabitEthernet0/6/0/13
Prefix Len 24, traffic index 0, precedence routine (0)
  via 12.0.0.2, GigabitEthernet0/6/0/13, 0 dependencies, weight 0, class 0,
  protected [flags 0x400]
    path-idx 0, bkup-idx 1 [0x9e5b71b4 0x0]
    next hop 12.0.0.2
      local label 16080 labels imposed {16082}
      gateway array (0x9cc622f0) reference count 1158, flags 0x28000d00, source lsd
        [387 type 5 flags 0x101001 (0x9df32398) ext 0x0 (0x0)]
    via 14.0.2.2, GigabitEthernet0/6/0/0.3, 3 dependencies, weight 0, class 0,
      backup [flags 0x300]
        path-idx 1
        next hop 14.0.2.2
        local label 16080 labels imposed {16079}
```

The following example shows how to verify the IGP route 211.1.1.1/24 in MPLS LDP output:

```
RP/0/RSP0/CPU0:router#show mpls ldp forwarding 211.1.1.1/24
Prefix Label Label Outgoing Next Hop GR Stale
---------------- ------- ---------- ------------ ------------------- -- -----
211.1.1.0/24 16080 16082 Gi0/6/0/13 Y N
```

The following example shows how to verify the IGP route 211.1.1.1/24 in MPLS LDP output:
MPLS LDP CSC for Multiple VRFs Configuration: Examples

This figure shows a L3VPN LDP CSC topology that uses either BGP or LDP between PE and CE routers to distribute routes and MPLS labels.

L3VPN CSC VPN: LDP / BGP

VRF red: CE11, CE21
VRF blue: CE12, CE13 (local only switching)
Multi-home CEs: CE11, CE21
LDP CSC: PE1/PE11 with CE1x
BGP CSC: PE2/PE22 with CE2x

CSC-CE11 Configuration

hostname ce11

interface Loopback0
 ipv4 address 11.11.11.11 255.255.255.255
!
interface POS0/2/0/0
 ipv4 address 192.168.1.11 255.255.255.0
hostname ce12

CSC-CE12 Configuration
interface POS0/2/0/0

mpls ldp
log
 adjacency
 neighbor

router-id 11.11.11.12
address-family ipv4

interface POS0/2/0/0
address-family ipv4

no interface POS0/2/0/0 shut
end

CSC-CE13 Configuration

hostname ce13

interface Loopback0
 ipv4 address 11.11.11.11 255.255.255.255

interface POS0/2/0/0
 ipv4 address 192.170.1.12 255.255.255.0

router ospf 100
 log adjacency changes
 router-id 11.11.11.11
 area 0
 interface Loopback0

!
interface POS0/2/0/0
!
!
mpls ldp
log
 adjacency
 neighbor
!
router-id 11.11.11.11
address-family ipv4
!
interface POS0/2/0/0
address-family ipv4
!
!
no interface POS0/2/0/0 shut
end

CSC-CE21 Configuration
hostname ce21

interface Loopback0
 ipv4 address 21.21.21.21 255.255.255.255
!
interface POS0/2/0/0
 ipv4 address 193.168.1.21 255.255.255.0
!
interface POS0/2/0/1
 ipv4 address 193.169.1.21 255.255.255.0
!
route-policy pass-all
 pass
end-policy
!
router static
 address-family ipv4 unicast
 193.168.1.2/32 POS0/2/0/0
 193.169.1.2/32 POS0/2/0/1
 !
 address-family ipv6 unicast
 1::1::1/128 POS0/2/0/0
 !
!
router bgp 2
 bgp router-id 21.21.21.21
 address-family ipv4 unicast
 redistribute connected
 allocate-label all
 !
 neighbor 193.168.1.2
 remote-as 100
 address-family ipv4 labeled-unicast
 route-policy pass-all in
 route-policy pass-all out
 !
 neighbor 193.169.1.22
 remote-as 100
 address-family ipv4 labeled-unicast
 route-policy pass-all in
 route-policy pass-all out
 !
!
no interface POS0/2/0/0 shut
no interface POS0/2/0/1 shut
end

CSC-PE1 Configuration

hostname pe1

vrf red
 address-family ipv4 unicast
 import route-target
 100:1
 !
 export route-target
 100:1
 !
vrf blue
 address-family ipv4 unicast

 interface Loopback0
 ipv4 address 1.1.1.1 255.255.255.255
 ipv6 address 1::1/128

 interface Loopback1
 vrf red
 ipv4 address 1.1.1.1 255.255.255.255

 interface Loopback2
 vrf blue
 ipv4 address 1.1.1.1 255.255.255.255

 interface Loopback11
 ipv4 address 1.1.1.2 255.255.255.255
 ipv6 address 1::2/128

 interface Loopback112
 vrf blue
 ipv4 address 1.1.1.12 255.255.255.255

 interface POS0/2/0/0
 vrf red
 ipv4 address 192.168.1.1 255.255.255.0

 interface POS0/2/0/1
 vrf red
 ipv4 address 192.168.2.1 255.255.255.0

 interface POS0/2/0/2
 vrf blue
 ipv4 address 192.169.1.1 255.255.255.0

 interface POS0/2/0/3
 vrf blue
 ipv4 address 192.170.1.1 255.255.255.0

 interface POS0/2/0/4
 ipv4 address 12.1.0.1 255.255.255.0
 ipv6 address 12::1/120

 interface POS0/2/0/5
 ipv4 address 122.1.0.1 255.255.255.0

 router static
 address-family ipv6 unicast
 2::2/128 POS0/2/0/4

 router ospf 100
 log adjacency changes
 router-id 1.1.1.1
 area 0
 interface Loopback0

 interface POS0/2/0/4

 interface POS0/2/0/5

 !
vrf red
router-id 1.1.1.1
redistribute bgp 100
area 0
interface Loopback1
! interface POS0/2/0/0
! interface POS0/2/0/1
!
!
vrf blue
router-id 1.1.1.1
area 0
interface Loopback2
! interface POS0/2/0/2
! interface POS0/2/0/3
!
!
router bgp 100
address-family ipv4 unicast
! address-family vpnv4 unicast
! neighbor 2.2.2.2
remote-as 100
update-source Loopback0
address-family vpnv4 unicast
!
neighbor 2.2.2.22
remote-as 100
update-source Loopback0
address-family vpnv4 unicast
!
!
vrf red
rd 1:1
address-family ipv4 unicast
maximum-paths eibgp 8
redistribute ospf 100
!
!
mpls ldp
log
adjacency
neighbor
!
nsr
router-id 1.1.1.1
address-family ipv4
label
local
advertise
explicit-null
!
!
CSC-PE2 Configuration

hostname pe2

vrf red
 address-family ipv4 unicast
 import route-target
 100:1
 export route-target
 100:1
interface Loopback0
 ipv4 address 2.2.2.2 255.255.255.255
 ipv6 address 2:2:2:2/128
!
interface Loopback1
 vrf red
 ipv4 address 2.2.2.2 255.255.255.255
!
interface POS0/2/0/0
 ipv4 address 12.1.0.2 255.255.255.0
 ipv6 address 12:1::2/120
!
interface POS0/2/0/1
 vrf red
 ipv4 address 193.168.1.2 255.255.255.0
!
route-policy pass-all
 pass
end-policy
!
router static
 address-family ipv6 unicast
 1:1:1::1/128 POS0/2/0/0
 1:1:1::2/128 POS0/2/0/0
!
 vrf red
 address-family ipv4 unicast
 193.168.1.21/32 POS0/2/0/1
!
!
router ospf 100
 log adjacency changes
 router-id 2.2.2.2
 area 0
 interface Loopback0
 !
 interface POS0/2/0/0
 !
!
router bgp 100
 address-family ipv4 unicast
 !
 address-family vpnv4 unicast
 !
 neighbor 1.1.1.1
 remote-as 100
 update-source Loopback0
 address-family vpnv4 unicast
 !
 !
 vrf red
 rd 1:1
 address-family ipv4 unicast
 allocate-label all
 !
 neighbor 193.168.1.21
 remote-as 2
 address-family ipv4 labeled-unicast
 route-policy pass-all in
 route-policy pass-all out

mpls ldp
log
adjacency
neighbor
router-id 2.2.2.2
address-family ipv4
label
local
advertise
explicit-null

interface POS0/2/0/0
address-family ipv4

no interface POS0/2/0/0 shut
no interface POS0/2/0/1 shut
end

CSC-PE11 Configuration

hostname pe11
vrf red
 address-family ipv4 unicast
 import route-target
 100:1
 export route-target
 100:1

interface Loopback0
 ipv4 address 1.1.1.11 255.255.255.255

interface Loopback1
 vrf red
 ipv4 address 1.1.1.11 255.255.255.255

interface POS0/2/0/0
 vrf red
 ipv4 address 192.168.3.1 255.255.255.0

interface POS0/2/0/1
 ipv4 address 112.1.0.1 255.255.255.0

router ospf 100
log adjacency changes
router-id 1.1.1.11
area 0
 interface Loopback0

 interface POS0/2/0/1
vrf red
router-id 1.1.1.11
redistribute bgp 100
area 0
 interface Loopback1
 interface POS0/2/0/0

router bgp 100
 address-family ipv4 unicast
 address-family vpnv4 unicast
 neighbor 2.2.2.22
 remote-as 100
 update-source Loopback0
 address-family vpnv4 unicast

 vrf red
 rd 1:1
 address-family ipv4 unicast
 maximum-paths eibgp 8
 redistribute ospf 100

 mpls ldp
 log
 adjacency
 neighbor

 router-id 1.1.1.11
 address-family ipv4

 interface POS0/2/0/1
 address-family ipv4

 vrf red
 address-family ipv4

 interface POS0/2/0/0
 address-family ipv4

end

CSC-PE22 Configuration

hostname pe22
vrf red
address-family ipv4 unicast
import route-target
 100:1
! export route-target
 100:1
!

interface Loopback0
 ipv4 address 2.2.2.22 255.255.255.255
!
interface Loopback1
 vrf red
 ipv4 address 2.2.2.22 255.255.255.255
!
interface POS0/2/0/0
 ipv4 address 122.1.0.22 255.255.255.0
!
interface POS0/2/0/1
 vrf red
 ipv4 address 193.169.1.22 255.255.255.0
!
interface POS0/2/0/2
 ipv4 address 112.1.0.22 255.255.255.0
!
route-policy pass-all
 pass
end-policy
!
router static
 vrf red
 address-family ipv4 unicast
 193.169.1.21/32 POS0/2/0/1
!
!
router ospf 100
 log adjacency changes
 router-id 2.2.2.22
 area 0
 interface Loopback0
!
 interface POS0/2/0/0
!
 interface POS0/2/0/2
!

router bgp 100
 address-family ipv4 unicast
!
 address-family vpnv4 unicast
!
neighbor 1.1.1.1
 remote-as 100
 update-source Loopback0
 address-family vpnv4 unicast
!
neighbor 1.1.1.11
 remote-as 100
 update-source Loopback0
 address-family vpnv4 unicast
vrf red
rd 1:1
address-family ipv4 unicast
 allocate-label all
!
neighbor 193.169.1.21
 remote-as 2
 address-family ipv4 labeled-unicast
 route-policy pass-all in
 route-policy pass-all out
!
!
mpls ldp
router-id 2.2.2.22
address-family ipv4
!
interface POS0/2/0/0
 address-family ipv4
!
interface POS0/2/0/2
 address-family ipv4
!
!
no interface POS0/2/0/0 shut
no interface POS0/2/0/1 shut
no interface POS0/2/0/2 shut
end

The following example shows the output for the `show running-config mpls ldp` command.

RP/0/RSP0/CPU0:router# show running-config mpls ldp

mpls ldp
log
 adjacency
 neighbor
 nsr
 graceful-restart
 session-protection
!
nsr
graceful-restart
graceful-restart reconnect-timeout 60
graceful-restart forwarding-state-holdtime 180
igp sync delay on-proc-restart 300
igp sync delay on-session-up 15
discovery
 quick-start disable
 instance-tlv disable
 hello holdtime 30
 hello interval 10
 targeted-hello holdtime 180
 targeted-hello interval 20
!
session backoff 5 15
session holdtime 300
signalling dscp 48
mldp
logging notifications
address-family ipv4
static p2mp 1.1.1.1 1
static mp2mp 10.10.10.10 1
make-before-break delay 10
mofrr
recursive-fec
!
!
router-id 1.1.1.1
neighbor
password encrypted 01100F17580454
2.2.2.2:0 password disable
3.3.3.3:0 password encrypted 02050D480809
!
session downstream-on-demand with peer_acl1
session protection for peer_acl2 duration 30
address-family ipv4
discovery targeted-hello accept from peer_acl1
neighbor 2.2.2.2 targeted
traffic-eng
auto-tunnel mesh
group all
group 10
group 20
!
!
redistribute
bgp
as 100
advertise-to peer_acl1
!
!
label
local
default-route
implicit-null-override for pfx_acl1
allocate for pfx_acl1
advertise
disable
for pfx_acl1 to peer_acl1
for pfx_acl2 to peer_acl2
interface GigabitEthernet0/0/0/0
explicit-null for pfx_acl1 to peer_acl1
!
!
remote
accept
from 2.2.2.2:0 for pfx_acl2
from 3.3.3.3:0 for pfx_acl3
!
!
interface GigabitEthernet0/0/0/0
igp sync delay on-session-up disable
discovery quick-start disable
discovery hello holdtime 30
discovery hello interval 10
address-family ipv4
igp auto-config disable
discovery transport-address interface
LDP IPv6 Configuration: Examples

The following example shows how to enable LDP IPv6 native under LDP. The user must enable IPv6 address family under LDP submodes.

```plaintext
configure
mpls ldp
  address-family ipv6
!
!
```

The following example shows how to enable LDP IPv6 control plane on an LDP interface:

```plaintext
configure
mpls ldp
  interface pos 0/6/0/0
    address-family ipv6
!
!
```

The following examples show how to configure IPv6-only LSR:

Note

IPv4 is implicitly enabled under default VRF and any LDP interfaces under default VRF. In order to operate as an IPv6-only LSR, the user must also explicitly disable IPv4 address family.

Example 1:

```plaintext
configure
interface Loopback0
  ipv6 address 6:6:6::6/128
!
```

In this example, there is no explicit IPv6 export address. The loopback’s IPv6 address is used as the export address (6:6:6::6/128).

The router ID configured in MPLS LDP is not used in anyway for export. It is used only for LDP LSR identification.
interface GigabitEthernet0/0/0/0
ipv6 address 16:1::6/120
!
router isis 100
net 49.0000.0000.0000.0006.00
interface Loopback0
 address-family ipv6 unicast
!
interface GigabitEthernet0/0/0/0
 address-family ipv6 unicast
!
mpls ldp
default-vrf implicit-ipv4 disable
 router-id 6.6.6.6
 address-family ipv6
interface GigabitEthernet0/0/0/0
 address-family ipv6 unicast
!

Example 2:

Note
In this example, there is an explicit IPv6 export address. However, there is no IPv6 loopback.
There is no router-id configured, but the loopback IPv4 address is used.

configure
interface Loopback0
 ipv4 address 6.6.6.6/32
!
interface GigabitEthernet0/0/0/0
 ipv6 address 16:1::6/120
!
router isis 100
 net 49.0000.0000.0000.0006.00
interface Loopback0
 address-family ipv6 unicast
!
interface GigabitEthernet0/0/0/0
 address-family ipv6 unicast
!
mpls ldp
default-vrf implicit-ipv4 disable
 address-family ipv6
discovery transport-address 6:6:6::6
!
interface GigabitEthernet0/0/0/0
 address-family ipv6 unicast
Additional References

For additional information related to Implementing MPLS Label Distribution Protocol, refer to the following references:

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
<th></th>
</tr>
</thead>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note</td>
<td>Not all supported RFCs are listed.</td>
</tr>
<tr>
<td>RFC 3031</td>
<td>Multiprotocol Label Switching Architecture</td>
</tr>
<tr>
<td>RFC 3036</td>
<td>LDP Specification</td>
</tr>
<tr>
<td>RFC 3037</td>
<td>LDP Applicability</td>
</tr>
<tr>
<td>RFC 3478</td>
<td>Graceful Restart Mechanism for Label Distribution Protocol</td>
</tr>
<tr>
<td>RFC 3815</td>
<td>Definitions of Managed Objects for MPLS LDP</td>
</tr>
<tr>
<td>RFC 5036</td>
<td>Label Distribution and Management Downstream on Demand Label Advertisement</td>
</tr>
<tr>
<td>RFC 5286</td>
<td>Basic Specification for IP Fast Reroute: Loop-Free Alternates</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>searchable technical content, including links to products, technologies,</td>
<td></td>
</tr>
<tr>
<td>solutions, technical tips, and tools. Registered Cisco.com users can log</td>
<td></td>
</tr>
<tr>
<td>in from this page to access even more content.</td>
<td></td>
</tr>
</tbody>
</table>
Implementing MPLS Static Labeling

The MPLS static feature enables you to statically assign local labels to an IPv4 prefix per VRF. Also, Label Switched Paths (LSPs) can be provisioned for these static labels by specifying the next-hop information that is required to forward the packets containing static label.

If there is any discrepancy between labels assigned statically and dynamically, the router issues a warning message in the console log. By means of this warning message, the discrepancy can be identified and resolved.

Static labels are more advantageous than dynamic labels because static labels:

- Improve security because the risk of receiving unwanted labels from peers (running a compromised MPLS dynamic labeling protocol) is reduced.
- Gives users full control over defined LSPs.
- Utilize system resources optimally because dynamic labeling is not processed.

To perform static binding of MPLS labels, you need to:

- Enable MPLS Encapsulation on an Interface, on page 117
- Define a Range for Static MPLS Labels, on page 118
- Allocate static label:
 - Setup a Static LSP, on page 119
 or
 - Allocate Static MPLS Label to an IP Prefix and Configure a LSP, on page 120
 - Allocate Static MPLS Label for a Specific VRF, on page 121
- Verify MPLS Static Bindings, on page 122
- Identify and Clear Label Discrepancy, on page 124

Restrictions

- Static labeling on IPv6 packets is not supported.
- The router does not prevent label discrepancy at the time of configuring static labels. Any generated discrepancy needs to be subsequently cleared.
- Equal-cost multi-path routing (ECMP) is not supported.
• Interfaces must be explicitly configured to handle traffic with static MPLS labels.
• The MPLS per-VRF labels cannot be shared between MPLS static and other applications.

Feature History for Implementing MPLS Static Labeling

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 5.1.1</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 5.2.2</td>
<td>Recursive Label Statistics feature was added.</td>
</tr>
<tr>
<td>Release 5.3.2</td>
<td>MPLS Top Label Hash for OAM Packets feature was added.</td>
</tr>
</tbody>
</table>

Recursive Label Statistics

The MPLS static feature is enhanced to provide recursive Label Switched Path (LSP) statistics for labels created using MPLS static configuration. The recursive label statistics feature helps in identifying the unique source and destination port LSPs.

Restrictions

- LSP statistics works only for labels allocated through MPLS static configuration in a VRF, which means that it only works for recursive VPN labels.
- No packet rate support.
- During MPLS static configuration or de-configuration, label discrepancies can get generated.

Use the `clear mpls static local-label discrepancy` command to clear any discrepancy between statically allocated and dynamically allocated local labels. It is recommended to execute this command upon removal of a static configuration, so that the label prefix is reallocated to the dynamic label range which then will also free the allocated statistic point. Use the `all` keyword to clear all label discrepancies. The static label configuration takes precedence while clearing discrepancy.
MPLS Top Label Hash for OAM Packets

The MPLS top label hash feature lets label switching routers (LSRs) to be based on top label hashing for MPLS OAM packets. LSRs commonly generate a hash of the label stack or some elements of the label stack as a method of discriminating flows, and use this discriminator to distribute the flows over available equal cost multipaths (ECMPs) that exist in the network.

In order to determine which path (ECMP) or link aggregation group (LAG) member to choose, the system computes a hash. Certain bits out of this hash are used to identify member or path to be taken.

To configure top label hash, use the **top-label-hash** command under the MPLS static address family IPv4 unicast submode.

The benefit of the top label hash feature is that it can be used when a user wants to monitor all bundles along with members to ensure they are up and running.

Use Case Scenario

Consider the following example:

```
Consider the following example:
```

```
All devices have static LSPs to forward the traffic corresponding to monitoring. OAM server constructs the packets with number of labels equal to the number of hops between two ends (server to server). So, for the example shown, the packet has four labels.
```

```
Packet example:
```

```
• Packet 1: label A1, B1, C1, D1
• Packet 2: label A2, B2, C2, D2
• Packet 3: Label A3, B3, C3, D3
```

```
Top label hashing is required because you do not want to hash based on "Dx" label in every hop.
```

```
Top label hashing allows, ASR9000-1 to make decision based on "Ax" label, ASR9000-2 to make decision on "Bx" label, ASR9000-3 to make decision based on "Cx" label and so on. The user needs to define the sequence of labels to be used, such that each label uses different bundle member.
```

```
If server receives the packet back as expected, then that means end-to-end path is good and members are functioning correctly.
```

Forwarding Labeled Packets

This section describes how labeled packets are forwarded in MPLS networks, how forwarding labeled packets are different from forwarding IP packets, how labeled packets are load-balanced, and what a LSR does with a packet with an unknown label.

Top Label Value
When a labeled packet is received, the label value at the top of the stack is looked up. The LSR sees the 20-bit field in the top label, which carries the actual value of the label. As a result of a successful lookup, the LSR learns:

- the next hop to which the packet is to be forwarded.
- what label operation to be performed before forwarding - swap, push, or pop.

The processing is always based on the top label, without regard to the possibility that in the past some other number of another label may have been "above it", or at present that some other number of another label may be below it. An unlabeled packet can be thought of as a packet whose label stack is empty (that is, a packet whose label stack has depth zero).

IP Lookup Versus Label Lookup

When a router receives an IP packet, an IP lookup is done. This means that the packet is looked up in the Cisco Express Forwarding (CEF) table. When a router receives a labeled packet, the label forwarding information base (LFIB) of the router is looked up. The router knows by looking at the protocol field in the Layer 2 header what type of packet it receives: a labeled packet or an IP packet.

Load Balancing Labeled Packets

If multiple equal-cost paths exist for an IPv4 prefix, Cisco IOS XR Software can load-balance labeled packets. When labeled packets are load-balanced, they can have the same or different outgoing labels. The outgoing labels are the same if the two links are between a pair of routers and both links belong to the platform label space. If multiple next-hop LSRs exist, the outgoing label for each path is usually different, because the next-hop LSRs assign labels independently.

Unknown Label

In regular operations, an LSR should receive only a labeled packet with a label at the top of the stack that is known to the LSR, because the LSR would have previously advertised that label. However, it is possible, in some cases, when something goes amiss in the MPLS network, the LSR starts receiving labeled packets with a top label that the LSR does not find in its LFIB. In such cases, the LSR drops the packet.

Functional Overview: Top Label Hash

The user configured top label hash value is pushed to the hardware abstraction layer (HAL). The FIB of the router computes the hash value based on the LSP paths and programs this hash value in the data plane. Based on the hash value, the OAM packet is then forwarded to the LAG member.

Figure 9: MPLS Top Label Hash for OAM Packets

This figure shows an OAM packet traversing different LAG members based on the top label hash value.
The OAM host sends the OAM packet with full label stack of the static LSP path. The packet is loop over bundle interface from LER1 > LSR1 > LSR2 > LER2 > LSR4 > LSR3 > LER1.

Each static LSP out-label is programmed as a 'pop' label.

Enable MPLS Encapsulation on an Interface

By default, MPLS encapsulation is disabled on all interfaces. MPLS encapsulation has to be explicitly enabled on all ingress and egress MPLS interfaces through which the static MPLS labeled traffic travels.

SUMMARY STEPS

1. `configure`
2. `mpls static`
3. `interface interface`
4. `commit`

DETAILED STEPS

Step 1
```
configure
```

Step 2
```
mpls static
```

Example:
```
RP/0/RSP0/CPU0:router(config)# mpls static
```

Enters MPLS-static configuration mode.

Step 3
```
interface interface
```

Example:
```
RP/0/RSP0/CPU0:router(config-mpls-static)# interface gigabitethernet 0/0/0/3
```

Enables MPLS encapsulation on the specified interface.
Define a Range for Static MPLS Labels

The MPLS label range configuration defines the dynamic label range. Any label that falls outside this dynamic range is available for manually allocating as static labels. The router does not verify statically-configured labels against the specified label range. Therefore, to prevent label discrepancy, ensure that you do not configure static MPLS labels that fall within the dynamic label range.

Note

The allocable range for MPLS labels is from 16 to 1048575. Label values from 0 to 15 are reserved according to RFC-3032.

SUMMARY STEPS

1. **configure**
2. **mpls label range minimum_value maximum_value**
3. **commit**

DETAILED STEPS

Step 1

configure

Step 2

mpls label range minimum_value maximum_value

Example:

RP/0/RSP0/CPU0:router(config)# mpls label range 20000 30000

Specifies the range through which dynamic MPLS labels are allocated. All labels falling outside this range (16 to 19999 and 30001 to 1048575) can be manually allocated as static labels.

Step 3

commit
Setup a Static LSP

In this task, a static MPLS LSP is setup for a specific ingress label.

SUMMARY STEPS

1. configure
2. mpls static
3. address-family ipv4 unicast
4. local-label label-value allocate
5. forward path path_id nexthop nexthop_address interface_type interface_id out-label outgoing_label
6. commit

DETAILED STEPS

Step 1
configure

Step 2
mpls static

Example:
```
RP/0/RSP0/CPU0# configure
```

Enters MPLS-static configuration mode.

Step 3
address-family ipv4 unicast

Example:
```
RP/0/RSP0/CPU0# configure
```

Applies the static configuration to an IPv4 address family in the default VRF.

Step 4
local-label label-value allocate

Example:
```
RP/0/RSP0/CPU0# configure
```

Specifies the incoming label value as 30500.

Step 5
forward path path_id nexthop nexthop_address interface_type interface_id out-label outgoing_label

Example:
```
RP/0/RSP0/CPU0# configure
```

For packets that are received with the label, 30500, the MPLS protocol swaps labels and applies the label, 30501. After applying the new label, it forwards the packets to the next hop, 10.2.2.2, through the GigabitEthernet interface, 0/0/0/1.

Step 6
commit
Allocate Static MPLS Label to an IP Prefix and Configure a LSP

Static MPLS label bindings for IP prefixes are used by MPLS applications such as Label Distribution Protocol (LDP) or Border Gateway Protocol (BGP) for MPLS switching. It is possible to define a static LSP for the static label.

SUMMARY STEPS

1. configure
2. mpls static
3. address-family ipv4 unicast
4. local-label label-value allocate per-prefix IPv4_prefix_entry
5. forward path path_id nexthop nexthop_address out-label outgoing_label
6. commit

DETAILED STEPS

Step 1 configure

Step 2 mpls static

Example:

```
RP/0/RSP0/CPU0:router(config)# mpls static
```

Enters MPLS-static configuration mode.

Step 3 address-family ipv4 unicast

Example:

```
RP/0/RSP0/CPU0:router(config-mpls-static)# address-family ipv4 unicast
```

Applies the static configuration to an IPv4 address family in the default VRF.

Step 4 local-label label-value allocate per-prefix IPv4_prefix_entry

Example:

```
RP/0/RSP0/CPU0:router(config-mpls-static-af)# local-label 30500 allocate per-prefix 100.1.1.0/24
```

The MPLS protocol requests label 30500 to be statically bound as a local label for the prefix 100.1.1.0/24.

Step 5 forward path path_id nexthop nexthop_address out-label outgoing_label

Example:

```
RP/0/RSP0/CPU0:router(config-mpls-static-af-lbl)# forward path 1 nexthop 10.2.2.2 out-label 30501
```

For packets that are received with the label, 30500, the MPLS protocol swaps labels and applies the label, 30501. After applying the new label, it forwards the packets to the next hop, 10.2.2.2.

Example:

```
RP/0/RSP0/CPU0:router(config-mpls-static-af-lbl)# forward path 1 nexthop gigabitEthernet 0/0/0/4 out-label pop
```

For packets that are received with the label, 30500, the MPLS protocol removes the existing label. After removing the label, it forwards the packets to the next hop through the egress interface, GigabitEthernet 0/0/0/4.
Allocate Static MPLS Label for a Specific VRF

In this task, a static MPLS label is allocated to an IP prefix for a specific VRF.

Note

When a static MPLS label is allocated to an IP prefix for a specific VRF, it is not possible to define a static LSP for that static label.

SUMMARY STEPS

1. configure
2. mpls static
3. vrf vrf_name address-family ipv4 unicast
4. *local-label label-value allocate per-prefix IPv4_prefix_entry
 *local-label label-value allocate per-vrf forward path path-id pop-and-lookup
5. commit

DETAILED STEPS

Step 1
configure

Step 2
mpls static

Example:
```
RP/0/RSP0/CPU0:router(config)# mpls static
```

Enters MPLS-static configuration mode.

Step 3
vrf vrf_name address-family ipv4 unicast

Example:
```
RP/0/RSP0/CPU0:router(config-mpls-static)# vrf vrf1 address-family ipv4 unicast
```

Applies the static configuration to an IPv4 address family in the VRF named vrf1.

Step 4
*local-label label-value allocate per-prefix IPv4_prefix_entry
*local-label label-value allocate per-vrf forward path path-id pop-and-lookup

Example:
```
RP/0/RSP0/CPU0:router(config-mpls-static-vrf-af)# local-label 30500 allocate per-prefix 100.1.1.0/24
```

The MPLS protocol requests label 30500 to be statically bound as a local label for the prefix 100.1.1.0/24 in the VRF named vrf1.

Example:
```
RP/0/RSP0/CPU0:router(config-mpls-static-vrf-af)# local-label 30500 allocate per-vrf forward path 1 pop-and-lookup
```
The MPLS protocol requests single label 30500 to be statically bound as a local label for all the prefixes in the VRF named \textit{vrf1}. When the router receives packets with VRF label 30500, it removes the label and then performs IP-based lookup to forward the packets.

Step 5

\textbf{commit}

Verify MPLS Static Bindings

These are the show commands that can be used to verify MPLS static bindings and LSPs.

SUMMARY STEPS

1. `show mpls static local-label label_value`
2. `show mpls label range`
3. `show mpls lsd forwarding`

DETAILED STEPS

Step 1

`show mpls static local-label label_value`

Example:

```
RP/0/RSP0/CPU0:router#show mpls static local-label 200
Tue Apr 22 18:21:55.764 UTC
Label VRF Type Prefix RW Configured Status
------- --------------- ------------ ---------------- --------------- --------
200 default Per-Prefix 10.10.10.10/32 Yes Created
```

Verifies that the status is "Created" for the specified label value.

Step 2

`show mpls label range`

Example:

```
RP/0/RSP0/CPU0:router#show mpls label range
Mon Apr 28 19:56:00.596 IST
Range for dynamic labels: Min/Max: 16000/1048575
```

Checks the dynamic range and ensures that the specified local-label value is outside this range.

Step 3

`show mpls lsd forwarding`

Example:

```
RP/0/RSP0/CPU0:router#show mpls lsd forwarding
Tue Apr 29 15:59:52.011 UTC
In_Label, (ID), Path_Info: <Type>
 89, (IPv4, 'default':4U, 5.6.78.55/32), 1 Paths
    1/1: IPv4, 'default':4U, Gi0/0/0/21, nh=0.0.0.0, lbl=89, tun_id=0, flags=0x0 ()
 110, (IPv4, 'default':4U, 2.2.2.2/32), 1 Paths
    1/1: IPv4, 'default':4U, Gi0/1/0/0, nh=1.12.1.2, lbl=Pop, tun_id=0, flags=0x0 ()
 120, (IPv4, 'default':4U, 3.3.3.3/32), 1 Paths
    1/1: IPv4, 'default':4U, Gi0/1/0/0, nh=1.12.1.2, lbl=0, tun_id=0, flags=0x0 ()
 130, (IPv4, 'default':4U, 4.4.4.4/32), 1 Paths
    1/1: IPv4, 'default':4U, Gi0/1/0/0, nh=1.12.1.2, lbl=200, tun_id=0, flags=0x0 ()
```
Verifies that the MPLS static configuration has taken effect, and the label forwarding is taking place.

Configuring Top Label Hash

Perform this task to configure MPLS top label hash entries.

SUMMARY STEPS

1. `configure`
2. `mpls static`
3. `address-family ipv4 unicast`
4. `top-label-hash`
5. `local-label label-value allocate`
6. `forward path path-count nexthop interface-type interface-id out-label pop`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure</code></td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td><code>mpls static</code></td>
<td>Enters MPLS-static configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config)# mpls static</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>address-family ipv4 unicast</code></td>
<td>Applies the static configuration to an IPv4 address family.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-static)# address-family ipv4 unicast</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>top-label-hash</code></td>
<td>Enables top label hash.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-static-af)# top-label-hash</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>local-label label-value allocate</code></td>
<td>Specifies the incoming label value. In this example, the label value is 25000.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-static-af-tlhash)# local-label 25000 allocate</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>forward path path-count nexthop interface-type interface-id out-label pop</code></td>
<td>The received label is incremented by one and the label is swapped for the incremented label by the MPLS protocol.</td>
</tr>
</tbody>
</table>

Purpose

Command or Action

RP/0/RSP0/CPU0:router(config-mpls-static-af-tlhash-lbl)
 forward path 1 nexthop bundle-ether 1 out-label pop

Step 7

commit

For example: For packets that are received with the label 25000, the MPLS protocol swaps labels and applies the label, 25001. After applying the new label, it forwards the packets to the next hop, through the specified interface (Bundle-Ether interface in this case).

Sets the output label to 'pop' off the top of the label stack.

Identify and Clear Label Discrepancy

During configuring or de-configuring static labels or a label range, a label discrepancy can get generated when:

- A static label is configured for an IP prefix (per VRF) that already has a binding with a dynamic label.
- A static label is configured for an IP prefix, when the same label value is dynamically allocated to another IP prefix.

Complete these steps to identify and clear the discrepancies.

Step 1

To identify a label discrepancy, execute one of these:

- show mpls static local-label discrepancy
- show log

Example:

RP/0/RSP0/CPU0:router#show mpls static local-label discrepancy
Tue Apr 22 18:36:31.614 UTC
Label VRF Type Prefix RW Configured Status
------- --------------- ------------ ---------------- --------------- --------
16003 default Per-Prefix 1.1.1.1/32 No Discrepancy

Example:

RP/0/RSP0/CPU0:router#show log
Thu Apr 24 14:18:57.655 UTC
Syslog logging: enabled (0 messages dropped, 0 flushes, 0 overruns)
 Console logging: level warnings, 199 messages logged
 Monitor logging: level debugging, 0 messages logged
 Trap logging: level informational, 0 messages logged
 Buffer logging: level debugging, 2 messages logged
Log Buffer (307200 bytes):
RP/0/RSP0/CPU0:Apr 24 14:18:53.743 : mpls_static[1043]: %ROUTING-MPLS_STATIC-7-ERR_STATIC_LABEL_DISCREPANCY :
The system detected 1 label discrepancies (static label could not be allocated due to conflict with other applications). Please use 'clear mpls static local-label discrepancy' to fix this issue.
RP/0/RSP0/CPU0:Apr 24 14:18:53.937 : config[65762]: %MGBL-CONFIG-6-DB_COMMIT : Configuration committed by user 'cisco'.
Use 'show configuration commit changes 1000000020' to view the changes.

Step 2 clear mpls static local-label discrepancy all

Example:
RP/0/RSP0/CP00:router# clear mpls static local-label discrepancy all

Clears label discrepancy by allocating a new label to those IP prefixes that are allocated dynamic label. The static label configuration takes precedence while clearing discrepancy. Traffic can be affected while clearing discrepancy.

Configure Top Label Hash: Example

This example shows how to configure MPLS top label hash entries:

```configure
configure
mpls static
crossconnect 25000 bundle-ether 1 pop
address-family ipv4 unicast
top-label-hash
  local-label 25000 allocate forward path 1 nexthop bundle-ether 1 out-label pop
!
```
Configure Top Label Hash: Example
Implementing RSVP for MPLS-TE

This module describes how to implement Resource Reservation Protocol (RSVP) for MPLS Traffic Engineering (MPLS-TE) on Cisco ASR 9000 Series Aggregation Services Routers.

The Multiprotocol Label Switching (MPLS) is a standards-based solution, driven by the Internet Engineering Task Force (IETF), devised to convert the Internet and IP backbones from best-effort networks into business-class transport media.

Resource Reservation Protocol (RSVP) is a signaling protocol that enables systems to request resource reservations from the network. RSVP processes protocol messages from other systems, processes resource requests from local clients, and generates protocol messages. As a result, resources are reserved for data flows on behalf of local and remote clients. RSVP creates, maintains, and deletes these resource reservations.

RSVP provides a secure method to control quality-of-service (QoS) access to a network.

MPLS Traffic Engineering (MPLS-TE) uses RSVP to signal label switched paths (LSPs).

Feature History for Implementing RSVP for MPLS-TE

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>The RSVP MIB feature was added.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing RSVP for MPLS-TE, on page 127
- Information About Implementing RSVP for MPLS-TE, on page 128
- Information About Implementing RSVP Authentication, on page 133
- How to Implement RSVP, on page 137
- How to Implement RSVP Authentication, on page 146
- Configuration Examples for RSVP, on page 154
- Configuration Examples for RSVP Authentication, on page 159
- Additional References, on page 161

Prerequisites for Implementing RSVP for MPLS-TE

These prerequisites are required to implement RSVP for MPLS-TE:
Information About Implementing RSVP for MPLS-TE

To implement MPLS RSVP, you must understand these concepts:

Related Topics

How to Implement RSVP Authentication, on page 146

Overview of RSVP for MPLS-TE

RSVP is a network control protocol that enables Internet applications to signal LSPs for MPLS-TE. The RSVP implementation is compliant with the IETF RFC 2205 and RFC 3209.

RSVP is automatically enabled on interfaces on which MPLS-TE is configured. For MPLS-TE LSPs with nonzero bandwidth, the RSVP bandwidth has to be configured on the interfaces. There is no need to configure RSVP if all MPLS-TE LSPs have zero bandwidth.

RSVP Refresh Reduction, defined in RFC 2961, includes support for reliable messages and summary refresh messages. Reliable messages are retransmitted rapidly if the message is lost. Because each summary refresh message contains information to refresh multiple states, this greatly reduces the amount of messaging needed to refresh states. For refresh reduction to be used between two routers, it must be enabled on both routers. Refresh Reduction is enabled by default.

Message rate limiting for RSVP allows you to set a maximum threshold on the rate at which RSVP messages are sent on an interface. Message rate limiting is disabled by default.

The process that implements RSVP is restartable. A software upgrade, process placement or process failure of RSVP or any of its collaborators, has been designed to ensure Nonstop Forwarding (NSF) of the data plane.

RSVP supports graceful restart, which is compliant with RFC 3473. It follows the procedures that apply when the node reestablishes communication with the neighbor’s control plane within a configured restart time.

It is important to note that RSVP is not a routing protocol. RSVP works in conjunction with routing protocols and installs the equivalent of dynamic access lists along the routes that routing protocols calculate. Because of this, implementing RSVP in an existing network does not require migration to a new routing protocol.

Related Topics

Configuring RSVP Packet Dropping, on page 141
Set DSCP for RSVP Packets: Example, on page 158
Verifying RSVP Configuration, on page 142

LSP Setup

LSP setup is initiated when the LSP head node sends path messages to the tail node (see the RSVP Operation figure).
The Path messages reserve resources along the path to each node, creating Path soft states on each node. When the tail node receives a path message, it sends a reservation (RESV) message with a label back to the previous node. When the reservation message arrives at the previous node, it causes the reserved resources to be locked and forwarding entries are programmed with the MPLS label sent from the tail-end node. A new MPLS label is allocated and sent to the next node upstream.

When the reservation message reaches the head node, the label is programmed and the MPLS data starts to flow along the path.

High Availability

RSVP is designed to ensure nonstop forwarding under the following constraints:

- Ability to tolerate the failure of one RP of a 1:1 redundant pair.
- Hitless software upgrade.

The RSVP high availability (HA) design follows the constraints of the underlying architecture where processes can fail without affecting the operation of other processes. A process failure of RSVP or any of its collaborators does not cause any traffic loss or cause established LSPs to go down. When RSVP restarts, it recovers its signaling states from its neighbors. No special configuration or manual intervention are required. You may configure RSVP graceful restart, which offers a standard mechanism to recover RSVP state information from neighbors after a failure.

Graceful Restart

RSVP graceful restart provides a control plane mechanism to ensure high availability (HA), which allows detection and recovery from failure conditions while preserving nonstop forwarding services on the systems running Cisco IOS XR software.

RSVP graceful restart provides a mechanism that minimizes the negative effects on MPLS traffic caused by these types of faults:

- Disruption of communication channels between two nodes when the communication channels are separate from the data channels. This is called control channel failure.
- Control plane of a node fails but the node preserves its data forwarding states. This is called node failure.

The procedure for RSVP graceful restart is described in the “Fault Handling” section of RFC 3473, *Generalized MPLS Signaling, RSVP-TE Extensions*. One of the main advantages of using RSVP graceful restart is recovery of the control plane while preserving nonstop forwarding and existing labels.
RSVP graceful restart feature is not supported when TE is running over multiple IGP instances which have different TE router-ids. This causes the TE tunnels to constantly flap.

Graceful Restart: Standard and Interface-Based

When you configure RSVP graceful restart, Cisco IOS XR software sends and expects node-id address based Hello messages (that is, Hello Request and Hello Ack messages). The RSVP graceful restart Hello session is not established if the neighbor router does not respond with a node-id based Hello Ack message.

You can also configure graceful restart to respond (send Hello Ack messages) to interface-address based Hello messages sent from a neighbor router in order to establish a graceful restart Hello session on the neighbor router. If the neighbor router does not respond with node-id based Hello Ack message, however, the RSVP graceful restart Hello session is not established.

Cisco IOS XR software provides two commands to configure graceful restart:

- `signalling hello graceful-restart`
- `signalling hello graceful-restart interface-based`

By default, graceful restart is disabled. To enable interface-based graceful restart, you must first enable standard graceful restart. You cannot enable interface-based graceful restart independently.

Related Topics

- [Enabling Graceful Restart](#)
- [Enable Graceful Restart: Example](#)
- [Enable Interface-Based Graceful Restart: Example](#)

Graceful Restart: Figure

Figure 11: Node Failure with RSVP

This figure illustrates how RSVP graceful restart handles a node failure condition.
RSVP graceful restart requires the use of RSVP hello messages. Hello messages are used between RSVP neighbors. Each neighbor can autonomously issue a hello message containing a hello request object. A receiver that supports the hello extension replies with a hello message containing a hello acknowledgment (ACK) object. This means that a hello message contains either a hello Request or a hello ACK object. These two objects have the same format.

The restart cap object indicates a node’s restart capabilities. It is carried in hello messages if the sending node supports state recovery. The restart cap object has the following two fields:

Restart Time

Time after a loss in Hello messages within which RSVP hello session can be reestablished. It is possible for a user to manually configure the Restart Time.

Recovery Time

Time that the sender waits for the recipient to re-synchronize states after the re-establishment of hello messages. This value is computed and advertised based on number of states that existed before the fault occurred.

For graceful restart, the hello messages are sent with an IP Time to Live (TTL) of 64. This is because the destination of the hello messages can be multiple hops away. If graceful restart is enabled, hello messages (containing the restart cap object) are send to an RSVP neighbor when RSVP states are shared with that neighbor.

Restart cap objects are sent to an RSVP neighbor when RSVP states are shared with that neighbor. If the neighbor replies with hello messages containing the restart cap object, the neighbor is considered to be graceful restart capable. If the neighbor does not reply with hello messages or replies with hello messages that do not contain the restart cap object, RSVP backs off sending hellos to that neighbor. If graceful restart is disabled, no hello messages (Requests or ACKs) are sent. If a hello Request message is received from an unknown neighbor, no hello ACK is sent back.
ACL-based Prefix Filtering

RSVP provides for the configuration of extended access lists (ACLs) to forward, drop, or perform normal processing on RSVP router-alert (RA) packets. Prefix filtering is designed for use at core access routers in order that RA packets (identified by a source/destination address) can be seamlessly forwarded across the core from one access point to another (or, conversely to be dropped at this node). RSVP applies prefix filtering rules only to RA packets because RA packets contain source and destination addresses of the RSVP flow.

Note

RA packets forwarded due to prefix filtering must not be sent as RSVP bundle messages, because bundle messages are hop-by-hop and do not contain RA. Forwarding a Bundle message does not work, because the node receiving the messages is expected to apply prefix filtering rules only to RA packets.

For each incoming RSVP RA packet, RSVP inspects the IP header and attempts to match the source/destination IP addresses with a prefix configured in an extended ACL. The results are as follows:

• If an ACL does not exist, the packet is processed like a normal RSVP packet.
• If the ACL match yields an explicit permit (and if the packet is not locally destined), the packet is forwarded. The IP TTL is decremented on all forwarded packets.
• If the ACL match yields an explicit deny, the packet is dropped.

If there is no explicit permit or explicit deny, the ACL infrastructure returns an implicit (default) deny. RSVP can be configured to drop the packet. By default, RSVP processes the packet if the ACL match yields an implicit (default) deny.

Related Topics

Configuring ACLs for Prefix Filtering, on page 140
Configure ACL-based Prefix Filtering: Example, on page 158

RSVP MIB

RFC 2206, RSVP Management Information Base Using SMIv2 defines all the SNMP MIB objects that are relevant to RSVP. By implementing the RSVP MIB, you can perform these functions:

• Specifies two traps (NetFlow and LostFlow) which are triggered when a new flow is created or deleted.
• Lets you use SNMP to access objects belonging to RSVP.

Related Topics

Enabling RSVP Traps, on page 145
Enable RSVP Traps: Example, on page 158

Bandwidth Reservation Percentage

The Bandwidth Reservation Percentage allows the RSVP interface bandwidth to be specified as percentages of the link's physical bandwidth.
Information About Implementing RSVP Authentication

Before implementing RSVP authentication, you must configure a keychain first. The name of the keychain must be the same as the one used in the keychain configuration. For more information about configuring keychains, see System Security Configuration Guide for Cisco ASR 9000 Series Routers.

Note

RSVP authentication supports only keyed-hash message authentication code (HMAC) type algorithms.

To implement RSVP authentication on Cisco IOS XR software, you must understand the following concepts:

RSVP Authentication Functions

You can carry out these tasks with RSVP authentication:

- Set up a secure relationship with a neighbor by using secret keys that are known only to you and the neighbor.
- Configure RSVP authentication in global, interface, or neighbor configuration modes.
- Authenticate incoming messages by checking if there is a valid security relationship that is associated based on key identifier, incoming interface, sender address, and destination address.
- Add an integrity object with message digest to the outgoing message.
- Use sequence numbers in an integrity object to detect replay attacks.

RSVP Authentication Design

Network administrators need the ability to establish a security domain to control the set of systems that initiates RSVP requests.

The RSVP authentication feature permits neighbors in an RSVP network to use a secure hash to sign all RSVP signaling messages digitally, thus allowing the receiver of an RSVP message to verify the sender of the message without relying solely on the sender's IP address.

The signature is accomplished on a per-RSVP-hop basis with an RSVP integrity object in the RSVP message as defined in RFC 2747. This method provides protection against forgery or message modification. However, the receiver must know the security key used by the sender to validate the digital signature in the received RSVP message.

Network administrators manually configure a common key for each RSVP neighbor on the shared network. The following reasons explain how to choose between global, interface, or neighbor configuration modes:

- Global configuration mode is optimal when a router belongs to a single security domain (for example, part of a set of provider core routers). A single common key set is expected to be used to authenticate all RSVP messages.
- Interface, or neighbor configuration mode, is optimal when a router belongs to more than one security domain. For example, a provider router is adjacent to the provider edge (PE), or a PE is adjacent to an edge device. Different keys can be used but not shared.
Global configuration mode configures the defaults for interface and neighbor interface modes. These modes, unless explicitly configured, inherit the parameters from global configuration mode, as follows:

- Window-size is set to 1.
- Lifetime is set to 1800.
- `key-source key-chain` command is set to none or disabled.

Related Topics

- Configuring a Lifetime for an Interface for RSVP Authentication, on page 149
- RSVP Authentication by Using All the Modes: Example, on page 160

Global, Interface, and Neighbor Authentication Modes

You can configure global defaults for all authentication parameters including key, window size, and lifetime. These defaults are inherited when you configure authentication for each neighbor or interface. However, you can also configure these parameters individually on a neighbor or interface basis, in which case the global values (configured or default) are no longer inherited.

Note

RSVP uses the following rules when choosing which authentication parameter to use when that parameter is configured at multiple levels (interface, neighbor, or global). RSVP goes from the most specific to least specific; that is, neighbor, interface, and global.

Global keys simplify the configuration and eliminate the chances of a key mismatch when receiving messages from multiple neighbors and multiple interfaces. However, global keys do not provide the best security.

Interface keys are used to secure specific interfaces between two RSVP neighbors. Because many of the RSVP messages are IP routed, there are many scenarios in which using interface keys are not recommended. If all keys on the interfaces are not the same, there is a risk of a key mismatch for the following reasons:

- When the RSVP graceful restart is enabled, RSVP hello messages are sent with a source IP address of the local router ID and a destination IP address of the neighbor router ID. Because multiple routes can exist between the two neighbors, the RSVP hello message can traverse to different interfaces.
- When the RSVP fast reroute (FRR) is active, the RSVP Path and Resv messages can traverse multiple interfaces.
- When Generalized Multiprotocol Label Switching (GMPLS) optical tunnels are configured, RSVP messages are exchanged with router IDs as the source and destination IP addresses. Since multiple control channels can exist between the two neighbors, the RSVP messages can traverse different interfaces.

Neighbor-based keys are particularly useful in a network in which some neighbors support RSVP authentication procedures and others do not. When the neighbor-based keys are configured for a particular neighbor, you are advised to configure all the neighbor’s addresses and router IDs for RSVP authentication.

Related Topics

- Configuring a Lifetime for RSVP Authentication in Global Configuration Mode, on page 147
- RSVP Authentication Global Configuration Mode: Example, on page 159
- Specifying the RSVP Authentication Keychain in Interface Mode, on page 148
- RSVP Authentication by Using All the Modes: Example, on page 160
Security Association

A security association (SA) is defined as a collection of information that is required to maintain secure communications with a peer to counter replay attacks, spoofing, and packet corruption.

This table lists the main parameters that define a security association.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>src</td>
<td>IP address of the sender.</td>
</tr>
<tr>
<td>dst</td>
<td>IP address of the final destination.</td>
</tr>
<tr>
<td>interface</td>
<td>Interface of the SA.</td>
</tr>
<tr>
<td>direction</td>
<td>Send or receive type of the SA.</td>
</tr>
<tr>
<td>Lifetime</td>
<td>Expiration timer value that is used to collect unused security association data.</td>
</tr>
<tr>
<td>Sequence Number</td>
<td>Last sequence number that was either sent or accepted (dependent of the direction type).</td>
</tr>
<tr>
<td>key-source</td>
<td>Source of keys for the configurable parameter.</td>
</tr>
<tr>
<td>keyID</td>
<td>Key number (returned form the key-source) that was last used.</td>
</tr>
<tr>
<td>digest</td>
<td>Algorithm last used (returned from the key-source).</td>
</tr>
<tr>
<td>Window Size</td>
<td>Specifies the tolerance for the configurable parameter. The parameter is applicable when the direction parameter is the receive type.</td>
</tr>
<tr>
<td>Window</td>
<td>Specifies the last window size value sequence number that is received or accepted. The parameter is applicable when the direction parameter is the receive type.</td>
</tr>
</tbody>
</table>

An SA is created dynamically when sending and receiving messages that require authentication. The neighbor, source, and destination addresses are obtained either from the IP header or from an RSVP object, such as a HOP object, and whether the message is incoming or outgoing.

When the SA is created, an expiration timer is created. When the SA authenticates a message, it is marked as recently used. The lifetime timer periodically checks if the SA is being used. If so, the flag is cleared and is cleaned up for the next period unless it is marked again.

This table shows how to locate the source and destination address keys for an SA that is based on the message type.

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Source Address Location</th>
<th>Destination Address Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Path</td>
<td>HOP object</td>
<td>SESSION object</td>
</tr>
<tr>
<td>PathTear</td>
<td>HOP object</td>
<td>SESSION object</td>
</tr>
</tbody>
</table>
Key-source Key-chain

The key-source key-chain is used to specify which keys to use.

You configure a list of keys with specific IDs and have different lifetimes so that keys are changed at predetermined intervals automatically, without any disruption of service. Rollover enhances network security by minimizing the problems that could result if an untrusted source obtained, deduced, or guessed the current key.

RSVP handles rollover by using the following key ID types:

- On TX, use the youngest eligible key ID.
- On RX, use the key ID that is received in an integrity object.

For more information about implementing keychain management, see *System Security Configuration Guide for Cisco ASR 9000 Series Routers*.

Related Topics
- [Enabling RSVP Authentication Using the Keychain in Global Configuration Mode](#), on page 146
- [RSVP Authentication Global Configuration Mode: Example](#), on page 159
- [Specifying the Keychain for RSVP Neighbor Authentication](#), on page 151
- [RSVP Neighbor Authentication: Example](#), on page 160
Guidelines for Window-Size and Out-of-Sequence Messages

These guidelines are required for window-size and out-of-sequence messages:

- Default window-size is set to 1. If a single message is received out-of-sequence, RSVP rejects it and displays a message.
- When RSVP messages are sent in burst mode (for example, tunnel optimization), some messages can become out-of-sequence for a short amount of time.
- Window size can be increased by using the `window-size` command. When the window size is increased, replay attacks can be detected with duplicate sequence numbers.

Related Topics

- Configuring the Window Size for RSVP Authentication in Global Configuration Mode, on page 148
- Configuring the Window Size for an Interface for RSVP Authentication, on page 150
- Configuring the Window Size for RSVP Neighbor Authentication, on page 153
- RSVP Authentication by Using All the Modes: Example, on page 160
- RSVP Authentication for an Interface: Example, on page 159

Caveats for Out-of-Sequence

These caveats are listed for out-of-sequence:

- When RSVP messages traverse multiple interface types with different maximum transmission unit (MTU) values, some messages can become out-of-sequence if they are fragmented.
- Packets with some IP options may be reordered.
- Change in QoS configurations may lead to a transient reorder of packets.
- QoS policies can cause a reorder of packets in a steady state.

Because all out-of-sequence messages are dropped, the sender must retransmit them. Because RSVP state timeouts are generally long, out-of-sequence messages during a transient state do not lead to a state timeout.

How to Implement RSVP

RSVP requires coordination among several routers, establishing exchange of RSVP messages to set up LSPs. Depending on the client application, RSVP requires some basic configuration, as described in these topics:

Configuring Traffic Engineering Tunnel Bandwidth

To configure traffic engineering tunnel bandwidth, you must first set up TE tunnels and configure the reserved bandwidth per interface (there is no need to configure bandwidth for the data channel or the control channel).

Cisco IOS XR software supports two MPLS DS-TE modes: Prestandard and IETF.
For prestandard DS-TE you do not need to configure bandwidth for the data channel or the control channel. There is no other specific RSVP configuration required for this application. When no RSVP bandwidth is specified for a particular interface, you can specify zero bandwidth in the LSP setup if it is configured under RSVP interface configuration mode or MPLS-TE configuration mode.

Note

Related Topics
- Configuring a Prestandard DS-TE Tunnel, on page 237
- Configuring an IETF DS-TE Tunnel Using RDM, on page 238
- Configuring an IETF DS-TE Tunnel Using MAM, on page 240

Confirming DiffServ-TE Bandwidth

Perform this task to confirm DiffServ-TE bandwidth.

In RSVP global and subpools, reservable bandwidths are configured per interface to accommodate TE tunnels on the node. Available bandwidth from all configured bandwidth pools is advertised using IGP. RSVP signals the TE tunnel with appropriate bandwidth pool requirements.

SUMMARY STEPS

1. configure
2. rsvp
3. interface type interface-path-id
4. bandwidth total-bandwidth max-flow sub-pool sub-pool-bw
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 rsvp</td>
<td>Enters RSVP configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# rsvp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enters interface configuration mode for the RSVP protocol.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-rsvp)# interface pos 0/2/0/0</td>
<td></td>
</tr>
</tbody>
</table>
Enabling Graceful Restart

Perform this task to enable graceful restart for implementations using both node-id and interface-based hellos. RSVP graceful restart provides a control plane mechanism to ensure high availability, which allows detection and recovery from failure conditions while preserving nonstop forwarding services.

SUMMARY STEPS

1. configure
2. rsvp
3. signalling graceful-restart
4. signalling graceful-restart interface-based
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the RSVP configuration mode.</td>
</tr>
<tr>
<td>Step 2 rsvp</td>
<td>Enables the graceful restart process on the node.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config) # rsvp</td>
<td></td>
</tr>
<tr>
<td>Step 3 signalling graceful-restart</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-rsvp) # signalling graceful-restart</td>
<td></td>
</tr>
</tbody>
</table>
Configuring ACL-based Prefix Filtering

Two procedures are provided to show how RSVP Prefix Filtering is associated:

- Configuring ACLs for Prefix Filtering, on page 140
- Configuring RSVP Packet Dropping, on page 141

Configuring ACLs for Prefix Filtering

Perform this task to configure an extended access list ACL that identifies the source and destination prefixes used for packet filtering.

Note

The extended ACL needs to be configured separately using extended ACL configuration commands.

SUMMARY STEPS

1. configure
2. rsvp
3. signalling prefix-filtering access-list
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 rsvp</td>
<td>Enters the RSVP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config) # rsvp</td>
</tr>
</tbody>
</table>
Configuring RSVP Packet Dropping

Perform this task to configure RSVP to drop RA packets when the ACL match returns an implicit (default) deny.

The default behavior performs normal RSVP processing on RA packets when the ACL match returns an implicit (default) deny.

SUMMARY STEPS

1. `configure`
2. `rsvp`
3. `signalling prefix-filtering default-deny-action`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>rsvp</code></td>
<td>Enters the RSVP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config)# rsvp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>signalling prefix-filtering default-deny-action</code></td>
<td>Drops RA messages.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-rsvp)# signalling prefix-filtering default-deny-action</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>
Related Topics
- Overview of RSVP for MPLS-TE, on page 128
- Set DSCP for RSVP Packets: Example, on page 158

Verifying RSVP Configuration

Figure 12: Sample Topology

This figure illustrates the topology.

Perform the following steps to verify RSVP configuration.

SUMMARY STEPS

1. `show rsvp session`
2. `show rsvp counters messages summary`
3. `show rsvp counters events`
4. `show rsvp interface type interface-path-id [detail]`
5. `show rsvp graceful-restart`
6. `show rsvp graceful-restart [neighbors ip-address | detail]`
7. `show rsvp interface`
8. `show rsvp neighbor`

DETAILED STEPS

Step 1
`show rsvp session`

Verifies that all routers on the path of the LSP are configured with at least one Path State Block (PSB) and one Reservation State Block (RSB) per session.

Example:

```
RP/0/RSP0/CPU0:router# show rsvp session

Type Destination Add DPort Proto/ExtTunID PSBs RSBs Reqs
---- --------------- ----- --------------- ----- ----- ----- LSP4
172.16.70.70 6 10.51.51.51 1 1 0
```

In the example, the output represents an LSP from ingress (head) router 10.51.51.51 to egress (tail) router 172.16.70.70. The tunnel ID (also called the destination port) is 6.

Example:

If no states can be found for a session that should be up, verify the application (for example, MPLS-TE) to see if everything is in order. If a session has one PSB but no RSB, this indicates that either the Path message is not making it to the egress (tail) router or
the reservation message is not making it back to the router R1 in question.

Go to the downstream router R2 and display the session information:

Example:

If R2 has no PSB, either the path message is not making it to the router or the path message is being rejected (for example, due to lack of resources). If R2 has a PSB but no RSB, go to the next downstream router R3 to investigate. If R2 has a PSB and an RSB, this means the reservation is not making it from R2 to R1 or is being rejected.

Step 2
show rsvp counters messages summary
Verifies whether the RSVP message is being transmitted and received.
Example:

```
RP/0/RSP0/CPU0:router# show rsvp counters messages summary
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Recv</th>
<th>Xmit</th>
<th>Recv</th>
<th>Xmit</th>
<th>Path</th>
<th>Resv</th>
<th>PathError</th>
<th>ResvError</th>
<th>PathTear</th>
<th>ResvTear</th>
<th>ResvConfirm</th>
<th>Ack</th>
<th>Bundle</th>
<th>Hello</th>
<th>SRefresh</th>
<th>OutOfOrder</th>
<th>Retransmit</th>
<th>Rate Limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>12</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>37</td>
<td>0</td>
<td>5099</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 3
show rsvp counters events
Verifies how many RSVP states have expired. Because RSVP uses a soft-state mechanism, some failures will lead to RSVP states to expire due to lack of refresh from the neighbor.
Example:

```
RP/0/RSP0/CPU0:router# show rsvp counters events
```

```
mgmtEthernet0/0/0/0 tunnel6 Expired Path states 0 Expired Path states 0 Expired Resv states 0 Expired Resv states 0 NACKs received 0 NACKs received 0 POS0/3/0/0 Expired Path states 0 Expired Path states 0 Expired Resv states 0 Expired Resv states 0 NACKs received 0 NACKs received 0 POS0/3/0/1 Expired Path states 0 Expired Path states 0 Expired Resv states 0 Expired Resv states 0 NACKs received 0 NACKs received 0 POS0/3/0/2 Expired Path states 0 Expired Path states 0 Expired Path states 0 Expired Path states 0 Expired Resv states 0 Expired Resv states 1 NACKs received 0 NACKs received 1
```

Step 4
show rsvp interface type interface-path-id [detail]
Verifies that refresh reduction is working on a particular interface.
Example:

```
RP/0/RSP0/CPU0:router# show rsvp interface pos0/3/0/3 detail
```

```
```
Step 5 show rsvp graceful-restart

Verifies that graceful restart is enabled locally.

Example:

RP/0/RSP0/CPU0:router# show rsvp graceful-restart

Graceful restart: enabled Number of global neighbors: 1 Local MPLS router id: 10.51.51.51 Restart time: 60 seconds Recovery time: 0 seconds Recovery timer: Not running Hello interval: 5000 milliseconds Maximum Hello miss-count: 3

Step 6 show rsvp graceful-restart [neighbors ip-address | detail]

Verifies that graceful restart is enabled on the neighbor(s). These examples show that neighbor 192.168.60.60 is not responding to hello messages.

Example:

RP/0/RSP0/CPU0:router# show rsvp graceful-restart neighbors 192.168.60.60

Neighbor App State Recovery Reason Since LostCnt ----------------- ----- ------ -------- ------------
-------------------- -------- 192.168.60.60 MPLS INIT DONE N/A 12/06/2003 19:01:49 0

RP/0/RSP0/CPU0:router# show rsvp graceful-restart neighbors detail

Neighbor: 192.168.60.60 Source: 10.51.51.51 (MPLS) Hello instance for application MPLS Hello State: INIT (for 3d23h) Number of times communications with neighbor lost: 0 Reason: N/A Recovery State: DONE Number of Interface neighbors: 1 address: 10.64.64.65 Restart time: 0 seconds Recovery time: 0 seconds Restart timer: Not running Hello interval: 5000 milliseconds Maximum allowed missed Hello messages: 3

Step 7 show rsvp interface

Verifies the available RSVP bandwidth.

Example:

RP/0/RSP0/CPU0:router# show rsvp interface

Interface MaxBW MaxFlow Allocated MaxSub -----------
------- -------- --------------- -------- Et0/0/0/0 0 0 0 (0%) 0 PO0/3/0/0 1000M 1000M 0 (0%) 0 PO0/3/0/1 1000M 1000M 0 (0%) 0 PO0/3/0/2 1000M 1000M 0 (0%) 0 PO0/3/0/3 1000M 1000M 1K (0%) 0

Step 8 show rsvp neighbor

Verifies the RSVP neighbors.

Example:
Related Topics

Overview of RSVP for MPLS-TE, on page 128

Enabling RSVP Traps

With the exception of the RSVP MIB traps, no action is required to activate the MIBs. This MIB feature is automatically enabled when RSVP is turned on; however, RSVP traps must be enabled.

Perform this task to enable all RSVP MIB traps, NewFlow traps, and LostFlow traps.

SUMMARY STEPS

1. configure
2. snmp-server traps rsvp lost-flow
3. snmp-server traps rsvp new-flow
4. snmp-server traps rsvp all
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 snmp-server traps rsvp lost-flow</td>
<td>Sends RSVP notifications to enable RSVP LostFlow traps.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)#</td>
<td>snmp-server traps rsvp lost-flow</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 snmp-server traps rsvp new-flow</td>
<td>Sends RSVP notifications to enable RSVP NewFlow traps.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)#</td>
<td>snmp-server traps rsvp new-flow</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4 snmp-server traps rsvp all</td>
<td>Sends RSVP notifications to enable all RSVP MIB traps.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)#</td>
<td>snmp-server traps</td>
</tr>
</tbody>
</table>
There are three types of RSVP authentication modes—global, interface, and neighbor. These topics describe how to implement RSVP authentication for each mode:

Configuring Global Configuration Mode RSVP Authentication

These tasks describe how to configure RSVP authentication in global configuration mode:

Enabling RSVP Authentication Using the Keychain in Global Configuration Mode

Perform this task to enable RSVP authentication for cryptographic authentication by specifying the keychain in global configuration mode.

Note

You must configure a keychain before completing this task (see *System Security Configuration Guide for Cisco ASR 9000 Series Routers*).

SUMMARY STEPS

1. configure
2. rsvp authentication
3. key-source key-chain *key-chain-name*
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>rsvp authentication</td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config)# rsvp authentication
RP/0/RSP0/CPU0:router(config-rsvp-auth)#
```
Configuring a Lifetime for RSVP Authentication in Global Configuration Mode

Perform this task to configure a lifetime value for RSVP authentication in global configuration mode.

SUMMARY STEPS

1. `configure`
2. `rsvp authentication`
3. `life-time seconds`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td><code>configure</code></td>
<td>Enters RSVP authentication configuration mode.</td>
</tr>
<tr>
<td>2.</td>
<td><code>rsvp authentication</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-rsvp-auth)# rsvp authentication</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-rsvp-auth)#</code></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td><code>life-time seconds</code></td>
<td>Controls how long RSVP maintains security associations with other trusted RSVP neighbors.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-rsvp-auth)# life-time 2000</code></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- [Key-source Key-chain](#), on page 136
- [RSVP Authentication Global Configuration Mode: Example](#), on page 159

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>key-source key-chain key-chain-name</code></td>
<td>Specifies the source of the key information to authenticate RSVP signaling messages.</td>
</tr>
<tr>
<td>Example:</td>
<td><code>key-chain-name</code></td>
<td>Name of the keychain. The maximum number of characters is 32.</td>
</tr>
</tbody>
</table>

| Step 4 | `commit` | |

Related Topics

- [Global, Interface, and Neighbor Authentication Modes](#), on page 134
Configuring the Window Size for RSVP Authentication in Global Configuration Mode

Perform this task to configure the window size for RSVP authentication in global configuration mode.

SUMMARY STEPS

1. configure
2. rsvp authentication
3. window-size \(N \)
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters RSVP authentication configuration mode.</td>
</tr>
<tr>
<td>Step 2 rsvp authentication</td>
<td>Specifiess the maximum number of RSVP authenticated messages that can be received out-of-sequence.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# rsvp authentication RP/0/RSP0/CPU0:router(config-rsvp-auth)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 window-size (N)</td>
<td>Size of the window to restrict out-of-sequence messages. The range is from 1 to 64. The default value is 1, in which case all out-of-sequence messages are dropped.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-rsvp-auth)# window-size 33</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Guidelines for Window-Size and Out-of-Sequence Messages, on page 137
- RSVP Authentication by Using All the Modes: Example, on page 160
- RSVP Authentication for an Interface: Example, on page 159

Configuring an Interface for RSVP Authentication

These tasks describe how to configure an interface for RSVP authentication:

Specifying the RSVP Authentication Keychain in Interface Mode

Perform this task to specify RSVP authentication keychain in interface mode.

You must configure a keychain first (see System Security Configuration Guide for Cisco ASR 9000 Series Routers).
SUMMARY STEPS

1. configure
2. rsvp interface type interface-path-id
3. authentication
4. key-source key-chain key-chain-name
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 rsvp interface type interface-path-id</td>
<td>Enters RSVP interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config) # rsvp interface POS 0/2/1/0</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 authentication</td>
<td>Enters RSVP authentication configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if)# authentication</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if-auth)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 key-source key-chain key-chain-name</td>
<td>Specifies the source of the key information to authenticate RSVP signaling messages.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if-auth)# key-source key-chain mpls-keys</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- Global, Interface, and Neighbor Authentication Modes, on page 134
- RSVP Authentication by Using All the Modes: Example, on page 160

Configuring a Lifetime for an Interface for RSVP Authentication

Perform this task to configure a lifetime for the security association for an interface.

SUMMARY STEPS

1. configure
2. rsvp interface type interface-path-id
3. authentication
4. `life-time seconds`
5. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>rsvp interface type interface-path-id</code></td>
<td>Enters RSVP interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>rsvp interface POS 0/2/1/0</code></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-rsvp-if)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>authentication</code></td>
<td>Enters RSVP authentication configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>authentication</code></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-rsvp-if-auth)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>life-time seconds</code></td>
<td>Controls how long RSVP maintains security associations with other trusted RSVP neighbors.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>life-time 2000</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 <code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- RSVP Authentication Design, on page 133
- RSVP Authentication by Using All the Modes: Example, on page 160

Configuring the Window Size for an Interface for RSVP Authentication

Perform this task to configure the window size for an interface for RSVP authentication to check the validity of the sequence number received.

SUMMARY STEPS

1. `configure`
2. `rsvp interface type interface-path-d`
3. `authentication`
4. `window-size N`
5. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 rsvp interface type interface-path-d</td>
<td>Enters RSVP interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)#</td>
<td></td>
</tr>
<tr>
<td>rsvp interface POS 0/2/1/0</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 authentication</td>
<td>Enters RSVP interface authentication configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if)#</td>
<td>authentication</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if-auth)#</td>
<td></td>
</tr>
<tr>
<td>Step 4 window-size N</td>
<td>Specifies the maximum number of RSVP authenticated messages that can be received out-of-sequence.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if-auth)#</td>
<td>window-size 33</td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- Guidelines for Window-Size and Out-of-Sequence Messages, on page 137
- RSVP Authentication by Using All the Modes: Example, on page 160
- RSVP Authentication for an Interface: Example, on page 159

Configuring RSVP Neighbor Authentication

These tasks describe how to configure the RSVP neighbor authentication:

- Specifying the Keychain for RSVP Neighbor Authentication, on page 151
- Configuring a Lifetime for RSVP Neighbor Authentication, on page 152
- Configuring the Window Size for RSVP Neighbor Authentication, on page 153

Specifying the Keychain for RSVP Neighbor Authentication

Perform this task to specify the keychain RSVP neighbor authentication.
You must configure a keychain first (see System Security Configuration Guide for Cisco ASR 9000 Series Routers).

SUMMARY STEPS

1. `configure`
2. `rsvp neighbor IP-address authentication`
3. `key-source key-chain key-chain-name`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters neighbor authentication configuration mode. Use the rsvp neighbor command to activate RSVP cryptographic authentication for a neighbor.</td>
</tr>
<tr>
<td>Step 2 <code>rsvp neighbor IP-address authentication</code></td>
<td>IP address of the neighbor. A single IP address for a specific neighbor; usually one of the neighbor's physical or logical (loopback) interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td>Authentication</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# rsvp neighbor 1.1.1.1 authentication</td>
<td>Configures the RSVP authentication parameters.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-nbor-auth)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 key-source key-chain key-chain-name</td>
<td>Specifies the source of the key information to authenticate RSVP signaling messages.</td>
</tr>
<tr>
<td>Example:</td>
<td>key-chain-name</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-rsvp-nbor-auth)#</td>
<td>Name of the keychain. The maximum number of characters is 32.</td>
</tr>
<tr>
<td>key-source key-chain mpls-keys</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Key-source Key-chain, on page 136
- Security Association, on page 135
- RSVP Neighbor Authentication: Example, on page 160

Configuring a Lifetime for RSVP Neighbor Authentication

Perform this task to configure a lifetime for security association for RSVP neighbor authentication mode.

SUMMARY STEPS

1. `configure`
2. `rsvp neighbor IP-address authentication`
3. `life-time seconds`
4. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters RSVP neighbor authentication configuration mode. Use the <code>rsvp neighbor</code> command to specify a neighbor under RSVP.</td>
</tr>
<tr>
<td>Step 2 <code>rsvp neighbor IP-address authentication</code></td>
<td>IP address of the neighbor. A single IP address for a specific neighbor; usually one of the neighbor's physical or logical (loopback) interfaces.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config)# rsvp neighbor 1.1.1.1 authentication</code></td>
<td>authentication</td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-rsvp-nbor-auth)#</code></td>
<td>Configures the RSVP authentication parameters.</td>
</tr>
<tr>
<td>Step 3 <code>life-time seconds</code></td>
<td>Controls how long RSVP maintains security associations with other trusted RSVP neighbors. The argument specifies the</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-rsvp-nbor-auth)# life-time 2000</code></td>
<td>seconds</td>
</tr>
<tr>
<td></td>
<td>Length of time (in seconds) that RSVP maintains idle security associations with other trusted RSVP neighbors. Range is from 30 to 86400. The default value is 1800.</td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- Security Association, on page 135
- RSVP Authentication Global Configuration Mode: Example, on page 159

Configuring the Window Size for RSVP Neighbor Authentication

Perform this task to configure the RSVP neighbor authentication window size to check the validity of the sequence number received.

SUMMARY STEPS

1. `configure`
2. `rsvp neighbor IP address authentication`
3. `window-size N`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Verifying the Details of the RSVP Authentication

To display the security associations that RSVP has established with other RSVP neighbors, use the show rsvp authentication command.

Eliminating Security Associations for RSVP Authentication

To eliminate RSVP authentication SA’s, use the clear rsvp authentication command. To eliminate RSVP counters for each SA, use the clear rsvp counters authentication command.

Configuration Examples for RSVP

Sample RSVP configurations are provided for some of the supported RSVP features.

- Bandwidth Configuration (Prestandard): Example, on page 155
- Bandwidth Configuration (MAM): Example, on page 155
- Bandwidth Configuration (RDM): Example, on page 155
Bandwidth Configuration (Prestandard): Example

The example shows the configuration of bandwidth on an interface using prestandard DS-TE mode. The example configures an interface for a reservable bandwidth of 7500, specifies the maximum bandwidth for one flow to be 1000 and adds a sub-pool bandwidth of 2000.

```
rsvp interface pos 0/3/0/0
bandwidth 7500 1000 sub-pool 2000
```

Bandwidth Configuration (MAM): Example

The example shows the configuration of bandwidth on an interface using MAM. The example shows how to limit the total of all RSVP reservations on POS interface 0/3/0/0 to 7500 kbps, and allows each single flow to reserve no more than 1000 kbps.

```
rsvp interface pos 0/3/0/0
bandwidth mam 7500 1000
```

The following example shows how to allocate a percentage of total bandwidth to bc0 and bc1 pools:

```
rsvp interface pos 0/3/0/0
bandwidth mam percentage 100 bc0 100 bc1 50
```

Related Topics
- Confirming DiffServ-TE Bandwidth, on page 138
- Differentiated Services Traffic Engineering, on page 176

Bandwidth Configuration (RDM): Example

The example shows the configuration of bandwidth on an interface using RDM. The example shows how to limit the total of all RSVP reservations on POS interface 0/3/0/0 to 7500 kbps, and allows each single flow to reserve no more than 1000 kbps.

```
rsvp interface pos 0/3/0/0
bandwidth rdm 7500 1000
```

The following example shows how to allocate a percentage of total bandwidth to bc0 and bc1 pools:

```
rsvp interface pos 0/3/0/0
```
bandwidth rdm percentage 100 bc0 100 bc1 50

Related Topics
- Confirming DiffServ-TE Bandwidth, on page 138
- Differentiated Services Traffic Engineering, on page 176

Refresh Reduction and Reliable Messaging Configuration: Examples

Refresh reduction feature as defined by RFC 2961 is supported and enabled by default. The examples illustrate the configuration for the refresh reduction feature. Refresh reduction is used with a neighbor only if the neighbor supports it also.

Refresh Interval and the Number of Refresh Messages Configuration: Example

The example shows how to configure the refresh interval to 30 seconds on POS 0/3/0/0 and how to change the number of refresh messages the node can miss before cleaning up the state from the default value of 4 to 6.

rsvp interface pos 0/3/0/0
signalling refresh interval 30
signalling refresh missed 6

Retransmit Time Used in Reliable Messaging Configuration: Example

The example shows how to set the retransmit timer to 2 seconds. To prevent unnecessary retransmits, the retransmit time value configured on the interface must be greater than the ACK hold time on its peer.

rsvp interface pos 0/4/0/1
signalling refresh reduction reliable retransmit-time 2000

Acknowledgement Times Configuration: Example

The example shows how to change the acknowledge hold time from the default value of 400 ms, to delay or speed up sending of ACKs, and the maximum acknowledgement message size from default size of 4096 bytes. The example shows how to change the acknowledge hold time from the default value of 400 ms and how to delay or speed up sending of ACKs. The maximum acknowledgement message default size is from 4096 bytes.

rsvp interface pos 0/4/0/1
signalling refresh reduction reliable ack-hold-time 1000
rsvp interface pos 0/4/0/1
signalling refresh reduction reliable ack-max-size 1000

Note

Ensure retransmit time on the peers’ interface is at least twice the amount of the ACK hold time to prevent unnecessary retransmissions.

Summary Refresh Message Size Configuration: Example

The example shows how to set the summary refresh message maximum size to 1500 bytes.
Disable Refresh Reduction: Example

If the peer node does not support refresh reduction, or for any other reason you want to disable refresh reduction on an interface, the example shows how to disable refresh reduction on that interface.

```
rsvp interface pos 0/4/0/1
  signalling refresh reduction disable
```

Configure Graceful Restart: Examples

RSVP graceful restart is configured globally or per interface (as are refresh-related parameters). These examples show how to enable graceful restart, set the restart time, and change the hello message interval.

Enable Graceful Restart: Example

The example shows how to enable the RSVP graceful restart by default. If disabled, enable it with the following command.
```
rsvp signalling graceful-restart
```

Related Topics
- [Enabling Graceful Restart](#), on page 139
- [Graceful Restart: Standard and Interface-Based](#), on page 130

Enable Interface-Based Graceful Restart: Example

The example shows how to enable the RSVP graceful restart feature on an interface.

```
RP/0/RSP0/CPU0:router#configure
RP/0/RSP0/CPU0:router(config-rsvp)#interface bundle-ether 17
RP/0/RSP0/CPU0:router(config-rsvp-if)#signalling hello graceful-restart ?
  interface-based Configure Interface-based Hello
RP/0/RSP0/CPU0:router(config-rsvp-if)#signalling hello graceful-restart interface-based
RP/0/RSP0/CPU0:router(config-rsvp-if)#
```

Related Topics
- [Enabling Graceful Restart](#), on page 139
- [Graceful Restart: Standard and Interface-Based](#), on page 130

Change the Restart-Time: Example

The example shows how to change the restart time that is advertised in hello messages sent to neighbor nodes.
```
rsvp signalling graceful-restart restart-time 200
```

Change the Hello Interval: Example

The example shows how to change the interval at which RSVP graceful restart hello messages are sent per neighbor, and change the number of hellos missed before the neighbor is declared down.
rsvp signalling hello graceful-restart refresh interval 4000
rsvp signalling hello graceful-restart refresh misses 4

Configure ACL-based Prefix Filtering: Example

The example shows when RSVP receives a Router Alert (RA) packet from source address 1.1.1.1 and 1.1.1.1 is not a local address. The packet is forwarded with IP TTL decremented. Packets destined to 2.2.2.2 are dropped. All other RA packets are processed as normal RSVP packets.

show run ipv4 access-list
ipv4 access-list rsvpacl
10 permit ip host 1.1.1.1 any
20 deny ip any host 2.2.2.2
!
show run rsvp
rsvp
signalling prefix-filtering access-list rsvpacl
!

Related Topics
Configuring ACLs for Prefix Filtering, on page 140
ACL-based Prefix Filtering, on page 132

Set DSCP for RSVP Packets: Example

The configuration example sets the Differentiated Services Code Point (DSCP) field in the IP header of RSVP packets.

rsvp interface pos0/2/0/1
signalling dscp 20

Related Topics
Configuring RSVP Packet Dropping, on page 141
Overview of RSVP for MPLS-TE, on page 128

Enable RSVP Traps: Example

The example enables the router to send all RSVP traps:

configure
snmp-server traps rsvp all

The example enables the router to send RSVP LostFlow traps:

configure
snmp-server traps rsvp lost-flow

The example enables the router to send RSVP RSVP NewFlow traps:
configure
snmp-server traps rsvp new-flow

Related Topics
- Enabling RSVP Traps, on page 145
- RSVP MIB, on page 132

Configuration Examples for RSVP Authentication

These configuration examples are used for RSVP authentication:
- RSVP Authentication Global Configuration Mode: Example, on page 159
- RSVP Authentication for an Interface: Example, on page 159
- RSVP Neighbor Authentication: Example, on page 160
- RSVP Authentication by Using All the Modes: Example, on page 160

RSVP Authentication Global Configuration Mode: Example

The configuration example enables authentication of all RSVP messages and increases the default lifetime of the SAs.

```
rsvp
  authentication
    key-source key-chain default_keys
    life-time 3600
```

The specified keychain (default_keys) must exist and contain valid keys, or signaling will fail.

Related Topics
- Enabling RSVP Authentication Using the Keychain in Global Configuration Mode, on page 146
- Key-source Key-chain, on page 136
- Configuring a Lifetime for RSVP Authentication in Global Configuration Mode, on page 147
- Global, Interface, and Neighbor Authentication Modes, on page 134
- Configuring a Lifetime for RSVP Neighbor Authentication, on page 152
- Security Association, on page 135

RSVP Authentication for an Interface: Example

The configuration example enables authentication of all RSVP messages that are being sent or received on one interface only, and sets the window-size of the SAs.

```
rsvp
```
interface GigabitEthernet0/6/0/0
authentication
 window-size 64
!
!

Because the key-source keychain configuration is not specified, the global authentication mode keychain is used and inherited. The global keychain must exist and contain valid keys or signaling fails.

Related Topics
 Configuring the Window Size for RSVP Authentication in Global Configuration Mode, on page 148
 Configuring the Window Size for an Interface for RSVP Authentication, on page 150
 Configuring the Window Size for RSVP Neighbor Authentication, on page 153
 Guidelines for Window-Size and Out-of-Sequence Messages, on page 137

RSVP Neighbor Authentication: Example

The configuration example enables authentication of all RSVP messages that are being sent to and received from only a particular IP address.

rsvp
neighbor 10.0.0.1
 authentication
 key-source key-chain nbr_keys
 !
 !

Related Topics
 Specifying the Keychain for RSVP Neighbor Authentication, on page 151
 Key-source Key-chain, on page 136
 Security Association, on page 135

RSVP Authentication by Using All the Modes: Example

The configuration example shows how to perform the following functions:

• Authenticates all RSVP messages.

• Authenticates the RSVP messages to or from 10.0.0.1 by setting the keychain for the `key-source key-chain` command to nbr_keys, SA lifetime is set to 3600, and the default window-size is set to 1.

• Authenticates the RSVP messages not to or from 10.0.0.1 by setting the keychain for the `key-source key-chain` command to default_keys, SA lifetime is set to 3600, and the window-size is set 64 when using GigabitEthernet0/6/0/0; otherwise, the default value of 1 is used.
window-size 64
!
neighbor 10.0.0.1
 authentication
 key-source key-chain nbr_keys
 !
 !
 authentication
 key-source key-chain default_keys
 life-time 3600
 !

Note If a keychain does not exist or contain valid keys, this is considered a configuration error because signaling fails. However, this can be intended to prevent signaling. For example, when using the above configuration, if the nbr_keys does not contain valid keys, all signaling with 10.0.0.1 fails.

Related Topics
 Configuring the Window Size for RSVP Authentication in Global Configuration Mode, on page 148
 Configuring the Window Size for an Interface for RSVP Authentication, on page 150
 Configuring the Window Size for RSVP Neighbor Authentication, on page 153
 Guidelines for Window-Size and Out-of-Sequence Messages, on page 137
 Specifying the RSVP Authentication Keychain in Interface Mode, on page 148
 Global, Interface, and Neighbor Authentication Modes, on page 134
 Configuring a Lifetime for an Interface for RSVP Authentication, on page 149
 RSVP Authentication Design, on page 133

Additional References

For additional information related to implementing GMPLS UNI, refer to the following references:

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMPLS UNI commands</td>
<td>GMPLS UNI Commands module in MPLS Command Reference for Cisco ASR 9000 Series Routers</td>
</tr>
<tr>
<td>MPLS Traffic Engineering commands</td>
<td>MPLS Traffic Engineering commands module in MPLS Command Reference for Cisco ASR 9000 Series Routers</td>
</tr>
<tr>
<td>RSVP commands</td>
<td>RSVP commands module in MPLS Command Reference for Cisco ASR 9000 Series Routers</td>
</tr>
<tr>
<td>Getting started material</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services module in System Security Configuration Guide for Cisco ASR 9000 Series Routers</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3471</td>
<td>Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description</td>
</tr>
<tr>
<td>RFC 4872</td>
<td>RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery</td>
</tr>
<tr>
<td>RFC 6205</td>
<td>Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing MPLS Forwarding

This module describes how to implement MPLS Forwarding on Cisco ASR 9000 Series Aggregation Services Routers.

All Multiprotocol Label Switching (MPLS) features require a core set of MPLS label management and forwarding services; the MPLS Forwarding Infrastructure (MFI) supplies these services.

Feature History for Implementing MPLS-TE

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>No modification.</td>
</tr>
<tr>
<td>Release 6.0</td>
<td>The Label Security for BGP Inter-AS Option-B feature was modified.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Cisco MPLS Forwarding, on page 163
- Restrictions for Implementing Cisco MPLS Forwarding, on page 164
- Information About Implementing MPLS Forwarding, on page 164
- How to Implement MPLS Forwarding, on page 166
- Additional References, on page 167

Prerequisites for Implementing Cisco MPLS Forwarding

These prerequisites are required to implement MPLS Forwarding:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

- Router that runs Cisco IOS XR software.

- Installed composite mini-image and the MPLS package, or a full composite image.
Restrictions for Implementing Cisco MPLS Forwarding

- Label switching on a Cisco router requires that Cisco Express Forwarding (CEF) be enabled.
- CEF is mandatory for Cisco IOS XR software and it does not need to be enabled explicitly.

Information About Implementing MPLS Forwarding

To implement MPLS Forwarding, you should understand these concepts:

MPLS Forwarding Overview

MPLS combines the performance and capabilities of Layer 2 (data link layer) switching with the proven scalability of Layer 3 (network layer) routing. MPLS enables service providers to meet the challenges of growth in network utilization while providing the opportunity to differentiate services without sacrificing the existing network infrastructure. The MPLS architecture is flexible and can be employed in any combination of Layer 2 technologies. MPLS support is offered for all Layer 3 protocols, and scaling is possible well beyond that typically offered in today’s networks.

Based on routing information that is stored in the VRF IP routing table and VRF CEF table, packets are forwarded to their destination using MPLS.

A PE router binds a label to each customer prefix learned from a CE router and includes the label in the network reachability information for the prefix that it advertises to other PE routers. When a PE router forwards a packet received from a CE router across the provider network, it labels the packet with the label learned from the destination PE router. When the destination PE router receives the labeled packet it pops the label and uses it to direct the packet to the correct CE router. Label forwarding across the provider backbone, is based on either dynamic label switching or traffic engineered paths. A customer data packet carries two levels of labels when traversing the backbone:

- Top label directs the packet to the correct PE router
- Second label indicates how that PE router should forward the packet to the CE router

Label Switching Functions

In conventional Layer 3 forwarding mechanisms, as a packet traverses the network, each router extracts all the information relevant to forwarding the packet from the Layer 3 header. This information is then used as an index for a routing table lookup to determine the next hop for the packet.

In the most common case, the only relevant field in the header is the destination address field, but in some cases, other header fields might also be relevant. As a result, the header analysis must be done independently at each router through which the packet passes. In addition, a complicated table lookup must also be done at each router.

In label switching, the analysis of the Layer 3 header is done only once. The Layer 3 header is then mapped into a fixed-length, unstructured value called a label.
Many different headers can map to the same label, as long as those headers always result in the same choice of next hop. In effect, a label represents a forwarding equivalence class—that is, a set of packets which, however different they may be, are indistinguishable by the forwarding function.

The initial choice of a label need not be based exclusively on the contents of the Layer 3 packet header; for example, forwarding decisions at subsequent hops can also be based on routing policy.

Once a label is assigned, a short label header is added at the front of the Layer 3 packet. This header is carried across the network as part of the packet. At subsequent hops through each MPLS router in the network, labels are swapped and forwarding decisions are made by means of MPLS forwarding table lookup for the label carried in the packet header. Hence, the packet header does not need to be reevaluated during packet transit through the network. Because the label is of fixed length and unstructured, the MPLS forwarding table lookup process is both straightforward and fast.

Distribution of Label Bindings

Each label switching router (LSR) in the network makes an independent, local decision as to which label value to use to represent a forwarding equivalence class. This association is known as a label binding.

Note

The distribution of label bindings cannot be done statically for the Layer 2 VPN pseudowire.

Each LSR informs its neighbors of the label bindings it has made. This awareness of label bindings by neighboring routers is facilitated by these protocols:

- **Label Distribution Protocol (LDP)**
 - Supports MPLS forwarding along normally routed paths.

- **Resource Reservation Protocol (RSVP)**
 - Supports MPLS traffic engineering.

- **Border Gateway Protocol (BGP)**
 - Supports MPLS virtual private networks (VPNs).

When a labeled packet is sent from LSR A to the neighboring LSR B, the label value carried by the IP packet is the label value that LSR B assigned to represent the forwarding equivalence class of the packet. Thus, the label value changes as the IP packet traverses the network.

MFI Control-Plane Services

The MFI control-plane provides services to MPLS applications, such as Label Distribution Protocol (LDP) and Traffic Engineering (TE), that include enabling and disabling MPLS on an interface, local label allocation, MPLS rewrite setup (including backup links), management of MPLS label tables, and the interaction with other forwarding paths (IP Version 4 [IPv4] for example) to set up imposition and disposition.

MFI Data-Plane Services

The MFI data-plane provides a software implementation of MPLS forwarding in all of these forms:

- **Imposition**
MPLS Maximum Transmission Unit

MPLS maximum transmission unit (MTU) indicates that the maximum size of the IP packet can still be sent on a data link, without fragmenting the packet. In addition, data links in MPLS networks have a specific MTU, but for labeled packets. All IPv4 packets have one or more labels. This does imply that the labeled packets are slightly bigger than the IP packets, because for every label, four bytes are added to the packet. So, if \(n \) is the number of labels, \(n \times 4 \) bytes are added to the size of the packet when the packet is labeled. The MPLS MTU parameter pertains to labeled packets.

Label Security for BGP Inter-AS Option-B

Option-B is a method to exchange VPNv4/VPNv6 routes between Autonomous Systems (AS), as described in RFC-4364. When a router configured with Option-B, peers with a router from another confederation, or an autonomous system, and receives a labeled packet from such an external peer, the router ensures the following:

- the top label is advertised to the source of traffic
- label stack on the packet received from the external peer contains at least one label (explicit null label is not included)

How to Implement MPLS Forwarding

These topics explain how to configure a router for MPLS forwarding.

Configuring MPLS Label Security

Perform this task to configure the MPLS label security on the interface.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. mpls label-security rpf
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td>Enters the interface configuration mode.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

RP/0/RSP0/CPU0:router(config)# interface tunnel-te 1

Step 3 mpls label-security rpf
Example:
RP/0/RSP0/CPU0:router(config-if)# mpls label-security rpf

Configures the MPLS label security on the specified interface and checks for RPF label on incoming packets.

Step 4 commit

Additional References

For additional information related to implementing MPLS Forwarding, refer to the following references:

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Forwarding commands</td>
<td>MPLS Forwarding Commands on Cisco ASR 9000 Series Router module in Cisco ASR 9000 Series Aggregation Services Routers MPLS Command Reference</td>
</tr>
<tr>
<td>Getting started material</td>
<td>Cisco ASR 9000 Series Aggregation Services Routers Getting Started Guide</td>
</tr>
<tr>
<td>MPLS Forwarding commands</td>
<td>MPLS Forwarding Commands on Cisco IOS XR Software module in Cisco IOS XR MPLS Command Reference for the Cisco ASR 9000 Series Router</td>
</tr>
<tr>
<td>Getting started material</td>
<td>Cisco IOS XR Getting Started Guide for the Cisco ASR 9000 Series Router</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on Cisco IOS XR Software module of Cisco IOS XR System Security Configuration Guide for the Cisco ASR 9000 Series Router</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature. Technical Assistance Center (TAC) home page, containing 30,000 pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3031</td>
<td>Multiprotocol Label Switching Architecture</td>
</tr>
<tr>
<td>RFC 3443</td>
<td>Time to Live (TTL) Processing in Multi-Protocol Label Switching (MPLS) Networks</td>
</tr>
<tr>
<td>RFC 4105</td>
<td>Requirements for Inter-Area MPLS Traffic Engineering</td>
</tr>
</tbody>
</table>
Implementing MPLS Traffic Engineering

This module describes how to implement MPLS Traffic Engineering on Cisco ASR 9000 Series Router.

Multiprotocol Label Switching (MPLS) is a standards-based solution driven by the Internet Engineering Task Force (IETF) that was devised to convert the Internet and IP backbones from best-effort networks into business-class transport mediums.

MPLS, with its label switching capabilities, eliminates the need for an IP route look-up and creates a virtual circuit (VC) switching function, allowing enterprises the same performance on their IP-based network services as with those delivered over traditional networks such as Frame Relay or Asynchronous Transfer Mode (ATM).

MPLS traffic engineering (MPLS-TE) software enables an MPLS backbone to replicate and expand upon the TE capabilities of Layer 2 ATM and Frame Relay networks. MPLS is an integration of Layer 2 and Layer 3 technologies. By making traditional Layer 2 features available to Layer 3, MPLS enables traffic engineering. Thus, you can offer in a one-tier network what now can be achieved only by overlaying a Layer 3 network on a Layer 2 network.

The LMP and GMPLS-NNI features are not supported on PRP hardware.

Feature History for Implementing MPLS-TE

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>The MPLS Traffic Engineering (TE): Path Protection feature was added.</td>
</tr>
<tr>
<td>Release 3.9.1</td>
<td>The MPLS-TE automatic bandwidth feature is supported.</td>
</tr>
<tr>
<td>Release 4.1.0</td>
<td>Support was added for the following features:</td>
</tr>
<tr>
<td></td>
<td>• Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE</td>
</tr>
<tr>
<td></td>
<td>• Point-to-Multipoint Traffic-Engineering</td>
</tr>
<tr>
<td>Release 4.1.1</td>
<td>The Auto-Tunnel Mesh feature was added.</td>
</tr>
<tr>
<td>Release</td>
<td>Modification</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Release 4.2.0</td>
<td>Support was added for the following features:</td>
</tr>
<tr>
<td></td>
<td>• Soft-Preemption</td>
</tr>
<tr>
<td></td>
<td>• Path Option Attributes</td>
</tr>
<tr>
<td>Release 4.2.1</td>
<td>The Auto-Tunnel Attribute-set feature was added for auto-backup tunnels.</td>
</tr>
<tr>
<td>Release 4.2.3</td>
<td>Support was added for the following features:</td>
</tr>
<tr>
<td></td>
<td>• End-to-End TE Path Protection Enhancements — Explicit Path Protection and</td>
</tr>
<tr>
<td></td>
<td>Co-existence of Path Protection with Fast Reroute</td>
</tr>
<tr>
<td></td>
<td>• P2MP-TE Inter-area Enhancements</td>
</tr>
<tr>
<td></td>
<td>Support was added for the following features:</td>
</tr>
<tr>
<td></td>
<td>• Set DF Bit</td>
</tr>
<tr>
<td>Release 5.2.2</td>
<td>Make-Before-Break feature was added.</td>
</tr>
<tr>
<td>Release 5.3.2</td>
<td>Policy-Based Tunnel Selection for IPv6 feature was added.</td>
</tr>
<tr>
<td>Release 5.3.2</td>
<td>Stateful PCE Enhancements were made.</td>
</tr>
<tr>
<td>Release 6.0</td>
<td>Introduced Service Path Preference</td>
</tr>
<tr>
<td>Release 6.0.1</td>
<td>Point-to-Multipoint Implicit Null feature was added.</td>
</tr>
<tr>
<td>Release 6.1.2</td>
<td>Named Tunnel feature was added.</td>
</tr>
<tr>
<td>Release 6.4.1</td>
<td>Enabling Forward Class Zero in PBTS feature was added.</td>
</tr>
</tbody>
</table>

Prerequisites for Implementing Cisco MPLS Traffic Engineering

These prerequisites are required to implement MPLS TE:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

- Router that runs Cisco IOS XR software .

- Installed composite mini-image and the MPLS package, or a full composite image.

- IGP activated.
Information About Implementing MPLS Traffic Engineering

To implement MPLS-TE, you should understand these concepts:

Overview of MPLS Traffic Engineering

MPLS-TE software enables an MPLS backbone to replicate and expand upon the traffic engineering capabilities of Layer 2 ATM and Frame Relay networks. MPLS is an integration of Layer 2 and Layer 3 technologies. By making traditional Layer 2 features available to Layer 3, MPLS enables traffic engineering. Thus, you can offer in a one-tier network what now can be achieved only by overlaying a Layer 3 network on a Layer 2 network.

MPLS-TE is essential for service provider and Internet service provider (ISP) backbones. Such backbones must support a high use of transmission capacity, and the networks must be very resilient so that they can withstand link or node failures. MPLS-TE provides an integrated approach to traffic engineering. With MPLS, traffic engineering capabilities are integrated into Layer 3, which optimizes the routing of IP traffic, given the constraints imposed by backbone capacity and topology.

Related Topics

- Configuring Forwarding over the MPLS-TE Tunnel, on page 227

Benefits of MPLS Traffic Engineering

MPLS-TE enables ISPs to route network traffic to offer the best service to their users in terms of throughput and delay. By making the service provider more efficient, traffic engineering reduces the cost of the network.

Currently, some ISPs base their services on an overlay model. In the overlay model, transmission facilities are managed by Layer 2 switching. The routers see only a fully meshed virtual topology, making most destinations appear one hop away. If you use the explicit Layer 2 transit layer, you can precisely control how traffic uses available bandwidth. However, the overlay model has numerous disadvantages. MPLS-TE achieves the TE benefits of the overlay model without running a separate network and without a non-scalable, full mesh of router interconnects.

How MPLS-TE Works

MPLS-TE automatically establishes and maintains label switched paths (LSPs) across the backbone by using RSVP. The path that an LSP uses is determined by the LSP resource requirements and network resources, such as bandwidth. Available resources are flooded by means of extensions to a link-state-based Interior Gateway Protocol (IGP).

MPLS-TE tunnels are calculated at the LSP headend router, based on a fit between the required and available resources (constraint-based routing). The IGP automatically routes the traffic to these LSPs.

Typically, a packet crossing the MPLS-TE backbone travels on a single LSP that connects the ingress point to the egress point. MPLS-TE is built on these mechanisms:

Tunnel interfaces

From a Layer 2 standpoint, an MPLS tunnel interface represents the headend of an LSP. It is configured with a set of resource requirements, such as bandwidth and media requirements, and priority. From a Layer 3 standpoint, an LSP tunnel interface is the headend of a unidirectional virtual link to the tunnel destination.
MPLS-TE path calculation module

This calculation module operates at the LSP headend. The module determines a path to use for an LSP. The path calculation uses a link-state database containing flooded topology and resource information.

RSVP with TE extensions

RSVP operates at each LSP hop and is used to signal and maintain LSPs based on the calculated path.

MPLS-TE link management module

This module operates at each LSP hop, performs link call admission on the RSVP signaling messages, and performs bookkeeping on topology and resource information to be flooded.

Link-state IGP (Intermediate System-to-Intermediate System [IS-IS] or Open Shortest Path First [OSPF]—each with traffic engineering extensions)

These IGPs are used to globally flood topology and resource information from the link management module.

Enhancements to the shortest path first (SPF) calculation used by the link-state IGP (IS-IS or OSPF)

The IGP automatically routes traffic to the appropriate LSP tunnel, based on tunnel destination. Static routes can also be used to direct traffic to LSP tunnels.

Label switching forwarding

This forwarding mechanism provides routers with a Layer 2-like ability to direct traffic across multiple hops of the LSP established by RSVP signaling.

One approach to engineering a backbone is to define a mesh of tunnels from every ingress device to every egress device. The MPLS-TE path calculation and signaling modules determine the path taken by the LSPs for these tunnels, subject to resource availability and the dynamic state of the network.

The IGP (operating at an ingress device) determines which traffic should go to which egress device, and steers that traffic into the tunnel from ingress to egress. A flow from an ingress device to an egress device might be so large that it cannot fit over a single link, so it cannot be carried by a single tunnel. In this case, multiple tunnels between a given ingress and egress can be configured, and the flow is distributed using load sharing among the tunnels.

Note

GRE over MPLS-TE tunnel is not supported. Hence, you cannot carry GRE traffic over an LSP established for MPLS-TE tunnel using RSVP-TE. This restriction also applies to SR-TE tunnels.

Related Topics

- Building MPLS-TE Topology, on page 223
- Creating an MPLS-TE Tunnel, on page 225
- Build MPLS-TE Topology and Tunnels: Example, on page 319

MPLS Traffic Engineering

Multiprotocol Label Switching (MPLS) is an Internet Engineering Task Force (IETF)-specified framework that provides efficient designation, routing, forwarding, and switching of traffic flows through the network.

TE is the process of adjusting bandwidth allocations to ensure that enough bandwidth is available for high-priority traffic.
In MPLS TE, the upstream router creates a network tunnel for a particular traffic stream and sets the bandwidth available for that tunnel.

Backup AutoTunnels

The MPLS Traffic Engineering AutoTunnel Backup feature enables a router to dynamically build backup tunnels on the interfaces that are configured with MPLS TE tunnels. This feature enables a router to dynamically build backup tunnels when they are needed. This prevents you from having to build MPLS TE tunnels statically.

The MPLS Traffic Engineering (TE)—AutoTunnel Backup feature has these benefits:

- Backup tunnels are built automatically, eliminating the need for users to preconfigure each backup tunnel and then assign the backup tunnel to the protected interface.
- Protection is expanded—FRR does not protect IP traffic that is not using the TE tunnel or Label Distribution Protocol (LDP) labels that are not using the TE tunnel.

This feature protects against these failures:

- **P2P Tunnel NHOP protection**—Protects against link failure for the associated P2P protected tunnel
- **P2P Tunnel NNHOP protection**—Protects against node failure for the associated P2P protected tunnel
- **P2MP Tunnel NHOP protection**—Protects against link failure for the associated P2MP protected tunnel

Related Topics

- Enabling an AutoTunnel Backup, on page 233
- Removing an AutoTunnel Backup, on page 234
- Establishing MPLS Backup AutoTunnels to Protect Fast Reroutable TE LSPs, on page 234
- Establishing Next-Hop Tunnels with Link Protection, on page 235
- Configure the MPLS-TE Auto-Tunnel Backup: Example, on page 332

AutoTunnel Attribute-set

This feature supports auto-tunnels configuration using attribute templates, known as attribute-set. The TE attribute-set template that specifies a set of TE tunnel attributes, is locally configured at the head-end of auto-tunnels. The control plane triggers the automatic provisioning of a corresponding TE tunnel, whose characteristics are specified in the respective attribute-set.

Currently, auto-tunnel backups are created with the default values of all tunnel attributes. To support configurable attributes for auto-tunnel backup, it is required to configure attribute-set and assign it to the backup tunnels. The attribute-set consists of a set of tunnel attributes such as priority, affinity, signaled bandwidth, logging, policy-class, record-route and so on.

The following rules (consistent across all auto-tunnels) apply while configuring the attribute-set:

- If no attribute-set template is defined, the auto-tunnels is created using default attribute values.
- If an attribute-set is defined and the attribute-set template is already configured, the auto-tunnel is created using the attributes specified in the associated attribute-set.
- If an attribute-set is assigned, but it is not defined or configured, auto-tunnel is not created.
- Any number of attribute-sets can be configured with same attribute settings.
- Empty tunnel attribute implies all parameters have default values.
When specific attribute is not specified in the attribute-set, a default value for that attribute is used.

Link Protection

The backup tunnels that bypass only a single link of the LSP path provide link protection. They protect LSPs, if a link along their path fails, by rerouting the LSP traffic to the next hop, thereby bypassing the failed link. These are referred to as NHOP backup tunnels because they terminate at the LSP's next hop beyond the point of failure.

This figure illustrates link protection.

Figure 13: Link Protection

Node Protection

The backup tunnels that bypass next-hop nodes along LSP paths are called NNHOP backup tunnels because they terminate at the node following the next-hop node of the LSPs, thereby bypassing the next-hop node. They protect LSPs by enabling the node upstream of a link or node failure to reroute the LSPs and their traffic around a node failure to the next-hop node. NNHOP backup tunnels also provide protection from link failures because they bypass the failed link and the node.

This figure illustrates node protection.

Figure 14: Node Protection
Backup AutoTunnel Assignment

At the head or mid points of a tunnel, the backup assignment finds an appropriate backup to protect a given primary tunnel for FRR protection.

The backup assignment logic is performed differently based on the type of backup configured on the output interface used by the primary tunnel. Configured backup types are:

- Static Backup
- AutoTunnel Backup
- No Backup (In this case no backup assignment is performed and the tunnels is unprotected.)

Note: Static backup and Backup AutoTunnel cannot exist together on the same interface or link.

Note: Node protection is always preferred over link protection in the Backup AutoTunnel assignment.

In order that the Backup AutoTunnel feature operates successfully, the following configuration must be applied at global configuration level:

```
ipv4 unnumbered mpls traffic-eng Loopback 0
```

Note: The Loopback 0 is used as router ID.

Explicit Paths

Explicit paths are used to create backup autotunnels as follows:

For NHOP Backup Autotunnels:

- NHOP excludes the protected link's local IP address.
- NHOP excludes the protected link’s remote IP address.
- The explicit-path name is _autob_nhhop_tunnelxxx, where xxx matches the dynamically created backup tunnel ID.

For NNHOP Backup Autotunnels:

- NNHOP excludes the protected link’s local IP address.
- NNHOP excludes the protected link’s remote IP address (link address on next hop).
- NNHOP excludes the NHOP router ID of the protected primary tunnel next hop.
- The explicit-path name is _autob_nnhop_tunnelxxx, where xxx matches the dynamically created backup tunnel ID.
Periodic Backup Promotion

The periodic backup promotion attempts to find and assign a better backup for primary tunnels that are already protected.

With AutoTunnel Backup, the only scenario where two backups can protect the same primary tunnel is when both an NHOP and NNHOP AutoTunnel Backups get created. The backup assignment takes place as soon as the NHOP and NNHOP backup tunnels come up. So, there is no need to wait for the periodic promotion.

Although there is no exception for AutoTunnel Backups, periodic backup promotion has no impact on primary tunnels protected by AutoTunnel Backup.

One exception is when a manual promotion is triggered by the user using the `mpls traffic-eng fast-reroute timers promotion` command, where backup assignment or promotion is triggered on all FRR protected primary tunnels—even unprotected ones. This may trigger the immediate creation of some AutoTunnel Backup, if the command is entered within the time window when a required AutoTunnel Backup has not been yet created.

You can configure the periodic promotion timer using the global configuration `mpls traffic-eng fast-reroute timers promotion sec` command. The range is 0 to 604800 seconds.

Note

A value of 0 for the periodic promotion timer disables the periodic promotion.

Protocol-Based CLI

Cisco IOS XR software provides a protocol-based command line interface. The CLI provides commands that can be used with the multiple IGP protocols supported by MPLS-TE.

Differentiated Services Traffic Engineering

MPLS Differentiated Services (Diff-Serv) Aware Traffic Engineering (DS-TE) is an extension of the regular MPLS-TE feature. Regular traffic engineering does not provide bandwidth guarantees to different traffic classes. A single bandwidth constraint is used in regular TE that is shared by all traffic. To support various classes of service (CoS), users can configure multiple bandwidth constraints. These bandwidth constraints can be treated differently based on the requirement for the traffic class using that constraint.

MPLS DS-TE provides the ability to configure multiple bandwidth constraints on an MPLS-enabled interface. Available bandwidths from all configured bandwidth constraints are advertised using IGP. TE tunnel is configured with bandwidth value and class-type requirements. Path calculation and admission control take the bandwidth and class-type into consideration. RSVP is used to signal the TE tunnel with bandwidth and class-type requirements.

MPLS DS-TE is deployed with either Russian Doll Model (RDM) or Maximum Allocation Model (MAM) for bandwidth calculations.

Cisco IOS XR software supports two DS-TE modes: Prestandard and IETF.

Related Topics

- Confirming DiffServ-TE Bandwidth, on page 138
- Bandwidth Configuration (MAM): Example, on page 155
- Bandwidth Configuration (RDM): Example, on page 155
Prestandard DS-TE Mode

Prestandard DS-TE uses the Cisco proprietary mechanisms for RSVP signaling and IGP advertisements. This DS-TE mode does not interoperate with third-party vendor equipment. Note that prestandard DS-TE is enabled only after configuring the sub-pool bandwidth values on MPLS-enabled interfaces.

Prestandard Diff-Serve TE mode supports a single bandwidth constraint model a Russian Doll Model (RDM) with two bandwidth pools: global-pool and sub-pool.

TE class map is not used with Prestandard DS-TE mode.

Related Topics
 - Configuring a Prestandard DS-TE Tunnel, on page 237
 - Configure IETF DS-TE Tunnels: Example, on page 320

IETF DS-TE Mode

IETF DS-TE mode uses IETF-defined extensions for RSVP and IGP. This mode interoperates with third-party vendor equipment.

IETF mode supports multiple bandwidth constraint models, including RDM and MAM, both with two bandwidth pools. In an IETF DS-TE network, identical bandwidth constraint models must be configured on all nodes.

TE class map is used with IETF DS-TE mode and must be configured the same way on all nodes in the network.

Bandwidth Constraint Models

IETF DS-TE mode provides support for the RDM and MAM bandwidth constraints models. Both models support up to two bandwidth pools.

Cisco IOS XR software provides global configuration for the switching between bandwidth constraint models. Both models can be configured on a single interface to preconfigure the bandwidth constraints before swapping to an alternate bandwidth constraint model.

Note

NSF is not guaranteed when you change the bandwidth constraint model or configuration information.

By default, RDM is the default bandwidth constraint model used in both pre-standard and IETF mode.

Maximum Allocation Bandwidth Constraint Model

The MAM constraint model has the following characteristics:

- Easy to use and intuitive.
- Isolation across class types.
- Simultaneously achieves isolation, bandwidth efficiency, and protection against QoS degradation.

Related Topics
 - Configuring an IETF DS-TE Tunnel Using MAM, on page 240
Russian Doll Bandwidth Constraint Model

The RDM constraint model has these characteristics:

- Allows greater sharing of bandwidth among different class types.
- Ensures bandwidth efficiency simultaneously and protection against QoS degradation of all class types.
- Specifies that it is used in conjunction with preemption to simultaneously achieve isolation across class-types such that each class-type is guaranteed its share of bandwidth, bandwidth efficiency, and protection against QoS degradation of all class types.

Note

We recommend that RDM not be used in DS-TE environments in which the use of preemption is precluded. Although RDM ensures bandwidth efficiency and protection against QoS degradation of class types, it does not guarantee isolation across class types.

Related Topics

Configuring an IETF DS-TE Tunnel Using RDM, on page 238

TE Class Mapping

Each of the eight available bandwidth values advertised in the IGP corresponds to a TE class. Because the IGP advertises only eight bandwidth values, there can be a maximum of only eight TE classes supported in an IETF DS-TE network.

TE class mapping must be exactly the same on all routers in a DS-TE domain. It is the responsibility of the operator to configure these settings properly as there is no way to automatically check or enforce consistency.

The operator must configure TE tunnel class types and priority levels to form a valid TE class. When the TE class map configuration is changed, tunnels already up are brought down. Tunnels in the down state, can be set up if a valid TE class map is found.

The default TE class and attributes are listed. The default mapping includes four class types.

Table 4: TE Classes and Priority

<table>
<thead>
<tr>
<th>TE Class</th>
<th>Class Type</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Unused</td>
<td>—</td>
</tr>
<tr>
<td>3</td>
<td>Unused</td>
<td>—</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Unused</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>Unused</td>
<td>—</td>
</tr>
</tbody>
</table>
Flooding

Available bandwidth in all configured bandwidth pools is flooded on the network to calculate accurate constraint paths when a new TE tunnel is configured. Flooding uses IGP protocol extensions and mechanisms to determine when to flood the network with bandwidth.

Flooding Triggers

TE Link Management (TE-Link) notifies IGP for both global pool and sub-pool available bandwidth and maximum bandwidth to flood the network in these events:

- Periodic timer expires (this does not depend on bandwidth pool type).
- Tunnel origination node has out-of-date information for either available global pool or sub-pool bandwidth, causing tunnel admission failure at the midpoint.
- Consumed bandwidth crosses user-configured thresholds. The same threshold is used for both global pool and sub-pool. If one bandwidth crosses the threshold, both bandwidths are flooded.

Flooding Thresholds

Flooding frequently can burden a network because all routers must send out and process these updates. Infrequent flooding causes tunnel heads (tunnel-originating nodes) to have out-of-date information, causing tunnel admission to fail at the midpoints.

You can control the frequency of flooding by configuring a set of thresholds. When locked bandwidth (at one or more priority levels) crosses one of these thresholds, flooding is triggered.

Thresholds apply to a percentage of the maximum available bandwidth (the global pool), which is locked, and the percentage of maximum available guaranteed bandwidth (the sub-pool), which is locked. If, for one or more priority levels, either of these percentages crosses a threshold, flooding is triggered.

Note

Setting up a global pool TE tunnel can cause the locked bandwidth allocated to sub-pool tunnels to be reduced (and hence to cross a threshold). A sub-pool TE tunnel setup can similarly cause the locked bandwidth for global pool TE tunnels to cross a threshold. Thus, sub-pool TE and global pool TE tunnels can affect each other when flooding is triggered by thresholds.

Fast Reroute

Fast Reroute (FRR) provides link protection to LSPs enabling the traffic carried by LSPs that encounter a failed link to be rerouted around the failure. The reroute decision is controlled locally by the router connected to the failed link. The headend router on the tunnel is notified of the link failure through IGP or through RSVP. When it is notified of a link failure, the headend router attempts to establish a new LSP that bypasses the failure. This provides a path to reestablish links that fail, providing protection to data transfer.

FRR (link or node) is supported over sub-pool tunnels the same way as for regular TE tunnels. In particular, when link protection is activated for a given link, TE tunnels eligible for FRR are redirected into the protection LSP, regardless of whether they are sub-pool or global pool tunnels.
The ability to configure FRR on a per-LSP basis makes it possible to provide different levels of fast restoration to tunnels from different bandwidth pools.

You should be aware of these requirements for the backup tunnel path:

- Backup tunnel must not pass through the element it protects.
- Primary tunnel and a backup tunnel should intersect at least at two points (nodes) on the path: point of local repair (PLR) and merge point (MP). PLR is the headend of the backup tunnel, and MP is the tailend of the backup tunnel.

When you configure TE tunnel with multiple protection on its path and merge point is the same node for more than one protection, you must configure record-route for that tunnel.

Related Topics

Protecting MPLS Tunnels with Fast Reroute, on page 229

MPLS-TE and Fast Reroute over Link Bundles

MPLS Traffic Engineering (TE) and Fast Reroute (FRR) are supported over bundle interfaces and virtual local area network (VLAN) interfaces. Bidirectional forwarding detection (BFD) over VLAN is used as an FRR trigger to obtain less than 50 milliseconds of switchover time.

These link bundle types are supported for MPLS-TE/FRR:

- Over Ethernet link bundles.
- Over VLANs over Ethernet link bundles.
- Number of links are limited to 100 for MPLS-TE and FRR.
- VLANs go over any Ethernet interface (for example, GigabitEthernet and TenGigE).

FRR is supported over bundle interfaces in the following ways:

- Uses minimum links as a threshold to trigger FRR over a bundle interface.
- Uses the minimum total available bandwidth as a threshold to trigger FRR.

Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE

The Ignore Intermediate System-to-Intermediate System (IS-IS) overload bit avoidance feature allows network administrators to prevent RSVP-TE label switched paths (LSPs) from being disabled, when a router in that path has its Intermediate System-to-Intermediate System (IS-IS) overload bit set.

The IS-IS overload bit avoidance feature is activated using this command:
mpls traffic-eng path-selection ignore overload

The IS-IS overload bit avoidance feature is deactivated using the no form of this command:
no mpls traffic-eng path-selection ignore overload

When the IS-IS overload bit avoidance feature is activated, all nodes, including head nodes, mid nodes, and tail nodes, with the overload bit set, are ignored. This means that they are still available for use with RSVP-TE label switched paths (LSPs). This feature enables you to include an overloaded node in CSPF.

Enhancement Options of IS-IS OLA

You can restrict configuring IS-IS overload bit avoidance with the following enhancement options:

- **path-selection ignore overload head**
 The tunnels stay up if set-overload-bit is set by IS-IS on the head router. Ignores overload during CSPF for LSPs originating from an overloaded node. In all other cases (mid, tail, or both), the tunnel stays down.

- **path-selection ignore overload mid**
 The tunnels stay up if set-overload-bit is set by IS-IS on the mid router. Ignores overload during CSPF for LSPs transiting from an overloaded node. In all other cases (head, tail, or both), the tunnel stays down.

- **path-selection ignore overload tail**
 The tunnels stay up if set-overload-bit is set by IS-IS on the tail router. Ignores overload during CSPF for LSPs terminating at an overloaded node. In all other cases (head, mid, or both), the tunnel stays down.

- **path-selection ignore overload**
 The tunnels stay up irrespective of on which router the set-overload-bit is set by IS-IS.

Note

When you do not select any of the options, including head nodes, mid nodes, and tail nodes, you get a behavior that is applicable to all nodes. This behavior is backward compatible in nature.

For more information related to IS-IS overload avoidance related commands, see *MPLS Command Reference for Cisco ASR 9000 Series Routers*.

Related Topics

- Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE, on page 244
- Configure the Ignore IS-IS Overload Bit Setting in MPLS-TE: Example, on page 321

Flexible Name-based Tunnel Constraints

MPLS-TE Flexible Name-based Tunnel Constraints provides a simplified and more flexible means of configuring link attributes and path affinities to compute paths for MPLS-TE tunnels.

In the traditional TE scheme, links are configured with attribute-flags that are flooded with TE link-state parameters using Interior Gateway Protocols (IGPs), such as Open Shortest Path First (OSPF).
MPLS-TE Flexible Name-based Tunnel Constraints lets you assign, or map, up to 32 color names for affinity and attribute-flag attributes instead of 32-bit hexadecimal numbers. After mappings are defined, the attributes can be referred to by the corresponding color name in the command-line interface (CLI). Furthermore, you can define constraints using *include*, *include-strict*, *exclude*, and *exclude-all* arguments, where each statement can contain up to 10 colors, and define include constraints in both loose and strict sense.

Note
You can configure affinity constraints using attribute flags or the Flexible Name Based Tunnel Constraints scheme; however, when configurations for both schemes exist, only the configuration pertaining to the new scheme is applied.

Related Topics
- Assigning Color Names to Numeric Values, on page 245
- Associating Affinity-Names with TE Links, on page 246
- Associating Affinity Constraints for TE Tunnels, on page 247
- Configure Flexible Name-based Tunnel Constraints: Example, on page 322

MPLS Traffic Engineering Interarea Tunneling

These topics describe the following new extensions of MPLS-TE:

- Interarea Support, on page 182
- Multiarea Support, on page 183
- Loose Hop Expansion, on page 183
- Loose Hop Reoptimization, on page 184
- Fast Reroute Node Protection, on page 184

Interarea Support

The MPLS-TE interarea tunneling feature allows you to establish P2P and P2MP TE tunnels spanning multiple Interior Gateway Protocol (IGP) areas and levels, thereby eliminating the requirement that headend and tailend routers reside in a single area.

Interarea support allows the configuration of a TE LSP that spans multiple areas, where its headend and tailend label switched routers (LSRs) reside in different IGP areas.

Multiarea and Interarea TE are required by the customers running multiple IGP area backbones (primarily for scalability reasons). This lets you limit the amount of flooded information, reduces the SPF duration, and lessens the impact of a link or node failure within an area, particularly with large WAN backbones split in multiple areas.

Figure 15: Interarea (OSPF) TE Network Diagram

This figure shows a typical interarea TE network.
Multiarea Support

Multiarea support allows an area border router (ABR) LSR to support MPLS-TE in more than one IGP area. A TE LSP is still confined to a single area.

Multiarea and Interarea TE are required when you run multiple IGP area backbones. The Multiarea and Interarea TE allows you to:

• Limit the volume of flooded information.
• Reduce the SPF duration.
• Decrease the impact of a link or node failure within an area.

Figure 16: Interlevel (IS-IS) TE Network

As shown in the figure, R2, R3, R7, and R4 maintain two databases for routing and TE information. For example, R3 has TE topology information related to R2, flooded through Level-1 IS-IS LSPs plus the TE topology information related to R4, R9, and R7, flooded as Level 2 IS-IS Link State PDUs (LSPs) (plus, its own IS-IS LSP).

Note

You can configure multiple areas within an IS-IS Level 1. This is transparent to TE. TE has topology information about the IS-IS level, but not the area ID.

Loose Hop Expansion

Loose hop optimization allows the reoptimization of tunnels spanning multiple areas and solves the problem which occurs when an MPLS-TE LSP traverses hops that are not in the LSP's headend's OSPF area and IS-IS level.
Interarea MPLS-TE allows you to configure an interarea traffic engineering (TE) label switched path (LSP) by specifying a loose source route of ABRs along the path. It is the then the responsibility of the ABR (having a complete view of both areas) to find a path obeying the TE LSP constraints within the next area to reach the next hop ABR (as specified on the headend). The same operation is performed by the last ABR connected to the tailend area to reach the tailend LSR.

For P2MP-TE tunnels, ABRs support loose hop ERO expansion to find path to the next ABR until it reaches to the tail-end LSR, without introducing remerge.

You must be aware of these considerations when using loose hop optimization:

- You must specify the router ID of the ABR node (as opposed to a link address on the ABR).
- When multiarea is deployed in a network that contains subareas, you must enable MPLS-TE in the subarea for TE to find a path when loose hop is specified.
- You must specify the reachable explicit path for the interarea tunnel.

Loose Hop Reoptimization

Loose hop reoptimization allows the reoptimization of the tunnels spanning multiple areas and solves the problem which occurs when an MPLS-TE headend does not have visibility into other IGP areas.

Whenever the headend attempts to reoptimize a tunnel, it tries to find a better path to the ABR in the headend area. If a better path is found then the headend initiates the setup of a new LSP. In case a suitable path is not found in the headend area, the headend initiates a querying message. The purpose of this message is to query the ABRs in the areas other than the headend area to check if there exist any better paths in those areas. The purpose of this message is to query the ABRs in the areas other than the headend area, to check if a better path exists. If a better path does not exist, ABR forwards the query to the next router downstream. Alternatively, if better path is found, ABR responds with a special Path Error to the headend to indicate the existence of a better path outside the headend area. Upon receiving the Path Error that indicates the existence of a better path, the headend router initiates the reoptimization.

ABR Node Protection

Because one IGP area does not have visibility into another IGP area, it is not possible to assign backup to protect ABR node. To overcome this problem, node ID sub-object is added into the record route object of the primary tunnel so that at a PLR node, backup destination address can be checked against primary tunnel record-route object and assign a backup tunnel.

Fast Reroute Node Protection

If a link failure occurs within an area, the upstream router directly connected to the failed link generates an RSVP path error message to the headend. As a response to the message, the headend sends an RSVP path tear message and the corresponding path option is marked as invalid for a specified period and the next path-option (if any) is evaluated.

To retry the ABR immediately, a second path option (identical to the first one) should be configured. Alternatively, the retry period (path-option hold-down, 2 minutes by default) can be tuned to achieve a faster retry.

Related Topics

Protecting MPLS Tunnels with Fast Reroute, on page 229
Make-Before-Break

The MPLS TE Make-Before-Break (MBB) explicit path and path option feature allows tunnels whose explicit paths or path options are modified to be reoptimized without losing any data. An explicit path or a path option modification is entirely configuration driven. Any change to an in-use path option or an in-use explicit path of a tunnel triggers the MBB procedure.

MBB lets the LSP hold on to the existing resources until the new path is successfully established and traffic has been directed over to the new LSP before the original LSP is torn down. This ensures that no data packets are lost during the transition to the new LSP.

With this feature the flapping of tunnels whose explicit paths or path options are modified, is avoided. This feature is enabled by default.

MPLS-TE Forwarding Adjacency

The MPLS-TE Forwarding Adjacency feature allows a network administrator to handle a traffic engineering, label-switched path (LSP) tunnel as a link in an Interior Gateway Protocol (IGP) network based on the Shortest Path First (SPF) algorithm. A forwarding adjacency can be created between routers regardless of their location in the network.

MPLS-TE Forwarding Adjacency Benefits

TE tunnel interfaces are advertised in the IGP network just like any other links. Routers can then use these advertisements in their IGPs to compute the SPF even if they are not the head end of any TE tunnels.

Related Topics

- Configuring MPLS-TE Forwarding Adjacency, on page 251
- Configure Forwarding Adjacency: Example, on page 325

MPLS-TE Forwarding Adjacency Restrictions

The MPLS-TE Forwarding Adjacency feature has these restrictions:

- Using the MPLS-TE Forwarding Adjacency increases the size of the IGP database by advertising a TE tunnel as a link.

- The MPLS-TE Forwarding Adjacency is supported by Intermediate System-to-Intermediate System (IS-IS).

- When the MPLS-TE Forwarding Adjacency is enabled on a TE tunnel, the link is advertised in the IGP network as a Type-Length-Value (TLV) 22 without any TE sub-TLV.

- MPLS-TE forwarding adjacency tunnels must be configured bidirectionally.

- Multicast intact is not supported with MPLS-TE Forwarding Adjacency.

MPLS-TE Forwarding Adjacency Prerequisites

Your network must support the following features before enabling the MPLS-TE Forwarding Adjacency feature:

- MPLS

- IP Cisco Express Forwarding
Path Computation Element

Path Computation Element (PCE) solves the specific issue of inter-domain path computation for MPLS-TE label switched path (LSPs), when the head-end router does not possess full network topology information (for example, when the head-end and tail-end routers of an LSP reside in different IGP areas).

PCE uses area border routers (ABRs) to compute a TE LSP spanning multiple IGP areas as well as computation of Inter-AS TE LSP.

PCE is usually used to define an overall architecture, which is made of several components, as follows:

Path Computation Element (PCE)

Represents a software module (which can be a component or application) that enables the router to compute paths applying a set of constraints between any pair of nodes within the router’s TE topology database. PCEs are discovered through IGP.

Path Computation Client (PCC)

Represents a software module running on a router that is capable of sending and receiving path computation requests and responses to and from PCEs. The PCC is typically an LSR (Label Switching Router).

PCC-PCE communication protocol (PCEP)

Specifies that PCEP is a TCP-based protocol defined by the IETF PCE WG, and defines a set of messages and objects used to manage PCEP sessions and to request and send paths for multi-domain TE LSPs. PCEP is used for communication between PCC and PCE (as well as between two PCEs) and employs IGP extensions to dynamically discover PCE.

Figure 17: Path Computation Element Network Diagram

This figure shows a typical PCE implementation.

Path computation elements provides support for the following message types and objects:

- Intermediate System-to-Intermediate System (IS-IS)
- OSPF
Policy-Based Tunnel Selection

These topics provide information about policy-based tunnel selection (PBTS):

Policy-Based Tunnel Selection

Policy-Based Tunnel Selection (PBTS) provides a mechanism that lets you direct traffic into specific TE tunnels based on different criteria. PBTS will benefit Internet service providers (ISPs) who carry voice and data traffic through their MPLS and MPLS/VPN networks, who want to route this traffic to provide optimized voice service.

PBTS works by selecting tunnels based on the classification criteria of the incoming packets, which are based on the IP precedence, experimental (EXP), or type of service (ToS) field in the packet.

Figure 18: Policy-Based Tunnel Selection Implementation

This figure illustrates a PBTS implementation.

PBTS is supported on the ingress interface and any of the L3 interfaces (physical, sub-interface, and bundle interface).

PBTS supports modification of the class-map and forward-group to TE association.

Related Topics

Configuring Forwarding Path, on page 258

Policy-Based Tunnel Selection Functions

Related Topics

Configuring Forwarding Path, on page 258

- Message types: Open, PCReq, PCRep, PCErr, Close
- Objects: OPEN, CLOSE, RP, END-POINT, LSPA, BANDWIDTH, METRIC, and NO-PATH
PBTS Restrictions

When implementing PBTS, the following restrictions are listed:

- When QoS EXP remarking on an interface is enabled, the EXP value is used to determine the egress tunnel interface, not the incoming EXP value.
- Egress-side remarking does not affect PBTS tunnel selection.
- When no default tunnel is available for forwarding, traffic is dropped.
- Configuring PBTS using policy-map command is not supported. Instead, you should use forward-class configuration.

Set DF Bit

The Set DF Bit feature enables to apply 'set df (do not fragment)' policy to an interface. Any packet that matches with the set df policy will either clear the bit or set the bit.

The set df bit policy can be enabled to clear the df bit before forwarding the packet in IPv4 traffic.

Policy-Based Tunnel Selection for IPv6

Policy-Based Tunnel Selection (PBTS) for IPv6 (Internet Protocol version 6) feature allows a user to manually configure the manner received packets should be routed into specific TE tunnels for IPv6. PBTS allows the user to identify packets using several attributes and to specify the TE tunnel to which a packet should be sent. For example, one selection criterion is TE tunnel selection based on differentiated services code point (DSCP) values. This is accomplished by mapping multiple DCSPs to a single forwarding class. Other criteria for selecting tunnels are based on the IP precedence, experimental (EXP), or type of service (ToS) field in the packet.

The PBTS for IPv6 feature lets the IPv6 traffic acknowledge the PBTS configuration.

Policies can be based on IPv6 address, port numbers, protocols, or packet size. For a simple policy, you use any one of the descriptors; for a complex policy, you use all descriptors.

Enabling PBTS for IPv6 on an Interface

To enable the PBTS for IPv6 feature, a prerequisite is to enable IPv6 on the core interfaces, so that the tunnel can handle IPv6 traffic. The IPv6 forwarding adjacency (FA) configuration should be made to send IPv6 traffic over IPv6 tunnels.

IPv6 PBTS allows users to override normal destination IPv6 address-based routing and forwarding results. Virtual Private Network (VPN) Routing and Forwarding (VRF) allows multiple routing instances in the Cisco IOS XR Software. The PBTS feature is VRF-aware; this means it works under multiple routing instances, beyond the default or global routing table.

Service Path Preference for MPLS VPN Sessions

Service Path Preference feature (SPP) helps control transport path for L3VPN services in traffic engineering (TE) tunnels. SPP feature provides a way for services to influence path selection while forwarding in Multiprotocol Label Switching (MPLS) or Segment Routing networks. SPP is achieved by associating a control plane policy with a forward-class based on attributes like community, next hop, or vrf (virtual routing and forwarding).
This is helpful to the service provider in situations where instead of assigning a tunnel for a specific data type like VOIP or Data, the service provider can use a BGP-attribute for a customer and traffic for this customer can be directed towards a specific TE tunnel. This helps the service provider maintain the service level agreements (SLA) for data and voice value-added services.

Features of Service Path Preference

Service Path Preference (SPP) includes the following features:

- SPP is service agnostic and can be applied to L3VPN services on an MPLS or Segment Routing core network.
- SPP provides the facility to separate L3VPN services in dedicated LSPs or tunnels within the core transport network based on SLA. Therefore service delivery on PE devices is simplified.
- If you configure SPP in a setup where PBTS is already configured, the PBTS configuration is given preference. If a packet matches the PBTS lookup, the specified forwarding class is used and SPP configuration is ignored.
- SPP extends the concept PBTS by associating a control plane policy with a forwarding class. The route policy is configured to use a forward-class when specific conditions are met.
- SPP is supported for interface paths such as Traffic-Engineering Tunnels, RSVP-TE, and Segment Routing Tunnels (SR-TE).

Understanding How Service Path Preference Works

SPP allows services to select a path based on policies configured in the control plane or based on the preferences set in the egress PE node.

Consider a scenario where you have two Provider Edge (PE) routers in a setup. PE1 functions as ingress node and PE2 functions as egress node.
The egress PE (PE2) receives the routes from the customers and assigns the routes with prefixes such as BGP community, next hop attribute or vrf attribute. The local policies determine the attribute to be assigned to the customer.

PE1 associates a forward-class to the prefix based on the local policies that are created based on a combination of vrf, address-family, next-hop, and community, to match a forward-class. The pre-configured tunnel with matching forward-class is selected for forwarding the traffic.

Configuring Service Path Preference

Perform this task to configure Service Path Preference:

SUMMARY STEPS

1. configure
2. route-policy
3. set forward-class
4. end policy

DETAILED STEPS

Step 1

configure

Enters global configuration mode.

Example:

```
RP/0/RSP0/CPU0:router(config)#configure
```
Step 2 `route-policy name`
Defines a route policy and enters the route-policy configuration mode.

Example:
```
RP/0/RSP0/CPU0:router(config)#route-policy SPP_POLICY
```

Step 3 `set forward-class range`
If the community value matches the specified condition, forward class 1 is set.

Note: This task uses community attribute as an example to explain how to configure SPP. In the same manner, you can use vrf, address family, or next hop to configure route policies for SPP.

For details on configuring route policies, see *Cisco ASR 9000 Series Aggregation Services Router Routing Configuration guide*.

Example:
```
RP/0/RSP0/CPU0:router(config-dynamic-template)#type ipsubscriber ipoe_ipv6
```

Step 4 `end policy`
(Optional) Ends the definition of a route policy and exits route policy configuration mode.

Sample Routing Policies to Configure Service Path Preference

The following samples explain how to configure route policies for service path preference:

Configuring a Route Policy to Select a Forward Class that Matches a Specific Community Attribute

```plaintext
route-policy C1
  if community matches-any (6500:1) then
    set forward-class 1
  end-if
end-policy
```

```
router bgp 55
  bgp router-id 20.0.0.1
  address-family ipv4 unicast
  table-policy C1

interface tunnel-te1
  forward-class 1
```

In this example, BGP on the receiving PE is configured with a table policy.

The policy logic matches against specific community value (signaled by egress PE) and sets forward-class 1. From the available TE paths, the tunnel with forward-class 1 is selected for forwarding.

Configuring a Route Policy to Select a Forward Class that Matches a Specific VRF

The following example explains how to configure route policies with a VRF attribute and set a forward class.
route-policy C1
 set forward-class 1
end-policy
!
route-policy C2
 set forward-class 2
end-policy
!

router bgp 55
 bgp router-id 20.0.0.1
 address-family vpnv4 unicast
 !
 vrf one
 rd 1:1
 address-family ipv4 unicast
 table-policy C1
 !
 vrf two
 rd 2:2
 address-family ipv4 unicast
 table-policy C2
 !
 !
 interface tunnel-te1
 forward-class 1
 !
 interface tunnel-te2
 forward-class 2
 !

In this example, BGP on receiving PE is configured with a table-policy (C1) and (C2) for two different VRFs. The policy (C1) sets forward-class 1. From the available TE paths, tunnel-te1 with forward-class 1 is selected for forwarding. Similarly for VRF two, traffic tunnel-te2 associated with forward-class 2 is selected for forwarding.

Configuring a Route Policy to Select a Forward Class that Matches an Address Family

The following example explains how to configure route policies with an address family and set a forward class.
In this example, BGP on receiving PE is configured with a table-policy (C1) for vpng4 address family routes. The policy (C1) sets forward-class 1. The vpng4 prefixes are imported into VRFs and downloaded into RIB/FIB with this forward-class info.

From the available TE paths, forward-class 1 is selected for forwarding.

Configuring a Route Policy to Select a Forward Class that Matches a Next Hop

The following example explains how you can configure route policies with next hop and set a forward class.

```plaintext
prefix-set nh-set-1
  10.10.0.1
end-set

route-policy C1
  if next-hop in nh-set-1 then
    set forward-class 1
  end-if
end-policy

router bgp 55
  bgp router-id 20.0.0.1
  address-family ipv4 unicast
    table-policy C1
  !
  !
  interface tunnel-te1
    forward-class 1
  !
  !
  interface tunnel-te2
    forward-class 2
  !
```

In this example, BGP on receiving PE is configured with a table-policy (C1) on ipv4 unicast address family (AF). The policy (C1) sets forward-class. From the available TE paths, tunnel-te1 with forward-class 1 is selected for forwarding.

Path Protection

Path protection provides an end-to-end failure recovery mechanism (that is, a full path protection) for MPLS-TE tunnels. A secondary Label Switched Path (LSP) is established, in advance, to provide failure protection for
the protected LSP that is carrying a tunnel's TE traffic. When there is a failure on the protected LSP, the source router immediately enables the secondary LSP to temporarily carry the tunnel's traffic. If there is a failure on the secondary LSP, the tunnel no longer has path protection until the failure along the secondary path is cleared. Path protection can be used within a single area (OSPF or IS-IS), external BGP [eBGP], and static routes.

The failure detection mechanisms triggers a switchover to a secondary tunnel by:

- Path error or resv-tear from Resource Reservation Protocol (RSVP) signaling
- Notification from the Bidirectional Forwarding Detection (BFD) protocol that a neighbor is lost
- Notification from the Interior Gateway Protocol (IGP) that the adjacency is down
- Local teardown of the protected tunnel's LSP due to preemption in order to signal higher priority LSPs, a Packet over SONET (POS) alarm, online insertion and removal (OIR), and so on

An alternate recovery mechanism is Fast Reroute (FRR), which protects MPLS-TE LSPs only from link and node failures, by locally repairing the LSPs at the point of failure. Co-existence of FRR and path protection is supported; this means FRR and path-protection can be configured on the same tunnel at the same time.

Although not as fast as link or node protection, presignaling a secondary LSP is faster than configuring a secondary primary path option, or allowing the tunnel's source router to dynamically recalculate a path. The actual recovery time is topology-dependent, and affected by delay factors such as propagation delay or switch fabric latency.

Related Topics

- Enabling Path Protection for an Interface, on page 258
- Assigning a Dynamic Path Option to a Tunnel, on page 259
- Forcing a Manual Switchover on a Path-Protected Tunnel, on page 260
- Configuring the Delay the Tunnel Takes Before Reoptimization, on page 261
- Configure Tunnels for Path Protection: Example, on page 328

Pre-requisites for Path Protection

These are the pre-requisites for enabling path protection:

- Ensure that your network supports MPLS-TE, Cisco Express Forwarding, and Intermediate System-to-Intermediate System (IS-IS) or Open Shortest Path First (OSPF).
- Enable MPLS.
- Configure TE on the routers.
- Configure a TE tunnel with a dynamic path option by using the `path-option` command with the `dynamic` keyword.

Related Topics

- Enabling Path Protection for an Interface, on page 258
- Assigning a Dynamic Path Option to a Tunnel, on page 259
- Forcing a Manual Switchover on a Path-Protected Tunnel, on page 260
- Configuring the Delay the Tunnel Takes Before Reoptimization, on page 261
- Configure Tunnels for Path Protection: Example, on page 328
Restrictions for Path Protection

- Only Point-to-Point (P2P) tunnels are supported.
- Point-to-Multipoint (P2MP) TE tunnels are not supported.
- A maximum of one standby LSP is supported.
- There can be only one secondary path for each dynamic path option.
- Explicit path option can be configured for the path protected TE with the secondary path option as dynamic.
- A maximum number of path protected tunnel TE heads is 2000.
- A maximum number of TE tunnel heads is equal to 4000.
- When path protection is enabled for a tunnel, and the primary label switched path (LSP) is not assigned a backup tunnel, but the standby LSP is assigned fast-reroute (FRR), the MPLS TE FRR protected value displayed is different from the Cisco express forwarding (CEF) fast-reroute value.
- Inter-area is not supported for path protection.

Related Topics
- Enabling Path Protection for an Interface, on page 258
- Assigning a Dynamic Path Option to a Tunnel, on page 259
- Forcing a Manual Switchover on a Path-Protected Tunnel, on page 260
- Configuring the Delay the Tunnel Takes Before Reoptimization, on page 261
- Configure Tunnels for Path Protection: Example, on page 328

Restrictions for Explicit Path Protection

Explicit paths are used to create backup autotunnels. Explicit path protection provides a recovery mechanism to protect explicit paths for MPLS-TE tunnels. These restrictions are listed to protect an explicit path:

- Only one explicit protecting path is supported per path-option.
- Link or node path diversity is not ensured for explicit protecting paths.
- An explicit protecting path cannot protect a dynamic path option.
- All options such as verbatim, lockdown are supported for the protecting path as long as it's explicit.
- An explicit path cannot be protected by its own path option level.
- An explicit path can be protected by a path option level that references the same explicit path name or identifier, because it is considered another path-option.
- Enhanced path protection is not supported.

Related Topics
- Enabling Path Protection for an Interface, on page 258
- Assigning a Dynamic Path Option to a Tunnel, on page 259
- Forcing a Manual Switchover on a Path-Protected Tunnel, on page 260
- Configuring the Delay the Tunnel Takes Before Reoptimization, on page 261
- Configure Tunnels for Path Protection: Example, on page 328
Co-existence of Path Protection with Fast Reroute

Path protection and FRR can be configured on the same tunnel at the same time. The co-existence of path protection and FRR on the same tunnel provides these benefits:

• Protection is expanded — having an FRR protected tunnel that is also path-protected ensures that failures of non-protected links on the primary path are handled more efficiently by a quick switch-over to the pre-signaled standby LSP.

• Quick and effective re-optimization — having a pre-computed standby LSP allows the system to minimize re-optimization LSP path calculation and signaling, by simply switching over to the pre-signaled standby LSP. Effectively, path protection switch over replaces the post-FRR LSP down event re-optimization.

• Total time on backup is reduced — handling FRR failure using a path protection switch over reduces total time on backup because the traffic is diverted from the backup to the standby, as soon as the head-end receives the FRR LSP down notification, without having to wait for a re-optimization LSP.

MPLS-TE Automatic Bandwidth

The MPLS-TE automatic bandwidth feature measures the traffic in a tunnel and periodically adjusts the signaled bandwidth for the tunnel.

These topics provide information about MPLS-TE automatic bandwidth:

MPLS-TE Automatic Bandwidth Overview

MPLS-TE automatic bandwidth is configured on individual Label Switched Paths (LSPs) at every head-end. MPLS-TE monitors the traffic rate on a tunnel interface. Periodically, MPLS-TE resizes the bandwidth on the tunnel interface to align it closely with the traffic in the tunnel. MPLS-TE automatic bandwidth can perform these functions:

• Monitors periodic polling of the tunnel output rate

• Resizes the tunnel bandwidth by adjusting the highest rate observed during a given period

For every traffic-engineered tunnel that is configured for an automatic bandwidth, the average output rate is sampled, based on various configurable parameters. Then, the tunnel bandwidth is readjusted automatically based upon either the largest average output rate that was noticed during a certain interval, or a configured maximum bandwidth value.

This table lists the automatic bandwidth functions.

Table 5: Automatic Bandwidth Variables

<table>
<thead>
<tr>
<th>Function</th>
<th>Command</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application frequency</td>
<td>application</td>
<td>Configures how often the tunnel bandwidths changed for each tunnel. The application period is the period of A minutes between the bandwidth applications during which the output rate collection is done.</td>
<td>24 hours</td>
</tr>
</tbody>
</table>
The output rate on a tunnel is collected at regular intervals that are configured by using the `application` command in MPLS-TE auto bandwidth interface configuration mode. When the application period timer expires, and when the difference between the measured and the current bandwidth exceeds the adjustment threshold, the tunnel is reoptimized. Then, the bandwidth samples are cleared to record the new largest output rate at the next interval.

When reoptimizing the LSP with the new bandwidth, a new path request is generated. If the new bandwidth is not available, the last good LSP continues to be used. This way, the network experiences no traffic interruptions.

If minimum or maximum bandwidth values are configured for a tunnel, the bandwidth, which the automatic bandwidth signals, stays within these values.

Note

When more than 100 tunnels are `auto-bw` enabled, the algorithm will jitter the first application of every tunnel by a maximum of 20% (max 1 hour). The algorithm does this to avoid too many tunnels running auto bandwidth applications at the same time.

If a tunnel is shut down, and is later brought again, the adjusted bandwidth is lost and the tunnel is brought back with the initial configured bandwidth. In addition, the application period is reset when the tunnel is brought back.

Related Topics

- Configuring the Collection Frequency, on page 262
- Configuring the Automatic Bandwidth Functions, on page 264
- Configure Automatic Bandwidth: Example, on page 329

Adjustment Threshold

Adjustment Threshold is defined as a percentage of the current tunnel bandwidth and an absolute (minimum) bandwidth. Both thresholds must be fulfilled for the automatic bandwidth to resignal the tunnel. The tunnel bandwidth is resized only if the difference between the largest sample output rate and the current tunnel bandwidth is larger than the adjustment thresholds.

For example, assume that the automatic bandwidth is enabled on a tunnel in which the highest observed bandwidth B is 30 Mbps. Also, assume that the tunnel was initially configured for 45 Mbps. Therefore, the difference is 15 mbit/s. Now, assuming the default adjustment thresholds of 10% and 10kbps, the tunnel is...
Overflow Detection

Overflow detection is used if a bandwidth must be resized as soon as an overflow condition is detected, without having to wait for the expiry of an automatic bandwidth application frequency interval.

For overflow detection one configures a limit N, a percentage threshold Y% and optionally, a minimum bandwidth threshold Z. The percentage threshold is defined as the percentage of the actual signalled tunnel bandwidth. When the difference between the measured bandwidth and the actual bandwidth are both larger than Y% and Z threshold, for N consecutive times, then the system triggers an overflow detection.

The bandwidth adjustment by the overflow detection is triggered only by an increase of traffic volume through the tunnel, and not by a decrease in the traffic volume. When you trigger an overflow detection, the automatic bandwidth application interval is reset.

By default, the overflow detection is disabled and needs to be manually configured.

Underflow Detection

Underflow detection is used when the bandwidth on a tunnel drops significantly, which is similar to overflow but in reverse.

Underflow detection applies the highest bandwidth value from the samples which triggered the underflow. For example, if you have an underflow limit of three, and the following samples trigger the underflow for 10 kbps, 20 kbps, and 15 kbps, then, 20 kbps is applied.

Unlike overflow, the underflow count is not reset across an application period. For example, with an underflow limit of three, you can have the first two samples taken at the end of an application period and then the underflow gets triggered by the first sample of the next application period.

Restrictions for MPLS-TE Automatic Bandwidth

When the automatic bandwidth cannot update the tunnel bandwidth, the following restrictions are listed:

• Tunnel is in a fast reroute (FRR) backup, active, or path protect active state. This occurs because of the assumption that protection is a temporary state, and there is no need to reserve the bandwidth on a backup tunnel. You should prevent taking away the bandwidth from other primary or backup tunnels.

• Reoptimization fails to occur during a lockdown. In this case, the automatic bandwidth does not update the bandwidth unless the bandwidth application is manually triggered by using the mpls traffic-eng auto-bw apply command in EXEC mode.

Point-to-Multipoint Traffic-Engineering

Point-to-Multipoint Traffic-Engineering Overview

The Point-to-Multipoint (P2MP) Resource Reservation Protocol-Traffic Engineering (RSVP-TE) solution allows service providers to implement IP multicast applications, such as IPTV and real-time video, broadcast over the MPLS label switch network. The RSVP-TE protocol is extended to signal point-to-point (P2P) and P2MP label switched paths (LSPs) across the MPLS networks.
By using RSVP-TE extensions as defined in RFC 4875, multiple subLSPs are signaled for a given TE source. The P2MP tunnel is considered as a set of Source-to-Leaf (S2L) subLSPs that connect the TE source to multiple leaf Provider Edge (PE) nodes.

At the TE source, the ingress point of the P2MP-TE tunnel, IP multicast traffic is encapsulated with a unique MPLS label, which is associated with the P2MP-TE tunnel. The traffic continues to be label-switched in the P2MP tree. If needed, the labeled packet is replicated at branch nodes along the P2MP tree. When the labeled packet reaches the egress leaf (PE) node, the MPLS label is removed and forwarded onto the IP multicast tree across the PE-CE link.

To enable end-to-end IP multicast connectivity, RSVP is used in the MPLS-core for P2MP-TE signaling and PIM is used for PE-CE link signaling.

- All edge routers are running PIM-SSM or Source-Specific Multicast (SSM) to exchange multicast routing information with the directly-connected Customer Edge (CE) routers.
- In the MPLS network, RSVP P2MP-TE replaces PIM as the tree building mechanism, RSVP-TE grafts or prunes a given P2MP tree when the end-points are added or removed in the TE source configuration (explicit user operation).

These are the definitions for Point-to-Multipoint (P2MP) tunnels:

Source

Configures the node in which Label Switched Path (LSP) signaling is initiated.

Mid-point

Specifies the transit node in which LSP signaling is processed (for example, not a source or receiver).

Receiver, Leaf, and Destination

Specifies the node in which LSP signaling ends.

Branch Point

Specifies the node in which packet replication is performed.

Bud Node

Specifies the node that not only acts as a transit for some S2Ls but also acts as a termination point for a S2L of a P2MP TE tunnel.

Source-to-Leaf (S2L) SubLSP

Specifies the P2MP-TE LSP segment that runs from the source to one leaf.

Point-to-Multipoint Traffic-Engineering Features

- P2MP RSVP-TE (RFC 4875) is supported. RFC 4875 is based on non-aggregate signaling; for example, per S2L signaling. Only P2MP LSP is supported.
- `interface tunnel-mte` command identifies the P2MP interface type.
- P2MP tunnel setup is supported with label replication.
- Fast-Reroute (FRR) link protection is supported with sub-50 msec for traffic loss.
- Explicit routing is supported by using under utilized links.
- Reoptimization is supported by calculating a better set of paths to the destination with no traffic loss.
Per-S2L reoptimization is not supported.

- IPv4 and IPv6 payloads are supported.
- IPv4 and IPv6 multicast forwarding are supported on a P2MP tunnel interface through a static IGMP and MLD group configuration.
- Both IP multicast and P2MP Label Switch Multicast (LSM) coexist in the same network; therefore, both use the same forwarding plane (LFIB or MPLS Forwarding Infrastructure [MFI]).
- P2MP label replication supports only Source-Specific Multicast (SSM) traffic. SSM configuration supports the default value, none.
- Static mapping for multicast groups to the P2MP-TE tunnel is required.

Point-to-Multipoint Traffic-Engineering Benefits

- Single point of traffic control ensures that signaling and path engineering parameters (for example, protection and diversity) are configured only at the TE source node.
- Ability to configure explicit paths to enable optimized traffic distribution and prevention of single point of failures in the network.
- Link protection of MPLS-labeled traffic traversing branch paths of the P2MP-TE tree.
- Ability to do bandwidth Admission Control (AC) during setup and signaling of P2MP-TE paths in the MPLS network.

Related Topics

- Configure Point-to-Multipoint for the Source: Example, on page 341
- Configure the Point-to-Multipoint Solution: Example, on page 343
- Disable a Destination: Example, on page 342
- Configure the Point-to-Multipoint Tunnel: Example, on page 342
- Point-to-Multipoint RSVP-TE, on page 200

Point-to-Multipoint RSVP-TE

RSVP-TE signals a P2MP tunnel base that is based on a manual configuration. If all Source-to-Leaf (S2L)s use an explicit path, the P2MP tunnel creates a static tree that follows a predefined path based on a constraint such as a deterministic Label Switched Path (LSP). If the S2L uses a dynamic path, RSVP-TE creates a P2MP tunnel base on the best path in the RSVP-TE topology. RSVP-TE supports bandwidth reservation for constraint-based routing.

When an explicit path option is used, specify both the local and peer IP addresses in the explicit path option, provided the link is a GigabitEthernet or a TenGigE based interface. For point-to-point links like POS or bundle POS, it is sufficient to mention the remote or peer IP address in the explicit path option.

RSVP-TE distributes stream information in which the topology tree does not change often (where the source and receivers are). For example, large scale video distribution between major sites is suitable for a subset of multicast applications. Because multicast traffic is already in the tunnel, the RSVP-TE tree is protected as long as you build a backup path.
Fast-Reroute (FRR) capability is supported for P2MP RSVP-TE by using the unicast link protection. You can choose the type of traffic to go to the backup link.

The P2MP tunnel is applicable for all TE Tunnel destination (IntraArea and InterArea). Inter-AS is not supported.

The P2MP tunnel is signaled by the dynamic and explicit path option in the IGP intra area. Only interArea and interAS, which are used for the P2MP tunnels, are signaled by the verbatim path option.

Related Topics
- Configure Point-to-Multipoint for the Source: Example, on page 341
- Configure the Point-to-Multipoint Solution: Example, on page 343
- Point-to-Multipoint Fast Reroute, on page 201

Point-to-Multipoint Fast Reroute

MPLS-TE Fast Reroute (FRR) is a mechanism to minimize interruption in traffic delivery to a TE Label Switched Path (LSP) destination as a result of link failures. FRR enables temporarily fast switching of LSP traffic along an alternative backup path around a network failure, until the TE tunnel source signals a new end-to-end LSP.

Both Point-to-Point (P2P) and P2MP-TE support only the Facility FRR method from RFC 4090.

P2P LSPs are used to backup P2MP S2L (source 2 Leaf). Only link and bandwidth protection for P2MP S2Ls are supported. Node protection is not supported.

MPLS-TE link protection relies on the fact that labels for all primary LSPs and subLSPs are using the MPLS global label allocation. For example, one single (global) label space is used for all MPLS-TE enabled physical interfaces on a given MPLS LSP.

Related Topics
- Point-to-Multipoint Traffic-Engineering Overview, on page 198
- Point-to-Multipoint RSVP-TE, on page 200

Point-to-Multipoint Label Switch Path

The Point-to-Multipoint Label Switch Path (P2MP LSP) has only a single root, which is the Ingress Label Switch Router (LSR). The P2MP LSP is created based on a receiver that is connected to the Egress LSR. The Egress LSR initiates the creation of the tree (for example, tunnel grafting or pruning is done by performing an individual sub-LSP operation) by creating the Forwarding Equivalency Class (FEC) and Opaque Value.

Note

Grafting and pruning operate on a per destination basis.

The Opaque Value contains the stream information that uniquely identifies the tree to the root. To receive label switched multicast packets, the Egress Provider Edge (PE) indicates to the upstream router (the next hop closest to the root) which label it uses for the multicast source by applying the label mapping message.

The upstream router does not need to have any knowledge of the source; it needs only the received FEC to identify the correct P2MP LSP. If the upstream router does not have any FEC state, it creates it and installs the assigned downstream outgoing label into the label forwarding table. If the upstream router is not the root of the tree, it must forward the label mapping message to the next hop upstream. This process is repeated hop-by-hop until the root is reached.
By using downstream allocation, the router that wants to receive the multicast traffic assigns the label for it. The label request, which is sent to the upstream router, is similar to an unsolicited label mapping (that is, the upstream does not request it). The upstream router that receives that label mapping uses the specific label to send multicast packets downstream to the receiver. The advantage is that the router, which allocates the labels, does not get into a situation where it has the same label for two different multicast sources. This is because it manages its own label space allocation locally.

Path Option for Point-to-Multipoint RSVP-TE

P2MP tunnels are signaled by using the dynamic and explicit path-options in an IGP intra area. InterArea cases for P2MP tunnels are signaled by the verbatim path option.

Path options for P2MP tunnels are individually configured for each sub-LSP. Only one path option per sub-LSP (destination) is allowed. You can choose whether the corresponding sub-LSP is dynamically or explicitly routed. For the explicit option, you can configure the verbatim path option to bypass the topology database lookup and verification for the specified destination.

Both dynamic and explicit path options are supported on a per destination basis by using the *path-option* (P2MP-TE) command. In addition, you can combine both path options.

Explicit Path Option

Configures the intermediate hops that are traversed by a sub-LSP going from the TE source to the egress MPLS node. Although an explicit path configuration enables granular control sub-LSP paths in an MPLS network, multiple explicit paths are configured for specific network topologies with a limited number of (equal cost) links or paths.

Dynamic Path Option

Computes the IGP path of a P2MP tree sub-LSP that is based on the OSPF and ISIS algorithm. The TE source is dynamically calculated based on the IGP topology.

Note

Dynamic path option can only compute fully-diverse standby paths. While, explicit path option supports partially diverse standby paths as well.

Dynamic Path Calculation Requirements

Dynamic path calculation for each sub-LSP uses the same path parameters as those for the path calculation of regular point-to-point TE tunnels. As part of the sub-LSP path calculation, the link resource (bandwidth) is included, which is flooded throughout the MPLS network through the existing RSVP-TE extensions to OSPF and ISIS. Instead of dynamic calculated paths, explicit paths are also configured for one or more sub-LSPs that are associated with the P2MP-TE tunnel.

- OSPF or ISIS are used for each destination.
- TE topology and tunnel constraints are used to input the path calculation.
- Tunnel constraints such as affinity, bandwidth, and priorities are used for all destinations in a tunnel.
- Path calculation yields an explicit route to each destination.

Static Path Calculation Requirements

The static path calculation does not require any new extensions to IGP to advertise link availability.
• Explicit path is required for every destination.
• Offline path calculation is used.
• TE topology database is not needed.
• If the topology changes, reoptimization is not required.

Related Topics
- Configure the Point-to-Multipoint Tunnel: Example, on page 342
- Configure the Point-to-Multipoint Solution: Example, on page 343
- Point-to-Multipoint Traffic-Engineering Overview, on page 198
- Point-to-Multipoint RSVP-TE, on page 200

Point-to-Multipoint Implicit Null

The Point-to-Multipoint (P2MP) implicit null feature enables the forwarding of unicast traffic over P2MP tunnels. This feature is enabled by default and requires no configuration.

In a P2MP tunnel, the tailend router signals the implicit null label to the midpoint router. If the given MPI leg of the P2MP tunnel is implicit null capable (where the penultimate router is capable to do penultimate hop popping), the FIB (Forwarding Information Base) creates two NRLDI (Non Recursive Load Distribution Index) entries, one for forwarding the IPv6 labeled packets, and the other for non-labeled IPv4 unicast traffic.

The headend and the tailend routers handle the unicast traffic arriving on the P2MP tunnel. The midpoint router forwards the unicast traffic to its bud and tailend routers.

The use of implicit null at the end of a tunnel is called penultimate hop popping (PHP). The FIB entry for the tunnel on the PHP router shows a "pop label" as the outgoing label.

In some cases, it could be that the packets have two or three or more labels in the label stack. Then the implicit null label used at the tailend router would signal the penultimate hop router to pop one label and send the labeled packet with one label less to the tailend router. Then the tailend router does not have to perform two label lookups. The use of the implicit null label does not mean that all labels of the label stack must be removed; only one label is "popped" off (remove the top label on the stack). In any case, the use of the implicit null label prevents the tailend router from performing two lookups.

Restriction

The P2MP implicit null feature may cause multicast traffic drop with implicit null label on the tailend routers. This is because the P2MP implicit null feature does not support forwarding of multicast traffic when no label is received on the tailend router.

MPLS Traffic Engineering Shared Risk Link Groups

Shared Risk Link Groups (SRLG) in MPLS traffic engineering refer to situations in which links in a network share a common fiber (or a common physical attribute). These links have a shared risk, and that is when one link fails, other links in the group might fail too.

OSPF and Intermediate System-to-Intermediate System (IS-IS) flood the SRLG value information (including other TE link attributes such as bandwidth availability and affinity) using a sub-type length value (sub-TLV), so that all routers in the network have the SRLG information for each link.
To activate the SRLG feature, configure the SRLG value of each link that has a shared risk with another link. A maximum of 30 SRLGs per interface is allowed. You can configure this feature on multiple interfaces including the bundle interface.

Figure 20: Shared Risk Link Group illustrates the MPLS TE SRLG values configured on the bundle interface.

Figure 20: Shared Risk Link Group

![Diagram of Shared Risk Link Group]

Related Topics
- Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
- Creating an Explicit Path With Exclude SRLG, on page 267
- Using Explicit Path With Exclude SRLG, on page 268
- Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 271
- Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 273
- Configure the MPLS-TE Shared Risk Link Groups: Example, on page 329

Explicit Path

The Explicit Path configuration allows you to configure the explicit path. An IP explicit path is a list of IP addresses, each representing a node or link in the explicit path.

The MPLS Traffic Engineering (TE)—IP Explicit Address Exclusion feature provides a means to exclude a link or node from the path for an Multiprotocol Label Switching (MPLS) TE label-switched path (LSP).

This feature is enabled through the **explicit-path** command that allows you to create an IP explicit path and enter a configuration submode for specifying the path. The feature adds to the submode commands of the **exclude-address** command for specifying addresses to exclude from the path.

The feature also adds to the submode commands of the **exclude-srlg** command that allows you to specify the IP address to get SRLGs to be excluded from the explicit path.

If the excluded address or excluded srlg for an MPLS TE LSP identifies a flooded link, the constraint-based shortest path first (CSPF) routing algorithm does not consider that link when computing paths for the LSP. If the excluded address specifies a flooded MPLS TE router ID, the CSPF routing algorithm does not allow paths for the LSP to traverse the node identified by the router ID.

Related Topics
- Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
- Creating an Explicit Path With Exclude SRLG, on page 267
Fast ReRoute with SRLG Constraints

Fast ReRoute (FRR) protects MPLS TE Label Switch Paths (LSPs) from link and node failures by locally repairing the LSPs at the point of failure. This protection allows data to continue to flow on LSPs, while their headend routers attempt to establish new end-to-end LSPs to replace them. FRR locally repairs the protected LSPs by rerouting them over backup tunnels that bypass failed links or nodes.

Backup tunnels that bypass only a single link of the LSP’s path provide Link Protection. They protect LSPs by specifying the protected link IP addresses to extract SRLG values that are to be excluded from the explicit path, thereby bypassing the failed link. These are referred to as **next-hop (NHOP) backup tunnels** because they terminate at the LSP’s next hop beyond the point of failure. Figure 21: NHOP Backup Tunnel with SRLG constraint illustrates an NHOP backup tunnel.

![Figure 21: NHOP Backup Tunnel with SRLG constraint](image)

In the topology shown in the above figure, the backup tunnel path computation can be performed in this manner:

- Get all SRLG values from the exclude-SRLG link (SRLG values 5 and 6)
- Mark all the links with the same SRLG value to be excluded from SPF
- Path computation as CSPF R2->R6->R7->R3

FRR provides Node Protection for LSPs. Backup tunnels that bypass next-hop nodes along LSP paths are called **NNHOP backup tunnels** because they terminate at the node following the next-hop node of the LSP paths, thereby bypassing the next-hop node. They protect LSPs when a node along their path fails, by enabling the node upstream to the point of failure to reroute the LSPs and their traffic, around the failed node to the next-next hop. They also protect LSPs by specifying the protected link IP addresses that are to be excluded from the explicit path, and the SRLG values associated with the IP addresses excluded from the explicit path. NNHOP backup tunnels also provide protection from link failures by bypassing the failed link as well as the node. Figure 22: NNHOP Backup Tunnel with SRLG constraint illustrates an NNHOP backup tunnel.
In the topology shown in the above figure, the backup tunnel path computation can be performed in this manner:

- Get all SRLG values from the exclude-SRLG link (SRLG values 5 and 6)
- Mark all links with the same SRLG value to be excluded from SPF
- Verify path with SRLG constraint
- Path computation as CSPF R2->R9->R10->R4

Related Topics
Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
Creating an Explicit Path With Exclude SRLG, on page 267
Using Explicit Path With Exclude SRLG, on page 268
Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 271
Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 273
Configure the MPLS-TE Shared Risk Link Groups: Example, on page 329

Importance of Protection

This section describes the following:
- Delivery of Packets During a Failure
- Multiple Backup Tunnels Protecting the Same Interface

Related Topics
Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
Creating an Explicit Path With Exclude SRLG, on page 267
Using Explicit Path With Exclude SRLG, on page 268
Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 271
Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 273
Delivery of Packets During a Failure

Backup tunnels that terminate at the NNHOP protect both the downstream link and node. This provides protection for link and node failures.

Related Topics
- Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
- Creating an Explicit Path With Exclude SRLG, on page 267
- Using Explicit Path With Exclude SRLG, on page 268
- Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 271
- Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 273
- Configure the MPLS-TE Shared Risk Link Groups: Example, on page 329

Multiple Backup Tunnels Protecting the Same Interface

- Redundancy—if one backup tunnel is down, other backup tunnels protect LSPs.

- Increased backup capacity—if the protected interface is a high-capacity link and no single backup path exists with an equal capacity, multiple backup tunnels can protect that one high-capacity link. The LSPs using this link fall over to different backup tunnels, allowing all of the LSPs to have adequate bandwidth protection during failure (rerouting). If bandwidth protection is not desired, the router spreads LSPs across all available backup tunnels (that is, there is load balancing across backup tunnels).

Related Topics
- Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
- Creating an Explicit Path With Exclude SRLG, on page 267
- Using Explicit Path With Exclude SRLG, on page 268
- Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 271
- Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 273
- Configure the MPLS-TE Shared Risk Link Groups: Example, on page 329

Weighted-SRLG Auto-backup Path Computation

In shared-risk link groups (SRLG) fate-sharing, links are assigned one or more numbers to represent risks. When two links are assigned a common number then this indicates that these two links are sharing fate. In the weighted-SRLG auto-backup path computation mode, the links that share SRLG numbers with the protected link are not excluded from the topology. The admin-weight of these links is set to reflect the sharing of SRLG with the protected link. Setting the admin weight consists of adding a penalty metric to make using the link less desirable.

For more information about Weighted-SRLG auto-backup path computation, see Implementing MPLS Traffic Engineering chapter in the MPLS Configuration Guide for Cisco ASR 9000 Series Routers. For more information about Weighted-SRLG auto-backup path computation, see MPLS Traffic Engineering Commands chapter in the MPLS Command Reference for Cisco ASR 9000 Series Routers.

Related Topics
- Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
- Creating an Explicit Path With Exclude SRLG, on page 267
- Using Explicit Path With Exclude SRLG, on page 268
- Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 271
SRLG Limitations

There are few limitations to the configured SRLG feature:

- The `exclude-address` and `exclude-srlg` options are not allowed in the IP `explicit path strict-address` network.
- Whenever SRLG values are modified after tunnels are signalled, they are verified dynamically in the next path verification cycle.

Related Topics

- Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
- Creating an Explicit Path With Exclude SRLG, on page 267
- Using Explicit Path With Exclude SRLG, on page 268
- Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 271
- Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 273
- Configure the MPLS-TE Shared Risk Link Groups: Example, on page 329

MPLS TE SRLG Scale Enhancements

MPLS Traffic Engineering Shared Risk Link Groups (SRLG) feature has been enhanced to support:

- Increase from 32 to 64 (59 for ISIS) groups.
- Increase from 250 to 500 interfaces.

Related Topics

- Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
- Creating an Explicit Path With Exclude SRLG, on page 267
- Using Explicit Path With Exclude SRLG, on page 268
- Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 271
- Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 273
- Configure the MPLS-TE Shared Risk Link Groups: Example, on page 329

Soft-Preemption

MPLS-TE preemption consists of freeing the resources of an established LSP, and assigning them to a new LSP. The freeing of resources causes a traffic disruption to the LSP that is being preempted. Soft preemption is an extension to the RSVP-TE protocol to minimize and even eliminate such traffic disruption over the preempted LSP.

The soft-preemption feature attempts to preempt the LSPs in a graceful manner to minimize or eliminate traffic loss. However, the link might be over-subscribed for a period of time.

In a network that implements soft preemption, zero traffic loss is achieved in this manner:

- When signaling a new LSP, the ingress router indicates to all the intermediate nodes that the existing LSP is to be softly preempted, in case its resources are needed and is to be reassigned.
• When a given intermediate node needs to soft-preempt the existing LSP, it sends a new or special path error (preemption pending) to the ingress router. The intermediate node does not dismantle the LSP and maintains its state.

• When the ingress router receives the path error (preemption pending) from the intermediate node, it immediately starts a re-optimization that avoids the link that caused the preemption.

• When the re-optimization is complete, the ingress router tears down the soft-preempted LSP.

Related Topics

Enabling Soft-Preemption on a Node, on page 287

Enabling Soft-Preemption on a Tunnel, on page 288

Path Option Attributes

The path option attributes are configurable through a template configuration. This template, named `attribute-set`, is configured globally in the MPLS traffic-engineering mode.

You can apply an `attribute-set` to a path option on a per-LSP basis. The path option configuration is extended to take a path option attribute name. LSPs computed with a particular path option uses the attributes as specified by the attribute-set under that path option.

These prerequisites are required to implement path option attributes:

• Path option type attribute-set is configured in the MPLS TE mode

• Path option CLI extended to accept an attribute-set name

Note

The `signalled-bandwidth` and `affinity` attributes are supported under the attribute-set template.

Related Topics

Configuring Attributes within a Path-Option Attribute, on page 289

Configuration Hierarchy of Path Option Attributes

You can specify a value for an attribute within a path option `attribute-set` template. This does not prevent the configuring of the same attribute at a tunnel level. However, it is important to note that only one level is taken into account. So, the configuration at the LSP level is considered more specific than the one at the level of the tunnel, and it is used from this point onwards.

Attributes that are not specified within an attribute-set take their values as usual--configuration at the tunnel level, configuration at the global MPLS level, or default values. Here is an example:

```
attribute-set path-option MYSET
    affinity 0xBEEF mask 0xBEEF

interface tunnel-te 10
    affinity 0xCafe mask 0xCafe
    signalled-bandwidth 1000
    path-option 1 dynamic attribute-set name MYSET
    path-option 2 dynamic
```
In this example, the attribute-set named **MYSET** is specifying affinity as 0xBEEF. The signalled bandwidth has not been configured in this **MYSET**. The tunnel 10, meanwhile, has affinity 0xCAFE configured. LSPs computed from path-option 1 uses the affinity 0xBEEF/0xBEEF, while LSPs computed from path-option 2 uses the affinity 0xCAFE/0xCAFE. All LSPs computed using any of these path-options use **signalled-bandwidth** as 1000, as this is the only value that is specified only at the tunnel level.

Note

The attributes configured in a path option **attribute-set** template takes precedence over the same attribute configured under a tunnel. An attribute configured under a tunnel is used only if the equivalent attribute is **not** specified by the in-use path option **attribute-set** template.

Related Topics

- [Configuring Attributes within a Path-Option Attribute](#), on page 289

Traffic Engineering Bandwidth and Bandwidth Pools

MPLS traffic engineering allows constraint-based routing (CBR) of IP traffic. One of the constraints satisfied by CBR is the availability of required bandwidth over a selected path. Regular TE tunnel bandwidth is called the **global pool**. The **subpool bandwidth** is a portion of the global pool. If it is not in use, the subpool bandwidth is not reserved from the global pool. Therefore, subpool tunnels require a priority higher than that of non-subpool tunnels.

You can configure the signalled-bandwidth path option attribute to use either the global pool (default) or the subpool bandwidth. The signalled-bandwidth value for the path option may be any valid value and the pool does not have to be the same as that which is configured on the tunnel.

Note

When you configure signalled-bandwidth for path options with the **signalled-bandwidth bandwidth [sub-pool | global] kbps** command, use either all subpool bandwidths or all global-pool bandwidth values.

Related Topics

- [Configuring Attributes within a Path-Option Attribute](#), on page 289

Path Option Switchover

Reoptimization to a particular path option is not possible if the in-use path option and the new path option do not share the same bandwidth class. The path option switchover operation would fail in such a scenario. Use this command at the EXEC configuration mode to switchover to a newer path option:

```
mpls traffic-eng switchover tunnel-xx ID path-option index
```

The switchover to a newer path option is achieved, in these instances:

- when a lower index path option is available
- when any signalling message or topology update causes the primary LSP to go down
- when a local interface fails on the primary LSP or a path error is received on the primary LSP
Path Option and Path Protection

When path-protection is enabled, a standby LSP is established to protect traffic going over the tunnel. The standby LSP may be established using either the same path option as the primary LSP, or a different one. The standby LSP is computed to be diverse from the primary LSP, so bandwidth class differences does not matter. This is true in all cases of diversity except node-diversity. With node diversity, it is possible for the standby LSP to share up to two links with the primary LSP, the link exiting the head node, and the link entering the tail node.

If you want to switch over from one path option to another path option and these path options have different classes, the path option switchover is rejected. However, the path option switchover cannot be blocked in the path-protection feature. When the standby LSP becomes active using another path option of a different class type, the path option switchover cannot be rejected at the head end. It might get rejected by the downstream node.

Node-diversity is only possible under limited conditions. The conditions that must be met are:

- there is no second path that is both node and link diverse
- the current LSP uses a shared-media link at the head egress or tail ingress
- the shared-media link used by the current LSP permits computation of a node-diverse path

In Cisco IOS XR, reoptimization between different class types would actually be rejected by the next hop. This rejection will occur by an admission failure.

Auto-Tunnel Mesh

The MPLS traffic engineering auto-tunnel mesh (Auto-mesh) feature allows you to set up full mesh of TE P2P tunnels automatically with a minimal set of MPLS traffic engineering configurations. You may configure one or more mesh-groups. Each mesh-group requires a destination-list (IPv4 prefix-list) listing destinations, which are used as destinations for creating tunnels for that mesh-group.

You may configure MPLS TE auto-mesh type attribute-sets (templates) and associate them to mesh-groups. LSR creates tunnels using the tunnel properties defined in the attribute-set.

Auto-Tunnel mesh provides benefits:

- Minimizes the initial configuration of the network.

 You may configure tunnel properties template and mesh-groups or destination-lists on each TE LSRs that further creates full mesh of TE tunnels between those LSRs.

- Minimizes future configurations resulting due to network growth.
It eliminates the need to reconfigure each existing TE LSR in order to establish a full mesh of TE tunnels whenever a new TE LSR is added in the network.

Related Topics
- Configuring Auto-Tunnel Mesh Tunnel ID, on page 290
- Configuring Auto-tunnel Mesh Unused Timeout, on page 291
- Configuring Auto-Tunnel Mesh Group, on page 292
- Configuring Tunnel Attribute-Set Templates, on page 294
- Enabling LDP on Auto-Tunnel Mesh, on page 295

Destination List (Prefix-List)

Auto-mesh tunnels can be automatically created using prefix-list. Each TE enabled router in the network learns about the TE router IDs through a existing IGP extension.

You can view the router IDs on the router using this command:

```bash
show mpls traffic-eng topology | include TE Id
```

IGP Id: 0001.0000.0010.00, MPLS TE Id:100.1.1.1 Router Node (ISIS 1 level-2)
IGP Id: 0001.0000.0011.00, MPLS TE Id:100.2.2.2 Router Node (ISIS 1 level-2)
IGP Id: 0001.0000.0012.00, MPLS TE Id:100.3.3.3 Router Node (ISIS 1 level-2)

A prefix-list may be configured on each TE router to match a desired set of router IDs (MPLS TE ID as shown in the above output). For example, if a prefix-list is configured to match addresses of 100.0.0.0 with wildcard 0.255.255.255, then all 100.x.x.x router IDs are included in the auto-mesh group.

When a new TE router is added in the network and its router ID is also in the block of addresses described by the prefix-list, for example, 100.x.x.x, then it is added in the auto-mesh group on each existing TE router without having to explicitly modify the prefix-list or perform any additional configuration.

Auto-mesh does not create tunnels to its own (local) TE router IDs.

Note

When prefix-list configurations on all routers are not identical, it can result in non-symmetrical mesh of tunnels between those routers.

Related Topics
- Configuring Auto-Tunnel Mesh Tunnel ID, on page 290
- Configuring Auto-tunnel Mesh Unused Timeout, on page 291
- Configuring Auto-Tunnel Mesh Group, on page 292
- Configuring Tunnel Attribute-Set Templates, on page 294
- Enabling LDP on Auto-Tunnel Mesh, on page 295

PWHE over MPLS TE Tunnels

The Pseudowire Headend (PWHE) over MPLS TE Tunnels feature enables the PWHE traffic to pass through MPLS traffic engineering (TE) tunnels.

The PWHE and the MPLS TE tunnels are configured independently. No specific configuration is required for a TE tunnel to forward PWHE traffic through it. The pseudowire traffic automatically passes through the
TE tunnel, after the routing protocol is configured in such a way that the routing algorithm considers the TE tunnel as the route to reach the pseudowire endpoint.

Figure 23: PWHE over MPLS TE Tunnel

In this figure, S-PE is the PWHE and OSPF manages the routing. A MPLS TE tunnel is configured between A-PE and S-PE. After the MPLS TE tunnel is defined (either by defining a static route or using the autoroute announce command) as the path through which to forward traffic to S-PE, the PWHE traffic passes through that tunnel.

Workflow - Sending PWHE Traffic over MPLS TE Tunnels

Complete these configurations on the S-PE to enable PWHE traffic to flow through the MPLS TE tunnel.

<table>
<thead>
<tr>
<th>Task Number</th>
<th>Task Description</th>
<th>Sample Configuration</th>
<th>Details</th>
</tr>
</thead>
</table>
| 1 | Configure interfaces that connect to A-PE. | interface Bundle-Ether1
description TO-APE
ipv4 address 145.0.2.5
255.255.255.0
load-interval 30
!
interface TenGigE0/2/1/2
description TO-APE-VKG4-0-1-1-0
bundle id 1 mode on
load-interval 30
!
interface TenGigE0/2/1/3
description TO-APE-VKG4-0-1-1-1
bundle id 1 mode on
load-interval 30 | See the Configuring Ethernet Link Bundles task in Chapter Configuring Link Bundling of Interface and Hardware Component Configuration Guide for Cisco ASR 9000 Series Routers.
Note You can configure any supported interface; not just bundle interfaces. |
| 2 | Define loopback address. | interface Loopback0
ipv4 address 5.5.5.5
255.255.255.255 | |

Cisco ASR 9000 Series Aggregation Services Router MPLS Configuration Guide, Release 6.0.x
<table>
<thead>
<tr>
<th>Task Number</th>
<th>Task Description</th>
<th>Sample Configuration</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Configure tunnel interface. TE tunnels can be configured with either an "explicit" or a "dynamic" path.</td>
<td>interface tunnel-te1 bandwidth 10000000 ipv4 unnumbered Loopback0 autrouter announce destination 4.4.4.4 fast-reroute path-option 10 explicit name main-path !</td>
<td>See Creating an MPLS-TE Tunnel, on page 225</td>
</tr>
<tr>
<td>4</td>
<td>Provide path definition of path that the tunnel uses as the forwarding path.</td>
<td>explicit-path name main-path index 10 next-address strict ipv4 unicast 145.0.2.4 !</td>
<td>See Configuring Explicit Paths with ABRs Configured as Loose Addresses, on page 250</td>
</tr>
<tr>
<td>5</td>
<td>Specify tunnel bandwidth.</td>
<td>rsvp interface Bundle-Ether1 bandwidth mam max-reservable-bw 1000000 1000000 ! signalling graceful-restart ! mpls traffic-eng interface Bundle-Ether1 !</td>
<td>See Configuring an IETF DS-TE Tunnel Using MAM, on page 240</td>
</tr>
<tr>
<td>6</td>
<td>Configure PWHE.</td>
<td>interface PW-Ether1 mtu 1518 mac-address 4000.5.1 load-interval 30 attach generic-interface-list il1 !</td>
<td>See the Configuring PWHE Interfaces task in Chapter Implementing Multipoint Layer 2 Services of L2VPN and Ethernet Services Configuration Guide for Cisco ASR 9000 Series Routers.</td>
</tr>
<tr>
<td>7</td>
<td>Define, for PWHE, the list of interfaces that PW uses to forward traffic.</td>
<td>generic-interface-list il1 interface Bundle-Ether1 !</td>
<td>See the Configuring Generic Interface List task in Chapter Implementing Multipoint Layer 2 Services of L2VPN and Ethernet Services Configuration Guide for Cisco ASR 9000 Series Routers.</td>
</tr>
<tr>
<td>Task Number</td>
<td>Task Description</td>
<td>Sample Configuration</td>
<td>Details</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>8</td>
<td>Define PW source address.</td>
<td><code>l2vpn pw-class pwhe encapsulation mpls control-word ipv4 source 5.5.5.5 !</code></td>
<td>See the Configuring the Source Address task in Chapter Implementing Multipoint Layer 2 Services of L2VPN and Ethernet Services Configuration Guide for Cisco ASR 9000 Series Routers.</td>
</tr>
<tr>
<td>9</td>
<td>Define PWHE cross-connect.</td>
<td><code>xconnect group xc452 p2p pwhe452 interface PW-Ether2 neighbor ipv4 4.4.4.4 pw-id 452 mpls static label local 5542 remote 5452 pw-class pwhe !</code></td>
<td>See the Configuring PWHE Crossconnect task in Chapter Implementing Multipoint Layer 2 Services of L2VPN and Ethernet Services Configuration Guide for Cisco ASR 9000 Series Routers.</td>
</tr>
<tr>
<td>10</td>
<td>Setup interfaces running LDP.</td>
<td><code>mpls ldp nsr graceful-restart graceful-restart reconnect-timeout 60 graceful-restart forwarding-state-holdtime 60 interface Bundle-Ether1 !</code></td>
<td>See Setting Up LDP NSF Using Graceful Restart, on page 48</td>
</tr>
<tr>
<td>11</td>
<td>Configure routing.</td>
<td><code>router ospf 100 nsr router-id 5.5.5.5 nsf cisco area 0 mpls traffic-eng interface Bundle-Ether1 ! interface Loopback0 ! mpls traffic-eng router-id 192.168.70.1</code></td>
<td>See the Configuring OSPF Version 2 for MPLS Traffic Engineering task in Chapter Implementing OSPF of Routing Configuration Guide for Cisco ASR 9000 Series Routers.</td>
</tr>
</tbody>
</table>

Note

A-PE has a similar configuration, except for the fact that there is no PWHE defined on it.

In a PWHE-based pseudowire configuration, the TE tunnel cannot be configured as the preferred-path for pseudowire traffic. Therefore, the preferred-path tunnel-te option under the L2VPN XConnect PW-Class is not supported. However, the TE tunnel redundancy and TE fast-reroute mechanisms are supported with PWHE over MPLS TE tunnels.
VRF Redirection to MPLS TE Tunnels

The VRF redirection to MPLS TE tunnels feature adds automatic route MPLS TE tunnels through autoroute destination configuration. The VRF redirection to MPLS TE tunnels maps VRF prefixes over TE tunnels in the core to reach the same egress provider edge (PE). This enables to load-balance prefix traffic on multiple tunnels based on equal cost multi-path (ECMP). The ECMP is used to load-share the flow(s) on multiple available paths towards the destination PE. The route added by autoroute destination inherits the same IGP computed metric to the tunnel endpoint. Any changes to the IGP route metric to the tunnel endpoint is automatically reflected on the autoroute destination route too.

In a typical VPN deployment over a TE core network, an operator creates a mesh of TE tunnels between PE routers and then configures autoroute announce to these tunnels. This leads to a mix of default VRF and VPNv4 traffic on the same tunnel connecting the PE routers. An operator may want to segregate their VPNv4 traffic on different tunnels. This can be achieved by creating multiple tunnels to the egress PE(s). The limitation of this approach is that the static routes are added with zero metrics. The VRF Redirection to MPLS TE Tunnels feature is a solution to resolve this limitation. Multiple VRFs can be mapped on the same tunnel by adding multiple autoroute destination addresses (BGP next-hops) to the same tunnel.

Routes added by static route are always added with zero cost metric. This results in traffic that is mapped on multiple tunnels to always load-balance due to ECMP. This may be undesirable when some of those tunnels have sub-optimal paths (have higher underlying cost to the endpoint). With autoroute destination, only the tunnel whose IGP cost to its endpoint is lowest will be considered for carrying traffic.

VRF redirection over TE tunnels feature supports:

- Automatic redirection of VRF traffic over TE tunnels.
- Multiple autoroute destinations under one tunnel to aggregate VRF traffic. If two VRFs are to be mapped on same tunnel, then two autoroute destination prefixes (BGP next-hops) will be configured under the tunnel.
- One autoroute destination under multiple tunnels to enable ECMP load-balance of VRF traffic.
- Implicit /32 mask for each route. Only host addresses residing on the tunnel endpoint are supported.
- High availability, RP failover, and non-stop forwarding (NSF) scenarios by proving hitless to traffic mechanisms.

MPLS TE Extended Admin Groups

The MPLS TE extended admin groups (EAG) configuration assigns EAG/AG name to bit-position and associates affinity-names with TE links. The configuration extends to assign names, up to 256, to TE links over the selected interface and assigns 32 names per attribute-set and index.

Use the `affinity-map map-name bit-position value` command to assign EAG/AG name to bit-position. Use the `attribute-names attribute-name1 attribute-name2 ... and attribute-names index index-number attribute-name1 attribute-name2 ...` commands to assign up to 32 names per attribute-set and index value.

Stateful Path Computation Element

The stateful path computation element (PCE) describes a set of procedures by which a path computation client (PCC) can report and delegate control of head-end tunnels sourced from the PCC to a PCE peer. The PCE peer can request the PCC to update and modify parameters of label switched paths (LSPs) it controls. The stateful model also enables a PCC to allow the PCE to initiate computations allowing the PCE to perform network-wide orchestration.
The transfer of LSP state and computation constraints is independent from the computation request, such that a PCE may see how state changes over time, without a computation request ever taking place. This allows the PCE to have better visibility into network state, as well as improve the efficiency of computation requests, as these can rely on state present on the PCE.

- Both PCE/PCC functionality runs on routers
- PCE function router need special image or official image with SMU installed
- PCE server could be external third party PCE server, such as Cariden

Stateful PCE provides support for these following request types and objects:

- Request types
 - PCReq—requests used by current stateless PCE implementation
 - PCCreate—LSP instantiation requests
 - PCUpd—LSP update requests

- LSP Objects
 - Operational flag
 - Delegation flag
 - Remove flag
 - Symbolic path name
 - LSP Identifiers

- Path List
 - ERO

Stateful PCE State Reporting

State reporting refers to the PCC sending information to PCEs about the state of LSPs. This is done as state changes occur and is used to keep PCEs informed of changes to the LSP as they occur. State reporting is also used as part of state synchronization and delegation.

A state report is a message sent by a PCC to a PCE reporting on the state of one or more TE tunnels. This allows the PCE to stay abreast of changes as they occur. Reports are triggered when the PCE needs to be informed of state. These occur when:

- State synchronization happens
- The PCC attempts to delegate control of a tunnel to a PCE
- The PCC revokes control of a tunnel from a PCE
- The PCC deletes a tunnel
- A signalling error occurs on a tunnel
- Reportable information about a tunnel changes
Stateful PCE State Synchronization

Synchronization refers to a procedure that occurs after a PCEP session is established between a PCE and a PCC. The purpose of state synchronization is to download the current LSP database of the PCC to a PCE. This is done through a set of state reports which are marked as synchronizations. This is the first communication to occur after the session is brought up. A full re-send of state reports can also be avoided when the PCE already has an up-to-date version of the LSP database as the version number can be indicated by the PCE during PCEP session establishment.

Stateful PCE Delegation

Delegation is the action by which control of a state is granted to a PCE by the PCC. A PCE to which control was delegated can alter attributes of the LSP. Control is only delegated to one PCE at a time.

- Delegation of control can be revoked from a PCE by the PCC.
- Delegation of control can also be returned to the PCC by the PCE.

Stateful PCE State Updating

State updating refers to the PCE sending information to a PCC to alter the attributes of an LSP. A state update is a message sent by a PCE to a PCC to alter the state of one or more TE tunnels. State updating is allowed only if the PCE has previously been delegated control of the LSP. State updating is also used to return delegated control.

Stateful PCE Creation of LSPs

Creation (or instantiation) of an LSP is a procedure by which a PCE instructs a PCC to create an LSP respecting certain attributes. For LSPs created in this manner, the PCE is delegated control automatically. Stateful PCE procedures enable a PCE to instruct a PCC to create a locally sourced tunnel.

Delegation of PCC Initiated Tunnels

The delegation of path computation client (PCC) initiated tunnels feature enables the ability to control PCC initiated tunnels through stateful path computation element (PCE).

When a PCC is connected to multiple PCEs, use the precedence command to select stateful PCEs for delegating LSPs. Precedence can take any value between 0 and 255. The default precedence value is 255. When there are multiple stateful PCEs with active PCEP sessions, PCC selects the PCE with the lowest precedence value. If multiple PCEs have the same precedence, PCC selects a PCE with the lowest IP address. A PCC considers only the PCEs with active PCEP session for delegating LSPs.

When a PCEP session over which tunnels have been delegated is terminated, the PCC waits till the re-delegation timer expires before re-delegating tunnels. If a PCEP session comes back up within re-delegation timer expiration, tunnels will be delegated back to the same PCE.

For information on PCC, see Path Computation Element, on page 186.

Stateful PCE Enhancements

These topics describe the enhancements made to the stateful path computation element (PCE):
Fast Repair

Fast repair feature minimizes the tunnel down time by allowing the path computation client (headend) to determine a new optimal path for delegated tunnels that went down, or are under fast reroute (FRR) or soft-preemption. Previously, Path Computation Client (PCC) was not designated to take any action on delegated tunnels. To configure the fast repair feature, use the `fast-repair` command under PCE stateful client in MPLS-TE configuration.

PCE is still the master controller, but the time taken to notify the PCE and the wait till the PCE takes an action, amounts to considerable time. This disadvantage is overcome by the fast repair feature.

Automatic Bandwidth Backoff

Automatic bandwidth backoff is enabled automatically, if the tunnel's current bandwidth is different from the requested bandwidth due to automatic bandwidth update.

In cases where automatic bandwidth is enabled for a tunnel, fast repair tries to determine a path with:

1. Current signaled bandwidth
2. If option (1) fails and the configured bandwidth has a lower value than the current bandwidth, second attempt is made with the average bandwidth value: \((\text{current bandwidth} + \text{configured bandwidth})/2\)

Note

If configured bandwidth is equal to or higher than the current bandwidth, fast repair fails at this point.

3. If option (2) fails, PCC tries to find a path with the configured bandwidth value
4. If option (3) fails, fast repair is unsuccessful and the tunnel is at the discretion of the PCE

For detailed configuration steps, see Configuring Fast Repair, on page 256.

Optional Vendor Specific PCEP Extension

An optional vendor specific Path Computation Element Protocol (PCEP) extension, `cisco-tlv` is added in this IOS XR release. The vendor information TLV (Type-Length-Variable) is used to carry vendor specific information that applies to a specific PCEP object by including the TLV in the object.

Vendor specific PCEP extension (`cisco-tlv`) in not sent in PC report (PCReport), or accepted in PC update (PCUpdate) or PC initiate (PCInitiate) by default, for compatibility reasons. This helps in interoperability with PCE implementation which does not understand or support Cisco specific information.

Vendor specific PCEP extension is optional and can be enabled using the `cisco-extension` command under PCE stateful client in MPLS-TE configuration.

For detailed steps to enable vendor specific PCEP extension, see Enabling PCEP Cisco Extension, on page 257.

Automatic Bandwidth Support for Delegated Tunnels

Automatic bandwidth feature allows a tunnel to automatically and dynamically adjust its reserved bandwidth over time, without network operator intervention. The automatic bandwidth feature support has been extended to delegated tunnels. Previously, tunnels configured with automatic bandwidth were switched to `collect-only` mode upon delegation.
New Style Affinities

Affinity is MPLS traffic engineering (TE) tunnel's requirements on the attributes of the links it will cross. The tunnel's affinity bits and affinity mask bits must match the attribute bits of the various links carrying the tunnel.

A new style of affinity reporting support is added in this IOS XR release. Even though TE ignores any affinities from the PCE, the new style affinities in PC update (PCUdate) or PC initiate (PCInitiate) override the existing tunnel affinities. Previously, only old style affinities (value + mask) were reported. The new affinity mapping has PCEP affinities on the left and IOS XR affinities on the right.

- Lspa.exclude_any = AFFINITY_NEWSTYLE_EXCLUDE OR AFFINITY_NEWSTYLE_EXCLUDE_ALL
- Lspa.include_all = AFFINITY_NEWSTYLE_INCLUDE_STRICT
- Lspa.include_any = AFFINITY_NEWSTYLE_INCLUDE_STRICT OR AFFINITY_NEWSTYLE_INCLUDE

Binding Segment-ID

A binding Segment-ID (SID) can be used to enforce traffic engineering (TE) policy using RSVP-TE or SR-TE label switching path (LSP) tunnel. If the topmost label of an incoming packet is the binding SID, the packet is steered to the appropriate LSP tunnel. As such, a SID can be used by an upstream router to steer traffic originating from a downstream router into the appropriate TE path. If an LSP tunnel is PCE controlled, that is, either initiated by PCE or delegated to PCE, or simply reported (without delegation) to a PCE, the router allocates binding label and reports it to the PCE.

Use Case Scenario

A sample use case for binding SID is illustrated in the following diagram.

Figure 24: Sample Use of Binding SID

1. In the MPLS Data Center (DC) network, an SR LSP (without traffic engineering) is established using a prefix SID advertised by BGP.
2. In IP/MPLS WAN, an SR-TE LSP is setup using the PCE. The list of SIDs of the SR-TE LSP is {A, B, C, D}.
3. The gateway node 1 (which is the PCC) allocates a binding SID X and reports it to the PCE.
4. In order for the access node to steer the traffic over the SR-TE LSP, the PCE passes the SID stack {Y, X} where Y is the prefix SID of the gateway node 1 to the access node. In the absence of the binding SID X, the PCE passes the SID stack {Y, A, B, C, D} to the access node.
This example also illustrates the additional benefit of using the binding SID to reduce the number of SIDs imposed on the access nodes with a limited forwarding capacity.

MPLS TE Usability Enhancements

MPLS traffic engineering command line interface and logging output messages are enhanced as follows:

- The `show mpls traffic engineering` commands display `signaled-name` and supports `signaled-name` filter.
- Ability to allow immediate teardown of all labelled switched paths (LSPs) of the specified tunnel and to create new LSPs.
- Default behavior when affinity check fails at head-end is to reoptimize all LSP types.
- Logging output messages include MPLS TE tunnel signaled name.
- Logging of path change events and available bandwidth on the new for all auto-bandwidth operations.
- Auto-bandwidth logging output includes signaled name.

MPLS TE IPv6 Autoroute

The MPLS TE IPv6 Autoroute feature enables the use of IPv4 MPLS TE tunnels for IPv6 routing. The routing protocol IGP (IS-IS) considers the IPv4 MPLS TE tunnel for IPv6 routing path calculation only if the tunnel is advertised to carry IPv6 traffic. To advertise the tunnel, either IPv6 autoroute announce (AA) configuration or IPv6 forwarding adjacency (FA) configuration should be made on the tunnel. Also, the IPv6 has to be enabled on the tunnel so that the tunnel can handle IPv6 traffic.

To configure IPv6 routing on an MPLS TEv4 tunnel, see Configuring IPv6 Routing Over IPv4 MPLS-TE Tunnels, on page 298.

MPLS TE IPv6 Autoroute Restrictions

- IGP support is only for IS-IS.
- IS-IS IPv4 and IPv6 must be configured under the same IS-IS instance.
- Unequal load balancing (UELB) does not apply to IPv6 traffic. While it may still be configured and used for IPv4 traffic, IPv6 traffic does not acknowledge the UELB configuration. However, equal load-sharing works for IPv6.
- Policy-based tunnel selection (PBTS) does not apply for IPv6 traffic. While it may still be configured and used for IPv4 traffic, IPv6 traffic does not acknowledge the PBTS configuration.
- MPLS auto tunnels do not support IPv6 autoroute announce and IPv6 forwarding adjacency configurations.

MPLS TE Path Cost Limit

The MPLS TE path cost limit feature enables graceful migration of TE label switched paths (LSPs) away from a link without affecting the traffic. This is useful when a link is scheduled to be decommissioned or brought down for maintenance.
In order to take a link out of service and gracefully migrate the LSPs away from it, the cost assigned to the link is to be set higher than the path cost limit (path aggregate admin-weight) assigned at the LSP headend. The cost of the tunnel is equal to the aggregate cost of the links through which the tunnel passes. The headend routers recalculate the total path costs at the time of periodic path verification. At this stage, the headend routers automatically check if the path limit is crossed and reroute the LSPs away from the out-of-service link.

This sample illustration explains the TE path cost limit application:

Figure 25: MPLS TE path cost limit application

Here, the path cost limit for the LSP is set at 50. To move the LSP away from the link between F and G, the link cost is increased to 50.

The total path cost is the aggregate of individual costs assigned to the links through which the LSP traverses. The effect of specifying a limit to the path cost (admin-weight) are:

- For new LSPs, if the path cost limit is crossed, the LSP is considered invalid and does not get signaled across its calculated path. However, if an alternate path that is below the cost limit is available, then that path is signaled.
- For existing LSPs, if the path cost limit is crossed, the LSP is considered as 'failed'. If the current LSP fails (for both FRR and non-FRR LSPs), the standby LSP will be activated if it exists. If there is no standby LSP, the tunnel will be re-optimized. If there is no standby LSP and no path is found for a re-optimized tunnel then the tunnel is put in 'reroute pending' state and re-optimization is attempted periodically.
- To recover from a cost limit failure, re-optimization will be triggered using any available path option.

Soft-preemption over FRR Backup Tunnels

The soft-preemption over FRR backup tunnels feature enables to move LSP traffic over the backup tunnels when the LSP is soft-preempted. MPLS TE tunnel soft-preemption allows removal of extra TE traffic in a graceful manner, by giving the preempted LSP a grace period to move away from the link. Though this mechanism saves the traffic of the preempted LSP from being dropped, this might cause traffic drops due to congestion as more bandwidth is reserved on the link than what is available. When the soft-preemption over FRR backup tunnel is enabled, the traffic of the preempted LSP is moved onto the FRR backup, if it is available and ready. This way, the capacity of the backup tunnel is used to remove the potential congestion that might be caused by soft-preemption.
MPLS TE Auto-tunnel Mesh One-hop

The MPLS TE Auto-tunnel primary one-hop feature allows automatic creation of tunnels over TE enabled interfaces to next hop neighbors. The Auto-tunnel primary one-hop is configurable under the MPLS TE Auto-tunnel mesh group mode and for each mesh group. The Auto-tunnel primary one-hop configuration automatically creates one-hop tunnels to next hop neighbors. A router that becomes a next hop neighbor will have a set of one-hop tunnels created automatically.

Inter-area Traffic Engineering with Dynamic ABR Discovery

The inter-area traffic engineering with dynamic ABR discovery feature adds support for inter-area point-to-point (P2P) and point-to-multi-point (P2MP) traffic engineering with dynamic ABR discovery. With this feature, there is no need to specify transit ABR addresses in the explicit paths to allow for dynamic/best path computation for inter-area tunnels.

How to Implement Traffic Engineering

Traffic engineering requires coordination among several global neighbor routers, creating traffic engineering tunnels, setting up forwarding across traffic engineering tunnels, setting up FRR, and creating differential service.

These procedures are used to implement MPLS-TE:

Building MPLS-TE Topology

Perform this task to configure MPLS-TE topology (required for traffic engineering tunnel operations).

Before you begin

Before you start to build the MPLS-TE topology, you must have enabled:

- IGP such as OSPF or IS-IS for MPLS-TE.
- MPLS Label Distribution Protocol (LDP).
- RSVP on the port interface.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.
- If you are going to use nondefault holdtime or intervals, you must decide the values to which they are set.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. interface type interface-path-id
4. exit
5. exit
6. `router ospf process-name`
7. `area area-id`
8. exit
9. `mpls traffic-eng router-id ip-address`
10. commit
11. (Optional) `show mpls traffic-eng topology`
12. (Optional) `show mpls traffic-eng link-management advertisements`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Purpose Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>mpls traffic-eng</code></td>
<td>Example: <code>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</code> <code>RP/0/RSP0/CPU0:router(config-mpls-te)#</code> Purpose Enables traffic engineering on a particular interface on the originating node and enters MPLS-TE interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 <code>interface type interface-path-id</code></td>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-mpls-te)#interface POS0/6/0/0</code> <code>RP/0/RSP0/CPU0:router(config-mpls-te-if)#</code> Purpose Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-mpls-te-if)# exit</code> <code>RP/0/RSP0/CPU0:router(config-mpls-te)#</code> Purpose Exits the current configuration mode.</td>
</tr>
<tr>
<td>Step 5 exit</td>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-mpls-te)# exit</code> <code>RP/0/RSP0/CPU0:router(config)#</code> Purpose Exits the current configuration mode.</td>
</tr>
<tr>
<td>Step 6 <code>router ospf process-name</code></td>
<td>Example: <code>RP/0/RSP0/CPU0:router(config)# router ospf 1</code> Purpose Enters a name for the OSPF process.</td>
</tr>
<tr>
<td>Step 7 <code>area area-id</code></td>
<td>Purpose Configures an area for the OSPF process.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| RP/0/RSP0/CPU0:router(config-router)# area 0 | • Backbone areas have an area ID of 0.
| | • Non-backbone areas have a non-zero area ID. |
| **Step 8** | |
| exit | Exits the current configuration mode. |
| **Example:** | |
| RP/0/RSP0/CPU0:router(config-ospf-ar)# exit | |
| RP/0/RSP0/CPU0:router(config-ospf)# | |
| **Step 9** | |
| mpls traffic-eng router-id ip-address | Sets the MPLS-TE loopback interface. |
| **Example:** | |
| RP/0/RSP0/CPU0:router(config-ospf)# mpls traffic-eng router-id 192.168.70.1 | |
| **Step 10** | |
| commit | |
| **Step 11** | |
| (Optional) show mpls traffic-eng topology | Verifies the traffic engineering topology. |
| **Example:** | |
| RP/0/RSP0/CPU0:router# show mpls traffic-eng topology | |
| **Step 12** | |
| (Optional) show mpls traffic-eng link-management advertisements | Displays all the link-management advertisements for the links on this node. |
| **Example:** | |
| RP/0/RSP0/CPU0:router# show mpls traffic-eng link-management advertisements | |

Related Topics

- How MPLS-TE Works, on page 171
- Build MPLS-TE Topology and Tunnels: Example, on page 319

Creating an MPLS-TE Tunnel

Creating an MPLS-TE tunnel is a process of customizing the traffic engineering to fit your network topology.

Perform this task to create an MPLS-TE tunnel after you have built the traffic engineering topology.

Before you begin

The following prerequisites are required to create an MPLS-TE tunnel:

- You must have a router ID for the neighboring router.
• Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.

• If you are going to use nondefault holdtime or intervals, you must decide the values to which they are set.

SUMMARY STEPS

1. configure
2. interface tunnel-te tunnel-id
3. destination ip-address
4. ipv4 unnumbered type interface-path-id
5. path-option preference - priority dynamic
6. signalled- bandwidth \{bandwidth [class-type ct] | sub-pool bandwidth\}
7. commit
8. (Optional) show mpls traffic-eng tunnels
9. (Optional) show ipv4 interface brief
10. (Optional) show mpls traffic-eng link-management admission-control

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>interface tunnel-te tunnel-id</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router# interface tunnel-te 1</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>destination ip-address</td>
<td>Assigns a destination address on the new tunnel.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 192.168.92.125</td>
<td>Assigns a destination address on the new tunnel. The destination address is the remote node’s MPLS-TE router ID.</td>
</tr>
<tr>
<td>4.</td>
<td>ipv4 unnumbered type interface-path-id</td>
<td>Assigns a source address so that forwarding can be performed on the new tunnel. Loopback is commonly used as the interface type.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>path-option preference - priority dynamic</td>
<td>Sets the path option to dynamic and assigns the path ID.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if)# path-option 1</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Forwarding over the MPLS-TE Tunnel

Perform this task to configure forwarding over the MPLS-TE tunnel created in the previous task. This task allows MPLS packets to be forwarded on the link between network neighbors.

Before you begin

The following prerequisites are required to configure forwarding over the MPLS-TE tunnel:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.

SUMMARY STEPS

1. configure
2. interface tunnel-te tunnel-id
3. ipv4 unnumbered type interface-path-id
4. autoroute announce
5. exit
6. router static address-family ipv4 unicast prefix mask ip-address interface type
7. commit
8. (Optional) ping {ip-address | hostname}
9. (Optional) show mpls traffic-eng autoroute

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS-TE interface configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** interface tunnel-te tunnel-id
 Example:
 `RP/0/RSP0/CPU0:router(config)# interface tunnel-te 1` | Assigns a source address so that forwarding can be performed on the new tunnel. |
| **Step 3** ipv4 unnumbered type interface-path-id
 Example:
 `RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered Loopback0` | Enables messages that notify the neighbor nodes about the routes that are forwarding. |
| **Step 4** autoroute announce
 Example:
 `RP/0/RSP0/CPU0:router(config-if)# autoroute announce` | Exits the current configuration mode. |
| **Step 5** exit
 Example:
 `RP/0/RSP0/CPU0:router(config-if)# exit` | |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 router static address-family ipv4 unicast prefix mask ip-address interface type</td>
<td>Enables a route using IP version 4 addressing, identifies the destination address and the tunnel where forwarding is enabled. This configuration is used for static routes when the autoroute announce command is not used.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# router static address-family ipv4 unicast 2.2.2.2/32 tunnel-te 1</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
<tr>
<td>Step 8 (Optional) ping {ip-address</td>
<td>hostname}</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# ping 192.168.12.52</td>
<td></td>
</tr>
<tr>
<td>Step 9 (Optional) show mpls traffic-eng autoroute</td>
<td>Verifies forwarding by displaying what is advertised to IGP for the TE tunnel.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# show mpls traffic-eng autoroute</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- Overview of MPLS Traffic Engineering, on page 171
- Creating an MPLS-TE Tunnel, on page 225

Protecting MPLS Tunnels with Fast Reroute

Perform this task to protect MPLS-TE tunnels, as created in the previous task.

Note

Although this task is similar to the previous task, its importance makes it necessary to present as part of the tasks required for traffic engineering on Cisco IOS XR software.

Before you begin

The following prerequisites are required to protect MPLS-TE tunnels:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.
- You must first configure a primary tunnel.
SUMMARY STEPS

1. configure
2. interface tunnel-te tunnel-id
3. fast-reroute
4. exit
5. mpls traffic-eng
6. interface type interface-path-id
7. backup-path tunnel-te tunnel-number
8. exit
9. exit
10. interface tunnel-te tunnel-id
11. backup-bw {backup bandwidth | sub-pool {bandwidth | unlimited} | global-pool {bandwidth | unlimited} }
12. ipv4 unnumbered type interface-path-id
13. path-option preference-priority {explicit name explicit-path-name}
14. destination ip-address
15. commit
16. (Optional) show mpls traffic-eng tunnels backup
17. (Optional) show mpls traffic-eng tunnels protection frr
18. (Optional) show mpls traffic-eng fast-reroute database

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface tunnel-te tunnel-id</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# interface tunnel-te 1</td>
<td></td>
</tr>
<tr>
<td>Step 3 fast-reroute</td>
<td>Enables fast reroute.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)# fast-reroute</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 5 mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)#</td>
<td>Enables traffic engineering on a particular interface on the originating node.</td>
</tr>
<tr>
<td>Step 6</td>
<td>interface type interface-path-id Example: RP/0/RSP0/CPU0:router(config-mpls-te)# interface pos0/6/0/0 RP/0/RSP0/CPU0:router(config-mpls-te-if)#</td>
</tr>
<tr>
<td>Step 7</td>
<td>backup-path tunnel-te tunnel-number Example: RP/0/RSP0/CPU0:router(config-mpls-te-if)# backup-path tunnel-te 2</td>
</tr>
<tr>
<td>Step 8</td>
<td>exit Example: RP/0/RSP0/CPU0:router(config-mpls-te-if)# exit RP/0/RSP0/CPU0:router(config-mpls-te)#</td>
</tr>
<tr>
<td>Step 9</td>
<td>exit Example: RP/0/RSP0/CPU0:router(config-mpls-te)# exit RP/0/RSP0/CPU0:router(config)#</td>
</tr>
<tr>
<td>Step 10</td>
<td>interface tunnel-te tunnel-id Example: RP/0/RSP0/CPU0:router(config)# interface tunnel-te 2</td>
</tr>
<tr>
<td>Step 11</td>
<td>backup-bw {backup bandwidth</td>
</tr>
<tr>
<td></td>
<td>global-pool {bandwidth</td>
</tr>
<tr>
<td>Step 12</td>
<td>ipv4 unnumbered type interface-path-id Example: RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Loopback0</td>
<td></td>
</tr>
</tbody>
</table>

Step 13
path-option preference-priority [explicit name explicit-path-name]
Example:
RP/0/RSP0/CPU0:router(config-if)# path-option l explicit name backup-path

Sets the path option to explicit with a given name (previously configured) and assigns the path ID.

Step 14
destination ip-address
Example:
RP/0/RSP0/CPU0:router(config-if)# destination 192.168.92.125

Assigns a destination address on the new tunnel.
- Destination address is the remote node’s MPLS-TE router ID.
- Destination address is the merge point between backup and protected tunnels.

Note
When you configure TE tunnel with multiple protection on its path and merge point is the same node for more than one protection, you must configure record-route for that tunnel.

Step 15
commit

Step 16
(Optional) show mpls traffic-eng tunnels backup
Example:
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels backup

Displays the backup tunnel information.

Step 17
(Optional) show mpls traffic-eng tunnels protection frr
Example:
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels protection frr

Displays the tunnel protection information for Fast-Reroute (FRR).

Step 18
(Optional) show mpls traffic-eng fast-reroute database
Example:
RP/0/RSP0/CPU0:router# show mpls traffic-eng fast-reroute database

Displays the protected tunnel state (for example, the tunnel’s current ready or active state).

Related Topics
- Fast Reroute, on page 179
- Fast Reroute Node Protection, on page 184
- Creating an MPLS-TE Tunnel, on page 225
Enabling an AutoTunnel Backup

Perform this task to configure the AutoTunnel Backup feature. By default, this feature is disabled. You can configure the AutoTunnel Backup feature for each interface. It has to be explicitly enabled for each interface or link.

SUMMARY STEPS

1. configure
2. ipv4 unnumbered mpls traffic-eng Loopback 0
3. mpls traffic-eng
4. auto-tunnel backup timers removal unused frequency
5. auto-tunnel backup tunnel-id min min max
6. commit
7. show mpls traffic-eng auto-tunnel backup summary

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 ipv4 unnumbered mpls traffic-eng Loopback 0 Example: RP/0/RSP0/CPU0:router(config)#ipv4 unnumbered mpls traffic-eng Loopback 0</td>
<td>Configures the globally configured IPv4 address that can be used by the AutoTunnel Backup Tunnels. Note Loopback 0 is the router ID. The AutoTunnel Backup tunnels will not come up until a global IPv4 address is configured.</td>
</tr>
<tr>
<td>Step 3 mpls traffic-eng Example: RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 4 auto-tunnel backup timers removal unused frequency Example: RP/0/RSP0/CPU0:router(config-mpls-te)# auto-tunnel backup timers removal unused 20</td>
<td>Configures how frequently a timer scans the backup automatic tunnels and removes tunnels that are not in use. Note You can also configure the auto-tunnel backup command at mpls traffic-eng interface mode.</td>
</tr>
<tr>
<td>Step 5 auto-tunnel backup tunnel-id min min max Example: RP/0/RSP0/CPU0:router(config-mpls-te)# auto-tunnel backup tunnel-id min 6000 max 6500</td>
<td>Configures the range of tunnel interface numbers to be used for automatic backup tunnels. Range is 0 to 6535.</td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
</tbody>
</table>
Removing an AutoTunnel Backup

To remove all the backup autotunnels, perform this task to remove the AutoTunnel Backup feature.

SUMMARY STEPS

1. `clear mpls traffic-eng auto-tunnel backup unused { all | tunnel-te number}`
2. `commit`
3. `show mpls traffic-eng auto-tunnel summary`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Clear all MPLS-TE automatic backup tunnels from the EXEC mode. You can also remove the automatic backup tunnel marked with specific tunnel-te, provided it is currently unused.</td>
</tr>
<tr>
<td>`clear mpls traffic-eng auto-tunnel backup unused { all</td>
<td>tunnel-te number}`</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router# clear mpls traffic-eng auto-tunnel backup unused all</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>commit</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Displays information about MPLS-TE autotunnels including the ones removed.</td>
</tr>
<tr>
<td><code>show mpls traffic-eng auto-tunnel summary</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router# show mpls traffic-eng auto-tunnel summary</code></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

- [Backup AutoTunnels](#), on page 173
- [Configure the MPLS-TE Auto-Tunnel Backup: Example](#), on page 332

Establishing MPLS Backup AutoTunnels to Protect Fast Reroutable TE LSPs

To establish an MPLS backup autotunnel to protect fast reroutable TE LSPs, perform these steps:

SUMMARY STEPS

1. `configure`
2. mpls traffic-eng
3. interface type interface-path-id
4. auto-tunnel backup
5. attribute-set attribute-set-name
6. commit
7. show mpls traffic-eng auto-tunnel backup summary

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td>Enables traffic engineering on a specific interface on the originating node.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables an auto-tunnel backup feature for the specified interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 auto-tunnel backup</td>
<td>Configures attribute-set template for auto-tunnel backup tunnels.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-if)# auto-tunnel backup</td>
<td></td>
</tr>
<tr>
<td>Step 5 attribute-set attribute-set-name</td>
<td>Displays information about configured MPLS-TE backup autotunnels.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-if-auto-backup)#attribute-set ab</td>
<td></td>
</tr>
<tr>
<td>Step 6 commit</td>
<td>Conveys configuration data to the local router.</td>
</tr>
<tr>
<td>Step 7 show mpls traffic-eng auto-tunnel backup summary</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# show mpls traffic auto-tunnel backup summary</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

Backup AutoTunnels, on page 173
Configure the MPLS-TE Auto-Tunnel Backup: Example, on page 332

Establishing Next-Hop Tunnels with Link Protection

To establish a next-hop tunnel and link protection on the primary tunnel, perform these steps:
SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. interface type interface-path-id
4. auto-tunnel backup nhop-only
5. auto-tunnel backup exclude srlg [preferred]
6. attribute-set attribute-set-name
7. commit
8. show mpls traffic-eng tunnels number detail

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td>Enables traffic engineering on a specific interface on the originating node.</td>
</tr>
<tr>
<td>Step 2 Example: RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables the creation of dynamic NHOP backup tunnels. By default, both NHOP and NNHOP protection are enabled.</td>
</tr>
<tr>
<td>Step 3 Example: RP/0/RSP0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 auto-tunnel backup nhop-only</td>
<td>Enables the exclusion of SRLG values on a given link for the AutoTunnel backup associated with a given interface.</td>
</tr>
<tr>
<td>Step 4 Example: RP/0/RSP0/CPU0:router(config-mpls-te-if)# auto-tunnel backup exclude srlg preferred</td>
<td>The preferred option allows the AutoTunnel Backup tunnels to come up even if no path excluding all SRLG is found.</td>
</tr>
<tr>
<td>Step 5 attribute-set attribute-set-name</td>
<td>Configures attribute-set template for auto-tunnel backup tunnels.</td>
</tr>
<tr>
<td>Step 5 Example: RP/0/RSP0/CPU0:router(config-mpls-te-if-auto-backup)#attribute-set ab</td>
<td></td>
</tr>
<tr>
<td>Step 6 commit</td>
<td>Displays information about configured NHOP tunnels and SRLG information.</td>
</tr>
<tr>
<td>Step 7 show mpls traffic-eng tunnels number detail</td>
<td></td>
</tr>
<tr>
<td>Step 8 Example: RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 1 detail</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Prestandard DS-TE Tunnel

Perform this task to configure a Prestandard DS-TE tunnel.

Before you begin

The following prerequisites are required to configure a Prestandard DS-TE tunnel:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.

SUMMARY STEPS

1. configure
2. rsvp interface type interface-path-id
3. bandwidth [total reservable bandwidth] [bc0 bandwidth] [global-pool bandwidth] [sub-pool reservable-bw]
4. exit
5. exit
6. interface tunnel-te tunnel-id
7. signalled-bandwidth {bandwidth [class-type ct] | sub-pool bandwidth}
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
<td>Enters RSVP configuration mode and selects an RSVP interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>rsvp interface type interface-path-id</td>
<td></td>
<td>Sets the reserved RSVP bandwidth available on this interface by using the prestandard DS-TE mode. The range for the total reserve bandwidth argument is 0 to 4294967295.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# rsvp interface pos0/6/0/0</td>
<td>Physical interface bandwidth is not used by MPLS-TE.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>bandwidth [total reservable bandwidth] [bc0 bandwidth] [global-pool bandwidth] [sub-pool reservable-bw]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if)# bandwidth 100 150 sub-pool 50</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 4</th>
<th>exit</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if)# exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-rsvp)#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>exit</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-rsvp)# exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)#</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>interface tunnel-te tunnel-id</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-te 2</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
</tbody>
</table>

| Step 7 | signalled-bandwidth {bandwidth [class-type ct] | sub-pool bandwidth} | Purpose |
|--------|---|---------|
| | Example: | |
| | RP/0/RSP0/CPU0:router(config-if)# signalled-bandwidth sub-pool 10 | Sets the bandwidth required on this interface. Because the default tunnel priority is 7, tunnels use the default TE class map (namely, class-type 1, priority 7). |

| Step 8 | commit | |

Related Topics
- Configuring Traffic Engineering Tunnel Bandwidth, on page 137
- Prestandard DS-TE Mode, on page 177
- Configure IETF DS-TE Tunnels: Example, on page 320

Configuring an IETF DS-TE Tunnel Using RDM

Perform this task to create an IETF mode DS-TE tunnel using RDM.

Before you begin

The following prerequisites are required to create an IETF mode DS-TE tunnel using RDM:

- You must have a router ID for the neighboring router.
- Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.
SUMMARY STEPS

1. configure
2. rsvp interface type interface-path-id
3. bandwidth rdm {total-reservable-bw | bc0 | global-pool} {sub-pool | bc1 reservable-bw}
4. exit
5. exit
6. mpls traffic-eng
7. ds-te mode ietf
8. exit
9. interface tunnel-te tunnel-id
10. signalled-bandwidth {bandwidth [class-type ct] | sub-pool bandwidth}
11. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>rsvp interface type interface-path-id</td>
<td>Enters RSVP configuration mode and selects an RSVP interface.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config)# rsvp interface pos0/6/0/0</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>bandwidth rdm {total-reservable-bw</td>
<td>bc0</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-rsvp-if)# bandwidth rdm 100 150</td>
<td>Note Physical interface bandwidth is not used by MPLS-TE.</td>
</tr>
<tr>
<td>4.</td>
<td>exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-rsvp-if)# exit</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-rsvp) exit</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring an IETF DS-TE Tunnel Using MAM

Perform this task to configure an IETF mode differentiated services traffic engineering tunnel using the Maximum Allocation Model (MAM) bandwidth constraint model.

Before you begin

The following prerequisites are required to configure an IETF mode differentiated services traffic engineering tunnel using the MAM bandwidth constraint model:

- You must have a router ID for the neighboring router.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td>Enables IETF DS-TE mode and default TE class map. IETF DS-TE mode is configured on all network nodes.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# ds-te mode ietf</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# exit</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-te</td>
<td>Configures the bandwidth required for an MPLS TE tunnel. Because the default tunnel priority is 7, tunnels use the default TE class map (namely, class-type 1, priority 7).</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# committed-bandwidth {bandwidth [class-type ct]</td>
<td>sub-pool bandwidth} commit</td>
</tr>
<tr>
<td>Configuring Traffic Engineering Tunnel Bandwidth, on page 137</td>
<td></td>
</tr>
<tr>
<td>Russian Doll Bandwidth Constraint Model, on page 178</td>
<td></td>
</tr>
</tbody>
</table>
Stable router ID is required at either end of the link to ensure that the link is successful. If you do not assign a router ID to the routers, the system defaults to the global router ID. Default router IDs are subject to change, which can result in an unstable link.

SUMMARY STEPS

1. configure
2. rsvp interface type interface-path-id
3. bandwidth mam \{total reservable bandwidth | max-reservable-bw maximum-reservable-bw\} [bc0 reservable bandwidth] [bc1 reservable bandwidth]
4. exit
5. exit
6. mpls traffic-eng
7. ds-te mode ietf
8. ds-te bc-model mam
9. exit
10. interface tunnel-te tunnel-id
11. signalled-bandwidth \{bandwidth [class-type ct] | sub-pool bandwidth\}
12. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters RSVP configuration mode and selects the RSVP interface.</td>
</tr>
<tr>
<td>Step 2 rsvp interface type interface-path-id</td>
<td>Example: RP/0/RSP0/CPU0:router(config)# rsvp interface pos0/6/0/0</td>
</tr>
<tr>
<td>Step 3 bandwidth mam {total reservable bandwidth</td>
<td>max-reservable-bw maximum-reservable-bw} [bc0 reservable bandwidth] [bc1 reservable bandwidth]</td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Example: RP/0/RSP0/CPU0:router(config-rsvp-if)# exit RP/0/RSP0/CPU0:router(config-rsvp)#</td>
</tr>
</tbody>
</table>

Physical interface bandwidth is not used by MPLS-TE.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-rsvp)# exit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)#</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)#</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>ds-te mode ietf</td>
<td>Enables IETF DS-TE mode and default TE class map. Configure IETF DS-TE mode on all nodes in the network.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# ds-te mode ietf</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ds-te bc-model mam</td>
<td>Enables the MAM bandwidth constraint model globally.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# ds-te bc-model mam</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# exit</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>interface tunnel-te tunnel-id</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-te 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if)#</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>signalled-bandwidth {bandwidth [class-type ct]</td>
<td>Configures the bandwidth required for an MPLS TE tunnel. Because the default tunnel priority is 7, tunnels use the default TE class map (namely, class-type 1, priority 7).</td>
</tr>
<tr>
<td></td>
<td>sub-pool bandwidth}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-rsvp-if)# signalled-bandwidth 10 class-type 1</td>
<td></td>
</tr>
</tbody>
</table>
Perform this task to configure MPLS-TE and Fast Reroute (FRR) on OSPF.

Before you begin

Only point-to-point (P2P) interfaces are supported for OSPF multiple adjacencies. These may be either native P2P interfaces or broadcast interfaces on which the OSPF P2P configuration command is applied to force them to behave as P2P interfaces as far as OSPF is concerned. This restriction does not apply to IS-IS.

The tunnel-te interface is not supported under IS-IS.

SUMMARY STEPS

1. configure
2. interface tunnel-te tunnel-id
3. path-option [protecting] preference-priority {dynamic [pce [address ipv4 address] | explicit {name pathname | identifier path-number }] [isis instance name {level level}] [ospf instance name {area area ID}] } [verbatim] [lockdown]
4. Repeat Step 3 as many times as needed.
5. commit
6. show mpls traffic-eng tunnels [tunnel-number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface tunnel-te tunnel-id</td>
<td>Configures an MPLS-TE tunnel interface. The range for the tunnel ID number is 0 to 65535.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# interface tunnel-te 1 RP/0/RSP0/CPU0:router(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 path-option [protecting] preference-priority {dynamic [pce [address ipv4 address]</td>
<td>explicit {name pathname</td>
</tr>
</tbody>
</table>
Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE

Perform this task to configure an overload node avoidance in MPLS-TE. When the overload bit is enabled, tunnels are brought down when the overload node is found in the tunnel path.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. path-selection ignore overload {head | mid | tail}
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)#</td>
</tr>
</tbody>
</table>

Example:

RP/0/RSP0/CPU0:router(config-if)# path-option 1
explicit identifier 6 ospf green area 0

Step 4 Repeat Step 3 as many times as needed.

Example:

RP/0/RSP0/CPU0:router(config-if)# path-option 2
explicit name 234 ospf 3 area 7 verbatim

Step 5 commit

Step 6 show mpls traffic-eng tunnels [tunnel-number]

Example:

RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 1

Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE

Perform this task to configure an overload node avoidance in MPLS-TE. When the overload bit is enabled, tunnels are brought down when the overload node is found in the tunnel path.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. path-selection ignore overload {head | mid | tail}
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)#</td>
</tr>
</tbody>
</table>

Example:

RP/0/RSP0/CPU0:router(config-if)# path-option 1
explicit identifier 6 ospf green area 0

Step 4 Repeat Step 3 as many times as needed.

Example:

RP/0/RSP0/CPU0:router(config-if)# path-option 2
explicit name 234 ospf 3 area 7 verbatim

Step 5 commit

Step 6 show mpls traffic-eng tunnels [tunnel-number]

Example:

RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 1

Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE

Perform this task to configure an overload node avoidance in MPLS-TE. When the overload bit is enabled, tunnels are brought down when the overload node is found in the tunnel path.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. path-selection ignore overload {head | mid | tail}
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)#</td>
</tr>
</tbody>
</table>

Example:

RP/0/RSP0/CPU0:router(config-if)# path-option 1
explicit identifier 6 ospf green area 0

Step 4 Repeat Step 3 as many times as needed.

Example:

RP/0/RSP0/CPU0:router(config-if)# path-option 2
explicit name 234 ospf 3 area 7 verbatim

Step 5 commit

Step 6 show mpls traffic-eng tunnels [tunnel-number]

Example:

RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 1
Configuring Flexible Name-based Tunnel Constraints

To fully configure MPLS-TE flexible name-based tunnel constraints, you must complete these high-level tasks in order:

1. Assigning Color Names to Numeric Values, on page 245
2. Associating Affinity-Names with TE Links, on page 246
3. Associating Affinity Constraints for TE Tunnels, on page 247

Assigning Color Names to Numeric Values

The first task in enabling the new coloring scheme is to assign a numerical value (in hexadecimal) to each value (color).

Note

An affinity color name cannot exceed 64 characters. An affinity value cannot exceed a single digit. For example, magenta1.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. affinity-map affinity name {affinity value | bit-position value}
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config-mpls-te) (config-affinity-map)
```

Related Topics

- Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE, on page 180
- Configure the Ignore IS-IS Overload Bit Setting in MPLS-TE: Example, on page 321
Associating Affinity-Names with TE Links

The next step in the configuration of MPLS-TE Flexible Name-based Tunnel Constraints is to assign affinity names and values to TE links. You can assign up to a maximum of 32 colors. Before you assign a color to a link, you must define the name-to-value mapping for each color.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. interface type interface-path-id
4. attribute-names attribute name
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)#</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables MPLS-TE on an interface and enters MPLS-TE interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# interface tunnel-te 2</td>
<td></td>
</tr>
<tr>
<td>Purpose</td>
<td>Command or Action</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>Assigns colors to TE links over the selected interface.</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-if)# attribute-names attribute name</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te-if)# attribute-names red</td>
</tr>
<tr>
<td></td>
<td>Step 5 commit</td>
</tr>
</tbody>
</table>

Related Topics
- Flexible Name-based Tunnel Constraints, on page 181
- Configure Flexible Name-based Tunnel Constraints: Example, on page 322
- Assigning Color Names to Numeric Values, on page 245

Associating Affinity Constraints for TE Tunnels

The final step in the configuration of MPLS-TE Flexible Name-based Tunnel Constraints requires that you associate a tunnel with affinity constraints.

Using this model, there are no masks. Instead, there is support for four types of affinity constraints:

- include
- include-strict
- exclude
- exclude-all

Note

For the affinity constraints above, all but the exclude-all constraint may be associated with up to 10 colors.

SUMMARY STEPS

1. configure
2. interface tunnel-te tunnel-id
3. affinity {affinity-value mask mask-value | exclude name | exclude-all | include name | include-strict name}
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Configuring IS-IS to Flood MPLS-TE Link Information

Perform this task to configure a router running the Intermediate System-to-Intermediate System (IS-IS) protocol to flood MPLS-TE link information into multiple IS-IS levels.

This procedure shows how to enable MPLS-TE in both IS-IS Level 1 and Level 2.

SUMMARY STEPS

1. `configure`
2. `router isis instance-id`
3. `net network-entity-title`
4. `address-family {ipv4 | ipv6} {unicast}`
5. `metric-style wide`
6. `mpls traffic-eng level`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router isis instance-id</code></td>
</tr>
</tbody>
</table>

Enters an IS-IS instance.
Implementing MPLS Traffic Engineering

Configuring an OSPF Area of MPLS-TE

Perform this task to configure an OSPF area for MPLS-TE in both the OSPF backbone area 0 and area 1.

SUMMARY STEPS

1. configure
2. router ospf process-name
3. mpls traffic-eng router-id ip-address
4. area area-id
5. interface type interface-path-id
6. commit

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config)# router isis 1</code></td>
<td>Enters IS-IS network entity title (NET) for the routing process.</td>
</tr>
<tr>
<td>Step 3 <code>net network-entity-title</code></td>
<td>Enters address family configuration mode for configuring IS-IS routing that uses IPv4 and IPv6 address prefixes.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-isis)# net 47.0001.0000.0000.0002.00</code></td>
<td>Enters new-style type, length, and value (TLV) objects.</td>
</tr>
<tr>
<td>Step 5 <code>metric-style wide</code></td>
<td>Enters the required MPLS-TE level or levels.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-isis-af)# metric-style wide</code></td>
<td></td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 router ospf process-name</td>
<td>Enters a name that uniquely identifies an OSPF routing process.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# router ospf 100</td>
<td></td>
</tr>
<tr>
<td>Step 3 mpls traffic-eng router-id ip-address</td>
<td>Enters the MPLS interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ospf)# mpls traffic-eng router-id 192.168.70.1</td>
<td></td>
</tr>
<tr>
<td>Step 4 area area-id</td>
<td>Enters an OSPF area identifier.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ospf)# area 0</td>
<td>Either a decimal value or an IP address.</td>
</tr>
<tr>
<td>Step 5 interface type interface-path-id</td>
<td>Identifies an interface ID. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ospf-ar)# interface POS 0/2/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Explicit Paths with ABRs Configured as Loose Addresses

Perform this task to specify an IPv4 explicit path with ABRs configured as loose addresses.

SUMMARY STEPS

1. configure
2. explicit-path name name
3. index index-id next-address [loose] ipv4 unicast ip-address
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Configuring MPLS-TE Forwarding Adjacency

Perform this task to configure forwarding adjacency on a specific tunnel-te interface.

SUMMARY STEPS

1. `configure`
2. `interface tunnel-te tunnel-id`
3. `forwarding-adjacency holdtime value`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td><code>configure</code></td>
<td>Enters MPLS-TE interface configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td><code>interface tunnel-te tunnel-id</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Enters MPLS-TE interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config)# interface tunnel-te 1</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>forwarding-adjacency holdtime value</code></td>
<td>Configures forwarding adjacency using an optional specific holdtime value. By default, this value is 0 (milliseconds).</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Configures forwarding adjacency using an optional specific holdtime value. By default, this value is 0 (milliseconds).</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-if)# forwarding-adjacency holdtime 60</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Path Computation Client and Element

Perform these tasks to configure Path Computation Client (PCC) and Path Computation Element (PCE):

- Configuring a Path Computation Client, on page 252
- Configuring a Path Computation Element Address, on page 253
- Configuring PCE Parameters, on page 253

Configuring a Path Computation Client

Perform this task to configure a TE tunnel as a PCC.

Note
Only one TE-enabled IGP instance can be used at a time.

SUMMARY STEPS

1. configure
2. interface tunnel-te tunnel-id
3. path-option preference-priority dynamic pce
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters MPLS-TE interface configuration mode and enables traffic engineering on a particular interface on the originating node.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface tunnel-te tunnel-id</td>
<td>Configures a TE tunnel as a PCC.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-te 6</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>path-option preference-priority dynamic pce</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if)# path-option 1 dynamic pce</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Path Computation Element Address

Perform this task to configure a PCE address.

Note
Only one TE-enabled IGP instance can be used at a time.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. pce address ipv4 address
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>
| **Step 2** | mpls traffic-eng
Example:
RP/0/RSP0/CPU0:router(config)# mpls traffic-eng |
| **Step 3** | pce address ipv4 address
Example:
RP/0/RSP0/CPU0:router(config-mpls-te)# pce address ipv4 10.1.1.1 |
| **Step 4** | commit |

Related Topics
Path Computation Element, on page 186
Configure PCE: Example, on page 325

Configuring PCE Parameters

Perform this task to configure PCE parameters, including a static PCE peer, periodic reoptimization timer values, and request timeout values.
SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. pce address ipv4 \textit{address}
4. pce peer ipv4 \textit{address}
5. pce keepalive interval
6. pce deadtimer value
7. pce reoptimize value
8. pce request-timeout value
9. pce tolerance keepalive value
10. commit
11. show mpls traffic-eng pce peer [\textit{address} | all]
12. show mpls traffic-eng pce tunnels

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>mpls traffic-eng</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
</tr>
</tbody>
</table>

Enters MPLS-TE configuration mode.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>pce address ipv4 \textit{address}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# pce address ipv4 10.1.1.1</td>
</tr>
</tbody>
</table>

Configures a PCE IPv4 address.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>pce peer ipv4 \textit{address}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# pce peer address ipv4 10.1.1.1</td>
</tr>
</tbody>
</table>

Configures a static PCE peer address. PCE peers are also discovered dynamically through OSPF or ISIS.

<table>
<thead>
<tr>
<th>Step 5</th>
<th>pce keepalive interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# pce keepalive 10</td>
</tr>
</tbody>
</table>

Configures a PCEP keepalive interval. The range is from 0 to 255 seconds. When the keepalive interval is 0, the LSR does not send keepalive messages.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>Configures a PCE deadtimer value. The range is from 0 to 255 seconds. When the dead interval is 0, the LSR does not timeout a PCEP session to a remote peer.</td>
</tr>
<tr>
<td>pce deadtimer value</td>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te)# pce deadtimer 50</td>
</tr>
</tbody>
</table>

| **Step 7** | Configures a periodic reoptimization timer value. The range is from 60 to 604800 seconds. When the dead interval is 0, the LSR does not timeout a PCEP session to a remote peer. |
| pce reoptimize *value* | Example: RP/0/RSP0/CPU0:router(config-mpls-te)# pce reoptimize 200 |

| **Step 8** | Configures a PCE request-timeout. Range is from 5 to 100 seconds. PCC or PCE keeps a pending path request only for the request-timeout period. |
| pce request-timeout *value* | Example: RP/0/RSP0/CPU0:router(config-mpls-te)# pce request-timeout 10 |

| **Step 9** | Configures a PCE tolerance keepalive value (which is the minimum acceptable peer proposed keepalive). |
| pce tolerance keepalive *value* | Example: RP/0/RSP0/CPU0:router(config-mpls-te)# pce tolerance keepalive 10 |

| **Step 10** | commit |

| **Step 11** | Displays the PCE peer address and state. |
| show mpls traffic-eng pce peer *address* | Example: RP/0/RSP0/CPU0:router# show mpls traffic-eng pce peer |

| **Step 12** | Displays the status of the PCE tunnels. |
| show mpls traffic-eng pce tunnels | Example: RP/0/RSP0/CPU0:router# show mpls traffic-eng pce tunnels |

Related Topics
- Path Computation Element, on page 186
- Configure PCE: Example, on page 325
Configuring Fast Repair

Perform this task to configure fast repair to minimize the tunnel down time.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. pce
4. stateful-client
5. fast-repair
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)#mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters PCE configuration mode.</td>
</tr>
<tr>
<td>pce</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)#pce</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters stateful PCE client configuration mode.</td>
</tr>
<tr>
<td>stateful-client</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-pce)#stateful-client</td>
<td></td>
</tr>
<tr>
<td></td>
<td>When the stateful-client configuration is added to the node, it will close all existing PCEP peer connections, and add the stateful capabilities TLV to the OPEN object it exchanges during the PCEP session establishment. When the stateful-client configuration is removed from the node, it will delete all PCE instantiated tunnels, close all existing PCEP connections, and no longer add the stateful capabilities TLV to the OPEN object it exchanges during the PCEP session establishment.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Configures fast repair.</td>
</tr>
<tr>
<td>fast-repair</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-pce-stateful)#fast-repair</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>
Enabling PCEP Cisco Extension

Perform this task to enable PCEP Cisco extension.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. pce
4. stateful-client
5. cisco-extension
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)#mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3 pce</td>
<td>Enters PCE configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te)#pce</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 4** stateful-client | Enters stateful PCE client configuration mode.
When the stateful-client configuration is added to the node, it will close all existing PCEP peer connections, and add the stateful capabilities TLV to the OPEN object it exchanges during the PCEP session establishment.
When the stateful-client configuration is removed from the node, it will delete all PCE instantiated tunnels, close all existing PCEP connections, and no longer add the stateful capabilities TLV to the OPEN object it exchanges during the PCEP session establishment. |
| **Example:** RP/0/RSP0/CPU0:router(config-mpls-te-pce)#stateful-client | |
| **Step 5** cisco-extension | Enables PCEP Cisco extension. |
| **Example:** RP/0/RSP0/CPU0:router(config-mpls-te-pce-stateful)#cisco-extension | |
| **Step 6** commit | |
Configuring Forwarding Path

Perform this task to configure forwarding path in the MPLS-TE interface.

SUMMARY STEPS

1. configure
2. interface tunnel-te tunnel-id
3. forward-class forward-class
4. exit
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface tunnel-te tunnel-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-te 1</td>
</tr>
<tr>
<td></td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>forward-class forward-class</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# forward-class 1</td>
</tr>
<tr>
<td></td>
<td>Defines forwarding path in the MPLS-TE interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# exit RP/0/RSP0/CPU0:router(config)#</td>
</tr>
<tr>
<td></td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
</tbody>
</table>

Related Topics

- Policy-Based Tunnel Selection Functions, on page 187
- Policy-Based Tunnel Selection, on page 187

Configuring Path Protection on MPLS-TE

These tasks show how to configure path protection on MPLS-TE:

Enabling Path Protection for an Interface

Perform this task to enable path protection for a given tunnel interface.
SUMMARY STEPS

1. **configure**
2. **interface tunnel-te tunnel-id**
3. **path-protection**
4. **commit**
5. **show mpls traffic-eng tunnels [tunnel-number]**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>
| Step 2 | **interface tunnel-te tunnel-id**
Example:
`RP/0/RSP0/CPU0:router(config)# interface tunnel-te 6` | Configures an MPLS-TE tunnel interface and enables traffic engineering on a particular interface on the originating node. |
| Step 3 | **path-protection**
Example:
`RP/0/RSP0/CPU0:router(config-if)# path-protection` | Enables path protection on the tunnel-te interface. |
| Step 4 | **commit** | |
| Step 5 | **show mpls traffic-eng tunnels [tunnel-number]**
Example:
`RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 6` | Displays information that path protection is enabled on the tunnel-te interface for tunnel number 6. |

Related Topics

- Path Protection, on page 193
- Pre-requisites for Path Protection, on page 194
- Restrictions for Path Protection, on page 195
- Restrictions for Explicit Path Protection, on page 195
- Configure Tunnels for Path Protection: Example, on page 328

Assigning a Dynamic Path Option to a Tunnel

Perform this task to assign a secondary path option in case there is a link or node failure along a path and all interfaces in your network are not protected.

SUMMARY STEPS

1. **configure**
2. **interface tunnel-te tunnel-id**
3. path-option preference-priority dynamic
4. commit
5. show mpls traffic-eng tunnels [tunnel-number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface tunnel-te tunnel-id</td>
<td>Configures an MPLS-TE tunnel interface and enables traffic engineering on a particular interface on the originating node.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-te 6</td>
</tr>
<tr>
<td>Step 3 path-option preference-priority dynamic</td>
<td>Configures a secondary path option for an MPLS-TE tunnel.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if)# path-option 10 dynamic</td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
<tr>
<td>Step 5 show mpls traffic-eng tunnels [tunnel-number]</td>
<td>Displays information about the secondary path option that on the tunnel-te interface for tunnel number 6.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 6</td>
</tr>
</tbody>
</table>

Related Topics
- Path Protection, on page 193
- Pre-requisites for Path Protection, on page 194
- Restrictions for Path Protection, on page 195
- Restrictions for Explicit Path Protection, on page 195
- Configure Tunnels for Path Protection: Example, on page 328

Forcing a Manual Switchover on a Path-Protected Tunnel

Perform this task to force a manual switchover on a path-protected tunnel.

SUMMARY STEPS

1. mpls traffic-eng path-protection switchover tunnel-te *tunnel-ID*
2. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td>mpls traffic-eng path-protection switchover tunnel-te tunnel-ID</td>
<td>Forces the path protection switchover of the Point-to-Point (P2P) tunnel on the tunnel-te interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# mpls traffic-eng path-protection switchover tunnel-te 6</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>commit</td>
</tr>
</tbody>
</table>

Related Topics
- Path Protection, on page 193
- Pre-requisites for Path Protection, on page 194
- Restrictions for Path Protection, on page 195
- Restrictions for Explicit Path Protection, on page 195
- Configure Tunnels for Path Protection: Example, on page 328

Configuring the Delay the Tunnel Takes Before Reoptimization

Perform this task to configure the time between when a path-protection switchover event is effected on a tunnel head to when a reoptimization is performed on that tunnel. This timer affects only the required reoptimization that is attempted due to a switchover and does not override the global reoptimization timer.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. reoptimize timers delay path-protection **seconds**
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Purpose</td>
</tr>
<tr>
<td>configure</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Purpose</td>
</tr>
<tr>
<td>mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# mpls traffic-eng</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Automatic Bandwidth

Perform these tasks to configure the automatic bandwidth:

Configuring the Collection Frequency

Perform this task to configure the collection frequency. You can configure only one global collection frequency.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. auto-bw collect frequency minutes
4. commit
5. show mpls traffic-eng tunnels [auto-bw]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>
| Step 2 | mpls traffic-eng
 Example:
 `RP/0/RSP0/CPU0:router(config)# mpls traffic-eng
 RP/0/RSP0/CPU0:router(config-mpls-te)#` |
| Step 3 | auto-bw collect frequency minutes
 Example: |

Related Topics

- Path Protection, on page 193
- Pre-requisites for Path Protection, on page 194
- Restrictions for Path Protection, on page 195
- Restrictions for Explicit Path Protection, on page 195
- Configure Tunnels for Path Protection: Example, on page 328

Step 3

reoptimize timers delay path-protection seconds

Example:

`RP/0/RSP0/CPU0:router(config-mpls-te)# reoptimize timers delay path-protection 180`

Purpose

Adjusts the number of seconds that the tunnel takes before triggering reoptimization after switchover has happened.

Note

The restriction is that at least one dynamic path-option must be configured for a standby LSP to come up. The strict (explicit) path option is not supported for the standby LSP.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RP/0/RSP0/CPU0# auto-bw collect frequency 1</code></td>
<td>collects output rate information; but does not adjust the tunnel bandwidth.</td>
</tr>
</tbody>
</table>

minutes

Configures the interval between automatic bandwidth adjustments in minutes. Range is from 1 to 10080.

Step 4

commit

Step 5

show mpls traffic-eng tunnels [auto-bw]

Example:

```bash
RP/0/RSP0/CPU0# show mpls traffic tunnels auto-bw
```

Displays information about MPLS-TE tunnels for the automatic bandwidth. The globally configured collection frequency is displayed.

Related Topics

- MPLS-TE Automatic Bandwidth Overview, on page 196
- Configure Automatic Bandwidth: Example, on page 329

Forcing the Current Application Period to Expire Immediately

Perform this task to force the current application period to expire immediately on the specified tunnel. The highest bandwidth is applied on the tunnel before waiting for the application period to end on its own.

SUMMARY STEPS

1. `mpls traffic-eng auto-bw apply {all | tunnel-te tunnel-number}
2. `commit
3. `show mpls traffic-eng tunnels [auto-bw]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 `mpls traffic-eng auto-bw apply {all</td>
<td>tunnel-te tunnel-number}`</td>
</tr>
</tbody>
</table>

all

Configures the highest bandwidth available instantly on all the tunnels.

tunnel-te

Configures the highest bandwidth instantly to the specified tunnel. Range is from 0 to 65535.

Example:

```bash
RP/0/RSP0/CPU0# mpls traffic-eng auto-bw apply tunnel-te 1
```

Step 2 `commit`

Step 3 `show mpls traffic-eng tunnels [auto-bw]

Example:

Displays information about MPLS-TE tunnels for the automatic bandwidth.
Configuring the Automatic Bandwidth Functions

Perform this task to configure the following automatic bandwidth functions:

Application frequency
Configures the application frequency in which a tunnel bandwidth is updated by the automatic bandwidth.

Bandwidth collection
Configures only the bandwidth collection.

Bandwidth parameters
Configures the minimum and maximum automatic bandwidth to set on a tunnel.

Adjustment threshold
Configures the adjustment threshold for each tunnel.

Overflow detection
Configures the overflow detection for each tunnel.

SUMMARY STEPS

1. `configure`
2. `interface tunnel-te tunnel-id`
3. `auto-bw`
4. `application minutes`
5. `bw-limit {min bandwidth} {max bandwidth}`
6. `adjustment-threshold percentage [min minimum-bandwidth]`
7. `overflow threshold percentage [min bandwidth] limit limit`
8. `commit`
9. `show mpls traffic-eng tunnels [auto-bw]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>configure</code></td>
<td></td>
</tr>
</tbody>
</table>

| **Step 2** |
| `interface tunnel-te tunnel-id` |

Example:

```
RP/0/RSP0/CPU0:router(config)# interface tunnel-te 6
RP/0/RSP0/CPU0:router(config-if)#
```
Configuring the Automatic Bandwidth Functions

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>auto-bw</td>
<td>Configures automatic bandwidth on a tunnel interface and enters MPLS-TE automatic bandwidth interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if)# auto-bw</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if-tunte-autobw)#</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>application minutes</td>
<td>Configures the application frequency in minutes for the applicable tunnel.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if-tunte-autobw)# application 1000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>bw-limit {min bandwidth} {max bandwidth}</td>
<td>Configures the minimum and maximum automatic bandwidth set on a tunnel.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if-tunte-autobw)# bw-limit min 30 max 80</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>adjustment-threshold percentage [min minimum-bandwidth]</td>
<td>Configures the tunnel bandwidth change threshold to trigger an adjustment.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if-tunte-autobw)# adjustment-threshold 50 min 800</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>overflow threshold percentage [min bandwidth] limit limit</td>
<td>Configures the tunnel overflow detection.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if-tunte-autobw)# overflow threshold 100 limit 1</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit</td>
<td>Configures the number of consecutive collection intervals that exceed the threshold. The bandwidth overflow triggers an early tunnel bandwidth update. Range is from 1 to 10 collection periods. The default value is none.</td>
</tr>
<tr>
<td>min</td>
<td>Configures the bandwidth change value in kbps to trigger an overflow. Range is from 10 to 4294967295. The default value is 10.</td>
</tr>
</tbody>
</table>

Step 8

| Step 8 | commit |

Step 9

<table>
<thead>
<tr>
<th>Step 9</th>
<th>show mpls traffic-eng tunnels [auto-bw]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels auto-bw</td>
</tr>
</tbody>
</table>

Displays the MPLS-TE tunnel information only for tunnels in which the automatic bandwidth is enabled.

Related Topics

- [MPLS-TE Automatic Bandwidth Overview](#), on page 196
- [Configure Automatic Bandwidth: Example](#), on page 329

Configuring the Shared Risk Link Groups

To activate the MPLS traffic engineering SRLG feature, you must configure the SRLG value of each link that has a shared risk with another link.

Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link

Perform this task to configure the SRLG value for each link that has a shared risk with another link.

Note

You can configure up to 30 SRLGs per interface.

SUMMARY STEPS

1. configure
2. srlg
3. interface type interface-path-id
4. value value
5. commit
6. show srlg interface type interface-path-id
7. show srlg
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>configures SRLG configuration commands on a specific interface configuration mode and assigns this SRLG a value.</td>
</tr>
<tr>
<td>srlg</td>
<td>Example: <code>RP/0/RSP0/CPU0:router(config)# srlg</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures an interface type and path ID to be associated with an SRLG and enters SRLG interface configuration mode.</td>
</tr>
<tr>
<td>interface type interface-path-id</td>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-srlg)# interface POS 0/6/0/0</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Configures SRLG network values for a specific interface. Range is 0 to 4294967295.</td>
</tr>
<tr>
<td>value value</td>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-srlg-if)# value 100</code> <code>RP/0/RSP0/CPU0:router(config-srlg-if)# value 200</code> <code>RP/0/RSP0/CPU0:router(config-srlg-if)# value 300</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
<tr>
<td>Step 6</td>
<td>(Optional) Displays the SRLG values configured for a specific interface.</td>
</tr>
<tr>
<td>show srlg interface type interface-path-id</td>
<td>Example: <code>RP/0/RSP0/CPU0:router# show srlg interface POS 0/6/0/0</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>(Optional) Displays the SRLG values for all the configured interfaces.</td>
</tr>
<tr>
<td>show srlg</td>
<td>Example: <code>RP/0/RSP0/CPU0:router# show srlg</code></td>
</tr>
</tbody>
</table>

Related Topics
- [MPLS Traffic Engineering Shared Risk Link Groups](#), on page 203
- [Explicit Path](#), on page 204
- [Fast ReRoute with SRLG Constraints](#), on page 205
- [Importance of Protection](#), on page 206
- [Delivery of Packets During a Failure](#), on page 207
- [Multiple Backup Tunnels Protecting the Same Interface](#), on page 207
- [Weighted-SRLG Auto-backup Path Computation](#), on page 207
- [SRLG Limitations](#), on page 208
- [MPLS TE SRLG Scale Enhancements](#), on page 208
- [Configure the MPLS-TE Shared Risk Link Groups: Example](#), on page 329

Creating an Explicit Path With Exclude SRLG
Perform this task to create an explicit path with the exclude SRLG option.
SUMMARY STEPS

1. configure
2. explicit-path {identifier number [disable | index]}{ name explicit-path-name}
3. index 1 exclude-address 192.168.92.1
4. index 2 exclude-srlg 192.168.92.2
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the explicit path configuration mode. Identifier range is 1 to 65535.</td>
</tr>
<tr>
<td>Step 2 explicit-path {identifier number [disable</td>
<td>index]}{ name explicit-path-name}</td>
</tr>
<tr>
<td>Step 3 index 1 exclude-address 192.168.92.1</td>
<td>Example: RP/0/RSP0/CPU0:router(config-expl-path)# index 1 exclude-address 192.168.92.1</td>
</tr>
<tr>
<td>Step 4 index 2 exclude-srlg 192.168.92.2</td>
<td>Example: RP/0/RSP0/CPU0:router(config-expl-path)# index 2 exclude-srlg 192.168.192.2</td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

Related Topics
- MPLS Traffic Engineering Shared Risk Link Groups, on page 203
- Explicit Path, on page 204
- Fast ReRoute with SRLG Constraints, on page 205
- Importance of Protection, on page 206
- Delivery of Packets During a Failure, on page 207
- Multiple Backup Tunnels Protecting the Same Interface , on page 207
- Weighted-SRLG Auto-backup Path Computation, on page 207
- SRLG Limitations, on page 208
- MPLS TE SRLG Scale Enhancements, on page 208
- Configure the MPLS-TE Shared Risk Link Groups: Example, on page 329

Using Explicit Path With Exclude SRLG

Perform this task to use an explicit path with the exclude SRLG option on the static backup tunnel.
SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. interface type interface-path-id
4. backup-path tunnel-te tunnel-number
5. exit
6. exit
7. interface tunnel-tunnel-id
8. ipv4 unnumbered type interface-path-id
9. path-option preference-priority (dynamic | explicit (identifier | name explicit-path-name))
10. destination ip-address
11. exit
12. commit
13. show run explicit-path name name
14. show mpls traffic-eng topology path destination name explicit-path name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables traffic engineering on a specific interface on the originating node.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Enables traffic engineering on a specific interface on the originating node.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0</td>
<td>Enables traffic engineering on a specific interface on the originating node.</td>
</tr>
<tr>
<td>Step 4</td>
<td>backup-path tunnel-te tunnel-number</td>
<td>Configures an MPLS TE backup path for a specific interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Configures an MPLS TE backup path for a specific interface.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# backup-path tunnel-te 2</td>
<td>Configures an MPLS TE backup path for a specific interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-if)# exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>interface tunnel-tunnel-id</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
</tbody>
</table>
Implementing MPLS Traffic Engineering Using Explicit Path With Exclude SRLG

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-te 2</td>
<td>Assigns a source address to set up forwarding on the new tunnel.</td>
</tr>
<tr>
<td>Step 8</td>
<td>ipv4 unnumbered type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Assigns a source address to set up forwarding on the new tunnel.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</td>
<td>Sets the path option to explicit with a given name (previously configured) and assigns the path ID.</td>
</tr>
<tr>
<td>Step 9</td>
<td>**path-option preference-priority { dynamic</td>
</tr>
<tr>
<td>Example:</td>
<td>You can use the dynamic option to dynamically assign a path.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# path-option l explicit name backup-srlg</td>
<td>Assigns a destination address on the new tunnel.</td>
</tr>
<tr>
<td>Step 10</td>
<td>destination ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td>• Destination address is the remote node’s MPLS-TE router ID.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 192.168.92.125</td>
<td>• Destination address is the merge point between backup and protected tunnels.</td>
</tr>
<tr>
<td>Step 11</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Note When you configure TE tunnel with multiple protection on its path and merge point is the same node for more than one protection, you must configure record-route for that tunnel.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Step 12</td>
<td>commit</td>
</tr>
<tr>
<td>Step 13</td>
<td>show run explicit-path name name</td>
</tr>
<tr>
<td>Example:</td>
<td>Displays the SRLG values that are configured for the link.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# show run explicit-path name backup-srlg</td>
<td>Related Topics</td>
</tr>
<tr>
<td>Step 14</td>
<td>show mpls traffic-eng topology path destination name explicit-path name</td>
</tr>
<tr>
<td>Example:</td>
<td>MPLS Traffic Engineering Shared Risk Link Groups, on page 203</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# show mpls traffic-eng topology path destination 192.168.92.125 explicit-path backup-srlg</td>
<td>Explicit Path, on page 204</td>
</tr>
<tr>
<td></td>
<td>Fast ReRoute with SRLG Constraints, on page 205</td>
</tr>
</tbody>
</table>
Creating a Link Protection on Backup Tunnel with SRLG Constraint

Perform this task to create an explicit path with the exclude SRLG option on the static backup tunnel.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. interface type interface-path-id
4. backup-path tunnel-te tunnel-number
5. exit
6. exit
7. interface tunnel-te tunnel-id
8. ipv4 unnumbered type interface-path-id
9. path-option preference-priority { dynamic | explicit {identifier | name explicit-path-name} }
10. destination ip-address
11. exit
12. explicit-path {identifier number [disable | index]} { name explicit-path-name}
13. index 1 exclude-srlg 192.168.92.2
14. commit
15. show mpls traffic-eng tunnel tunnel-number detail

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
</tr>
<tr>
<td>2</td>
<td>mpls traffic-eng</td>
</tr>
<tr>
<td>3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>4</td>
<td>backup-path tunnel-te tunnel-number</td>
</tr>
<tr>
<td>5</td>
<td>exit</td>
</tr>
<tr>
<td>6</td>
<td>exit</td>
</tr>
<tr>
<td>7</td>
<td>interface tunnel-te tunnel-id</td>
</tr>
<tr>
<td>8</td>
<td>ipv4 unnumbered type interface-path-id</td>
</tr>
<tr>
<td>9</td>
<td>path-option preference-priority { dynamic</td>
</tr>
<tr>
<td>10</td>
<td>destination ip-address</td>
</tr>
<tr>
<td>11</td>
<td>exit</td>
</tr>
<tr>
<td>12</td>
<td>explicit-path {identifier number [disable</td>
</tr>
<tr>
<td>13</td>
<td>index 1 exclude-srlg 192.168.92.2</td>
</tr>
<tr>
<td>14</td>
<td>commit</td>
</tr>
<tr>
<td>15</td>
<td>show mpls traffic-eng tunnel tunnel-number detail</td>
</tr>
</tbody>
</table>

Purpose

- Enters MPLS-TE configuration mode.
- Enables traffic engineering on a particular interface on the originating node.
- Sets the backup path to the primary tunnel outgoing interface.
Implementing MPLS Traffic Engineering

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>exits the current configuration mode.</td>
</tr>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-mpls-te-if)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>exits the current configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-mpls-te)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>configures an MPLS-TE tunnel interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface tunnel-te tunnel-id</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config)# interface tunnel-te 2</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>assigns a source address to set up forwarding on the new tunnel.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ipv4 unnumbered type interface-path-id</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>sets the path option to explicit with a given name (previously configured) and assigns the path ID. Identifier range is from 1 to 4294967295.</th>
</tr>
</thead>
<tbody>
<tr>
<td>`path-option preference-priority{ dynamic</td>
<td>explicit {identifier</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-if)# path-option 1 explicit name backup-srlg</code></td>
<td></td>
</tr>
</tbody>
</table>

Note: You can use the dynamic option to dynamically assign a path.

<table>
<thead>
<tr>
<th>Step 10</th>
<th>assigns a destination address on the new tunnel.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>destination ip-address</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-if)# destination 192.168.92.125</code></td>
<td></td>
</tr>
</tbody>
</table>

Note: When you configure TE tunnel with multiple protection on its path and merge point is the same node for more than one protection, you must configure record-route for that tunnel.

<table>
<thead>
<tr>
<th>Step 11</th>
<th>exits the current configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>exit</code></td>
<td></td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-if)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 12</th>
<th>enters the explicit path configuration mode. Identifier range is 1 to 65535.</th>
</tr>
</thead>
<tbody>
<tr>
<td>`explicit-path {identifier number</td>
<td>disable</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>

Cisco ASR 9000 Series Aggregation Services Router MPLS Configuration Guide, Release 6.0.x
Creating a Node Protection on Backup Tunnel with SRLG Constraint

Perform this task to configure node protection on backup tunnel with SRLG constraint.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. interface type interface-path-id
4. backup-path tunnel-te tunnel-number
5. exit
6. exit
7. interface tunnel-te tunnel-id
8. ipv4 unnumbered type interface-path-id
9. path-option preference-priority { dynamic | explicit { identifier | name explicit-path-name } }
10. destination ip-address
11. exit
12. explicit-path { identifier number | disable | index } { name explicit-path-name }
13. index 1 exclude-address 192.168.92.1
14. index 2 exclude-srlg 192.168.92.2

Related Topics

- **MPLS Traffic Engineering Shared Risk Link Groups**, on page 203
- **Explicit Path**, on page 204
- **Fast ReRoute with SRLG Constraints**, on page 205
- **Importance of Protection**, on page 206
- **Delivery of Packets During a Failure**, on page 207
- **Multiple Backup Tunnels Protecting the Same Interface**, on page 207
- **Weighted-SRLG Auto-backup Path Computation**, on page 207
- **SRLG Limitations**, on page 208
- **MPLS TE SRLG Scale Enhancements**, on page 208
- **Configure the MPLS-TE Shared Risk Link Groups: Example**, on page 329

### Command or Action	Purpose
RP/0/RSP0/CPU0:router(config)# explicit-path name backup-srlg-nodep	
Step 13	index 1 exclude-srlg 192.168.92.2
Example:	
RP/0/RSP0/CPU0:router(config-if)# index 1 exclude-srlg 192.168.92.2	Specifies the protected link IP address to get SRLGs to be excluded from the explicit path.
Step 14	commit
Step 15	show mpls traffic-eng tunnels tunnel-number detail
Example:
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 2 detail | Display the tunnel details with SRLG values that are configured for the link.
15. **commit**

16. **show mpls traffic-eng tunnels topology path destination ip-address explicit-path-name name**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables traffic engineering on a particular interface on the originating node.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>backup-path tunnel-te tunnel-number</td>
<td>Sets the backup path for the primary tunnel outgoing interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# backup-path tunnel-te 2</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>interface tunnel-te tunnel-id</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-te 2</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>ipv4 unnumbered type interface-path-id</td>
<td>Assigns a source address to set up forwarding on the new tunnel.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>path-option preference-priority { dynamic</td>
<td>explicit identifier</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# path-option 1 explicit name backup-srlg</td>
<td>Note You can use the dynamic option to dynamically assign path.</td>
</tr>
<tr>
<td>Step 10</td>
<td>destination ip-address</td>
<td>Assigns a destination address on the new tunnel.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>
| **Example:** RP/0/RSP0/CPU0:router(config-if)# destination 192.168.92.125 | • Destination address is the remote node’s MPLS-TE router ID.
• Destination address is the merge point between backup and protected tunnels. |
| **Step 11** | exit | | | |
| **Example:** RP/0/RSP0/CPU0:router(config-if)# exit | Exits the current configuration mode. |
| **Step 12** | explicit-path {identifier number | disable | index} | explicit-path-name |
| **Example:** RP/0/RSP0/CPU0:router(config)# explicit-path name backup-srlg-nodep | Enters the explicit path configuration mode. Identifier range is 1 to 65535. |
| **Step 13** | index 1 exclude-address 192.168.92.1 |
| **Example:** RP/0/RSP0/CPU0:router(config-if)# index 1 exclude-address 192.168.92.1 | Specifies the protected node IP address to be excluded from the explicit path. |
| **Step 14** | index 2 exclude-srlg 192.168.92.2 |
| **Example:** RP/0/RSP0/CPU0:router(config-if)# index 2 exclude-srlg 192.168.192.2 | Specifies the protected link IP address to get SRLGs to be excluded from the explicit path. |
| **Step 15** | commit |
| **Step 16** | show mpls traffic-eng tunnels topology path destination ip-address explicit-path-name name |
| **Example:** RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels topology path destination 192.168.92.125 explicit-path-name backup-srlg-nodep | Displays the path to the destination with the constraint specified in the explicit path. |

Related Topics
- MPLS Traffic Engineering Shared Risk Link Groups, on page 203
- Explicit Path, on page 204
- Fast ReRoute with SRLG Constraints, on page 205
- Importance of Protection, on page 206
- Delivery of Packets During a Failure, on page 207
- Multiple Backup Tunnels Protecting the Same Interface, on page 207
Configuring Default Admin Weight

Perform this task to configure a default admin weight to apply to all SRLG values if a specific admin weight is not configured under the SRLG value configuration mode.

SUMMARY STEPS

1. `configure`
2. `mpls traffic-eng srlg`
3. `admin-weight weight`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS TE SRLG configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>mpls traffic-eng srlg</code></td>
<td>Enters MPLS TE SRLG configuration mode.</td>
</tr>
<tr>
<td>Example: <code>mpls traffic-eng srlg</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>admin-weight weight</code></td>
<td>Configures default admin-weight for all the SRLG values. Range is from 0-4294967295. Default is 1. The example shows how to configure an admin-weight of 10 for all the SRLG values.</td>
</tr>
<tr>
<td>Example: <code>admin-weight 10</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring Static SRLG Value to Topology Link

Perform this task to assign static SRLG value to a topology link based on its IP address. Use this command for platforms that do not support SRLG flooding, so that the local node auto-tunnel backup diverse path calculation is based on static SRLG.

SUMMARY STEPS

1. `configure`
2. `mpls traffic-eng srlg`
3. `value srlg-value`
4. `static ipv4 address ip-address next-hop ipv4 address next-hop-ip-address`
5. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS TE SRLG configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng srlg</td>
<td>Enters MPLS TE SRLG value configuration mode and configures SRLG value. The example shows how to enter MPLS TE SRLG value configuration mode and configure a SRLG value of 5.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# mpls traffic-eng srlg</td>
<td></td>
</tr>
<tr>
<td>Step 3 value srlg-value</td>
<td>Configures static SRLG value to a topology link. The example shows how to configure static SRLG value for a topology link with source IP address of 1.1.1.1 and next-hop IP address of 1.1.1.2.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te-srlg)# value 5</td>
<td></td>
</tr>
<tr>
<td>Step 4 static ipv4 address ip-address next-hop ipv4 address next-hop-ip-address</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te-srlg)# static ipv4 address 1.1.1.1 next-hop ipv4 address 1.1.1.2</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Admin-Weight Associated with an SRLG Value

Perform this task to configure admin-weight associated with an SRLG value. This admin-weight will be added to the link admin weight during SRLG aware path calculation when the link matches the SRLG value of the protected link. The admin-weight configured in the MPLS TE SRLG value configuration mode overwrites the admin-weight configured in the MPLS TE SRLG configuration mode.

SUMMARY STEPS

1. configure
2. mpls traffic-eng srlg
3. value srlg-value
4. admin-weight weight
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS TE SRLG configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng srlg</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# mpls traffic-eng srlg</td>
<td>Enters MPLS TE SRLG configuration mode.</td>
</tr>
</tbody>
</table>
Configuring Point-to-Multipoint TE

You must enable multicast routing on the edge router before performing Point-to-Multipoint (P2MP) TE configurations. To configure Point-to-Multipoint TE, perform these procedures:

Enabling Multicast Routing on the Router

Perform this task to enable multicast routing on the router to configure P2MP tunnels.

Before you begin

- To configure Point-to-Multipoint (P2MP) tunnels, you must enable multicast routing on the router.
- The customer-facing interface must enable multicast.

SUMMARY STEPS

1. configure
2. multicast-routing
3. address-family \{ ipv4 | ipv6 \}
4. interface tunnel-mte tunnel-id
5. enable
6. exit
7. interface type interface-path-id
8. enable
9. commit
10. show pim ipv6 interface type interface-path-id

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 2 | **multicast-routing**
 Example:
     ```
     RP/0/RSP0/CPU0:router(config)# multicast-routing  
     RP/0/RSP0/CPU0:router(config-mcast)#
     ```  | Enters multicast routing configuration mode. |
| 3 | **address-family { ipv4 | ipv6 }**
 Example:
     ```
     RP/0/RSP0/CPU0:router(config-mcast)#
     address-family ipv6
     RP/0/RSP0/CPU0:router(config-mcast-default-ipv6)#
     ```  | Configures the available IPv4 or IPv6 address prefixes to enable multicast routing and forwarding on all router interfaces. |
| 4 | **interface tunnel-mte tunnel-id**
 Example:
     ```
     RP/0/RSP0/CPU0:router(config-mcast-default-ipv6)#
     interface tunnel-mte 1
     RP/0/RSP0/CPU0:router(config-mcast-default-ipv6-if)#
     ```  | Configures an MPLS-TE P2MP tunnel interface. |
| 5 | **enable**
 Example:
     ```
     RP/0/RSP0/CPU0:router(config-mcast-default-ipv6-if)#
     enable
     ```  | Enables multicast routing on the tunnel-mte interface. |
| 6 | **exit**
 Example:
     ```
     RP/0/RSP0/CPU0:router(config-mcast-default-ipv6-if)#
     exit
     RP/0/RSP0/CPU0:router(config-mcast-default-ipv6)#
     ```  | Exits the current configuration mode. |
| 7 | **interface type interface-path-id**
 Example:
     ```
     RP/0/RSP0/CPU0:router(config-mcast-default-ipv6)#
     interface GigabitEthernet0/2/0/3
     RP/0/RSP0/CPU0:router(config-mcast-default-ipv6-if)#
     ```  | Configures multicast routing on the GigabitEthernet interface. |
Configuring the Static Group for the Point-to-Multipoint Interface

Perform this task to configure the static group on the Point-to-Multipoint (P2MP) interface to forward specified multicast traffic over P2MP LSP.

SUMMARY STEPS

1. configure
2. router mld
3. vrf vrf-name
4. interface tunnel-mte tunnel-id
5. static-group group-address
6. commit
7. show mrib ipv6 route source-address

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router mld</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# router mld</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-mld)#</td>
</tr>
<tr>
<td>Step 3</td>
<td>vrf vrf-name</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related Topics

[Configuring the Static Group for the Point-to-Multipoint Interface](#), on page 280
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mld)#vrf default RP/0/RSP0/CPU0:router(config-mld-default)#</td>
<td>Configures an MPLS-TE P2MP tunnel interface.</td>
</tr>
</tbody>
</table>

Step 4

(interface tunnel-mte tunnel-id)

Example:

RP/0/RSP0/CPU0:router(config-mld-default)#interface tunnel-mte 1 RP/0/RSP0/CPU0:router(config-mld-default-if)#

Step 5

(static-group group-address)

Example:

RP/0/RSP0/CPU0:router(config-mld-default-if)# static-group ff35::1 2000::1

Step 6

(commit)

Step 7

(show mrib ipv6 route source-address)

Example:

RP/0/RSP0/CPU0:router# show mrib ipv6 route ff35::1

Related Topics

Enabling Multicast Routing on the Router, on page 278

Configuring Destinations for the Tunnel Interface

Perform this task to configure three destinations for the tunnel interface for Point-to-Multipoint (P2MP).

These variations are listed to ensure that the destination and path option configurations are separate from the tunnel interface.

- Different path option is used for different destinations. This task shows three destinations.
- Explicit path option is based on an ID or a name.
- Default path option is similar to the Point-to-Point (P2P) LSP.

Before you begin

These prerequisites are required to configure destinations for the tunnel interface.

- Multicast routing must be enabled on both the tunnel-mte interface and customer-facing interface from the source.
- Static-group must be configured on the tunnel-mte interface to forward specified multicast traffic over P2MP LSP.
SUMMARY STEPS

1. configure
2. interface tunnel-mte tunnel-id
3. destination ip-address
4. path-option preference-priority explicit identifier path-number
5. path-option preference-priority dynamic
6. exit
7. destination ip-address
8. path-option preference-priority explicit name pathname
9. path-option preference-priority dynamic
10. exit
11. destination ip-address
12. path-option preference-priority explicit name pathname [verbatim]
13. commit
14. show mpls traffic-eng tunnels [brief] [p2mp tunnel-number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>interface tunnel-mte tunnel-id</td>
<td>Configures an MPLS-TE P2MP tunnel interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-mte 10</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>destination ip-address</td>
<td>Sets the destination address for tunnel-mte 10 to 172.16.255.1. This destination uses the explicit path identified by explicit path ID 10. If destination 172.16.255.1 cannot come with explicit path ID 10, the fall back path option is dynamic.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 172.16.255.1</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>path-option preference-priority explicit identifier path-number</td>
<td>Configures the path number of the IP explicit path.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 1 explicit identifier 10</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>path-option preference-priority dynamic</td>
<td>Specifies that label switched paths (LSP) are dynamically calculated.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)#</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>path-option 2 dynamic</td>
<td>Exits the current configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# exit</td>
</tr>
<tr>
<td>Step 7</td>
<td>destination ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 172.16.255.2</td>
</tr>
<tr>
<td>Step 8</td>
<td>path-option preference-priority explicit name pathname</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 1 explicit name how-to-get-to-172.16.255.2</td>
</tr>
<tr>
<td>Step 9</td>
<td>path-option preference-priority dynamic</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 2 dynamic</td>
</tr>
<tr>
<td>Step 10</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# exit</td>
</tr>
<tr>
<td>Step 11</td>
<td>destination ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 172.16.255.3</td>
</tr>
<tr>
<td>Step 12</td>
<td>path-option preference-priority explicit name pathname [verbatim]</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 2 dynamic</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 172.16.255.2</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 1 explicit name how-to-get-to-172.16.255.2</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 2 dynamic</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 172.16.255.3</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 1 explicit name how-to-get-to-172.16.255.2</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 2 dynamic</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 172.16.255.3</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 1 explicit name how-to-get-to-172.16.255.3</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 2 dynamic</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 172.16.255.3</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 1 explicit name how-to-get-to-172.16.255.3</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 2 dynamic</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# exit</td>
</tr>
</tbody>
</table>
Disabling Destinations

Related Topics
- [Enabling Multicast Routing on the Router](#), on page 278
- [Configuring the Static Group for the Point-to-Multipoint Interface](#), on page 280

Disabling Destinations

Perform this task to disable the given destination for the Point-to-Multipoint (P2MP) tunnel interface.

SUMMARY STEPS

1. configure
2. interface tunnel-mte tunnel-id
3. ipv4 unnumbered type interface-path-id
4. destination ip-address
5. disable
6. path-option preference-priority dynamic
7. path-option preference-priority explicit name pathname
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface tunnel-mte tunnel-id</td>
<td>Configures an MPLS-TE P2MP tunnel interface.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router# configure

RP/0/RSP0/CPU0:router(config)# interface tunnel-mte 101

RP/0/RSP0/CPU0:router(config-if)#
```

Example:

```
RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 1 explicit name how-to-get-to-172.16.255.3 verbatim

Step 13 commit

Step 14 show mpls traffic-eng tunnels [brief] [p2mp tunnel-number]

Example:

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels brief p2mp 10
```

Displays the brief summary of the P2MP tunnel status and configuration.
<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>ipv4 unnumbered type interface-path-id</td>
<td>Assigns a source address so that forwarding can be performed on the new tunnel. Loopback is commonly used as the interface type.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>destination ip-address</td>
<td>Sets the destination address for tunnel-mte 10 to 140.140.140.140.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 140.140.140.140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)#</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>disable</td>
<td>Disables destination 140.140.140.140 for tunnel-mte 10.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)#disable</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>path-option preference-priority dynamic</td>
<td>Specifies that label switched paths (LSP) are dynamically calculated.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)#path-option 1 dynamic</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>path-option preference-priority explicit name pathname</td>
<td>Specifies that destination 140.140.140.140 uses the explicit path identified by the explicit path name &quot;to4.&quot;</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)#path-option 2 explicit name to4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

**Logging Per Destinations for Point-to-Multipoint**

Perform this task to log destinations for Point-to-Multipoint (P2MP).

**SUMMARY STEPS**

1. configure
2. interface tunnel-mte tunnel-id
3. ipv4 unnumbered type interface-path-id
4. destination ip-address
5. logging events lsp-status state
6. logging events lsp-status reroute
### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Configures an MPLS-TE P2MP tunnel interface.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface tunnel-mte <em>tunnel-id</em></td>
<td>Configures the MPLS-TE tunnel to use the IPv4 address on loopback interface 0.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-mte 1000</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ipv4 unnumbered <em>type interface-path-id</em></td>
<td>Sets the destination address for tunnel-mte from 1000 to 100.0.0.3.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered</td>
<td></td>
</tr>
<tr>
<td>loopback0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> destination <em>ip-address</em></td>
<td>Sends out the log message when the tunnel LSP goes up or down when the software is enabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# destination 100.0.0.3</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)#</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> logging events lsp-status state</td>
<td>Sends out the log message when the tunnel LSP is rerouted due to an FRR event when the software is enabled.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# logging events lsp-status state</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> logging events lsp-status reroute</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# logging events lsp-status reroute</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 7** | path-option preference-priority explicit name path123
**Example:**
RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# path-option 1 explicit name path123 | Specifies the path name of the IP explicit path. Destination 100.0.0.3 uses the explicit path that is identified by the explicit path name "path123."

| **Step 8** | exit
**Example:**
RP/0/RSP0/CPU0:router(config-if-p2mp-dest)# exit RP/0/RSP0/CPU0:router(config-if)# | Exits the current configuration mode.

| **Step 9** | fast-reroute
**Example:**
RP/0/RSP0/CPU0:router(config-if)# fast-reroute | Enables fast-reroute (FRR) protection for a P2MP TE tunnel.

| **Step 10** | commit |

| **Step 11** | show mpls traffic-eng tunnels [p2mp]
**Example:**
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels p2mp | Displays the information for all P2MP tunnels.

---

**Enabling Soft-Preemption on a Node**

Perform this task to enable the soft-preemption feature in the MPLS TE configuration mode. By default, this feature is disabled. You can configure the soft-preemption feature for each node. It has to be explicitly enabled for each node.

**SUMMARY STEPS**

1. configure
2. mpls traffic-eng
3. soft-preemption
4. timeout seconds
5. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure</td>
</tr>
</tbody>
</table>
## Enabling Soft-Preemption on a Tunnel

Perform this task to enable the soft-preemption feature on a MPLS TE tunnel. By default, this feature is disabled. It has to be explicitly enabled.

### SUMMARY STEPS

1. configure
2. interface tunnel-te *tunnel-id*
3. soft-preemption
4. commit

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> interface tunnel-te <em>tunnel-id</em></td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
</tbody>
</table>

---

**Note** If soft-preemption is enabled, the head-end node tracks whether an LSP desires the soft-preemption treatment. However, when a soft-preemption feature is disabled on a node, this node continues to track all LSPs desiring soft-preemption. This is needed in a case when soft-preemption is re-enabled, TE will have the property of the existing LSPs without any re-signaling.
### Related Topics

**Soft-Preemption**, on page 208

## Configuring Attributes within a Path-Option Attribute

Perform this task to configure attributes within a path option attribute-set template.

### SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. attribute-set path-option attribute-set-name
4. affinity affinity-value mask mask-value
5. signalled-bandwidth kbps class-type class-type number
6. commit
7. show mpls traffic-eng attribute-set
8. show mpls traffic-eng tunnels detail

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
</tbody>
</table>

---

When soft preemption is enabled on a tunnel, these actions occur:

- A path-modify message is sent for the current LSP with the `soft preemption desired` property.
- A path-modify message is sent for the reopt LSP with the `soft preemption desired` property.
- A path-modify message is sent for the path protection LSP with the `soft preemption desired` property.
- A path-modify message is sent for the current LSP in FRR active state with the `soft preemption desired` property.

**Note** The soft-preemption is not available in the interface tunnel-mte and interface tunnel-gte configuration modes.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td>Enters attribute-set path option configuration mode.</td>
</tr>
</tbody>
</table>

**Step 3** attribute-set path-option attribute-set-name  
**Example:**  
RP/0/RSP0/CPU0:router(config-mpls-te)# attribute-set path-option myset  
**Note** The configuration at the path-option level takes precedence over the values configured at the level of the tunnel, and therefore is applied.

**Step 4** affinity affinity-value mask mask-value  
**Example:**  
RP/0/RSP0/CPU0:router(config-te-attribute-set)# affinity 0xBEEF mask 0xBEEF  
**Configures affinity attribute under a path option attribute-set. The attribute values that are required for links to carry this tunnel.**

**Step 5** signalled-bandwidth kbps class-type class-type number  
**Example:**  
RP/0/RSP0/CPU0:router(config-te-attribute-set)# signalled-bandwidth 1000 class-type 0  
**Note** You can configure the class type of the tunnel bandwidth request. The class-type 0 is strictly equivalent to global-pool and class-type 1 is strictly equivalent to subpool.

**Step 6** commit  

**Step 7** show mpls traffic-eng attribute-set  
**Example:**  
RP/0/RSP0/CPU0:router# show mpls traffic-eng attribute-set  
**Displays the attributes that are defined in the attribute-set for the link.**

**Step 8** show mpls traffic-eng tunnels detail  
**Example:**  
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels detail  
**Displays the attribute-set path option information on a specific tunnel.**

**Related Topics**  
- Path Option Attributes, on page 209  
- Configuration Hierarchy of Path Option Attributes, on page 209  
- Traffic Engineering Bandwidth and Bandwidth Pools, on page 210  
- Path Option Switchover, on page 210  
- Path Option and Path Protection, on page 211

**Configuring Auto-Tunnel Mesh Tunnel ID**

Perform this activity to configure the tunnel ID range that can be allocated to Auto-tunnel mesh tunnels.

**SUMMARY STEPS**

1. configure  
2. mpls traffic-eng
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 2** mpls traffic-eng  
  Example:  
  RP/0/RSP0/CPU0:router(config)# mpls traffic-eng | Enters MPLS TE configuration mode. |
| **Step 3** auto-tunnel mesh  
  Example:  
  RP/0/RSP0/CPU0:router(config-mpls-te)# auto-tunnel mesh | Enters auto-tunnel mesh configuration mode. You can configure auto-tunnel mesh related options from this mode. |
| **Step 4** tunnel-id min value max value  
  Example:  
  RP/0/RSP0/CPU0:router(config-te-auto-mesh)# tunnel-id min 10 max 50 | Specifies the minimum and maximum number of auto-tunnel mesh tunnels that can be created on this router. The range of tunnel ID is from 0 to 65535. |
| **Step 5** commit |         |

### Related Topics
- [Auto-Tunnel Mesh](#), on page 211
- [Destination List (Prefix-List)](#), on page 212

### Configuring Auto-tunnel Mesh Unused Timeout

Perform this task to configure a global timer to remove unused auto-mesh tunnels.

### SUMMARY STEPS

1. configure  
2. mpls traffic-eng  
3. auto-tunnel mesh  
4. timer removal unused timeout  
5. commit

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td></td>
</tr>
</tbody>
</table>
## Configuring Auto-Tunnel Mesh Group

Perform this task to configure an auto-tunnel mesh group globally on the router.

### SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. auto-tunnel mesh
4. group `value`
5. disable
6. attribute-set `name`
7. destination-list
8. commit

### Command or Action | Purpose
--- | ---
Step 2 | mpls traffic-eng
   Example: `RP/0/RSP0/CPU0:router(config)# mpls traffic-eng`
> Enters MPLS-TE configuration mode.

Step 3 | auto-tunnel mesh
   Example: `RP/0/RSP0/CPU0:router(config-mpls-te)# auto-tunnel mesh`
> Enables auto-tunnel mesh groups globally.

Step 4 | timer removal unused `timeout`
   Example: `RP/0/RSP0/CPU0:router(config-mpls-te-auto-mesh)# timers removal unused 10`
> Specifies a timer, in minutes, after which a down auto-tunnel mesh gets deleted whose destination was not in TE topology. The default value for this timer is 60.
   - The timer gets started when these conditions are met:
     - Tunnel destination node is removed from the topology
     - Tunnel is in down state
   > The unused timer runs per tunnel because the same destination in different mesh-groups may have different tunnels created.

Step 5 | commit

### Related Topics

- Auto-Tunnel Mesh, on page 211
- Destination List (Prefix-List), on page 212
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td></td>
<td>mpls traffic-eng</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
</tr>
<tr>
<td>3</td>
<td>auto-tunnel mesh</td>
<td>Enables auto-tunnel mesh groups globally.</td>
</tr>
<tr>
<td></td>
<td>auto-tunnel mesh</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# auto-tunnel mesh</td>
</tr>
<tr>
<td>4</td>
<td>group value</td>
<td>Specifies the membership of auto-tunnel mesh. The range is from 0 to 4294967295.</td>
</tr>
<tr>
<td></td>
<td>group 65</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-auto-mesh)# group 65</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> When the destination-list is not supplied, head-end will automatically build destination list belonging for the given mesh-group membership using TE topology.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>disable</td>
<td>Disables the meshgroup and deletes all tunnels created for this meshgroup.</td>
</tr>
<tr>
<td></td>
<td>disable</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-auto-mesh-group)# disable</td>
</tr>
<tr>
<td>6</td>
<td>attribute-setname</td>
<td>Specifies the attributes used for all tunnels created for the meshgroup. If it is not defined, this meshgroup does not create any tunnel.</td>
</tr>
<tr>
<td></td>
<td>attribute-setname</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-auto-mesh-group)# attribute-set am-65</td>
</tr>
<tr>
<td>7</td>
<td>destination-list</td>
<td>This is a mandatory configuration under a meshgroup. If a given destination-list is not defined as a prefix-list, this meshgroup create tunnels to all nodes available in TE topology.</td>
</tr>
<tr>
<td></td>
<td>destination-list</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-auto-mesh-group)# destination-list dl-65</td>
</tr>
<tr>
<td>8</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

### Related Topics
- Auto-Tunnel Mesh, on page 211
- Destination List (Prefix-List), on page 212
Configuring Tunnel Attribute-Set Templates

Perform this task to define attribute-set templates for auto-mesh tunnels.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. attribute-set auto-mesh attribute-set-name
4. affinity value mask mask-value
5. signalled-bandwidth kbps class-type class-type number
6. autoroute announce
7. fast-reroute protect bandwidth node
8. auto-bw collect-bw-only
9. logging events lsp-status {state | insufficient-bandwidth | reoptimize | reroute }
10. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> mpls traffic-eng</td>
<td>Specifies name of the attribute-set of auto-mesh type.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> attribute-set auto-mesh attribute-set-name</td>
<td>Configures the affinity properties the tunnel requires in its links for an MPLS-TE tunnel under an auto-mesh attribute-set.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-te)# attribute-set auto-mesh attribute-set-name</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> affinity value mask mask-value</td>
<td>You can configure the class type of the tunnel bandwidth request. The class-type 0 is strictly equivalent to <strong>global-pool</strong> and class-type 1 is strictly equivalent to <strong>subpool</strong>.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-te)# affinity 0101 mask 320</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> signalled-bandwidth kbps class-type class-type number</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-te-attribute-set)# signalled-bandwidth 1000 class-type 0</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 autoroute announce</td>
<td>Enables parameters for IGP routing over tunnel.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>autoroute announce</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-attribute-set)# autoroute announce</td>
<td></td>
</tr>
<tr>
<td>Step 7 fast-reroute protect bandwidth node</td>
<td>Enables fast-reroute bandwidth protection and node protection for auto-mesh tunnels.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>fast-reroute</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-attribute-set)# fast-reroute</td>
<td></td>
</tr>
<tr>
<td>Step 8 auto-bw collect-bw-only</td>
<td>Enables automatic bandwidth collection frequency, and controls the manner in which the bandwidth for a tunnel collects output rate information, but does not adjust the tunnel bandwidth.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>auto-bw collect-bw-only</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-attribute-set)# auto-bw collect-bw-only</td>
<td></td>
</tr>
<tr>
<td>Step 9 logging events lsp-status {state</td>
<td>insufficient-bandwidth</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>logging events lsp-status state</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-attribute-set)# logging events lsp-status state</td>
<td></td>
</tr>
<tr>
<td>Step 10 commit</td>
<td></td>
</tr>
</tbody>
</table>

### Related Topics
- Auto-Tunnel Mesh, on page 211
- Destination List (Prefix-List), on page 212

### Enabling LDP on Auto-Tunnel Mesh

Perform this task to enable LDP on auto-tunnel mesh group.

### SUMMARY STEPS

1. configure
2. mpls ldp
3. traffic-eng auto-tunnel mesh
4. group id all
5. commit
### Enabling Stateful PCE Client

Perform these steps to enable stateful PCE client.

#### SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. pce
4. stateful-client
5. capabilities { instantiation | update }
6. commit

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td>Enters MPLS TE configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)#mpls traffic-eng</td>
</tr>
</tbody>
</table>
### Configuring VRF Redirection

Perform these steps to configure VRF redirection by installing multiple routes in the routing information base (RIB) per MPLS TE tunnel:

**SUMMARY STEPS**

1. configure
2. interface tunnel-te *tunnel-id*
3. autoroute destination *ip-address*
4. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface tunnel-te <em>tunnel-id</em></td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)#interface tunnel-te 10</td>
<td></td>
</tr>
<tr>
<td>Step 3 autoroute destination <em>ip-address</em></td>
<td>Adds a route (ip-address) in RIB with TE tunnel as outgoing interface. to the tunnel destination.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------------------------------------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)#autoroute destination 192.168.1.2</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)#autoroute destination 192.168.2.2</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)#autoroute destination 192.168.3.2</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)#autoroute destination 192.168.4.2</td>
<td></td>
</tr>
</tbody>
</table>

Step 4  
commit

Example

This example shows how to configure installing four autoroute destination routes into the RIB along with the default route:

```
interface tunnel-te10
 autoroute destination 192.168.1.2
 autoroute destination 192.168.2.2
 autoroute destination 192.168.3.2
 autoroute destination 192.168.4.2
```

Configuring IPv6 Routing Over IPv4 MPLS-TE Tunnels

Perform these steps to configure IPv6 routing over IPv4 MPLS-TE tunnels:

SUMMARY STEPS

1. configure
2. interface tunnel-te tunnel-id
3. ipv4 unnumbered type interface-path-id
4. ipv6 enable
5. signalled-bandwidth bandwidth
6. destination ip-address
7. Use one of these options:
   - autoroute announce include-ipv6
   - forwarding-adjacency include-ipv6
8. path-option preference-priority dynamic
9. commit
10. (Optional) show mpls traffic-eng autoroute
11. (Optional) show mpls traffic-eng forwarding-adjacency
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface tunnel-te tunnel-id</td>
<td>Assigns a source address so that forwarding can be performed on the new tunnel. Loopback is the commonly-used interface type.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# interface tunnel-te 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ipv4 unnumbered type interface-path-id</td>
<td>Sets the tunnel bandwidth requirement to be signalled in Kbps.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)#ipv4 unnumbered Loopback 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ipv6 enable</td>
<td>Enables IPv6 on interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)#ipv6 enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> signalled-bandwidth bandwidth</td>
<td>Specifies tunnel destination.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)#signalled-bandwidth 10</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> destination ip-address</td>
<td>Announces the tunnel as an IPv6 autoroute or an IPv6 forwarding adjacency.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)#destination 3.3.3.3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Sets the path option to dynamic and assigns the path ID.</td>
</tr>
<tr>
<td>Use one of these options: • autoroute announce include-ipv6 • forwarding-adjacency include-ipv6</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)#autoroute announce include-ipv6</td>
<td></td>
</tr>
<tr>
<td>Or RP/0/RSP0/CPU0:router(config-if)#forwarding-adjacency include-ipv6</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> path-option preference-priority dynamic</td>
<td>Verifies that the tunnel announces IPv6 autoroute information.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)#path-option 1 dynamic</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> commit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong> (Optional) show mpls traffic-eng autoroute</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Verifies that the tunnel announces IPv6 forwarding adjacency information.

Using ePBR for MPLS Packets on Subscriber Interfaces

The enhanced policy based routing (ePBR) match/redirect MPLS packets on subscriber interfaces feature enables the capability to match MPLS labeled packets and redirect those to an external server by re-writing the source and destination IP addresses of the packets. This feature is applicable when the DNS server (an external server) is hidden in the MPLS cloud.

The traffic that is entering the MPLS cloud will be matched for a specific destination address and based on it, the new destination will be set. When the packet returns from the DNS server, the source address is changed back to the original source address.

Use Case: Using ePBR for MPLS Packets on Subscriber Interfaces

The ePBR match/redirect MPLS packets on subscriber Interfaces feature is applicable when a packet arrives at an interface with a destination address of a known server. This feature changes the known destination address to a required address that is hidden in the DNS cloud. For example, when the packet reaches a known interface with a specific IP address, say 1.1.1.1, it can to be redirected to a new IP address, say 2.2.2.2, that is hidden in the cloud.

For subscriber to core DNS packets, the sequence for match and redirect is:

- Match the incoming packet for the known DNS server. This address could be a local address on the Cisco ASR 9000 Series Router, which the subscriber uses as DNS server address.
- Set the destination address to a new IP address to which the packet has to be redirected.
This figure explains the match and redirect sequence for subscriber to core DNS packets.

*Figure 26: Subscriber to core DNS packets*

For core to subscriber DNS packets, the sequence for match and redirect is:

- Match the incoming labeled DNS packet’s source IP address from the core.
- Set the source address to a local address, which the subscriber uses as DNS server address. The packet would be forwarded based on label + destination IP address, which is the subscriber address.

This figure explains the match and redirect sequence for core to subscriber DNS packets.

*Figure 27: Core to subscriber DNS packets*

### Configuring ePBR-Based MPLS Redirection

These examples show how to configure ePBR-based MPLS match/redirect configuration.

**Match configuration for IPv4 packets:**

```plaintext
policy-map type pbr policy_mpls_src_test
 class type traffic class_mpls_src_test
 set source-address ipv4 17.17.18.18
! class type traffic class-default
! end-policy-map
!
RP/0/RSP0/CPU0:ASR9K-0#show running-config class-map type traffic class_mpls_src_test
Wed Sep 3 02:52:31.411 UTC
class-map type traffic match-any class_mpls_src_test
```

Cisco ASR 9000 Series Aggregation Services Router MPLS Configuration Guide, Release 6.0.x
match mpls disposition access-group ipv4 ACL_MPLS_SRC
  end-class-map
!

show running-config ipv4 access-list ACL_MPLS_SRC
Wed Sep  3 02:53:40.918 UTC
ipv4 access-list ACL_MPLS_SRC
10 permit ipv4 30.1.1.1/24 112.112.0.1/24
!

Match configuration for IPv6 packets:

policy-map type pbr policy_mpls_src_test
class type traffic class_mpls_ipv6_src_test
  set source-address ipv4 10.10.10.10
!
class type traffic class-default
!
end-policy-map
!
RP/0/RSP0/CPU0:ASR9K-0# show running-config class-map type traffic class_mpls_ipv6_src_test
Wed Sep  3 02:52:31.411 UTC
class-map type traffic match-any class_mpls_ipv6_src_test
match mpls disposition access-group ipv6 ACL_MPLS_IPV6_SRC
  end-class-map
!

show running-config ipv6 access-list ACL_MPLS_IPV6_SRC
Wed Sep  3 02:53:40.918 UTC
Ipv6 access-list ACL_MPLS_IPV6_SRC
10 permit ipv6 any any
!

Set destination configuration:

show running-config policy-map type pbr pbr_prec_exp
Wed Sep  3 03:11:16.000 UTC
policy-map type pbr pbr_prec_exp
class type traffic class_prec_exp
  set destination-address ipv4 3.3.3.3
!
class type traffic class-default
!
end-policy-map
!
RP/0/RSP0/CPU0:ASR9K-0# show running-config class-map type traffic class_prec_exp
Wed Sep  3 03:11:30.339 UTC
class-map type traffic match-all class_prec_exp
match mpls experimental topmost 2
match mpls disposition access-group ipv4 acl2
  end-class-map
!

RP/0/RSP0/CPU0:ASR9K-0# show running-config ipv4 access-list acl2
Wed Sep  3 03:11:47.963 UTC
ipv4 access-list acl2
  5 permit ipv4 host 10.10.10.10 any
  10 permit ipv4 any any
!
Multi Nexthop Tracking

The multi nexthop tracking feature enables the setting of virtual routing and forwarding (VRF) with nexthop and nexthop tracking, for an incoming MPLS or IP packet. When a MPLS/IP packet reaches an interface, a new VRF or a new nexthop is set. This feature enables the capability of matching the packet and redirecting to a new VRF or IP. This is extremely useful in cases of DNS redirect or HTTP redirect. If an incoming packet is redirected to an IP without specifying the VRF, it refers to the default VRF.

The multi nexthop tracking feature sets the nexthop by matching an incoming packet on the current VRF and then sets the VRF to the new value. The matching of the packets can also be based on the length of the packets.

A maximum number of three nexthops can be configured. The first nexthop configured has the highest priority as compared to the last nexthop, which has the least priority. The nexthops configured must be either IPv4 or IPv6. For a given nexthop, a VRF name, an IPv4/IPv6 address or both can be configured. When VRF is not configured, it is presumed to be an ingress interface VRF.

For the nexthop policy based routing (PBR) action, the available highest priority nexthop is chosen when setting the policy based route nexthop, though this may not be the highest priority configured nexthop. When a higher priority route comes up, it replaces the programmed nexthop.

Configuring Multi Nexthop Tracking for IPv4

Perform this task to configure multi nexthop tracking on a VRF for IPv4.

**SUMMARY STEPS**

1. configure
2. policy-map type pbr policy-map name
3. class type traffic class name
4. redirect ipv4 nexthop vrf vrf-name nexthop address nexthop vrf vrf-name nexthop address
5. end or commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 policy-map type pbr policy-map name</td>
<td>Enters policy-map configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# policy-map type pbr multi-vrf</td>
<td></td>
</tr>
<tr>
<td>Step 3 class type traffic class name</td>
<td>Specifies a traffic class previously created with the class-map command.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class_all</td>
<td></td>
</tr>
</tbody>
</table>
### Purpose

**Command or Action**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>redirect ipv4 nexthop vrf vrf-name nexthop address nexthop vrf vrf-name nexthop address nexthop vrf vrf-name nexthop address</td>
</tr>
</tbody>
</table>

**Purpose**

Configures a maximum of three nexthops for VRFs and IPv4 addresses specified.

**Note**

The first nexthop will have the highest priority and the last nexthop will have the least priority.

**Example:**

RP/0/RSP0/CPU0:router(config-pmap-c)# redirect ipv4 nexthop vrf vpn1 3.2.1.2 nexthop vrf vpn2 3.2.3.2 nexthop vrf vpn3 3.2.4.2

---

### Configuring Multi Nexthop Tracking for IPv6

Perform this task to configure multi nexthop tracking on a VRF for IPv6.

**SUMMARY STEPS**

1. configure
2. policy-map type pbr policy-map name
3. class type traffic class name
4. redirect ipv6 nexthop vrf vrf-name nexthop address nexthop vrf vrf-name nexthop address nexthop vrf vrf-name nexthop address
5. end or commit
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | configure  
Example:  
RP/0/RSP0/CPU0:router# configure | Enters Global Configuration mode. |
| Step 2 | policy-map type pbr policy-map name  
Example:  
RP/0/RSP0/CPU0:router(config)# policy-map type pbr multi-vrf | Enters policy-map configuration mode. |
| Step 3 | class type traffic class name  
Example:  
RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class_all | Specifies a traffic class previously created with the class-map command. |
| Step 4 | redirect ipv6 nexthop vrf vrf-name nexthop address  
redirect ipv6 nexthop vrf vrf-name nexthop address  
redirect ipv6 nexthop vrf vrf-name nexthop address  
Example:  
RP/0/RSP0/CPU0:router(config-pmap-c)# redirect ipv6 nexthop vrf vpn1 3.2.1.2 nexthop vrf vpn2 3.2.3.2 nexthop vrf vpn3 3.2.4.2 | Configures a maximum of three nexthops for VRFs and IPv6 addresses specified.  
**Note**  
The first nexthop will have the highest priority and the last nexthop will have the least priority. |
| Step 5 | end or commit  
Example:  
RP/0/RSP0/CPU0:router(config-pmap-c)# end  
or  
RP/0/RSP0/CPU0:router(config-pmap-c)# commit | Saves configuration changes.  
- When you issue the **end** command, the system prompts you to commit changes:  

Uncommitted changes found, commit them before exiting (yes/no/cancel)?  
[cancel]:  
  - Entering **yes** saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.  
  - Entering **no** exits the configuration session and returns the router to EXEC mode without committing the configuration changes.  
  - Entering **cancel** leaves the router in the current configuration session without exiting or committing the configuration changes.  
- Use the **commit** command to save the configuration changes to the running configuration file and remain within the configuration session. |
Verifying Multi Nexthop Tracking Configuration

Use the `show running-config policy-map type pbr multi-vrf` command to verify the multi nexthop tracking configuration. The following example shows sample output for the command:

```
show running-config policy-map type pbr multi-vrf

policy-map type pbr multi-vrf
 class type traffic class_all
 redirect ipv4 nexthop vrf vpn1 3.2.1.2 nexthop vrf vpn3 3.2.3.2 nexthop vrf vpn4 3.2.4.2

! class type traffic class-default
! end-policy-map
!
```

Configuring Path-selection Cost Limit

Apply the path-selection cost-limit configuration to set the upper limit on the path aggregate admin-weight when computing paths for MPLS-TE LSPs. Once the path-selection cost is configured, the periodic path verification will check if the cost-limit is crossed. Path-selection cost limit can be configured at global MPLS TE, per interface tunnel, and per path-option attribute set. The path-selection cost limit per path-option attribute set takes the highest priority, followed by per interface and MPLS TE global path-selection cost limit values.

Configuring Global Path-selection Cost Limit on MPLS TE Tunnels

Perform these steps to configure path-selection cost limit globally for MPLS TE tunnels:

**SUMMARY STEPS**

1. `configure`
2. `mpls traffic-eng`
3. `path-selection cost-limit cost-limit`
4. `commit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> mpls traffic-eng</td>
<td>Sets the upper limit on the path aggregate admin-weight when computing paths for MPLS TE LSPs.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> path-selection cost-limit cost-limit</td>
<td>Sets the upper limit on the path aggregate admin-weight when computing paths for MPLS TE LSPs.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te)# path-selection cost-limit 3</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Path-selection Cost Limit per TE Tunnel

Perform these steps to configure path-selection cost limit per MPLS TE tunnel:

**SUMMARY STEPS**

1. configure
2. interface tunnel-te tunnel-id
3. path-selection cost-limit cost-limit
4. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface tunnel-te tunnel-id</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)#interface tunnel-te 1</td>
<td></td>
</tr>
<tr>
<td>Step 3 path-selection cost-limit cost-limit</td>
<td>Sets the upper limit on the path aggregate admin-weight when computing paths for MPLS TE LSPs for the specified MPLS TE tunnel.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)# path-selection cost-limit 2</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Path-selection Cost Limit per Path-option Attribute-set

Perform these steps to configure path-selection cost limit per path-option attribute-set:

**SUMMARY STEPS**

1. configure
2. mpls traffic-eng
3. attribute-set path-option attribute-set-name
4. path-selection cost-limit 3

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
</tbody>
</table>
Enabling Soft-preemption over FRR Backup Tunnels

Perform these tasks to enable LSP traffic to be moved over the backup tunnel when the LSP is soft-preempted. With this configuration, when there is a soft-preemption, the MPLS TE process triggers a rewrite to move the traffic on the backup tunnel, if the backup tunnel is ready. The rest of the soft-preemption process remains unchanged.

**Before you begin**

Ensure that the following configurations are enabled before enabling soft-preemption over FRR backup:

- Soft-preemption enabled.
- Fast-reroute (FRR) backup tunnel is activated.

**SUMMARY STEPS**

1. configure
2. mpls traffic-eng
3. soft-preemption frr-rewrite
4. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)#mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> soft-preemption frr-rewrite</td>
<td>Moves FRR LSP traffic over the backup tunnel, when LSP is soft-preempted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)#soft-preemption frr-rewrite</td>
<td></td>
</tr>
</tbody>
</table>
### Enabling Auto-onehop Tunnels to Next-hop Neighbors

Perform these tasks to enable automatic creation of one-hop tunnels over MPLS traffic-engineering enabled interfaces to next-hop neighbors. A router that becomes a next hop neighbor will have a set of one-hop tunnels created automatically.

#### Before you begin

The `ipv4 unnumbered mpls traffic-eng Loopback Number` configuration must be applied at the global configuration level.

#### SUMMARY STEPS

1. `configure`
2. `ipv4 unnumbered mpls traffic-eng Loopback N`
3. `mpls traffic-eng`
4. `auto-tunnel mesh`
5. `tunne-id min value max value`
6. `group group-id`
7. `onehop`
8. `commit`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure</code></td>
<td></td>
</tr>
</tbody>
</table>
| **Step 2** | `ipv4 unnumbered mpls traffic-eng Loopback N`  
**Example:**  
RP/0/RSP0/CPU0:router(config)#ipv4 unnumbered mpls traffic-eng loopback 0 | Configures the globally configured IPv4 address that can be used by the Auto-tunnel backup tunnels. |
| **Step 3** | `mpls traffic-eng`  
**Example:**  
RP/0/RSP0/CPU0:router(config)#mpls traffic-eng | Enters the MPLS-TE submode. |
| **Step 4** | `auto-tunnel mesh`  
**Example:**  
RP/0/RSP0/CPU0:router(config-mpls-te)#auto-tunnel mesh | Enters the auto-tunnel mesh configuration submode. |
### Purpose

**Step 5**
- **tunne-id min value max value**
  - Example:
    ```text
 RP/0/0/CPU0:ios(config-te-auto-mesh)# tunnel-id min 4000 max 6000
    ```
  - Specifies the minimum and maximum number of auto-tunnel mesh tunnels that can be created on this router. The range of tunnel ID is from 0 to 65535.

**Step 6**
- **group group-id**
  - Example:
    ```text
 RP/0/RSP0/CPU0:router(config-te-auto-mesh)#group 50
    ```
  - Enters the auto-tunnel mesh group configuration submode and creates a group ID.

**Step 7**
- **onehop**
  - Example:
    ```text
 RP/0/RSP0/CPU0:router(config-te-mesh-group)#onehop
    ```
  - Enables automatic creation of one-hop tunnels to all next hop neighbors. The onehop keyword can be applied to as many mesh groups as desired.

**Step 8**
- **commit**

### Implementing Associated Bidirectional Label Switched Paths

This section describes how to configure MPLS Traffic Engineering Associated Bidirectional Label Switched Paths (MPLS-TE LSPs).

Associated Bidirectional Label Switched Paths are LSP instances where the forward and the reverse direction paths are setup, monitored and protected independently and associated together during signaling. You use a RSVP Association object to bind the two forward and reverse LSPs together to form either a co-routed or non co-routed associated bidirectional TE tunnel.

**Signaling Methods and Object Association for Bidirectional LSPs**

Associated Bidirectional Non Co-routed and Co-routed LSPs, on page 311, provides details.

You can associate a protecting MPLS-TE tunnel with either a working MPLS-TE LSP, protecting MPLS-TE LSP, or both. The working LSP is the primary LSP backed up by the protecting LSP. When a working LSP goes down, the protecting LSP is automatically activated. You can configure a MPLS-TE tunnel to operate without protection as well.

**Path Protection** on page 315 provides details.

### Signaling Methods and Object Association for Bidirectional LSPs

This section provides an overview of the association signaling methods for the bidirectional LSPs. Two unidirectional LSPs can be bound to form an associated bidirectional LSP in the following scenarios:

- No unidirectional LSP exists, and both must be established.
- Both unidirectional LSPs exist, but the association must be established.
- One unidirectional LSP exists, but the reverse associated LSP must be established.

Configuration information regarding the LSPs can be provided at one or both endpoints of the associated bidirectional LSP. Depending on the method chosen, there are two models of creating an associated bidirectional LSP; single-sided provisioning, and double-sided provisioning.

- **Single-sided Provisioning**: For the single-sided provisioning, the TE tunnel is configured only on one side. An LSP for this tunnel is initiated by the initiating endpoint with the Association Object inserted.
in the Path message. The other endpoint then creates the corresponding reverse TE tunnel and signals the reverse LSP in response to this. Currently, there is no support available for configuring single-sided provisioning.

- **Double-sided Provisioning:** For the double-sided provisioning, two unidirectional TE tunnels are configured independently on both sides. The LSPs for the tunnels are signaled with Association Objects inserted in the Path message by both sides to indicate that the two LSPs are to be associated to form a bidirectional LSP.

Consider this topology (an example of associated bidirectional LSP):

```
LSP1
A ---- D ---- B
 |
 v
LSP2
 C
```

Here, LSP1 from A to B, takes the path A,D,B and LSP2 from B to A takes the path B,D,C,A. These two LSPs, once established and associated, form an associated bidirectional LSP between node A and node B. For the double sided provisioning model, both LSP1 and LSP2 are signaled independently with (Extended) Association Object inserted in the Path message, in which the Association Type indicating double-sided provisioning. In this case, the two unidirectional LSPs are bound together to form an associated bidirectional LSP based on identical Association Objects in the two LSPs' Path messages.

**Association Object:** An Association Object is used to bind unidirectional LSPs originating from both endpoints. The Association Object takes the following values:

- **Association Type:** In order to bind two reverse unidirectional LSPs to be an associated bidirectional LSP, the Association Type must be set to indicate either single sided or double sided LSPs.
- **Association ID:** For both single sided and double sided provisioning, Association ID must be set to a value assigned by the node that originates the association for the bidirectional LSP. This is set to the Tunnel ID of the bound LSP or the Tunnel ID of the binding LSP.
- **Association Source:** For double sided provisioning, Association Source must be set to an address selected by the node that originates the association for the bidirectional LSP. For single sided provisioning, Association Source must be set to an address assigned to the node that originates the LSP.
- **Global ID:** This is the global ID for the association global source. This must be set to the global ID of the node that originates the association for the bidirectional LSP.

**Note**

You must provide identical values for the content of the Association Object on either end of the participating LSPs to ensure successful binding of the LSPs.

*Configure Associated Bidirectional Co-routed LSPs,* on page 313 describes the procedure to create associated bidirectional co-routed LSPs.

### Associated Bidirectional Non Co-routed and Co-routed LSPs

This section provides an overview of associated bidirectional non co-routed and co-routed LSPs. Establishment of MPLS TE-LSP involves computation of a path between a head-end node to a tail-end node, signaling along the path, and modification of intermediate nodes along the path. The signaling process ensures bandwidth reservation (if signaled bandwidth is lesser than 0 and programming of forwarding entries.)
Path computation is performed by the head-end nodes of both the participating LSPs using Constrained Shortest Path First (CSPF). CSPF is the shortest path (measured in terms of cost) that satisfies all relevant LSP TE constraints or attributes, such as required bandwidth, priority and so on.

**Associated Bidirectional Non Co-routed LSPs:** A non co-routed bidirectional TE LSP follows two different paths, that is, the forward direction LSP path is different than the reverse direction LSP path. Here is an illustration.

In the above topology:
- The outer paths (in green) are working LSP pairs.
- The inner paths (in red) are protecting LSP pairs.
- Router 1 sets up working LSP to Router 3 and protecting LSP to Router 3 independently.
- Router 3 sets up working LSP to Router 1 and protecting LSP to Router 1 independently.

Non co-routed bidirectional TE LSP is available by default, and no configuration is required.

**Note**
In case of non co-routed LSPs, the head-end nodes relax the constraint on having identical forward and reverse paths. Hence, depending on network state you can have identical forward and reverse paths, though the bidirectional LSP is co-routed.

**Associated Bidirectional Co-routed LSPs:** A co-routed bidirectional TE LSP denotes a bidirectional tunnel where the forward direction LSP and reverse direction LSP must follow the same path, for example, the same nodes and paths. Here is an illustration.

In the above topology:
- Paths at the top of the figure (in green) indicate working co-routed LSP pairs.
- Paths at the bottom of the figure (in red) indicate protecting co-routed LSP pairs.
Configure Associated Bidirectional Co-routed LSPs

A co-routed bidirectional packet LSP is a combination of two LSPs (one in the forward direction and the other in reverse direction) sharing the same path between a pair of ingress and egress nodes. It is established using the extensions to RSVP-TE. This type of LSP can be used to carry any of the standard types of MPLS-based traffic, including Layer 2 VPNs, Layer 2 circuits, and Layer 3 VPNs. You can configure a single BFD session for the bidirectional LSP (that is, you do not need to configure a BFD session for each LSP in each direction). You can also configure a single standby bidirectional LSP to provide a backup for the primary bidirectional LSP.

Before you begin

- You must have symmetric source and destination TE router IDs in order for bidirectional LSPs to be associated.
- Tunnels attributes must be configured identically on both sides of co-routed bidirectional LSP.

**SUMMARY STEPS**

1. configure
2. interface tunnel-te tunnel-id
3. bidirectional
4. association {id <0-65535> | source-address <IP address>} [global-id <0-4294967295>]
5. association type co-routed
6. commit
7. show mpls traffic-eng tunnels bidirectional-associated co-routed

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>interface tunnel-te tunnel-id</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# interface tunnel-te 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>bidirectional</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/0/CPU0:router(config-if)# bidirectional</td>
<td></td>
</tr>
</tbody>
</table>
### Configure Associated Bidirectional Co-routed LSPs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>association</strong> [id <code>&lt;0-65535&gt;</code></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>RP/0/0/CPU0:router(config-if-bidir)# association id 1 source-address 11.0.0.1</strong></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>association type co-routed</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>RP/0/0/CPU0:router(config-if-bidir)# association type co-routed</strong></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>commit</strong></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>show mpls traffic-eng tunnels bidirectional-associated co-routed</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>RP/0/0/CPU0:router# show mpls traffic-eng tunnels bidirectional-associated co-routed</strong></td>
</tr>
</tbody>
</table>

#### Show output for an associated co-routed bidirectional LSP configuration

This is a sample of the output for the **show mpls traffic-eng tunnels role head** command.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels role head

Name: tunnel-te1 Destination: 49.49.49.2
 Signalled-Name: IMC0_t1
 Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 1, type dynamic (Basis for Setup, path weight 20 (reverse 20))
 path option 1, type dynamic (Basis for Standby, path weight 20 (reverse 20))
 G-PID: 0x0800 (derived from egress interface properties)
 Bandwidth Requested: 0 kbps CT0
 Creation Time: Sun May 4 12:09:56 2014 (03:24:11 ago)
 Config Parameters:
 Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
 Metric Type: TE (default)
 Hop-limit: disabled
 Cost-limit: disabled
 AutoRoute: disabled
 LockDown: disabled
 Forward class: 0 (default)
 Forwarding-Adjacency: disabled
 Loadshare: 0 equal loadshares
 Auto-bw: disabled
 Fast Reroute: Disabled, Protection Desired: None
 Path Protection: Enabled
```
Path Protection

Path protection provides an end-to-end failure recovery mechanism (that is, full path protection) for associated bidirectional MPLS-TE LSPs. Associated bidirectional MPLS-TE LSPs support 1:1 path protection. You can configure the working and protecting LSPs as part of configuring the MPLS-TE tunnel. The working LSP is the primary LSP used to route traffic, while the protecting LSP is a backup for a working LSP. If the working LSP fails, traffic is switched to the protecting LSP until the working LSP is restored, at which time traffic forwarding reverts back to the working LSP.

When FRR is not enabled on a tunnel, and when GAL-BFD and/or Fault OAM is enabled on an associated bidirectional co-routed LSP, path-protection is activated by the FIB running on the line card that hosts the working LSP. The failure on the working LSP can be detected using BFD or Fault OAM.

Configure Path Protection for Associated Bidirectional LSPs, on page 315 provides procedural details.

You can use the `show mpls traffic-eng fast-reroute log` command to confirm whether protection switching has been activated by FIB.

Configure Path Protection for Associated Bidirectional LSPs

**SUMMARY STEPS**

1. `configure`
2. `interface tunnel-te tunnel-id`
3. `ipv4 unnumbered type interface-path-id`
4. `bfd {fast-detect | encap-mode}`
5. `destination ip-address`
6. `bidirectional`
7. `bidirectional association {id <0-65535> | source-address <IP address>} [global-id <0-4294967295>]
8. `association type co-routed`
9. `path-protection`
10. `path-option preference - priority [dynamic | explicit]`
11. `commit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
## Implementing MPLS Traffic Engineering

### Configure Path Protection for Associated Bidirectional LSPs

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>interface tunnel-te tunnel-id</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;RP/0/RSP0/CPU0:router# interface tunnel-te 1</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>ipv4 unnumbered</strong> type interface-path-id&lt;br&gt;<strong>Example:</strong>&lt;br&gt;RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered Loopback0</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>bfd</strong> {fast-detect</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>destination ip-address</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;RP/0/RSP0/CPU0:router(config-if)# destination 49.49.49.2</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>bidirectional</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config-if)# bidirectional</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>bidirectional association</strong> {id &lt;0-65535&gt;</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>association type co-routed</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config-if-bidir)#association type co-routed</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>path-protection</strong>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;RP/0/RSP0/CPU0:IMC0(config-if-bidir-co-routed)#path-protection</td>
</tr>
</tbody>
</table>

### Note
Association ID, association source and optional global-id must be configured identically on both the endpoints.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10 &lt;br&gt; path-option preference - priority {dynamic</td>
<td>explicit} &lt;br&gt; Example: &lt;br&gt; RP/0/RSP0/CPU0:router(config-if)# path-option l dynamic</td>
</tr>
<tr>
<td>Step 11</td>
<td>commit</td>
</tr>
</tbody>
</table>

**Example**

Here is a sample configuration with path protection defined for the Associated Bidirectional LSP.

```
RP/0/RSP0/CPU0:IMC0#config
RP/0/RSP0/CPU0:IMC0(config)#interface tunnel-te 1
RP/0/RSP0/CPU0:IMC0(config-if)#ipv4 unnumbered loopback0
RP/0/RSP0/CPU0:IMC0(config-if)#destination 49.49.49.2
RP/0/RSP0/CPU0:IMC0(config-if)#bidirectional
RP/0/RSP0/CPU0:IMC0(config-if-bidir)#association id 100 source-address 49.49.49.1
RP/0/RSP0/CPU0:IMC0(config-if-bidir)#association type co-routed
RP/0/RSP0/CPU0:IMC0(config-if-bidir-co-routed)#path-protection
RP/0/RSP0/CPU0:IMC0(config-if)#path-option 1 dynamic
RP/0/RSP0/CPU0:IMC0(config-if)#commit
```

**OAM Support for Associated Bidirectional LSPs**

You can opt to configure operations, administration and management (OAM) support for Associated Bidirectional LSPs in the following areas:

- **Continuity check:** You can configure bidirectional forwarding detection (BFD) over a Generic Associated Channel (G-ACh) with hardware assist. This allows for BFD Hello packets to be generated and processed in hardware making smaller Hello intervals such as 3.3 ms feasible. For more information on BFD and BFD hardware offload see Implementing BFD module in the Cisco ASR 9000 Series Aggregation Services Router Routing Configuration Guide.

- **Fault notification:** You can run Fault OAM over associated bidirectional co-routed LSPs to convey fault notification from mid-point to end-point of the LSP. The following fault OAM messages are supported:
  - Link Down Indication (LDI): generated when an interface goes down (for example, to fiber-cut) at mid-point.
  - Lock Report (LKR): generated when an interface is shutdown at mid-point.

  You can configure fault OAM to generate OAM message at mid-point or enable protection switching due to fault OAM at end-point. Generate Fault OAM Messages at Mid-point, on page 318 and Generate Fault OAM Messages at End-point, on page 318 provides procedural details.

- **Fault diagnostics:** You can use the ping and traceroute features as a means to check connectivity and isolate failure points for both co-routed and non-co-routed bidirectional TE tunnels. MPLS Network Management with MPLS LSP Ping and MPLS SP Traceroute provides details.
Generate Fault OAM Messages at Mid-point

To program all bi-directional LSPs to generate fault OAM message at mid-point use the following steps:

**SUMMARY STEPS**

1. configure
2. mpls traffic-eng
3. fault-oam
4. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> mpls traffic-eng</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:IMO(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> fault-oam</td>
<td>Enable fault OAM for an associated bidirectional LSP.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:IMC0(config-mpls-te)#fault-oam</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>

Generate Fault OAM Messages at End-point

In order to enable protection switching due to fault OAM at end-point use the following steps:

**SUMMARY STEPS**

1. configure
2. interface tunnel-te tunnel-id
3. bidirectional association type co-routed fault-oam
4. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> interface tunnel-te tunnel-id</td>
<td>Configures an MPLS-TE tunnel interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:IMC0(config)#interface tunnel-te 1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> bidirectional association type co-routed fault-oam</td>
<td>Enable fault OAM for an associated co-routed bidirectional LSP.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:IMC0(config-if)#bidirectional association type co-routed fault-oam</td>
<td></td>
</tr>
</tbody>
</table>
Pseudowire Call Admission Control

You can use the Pseudowire Call Admission Control (PW CAC) process to check for bandwidth constraints and ensure that once the path is signaled, the links (pseudowires) participating in the bidirectional LSP association have the required bandwidth. Only pseudowires with sufficient bandwidth are admitted in the bidirectional LSP association process. Configure Pseudowire Bandwidth in the Cisco ASR 9000 Series Aggregation Services Router L2VPN and Ethernet Services Configuration Guide provides procedural details.

**Configuration Examples for Cisco MPLS-TE**

These configuration examples are used for MPLS-TE:

**Build MPLS-TE Topology and Tunnels: Example**

The following examples show how to build an OSPF and IS-IS topology:

(OSPF)

```
configure
 mpls traffic-eng
 interface pos 0/6/0/0
 router id loopback 0
 router ospf 1
 router-id 192.168.25.66
 area 0
 interface pos 0/6/0/0
 interface loopback 0
 mpls traffic-eng router-id 192.168.70.1
 mpls traffic-eng area 0
 rsvp
 interface pos 0/6/0/0
 bandwidth 100
 commit
show mpls traffic-eng topology
show mpls traffic-eng link-management advertisement
```

(IS-ISIS)

```
configure
 mpls traffic-eng
 interface pos 0/6/0/0
 router id loopback 0
 router isis lab
 address-family ipv4 unicast
 mpls traffic-eng level 2
 mpls traffic-eng router-id 192.168.70.2
 !
 interface POS0/0/0/0
 address-family ipv4 unicast
 !
```
The following example shows how to configure tunnel interfaces:

```
interface tunnel-te1
 destination 192.168.92.125
 ipv4 unnumbered loopback 0
 path-option 1 dynamic
 bandwidth 100
 commit
show mpls traffic-eng tunnels
show ipv4 interface brief
show mpls traffic-eng link-management admission-control

interface tunnel-te1
 autoroute announce
 route ipv4 192.168.12.52/32 tunnel-te1
 commit
ping 192.168.12.52
show mpls traffic autoroute

interface tunnel-te1
 fast-reroute
mpls traffic-eng interface pos 0/6/0/0
 backup-path tunnel-te 2
interface tunnel-te2
 backup-bw global-pool 5000
 ipv4 unnumbered loopback 0
 path-option 1 explicit name backup-path
destination 192.168.92.125
 commit
show mpls traffic-eng tunnels backup
show mpls traffic-eng fast-reroute database

rsvp
 interface pos 0/6/0/0
 bandwidth rdm 100 150 bc1 50
mpls traffic-eng
ds-te mode ietf
interface tunnel-te 1
 bandwidth 10 class-type 1
 commit
configure
rsvp interface 0/6/0/0
```

Related Topics
- Building MPLS-TE Topology, on page 223
- Creating an MPLS-TE Tunnel, on page 225
- How MPLS-TE Works, on page 171

**Configure IETF DS-TE Tunnels: Example**

The following example shows how to configure DS-TE:

```
rsvp
 interface pos 0/6/0/0
 bandwidth rdm 100 150 bc1 50
mpls traffic-eng
ds-te mode ietf
interface tunnel-te 1
 bandwidth 10 class-type 1
 commit
configure
rsvp interface 0/6/0/0
```
Configure MPLS-TE and Fast-Reroute on OSPF: Example

CSPF areas are configured on a per-path-option basis. The following example shows how to use the traffic-engineering tunnels (tunnel-te) interface and the active path for the MPLS-TE tunnel:

```conf
configure
interface tunnel-te 0
 path-option 1 explicit id 6 ospf 126 area 0
 path-option 2 explicit name 234 ospf 3 area 7 verbatim
 path-option 3 dynamic isis mtbf level 1 lockdown
commit
```

Configure the Ignore IS-IS Overload Bit Setting in MPLS-TE: Example

This example shows how to configure the IS-IS overload bit setting in MPLS-TE:

This figure illustrates the IS-IS overload bit scenario:
Consider a MPLS TE topology in which usage of nodes that indicated an overload situation was restricted. In this topology, the router R7 exhibits overload situation and hence this node cannot be used during TE CSPF. To overcome this limitation, the IS-IS overload bit avoidance (OLA) feature was introduced. This feature allows network administrators to prevent RSVP-TE label switched paths (LSPs) from being disabled when a router in that path has its Intermediate System-to-Intermediate System (IS-IS) overload bit set.

The IS-IS overload bit avoidance feature is activated at router R1 using this command:

```plaintext
mpls traffic-eng path-selection ignore overload
```

**Related Topics**

- Configuring the Ignore Integrated IS-IS Overload Bit Setting in MPLS-TE, on page 244
- Ignore Intermediate System-to-Intermediate System Overload Bit Setting in MPLS-TE, on page 180

**Configure Flexible Name-based Tunnel Constraints: Example**

The following configuration shows the three-step process used to configure flexible name-based tunnel constraints.

```
R2
line console
 exec-timeout 0 0
 width 250
 !
 logging console debugging
 explicit-path name mypath
 index 1 next-address loose ipv4 unicast 3.3.3.3 !
 explicit-path name ex_path1
 index 10 next-address loose ipv4 unicast 2.2.2.2 index 20 next-address loose ipv4 unicast 3.3.3.3 !
 interface Loopback0
 ipv4 address 22.22.22.22 255.255.255.255 !
 interface tunnel-te1
 ipv4 unnumbered Loopback0
```
signalled-bandwidth 1000000
destination 3.3.3.3
affinity include green
affinity include yellow
affinity exclude white
affinity exclude orange
path-option 1 dynamic
!
router isis 1
   is-type level-1
   net 47.0001.0000.0000.0001.00
   nsf cisco
   address-family ipv4 unicast
       metric-style wide
   mpls traffic-eng level-1
   mpls traffic-eng router-id 192.168.70.1
!
interface Loopback0
   passive
   address-family ipv4 unicast
!
!
interface GigabitEthernet0/1/0/0
   address-family ipv4 unicast
!
interface GigabitEthernet0/1/0/1
   address-family ipv4 unicast
!
interface GigabitEthernet0/1/0/2
   address-family ipv4 unicast
!
interface GigabitEthernet0/1/0/3
   address-family ipv4 unicast
!
!
rsvp
interface GigabitEthernet0/1/0/0
   bandwidth 1000000 1000000
!
interface GigabitEthernet0/1/0/1
   bandwidth 1000000 1000000
!
interface GigabitEthernet0/1/0/2
   bandwidth 1000000 1000000
!
interface GigabitEthernet0/1/0/3
   bandwidth 1000000 1000000
!
!
mpls traffic-eng
interface GigabitEthernet0/1/0/0
   attribute-names red purple
!
interface GigabitEthernet0/1/0/1
   attribute-names red orange
!
interface GigabitEthernet0/1/0/2
   attribute-names green purple
!
interface GigabitEthernet0/1/0/3
Configure an Interarea Tunnel: Example

The following configuration example shows how to configure a traffic engineering interarea tunnel.

```
attribute-names green orange
!
affinity-map red 1
affinity-map blue 2
affinity-map black 80
affinity-map green 4
affinity-map white 40
affinity-map orange 20
affinity-map purple 10
affinity-map yellow 8
!
```

Related Topics
- Assigning Color Names to Numeric Values, on page 245
- Associating Affinity-Names with TE Links, on page 246
- Associating Affinity Constraints for TE Tunnels, on page 247
- Flexible Name-based Tunnel Constraints, on page 181

Configure an Interarea Tunnel: Example

The following configuration example shows how to configure a traffic engineering interarea tunnel. Note that specifying the tunnel tailend in the loosely routed path is optional.

```
configure
 interface Tunnel-te1
 ipv4 unnumbered Loopback0
 destination 192.168.20.20
 signalled-bandwidth 300
 path-option 1 explicit name path-tunnel1
 explicit-path name path-tunnel1
 index 10 next-address loose ipv4 unicast 192.168.40.40
 index 20 next-address loose ipv4 unicast 192.168.60.60
 index 30 next-address loose ipv4 unicast 192.168.20.20
```

The following configuration example shows how to configure loose-path retry period (range is 30 to 600 seconds) on headend router.

```
config
 mpls traffic-eng
timers loose-path retry-period 120
```

The following configuration example shows the global configuration for loose hop expansion affinity or metric on ABR.

```
config
 mpls traffic-eng path-selection loose-expansion affinity 0xff
 mpls traffic-eng path-selection loose-expansion metric te class-type 5
```
Configure Forwarding Adjacency: Example

The following configuration example shows how to configure an MPLS-TE forwarding adjacency on tunnel-te 68 with a holdtime value of 60:

```
configure
 interface tunnel-te 68
 forwarding-adjacency holdtime 60
commit
```

Related Topics
- Configuring MPLS-TE Forwarding Adjacency, on page 251
- MPLS-TE Forwarding Adjacency Benefits, on page 185

Configure PCE: Example

The following configuration example illustrates a PCE configuration:

```
configure
 mpls traffic-eng
 interface pos 0/6/0/0
 pce address ipv4 192.168.25.66
 router id loopback 0
 router ospf 1
 router-id 192.168.25.66
 area 0
 interface pos 0/6/0/0
 interface loopback 0
 mpls traffic-eng router-id 192.168.70.1
 mpls traffic-eng area 0
 rsvp
 interface pos 0/6/0/0
 bandwidth 100
 commit
```

The following configuration example illustrates PCC configuration:

```
configure
 interface tunnel-te 10
 ipv4 unnumbered loopback 0
 destination 1.2.3.4
 path-option 1 dynamic pce
 mpls traffic-eng
 interface pos 0/6/0/0
 router id loopback 0
 router ospf 1
 router-id 192.168.25.66
 area 0
 interface pos 0/6/0/0
 interface loopback 0
 mpls traffic-eng router-id 192.168.70.1
 mpls traffic-eng area 0
 rsvp
 interface pos 0/6/0/0
 bandwidth 100
```
Configure Fast Repair: Example

The following example shows how to configure fast repair:

```bash
configure
mpls traffic-eng
pce
 stateful-client
 fast-repair
!
!
```

Enable PCEP Cisco Extension: Example

The following example shows how to enable PCEP Cisco extension:

```bash
configure
mpls traffic-eng
pce
 stateful-client
 cisco-extension
!
!
```

Configure PBTS for IPv6: Examples

These examples show how to configure PBTS for IPv6.

Configure Tunnel Interface: Example

The following example shows how to configure MPLS TE tunnel interface:

```bash
interface tunnel-te5500
 ipv4 unnumbered Loopback0
 ipv6 enable
destination 19.0.0.1
fast-reroute
record-route
forward-class 1
forwarding-adjacency
 include-ipv6
!
```

Related Topics

- Configuring a Path Computation Client, on page 252
- Configuring a Path Computation Element Address, on page 253
- Configuring PCE Parameters, on page 253
- Path Computation Element, on page 186
Configure Policy on Interface: Example

The following example shows how to configure policy on an interface:

```
interface HundredGigE0/0/0/1
 service-policy type pbr input dscp
 ipv4 address 111.111.1.1 255.255.255.0
 ipv4 unreachables disable
 ipv6 address 2001:111::1/64
 ipv6 unreachables disable
```

Configure Policy Map: Example

The following example shows how to configure policy map:

```
policy-map type pbr dscp
 class type traffic ef
 set forward-class 1
 class type traffic af11
 set forward-class 2
 class type traffic ipv6-ef
 set forward-class 1
 class type traffic af21
 set forward-class 3
 class type traffic af31
 set forward-class 4
 class type traffic af41
 set forward-class 5
 class type traffic class-default
end-policy-map
```

Configure Classmap: Example

The following example shows how to configure classmap using ACL and non ACL:

```
class-map type traffic match-any ef
 match access-group ipv4 acl1
end-class-map
```

```
class-map type traffic match-any all
 match dscp af11
end-class-map
```

Access-List
Configure Tunnels for Path Protection: Example

The path protection feature is configured on only the source router. The dynamic path option is a prerequisite to configure a path protection.

```
interface tunnel-te150
ipv4 unnumbered Loopback150
autoroute announce
destination 151.151.151.151
affinity 11 mask 11
path-protection
path-option 2 explicit name p2mp3-p2mp4-p2mp5_1
path-option 10 dynamic
```

Related Topics
- Enabling Path Protection for an Interface, on page 258
- Assigning a Dynamic Path Option to a Tunnel, on page 259
- Forcing a Manual Switchover on a Path-Protected Tunnel, on page 260
- Configuring the Delay the Tunnel Takes Before Reoptimization, on page 261
- Path Protection, on page 193
- Pre-requisites for Path Protection, on page 194
- Restrictions for Path Protection, on page 195
- Restrictions for Explicit Path Protection, on page 195

Configure Tunnels for Explicit Path Protection: Example

The path protection feature is configured on only the source router. The protected-by keyword configures path protection for an explicit path that is protected by another explicit path.

```
interface tunnel-te150
ipv4 unnumbered Loopback150
autoroute announce
destination 151.151.151.151
affinity 11 mask 11
path-protection
path-option 2 explicit name p2mp3-p2mp4-p2mp5_1 protected-by 10
path-option 10 explicit
```

Configure Tunnels for Co-existence of Path Protection with Fast Reroute: Example

The path protection feature is configured on only the source router. The dynamic path option is a prerequisite to configure a path protection.

```
interface tunnel-te1
fast-reroute
ipv4 unnumbered Loopback150
```
Configure Automatic Bandwidth: Example

The following configuration example illustrates an automatic bandwidth configuration:

```
configure
 interface tunnel-te6
 auto-bw
 bw-limit min 10000 max 500000
 overflow threshold 50 min 1000 limit 3
 adjustment-threshold 20 min 1000
 application 180
```

Related Topics

- Configuring the Collection Frequency, on page 262
- Configuring the Automatic Bandwidth Functions, on page 264
- MPLS-TE Automatic Bandwidth Overview, on page 196

Configure the MPLS-TE Shared Risk Link Groups: Example

The following configuration example shows how to specify the SRLG value of each link that has a shared risk with another link:

```
config t
srlg
 interface POS0/4/0/0
 value 10
 value 11
 interface POS0/4/0/1
 value 10
```

The following example shows the SRLG values configured on a specific link.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng topology brief
My_System_id: 100.0.0.2 (OSPF 0 area 0)
My_System_id: 0000.0000.0002.00 (IS-IS 1 level-1)
My_System_id: 0000.0000.0002.00 (IS-IS 1 level-2)
My_BC_Model_Type: RDM
Signalling error holddown: 10 sec Global Link Generation 389225
IGP Id: 0000.0000.0002.00, MPLS TE Id: 100.0.0.2 Router Node (IS-IS 1 level-1)
IGP Id: 0000.0000.0002.00, MPLS TE Id: 100.0.0.2 Router Node (IS-IS 1 level-2)
```
The following example shows the configured tunnels and associated SRLG values.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels

Name: tunnel-te1 Destination: 100.0.0.3
Status:
 Admin: up Oper: up Path: valid Signalling: recovered
 path option 1, type explicit path123 (Basis for Setup, path weight 2)
 OSPF 0 area 0
 G-PID: 0x0800 (derived from egress interface properties)
 SRLGs excluded: 2,3,4,5

Bandwidth Requested: 0 kbps CT0
```

The following example shows all the interfaces associated with SRLG.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng topo srlg
```

The following example shows the NHOP and NNHOP backup tunnels with excluded SRLG values.
The following example shows an extract of explicit-path set to protect a specific interface.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng topology path dest 100.0.0.5 exclude-srlg ipaddr
Path Setup to 100.0.0.2:
bw 0 (CT0), min_bw 0, metric: 30
setup_pri 7, hold_pri 7
affinity_bits 0x0, affinity_mask 0xffff
Exclude SRLG Intf Addr : 50.4.5.5
SRLGs Excluded : 10, 30, 1500, 10000000, 4294967290, 4294967295
Hop0:50.5.1.5
Hop1:50.5.1.1
Hop2:50.1.3.1
Hop3:50.1.3.3
Hop4:50.2.3.3
Hop5:50.2.3.2
Hop6:100.0.0.2
```

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng topology path dest 10.0.0.5 explicit-path name
Path Setup to 100.0.0.5:
bw 0 (CT0), min_bw 9999, metric: 2
setup_pri 7, hold_pri 7
affinity_bits 0x0, affinity_mask 0xffff
SRLGs Excluded: 10, 30, 77, 88, 1500, 10000000, 4294967290, 4294967295
Hop0:50.3.4.3
Hop1:50.3.4.4
Hop2:50.4.5.4
Hop3:50.4.5.5
Hop4:100.0.0.5
```

**Related Topics**

- Configuring the SRLG Values of Each Link that has a Shared Risk with Another Link, on page 266
- Creating an Explicit Path With Exclude SRLG, on page 267
- Using Explicit Path With Exclude SRLG, on page 268
- Creating a Link Protection on Backup Tunnel with SRLG Constraint, on page 271
- Creating a Node Protection on Backup Tunnel with SRLG Constraint, on page 273
- MPLS Traffic Engineering Shared Risk Link Groups, on page 203
- Explicit Path, on page 204
- Fast ReRoute with SRLG Constraints, on page 205
- Importance of Protection, on page 206
- Delivery of Packets During a Failure, on page 207
- Multiple Backup Tunnels Protecting the Same Interface, on page 207
- Weighted-SRLG Auto-backup Path Computation, on page 207
- SRLG Limitations, on page 208
- MPLS TE SRLG Scale Enhancements, on page 208
Configure the MPLS-TE Auto-Tunnel Backup: Example

The following example shows the auto-tunnel backup configuration for core or edge routers.

```
RP/0/RSP0/CPU0:router(config)#
 mpls traffic-eng
 auto-tunnel backup
 tunnel-id min 60000 max 61000
 interface pos 0/1/0/0
 auto-tunnel backup
 attribute-set ab
```

The following example shows the protection (NNHOP and SRLG) that was set on the auto-tunnel backup.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 1
Signalling Summary:
 LSP Tunnels Process: running
 RSVP Process: running
 Forwarding: enabled
 Periodic reoptimization: every 3600 seconds, next in 2524 seconds
 Periodic FRR Promotion: every 300 seconds, next in 49 seconds
 Auto-bw enabled tunnels: 1

Name: tunnel-te1 Destination: 200.0.0.3 (auto backup)
Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 10, type explicit (autob_nnhop_srlg_tunnel1) (Basis for Setup, path weight 11)
 path option 20, type explicit (autob_nnhop_tunnel1)
 G-PID: 0x0800 (derived from egress interface properties)
 Bandwidth Requested: 0 kbps CT0
 Creation Time: Fri Jul 10 01:53:25.581 PST (1h 25m 17s ago)

Config Parameters:
 Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
 Metric Type: TE (default)
 AutoRoute: disabled LockDown: disabled Policy class: not set
 Forwarding-Adjacency: disabled
 Loadshare: 0 equal loadshares
 Auto-bw: disabled
 Fast Reroute: Disabled, Protection Desired: None
 Path Protection: Not Enabled
 Auto Backup:
 Protected LSPs: 4
 Protected S2L Sharing Families: 0
 Protected S2Ls: 0
 Protected i/f: Gi0/1/0/0 Protected node: 20.0.0.2
 Protection: NNHOP+SRLG
 Unused removal timeout: not running

History:
 Tunnel has been up for: 00:00:08
 Current LSP:
 Uptime: 00:00:08
 Prior LSP:
 ID: path option 1 [545]
 Removal Trigger: configuration changed

Path info (OSPF 0 area 0):
The following example shows automatically created path options for this backup auto-tunnel.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 1 detail
Signal Summary:
LSP Tunnels Process: running
RSVP Process: running
Forwarding: enabled
Periodic reoptimization: every 3600 seconds, next in 2524 seconds
Periodic FRR Promotion: every 300 seconds, next in 49 seconds
Auto-bw enabled tunnels: 1

Name: tunnel-te1 Destination: 200.0.0.3 (auto backup)
Status:
  Admin: up Oper: up Path: valid Signalling: connected

path option 10, type explicit (autob_nnhop_srlg_tunnel1) (Basis for Setup, path weight 11)
  path option 20, type explicit (autob_nnhop_tunnel1)
  G-PID: 0x0800 (derived from egress interface properties)
  Bandwidth Requested: 0 kbps CT0
  Creation Time: Fri Jul 10 01:53:25.581 PST (1h 25m 17s ago)

Config Parameters:
  Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
  Metric Type: TE (default)
  AutoRoute: disabled LockDown: disabled Policy class: not set
  Forwarding-Adjacency: disabled
  Loadshare: 0 equal loadshares
  Auto-bw: disabled
  Fast Reroute: Disabled, Protection Desired: None
  Path Protection: Not Enabled
  Auto Backup (NNHOP+SRLG):
    Protected LSPs: 4
    Protected S2L Sharing Families: 0
    Protected S2Ls: 0
    Protected i/f: Gi0/1/0/0 Protected node: 20.0.0.2
    Protection: NNHOP+SRLG
    Unused removal timeout: not running

Path Options Details:
10: Explicit Path Name: (autob_nnhop_srlg_te1)
  1: exclude-srlg 50.0.0.1
  2: exclude-address 50.0.0.2
  3: exclude-node 20.0.0.2
20: Explicit Path Name: (autob_nnhop_tunnel1)
  1: exclude-address 50.0.0.1
  2: exclude-address 50.0.0.2
  3: exclude-node 20.0.0.2

History:
  Tunnel has been up for: 00:00:08
  Current LSP: Uptime: 00:00:08
  Prior LSP:
    ID: path option 1 [545]
    Removal Trigger: configuration changed

Path info (OSPF 0 area 0):
```

This example shows the automatically created backup tunnels.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels brief

TUNNEL NAME DESTINATION STATUS STATE
--------- ----------- ------- ----
tunnel-te0 200.0.0.3 up up

tunnel-te1 200.0.0.3 up up

tunnel-te2 200.0.0.3 up up

tunnel-te50 200.0.0.3 up up
*tunnel-te60 200.0.0.3 up up
*tunnel-te70 200.0.0.3 up up
*tunnel-te80 200.0.0.3 up up

RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels tabular

Tunnel LSP Destination Source FRR LSP Path
Name ID Address Address State State Role Prot
--------- ------ --------------- ----------- ------- ------- ------ -----  
tunnel-te0 549 200.0.0.3 200.0.0.1 up Inact Head InAct

tunnel-te1 546 200.0.0.3 200.0.0.1 up Inact Head InAct

tunnel-te2 6 200.0.0.3 200.0.0.1 up Inact Head InAct

tunnel-te50 6 200.0.0.3 200.0.0.1 up Active Head InAct

tunnel-te60 4 200.0.0.3 200.0.0.1 up Active Head InAct

tunnel-te70 4 200.0.0.3 200.0.0.1 up Active Head InAct

tunnel-te80 3 200.0.0.3 200.0.0.1 up Active Head InAct

This example shows the auto-tunnel backup details.
```

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels auto-tunnel backup detail

Name: tunnel-te400  Destination: 1.1.1.1 (auto-tunnel backup)
Status:
    Admin: up  Oper: up  Path: valid  Signalling: connected
    path option 20, type explicit (autob_nnhop_te400) (Basis for Setup, path weight 2)
    path option 10, type explicit (autob_nnhop_srlg_te400) [disabled]
G-PID: 0x0800 (derived from egress interface properties)
Bandwidth Requested: 0 kbps  CT0
Creation Time: Thu Aug 16 18:30:41 2012 (00:01:28 ago)
Config Parameters:
    Bandwidth: 0 kbps (CT0)  Priority: 7 7  Affinity: 0x0/0xffff
    Metric Type: TE (default)
    Hop-limit: disabled
    AutoRoute: disabled  LockDown: disabled  Policy class: not set
    Forwarding-Adjacency: disabled
    Loadshare: 0 equal loadshares
    Auto-bw: disabled
    Fast Reroute: Disabled, Protection Desired: None
    Path Protection: Not Enabled
    Soft Preemption: Disabled
Auto Backup:
    Protected LSPs: 1
    Protected S2L Sharing Families: 0
    Protected S2L: 0
    Protected i/f: Gi0/1/0/3  Protected node: 3.3.3.3
    Attribute-set: abl
```
Protection: NNHOP
Unused removal timeout: not running
Path Option Details:
 10: Explicit Path Name: (autob_nnhop_srlg_te400)
 1: exclude-srlg 34.9.0.4
 2: exclude-address 34.9.0.3
 3: exclude-node 3.3.3.3
 20: Explicit Path Name: (autob_nnhop_te400)
 1: exclude-address 34.9.0.4
 2: exclude-address 34.9.0.3
 3: exclude-node 3.3.3.3
SNMP Index: 221
History:
 Tunnel has been up for: 00:00:34 (since Thu Aug 16 18:31:35 EST 2012)
 Current LSP:
 Uptime: 00:00:34 (since Thu Aug 16 18:31:35 EST 2012)
 Current LSP Info:
 Instance: 2, Signaling Area: OSPF 100 area 1.2.3.4
 Uptime: 00:00:34 (since Thu Aug 16 18:31:35 EST 2012)
 Outgoing Interface: GigabitEthernet0/1/0/2, Outgoing Label: 16000
 Router-IDs: local 4.4.4.4
downstream 2.2.2.2
 Soft Preemption: None
 Path Info:
 Outgoing:
 Explicit Route:
 Strict, 24.9.0.2
 Strict, 12.9.1.1
 Strict, 1.1.1.1
 Record Route: Empty
 Tspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
 Session Attributes: Local Prot: Not Set, Node Prot: Not Set, BW Prot: Not Set
 Soft Preemption Desired: Not Set
Resv Info:
 Record Route:
 IPv4 24.9.0.2, flags 0x0
 IPv4 12.9.1.1, flags 0x0
 Fspec: avg rate=0 kbits, burst=1000 bytes, peak rate=0 kbits
Displayed 1 (of 104) heads, 0 (of 0) midpoints, 0 (of 201) tails
Displayed 1 up, 0 down, 0 recovering, 0 recovered heads

This example shows the automatically created backup tunnels.

RP/0/RSP0/CP00# show mpls traffic-eng tunnels auto-tunnel backup tabular

<table>
<thead>
<tr>
<th>Tunnel Name</th>
<th>LSP ID</th>
<th>Destination Address</th>
<th>Source Address</th>
<th>Tun State</th>
<th>FRR State</th>
<th>LSP Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>*tunnel-te400</td>
<td>2</td>
<td>1.1.1.1</td>
<td>4.4.4.4</td>
<td>up</td>
<td>Inact</td>
<td>Inact</td>
</tr>
<tr>
<td>*tunnel-te401</td>
<td>2</td>
<td>3.3.3.3</td>
<td>4.4.4.4</td>
<td>up</td>
<td>Inact</td>
<td>Inact</td>
</tr>
</tbody>
</table>
* - automatically created backup tunnel

RP/0/RSP0/CP00# show mpls traffic-eng tunnels auto-tunnel backup brief

<table>
<thead>
<tr>
<th>TUNNEL NAME</th>
<th>DESTINATION</th>
<th>STATUS</th>
<th>STATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>*tunnel-te400</td>
<td>1.1.1.1</td>
<td>up</td>
<td>up</td>
</tr>
<tr>
<td>*tunnel-te401</td>
<td>3.3.3.3</td>
<td>up</td>
<td>up</td>
</tr>
</tbody>
</table>
* - automatically created backup tunnel

Displayed 2 (of 104) heads, 0 (of 0) midpoints, 0 (of 201) tails
Displayed 2 up, 0 down, 0 recovering, 0 recovered heads
This example shows the attribute-set for auto-backup tunnels.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng attribute-set auto-backup
```

Attribute Set Name: ab (Type: auto-backup)
Number of affinity constraints: 2
 Include bit map : 0x4
 Include name : blue
 Exclude bit map : 0x2
 Exclude name : red
Priority: 7 7 (Default)
Record-route: Enabled
Policy-class: 1
Logging: reoptimize, state
List of protected interfaces (count 1)
 POS0_3_0_1
List of tunnel IDs (count 1)
 3000

This example shows the attribute-set for auto-mesh tunnels.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng attribute-set auto-mesh
```

Attribute Set Name: am (Type: auto-mesh)
Bandwidth: 100 kbps (CT0)
Number of affinity constraints: 2
 Include bit map : 0x8
 Include name : yellow
 Exclude bit map : 0x2
 Exclude name : red
Priority: 2 2
Interface Bandwidth: 0 kbps (Default)
AutoRoute Announce: Disabled
Auto-bw: Disabled
Soft Preemption: Disabled
Fast Reroute: Enabled, Protection Desired: Node, Bandwidth
Record-route: Enabled
Policy-class: 0 (Not configured)
Logging: None
List of Mesh Groups (count 1)
 1

This example shows the details about the tunnel that is using auto-backup type of attribute-set.

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels attribute-set auto-backup ab
```

Name: tunnel-te3000 Destination: 1.1.1.1 (auto-tunnel backup)
Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 20, type explicit (autob_nhop_te3000) (Basis for Setup, path weight 2)
 path option 10, type explicit (autob_nhop_srlg_te3000) [disabled]
G-PID: 0x0800 (derived from egress interface properties)
Bandwidth Requested: 0 kbps CT0
Creation Time: Tue Aug 14 23:24:27 2012 (00:05:28 ago)
Config Parameters:
 Bandwidth: 0 kbps (CT0) Priority: 7 7
Number of affinity constraints: 2
 Include bit map : 0x4
 Include name : blue
 Exclude bit map : 0x2
 Exclude name : red
Metric Type: TE (default)
Hop-limit: disabled
AutoRoute: disabled LockDown: disabled Policy class: 1
Forwarding-Adjacency: disabled
Loadshare: 0 equal loadshares
Auto-bw: disabled
Fast Reroute: Disabled, Protection Desired: None
Path Protection: Not Enabled
Soft Preemption: Disabled
Auto Backup:
Protected LSPs: 2
Protected S2L Sharing Families: 0
Protected S2L: 0
Protected i/f: PO0/3/0/1
Attribute-set: ab
Protection: NHOP
Unused removal timeout: not running

History:
Tunnel has been up for: 00:04:57 (since Tue Aug 14 23:24:58 EST 2012)
Current LSP:
Uptime: 00:04:57 (since Tue Aug 14 23:24:58 EST 2012)

Path info (OSPF 100 area 16909060):
Node hop count: 2
Hop0: 23.9.0.2
Hop1: 12.9.0.2
Hop2: 12.9.0.1
Hop3: 1.1.1.1
Displayed 1 (of 7) heads, 0 (of 3) midpoints, 0 (of 0) tails Displayed 1 up, 0 down, 0 recovering, 0 recovered heads

This example shows the protected interface for auto-backup auto-tunnels.

RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels backup protected-interface

Interface: Gi0/2/0/1 (auto-tunnel backup)
SRLG: N/A, NHOP-only: No
Attribute-set: Not configured
Auto-tunnel backup recreate time remaining: timer not running
No backup tunnel found

Interface: Gi0/2/0/3
tunnel-te340 PROTECTED : out i/f: PO0/3/0/1 Admin: up Oper: up

Interface: PO0/3/0/1 (auto-tunnel backup)
SRLG: N/A, NHOP-only: No
Attribute-set: ab
Auto-tunnel backup recreate time remaining: timer not running
*tunnel-te3000 NHOP : out i/f: Gi0/2/0/2 Admin: up Oper: up

* = automatically created backup tunnel

This example shows the details about all the tunnels that are using auto-mesh type of attribute-set.

RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels attribute-set auto-mesh all

Name: tunnel-te3501 Destination: 1.1.1.1 (auto-tunnel mesh)
Status: Admin: up Oper: up Path: valid Signalling: connected
path option 10, type dynamic (Basis for Setup, path weight 2)
G-PID: 0x0800 (derived from egress interface properties)
Bandwidth Requested: 100 kbps CT0
Creation Time: Tue Aug 14 23:25:41 2012 (00:06:13 ago)
Config Parameters:
Configure the MPLS-TE Auto-Tunnel Backup: Example

Bandwidth: 100 kbps (CT0) Priority: 2 2
Number of affinity constraints: 2
 Include bit map : 0x8
 Include name : yellow
 Exclude bit map : 0x2
 Exclude name : red

Metric Type: TE (default)
Hop-limit: disabled
AutoRoute: disabled LockDown: disabled Policy class: not set
Forwarding-Adjacency: disabled
Loadshare: 0 equal loadshares
Auto-bw: disabled
Fast Reroute: Enabled, Protection Desired: Node, Bandwidth
Path Protection: Not Enabled
Attribute-set: am (type auto-mesh)
Soft Preemption: Disabled
Auto-tunnel Mesh:
 Group ID: 1
 Destination list: blah
 Unused removal timeout: not running

History:
 Tunnel has been up for: 00:06:13 (since Tue Aug 14 23:25:41 EST 2012)
 Current LSP:
 Uptime: 00:06:13 (since Tue Aug 14 23:25:41 EST 2012)

Path info (OSPF 100 area 16909060):
 Node hop count: 2
 Hop0: 23.9.0.2
 Hop1: 12.9.0.2
 Hop2: 12.9.0.1
 Hop3: 1.1.1.1

Name: tunnel-te3502 Destination: 2.2.2.2 (auto-tunnel mesh)
Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 10, type dynamic (Basis for Setup, path weight 1)
 G-PID: 0x0800 (derived from egress interface properties)
 Bandwidth Requested: 100 kbps CT0
 Creation Time: Tue Aug 14 23:25:41 2012 (00:06:13 ago)

Config Parameters:
 Bandwidth: 100 kbps (CT0) Priority: 2 2
 Number of affinity constraints: 2
 Include bit map : 0x8
 Include name : yellow
 Exclude bit map : 0x2
 Exclude name : red

Metric Type: TE (default)
Hop-limit: disabled
AutoRoute: disabled LockDown: disabled Policy class: not set
Forwarding-Adjacency: disabled
Loadshare: 0 equal loadshares
Auto-bw: disabled
Fast Reroute: Enabled, Protection Desired: Node, Bandwidth
Path Protection: Not Enabled
Attribute-set: am (type auto-mesh)
Soft Preemption: Disabled
Auto-tunnel Mesh:
 Group ID: 1
 Destination list: blah
 Unused removal timeout: not running

History:
Tunnel has been up for: 00:06:13 (since Tue Aug 14 23:25:41 EST 2012)
Current LSP:
 Uptime: 00:06:13 (since Tue Aug 14 23:25:41 EST 2012)
Path info (OSPF 100 area 16909060):
 Node hop count: 1
 Hop0: 23.9.0.2
 Hop1: 2.2.2.2
Name: tunnel-te3503 Destination: 4.4.4.4 (auto-tunnel mesh)
Status:
 Admin: up Oper: down Path: not valid Signalling: Down
 path option 10, type dynamic
 Last FCALC Error: Tue Aug 14 23:31:26 2012
 Info: No path to destination, 4.4.4.4 (affinity)
 G-PID: 0x0800 (derived from egress interface properties)
 Bandwidth Requested: 100 kbps CT0
 Creation Time: Tue Aug 14 23:25:41 2012 (00:06:13 ago)
Config Parameters:
 Bandwidth: 100 kbps (CT0) Priority: 2 2
 Number of affinity constraints: 2
 Include bit map : 0x8
 Include name : yellow
 Exclude bit map : 0x2
 Exclude name : red
Metric Type: TE (default)
Hop-limit: disabled
AutoRoute: disabled LockDown: disabled Policy class: not set
Forwarding-Adjacency: disabled
Loadshare: 0 equal loadshares
Auto-bw: disabled
Fast Reroute: Enabled, Protection Desired: Node, Bandwidth
Path Protection: Not Enabled
Attribute-set: am (type auto-mesh)
Soft Preemption: Disabled
Auto-tunnel Mesh:
 Group ID: 1
 Destination list: blah
 Unused removal timeout: not running
Displayed 3 (of 7) heads, 0 (of 3) midpoints, 0 (of 0) tails Displayed 2 up, 1 down, 0 recovering, 0 recovered heads

Related Topics
 Enabling an AutoTunnel Backup, on page 233
 Removing an AutoTunnel Backup, on page 234
 Establishing MPLS Backup AutoTunnels to Protect Fast Reroutable TE LSPs, on page 234
 Establishing Next-Hop Tunnels with Link Protection, on page 235
 Backup AutoTunnels, on page 173

Configure Point-to-Multipoint TE: Examples

These configuration examples show how to configure Point-to-Multipoint TE:

P2MP Topology Scenario: Example

This section describes a typical scenario of point-to-multipoint traffic engineering toplogy. This figure illustrates the P2MP toplogy.
This head router describes the configuration at head node. This router does the imposition of MPLS at head node.

```
interface tunnel-mte1
  ipv4 unnumbered Loopback0
  destination 1.1.1.1
  path-option 1 explicit name path-to-tail1
  !
  destination 2.2.2.2
  path-option 1 explicit name path-to-tail2
  !
  fast-reroute

mpls traffic-eng
interface GigabitEthernet0/1/3/0
  !
interface GigabitEthernet0/1/3/7
  !

multicast-routing
  address-family ipv4
    nsf
    interface all enable
    !
  address-family ipv6
    nsf
    interface all enable
    !
    !
  router igmp
    vrf default
    interface tunnel-mte1
    static-group 232.0.0.1 192.168.10.1
    !
```

This mid router describes the configuration at mid node. This router performs the role of MPLS label replication at mid node.

```
mpls traffic-eng
interface POS0/2/0/0
  !
interface POS0/2/0/1
  backup-path tunnel-te 1000
  !
interface TenGigE0/3/0/3
  !
```
interface GigabitEthernet0/2/5/0
!
!
This tail router describes the configuration at tail node. This router performs the role of MPLS disposition at tail node.

mpls traffic-eng
 interface POS0/0/3/0
 !

!
multicast-routing
 address-family ipv4
 interface all enable
 !
 core-tree-protocol rsvp-te group-list lsm
 static-rpf 192.168.10.1 32 mpls 5.5.5.5
 !

This configuration describes the Fast Reroute configuration in the MPLS network.

explicit-path name backup-path-to-tail1
 index 1 next-address strict 198.1.1.2
 index 2 next-address strict 198.1.2.2
 !
interface tunnel-te1000 <<< backup p2p tunnel
 ipv4 unnumbered Loopback0
 destination 140.140.140.140
 path-option 1 explicit name backup-path-to-tail1
 !
mpls traffic-eng
 interface POS0/2/0/0
 !
 interface POS0/2/0/1
 backup-path tunnel-te 1000
 !
 interface TenGigE0/5/0/4
 !

Configure Point-to-Multipoint for the Source: Example

At the source, multicast routing must be enabled on both the tunnel-mte interface and customer-facing interface. Then, the static-group must be configured on the tunnel-mte interface to forward specified multicast traffic over P2M LSP.

Note

The multicast group address, which is in Source-Specific Multicast (SSM) address range (ff35::/16), must be used on the static-group configuration because Cisco IOS XR software supports only SSM for Label Switch Multicast (LSM). Additionally, the customer-facing interface must have an IPv6 address.

multicast-routing
 address-family ipv6
 interface tunnel-mte 1
Configure the Point-to-Multipoint Tunnel: Example

There is no difference between logging events at the tunnel level for both P2P and P2MP. The P2MP tunnel reoptimizes only at the per tunnel level.

```conf
interface tunnel-mte1
  ipv4 unnumbered Loopback0
  destination 60.60.60.60
  logging events lsp-status state
  logging events lsp-status reroute
  path-option 10 explicit name toR6_via_R2andR3
  !
  logging events lsp-status reoptimize
  logging events lsp-status state
  logging events lsp-status reroute
  fast-reroute
  record-route
  !
  explicit-path name PATH7
  index 1 next-address strict ipv4 unicast 192.168.7.2
  index 2 next-address strict ipv4 unicast 192.168.7.1
  index 3 next-address strict ipv4 unicast 192.168.16.1
  index 4 next-address strict ipv4 unicast 192.168.16.2
  !
```

Related Topics
- **Path Option for Point-to-Multipoint RSVP-TE**, on page 202
- **Point-to-Multipoint Traffic-Engineering Overview**, on page 198

Disable a Destination: Example

From the tunnel-mte interface, you can disable the destination.
Configure the Point-to-Multipoint Solution: Example

Requirements for MPLS-TE Configuration

Before the Point-to-Multipoint (P2MP) tunnel is defined, these MPLS-TE requirements must be configured:

- Multiprotocol Label Switching traffic engineering (MPLS-TE)
- Resource ReSerVation Protocol (RSVP)
- Open Shortest Path First (OSPF)

This example shows the entire P2MP solution:

- Source is the location where the P2MP-TE tunnel interface is created.
- Tunnel contains multiple destinations. For example, the P2MP-TE tunnel is configured with two leaf node destinations by using the dynamic and explicit path options.
- Fast-Reroute (FRR) is specified on the P2MP tunnel.
- All regular TE tunnel options such as affinity or bandwidth are configured.
- Static mapping of the group address to the P2MP tunnel is done in IGMP.
 - Internet Group Management Protocol (IGMP).
- The P2MP-TE midpoint configuration requires only TE and Interior Gateway Protocol (IGP) information.
- The P2MP-TE receiver configuration requires a static group and RPF map.

```
interface tunnel-mte101
  ipv4 unnumbered Loopback0
destination 150.150.150.150
disable
  path-option 10 dynamic

destination 150.150.150.150
  path-option 2 dynamic

Related Topics
  Point-to-Multipoint Traffic-Engineering Overview, on page 198

! explicit-path name g2-r2-r1
  index 1 next-address strict ipv4 unicast 10.2.15.1
!
explicit-path name g2-r2-r3
  index 1 next-address strict ipv4 unicast 10.2.25.1
  index 2 next-address strict ipv4 unicast 10.2.23.2
!
explicit-path name g2-r2-r4
  index 1 next-address strict ipv4 unicast 10.2.25.1
  index 2 next-address strict ipv4 unicast 10.2.24.2
!
ipv4 access-list ssm
  10 permit ipv4 232.1.0.0/16 any
  20 permit ipv4 232.3.0.0/16 any
```
30 permit ipv4 232.4.0.0/16 any
!
ipv4 access-list ssm-test
10 permit ipv4 235.0.0.0/8 any
!
interface Loopback0
ipv4 address 192.168.1.2 255.255.255.255
!
interface tunnel-mte221
ipv4 unnumbered Loopback0
destination 192.168.1.1
 path-option 1 dynamic
!
 destination 192.168.1.3
 path-option 1 dynamic
!
 destination 192.168.1.4
 path-option 1 dynamic
!
interface tunnel-mte222
ipv4 unnumbered Loopback0
destination 192.168.1.1
 path-option 1 explicit name g2-r2-r1
!
 destination 192.168.1.3
 path-option 1 explicit name g2-r2-r3
!
 destination 192.168.1.4
 path-option 1 explicit name g2-r2-r4
!
signalled-bandwidth 1000
!
interface MgmtEth0/RP0/CPU0/0
ipv4 address 172.20.163.12 255.255.255.128
!
interface MgmtEth0/RP1/CPU0/0
 shutdown
!
interface GigabitEthernet0/0/0/0
ipv4 address 172.2.1.2 255.255.255.0
load-interval 30
!
interface GigabitEthernet0/0/0/1
ipv4 address 10.1.15.2 255.255.255.0
!
interface GigabitEthernet0/0/0/1.2
ipv4 address 10.2.15.2 255.255.255.0
encapsulation dot1q 2
!
interface GigabitEthernet0/0/0/2
ipv4 address 10.1.25.2 255.255.255.0
!
interface GigabitEthernet0/0/0/2.2
ipv4 address 10.2.25.2 255.255.255.0
encapsulation dot1q 2
!
interface GigabitEthernet0/0/0/3
 shutdown
!
interface GigabitEthernet0/0/0/4
 shutdown
!
interface GigabitEthernet0/0/0/5
shutdown
!
interface GigabitEthernet0/0/0/6
shutdown
!
interface GigabitEthernet0/0/0/7
shutdown
!
router static
address-family ipv4 unicast
 0.0.0.0/0 1.56.0.1
 0.0.0.0/0 172.20.163.1
!
!
router ospf 100
nsr
router-id 192.168.70.1
area 0
mpls traffic-eng
interface Loopback0
!
interface GigabitEthernet0/0/0/0
!
interface GigabitEthernet0/0/0/1
!
interface GigabitEthernet0/0/0/1.2
!
interface GigabitEthernet0/0/0/2
!
interface GigabitEthernet0/0/0/2.2
!
!
mpls traffic-eng router-id 192.168.70.1
!
mpls oam
!
rsvp
interface GigabitEthernet0/0/0/0
 bandwidth 20000
!
interface GigabitEthernet0/0/0/1
 bandwidth 20000
!
interface GigabitEthernet0/0/0/2
 bandwidth 20000
!
interface GigabitEthernet0/0/0/1.2
 bandwidth 20000
!
interface GigabitEthernet0/0/0/2.2
 bandwidth 20000
!
!
mpls traffic-eng
interface GigabitEthernet0/0/0/0
!
interface GigabitEthernet0/0/0/1
!
interface GigabitEthernet0/0/0/2
!
interface GigabitEthernet0/0/0/1.2
!
interface GigabitEthernet0/0/0/2.2
!
Configure MPLS TE Path-selection Cost Limit: Example

This example shows how to set the path-selection cost limit for MPLS TE tunnels at global, TE tunnel interface, and path-option attribute-set levels. By default, the cost-limit set at path-option attribute set takes the priority, if all options are configured and per tunnel interface level takes priority over global cost-limit. At per tunnel interface level, the global cost-limit takes the priority.

```plaintext
interface tunnel-te1
path-selection cost-limit 2
```
mpls traffic-eng
 attribute-set path-option PO3AttrSet
 path-selection cost-limit 3
 !
 path-selection cost-limit 1
 !

Additional References

For additional information related to implementing MPLS-TE, refer to the following references:

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS-TE commands</td>
<td>MPLS Traffic Engineering Commands module in MPLS Command Reference for Cisco ASR 9000 Series Routers.</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Format: TXT=79265 bytes) (Status: PROPOSED STANDARD)</td>
</tr>
<tr>
<td></td>
<td>(Format: TXT=22585 bytes) (Status: EXPERIMENTAL)</td>
</tr>
</tbody>
</table>
Additional References

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing GMPLS UNI

The Generalized Multiprotocol Label Switching (GMPLS) User Network Interface (UNI) creates a circuit connection between two clients (UNI-C) of an optical network. This connection is achieved by signaling exchanges between UNI Client (UNI-C) and UNI Network (UNI-N) nodes. The UNI-C nodes are router nodes and UNI-N nodes are optical nodes.

A GMPLS overlay model has to connect packet routers with the optical network in these scenarios:

- Different groups within a service provider are responsible for managing packet and optical networks.
- Different service providers manage the optical and packet networks.
- There is a weak trust model between the entities operating the optical and packet networks.

Feature History for Implementing GMPLS UNI

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.3.0</td>
<td>The GMPLS UNI feature was introduced.</td>
</tr>
<tr>
<td>Release 6.0</td>
<td>nLight enhancements were introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing GMPLS UNI, on page 349
- Restrictions for Implementing GMPLS UNI, on page 350
- Information About Implementing GMPLS UNI, on page 350
- nLight Enhancements, on page 352
- How to Implement GMPLS UNI, on page 356
- Configuration Examples for GMPLS UNI, on page 386
- Additional References, on page 388

Prerequisites for Implementing GMPLS UNI

The following prerequisites are required to implement GMPLS UNI:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- Router that runs Cisco IOS XR software.
Restrictions for Implementing GMPLS UNI

- The total number of configured GMPLS UNI controllers should not exceed the platform scale limit of 500 GMPLS interfaces.
- Each UNI-N (ingress or egress) should be routable from its adjacent UNI-C. The UNI-C nodes need to be routable from the UNI-N nodes too.
- GMPLS UNI is supported only over DWDM controllers and so, over POS and GigabitEthernet interfaces.
- GMPLS UNI is supported only with these Cisco ASR 9000 Enhanced Ethernet Line Cards:
 - A9K-MOD80-SE: 80G Modular Line Card, Service Edge Optimized
 - A9K-MOD80-TR: 80G Modular Line Card, Packet Transport Optimized
 - A9K-36X10GE-SE: Cisco ASR 9000 36-Port 10GE Service Edge Optimized Line Card
 - A9K-36X10GE-TR: Cisco ASR 9000 36-Port 10GE Packet Transport Optimized Line Card
 - A9K-24X10GE-SE: Cisco ASR 9000 24-Port 10GE Service Edge Optimized Line Card
 - A9K-24X10GE-TR: Cisco ASR 9000 24-Port 10GE Packet Transport Optimized Line Card

Information About Implementing GMPLS UNI

To implement GMPLS UNI, you should understand these concepts:

GMPLS UNI vs GMPLS NNI

In case of GMPLS NNI, the optical network topology is known and path calculations are performed at the NNI head. In case of GMPLS UNI, the optical network topology is unknown to the UNI-C nodes and path calculations are performed by the UNI-N nodes.

GMPLS LSP Signaling

The GMPLS overlay model architecture is used for LSP signaling for GMPLS connections. In GMPLS UNI, UNI-C nodes send a request for a connection to UNI-N node. The connection request does not contain an end-to-end path. This is because, as mentioned previously, UNI-C nodes do not have knowledge of the topology of the optical network and therefore cannot determine the end-to-end path. The UNI-C node signals a connection request without an ERO.

The LSP diversity is signaled on a GMPLS UNI tunnel with a path-option. A path-option is permitted on a GMPLS UNI tunnel with a "no ERO" and an optional "XRO" attribute sets to specify LSP diversity requirements. If multiple LSP exclusions are configured in the attribute-set, they can be added to the path message along with an appropriate LSP connection diversity sub-object.
Path Message without an ERO

In GMPLS UNI, UNI-C nodes send a request for a connection to UNI-N node. The connection request does not contain an end-to-end path, because, UNI-C nodes do not have knowledge of the topology of the optical network and therefore cannot determine the end-to-end path. The UNI-C node signals a connection request without an ERO.

When no ERO is present in a received path message, the UNI-N node calculates a route to the destination and includes that route in an ERO, before forwarding the path message. If no route is found, the UNI-N returns a path error message with an error code and subcode of 24,5 - "No route available toward destination".

The destination address of a GMPLS LSP can be either the optical router-id of the tail UNI-C node, or the optical address of the ingress interface to the tail UNI-C node. Supplying the router-id allows the UNI-N to route the tunnel to the tail UNI-C node via any attached UNI-N node; supplying the UNI-C's ingress interface address forces the tunnel's path to traverse the UNI-N node attached to that interface.

Note
The optical router-ids and interface addresses may or may not be the same as the packet ones.

XRO Attribute-set

An optional XRO attribute-set can be specified as part of the path-option to specify LSP diversity requirements. An empty XRO attribute set results in the GMPLS tunnel being signaled with no exclusions, and therefore no XRO.

Note
A non-existent XRO attribute-set can be configured in the GMPLS UNI tunnel path-option; in this case no attempt will be made to bring up the GMPLS tunnel until the configuration is complete.

Connection Diversity

Connection diversity is required to ensure that GMPLS tunnels can be established without sharing resources, thus, greatly reducing the probability of simultaneous connection failures. For example, an edge-node wishes to establish multiple LSPs towards the same destination edge-node, and these LSPs need to have few or no resources in common.

Connection diversity supports the establishment of a GMPLS LSP which is diverse from the path taken by an existing LSP. An XRO is added to the tunnel's path message with appropriate LSP diversity sub-objects or exclusions. A maximum of 20 connection diversity exclusions per XRO is supported.

DWDM Transponder Integration

A GMPLS UNI based solution preserves all the advantages of the integration of the DWDM transponder into the router blade. These advantages include:

- improved CAPEX and OPEX models
- component, space and power savings
- improved IP availability through pro-active protection.
nLight Enhancements

These topics describe the enhancements made to nLight (also known as GMPLS UNI):

Explicit Route Object

Explicit Route Objects (EROs) limit LSP routing to a specified list of LSRs. Formerly, the UNI Client (UNI-C) node signaled a connection request, without an ERO, to the UNI Network (UNI-N) node. In this IOS XR Software release, the UNI-C node provides support for path message with ERO for GMPLS tunnels. This includes the capability to specify either a strict or a loose ERO to a path option to be included in the path message for processing by the ingress UNI-N.

An ERO in constructed using the strict and loose hops, specified in the explicit path, by the path option.

When a loose hop is configured, it identifies one or more transit LSRs which suggests the preferred path for the LSP. If a suggested path fails, another LSR is tried.

When a strict hop is configured, it identifies an exact path through which the LSP must be routed. Strict hop EROs specify the exact sequence of LSRs in the LSP.

As a result of these operations, a LSP is established from the sender to the destination of the session, following the explicitly routed path specified in the ERO.

- \textbf{Note}

 \begin{itemize}
 \item \textit{lockdown} and \textit{verbatim} are mandatory in ERO path option.
 \item A path option may still be configured to use no ERO.
 \item In no ERO, \textit{lockdown} is mandatory.
 \end{itemize}

Wavelength Specification

The wavelength (also called label) specification enhancement enables the network planning tool to determine the wavelength, and specify the same at the UNI-C. The UNI-N then accepts the label provided by the UNI-C, or rejects the path entirely. Previously, the wavelength to be used for the GMPLS UNI tunnel was determined by the UNI-N, taking into account the headend UNI-C’s capabilities.

The wavelength to be used is added to the path option configuration. This optional configuration allows a fixed wavelength to be specified for the path option.

When signaling using a path option with the specified wavelength takes place, the following changes happen because of the wavelength specification enhancement:

- The configured wavelength is validated against the controller’s capabilities; signaling fails if the wavelength cannot be used by the controller.
- The upstream label is set to the specified wavelength.
- The label-set in the Path message, instead of containing one label for each supported wavelength, contains only the specified wavelength.
• A path-error message with error code 25 and subcode 6 no longer receives special handling. If a suggested label is supplied, it is ignored.

Note
A suggested label received in response to signaling with a path option that specifies a different label, is not stored for future use. Other path options, in general, have different constraints and therefore require path calculation to be redone.

Multiple Path Options

Multiple path options are permitted per GMPLS UNI tunnel. The index given to each path option indicates its relative preference level, with lower indices being preferred. This is similar to the existing multiple path option functionality available for packet TE. This allows the provision of multiple path options with, for example, progressively free constraints.

The path-option index is no longer fixed to ten and is now set by the user and distinguishes path options in the same manner as for packet tunnels. In all situations where a tunnel is being brought up or reoptimized, the path-option with the lowest index is tried first; if no LSP can be established with this path option, then subsequent path options are tried in ascending order. This also applies to recovery from failures, unless any recovery path option is specified.

Reoptimization

Reoptimization differs from restoration though the mechanisms involved are similar. Reoptimization occurs without the original connection having failed.

Unlike packet tunnels, reoptimization in GMPLS tunnels is not supposed to be loss free.

Manual Reoptimization

Manual reoptimization of a single GMPLS UNI tunnel can be triggered from the UNI-C node (headend). Use the `mpls traffic-eng optical-uni reoptimize tunnel-id` command to trigger manual reoptimization of a GMPLS UNI tunnel.

The manual trigger for reoptimization causes the currently established LSP to be torn down and signals a new LSP using the normal bring-up process (though the new LSP is same as the current one).

It is not possible to trigger reoptimization for multiple GMPLS UNI tunnels or at the tailend of a tunnel.

SRLG Discovery

Note
SRLG (Shared Risk Link Group) discovery, SRLG collection and SRLG recording represent the same function.

The head and tail UNI-C routers have no direct knowledge of the path taken through the optical network by a GMPLS UNI tunnel, or of the properties of that path. All information about the path of a particular GMPLS UNI connection must therefore be explicitly requested and learned during the signaling process.
A key property of a GMPLS UNI connection is the set of SRLGs used by the optical links along the connection. It is necessary for the UNI-C routers to learn the set of SRLGs associated with a connection, so that this information can be used, both by GMPLS UNI in the specification of diversity requirements for other connections and by Layer-3 applications for effecting routing and protection decision making.

The learning of SRLGs during GMPLS UNI LSP signaling is done by requesting SRLG collection when LSP signaling is initiated, and by the addition of SRLG RRO sub-objects to the Path and Resv messages during signaling as described in IETF draft SRLG-collect. Path message learns egress interfaces from head to tail and Resv message learns egress interfaces from tail to head.

Provision of Discovered SRLGs to RSI

Once the SRLGs used by a GMPLS UNI connection are collected during signaling as in SRLG discovery, they are made available to the Layer-3 processes. This is done through RSI (Router Space Infrastructure), as illustrated in the following diagram:

Figure 30: SRLG Communication

![Diagram showing SRLG communication](image)

An API is provided by the RSI component to allow SRLGs discovered during GMPLS UNI signaling to be communicated to RSI, as documented in IETF draft RSI-SRLG. RSI combines the SRLG sets learned from GMPLS and configuration for an interface and deliver a single set of SRLGs to applications registered as SRLG clients.

The SRLGs discovered during GMPLS UNI signaling are given to RSI for application to the Layer-3 interface of the DWDM controller associated with the GMPLS UNI tunnel. This may be a POS, GigE or an OTN interface.

SRLG Announce

All SRLGs discovered through GMPLS signaling are announced to RSI once the tunnel is up. These SRLGs are withdrawn from RSI when the tunnel goes down.
SRLG Diversity

Note

SRLG diversity and SRLG exclusion represent the same function.

Support is added for signaling SRLG based diversity requirements, based on the XRO SRLG sub-object defined in RFC 4874. The use of SRLGs removes the restrictions of LSP based diversity, as SRLGs are flooded throughout the optical network, and by their very nature, reduce the risk of concurrent failure.

SRLG diversity is configured under the XRO attribute-set.

Head UNI-C Behavior

SRLG diversity is configured at the tunnel head. Individual SRLG exclusions are added to an XRO attribute-set; each is specified as either best-effort or mandatory (strict). Whenever any exclusion is specified, an XRO object is added to the Path message by the head UNI-C. The XRO contains a SRLG sub-object for each specified SRLG. The SRLG exclusions may coexist in the same XRO with LSP exclusions.

The XRO attribute-set is associated with tunnel path options in the same manner as for LSP exclusions.

If a SRLG with a strict exclusion matches an SRLG configured on the local DWDM controller, the bring-up attempt fails.

The SRLG exclusions requested by the head UNI-C are processed by the ingress UNI-N node during path calculation for the tunnel.

Tail UNI-C Behavior

On receiving a Path message containing an XRO, the tail UNI-C inspects each SRLG sub-object. If a SRLG sub-object, with a strict exclusion, matches an SRLG configured on the local DWDM controller, the Path message is rejected and a path-error is generated with error codes. No action is taken if the SRLG sub-object specifies a best-effort exclusion.

Multi-Layer Restoration - Optical

Multi-Layer Restoration-Optical (MLR-O) involves restoration from failures in the optical network that can leverage the same router interfaces at both ends.

Optical restoration involves the repair of a failure by the optical network locally. Although the routers may see loss of light until the failure is repaired, there is no signaling involving the routers, and from the routers perspective the GMPLS UNI LSP remains unchanged.

Optical Restoration: Same Wavelength

When a failure occurs on a physical link within the optical network, the routers identify that the link is down and Layer 3 protection mechanisms, such as FRR, are used to minimize the traffic loss. The optical network re-routes the GMPLS connection to an alternative path. This is done without any involvement of the routers.

Limitation

A significant limitation of optical restoration in this case, is that the wavelength in use for the connection cannot be changed. This is because the wavelength must be the same along the entire path and cannot be
changed without end-to-end signaling. The constraints imposed on the connection during its initial signaling are also unchanged, which may reduce the chance of finding an alternative path.

Optical Restoration: Wavelength Change

Optical restoration may occur with an associated wavelength change, in the case where the optical network finds an alternative path with the same constraints as were originally signaled, but using a different wavelength. Some signaling is required, since the wavelength (and therefore the labels) used by the GMPLS connection are to change.

Consider a failure within the optical network on the path of a GMPLS UNI LSP. The restoration proceeds as in the previous case (same wavelength), but the new path found, uses a different wavelength. The ingress UNI-N then sends a path-error message indicating the new wavelength to be used; this has error code 24 (routiing), sub-error 6 (unacceptable label set) and contains a suggested-label sub-object with the new label to be used. The head UNI-C then signals a new LSP with the new wavelength.

Although the wavelength in use may change in this case, the constraints used in signaling the original LSP remain unchanged.

How to Implement GMPLS UNI

A new submode is introduced under the main TE submode to enable GMPLS UNI and to contain GMPLS UNI configuration.

To implement GMPLS UNI, follow these procedures:

Configuring TE for GMPLS UNI

TE configuration specific to packet tunnels does not affect GMPLS UNI tunnels.

To implement TE configuration for GMPLS UNI, follow these procedures:

Enabling GMPLS UNI Submode

Perform this task to enable GMPLS UNI configuration submode and to configure GMPLS UNI tunnels.

Note

Removal of the GMPLS UNI submode results in the removal of all configuration within it, including any other parser submode, and the immediate destruction of all GMPLS UNI tunnels.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. gmpls optical-uni
4. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>gmpls optical-uni</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters GMPLS UNI configuration submode.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# gmpls optical-uni</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-gmpls)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring GMPLS UNI Controller

Perform this task to setup a GMPLS tail in MPLS-TE configuration. This task enables GMPLS UNI controller submode to configure controllers for establishing GMPLS UNI tunnels. This is the minimal configuration required at the tunnel tail.

Note

Removal of the GMPLS UNI controller submode results in the immediate destruction of any GMPLS tunnel established over the controller referenced.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. gmpls optical-uni
4. controller dwdm interface
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the GMPLS UNI Controller as a Tunnel Head

Perform this task to configure the tunnel properties for a GMPLS UNI controller. This configuration designates the controller as a tunnel-head, rather than a tunnel tail. After you configure the tunnel properties, the incoming path messages are rejected and any existing tailend tunnel is torn down.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. gmpls optical-uni
4. controller dwdm interface
5. tunnel-properties
6. tunnel-id number
7. destination ipv4 unicast address
8. path-option 10 no-ero lockdown
9. commit

DETAILED STEPS

### Command or Action	Purpose
Step 1 configure | Enters MPLS-TE configuration mode.
Step 2 mpls traffic-eng | Enters GMPLS UNI configuration submode.
Step 3 gmpls optical-uni | Enters GMPLS UNI configuration submode.
Configuring Other Tunnel Properties for a GMPLS UNI Tunnel

Perform this task to configure the optional tunnel properties for a GMPLS UNI tunnel. This configuration is optional, and if omitted, the GMPLS tunnel is established with the default property values.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. gmpls optical-uni
4. controller dwdm interface
5. tunnel-properties
6. priority setup-priority hold-priority
7. record-route
8. signalled-name name
9. logging events lsp-status state
10. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>
| **Step 2** | mpls traffic-eng
Example:
RP/0/RSP0/CPU0:router(config)# mpls traffic-eng |
| **Step 3** | gmpls optical-uni
Example:
RP/0/RSP0/CPU0:router(config-mpls-te)# gmpls optical-uni |
| **Step 4** | controller dwdm interface
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls)# controller dwdm 0/1/0/1 |
| **Step 5** | tunnel-properties
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-cntl)# tunnel-properties |
| **Step 6** | priority setup-priority hold-priority
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# priority 3 2 |
| **Step 7** | record-route
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# record-route |

Implementing GMPLS UNI

Configuring Other Tunnel Properties for a GMPLS UNI Tunnel

Step 5
Enters the submode to configure tunnel-specific information for a GMPLS UNI controller.

Step 6
Specifies the priority for a GMPLS tunnel. The default priority value is 7 for both setup and hold priorities.
Note
The setup-priority and hold-priority values are numbers ranging from 0 to 7, where 0 represents the highest priority. The hold-priority must be equal or higher (numerically less) than the setup-priority.

Step 7
Enables record-route functionality for a GMPLS tunnel.
Configuring LSP Diversity

To configure an XRO attribute-set as part of the path-option for MPLS-TE, and to specify exclusions for an attribute set for LSP diversity, follow these procedures:

Configuring XRO Attribute-set

Perform this task to configure XRO attribute set in the GMPLS UNI tunnel path-option, under MPLS-TE submode.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. gmpls optical-uni
4. controller dwdm *interface*
5. tunnel-properties
6. path-option 10 no-ero [xro-attribute-set *name*] lockdown
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
</tbody>
</table>
| **Step 2** mpls traffic-eng
Example:
RP/0/RSP0/CPU0:router(config)# mpls traffic-eng | |
| **Step 3** gmpls optical-uni
Example:
RP/0/RSP0/CPU0:router(config)# gmpls optical-uni | Enters GMPLS UNI configuration submode. |
Configuring Connection Diversity

Perform this task to specify exclusions for an attribute set for LSP diversity, under MPLS-TE attribute-set configuration mode.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. attribute-set xro name
4. exclude [best-effort | strict] lsp source source-address destination destination-address tunnel-id tunnel-id extended-tunnel-id extended-tunnel-id [lsp-id lsp-id]
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
</tbody>
</table>

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# gmpls optical-uni</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>controller dwdm interface</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-gmpls)# controller dwdm 0/1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>tunnel-properties</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-gmpls-cntl)# tunnel-properties</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>path-option 10 no-ero [xro-attribute-set name</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# path-option 10 no-ero xro-attribute-set A01 lockdown</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
</tr>
</tbody>
</table>

Cisco ASR 9000 Series Aggregation Services Router MPLS Configuration Guide, Release 6.0.x
Configuring LMP for GMPLS UNI

To implement LMP configuration for GMPLS UNI, follow these procedures:

Configuring Optical Router ID

Perform this task to enable GMPLS UNI LMP functionality and to configure LMP unicast router ID.

SUMMARY STEPS

1. configure
2. lmp
3. gmpls optical-uni
4. router-id ipv4 unicast address
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>lmp</td>
<td>Enters LMP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>gmpls optical-uni</td>
<td>Enters GMPLS UNI configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring an LMP Neighbor

Perform this task to configure an LMP neighbor for a GMPLS UNI tunnel.

SUMMARY STEPS

1. configure
2. lmp
3. gmpls optical-uni
4. neighbor *name*
5. ipcc routed
6. router-id ipv4 unicast *address*
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters LMP configuration mode.</td>
</tr>
<tr>
<td>Step 2 lmp</td>
<td>Enters LMP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# lmp</td>
<td></td>
</tr>
<tr>
<td>Step 3 gmpls optical-uni</td>
<td>Enters GMPLS UNI configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-lmp)# gmpls optical-uni</td>
<td></td>
</tr>
<tr>
<td>Step 4 neighbor name</td>
<td>Specifies an LMP neighbor for GMPLS and enters the LMP GMPLS UNI neighbor configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-lmp-gmpls-uni)# neighbor name</td>
<td></td>
</tr>
<tr>
<td>Step 4 router-id ipv4 unicast address</td>
<td>Configures the LMP unicast router ID for GMPLS.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-lmp-gmpls-uni)# router-id ipv4 unicast 10.10.4.4</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>neighbor nbr1</td>
<td></td>
</tr>
</tbody>
</table>

Step 5

ipcc routed

Example:

```
RP/0/RSP0/CPU0:router(config-lmp-gmpls-uni-nbr-nbr1)# ipcc routed
```

Step 6

router-id ipv4 unicast address

Example:

```
RP/0/RSP0/CPU0:router(config-lmp-gmpls-uni-nbr-nbr1)# router-id ipv4 unicast 10.10.4.5
```

Step 7

commit

Configuring an LMP Controller

Perform this task to configure an LMP link for a GMPLS UNI controller.

SUMMARY STEPS

1. configure
2. lmp
3. gmpls optical-uni
4. controller dwdm controller
5. neighbor name
6. link-id ipv4 unicast address
7. neighbor link-id ipv4 unicast address
8. neighbor interface-id unnumbered interface-id
9. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>lmp</td>
<td>Enters LMP configuration mode.</td>
</tr>
<tr>
<td>gmpls optical-uni</td>
<td>Enters GMPLS UNI configuration submode.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config)# lmp
RP/0/RSP0/CPU0:router(config-lmp)# gmpls
```
Command or Action

- **optical-uni**
- **controller dwdm controller**
- **neighbor name**
- **link-id ipv4 unicast address**
- **neighbor link-id ipv4 unicast address**
- **neighbor interface-id unnumbered interface-id**
- **commit**

Purpose

- Specifies a controller for GMPLS UNI.
- Specifies an LMP neighbor for GMPLS and enters the LMP GMPLS UNI neighbor configuration submode.
- Specifies the optical interface address for an LMP link for a GMPLS UNI controller.
- Specifies the neighbor's optical address of an LMP link for a GMPLS UNI controller.
- Specifies the neighbor's optical interface ID of an LMP link for a GMPLS UNI controller.

Configuring RSVP Optical Refresh Interval and Missed Count

Perform this task to configure optical refresh interval under the RSVP controller submode and to configure the number of missed refresh messages allowed before optical tunnel states are deleted.

SUMMARY STEPS

1. configure
2. rsvp
3. controller dwdm interface
4. signalling refresh out-of-band interval \textit{interval}
5. signalling refresh out-of-band missed \textit{miss-count}
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 rsvp</td>
<td></td>
</tr>
<tr>
<td>\textit{Example:} RP/0/RSP0/CPU0:router(config)# rsvp</td>
<td>Enters RSVP configuration mode.</td>
</tr>
<tr>
<td>Step 3 controller dwdm \textit{interface}</td>
<td></td>
</tr>
<tr>
<td>\textit{Example:} RP/0/RSP0/CPU0:router(config-rsvp)# controller dwdm 0/1/0/1</td>
<td>Configures a controller for establishing a GMPLS UNI tunnel.</td>
</tr>
<tr>
<td>Step 4 signalling refresh out-of-band interval \textit{interval}</td>
<td></td>
</tr>
<tr>
<td>\textit{Example:} RP/0/RSP0/CPU0:router(config-rsvp-cntl)# signalling refresh out-of-band interval 200</td>
<td>Configures optical refresh interval. The interval argument is the interval (in seconds) at which refresh messages are sent and expected to be received. The range is 180 to 86400 (a refresh-interval of 1 day).</td>
</tr>
<tr>
<td>Step 5 signalling refresh out-of-band missed \textit{miss-count}</td>
<td></td>
</tr>
<tr>
<td>\textit{Example:} RP/0/RSP0/CPU0:router(config-rsvp-cntl)# signalling refresh out-of-band missed 30</td>
<td>Configures number of missed refresh messages allowed before optical tunnel states are deleted. The miss-count argument is the number of refresh messages, expected at the configured refresh-interval, which can be missed before optical tunnel states time out. The accepted range is 1 to 48. The default value is 12.</td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
</tbody>
</table>

nLight Enhancements: Configurations and Verifications

These topics describe the configurations and verifications for the nLight enhancements made:

Configuring an ERO for a GMPLS Tunnel

Perform this task to configure an ERO for a GMPLS tunnel.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. `gmpls optical-uni`
4. `controller dwdm interface`
5. `tunnel-properties`
6. `tunnel-id number`
7. `logging events lsp-status state`
8. `destination ipv4 unicast address`
9. `path-option number explicit name name lockdown verbatim`
10. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure
Example:
<code>RP/0/RSP0/CPU0:router# configure</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng
Example:
<code>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>gmpls optical-uni
Example:
<code>RP/0/RSP0/CPU0:router(config-mpls-te)# gmpls optical-uni</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>controller dwdm interface
Example:
<code>RP/0/RSP0/CPU0:router(config-te-gmpls-uni)# controller dwdm 0/2/1/1</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>tunnel-properties
Example:
<code>RP/0/RSP0/CPU0:router(config-te-gmpls-cntl)# tunnel-properties</code>
<code>RP/0/RSP0/CPU0:router(config-te-gmpls-tun)#</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>tunnel-id number
Example:
<code>RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# tunnel-id 1001</code></td>
</tr>
</tbody>
</table>
Step 7

Command or Action: Configure events to generate system log messages when state changes occur on the GMPLS tunnel. If omitted, no events will result in the generation of system log messages.

Example: Configure events to generate system log messages when state changes occur on the GMPLS tunnel. If omitted, no events will result in the generation of system log messages.

```
RP/0/RSP0/CPU0:router(config-te-gmpls-tun) #
logging events lsp-status state
```

Step 8

Command or Action: Configures a tunnel destination for a headend router of a GMPLS tunnel. The destination argument is an IPv4 address.

Example: Configures a tunnel destination for a headend router of a GMPLS tunnel. The destination argument is an IPv4 address.

```
RP/0/RSP0/CPU0:router(config-te-gmpls-tun) #
destination ipv4 unicast 102.3.233.1
```

Step 9

Command or Action: Specifies an explicit path for a headend router of a GMPLS tunnel.

Example: Specifies an explicit path for a headend router of a GMPLS tunnel.

```
RP/0/RSP0/CPU0:router(config-te-gmpls-tun) #
path-option 10 explicit name explicit_path_a
```

Step 10

Command or Action: Specifies a tunnel destination for a headend router of a GMPLS tunnel. The destination argument is an IPv4 address.

Example: Specifies a tunnel destination for a headend router of a GMPLS tunnel. The destination argument is an IPv4 address.

```
RP/0/RSP0/CPU0:router(config-te-gmpls-tun) #
destination ipv4 unicast 102.3.233.1
```

Verifying an ERO Configuration: Example

The following example shows how to verify an ERO configuration:

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels 1001 detail

Name: GMPLS-UNI-dwdm0_3_0_0 Destination: 2.2.2.2
Signalled-Name: head_ot1001_2.2.2.2
GMPLS UNI tunnel controlling link dwdm0/3/0/0, tunnel-id: 1001
Status: Admin: up Oper: up Path: valid Signalling: connected

path option 10, (LOCKDOWN verbatim) type explicit explicit_path_a (Basis for Setup, path weight 0)
G-FID: Ox0800 (derived from egress interface properties)
Creation Time: Fri Jul 17 08:41:21 ---- (3d07h ago)

Current LSP Info:
Instance: 20
Uptime: 00:00:33 (since Mon Jul 20 ---- 15:45:22)
Upstream label:
  Optical label:
    Grid : DWDM
    Channel spacing : 50 GHz
    Identifier : 0
    Channel Number : 60
Downstream label:
  Optical label:
    Grid : DWDM
    Channel spacing : 50 GHz
    Identifier : 0
    Channel Number : 60
```
Configuring Wavelength for a Path Option

Perform this task to configure wavelength for a path option for a GMPLS tunnel.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. gmpls optical-uni
4. controller dwdm interface
5. tunnel-properties
6. tunnel-id number
7. destination ipv4 unicast address
8. path-option number explicit name name signaled-label dwdm wavelength dwdm channel number lockdown verbatim
9. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>gmpls optical-uni</td>
<td>Enters GMPLS UNI configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# gmpls optical-uni</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
</tr>
<tr>
<td>controller dwdm interface
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-uni)# controller dwdm 0/3/0/0</td>
<td>Enters GMPLS UNI controller submode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel-properties
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-cntl)# tunnel-properties
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)#</td>
<td>Enters the submode to configure tunnel-specific information for a GMPLS UNI controller.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>tunnel-id number
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# tunnel-id 1001</td>
<td>Specifies a tunnel-ID for a headend router of a GMPLS tunnel. The tunnel-ID is a 16-bit number ranging from 0 to 65535.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>destination ipv4 unicast address
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# destination ipv4 unicast 2.2.2.2</td>
<td>Specifies a tunnel destination for a headend router of a GMPLS tunnel. The destination argument is an IPv4 address.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>path-option number explicit name name signaled-label dwdm wavelength dwdm channel number lockdown verbatim
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# path-option 10 explicit name exp_all_loose_hop signaled-label dwdm wavelength 10 lockdown verbatim</td>
<td>Specifies a wavelength for the path option. The DWDM channel number range is 1 to 89. The DWDM channel number configured is formulated as 61-channel number. So, if we want channel number 42 (in the supported channel list), the configured "DWDM channel number" will be 61 - 42 = 19.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 9</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>commit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuring and Verifying Wavelength Configuration: Examples

The following sequence of examples show how to add a wavelength to a path option for a GMPLS tunnel and verify the outgoing label is set accordingly.

This example shows how to configure a GMPLS tunnel with no ERO path option.

```
gmpls optical-uni
controller dwdm0/3/0/0
tunnel-properties
tunnel-id 1001
```

destination ipv4 unicast 2.2.2.2
path-option 10 no-ero lockdown

This example shows how to verify the default values for the outgoing label (UNI-N source, channel number same as Default Channel) and the list of valid wavelengths.

```
RP/0/RP0/CPU0:router#show mpls traffic-eng link-management optical-uni controller dwdm 0/3/0/0

Optical interface: dwdm0/3/0/0
Overview:
  IM state: Up
  Child interface: POS0_3_0_0: IM state Up
  OLM/IMP state: Up
  Optical tunnel state: up
Connection:
  Tunnel role: Head
  Tunnel-id: 1001, LSP-id 21, Extended tunnel-id 1.1.1.1
  Tunnel source: 1.1.1.1, destination: 2.2.2.2
  Optical router-ids: Local: 1.1.1.1, Remote: 2.2.2.2
  Label source: UNI-N
Upstream label:
  Optical label:
    Grid : DWDM
    Channel spacing : 50 GHz
    Identifier : 0
    Channel Number : 60
Downstream label:
  Optical label:
    Grid : DWDM
    Channel spacing : 50 GHz
    Identifier : 0
    Channel Number : 60
  SRLG discovery: Disabled
  SRLG announcement: None
...
Optical capabilities:
  Controller type: DWDM
  Channel spacing: 50 GHz
  Default channel: 60
  89 supported channels:
    -28, -27, -26, -25, -24, -23, -22, -21
    -20, -19, -18, -17, -16, -15, -14, -13
    -12, -11, -10, -9, -8, -7, -6, -5
    -4, -3, -2, -1, 0, 1, 2, 3
    4, 5, 6, 7, 8, 9, 10, 11
    12, 13, 14, 15, 16, 17, 18, 19
    20, 21, 22, 23, 24, 25, 26, 27
    28, 29, 30, 31, 32, 33, 34, 35
    36, 37, 38, 39, 40, 41, 42, 43
    44, 45, 46, 47, 48, 49, 50, 51
    52, 53, 54, 55, 56, 57, 58, 59
    60
  Controller SRLGs
    None
```

This example shows how to set valid wavelength 10 (61 - 51) for the current path.
gmpls optical-uni
controller dwdm0/3/0/0
tunnel-properties
tunnel-id 1001
destination ipv4 unicast 2.2.2.2
path-option 10 explicit name explicit_all_loose_multi_hop signaled-label dwdm wavelength 10 lockdown verbatim
!
!

This example shows how to verify that the tunnel is up and the specified wavelength is used (label source is UNI-C and outgoing label is 51).

RP/0/RP0/CPU0:router# show mpls traffic-eng link-management optical-uni controller dwdm 0/3/0/0

Optical interface: dwdm0/3/0/0
Overview:
 IM state: Up
 Child interface: POS0_3_0_0: IM state Up
 OLM/LMP state: Up
 Optical tunnel state: up
Connection:
 Tunnel role: Head
 Tunnel-id: 1001, LSP-id 23, Extended tunnel-id 1.1.1.1
 Tunnel source: 1.1.1.1, destination: 2.2.2.2
 Optical router-ids: Local: 1.1.1.1, Remote: 2.2.2.2
 Label source: UNI-C
 Upstream label:
 Optical label:
 Grid : DWDM
 Channel spacing : 50 GHz
 Identifier : 0
 Channel Number : 51
 Downstream label:
 Optical label:
 Grid : DWDM
 Channel spacing : 50 GHz
 Identifier : 0
 Channel Number : 51
 SRLG discovery: Disabled
 SRLG announcement: None
...

Optical capabilities:
 Controller type: DWDM
 Channel spacing: 50 GHz
 Default channel: 60
 89 supported channels:
 -28, -27, -26, -25, -24, -23, -22, -21
 -20, -19, -18, -17, -16, -15, -14, -13
 -12, -11, -10, -9, -8, -7, -6, -5
 -4, -3, -2, -1, 0, 1, 2, 3
 4, 5, 6, 7, 8, 9, 10, 11
 12, 13, 14, 15, 16, 17, 18, 19
 20, 21, 22, 23, 24, 25, 26, 27
 28, 29, 30, 31, 32, 33, 34, 35
 36, 37, 38, 39, 40, 41, 42, 43
 44, 45, 46, 47, 48, 49, 50, 51
 52, 53, 54, 55, 56, 57, 58, 59
 60
Controller SRLGs
None

This example shows how to verify the upstream label on the tunnel tail.

```
RP/0/RP0/CPU0:router#show mpls traffic-eng link-management optical-uni controller dwdm 0/3/0/0
```

<table>
<thead>
<tr>
<th>Optical interface: dwdm0/3/0/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview:</td>
</tr>
<tr>
<td>IM state: Up</td>
</tr>
<tr>
<td>Child interface: POS0_3_0_0: IM state Up</td>
</tr>
<tr>
<td>OLM/LMP state: Up</td>
</tr>
<tr>
<td>Optical tunnel state: up</td>
</tr>
<tr>
<td>Connection:</td>
</tr>
<tr>
<td>Tunnel role: Tail</td>
</tr>
<tr>
<td>Tunnel-id: 1001, LSP-id 23, Extended tunnel-id 1.1.1.1</td>
</tr>
<tr>
<td>Tunnel source: 1.1.1.1, destination: 2.2.2.2</td>
</tr>
<tr>
<td>Optical router-ids: Local: 2.2.2.2, Remote: 1.1.1.1</td>
</tr>
<tr>
<td>Label source: UNI-N</td>
</tr>
<tr>
<td>Upstream label:</td>
</tr>
<tr>
<td>Optical label:</td>
</tr>
<tr>
<td>Grid : DWDM</td>
</tr>
<tr>
<td>Channel spacing : 50 GHz</td>
</tr>
<tr>
<td>Identifier : 0</td>
</tr>
<tr>
<td>Channel Number : 51</td>
</tr>
<tr>
<td>Downstream label:</td>
</tr>
<tr>
<td>Optical label:</td>
</tr>
<tr>
<td>Grid : DWDM</td>
</tr>
<tr>
<td>Channel spacing : 50 GHz</td>
</tr>
<tr>
<td>Identifier : 0</td>
</tr>
<tr>
<td>Channel Number : 51</td>
</tr>
<tr>
<td>SRLG discovery: Disabled</td>
</tr>
<tr>
<td>SRLG announcement: None</td>
</tr>
</tbody>
</table>

```
Optical capabilities:
Controller type: DWDM
Channel spacing: 50 GHz
Default channel: 60
89 supported channels:
-28, -27, -26, -25, -24, -23, -22, -21
-20, -19, -18, -17, -16, -15, -14, -13
-12, -11, -10, -9, -8, -7, -6, -5
-4, -3, -2, -1, 0, 1, 2, 3
4, 5, 6, 7, 8, 9, 10, 11
12, 13, 14, 15, 16, 17, 18, 19
20, 21, 22, 23, 24, 25, 26, 27
28, 29, 30, 31, 32, 33, 34, 35
36, 37, 38, 39, 40, 41, 42, 43
44, 45, 46, 47, 48, 49, 50, 51
52, 53, 54, 55, 56, 57, 58, 59
60
Controller SRLGs
None
```

Configuring Multiple Path Options

Perform this task to configure multiple path options for a single tunnel.
If a tunnel is up and a lower index path option is configured, the tunnel does not try the lower index path option, unless for some reason the tunnel is flapped or reoptimized.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. gmpls optical-uni
4. controller dwdm interface
5. tunnel-properties
6. tunnel-id number
7. logging events lsp-status state
8. destination ipv4 unicast address
9. path-option number explicit name name lockdown verbatim
10. path-option number explicit name name lockdown verbatim
11. path-option number no-ero lockdown
12. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters GMPLS UNI configuration submode.</td>
</tr>
<tr>
<td>gmpls optical-uni</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# gmpls optical-uni</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters GMPLS UNI controller submode.</td>
</tr>
<tr>
<td>controller dwdm interface</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-gmpls-uni)# controller dwdm 0/3/0/0</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| **Step 5** | tunnel-properties
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-cntl)#
tunnel-properties
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# | Enters the submode to configure tunnel-specific information for a GMPLS UNI controller. |
| **Step 6** | tunnel-id number
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)#
tunnel-id 1001 | Specifies a tunnel-ID for a headend router of a GMPLS tunnel. The tunnel-ID is a 16-bit number ranging from 0 to 65535. |
| **Step 7** | logging events lsp-status state
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)#
logging events lsp-status state | Configure events to generate system log messages when state changes occur on the GMPLS tunnel. If omitted, no events will result in the generation of system log messages. |
| **Step 8** | destination ipv4 unicast address
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)#
destination ipv4 unicast 2.2.2.2 | Specifies a tunnel destination for a headend router of a GMPLS tunnel. The destination argument is an IPv4 address. |
| **Step 9** | path-option number explicit name name lockdown verbatim
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)#
path-option 10 explicit name explicit_path_a
lockdown verbatim | Specifies a path option for a headend router of a GMPLS tunnel.
The path-option range is 1 to 1000. |
| **Step 10** | path-option number explicit name name lockdown verbatim
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)#
path-option 20 explicit name explicit_path_b
lockdown verbatim | Specifies a path option.
The path-option range is 1 to 1000. |
| **Step 11** | path-option number no-ero lockdown
Example:
RP/0/RSP0/CPU0:router(config-te-gmpls-tun)#
path-option 30 no-ero lockdown | Specifies a path option with no ERO. |
Configuring and Verifying Multiple Path Options: Examples

This example shows how to configure multiple path options.

```plaintext
mpls traffic-eng
gmpls optical-uni
    controller dwdm0/2/0/2
    tunnel-properties
        path-option 10 explicit name explicit_path_a lockdown verbatim
        path-option 20 explicit name explicit_path_b lockdown verbatim
        path-option 30 no-ero lockdown

! The following sequence of examples show how to configure a GMPLS tunnel, add a new path option with a lower index than the path option in use, flap the tunnel and verify that the new path option (with a lower index) is used.

This example shows how to configure a GMPLS tunnel with one path option.

```plaintext
gmpls optical-uni
 controller dwdm0/3/0/0/0
 tunnel-properties
 tunnel-id 1001
 destination ipv4 unicast 2.2.2.2
 path-option 10 explicit name explicit_path_a lockdown verbatim

! This example shows how to verify the tunnel path and status with a show command.
```

```
RP/0/RP0/CPU0:router#show mpls traffic-eng tunnels 1001 detail
Name: GMPLS-UNI-dwdm0_3_0_0 Destination: 2.2.2.2
 Signalled-Name: head_ot1001_2.2.2.2
 GMPLS UNI tunnel controlling link dwdm0/3/0/0, tunnel-id: 1001
 Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 10, (LOCKDOWN verbatim) type explicit explicit_path_a (Basis for Setup, path weight 0)
 G-PID: 0x0800 (derived from egress interface properties)
 Creation Time: Fri Jul 17 08:41:21 ---- (3d06h ago)
 ...
This example shows how to add another path option with a lower index.
```

```
gmpls optical-uni
 controller dwdm0/3/0/0/0
 tunnel-properties
 tunnel-id 1001
 destination ipv4 unicast 2.2.2.2
 path-option 1 no-ero lockdown
```
Flag the tunnel (or trigger reoptimization) and verify that the tunnel comes up on the path with a lower index.

```
RP/0/RP0/CPU0:router# show mpls traffic-eng tunnels 1001 detail
Name: GMPLS-UNI-dwdm0_3_0_0 Destination: 2.2.2.2
Signalled-Name: head_ot1001_2.2.2.2
GMPLS UNI tunnel controlling link dwdm0/3/0/0, tunnel-id: 1001
Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 1, (LOCKDOWN) type no-ero (Basis for Setup, path weight 0)
Last Signalled Error : Mon Jul 20 17:03:00 2015
 Info: [24] PathErr(2,2)-(Admin, reason unknown) at 50.0.0.2
path option 10, (LOCKDOWN verbatim) type explicit explicit_all_loose_multi_hop
Last Signalled Error : Mon Jul 20 17:03:00 ----
 Info: [25] PathErr(2,2)-(Admin, reason unknown) at 50.0.0.2
```
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/O/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/O/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>gmpls optical-uni</td>
<td>Enters GMPLS UNI configuration submode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/O/RSP0/CPU0:router(config-mpls-te)# gmpls optical-uni</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>controller dwdm <em>interface</em></td>
<td>Enters GMPLS UNI controller submode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/O/RSP0/CPU0:router(config-te-gmpls-uni)# controller dwdm 0/2/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>tunnel-properties</td>
<td>Enters the submode to configure tunnel-specific information for a GMPLS UNI controller.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/O/RSP0/CPU0:router(config-te-gmpls-cntl)# tunnel-properties</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/O/RSP0/CPU0:router(config-te-gmpls-tun)#</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>logging events lsp-status state</td>
<td>Configure events to generate system log messages when state changes occur on the GMPLS tunnel. If omitted, no events will result in the generation of system log messages.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/O/RSP0/CPU0:router(config-te-gmpls-tun)# logging events lsp-status state</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>tunnel-id <em>number</em></td>
<td>Specifies a tunnel-ID for a headend router of a GMPLS tunnel. The tunnel-ID is a 16-bit number ranging from 0 to 65535.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/O/RSP0/CPU0:router(config-te-gmpls-tun)# tunnel-id 100</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>record srlg</td>
<td>Enables SRLG recording.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Verifying SRLG Discovery Configuration: Examples

This example shows how to verify SRLG discovery configuration.

```
RP/0/0/CPU0:router#show mpls traffic-eng tunnels 100 detail
Name: GMPLS-UNI-dwdm0_2_0_0 Destination: 192.168.1.2
 Signalled-Name: rtrA_ot100_192.168.1.2
 GMPLS UNI tunnel controlling link dwdm0/2/0/0, tunnel-id: 100
 Status:
 Admin: up Oper: up Path: valid Signalling: connected
 path option 10, (LOCKDOWN) type no-ero (Basis for Setup, path weight 0)
 G-PID: 0x0800 (derived from egress interface properties)
 Creation Time: Mon Jul 20 19:32:03 ---- (00:48:02 ago)
 Config Parameters:
 Priority: 7 7 Affinity: 0x0/0xffff
 Path Protection: Not Enabled
 BFD Fast Detection: Disabled
 Reoptimization after affinity failure: Enabled
 SRLG discovery: Enabled

 ...!
 Soft Preemption: None
 SRLGs: mandatory collection
 Path Info:
 ...
 Resv Info:
 Record Route:
 IPv4 10.10.10.2, flags 0x0
 SRLGs: 21, 22, 23, 24
 Fspec: avg rate=10000 kbits, burst=1000 bytes, peak rate=10000 kbits
 Displayed 1 (of 3) heads, 0 (of 0) midpoints, 0 (of 2) tails
 Displayed 1 up, 0 down, 0 recovering, 0 recovered heads
```

This example shows how to verify SRLG discovery configuration at the headend and the tailend. The output shows the list of SRLGs.
Enabling SRLG Announce

Perform this task to enable SRLG announce. SRLG announce can be enabled on both headend and tailend.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. gmpls optical-uni
4. controller dwdm interface
5. announce srlgs
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# configure</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------------------</td>
</tr>
<tr>
<td><strong>Step 2</strong> mpls traffic-eng</td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> gmpls optical-uni</td>
<td>Enters GMPLS UNI configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# gmpls optical-uni</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> controller dwdm interface</td>
<td>Enters GMPLS UNI controller submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-gmpls-uni)# controller dwdm 0/1/0/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> announce srlgs</td>
<td>Announces discovered SRLGs to the system.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-te-gmpls-cntl)# announce srlgs</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> commit</td>
<td></td>
</tr>
</tbody>
</table>

### Verifying SRLG Announce Configuration: Example

The following example shows how to verify SRLG announce configuration:

```
RP/0/0/CPU0:router#show srlg
```

**System Information::**
- Interface Count : 2 (Maximum Interfaces Supported 512)
- Group Count : 0 (Maximum Groups Supported 50)
- Inherit Location Count : 0 (Maximum Inherit Locations Supported 10)
- Optical Interfaces Count : 5 (Maximum Optical Interfaces Supported 500)

**Interface** : GigabitEthernet0/2/0/4, Value Count : 0, Registrations : 2
**SRLG Values** :

**Interface** : GigabitEthernet0/2/0/5, Value Count : 0, Registrations : 2
**SRLG Values** :

**Interface:** GigabitEthernet0/2/0/0, Value Count : 4, References: 1
**SRLG Values** : 21, 22, 23, 24

**Optical Interface:** dwdm0/2/0/0, Value Count : 3, References: 2
**SRLG Values** : 11, 12, 13

**Optical Interface:** dwdm0/2/0/1, Value Count : 0, References: 1
**SRLG Values** :
Configuring SRLG Diversity

Perform this task to configure SRLG diversity with the best-effort or strict exclusion.

**SUMMARY STEPS**

1. `configure`
2. `mpls traffic-eng`
3. `attribute-set xro name`
4. `exclude [best-effort | strict] srlg value number`
5. `exit`
6. `gmpls optical-uni`
7. `controller dwdm interface`
8. `announce srlgs`
9. `tunnel-properties`
10. `logging events lsp-status state`
11. `tunnel-id number`
12. `record srlg`
13. `destination ipv4 unicast address`
14. `path-option number no-ero xro-attribute-set exclude_srlgs lockdown`
15. `commit`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><code>configure</code></td>
<td>Enters Global Configuration mode.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router# configure</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><code>mpls traffic-eng</code></td>
<td>Enters MPLS-TE configuration mode.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><code>attribute-set xro name</code></td>
<td>Enters the attribute set submode and specifies the attribute set name.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-te)# attribute-set xro exclude_srlgs</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Configuring SRLG Diversity

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong></td>
<td>**exclude [best-effort</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>exit</strong>&lt;br&gt;Example: RP/0/RSP0/CPU0:router(config-te-attribute-set)# exit</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>gmpls optical-uni</strong>&lt;br&gt;Example: RP/0/RSP0/CPU0:router(config-mpls-te)# gmpls optical-uni</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>controller dwdm interface</strong>&lt;br&gt;Example: RP/0/RSP0/CPU0:router(config-te-gmpls-uni)# controller dwdm 0/2/0/0</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>announce srlgs</strong>&lt;br&gt;Example: RP/0/RSP0/CPU0:router(config-te-gmpls-cntl)# announce srlgs</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>tunnel-properties</strong>&lt;br&gt;Example: RP/0/RSP0/CPU0:router(config-te-gmpls-cntl)# tunnel-properties RP/0/RSP0/CPU0:router(config-te-gmpls-tun)#</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><strong>logging events lsp-status state</strong>&lt;br&gt;Example: RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# logging events lsp-status state</td>
</tr>
</tbody>
</table>
### Implementing GMPLS UNI

#### Verifying SRLG Diversity Configuration: Example

The following example shows how to verify SRLG diversity configuration:

```
RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels 100 detail

Name: GMPLS-UNI-dwdm0_2_0_0 Destination: 192.168.1.2
Signalled-Name: rtrA ot100_192.168.1.2
GMPLS UNI tunnel controlling link dwdm0/2/0/0, tunnel-id: 100
Status:
 Admin: up Oper: up Path: valid Signalling: connected

 path option 10, (LOCKDOWN) type no-ero (Basis for Setup, path weight 0)
 XRO attribute-set: exclude_srlgs

 Best-effort, SRLG id 21
 Last Signalled Error: Mon Jul 20 20:55:33 ----
 Info: [5] PathErr(24,67)-(routing, route blocked by exclude route) at 10.10.10.2
 G-PID: 0x0800 (derived from egress interface properties)

Config Parameters:
 Priority: 7 7 Affinity: 0x0/0xffff
 Path Protection: Not Enabled
 BFD Fast Detection: Disabled
 Reoptimization after affinity failure: Enabled
 SRLG discovery: Enabled
```

---

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td><code>tunnel-id number</code></td>
<td>Specifies a tunnel-ID for a headend router of a GMPLS tunnel. The tunnel-ID is a 16-bit number ranging from 0 to 65535.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# tunnel-id 100</code></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td><code>record srlg</code></td>
<td>Enables SRLG recording.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# record srlg</code></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td><code>destination ipv4 unicast address</code></td>
<td>Specifies a tunnel destination for a headend router of a GMPLS tunnel. The destination argument is an IPv4 address.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# destination ipv4 unicast 192.168.1.2</code></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><code>path-option number no-ero xro-attribute-set exclude_srlgs lockdown</code></td>
<td>The XRO attribute set is attached to the GMPLS UNI tunnel through the path option. The path-option range is 1 to 1000.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> <code>RP/0/RSP0/CPU0:router(config-te-gmpls-tun)# path-option 10 no-ero xro-attribute-set exclude_srlgs lockdown</code></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>
Configuration Examples for GMPLS UNI

These configuration examples are provided for GMPLS UNI:

Configuring Head UNI-C for a GMPLS Tunnel: Example

This example shows the minimal head UNI-C configuration require to establish a GMPLS tunnel:

```
rsvp
 controller dwdm 0/1/0/1
 signalling refresh out-of-band interval 3600
 signalling refresh out-of-band missed 24
!
! mpls traffic-eng
mpls optical-uni
 controller dwdm 0/1/0/1
 tunnel-properties
```
Configuring Tail UNI-C for a GMPLS Tunnel: Example

This example shows the minimal tail UNI-C configuration required to establish a GMPLS tunnel:

```
tunnel-id 100
destination 100.20.20.20
path-option 10 no-ero
!
!
!
lmp
gmpls optical-uni
router-id 100.11.11.11
neighbor nbr_A
 ipcc routed
 neighbor router-id ipv4 unicast 100.12.12.12
!
controller dwdm 0/1/0/1
 neighbor nbr_A
 link-id ipv4 unicast 192.168.100.1
 neighbor link-id ipv4 unicast 192.168.100.2
 neighbor interface-id unnumbered 13
!
!
```

**Note**

The controller must be specified under the GMPLS UNI submode to inform TE that incoming GMPLS path messages are to be accepted and processed.

```
rsvp
controller dwdm 0/1/0/1
 signalling refresh out-of-band interval 3600
 signalling refresh out-of-band missed 24
!
mpls traffic-eng
gmpls optical-uni
 controller dwdm 0/1/0/1
!
!
!
lmp
gmpls optical-uni
router-id 100.20.20.20
neighbor nbr_B
 ipcc routed
 neighbor router-id ipv4 unicast 100.19.19.19
!
controller dwdm 0/1/0/1
 neighbor nbr_B
 link-id ipv4 unicast 192.168.103.2
 neighbor link-id ipv4 unicast 192.168.103.1
 neighbor interface-id unnumbered 22
!
```
Configuring LSP Diversity: Example

This example shows the configuration for two diverse LSPs:

```
! mpls traffic-eng
attribute-set xro exclude-tun1
 exclude best-effort lsp source 88.0.0.8 destination 10.0.0.2 tunnel-id 1
extended-tunnel-id 88.0.0.8
!
attribute-set xro exclude-tun2
 exclude strict lsp source 88.0.0.8 destination 10.0.1.2 tunnel-id 2 extended-tunnel-id
88.0.0.8 lsp-id 2
!
gmpls optical-uni
controller dwdm 0/1/0/0
tunnel-properties
 logging events lsp-status state
tunnel-id 1
destination ipv4 unicast 10.0.0.2
 path-option 10 no-ero xro-attribute-set exclude-tun2
!
controller dwdm 0/1/0/1
tunnel-properties
 logging events lsp-status state
tunnel-id 2
 destination ipv4 unicast 10.0.1.2
 path-option 10 no-ero xro-attribute-set exclude-tun1
!
!
```

Additional References

For additional information related to implementing GMPLS UNI, refer to the following references:

**Related Documents**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMPLS UNI commands</td>
<td>GMPLS UNI Commands module in <em>MPLS Command Reference for Cisco ASR 9000 Series Routers</em></td>
</tr>
<tr>
<td>MPLS Traffic Engineering commands</td>
<td><em>MPLS Traffic Engineering commands module in MPLS Command Reference for Cisco ASR 9000 Series Routers</em></td>
</tr>
<tr>
<td>RSVP commands</td>
<td><em>RSVP commands module in MPLS Command Reference for Cisco ASR 9000 Series Routers</em></td>
</tr>
</tbody>
</table>
## Related Topic and Document Title

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Getting started material</td>
<td><em>Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide</em></td>
</tr>
<tr>
<td>Information about user groups and task</td>
<td><em>Configuring AAA Services module in System Security Configuration</em></td>
</tr>
<tr>
<td>IDs</td>
<td><em>Guide for Cisco ASR 9000 Series Routers</em></td>
</tr>
</tbody>
</table>

## Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support</td>
<td>—</td>
</tr>
<tr>
<td>for existing standards has not been modified by this feature.</td>
<td></td>
</tr>
</tbody>
</table>

## MIBs

<table>
<thead>
<tr>
<th>MIBs Link</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB</td>
</tr>
</tbody>
</table>

## RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 3471</td>
<td>Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description</td>
</tr>
<tr>
<td>RFC 4872</td>
<td>RSVP-TE Extensions in Support of End-to-End Generalized Multi-Protocol Label Switching (GMPLS) Recovery</td>
</tr>
<tr>
<td>RFC 6205</td>
<td>Generalized Labels for Lambda-Switch-Capable (LSC) Label Switching Routers</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>
Implementing MPLS OAM

- Implementing MPLS OAM, on page 391

Implementing MPLS OAM

MPLS Operations, Administration, and Maintenance (OAM) helps service providers to monitor label-switched paths (LSPs) and quickly isolate MPLS forwarding problems to assist with fault detection and troubleshooting in an MPLS network. This module describes MPLS LSP Ping and Traceroute features which can be used for failure detection and troubleshooting of MPLS networks.

MPLS LSP Ping

The MPLS LSP Ping feature is used to check the connectivity between Ingress LSR and egress LSRs along an LSP. MPLS LSP ping uses MPLS echo request and reply messages, similar to Internet Control Message Protocol (ICMP) echo request and reply messages, to validate an LSP. While ICMP echo request and reply messages validate IP networks, MPLS echo and reply messages validate MPLS networks. The MPLS echo request packet is sent to a target router through the use of the appropriate label stack associated with the LSP to be validated. Use of the label stack causes the packet to be forwarded over the LSP itself. The destination IP address of the MPLS echo request packet is different from the address used to select the label stack. The destination IP address is defined as a 127.x.y.z/8 address and it prevents the IP packet from being IP switched to its destination, if the LSP is broken.

An MPLS echo reply is sent in response to an MPLS echo request. The reply is sent as an IP packet and it is forwarded using IP, MPLS, or a combination of both types of switching. The source address of the MPLS echo reply packet is an address obtained from the router generating the echo reply. The destination address is the source address of the router that originated the MPLS echo request packet. The MPLS echo reply destination port is set to the echo request source port.

The following figure shows MPLS LSP ping echo request and echo reply paths.
By default, the **ping mpls ipv4** command tries to determine the Forwarding Equivalence Class (FEC) being used automatically. However, this is only applicable at head-end and works only if the FEC at the destination is same as the source. If the source and destination FEC types are not the same, the **ping mpls ipv4** command may fail to identify the targeted FEC type. You can overcome this limitation by specifying the FEC type in MPLS LSP ping using the **fec-type** command option. If the user is not sure about the FEC type at the transit or the destination, or it may change through network, use of the generic FEC type command option is recommended. Generic FEC is not coupled to a particular control plane and allows path verification when the advertising protocol is unknown, or may change during the path of the echo request. If you are aware of the destination FEC type, specify the target FEC as BGP or LDP.

### Configuration Examples

This example shows how to use MPLS LSP ping to test the connectivity of an IPv4 LDP LSP. The destination is specified as a Label Distribution Protocol (LDP) IPv4 address.

```
RP/0/RSP0/CPU0:router# ping mpls ipv4 10.1.1.2/32 verbose
Sun Nov 15 11:27:43.070 UTC
Sending 5, 100-byte MPLS Echos to 10.1.1.2/32, timeout is 2 seconds, send interval is 0 msec:
Type escape sequence to abort.

! size 100, reply addr 10.1.0.2, return code 3
! size 100, reply addr 10.1.0.2, return code 3
! size 100, reply addr 10.1.0.2, return code 3
! size 100, reply addr 10.1.0.2, return code 3
! size 100, reply addr 10.1.0.2, return code 3
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/2/4 ms
```

```
In this example, the destination is specified as a Label Distribution Protocol (LDP) IPv4 prefix and Forwarding Equivalence Class (FEC) type is specified as generic.
```

```
RP/0/RSP0/CPU0:router# ping mpls ipv4 10.1.1.2/32 fec-type generic
Wed Nov 25 03:36:33.143 UTC
Sending 5, 100-byte MPLS Echos to 10.1.1.2/32, timeout is 2 seconds, send interval is 0 msec:
```

Type escape sequence to abort.

!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/2/3 ms

In this example, the destination is specified as a Label Distribution Protocol (LDP) IPv4 prefix and the FEC type is specified as BGP.

RP/0/RSP0/CPU0:router# ping mpls ipv4 10.1.1.2/32 fec-type bgp

Wed Nov 25 03:38:33.143 UTC
Sending 5, 100-byte MPLS Echos to 10.1.1.2/32,
timeout is 2 seconds, send interval is 0 msec:


Type escape sequence to abort.

!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/2/3 ms

**MPLS LSP Traceroute**

The MPLS LSP Traceroute feature is used to isolate the failure point of an LSP. It is used for hop-by-hop fault localization and path tracing. The MPLS LSP Traceroute feature relies on the expiration of the Time to Live (TTL) value of the packet that carries the echo request. When the MPLS echo request message hits a transit node, it checks the TTL value and if it is expired, the packet is passed to the control plane, else the message is forwarded. If the echo message is passed to the control plane, a reply message is generated based on the contents of the request message.

The following figure shows an MPLS LSP traceroute example with an LSP from LSR1 to LSR4.
By default, the `traceroute mpls ipv4` command tries to determine the Forwarding Equivalence Class (FEC) being used automatically. However, this is only applicable at head-end and works only if the FEC at the destination is same as the source. If the source and destination FEC types are not the same, the `traceroute mpls ipv4` command may fail to identify the targeted FEC type. You can overcome this limitation by specifying the FEC type in MPLS LSP traceroute using the `fec-type` command option. If the user is not sure about the FEC type at the transit or the destination, or it may change through network, use of the `generic` FEC type command option is recommended. Generic FEC is not coupled to a particular control plane and allows path verification when the advertising protocol is unknown, or may change during the path of the echo request. If you are aware of the destination FEC type, specify the target FEC as BGP or LDP.

**Configuration Examples**

This example shows how to use the `traceroute` command to trace to a destination.

```
RP/0/RSP0/CPU0:router# traceroute mpls ipv4 10.1.1.2/32 destination 127.0.0.3 127.0.0.6 2
Sat Jan 27 03:50:23.746 UTC
Tracing MPLS Label Switched Path to 10.1.1.2/32, timeout is 2 seconds
Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'1' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlv, 'N' - no rx label,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0
Type escape sequence to abort.
```

```
Destination address 127.0.0.3
 0 10.2.1.2 MRU 1500 [Labels: 24000 Exp: 0]
L 1 10.2.1.1 MRU 1500 [Labels: implicit-null Exp: 0] 8 ms
! 2 10.1.0.2 3 ms
```

```
Destination address 127.0.0.5
 0 10.2.1.2 MRU 1500 [Labels: 24000 Exp: 0]
L 1 10.2.1.1 MRU 1500 [Labels: implicit-null Exp: 0] 5 ms
! 2 10.1.0.2 2 ms
```

This example shows how to use the `traceroute` command and how to specify the maximum number of hops for the traceroute to traverse by specifying the `ttl` value.
Overview of P2MP TE Network

A Point to Multipoint (P2MP) TE network contains the following elements:

- **Headend Router**

  The headend router, also called the source or ingress router, is responsible for initiating the signaling messages that set up the P2MP TE LSP. The headend router can also be a branch point, which means the router performs packet replication and the sub-LSPs split into different directions.
*Midpoint Router*

The midpoint router is where the sub-LSP signaling is processed. The midpoint router can be a branch point.

*Tailend Router*

The tailend router, also called the destination, egress, or leaf-node router, is where sub-LSP signaling ends. The router which is one of potentially many destinations of the P2MP TE LSP.

*Bud Router*

A bud router is a midpoint and tailend router at the same time. An LSR that is an egress LSR, but also has one or more directly connected downstream LSRs.

*Branch Router*

A branch router is either a midpoint or tailend router at any given time.

*Transit Router*

A transit router is an LSR that is not an egress router, but also has one or more directly connected downstream routers.

* A P2MP tunnel consists of one or more sub-LSPs. All sub-LSPs belonging to the same P2MP tunnel employ the same constraints, protection policies, and so on, which are configured at the headend router.

**Figure 33: Elements of P2MP TE Network** illustrates the elements of P2MP TE network.

P2MP TE tunnels build on the features that exist in basic point-to-point TE tunnels. The P2MP TE tunnels have the following characteristics:

- There is one source (headend) but more than one destination (tailend).
- They are unidirectional.
• They are explicitly routed.
• Multiple sub-LSPs connect the headend router to various tailend routers.

### P2MP Ping

The P2MP ping feature is used to check the connectivity between Ingress LSR and egress LSR, along a P2MP LSP. The Ingress LSR sends the P2MP echo request message along the specified P2MP LSP. All egress LSRs which receive the P2MP echo request message from the ingress LSR must send a P2MP echo reply message to the ingress LSR, according to the reply mode specified in the P2MP echo request message.

### P2MP Traceroute

The P2MP traceroute feature is used to isolate the failure point of a P2MP LSP. Traceroute can be applied to all nodes in the P2MP tree. However, you can select a specific traceroute target through the P2MP Responder Identifier TLV. An entry in this TLV represents an responder-id or a transit node. This is only the case for P2MP TE LSPs.

*Note* Only P2MP TE LSP IPv4 is supported. If the Responder Identifier TLV is missing, the *echo request* requests information from all responder-ids.

### MPLS OAM Support for BGP 3107

The MPLS OAM Support for BGP 3107 feature provides support for ping, traceroute and treetrace (traceroute multipath) operations for LSPs signaled via BGP for the IPv4 unicast prefix FECs in the default VRF, according to the *RFC 3107 - Carrying Label Information in BGP-4*. This feature adds support for MPLS OAM operations in the seamless MPLS architecture deployments, i.e., combinations of BGP and LDP signaled LSPs.

### IP-Less MPLS-TP Ping and MPLS-TP Traceroute

According to RFC-6426, IP-Less MPLS-TP ping and MPLS-TP traceroute with the ACH header, if a node receives an MPLS-TP ping or traceroute request packet over ACH, without IP or UDP headers, the node drops the echo request packet and does not send a response when:

- the reply mode is 4
- the node does not have a return MPLS LSP path to the echo request source.

If a node receives an MPLS echo request with a reply mode other than 4 (i.e., reply via application-level control channel), the node responds to using that reply mode. If the node does not support the reply mode requested, or is unable to reply using the requested reply mode in any specific instance, the node drops the echo request packet and does not send a response.

For more information about ping and traceroute, see *Implementing MPLS OAM* chapter in the *MPLS Configuration Guide for Cisco ASR 9000 Series Routers*. For more information about ping and traceroute commands, see *MPLS OAM Commands* chapter in the *MPLS Command Reference for Cisco ASR 9000 Series Routers*. 
Configuration Examples: P2MP Ping and P2MP Traceroute

This example shows an extract of the P2MP ping command.

```
RP/0/RSP0/CPU0:router# ping mpls traffic-eng tunnel-mte 10
Sending 1, 100-byte MPLS Echos to tunnel-mte10,
 timeout is 2.2 seconds, send interval is 0 msec, jitter value is 200 msec:

Codes: '! - success, 'Q' - request not sent, '.' - timeout,
 'L' - labeled output interface, 'B' - unlabeled output interface,
 'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
 'M' - malformed request, 'm' - unsupported tlv, 'N' - no rx label,
 'P' - no rx intf label prot, 'p' - premature termination of LSP,
 'R' - transit router, 'I' - unknown upstream index,
 'X' - unknown return code, 'x' - return code 0, 'd' - DDMAP

Type escape sequence to abort.

Request #1
! reply addr 192.168.222.2
! reply addr 192.168.140.2
! reply addr 192.168.170.1

Success rate is 100 percent (3 received replies/3 expected replies),
 round-trip min/avg/max = 154/232/302 ms
```

This example shows an extract of the P2MP ping command with the jitter option.

```
RP/0/RSP0/CPU0:router# ping mpls traffic-eng tunnel-mte 10 jitter 300
Sending 1, 100-byte MPLS Echos to tunnel-mte10,
 timeout is 2.3 seconds, send interval is 0 msec, jitter value is 300 msec:

Codes: '! - success, 'Q' - request not sent, '.' - timeout,
 'L' - labeled output interface, 'B' - unlabeled output interface,
 'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
 'M' - malformed request, 'm' - unsupported tlv, 'N' - no rx label,
 'P' - no rx intf label prot, 'p' - premature termination of LSP,
 'R' - transit router, 'I' - unknown upstream index,
 'X' - unknown return code, 'x' - return code 0, 'd' - DDMAP

Type escape sequence to abort.

Request #1
! reply addr 192.168.222.2
! reply addr 192.168.140.2
! reply addr 192.168.170.1

Success rate is 100 percent (3 received replies/3 expected replies),
 round-trip min/avg/max = 148/191/256 ms
```

This example shows an extract of the P2MP ping command with the ddmap option.

```
RP/0/RSP0/CPU0:router# ping mpls traffic-eng tunnel-mte 10 ddmap
Sending 1, 100-byte MPLS Echos to tunnel-mte10,
 timeout is 2.2 seconds, send interval is 0 msec, jitter value is 200 msec:

Codes: '! - success, 'Q' - request not sent, '.' - timeout,
Type escape sequence to abort.

Request #1
! reply addr 192.168.222.2
! reply addr 192.168.140.2
! reply addr 192.168.170.1

Success rate is 100 percent (3 received replies/3 expected replies),
round-trip min/avg/max = 105/178/237 ms

RP/0/RSP0/CPU0:router# show mpls traffic-eng tunnels p2mp 10
Mon Apr 12 12:13:55.075 EST
Signalling Summary:
LSP Tunnels Process: running
RSVP Process: running
Forwarding: enabled
Periodic reoptimization: every 3600 seconds, next in 654 seconds
Periodic FRR Promotion: every 300 seconds, next in 70 seconds
Auto-bw enabled tunnels: 0 (disabled)

Name: tunnel-mte10
Status:
Admin: up Oper: up (Up for 12w4d)

Config Parameters:
Bandwidth: 0 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff
Metric Type: TE (default)
Fast Reroute: Not Enabled, Protection Desired: None
Record Route: Not Enabled

Destination summary: (3 up, 0 down, 0 disabled) Affinity: 0x0/0xffff
Auto-bw: disabled
Destination: 10.1.0.1
 State: Up for 12w4d
 Path options:
 path-option 1 dynamic [active]
Destination: 10.2.0.1
 State: Up for 12w4d
 Path options:
 path-option 1 dynamic [active]
Destination: 10.3.0.1
 State: Up for 12w4d
 Path options:
 path-option 1 dynamic [active]

History:
Reopt. LSP:
Last Failure:
 LSP not signalled, identical to the [CURRENT] LSP
Date/Time: Thu Jan 14 02:49:22 EST 2010 [12w4d ago]

Current LSP:
lsp-id: 10002 p2mp-id: 10 tun-id: 10 src: 10.0.0.1 extid: 10.0.0.1
LSP up for: 12w4d
Reroute Pending: No
Inuse Bandwidth: 0 kbps (CT0)
Number of S2Ls: 3 connected, 0 signaling proceeding, 0 down

S2L Sub LSP: Destination 10.1.0.1 Signaling Status: connected
S2L up for: 12w4d
Sub Group ID: 1 Sub Group Originator ID: 10.1.0.1
Path option path-option 1 dynamic (path weight 1)
Path info (OSPF 1 area 0)
 192.168.222.2
 10.1.0.1

S2L Sub LSP: Destination 10.2.0.1 Signaling Status: connected
S2L up for: 12w4d
Sub Group ID: 2 Sub Group Originator ID: 10.0.0.1
Path option path-option 1 dynamic (path weight 2)
Path info (OSPF 1 area 0)
 192.168.222.2
 192.168.140.3
 192.168.140.2
 10.2.0.1

S2L Sub LSP: Destination 10.3.0.1 Signaling Status: connected
S2L up for: 12w4d
Sub Group ID: 3 Sub Group Originator ID: 10.0.0.1
Path option path-option 1 dynamic (path weight 2)
Path info (OSPF 1 area 0)
 192.168.222.2
 192.168.170.3
 192.168.170.1
 10.3.0.1

Reoptimized LSP (Install Timer Remaining 0 Seconds):
None
Cleaned LSP (Cleanup Timer Remaining 0 Seconds):
None
Displayed 1 (of 16) heads, 0 (of 0) midpoints, 0 (of 0) tails
Displayed 1 up, 0 down, 0 recovering, 0 recovered heads

RP/0/RSP0/CPU0:router# ping mpls traffic-eng tunnel-mte 10 lsp id 10002
Mon Apr 12 12:14:04.532 EST
Sending 1, 100-byte MPLS Echos to tunnel-mte10,
timeout is 2.2 seconds, send interval is 0 msec, jitter value is 200 msec:

Codes:
'!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0, 'd' - DMAP

Type escape sequence to abort.

Request #1
! reply addr 192.168.222.2
! reply addr 192.168.170.1
! reply addr 192.168.140.2

Success rate is 100 percent (3 received replies/3 expected replies),
round-trip min/avg/max = 128/153/167 ms

This example shows an extract of the P2MP ping command with the responder-id.
RP/0/RSP0/CPU0:router# ping mpls traffic-eng tunnel-mte 10 responder-id 10.3.0.1
Mon Apr 12 12:15:34.205 EST

Sending 1, 100-byte MPLS Echos to tunnel-mte10,
timeout is 2.2 seconds, send interval is 0 msec, jitter value is 200 msec:

Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0, 'd' - DMAP

Type escape sequence to abort.

Request #1
! reply addr 192.168.170.1

Success rate is 100 percent (1 received reply/1 expected reply),
round-trip min/avg/max = 179/179/179 ms

This example shows an extract of the P2MP traceroute command with the ttl option.

RP/0/RSP0/CPU0:router# traceroute mpls traffic-eng tunnel-mte 10 ttl 4
Mon Apr 12 12:16:50.095 EST

Tracing MPLS MTE Label Switched Path on tunnel-mte10, timeout is 2.2 seconds

Codes: '!' - success, 'Q' - request not sent, '.' - timeout,
'L' - labeled output interface, 'B' - unlabeled output interface,
'D' - DS Map mismatch, 'F' - no FEC mapping, 'f' - FEC mismatch,
'M' - malformed request, 'm' - unsupported tlvs, 'N' - no rx label,
'P' - no rx intf label prot, 'p' - premature termination of LSP,
'R' - transit router, 'I' - unknown upstream index,
'X' - unknown return code, 'x' - return code 0, 'd' - DMAP

Type escape sequence to abort.

! 1 192.168.222.2 186 ms [Estimated Role: Bud]
 [L] DDMAP 0: 192.168.140.2 192.168.140.2 MRU 1500 [Labels: 16001 Exp: 0]

! 2 192.168.222.2 115 ms [Estimated Role: Bud]
 [L] DDMAP 0: 192.168.140.2 192.168.140.2 MRU 1500 [Labels: 16001 Exp: 0]

! 2 192.168.140.2 213 ms [Estimated Role: Egress]
! 2 192.168.170.1 254 ms [Estimated Role: Egress]

! 3 192.168.222.2 108 ms [Estimated Role: Bud]
 [L] DDMAP 0: 192.168.140.2 192.168.140.2 MRU 1500 [Labels: 16001 Exp: 0]

! 3 192.168.170.1 164 ms [Estimated Role: Egress]
! 3 192.168.140.2 199 ms [Estimated Role: Egress]

! 4 192.168.170.1 198 ms [Estimated Role: Egress]
! 4 192.168.222.2 206 ms [Estimated Role: Bud]
 [L] DDMAP 0: 192.168.140.2 192.168.140.2 MRU 1500 [Labels: 16001 Exp: 0]

This example shows an extract of the P2MP traceroute command with the responder-id option.
RP/0/RSP0/CPU0:router# traceroute mpls traffic-eng tunnel-mte 10 responder-id 10.3.0.1
ttl 4 jitter 500
Mon Apr 12 12:19:00.292 EST
Tracing MPLS MTE Label Switched Path on tunnel-mte10, timeout is 2.5 seconds

This example shows an extract of the P2MP traceroute command with the jitter option.
Implementing MPLS OAM

Configuration Examples: P2MP Ping and P2MP Traceroute

```
d 3 192.168.222.2 115 ms [Estimated Role: Branch]
  [L] DDMAP 0: 192.168.140.2 192.168.140.2 MRU 1500 [Labels: 16001 Exp: 0]
! 3 192.168.170.1 428 ms [Estimated Role: Egress]

d 4 192.168.222.2 127 ms [Estimated Role: Branch]
  [L] DDMAP 0: 192.168.140.2 192.168.140.2 MRU 1500 [Labels: 16001 Exp: 0]
! 4 192.168.170.1 327 ms [Estimated Role: Egress]
```
Implementing MPLS Transport Profile

This module describes how to implement MPLS transport profile (MPLS-TP) on the router. MPLS-TP supported by IETF enables the migration of transport networks to a packet-based network that efficiently scale to support packet services in a simple and cost-effective way. MPLS-TP combines the necessary existing capabilities of MPLS with additional minimal mechanisms in order that it can be used in a transport role.

MPLS transport profile enables you to create tunnels that provide the transport network service layer over which IP and MPLS traffic traverse.

Feature History for Implementing MPLS Transport Profile

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.0</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

- Restrictions for MPLS-TP, on page 405
- Information About Implementing MPLS Transport Profile, on page 406
- How to Implement MPLS Transport Profile, on page 411

Restrictions for MPLS-TP

- Penultimate hop popping is not supported. Only ultimate hop popping is supported, because label mappings are configured at the MPLS-TP endpoints.
- MPLS-TP links must be configured with IP addresses.
- IPv6 addressing is not supported.

L2VPN Restrictions

- Pseudowire ID Forward Equivalence Class (FEC) (type 128) is supported, but generalized ID FEC (type 129) is not supported.
- BFD over pseudowire is not supported. Static pseudowire OAM protocol is used to signal fault on static pseudowire placed over TP tunnels using pseudowire status.
- Only Ethernet pseudowire type is supported.
Information About Implementing MPLS Transport Profile

To implement MPLS-TP, you should understand these concepts:

MPLS Transport Profile

MPLS Transport Profile (TP) enables you to create tunnels that provide the transport network service layer over which IP and MPLS traffic traverse. MPLS-TP tunnels enable a transition from Synchronous Optical Networking (SONET) and Synchronous Digital Hierarchy (SDH) time-division multiplexing (TDM) technologies to packet switching, to support services with high bandwidth utilization and low cost. Transport networks are connection oriented, statically provisioned, and have long-lived connections. Transport networks usually avoid control protocols that change identifiers like labels. MPLS-TP tunnels provide this functionality through statically provisioned bidirectional label switched paths (LSPs). This figure shows the MPLS-TP tunnel:

![Figure 34: MPLS Transport Profile Tunnel](image)

MPLS-TP combines the necessary existing capabilities of MPLS with additional minimal mechanisms in order that it can be used in a transport role. You can set up MPLS-TP through a CLI or a network management system.

MPLS-TP tunnels have these characteristics:

- An MPLS-TP tunnel can be associated with working LSP, protect LSP, or both LSP
- Statically provisioned bidirectional MPLS-TP label switched paths (LSPs)
- Symmetric or asymmetric bandwidth reservation
- 1:1 path protection with revertive mode for MPLS-TP LSP with revertive mode for MPLS-TP LSP
- Use of Generic Alert Label (GAL) and Generic Associated Channel Header (G-ACH) to transport control packets; for example, BFD packets and pseudowire OAM packets
- BFD is used as a continuity check (CC) mechanism over MPLS-TP LSP
- Remote Defect Indication (RDI) based on BFD
- Fault OAM functions
These services are supported over MPLS-TP tunnels:

- Dynamic spoke pseudowire (for H-VPLS) over static MPLS-TP tunnels.
- Static spoke pseudowire (for H-VPLS) over static MPLS-TP tunnels.
- MS-PW services where static and dynamic pseudowire segments can be concatenated.
- MPLS ping and traceroute over MPLS TP LSP and PW.
- Static routes over MPLS-TP tunnels.
- Pseudowire redundancy for static pseudowire.
- VPWS using static or dynamic pseudowire pinned down to MPLS-TP tunnels.
- VPLS and H-VPLS using static or dynamic pseudowire pinned down to MPLS-TP tunnels.

Bidirectional LSPs

Bidirectional LSPs (MPLS-TP) LSPs are bidirectional and congruent where LSPs traverse the same path in both directions. An MPLS-TP tunnel can be associated with either working MPLS-TP LSP, protect MPLS-TP LSP, or both. The working LSP is the primary LSP backed up by the protect LSP. When a working LSP goes down, protect LSP is automatically activated. In order for an MPLS-TP tunnel to be operationally up, it must be configured with at least one LSP.

MPLS-TP Path Protection

Path protection provides an end-to-end failure recovery mechanism (that is, full path protection) for MPLS-TP tunnels. MPLS-TP LSPs support 1:1 path protection. You can configure the working and protect LSPs as part of configuring the MPLS-TP tunnel. The working LSP is the primary LSP used to route traffic, while the protect LSP is a backup for a working LSP. If the working LSP fails, traffic is switched to the protect LSP until the working LSP is restored, at which time traffic forwarding reverts back to the working LSP (revertive mode).

Fault OAM Support

The fault OAM protocols and messages support the provisioning and maintenance of MPLS-TP tunnels and bidirectional LSPs:

- **Generic Associated Channel**

 Generic Associated Channel (G-ACh) is the control channel mechanism associated with MPLS LSPs in addition to MPLS pseudowire. The G-ACh Label (GAL) (Label 13) is a generic alert label to identify the presence of the G-ACh in the label packet. It is taken from the reserved MPLS label space.

 G-ACh or GAL is used to support in-band OAMs of MPLS-TP LSPs and pseudowires. The OAM messages are used for fault management, connection verification, continuity check and other functions. These messages are forwarded along the specified MPLS LSP:

 - OAM Fault Management: Alarm Indication Signal (AIS), Link Down Indication (LDI), and Lock Report (LKR) messages (GAL with fault-OAM channel)
 - OAM Connection Verification: Ping and traceroute messages (GAL with IP channel)
• BFD messages (GAL with BFD channel)

These messages are forwarded along the specified pseudowire:
• Static pseudowire OAM messages (static pseudowire status)
• Pseudowire ping and traceroute messages

• Fault Management: Alarm Indication Signal (AIS), Link Down Indication (LDI), and Lock Report (LKR) messages

LDI messages are generated at midpoint nodes when a failure is detected. The midpoint sends the LDI message to the endpoint that is reachable with the existing failure. The midpoint node also sends LKR messages to the reachable endpoint, when an interface is administratively down. AIS messages are not generated by Cisco platforms, but are processed if received. By default, the reception of LDI and LKR on the active LSP at an endpoint will cause a path protection switchover, while AIS will not.

• Fault Management: Emulated Protection Switching for LSP Lockout

You can implement a form of Emulated Protection Switching in support of LSP Lockout using customized fault messages. When a Cisco Lockout message is sent, it does not cause the LSP to be administratively down. The Cisco Lockout message causes a path protection switchover and prevents data traffic from using the LSP. The LSP’s data path remains up so that BFD and other OAM messages can continue to traverse it. Maintenance of the LSP can take place such as reconfiguring or replacing a midpoint LSR. BFD state over LSP must be up and MPLS ping and traceroute can be used to verify the LSP connectivity, before the LSP is put back into service by removing the lockout. You cannot lockout working and protect LSPs simultaneously.

• LSP ping and traceroute

For MPLS-TP connectivity verification, you can use ping mpls traffic-eng tunnel-tp and traceroute mpls traffic-eng tunnel-tp commands. You can specify that the echo requests be sent along the working LSP or the protect LSP. You can also specify that the echo request be sent on a locked out MPLS-TP tunnel LSP (either working or protect) if the working or protect LSP is explicitly specified.

• Continuity Check through BFD

BFD session is automatically created on MPLS-TP LSPs with default parameters. You can override the default BFD parameters either through global commands or per-tunnel commands. Furthermore, you can optionally specify different BFD parameters for standby LSPs. For example, when an LSP is in standby, BFD hello messages can be sent at smaller frequency to reduce line-card CPU usage. However, when a standby LSP becomes active (for example, due to protection switching), nominal BFD parameters are used for that LSPs (for example, to run BFD hello messages at higher frequency).

MPLS-TP Links and Physical Interfaces

MPLS-TP link IDs may be assigned to physical interfaces only. Bundled interfaces and virtual interfaces are not supported for MPLS-TP link IDs.

The MPLS-TP link is used to create a level of indirection between the MPLS-TP tunnel and midpoint LSP configuration and the physical interface. The MPLS-TP link-id command is used to associate an MPLS-TP link ID with a physical interface and next-hop node address.
Multiple tunnels and LSPs may then refer to the MPLS-TP link to indicate they are traversing that interface. You can move the MPLS-TP link from one interface to another without reconfiguring all the MPLS-TP tunnels and LSPs that refer to the link.

Link IDs must be unique on the router or node. For more information, see the Configuring MPLS-TP Links and Physical Interfaces section.

Tunnel LSPs

Tunnel LSPs, whether endpoint or midpoint, use the same identifying information. However, it is entered differently.

- A midpoint consists of a forward LSP and a reverse LSP. A MPLS-TP LSP mid point is identified by its name, and forward LSP, reverse LSP, or both are configured under a submode.

- At the midpoint, determining which end is source and which is destination is arbitrary. That is, if you are configuring a tunnel between your router and a coworker's router, then your router is the source. However, your coworker considers his or her router to be the source. At the midpoint, either router could be considered the source. At the midpoint, the forward direction is from source to destination, and the reverse direction is from destination to source. For more information, see the Configuring MPLS-TP LSPs at Midpoints section.

- At the midpoint, the LSP number does not assume default values, and hence must be explicitly configured.

- At the endpoint, the local information (source) either comes from the global node ID and global ID, or from locally configured information using the `source` command after you enter the `interface tunnel-tp number` command, where number is the local or source tunnel-number.

- At the endpoint, the remote information (destination) is configured using the `destination` command after you enter the `interface tunnel-tp number` command. The `destination` command includes the destination node ID, optionally the global ID, and optionally the destination tunnel number. If you do not specify the destination tunnel number, the source tunnel number is used.

MPLS-TP IP-less support

Generally, MPLS-TP functionality can be deployed with or without an IP address. However, the main motivation for the IP-less model is this: an LSR can be inserted into an MPLS-TP network without changing the configurations on adjacent LSRs. In the past Cisco IOS-XR MPLS-TP release, if an interface does not have a valid IP address, BFD packets cannot be transmitted over that link, and hence MPLS-TP LSP cannot be brought up on that link. In this release, the IP-less TP link operates only in a point-to-point mode.

This feature, therefore, makes the need for an IP address on a TP link optional. You may deploy LSRs running Cisco IOS-XR in MPLS-TP networks with or without an IP address. With such extra flexibility, LSRs running Cisco IOS-XR can be easily deployed not only with LSRs running IOS, but with LSRs from other vendors too.

MPLS-TP LSP Wrapping

In the MPLS-TP LSP Wrapping protection scheme, a protected MPLS-TP tunnel is associated with a working LSP and protect LSP. This helps to prevent traffic loss as soon as a mid-point LSR detects a failure at physical layer rather than waiting for BFD to time-out. Also, a delay in activating protection switch due to mid-point failure does not further increase the traffic loss.
MPLS-TP LSP wrapping has to enabled only on the MID node. MPLS-TP LSP wrapping helps in detecting mid-link failure scenarios; other failures and failures on end node is detected by BFD timeout and TP-OAM message.

As shown in the figure below, when an LSR (e.g., Router B) detects a failure, it forwards the incoming traffic over an impacted LSP onto the reverse LSP, if it exists. The traffic re-directed into the reverse LSP is loopback traffic. Looping back traffic is carried out by the forwarding engine without control plane's involvement. The label stack of a loopback packet will be modified such that the source of the traffic identifies the packet.

Figure 35: MPLS-TP LSP Wrapping Mechanism

When the forwarding engine at an end-point recognizes a packet from loopback traffic, it forwards the packet on protect LSP. As BFD packets over impacted LSPs are also looped-back, the end-point will drop such BFD packets so that BFD sessions over the impacted LSPs is timed-out and protection switching is activated. Optionally, when an end-point receives the first looped-back packet, it activates protection switching.

A working LSP remains wrapped until protection switching is activated. Once activated, protect LSP will carry traffic as usual. When failure is removed and BFD session comes back up resulting in activation of working LSP.
How to Implement MPLS Transport Profile

MPLS Transport Profile (MPLS-TP) supported by IETF enables the migration of transport networks to a packet-based network that efficiently scale to support packet services in a simple and cost effective way. These procedures are used to implement MPLS-TP:

Configuring the Node ID and Global ID

Perform this task to configure node ID and global ID on the router.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. tp
4. node-id node-id
5. global-id num
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td>Enters MPLS TE configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3 tp</td>
<td>Enters MPLS transport profile (TP) configuration mode. You can configure MPLS TP specific parameters for the router from this mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te)# mpls tp</td>
<td></td>
</tr>
<tr>
<td>Step 4 node-id node-id</td>
<td>Specifies the default MPLS TP node ID, which is used as the default source node ID for all MPLS TP tunnels configured on the router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-tp)# node-id 10.0.0.1</td>
<td></td>
</tr>
<tr>
<td>Step 5 global-id num</td>
<td>Specifies the default global ID used for all endpoints and midpoints. This command makes the node ID globally unique in a multi-provider tunnel. Otherwise, the node ID is only locally meaningful.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-mpls-te-tp)# global-id 10</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Pseudowire OAM Attributes

Perform this task to configure pseudowire OAM attributes.

SUMMARY STEPS

1. `configure`
2. `l2vpn`
3. `pw-oam refresh transmit value`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 l2vpn</td>
<td>Enters L2VPN configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# l2vpn</td>
<td></td>
</tr>
<tr>
<td>Step 3 pw-oam refresh transmit value</td>
<td>Specifies the OAM timeout refresh intervals.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-l2vpn)# pw-oam refresh transmit 20</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the Pseudowire Class

When you create the pseudowire class, you specify the parameters of the pseudowire, such as the use of the control word and preferred path.

SUMMARY STEPS

1. `configure`
2. `l2vpn`
3. `pw-class name`
4. `encapsulation mpls`
5. `preferred-path interface tunnel-tp tunnel-number`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
| **Step 2** l2vpn
Example: `RP/0/RSP0/CPU0:router(config)# l2vpn` | Enters L2VPN configuration mode. |
| **Step 3** pw-class `name`
Example: `RP/0/RSP0/CPU0:router(config-l2vpn)# pw-class foo` | Creates a pseudowire OAM class named foo and enters pseudowire OAM class configuration mode. |
| **Step 4** encapsulation mpls
Example: `RP/0/RSP0/CPU0:router(config-l2vpn-pwc)# encapsulation mpls` | Sets pseudowire encapsulation to MPLS. |
| **Step 5** preferred-path interface `tunnel-tp tunnel-number`
Example: `RP/0/RSP0/CPU0:router(config-l2vpn-pwc-mpls)# preferred-path interface tunnel-tp 10` | Specifies TP tunnel interface 10 for the preferred-path. |
| **Step 6** commit | |

Configuring the Pseudowire

Perform this task to configure the pseudowire.

SUMMARY STEPS

1. configure
2. interface `type interface-path-id`
3. pseudowire-class `class-name`
4. encapsulation mpls
5. preferred-path interface `tunnel-tp tunnel-number`
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the MPLS TP Tunnel

On the endpoint routers, create an MPLS TP tunnel and configure its parameters.

SUMMARY STEPS

1. configure
2. interface tunnel-tp number
3. description tunnel-desc
4. bandwidth num
5. source source node-ID
6. destination destination node-ID [global-id destination global ID] tunnel-id destination tunnel ID]
7. working-lsp
8. in-label num
9. out-label mpls label out-link link ID
10. lsp-number value
11. exit
12. protect-lsp
13. in-label num
14. out-label mpls label out-link link ID
15. lsp-number value

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
<td>Enters MPLS transport protocol tunnel interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# interface tunnel-tp 20</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>pseudowire-class class-name</td>
<td>Creates a pseudowire class and enters pseudowire class configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# pseudowire-class foo</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>encapsulation mpls</td>
<td>Specifies the encapsulation type.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# encapsulation mpls</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>preferred-path interface tunnel-tp tunnel-number</td>
<td>Specifies TP tunnel interface 10 for the preferred-path.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# preferred-path interface tunnel-tp 10</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>When a PW class with tunnel-tp interface as a preferred path is defined, this specified class can be associated with any PW.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>
| 2. | interface tunnel-tp *number*
Example:
RP/0/RSP0/CPU0:router(config) # interface tunnel-tp 10 | Enters tunnel tp interface configuration mode. The range is from 0 to 65535. |
| 3. | description *tunnel-desc*
Example:
RP/0/RSP0/CPU0:router(config-if)# description head-end tunnel | Specifies a tunnel tp description. |
| 4. | bandwidth *num*
Example:
RP/0/RSP0/CPU0:router(config-if)# tp bandwidth 1000 | Specifies the tunnel bandwidth in kbps. The range is from 0 to 4294967295. |
| 5. | source *source node-ID*
Example:
RP/0/RSP0/CPU0:router(config-if)# source 10.0.0.1 | Specifies the source node of the tunnel. |
| 6. | destination *destination node-ID*
[global-id *destination global ID*]
[tunnel-id *destination tunnel ID*]
Example:
RP/0/RSP0/CPU0:router(config-if)# destination 10.0.0.1 global-id 10 tunnel-id 2 | Specifies the destination node of the tunnel. |
| 7. | working-lsp
Example:
RP/0/RSP0/CPU0:router(config-if)# working-lsp | Specifies a working LSP, also known as the primary LSP. This LSP is used to route traffic. |
| 8. | in-label *num*
Example:
RP/0/RSP0/CPU0:router(config-if-work)# in-label 111 | Specifies the in-label. |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 9</td>
<td>Specifies the out-label.</td>
</tr>
<tr>
<td><code>out-label mpls label out-link link ID</code></td>
<td></td>
</tr>
</tbody>
</table>
| *Example:*
RP/0/RSP0/CPU0:router(config-if-work)# `out-label 111 out-link 10` | |
| **Step 10** | Specifies the LSP ID of the working LSP. |
| `lsp-number value` | |
| *Example:*
RP/0/RSP0/CPU0:router(config-if-work)# `lsp-number 10` | |
| **Step 11** | Exits from working LSP interface configuration mode. |
| `exit` | |
| *Example:*
RP/0/RSP0/CPU0:router(config-if-work)# `exit` | |
| **Step 12** | Specifies a backup for a working LSP. If the working LSP fails, traffic is switched to the protect LSP until the working LSP is restored, at which time traffic forwarding reverts back to the working LSP. |
| `protect-lsp` | |
| *Example:*
RP/0/RSP0/CPU0:router(config-if)# `protect-lsp` | |
| **Step 13** | Specifies the in-label. |
| `in-label num` | |
| *Example:*
RP/0/RSP0/CPU0:router(config-if-protect)# `in-label 113` | |
| **Step 14** | Specifies the out-label and out-link. |
| `out-label mpls label out-link link ID` | |
| *Example:*
RP/0/RSP0/CPU0:router(config-if-protect)# `out-label 112 out-link 2` | |
| **Step 15** | Specifies the LSP ID of the protect LSP. |
| `lsp-number value` | |
| *Example:*
RP/0/RSP0/CPU0:router(config-if-protect)# `lsp-number 10` | |
| **Step 16** | Exits from protect LSP interface configuration mode. |
| `exit` | |
| *Example:*
RP/0/RSP0/CPU0:router(config-if-protect)# `exit` | |
| **Step 17** | |
| `commit` | |
Configuring MPLS-TP LSPs at Midpoint

Perform this task to configure the MPLS-TP LSPs at the midpoint router.

Note
When configuring the LSPs at the midpoint routers, make sure that the configuration does not reflect traffic back to the originating node.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. tp mid name
4. tunnel-name name
5. lsp-number value
6. source node -ID tunnel-id number
7. destination node -ID tunnel-id number
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>
| **Step 2** | mpls traffic-eng
Example:
RP/0/RSP0/CPU0:router(config)# mpls traffic-eng |
| **Step 3** | tp mid name
Example:
RP/0/RSP0/CPU0:router(config-mpls-te)# tp mid foo |
| **Step 4** | tunnel-name name
Example:
RP/0/RSP0/CPU0:router(config-mpls-te-tp-mid)# tunnel-name midtunnel |
| **Step 5** | lsp-number value
Example:
RP/0/RSP0/CPU0:router(config-mpls-te-tp-mid)# lsp-number 10 |
| **Step 6** | source node -ID tunnel-id number
Example:
RP/0/RSP0/CPU0:router(config-mpls-te-tp-mid)# source node -ID tunnel-id number |

Implementing MPLS Transport Profile
Configuring MPLS-TP LSPs at Midpoint
Configuring MPLS-TP Links and Physical Interfaces

MPLS-TP link IDs may be assigned to physical interfaces only.

Note

Bundled interfaces and virtual interfaces are not supported for MPLS-TP link IDs.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. interface type interface-path-id
4. link-id value next-hop address
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS TE configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td>Configures an interface type and path ID to be associated with a MPLS TE mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Configures an interface type and path ID to be associated with a MPLS TE mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te)# interface POS 0/6/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 link-id value next-hop address</td>
<td>Configures an interface type and path ID to be associated with a MPLS TE mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te-if)# link-id 22 next-hop 10.1.1.2</td>
<td>Note You must provide the next-hop IP address.</td>
</tr>
</tbody>
</table>
Purpose
You can define a link ID once. If you attempt to use the same MPLS-TP link ID with different interface or next-hop address, the configuration gets rejected. You have to remove the existing link ID configuration before using the same link ID with a different interface or next-hop address.

Step 5 commit

Configuring MPLS-TP LSP Wrapping

Perform this task to configure the MPLS-TP LSP wrapping.

Note
When configuring the LSPs at the midpoint routers, make sure that the configuration does not reflect traffic back to the originating node.

SUMMARY STEPS

1. configure
2. mpls traffic-eng
3. tp mid name
4. tunnel-name name
5. fast-protect
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters MPLS TE configuration mode.</td>
</tr>
<tr>
<td>Step 2 mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# mpls traffic-eng</td>
<td></td>
</tr>
<tr>
<td>Step 3 tp mid name</td>
<td>Specifies the MPLS-TP tunnel mid-point identifier.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-mpls-te)# tp mid midpt1</td>
<td></td>
</tr>
<tr>
<td>Step 4 tunnel-name name</td>
<td>(Optional) Specifies the name of the tunnel whose mid point is being configured.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring MPLS-TP LSP Wrapping

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td><code>tunnel-name midtunnel</code></td>
<td>Enables MPLS-TP LSP wrapping.</td>
</tr>
<tr>
<td>6</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config-mpls-te-tp-mid) #
tunnel-name midtunnel
```

```
RP/0/RSP0/CPU0:router(config-mpls-te-tp-mid) #
fast-protect
```