THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: http://www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

© 2014 Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface xvii

Changes to This Document xvii

Obtaining Documentation and Submitting a Service Request xviii

CHAPTER 1 New and Changed Feature Information in Cisco IOS XR Release 5.1.x 1

New and Changed IP Addresses and Services Features 1

CHAPTER 2 Implementing Access Lists and Prefix Lists 7

Prerequisites for Implementing Access Lists and Prefix Lists 8

Restrictions for Implementing Access Lists and Prefix Lists 8

Hardware Limitations 10

Information About Implementing Access Lists and Prefix Lists 10

Access Lists and Prefix Lists Feature Highlights 10

Purpose of IP Access Lists 10

How an IP Access List Works 11

IP Access List Process and Rules 11

Helpful Hints for Creating IP Access Lists 12

Source and Destination Addresses 12

Wildcard Mask and Implicit Wildcard Mask 12

Transport Layer Information 12

IP Access List Entry Sequence Numbering 12

Sequence Numbering Behavior 13

IP Access List Logging Messages 13

Extended Access Lists with Fragment Control 14

Policy Routing 16

Comments About Entries in Access Lists 16

Access Control List Counters 16
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGP Filtering Using Prefix Lists</td>
<td>17</td>
</tr>
<tr>
<td>How the System Filters Traffic by Prefix List</td>
<td>17</td>
</tr>
<tr>
<td>Information About Implementing ACL-based Forwarding</td>
<td>18</td>
</tr>
<tr>
<td>ACL-based Forwarding Overview</td>
<td>18</td>
</tr>
<tr>
<td>ABF-OT</td>
<td>18</td>
</tr>
<tr>
<td>IPv6 ACL Based Forwarding Object Tracking</td>
<td>18</td>
</tr>
<tr>
<td>IPSLA support for Object tracking</td>
<td>18</td>
</tr>
<tr>
<td>ACL Counters Using SNMP</td>
<td>19</td>
</tr>
<tr>
<td>How to Implement Access Lists and Prefix Lists</td>
<td>19</td>
</tr>
<tr>
<td>Configuring Extended Access Lists</td>
<td>19</td>
</tr>
<tr>
<td>Applying Access Lists</td>
<td>22</td>
</tr>
<tr>
<td>Controlling Access to an Interface</td>
<td>22</td>
</tr>
<tr>
<td>Controlling Access to a Line</td>
<td>23</td>
</tr>
<tr>
<td>Configuring Prefix Lists</td>
<td>24</td>
</tr>
<tr>
<td>Configuring Standard Access Lists</td>
<td>26</td>
</tr>
<tr>
<td>Copying Access Lists</td>
<td>28</td>
</tr>
<tr>
<td>Sequencing Access-List Entries and Revising the Access List</td>
<td>29</td>
</tr>
<tr>
<td>Copying Prefix Lists</td>
<td>31</td>
</tr>
<tr>
<td>Sequencing Prefix List Entries and Revising the Prefix List</td>
<td>32</td>
</tr>
<tr>
<td>How to Implement ACL-based Forwarding</td>
<td>33</td>
</tr>
<tr>
<td>Configuring ACL-based Forwarding with Security ACL</td>
<td>33</td>
</tr>
<tr>
<td>Implementing IPSLA-OT</td>
<td>35</td>
</tr>
<tr>
<td>Enabling track mode</td>
<td>35</td>
</tr>
<tr>
<td>Configuring track type</td>
<td>36</td>
</tr>
<tr>
<td>Configuring tracking type (line protocol)</td>
<td>36</td>
</tr>
<tr>
<td>Configuring track type (list)</td>
<td>37</td>
</tr>
<tr>
<td>Configuring tracking type (route)</td>
<td>37</td>
</tr>
<tr>
<td>Configuring tracking type (rtr)</td>
<td>38</td>
</tr>
<tr>
<td>Configuring Pure ACL-Based Forwarding for IPv6 ACL</td>
<td>39</td>
</tr>
<tr>
<td>ACL-Chaining</td>
<td>40</td>
</tr>
<tr>
<td>ACL-Chaining Overview</td>
<td>40</td>
</tr>
<tr>
<td>Restrictions for Common ACL</td>
<td>41</td>
</tr>
<tr>
<td>Configuring an Interface to accept Common ACL</td>
<td>41</td>
</tr>
<tr>
<td>ACL Scale Enhancements</td>
<td>42</td>
</tr>
<tr>
<td>ACL Scale Enhancements: Backward Compatibility</td>
<td>42</td>
</tr>
</tbody>
</table>
Configuring a Network Object-Group 43
Configuring a Port Object-Group 44
Configuring ACL with Object-Groups 45
Atomic ACL Updates By Using the Disable Option 47
Modifying ACLs when Atomic ACL Updates are Disabled 48
Configuring ACL Counters for SNMP Query 50
Configuration Examples for Implementing Access Lists and Prefix Lists 51
Resequencing Entries in an Access List: Example 51
Adding Entries with Sequence Numbers: Example 52
Adding Entries Without Sequence Numbers: Example 52
Atomic ACL Updates By Using the Disable Option 53
Modifying ACLs when Atomic ACL Updates are Disabled 53
IPv6 ACL in Class Map 55
Configuring IPv6 ACL QoS - An Example 56
IPv4/IPv6 ACL over BVI interface 58
Configuring IPv4 ACL over BVI interface - An Example 59
Configuring ABFv4/v6 over IRB/BVI interface 59
Configuring ABFv4 over IRB/BVI interface: Example 62
Configuring ABFv6 over IRB/BVI interface: Example 62
Configuring an Interface to accept Common ACL - Examples 63
Configuring ACL Counters for SNMP Query: Example 64
Additional References 65

CHAPTER 3

Configuring ARP 67
Prerequisites for Configuring ARP 67
Restrictions for Configuring ARP 68
Information About Configuring ARP 68
IP Addressing Overview 68
Address Resolution on a Single LAN 69
Address Resolution When Interconnected by a Router 69
ARP and Proxy ARP 69
ARP Cache Entries 70
Direct Attached Gateway Redundancy 70
Additional Guidelines 71
How to Configure ARP 71
Defining a Static ARP Cache Entry 71
Enabling Proxy ARP 72
Enabling Local Proxy ARP 73
Configuring DAGR 74
Configuring ARP purge-delay 76
Configuring ARP timeout 77
Configure Learning of Local ARP Entries 78
Configuration Examples for ARP Configuration on Cisco IOS XR Software 79
Creating a Static ARP Cache Entry: Example 79
Enabling Proxy ARP: Example 80
Enabling DAGR and Configuring a DAGR Group: Example 80
Displaying the Operational State of DAGR Groups: Example 80
Additional References 80

CHAPTER 4
Implementing Cisco Express Forwarding 83
Prerequisites for Implementing Cisco Express Forwarding 83
Information About Implementing Cisco Express Forwarding Software 84
Key Features Supported in the Cisco Express Forwarding Implementation 84
Benefits of CEF 84
CEF Components 85
Border Gateway Protocol Policy Accounting 85
Reverse Path Forwarding (Strict and Loose) 86
Per-Flow Load Balancing 87
BGP Attributes Download 88
How to Implement CEF 88
Verifying CEF 88
Configuring BGP Policy Accounting 89
Verifying BGP Policy Accounting 94
Configuring a Route Purge Delay 96
Configuring Unicast RPF Checking 96
Configuring Modular Services Card-to-Route Processor Management Ethernet Interface Switching 97
Configuring Per-Flow Load Balancing 98
Configuring 3-Tuple Hash Algorithm 98
CHAPTER 5

Implementing the Dynamic Host Configuration Protocol 119

Prerequisites for Configuring DHCP Relay Agent 120
Information About DHCP Relay Agent 120
Secure ARP 121
How to Configure and Enable DHCP Relay Agent 121
 Configuring and Enabling the DHCP Relay Agent 121
 Configuring a DHCP Relay Profile 122
 Enabling DHCP Relay Agent on an Interface 123
 Disabling DHCP Relay on an Interface 124
 Enabling DHCP Relay on a VRF 124
 Configuring the Relay Agent Information Feature 125
 Configuring Relay Agent Giaddr Policy 127
 Configuring a DHCP Proxy Profile 128
 DHCPv4 Server 129
 Configuring DHCPv4 Server Profile 130
 Configuring Multiple Classes with a Pool 133
 Configuring a server profile DAPS with class match option 135
 Configuring Server Profile without daps pool match option 138
 Configuring an address pool for each ISP on DAPS 140

Contents
Information About Implementing Host Services and Applications 162

Network Connectivity Tools 162

Ping 162

Traceroute 162

Domain Services 163

TFTP Server 163

File Transfer Services 163

RCP 164

FTP 164

TFTP 164

SCP 164

Cisco inetd 165

Telnet 165

How to Implement Host Services and Applications 165

Checking Network Connectivity 165

Checking Network Connectivity for Multiple Destinations 165

Checking Packet Routes 166

Configuring Domain Services 167

Configuring a Router as a TFTP Server 168

Configuring a Router to Use rcp Connections 169

Configuring a Router to Use FTP Connections 171

Configuring a Router to Use TFTP Connections 173

Configuring Telnet Services 174

Transferring Files Using SCP 174

Configuring syslog source-interface 175

IPv6 Support for IP SLA ICMP Echo Operation 176

Configuring an IPSLA ICMP echo operation 176

Configuration Examples for Implementing Host Services and Applications 177

Checking Network Connectivity: Example 178

Configuring Domain Services: Example 179

Configuring a Router to Use rcp, FTP, or TFTP Connections: Example 179

Additional References 180

CHAPTER 7 Implementing HSRP 183

Prerequisites for Implementing HSRP 184
Restrictions for Implementing HSRP 184
Information About Implementing HSRP 184
 HSRP Overview 184
 HSRP Groups 185
 HSRP and ARP 188
 Preemption 188
 ICMP Redirect Messages 188
How to Implement HSRP 188
 Enabling HSRP 188
 Enabling HSRP for IPv6 190
 Configuring HSRP Group Attributes 191
 Configuring the HSRP Activation Delay 195
 Enabling HSRP Support for ICMP Redirect Messages 197
Multiple Group Optimization (MGO) for HSRP 198
 Customizing HSRP 198
 Configuring a Primary Virtual IPv4 Address 201
 Configuring a Secondary Virtual IPv4 Address 202
 Configuring a slave follow 203
 Configuring a slave primary virtual IPv4 address 205
 Configuring a Secondary Virtual IPv4 address for the Slave Group 206
 Configuring a slave virtual mac address 207
 Configuring an HSRP Session Name 208
BFD for HSRP 209
 Advantages of BFD 210
 BFD Process 210
 Configuring BFD 210
 Enabling BFD 210
 Modifying BFD timers (minimum interval) 211
 Modifying BFD timers (multiplier) 212
 Enhanced Object Tracking for HSRP and IP Static 213
 Configuring object tracking for HSRP 214
Hot Restartability for HSRP 215
 Configuration Examples for HSRP Implementation on Software 215
 Configuring an HSRP Group: Example 215
 Configuring a Router for Multiple HSRP Groups: Example 215
CHAPTER 8
Implementing LPTS 219
Prerequisites for Implementing LPTS 219
Information About Implementing LPTS 219
 LPTS Overview 220
 LPTS Policers 220
 IP TOS Precedence 220
Configuring LPTS Policer with IP TOS Precedence 221
 Configuring LPTS Policers 222
 Configuring LPTS Policer with IP TOS Precedence 223
Configuration Examples for Implementing LPTS Policers 224
 Configuring LPTS Policers: Example 225
 Configuring LPTS policers with IP TOS Precedence: Example 229
Additional References 229

CHAPTER 9
Implementing Network Stack IPv4 and IPv6 231
Prerequisites for Implementing Network Stack IPv4 and IPv6 232
Restrictions for Implementing Network Stack IPv4 and IPv6 232
Information About Implementing Network Stack IPv4 and IPv6 232
 Network Stack IPv4 and IPv6 Exceptions 232
 IPv4 and IPv6 Functionality 232
 IPv6 for Cisco IOS XR Software 233
 Larger IPv6 Address Space 233
 IPv6 Address Formats 233
 IPv6 Address Type: Unicast 234
 Aggregatable Global Address 235
 Link-Local Address 236
 IPv4-Compatible IPv6 Address 237
 Simplified IPv6 Packet Header 237
 IPv6 Neighbor Discovery 242
 IPv6 Neighbor Solicitation Message 242
 IPv6 Router Advertisement Message 244
 IPv6 Neighbor Redirect Message 245
 ICMP for IPv6 246

Additional References 216
Address Repository Manager 247
Address Conflict Resolution 247
Conflict Database 247
Multiple IP Addresses 247
Recursive Resolution of Conflict Sets 247
Route-Tag Support for Connected Routes 248
Fallback VRF 249
How to Implement Network Stack IPv4 and IPv6 249
Assigning IPv4 Addresses to Network Interfaces 249
IPv4 Addresses 249
IPv4 Virtual Addresses 251
Configuring IPv6 Addressing 251
IPv6 Virtual Addresses 251
Assigning Multiple IP Addresses to Network Interfaces 252
Secondary IPv4 Addresses 252
Configuring IPv4 and IPv6 Protocol Stacks 253
Enabling IPv4 Processing on an Unnumbered Interface 254
IPv4 Processing on an Unnumbered Interface 254
Configuring ICMP Rate Limiting 256
IPv4 ICMP Rate Limiting 256
IPv6 ICMP Rate Limiting 256
Configuring IPARM Conflict Resolution 257
Static Policy Resolution 257
Longest Prefix Address Conflict Resolution 258
Highest IP Address Conflict Resolution 259
Configuring Fallback VRF 259
Generic Routing Encapsulation 260
IPv4/IPv6 Forwarding over GRE Tunnels 261
IPv6 forwarding over GRE tunnels 261
TCP MSS Adjustment 261
Configuring TCP MSS for IPv4 packets 262
Configuring TCP MSS for IPv6 packets 263
Configuration Examples for Implementing Network Stack IPv4 and IPv6 263
Assigning an Unnumbered Interface: Example 264
Configuring Fallback VRF: Example 264
CHAPTER 10
Configuring Transports 267
- Prerequisites for Configuring NSR, TCP, UDP, Transports 267
- Information About Configuring NSR, TCP, UDP Transports 268
 - NSR Overview 268
 - TCP Overview 268
 - UDP Overview 268
- How to Configure Failover as a Recovery Action for NSR 269
 - Configuring Failover as a Recovery Action for NSR 269
- Additional References 270

CHAPTER 11
Implementing VRRP 273
- Prerequisites for Implementing VRRP on Cisco IOS XR Software 274
- Restrictions for Implementing VRRP on Cisco IOS XR Software 274
- Information About Implementing VRRP 274
 - VRRP Overview 274
 - Multiple Virtual Router Support 276
 - VRRP Router Priority 276
 - VRRP Advertisements 276
 - Benefits of VRRP 277
- How to Implement VRRP on Cisco IOS XR Software 277
 - Customizing VRRP 277
 - Enabling VRRP 281
 - Verifying VRRP 282
 - Clearing VRRP Statistics 282
- Configuration Examples for VRRP Implementation on Cisco IOS XR Software 283
 - Configuring accept-mode 283
 - Configuring a Global Virtual IPv6 Address 284
 - Configuring a Primary Virtual IPv4 Address 286
 - Configuring a Secondary Virtual IPv4 Address 287
 - Configuring a Virtual Link-Local IPv6 Address 289
 - Disabling State Change Logging 290
- Multiple Group Optimization for Virtual Router Redundancy Protocol 291
CHAPTER 12 Implementing Video Monitoring 303

Prerequisites for Implementing Video Monitoring 303
Information About Implementing Video Monitoring 303
Video Monitoring 303
 Introduction to Video Monitoring 304
 Key Features Supported on Video Monitoring 304
 Video Monitoring Terminology 307
Implementing Video Monitoring 308
 Creating IPv4 Access Lists 308
 Configuring class-map 310
 Configuring policy-map 311
 Configuring policy-map with metric parameters 311
 Media bit-rate 312
 Configuring policy-map with flow parameters 314
 Configuring policy-map with react parameters 315
Video Monitoring Metrics 317
 Configuring policy-map with rtp metric parameters 318
 Configuring policy-map with rtp react parameters 321
 Configuring policy-map with mdi metric parameters 324
 Configuring policy-map with mdi react parameters 325
 Configuring flow monitor 328
 Configuring service policy on an interface 329
 Configuring Trap and Clone on an interface 330
Configuration Examples for Implementing Video Monitoring 331
Additional References 338
Preface

The Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Configuration Guide preface contains these sections:

- Changes to This Document, page xvii
- Obtaining Documentation and Submitting a Service Request, page xviii

Changes to This Document

This table lists the technical changes made to this document since it was first printed.

Table 1: Changes to This Document

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL-30399-07</td>
<td>May 2014</td>
<td>Implementing HSRP chapter was updated.</td>
</tr>
<tr>
<td>OL-30399-06</td>
<td>April 2014</td>
<td>Implementing Access Lists and Prefix Lists chapter was updated.</td>
</tr>
<tr>
<td>OL-30399-05</td>
<td>April 2014</td>
<td>These chapters were updated:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuring ARP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Implementing the Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Implementing HSRP</td>
</tr>
<tr>
<td>OL-30399-04</td>
<td>April 2014</td>
<td>Implementing Host Services and Applications chapter was updated.</td>
</tr>
<tr>
<td>Revision</td>
<td>Date</td>
<td>Change Summary</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>OL-30399-03</td>
<td>April 2014</td>
<td>These chapters were updated:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Implementing Cisco Express Forwarding</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Implementing Network Stack IPv4 and IPv6</td>
</tr>
<tr>
<td>OL-30399-02</td>
<td>March 2014</td>
<td>Implementing VRRP chapter was updated.</td>
</tr>
<tr>
<td>OL-30399-01</td>
<td>September 2013</td>
<td>Initial release of this document.</td>
</tr>
</tbody>
</table>

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see What's New in Cisco Product Documentation.

To receive new and revised Cisco technical content directly to your desktop, you can subscribe to the What's New in Cisco Product Documentation RSS feed. RSS feeds are a free service.
New and Changed Feature Information in Cisco IOS XR Release 5.1.x

This table summarizes the new and changed feature information for the *Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Configuration Guide*, and tells you where they are documented.

- New and Changed IP Addresses and Services Features, page 1

New and Changed IP Addresses and Services Features

Table 2: New and Changed Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Introduced/Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSRP for IPv6</td>
<td>This feature was introduced.</td>
<td>Release 4.3.0</td>
<td>Implementing HSRP chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Enabling HSRP, on page 188</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring the HSRP Activation Delay, on page 195</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Enabling HSRP Support for ICMP Redirect Messages, on page 197</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Enabling HSRP for IPv6, on page 190</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Introduced/Changed in Release</td>
<td>Where Documented</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ACL Counters Using SNMP Query</td>
<td>This feature was introduced.</td>
<td>Release 5.1.1</td>
<td>Implementing Access Lists and Prefix Lists chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ACL Counters Using SNMP, on page 19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring ACL Counters for SNMP Query, on page 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring ACL Counters for SNMP Query: Example, on page 64</td>
</tr>
<tr>
<td>Local Proxy ARP</td>
<td>This feature was introduced.</td>
<td>Release 4.0.0</td>
<td>Configuring ARP chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ARP and Proxy ARP, on page 69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Enabling Local Proxy ARP, on page 73</td>
</tr>
<tr>
<td>512 Tracked Objects for HSRP</td>
<td>This feature was introduced.</td>
<td>Release 5.1.1</td>
<td>Implementing HSRP chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Enhanced Object Tracking for HSRP and IP Static, on page 213</td>
</tr>
<tr>
<td>Secure ARP</td>
<td>This feature was introduced.</td>
<td>Release 5.1.1</td>
<td>Implementing the Dynamic Host Configuration Protocol chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Secure ARP, on page 121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Enabling Secure ARP, on page 145</td>
</tr>
<tr>
<td>Secure Copy Protocol</td>
<td>This feature was introduced.</td>
<td>Release 5.1.1</td>
<td>Implementing Host Services and Applications chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• SCP, on page 164</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Transferring Files Using SCP, on page 174</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Introduced/Changed in Release</td>
<td>Where Documented</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Fallback VRF</td>
<td>This feature was introduced.</td>
<td>Release 5.1.1</td>
<td>Implementing Network Stack IPv4 and IPv6 chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Fallback VRF, on page 249</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Configuring Fallback VRF, on page 259</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Configuring Fallback VRF:Example, on page 264</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refer Network Stack IPv4 and IPv6 Commands chapter in Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference for information on the commands used for configuring fallback VRF feature.</td>
</tr>
<tr>
<td>3-Tuple Hash Algorithm</td>
<td>This feature was introduced.</td>
<td>Release 5.1.1</td>
<td>Implementing Cisco Express Forwarding chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Per-Flow Load Balancing, on page 87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Configuring 3-Tuple Hash Algorithm, on page 98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Configuring Per-Flow Load Balancing: Example, on page 116</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refer Cisco Express Forwarding Commands chapter in Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference for information on the commands used for configuring 3-tuple hash algorithm feature.</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Introduced/Changed in Release</td>
<td>Where Documented</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| DHCP Session MAC Throttle | This feature was introduced. | Release 5.1.1 | *Implementing the Dynamic Host Configuration Protocol* chapter
 - DHCP Session MAC Throttle, on page 158
 Refer *DHCP Commands* chapter in *Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference* for information on the commands used for configuring DHCP session MAC throttle feature. |
| VRRP 256 Virtual Routers Support | This feature was introduced. | Release 5.1 | *Implementing VRRP* chapter
 - Multiple Virtual Router Support, on page 276
 - Benefits of VRRP, on page 277 |
| IPV6 ABF Object Tracking | This feature was introduced. | Release 5.1 | *Implementing Access Lists and Prefix Lists* chapter
 - Configuring Pure ACL-Based Forwarding for IPv6 ACL, on page 39
 Refer *Access List Commands* chapter in *Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference* for information on the commands used for configuring IPV6 ABF Object Tracking. |
<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Introduced/Changed in Release</th>
<th>Where Documented</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCPV4 Server Support</td>
<td>This feature was introduced.</td>
<td>Release 5.1</td>
<td>Implementing the Dynamic Host Configuration Protocol chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring DHCPv4 Server Profile, on page 130</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring Multiple Classes with a Pool, on page 133</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring a server profile DAPS with class match option, on page 135</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring Server Profile without daps pool match option, on page 138</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Configuring an address pool for each ISP on DAPS, on page 140</td>
</tr>
<tr>
<td></td>
<td>Refer DHCP Commands chapter</td>
<td></td>
<td>Refer DHCP Commands chapter in Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference for information on the commands used for configuring DHCPV4 Server Support.</td>
</tr>
</tbody>
</table>

| IPv6 - ND enhancement | This feature was introduced. | Release 5.1 | Refer Access List Commands chapter in Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference for information on the commands used for configuring IPv6 - ND enhancement. |
Implementing Access Lists and Prefix Lists

An access control list (ACL) consists of one or more access control entries (ACE) that collectively define the network traffic profile. This profile can then be referenced by Cisco IOS XR software features such as traffic filtering, route filtering, QoS classification, and access control. Each ACL includes an action element (permit or deny) and a filter element based on criteria such as source address, destination address, protocol, and protocol-specific parameters.

Prefix lists are used in route maps and route filtering operations and can be used as an alternative to access lists in many Border Gateway Protocol (BGP) route filtering commands. A prefix is a portion of an IP address, starting from the far left bit of the far left octet. By specifying exactly how many bits of an address belong to a prefix, you can then use prefixes to aggregate addresses and perform some function on them, such as redistribution (filter routing updates).

This module describes the new and revised tasks required to implement access lists and prefix lists on the Cisco ASR 9000 Series Router.

For a complete description of the access list and prefix list commands listed in this module, refer to the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference. To locate documentation of other commands that appear in this chapter, use the command reference master index, or search online.

Feature History for Implementing Access Lists and Prefix Lists

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 4.2.1</td>
<td>IPv6 ACL over BVI interface feature was added.</td>
</tr>
<tr>
<td>Release 4.2.1</td>
<td>ACL in Class map feature was added.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Access Lists and Prefix Lists, page 8
- Restrictions for Implementing Access Lists and Prefix Lists, page 8
- Hardware Limitations, page 10
Prerequisites for Implementing Access Lists and Prefix Lists

The following prerequisite applies to implementing access lists and prefix lists:

All command task IDs are listed in individual command references and in the Cisco IOS XR Task ID Reference Guide. If you need assistance with your task group assignment, contact your system administrator.

Restrictions for Implementing Access Lists and Prefix Lists

The following restrictions apply to implementing access lists and prefix lists:

• Layer 2/Layer 3 ACLs are not supported on Layer 2 interfaces.
• IPv4 ACLs are not supported for loopback and interflex interfaces.
• IPv4 and IPv6 ACLs are not supported on service application and service infrastructure interfaces.
• If the TCAM utilization is high and large ACLs are modified, then an error may occur. During such instances, do the following to edit an ACL:
Implementing Access Lists and Prefix Lists

1. Remove the ACL from the interface.
2. Reconfigure the ACL.
3. Reapply the ACL to the interface.

Note Use the `show prm server team summary all acl all location` and `show pfilter-ea fea summary location` commands to view the TCAM utilization.

- Filtering of MPLS packets through common ACL and interface ACL is not supported.

 If the packet comes on an ASR 9000 Ethernet Line Card, and is labeled as part of an MPLS flow, then the ingress ASR 9000 Ethernet Line Card cannot apply ACL. Also, for ASR 9000 Ethernet Line Cards, if the label is popped because it is routed to an attached customer edge (CE), then the egress line card (LC) sees a plain IP. But, it still cannot apply an egress (outbound) ACL on the IP packet. Whereas, an ASR 9000 Enhanced Ethernet Line Card can perform an egress IP ACL on this packet before sending it to the directly attached CE.

The following restrictions apply for implementing ACL-based forwarding (ABF):

- The following next-hop configurations are not supported: attaching ACL having a next-hop option in the egress direction, modifying an ACL attached in the egress direction having next-hop, deny ACE with next-hop.
- The A9K-SIP-700 LC and ASR 9000 Enhanced Ethernet LC support ABFv4 and ABFv6 in Release 4.2.0. ASR 9000 Ethernet LC does not support ABFv6 in Release 4.2.0, it only supports ABFv4.
- ABFv4 is supported on BVI interfaces for ASR 9000 Enhanced Ethernet line card. It is not supported for ASR 9000 Ethernet line card.

Note Next-hop egress over A9K-SIP-700 line card, ASR 9000 Ethernet line card, or virtual interfaces like GRE or BVI is supported when ABFv4 is configured for a BVI interface.

- ABFv6 is supported on IRB/BVI interfaces for ASR 9000 Enhanced Ethernet line card. It is not supported for ASR 9000 Ethernet line card.

Note There is one exception to this. In case of IP to TAG, the label is imposed by the ingress LC (based on ABF nexthop), and the packet crosses the fabric as a tag packet. These packets are handled by A9K-SIP-700 without any issue.

- Packets punt in the ingress direction from the NPU to the LC CPU are not subjected to ABF treatment due to lack of ABF support in the slow path.
- IP packet(s) needing fragmentation are not subjected to ABF. The packet is forwarded in the traditional way. Fragmented packets received are handled by ABF.
Hardware Limitations

- Support for ABF is only for IPv4 and Ethernet line cards. IPv6 and other interfaces are not supported.
- ABF is an ingress line card feature and the egress line card must be ABF aware.

Information About Implementing Access Lists and Prefix Lists

To implement access lists and prefix lists, you must understand the following concepts:

Access Lists and Prefix Lists Feature Highlights

This section lists the feature highlights for access lists and prefix lists.

- Cisco IOS XR software provides the ability to clear counters for an access list or prefix list using a specific sequence number.
- Cisco IOS XR software provides the ability to copy the contents of an existing access list or prefix list to another access list or prefix list.
- Cisco IOS XR software allows users to apply sequence numbers to permit or deny statements and to resequence, add, or remove such statements from a named access list or prefix list.

Note

Resequencing is only for IPv4 prefix lists.

- Cisco IOS XR software does not differentiate between standard and extended access lists. Standard access list support is provided for backward compatibility.

Purpose of IP Access Lists

Access lists perform packet filtering to control which packets move through the network and where. Such controls help to limit network traffic and restrict the access of users and devices to the network. Access lists have many uses, and therefore many commands accept a reference to an access list in their command syntax. Access lists can be used to do the following:

- Filter incoming packets on an interface.
- Filter outgoing packets on an interface.
- Restrict the contents of routing updates.
- Limit debug output based on an address or protocol.
- Control vty access.
- Identify or classify traffic for advanced features, such as congestion avoidance, congestion management, and priority and custom queueing.
How an IP Access List Works

An access list is a sequential list consisting of permit and deny statements that apply to IP addresses and possibly upper-layer IP protocols. The access list has a name by which it is referenced. Many software commands accept an access list as part of their syntax.

An access list can be configured and named, but it is not in effect until the access list is referenced by a command that accepts an access list. Multiple commands can reference the same access list. An access list can control traffic arriving at the router or leaving the router, but not traffic originating at the router.

IP Access List Process and Rules

Use the following process and rules when configuring an IP access list:

- The software tests the source or destination address or the protocol of each packet being filtered against the conditions in the access list, one condition (permit or deny statement) at a time.
- If a packet does not match an access list statement, the packet is then tested against the next statement in the list.
- If a packet and an access list statement match, the remaining statements in the list are skipped and the packet is permitted or denied as specified in the matched statement. The first entry that the packet matches determines whether the software permits or denies the packet. That is, after the first match, no subsequent entries are considered.
- If the access list denies the address or protocol, the software discards the packet and returns an Internet Control Message Protocol (ICMP) Host Unreachable message. ICMP is configurable in the Cisco IOS XR software.
- If no conditions match, the software drops the packet because each access list ends with an unwritten or implicit deny statement. That is, if the packet has not been permitted or denied by the time it was tested against each statement, it is denied.
- The access list should contain at least one permit statement or else all packets are denied.
- Because the software stops testing conditions after the first match, the order of the conditions is critical. The same permit or deny statements specified in a different order could result in a packet being passed under one circumstance and denied in another circumstance.
- Only one access list per interface, per protocol, per direction is allowed.
- Inbound access lists process packets arriving at the router. Incoming packets are processed before being routed to an outbound interface. An inbound access list is efficient because it saves the overhead of routing lookups if the packet is to be discarded because it is denied by the filtering tests. If the packet is permitted by the tests, it is then processed for routing. For inbound lists, permit means continue to process the packet after receiving it on an inbound interface; deny means discard the packet.
- Outbound access lists process packets before they leave the router. Incoming packets are routed to the outbound interface and then processed through the outbound access list. For outbound lists, permit means send it to the output buffer; deny means discard the packet.
- An access list can not be removed if that access list is being applied by an access group in use. To remove an access list, remove the access group that is referencing the access list and then remove the access list.
- An access list must exist before you can use the \texttt{ipv4 access group} command.
Helpful Hints for Creating IP Access Lists

Consider the following when creating an IP access list:

- Create the access list before applying it to an interface.
- Organize your access list so that more specific references in a network or subnet appear before more general ones.
- To make the purpose of individual statements more easily understood at a glance, you can write a helpful remark before or after any statement.

Source and Destination Addresses

Source address and destination addresses are two of the most typical fields in an IP packet on which to base an access list. Specify source addresses to control packets from certain networking devices or hosts. Specify destination addresses to control packets being sent to certain networking devices or hosts.

Wildcard Mask and Implicit Wildcard Mask

Address filtering uses wildcard masking to indicate whether the software checks or ignores corresponding IP address bits when comparing the address bits in an access-list entry to a packet being submitted to the access list. By carefully setting wildcard masks, an administrator can select a single or several IP addresses for permit or deny tests.

Wildcard masking for IP address bits uses the number 1 and the number 0 to specify how the software treats the corresponding IP address bits. A wildcard mask is sometimes referred to as an inverted mask, because a 1 and 0 mean the opposite of what they mean in a subnet (network) mask.

- A wildcard mask bit 0 means check the corresponding bit value.
- A wildcard mask bit 1 means ignore that corresponding bit value.

You do not have to supply a wildcard mask with a source or destination address in an access list statement. If you use the host keyword, the software assumes a wildcard mask of 0.0.0.0.

Unlike subnet masks, which require contiguous bits indicating network and subnet to be ones, wildcard masks allow noncontiguous bits in the mask. For IPv6 access lists, only contiguous bits are supported.

You can also use CIDR format (/x) in place of wildcard bits. For example, the IPv4 address 1.2.3.4 0.255.255.255 corresponds to 1.2.3.4/8

Transport Layer Information

You can filter packets on the basis of transport layer information, such as whether the packet is a TCP, UDP, ICMP, or IGMP packet.

IP Access List Entry Sequence Numbering

The ability to apply sequence numbers to IP access-list entries simplifies access list changes. Prior to this feature, there was no way to specify the position of an entry within an access list. If a user wanted to insert
an entry (statement) in the middle of an existing list, all the entries after the desired position had to be removed, then the new entry was added, and then all the removed entries had to be reentered. This method was cumbersome and error prone.

The IP Access List Entry Sequence Numbering feature allows users to add sequence numbers to access-list entries and resequence them. When you add a new entry, you choose the sequence number so that it is in a desired position in the access list. If necessary, entries currently in the access list can be resequenced to create room to insert the new entry.

Sequence Numbering Behavior

The following details the sequence numbering behavior:

- If entries with no sequence numbers are applied, the first entry is assigned a sequence number of 10, and successive entries are incremented by 10. The maximum sequence number is 2147483646. If the generated sequence number exceeds this maximum number, the following message displays:

 Exceeded maximum sequence number.

- If you provide an entry without a sequence number, it is assigned a sequence number that is 10 greater than the last sequence number in that access list and is placed at the end of the list.

- ACL entries can be added without affecting traffic flow and hardware performance.

- If a new access list is entered from global configuration mode, then sequence numbers for that access list are generated automatically.

- Distributed support is provided so that the sequence numbers of entries in the route processor (RP) and line card (LC) are synchronized at all times.

- This feature works with named standard and extended IP access lists. Because the name of an access list can be designated as a number, numbers are acceptable.

IP Access List Logging Messages

Cisco IOS XR software can provide logging messages about packets permitted or denied by a standard IP access list. That is, any packet that matches the access list causes an informational logging message about the packet to be sent to the console. The level of messages logged to the console is controlled by the `logging console` command in global configuration mode.

The first packet that triggers the access list causes an immediate logging message, and subsequent packets are collected over 5-minute intervals before they are displayed or logged. The logging message includes the access list number, whether the packet was permitted or denied, the source IP address of the packet, and the number of packets from that source permitted or denied in the prior 5-minute interval.

However, you can use the `{ ipv4 | ipv6 } access-list log-update threshold` command to set the number of packets that, when they match an access list (and are permitted or denied), cause the system to generate a log message. You might do this to receive log messages more frequently than at 5-minute intervals.
Caution
If you set the update-number argument to 1, a log message is sent right away, rather than caching it; every packet that matches an access list causes a log message. A setting of 1 is not recommended because the volume of log messages could overwhelm the system.

Even if you use the \texttt{\{ipv4 | ipv6\} access-list log-update threshold} command, the 5-minute timer remains in effect, so each cache is emptied at the end of 5 minutes, regardless of the number of messages in each cache. Regardless of when the log message is sent, the cache is flushed and the count reset to 0 for that message the same way it is when a threshold is not specified.

Note
The logging facility might drop some logging message packets if there are too many to be handled or if more than one logging message is handled in 1 second. This behavior prevents the router from using excessive CPU cycles because of too many logging packets. Therefore, the logging facility should not be used as a billing tool or as an accurate source of the number of matches to an access list.

Extended Access Lists with Fragment Control

In earlier releases, the non-fragmented packets and the initial fragments of a packet were processed by IP extended access lists (if you apply this access list), but non-initial fragments were permitted, by default. However, now, the IP Extended Access Lists with Fragment Control feature allows more granularity of control over non-initial fragments of a packet. Using this feature, you can specify whether the system examines non-initial IP fragments of packets when applying an IP extended access list.

As non-initial fragments contain only Layer 3 information, these access-list entries containing only Layer 3 information, can now be applied to non-initial fragments also. The fragment has all the information the system requires to filter, so the access-list entry is applied to the fragments of a packet.

This feature adds the optional \texttt{fragments} keyword to the following IP access list commands: \texttt{deny (IPv4)}, \texttt{permit (IPv4)}, \texttt{deny (IPv6)}, \texttt{permit (IPv6)}. By specifying the \texttt{fragments} keyword in an access-list entry, that particular access-list entry applies only to non-initial fragments of packets; the fragment is either permitted or denied accordingly.

The behavior of access-list entries regarding the presence or absence of the \texttt{fragments} keyword can be summarized as follows:
<table>
<thead>
<tr>
<th>If the Access-List Entry has...</th>
<th>Then...</th>
</tr>
</thead>
</table>
| ...no **fragments** keyword and all of the access-list entry information matches | For an access-list entry containing only Layer 3 information:
 • The entry is applied to non-fragmented packets, initial fragments, and non-initial fragments.

For an access-list entry containing Layer 3 and Layer 4 information:
 • The entry is applied to non-fragmented packets and initial fragments.
 • If the entry matches and is a permit statement, the packet or fragment is permitted.
 • If the entry matches and is a deny statement, the packet or fragment is denied.

 • The entry is also applied to non-initial fragments in the following manner. Because non-initial fragments contain only Layer 3 information, only the Layer 3 portion of an access-list entry can be applied. If the Layer 3 portion of the access-list entry matches, and
 • If the entry is a **permit** statement, the non-initial fragment is permitted.
 • If the entry is a deny statement, the next access-list entry is processed.

 Note
 Note that the deny statements are handled differently for non-initial fragments versus non-fragmented or initial fragments. |
| ...the **fragments** keyword and all of the access-list entry information matches | The access-list entry is applied only to non-initial fragments.
 Note
 The **fragments** keyword cannot be configured for an access-list entry that contains any Layer 4 information. |

You should not add the **fragments** keyword to every access-list entry, because the first fragment of the IP packet is considered a non-fragment and is treated independently of the subsequent fragments. Because an initial fragment will not match an access list permit or deny entry that contains the **fragments** keyword, the packet is compared to the next access list entry until it is either permitted or denied by an access list entry that does not contain the **fragments** keyword. Therefore, you may need two access list entries for every deny entry. The first deny entry of the pair will not include the **fragments** keyword, and applies to the initial
Comments About Entries in Access Lists

You can include comments (remarks) about entries in any named IP access list using the `remark` access list configuration command. The remarks make the access list easier for the network administrator to understand and scan. Each remark line is limited to 255 characters.

The remark can go before or after a `permit` or `deny` statement. You should be consistent about where you put the remark so it is clear which remark describes which `permit` or `deny` statement. For example, it would be confusing to have some remarks before the associated `permit` or `deny` statements and some remarks after the associated statements. Remarks can be sequenced.

Remember to apply the access list to an interface or terminal line after the access list is created. See the "Applying Access Lists, on page 22" section for more information.

Access Control List Counters

In Cisco IOS XR software, ACL counters are maintained both in hardware and software. Hardware counters are used for packet filtering applications such as when an access group is applied on an interface. Software counters are used by all the applications mainly involving software packet processing.
Packet filtering makes use of 64-bit hardware counters per ACE. If the same access group is applied on interfaces that are on the same line card in a given direction, the hardware counters for the ACL are shared between two interfaces.

To display the hardware counters for a given access group, use the `show access-lists ipv4 \{access-list-name hardware \{ingress | egress \} [interface type interface-path-id] \{location node-id\}\}]` command in EXEC mode.

To clear the hardware counters, use the `clear access-list ipv4 access-list-name \{hardware \{ingress | egress \} [interface type interface-path-id] \{location node-id\}\}]` command in EXEC mode.

Hardware counting is not enabled by default for IPv4 ACLs because of a small performance penalty. To enable hardware counting, use the `ipv4 access-group access-list-name \{ingress | egress \} \{hardware-count\}` command in interface configuration mode. This command can be used as desired, and counting is enabled only on the specified interface.

Software counters are updated for the packets processed in software, for example, exception packets punted to the LC CPU for processing, or ACL used by routing protocols, and so on. The counters that are maintained are an aggregate of all the software applications using that ACL. To display software-only ACL counters, use the `show access-lists ipv4 access-list-name [sequence number]` command in EXEC mode.

All the above information is true for IPv6, except that hardware counting is always enabled; there is no `hardware-count` option in the IPv6 access-group command-line interface (CLI).

BGP Filtering Using Prefix Lists

Prefix lists can be used as an alternative to access lists in many BGP route filtering commands. The advantages of using prefix lists are as follows:

- Significant performance improvement in loading and route lookup of large lists.
- Incremental updates are supported.
- More user friendly CLI. The CLI for using access lists to filter BGP updates is difficult to understand and use because it uses the packet filtering format.
- Greater flexibility.

Before using a prefix list in a command, you must set up a prefix list, and you may want to assign sequence numbers to the entries in the prefix list.

How the System Filters Traffic by Prefix List

Filtering by prefix list involves matching the prefixes of routes with those listed in the prefix list. When there is a match, the route is used. More specifically, whether a prefix is permitted or denied is based upon the following rules:

- An empty prefix list permits all prefixes.
- An implicit deny is assumed if a given prefix does not match any entries of a prefix list.
- When multiple entries of a prefix list match a given prefix, the longest, most specific match is chosen.

Sequence numbers are generated automatically unless you disable this automatic generation. If you disable the automatic generation of sequence numbers, you must specify the sequence number for each entry using the `sequence-number` argument of the `permit` and `deny` commands in either IPv4 or IPv6 prefix list.
configuration command. Use the no form of the permit or deny command with the sequence-number argument to remove a prefix-list entry.

The show commands include the sequence numbers in their output.

Information About Implementing ACL-based Forwarding

To implement access lists and prefix lists, you must understand the following concepts:

ACL-based Forwarding Overview

Converged networks carry voice, video and data. Users may need to route certain traffic through specific paths instead of using the paths computed by routing protocols. This is achieved by specifying the next-hop address in ACL configurations, so that the configured next-hop address from ACL is used for forwarding packet towards its destination instead of routing packet-based destination address lookup. This feature of using next-hop in ACL configurations for forwarding is called ACL Based Forwarding (ABF).

ACL-based forwarding enables you to choose service from multiple providers for broadcast TV over IP, IP telephony, data, and so on, which provides a cafeteria-like access to the Internet. Service providers can divert user traffic to various content providers.

ABF-OT

To provide flexibility to the user in selecting the suitable next hop, the ABF functionality is enhanced to interact with object-tracking (OT), which impacts:

- Tracking prefix in CEF
- Tracking the line-state protocol
- IPSLA (IP Service Level Agreement)

IPv6 ACL Based Forwarding Object Tracking

The IPv6 ACL based forwarding (ABF) object tracking feature enables ABF to decide which next hop address to use, based on the state of the object being tracked for the next hop. IPv6 SLA echos are used to determine reachability to the next hop address. If the primary route is unreachable, the secondary route is used to forward traffic. IPv6 ABF object tracking is supported on ASR 9000 Enhanced Ethernet line cards only.

For information about the object command which is used to configure an object for tracking, see the Cisco ASR 9000 Series Aggregation Services Router System Management Command Reference.

IPSLA support for Object tracking

The OT-module interacts with the IPSLA-module to get reachability information. With IPSLA, the routers perform periodic measurements.
ACL Counters Using SNMP

Apart from viewing the access control list counters using commands, you can also get the ACL counter information using SNMP. When the router receives an SNMP request for ACE counters, the router responds by sending the packet count that matches each access control entry along with the byte count to the SNMP server.

You can use the `counter counter-name` command to aggregate several ACEs into a single counter.

The following features are supported when you retrieve ACL counters using SNMP:

- Hardware counters for interface ACLs applied with the `interface-statistics` command.
- Hardware ACL statistics on GigabitEthernet, TenGigabitEthernet, HundredGigabitEthernet, Bundle Ethernet interfaces, and subinterfaces.
- ACE label counter statistics.

The following features are not supported when you retrieve ACL counters using SNMP:

- Software counters.
- Counter names cannot be configured on ABF ACLs.
- Common ACLs. If an interface has both common ACL and interface ACL, statistics pertaining to ACEs from the common ACL are not returned.
- Hardware statistics for subscriber interfaces.
- Hardware statistics for ACEs with the same counter name.

Only Cisco ASR 9000 Enhanced Ethernet Line Cards support this feature. We recommend that you do not enable more than 50 unique counters in an ACL.

How to Implement Access Lists and Prefix Lists

IPv6 ACL support is available on the Cisco ASR 9000 SIP 700 linecard and the ASR 9000 Ethernet linecards. The relevant scale is:

- ACL enabled interfaces - 1000 (500 in each direction); for ASR 9000 Ethernet linecards- 4000
- Unique ACLs - 512 (with 5 ACEs each); for ASR 9000 Ethernet linecards- 2000
- Maximum ACEs per ACL - 8000 (for ASR 9000 Ethernet linecards, ACEs could be 16000, 8000, 4000-based on the LC model)
- IPv6 ACL log will also be supported.

This section contains the following procedures:

Configuring Extended Access Lists

This task configures an extended IPv4 or IPv6 access list.
SUMMARY STEPS

1. configure
2. \{ipv4 | ipv6\} access-list name
3. \[sequence-number\] remark remark
4. Do one of the following:
 • \[sequence-number\]\{permit | deny\} source source-wildcard destination destination-wildcard
 \[precedence precedence]\[dscp dscp]\[fragments] \[log | log-input]\n • \[sequence-number\]\{permit | deny\} protocol \{source-ipv6-prefix/prefix-length | any | host\}
 source-ipv6-address \[operator \{port | protocol-port\}\] \{destination-ipv6-prefix/prefix-length | any\}
 host destination-ipv6-address \[operator \{port | protocol-port\}\]\[dscp value]\[routing]\[authen]\n \[destopts]\[fragments] \[log | log-input]\n5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no sequence-number command to delete an entry.
6. commit
7. show access-lists \{ipv4 | ipv6\} \[access-list-name \[hardware \{ingress | egress\}\[interface type \[interface-path-id]\]\[sequence number\]\[location node-id\]\[summary \[access-list-name]\]\[access-list-name \[sequence-number\]\]\[maximum \[detail\]\[usage \[pfilter location node-id\]\]]\]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>{ipv4</td>
<td>ipv6} access-list name</td>
</tr>
</tbody>
</table>
| Example: | | RP/0/RSP0/CPU0:router(config)# ipv4 access-list acl_1
or
RP/0/RSP0/CPU0:router(config)# ipv6 access-list acl_2 |
| Step 3 | \[sequence-number\] remark remark | (Optional) Allows you to comment about a permit or deny statement in a named access list. |
| Example: | | RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10
remark Do not allow user1 to telnet out |
<p>| Step 4 | Do one of the following: | Specifies one or more conditions allowed or denied in IPv4 access list acl_1. |
| | • [sequence-number]{permit | deny} source source-wildcard destination destination-wildcard | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>[precedence precedence] [dscp dscp] [fragments] [log</td>
<td>log-input]</td>
</tr>
<tr>
<td>• [sequence-number] {permit</td>
<td>deny} protocol {source-ipv6-prefix</td>
</tr>
<tr>
<td>{destination-ipv6-prefix</td>
<td>prefix-length</td>
</tr>
<tr>
<td></td>
<td>Specifies one or more conditions allowed or denied in IPv6 access list acl_2.</td>
</tr>
<tr>
<td></td>
<td>• Refer to the deny (IPv6) and permit (IPv6) commands for more information on filtering IPv6 traffic based on based on IPv6 option headers and optional, upper-layer protocol type information.</td>
</tr>
<tr>
<td>Example:</td>
<td>Note Every IPv6 address list has two implicit permits used for neighbor advertisement and solicitation: Implicit Neighbor Discovery–Neighbor Advertisement (NDNA) permit, and Implicit Neighbor Discovery–Neighbor Solicitation (NDNS) permit.</td>
</tr>
<tr>
<td>RP/O/RSP0/CPU0:router(config-ipv4-acl)# 10 permit 172.16.0.0 0.0.255.255</td>
<td>Note Every IPv6 access list has an implicit deny ipv6 any any statement as its last match condition. An IPv6 access list must contain at least one entry for the implicit deny ipv6 any any statement to take effect.</td>
</tr>
<tr>
<td>RP/O/RSP0/CPU0:router(config-ipv4-acl)# 20 deny 192.168.34.0 0.0.0.255</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/O/RSP0/CPU0:router(config-ipv6-acl)# 20 permit icmp any any</td>
<td></td>
</tr>
<tr>
<td>RP/O/RSP0/CPU0:router(config-ipv6-acl)# 30 deny tcp any gt 5000</td>
<td></td>
</tr>
<tr>
<td>Step 5 Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no sequence-number command to delete an entry.</td>
<td>Allows you to revise an access list.</td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
<tr>
<td>Step 7 show access-lists ipv4</td>
<td>ipv6 [access-list-name hardware [ingress</td>
</tr>
<tr>
<td>Example:</td>
<td>• Use the access-list-name argument to display the contents of a specific access list.</td>
</tr>
<tr>
<td>RP/O/RSP0/CPU0:router# show access-lists ipv4 acl_1</td>
<td>• Use the hardware, ingress or egress, and location or sequence keywords to display the access-list hardware contents and counters for all interfaces that use the specified access list in a given direction (ingress or egress). The access group for an interface must be configured using the ipv4 access-group command for access-list hardware counters to be enabled.</td>
</tr>
<tr>
<td></td>
<td>• Use the summary keyword to display a summary of all current IPv4 or IPv6 access-lists.</td>
</tr>
<tr>
<td></td>
<td>• Use the interface keyword to display interface statistics.</td>
</tr>
</tbody>
</table>
After creating an access list, you must apply it to a line or interface. See the Applying Access Lists, on page 22 section for information about how to apply an access list.

ACL commit fails while adding and removing unique Access List Entries (ACE). This happens due to the absence of an assigned manager process. The user has to exit the config-ipv4-acl mode to configuration mode and re-enter the config-ipv4-acl mode before adding the first ACE.

Applying Access Lists

After you create an access list, you must reference the access list to make it work. Access lists can be applied on either outbound or inbound interfaces. This section describes guidelines on how to accomplish this task for both terminal lines and network interfaces.

Set identical restrictions on all the virtual terminal lines, because a user can attempt to connect to any of them.

For inbound access lists, after receiving a packet, Cisco IOS XR software checks the source address of the packet against the access list. If the access list permits the address, the software continues to process the packet. If the access list rejects the address, the software discards the packet and returns an ICMP host unreachable message. The ICMP message is configurable.

For outbound access lists, after receiving and routing a packet to a controlled interface, the software checks the source address of the packet against the access list. If the access list permits the address, the software sends the packet. If the access list rejects the address, the software discards the packet and returns an ICMP host unreachable message.

When you apply an access list that has not yet been defined to an interface, the software acts as if the access list has not been applied to the interface and accepts all packets. Note this behavior if you use undefined access lists as a means of security in your network.

Controlling Access to an Interface

This task applies an access list to an interface to restrict access to that interface.

Access lists can be applied on either outbound or inbound interfaces.

SUMMARY STEPS

1. `configure`
2. `interface type interface-path-id`
3. Do one of the following:
 - `ipv4 access-group access-list-name {ingress | egress} [hardware-count] [interface-statistics]`
 - `ipv6 access-group access-list-name {ingress | egress} [interface-statistics]`
4. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# interface GigabitEthernet 0/2/0/2</td>
<td>• The type argument specifies an interface type. For more information on interface types, use the question mark (?) online help function.</td>
</tr>
<tr>
<td></td>
<td>• The instance argument specifies either a physical interface instance or a virtual instance.</td>
</tr>
<tr>
<td></td>
<td>◦ The naming notation for a physical interface instance is rack/slot/module/port. The slash (/) between values is required as part of the notation.</td>
</tr>
<tr>
<td></td>
<td>◦ The number range for a virtual interface instance varies depending on the interface type.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Controls access to an interface.</td>
</tr>
<tr>
<td>Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• ipv4 access-group access-list-name [ingress</td>
<td>egress] [hardware-count] [interface-statistics]</td>
</tr>
<tr>
<td>• ipv6 access-group access-list-name [ingress</td>
<td>egress] [interface-statistics]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group p-in-filter in</td>
<td>• Use the access-list-name argument to specify a particular IPv4 or IPv6 access list.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group p-out-filter out</td>
<td>• Use the in keyword to filter on inbound packets or the out keyword to filter on outbound packets.</td>
</tr>
<tr>
<td></td>
<td>• Use the hardware-count keyword to enable hardware counters for the IPv4 access group.</td>
</tr>
<tr>
<td></td>
<td>◦ Hardware counters are automatically enabled for IPv6 access groups.</td>
</tr>
<tr>
<td></td>
<td>• Use the interface-statistics keyword to specify per-interface statistics in the hardware.</td>
</tr>
<tr>
<td></td>
<td>This example applies filters on packets inbound and outbound from GigabitEthernet interface 0/2/0/2.</td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Controlling Access to a Line

This task applies an access list to a line to control access to that line.
SUMMARY STEPS

1. `configure`
2. `line {aux | console | default | template template-name}`
3. `access-class list-name{ingress | egress}`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>`line {aux</td>
<td>console</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config)# line default</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>`access-class list-name{ingress</td>
<td>egress}`</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-line)# access-class acl_2 out</code></td>
<td>In the example, outgoing connections for the default line template are filtered using the IPv6 access list acl_2.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring Prefix Lists

This task configures an IPv4 or IPv6 prefix list.
SUMMARY STEPS

1. `configure`
2. `{ipv4 | ipv6} prefix-list name`
3. `[sequence-number] remark remark`
4. `[sequence-number] {permit | deny} network/length [ge value] [le value] [eq value]`
5. Repeat Step 4 as necessary. Use the `no sequence-number` command to delete an entry.
6. `commit`
7. Do one of the following:
 - `show prefix-list ipv4 [name] [sequence-number]`
 - `show prefix-list ipv6 [name] [sequence-number] [summary]`
8. `clear {ipv4 | ipv6} prefix-list name [sequence-number]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td>Enters either IPv4 or IPv6 prefix list configuration mode and configures the named prefix list.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`{ipv4</td>
<td>ipv6} prefix-list name`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config)# ipv4 prefix-list pfx_1</code></td>
<td>- To create a prefix list, you must enter at least one <code>permit</code> or <code>deny</code> clause.</td>
</tr>
<tr>
<td></td>
<td><code>or</code></td>
<td>- Use the `no {ipv4</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config)# ipv6 prefix-list pfx_2</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>[sequence-number] remark remark</code></td>
<td>(Optional) Allows you to comment about the following <code>permit</code> or <code>deny</code> statement in a named prefix list.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-ipv4_pfx)# 10 remark Deny all routes with a prefix of 10/8</code></td>
<td>- The remark can be up to 255 characters; anything longer is truncated.</td>
</tr>
<tr>
<td></td>
<td><code>or</code></td>
<td>- Remarks can be configured before or after <code>permit</code> or <code>deny</code> statements, but their location should be consistent.</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-ipv4_pfx)# 20 deny 10.0.0.0/8 le 32</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>`[sequence-number] {permit</td>
<td>deny} network/length [ge value] [le value] [eq value]`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-ipv6_pfx)# 20 deny 128.0.0.0/8 eq 24</code></td>
<td>- This example denies all prefixes matching /24 in 128.0.0.0/8 in prefix list pfx_2.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Repeat Step 4 as necessary. Use the <code>no sequence-number</code> command to delete an entry.</td>
<td>Allows you to revise a prefix list.</td>
</tr>
</tbody>
</table>
Configuring Standard Access Lists

This task configures a standard IPv4 access list.

Standard access lists use source addresses for matching operations.

SUMMARY STEPS

1. **configure**
2. **ipv4 access-list** `name`
3. `[sequence-number] remark` `remark`
4. `[sequence-number] {permit | deny} source [source-wildcard] [log | log-input]`
5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the `no sequence-number` command to delete an entry.
6. **commit**
7. **show access-lists** `ipv4` `ipv6` `[access-list-name] hardware {ingress | egress} [interface type interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name [sequence-number] | maximum [detail] [usage {pfilter location node-id}]]`

Configuring Standard Access Lists

Command or Action

<table>
<thead>
<tr>
<th>Step 6</th>
<th>commit</th>
</tr>
</thead>
</table>

Purpose

(Optional) Displays the contents of current IPv4 or IPv6 prefix lists.

- Use the `name` argument to display the contents of a specific prefix list.
- Use the `sequence-number` argument to specify the sequence number of the prefix-list entry.
- Use the `summary` keyword to display summary output of prefix-list contents.

Step 7

Do one of the following:

- **show prefix-list ipv4** `[name] [sequence-number]`
- **show prefix-list ipv6** `[name] [sequence-number]` `[summary]`

Example:

RP/0/RSP0/CPU0:router# show prefix-list ipv4 pfx_1
or

RP/0/RSP0/CPU0:router# show prefix-list ipv6 pfx_2 summary

Step 8

clear `{ipv4 | ipv6} prefix-list**` `name` `[sequence-number]`

Example:

RP/0/RSP0/CPU0:router# clear prefix-list ipv4 pfx_1 30

(Optional) Clears the hit count on an IPv4 or IPv6 prefix list.

Note The hit count is a value indicating the number of matches to a specific prefix-list entry.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>ipv4 access-list name</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters IPv4 access list configuration mode and configures access list acl_1.</td>
</tr>
<tr>
<td>Step 3</td>
<td>[sequence-number] remark remark</td>
</tr>
<tr>
<td>Example:</td>
<td>(Optional) Allows you to comment about the following permit or deny statement in a named access list.</td>
</tr>
<tr>
<td></td>
<td>• The remark can be up to 255 characters; anything longer is truncated.</td>
</tr>
<tr>
<td></td>
<td>• Remarks can be configured before or after permit or deny statements, but their location should be consistent.</td>
</tr>
<tr>
<td>Step 4</td>
<td>[sequence-number] {permit</td>
</tr>
<tr>
<td>Example:</td>
<td>Specifies one or more conditions allowed or denied, which determines whether the packet is passed or dropped.</td>
</tr>
<tr>
<td></td>
<td>• Use the source argument to specify the number of network or host from which the packet is being sent.</td>
</tr>
<tr>
<td></td>
<td>• Use the optional source-wildcard argument to specify the wildcard bits to be applied to the source.</td>
</tr>
<tr>
<td></td>
<td>• The optional log keyword causes an information logging message about the packet that matches the entry to be sent to the console.</td>
</tr>
<tr>
<td></td>
<td>• The optional log-input keyword provides the same function as the log keyword, except that the logging message also includes the input interface.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no sequence-number command to delete an entry.</td>
</tr>
<tr>
<td>Step 6</td>
<td>commit</td>
</tr>
<tr>
<td>Step 7</td>
<td>show access-lists [ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>Allows you to revise an access list.</td>
</tr>
<tr>
<td></td>
<td>(Optional) Displays the contents of the named IPv4 access list.</td>
</tr>
<tr>
<td></td>
<td>• The contents of an IPv4 standard access list are displayed in extended access-list format.</td>
</tr>
</tbody>
</table>
What to Do Next

After creating a standard access list, you must apply it to a line or interface. See the Applying Access Lists, on page 22" section for information about how to apply an access list.

Copying Access Lists

This task copies an IPv4 or IPv6 access list.

SUMMARY STEPS

1. copy access-list \{ipv4 \| ipv6\} source-acl destination-acl

2. show access-lists \{ipv4 \| ipv6\}\{access-list-name hardware \{ingress \| egress\} \{interface type interface-path-id\} \{sequence number \| location node-id\} \{summary \{access-list-name\} \{access-list-name [sequence-number]\} \{maximum \{detail\} \{usage \{pfilter location node-id\}\}]\}

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>copy access-list {ipv4 | ipv6} source-acl destination-acl
Example:
RP/0/RSP0/CPU0:router# copy ipv6 access-list list-1 list-2</td>
</tr>
</tbody>
</table>
| **Step 2** | **show access-lists \{ipv4 \| ipv6\}\{access-list-name hardware \{ingress \| egress\} \{interface type interface-path-id\} \{summary \{access-list-name\} \{access-list-name [sequence-number]\} \{maximum \{detail\} \{usage \{pfilter location node-id\}\}]\}
Example:
RP/0/RSP0/CPU0:router# show access-lists ipv4 list-2 | (Optional) Displays the contents of a named IPv4 or IPv6 access list. For example, you can verify the output to see that the destination access list list-2 contains all the information from the source access list list-1. |
Sequencing Access-List Entries and Revising the Access List

This task shows how to assign sequence numbers to entries in a named access list and how to add or delete an entry to or from an access list. It is assumed that a user wants to revise an access list. Resequencing an access list is optional.

Note
When an ACL is configured under an interface and its resequenced and rolled back, the interface experiences traffic loss for a short period of time.

SUMMARY STEPS

1. resequence access-list {ipv4 | ipv6} name [base [increment]]

2. configure

3. {ipv4 | ipv6} access-list name

4. Do one of the following:
 • [sequence-number] {permit | deny} source source-wildcard destination destination-wildcard [precedence precedence] [dscp dscp] [fragments] [log | log-input]
 • [sequence-number] {permit | deny} protocol {source-ipv6-prefix/prefix-length | any | host source-ipv6-address} [operator {port | protocol-port}] [destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address} [operator {port | protocol-port}] [dscp value] [routing | authen] [destopts] [fragments] [log | log-input]

5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no sequence-number command to delete an entry.

6. commit

7. show access-lists [ipv4 | ipv6] [access-list-name hardware {ingress | egress} | [interface type interface-path-id] [sequence number] [location node-id] | summary [access-list-name] | access-list-name [sequence-number] | maximum [detail] | usage {pfilter location node-id}]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>(Optional) Resequences the specified IPv4 or IPv6 access list using the starting sequence number and the increment of sequence numbers.</td>
</tr>
<tr>
<td>resequence access-list {ipv4</td>
<td>ipv6} name [base [increment]]</td>
</tr>
<tr>
<td>Example:</td>
<td>• This example resequences an IPv4 access list named acl_3. The starting sequence number is 20 and the increment is 15. If you do not select an increment, the default increment 10 is used.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>

Sequencing Access-List Entries and Revising the Access List

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 `ipv4</td>
<td>ipv6` access-list name</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# ipv4 access-list acl_1</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# ipv6 access-list acl_2</td>
<td></td>
</tr>
<tr>
<td>Step 4 Do one of the following:</td>
<td>Specifies one or more conditions allowed or denied in IPv4 access list acl_1.</td>
</tr>
<tr>
<td>• `[sequence-number] {permit</td>
<td>deny} source source-wildcard destination destination-wildcard [precedence precedence] [dscp dscp] [fragments] [log</td>
</tr>
<tr>
<td>• `[sequence-number] {permit</td>
<td>deny} protocol {source-ipv6-prefix/prefix-length</td>
</tr>
<tr>
<td>Example:</td>
<td>• This access list happens to use a permit statement first, but a deny statement could appear first, depending on the order of statements you need.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit 172.16.0.0 0.0.255.255</td>
<td>or</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ipv4-acl)# 20 deny 192.168.3.4 0.0.0.255</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ipv6-acl)# 20 permit icmp any any</td>
<td>Specifies one or more conditions allowed or denied in IPv6 access list acl_2.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ipv6-acl)# 30 deny tcp any any gt 5000</td>
<td>• Refer to the permit (IPv6) and deny (IPv6) commands for more information on filtering IPv6 traffic based on IPv6 option headers and upper-layer protocols such as ICMP, TCP, and UDP.</td>
</tr>
<tr>
<td>Step 5 Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no sequence-number command to delete an entry.</td>
<td>Allows you to revise the access list.</td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
<tr>
<td>Step 7 show access-lists [ipv4</td>
<td>ipv6] [access-list-name hardware [ingress</td>
</tr>
<tr>
<td></td>
<td>• Review the output to see that the access list includes the updated information.</td>
</tr>
</tbody>
</table>
Copying Prefix Lists

This task copies an IPv4 or IPv6 prefix list.

SUMMARY STEPS

1. `copy prefix-list {ipv4 | ipv6} source-name destination-name`
2. Do one of the following:
 - `show prefix-list ipv4 [name] [sequence-number] [summary]`
 - `show prefix-list ipv6 [name] [sequence-number] [summary]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 `copy prefix-list {ipv4</td>
<td>ipv6} source-name destination-name`</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router# copy prefix-list ipv6 list_1 list_2</code></td>
<td>- Use the <code>source-name</code> argument to specify the name of the prefix list to be copied and the <code>destination-name</code> argument to specify where to copy the contents of the source prefix list.</td>
</tr>
<tr>
<td></td>
<td>- The <code>destination-name</code> argument must be a unique name; if the <code>destination-name</code> argument name exists for a prefix list, the prefix list is not copied.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Do one of the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• <code>show prefix-list ipv4 [name] [sequence-number] [summary]</code></td>
</tr>
<tr>
<td></td>
<td>• <code>show prefix-list ipv6 [name] [sequence-number] [summary]</code></td>
</tr>
<tr>
<td></td>
<td>(Optional) Displays the contents of current IPv4 or IPv6 prefix lists.</td>
</tr>
<tr>
<td></td>
<td>• Review the output to see that prefix list list_2 includes the entries from list_1.</td>
</tr>
</tbody>
</table>
Sequencing Prefix List Entries and Revising the Prefix List

This task shows how to assign sequence numbers to entries in a named prefix list and how to add or delete an entry to or from a prefix list. It is assumed a user wants to revise a prefix list. Resequencing a prefix list is optional.

Before You Begin

Note

Resequencing IPv6 prefix lists is not supported.

SUMMARY STEPS

1. resequence prefix-list ipv4 name [base [increment]]
2. configure
3. {ipv4 | ipv6} prefix-list name
4. [sequence-number] {permit | deny} network/length [ge value] [le value] [eq value]
5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no sequence-number command to delete an entry.
6. commit
7. Do one of the following:
 - show prefix-list ipv4 [name] [sequence-number]
 - show prefix-list ipv6 [name] [sequence-number] [summary]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>resequence prefix-list ipv4 name [base [increment]]</td>
<td>(Optional) Resequences the named IPv4 prefix list using the starting sequence number and the increment of sequence numbers.</td>
</tr>
</tbody>
</table>

Example:

RP/0/RSP0/CPU0:router# resequence prefix-list ipv4 pfx_1 10 15
How to Implement ACL-based Forwarding

This section contains the following procedures:

Configuring ACL-based Forwarding with Security ACL

Perform this task to configure ACL-based forwarding with security ACL.
SUMMARY STEPS

1. configure
2. ipv4 access-list name
3. [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [(default) nexthop1 [ipv4 ipv4-address1] nexthop2[ipv4 ipv4-address2] nexthop3[ipv4 ipv4-address3]] [dscp dscp] [fragments] [log | log-input] [(track track-name) [ttl ttl [value1 ... value2]]
4. commit
5. show access-list ipv4 [[access-list-name hardware {ingress | egress} [interface type interface-path-id] [sequence number] [location node-id] [summary [access-list-name] access-list-name [sequence-number] maximum [detail] [usage {pfilter location node-id}]]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters IPv4 access list configuration mode and configures the specified access list.</td>
</tr>
<tr>
<td>Step 2 ipv4 access-list name</td>
<td>Sets the conditions for an IPv4 access list. The configuration example shows how to configure ACL-based forwarding with security ACL.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# ipv4 access-list security-abf-acl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sets the conditions for an IPv4 access list. The configuration example shows how to configure ACL-based forwarding with security ACL.</td>
</tr>
</tbody>
</table>
| **Step 3** [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [(default) nexthop1 [ipv4 ipv4-address1] nexthop2[ipv4 ipv4-address2] nexthop3[ipv4 ipv4-address3]] [dscp dscp] [fragments] [log | log-input] [(track track-name) [ttl ttl [value1 ... value2]]
| **Example:** |
| RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit ipv4 10.0.0.0 0.255.255.255 any nexthop 50.1.1.2 RP/0/RSP0/CPU0:router(config-ipv4-acl)# 15 permit ipv4 30.2.0.0 0.0.255.255 any nexthop 40.1.1.2 RP/0/RSP0/CPU0:router(config-ipv4-acl)# 20 permit ipv4 30.2.0.0 0.0.255.255 any nexthop 40.1.1.2 RP/0/RSP0/CPU0:router(config-ipv4-acl)# 25 permit ipv4 any any | |
| **Step 4** commit | Displays the information for ACL software. |
| **Step 5** show access-list ipv4 [[access-list-name hardware {ingress | egress} [interface type interface-path-id] [sequence number] [location node-id] [summary [access-list-name] access-list-name [sequence-number] maximum [detail] [usage {pfilter location node-id}]]]
| **Example:** |
| RP/0/RSP0/CPU0:router# show access-lists ipv4 security-abf-acl | |
Implementing IPSLA-OT

In this section, the following procedures are discussed:

- Enabling track mode, on page 35
- Configuring track type, on page 36
- Configuring tracking type (line protocol), on page 36
- Configuring track type (list), on page 37
- Configuring tracking type (route), on page 37
- Configuring tracking type (rtr), on page 38

When a large number of IPSLA instances need to be configured, it's more convenient to create a configuration file with all the configurations and then load the configuration file. The configuration statements in the configuration file should be properly indented including the exit statements, otherwise the configuration won't work when loading the configuration file.

Enabling track mode

SUMMARY STEPS

1. configure
2. track track-name
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 track track-name</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# track t1</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring track type

There are different mechanisms to track the availability of the next-hop device. The tracking type can be of four types, using:

- line protocol
- list
- route
- IPSLA

Configuring tracking type (line protocol)

Line protocol is one of the object types the object tracker component can track. This object type provides an option for tracking state change notification from an interface. Based on the interface state change notification, it decides whether the track state should be UP or DOWN.

SUMMARY STEPS

1. configure
2. track track-name
3. type line-protocol state interface type interface-path-id
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# configure</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>track track-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# track t1</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>type line-protocol state interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-track)# type line-protocol state interface tengige 0/4/4/0</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Sets the interface which needs to be tracked for state change notifications.</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>
Configuring track type (list)

List is a boolean object type. Boolean refers to the capability of performing a boolean AND or boolean OR operation on combinations of different object types supported by object tracker.

SUMMARY STEPS

1. configure
2. track track-name
3. type list boolean and
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Example:
RP/0/RSP0/CPU0:router# configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>track track-name</td>
</tr>
<tr>
<td>Example:
RP/0/RSP0/CPU0:router(config)# track t1</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>type list boolean and</td>
</tr>
<tr>
<td>Example:
RP/0/RSP0/CPU0:router(config-track)# type list boolean and</td>
<td>Sets the list of track objects on which boolean AND or boolean OR operations could be performed.</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring tracking type (route)

Route is a route object type. The object tracker tracks the fib notification to determine the route reachability and the track state.
Configuring tracking type (rtr)

IPSLA is an ipsla object type. The object tracker tracks the return code of ipsla operation to determine the track state changes.

SUMMARY STEPS

1. configure
2. track track-name
3. type route reachability
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 track track-name</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# track t1</td>
<td></td>
</tr>
<tr>
<td>Step 3 type route reachability</td>
<td>Sets the route on which reachability state needs to be learnt dynamically.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-track)# type route reachability</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters track configuration mode.</td>
</tr>
<tr>
<td>track track-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# track t1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Sets the ipsla operation id which needs to be tracked for reachability.</td>
</tr>
<tr>
<td>type rtr ipsla operation id reachability</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router type rtr 100 reachability</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Pure ACL-Based Forwarding for IPv6 ACL

SUMMARY STEPS

1. `configure`
2. `{ipv6} access-list name`
3. `[sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [dscp dscp] [fragments] [log | log-input]] [ttl ttl value [value1 ... value2]] [default] nexthop1 [track track-name-1] [vrf vrf-name1] [ipv6 ipv6-address1] [nexthop2 [track track-name-2] [vrf vrf-name2] [ipv6 ipv6-address2] [nexthop3 [track track-name-3] [vrf vrf-name3] [ipv6 ipv6-address3]]]
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters IPv6 access list configuration mode and configures the specified access list.</td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# ipv6 access-list security-abf-acl</td>
<td></td>
</tr>
</tbody>
</table>
ACL-Chaining

ACL-Chaining also known as Multi-ACL enables customers to apply two IPv4 or IPv6 (common and interface) ACLs on an interface for packet filtering at the router. One ACL is common across multiple interfaces on the line card. This provides Ternary Content Addressable Memory (TCAM)/HW scalability. This feature is supported on A9K-SIP-700 Line Card and ASR 9000 Enhanced Ethernet Line Card only.

ACL-Chaining Overview

Currently, the packet filter process (pfilter_ea) supports only one ACL to be applied per direction and per protocol on an interface. This leads to manageability issues if there are common ACL entries needed on most interfaces. Duplicate ACEs are configured for all those interfaces, and any modification to the common ACEs needs to be performed for all ACLs.

A typical ACL on the edge box for an ISP has two sets of ACEs:

- common ISP specific ACEs (ISP protected address block)
- customer/interface specific ACEs (Customer source address block)

The purpose of these address blocks is to deny access to ISP’s protected infrastructure networks and anti-spoofing protection by allowing only customer source address blocks. This results in configuring unique ACL per interface and most of the ACEs being common across all the ACLs on a box. ACL provisioning and modification is very cumbersome. Any changes to the ACE impacts every customer interface. (This also wastes the HW/TCAM resources as the common ACEs are being replicated in all ACLs).

The ACL chaining feature also known as Multi-ACL allows you to configure more than one ACL that can be applied to a single interface. The goal is to separate various types of ACLs for management, and also allow you to apply both of them on the same interface, in a defined order.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence precedence] [dscp dscp] [fragments] [log</td>
<td>log-input]] [ttl ttl value [value1 ... value2]][[default] nexthop1 [track track-name-1] [vrf vrf-name1] [ipv6 ipv6-address1] [nexthop2 [track track-name-2] [vrf vrf-name2] [ipv6 ipv6-address2] [nexthop3 [track track-name-3] [vrf vrf-name3] [ipv6 ipv6-address3]]]</td>
</tr>
<tr>
<td>Example:</td>
<td>- Forwards the specified next hop for this entry.</td>
</tr>
<tr>
<td></td>
<td>- The track option specifies object tracking name for the corresponding next hop.</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>
Restrictions for Common ACL

The following restrictions apply while implementing Common ACL:

- Common ACL is supported in only ingress direction and for L3 interfaces only.
- The interface-statistics option is not available for common ACLs.
- The hardware-count option is available for only IPv4 ACLs.
- Only one common IPv4 and IPv6 ACL is supported on each line card.
- The common ACL option is not available for Ethernet Service (ES) ACLs.
- The IPv4 and IPv6 common ACL is limited to 200 Ternary Content Addressable Memory (TCAM) entries for the ASR 9000 Enhanced Ethernet line card and A9K-SIP-700 line card. Although, A9K-SIP-700 line card may support more.
- Common ACL is not supported on ASR 9000 Ethernet Line Card and ASR 9000 Enhanced Ethernet-TR Line Card.
- You can specify only common ACL or only interface ACL or both common and interface ACL in this command.
- The compress option is not supported for common ACLs.
- Object-groups are not supported with common ACLs.
- The interface-statistics and hardware-count options are not supported for ACLs on the A9K-SIP-700 line card.

Configuring an Interface to accept Common ACL

Perform this task to configure the interface to accept a common ACL along with the interface specific ACL:

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. {ipv4 | ipv6} access-group {common access-list-name { [access-list-name ingress [interface-statistics] | ingress] | access-list-name { ingress | egress } [interface-statistics] } [hardware-count] }
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Command or Action</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config)# interface TenGigE 0/2/0/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{ ipv4</td>
<td>ipv6 } access-group { common access-list-name</td>
</tr>
<tr>
<td></td>
<td>access-list-name [ingress [interface-statistics]]</td>
<td>Note The interface-statistics and hardware-count options are not supported for ACLs on the A9K-SIP-700 line card.</td>
</tr>
<tr>
<td></td>
<td>ingress} [ingress</td>
<td></td>
</tr>
<tr>
<td></td>
<td>egress } [interface-statistics]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[hardware-count]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group common acl-p acl1 ingress</td>
<td></td>
</tr>
</tbody>
</table>

ACL Scale Enhancements

The Access Control List (ACL) Scale enhancements feature enables you to define ACL rules as a set of several rules (super-set of ACEs (Access Control Entry)). This is achieved with object-groups of prefixes and ports, which are referred by ACE in the same way as single source address or destination address prefix and ports are referred.

Note
The ACL Scale enhancements feature is not supported on first generation ASR 9000 Ethernet Line Card.

ACL Scale Enhancements: Backward Compatibility

With the support of object-groups, configuring ACE in the existing way in which one ACE entry uses object groups, while another ACE entry does not use object groups is supported.

Note
From Release 4.3.1, object group is only supported on ASR 9000 Enhanced Ethernet Line Card.

```
ipv4 access-list acl1
    10 permit tcp net-group group1 host 10.10.10.1 eq 2200
    20 permit tcp 10.10.10.3/32 host 1.1.1.2 eq 2000
```

It is possible that a user configures a host or prefix in an ACE entry, where the same host or prefix is added to an existing source group, eliminating the need to configure a separate ACE entry. However, such an
optimization is not automated. A user could intentionally configure a particular prefix in a separate ACE for the purpose of separate counter or accounting for that prefix.

Configuring a Network Object-Group

Perform this task to configure a network object group and to enter the network object group configuration mode.

SUMMARY STEPS

1. configure
2. object-group network { ipv4 | ipv6 } object-group-name
3. description description
4. host address
5. address { mask | prefix }
6. range address address
7. object-group name
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 object-group network { ipv4</td>
<td>ipv6 } object-group-name</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# object-group network ipv4 ipv4_type5_obj1</td>
<td></td>
</tr>
<tr>
<td>Step 3 description description</td>
<td>Describes the object group.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-object-group-ipv4)# description network-object-group</td>
<td></td>
</tr>
<tr>
<td>Step 4 host address</td>
<td>Configures the host IPv4 address for the object group.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-object-group-ipv4)# host 10.20.2.3</td>
<td></td>
</tr>
</tbody>
</table>
Implementing Access Lists and Prefix Lists

Configuring a Port Object-Group

Perform this task to configure a port object group and to enter the port object group configuration mode.

SUMMARY STEPS

1. configure
2. object-group port *object-group-name*
3. description *description*
4. { eq | lt | gt } { protocol | number }
5. range range range
6. object-group *name*
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>object-group port</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td></td>
</tr>
<tr>
<td>{ eq</td>
<td>lt</td>
</tr>
<tr>
<td>protocol</td>
<td>number</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 2</td>
<td>object-group port object-group-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# object-group port ipv4_type5_obj1</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Configures a port object group and enters the port object group configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>description description</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-object-group-port)# description port-object-group</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Configures the description for the object group.</td>
</tr>
<tr>
<td>Step 4</td>
<td>{ eq</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-object-group-port)# eq ftp or RP/0/RSP0/CPU0:router(config-object-group-port)# eq 21</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Matches packets on ports equal to, less than, or greater than the specified port number or protocol.</td>
</tr>
<tr>
<td>Step 5</td>
<td>range range range</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-object-group-port)# range 1000 2000</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Configures the range of host ports for the object group.</td>
</tr>
<tr>
<td>Step 6</td>
<td>object-group name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-object-group-port)# object-group port-group2</td>
</tr>
<tr>
<td>Purpose:</td>
<td>Specifies the name of the nested object group.</td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring ACL with Object-Groups

Perform this task to configure ACL with object groups.
Configuring ACL with Object-Groups

SUMMARY STEPS

1. configure
2. `{ ipv4 | ipv6 } access-list name
3. `[sequence-number]` permit protocol net-group source-net-object-group-name port-group source-port-object-group-name net-group destination-net-object-group-name port-group destination-port-object-group-name [precedence precedence] [[default] nexthop1 [vrf vrf-name]|ipv4 ipv4-address1] nexthop2[vrf vrf-name][ipv4 ipv4-address2] nexthop3[vrf vrf-name][ipv4 ipv4-address3]] [dscp range dscp dscp] [fragments] [packet-length operator packet-length value] [log | log-input] [[track track-name] [ttl ttl [value1 ... value2]]]
4. exit
5. interface type interface-path-id
6. ipv4 access-group access-list-name {ingress | egress } compress level level [hardware-count] [interface-statistics]
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 `{ ipv4</td>
<td>ipv6 } access-list name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# ipv4 access-list acl1</td>
</tr>
<tr>
<td>Step 3 <code>[sequence-number]</code> permit protocol net-group source-net-object-group-name port-group source-port-object-group-name net-group destination-net-object-group-name port-group destination-port-object-group-name [precedence precedence] [[default] nexthop1 [vrf vrf-name]</td>
<td>ipv4 ipv4-address1] nexthop2[vrf vrf-name][ipv4 ipv4-address2] nexthop3[vrf vrf-name][ipv4 ipv4-address3]] [dscp range dscp dscp] [fragments] [packet-length operator packet-length value] [log</td>
</tr>
<tr>
<td>Note</td>
<td>You must configure network object groups and port object groups before configuring ACL. For more information about configuring network object groups, see Configuring a Network Object-Group, on page 43. For more information about configuring port object groups, see Configuring a Port Object-Group, on page 44.</td>
</tr>
<tr>
<td>When a network or port object-group is part of an ACL attached to an interface, you can add or remove members from the corresponding network or port object-group.</td>
<td>When a network or port object-group is part of an ACL attached to an interface, adding or removing object-groups which are part of inherited or nested object-groups is not supported.</td>
</tr>
<tr>
<td>A member is either an IPv4/IPv6 address/prefix or port.</td>
<td></td>
</tr>
</tbody>
</table>
PurposeCommand or Action

Step 4 exit
Example:
RP/0/RSP0/CPU0:router(config-ipv4-acl)# exit

Returns to global configuration mode.

Step 5 interface type interface-path-id
Example:
RP/0/RSP0/CPU0:router(config)# interface gigabitethernet 0/2/0/2

Configures an interface and enters interface configuration mode.

- The type argument specifies an interface type. For more information on interface types, use the question mark (?) online help function.
- The interface-path-id argument specifies either a physical interface instance or a virtual instance.
 - The naming notation for a physical interface instance is rack/slot/module/port. The slash (/) between values is required as part of the notation.
 - The number range for a virtual interface instance varies depending on the interface type.

Step 6 ipv4 access-group access-list-name {ingress | egress} compress level level [hardware-count] [interface-statistics]
Example:
RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group acl1 ingress compress level 1
RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group acl1 egress compress level 3

Controls access to an interface. Use the compress level keyword to specify ACL compression in the hardware.

- level 0 indicates no compression
- level 1 indicates source compression
- level 3 indicates all compression

Step 7 commit

Atomic ACL Updates By Using the Disable Option

Atomic ACL updates involve the insertion, modification, or removal of Access List Entries (ACEs) on an interface that is in operation. Such atomic updates consume up to 50% of TCAM resources. There can be an instance where multiple modifications are required and the available resources are not sufficient. The solution to this problem is to disable atomic ACL updates such that the old ACEs are deleted before the new ACEs are added.
When you configure the **atomic-disable** statement in an ACL, any ACE modification detaches the ACL, until the modification is complete. In addition to this, the ACL rules are not applied during the modification process. Hence, it is recommended to configure to either permit or deny all traffic until the modification is complete.

Configuration for Disabling Atomic ACL Updates

To disable atomic updates on the hardware, by permitting all packets, use the following configuration.

```
RP/0/RSP0/CPU0:router# hardware access-list atomic-disable
```

Modifying ACLs when Atomic ACL Updates are Disabled

On disabling atomic ACL updates on the hardware, use the steps in this section to modify ACLs.

Add an ACE

Use the following steps to add an ACE.

1. **Locate the ACL you want to modify.**
   ```
   RP/0/RSP0/CPU0:router(config)# do show access-lists
   ...
   !
   ipv4 access-list list1
   10 permit ipv4 10.1.1.0/24 any
   20 permit ipv4 20.1.1.0/24 any
   !
   ```

2. **Add the ACE to the ACL.**
   ```
   RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
   RP/0/RSP0/CPU0:router(config-ipv4-acl)# 30 permit ipv4 30.1.1.0/24 any
   RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit
   ```

3. **Verify if your ACE was added successfully.**
   ```
   RP/0/RSP0/CPU0:router(config)# do show access-lists
   ...
   !
   ipv4 access-list list1
   10 permit ipv4 10.1.1.0/24 any
   20 permit ipv4 20.1.1.0/24 any
   30 permit ipv4 30.1.1.0/24 any
   !
   You have successfully added an ACE.
   ```

Delete an ACE

Use the steps in this section to delete an ACE.

1. **Locate the ACL containing the ACE that you want deleted.**
   ```
   RP/0/RSP0/CPU0:router(config)# do show access-lists
   ...
   !
   ipv4 access-list list1
   10 permit ipv4 10.1.1.0/24 any
   20 permit ipv4 20.1.1.0/24 any
   ```
Replace an ACE

Use the steps in this section to replace an ACE.

1. Locate the ACL you want to modify.

   ```
   RP/0/RSP0/CPU0:router(config)## do show access-lists
   ...
   ipv4 access-list list1
   10 permit ipv4 11.1.1.0 0.0.0.255 any
   20 permit ipv4 20.1.1.0 0.0.0.255 any
   ```

2. Configure the new ACE to replace the existing ACE.

   ```
   RP/0/RSP0/CPU0:router(config)## ip4 access-list list1
   RP/0/RSP0/CPU0:router(config-ip4-acl)## 10 permit ipv4 11.1.1.0/24 any
   RP/0/RSP0/CPU0:router(config-ip4-acl)## commit
   ```

3. Verify if the ACE replacement is successful.

   ```
   RP/0/RSP0/CPU0:router(config)## do show access-lists
   ...
   ipv4 access-list list1
   10 permit ipv4 11.1.1.0 0.0.0.255 any
   20 permit ipv4 20.1.1.0 0.0.0.255 any
   ```

 You have successfully replaced an ACE.

Delete an ACE and Add a New ACE

Use the following steps to delete an ACE and add a new ACE.

1. Locate the ACL you want to modify.

   ```
   RP/0/RSP0/CPU0:router(config)## do show access-lists
   ...
   ipv4 access-list list1
   10 permit ipv4 11.1.1.0 0.0.0.255 any
   20 permit ipv4 20.1.1.0 0.0.0.255 any
   ```

2. Delete the required ACE, and add the new ACE.

   ```
   RP/0/RSP0/CPU0:router(config)## ip4 access-list list1
   RP/0/RSP0/CPU0:router(config-ip4-acl)## 20
   RP/0/RSP0/CPU0:router(config-ip4-acl)## 20
   ```

3. Verify if the modification is successful.

   ```
   RP/0/RSP0/CPU0:router(config)## do show access-lists
   ...
   ipv4 access-list list1
   10 permit ipv4 11.1.1.0 0.0.0.255 any
   20 permit ipv4 12.1.1.0 0.0.0.255 any
   ```

 You have successfully deleted an ACE, and added a new ACE.
Similarly, you can combine the addition, removal, and replacement of ACEs.

Configuring ACL Counters for SNMP Query

You can configure ACL counters and access the counters using SNMP query. This section explains how to configure ACL counters for SNMP query.

SUMMARY STEPS

1. `configure`
2. `{ipv4 | ipv6} access-list name`
3. Do one of the following:
 - `[sequence-number] {permit | deny} source {source | source-wildcard} [destination | destination-wildcard] counter counter-name`
 - `[sequence-number] {permit | deny} protocol {source-ipv6-prefix | any | host source-ipv6-address | destination-ipv6-prefix | any | host destination-ipv6-address} counter counter-name`
4. Repeat Step 3 as necessary, adding statements by sequence number where you planned. Use the `no sequence-number` command to delete an entry.
5. `commit`
6. `show access-lists {ipv4 | ipv6} [access-list-name]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters either IPv4 or IPv6 access list configuration mode and configures the named access list.</td>
</tr>
<tr>
<td>Step 2 `{ipv4</td>
<td>ipv6} access-list name`</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# ipv4 access-list acl_1 or RP/0/RSP0/CPU0:router(config)# ipv6 access-list acl_2</td>
<td></td>
</tr>
</tbody>
</table>

Purpose

- Enters either IPv4 or IPv6 access list configuration mode and configures the named access list.
- Specifies one or more conditions allowed or denied in IPv4 access list acl_1 or IPv6 access list acl_2. The `counter counter-name` keyword enables ACL counters which you can access using SNMP query.
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit 172.16.0.0 0.0.255.255 counter counter1</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ipv4-acl)# 20 deny 192.168.34.0 0.0.0.255 counter counter2</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ipv6-acl)# 20 permit icmp any any counter counter3</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-ipv6-acl)# 30 deny tcp any any gt 5000 counter counter4</td>
</tr>
</tbody>
</table>

| Step 4 | Repeat Step 3 as necessary, adding statements by sequence number where you planned. Use the **no sequence-number** command to delete an entry. |
| Purpose | Allows you to revise an access list. |

| Step 5 | commit |
| Step 6 | show access-lists {ipv4 | ipv6} [access-list-name] |

<table>
<thead>
<tr>
<th>Example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RSP0/CPU0:router# show access-lists ipv4 acl_1</td>
</tr>
</tbody>
</table>

Configuration Examples for Implementing Access Lists and Prefix Lists

This section provides the following configuration examples:

Resequencing Entries in an Access List: Example

The following example shows access-list resequencing. The starting value in the resequenced access list is 10, and increment value is 20. The subsequent entries are ordered based on the increment values that users provide, and the range is from 1 to 2147483646.

When an entry with no sequence number is entered, by default it has a sequence number of 10 more than the last entry in the access list.

```
ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34
20 permit icmp any any
30 permit tcp any host 10.3.3.3
40 permit ip host 10.4.4.4 any
60 permit ip host 172.16.2.2 host 10.3.3.12
70 permit ip host 10.3.3.3 any log
80 permit tcp host 10.3.3.3 host 10.1.2.2
100 permit ip any any

configure
ipv4 access-list acl_1
end
```
Adding Entries with Sequence Numbers: Example

In the following example, a new entry is added to IPv4 access list acl_5.

```
ipv4 access-list acl_5
  2 permit ipv4 host 10.4.4.2 any
  5 permit ipv4 host 10.0.0.44 any
  10 permit ipv4 host 10.0.0.1 any
  20 permit ipv4 host 10.0.0.2 any
configure
ipv4 access-list acl_5
  15 permit 10.5.5.5 0.0.0.255
end
```

Adding Entries Without Sequence Numbers: Example

The following example shows how an entry with no specified sequence number is added to the end of an access list. When an entry is added without a sequence number, it is automatically given a sequence number.
that puts it at the end of the access list. Because the default increment is 10, the entry will have a sequence number 10 higher than the last entry in the existing access list.

```plaintext
configure
ipv4 access-list acl_10
permit 10.1.1.1 0.0.0.255
permit 10.2.2.2 0.0.0.255
permit 10.3.3.3 0.0.0.255
end

ipv4 access-list acl_10
10 permit ip 10.1.1.0 0.0.0.255 any
20 permit ip 10.2.2.0 0.0.0.255 any
30 permit ip 10.3.3.0 0.0.0.255 any
```

Atomic ACL Updates By Using the Disable Option

Atomic ACL updates involve the insertion, modification, or removal of Access List Entries (ACEs) on an interface that is in operation. Such atomic updates consume up to 50% of TCAM resources. There can be an instance where multiple modifications are required and the available resources are not sufficient. The solution to this problem is to disable atomic ACL updates such that the old ACEs are deleted before the new ACEs are added.

When you configure the `atomic-disable` statement in an ACL, any ACE modification detaches the ACL, until the modification is complete. In addition to this, the ACL rules are not applied during the modification process. Hence, it is recommended to configure to either permit or deny all traffic until the modification is complete.

Configuration for Disabling Atomic ACL Updates

To disable atomic updates on the hardware, by permitting all packets, use the following configuration.

```
RP/0/RSP0/CPU0:router# hardware access-list atomic-disable
```

Modifying ACLs when Atomic ACL Updates are Disabled

On disabling atomic ACL updates on the hardware, use the steps in this section to modify ACLs.

Add an ACE

Use the following steps to add an ACE.
1 Locate the ACL you want to modify.

\[
\text{RP/0/RSP0/CPU0:router(config)}\# \text{do show access-lists}
\]

...!
ipv4 access-list list1
 10 permit ipv4 10.1.1.0/24 any
 20 permit ipv4 20.1.1.0/24 any
!

2 Add the ACE to the ACL.

\[
\text{RP/0/RSP0/CPU0:router(config)}\# \text{ipv4 access-list list1}
\]

\[
\text{RP/0/RSP0/CPU0:router(config-ipv4-acl)}\# \text{permit ipv4 30.1.1.0/24 any}
\]

\[
\text{RP/0/RSP0/CPU0:router(config-ipv4-acl)}\# \text{commit}
\]

3 Verify if your ACE was added successfully.

\[
\text{RP/0/RSP0/CPU0:router(config)}\# \text{do show access-lists}
\]

...!
ipv4 access-list list1
 10 permit ipv4 10.1.1.0/24 any
 20 permit ipv4 20.1.1.0/24 any
 30 permit ipv4 30.1.1.0/24 any
!
You have successfully added an ACE.

Delete an ACE

Use the steps in this section to delete an ACE.

1 Locate the ACL containing the ACE that you want deleted.

\[
\text{RP/0/RSP0/CPU0:router(config)}\# \text{do show access-lists}
\]

...!
ipv4 access-list list1
 10 permit ipv4 10.1.1.0/24 any
 20 permit ipv4 20.1.1.0/24 any
 30 permit ipv4 30.1.1.0/24 any
!

2 Delete the ACE.

\[
\text{RP/0/RSP0/CPU0:router(config)}\# \text{ipv4 access-list list1}
\]

\[
\text{RP/0/RSP0/CPU0:router(config-ipv4-acl)}\# \text{no 30}
\]

\[
\text{RP/0/RSP0/CPU0:router(config-ipv4-acl)}\# \text{commit}
\]

3 Verify if the ACE has been removed from the ACL.

\[
\text{RP/0/RSP0/CPU0:router(config-ipv4-acl)}\# \text{do show access-lists}
\]

...!
ipv4 access-list list1
 10 permit ipv4 10.1.1.0 0.0.0.255 any
 20 permit ipv4 20.1.1.0 0.0.0.255 any
You have successfully deleted an ACE.

Replace an ACE

Use the steps in this section to replace an ACE.

1 Locate the ACL you want to modify.

\[
\text{RP/0/RSP0/CPU0:router(config-ipv4-acl)}\# \text{do show access-lists}
\]

...!
ipv4 access-list list1
 10 permit ipv4 10.1.1.0 0.0.0.255 any
 20 permit ipv4 20.1.1.0 0.0.0.255 any

2 Configure the new ACE to replace the existing ACE.

```
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit ipv4 11.1.1.0/24 any
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit
```

3 Verify if the ACE replacement is successful.

```
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
ipv4 access-list list1
  10 permit ipv4 11.1.1.0 0.0.0.255 any
  20 permit ipv4 20.1.1.0 0.0.0.255 any
You have successfully replaced an ACE.
```

Delete an ACE and Add a New ACE

Use the following steps to delete an ACE and add a new ACE.

1 Locate the ACL you want to modify.

```
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
ipv4 access-list list1
  10 permit ipv4 11.1.1.0 0.0.0.255 any
  20 permit ipv4 20.1.1.0 0.0.0.255 any
```

2 Delete the required ACE, and add the new ACE.

```
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# no 20
RP/0/RSP0/CPU0:router(config-ipv4-acl)# permit ipv4 12.1.1.0/24 any
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit
```

3 Verify if the modification is successful.

```
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
ipv4 access-list list1
  10 permit ipv4 11.1.1.0 0.0.0.255 any
  20 permit ipv4 12.1.1.0 0.0.0.255 any
You have successfully deleted an ACE, and added a new ACE.
```

Similarly, you can combine the addition, removal, and replacement of ACEs.

IPv6 ACL in Class Map

In Release 4.2.1, Quality of Service (Qos) features on ASR 9000 Ethernet line card and ASR 9000 Enhanced Ethernet line card are enhanced to support these:

- **ASR 9000 Enhanced Ethernet LC:**
 - Support on L2 and L3 interface and sub-interface
 - Support on bundle L2 and L3 interface and sub-interface
 - Support for both ingress and egress directions
 - ICMP code and type for IPv4/IPv6

- **ASR 9000 Ethernet LC:**
 - Support on only L3 interface and sub-interface
 - Support on L3 bundle interface and sub-interface
Support for both ingress and egress directions
ICMP code and type for IPv4/IPv6

• IPv6-supported match fields:
 • IPv6 Source Address
 • IPv6 Destination Address
 • IPv6 Protocol
 • Time to live (TTL) or hop limit
 • Source Port
 • Destination Port
 • TCP Flags
 • IPv6 Flags (Routing Header(RH), Authentication Header(AH) and Destination Option Header(DH))

• Class map with IPv6 ACL that also supports:
 • IPv4 ACL
 • Discard class
 • QoS Group
 • Outer CoS
 • Inner CoS
 • Outer VLAN (ASR 9000 Enhanced Ethernet LC only)
 • Inner VLAN (ASR 9000 Enhanced Ethernet LC only)
 • match-not option
 • type of service (TOS) support

• Policy-map with IPv6 ACL supports:
 • hierarchical class-map

Configuring IPv6 ACL QoS - An Example

This example shows how to configure IPv6 ACL QoS with IPv4 ACL and other fields:

```
ipv6 access-list aclv6
10 permit ipv6 1111:6666::2/64 1111:7777::2/64 authen
30 permit tcp host 1111:4444::2 eq 100 host 1111:5555::2 ttl eq 10
!
ipv4 access-list aclv4
10 permit ipv4 host 10.6.10.2 host 10.7.10.2
!
class-map match-any c.aclv6
```
match access-group ipv6 aclv6
match access-group ipv4 aclv4
match cos 1
end-class-map

policy-map p.aclv6
class c.aclv6
set precedence 3
! class class-default
! end-policy-map

show qos-ea km policy p.aclv6 vmr interface tenGigE 0/1/0/6.10 hw

This example shows how to configure hierarchical policy map:

ipv6 access-list aclv6.p
t 10 permit ipv6 1111:1111::/8 2222:2222::/8

ipv6 access-list aclv6.c
t 10 permit ipv6 host 1111:1111::2 host 2222:2222::3

class-map match-any c.aclv6.c
match not access-group ipv6 aclv6.c
end-class-map
!
class-map match-any c.aclv6.p
IPv4/IPv6 ACL over BVI interface

In Release 4.2.1, IPv4/IPv6 ACL is enabled over BVI interfaces on the ASR 9000 Enhanced Ethernet Line Cards.

For ACL over BVI interfaces, the defined direction is:

- L2 interface - ingress direction
- L3 interface - egress direction

On the A9K-SIP-700 and ASR 9000 Ethernet Line Cards, ACLs on BVI interfaces are not supported.

Note

For ASR 9000 Ethernet linecards, ACL can be applied on the EFP level (IPv4 L3 ACL can be applied on an L2 interface).
Configuring IPv4 ACL over BVI interface - An Example

This example shows how to configure IPv4 ACL over a BVI interface:

```plaintext
ipv4 access-list bvi-acl
10 permit ipv4 any any ttl eq 70
20 deny ipv4 any any ttl eq 60
```

Configuring ABFv4/v6 over IRB/BVI interface

Perform this task to configure ABF (Access List Based Forwarding) v4/v6 over Integrated Routing and Bridging (IRB) or Bridge-Group Virtual Interface (BVI) interface:

SUMMARY STEPS

1. `configure`
2. `ipv4 access-list access-list-name`
3. `[sequence-number] permit protocol source source-wildcard destination destination-wildcard nexthop1 [vrf vrf-name] [ipv4 ipv4-address1] nexthop2 [vrf vrf-name] [ipv4 ipv4-address2] nexthop3 [vrf vrf-name] [ipv4 ipv4-address3]`
4. `exit`
5. `ipv6 access-list access-list-name`
6. `[sequence-number] permit protocol source source-wildcard destination destination-wildcard nexthop1 [vrf vrf-name] [ipv6 ipv6-address1] nexthop2 [vrf vrf-name] [ipv6 ipv6-address2] nexthop3 [vrf vrf-name] [ipv6 ipv6-address3]`
7. `exit`
8. `interface type interface-path-id`
9. `{ipv4 | ipv6} address address {network-mask | ipv6-prefix}`
10. `{ipv4 | ipv6} access-group access-list-name {ingress | egress}`
11. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ipv4 access-list access-list-name</code></td>
</tr>
<tr>
<td>Example:</td>
<td>Enters the IPv4 access list configuration mode, and configures the named access list.</td>
</tr>
</tbody>
</table>

```
RP/0/RSP0/CPU0:router(config)# ipv4 access-list abf-v4
```
Purpose

Configure the permit conditions for an IPv4 access list.

Command or Action

Step 3

```plaintext
[sequence-number] permit protocol source
source-wildcard destination destination-wildcard
nexthop1 [vrf vrf-name] [ipv4 ipv4-address1]
nexthop2 [vrf vrf-name] [ipv4 ipv4-address2]
nexthop3 [vrf vrf-name] [ipv4 ipv4-address3]
```

Example:

```
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10
permit ipv4 any any nexthop1 ipv4 192.168.1.20
nexthop2 ipv4 192.168.9.2 nexthop3 ipv4 192.168.10.2
```

Purpose

Configures the permit conditions for an IPv4 access list.

Command or Action

Step 4

```plaintext
exit
```

Example:

```
RP/0/RSP0/CPU0:router(config-ipv4-acl)# exit
RP/0/RSP0/CPU0:router(config)#
```

Purpose

Returns to global configuration mode.

Command or Action

Step 5

```plaintext
ipv6 access-list access-list-name
```

Example:

```
RP/0/RSP0/CPU0:router(config)# ipv6 access-list abf-v6
```

Purpose

Enters the IPv6 access list configuration mode, and configures the named access list.

Command or Action

Step 6

```plaintext
[sequence-number] permit protocol source
source-wildcard destination destination-wildcard
nexthop1 [vrf vrf-name] [ipv6 ipv6-address1]
nexthop2 [vrf vrf-name] [ipv6 ipv6-address2]
nexthop3 [vrf vrf-name] [ipv6 ipv6-address3]
```

Example:

```
RP/0/RSP0/CPU0:router(config-ipv6-acl)# 10
permit ipv6 any any nexthop1 ipv6 5001:5001::2
nexthop2 ipv6 9001:9001::2 nexthop3 ipv6 1901:1901::2
```

Purpose

Configures the permit conditions for an IPv6 access list.

Command or Action

Step 7

```plaintext
exit
```

Example:

```
RP/0/RSP0/CPU0:router(config-ipv4-acl)# exit
RP/0/RSP0/CPU0:router(config)#
```

Purpose

Returns to global configuration mode.
Purpose

Step 8
Interface command

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface type interface-path-id</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
</tbody>
</table>
| **Example:**
RP/0/RSP0/CPU0:router(config)# interface BVI 18 | - The *type* argument specifies an interface type. For more information on interface types, use the question mark (?) online help function.
- The *instance* argument specifies either a physical interface instance or a virtual instance.
 ◦ The naming notation for a physical interface instance is *rack/slot/module/port*. The slash (/) between values is required as part of the notation.
 ◦ The number range for a virtual interface instance varies depending on the interface type. |

Step 9

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>**{ipv4</td>
<td>ipv6} address** address *{network-mask</td>
</tr>
</tbody>
</table>
| **Example:**
RP/0/RSP0/CPU0:router(config-if)#ipv4 address 192.168.18.1 255.255.255.0
or
RP/0/RSP0/CPU0:router(config-if)#ipv6 address 1801:1801::1/64 | - The network mask can be specified in either of two ways:
 ◦ The network mask can be a four-part dotted decimal address. For example, 255.0.0.0 indicates that each bit equal to 1 means the corresponding address bit belongs to the network address.
 ◦ The network mask can be indicated as a slash (/) and number. For example, /8 indicates that the first 8 bits of the mask are ones, and the corresponding bits of the address are network address.
- This ipv6-prefix must be in the form documented in RFC 2373 where the address is specified between colons in hexadecimal using 16-bit values. |

Step 10

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>**{ipv4</td>
<td>ipv6} access-group** access-list-name *{ingress</td>
</tr>
</tbody>
</table>
| **Example:**
RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group abfv4 ingress
or
RP/0/RSP0/CPU0:router(config-if)# ipv6 access-group abfv6 ingress | |

Step 11

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Configuration Guide, Release 5.1.x

OL-30398-07

Page 61
Configuring ABFv4 over IRB/BVI interface: Example

This example shows how to configure ABFv4 over Integrated Routing and Bridging (IRB)/Bridge-Group Virtual Interface (BVI) interface:

```plaintext
interface BVI18
  ipv4 address 192.168.18.1 255.255.255.0
  ipv4 access-group abfv4 ingress
!
l2vpn
  bridge group bg18
  bridge-domain bd18
  interface GigabitEthernet0/0/1/18
  !
  routed interface BVI18
  !

ipv4 access-list abfv4
  10 permit ipv4 any any nexthop1 ipv4 192.168.1.20 nexthop2 ipv4 192.168.9.2 nexthop3 ipv4 192.168.10.2
!
```

Configuring ABFv6 over IRB/BVI interface: Example

This example shows how to configure ABFv6 over Integrated Routing and Bridging (IRB) or Bridge-Group Virtual Interface (BVI) interface:

```plaintext
interface BVI18
  ipv4 address 192.168.18.1 255.255.255.0
  ipv6 address 1801:1801::1/64
  ipv4 access-group abfv4 ingress
  ipv6 access-group abfv6 ingress
!
l2vpn
  bridge group bg18
  bridge-domain bd18
  interface GigabitEthernet0/0/1/18
  !
  routed interface BVI18
  !

ipv4 access-list abfv4
  10 permit ipv4 any any nexthop1 ipv4 192.168.1.20 nexthop2 ipv4 192.168.9.2 nexthop3 ipv4 192.168.10.2
!
ipv4 access-list ipv4-abf
  10 permit ipv4 any any nexthop1 vrf 1 ipv4 45.45.45.2
!
ipv6 access-list ipv6-vrf
  10 permit ipv6 2001::1/64 any nexthop1 ipv6 2075::2
```
ipv6 access-list abfv6-bvi
 10 permit ipv6 any any nexthop1 ipv6 5001:5001::2 nexthop2 ipv6 9001:9001::2 nexthop3 ipv6 1901:1901::2

ipv6 access-list ipv6-thor
 10 permit ipv6 any any nexthop1 vrf 4 ipv6 2001::2

Configuring an Interface to accept Common ACL - Examples

This section provides configuration examples of common ACL.

This example shows how to replace an ACL configured on the interface without explicitly deleting the ACL:

```plaintext
Interface Pos0/2/0/0
ipv4 access-group common C_acl ACL1 ingress
commit
replace Interface acl ACL1 by ACL2
Interface Pos0/2/0/0
ipv4 access-group common C_acl ACL2 ingress
commit
```

This example shows how common ACL cannot be replaced on interfaces without deleting it explicitly from the interface:

```plaintext
Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit
change the common acl to C_acl2
Interface Pos0/2/0/0
no ipv4 access-group common C_acl1 ACL1 ingress
commit
Interface Pos0/2/0/0
ipv4 access-group common C_acl2 ACL1 ingress
commit
```

When reconfiguring common ACL, you must ensure that no other interface on the line card is attached to the common ACL. In other words, atomic replacement of common ACL is not possible.

Note

If both common ACL and interface ACL are attached to an interface and only one of the above is reconfigured on the interface, then the other will be removed automatically.

```plaintext
Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit
Interface Pos0/2/0/0
ipv4 access-group ACL1 ingress
commit
This removes the common acl.
Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
```
Configuring ACL Counters for SNMP Query: Example

The following example shows how to configure IPv4 ACL counters for SNMP query.

```
configure
ipv4 access-list CounterExample
permit any ?
  counter       Count matches on this entry
  log           Log matches against this entry
  log-input     Log matches against this entry, including input interface
permit any counter 7
WORD Name of counter
permit any counter TestCounter
show configuration
Building configuration...
!! IOS XR Configuration 0.0.0
ipv4 access-list CounterExample
  10 permit ipv4 any any counter TestCounter
  permit tcp any any counter TestCounter2
show configuration
Building configuration...
!! IOS XR Configuration 0.0.0
ipv4 access-list CounterExample
  10 permit ipv4 any any counter TestCounter
  20 permit tcp any any counter TestCounter2
commit
show access-lists ipv4 CounterExample
ipv4 access-list CounterExample
  10 permit ipv4 any any counter TestCounter
  20 permit tcp any any counter TestCounter2
```

The following example shows how to configure IPv6 ACL counters for SNMP query.

```
configure
ipv6 access-list V6CounterExample
permit tcp any any counter ?
  WORD Name of counter
permit tcp any any counter TestCounter6
show configuration
Building configuration...
!! IOS XR Configuration 0.0.0
ipv6 access-list V6CounterExample
  10 permit ipv6 any any counter TestCounter6
  20 permit tcp any any counter TestCounter6
```
commit

show access-lists ipv6 V6CounterExample
ipv6 access-list V6CounterExample
 10 permit tcp any any counter TestCounter6

Additional References

The following sections provide references related to implementing access lists and prefix lists.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access list commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Access List Commands module in Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
<tr>
<td>Prefix list commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Prefix List Commands module in Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
<tr>
<td>Terminal services commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Terminal Services Commands module in Cisco ASR 9000 Series Aggregation Services Router System Management Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Configuring ARP

Address resolution is the process of mapping network addresses to Media Access Control (MAC) addresses. This process is accomplished using the Address Resolution Protocol (ARP). This module describes how to configure ARP processes on the Cisco ASR 9000 Series Aggregation Services Router.

Note
For a complete description of the ARP commands listed in this module, refer to the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference To locate documentation of other commands that appear in this module, use the command reference master index, or search online.

Feature History for Configuring ARP

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Configuring ARP, page 67
- Restrictions for Configuring ARP, page 68
- Information About Configuring ARP, page 68
- How to Configure ARP, page 71
- Configuration Examples for ARP Configuration on Cisco IOS XR Software, page 79
- Additional References, page 80

Prerequisites for Configuring ARP

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
Restrictions for Configuring ARP

The following restrictions apply to configuring ARP:

- Reverse Address Resolution Protocol (RARP) is not supported.
- Due to a hardware limitation in the Ethernet SPA interfaces installed on all routers, when a packet contains a wrong destination address, the corresponding SPA drops the packet even if the ingress packet count is already incremented in the output of the `show interfaces` command.
- ARP throttling is not supported.

| Note | ARP throttling is the rate limiting of ARP packets in Forwarding Information Base (FIB). |

The following additional restrictions apply when configuring the Direct Attached Gateway Redundancy (DAGR) feature on Cisco ASR 9000 Series Routers:

- IPv6 is not supported.
- Ethernet bundles are not supported.
- Non-Ethernet interfaces are not supported.
- Hitless ARP Process Restart is not supported.
- Hitless RSP Failover is not supported.

Information About Configuring ARP

To configure ARP, you must understand the following concepts:

IP Addressing Overview

A device in the IP can have both a local address (which uniquely identifies the device on its local segment or LAN) and a network address (which identifies the network to which the device belongs). The local address is more properly known as a `data link address`, because it is contained in the data link layer (Layer 2 of the OSI model) part of the packet header and is read by data-link devices (bridges and all device interfaces, for example). The more technically inclined person will refer to local addresses as `MAC addresses`, because the MAC sublayer within the data link layer processes addresses for the layer.

To communicate with a device on Ethernet, for example, Cisco IOS XR software first must determine the 48-bit MAC or local data-link address of that device. The process of determining the local data-link address from an IP address is called `address resolution`.
Address Resolution on a Single LAN

The following process describes address resolution when the source and destination devices are attached to the same LAN:

1. End System A broadcasts an ARP request onto the LAN, attempting to learn the MAC address of End System B.
2. The broadcast is received and processed by all devices on the LAN, including End System B.
3. Only End System B replies to the ARP request. It sends an ARP reply containing its MAC address to End System A.
4. End System A receives the reply and saves the MAC address of End System B in its ARP cache. (The ARP cache is where network addresses are associated with MAC addresses.)
5. Whenever End System A needs to communicate with End System B, it checks the ARP cache, finds the MAC address of System B, and sends the frame directly, without needing to first use an ARP request.

Address Resolution When Interconnected by a Router

The following process describes address resolution when the source and destination devices are attached to different LANs that are interconnected by a router (only if proxy-arp is turned on):

1. End System Y broadcasts an ARP request onto the LAN, attempting to learn the MAC address of End System Z.
2. The broadcast is received and processed by all devices on the LAN, including Router X.
3. Router X checks its routing table and finds that End System Z is located on a different LAN.
4. Router X therefore acts as a proxy for End System Z. It replies to the ARP request from End System Y, sending an ARP reply containing its own MAC address as if it belonged to End System Z.
5. End System Y receives the ARP reply and saves the MAC address of Router X in its ARP cache, in the entry for End System Z.
6. When End System Y needs to communicate with End System Z, it checks the ARP cache, finds the MAC address of Router X, and sends the frame directly, without using ARP requests.
7. Router X receives the traffic from End System Y and forwards it to End System Z on the other LAN.

ARP and Proxy ARP

Two forms of address resolution are supported by Cisco IOS XR software: Address Resolution Protocol (ARP) and proxy ARP, as defined in RFC 826 and RFC 1027, respectively. Cisco IOS XR software also supports a form of ARP called local proxy ARP.

ARP is used to associate IP addresses with media or MAC addresses. Taking an IP address as input, ARP determines the associated media address. After a media or MAC address is determined, the IP address or media address association is stored in an ARP cache for rapid retrieval. Then the IP datagram is encapsulated in a link-layer frame and sent over the network.
When proxy ARP is disabled, the networking device responds to ARP requests received on an interface only if one of the following conditions is met:

- The target IP address in the ARP request is the same as the interface IP address on which the request is received.
- The target IP address in the ARP request has a statically configured ARP alias.

When proxy ARP is enabled, the networking device also responds to ARP requests that meet all the following conditions:

- The target IP address is not on the same physical network (LAN) on which the request is received.
- The networking device has one or more routes to the target IP address.
- All of the routes to the target IP address go through interfaces other than the one on which the request is received.

When local proxy ARP is enabled, the networking device responds to ARP requests that meet all the following conditions:

- The target IP address in the ARP request, the IP address of the ARP source, and the IP address of the interface on which the ARP request is received are on the same Layer 3 network.
- The next hop for the target IP address is through the same interface as the request is received.

Typically, local proxy ARP is used to resolve MAC addresses to IP addresses in the same Layer 3 network such as, private VLANs that are Layer 2-separated. Local proxy ARP supports all types of interfaces supported by ARP and unnumbered interfaces.

ARP Cache Entries

ARP establishes correspondences between network addresses (an IP address, for example) and Ethernet hardware addresses. A record of each correspondence is kept in a cache for a predetermined amount of time and then discarded.

You can also add a static (permanent) entry to the ARP cache that persists until expressly removed.

Direct Attached Gateway Redundancy

Direct Attached Gateway Redundancy (DAGR) allows third-party redundancy schemes on connected devices to use gratuitous ARP as a failover signal, enabling the ARP process to advertise a new type of route in the Routing Information Base (RIB). These routes are distributed by Open Shortest Path First (OSPF).

Sometimes part of an IP network requires redundancy without routing protocols. A prime example is in the mobile environment, where devices such as base station controllers and multimedia gateways are deployed in redundant pairs, with aggressive failover requirements (subsecond or less), but typically do not have the capability to use native Layer 3 protocols such as OSPF or Intermediate System-to-Intermediate System (IS-IS) protocol to manage this redundancy. Instead, these devices assume they are connected to adjacent IP devices over an Ethernet switch, and manage their redundancy at Layer 2, using proprietary mechanisms similar to Virtual Router Redundancy Protocol (VRRP). This requires a resilient Ethernet switching capability, and depends on mechanisms such as MAC learning and MAC flooding.
DAGR is a feature that enables many of these devices to connect directly to Cisco ASR 9000 Series Routers without an intervening Ethernet switch. DAGR enables the subsecond failover requirements to be met using a Layer 3 solution. No MAC learning, flooding, or switching is required.

Since mobile devices' 1:1 Layer 2 redundancy mechanisms are proprietary, they do not necessarily conform to any standard. So although most IP mobile equipment is compatible with DAGR, interoperability does require qualification, due to the possibly proprietary nature of the Layer 2 mechanisms with which DAGR interfaces.

Additional Guidelines

The following are additional guidelines to consider when configuring DAGR:

- Up to 40 DAGR peers, which may be on the same or different interfaces, are supported per system.
- Failover is supported for DAGR routes within 500 ms of receipt of an ARP reply packet.
- On ARP process restart, DAGR groups are reinitialized.

How to Configure ARP

This section contains instructions for the following tasks:

Defining a Static ARP Cache Entry

ARP and other address resolution protocols provide a dynamic mapping between IP addresses and media addresses. Because most hosts support dynamic address resolution, generally you need not to specify static ARP cache entries. If you must define them, you can do so globally. Performing this task installs a permanent entry in the ARP cache. Cisco IOS XR software uses this entry to translate 32-bit IP addresses into 48-bit hardware addresses.

Optionally, you can specify that the software responds to ARP requests as if it were the owner of the specified IP address by making an alias entry in the ARP cache.

SUMMARY STEPS

1. configure
2. Do one of the following:
 • `arp [vrf vrf-name] ip-address hardware-address encapsulation-type`
 • `arp [vrf vrf-name] ip-address hardware-address encapsulation-type alias`
3. commit
Enabling Proxy ARP

Cisco IOS XR software uses proxy ARP (as defined in RFC 1027) to help hosts with no knowledge of routing determine the media addresses of hosts on other networks or subnets. For example, if the router receives an ARP request for a host that is not on the same interface as the ARP request sender, and if the router has all of its routes to that host through other interfaces, then it generates a proxy ARP reply packet giving its own local data-link address. The host that sent the ARP request then sends its packets to the router, which forwards them to the intended host. Proxy ARP is disabled by default; this task describes how to enable proxy ARP if it has been disabled.

SUMMARY STEPS

1. configure
2. interface type number
3. proxy-arp
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>
Enabling Local Proxy ARP

Local proxy ARP is disabled by default; this task describes how to enable local proxy ARP.

SUMMARY STEPS

1. configure
2. interface type number
3. local-proxy-arp
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface type number</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CP0</td>
<td>router(config)# interface MgmtEth</td>
</tr>
<tr>
<td>Step 3 local-proxy-arp</td>
<td>Enables local proxy ARP on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CP0</td>
<td>router(config-if)# local-proxy-arp</td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring DAGR

Follow these steps to create a DAGR group on the Cisco ASR 9000 Series Router.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. arp dagr
4. peer ipv4 address
5. route distance normal normal-distance priority priority-distance
6. route metric normal normal-metric priority priority-metric
7. timers query query-time standby standby-time
8. priority-timeout time
9. Do one of the following:
 • end
 • commit
10. show arp dagr [interface [IP-address]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# interface gigabitethernet 0/2/0/0</td>
</tr>
<tr>
<td>Step 3</td>
<td>arp dagr</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# arp dagr</td>
</tr>
<tr>
<td>Step 4</td>
<td>peer ipv4 address</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if-dagr)# peer ipv4 10.0.0.100</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>5</td>
<td><code>route distance normal priority-distance</code></td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-if-dagr-peer)# route distance normal 140 priority 3</td>
</tr>
<tr>
<td>6</td>
<td><code>route metric normal priority-metric</code></td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-if-dagr-peer)# route metric normal 84 priority 80</td>
</tr>
<tr>
<td>7</td>
<td><code>timers query standby</code></td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-if-dagr-peer)# timers query 2 standby 19</td>
</tr>
<tr>
<td>8</td>
<td><code>priority-timeout time</code></td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-if-dagr-peer)# priority-timeout 25</td>
</tr>
<tr>
<td>9</td>
<td>Do one of the following: • <code>end</code> • <code>commit</code></td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-if-dagr)# end or RP/0/RSP0/CPU0:router(config-if-dagr)# commit</td>
</tr>
</tbody>
</table>

When you issue the `end` command, the system prompts you to commit changes:

```
Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:
```

- Entering `yes` saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.
- Entering `no` exits the configuration session and returns the router to EXEC mode without committing the configuration changes.
- Entering `cancel` leaves the router in the current configuration session without exiting or committing the configuration changes.
Configuring ARP purge-delay

With Equal Cost Multi Path (ECMP), traffic is load balanced across multiple paths with equal cost. This should provide resiliency against interface flaps. If an interface goes down, the traffic is then routed via the other interface without traffic loss. However, if the first interface comes up, traffic is routed back over it but forwarding will only resume once ARP has been (re)resolved and the adjacency (re)installed. Here a short unexpected interface flap causes this traffic loss and is particularly undesirable.

The purge-delay feature allows existing dynamic entries to persist rather than immediately delete entries which could cause traffic loss following an interface flap.

The purge delay feature works by caching existing dynamic ARP entries when an interface goes down and starting a purge delay timer. When the interface is brought back and the purge delay timer not yet fired, the entries are reinstalled as before. The normal entry timeout is reduced in order to re-ARP for the entries after any interface state change related churn has died down; should the purge delay timer fire before the interface comes back up, the entries are deleted from the cache.

SUMMARY STEPS

1. configure
2.
3.
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# interface MgmtEth 0/</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 3 | **Example:**
RP/0/RSP0/CPU0:router(config-if)# arp purge-delay 100 | Sets the purge delay time interval.

Step 4 | commit

Configuring ARP timeout

Dynamic ARP entries which are learnt by ARP address resolution (when valid ARP replies are received) are timed out every 4 hours by default in order to remove stale entries.

ARP entries that correspond to the local interface or that are statically configured by the user never time out.

SUMMARY STEPS

1.
2.
3.
4. Do one of the following:
 - end
 - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **Example:**
RP/0/RSP0/CPU0:router# configure | Enters global configuration mode. |
| **Step 2** | **Example:**
RP/0/RSP0/CPU0:router(config)# interface MgmtEth 0/ | Enters interface configuration mode. |
| **Step 3** | **Example:**
RP/0/RSP0/CPU0:router(config-if)# arp timeout 100 | Sets the ARP cache timeout interval. |
<p>| Step 4 | Do one of the following: | Saves configuration changes. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• end</td>
<td>• When you issue the end command, the system prompts you to commit changes:</td>
</tr>
<tr>
<td>• commit</td>
<td>Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:</td>
</tr>
</tbody>
</table>

Example:

RP/0/RSP0/CPU0:router(config-if)# end

or

RP/0/RSP0/CPU0:router(config-if)# commit

Configure Learning of Local ARP Entries

You can configure an interface or a sub-interface to learn only the ARP entries from its local subnet.

Use the following procedure to configure local ARP learning on an interface.

1. Enter the interface configuration mode.

 RP/0/RSP0/CPU0:router(config)# interface GigabitEthernet 0/0/0/1

2. Configure the IPv4/IPv6 address for the interface.

 RP/0/RSP0/CPU0:router (config-if)# ipv4 address 12.1.3.4 255.255.255.0

3. Configure local ARP learning on the interface.

 RP/0/RSP0/CPU0:router(config-if)# arp learning local

4. Enable the interface and commit your configuration.

 RP/0/RSP0/CPU0:router(config-if)# no shut
 RP/0/RSP0/CPU0:router(config-if)# commit

5. Confirm your configuration.

 RP/0/RSP0/CPU0:router(config-if)# show running-configuration

 Building configuration...
 !! IOS XR Configuration 0.0.0
!! Last configuration change at Mon Dec 12 13:41:16 2016
!
interface GigabitEthernet0/0/0/1
ipv4 address 12.1.3.4 255.255.255.0
arp learning local
!
6 Verify if local ARP learning is working as configured on the interface.

RP/0/RSP0/CPU0:router(config-if)# do show arp idb gigabitEthernet 0/0/0/1 location 0/0/CPU0
Thu Dec 15 10:00:11.733 IST

GigabitEthernet0/0/0/1 (0x00000040):
IPv4 address 12.1.3.4, Vrf ID 0x60000000
VRF Name default
Dynamic learning: Local
Dynamic entry timeout: 14400 secs
Purge delay: off
IPv4 caps added (state up)
MPLS caps not added
Interface not virtual, not client fwd ref,
Proxy arp not configured, not enabled
Local Proxy arp not configured
Packet IO layer is NetIO
Srg Role : DEFAULT
Idb Flag : 2146444
IDB is Complete

7 (Optional) You can monitor the ARP traffic on the interface.

RP/0/RSP0/CPU0:router(config-if)# do show arp traffic gigabitEthernet 0/0/0/1 location 0/0/CPU0
Thu Dec 15 10:13:28.964 IST

ARP statistics:
 Recv: 0 requests, 0 replies
 Sent: 0 requests, 1 replies (0 proxy, 0 local proxy, 1 gratuitous)
 Subscriber Interface:
 0 requests recv, 0 replies sent, 0 gratuitous replies sent
 Resolve requests rcvd: 0
 Resolve requests dropped: 0
 Errors: 0 out of memory, 0 no buffers, 0 out of sunbet

ARP cache:
 Total ARP entries in cache: 1
 Dynamic: 0, Interface: 1, Standby: 0
 Alias: 0, Static: 0, DHCP: 0

 IP Packet drop count for GigabitEthernet0_0_0_1: 0

Configuration Examples for ARP Configuration on Cisco IOS XR Software

Creating a Static ARP Cache Entry: Example

The following is an example of a static ARP entry for a typical Ethernet host:

```
configure
arp 192.168.7.19 0800.0900.1834 arpa
```
The following is an example of a static ARP entry for a typical Ethernet host where the software responds to ARP requests as if it were the owner of both the specified IP address and hardware address, whether proxy ARP is enabled or not:

```
configure
arp 192.168.7.19 0800.0900.1834 arpa alias
```

The following is an example of configuring a static arp entry on an SRP device:

```
configure
arp 192.168.8.20 0800.0900.1723 arp
```

Enabling Proxy ARP: Example

The following is an example of enabling proxy ARP:

```
configure
interface MgmtEth 0/RSP0/CPU0/0
proxy-arp
```

Enabling DAGR and Configuring a DAGR Group: Example

The following is an example of enabling DAGR and configuring a DAGR group peer:

```
configure
interface gigabitethernet 0/1/0/0.1
arp dagr
peer ipv4 192.168.7.19
priority-timeout 25
route distance normal 48 priority 5
route metric normal 48 priority 5
timers query 2 standby 40
commit
```

Displaying the Operational State of DAGR Groups: Example

Additional References

The following sections provide references related to ARP.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARP commands</td>
<td>ARP Commands module in Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
<tr>
<td>Getting started material</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Quality of Service Commands module in Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Command Reference</td>
</tr>
<tr>
<td>Class-based traffic shaping, traffic policing, low latency queuing, and MDDR</td>
<td>Configuring Modular Quality of Service Congestion Management module in Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 826</td>
<td>Ethernet Address Resolution Protocol: Or converting network protocol addresses to 48.bit Ethernet address for transmission on Ethernet hardware</td>
</tr>
<tr>
<td>RFC 1027</td>
<td>Using ARP to implement transparent subnet gateways</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing Cisco Express Forwarding

Cisco Express Forwarding (CEF) is advanced, Layer 3 IP switching technology. CEF optimizes network performance and scalability for networks with large and dynamic traffic patterns, such as the Internet, on networks characterized by intensive web-based applications, or interactive sessions.

This module describes the tasks required to implement CEF on your Cisco ASR 9000 Series Aggregation Services Router.

For complete descriptions of the CEF commands listed in this module, refer to the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference. To locate documentation for other commands that might appear in the course of executing a configuration task, search online in the master command index.

Feature History for Implementing CEF

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Cisco Express Forwarding, page 83
- Information About Implementing Cisco Express Forwarding Software, page 84
- How to Implement CEF, page 88
- IPv6 Routing over IPv4 MPLS TE Tunnels, page 100
- Configuration Examples for Implementing CEF on Routers Software, page 101
- Additional References, page 117

Prerequisites for Implementing Cisco Express Forwarding

The following prerequisites are required to implement Cisco Express Forwarding:
You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing Cisco Express Forwarding Software

To implement Cisco Express Forwarding features in this document you must understand the following concepts:

Key Features Supported in the Cisco Express Forwarding Implementation

The following features are supported for CEF on Cisco IOS XR software:

- Border Gateway Protocol (BGP) policy accounting
- Reverse path forwarding (RPF)
- Virtual interface support
- Multipath support
- Route consistency
- High availability features such as packaging, restartability, and Out of Resource (OOR) handling
- OSPFv2 SPF prefix prioritization
- BGP attributes download

Benefits of CEF

CEF offers the following benefits:

- Improved performance—CEF is less CPU-intensive than fast-switching route caching. More CPU processing power can be dedicated to Layer 3 services such as quality of service (QoS) and encryption.
- Scalability—CEF offers full switching capacity at each line card.
- Resilience—CEF offers an unprecedented level of switching consistency and stability in large dynamic networks. In dynamic networks, fast-switched cache entries are frequently invalidated due to routing changes. These changes can cause traffic to be process switched using the routing table, rather than fast switched using the route cache. Because the Forwarding Information Base (FIB) lookup table contains all known routes that exist in the routing table, it eliminates route cache maintenance and the fast-switch or process-switch forwarding scenario. CEF can switch traffic more efficiently than typical demand caching schemes.
CEF Components

Cisco IOS XR software CEF always operates in CEF mode with two distinct components: a Forwarding Information Base (FIB) database and adjacency table—a protocol-independent adjacency information base (AIB).

CEF is a primary IP packet-forwarding database for Cisco IOS XR software. CEF is responsible for the following functions:

- Software switching path
- Maintaining forwarding table and adjacency tables (which are maintained by the AIB) for software and hardware forwarding engines

The following CEF forwarding tables are maintained in Cisco IOS XR software:

- IPv4 CEF database
- IPv6 CEF database
- MPLS LFD database
- Multicast Forwarding Table (MFD)

The protocol-dependent FIB process maintains the forwarding tables for IPv4 and IPv6 unicast in the Route Switch Processor (RSP) and each MSC.

The FIB on each node processes Routing Information Base (RIB) updates, performing route resolution and maintaining FIB tables independently in the RSP and each MSC. FIB tables on each node can be slightly different. Adjacency FIB entries are maintained only on a local node, and adjacency entries linked to FIB entries could be different.

Border Gateway Protocol Policy Accounting

Border Gateway Protocol (BGP) policy accounting measures and classifies IP traffic that is sent to, or received from, different peers. Policy accounting is enabled on an individual input or output interface basis, and counters based on parameters such as community list, autonomous system number, or autonomous system path are assigned to identify the IP traffic.

There are two types of route policies. The first type (regular BGP route policies) is used to filter the BGP routes advertised into or out from the BGP links. This type of route policy is applied to the specific BGP neighbor. The second type (specific route policy) is used to set up a traffic index for the BGP prefixes. This route policy is applied to the global BGP IPv4 address family to set up the traffic index when the BGP routes are inserted into the RIB table. BGP policy accounting uses the second type of route policy.

Using BGP policy accounting, you can account for traffic according to the route it traverses. Service providers can identify and account for all traffic by customer and bill accordingly. In Figure 1: Sample Topology for BGP Policy Accounting, on page 86, BGP policy accounting can be implemented in Router A to measure packet and byte volumes in autonomous system buckets. Customers are billed appropriately for traffic that is routed from a domestic, international, or satellite source.
BGP policy accounting measures and classifies IP traffic for BGP prefixes only.

Note

![Sample Topology for BGP Policy Accounting](image)

Based on the specified routing policy, BGP policy accounting assigns each prefix a traffic index (bucket) associated with an interface. BGP prefixes are downloaded from the RIB to the FIB along with the traffic index.

There are a total of 63 (1 to 63) traffic indexes (bucket numbers) that can be assigned for BGP prefixes. Internally, there is an accounting table associated with the traffic indexes to be created for each input (ingress) and output (egress) interface. The traffic indexes allow you to account for the IP traffic, where the source IP address, the destination IP address, or both are BGP prefixes.

Note

Traffic index 0 contains the packet count using Interior Gateway Protocol (IGP) routes.

Reverse Path Forwarding (Strict and Loose)

Unicast IPv4 and IPv6 Reverse Path Forwarding (uRPF), both strict and loose modes, help mitigate problems caused by the introduction of malformed or spoofed IP source addresses into a network by discarding IP packets that lack a verifiable IP source address. Unicast RPF does this by doing a reverse lookup in the CEF table. Therefore, Unicast Reverse Path Forwarding is possible only if CEF is enabled on the router.

IPv6 uRPF is supported with ASR 9000-SIP-700 LC, ASR 9000 Ethernet LC and ASR 9000 Enhanced Ethernet LC.
Unicast RPF allows packets with 0.0.0.0 source addresses and 255.255.255.255 destination addresses to pass so that Bootstrap Protocol and Dynamic Host Configuration Protocol (DHCP) will function properly.

When strict uRPF is enabled, the source address of the packet is checked in the FIB. If the packet is received on the same interface that would be used to forward the traffic to the source of the packet, the packet passes the check and is further processed; otherwise, it is dropped. Strict uRPF should only be applied where there is natural or configured symmetry. Because internal interfaces are likely to have routing asymmetry, that is, multiple routes to the source of a packet, strict uRPF should not be implemented on interfaces that are internal to the network.

The behavior of strict RPF varies slightly by platform, number of recursion levels, and number of paths in Equal-Cost Multipath (ECMP) scenarios. A platform may switch to loose RPF check for some or all prefixes, even though strict RPF is configured.

When loose uRPF is enabled, the source address of the packet is checked in the FIB. If it exists and matches a valid forwarding entry, the packet passes the check and is further processed; otherwise, it is dropped.

Strict mode uRPF requires maintenance of uRPF interfaces list for the prefixes. The list contains only strict mode uRPF configured interfaces pointed by the prefix path. uRPF interface list is shared among the prefixes wherever possible. Size of this list is 12 for ASR 9000 Ethernet Line Cards and 64 for integrated 20G SIP cards. Strict to loose mode uRPF fallback happens when the list goes beyond the maximum supported value.

Loose and strict uRPF supports two options: allow self-ping and allow default. The self-ping option allows the source of the packet to ping itself. The allow default option allows the lookup result to match a default routing entry. When the allow default option is enabled with the strict mode of the uRPF, the packet is processed further only if it arrived through the default interface.

Per-Flow Load Balancing

Load balancing describes the functionality in a router that distributes packets across multiple links based on Layer 3 (network layer) and Layer 4 (transport layer) routing information. If the router discovers multiple paths to a destination, the routing table is updated with multiple entries for that destination.

Per-flow load balancing performs these functions:

- Incoming data traffic is evenly distributed over multiple equal-cost connections within a bundle interface.
- Layer 2 bundle and Layer 3 (network layer) load balancing decisions are taken on IPv4, IPv6, and MPLS flows which are supported for the 5-tuple hash algorithm.
- A 5-tuple hash algorithm provides more granular load balancing than the 3-tuple hash algorithm.
- The same hash algorithm (3-tuple or 5-tuple) is used for load balancing over multiple equal-cost Layer 3 (network layer) paths. The Layer 3 (network layer) path is on a physical interface or on a bundle interface. In addition, load balancing over member links can occur within a Layer 2 bundle interface.
- The **cef load-balancing fields L3 global** command allows you to select the 3-tuple hash algorithm.
- By default, 5-tuple hash algorithm is used for load balancing. If you use the **cef load-balancing fields L3 global** command, 3-tuple hash algorithm is enabled.
Layer 3 (Network Layer) Routing Information

The 3-tuple load-balance hash calculation contains these Layer 3 (Network Layer) inputs:

- Source IP address
- Destination IP address
- Router ID

Layer 4 (Transport Layer) Routing Information

The 5-tuple load-balance hash calculation contains 3-tuple inputs and these additional following Layer 4 (Transport Layer) inputs:

- Source port
- Destination port

Note

In load-balancing scenarios, a line card may not use all output paths downloaded from routing protocols. This behavior varies with platform, number of recursion levels, and the fact whether MPLS is involved, or not.

Limitations for 3-Tuple Load Balance Hash Algorithm

- Load balancing is not symmetrical if the load balanced paths involve different speeds such as, 10 Gigabit Ethernet, 40 Gigabit Ethernet, or 100 Gigabit Ethernet ports.
- Because the 3-tuple hash algorithm excludes Layer 4 information and becomes dependent on Layer 3 information, load balancing is not symmetrical if the distribution of source and destination IP addresses is not varied enough, even if all ports operate at the same speed.
- You can configure 3-tuple hash algorithm only on Cisco ASR 9000 Enhanced Ethernet Line Cards.

BGP Attributes Download

The BGP Attributes Download feature enables you to display the installed BGP attributes in CEF. Configure the `show cef bgp-attribute` command to display the installed BGP attributes in CEF. You can use the `show cef bgp-attribute attribute-id` command and the `show cef bgp-attribute local-attribute-id` command to look at specific BGP attributes by attribute ID and local attribute ID.

How to Implement CEF

This section contains instructions for the following tasks:

Verifying CEF

This task allows you to verify CEF.
SUMMARY STEPS

1. `show cef {ipv4 | ipv6}`
2. `show cef {ipv4 | ipv6} summary`
3. `show cef {ipv4 | ipv6} detail`
4. `show adjacency detail`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show cef {ipv4</td>
<td>ipv6}</td>
</tr>
<tr>
<td>Example:</td>
<td>R/P0/RSP0/CPU0:router# show cef ipv4</td>
</tr>
<tr>
<td>Step 2 show cef {ipv4</td>
<td>ipv6} summary</td>
</tr>
<tr>
<td>Example:</td>
<td>R/P0/RSP0/CPU0:router# show cef ipv4 summary</td>
</tr>
<tr>
<td>Step 3 show cef {ipv4</td>
<td>ipv6} detail</td>
</tr>
<tr>
<td>Example:</td>
<td>R/P0/RSP0/CPU0:router# show cef ipv4 detail</td>
</tr>
<tr>
<td>Step 4 show adjacency detail</td>
<td>Displays detailed adjacency information, including Layer 2 information for each interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>R/P0/RSP0/CPU0:router# show adjacency detail</td>
</tr>
</tbody>
</table>

Configuring BGP Policy Accounting

This task allows you to configure BGP policy accounting.

Note

There are two types of route policies. BGP policy accounting uses the type that is used to set up a traffic index for the BGP prefixes. The route policy is applied to the global BGP IPv4 address family to set up the traffic index when the BGP routes are inserted into the RIB table.

BGP policy accounting enables per interface accounting for ingress and egress IP traffic based on the traffic index assigned to the source IP address (BGP prefix) and destination IP address (BGP prefix). The traffic
index of BGP prefixes can be assigned according to the following parameters using Routing Policy Language (RPL):

- prefix-set
- AS-path-set
- community-set

Note

BGP policy accounting is supported on IPv4 prefixes only.

Two configuration tasks provide the ability to classify BGP prefixes that are in the RIB according to the prefix-set, AS-path-set, or the community-set parameters:

1. Use the **route-policy** command to define the policy for traffic index setup based on the prefix-set, AS-path-set, or community-set.

2. Use the BGP **table-policy** command to apply the defined route policy to the global BGP IPv4 unicast address family.

See the *Cisco ASR 9000 Series Aggregation Services Router Routing Command Reference* for information on the **route-policy** and **table-policy** commands.

BGP policy accounting can be enabled on each interface with the following options:

- Use the ipv4 bgp policy accounting command with one of the following keyword options:
 - input source-accounting
 - input destination-accounting
 - input source-accounting destination-accounting

- Use the ipv4 bgp policy accounting command with one of the following keyword options:
 - output source-accounting
 - output destination-accounting
 - output source-accounting destination-accounting

- Use any combination of the keywords provided for the **ipv4 bgp policy accounting** command.

Before You Begin

Before using the BGP policy accounting feature, you must enable BGP on the router (CEF is enabled by default). See the *Cisco ASR 9000 Series Aggregation Services Router Routing Configuration Guide* for information on enabling BGP.
SUMMARY STEPS

1. configure
2. as-path-set
3. exit
4. prefix-set name
5. exit
6. route-policy policy-name
7. end
8. configure
9. router bgp autonomous-system-number
10. address-family ipv4 {unicast | multicast }
11. table policy policy-name
12. end
13. configure
14. interface type interface-path-id
16. Do one of the following:
 - end
 - commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 | configure |
 | **Example:** RP/0/RSP0/CPU0:router# configure |
 | Enters global configuration mode. |

| **Step 2**
 | as-path-set |
 | **Example:** RP/0/RSP0/CPU0:router(config)# as-path-set as107
 | RP/0/RSP0/CPU0:router(config-as)# ios-regex '107$'
 | RP/0/RSP0/CPU0:router(config-as)# end-set
 | RP/0/RSP0/CPU0:router(config)# as-path-set as108
 | RP/0/RSP0/CPU0:router(config-as)# ios-regex '108$'
 | RP/0/RSP0/CPU0:router(config-as)# end-set
<p>| Enters policy configuration mode. |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-as)# exit</td>
</tr>
<tr>
<td>Step 4</td>
<td>prefix-set name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# prefix-set RT-65</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pfx)# exit</td>
</tr>
<tr>
<td>Step 6</td>
<td>route-policy policy-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# route-policy rp501b</td>
</tr>
<tr>
<td>Step 7</td>
<td>end</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-rpl)# end</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>configure</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# configure</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 9</td>
<td>router bgp autonomous-system-number
Example:
 RP/0/RSP0/CPU0:router(config)# router bgp 1</td>
</tr>
<tr>
<td>Step 10</td>
<td>**address-family ipv4 {unicast</td>
</tr>
<tr>
<td>Step 11</td>
<td>table policy policy-name
Example:
 RP/0/RSP0/CPU0:router(config-bgp-af)# table-policy set-traffic-index</td>
</tr>
<tr>
<td>Step 12</td>
<td>end
Example:
 RP/0/RSP0/CPU0:router(config-bgp-af)# end</td>
</tr>
<tr>
<td>Step 13</td>
<td>configure
Example:
 RP/0/RSP0/CPU0:router# configure</td>
</tr>
<tr>
<td>Step 14</td>
<td>interface type interface-path-id
Example:
 RP/0/RSP0/CPU0:router(config)# interface TenGigE0/1/0/2</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Enables BGP policy accounting.

Step 15

| ipv4 bgp policy accounting {input | output |

Example:

```
RP/0/RSP0/CPU0:router(config-if)# ipv4 bgp policy accounting output
destination-accounting
```

Step 16

Do one of the following:

- end
- commit

Example:

```
RP/0/RSP0/CPU0:router(config-if)# end
```

```
RP/0/RSP0/CPU0:router(config-if)# commit
```

Saves configuration changes.

- When you issue the **end** command, the system prompts you to commit changes:

```
Uncommitted changes found, commit them before exiting(yes/no/cancel)?[cancel]:
```

- Entering **yes** saves configuration changes to the running configuration file, exits the configuration session, and returns the router to EXEC mode.

- Entering **no** exits the configuration session and returns the router to EXEC mode without committing the configuration changes.

- Entering **cancel** leaves the router in the current configuration session without exiting or committing the configuration changes.

- Use the **commit** command to save the configuration changes to the running configuration file and remain within the configuration session.

Verifying BGP Policy Accounting

This task allows you to verify BGP policy accounting.

| Note |
| BGP policy accounting is supported on IPv4 prefixes. |

Before You Begin

BGP policy accounting must be configured. See the Configuring BGP Policy Accounting, on page 89.
SUMMARY STEPS

1. `show route bgp`
2. `show bgp summary`
3. `show bgp ip-address`
4. `show route ipv4 ip-address`
5. `show cef ipv4 prefix`
6. `show cef ipv4 prefix detail`
7. `show cef ipv4 interface type interface-path-id bgp-policy-statistics`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>show route bgp</code></td>
<td>Displays all BGP routes with traffic indexes.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# show route bgp</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>show bgp summary</code></td>
<td>Displays the status of all BGP neighbors.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# show bgp summary</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>show bgp ip-address</code></td>
<td>Displays BGP prefixes with BGP attributes.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# show bgp 40.1.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>show route ipv4 ip-address</code></td>
<td>Displays the specific BGP route with the traffic index in the RIB.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# show route ipv4 40.1.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>show cef ipv4 prefix</code></td>
<td>Displays the specific BGP prefix with the traffic index in the RP FIB.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# show cef ipv4 40.1.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>show cef ipv4 prefix detail</code></td>
<td>Displays the specific BGP prefix with detailed information in the RP FIB.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router# show cef ipv4 40.1.1.1 detail</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Route Purge Delay

This task allows you to configure a route purge delay. A purge delay purges routes when the RIB or other related process experiences a failure.

SUMMARY STEPS

1. configure
2. cef purge-delay `seconds`
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>cef purge-delay <code>seconds</code></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# cef purge-delay 180</td>
</tr>
<tr>
<td>Step 3</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring Unicast RPF Checking

This task allows you to configure unicast Reverse Path Forwarding (uRPF) checking. Unicast RPF checking allows you to mitigate problems caused by malformed or forged (spoofed) IP source addresses that pass through a router. Malformed or forged source addresses can indicate denial-of-service (DoS) attacks based on source IP address spoofing.
SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. \{ipv4 | ipv6\} verify unicast source reachable-via \{any | rx\} \[allow-default\] \[allow-self-ping\]
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td>Enables IPv4 or IPv6 uRPF checking.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# interface GigabitEthernet 0/1/0/0</td>
<td></td>
</tr>
<tr>
<td>Step 3 {ipv4</td>
<td>ipv6} verify unicast source reachable-via {any</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)# ipv4 verify unicast source reachable-via rx</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Modular Services Card-to-Route Processor Management Ethernet Interface Switching

This task allows you to enable MSC-to-RP management Ethernet interface switching.

SUMMARY STEPS

1. configure
2. rp mgmtethernet forwarding
3. commit
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>rp mgmtethernet forwarding</td>
<td>Enables switching from the MSC to the route processor Management Ethernet interfaces.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# rp mgmtethernet forwarding</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Per-Flow Load Balancing

This section describes the following tasks to configure per-flow load balancing:

Configuring 3-Tuple Hash Algorithm

This task allows you to configure per-flow load balancing for a 3-tuple hash algorithm.

Summary Steps

1. configure
2. cef load-balancing fields L3 global
3. commit
4. show running-config

Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>cef load-balancing fields L3 global</td>
<td>Configures the 3-tuple hashing algorithm for load balancing during forwarding. The cef load-balancing fields L3 global command configures the hash tuple with the following fields:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# cef load-balancing fields L3 global</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Source IP address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Destination IP address.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Router ID.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The following Layer 4 fields are ignored:</td>
<td></td>
</tr>
</tbody>
</table>
Configuring BGP Attributes Download

This task allows you to configure the BGP Attributes Download feature.

Configuring BGP Attributes Download

SUMMARY STEPS

1. configure
2. cef bgp attribute \{attribute-id | local-attribute-id\}
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 cef bgp attribute {attribute-id</td>
<td>local-attribute-id}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# cef bgp attribute 508</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>
IPv6 Routing over IPv4 MPLS TE Tunnels

IPv6 routing over IPv4 Multiprotocol Label Switching with Traffic Engineering (MPLS TE) tunnels in the core is achieved by configuring the TE tunnels into the IPv6 Interior Gateway Protocol (IGP) topology as IPv6 forwarding adjacencies.

Figure 2: IPv6 Routing over IPv4 MPLS TE

This figure shows two IPv4/IPv6-aware sites connected over a TE core, where TE is not IPv6-aware. Two tunnels are set up across the core, and are announced as forwarding adjacencies into the IPv6 topologies at Site 1 and Site 2. Routers at Site 1 and Site 2 can use these tunnels to compute the best IPv6 route to the other site within their IS-IS SPF.

Restrictions for Implementing IPv6 routing over IPv4 MPLS TE tunnels

The following restrictions apply to implementing IPv6 routing over IPv4 MPLS TE tunnels:

• It is supported for IS-IS only.
• IS-ISv4 and v6 must exist in a single topology.
• IS-ISv4 and v6 must be configured under the same IS-IS instance at the endpoints.

Configuring tunnel as IPV6 Forwarding-Adjacency

Perform this task to configure a tunnel as an IPv6 forwarding adjacency.

SUMMARY STEPS

1. configure
2. interface tunnel-te n forwarding-adjacency include-ipv6
3. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>interface tunnel-te n forwarding-adjacency include-ipv6</td>
<td>Configures tunnel as an IPV6 Forwarding-Adjacency.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config)# interface tunnel-te 1 forwarding-adjacency include-ipv6
```

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring tunnel as IPV6 interface

Perform this task to configure a tunnel as an IPV6 interface.

SUMMARY STEPS

1. configure
2. interface tunnel-te *n* ipv6 enable
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>interface tunnel-te n ipv6 enable</td>
<td>Configures tunnel as an IPV6 interface.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config)# interface tunnel-te 1 ipv6 enable
```

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Implementing CEF on Routers Software

This section provides the following configuration examples:
Configuring BGP Policy Accounting: Example

The following example shows how to configure BGP policy accounting.

Configure loopback interfaces for BGP router-id:

```
interface Loopback1
ipv4 address 10.1.1.1 255.255.255.255
```

Configure interfaces with the BGP policy accounting options:

```
interface TenGigE0/2/0/2
  mtu 1514
  ipv4 address 10.0.1 255.255.255.0
  proxy-arp
  ipv4 directed-broadcast
  ipv4 bgp policy accounting input source-accounting destination-accounting
  ipv4 bgp policy accounting output source-accounting destination-accounting

interface TenGigE0/2/0/2.1
  ipv4 address 10.1.1.1 255.255.255.0
  ipv4 bgp policy accounting input source-accounting destination-accounting
  ipv4 bgp policy accounting output source-accounting destination-accounting
  encapsulation dot1q 1

interface TenGigE0/2/0/4
  mtu 1514
  ipv4 address 10.0.1 255.255.255.0
  proxy-arp
  ipv4 directed-broadcast
  ipv4 bgp policy accounting input source-accounting destination-accounting
  ipv4 bgp policy accounting output source-accounting destination-accounting

interface TenGigE0/2/0/4.1
  ipv4 address 10.2 255.255.255.0
  ipv4 bgp policy accounting input source-accounting destination-accounting
  ipv4 bgp policy accounting output source-accounting destination-accounting
  encapsulation dot1q 1

interface GigabitEthernet 0/0/0/4
  mtu 4474
  ipv4 address 10.0.40 255.255.0.0
  ipv4 directed-broadcast
  ipv4 bgp policy accounting input source-accounting destination-accounting
  ipv4 bgp policy accounting output source-accounting destination-accounting
  encapsulation ppp
  GigabitEthernet
  crc 32

  keepalive disable

interface GigabitEthernet 0/0/0/8
  mtu 4474
  ipv4 address 10.0.40 255.255.0.0
  ipv4 directed-broadcast
  ipv4 bgp policy accounting input source-accounting destination-accounting
  ipv4 bgp policy accounting output source-accounting destination-accounting
  GigabitEthernet
  crc 32
```
! keepalive disable

Configure controller:

controller GigabitEthernet 0/0/0/4
 ais-shut
 path
 ais-shut
 ! threshold sf-ber 5
controller SONET0/0/0/8
 ais-shut
 path
 ais-shut
 ! threshold sf-ber 5

Configure AS-path-set and prefix-set:

as-path-set as107
 ios-regex '107$'
end-set
as-path-set as108
 ios-regex '108$'
end-set

prefix-set RT-65.0
 65.0.0.0/16 ge 16 le 32
end-set
prefix-set RT-66.0
 66.0.0.0/16 ge 16 le 32
end-set

Configure the route-policy (table-policy) to set up the traffic indexes based on each prefix, AS-path-set, and prefix-set:

route-policy bpa1
 if destination in (10.1.0.0/24) then
 set traffic-index 1
 elseif destination in (10.1.2.0/24) then
 set traffic-index 2
 elseif destination in (10.1.3.0/24) then
 set traffic-index 3
 elseif destination in (10.1.4.0/24) then
 set traffic-index 4
 elseif destination in (10.1.5.0/24) then
 set traffic-index 5
 endif

 if destination in (10.1.0.0/24) then
 set traffic-index 6
 elseif destination in (10.1.2.0/24) then
 set traffic-index 7
 elseif destination in (10.1.3.0/24) then
 set traffic-index 8
 elseif destination in (10.1.4.0/24) then
 set traffic-index 9
 endif
set traffic-index 9
elseif destination in (10.1.5.0/24) then
 set traffic-index 10
endif

if as-path in as107 then
 set traffic-index 7
elseif as-path in as108 then
 set traffic-index 8
endif

if destination in RT-65.0 then
 set traffic-index 15
elseif destination in RT-66.0 then
 set traffic-index 16
endif

drop
end-policy

Configure the regular BGP route-policy to pass or drop all the BGP routes:

route-policy drop-all
 drop
end-policy

route-policy pass-all
 pass
end-policy

Configure the BGP router and apply the table-policy to the global ipv4 address family:

router bgp 100
 bgp router-id Loopback1
 bgp graceful-restart
 bgp as-path-loopcheck
 address-family ipv4 unicast
 table-policy bpa1
 maximum-paths 8
 bgp dampening

Configure the BGP neighbor-group:

neighbor-group ebgp-peer-using-int-addr
 address-family ipv4 unicast
 policy pass-all in
 policy drop-all out
 !
neighbor-group ebgp-peer-using-int-addr-121
 remote-as 121
 address-family ipv4 unicast
 policy pass-all in
 policy drop-all out
 !
neighbor-group ebgp-peer-using-int-addr-pass-out
 address-family ipv4 unicast
 policy pass-all in
 policy pass-all out
 !

Configure BGP neighbors:

neighbor 10.4.0.2
 remote-as 107
 use neighbor-group ebgp-peer-using-int-addr
Verifying BGP Policy Statistics: Example

The following example shows how to verify the traffic index setup for each BGP prefix and BGP Policy Accounting statistics on ingress and egress interfaces. The following traffic stream is configured for this example:

- Traffic comes in from GigabitEthernet 0/2/0/4 and goes out to 5 VLAN subinterfaces under GigabitEthernet 0/2/0/2
- Traffic comes in from GigabitEthernet 0/0/0/8 and goes out to GigabitEthernet 0/0/0/4

```plaintext
show cef ipv4 interface GigabitEthernet 0/0/0/8 bgp-policy-statistics
GigabitEthernet0/0/0/8 is up
Input BGP policy accounting on dst IP address enabled
buckets packets bytes
   7  5001160  500116000
  15 10002320 1000232000
Input BGP policy accounting on src IP address enabled
buckets packets bytes
   8  5001160  500116000
  16 10002320 1000232000
Output BGP policy accounting on dst IP address enabled
buckets packets bytes
   0   15    790
Output BGP policy accounting on src IP address enabled
buckets packets bytes
   0   15    790
```

```plaintext
show cef ipv4 interface GigabitEthernet 0/0/0/4 bgp-policy-statistics
GigabitEthernet0/0/0/4 is up
Input BGP policy accounting on dst IP address enabled
buckets packets bytes
Output BGP policy accounting on dst IP address enabled
```

buckets packets bytes
0 13 653
7 5001160 500116000
15 10002320 1000232000
Output BGP policy accounting on src IP address enabled
buckets packets bytes
0 13 653
7 5001160 500116000
15 10002320 1000232000
gigabitEthernet0/2/0/4 is up
Input BGP policy accounting on dst IP address enabled
buckets packets bytes
1 3297102 329710200
2 3297102 329710200
3 3297102 329710200
4 3297101 329710100
5 3297101 329710100
Input BGP policy accounting on src IP address enabled
buckets packets bytes
6 3297102 329710200
7 3297102 329710200
8 3297102 329710200
9 3297101 329710100
10 3297101 329710100
Output BGP policy accounting on dst IP address enabled
buckets packets bytes
0 15 733
Output BGP policy accounting on src IP address enabled
buckets packets bytes
0 15 733
gigabitEthernet 0/2/0/2.1 is up
Input BGP policy accounting on dst IP address enabled
buckets packets bytes
Input BGP policy accounting on src IP address enabled
buckets packets bytes
Output BGP policy accounting on dst IP address enabled
buckets packets bytes
0 15 752
1 3297102 329710200
2 3297102 329710200
3 3297102 329710200
4 3297101 329710100
5 3297101 329710100
Output BGP policy accounting on src IP address enabled
buckets packets bytes
0 15 752
6 3297102 329710200
7 3297102 329710200
8 3297102 329710200
9 3297101 329710100
10 3297101 329710100
The following example show how to verify BGP routes and traffic indexes:

From the output of `show cef ipv4 interface GigabitEthernet 0/2/0/4 bgp-policy-statistics`, we can see the summary of BGP policy accounting on the input and output direction of the link. For instance, the output shows that the total bytes for the first bucket is 653, which means 653 packets have been sent. Similarly, the total number of packets for each bucket is also displayed.

From the output of `show cef ipv4 interface GigabitEthernet 0/2/0/2.1 bgp-policy-statistics`, we can see the summary of BGP policy accounting on the input and output direction of the link. For instance, the output shows that the total bytes for the first bucket is 733, which means 733 packets have been sent. Similarly, the total number of packets for each bucket is also displayed.

The `show route bgp` command is used to display the current BGP routing table. It shows the BGP routes and their corresponding attributes, such as AS path, local preference, and MED. The example shows a route with the prefix `10.1.0/24`, an AS path of `1`, and a local preference of `20/0`.

The `Traffic Index` refers to a specific traffic class, which is used for class-based routing and traffic engineering. The example shows two different traffic indexes: Traffic Index 1 and Traffic Index 2. Each traffic index is associated with a different set of BGP routes.
Traffic Index 3
B 10
.1.3.0/24 [20/0] via 10
.17
.1.2, 00:07:09
Traffic Index 4
B 10
.1.4.0/24 [20/0] via 10
.17
.1.2, 00:07:09
Traffic Index 5
B 10
.1.5.0/24 [20/0] via 10
.17
.1.2, 00:07:09
Traffic Index 6
B 10
.1.0/24 [20/0] via 10
.18
.1.2, 00:07:09
Traffic Index 7
B 10
.2.0/24 [20/0] via 10
.18
.1.2, 00:07:09
Traffic Index 8
B 10
.3.0/24 [20/0] via 10
.18
.1.2, 00:07:09
Traffic Index 9
B 10
.4.0/24 [20/0] via 10
.18
.1.2, 00:07:09
Traffic Index 10
B 10
.5.0/24 [20/0] via 10
.18
.1.2, 00:07:09
Traffic Index 15
B 10
.6.0/24 [20/0] via 10
.45
.0.2, 00:07:09
Traffic Index 15
B 10
.2.0/24 [20/0] via 10
.45
.0.2, 00:07:09
Traffic Index 15
B 10
.3.0/24 [20/0] via 10
.45
.0.2, 00:07:09
Traffic Index 15
B 10
.5.0/24 [20/0] via 10
.45
Verifying BGP Policy Statistics: Example
Traffic Index 16
B 10
.8.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 16
B 10
.9.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 16
B 10
.10.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 16
B 10
.1.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 7
B 10
.2.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 7
B 10
.3.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 7
B 10
.4.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 7
B 10
.5.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 7
B 10
.6.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 7
B 10
.7.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 7
B 10
.8.0/24 [20/0] via 10
.32
.0.2, 00:07:09

Traffic Index 7
B 10
.9.0/24 [20/0] via 10
.32
.0.2, 00:07:09
show bgp summary

BGP router identifier 192.0.2
Implementing Cisco Express Forwarding

Verifying BGP Policy Statistics: Example

show bgp 27.1.1.1

BGP routing table entry for 27.1.1.0/24
Versions:
 Process bRIB/RIB SendTblVer
 Speaker 102 102
Paths: (1 available, best #1)
 Not advertised to any peer
 Received by speaker 0
 121
 10

show bgp 27.1.1.1

BGP routing table entry for 27.1.1.1/24
Versions:
 Process bRIB/RIB SendTblVer
 Speaker 102 102
Paths: (1 available, best #1)
 Not advertised to any peer
 Received by speaker 0
 121
 10
show bgp 10.1.1

BGP routing table entry for 10.1.0/24
Versions: Process bRIB/RIB SendTblVer
Speaker 107 107
Paths: (1 available, best #1)
Not advertised to any peer
Received by speaker 0
1221
10
.2
.1.2 from 10
.2
.1.2 (18.1.1.2)
Origin incomplete, localpref 100, valid, external, best
Community: 27:1 121:1

show bgp 10.0.1.1

BGP routing table entry for 10.0.0/24
Versions: Process bRIB/RIB SendTblVer
Speaker 112 112
Paths: (1 available, best #1)
Not advertised to any peer
Received by speaker 0
107
10
.1.0.2 from 10
.1.0.2 (10.1.0.2)
Origin incomplete, localpref 100, valid, external, best
Community: 107:65

show bgp 10.2

BGP routing table entry for 10.2
Versions: Process bRIB/RIB SendTblVer
Speaker 122 122
Paths: (1 available, best #1)
Not advertised to any peer
Received by speaker 0
108
8.1.0.2 from 8.1.0.2 (8.1.0.2)
Origin incomplete, localpref 100, valid, external, best
Community: 108:66

show bgp 67.0.1.1

BGP routing table entry for 67.0.0.1/24
Versions: Process bRIB/RIB SendTblVer
Speaker 132 132
Paths: (1 available, best #1)
Not advertised to any peer
Received by speaker 0
107
4.1.0.2 from 4.1.0.2 (4.1.0.2)
 Origin incomplete, localpref 100, valid, external, best
 Community: 107:67

show bgp 68.0.1.1

BGP routing table entry for 68.0.1.0/24
Versions:
 Process bRIB/RIB SendTblVer
 Speaker 142 142
Paths: (1 available, best #1)
 Not advertised to any peer
 Received by speaker 0
 108
 8.1.0.2 from 8.1.0.2 (8.1.0.2)
 Origin incomplete, localpref 100, valid, external, best
 Community: 108:68

show route ipv4 27.1.1.1

Routing entry for 27.1.1.0/24
 Known via ", distance 20, metric 0
 Tag 121, type external, Traffic Index 1
 Installed Nov 11 21:14:05.462
 Routing Descriptor Blocks
 17.1.1.2, from 17.1.1.2
 No advertising proto.

show route ipv4 28.1.1.1

Routing entry for 28.1.1.0/24
 Known via ", distance 20, metric 0
 Tag 1221, type external, Traffic Index 6
 Installed Nov 11 21:14:05.462
 Routing Descriptor Blocks
 18.1.1.2, from 18.1.1.2
 No advertising proto.

show route ipv4 65.0.1.1

Routing entry for 65.0.1.0/24
 Known via ", distance 20, metric 0
 Tag 107, type external, Traffic Index 15
 Installed Nov 11 21:14:05.462
 Routing Descriptor Blocks
 4.1.0.2, from 4.1.0.2
 No advertising proto.

show route ipv4 66.0.1.1

Routing entry for 66.0.1.0/24
 Known via ", distance 20, metric 0
 Tag 108, type external, Traffic Index 16
 Installed Nov 11 21:14:05.462
 Routing Descriptor Blocks
 8.1.0.2, from 8.1.0.2
 No advertising proto.

show route ipv4 67.0.1.1

Routing entry for 67.0.1.0/24
 Known via ", distance 20, metric 0
 Tag 107, type external, Traffic Index 7
 Installed Nov 11 21:14:05.462
 Routing Descriptor Blocks
 4.1.0.2, from 4.1.0.2
 No advertising proto.
show route ipv4 68.0.1.1
Routing entry for 68.0.1.0/24
Known via "bgp 100", distance 20, metric 0
Tag 108, type external, Traffic Index 8
Installed Nov 11 21:14:05.462
Routing Descriptor Blocks
 8.1.0.2, from 8.1.0.2
 Route metric is 0
 No advertising protos.

show cef ipv4 27.1.1.1
detail
27.1.1.0/24, version 263, source-destination sharing
Prefix Len 24, Traffic Index 1, precedence routine (0)
 via 17.1.1.2, 0 dependencies, recursive
 next hop 17.1.1.2/24, GigabitEthernet 0/2/0/2.1 via 17.1.1.0/24
 valid remote adjacency
 Recursive load sharing using 17.1.1.0/24

show cef ipv4 28.1.1.1
detail
28.1.1.0/24, version 218, source-destination sharing
Prefix Len 24, Traffic Index 6, precedence routine (0)
 via 18.1.1.2, 0 dependencies, recursive
 next hop 18.1.1.2/24, GigabitEthernet0/2/0/4.1 via 18.1.1.0/24
 valid remote adjacency
 Recursive load sharing using 18.1.1.0/24

show cef ipv4 65.0.1.1
detail
65.0.1.0/24, version 253, source-destination sharing
Prefix Len 24, Traffic Index 15, precedence routine (0)
 via 4.1.0.2, 0 dependencies, recursive
 next hop 4.1.0.2/16, GigabitEthernet0/0/0/4 via 4.1.0.0/16
 valid remote adjacency
 Recursive load sharing using 4.1.0.0/16

show cef ipv4 66.0.1.1
detail
66.0.1.0/24, version 233, source-destination sharing
Prefix Len 24, Traffic Index 16, precedence routine (0)
 via 8.1.0.2, 0 dependencies, recursive
 next hop 8.1.0.2/16, GigabitEthernet 0/0/0/8 via 8.1.0.0/16
 valid remote adjacency
 Recursive load sharing using 8.1.0.0/16

show cef ipv4 67.0.1.1
detail
67.0.1.0/24, version 243, source-destination sharing
Prefix Len 24, Traffic Index 7, precedence routine (0)
 via 4.1.0.2, 0 dependencies, recursive
 next hop 4.1.0.2/16, GigabitEthernet0/0/0/2.1 via 4.1.0.0/16
 valid remote adjacency
 Recursive load sharing using 4.1.0.0/16

show cef ipv4 68.0.1.1
detail
68.0.1.0/24, version 223, source-destination sharing
Prefix Len 24, Traffic Index 8, precedence routine (0)
 via 8.1.0.2, 0 dependencies, recursive
 next hop 8.1.0.2/16, GigabitEthernet0/0/0/8 via 8.1.0.0/16
 valid remote adjacency
 Recursive load sharing using 8.1.0.0/16
Recursive load sharing using 17.1.1.0/24
Load distribution: 0 (refcount 6)

<table>
<thead>
<tr>
<th>Hash</th>
<th>OK</th>
<th>Interface</th>
<th>Address</th>
<th>Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>GigabitEthernet 0/2/0/2.1 (remote)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

show cef ipv4 28.1.1.1 detail

28.1.1.0/24, version 218, source-destination sharing
Prefix Len 24, Traffic Index 6, precedence routine (0)
via 18.1.1.2, 0 dependencies, recursive
next hop 18.1.1.2/24, GigabitEthernet 0/2/0/4.1 via 18.1.1.0/24
valid remote adjacency

Recursive load sharing using 18.1.1.0/24
Load distribution: 0 (refcount 6)

<table>
<thead>
<tr>
<th>Hash</th>
<th>OK</th>
<th>Interface</th>
<th>Address</th>
<th>Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>GigabitEthernet 0/2/0/4.1 (remote)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

show cef ipv4 65.0.1.1 detail

65.0.1.0/24, version 253, source-destination sharing
Prefix Len 24, Traffic Index 15, precedence routine (0)
via 4.1.0.2, 0 dependencies, recursive
next hop 4.1.0.2/16, GigabitEthernet 0/0/0/4 via 4.1.0.0/16
valid remote adjacency

Recursive load sharing using 4.1.0.0/16
Load distribution: 0 (refcount 21)

<table>
<thead>
<tr>
<th>Hash</th>
<th>OK</th>
<th>Interface</th>
<th>Address</th>
<th>Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>GigabitEthernet 0/0/0/4 (remote)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

show cef ipv4 66.0.1.1 detail

66.0.1.0/24, version 233, source-destination sharing
Prefix Len 24, Traffic Index 16, precedence routine (0)
via 8.1.0.2, 0 dependencies, recursive
next hop 8.1.0.2/16, GigabitEthernet 0/0/0/8 via 8.1.0.0/16
valid remote adjacency

Recursive load sharing using 8.1.0.0/16
Load distribution: 0 (refcount 21)

<table>
<thead>
<tr>
<th>Hash</th>
<th>OK</th>
<th>Interface</th>
<th>Address</th>
<th>Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>GigabitEthernet 0/0/0/8 (remote)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

show cef ipv4 67.0.1.1 detail

67.0.1.0/24, version 243, source-destination sharing
Prefix Len 24, Traffic Index 7, precedence routine (0)
via 4.1.0.2, 0 dependencies, recursive
next hop 4.1.0.2/16, GigabitEthernet 0/0/0/4 via 4.1.0.0/16
valid remote adjacency

Recursive load sharing using 4.1.0.0/16
Load distribution: 0 (refcount 21)

<table>
<thead>
<tr>
<th>Hash</th>
<th>OK</th>
<th>Interface</th>
<th>Address</th>
<th>Packets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>GigabitEthernet 0/0/0/4 (remote)</td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

show cef ipv4 68.0.1.1 detail

68.0.1.0/24, version 223, source-destination sharing
Prefix Len 24, Traffic Index 8, precedence routine (0)
via 8.1.0.2, 0 dependencies, recursive
next hop 8.1.0.2/16, GigabitEthernet 0/0/0/8 via 8.1.0.0/16
valid remote adjacency

Recursive load sharing using 8.1.0.0/16
Load distribution: 0 (refcount 21)
Configuring Unicast RPF Checking: Example

The following example shows how to configure unicast RPF checking:

```plaintext
configure
interface GigabitEthernet 0/0/0/1
ipv4 verify unicast source reachable-via rx
end
```

Configuring the Switching of Modular Services Card to Management Ethernet Interfaces on the Route Processor: Example

The following examples show how to configure the switching of the MSC to Management Ethernet interfaces on the route processor:

```plaintext
configure
rp mgmtethernet forwarding
end
```

Configuring Per-Flow Load Balancing: Example

The following examples show how to configure Layer 3 load-balancing for the hash algorithm from the `cef load-balancing fields L3 global` command, and how to verify summary information for the CEF table from the `show cef summary` command:

Configuring Layer 3 load-balancing

```plaintext
configure
cef load-balancing fields L3 global
end
!
show cef summary
Router ID is 10.6.6.6
IP CEF with switching (Table Version 0) for node0_RSP0_CPU0
Load balancing: L3
Tableid 0xe0000000 (0x9cbb51b0), Vrfid 0x60000000, Vrid 0x20000000, Flags 0x2031
Vrfname default, Refcount 577
300 routes, 0 protected, 0 reresolve, 0 unresolved (0 old, 0 new), 21600 bytes
212 load sharing elements, 62576 bytes, 324 references
19 shared load sharing elements, 5388 bytes
193 exclusive load sharing elements, 57188 bytes
0 route delete cache elements
622 local route bufs received, 1 remote route bufs received, 0 mix bufs received
176 local routes, 0 remote routes
4096 total local route updates processed
0 total remote route updates processed
0 pkts pre-routed to cust card
0 pkts pre-routed to cust card
0 pkts received from core card
0 CEF route update drops, 96 revisions of existing leaves
0 CEF route update drops due to version mis-match
Resolution Timer: 15s
0 prefixes modified in place
0 deleted stale prefixes
```
82 prefixes with label imposition, 107 prefixes with label information
95 next hops
0 incomplete next hops
0 PD backwalks on LDIs with backup path

Configuring BGP Attributes Download: Example

The following example shows how to configure the BGP Attributes Download feature:

```
router configure
show cef bgp attribute {attribute-id| local-attribute-id}
```

Additional References

The following sections provide references related to implementing CEF.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEF commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco Express Forwarding Commands module in Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
<tr>
<td>BGP commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>BGP Commands module in the Cisco ASR 9000 Series Aggregation Services Router Routing Command Reference</td>
</tr>
<tr>
<td>Link Bundling Commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Link Bundling Commands module in the Cisco ASR 9000 Series Aggregation Services Router Interface and Hardware Component Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>——</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
CHAPTER 5

Implementing the Dynamic Host Configuration Protocol

This module describes the concepts and tasks you will use to configure Dynamic Host Configuration Protocol (DHCP).

† For a complete description of the DHCP commands listed in this module, refer to the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference publication. To locate documentation of other commands that appear in this chapter, use the command reference master index, or search online.

Feature History for Implementing the Dynamic Host Configuration Protocol

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

• Prerequisites for Configuring DHCP Relay Agent, page 120
• Information About DHCP Relay Agent, page 120
• Secure ARP, page 121
• How to Configure and Enable DHCP Relay Agent, page 121
• Configuring a DHCP Proxy Profile, page 128
• DHCPv4 Server, page 129
• DHCPv4 Client, page 142
• DHCPv6 Relay Agent Notification for Prefix Delegation, page 143
• Enabling Secure ARP, page 145
• Configuration Examples for the DHCP Relay Agent, page 146
• Implementing DHCP Snooping, page 147
Prerequisites for Configuring DHCP Relay Agent

The following prerequisites are required to configure a DHCP relay agent:

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.
- A configured and running DHCP client and DHCP server
- Connectivity between the relay agent and DHCP server

Information About DHCP Relay Agent

A DHCP relay agent is a host that forwards DHCP packets between clients and servers that do not reside on a shared physical subnet. Relay agent forwarding is distinct from the normal forwarding of an IP router where IP datagrams are switched between networks transparently.

DHCP clients use User Datagram Protocol (UDP) broadcasts to send DHCPDISCOVER messages when they lack information about the network to which they belong.

If a client is on a network segment that does not include a server, a relay agent is needed on that network segment to ensure that DHCP packets reach the servers on another network segment. UDP broadcast packets are not forwarded, because most routers are not configured to forward broadcast traffic. You can configure a DHCP relay agent to forward DHCP packets to a remote server by configuring a DHCP relay profile and configure one or more helper addresses in it. You can assign the profile to an interface or a VRF.

Figure 3: Forwarding UDP Broadcasts to a DHCP Server Using a Helper Address, on page 121 demonstrates the process. The DHCP client broadcasts a request for an IP address and additional configuration parameters on its local LAN. Acting as a DHCP relay agent, Router B picks up the broadcast, changes the destination address to the DHCP server's address and sends the message out on another interface. The relay agent inserts the IP address of the interface, on which the DHCP client's packets are received, into the gateway address (giaddr) field of the DHCP packet, which enables the DHCP server to determine which subnet should receive
the offer and identify the appropriate IP address range. The relay agent unicasts the messages to the server address, in this case 172.16.1.2 (which is specified by the helper address in the relay profile).

Figure 3: Forwarding UDP Broadcasts to a DHCP Server Using a Helper Address

In standalone DHCP sessions, the DHCP server adds an ARP entry when it assigns an IP address to a client. However, in IP subscriber sessions, DHCP server does not add an ARP entry. Although ARP establishes correspondences between network addresses, an untrusted device can spoof IP an address not assigned to it posing a security threat for IP subscriber sessions. You can enable the secure ARP feature and allow DHCP to add an ARP cache entry when DHCP assigns an IP address to a client. Secure ARP is disabled by default.

How to Configure and Enable DHCP Relay Agent

This section contains the following tasks:

Configuring and Enabling the DHCP Relay Agent

This task describes how to configure and enable DHCP relay agent.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a DHCP Relay Profile

This task describes how to configure and enable the DHCP relay agent.

SUMMARY STEPS

1. `configure`
2. `dhcp ipv4`
3. `profile profile-name relay`
4. `helper-address [vrf vrf-name] address`
5. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>dhcp ipv4</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config)# dhcp ipv4</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>profile profile-name relay</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-dhcpv4)# profile client relay</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>helper-address [vrf vrf-name] address</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-dhcpv4-relay-profile)# helper-address vrf1 10.10.1.1</code></td>
</tr>
</tbody>
</table>
Enabling DHCP Relay Agent on an Interface

This task describes how to enable the Cisco IOS XR DHCP relay agent on an interface.

On Cisco IOS XR software, the DHCP relay agent is disabled by default.

SUMMARY STEPS

1. configure
dhcp ipv4
2. interface type name relay profile profile-name
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters DHCP IPv4 configuration submode.</td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type name relay profile profile-name</td>
<td>Attaches a relay profile to an interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4)# interface gigabitethernet 0/0/0 /0 relay profile client</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>
Disabling DHCP Relay on an Interface

This task describes how to disable the DHCP relay on an interface by assigning the none profile to the interface.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. interface type name none
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Enters DHCP IPv4 configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type name none</td>
<td>Disables the DHCP relay on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-relay-profile)# interface gigabitethernet 0/1/4/1 none</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Enabling DHCP Relay on a VRF

This task describes how to enable DHCP relay on a VRF.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. vrf vrf-name relay profile profile-name
4. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>
| Step 2 | dhcp ipv4 | Enters DHCP IPv4 configuration submode.
Example:
RP/0/RSP0/CPU0:router(config)# dhcp ipv4 |
| Step 3 | vrf vrf-name relay profile profile-name | Enables DHCP relay on a VRF.
Example:
RP/0/RSP0/CPU0:router(config-dhcpv4)# vrf default relay profile client |
| Step 4 | commit | |

Configuring the Relay Agent Information Feature

This task describes how to configure the DHCP relay agent information option processing capabilities. A DHCP relay agent may receive a message from another DHCP relay agent that already contains relay information. By default, the relay information from the previous relay agent is replaced (using the replace option).

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name relay
4. relay information option
5. relay information check
6. relay information policy {drop | keep}
7. relay information option allow-untrusted
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td>dhcp ipv4</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>3</td>
<td>profile profile-name relay</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
</tbody>
</table>
| 4 | relay information option | Enables the system to insert the DHCP relay agent information option (option-82 field) in forwarded BOOTREQUEST messages to a DHCP server.
 • This option is injected by the relay agent while forwarding client-originated DHCP packets to the server. Servers recognizing this option can use the information to implement IP address or other parameter assignment policies. When replying, the DHCP server echoes the option back to the relay agent. The relay agent removes the option before forwarding the reply to the client.
 • The relay agent information is organized as a single DHCP option that contains one or more suboptions. These options contain the information known by the relay agent.
 The supported suboptions are:
 ◦ Remote ID
 ◦ Circuit ID |
| | Example: | RP/0/RSP0/CPU0:router(config-dhcpv4-relay-profile)# relay information option |
| 5 | relay information check | (Optional) Configures DHCP to check the validity of the relay agent information option in forwarded BOOTREPLY messages. If an invalid message is received, the relay agent drops the message. If a valid message is received, the relay agent removes the relay agent information option field and forwards the packet. |
| | Example: | RP/0/RSP0/CPU0:router(config-dhcpv4-relay-profile)# relay information check |
Purpose

- By default, DHCP does not check the validity of the relay agent information option field in DHCP reply packets, received from the DHCP server.

Note

Use the `relay information check` command to reenable this functionality if the functionality has been disabled.

Step 6

relay information policy {drop | keep}

Example:

```
RP/0/RSP0/CPU0:router(config)# dhcp relay information policy drop
```

(Optional) Configures the reforwarding policy for a DHCP relay agent; that is, whether the relay agent will drop or keep the relay information.

By default, the DHCP relay agent replaces the relay information option.

Step 7

relay information option allow-untrusted

Example:

```
RP/0/RSP0/CPU0:router(config-dhcpv4-relay-profile)# relay information option allow-untrusted
```

(Optional) Configures the DHCP IPv4 Relay not to discard BOOTREQUEST packets that have an existing relay information option and the giaddr set to zero.

Step 8

commit

Configuring Relay Agent Giaddr Policy

This task describes how to configure the DHCP relay agent’s processing capabilities for received BOOTREQUEST packets that already contain a nonzero giaddr attribute.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile relay
4. giaddr policy {replace | drop}
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a DHCP Proxy Profile

The DHCP proxy performs all the functions of a relay and also provides some additional functions. The DHCP proxy conceals DHCP server details from DHCP clients. The DHCP proxy modifies the DHCP replies such that the client considers the proxy to be the server. In this state, the client interacts with the proxy as if it is the DHCP server.

This task describes how to configure and enable the DHCP proxy profile.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name proxy
4. helper-address [vrf vrf-name] address [giaddr gateway-address]
5. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>dhcp ipv4</td>
<td>Enters DHCP IPv4 configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>profile profile-name proxy</td>
<td>Enters DHCP IPv4 profile proxy submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)# profile client proxy</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>helper-address [vrf vrf-name] address [giaddr gateway-address]</td>
<td>Forwards UDP broadcasts, including BOOTP and DHCP.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-proxy-profile)# helper-address vrf1 10.10.1.1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

DHCPv4 Server

DHCP server accepts address assignment requests and renewals and assigns the IP addresses from predefined groups of addresses contained within Distributed Address Pools (DAPS). DHCP server can also be configured to supply additional information to the requesting client such as the IP address of the DNS server, the default router, and other configuration parameters. DHCP server can accept broadcasts from locally attached LAN segments or from DHCP requests that have been forwarded by other DHCP relay agents within the network.

The DHCP proxy performs all the functions of a relay and also provides some additional functions. The DHCP proxy conceals DHCP server details from DHCP clients. The DHCP proxy modifies the DHCP replies such that the client considers the proxy to be the server. In this state, the client interacts with the proxy as if it is the DHCP server.

The pool is configured under server-profile-mode and server-profile-class-sub-mode. The class-based pool selection is always given priority over profile pool selection.
Configuring DHCPv4 Server Profile

Perform this task to configure the DHCPv4 Server.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name server
4. bootfile boot-file-name
5. broadcast-flag policy unicast-always
6. class class-name
7. exit
8. default-router address1 address2 ... address8
9. lease {infinite|days minutes seconds}
10. limit lease {per-circuit-id|per-interface|per-remote-id} value
11. netbios-name server address1 address2 ... address8
12. netbios-node-type {number|b-node|h-node|m-node|p-node}
13. option option-code {ascii string | hex string | ip address}
14. pool pool-name
15. requested-ip-address-check disable
16. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables DHCP for IPv4 and enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Enables DHCP for IPv4 and enters DHCP IPv4 configuration mode.</td>
</tr>
</tbody>
</table>
| **Example:**

RP/0/RSP0/CP0:router(config) # dhcp ipv4
RP/0/RSP0/CP0:router(config-dhcpv4)# |
| **Step 3** profile profile-name server | Enters the server profile configuration mode. |
| **Example:**

RP/0/RSP0/CP0:router(config-dhcpv4)# profile TEST server
RP/0/RSP0/CP0:router(config-dhcpv4-server-profile)# |
Configuring DHCPv4 Server Profile

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td><code>bootfile boot-file-name</code></td>
<td>Configures the boot file.</td>
</tr>
<tr>
<td></td>
<td>Example:
RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# bootfile b1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td><code>broadcast-flag policy unicast-always</code></td>
<td>Configures the broadcast-flag policy to unicast-always.</td>
</tr>
<tr>
<td></td>
<td>Example:
RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# broadcast-flag policy unicast-always</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>class class-name</code></td>
<td>Creates and enters server profile class configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:
RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# class Class_A
RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile-class)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>exit</code></td>
<td>Exits the server profile class submode.</td>
</tr>
<tr>
<td></td>
<td>Example:
RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile-class)# exit
RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td><code>default-router address1 address2 ... address8</code></td>
<td>Configures the name of the default-router or the IP address.</td>
</tr>
<tr>
<td></td>
<td>Example:
RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# default-router 10.20.1.2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>`lease {infinite</td>
<td>days minutes seconds }`</td>
</tr>
<tr>
<td></td>
<td>Example:
RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# lease infinite</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>10</td>
<td>limit lease {per-circuit-id per-interface per-remote-id} value</td>
<td>Configures the limit on a lease per-circuit-id, per-interface, or per-remote-id.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# limit lease per-circuit-id 23</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>netbios-name server address1 address2 ... address8</td>
<td>Configures the NetBIOS name servers.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# netbios-name-server 10.20.3.5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>netbios-node-type {number b-node h-node m-node p-node}</td>
<td>Configures the type of NetBIOS node.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# netbios-node-type p-node</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>option option-code {ascii string hex string ip address}</td>
<td>Configures the DHCP option code.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# option 23 ip 10.20.34.56</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>pool pool-name</td>
<td>Configures the Distributed Address Pool Service (DAPS) pool name.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# pool pool1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>requested-ip-address-check disable</td>
<td>Validates a requested IP address.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# requested-ip-address-check disable</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Multiple Classes with a Pool

Perform this task to configure multiple classes with a pool.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name server
4. pool pool-name
5. class class-name
6. pool pool_name
7. match option [sub-option sub-option] [ascii asciiString | hex hexString]
8. exit
9. class class-name
10. pool pool_name
11. match vrf vrf-name
12. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enables DHCP for IPv4 and enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>dhcp ipv4</td>
<td>Enables DHCP for IPv4 and enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config) # dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>profile profile-name server</td>
<td>Enters the server profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)# profile TEST server</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>pool pool-name</td>
<td>Configures the Distributed Address Pool Service(DAPS) pool name.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# pool POOL_TEST</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5 class class-name</td>
<td>Creates and enters the server profile class.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# class Class_A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6 pool pool_name</td>
<td>Configures the pool name.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# pool pool_A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 7 match option option [sub-option sub-option] [ascii asciiString</td>
<td>The DHCP server selects a pool from a class by matching options in the</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hex hexString]</td>
<td>received DISCOVER packet with the match option. If none of the classes</td>
</tr>
<tr>
<td>Example:</td>
<td>match, then pools configured under the profile mode are selected. The</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# match option 60 hex abcd</td>
<td>DHCP server requests DAPS to allocate an address from that pool.</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 8 exit</td>
<td>Exits the server profile class submode.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# exit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 9 class class-name</td>
<td>Creates and enters the server profile class.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# class Class_B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 10 pool pool_name</td>
<td>Configures the pool name.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)#</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Converting a server profile DAPS with class match option

Perform this task to configure a server profile DAPS with class match option.

SUMMARY STEPS

1. `configure`
2. `dhcp ipv4`
3. `profile profile-name server`
4. `pool pool-name`
5. `class class-name`
6. `pool pool_name`
7. `match option option [sub-option sub-option] [ascii asciiString | hex hexString]`
8. `exit`
9. `exit`
10. `profile profile-name server`
11. `dns-server address1 address2 ... address8`
12. `pool pool_name`
13. `class class-name`
14. `pool pool_name`
15. `match option option [sub-option sub-option] [ascii asciiString | hex hexString]`
16. `exit`
17. `exit`
18. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td>Enables DHCP for IPv4 and enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>dhcp ipv4</code></td>
<td>Enables DHCP for IPv4 and enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config) # dhcp ipv4 RP/0/RSP0/CPU0:router(config-dhcpv4)#</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>profile profile-name server</code></td>
<td>Enters the server profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)# profile ISP1 server RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>pool pool-name</code></td>
<td>Configures the Distributed Address Pool Service (DAPS) pool name.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# pool ISP1_POOL RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>class class-name</code></td>
<td>Creates and enters the server profile class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# class ISP1_CLASS RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)#</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>pool pool_name</code></td>
<td>Configures the pool name.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# pool ISP1_CLASS_POOL RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)#</td>
</tr>
<tr>
<td>Step 7</td>
<td>`match option option [sub-option sub-option] [ascii asciiString</td>
<td>hex hexString]`</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# match option 60 hex PXEClient_1</code></td>
<td>requests the DAPS to allocate an address from that pool.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>exit</td>
<td>Exits the server profile class sub mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# exit</code></td>
</tr>
<tr>
<td>Step 9</td>
<td>exit</td>
<td>Exits the server profile sub mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# exit</code></td>
</tr>
<tr>
<td>Step 10</td>
<td><code>profile profile-name server</code></td>
<td>Enters the server profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-dhcpv4)# profile ISP2 server</code></td>
</tr>
<tr>
<td>Step 11</td>
<td><code>dns-server address1 address2 ... address8</code></td>
<td>Configures the name of the DNS server or the IP address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# dns-server 10.20.3.4</code></td>
</tr>
<tr>
<td>Step 12</td>
<td><code>pool pool_name</code></td>
<td>Configures the pool name.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# pool ISP2_POOL</code></td>
</tr>
<tr>
<td>Step 13</td>
<td><code>class class-name</code></td>
<td>Creates and enters the server profile class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# class ISP2_CLASS</code></td>
</tr>
</tbody>
</table>
Configuring Server Profile without daps pool match option

Perform this task to configure a server profile without daps pool match option.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# pool_name</td>
<td>Configures the pool name.</td>
</tr>
<tr>
<td>Step 14</td>
<td></td>
</tr>
<tr>
<td>pool pool_name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# pool ISP2_CLASS_POOL</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)#</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>The DHCP server selects a pool from a class by matching the options in the received DISCOVER packet with the match option. If none of the classes match, then pools configured under the profile mode will be selected. The DHCP server requests the DAPS to allocate an address from that pool.</td>
</tr>
<tr>
<td>match option option [sub-option sub-option] [ascii asciiString</td>
<td>hex hexString]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# match option 60 hex PXEClient_2</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)#</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>Exits the server profile class sub mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-class)# exit</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
<td></td>
</tr>
<tr>
<td>Step 17</td>
<td>Exits the server profile sub mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# exit</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)#</td>
<td></td>
</tr>
<tr>
<td>Step 18</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name server
4. dns-server address1 address2 ... address8
5. exit
6. profile profile-name server
7. dns-server address1 address2 ... address8
8. exit
9. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>dhcp ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>Enables DHCP for IPv4 and enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config) # dhcp ipv4</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)#</td>
</tr>
<tr>
<td>Step 3</td>
<td>profile profile-name server</td>
</tr>
<tr>
<td>Example:</td>
<td>Enters the server profile configuration mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)#</td>
</tr>
<tr>
<td></td>
<td>profile ISP1 server</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
</tr>
<tr>
<td>Step 4</td>
<td>dns-server address1 address2 ... address8</td>
</tr>
<tr>
<td>Example:</td>
<td>Configures the name of the DNS server or IP address.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
</tr>
<tr>
<td></td>
<td>dns-server ISP1.com</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>Exits the server profile sub mode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)#</td>
</tr>
<tr>
<td></td>
<td>exit</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)#</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td></td>
</tr>
</tbody>
</table>
 profile profile-name server
 Example:
 RP/0/RSP0/CPU0:router(config-dhcpv4)# profile ISP2 server
 RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# |
| **Step 7** |
 dns-server address1 address2 ... address8
 Example:
 RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# dns-server ISP2.com
 RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# |
| **Step 8** |
 exit
 Example:
 RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# exit
 RP/0/RSP0/CPU0:router(config-dhcpv4)# |
| **Step 9** |
 commit |

Configuring an address pool for each ISP on DAPS

Perform this task to configure an address pool for each ISP on Distributed Address Pool Service (DAPS).

SUMMARY STEPS

1. configure
2. pool vrf [all | vrf-name] { ipv4 | ipv6 } pool-name
3. network address
4. exit
5. pool vrf [all | vrf-name] { ipv4 | ipv6 } pool-name
6. network address
7. exit
8. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>`pool vrf [all</td>
<td>vrf-name] { ipv4</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config) # pool vrf ISP_1 ipv4 ISP1_POOL RP/0/RSP0/CPU0:router(config-pool-ipv4)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>network address</code></td>
<td>Specifies network for allocation.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-pool-ipv4)# network 10.10.10.0 RP/0/RSP0/CPU0:router(config-pool-ipv4)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>exit</code></td>
<td>Exits the pool ipv4 configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-pool-ipv4)# exit RP/0/RSP0/CPU0:router(config)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>`pool vrf [all</td>
<td>vrf-name] { ipv4</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config) # pool vrf ISP_2 ipv4 ISP2_POOL RP/0/RSP0/CPU0:router(config-pool-ipv4)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>network address</code></td>
<td>Specifies network for allocation.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-pool-ipv4)# network 20.20.20.0 RP/0/RSP0/CPU0:router(config-pool-ipv4)#</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>exit</code></td>
<td>Exits the pool ipv4 configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-pool-ipv4)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>
DHCPv4 Client

The Dynamic Host Configuration Protocol (DHCP) client functionality enables the router interfaces to dynamically acquire the IPv4 address using DHCP.

The DHCP provides configuration parameters to Internet hosts. DHCP consists of two components:

- a protocol to deliver host-specific configuration parameters from a DHCP server to a host.
- a mechanism to allocate network addresses to hosts.

DHCP is built on a client-server model, where designated DHCP server hosts allocate network addresses, and deliver configuration parameters to dynamically configured hosts.

A relay agent is required if the client and server are not on the same Layer 2 network. The relay agent usually runs on the router, and is required because the client device does not know its own IP address initially. The agent sends out a Layer 2 broadcast to find a server that has this information. The router relays these broadcasts to the DHCP server, and forwards the responses back to the correct Layer 2 address so that the correct device gets the correct configuration information.

DHCP has the ability to allocate IP addresses only for a configurable period of time, called the lease period. If the client is required to retain this IP address for a longer period beyond the lease period, the lease period must be renewed before the IP address expires. The client renews the lease based on configuration that was sent from the server. The client unicasts a REQUEST message using the IP address of the server. When a server receives the REQUEST message and responds with an ACK message. The lease period of the client is extended by the lease time configured in the ACK message.

Restrictions and Limitations

- DHCP client can be enabled only on management interfaces.
- Either DHCP or static IP can be configured on an interface.

Enabling DHCP Client on an Interface

The DHCP client can be enabled at an interface level. The DHCP component receives a notification when DHCP is enabled or disabled on an interface.
SUMMARY STEPS

1. configure
2. interface MgmtEth rack/slot/CPU0/port
3. interface <interface_name> ipv4 address dhcp

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface MgmtEth rack/slot/CPU0/port</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)#interface mgmtEth 0/0/CPU0/0</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface <interface_name> ipv4 address dhcp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# interface mgmtEth 0/0/CPU0/0 ipv4 address dhcp</td>
</tr>
<tr>
<td>Example:</td>
<td>dhcp Enable IPv4 DHCP client</td>
</tr>
</tbody>
</table>

The following example shows a sample of using IPv4 address command:
RP/0/0/CPU0:ios(config)#interface mgmtEth 0/0/CPU0/0 ipv4 address ?
A.B.C.D/prefix IPv4 address/prefix or IPv4 address and Mask
dhcp Enable IPv4 DHCP client

DHCPv6 Relay Agent Notification for Prefix Delegation

DHCPv6 relay agent notification for prefix delegation allows the router working as a DHCPv6 relay agent to find prefix delegation options by reviewing the contents of a DHCPv6 RELAY-REPLY packet that is being relayed by the relay agent to the client. When the relay agent finds the prefix delegation option, the relay agent extracts the information about the prefix being delegated and inserts an IPv6 subscriber route matching the prefix delegation information onto the relay agent. Future packets destined to that prefix via relay are forwarded based on the information contained in the prefix delegation. The IPv6 subscriber route remains in the routing table until the prefix delegation lease time expires or the relay agent receives a release packet from the client releasing the prefix delegation.

The relay agent automatically does the subscriber route management.

The IPv6 routes are added when the relay agent relays a RELAY-REPLY packet, and the IPv6 routes are deleted when the prefix delegation lease time expires or the relay agent receives a release message. An IPv6 subscriber route in the routing table of the relay agent can be updated when the prefix delegation lease time is extended.
This feature leaves an IPv6 route on the routing table of the relay agent. This registered IPv6 address allows unicast reverse packet forwarding (uRPF) to work by allowing the router doing the reverse lookup to confirm that the IPv6 address on the relay agent is not malformed or spoofed. The IPv6 route in the routing table of the relay agent can be redistributed to other routing protocols to advertise the subnets to other nodes. When the client sends a DHCP_DECLINE message, the routes are removed.

Configuring DHCPv6 Stateful Relay Agent for Prefix Delegation

Perform this task to configure Dynamic Host Configuration Protocol (DHCP) IPv6 relay agent notification for prefix delegation.

SUMMARY STEPS

1. `configure`
2. `dhcp ipv6`
3. `profile profile-name proxy`
4. `helper-address ipv6-address interface type interface-path-id`
5. `exit`
6. `interface type interface-path-id proxy`
7. `profile profile-name`
8. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables DHCP for IPv6 and enters DHCP IPv6 configuration mode.</td>
</tr>
<tr>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables DHCP for IPv6 and enters DHCP IPv6 configuration mode.</td>
</tr>
<tr>
<td><code>dhcp ipv6</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config) # dhcp ipv6 RP/0/RSP0/CPU0:router(config-dhcpv6)#</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters the proxy profile configuration mode.</td>
</tr>
<tr>
<td><code>profile profile-name proxy</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv6)# profile downstream proxy RP/0/RSP0/CPU0:router(config-dhcpv6-profile)#</td>
</tr>
<tr>
<td>Step 4</td>
<td>Configure the DHCP IPv6 relay agent.</td>
</tr>
<tr>
<td><code>helper-address ipv6-address interface type interface-path-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv6-profile)#</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>helper-address 2001:db8::1 GigabitEthernet 0/1/0/1 RP/0/RSP0/CP00:router(config-dhcpv6-profile)</td>
<td></td>
</tr>
</tbody>
</table>

Step 5

exit

Example:

RP/0/RSP0/CP00:router(config-dhcpv6-profile)# exit
RP/0/RSP0/CP00:router(config-dhcpv6)#

Step 6

interface type interface-path-id proxy

Example:

RP/0/RSP0/CP00:router(config-dhcpv6)# interface GigabitEthernet 0/1/0/0 proxy
RP/0/RSP0/CP00:router(config-dhcpv6-if)#

Step 7

profile profile-name

Example:

RP/0/RSP0/CP00:router(config-dhcpv6-if)# profile downstream
RP/0/RSP0/CP00:router(config-dhcpv6-if)#

Step 8

commit

Enabling Secure ARP

Secure ARP is disabled by default; this task describes how to enable secure ARP.

SUMMARY STEPS

1. configure
2. dhcp ipv4
3. Do one of the following:
 - **profile profile-name proxy**
 - **profile profile-name server**
4. secure-arp
5. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 dhcp ipv4</td>
<td>Enters DHCP IPv4 configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enters DHCP IPv4 profile proxy or server submode.</td>
</tr>
<tr>
<td>Do one of the following:</td>
<td></td>
</tr>
<tr>
<td>• profile profile-name proxy</td>
<td></td>
</tr>
<tr>
<td>• profile profile-name server</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)# profile profile1 server</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables secure ARP.</td>
</tr>
<tr>
<td>secure-arp</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4-server-profile)# secure-arp</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for the DHCP Relay Agent

This section provides the following configuration examples:

DHCP Relay Profile: Example

The following example shows how to configure the Cisco IOS XR relay profile:

dhcp ipv4
 profile client relay
 helper-address vrf foo 10.10.1.1
! ...

Implementing the Dynamic Host Configuration Protocol
DHCP Relay on an Interface: Example

The following example shows how to enable the DHCP relay agent on an interface:

```
dhcp ipv4
  interface GigabitEthernet 0/1/1/0 relay profile client
```

DHCP Relay on a VRF: Example

The following example shows how to enable the DHCP relay agent on a VRF:

```
dhcp ipv4
  vrf default relay profile client
```

Relay Agent Information Option Support: Example

The following example shows how to enable the relay agent and the insertion and removal of the DHCP relay information option:

```
dhcp ipv4
  profile client relay
  relay information option
```

Relay Agent Giaddr Policy: Example

The following example shows how to configure relay agent giaddr policy:

```
dhcp ipv4
  profile client relay
  giaddr policy drop
```

Implementing DHCP Snooping

Prerequisites for Configuring DHCP Snooping

The following prerequisites are required example shows how to configure DHCP IPv4 snooping relay agent broadcast flag policy:
You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

- A Cisco ASR 9000 Series Router running Cisco IOS XR software.
- A configured and running DHCP client and DHCP server.

Information about DHCP Snooping

DHCP Snooping features are focused on the edge of the aggregation network. Security features are applied at the first point of entry for subscribers. Relay agent information option information is used to identify the subscriber’s line, which is either the DSL line to the subscriber’s home or the first port in the aggregation network.

The central concept for DHCP snooping is that of trusted and untrusted links. A trusted link is one providing secure access for traffic on that link. On an untrusted link, subscriber identity and subscriber traffic cannot be determined. DHCP snooping runs on untrusted links to provide subscriber identity. Figure 4: DHCP Snooping in an Aggregation Network, on page 148 shows an aggregation network. The link from the DSLAM to the aggregation network is untrusted and is the point of presence for DHCP snooping. The links connecting the switches in the aggregation network and the link from the aggregation network to the intelligent edge is considered trusted.

![Figure 4: DHCP Snooping in an Aggregation Network](image)

Trusted and Untrusted Ports

On trusted ports, DHCP BOOTREQUEST packets are forwarded by DHCP snooping. The client's address lease is not tracked and the client is not bound to the port. DHCP BOOTREPLY packets are forwarded.

When the first DHCP BOOTREQUEST packet from a client is received on an untrusted port, DHCP snooping binds the client to the bridge port and tracks the client's address lease. When that address lease expires, the client is deleted from the database and is unbound from the bridge port. Packets from this client received on this bridge port are processed and forwarded as long as the binding exists. Packets that are received on another bridge port from this client are dropped while the binding exists. DHCP snooping only forwards DHCP BOOTREPLY packets for this client on the bridge port that the client is bound to. DHCP BOOTREPLY packets that are received on untrusted ports are not forwarded.
DHCP Snooping in a Bridge Domain

To enable DHCP snooping in a bridge domain, there must be at least two profiles, a trusted profile and an untrusted profile. The untrusted profile is assigned to the client-facing ports, and the trusted profile is assigned to the server-facing ports. In most cases, there are many client facing ports and few server-facing ports. The simplest example is two ports, a client-facing port and a server-facing port, with an untrusted profile explicitly assigned to the client-facing port and a trusted profile assigned to the server-facing port.

Assigning Profiles to a Bridge Domain

Because there are normally many client-facing ports and a small number of server-facing ports, the operator assigns the untrusted profile to the bridge domain. This configuration effectively assigns an untrusted profile to every port in the bridge domain. This action saves the operator from explicitly assigning the untrusted profile to all of the client-facing ports. Because there also must be server-facing ports that have trusted DHCP snooping profiles, in order for DHCP snooping to function properly, this untrusted DHCP snooping profile assignment is overridden to server-facing ports by specifically configuring trusted DHCP snooping profiles on the server-facing ports. For ports in the bridge domain that do not require DHCP snooping, all should have the none profile assigned to them to disable DHCP snooping on those ports.

Relay Information Options

You can configure a DHCP snooping profile to insert the relay information option (option 82) into DHCP client packets only when it is assigned to a client port. The relay information option allow-untrusted command addresses what to do with DHCP client packets when there is a null giaddr and a relay-information option already in the client packet when it is received. This is a different condition than a DHCP snooping trusted/untrusted port. The relay information option allow-untrusted command determines how the DHCP snooping application handles untrusted relay information options.

How to Configure DHCP Snooping

This section contains the following tasks:

Enabling DHCP Snooping in a Bridge Domain

The following configuration creates two ports, a client-facing port and a server-facing port. In Step 1 through Step 8, an untrusted DHCP snooping profile is assigned to the client bridge port and trusted DHCP snooping profile is assigned to the server bridge port. In Step 9 through Step 18, an untrusted DHCP snooping profile is assigned to the bridge domain and trusted DHCP snooping profiles are assigned to server bridge ports.
SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile untrusted-profile-name snoop
4. exit
5. dhcp ipv4
6. profile profile-name snoop
7. trusted
8. exit
9. l2vpn
10. bridge group group-name
11. bridge-domain bridge-domain-name
12. interface type interface-path-id
13. dhcp ipv4 snoop profile untrusted-profile-name
14. interface type interface-path-id
15. dhcp ipv4 snoop profile trusted-profile-name
16. exit
17. exit
18. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>configure</td>
<td>Enters DHCP IPv4 profile configuration submode.</td>
</tr>
<tr>
<td>2.</td>
<td>dhcp ipv4</td>
<td>Enters DHCP IPv4 profile configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>profile untrusted-profile-name snoop</td>
<td>Configures an untrusted DHCP snooping profile for the client port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)# profile untrustedClientProfile snoop</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>exit</td>
<td>Exits DHCP IPv4 profile configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)# exit</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>dhcp ipv4</td>
<td>Enables DHCP for IPv4 and enters DHCP IPv4 profile configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config)# dhcp ipv4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>profile profile-name snoop</td>
<td>Configures a trusted DHCP snooping profile for the server port.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4)# profile trustedServerProfile snoop</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>trusted</td>
<td>Configures a DHCP snoop profile to be trusted.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4)# trusted</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Exits DHCP IPv4 profile configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv4)# exit</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>l2vpn</td>
<td>Enters l2vpn configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config)# l2vpn</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>bridge group group-name</td>
<td>Creates a bridge group to contain bridge domains and enters l2vpn bridge group configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-l2vpn)# bridge group ccc</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>bridge-domain bridge-domain-name</td>
<td>Establishes a bridge domain.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-l2vpn-bg)# bridge-domain ddd</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>interface type interface-path-id</td>
<td>Identifies an interface.</td>
</tr>
<tr>
<td></td>
<td>Example: RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd)# interface gigabitethernet 0/1/0/0</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td><code>dhcp ipv4 snoop profile untrusted-profile-name</code></td>
<td>Attaches an untrusted DHCP snoop profile to the bridge port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-l2vpn-bd-ac)# dhcp ipv4 snoop profile untrustedClientProfile</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td><code>interface type interface-path-id</code></td>
<td>Identifies an interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-l2vpn-bd-ac)# gigabitethernet 0/1/0/1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td><code>dhcp ipv4 snoop profile trusted-profile-name</code></td>
<td>Attaches a trusted DHCP snoop profile to the bridge port.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-l2vpn-bd-ac)# dhcp ipv4 snoop profile trustedServerProfile</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td><code>exit</code></td>
<td>Exits the l2vpn bridge group bridge-domain interface configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-l2vpn-bd-ac)# exit</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td><code>exit</code></td>
<td>Exits the l2vpn bridge group bridge-domain configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-l2vpn-bd)# exit</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Disabling DHCP Snooping on a Specific Bridge Port

The following configuration enables DHCP to snoop packets on all bridge ports in the bridge domain ISP1 except for bridge port GigabitEthernet 0/1/0/1 and GigabitEthernet 0/1/0/2. DHCP snooping is disabled on bridge port GigabitEthernet 0/1/0/1. Bridge port GigabitEthernet 0/1/0/2 is the trusted port that connects to the server. In this example, no additional features are enabled, so only DHCP snooping is running.
SUMMARY STEPS

1. configure
2. l2vpn
3. bridge group group-name
4. bridge-domain bridge-domain-name
5. dhcp ipv4 snoop profile profile-name
6. interface type interface-path-id
7. dhcp ipv4 none
8. interface type interface-path-id
9. dhcp ipv4 snoop profile profile-name
10. exit
11. exit
12. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>l2vpn</td>
<td>Enters l2vpn configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>l2vpn</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>bridge group group-name</td>
<td>Creates a bridge group to contain bridge domains and enters l2vpn bridge</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>group configuration submode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-l2vpn) # bridge group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GRP1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>bridge-domain bridge-domain-name</td>
<td>Establishes a bridge domain and enters l2vpn bridge group bridge-</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>domain-name configuration submode.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-l2vpn-bg) # bridge-domain ISP1</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>dhcp ipv4 snoop profile profile-name</td>
<td>Attaches the untrusted DHCP snooping profile to the bridge domain.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd) # dhcp ipv4 snoop profile untrustedClientProfile</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure DHCP Snooping

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 7</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 8</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 9</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 10</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 11</td>
<td>Purpose</td>
</tr>
<tr>
<td>Step 12</td>
<td>Purpose</td>
</tr>
</tbody>
</table>

Using the Relay Information Option

This task shows how to use the relay information commands to insert the relay information option (option 82) into DHCP client packets and forward DHCP packets with untrusted relay information options.
SUMMARY STEPS

1. configure
2. dhcp ipv4
3. profile profile-name snoop
4. relay information option
5. relay information option allow-untrusted
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters DHCP IPv4 profile configuration submode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>dhcp ipv4</td>
<td>Configures an untrusted DHCP snooping profile for the client port.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# dhcp ipv4</td>
<td>Configures DHCP IPv4 relay to not discard BOOTREQUEST packets that have an existing relay information option and the giaddr set to zero.</td>
</tr>
<tr>
<td>Step 3</td>
<td>profile profile-name snoop</td>
<td>Enables the system to insert the DHCP relay information option field in forwarded BOOTREQUEST messages to a DHCP server.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-dhcpv4)# profile untrustedClientProfile snoop</td>
<td>Example:</td>
</tr>
<tr>
<td>Step 4</td>
<td>relay information option allow-untrusted</td>
<td>Example:</td>
</tr>
</tbody>
</table>

Configuration Examples for DHCP Snooping

This section provides the following configuration examples:
Assigning a DHCP Profile to a Bridge Domain: Example

The following example shows how to enable DHCP snooping in a bridge domain:

```
l2vpn
  bridge group GRP1
  bridge-domain ISP1
  dhcp ipv4 profile untrustedClientProfile snoop
```

Disabling DHCP Snooping on a Specific Bridge Port: Example

The following example shows how to disable DHCP snooping on a specific bridge port:

```
interface gigabitethernet 0/1/0/1
dhcp ipv4 none
```

Configuring a DHCP Profile for Trusted Bridge Ports: Example

The following example shows how to configure a DHCP profile for trusted bridge ports:

```
dhcp ipv4 profile trustedServerProfile snoop trusted
```

Configuring an Untrusted Profile on a Bridge Domain: Example

The following example shows how to attach a profile to a bridge domain and disable snooping on a bridge port.

```
l2vpn
  bridge group GRP1
  bridge-domain ISP1
  dhcp ipv4 profile untrustedClientProfile snoop
  interface gigabitethernet 0/1/0/1
  dhcp ipv4 none
```

Configuring a Trusted Bridge Port: Example

The following example shows how to assign a trusted DHCP snooping profile to a bridge port:

```
l2vpn
  bridge group GRP1
  bridge-domain ISP1
  interface gigabitethernet 0/1/0/2
  dhcp ipv4 profile trustedServerProfile snoop
```
DHCPv6 Proxy Binding Table Reload Persistency

The Cisco IOS-XR Dynamic Host Configuration Protocol (DHCP) application is responsible for maintaining the DHCP binding state for the DHCP leases allocated to clients by the DHCP application. These binding states are learned by the DHCP application (proxy/relay/snooping). DHCP clients expect to maintain a DHCP lease regardless of the events that occur to the DHCP application.

This feature enables the DHCP application to maintain bind state through the above events:

- Process restart – Local checkpoint
- RP failover – Hot standby RP through checkpoint
- LC IMDR – Local checkpoint
- LC OIR – Shadow table on RP
- System restart – Bindings saved on local disk

Configuring DHCPv6 Proxy Binding Database Write to System Persistent Memory

Perform this task to configure the DHCPv6 binding database write to the system persistent memory. This helps to recover the DHCPv6 binding table after a system reload. The file names used for a full persistent file write are dhcpv6_srpb_{nodeid}_odd and dhcpv6_srpb_{nodeid}_even. The nodeid is the actual node ID of the node where the file is written. The incremental file is named the same way as the full file, with a _inc appended to it.

SUMMARY STEPS

1. configure
2. dhcp ipv6
3. database [proxy] [full-write-interval full-write-interval] [incremental-write-interval incremental-write-interval]
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router# configure
```
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 dhcp ipv6</td>
<td>Configures DHCP for IPv6 and enters the DHCPv6 configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# dhcp ipv6</td>
<td></td>
</tr>
<tr>
<td>Step 3 database [proxy] [full-write-interval full-write-interval] [incremental-write-interval incremental-write-interval]</td>
<td>Configures the DHCPv6 binding table write to the system persistent memory and specifies the time interval at which the full write and incremental file write are to be performed. The range, in minutes, for full-write-interval and incremental-write-interval is from 0 to 1440. The default value is 10 for full-write-interval and 1 for incremental-write-interval. The DHCP mode should be set as proxy.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-dhcpv6)# database proxy full-write-interval 20 incremental-write-interval 10</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring DHCP binding database write to system persistent memory: Example

```plaintext
configure
dhcp ipv6
database proxy full-write-interval 15 incremental-write-interval 5
!end
```

DHCP Session MAC Throttle

The ASR9K router supports the DHCP session MAC throttle feature. This feature limits the number of DHCP client requests reaching the ASR9K, based on the MAC address of the DHCP clients. This feature is supported for the DHCPv4 proxy, the DHCPv4 server, and the DHCPv6 proxy. The feature prevents a DHCP client from sending multiple DISCOVER packets to the ASR9K router, within short periods of time. This, in turn, prevents that client from impacting the session establishment of other DHCP clients.

A unique throttle entry is created in the system for each unique MAC address received on any interface where the profile is attached.

To configure the DHCP session MAC throttle feature, use the `sessions mac throttle` command in the respective DHCP profile configuration mode.

Configuring DHCP Session MAC Throttle: Example

```plaintext
dhcp ipv4
profile p1 server
  sessions mac throttle 300 60 40
!interface GigabitEthernet0/0/0/0 server profile p1
```
Additional References

The following sections provide references related to implementing the Cisco IOS XR DHCP relay agent and DHCP snooping features.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR</td>
<td>DHCP Commands module in the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
<tr>
<td>DHCP commands</td>
<td></td>
</tr>
<tr>
<td>Getting started material</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services module in the Cisco ASR 9000 Series Aggregation Services Router System Security Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2131</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
</tbody>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing Host Services and Applications

Cisco IOS XR software Host Services and Applications features on the router are used primarily for checking network connectivity and the route a packet follows to reach a destination, mapping a hostname to an IP address or an IP address to a hostname, and transferring files between routers and UNIX workstations.

For a complete description of host services and applications commands listed in this module, refer to the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference publication. To locate documentation of other commands that appear in this module, use the command reference master index, or search online.

Feature History for Implementing Host Services and Applications

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Host Services and Applications, page 161
- Information About Implementing Host Services and Applications, page 162
- How to Implement Host Services and Applications, page 165
- Configuring syslog source-interface, page 175
- IPv6 Support for IP SLA ICMP Echo Operation, page 176
- Configuration Examples for Implementing Host Services and Applications, page 177
- Additional References, page 180

Prerequisites for Implementing Host Services and Applications

The following prerequisites are required to implement Cisco IOS XR software Host Services and applications.
You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing Host Services and Applications

To implement Cisco IOS XR software Host Services and applications features discussed in this document, you should understand the following concepts:

Network Connectivity Tools

Network connectivity tools enable you to check device connectivity by running traceroutes and pinging devices on the network.

Ping

The `ping` command is a common method for troubleshooting the accessibility of devices. It uses two Internet Control Message Protocol (ICMP) query messages, ICMP echo requests, and ICMP echo replies to determine whether a remote host is active. The `ping` command also measures the amount of time it takes to receive the echo reply.

The `ping` command first sends an echo request packet to an address, and then it waits for a reply. The ping is successful only if the echo request gets to the destination, and the destination is able to get an echo reply (hostname is alive) back to the source of the ping within a predefined time interval.

The bulk option has been introduced to check reachability to multiple destinations. The destinations are directly input through the CLI. This option is supported for ipv4 destinations only.

Traceroute

Where the `ping` command can be used to verify connectivity between devices, the `traceroute` command can be used to discover the paths packets take to a remote destination and where routing breaks down.

The `traceroute` command records the source of each ICMP "time-exceeded" message to provide a trace of the path that the packet took to reach the destination. You can use the IP `traceroute` command to identify the path that packets take through the network on a hop-by-hop basis. The command output displays all network layer (Layer 3) devices, such as routers, that the traffic passes through on the way to the destination.

The `traceroute` command uses the Time To Live (TTL) field in the IP header to cause routers and servers to generate specific return messages. The `traceroute` command sends a User Datagram Protocol (UDP) datagram to the destination host with the TTL field set to 1. If a router finds a TTL value of 1 or 0, it drops the datagram and sends back an ICMP time-exceeded message to the sender. The traceroute facility determines the address of the first hop by examining the source address field of the ICMP time-exceeded message.

To identify the next hop, the `traceroute` command sends a UDP packet with a TTL value of 2. The first router decrements the TTL field by 1 and sends the datagram to the next router. The second router sees a TTL value of 1, discards the datagram, and returns the time-exceeded message to the source. This process continues until the TTL increments to a value large enough for the datagram to reach the destination host (or until the maximum TTL is reached).
To determine when a datagram reaches its destination, the \texttt{traceroute} command sets the UDP destination port in the datagram to a very large value that the destination host is unlikely to be using. When a host receives a datagram with an unrecognized port number, it sends an ICMP port unreachable error to the source. This message indicates to the traceroute facility that it has reached the destination.

Domain Services

Cisco IOS XR software domain services acts as a Berkeley Standard Distribution (BSD) domain resolver. The domain services maintains a local cache of hostname-to-address mappings for use by applications, such as Telnet, and commands, such as \texttt{ping} and \texttt{traceroute}. The local cache speeds the conversion of hostnames to addresses. Two types of entries exist in the local cache: static and dynamic. Entries configured using the \texttt{domain ipv4 host} or \texttt{domain ipv6 host} command are added as static entries, while entries received from the name server are added as dynamic entries.

The name server is used by the World Wide Web (WWW) for translating names of network nodes into addresses. The name server maintains a distributed database that maps hostnames to IP addresses through the DNS protocol from a DNS server. One or more name servers can be specified using the \texttt{domain name-server} command.

When an application needs the IP address of a host or the hostname of an IP address, a remote-procedure call (RPC) is made to the domain services. The domain service looks up the IP address or hostname in the cache, and if the entry is not found, the domain service sends a DNS query to the name server.

You can specify a default domain name that Cisco IOS XR software uses to complete domain name requests. You can also specify either a single domain or a list of domain names. Any IP hostname that does not contain a domain name has the domain name you specify appended to it before being added to the host table. To specify a domain name or names, use either the \texttt{domain name} or \texttt{domain list} command.

TFTP Server

It is too costly and inefficient to have a machine that acts only as a server on every network segment. However, when you do not have a server on every segment, your network operations can incur substantial time delays across network segments. You can configure a router to serve as a TFTP server to reduce costs and time delays in your network while allowing you to use your router for its regular functions.

Typically, a router that is configured as a TFTP server provides other routers with system image or router configuration files from its flash memory. You can also configure the router to respond to other types of services requests.

File Transfer Services

File Transfer Protocol (FTP), Trivial File Transfer Protocol (TFTP), remote copy protocol (rcp) rcp clients, and Secure Copy Protocol (SCP) are implemented as file systems or resource managers. For example, pathnames beginning with tftp:// are handled by the TFTP resource manager.

The file system interface uses URLs to specify the location of a file. URLs commonly specify files or locations on the WWW. However, on Cisco routers, URLs also specify the location of files on the router or remote file servers.

When a router crashes, it can be useful to obtain a copy of the entire memory contents of the router (called a core dump) for your technical support representative to use to identify the cause of the crash. SCP, FTP, TFTP,
or rcp can be used to save the core dump to a remote server. See the *Cisco ASR 9000 Series Aggregation Services Router System Management Configuration Guide* for information on executing a core dump.

RCP

The remote copy protocol (RCP) commands rely on the remote shell (rsh) server (or daemon) on the remote system. To copy files using rcp, you do not need to create a server for file distribution, as you do with TFTP. You need only to have access to a server that supports the rsh. Because you are copying a file from one place to another, you must have read permissions for the source file and write permission in the destination directory. If the destination file does not exist, rcp creates it for you.

Although Cisco rcp implementation emulates the functions of the UNIX rcp implementation—copying files among systems on the network—Cisco command syntax differs from the UNIX rcp command syntax. Cisco IOS XR software offers a set of copy commands that use rcp as the transport mechanism. These rcp *copy* commands are similar in style to the Cisco IOS XR software TFTP copy commands, but they offer an alternative that provides faster performance and reliable delivery of data. These improvements are possible because the rcp transport mechanism is built on and uses the TCP/IP stack, which is connection-oriented. You can use rcp commands to copy system images and configuration files from the router to a network server and so forth.

FTP

File Transfer Protocol (FTP) is part of the TCP/IP protocol stack, which is used for transferring files between network nodes. FTP is defined in RFC 959.

TFTP

Trivial File Transfer Protocol (TFTP) is a simplified version of FTP that allows files to be transferred from one computer to another over a network, usually without the use of client authentication (for example, username and password).

SCP

Secure Copy Protocol (SCP) is a file transfer protocol which provides a secure and authenticated method for transferring files. SCP relies on SSHv2 to transfer files from a remote location to a local location or from local location to a remote location.

Cisco IOS XR software supports SCP server and client operations. If a device receives an SCP request, the SSH server process spawns the SCP server process which interacts with the client. For each incoming SCP subsystem request, a new SCP server instance is spawned. If a device sends a file transfer request to a destination device, it acts as the client.

When a device starts an SSH connection to a remote host for file transfer, the remote device can either respond to the request in Source Mode or Sink Mode. In Source Mode, the device is the file source. It reads the file from its local directory and transfers the file to the intended destination. In Sink Mode, the device is the destination for the file to be transferred.

Using SCP, you can copy a file from the local device to a destination device or from a destination device to the local device.

Using SCP, you can only transfer individual files. You cannot transfer a file from a destination device to another destination device.
Cisco inetd

Cisco Internet services process daemon (Cinetd) is a multithreaded server process that is started by the system manager after the system has booted. Cinetd listens for Internet services such as Telnet service, TFTP service, and so on. Whether Cinetd listens for a specific service depends on the router configuration. For example, when the `tftp server` command is entered, Cinetd starts listening for the TFTP service. When a request arrives, Cinetd runs the server program associated with the service.

Telnet

Enabling Telnet allows inbound Telnet connections into a networking device.

How to Implement Host Services and Applications

This section contains the following procedures:

Checking Network Connectivity

As an aid to diagnosing basic network connectivity, many network protocols support an echo protocol. The protocol involves sending a special datagram to the destination host, then waiting for a reply datagram from that host. Results from this echo protocol can help in evaluating the path-to-host reliability, delays over the path, and whether the host can be reached or is functioning.

SUMMARY STEPS

1. `ping [ipv4 | ipv6 | vrf vrf-name] [host-name | ip-address]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 `ping [ipv4</td>
<td>ipv6</td>
<td>vrf vrf-name] [host-name</td>
</tr>
</tbody>
</table>

Checking Network Connectivity for Multiple Destinations

The bulk option enables you to check reachability to multiple destinations. The destinations are directly input through the CLI. This option is supported for ipv4 destinations only.
SUMMARY STEPS

1. ping bulk ipv4 [input cli {batch | inline}]
2. [vrf vrf-name] [host-name | ip-address]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 ping bulk ipv4 [input cli {batch</td>
<td>inline}]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CP0:router# ping bulk ipv4 input cli</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 [vrf vrf-name] [host-name | ip-address]

Example:
Please enter input via CLI with one destination per line:
```
vrf myvrf1 1.1.1.1
vrf myvrf2 2.2.2.2
vrf myvrf1 myvrf1.cisco.com
vrf myvrf2 myvrf2.cisco.com
```
Starting pings...
Type escape sequence to abort.
```
Sending 1, 100-byte ICMP Echos to 1.1.1.1, vrf is myvrf1: !
Success rate is 100 percent (1/1), round-trip min/avg/max = 1/1/1 ms
Sending 2, 100-byte ICMP Echos to 2.2.2.2, vrf is myvrf2: !!
Success rate is 100 percent (2/2), round-trip min/avg/max = 1/1/1 ms
Sending 1, 100-byte ICMP Echos to 1.1.1.1, vrf is myvrf1: !
Success rate is 100 percent (1/1), round-trip min/avg/max = 1/4/1 ms
Sending 2, 100-byte ICMP Echos to 2.2.2.2, vrf is myvrf2: !!
Success rate is 100 percent (2/2), round-trip min/avg/max = 1/3/1 ms
```

Checking Packet Routes

The **traceroute** command allows you to trace the routes that packets actually take when traveling to their destinations.

SUMMARY STEPS

1. traceroute [ipv4 | ipv6 | vrf vrf-name] [host-name | ip-address]
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Traces packet routes through the network.</td>
</tr>
<tr>
<td>`traceroute [ipv4</td>
<td>ipv6</td>
</tr>
</tbody>
</table>

Configuring Domain Services

This task allows you to configure domain services.

Before You Begin

DNS-based hostname-to-address translation is enabled by default. If hostname-to-address translation has been disabled using the `domain lookup disable` command, re-enable the translation using the `no domain lookup disable` command. See the *Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference* for more information on the `domain lookup disable` command.

SUMMARY STEPS

1. `configure`
2. Do one of the following:
 - `domain name domain-name`
 - `or`
 - `domain list domain-name`
3. `domain name-server server-address`
4. `domain {ipv4 | ipv6} host host-name {ipv4address | ipv6address}`
5. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Defines a default domain name used to complete unqualified hostnames.</td>
</tr>
<tr>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Do one of the following:</td>
</tr>
<tr>
<td><code>domain name domain-name</code></td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

- or
- domain list domain-name

Purpose

- Specifies the address of a name server to use for name and address resolution (hosts that supply name information).
- You can enter up to six addresses, but only one for each command.

Example:

```
RP/0/RSP0/CPU0:router(config)# domain name cisco.com
or
RP/0/RSP0/CPU0:router(config)# domain list domain1.com
```

Step 3
- domain name-server server-address

Example:

```
RP/0/RSP0/CPU0:router(config)# domain name-server 192.168.1.111
```

Step 4
- domain {ipv4 | ipv6} host host-name {ipv4address | ipv6address}

Example:

```
RP/0/RSP0/CPU0:router(config)# domain ipv4 host1 192.168.7.18
```

Step 5
- commit

Configuring a Router as a TFTP Server

This task allows you to configure the router as a TFTP server so other devices acting as TFTP clients are able to read and write files from and to the router under a specific directory, such as slot0:, /tmp, and so on (TFTP home directory).

Note

For security reasons, the TFTP server requires that a file must already exist for a write request to succeed.

Before You Begin

The server and client router must be able to reach each other before the TFTP function can be implemented. Verify this connection by testing the connection between the server and client router (in either direction) using the `ping` command.
SUMMARY STEPS

1. configure
2. tftp {ipv4 | ipv6} server {homedir tftp-home-directory} {max-servers number} [access-list name]
3. commit
4. show cinetd services

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
| Step 2 tftp {ipv4 | ipv6} server {homedir tftp-home-directory} {max-servers number} [access-list name] | Specifies:
* IPv4 or IPv6 address prefixes (required)
* Home directory (required)
* Maximum number of concurrent TFTP servers (required)
* Name of the associated access list (optional) |
| Example: | |
| RP/0/RSP0/CPU0:router(config)# tftp ipv4 server access-list listA homedir disk0 | |
| Step 3 commit | |
| Step 4 show cinetd services | Displays the network service for each process. The service column shows TFTP if the TFTP server is configured. |
| Example: | |
| RP/0/RSP0/CPU0:router# show cinetd services | |

Configuring a Router to Use rcp Connections

This task allows you to configure a router to use rcp.

Before You Begin

For the rcp copy request to execute successfully, an account must be defined on the network server for the remote username.

If you are reading or writing to the server, the rcp server must be properly configured to accept the rcp read/write request from the user on the router. For UNIX systems, you must add an entry to the hosts file for the remote user on the rcp server.
SUMMARY STEPS

1. configure
2. rcp client username username
3. rcp client source-interface type interface-path-id
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>rcp client username username</td>
<td>Specifies the name of the remote user on the rcp server. This name is used when a remote copy using rcp is requested. If the rcp server has a directory structure, all files and images to be copied are searched for or written relative to the directory in the remote user account.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# rcp client username netadmin1</td>
</tr>
<tr>
<td>Step 3</td>
<td>rcp client source-interface type interface-path-id</td>
<td>Sets the IP address of an interface as the source for all rcp connections.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# rcp client source-interface gigabitethernet 1/0/2/1</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting Tips
When using rcp to copy any file from a source to a destination, use the following path format:

```plaintext
copy rcp :
  //username @
  [ hostname
    | ipaddress
    ]/
    directory-path
    /
    pie-name target-device
```

When using an IPv6 rcp server, use the following path format:

```plaintext
copy rcp :
  //username @
```
Configuring a Router to Use FTP Connections

This task allows you to configure the router to use FTP connections for transferring files between systems on the network. With the Cisco ASR 9000 Series Router implementation of FTP, you can set the following FTP characteristics:

- Passive-mode FTP
- Password
- IP address

SUMMARY STEPS

1. configure
2. ftp client passive
3. ftp client anonymous-password password
4. ftp client source-interface type interface-path-id
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>ftp client passive</td>
<td>Allows the software to use only passive FTP</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>connections.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# ftp client passive</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ftp client anonymous-password</td>
<td>Specifies the password for anonymous users.</td>
</tr>
<tr>
<td></td>
<td>password</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# ftp client</td>
</tr>
<tr>
<td></td>
<td>anonymous-password xxxx</td>
<td>anonymous-password xxxx</td>
</tr>
<tr>
<td>Step 4</td>
<td>ftp client source-interface</td>
<td>Specifies the source IP address for FTP</td>
</tr>
<tr>
<td></td>
<td>type interface-path-id</td>
<td>connections.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# ftp client</td>
<td></td>
</tr>
<tr>
<td></td>
<td>source-interface GigabitEthernet 0/1/2/1</td>
<td></td>
</tr>
</tbody>
</table>
Step 5 | commit
---|---

Troubleshooting Tips

When using FTP to copy any file from a source to a destination, use the following path format:

```
copy ftp://username:password@hostname/directory-path/pie-name target-device
```

When using an IPv6 FTP server, use the following path format:

```
copy ftp://username:password@[ipv6-address]/directory-path/pie-name
```

If unsafe or reserved characters appear in the username, password, hostname, and so on, they have to be encoded (RFC 1738).

The following characters are unsafe:

"<, >, "", "", "", ");", "", ":", ":", ":", ":", and ":"

The following characters are reserved:

":", "/", ":", ":", ":", and ":"

The directory-path is a relative path to the home directory of the user. The slash (/) has to be encoded as %2f to specify the absolute path. For example:

```
ftp://user:password@hostname/%2fTFTPboot/directory/pie-name
```

See the **copy** command in the *Cisco ASR 9000 Series Aggregation Services Router System Management Command Reference* for detailed information on using FTP protocol with the **copy** command.
Configuring a Router to Use TFTP Connections

This task allows you to configure a router to use TFTP connections. You must specify the source IP address for a TFTP connection.

SUMMARY STEPS

1. configure
2. tftp client source-interface type
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: configure</td>
<td></td>
</tr>
<tr>
<td>Step 2: tftp client source-interface type</td>
<td>Specifies the source IP address for TFTP connections.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# tftp client source-interface GigabitEthernet 1/0/2/1</td>
<td></td>
</tr>
<tr>
<td>Step 3: commit</td>
<td></td>
</tr>
</tbody>
</table>

Troubleshooting Tips

When using TFTP to copy any file from a source to a destination, use the following path format:

```
copy tftp ://{hostname | ipaddress }/ directory-path / pie-name target-device
```

When using an IPv6 TFTP server, use the following path format:

```
copy tftp : // [ipv6-address]/ directory-path / pie-name
```
See the `copy` command in the *Cisco ASR 9000 Series Aggregation Services Router System Management Command Reference* for detailed information on using TFTP protocol with the `copy` command.

Configuring Telnet Services

This task allows you to configure Telnet services.

SUMMARY STEPS

1. `configure`
2. `telnet [ipv4 | ipv6 | vrf vrf-name] server max-servers 1`
3. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>`telnet [ipv4</td>
<td>ipv6</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Note This command affects only inbound Telnet</td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config)# telnet ipv4 server</code></td>
<td>connections to the router.</td>
</tr>
<tr>
<td></td>
<td><code>max-servers 1</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Transferring Files Using SCP

Secure Copy Protocol (SCP) allows you to transfer files between source and destination devices.

SUMMARY STEPS

1. Do one of the following:
 - `scp local-directory/filename username@location/directory/filename`
 - `scp username@location/directory/filename local-directory/filename`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Do one of the following:</td>
<td></td>
</tr>
</tbody>
</table>
| • `scp local-directory/filename
 username@location/directory/filename` | Use the `scp local-directory/filename
 username@location/directory/filename` command to transfer a file from a local directory to a remote directory. |
| • `scp username@location/directory/filename
 local-directory/filename` | Use the `scp username@location/directory/filename
 local-directory/filename` to transfer a file from a remote directory to a local directory. |
| | You can transfer one file at a time. If the destination is a server, SSH server process must be running. |

Example:

```
RP/0/RSP0/CPU0:router# scp /usr/file1.txt
root@209.165.200.1:/root/file3.txt
or
RP/0/RSP0/CPU0:router# scp
root@209.165.200.1:/root/file4.txt /usr/file.txt
```

Configuring syslog source-interface

Perform this task to configure the logging source interface to identify the syslog traffic, originating in a VRF from a particular router, as coming from a single device.

SUMMARY STEPS

1. `configure`
2. `logging source-interface interface vrf vrf-name`
3. `commit`
4. `show running-configuration logging`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>logging source-interface interface vrf vrf-name</code></td>
<td>Configures the logging source interface to identify the syslog traffic, originating in a VRF from a particular router, as coming from a single device.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
| `RP/0/RSP0/CPU0:router(config)# logging source-interface
 loopback 0 vrf vrf1`
| `RP/0/RSP0/CPU0:router(config)# logging source-interface
 loopback 1 vrf default`
| **Step 3** `commit` | |
Purpose
Command or Action | Purpose
--- | ---
Step 4 | show running-configuration logging

Example:

```
RP/0/RSP0/CPU0:router(config)# exit
RP/0/RSP0/CPU0:router# show running-configuration logging
logging trap debugging
logging 223.255.254.249 vrf vrf1
logging 223.255.254.248 vrf default
logging source-interface Loopback0 vrf vrf1
logging source-interface Loopback1
```

IPv6 Support for IP SLA ICMP Echo Operation

IP Service Level Agreements (SLAs) Internet Control Message Protocol (ICMP) Echo operation is used to monitor the end-to-end response time between a Cisco router and devices using IP. ICMP Echo is useful for troubleshooting network connectivity issues.

Configuring an IPSLA ICMP echo operation

To monitor IP connections on a device, use the IP SLA ICMP Echo operation. This operation does not require the IP SLAs Responder to be enabled.

SUMMARY STEPS

1. configure
2. ipsla
3. operation \(n \)
4. type icmp echo
5. timeout \(n \)
6. source address \(address \)
7. destination address \(address \)
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ipsla</td>
<td>Enters IP SLA monitor configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# ipsla</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>operation (n)</td>
<td>Initiates configuration for an IP SLA operation.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ipsla)# operation 500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>type icmp echo</td>
<td>Enters IP SLA ICMP Echo configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ipsla-op)# type icmp echo</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>timeout (n)</td>
<td>Sets the timeout in ms. The default is 5000 milliseconds.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ipsla-icmp-echo)# timeout 1000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>source address (address)</td>
<td>Configures the address of the source device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ipsla-icmp-echo)# source address fe80::226:98ff:fe2e:3287</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>destination address (address)</td>
<td>Configures the address of the destination device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-ipsla-icmp-echo)# destination address fe80::226:98ff:fe2e:3287</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Implementing Host Services and Applications

This section provides the following configuration examples:
Checking Network Connectivity: Example

The following example shows an extended ping command sourced from the Router A Ethernet 0 interface and destined for the Router B Ethernet interface. If this ping succeeds, it is an indication that there is no routing problem. Router A knows how to get to the Ethernet of Router B, and Router B knows how to get to the Ethernet of Router A. Also, both hosts have their default gateways set correctly.

If the extended ping command from Router A fails, it means that there is a routing problem. There could be a routing problem on any of the three routers: Router A could be missing a route to the subnet of Router B's Ethernet, or to the subnet between Router C and Router B; Router B could be missing a route to the subnet of Router A's subnet, or to the subnet between Router C and Router A; and Router C could be missing a route to the subnet of Router A's or Router B's Ethernet segments. You should correct any routing problems, and then Host 1 should try to ping Host 2. If Host 1 still cannot ping Host 2, then both hosts' default gateways should be checked. The connectivity between the Ethernet of Router A and the Ethernet of Router B is checked with the extended ping command.

With a normal ping from Router A to Router B's Ethernet interface, the source address of the ping packet would be the address of the outgoing interface; that is, the address of the serial 0 interface (172.31.20.1). When Router B replies to the ping packet, it replies to the source address (that is, 172.31.20.1). This way, only the connectivity between the serial 0 interface of Router A (172.31.20.1) and the Ethernet interface of Router B (192.168.40.1) is tested.

To test the connectivity between Router A's Ethernet 0 (172.16.23.2) and Router B's Ethernet 0 (192.168.40.1), we use the extended ping command. With extended ping, we get the option to specify the source address of the ping packet.

In this example, the extended ping command verifies the IP connectivity between the two IP addresses 10.0.0.2 and 10.0.0.1.

```
ping
Protocol [ip]:
Target IP address: 10.0.0.1
Repeat count [5]:
Datagram size [100]:
Timeout in seconds [2]:
Extended commands? [no]: yes
Source address or interface: 10.0.0.2
Type of service [0]:
Set DF bit in IP header? [no]:
Validate reply data? [no]: yes
Data pattern [0xABCD]:
Loose, Strict, Record, Timestamp, Verbose[none]:
Sweep range of sizes? [no]:
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.25.58.21, timeout is 2 seconds:
!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 2/11/49 ms
```

The traceroute command is used to discover the paths packets take to a remote destination and where routing breaks down. The traceroute command provides the path between the two IP addresses and does not indicate any problems along the path.

```
traceroute
Protocol [ip]:
Target IP address: ena-view3
Source address: 10.0.58.29
Numeric display? [no]:
Timeout in seconds [3]:
```
Configuring Domain Services: Example

The following example shows how to configure domain services on a router.

Defining the Domain Host

configure
domain ipv4 host host1 192.168.7.18
domain ipv4 host host2 10.2.0.2 192.168.7.33

Defining the Domain Name

configure
domain name cisco.com

Specifying the Addresses of the Name Servers

configure
domain name-server 192.168.1.111
domain name-server 192.168.1.2

Configuring a Router to Use rcp, FTP, or TFTP Connections: Example

The following example shows how to configure the router to use rcp, FTP, or TFTP connections.

Using rcp

configure
rcp client username netadmin1
crcp client source-interface gigabitethernet 1/0/2/1

Implementing Host Services and Applications
Using FTP

configure
ftp client passive
ftp client anonymous-password xxxx
ftp client source-interface gigabitethernet 0/1/2/1

Using TFTP

configure
tftp client source-interface gigabitethernet 1/0/2/1

Additional References

The following sections provide references related to implementing host services and addresses on the Cisco ASR 9000 Series Router.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host services and applications commands</td>
<td>Host Services and Applications Commands module in Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC-959</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>RFC-1738 and RFC-2732</td>
<td>Uniform Resource Locators (URL)</td>
</tr>
<tr>
<td>RFC-783</td>
<td>Trivial File Transfer Protocol</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing HSRP

The Hot Standby Router Protocol (HSRP) is an IP routing redundancy protocol designed to allow for transparent failover at the first-hop IP router. HSRP provides high network availability, because it routes IP traffic from hosts on networks without relying on the availability of any single router. HSRP is used in a group of routers for selecting an active router and a standby router. (An active router is the router of choice for routing packets; a standby router is a router that takes over the routing duties when an active router fails, or when preset conditions are met.)

Feature History for Implementing HSRP

<table>
<thead>
<tr>
<th>Release</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>3.9.0</td>
<td>Support was added for the following features:</td>
</tr>
<tr>
<td></td>
<td>• BFD for HSRP.</td>
</tr>
<tr>
<td></td>
<td>• Hot restartability for HSRP.</td>
</tr>
<tr>
<td>4.2.0</td>
<td>Multiple Group Optimization (MGO) for HSRP feature was added.</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Enhanced object tracking for HSRP and IP Static feature was added.</td>
</tr>
</tbody>
</table>

Note

GLBP is not supported on ASR9k.

- Prerequisites for Implementing HSRP, page 184
- Restrictions for Implementing HSRP, page 184
- Information About Implementing HSRP, page 184
- How to Implement HSRP, page 188
- BFD for HSRP, page 209
Prerequisites for Implementing HSRP

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for Implementing HSRP

HSRP is supported on Ethernet interfaces, Ethernet sub-interfaces and Ethernet link bundles. The following are restrictions for implementing HSRP:

- Upto 4000 sessions are permitted on Ethernet sub-interfaces.
- On bundle interfaces, the number of sessions per member vary depending on the number of bundle members and their location on network processor (NP) as listed here:
 * One member on one NP: 3999 HSRP sessions
 * Two members on same NP: 1999 HSRP sessions
 * Four members on same NP: 999 HSRP sessions
 * Two members, one on each NP: 3999 HSRP sessions
 * Four members, two on each NP: 1999 HSRP sessions

Note

HSRP version 2 authentication is not supported from release 4.3.x onwards.

Information About Implementing HSRP

To implement HSRP on Cisco IOS XR software software, you need to understand the following concepts:

HSRP Overview

HSRP is useful for hosts that do not support a router discovery protocol (such as Internet Control Message Protocol [ICMP] Router Discovery Protocol [IRDP]) and cannot switch to a new router when their selected router reloads or loses power. Because existing TCP sessions can survive the failover, this protocol also provides a more transparent recovery for hosts that dynamically choose a next hop for routing IP traffic.
When HSRP is configured on a network segment, it provides a virtual MAC address and an IP address that is shared among a group of routers running HSRP. The address of this HSRP group is referred to as the virtual IP address. One of these devices is selected by the protocol to be the active router. The active router receives and routes packets destined for the MAC address of the group. For \(n \) routers running HSRP, \(n + 1 \) IP and MAC addresses are assigned.

HSRP detects when the designated active router fails, at which point a selected standby router assumes control of the MAC and IP addresses of the HSRP group. A new standby router is also selected at that time.

Devices that are running HSRP send and receive multicast User Datagram Protocol (UDP) based hello packets to detect router failure and to designate active and standby routers.

HSRP Groups

An HSRP group consists of two or more routers running HSRP that are configured to provide hot standby services for one another. HSRP uses a priority scheme to determine which HSRP-configured router is to be the default active router. To configure a router as the active router, you assign it a priority that is higher than the priority of all the other HSRP-configured routers. The default priority is 100, so if you configure just one router to have a higher priority, that router will be the default active router.

HSRP works by the exchange of multicast messages that advertise priority among the HSRP group. When the active router fails to send a hello message within a configurable period of time, the standby router with the highest priority becomes the active router. The transition of packet-forwarding functions between routers is completely transparent to all hosts on the network.
Figure 5: Routers Configured as an HSRP Group, on page 186 shows routers configured as members of a single HSRP group.

Figure 5: Routers Configured as an HSRP Group

All hosts on the network are configured to use the IP address of the virtual router (in this case, 1.0.0.3) as the default gateway.
A single router interface can also be configured to belong to more than one HSRP group. Figure 6: Routers Configured as Members of Multiple HSRP Groups, on page 187 shows routers configured as members of multiple HSRP groups.

Figure 6: Routers Configured as Members of Multiple HSRP Groups

In Figure 6: Routers Configured as Members of Multiple HSRP Groups, on page 187, the Ethernet interface 0 of Router A belongs to group 1. Ethernet interface 0 of Router B belongs to groups 1, 2, and 3. The Ethernet interface 0 of Router C belongs to group 2, and the Ethernet interface 0 of Router D belongs to group 3. When you establish groups, you might want to align them along departmental organizations. In this case, group 1 might support the Engineering Department, group 2 might support the Manufacturing Department, and group 3 might support the Finance Department.

Router B is configured as the active router for groups 1 and 2 and as the standby router for group 3. Router D is configured as the active router for group 3. If Router D fails for any reason, Router B assumes the packet-transfer functions of Router D and maintains the ability of users in the Finance Department to access data on other subnets.

Note

A different virtual MAC address (VMAC) is required for each subinterface. VMAC is determined from the group ID. Therefore, a unique group ID is required for each subinterface configured, unless the VMAC is configured explicitly.

Note

We recommend that you disable Spanning Tree Protocol (STP) on switch ports to which the virtual routers are connected. Enable RSTP or rapid-PVST on the switch interfaces if the switch supports these protocols.
HSRP and ARP

When a router in an HSRP group goes active, it sends a number of ARP responses containing its virtual IP address and the virtual MAC address. These ARP responses help switches and learning bridges update their port-to-MAC maps. These ARP responses also provide routers configured to use the burned-in address of the interface as its virtual MAC address (instead of the preassigned MAC address or the functional address) with a means to update the ARP entries for the virtual IP address. Unlike the gratuitous ARP responses sent to identify the interface IP address when an interface comes up, the HSRP router ARP response packet carries the virtual MAC address in the packet header. The ARP data fields for IP address and media address contain the virtual IP and virtual MAC addresses.

Preemption

The HSRP preemption feature enables the router with highest priority to immediately become the active router. Priority is determined first by the priority value that you configure, and then by the IP address. In each case, a higher value is of greater priority.

When a higher-priority router preempts a lower-priority router, it sends a coup message. When a lower-priority active router receives a coup message or hello message from a higher-priority active router, it changes to the speak state and sends a resign message.

ICMP Redirect Messages

Internet Control Message Protocol (ICMP) is a network layer Internet protocol that provides message packets to report errors and other information relevant to IP processing. ICMP provides many diagnostic functions and can send and redirect error packets to the host. When running HSRP, it is important to prevent hosts from discovering the interface (or real) MAC addresses of routers in the HSRP group. If a host is redirected by ICMP to the real MAC address of a router, and that router later fails, then packets from the host are lost.

ICMP redirect messages are automatically enabled on interfaces configured with HSRP. This functionality works by filtering outgoing ICMP redirect messages through HSRP, where the next-hop IP address may be changed to an HSRP virtual IP address.

To support ICMP redirects, redirect messages are filtered through HSRP, where the next-hop IP address is changed to an HSRP virtual address. When HSRP redirects are turned on, ICMP interfaces with HSRP do this filtering. HSRP keeps track of all HSRP routers by sending advertisements and maintaining a real IP address to virtual IP address mapping to perform the redirect filtering.

How to Implement HSRP

This section contains instructions for the following tasks:

Enabling HSRP

The **hsrp ipv4** command activates HSRP on the configured interface. If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the virtual address is learned from the active router. For HSRP to elect a designated router, at least one router in the Hot Standby...
group must have been configured with, or learned, the designated address. Configuring the designated address on the active router always overrides a designated address that is currently in use.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-number version version-no
6. address { learn | address [secondary] }
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface GigabitEthernet 0/2/0/1</td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
<tr>
<td>Step 5 hsrp group-number version version-no</td>
<td>Enables HSRP group submode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 1</td>
</tr>
<tr>
<td>Note The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
<td></td>
</tr>
<tr>
<td>Step 6 address { learn</td>
<td>address [secondary] }</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)# address learn</td>
</tr>
<tr>
<td>• If an IP address is specified, that address is used as the designated address for the Hot Standby group. If no IP address is specified, the virtual address is learned from the active router.</td>
<td></td>
</tr>
</tbody>
</table>
Enabling HSRP for IPv6

Use the following steps to enable HSRP for IPv6.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv6
5. hsrp group-number
6. address linklocal {autoconfig | ipv6-address}
7. address global ipv6-address
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv6</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)#</td>
<td>address-family ipv6</td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp group-number</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-hsrp-ipv4)#</td>
<td>hsrp 1</td>
</tr>
<tr>
<td>Step 6</td>
<td>address linklocal {autoconfig</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)#</td>
<td>address linklocal autoconfig</td>
</tr>
<tr>
<td>Step 7</td>
<td>address global ipv6-address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)#</td>
<td>address global 2001:DB8:A:B::1</td>
</tr>
<tr>
<td>Step 8</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring HSRP Group Attributes

To configure other Hot Standby group attributes that affect how the local router participates in HSRP, use the following procedure in interface configuration mode as needed:

- The virtual linklocal address must not match any other virtual linklocal address that is already configured for a different group.
- The virtual linklocal address must not match the interface linklocal IPv6 address.
- If you use the `autoconfig` keyword, the linklocal address is calculated using the EUI-64 format.
- Use the `legacy-compatible` keyword to be compatible with Cisco IOS and other legacy Cisco devices.
SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. hsrp use-bia
5. address-family ipv4
6. hsrp group-number version version-no
7. priority priority
8. track type instance [priority-decrement]
9. preempt [delay seconds]
10. authentication string
11. mac-address address
12. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>(Optional) Configures the HSRP to use the burned-in address of the interface as its virtual MAC address, instead of the preassigned MAC address or the functional address.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 hsrp use-bia</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-if)# hsrp use-bia</td>
<td></td>
</tr>
<tr>
<td>Step 4 hsrp use-bia</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-if)# hsrp use-bia</td>
<td></td>
</tr>
<tr>
<td>Step 4 hsrp use-bia</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-if)# hsrp use-bia</td>
<td></td>
</tr>
<tr>
<td>Step 4 hsrp use-bia</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-if)# hsrp use-bia</td>
<td></td>
</tr>
</tbody>
</table>
Configuring HSRP Group Attributes

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5** | `address-family ipv4` | Enables HSRP address-family configuration mode on a specific interface.
 Example:
 `RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4` |
| **Step 6** | `hsrp group-number version version-no` | Enables HSRP group submode.
 Note
 The `version` keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.
 Example:
 `RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 1` |
| **Step 7** | `priority priority` | (Optional) Configures HSRP priority.
 Example:
 `RP/0/RSP0/CPU0:router(config-hsrp-gp)# priority 100` |
| **Step 8** | `track type instance [priority-decrement]` | (Optional) Configures an interface so that the Hot Standby priority changes on the basis of the availability of other interfaces.
 Example:
 `RP/0/RSP0/CPU0:router(config-hsrp-gp)# track TenGigE 0/3/0/1` |

- The assigned priority is used to help select the active and standby routers. Assuming that preemption is enabled, the router with the highest priority becomes the designated active router. In case of ties, the primary IP addresses are compared, and the higher IP address has priority.
- The priority of the device can change dynamically if an interface is configured with the `track` command and another interface on the device goes down.
- If preemption is not enabled using the `preempt` command, the router may not become active even though it might have a higher priority than other HSRP routers.
- To restore the default HSRP priority values, use the `no priority` command.
- When a tracked interface goes down, the Hot Standby priority decreases by 10. If an interface is not tracked, its state changes do not affect the Hot Standby priority. For each interface configured for Hot Standby, you can configure a separate list of interfaces to be tracked.
- The optional `priority-decrement` argument specifies by how much to decrement the Hot Standby priority when a tracked interface goes down. When the tracked interface comes back up, the priority is incrementally increased by the same amount.
- When multiple tracked interfaces are down and the `priority-decrement` argument has been configured, these configured priority decrements are cumulative. If tracked interfaces are down, but none of them were configured with priority decrements, the default decrement is 10 and it is cumulative.
- The `preempt` command must be used in conjunction with this command on all routers in the group whenever the best available
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 9** preempt [delay seconds] | (Optional) Configures HSRP preemption and preemption delay.
- When you configure preemption and preemption delay with the `preempt` command, the local router attempts to assume control as the active router when the local router has a Hot Standby priority higher than the current active router. If the `preempt` command is not configured, the local router assumes control as the active router only if it receives information indicating that no router is currently in the active state (acting as the designated router).
- When a router first comes up, it does not have a complete routing table. If it is configured to preempt, it becomes the active router, yet it is unable to provide adequate routing services. This problem can be solved by configuring a delay before the preempting router actually preempts the currently active router.
- The `preempt delay seconds` value does not apply if there is no router currently in the active state. In this case, the local router becomes active after the appropriate timeouts (see the `timers` command), regardless of the preempt delay seconds value.
- To restore the default HSRP preemption and preemption delay values, use the `no preempt` command. |
| **Step 10** authentication string | (Optional) Configures an authentication string for the Hot Standby Router Protocol (HSRP).
- The authentication string is sent unencrypted in all HSRP messages. The same authentication string must be configured on all routers and access servers on a LAN to ensure interoperation.
- Authentication mismatch prevents a device from learning the designated Hot Standby IP address and the Hot Standby timer values from other routers configured with HSRP.
- Authentication mismatch does not prevent protocol events such as one router taking over as the designated router.
- To delete an authentication string, use the `no authentication` command. |
| **Step 11** mac-address address | (Optional) Specifies a virtual MAC address for the HSRP. |
Configuring the HSRP Activation Delay

The activation delay for HSRP is designed to delay the startup of the state machine when an interface comes up. This gives the network time to settle and avoids unnecessary state changes early after the link comes up.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. hsrp delay [minimum seconds] [reload seconds]
5. address-family ipv4
6. hsrp group-number version version-no
7. address { learn | address [secondary] }
8. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>hsrp delay [minimum seconds] [reload seconds]</td>
<td>Delays the startup of the state machine when an interface comes up, so that the network has time to settle and there are no unnecessary state changes early after the link comes up. The reload delay is the delay applied after the first interface up event. The minimum delay is the delay that is applied after any subsequent interface up event (if the interface flaps).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# hsrp delay minimum 2 reload 10</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>hsrp group-number version version-no</td>
<td>Enables HSRP group submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 1</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>address [learn</td>
<td>address [secondary]]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)# address learn</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>If you configure HSRP for IPv6, you must configure a link local IPv6 address or enable it using the autoconfig keyword. If you do not configure a link local IPv6 address, the router does not accept the configuration when you commit your changes using the commit keyword.</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>
Enabling HSRP Support for ICMP Redirect Messages

By default, HSRP filtering of ICMP redirect messages is enabled on routers running HSRP. To configure the reenabling of this feature on your router if it is disabled, use the `hsrp redirects` command in interface configuration mode.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. hsrp redirects disable
5. address-family ipv4
6. hsrp group-number version version-no
7. address { learn | address [secondary] }
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Step 4</td>
<td>hsrp redirects disable</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# hsrp redirects</td>
</tr>
</tbody>
</table>

- The `hsrp redirects` command can be configured on a per-interface basis. When HSRP is first configured on an interface, the setting for that interface inherits the global value. If ICMP redirects have been explicitly disabled on an interface, then the global command cannot reenable the functionality.

- With the `hsrp redirects` command enabled, ICMP redirect messages are filtered by replacing the real IP address in the next-hop address of the redirect packet with a virtual IP address, if it is known to HSRP.
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• To revert to the default, which is that ICMP messages are enabled, use the no hsrp redirects command.</td>
<td></td>
</tr>
</tbody>
</table>

Step 5

address-family ipv4

Example:

```
RP/0/RSP0/CPU0:router(config-hsrp-if)#
address-family ipv4
```

Step 6

hsrp group-number version version-no

Example:

```
RP/0/RSP0/CPU0:router(config-hsrp-ipv4)#
hsrp 1 version 1
```

Note The `version` keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.

Step 7

address { learn | address [secondary] }

Example:

```
RP/0/RSP0/CPU0:router(config-hsrp-gp)#
address learn
```

Note If you configure HSRP for IPv6, you must configure a link local IPv6 address or enable it using the `autoconfig` keyword. If you do not configure a link local IPv6 address, the router does not accept the configuration when you commit your changes using the `commit` keyword.

Step 8

commit

Multiple Group Optimization (MGO) for HSRP

Multiple Group Optimization provides a solution for reducing control traffic in a deployment consisting of many subinterfaces. By running the HSRP control traffic for just one of the sessions, the control traffic is reduced for the subinterfaces with identical redundancy requirements. All other sessions are slaves of this primary session, and inherit their states from it.

Customizing HSRP

Customizing the behavior of HSRP is optional. Be aware that as soon as you enable a HSRP group, that group is in operation.
SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no version version-no
6. name name
7. address { learn | address}
8. address address secondary
9. authentication string
10. bfd fast-detect
11. mac-address address
12. hsrp group-no slave
13. follow mgo-session-name
14. address ip-address
15. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp group-no version version-no</td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 2</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td>The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>6</td>
<td>name name</td>
<td>Configures an HSRP session name.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)# name s1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>address { learn</td>
<td>Enables hot standby protocol for IP.</td>
</tr>
<tr>
<td></td>
<td>address}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>If an IP address is specified, that address is used as</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)# address learn</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>address address secondary</td>
<td>Configures the secondary virtual IPv4 address for a router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)# address 10.20.30.1 secondary</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>authentication string</td>
<td>Configures an authentication string for the Hot Standby</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router Protocol (HSRP).</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)# authentication company1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>bfd fast-detect</td>
<td>Enables bidirectional forwarding (BFD) fast-detection on</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)# bfd fast-detect</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>mac-address address</td>
<td>Specifies a virtual MAC address for the Hot Standby</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)# mac-address 4000.1000.1060</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>hsrp group-no slave</td>
<td>Enables HSRP slave configuration mode on a specific</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-gp)# hsrp 2 slave</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Primary Virtual IPv4 Address

To enable hot standby protocol for IP, use the `address (hsrp)` command in the HSRP group submode.

SUMMARY STEPS

1. `configure`
2. `router hsrp`
3. `interface type interface-path-id`
4. `address-family ipv4`
5. `hsrp group-noversion version-no`
6. `address { learn | address}`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router hsrp</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config)# router hsrp</code></td>
</tr>
<tr>
<td></td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td><code>interface type interface-path-id</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td><code>address-family ipv4</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td><code>hsrp [group-no]version-no</code></td>
<td></td>
</tr>
</tbody>
</table>
| **Note** | • The `version` keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.
| | • HSRP version 2 provides an extended group range of 0-4095. | |
| **Example:** | `RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 2` |
| **Step 6** | Enables hot standby protocol for IP. |
| `address [learn | address]` | |
| **Example:** | `RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# address learn` |
| **Step 7** | |
| `commit` | |

Configuring a Secondary Virtual IPv4 Address

To configure the secondary virtual IPv4 address for a router, use the `address secondary` command in the Hot Standby Router Protocol (HSRP) virtual router submode.

SUMMARY STEPS

1. `configure`
2. `router hsrp`
3. `interface type interface-path-id`
4. `address-family ipv4`
5. `hsrp [group-no]version-no`
6. `address address secondary`
7. `commit`
Configuring HSRP

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 hsrp group-noversion version-no</td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 2</td>
<td>Note</td>
</tr>
<tr>
<td>• The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
<td></td>
</tr>
<tr>
<td>• HSRP version 2 provides an extended group range of 0-4095.</td>
<td></td>
</tr>
<tr>
<td>Step 6 address address secondary</td>
<td>Configures the secondary virtual IPv4 address for a router.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# address 10.20.30.1 secondary</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring a slave follow

To instruct the slave group to inherit its state from a specified group, use the **slave follow** command in HSRP slave submode mode.
SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no slave
6. follow mgo-session-name
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables HSRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 hsrp group-no slave</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 2 slave</td>
<td></td>
</tr>
<tr>
<td>Step 6 follow mgo-session-name</td>
<td>Instructs the slave group to inherit its state from a specified group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-hsrp-slave)# follow m1</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a slave primary virtual IPv4 address

To configure the primary virtual IPv4 address for the slave group, use the `slave primary virtual IPv4 address` command in the HSRP slave submode.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no slave
6. address ip-address
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables HSRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 hsrp group-no slave</td>
<td>Enables HSRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 2 slave</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Secondary Virtual IPv4 address for the Slave Group

Perform this task to configure the secondary virtual IPv4 address for the slave group.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no slave
6. address address secondary
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action | Purpose
--- | ---
Step 4 | address-family ipv4
Example: `RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4`
Enables HSRP address-family configuration mode on a specific interface.

Step 5 | hsrp group-no slave
Example: `RP/0/RSP0/CPU0:router(config-hsrp-address-family)# hsrp 2 slave`
Enables HSRP slave configuration mode on a specific interface.

Step 6 | address address secondary
Example: `RP/0/RSP0/CPU0:router(config-hsrp-slave)# address 10.20.30.1 secondary`
Configures the secondary virtual IPv4 address for a router.

Step 7 | commit

Summary Steps

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no slave
6. mac-address address
7. commit

Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>

Configuring a slave virtual mac address

To configure the virtual MAC address for the slave group, use the `slave virtual mac address` command in the HSRP slave submode.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
<tr>
<td>Step 5</td>
<td>hsrp group-no slave</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 2 slave</td>
</tr>
<tr>
<td>Step 6</td>
<td>mac-address address</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-slave)# mac-address 10.20.30</td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring an HSRP Session Name

To configure an HSRP session name, use the **session name** command in the HSRP group submode.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-no version version-no
6. name name
7. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 hsrp group-noversion version-no</td>
<td>Enables HSRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Note</td>
<td>- The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 2</td>
<td>- HSRP version 2 provides an extended group range of 0-4095.</td>
</tr>
<tr>
<td>Step 6 name name</td>
<td>Configures an HSRP session name.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# name s1</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>

BFD for HSRP

Bidirectional Forwarding Detection (BFD) is a network protocol used to detect faults between two forwarding engines. BFD sessions can operate in one of the two modes, namely, asynchronous mode or demand mode. In asynchronous mode, both endpoints periodically send hello packets to each other. If a number of those packets are not received, the session is considered down. In demand mode, it is not mandatory to exchange hello packets; either of the hosts can send hello messages, if needed. Cisco supports the BFD asynchronous mode.
Advantages of BFD

- BFD provides failure detection in less than one second.
- BFD supports all types of encapsulation.
- BFD is not tied to any particular routing protocol, supports almost all routing protocols.

BFD Process

HSRP uses BFD to detect link failure and facilitate fast failover times without excessive control packet overhead.

The HSRP process creates BFD sessions as required. When a BFD session goes down, each Standby group monitoring the session transitions to Active state.

HSRP does not participate in any state elections for 10 seconds after a transition to Active state triggered by a BFD session going down.

Configuring BFD

For HSRP, configuration is applied under the existing HSRP-interface sub-mode, with BFD fast failure configurable per HSRP group and the timers (minimum-interface and multiplier) configurable per interface. BFD fast failure detection is disabled by default.

Enabling BFD

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp [group number] version version-no bfd fast-detect [peer ipv4 ipv4-address interface-type interface-path-id]
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Implementing HSRP

Configuring BFD

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td><code>router hsrp</code></td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface type interface-path-id</code></td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>address-family ipv4</code></td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>hsrp [group number] version version-no bfd fast-detect [peer ipv4 ipv4-address interface-type interface-path-id]</code></td>
<td>Enables fast detection on a specific interface.</td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Modifying BFD timers (minimum interval)

Minimum interval determines the frequency of sending BFD packets to BFD peers (in milliseconds). The default minimum interval is 15ms.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface `type interface-path-id`
4. `hsrp bfd minimum-interval interval`
5. address-family `ipv4`
6. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>hsrp bfd minimum-interval interval</td>
<td>Sets the minimum interval to the specified period. The interval is in milliseconds; range is 15 to 30000 milliseconds.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# hsrp bfd minimum-interval 20</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Modifying BFD timers (multiplier)
Multiplier is the number of consecutive BFD packets which must be missed from a BFD peer before declaring that peer unavailable. The default multiplier is 3.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. hsrp bfd multiplier multiplier
5. address-family ipv4
6. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>router hsrp</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>hsrp bfd multiplier multiplier</td>
<td>Sets the multiplier to the value. Range is 2 to 50.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# hsrp bfd multiplier 30</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>address-family ipv4</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Enhanced Object Tracking for HSRP and IP Static

A failure between the active router and the core network cannot be detected using standard HSRP failure detection mechanisms. Object tracking is used to detect such failures. When such a failure occurs, the active router applies a priority decrement to its HSRP session. If this causes its priority to fall below that of the standby router, it will detect this from the HSRP control traffic, and then use this as a trigger to preempt and take over the active role.

Cisco IOS XR software supports up to 512 tracked objects.

The enhanced object tracking for HSRP and IP Static feature provides first-hop redundancy as well as default gateway selection based on IP Service Level Agreement (IPSLA).

See the *Cisco ASR 9000 Series Aggregation Services Router Routing Configuration Guide*, for more information about enhanced object tracking for static routes.
Configuring object tracking for HSRP

To enable tracking of the named object with the specified decrement, use the following configuration in the HSRP group sub mode.

SUMMARY STEPS

1. configure
2. router hsrp
3. interface type interface-path-id
4. address-family ipv4
5. hsrp group-number version version-no
6. track object name [priority-decrement]
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router hsrp</td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# router hsrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables HSRP group submode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 hsrp group-number version version-no</td>
<td>The version keyword is available only if IPv4 address-family is selected. By default, version is set to 2 for IPv6 address families.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-ipv4)# hsrp 1 version 1</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 6 track object name [priority-decrement]</td>
<td>Enable tracking of the named object with the specified decrement.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-hsrp-gp)# track object t1 2</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>

Hot Restartability for HSRP

In the event of failure of a HSRP process in one active group, forced failovers in peer HSRP active router groups should be prevented. Hot restartability supports warm RP failover without incurring forced failovers to peer HSRP routers for active groups.

Configuration Examples for HSRP Implementation on Software

This section provides the following HSRP configuration examples:

Configuring an HSRP Group: Example

The following is an example of enabling HSRP on an interface and configuring HSRP group attributes:

```
configure
router hsrp
interface TenGigE 0/2/0/1
address-family ipv4
hsrp 1
  name s1
  address 10.0.0.5
  timers 100 200
  preempt delay 500
  priority 20
  track TenGigE 0/2/0/2
  authentication company0
  use-bia
commit
hsrp 2 slave
follow s1
address 10.3.2.2
commit
```

Configuring a Router for Multiple HSRP Groups: Example

The following is an example of configuring a router for multiple HSRP groups:

```
configure
router hsrp
```
interface TenGigE 0/2/0/3
address family ipv4
hsrp 1
address 1.0.0.5
priority 20
preempt
authentication sclara
hsrp 2
address 1.0.0.6
priority 110
preempt
authentication mtview
hsrp 3
address 1.0.0.7
preempt
authentication svale
commit

Additional References

The following sections provide references related to HSRP

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Quality of Service Commands on Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Command Reference</td>
</tr>
<tr>
<td>Class-based traffic shaping, traffic policing, low-latency queuing, and Modified Deficit Round Robin (MDRR)</td>
<td>Configuring Modular Quality of Service Congestion Management on Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Configuration Guide</td>
</tr>
<tr>
<td>WRED, RED, and tail drop</td>
<td>Configuring Modular QoS Congestion Avoidance on Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Configuration Guide</td>
</tr>
<tr>
<td>HSRP commands</td>
<td>HSRP Commands on Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
<tr>
<td>master command reference</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Commands Master List</td>
</tr>
<tr>
<td>getting started material</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on Cisco ASR 9000 Series Aggregation Services Router System Security Configuration Guide</td>
</tr>
</tbody>
</table>
Standards and RFCs

<table>
<thead>
<tr>
<th>Standard/RFC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIB</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/support</td>
</tr>
</tbody>
</table>
Implementing LPTS

Local Packet Transport Services (LPTS) maintains tables describing all packet flows destined for the secure domain router (SDR), making sure that packets are delivered to their intended destinations.

For a complete description of the LPTS commands listed in this module, refer to the LPTS Commands module of Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference.

Feature History for Implementing LPTS

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.9.0</td>
<td>LPTS was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing LPTS, page 219
- Information About Implementing LPTS, page 219
- Configuring LPTS Policer with IP TOS Precedence, page 221
- Configuration Examples for Implementing LPTS Policers, page 224
- Additional References, page 229

Prerequisites for Implementing LPTS

The following prerequisites are required to implement LPTS:

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Implementing LPTS

To implement LPTS features mentioned in this document you must understand the following concepts:
LPTS Overview

LPTS uses two components to accomplish this task: the port arbitrator and flow managers. The port arbitrator and flow managers are processes that maintain the tables that describe packet flows for a logical router, known as the Internal Forwarding Information Base (IFIB). The IFIB is used to route received packets to the correct Route Processor or line card for processing.

LPTS interfaces internally with all applications that receive packets from outside the router. LPTS functions without any need for customer configuration. However, LPTS show commands are provided that allow customers to monitor the activity and performance of LPTS flow managers and the port arbitrator.

LPTS Policers

In Cisco IOS XR, the control packets, which are destined to the Route Processor (RP), are policed using a set of ingress policers in the incoming line cards. These policers are programmed statically during bootup by LPTS components. The policers are applied based on the flow type of the incoming control traffic. The flow type is determined by looking at the packet headers. The policer rates for these static ingress policers are defined in a configuration file, which are programmed on the line card during bootup.

You can change the policer values based on the flow types of these set of ingress policers. You are able to configure the rate per policer per node (locally) and globally using the command-line interface (CLI); therefore, overwriting the static policer values.

IP TOS Precedence

By default, router allows all packets into the network. The IP table of service (TOS) precedence feature allows you to classify packets by IP precedence value. The IP precedence value can be configured for every flow. Once configured for a flow type, only packets that match the defined IP precedence value are allowed, and others are rejected.

The precedence value can either be a number or name. This table lists configurable precedence values:

<table>
<thead>
<tr>
<th>Precedence Number</th>
<th>Precedence Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>routine</td>
<td>Matches packets with routine precedence.</td>
</tr>
<tr>
<td>1</td>
<td>priority</td>
<td>Matches packets with priority precedence.</td>
</tr>
<tr>
<td>2</td>
<td>immediate</td>
<td>Matches packets with immediate precedence.</td>
</tr>
<tr>
<td>3</td>
<td>flash</td>
<td>Matches packets with flash precedence.</td>
</tr>
<tr>
<td>4</td>
<td>flash-override</td>
<td>Matches packets with flash override precedence.</td>
</tr>
<tr>
<td>5</td>
<td>critical</td>
<td>Matches packets with critical precedence.</td>
</tr>
</tbody>
</table>
Configuring LPTS Policer with IP TOS Precedence

This task allows you to configure the LPTS policers with IP table of service (TOS) precedence:

SUMMARY STEPS

1. `configure`
2. `lpts pifib hardware police [location node-id]`
3. `flow flow_type`
4. `precedence {number | name}`
5. `commit`
6. `show lpts pifib hardware police [location {all | node_id}]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>
| **Step 2** | `lpts pifib hardware police [location node-id]`

 Example:

 RP/0/RSP0/CPU0:router(config)# lpts pifib hardware police location 0/2/CPU0

 or

 RP/0/RSP0/CPU0:router(config)# lpts pifib hardware police

 Configures the ingress policers. You can configure per node or all locations.

 The example shows configuration of pifib policer on an individual node and globally for all nodes respectively. |
| **Step 3** | `flow flow_type`

 Example:

 RP/0/RSP0/CPU0:router(config-pifib-policer-per-node)# flow telnet default

 or

 RP/0/RSP0/CPU0:router(config-pifib-policer-global)# flow telnet default

 Configures the policer for the LPTS flow type. The example shows how to configure the policer for the telnet flow type per node or global mode (all locations).

 • Use the `flow_type` argument to select the applicable flow type. For information about the flow types, see Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference. |
Configuring LPTS Policers

This task allows you to configure the LPTS policers.

SUMMARY STEPS

1. **configure**
2. **lpts pifib hardware police [location node-id]**
3. **flow flow_type {rate rate}**
4. **commit**
5. **show lpts pifib hardware police [location {all | node_id}]**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Configures the ingress policers and enters pifib policer global configuration mode or pifib policer per node configuration mode. The example shows pifib policer per node configuration mode and global.</td>
</tr>
<tr>
<td>Step 2 lpts pifib hardware police [location node-id]</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# lpts pifib hardware police location 0/2/cpu0</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-pifib-policer-per-node)#</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# lpts pifib hardware</td>
<td></td>
</tr>
</tbody>
</table>
Configuring LPTS Policer with IP TOS Precedence

This task allows you to configure the LPTS policers with IP table of service (TOS) precedence:

SUMMARY STEPS

1. configure
2. lpts pifib hardware police [location node-id]
3. flow flow_type
4. precedence {number | name}
5. commit
6. show lpts pifib hardware police [location {all | node-id}]

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>police RP/0/RSP0/CPU0:router(config-pifib-policer-global)#</code></td>
<td>Configures the policer for the LPTS flow type. The example shows how to configure the policer for the ospf flow type.</td>
</tr>
</tbody>
</table>
| **Step 3** | ```flow flow_type {rate rate}``` | **Example:**
| | ```RP/0/RSP0/CPU0:router(config-pifib-policer-per-node)# flow ospf unicast default rate 20000``` | • Use the `flow_type` argument to select the applicable flow type. For information about the flow types, see *Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference*.
| | | • Use the `rate` keyword to specify the rate in packets per seconds (PPS). The range is from 0 to 4294967295.
| | | **Note** LPTS policy for ntp-default flow type, supports a flow rate of 100 pps on Cisco ASR 9000 Series Router. |
| **Step 4** | `commit` | Displays the policer configuration value set.
| **Step 5** | ```show lpts pifib hardware police [location {all | node_id}]``` | • (Optional) Use the `location` keyword to display pre-Internal Forwarding Information Base (IFIB) information for the designated node. The `node-id` argument is entered in the `rack/slot/module` notation.
| | | • Use the `all` keyword to specify all locations. |
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Configures the ingress policers. You can configure per node or all locations.</td>
</tr>
<tr>
<td>Step 2 lpts pifib hardware police [location node-id]</td>
<td>The example shows configuration of pifib policer on an individual node and globally for all nodes respectively.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# lpts pifib hardware police location 0/2/CPU0</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# lpts pifib hardware police</td>
<td></td>
</tr>
<tr>
<td>Step 3 flow flow_type</td>
<td>Configures the policer for the LPTS flow type. The example shows how to configure the policer for the telnet flow type per node or global mode (all locations).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-pifib-policer-per-node)# flow telnet default</td>
<td>• Use the <code>flow_type</code> argument to select the applicable flow type. For information about the flow types, see Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-pifib-policer-global)# flow telnet default</td>
<td></td>
</tr>
<tr>
<td>Step 4 precedence {number</td>
<td>name}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-pifib-policer-per-node)# precedence 5 6 7</td>
<td>The example shows how to configure IP TOS <code>precedence</code> 5, 6, and 7 per node or global mode.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-pifib-policer-global)# precedence 5 6 7</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td>Displays the policer configuration value set.</td>
</tr>
<tr>
<td>Step 6 show lpts pifib hardware police [location {all</td>
<td>node_id}]</td>
</tr>
<tr>
<td>Example:</td>
<td>• Use the <code>all</code> keyword to specify all locations.</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# show lpts pifib hardware police location 0/2/cpu0</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Implementing LPTS Policers

This section provides the following configuration example:
Configuring LPTS Policers: Example

The following example shows how to configure LPTS policers:

```
configure
  lpts pifib hardware police
  flow ospf unicast default rate 200
  flow bgp configured rate 200
  flow bgp default rate 100
!
  lpts pifib hardware police location 0/2/CPU0
  flow ospf unicast default rate 100
  flow bgp configured rate 300
!
  show lpts pifib hardware police location 0/2/CPU0

FT - Flow type ID; PPS - Packets per second configured rate

<table>
<thead>
<tr>
<th>FT</th>
<th>Flow type</th>
<th>Rate (PPS)</th>
<th>Accept/Drop</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>unconfigured-default</td>
<td>101</td>
<td>0/0</td>
</tr>
<tr>
<td>1</td>
<td>Fragment</td>
<td>0</td>
<td>0/0</td>
</tr>
<tr>
<td>1000</td>
<td>OSPF-mc-known</td>
<td>32550</td>
<td>0/0</td>
</tr>
<tr>
<td>2</td>
<td>OSPF-mc-default</td>
<td>250</td>
<td>0/0</td>
</tr>
<tr>
<td>2000</td>
<td>OSPF-uc-known</td>
<td>101</td>
<td>0/0</td>
</tr>
<tr>
<td>5</td>
<td>ISIS知己</td>
<td>250</td>
<td>1500</td>
</tr>
<tr>
<td>7</td>
<td>ISIS-未知</td>
<td>0</td>
<td>0/0</td>
</tr>
</tbody>
</table>
```
Configuring LPTS Policers: Example

250
0
0/0
8
BGP-known
2000 17612
0/0
9
BGP-default cfg-peer 203
5
0/0
10 BGP
default
500
4
0/0
11
PIM-mcast
1500 0/0
12 PIM-ucast
1500 0/0
13 IGMP
1500
0/0
14
ICMP-local
1046 0/0
15
ICMP-app
1000 1046 0/0
16
ICMP-control
1000
0/0
17 ICMP
default
1046 0
0/0
18
LDP-TCP-known
1500 9965
0/0
19
LDP-TCP-cfg-peer
1500
0/0
20
LDP-TCP-default
250
0
0/0
21 LDP
UDP
default
1000
59759
0/0
22 All
routers
1500 0/0
Implementing LPTS

Configuring LPTS Policies: Example
Configuring LPTS Policers: Example

- default
 500 0/0
45 CSS-known
 1000 0/0
46 CSS -default
 500 0/0
47 RSH-known
 1000 0/0
48 RSH -default
 500 0/0
49 UDP-known
 2000 0/0
50 UDP-listen
 1500 0/0
51 UDP-cfg-peer
 1500 0/0
52 UDP -default
 101 653 0/0
53 TCP-known
 2000 0/0
54 TCP-listen
 2000 0/0
55 TCP-cfg-peer
 2000 0/0
56 TCP -default
 101 6 0/0
57 Mcast-known
 2000 0/0
58 Mcast -default
Configuring LPTS policers with IP TOS Precedence: Example

- The following example shows how to configure IP TOS to telnet default flow and allow packets with precedence 3 or 4 at node 0/0/CPU0:
  ```
  configure
  lpts pifib hardware police location 0/0/CPU0
  flow telnet default
  precedence 3 4
  ```

- The following example shows how to configure IP TOS to telnet known flow to only allow packets with precedence 5 or 6 or 7 at all nodes
  ```
  configure
  lpts pifib hardware police
  flow telnet known
  precedence 5 6 7
  ```

- The following example shows how to configure IP TOS to telnet known flow to only allow packets with routine and network precedence at all nodes
  ```
  configure
  lpts pifib hardware police
  flow telnet known
  precedence routine network
  ```

Additional References

The following sections provide references related to implementing LPTS.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XR LPTS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Cisco LPTS Commands module in the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing Network Stack IPv4 and IPv6

The Network Stack IPv4 and IPv6 features are used to configure and monitor Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6).

This module describes the new and revised tasks you need to implement Network Stack IPv4 and IPv6 on your Cisco IOS XR network.

For a complete description of the Network Stack IPv4 and IPv6 commands, refer to the Network Stack IPv4 and IPv6 Commands module of the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference. To locate documentation for other commands that appear in this chapter, use the Cisco ASR 9000 Series Aggregation Services Router Commands Master List, or search online.

Feature History for Implementing Network Stack IPv4 and IPv6

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>GRE for IPv4 feature was added.</td>
</tr>
<tr>
<td>Release 4.2.1</td>
<td>IPv6 over IPv4 GRE Tunnel interface feature was added.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Network Stack IPv4 and IPv6, page 232
- Restrictions for Implementing Network Stack IPv4 and IPv6, page 232
- Information About Implementing Network Stack IPv4 and IPv6, page 232
- How to Implement Network Stack IPv4 and IPv6, page 249
- Generic Routing Encapsulation, page 260
- TCP MSS Adjustment, page 261
- Configuration Examples for Implementing Network Stack IPv4 and IPv6, page 263
- Configuring VRF mode big, page 264
Prerequisites for Implementing Network Stack IPv4 and IPv6

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for Implementing Network Stack IPv4 and IPv6

In any Cisco IOS XR software release with IPv6 support, multiple IPv6 global addresses can be configured on an interface. However, multiple IPv6 link-local addresses on an interface are not supported.

Information About Implementing Network Stack IPv4 and IPv6

To implement Network Stack IPv4 and IPv6, you need to understand the following concepts:

Network Stack IPv4 and IPv6 Exceptions

The Network Stack feature in the Cisco IOS XR software has the following exceptions:

- In Cisco IOS XR software, the `clear ipv6 neighbors` and `show ipv6 neighbors` commands include the `location node-id` keyword. If a location is specified, only the neighbor entries in the specified location are displayed.

- The `ipv6 nd scavenger-timeout` command sets the lifetime for neighbor entries in the stale state. When the scavenger-timer for a neighbor entry expires, the entry is cleared.

- In Cisco IOS XR software, the `show ipv4 interface` and `show ipv6 interface` commands include the `location node-id` keyword. If a location is specified, only the interface entries in the specified location are displayed.

- Cisco IOS XR software allows conflicting IP address entries at the time of configuration. If an IP address conflict exists between two interfaces that are active, Cisco IOS XR software brings down the interface according to the configured conflict policy, the default policy being to bring down the higher interface instance. For example, if GigabitEthernet 0/1/0/1 conflicts with GigabitEthernet 0/2/0/1, then the IPv4 protocol on GigabitEthernet 0/2/0/1 is brought down and IPv4 remains active on GigabitEthernet 0/1/0/1.

IPv4 and IPv6 Functionality

When Cisco IOS XR software is configured with both an IPv4 and an IPv6 address, the interface can send and receive data on both IPv4 and IPv6 networks.

The architecture of IPv6 has been designed to allow existing IPv4 users to make the transition easily to IPv6 while providing services such as end-to-end security, quality of service (QoS), and globally unique addresses. The larger IPv6 address space allows networks to scale and provide global reachability. The simplified IPv6 packet header format handles packets more efficiently. IPv6 prefix aggregation, simplified network renumbering,
and IPv6 site multihoming capabilities provide an IPv6 addressing hierarchy that allows for more efficient routing. IPv6 supports widely deployed routing protocols such as Open Shortest Path First (OSPF), and multiprotocol Border Gateway Protocol (BGP).

The IPv6 neighbor discovery (nd) process uses Internet Control Message Protocol (ICMP) messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), verify the reachability of a neighbor, and keep track of neighboring routers.

IPv6 for Cisco IOS XR Software

IPv6, formerly named IPng (next generation) is the latest version of the Internet Protocol (IP). IP is a packet-based protocol used to exchange data, voice, and video traffic over digital networks. IPv6 was proposed when it became clear that the 32-bit addressing scheme of IP version 4 (IPv4) was inadequate to meet the demands of Internet growth. After extensive discussion, it was decided to base IPng on IP but add a much larger address space and improvements such as a simplified main header and extension headers. IPv6 is described initially in RFC 2460, *Internet Protocol, Version 6 (IPv6) Specification* issued by the Internet Engineering Task Force (IETF). Further RFCs describe the architecture and services supported by IPv6.

Larger IPv6 Address Space

The primary motivation for IPv6 is the need to meet the anticipated future demand for globally unique IP addresses. Applications such as mobile Internet-enabled devices (such as personal digital assistants [PDAs], telephones, and cars), home-area networks (HANs), and wireless data services are driving the demand for globally unique IP addresses. IPv6 quadruples the number of network address bits from 32 bits (in IPv4) to 128 bits, which provides more than enough globally unique IP addresses for every networked device on the planet. By being globally unique, IPv6 addresses inherently enable global reachability and end-to-end security for networked devices, functionality that is crucial to the applications and services that are driving the demand for the addresses. Additionally, the flexibility of the IPv6 address space reduces the need for private addresses and the use of Network Address Translation (NAT); therefore, IPv6 enables new application protocols that do not require special processing by border routers at the edge of networks.

IPv6 Address Formats

IPv6 addresses are represented as a series of 16-bit hexadecimal fields separated by colons (:) in the format: x:x:x:x:x:x:x:x. Following are two examples of IPv6 addresses:

- 2001:0DB8:0:0:8:800:200C:417A

It is common for IPv6 addresses to contain successive hexadecimal fields of zeros. To make IPv6 addresses less cumbersome, two colons (:) can be used to compress successive hexadecimal fields of zeros at the beginning, middle, or end of an IPv6 address. (The colons represent successive hexadecimal fields of zeros.) Table 4: Compressed IPv6 Address Formats, on page 234 lists compressed IPv6 address formats.

A double colon may be used as part of the `ipv6-address` argument when consecutive 16-bit values are denoted as zero. You can configure multiple IPv6 addresses per interfaces, but only one link-local address.
Two colons (::) can be used only once in an IPv6 address to represent the longest successive hexadecimal fields of zeros.

The hexadecimal letters in IPv6 addresses are not case-sensitive.

Table 4: Compressed IPv6 Address Formats

<table>
<thead>
<tr>
<th>IPv6 Address Type</th>
<th>Preferred Format</th>
<th>Compressed Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unicast</td>
<td>2001:0:0:0:0:0:0:800:200C:417A</td>
<td>1080::0:0:0:0:0:0:800:200C:417A</td>
</tr>
<tr>
<td>Multicast</td>
<td>FF01:0:0:0:0:0:0:0:0:101</td>
<td>FF01::101</td>
</tr>
<tr>
<td>Loopback</td>
<td>0:0:0:0:0:0:0:0:1</td>
<td>::1</td>
</tr>
<tr>
<td>Unspecified</td>
<td>0:0:0:0:0:0:0:0:0</td>
<td>::</td>
</tr>
</tbody>
</table>

The loopback address listed in Table 4: Compressed IPv6 Address Formats, on page 234 may be used by a node to send an IPv6 packet to itself. The loopback address in IPv6 functions the same as the loopback address in IPv4 (127.0.0.1).

The IPv6 loopback address cannot be assigned to a physical interface. A packet that has the IPv6 loopback address as its source or destination address must remain within the node that created the packet. IPv6 routers do not forward packets that have the IPv6 loopback address as their source or destination address.

The unspecified address listed in Table 4: Compressed IPv6 Address Formats, on page 234 indicates the absence of an IPv6 address. For example, a newly initialized node on an IPv6 network may use the unspecified address as the source address in its packets until it receives its IPv6 address.

The IPv6 unspecified address cannot be assigned to an interface. The unspecified IPv6 addresses must not be used as destination addresses in IPv6 packets or the IPv6 routing header.

An IPv6 address prefix, in the format `ipv6-prefix/prefix-length`, can be used to represent bit-wise contiguous blocks of the entire address space. The `ipv6-prefix` argument must be in the form documented in RFC 2373, in which the address is specified in hexadecimal using 16-bit values between colons. The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). For example, 2001:0DB8:8086:6502::/32 is a valid IPv6 prefix.

IPv6 Address Type: Unicast

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast address is delivered to the interface identified by that address. Cisco IOS XR software supports the following IPv6 unicast address types:

- Global aggregatable address
• Site-local address (proposal to remove by IETF)
• Link-local address
• IPv4-compatible IPv6 address

Aggregatable Global Address

An aggregatable global address is an IPv6 address from the aggregatable global unicast prefix. The structure of aggregatable global unicast addresses enables strict aggregation of routing prefixes that limits the number of routing table entries in the global routing table. Aggregatable global addresses are used on links that are aggregated upward through organizations, and eventually to the Internet service providers (ISPs).

Aggregatable global IPv6 addresses are defined by a global routing prefix, a subnet ID, and an interface ID. Except for addresses that start with binary 000, all global unicast addresses have a 64-bit interface ID. The current global unicast address allocation uses the range of addresses that start with binary value 001 (2000::/3). Figure 7: Aggregatable Global Address Format, on page 235 shows the structure of an aggregatable global address.

Figure 7: Aggregatable Global Address Format

Addresses with a prefix of 2000::/3 (001) through E000::/3 (111) are required to have 64-bit interface identifiers in the extended universal identifier (EUI)-64 format. The Internet Assigned Numbers Authority (IANA) allocates the IPv6 address space in the range of 2000::/16 to regional registries.

The aggregatable global address typically consists of a 48-bit global routing prefix and a 16-bit subnet ID or Site-Level Aggregator (SLA). In the IPv6 aggregatable global unicast address format document (RFC 2374), the global routing prefix included two other hierarchically structured fields named Top-Level Aggregator (TLA) and Next-Level Aggregator (NLA). The IETF decided to remove the TLS and NLA fields from the RFCs, because these fields are policy-based. Some existing IPv6 networks deployed before the change might still be using networks based on the older architecture.

A 16-bit subnet field called the subnet ID could be used by individual organizations to create their own local addressing hierarchy and to identify subnets. A subnet ID is similar to a subnet in IPv4, except that an organization with an IPv6 subnet ID can support up to 65,535 individual subnets.

An interface ID is used to identify interfaces on a link. The interface ID must be unique to the link. It may also be unique over a broader scope. In many cases, an interface ID is the same as or based on the link-layer address of an interface. Interface IDs used in aggregatable global unicast and other IPv6 address types must be 64 bits long and constructed in the modified EUI-64 format.

Interface IDs are constructed in the modified EUI-64 format in one of the following ways:

- For all IEEE 802 interface types (for example, Ethernet interfaces and FDDI interfaces), the first three octets (24 bits) are taken from the Organizationally Unique Identifier (OUI) of the 48-bit link-layer address (MAC address) of the interface, the fourth and fifth octets (16 bits) are a fixed hexadecimal
value of FFFE, and the last three octets (24 bits) are taken from the last three octets of the MAC address. The construction of the interface ID is completed by setting the Universal/Local (U/L) bit—the seventh bit of the first octet—to a value of 0 or 1. A value of 0 indicates a locally administered identifier; a value of 1 indicates a globally unique IPv6 interface identifier.

- For all other interface types (for example, serial, loopback, ATM, Frame Relay, and tunnel interface types—except tunnel interfaces used with IPv6 overlay tunnels), the interface ID is constructed in the same way as the interface ID for IEEE 802 interface types; however, the first MAC address from the pool of MAC addresses in the router is used to construct the identifier (because the interface does not have a MAC address).

- For tunnel interface types that are used with IPv6 overlay tunnels, the interface ID is the IPv4 address assigned to the tunnel interface with all zeros in the high-order 32 bits of the identifier.

Note

For interfaces using Point-to-Point Protocol (PPP), given that the interfaces at both ends of the connection might have the same MAC address, the interface identifiers used at both ends of the connection are negotiated (picked randomly and, if necessary, reconstructed) until both identifiers are unique. The first MAC address in the router is used to construct the identifier for interfaces using PPP.

If no IEEE 802 interface types are in the router, link-local IPv6 addresses are generated on the interfaces in the router in the following sequence:

1. The router is queried for MAC addresses (from the pool of MAC addresses in the router).
2. If no MAC address is available, the serial number of the Route Processor (RP) or line card (LC) is used to form the link-local address.

Link-Local Address

A link-local address is an IPv6 unicast address that can be automatically configured on any interface using the link-local prefix FE80::/10 (1111 1110 10) and the interface identifier in the modified EUI-64 format. Link-local addresses are used in the neighbor discovery protocol and the stateless autoconfiguration process. Nodes on a local link can use link-local addresses to communicate; the nodes do not need site-local or globally unique addresses to communicate. Figure 8: Link-Local Address Format, on page 237 shows the structure of a link-local address.
IPv6 routers must not forward packets that have link-local source or destination addresses to other links.

IPv4-Compatible IPv6 Address

An IPv4-compatible IPv6 address is an IPv6 unicast address that has zeros in the high-order 96 bits of the address and an IPv4 address in the low-order 32 bits of the address. The format of an IPv4-compatible IPv6 address is 0:0:0:0:0:0:A.B.C.D or ::A.B.C.D. The entire 128-bit IPv4-compatible IPv6 address is used as the IPv6 address of a node and the IPv4 address embedded in the low-order 32 bits is used as the IPv4 address of the node. IPv4-compatible IPv6 addresses are assigned to nodes that support both the IPv4 and IPv6 protocol stacks and are used in automatic tunnels. Figure 9: IPv4-Compatible IPv6 Address Format, on page 237 shows the structure of an IPv4-compatible IPv6 address and a few acceptable formats for the address.

Simplified IPv6 Packet Header

The basic IPv4 packet header has 12 fields with a total size of 20 octets (160 bits). The 12 fields may be followed by an Options field, which is followed by a data portion that is usually the transport-layer packet. The variable length of the Options field adds to the total size of the IPv4 packet header. The shaded fields of
the IPv4 packet header are not included in the IPv6 packet header. (See Figure 10: IPv4 Packet Header Format, on page 238)

Figure 10: IPv4 Packet Header Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4</td>
</tr>
<tr>
<td>HD Len</td>
<td>12</td>
</tr>
<tr>
<td>Type of Service</td>
<td>8</td>
</tr>
<tr>
<td>Total Length</td>
<td>16</td>
</tr>
<tr>
<td>Identification</td>
<td>20</td>
</tr>
<tr>
<td>Flags</td>
<td>3</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>16</td>
</tr>
<tr>
<td>Time to Live</td>
<td>8</td>
</tr>
<tr>
<td>Protocol</td>
<td>8</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>16</td>
</tr>
<tr>
<td>Source Address</td>
<td>32</td>
</tr>
<tr>
<td>Destination Address</td>
<td>32</td>
</tr>
<tr>
<td>Options</td>
<td>Variable length</td>
</tr>
<tr>
<td>Padding</td>
<td>Variable length</td>
</tr>
<tr>
<td>Data Portion</td>
<td>40</td>
</tr>
</tbody>
</table>

The basic IPv6 packet header has 8 fields with a total size of 40 octets (320 bits). (See Figure 11: IPv6 Packet Header Format, on page 238.) Fields were removed from the IPv6 header because, in IPv6, fragmentation is not handled by routers and checksums at the network layer are not used. Instead, fragmentation in IPv6 is handled by the source of a packet and checksums at the data link layer and transport layer are used. (In IPv4, the User Datagram Protocol (UDP) transport layer uses an optional checksum. In IPv6, use of the UDP checksum is required to check the integrity of the inner packet.) Additionally, the basic IPv6 packet header and Options field are aligned to 64 bits, which can facilitate the processing of IPv6 packets.

Figure 11: IPv6 Packet Header Format

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4</td>
</tr>
<tr>
<td>Traffic Class</td>
<td>4</td>
</tr>
<tr>
<td>Flow Label</td>
<td>20</td>
</tr>
<tr>
<td>Payload Length</td>
<td>32</td>
</tr>
<tr>
<td>Next Header</td>
<td>8</td>
</tr>
<tr>
<td>Hop Limit</td>
<td>16</td>
</tr>
<tr>
<td>Source Address</td>
<td>32</td>
</tr>
<tr>
<td>Destination Address</td>
<td>32</td>
</tr>
<tr>
<td>Next Header</td>
<td>8</td>
</tr>
<tr>
<td>Extension Header information</td>
<td>Variable length</td>
</tr>
<tr>
<td>Data Portion</td>
<td>40</td>
</tr>
</tbody>
</table>

This table lists the fields in the basic IPv6 packet header.
Table 5: Basic IPv6 Packet Header Fields

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>Similar to the Version field in the IPv4 packet header, except that the field lists number 6 for IPv6 instead of number 4 for IPv4.</td>
</tr>
<tr>
<td>Traffic Class</td>
<td>Similar to the Type of Service field in the IPv4 packet header. The Traffic Class field tags packets with a traffic class that is used in differentiated services.</td>
</tr>
<tr>
<td>Flow Label</td>
<td>A new field in the IPv6 packet header. The Flow Label field tags packets with a specific flow that differentiates the packets at the network layer.</td>
</tr>
<tr>
<td>Payload Length</td>
<td>Similar to the Total Length field in the IPv4 packet header. The Payload Length field indicates the total length of the data portion of the packet.</td>
</tr>
<tr>
<td>Next Header</td>
<td>Similar to the Protocol field in the IPv4 packet header. The value of the Next Header field determines the type of information following the basic IPv6 header. The type of information following the basic IPv6 header can be a transport-layer packet, for example, a TCP or UDP packet, or an Extension Header, as shown in Figure 12: IPv6 Extension Header Format, on page 240.</td>
</tr>
<tr>
<td>Hop Limit</td>
<td>Similar to the Time to Live field in the IPv4 packet header. The value of the Hop Limit field specifies the maximum number of routers that an IPv6 packet can pass through before the packet is considered invalid. Each router decrements the value by one. Because no checksum is in the IPv6 header, the router can decrement the value without needing to recalculate the checksum, which saves processing resources.</td>
</tr>
<tr>
<td>Source Address</td>
<td>Similar to the Source Address field in the IPv4 packet header, except that the field contains a 128-bit source address for IPv6 instead of a 32-bit source address for IPv4.</td>
</tr>
<tr>
<td>Destination Address</td>
<td>Similar to the Destination Address field in the IPv6 packet header, except that the field contains a 128-bit destination address for IPv6 instead of a 32-bit destination address for IPv4.</td>
</tr>
</tbody>
</table>

Following the eight fields of the basic IPv6 packet header are optional extension headers and the data portion of the packet. If present, each extension header is aligned to 64 bits. There is no fixed number of extension
headers in an IPv6 packet. Together, the extension headers form a chain of headers. Each extension header is identified by the Next Header field of the previous header. Typically, the final extension header has a Next Header field of a transport-layer protocol, such as TCP or UDP. Figure 12: IPv6 Extension Header Format, on page 240 shows the IPv6 extension header format.

Figure 12: IPv6 Extension Header Format

This table lists the extension header types and their Next Header field values.

Table 6: IPv6 Extension Header Types

<table>
<thead>
<tr>
<th>Header Type</th>
<th>Next Header Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hop-by-hop options header</td>
<td>0</td>
<td>This header is processed by all hops in the path of a packet. When present, the hop-by-hop options header always follows immediately after the basic IPv6 packet header.</td>
</tr>
</tbody>
</table>
Header Type | Next Header Value | Description
--- | --- | ---
Destination options header | 60 | The destination options header can follow any hop-by-hop options header, in which case the destination options header is processed at the final destination and also at each visited address specified by a routing header. Alternatively, the destination options header can follow any Encapsulating Security Payload (ESP) header, in which case the destination options header is processed only at the final destination.
Routing header | 43 | The routing header is used for source routing.
Fragment header | 44 | The fragment header is used when a source must fragment a packet that is larger than the maximum transmission unit (MTU) for the path between itself and a destination. The Fragment header is used in each fragmented packet.
Authentication header and ESP header | 51 and 50 | The Authentication header and the ESP header are used within IP Security Protocol (IPSec) to provide authentication, integrity, and confidentiality of a packet. These headers are identical for both IPv4 and IPv6.
Upper-layer header | 6 (TCP) and 17 (UDP) | The upper-layer (transport) headers are the typical headers used inside a packet to transport the data. The two main transport protocols are TCP and UDP.
Mobility header | To be done by IANA | Extension headers used by mobile nodes, correspondent nodes, and home agents in all messaging related to the creation and management of bindings.
IPv6 Neighbor Discovery

The IPv6 neighbor discovery process uses ICMP messages and solicited-node multicast addresses to determine the link-layer address of a neighbor on the same network (local link), verify the reachability of a neighbor, and keep track of neighboring routers.

IPv6 Neighbor Solicitation Message

A value of 135 in the Type field of the ICMP packet header identifies a neighbor solicitation message. Neighbor solicitation messages are sent on the local link when a node wants to determine the link-layer address of another node on the same local link. (See Figure 13: IPv6 Neighbor Discovery—Neighbor Solicitation Message, on page 242.) When a node wants to determine the link-layer address of another node, the source address in a neighbor solicitation message is the IPv6 address of the node sending the neighbor solicitation message. The destination address in the neighbor solicitation message is the solicited-node multicast address that corresponds to the IPv6 address of the destination node. The neighbor solicitation message also includes the link-layer address of the source node.

Figure 13: IPv6 Neighbor Discovery—Neighbor Solicitation Message

After receiving the neighbor solicitation message, the destination node replies by sending a neighbor advertisement message, which has a value of 136 in the Type field of the ICMP packet header, on the local link. The source address in the neighbor advertisement message is the IPv6 address of the node (more specifically, the IPv6 address of the node interface) sending the neighbor advertisement message. The destination address in the neighbor advertisement message is the IPv6 address of the node that sent the neighbor solicitation message. The data portion of the neighbor advertisement message includes the link-layer address of the node sending the neighbor advertisement message.

After the source node receives the neighbor advertisement, the source node and destination node can communicate.

Neighbor solicitation messages are also used to verify the reachability of a neighbor after the link-layer address of a neighbor is identified. When a node wants to verifying the reachability of a neighbor, the destination address in a neighbor solicitation message is the unicast address of the neighbor.
Neighbor advertisement messages are also sent when there is a change in the link-layer address of a node on a local link. When there is such a change, the destination address for the neighbor advertisement is the all-nodes multicast address.

Neighbor solicitation messages are also used to verify the reachability of a neighbor after the link-layer address of a neighbor is identified. Neighbor unreachability detection identifies the failure of a neighbor or the failure of the forward path to the neighbor, and is used for all paths between hosts and neighboring nodes (hosts or routers). Neighbor unreachability detection is performed for neighbors to which only unicast packets are being sent and is not performed for neighbors to which multicast packets are being sent.

A neighbor is considered reachable when a positive acknowledgment is returned from the neighbor (indicating that packets previously sent to the neighbor have been received and processed). A positive acknowledgment—from an upper-layer protocol (such as TCP)—indicates that a connection is making forward progress (reaching its destination) or that a neighbor advertisement message in response to a neighbor solicitation message has been received. If packets are reaching the peer, they are also reaching the next-hop neighbor of the source. Therefore, forward progress is also a confirmation that the next-hop neighbor is reachable.

For destinations that are not on the local link, forward progress implies that the first-hop router is reachable. When acknowledgments from an upper-layer protocol are not available, a node probes the neighbor using unicast neighbor solicitation messages to verify that the forward path is still working. The return of a solicited neighbor advertisement message from the neighbor is a positive acknowledgment that the forward path is still working. (Neighbor advertisement messages that have the solicited flag set to a value of 1 are sent only in response to a neighbor solicitation message.) Unsolicited messages confirm only the one-way path from the source to the destination node; solicited neighbor advertisement messages indicate that a path is working in both directions.

Note

A neighbor advertisement message that has the solicited flag set to a value of 0 must not be considered as a positive acknowledgment that the forward path is still working.

Neighbor solicitation messages are also used in the stateless autoconfiguration process to verify the uniqueness of unicast IPv6 addresses before the addresses are assigned to an interface. Duplicate address detection is performed first on a new, link-local IPv6 address before the address is assigned to an interface. (The new address remains in a tentative state while duplicate address detection is performed.) Specifically, a node sends a neighbor solicitation message with an unspecified source address and a tentative link-local address in the body of the message. If another node is already using that address, the node returns a neighbor advertisement message that contains the tentative link-local address. If another node is simultaneously verifying the uniqueness of the same address, that node also returns a neighbor solicitation message. If no neighbor advertisement messages are received in response to the neighbor solicitation message and no neighbor solicitation messages are received from other nodes that are attempting to verify the same tentative address, the node that sent the original neighbor solicitation message considers the tentative link-local address to be unique and assigns the address to the interface.

Every IPv6 unicast address (global or link-local) must be checked for uniqueness on the link; however, until the uniqueness of the link-local address is verified, duplicate address detection is not performed on any other IPv6 addresses associated with the link-local address. The Cisco implementation of duplicate address detection in the Cisco IOS XR software does not check the uniqueness of anycast or global addresses that are generated from 64-bit interface identifiers.
IPv6 Router Advertisement Message

Router advertisement (RA) messages, which have a value of 134 in the Type field of the ICMP packet header, are periodically sent out each configured interface of an IPv6 router. The router advertisement messages are sent to the all-nodes multicast address. (See Figure 14: IPv6 Neighbor Discovery—Router Advertisement Message, on page 244.)

Figure 14: IPv6 Neighbor Discovery—Router Advertisement Message

Router advertisement message packet definitions:
- ICMPv6 Type = 134
- Src = router link-local address
- Dst = all-nodes multicast address
- Data = options, prefix, lifetime, autoconfig flag

Router advertisement messages typically include the following information:

- One or more onlink IPv6 prefixes that nodes on the local link can use to automatically configure their IPv6 addresses
- Lifetime information for each prefix included in the advertisement
- Sets of flags that indicate the type of autoconfiguration (stateless or statefull) that can be completed
- Default router information (whether the router sending the advertisement should be used as a default router and, if so, the amount of time, in seconds, that the router should be used as a default router)
- Additional information for hosts, such as the hop limit and MTU a host should use in packets that it originates

Router advertisements are also sent in response to router solicitation messages. Router solicitation messages, which have a value of 133 in the Type field of the ICMP packet header, are sent by hosts at system startup so that the host can immediately autoconfigure without needing to wait for the next scheduled router advertisement message. Given that router solicitation messages are usually sent by hosts at system startup (the host does not have a configured unicast address), the source address in router solicitation messages is usually the unspecified IPv6 address (0:0:0:0:0:0:0:0). If the host has a configured unicast address, the unicast address of the interface sending the router solicitation message is used as the source address in the message. The destination address in router solicitation messages is the all-routers multicast address with a scope of the link. When a router advertisement is sent in response to a router solicitation, the destination address in the router advertisement message is the unicast address of the source of the router solicitation message.

The following router advertisement message parameters can be configured:

- The time interval between periodic router advertisement messages
- The “router lifetime” value, which indicates the usefulness of a router as the default router (for use by all nodes on a given link)
- The network prefixes in use on a given link
The time interval between neighbor solicitation message retransmissions (on a given link)

The amount of time a node considers a neighbor reachable (for use by all nodes on a given link)

The configured parameters are specific to an interface. The sending of router advertisement messages (with default values) is automatically enabled on Ethernet and FDDI interfaces. For other interface types, the sending of router advertisement messages must be manually configured by using the `no ipv6 nd suppress-ra` command in interface configuration mode. The sending of router advertisement messages can be disabled on individual interfaces by using the `ipv6 nd suppress-ra` command in interface configuration mode.

Note

For stateless autoconfiguration to work properly, the advertised prefix length in router advertisement messages must always be 64 bits.

IPv6 Neighbor Redirect Message

A value of 137 in the Type field of the ICMP packet header identifies an IPv6 neighbor redirect message. Routers send neighbor redirect messages to inform hosts of better first-hop nodes on the path to a destination. (See Figure 15: IPv6 Neighbor Discovery—Neighbor Redirect Message, on page 245.)

Figure 15: IPv6 Neighbor Discovery—Neighbor Redirect Message

![Figure 15: IPv6 Neighbor Discovery—Neighbor Redirect Message](image)

Neighbor redirect packet definitions:
- ICMPv6 Type = 137
- Src = link-local address of Device A
- Dst = link-local address of Host H
- Data = target address (link-local address of Device B), options (header of redirected packet)

Note: If the target is a host, the target address is equal to the destination address of the redirect packet and the options include the link-layer address of the target host (if known).
A router must be able to determine the link-local address for each of its neighboring routers to ensure that the target address (the final destination) in a redirect message identifies the neighbor router by its link-local address. For static routing, the address of the next-hop router should be specified using the link-local address of the router; for dynamic routing, all IPv6 routing protocols must exchange the link-local addresses of neighboring routers.

After forwarding a packet, a router should send a redirect message to the source of the packet under the following circumstances:

- The destination address of the packet is not a multicast address.
- The packet was not addressed to the router.
- The packet is about to be sent out the interface on which it was received.
- The router determines that a better first-hop node for the packet resides on the same link as the source of the packet.
- The source address of the packet is a global IPv6 address of a neighbor on the same link, or a link-local address.

Use the `ipv6 icmp error-interval` global configuration command to limit the rate at which the router generates all IPv6 ICMP error messages, including neighbor redirect messages, which ultimately reduces link-layer congestion.

A router must not update its routing tables after receiving a neighbor redirect message, and hosts must not originate neighbor redirect messages.

ICMP for IPv6

Internet Control Message Protocol (ICMP) in IPv6 functions the same as ICMP in IPv4—ICMP generates error messages, such as ICMP destination unreachable messages and informational messages like ICMP echo request and reply messages. Additionally, ICMP packets in IPv6 are used in the IPv6 neighbor discovery process, path MTU discovery, and the Multicast Listener Discovery (MLD) protocol for IPv6. MLD is used by IPv6 routers to discover multicast listeners (nodes that want to receive multicast packets destined for specific multicast addresses) on directly attached links. MLD is based on version 2 of the Internet Group Management Protocol (IGMP) for IPv4.

A value of 58 in the Next Header field of the basic IPv6 packet header identifies an IPv6 ICMP packet. ICMP packets in IPv6 are like a transport-layer packet in the sense that the ICMP packet follows all the extension headers and is the last piece of information in the IPv6 packet. Within IPv6 ICMP packets, the ICMPv6 Type and ICMPv6 Code fields identify IPv6 ICMP packet specifics, such as the ICMP message type. The value in the Checksum field is derived (computed by the sender and checked by the receiver) from the fields in the IPv6 ICMP packet and the IPv6 pseudoheader. The ICMPv6 Data field contains error or diagnostic information relevant to IP packet processing.
Address Repository Manager

IPv4 and IPv6 Address Repository Manager (IPARM) enforces the uniqueness of global IP addresses configured in the system, and provides global IP address information dissemination to processes on route processors (RPs) and line cards (LCs) using the IP address consumer application program interfaces (APIs), which includes unnumbered interface information.

Address Conflict Resolution

There are two parts to conflict resolution; the conflict database and the conflict set definition.

Conflict Database

IPARM maintains a global conflict database. IP addresses that conflict with each other are maintained in lists called conflict sets. These conflict sets make up the global conflict database.

A set of IP addresses are said to be part of a conflict set if at least one prefix in the set conflicts with every other IP address belonging to the same set. For example, the following four addresses are part of a single conflict set.

address 1: 10.1.1.1/16
address 2: 10.2.1.1/16
address 3: 10.3.1.1/16
address 4: 10.4.1.1/8

When a conflicting IP address is added to a conflict set, an algorithm runs through the set to determine the highest precedence address within the set.

This conflict policy algorithm is deterministic, that is, the user can tell which addresses on the interface are enabled or disabled. The address on the interface that is enabled is declared as the highest precedence ip address for that conflict set.

The conflict policy algorithm determines the highest precedence ip address within the set.

Multiple IP Addresses

The IPARM conflict handling algorithm allows multiple IP addresses to be enabled within a set. Multiple addresses could potentially be highest precedence IP addresses.

interface GigabitEthernet 0/2/0/0: 10.1.1.1/16
interface GigabitEthernet 0/3/0/0: 10.1.1.2/8
interface GigabitEthernet 0/4/0/0: 10.2.1.1/16

The IP address on GigabitEthernet 0/2/0/0 is declared as highest precedence as per the lowest rack/slot policy and is enabled. However, because the address on interface GigabitEthernet 0/4/0/0 does not conflict with the current highest precedence IP address, the address on GigabitEthernet 0/4/0/0 is enabled as well.

Recursive Resolution of Conflict Sets

In the example below, the address on the interface in GigabitEthernet 0/2/0/0 has the highest precedence because it is the lowest rack/slot. However, now the addresses on GigabitEthernet 0/4/0/0 and GigabitEthernet
0/5/0/0 also do not conflict with the highest precedence IP addresses on GigabitEthernet 0/2/0/0. However, the addresses on GigabitEthernet 0/4/0/0 and GigabitEthernet 0/5/0/0 conflict with each other. The conflict resolution software tries to keep the interface that is enabled as the one that needs to stay enabled. If both interfaces are disabled, the software enables the address based on the current conflict policy. Because GigabitEthernet 0/4/0/0 is on a lower rack/slot, it is enabled.

interface GigabitEthernet 0/2/0/0: 10.1.1.1/16
interface GigabitEthernet 0/3/0/0: 10.1.1.2/8
interface GigabitEthernet 0/4/0/0: 10.2.1.1/16
interface GigabitEthernet 0/5/0/0: 10.2.1.2/16

Route-Tag Support for Connected Routes

The Route-Tag Support for Connected Routes feature that attaches a tag with all IPv4 and IPv6 addresses of an interface. The tag is propagated from the IPv4 and IPv6 management agents (MA) to the IPv4 and IPv6 address repository managers (ARM) to routing protocols, thus enabling the user to control the redistribution of connected routes by looking at the route tags, by using routing policy language (RPL) scripts. This prevents the redistribution of some interfaces, by checking for route tags in a route policy.

The route tag feature is already available for static routes and connected routes (interfaces) wherein the route tags are matched to policies and redistribution can be prevented.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. Do one of the following:
 - ipv4 address ipv4-address mask [secondary]
4. route-tag [route-tag value]
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
<td>Specifies a primary (or secondary) IPv4 address address for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# interface gigabitethernet 0/1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Do one of the following:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ipv4 address ipv4-address mask [secondary]</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-if)# ipv4 address 192.168.1.27 255.0.0.0</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>route-tag [route-tag value]</code></td>
<td>Specifies that the configured address has a route tag to be associated with it. The range for the route-tag value is 1 to 4294967295.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-if)# ipv4 address 192.168.1.27 255.0.0.0 route-tag 100</code></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>commit</code></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fallback VRF

Virtual Routing and Forwarding (VRF) is an IP technology that allows multiple instances of a routing table to coexist on the same router at the same time. Because the routing instances are independent, the same or overlapping IP addresses can be used without conflict.

If the destination prefix of a data packet does not match any routes in VRF, a default route is used to lookup the global routing table. However, using a default route needs an explicit next hop which may not be efficient. A better option is to configure a fallback VRF route so that if the destination does not have a match in the VRF table, the fallback VRF table is used.

The fallback VRF can either be the global routing table or any other non-global VRF table. You can configure a fallback VRF only on Cisco ASR 9000 Enhanced Ethernet Line Cards.

How to Implement Network Stack IPv4 and IPv6

This section contains the following procedures:

Assigning IPv4 Addresses to Network Interfaces

This task assigns IPv4 addresses to individual network interfaces.

IPv4 Addresses

A basic and required task for configuring IP is to assign IPv4 addresses to network interfaces. Doing so enables the interfaces and allows communication with hosts on those interfaces using IPv4. An IP address identifies a location to which IP datagrams can be sent. An interface can have one primary IP address and multiple (up to 500) secondary addresses. Packets generated by the software always use the primary IPv4 address. Therefore, all networking devices on a segment should share the same primary network number.
Associated with this task are decisions about subnetting and masking the IP addresses. A mask identifies the bits that denote the network number in an IP address. When you use the mask to subnet a network, the mask is then referred to as a subnet mask.

Note
Cisco supports only network masks that use contiguous bits that are flush left against the network field.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. ipv4 address ipv4-address mask [secondary]
4. commit
5. show ipv4 interface

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Purpose Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td>Example: RP/0/RSP0/CPU0:router(config)# interface gigabitethernet 0/1/0/1 Purpose Enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3 ipv4 address ipv4-address mask [secondary]</td>
<td>Example: RP/0/RSP0/CPU0:router(config-if)# ipv4 address 192.168.1.27 255.0.0.0 RP/0/RSP0/CPU0:router(config-if)# ipv4 address 192.168.1.27/8 Purpose Specifies a primary or secondary IPv4 address for an interface.</td>
</tr>
<tr>
<td>Step 4 commit</td>
<td>Purpose (Optional) Displays the usability status of interfaces configured for IPv4.</td>
</tr>
<tr>
<td>Step 5 show ipv4 interface</td>
<td>Example: RP/0/RSP0/CPU0:router# show ipv4 interface</td>
</tr>
</tbody>
</table>
IPv4 Virtual Addresses

Configuring an IPv4 virtual address enables you to access the router from a single virtual address with a management network, without the prior knowledge of which route processor (RP) is active. An IPv4 virtual address persists across RP failover situations. For this to happen, the virtual IPv4 address must share a common IPv4 subnet with a Management Ethernet interface on both RPs.

The `vrf` keyword supports virtual addresses on a per-VRF basis.

The `use-as-src-addr` keyword eliminates the need for configuring a loopback interface as the source interface (that is, update source) for management applications. When an update source is not configured, management applications allow the transport processes (TCP, UDP, raw_ip) to select a suitable source address. The transport processes, in turn, consult the FIB for selecting a suitable source address. If a Management Ethernet's IP address is selected as the source address and if the `use-as-src-addr` keyword is configured, then the transport substitutes the Management Ethernet's IP address with a relevant virtual IP address. This functionality works across RP switchovers. If the `use-as-src-addr` is not configured, then the source-address selected by transports can change after a failover and the NMS software may not be able to manage this situation.

Note

Protocol configuration such as tacacs source-interface, snmp-server trap-source, ntp source, logging source-interface do not use the virtual management IP address as their source by default. Use the `ipv4 virtual address use-as-src-addr` command to ensure that the protocol uses the virtual IPv4 address as its source address. Alternatively, you can also configure a loopback address with the designated or desired IPv4 address and set that as the source for protocols such as TACACS+ via the `tacacs source-interface` command.

Configuring IPv6 Addressing

This task assigns IPv6 addresses to individual router interfaces and enable the forwarding of IPv6 traffic globally on the router. By default, IPv6 addresses are not configured.

Note

The `ipv6-prefix` argument in the `ipv6 address` command must be in the form documented in RFC 2373 in which the address is specified in hexadecimal using 16-bit values between colons.

The `/prefix-length` argument in the `ipv6 address` command is a decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address) A slash must precede the decimal value.

The `ipv6-address` argument in the `ipv6 address link-local` command must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons.

IPv6 Virtual Addresses

Configuring an IPv6 virtual address enables you to access the router from a single virtual address with a management network, without the prior knowledge of which route processor (RP) is active. An IPv6 virtual address persists across RP failover situations. For this to happen, the virtual IPv6 address must share a common IPv6 subnet with a Management Ethernet interface on both RPs.

The `vrf` keyword supports virtual addresses on a per-VRF basis.
The `use-as-src-addr` keyword eliminates the need for configuring a loopback interface as the source interface (that is, update source) for management applications. When an update source is not configured, management applications allow the transport processes (TCP, UDP, raw_ip) to select a suitable source address. The transport processes, in turn, consult the FIB for selecting a suitable source address. If a Management Ethernet's IP address is selected as the source address and if the `use-as-src-addr` keyword is configured, then the transport substitutes the Management Ethernet's IP address with a relevant virtual IP address. This functionality works across RP switchovers. If the `use-as-src-addr` is not configured, then the source-address selected by transports can change after a failover and the NMS software may not be able to manage this situation.

Note
Protocol configuration such as tacacs source-interface, snmp-server trap-source, ntp source, logging source-interface do not use the virtual management IP address as their source by default. Use the `ipv6 virtual address use-as-src-addr` command to ensure that the protocol uses the virtual IPv6 address as its source address. Alternatively, you can also configure a loopback address with the designated or desired IPv6 address and set that as the source for protocols such as TACACS+ via the `tacacs source-interface` command.

Assigning Multiple IP Addresses to Network Interfaces

This task assigns multiple IP addresses to network interfaces.

Secondary IPv4 Addresses

The Cisco IOS XR software supports multiple IP addresses per interface.

You can specify a maximum of 500 secondary addresses. Secondary IP addresses can be used in a variety of situations. The following are the most common applications:

- There might not be enough host addresses for a particular network segment. For example, suppose your subnetting allows up to 254 hosts per logical subnet, but on one physical subnet you must have 300 host addresses. Using secondary IP addresses on the routers or access servers allows you to have two logical subnets using one physical subnet.

- Many older networks were built using Level 2 bridges, and were not subnetted. The judicious use of secondary addresses can aid in the transition to a subnetted, router-based network. Routers on an older, bridged segment can easily be made aware that many subnets are on that segment.

- Two subnets of a single network might otherwise be separated by another network. You can create a single network from subnets that are physically separated by another network by using a secondary address. In these instances, the first network is *extended*, or layered on top of the second network. Note that a subnet cannot appear on more than one active interface of the router at a time.

Note
If any router on a network segment uses a secondary IPv4 address, all other routers on that same segment must also use a secondary address from the same network or subnet.

Caution
Inconsistent use of secondary addresses on a network segment can quickly cause routing loops.
SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. ipv4 address ipv4-address mask [secondary]
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# interface gigabitethernet 0/1/0/3</td>
<td></td>
</tr>
<tr>
<td>Step 3 ipv4 address ipv4-address mask [secondary]</td>
<td>Specifies that the configured address is a secondary IPv4 address.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 address 192.168.1.27 255.255.255.0 secondary</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring IPv4 and IPv6 Protocol Stacks

This task configures an interface in a Cisco networking device to support both the IPv4 and IPv6 protocol stacks.

When an interface in a Cisco networking device is configured with both an IPv4 and an IPv6 address, the interface forwards both IPv4 and IPv6 traffic—the interface can send and receive data on both IPv4 and IPv6 networks.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. ipv4 address ip-address mask [secondary]
4. ipv6 address ipv6-prefix/prefix-length [eui-64]
5. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Specifies the interface type and number, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
<td>Specifies a primary or secondary IPv4 address for an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# interface gigabitethernet 0/1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv4 address ip-address mask [secondary]</td>
<td>Specifies the IPv6 address assigned to the interface and enables IPv6 processing on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 address 192.168.99.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 address ipv6-prefix/prefix-length [eui-64]</td>
<td>Specifies the IPv6 address assigned to the interface and enables IPv6 processing on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv6 address 2001:0DB8:c18:1::3/64</td>
<td>- A slash mark (/) must precede the prefix-length, and there is no space between the ipv6-prefix and slash mark.</td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Enabling IPv4 Processing on an Unnumbered Interface

This task enables IPv4 processing on an unnumbered interface.

IPv4 Processing on an Unnumbered Interface

This section describes the process of enabling an IPv4 point-to-point interface without assigning an explicit IP address to the interface. Whenever the unnumbered interface generates a packet (for example, for a routing update), it uses the address of the interface you specified as the source address of the IP packet. It also uses the specified interface address in determining which routing processes are sending updates over the unnumbered interface. Restrictions are as follows:

- Serial interfaces using High-Level Data Link Control (HDLC), PPP, and Frame Relay encapsulations can be unnumbered. Serial interfaces using Frame Relay encapsulation can also be unnumbered, but the interface must be a point-to-point subinterface.
- You cannot use the ping EXEC command to determine whether the interface is up, because the interface has no IP address. The Simple Network Management Protocol (SNMP) can be used to remotely monitor interface status.
- You cannot support IP security options on an unnumbered interface.
If you have configured GRE tunnel as IPv4 unnumbered interface then you must also configure a static route. The tunnel cannot reach the peer address if there is no static route configured. Here is the configuration example:

```
interface Loopback 100
ipv4 address 192.0.2.1 255.255.255.252

interface tunnel-ip 100
ipv4 unnumbered Loopback 100
tunnel source 192.0.2.10
keepalive
tunnel destination 192.0.2.11
router static
   address-family ipv4 unicast
       192.0.2.2/32 tunnel-ip 100
```

If you are configuring Intermediate System-to-Intermediate System (IS-IS) across a serial line, you should configure the serial interfaces as unnumbered, which allows you to conform with RFC 1195, which states that IP addresses are not required on each interface.

SUMMARY STEPS

1. **configure**
2. **interface type interface-path-id**
3. **ipv4 unnumbered interface-type interface-instance**
4. **commit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td>Enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# interface gigabitethernet 0/1/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 3 ipv4 unnumbered interface-type interface-instance</td>
<td>Enables IPv4 processing on a point-to-point interface without assigning an explicit IPv4 address to that interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv4 unnumbered loopback 5</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring ICMP Rate Limiting

This task explains how to configure IPv4 or IPv6 ICMP rate limiting.

IPv4 ICMP Rate Limiting

The IPv4 ICMP rate limiting feature limits the rate that IPv4 ICMP destination unreachable messages are generated. The Cisco IOS XR software maintains two timers: one for general destination unreachable messages and one for DF destination unreachable messages. Both share the same time limits and defaults. If the DF keyword is not configured, the `icmp ipv4 rate-limit unreachable` command sets the time values for DF destination unreachable messages. If the DF keyword is configured, its time values remain independent from those of general destination unreachable messages.

IPv6 ICMP Rate Limiting

The IPv6 ICMP rate limiting feature implements a token bucket algorithm for limiting the rate at which IPv6 ICMP error messages are sent out on the network. The initial implementation of IPv6 ICMP rate limiting defined a fixed interval between error messages, but some applications, such as traceroute, often require replies to a group of requests sent in rapid succession. The fixed interval between error messages is not flexible enough to work with applications such as traceroute and can cause the application to fail. Implementing a token bucket scheme allows a number of tokens—representing the ability to send one error message each—to be stored in a virtual bucket. The maximum number of tokens allowed in the bucket can be specified, and for every error message to be sent, one token is removed from the bucket. If a series of error messages is generated, error messages can be sent until the bucket is empty. When the bucket is empty of tokens, IPv6 ICMP error messages are not sent until a new token is placed in the bucket. The token bucket algorithm does not increase the average rate limiting time interval, and it is more flexible than the fixed time interval scheme.

SUMMARY STEPS

1. configure
2. Do one of the following:
 - `icmp ipv4 rate-limit unreachable [DF] milliseconds`
 - `ipv6 icmp error-interval milliseconds [bucketsize]`
3. commit
4. Do one of the following:
 - `show ipv4 traffic [brief]`
 - `show ipv6 traffic [brief]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

Step 2

Do one of the following:

- `icmp ipv4 rate-limit unreachable [DF] milliseconds`
- `ipv6 icmp error-interval milliseconds [bucketsize]`

Example:

```
RP/0/RSP0/CPU0:router(config)# icmp ipv4 rate-limit unreachable 1000
or
RP/0/RSP0/CPU0:router(config)# ipv6 icmp error-interval 50 20
```

Purpose

Limits the rate that IPv4 ICMP destination unreachable messages are generated.

- The **DF** keyword limits the rate at which ICMP destination unreachable messages are sent when code 4 fragmentation is needed and Data Fragmentation (DF) is set, as specified in the IP header of the ICMP destination unreachable message.
- The **milliseconds** argument specifies the time period between the sending of ICMP destination unreachable messages.

Configures the interval and bucket size for IPv6 ICMP error messages.

- The **milliseconds** argument specifies the interval between tokens being added to the bucket.
- The optional **bucketsize** argument defines the maximum number of tokens stored in the bucket.

Step 3

commit

Step 4

Do one of the following:

- `show ipv4 traffic [brief]`
- `show ipv6 traffic [brief]`

Example:

```
RP/0/RSP0/CPU0:router# show ipv4 traffic
or
RP/0/RSP0/CPU0:router# show ipv6 traffic
```

(Optional) Displays statistics about IPv4 traffic, including ICMP unreachable information.

- Use the **brief** keyword to display only IPv4 and ICMPv4 traffic statistics.

(Optional) Displays statistics about IPv6 traffic, including IPv6 ICMP rate-limited counters.

- Use the **brief** keyword to display only IPv6 and ICMPv6 traffic statistics.

Configuring IPARM Conflict Resolution

This task sets the IP Address Repository Manager (IPARM) address conflict resolution parameters.

Static Policy Resolution

The static policy resolution configuration prevents new address configurations from affecting interfaces that are currently running.
SUMMARY STEPS

1. configure
2. \{ipv4 | ipv6\} conflict-policy static
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 {ipv4</td>
<td>ipv6} conflict-policy static</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# ipv4 conflict-policy static</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# ipv6 conflict-policy static</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>

Longest Prefix Address Conflict Resolution

This conflict resolution policy attempts to give highest precedence to the IP address that has the longest prefix length.

SUMMARY STEPS

1. configure
2. \{ipv4 | ipv6\} conflict-policy longest-prefix
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 {ipv4</td>
<td>ipv6} conflict-policy longest-prefix</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# ipv4 conflict-policy longest-prefix</td>
<td></td>
</tr>
</tbody>
</table>
Highest IP Address Conflict Resolution

This conflict resolution policy attempts to give highest precedence to the IP address that has the highest value.

SUMMARY STEPS

1. configure
2. `{ ipv4 | ipv6 } conflict-policy highest-ip`
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>`{ ipv4</td>
<td>ipv6 } conflict-policy highest-ip`</td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Fallback VRF

This task allows you to configure a fallback VRF for a destination that does not match any routes in VRF.
SUMMARY STEPS

1. configure
2. vrf vrf-name
3. fallback-vrf \{fallback-vrf-name | default\}
4. commit
5. show cef vrf vrf-name ip-address/prefix

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
| Step 2 vrf vrf-name | Configures a VRF routing table and enters VRF configuration mode.
 - vrf-name—Name assigned to the VRF. |
| Example: RP/0/RSP0/CPU0:router(config)#vrf vrf1 |
| Step 3 fallback-vrf \{fallback-vrf-name | default\} | Configures a fallback VRF routing table.
 - If you use the default keyword, the global routing table is used for route lookup.
 - If you configure a static default route on a VRF, the static default VRF takes precedence and the fallback VRF is ignored during route lookup. |
| Example: RP/0/RSP0/CPU0:router(config-vrf)# fallback-vrf vrf2 |
| Step 4 commit | |
| Step 5 show cef vrf vrf-name ip-address/prefix | Displays the contents of the VPN routing and forwarding (VRF) instance. |
| Example: RP/0/RSP0/CPU0:router# Show cef vrf vrf1 209.165.200.225/27 |

Generic Routing Encapsulation

The Generic Routing Encapsulation (GRE) tunneling protocol provides a simple, and generic approach for transporting packets of one protocol over another protocol by means of encapsulation. The packet that needs to be transported is first encapsulated in a GRE header, which is further encapsulated in another protocol like IPv4 or IPv6; and the packet is then forwarded to the destination.

A typical GRE-encapsulated packet includes:
- The delivery header
- The GRE header
- The payload packet
A payload packet is a packet that a system encapsulates and delivers to a destination. The payload is first encapsulated in a GRE packet. The resulting GRE packet can then be encapsulated in another outer protocol and then forwarded. This outer protocol is called the delivery protocol.

Note
- When IPv4 is being carried as the GRE payload, the Protocol Type field must be set to 0x800.
- When IPv6 is being carried as the GRE payload, the Protocol Type field must be set to 0x86DD.

IPv4/IPv6 Forwarding over GRE Tunnels

Packets that are tunneled over GRE tunnels enter the router as normal IP packets. The packets are forwarded (routed) using the destination address of the IP packet. In the case of Equal Cost Multi Path (ECMP) scenarios, an output interface-adjacency is selected, based on a platform-specific L3 load balance (LB) hash. Once the egress physical interface is known, the packet is sent out of that interface, after it is first encapsulated with GRE header followed by the L2 rewrite header of the physical interface. After the GRE encapsulated packet reaches the remote tunnel endpoint router, the GRE packet is decapsulated. The destination address lookup of the outer IP header (this is the same as the tunnel destination address) will find a local address (receive) entry on the ingress line card.

The first step in GRE decapsulation is to qualify the tunnel endpoint, before admitting the GRE packet into the router, based on the combination of tunnel source (the same as source IP address of outer IP header) and tunnel destination (the same as destination IP address of outer IP header). If the received packet fails tunnel admittance qualification check, the packet is dropped by the decapsulation router. On successful tunnel admittance check, the decapsulation strips the outer IP and GRE header off the packet, then starts processing the inner payload packet as a regular packet.

When a tunnel endpoint decapsulates a GRE packet, which has an IPv4/IPv6 packet as the payload, the destination address in the IPv4/IPv6 payload packet header is used to forward the packet, and the TTL of the payload packet is decremented. Care should be taken when forwarding such a packet. If the destination address of the payload packet is the encapsulator of the packet (that is the other end of the tunnel), looping can occur. In such a case, the packet must be discarded.

IPv6 forwarding over GRE tunnels

IPv6 forwarding over GRE is accomplished by IPv6 forwarding over IPv4 GRE tunnels. The functionality is similar to the IPv4 forwarding over GRE tunnels (as described above). In the case of IPv6, the FIM (Forward Information Base) module needs to confirm if the forwarding chain is correctly setup both in slowpath and hardware to send the IPv6 packet as a payload of IPv4 GRE encapsulated packet.

TCP MSS Adjustment

The TCP Maximum Segment Size (MSS) Adjustment feature allows the configuration of Maximum Segment Size (MSS) on transient packets that traverse a router. TCP MSS Adjustment is used on a GRE tunnel interface or VLAN sub-interface on a physical Ethernet interface on ASR 9000 Enhanced Ethernet Line Card to enable the transit traffic of TCP flows to be a Maximum Segment Size (MSS) below the GRE tunnel interface or
VLAN sub-interface MTU so that traffic fragmentation is prevented when a session is established. It needs to be configurable, for a single tunnel interface or VLAN sub-interface, to a specific value.

This feature is supported for transit IPv4 and IPv6 packets only. It applies to both ingress and egress traffic on interfaces where the TCP MSS adjustment is configured. In this release, a configuration of `ipv4 tcp-mss-adjust enable` or `ipv6 tcp-mss-adjust enable` or both commands on an interface will have the same effect. It applies to all TCP SYNC packets encapsulated in an IPv4 or IPv6 frame, coming in and going out of the interface.

Configuring TCP MSS for IPv4 packets

This task describes how to enable the transit traffic of TCP flows to be a Maximum Segment Size (MSS) below the GRE tunnel interface or VLAN sub-interface MTU so that traffic fragmentation is prevented when a session is established for IPv4 packets.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. ipv4 tcp-mss-adjust enable
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 interface type interface-path-id</td>
<td>Enters interface configuration mode and configures an interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# interface gigabitethernet 0/2/0/0.100</td>
<td></td>
</tr>
<tr>
<td>Step 3 ipv4 tcp-mss-adjust enable</td>
<td>Enable the transit traffic of TCP flows to be a Maximum Segment Size (MSS) below the GRE tunnel interface or VLAN sub-interface MTU so that traffic fragmentation is prevented when a session is established for IPv4 packets.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-if)# ipv4 tcp-mss-adjust enable</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring TCP MSS for IPv6 packets

This task describes how to enable the transit traffic of TCP flows to be a Maximum Segment Size (MSS) below the GRE tunnel interface or VLAN sub-interface MTU so that traffic fragmentation is prevented when a session is established for IPv6 packets.

SUMMARY STEPS

1. configure
2. interface type interface-path-id
3. ipv6 tcp-mss-adjust enable
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type interface-path-id</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# interface gigabitethernet 0/2/0/0.100</td>
</tr>
<tr>
<td></td>
<td>Enters interface configuration mode and configures an interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv6 tcp-mss-adjust enable</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-if)# ipv6 tcp-mss-adjust enable</td>
</tr>
<tr>
<td></td>
<td>Enables the transit traffic of TCP flows to be a Maximum Segment Size (MSS) below the GRE tunnel interface or VLAN sub-interface MTU so that traffic fragmentation is prevented when a session is established for IPv6 packets.</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuration Examples for Implementing Network Stack IPv4 and IPv6

This section provides the following configuration examples:
Assigning an Unnumbered Interface: Example

In the following example, the second interface (GigabitEthernet 0/1/0/1) is given the address of loopback interface 0. The loopback interface is unnumbered.

```
interface loopback 0
ipv4 address 192.168.0.5 255.255.255.0
interface gigabitethernet 0/1/0/1
ipv4 unnumbered loopback 0
```

Configuring Fallback VRF: Example

The following example shows how to configure a fallback VRF for a destination that does not match any routes in VRF using the `fallback-vrf vrf-name` command and how to verify the fallback VRF details:

```
vrf vrf1
fallback-vrf vrf2
address-family ipv4 unicast
import route-target 1:1
export route-target 1:1
address-family ipv6 unicast
import route-target 1:1
export route-target 1:1
!
show cef vrf vrf1 209.165.200.225/27
```

Configuring VRF mode big

Perform this task to configure big mode for a VRF.

SUMMARY STEPS

1. configure
2. vrf vrf-name
3. mode big
4. commit
Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>vrf vrf-name</td>
<td>Enters the vrf configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# vrf v1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrf)#</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>mode big</td>
<td>Enters the big mode for the corresponding VRF.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrf)# mode big</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrf)#</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Additional References

The following sections provide references related to implementing Network Stack IPv4 and IPv6.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address resolution configuration tasks</td>
<td>Configuring ARP module in this publication.</td>
</tr>
<tr>
<td>Mapping host names to IP addresses</td>
<td>Host Services and Applications Commands module in the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
<tr>
<td>Network stack IPv4 and IPv6 commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Network Stack IPv4 and IPv6 Commands section in the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
</tbody>
</table>
Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
CHAPTER 10

Configuring Transports

This module provides information about Nonstop Routing (NSR), Transmission Control Protocol (TCP), and User Datagram Protocol (UDP) transports on Cisco ASR 9000 Series Aggregation Services Routers.

If you have specific requirements and need to adjust the NSR, TCP, or UDP values, refer to the Transport Stack Commands on Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference.

For a complete description of the transport configuration commands listed in this module, refer to the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference publication. To locate documentation of other commands that appear in this chapter, use the command reference master index, or search online.

Feature History for Configuring NSR, TCP, UDP, and UDP RAW Transports on the Cisco ASR 9000 Series Router

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Configuring NSR, TCP, UDP, Transports, page 267
- Information About Configuring NSR, TCP, UDP Transports, page 268
- How to Configure Failover as a Recovery Action for NSR, page 269
- Additional References, page 270

Prerequisites for Configuring NSR, TCP, UDP, Transports

The following prerequisites are required to implement NSR, TCP, UDP, Transports:
You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Information About Configuring NSR, TCP, UDP Transports

To configure NSR, TCP, and UDP transports, you must understand the following concepts:

NSR Overview

Nonstop Routing (NSR) is provided for Open Shortest Path First (OSPF) and Label Distribution Protocol (LDP) protocols for the following events:

- Route Processor (RP) failover
- Process restart for either OSPF, LDP, or TCP
- In-service software upgrades (ISSU)

In the case of the RP failover, NSR is achieved by for both TCP and the applications (OSPF or LDP).
NSR is a method to achieve High Availability (HA) of the routing protocols. TCP connections and the routing protocol sessions are migrated from the active RP to standby RP after the RP failover without letting the peers know about the failover. Currently, the sessions terminate and the protocols running on the standby RP reestablish the sessions after the standby RP goes active. Graceful Restart (GR) extensions are used in place of NSR to prevent traffic loss during an RP failover but GR has several drawbacks.

You can use the `nsr process-failures switchover` command to let the RP failover be used as a recovery action when the active TCP or active LDP restarts. When standby TCP or LDP restarts, only the NSR capability is lost till the standby instances come up and the sessions are resynchronized but the sessions do not go down.

In the case of the process failure of an active OSPF, a fault-management policy is used. For more information, refer to Implementing OSPF on Cisco ASR 9000 Series Aggregation Services Router Routing Configuration Guide.

TCP Overview

TCP is a connection-oriented protocol that specifies the format of data and acknowledgments that two computer systems exchange to transfer data. TCP also specifies the procedures the computers use to ensure that the data arrives correctly. TCP allows multiple applications on a system to communicate concurrently, because it handles all demultiplexing of the incoming traffic among the application programs.

Any IP protocol other than TCP or UDP is known as a RAW protocol.

For most sites, the default settings for the TCP, UDP, and RAW transports need not be changed.

UDP Overview

The User Datagram Protocol (UDP) is a connectionless transport-layer protocol that belongs to the IP family. UDP is the transport protocol for several well-known application-layer protocols, including Network File System (NFS), Simple Network Management Protocol (SNMP), Domain Name System (DNS), and TFTP.
Any IP protocol other than TCP, UDP, is known as a RAW protocol.
For most sites, the default settings for the TCP, UDP, and RAW transports need not be changed.

How to Configure Failover as a Recovery Action for NSR

This section contains the following procedure:

Configuring Failover as a Recovery Action for NSR

This task allows you to configure failover as a recovery action to process failures of active instances. When the active TCP or the NSR client of the active TCP terminates or restarts, the TCP sessions go down. To continue to provide NSR, failover is configured as a recovery action. If failover is configured, a switchover is initiated if the active TCP or an active application (for example, LDP, OSPF, and so forth) restarts or terminates.

For information on how to configure MPLS Label Distribution Protocol (LDP) for NSR, refer to the *Cisco ASR 9000 Series Aggregation Services Router MPLS Configuration Guide*.

For information on how to configure NSR on a per-process level for each OSPF process, refer to the *Cisco ASR 9000 Series Aggregation Services Router Routing Configuration Guide*.

Note

Before performing this procedure, enable RP isolation using the `isolation enable` command for improved troubleshooting. Without enabling RP isolation, the failing process will not generate the logs required to find the root cause of the failure.

SUMMARY STEPS

1. configure
2. nsr process-failures switchover
3. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>nsr process-failures switchover</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# nsr process-failures switchover</td>
</tr>
<tr>
<td>Step 3</td>
<td>commit</td>
</tr>
</tbody>
</table>
Additional References

The following sections provide references related to configuring NSR, TCP, and UDP transports.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>the Cisco ASR 9000 Series Router Transport Stack commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Transport Stack Commands in the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
<tr>
<td>the Cisco ASR 9000 Series Router MPLS LDP commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>MPLS Label Distribution Protocol Commands in the Cisco ASR 9000 Series Aggregation Services Router MPLS Command Reference</td>
</tr>
<tr>
<td>the Cisco ASR 9000 Series Router OSPF commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>OSPF Commands in the Cisco ASR 9000 Series Aggregation Services Router Routing Command Reference</td>
</tr>
<tr>
<td>MPLS Label Distribution Protocol feature information</td>
<td>Implementing MPLS Label Distribution Protocol in the Cisco ASR 9000 Series Aggregation Services Router MPLS Configuration Guide</td>
</tr>
<tr>
<td>OSPF feature information</td>
<td>Implementing OSPF in the Cisco ASR 9000 Series Aggregation Services Router Routing Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>
MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing VRRP

The Virtual Router Redundancy Protocol (VRRP) feature allows for transparent failover at the first-hop IP router, enabling a group of routers to form a single virtual router.

For a complete description of the VRRP commands listed in this module, refer to the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference publication. To locate documentation of other commands that appear in this chapter, use the command reference master index, or search online.

Feature History for Implementing VRRP

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
<tr>
<td>Release 3.9.0</td>
<td>• BFD for VRRP feature was added.</td>
</tr>
<tr>
<td></td>
<td>• MIB support for VRRP feature was added.</td>
</tr>
<tr>
<td>Release 4.1.0</td>
<td>VRRP over IPv6 feature was added.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing VRRP on Cisco IOS XR Software, page 274
- Restrictions for Implementing VRRP on Cisco IOS XR Software, page 274
- Information About Implementing VRRP, page 274
- How to Implement VRRP on Cisco IOS XR Software, page 277
- Configuration Examples for VRRP Implementation on Cisco IOS XR Software, page 283
- Multiple Group Optimization for Virtual Router Redundancy Protocol, page 291
- MIB support for VRRP, page 296
- Hot Restartability for VRRP, page 297
Prerequisites for Implementing VRRP on Cisco IOS XR Software

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for Implementing VRRP on Cisco IOS XR Software

VRRP is supported on Ethernet interfaces, Ethernet sub-interfaces and Ethernet link bundles. The following are restrictions for implementing VRRP:

- ICMP redirects are not supported.
- Upto 4000 sessions are permitted on Ethernet sub-interfaces.
- On bundle interfaces, the number of sessions per member vary depending on the number of bundle members and their location on network processor (NP) as listed here:
 - One member on one NP: 3999 VRRP sessions
 - Two members on same NP: 1999 VRRP sessions
 - Four members on same NP: 999 VRRP sessions
 - Two members, one on each NP: 3999 VRRP sessions
 - Four members, two on each NP: 1999 VRRP sessions

Information About Implementing VRRP

To implement VRRP, you need to understand the following concepts:

VRRP Overview

A LAN client can use a dynamic process or static configuration to determine which router should be the first hop to a particular remote destination. The client examples of dynamic router discovery are as follows:

- Proxy ARP—The client uses Address Resolution Protocol (ARP) to get the destination it wants to reach, and a router responds to the ARP request with its own MAC address.
- Routing protocol—The client listens to dynamic routing protocol updates (for example, from Routing Information Protocol [RIP]) and forms its own routing table.
- IRDP (ICMP Router Discovery Protocol) client—The client runs an Internet Control Message Protocol (ICMP) router discovery client.
The drawback to dynamic discovery protocols is that they incur some configuration and processing overhead on the LAN client. Also, in the event of a router failure, the process of switching to another router can be slow.

An alternative to dynamic discovery protocols is to statically configure a default router on the client. This approach simplifies client configuration and processing, but creates a single point of failure. If the default gateway fails, the LAN client is limited to communicating only on the local IP network segment and is cut off from the rest of the network.

The Virtual Router Redundancy Protocol (VRRP) feature can solve the static configuration problem. VRRP is an IP routing redundancy protocol designed to allow for transparent failover at the first-hop IP router. VRRP enables a group of routers to form a single virtual router. The LAN clients can then be configured with the virtual router as their default gateway. The virtual router, representing a group of routers, is also known as a VRRP group.

For example, Figure 16: Basic VRRP Topology, on page 275 shows a LAN topology in which VRRP is configured. In this example, Routers A, B, and C are VRRP routers (routers running VRRP) that compose a virtual router. The IP address of the virtual router is the same as that configured for the interface of Router A (10.0.0.1).

![Figure 16: Basic VRRP Topology]

Because the virtual router uses the IP address of the physical interface of Router A, Router A assumes the role of the master virtual router and is also known as the IP address owner. As the master virtual router, Router A controls the IP address of the virtual router and is responsible for forwarding packets sent to this IP address. Clients 1 through 3 are configured with the default gateway IP address of 10.0.0.1.

Routers B and C function as backup virtual routers. If the master virtual router fails, the router configured with the higher priority becomes the master virtual router and provides uninterrupted service for the LAN hosts. When Router A recovers, it becomes the master virtual router again.
We recommend that you disable Spanning Tree Protocol (STP) on switch ports to which the virtual routers are connected. Enable RSTP or rapid-PVST on the switch interfaces if the switch supports these protocols.

Multiple Virtual Router Support

You can configure up to 100 virtual routers on a router interface. On Cisco ASR 9000 Enhanced Ethernet line cards, you can configure up to 256 virtual routers on a router interface. The actual number of virtual routers that a router interface can support depends on the following factors:

- Router processing capability
- Router memory capability
- Router interface support of multiple MAC addresses

In a topology where multiple virtual routers are configured on a router interface, the interface can act as a master for one or more virtual routers and as a backup for one or more virtual routers.

VRRP Router Priority

An important aspect of the VRRP redundancy scheme is VRRP router priority. Priority determines the role that each VRRP router plays and what happens if the master virtual router fails.

If a VRRP router owns the IP address of the virtual router and the IP address of the physical interface, this router functions as a master virtual router.

If no VRRP router owns the IP address, the priority of a VRRP router, combined with the preempt settings, determines if a VRRP router functions as a master or a backup virtual router. By default, the highest priority VRRP router functions as master, and all the others function as backups. Priority also determines the order of ascendency to becoming a master virtual router if the master virtual router fails. You can configure the priority of each backup virtual router with a value of 1 through 254, using the `vrrp priority` command.

For example, if Router A, the master virtual router in a LAN topology, fails, an election process takes place to determine if backup virtual Routers B or C should take over. If Routers B and C are configured with the priorities of 101 and 100, respectively, Router B is elected to become master virtual router because it has the higher priority. If Routers B and C are both configured with the priority of 100, the backup virtual router with the higher IP address is elected to become the master virtual router.

By default, a preemptive scheme is enabled whereby a higher-priority backup virtual router that becomes available takes over from the current master virtual router. You can disable this preemptive scheme using the `vrrp preempt disable` command. If preemption is disabled, the backup virtual router that is elected to become master upon the failure of the original higher priority master, remains the master even if the original master virtual router recovers and becomes available again.

VRRP Advertisements

The master virtual router sends VRRP advertisements to other VRRP routers in the same group. The advertisements communicate the priority and state of the master virtual router. The VRRP advertisements are
Benefits of VRRP

The benefits of VRRP are as follows:

- **Redundancy** — VRRP enables you to configure multiple routers as the default gateway router, which reduces the possibility of a single point of failure in a network.

- **Load Sharing** — You can configure VRRP in such a way that traffic to and from LAN clients can be shared by multiple routers, thereby sharing the traffic load more equitably among available routers.

- **Multiple Virtual Routers** — VRRP supports up to 100 virtual routers (VRRP groups) on a router interface, subject to the platform supporting multiple MAC addresses. On Cisco ASR 9000 Enhanced Ethernet line cards, you can configure up to 256 virtual routers on a router interface. Cisco ASR 9000 Series Routers support up to a limit of 100 per system with default timers and on Cisco ASR 9000 Enhanced Ethernet line cards, up to a limit of 256 per system with default timers. Multiple virtual router support enables you to implement redundancy and load sharing in your LAN topology.

- **Multiple IP Addresses** — The virtual router can manage multiple IP addresses, including secondary IP addresses. Therefore, if you have multiple subnets configured on an Ethernet interface, you can configure VRRP on each subnet.

- **Preemption** — The redundancy scheme of VRRP enables you to preempt a backup virtual router that has taken over for a failing master virtual router with a higher-priority backup virtual router that has become available.

- **Text Authentication** — You can ensure that VRRP messages received from VRRP routers that comprise a virtual router are authenticated by configuring a simple text password.

- **Advertisement Protocol** — VRRP uses a dedicated Internet Assigned Numbers Authority (IANA) standard multicast address (224.0.0.18) for VRRP advertisements. This addressing scheme minimizes the number of routers that must service the multicasts and allows test equipment to accurately identify VRRP packets on a segment. The IANA assigns VRRP the IP protocol number 112.

How to Implement VRRP on Cisco IOS XR Software

This section contains instructions for the following tasks:

- **Note** — The VRRP virtual router id (vrid) has to be different for different sub-interfaces, for a given physical interface.

Customizing VRRP

Customizing the behavior of VRRP is optional. Be aware that as soon as you enable a VRRP group, that group is operating. It is possible that if you first enable a VRRP group before customizing VRRP, the router could...
take over control of the group and become the master virtual router before you have finished customizing the feature. Therefore, if you plan to customize VRRP, it is a good idea to do so before enabling VRRP.

The sections that follow describe how to customize your VRRP configuration.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family {ipv4 | ipv6}
5. vrrp vrid version {2 | 3}
6. text-authentication
7. accept-mode {disable}
8. priority priority
9. preempt [delay seconds] [disable]
10. timer [msec] interval [force]
11. track interface type instance interface-path-id [priority-decrement]
12. delay [minimum seconds] [reload seconds]
13. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables VRRP configuration mode.</td>
</tr>
</tbody>
</table>

Step 2 router vrrp

Example:

```
RP/0/RSP0/CPU0:router(config)# router vrrp
```

Step 3 interface type interface-path-id

Example:

```
RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1
```

Step 4 address-family {ipv4 | ipv6}

Example:

```
RP/0/RSP0/CPU0:router(config-vrrp-if)# address-family ipv6
```

Step 5 vrrp vrid version {2 | 3}

Example:

```
RP/0/RSP0/CPU0:router(config-vrrp-if)# vrrp vrid 2 version 3
```

Enters the IPv4 or IPv6 address family submode.

Enters the virtual router configuration submode.
Implementing VRRP

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)# vrrp 3 version 3 RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)#</td>
<td>Note: The <code>version</code> keyword is available only for the <code>ipv4</code> address family.</td>
</tr>
</tbody>
</table>

Step 6

text-authentication

Example:

RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)# text-authentication

(Optional) Configures the simple text authentication used for Virtual Router Redundancy Protocol (VRRP) packets received from other routers running VRRP.

- When a VRRP packet arrives from another router in the VRRP group, its authentication string is compared to the string configured on the local system. If the strings match, the message is accepted. If they do not match, the packet is discarded.
- All routers within the group must be configured with the same authentication string.
- To disable VRRP authentication, use the **no text-authentication** command.

Note: Plain text authentication is not meant to be used for security. It simply provides a way to prevent a misconfigured router from participating in VRRP.

Step 7

accept-mode {disable}

Example:

RP/0/RSP0/CPU0:router# (config-vrrp-virtual-router)# accept-mode disable

Enters the IPv4 or IPv6 address family submode.

Step 8

priority priority

Example:

RP/0/RSP0/CPU0:router# (config-vrrp-virtual-router)# priority 254

(Optional) Sets the priority of the virtual router.

- Use the **priority** command to control which router becomes the master router.
- The **priority** command is ignored while the router is the virtual IP address owner.
- To remove the priority of the virtual router, use the **no priority** command.

Step 9

preempt [delay seconds] [disable]

Example:

RP/0/RSP0/CPU0:router#

(Optional) Sets the master virtual router and optionally, the time in seconds before the router advertises virtual IP address ownership to be the master router.

- Use the **preempt** command to control which router becomes the master router.
Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| (config-vrrp-virtual-router)# preempt delay 15 | • The `preempt` command is ignored while the router is the virtual IP address owner.
• (Optional) Use the `disable` keyword to disable preemption. To reestablish the default (enabled), use the `no preempt` command. |

Step 10

timer [msec] interval [force]

Example:

```
RP/0/RSP0/CPU0:router# (config-vrrp-virtual-router)# timer 4
```

(Optional) Configures the interval between successive advertisements by the master router in a VRRP virtual router.

• To restore the default value, use the `no timer` command.

Note
We recommend configuring the same VRRPv3 timers on all VRRP routers when interoperating with other vendors.

Step 11

track interface type instance interface-path-id [priority-decrement]

Example:

```
RP/0/RSP0/CPU0:router# (config-vrrp-virtual-router)# track interface TenGigE 0/0/CPU0/1 30
```

(Optional) Configures the VRRP to track an interface.

• Enter the `no track interface type instance interface-path-id [priority-decrement]` command to disable tracking.

• Only IP interfaces are tracked.

• A tracked interface is up if IP on that interface is up. Otherwise, the tracked interface is down.

• You can configure VRRP to track an interface that can alter the priority level of a virtual router for a VRRP virtual router. When the IP protocol state of an interface goes down or the interface has been removed from the router, the priority of the backup virtual router is decremented by the value specified in the `priority-decrement` argument. When the IP protocol state on the interface returns to the up state, the priority is restored.

Step 12

delay [minimum seconds] [reload seconds]

Example:

```
RP/0/RSP0/CPU0:router# (config-vrrp-virtual-router)# delay minimum 2 reload 10
```

(Optional) Delays the startup of the state machine when an interface comes up, so that the network has time to settle and there are no unnecessary state changes early after the link comes up. The reload delay is the delay applied after the first interface up event. The minimum delay is the delay that is applied after any subsequent interface up event (if the interface flaps).

Step 13

commit
Enabling VRRP

Use the **address** command to enable VRRP on an interface, as described in the sections that follow.

SUMMARY STEPS

1. **configure**
2. **router vrrp**
3. **interface** type interface-path-id
4. **address-family ipv4**
5. **vrrp vrid version { 2 | 3 }**
6. **address address**
7. **commit**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>router vrrp</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# router vrrp</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrrp-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
<td>Enters the IPv4 or IPv6 address family submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>vrrp vrid version { 2</td>
<td>3 }</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)# vrrp 3 version 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)#</td>
<td></td>
</tr>
</tbody>
</table>

Note The **version** keyword is available only for the ipv4 address family.
Verifying VRRP

Use the `show vrrp` command to display a brief or detailed status of one or all VRRP virtual routers.

SUMMARY STEPS

1. `show vrrp [ipv4 | ipv6] [interface type instance interface-path-id [vrid]] [brief | detail | statistics [all]]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show vrrp [ipv4</td>
<td>ipv6] [interface type instance interface-path-id [vrid]] [brief</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router # show vrrp</td>
<td></td>
</tr>
</tbody>
</table>

Clearing VRRP Statistics

Use the `clear vrrp statistics` command to clear all the software counters for the specified virtual router.
SUMMARY STEPS

1. clear vrrp statistics [ipv4 | ipv6] [interface type interface-path-id [vrid]]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear vrrp statistics [ipv4</td>
<td>ipv6] [interface type interface-path-id [vrid]]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router# clear vrrp statistics</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for VRRP Implementation on Cisco IOS XR Software

This section provides the following VRRP configuration examples:

Configuring accept-mode

Perform this task to disable the installation of routes for the VRRP virtual addresses.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family {ipv4 | ipv6}
5. vrrp vrid version {2 | 3}
6. accept-mode disable
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td><code>router vrrp</code></td>
<td>Enables the VRRP configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config)# router vrrp</code></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>interface type interface-path-id</code></td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router</code></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>`address-family {ipv4</td>
<td>ipv6}`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-vrrp-if)# address-family ipv6</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)#</code></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>`vrrp vrid version {2</td>
<td>3}`</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)# vrrp 3 version 3</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)#</code></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td><code>accept-mode disable</code></td>
<td>Disables the installation of routes for the VRRP virtual addresses.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)# accept-mode disable</code></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring a Global Virtual IPv6 Address

Perform this task to configure the global virtual IPv6 address for a virtual router.
SUMMARY STEPS

1. `configure`
2. `router vrrp`
3. `interface type interface-path-id`
4. `address-family ipv6`
5. `vrrp vrid version 3`
6. `address global address`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables the VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config)# router vrrp</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enters the IPv4 or IPv6 address family submode.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv6</td>
<td>Enters the virtual router configuration submode.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-vrrp-if)# address-family ipv6</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 vrrp vrid version 3</td>
<td>Configures the global virtual IPv6 address for a virtual router.</td>
</tr>
<tr>
<td>Example: <code>RP/0/RSP0/CPU0:router(config-vrrp-address-family)# vrrp 3 version 3</code></td>
<td>Note The <code>version</code> keyword is available only for the ipv4 address family.</td>
</tr>
<tr>
<td>Step 6 address global address</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Step 7 commit

Configuring a Primary Virtual IPv4 Address

Perform this task to configure the primary virtual IPv4 address for a virtual router.

SUMMARY STEPS

1. `configure`
2. `router vrrp`
3. `interface type interface-path-id`
4. `address-family ipv4`
5. `vrrp vrid version { 2 | 3 }`
6. `address address`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>configure</code></td>
<td>Enables the VRRP configuration mode.</td>
</tr>
<tr>
<td><code>router vrrp</code></td>
<td>Enables the VRRP configuration mode on a specific interface.</td>
</tr>
<tr>
<td><code>interface type interface-path-id</code></td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1 RP/0/RSP0/CPU0:router</td>
<td>Enters the IPv4 address family submode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp-address-family)#</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>vrrp vrid version { 2</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp-address-family)# vrrp 3 version 2</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>address address</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)# address 10.20.30.1</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring a Secondary Virtual IPv4 Address

Perform this task to configure the secondary virtual IPv4 address for a virtual router.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv4
5. vrrp vrid version { 2 | 3 }
6. address address secondary
7. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables the VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# router vrrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables the IPv4 address family submode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1 RP/0/RSP0/CPU0:router</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enters the virtual router configuration submode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp)# address-family ipv4 RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)#</td>
<td></td>
</tr>
<tr>
<td>Step 5 vrrp vrid version { 2</td>
<td>3 }</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)# vrrp 3 version 3 RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)#</td>
<td></td>
</tr>
<tr>
<td>Step 6 address address secondary</td>
<td>Configures the secondary virtual IPv4 address for a virtual router.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)# address 10.20.30.1 secondary</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>

Implementing VRRP

Configuring a Secondary Virtual IPv4 Address

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td>Enables the VRRP configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>router vrrp</td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>interface type interface-path-id</td>
<td>Enables the IPv4 address family submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>address-family ipv4</td>
<td>Enters the virtual router configuration submode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>vrrp vrid version { 2</td>
<td>3 }</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>address address secondary</td>
<td>Configures the secondary virtual IPv4 address for a virtual router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Virtual Link-Local IPv6 Address

Perform this task to either configure the virtual link-local IPv6 address for a virtual router or to specify that the virtual link-local IPv6 address should be enabled and calculated automatically from the virtual router virtual Media Access Control (MAC) address.

The IPv6 address space is structured differently compared to IPv4. Link-local addresses are used to identify each interface on the local network. These addresses may either be configured or determined automatically in a standard way using the link-layer (hardware) address of the interface (MAC address for Ethernet interfaces). Link-local addresses have a standard format and are valid only on the local network (they cannot be routed to, from multiple hops away).

Global unicast IPv6 addresses occupy a disjoint subset of the IPv6 address space from link-local addresses. They can be routed to, from multiple hops away and have an associated prefix length (between 0 and 128 bits).

Each VRRP virtual router has an associated virtual link-local address. This may be configured or determined automatically from the virtual router's virtual MAC address. The virtual MAC address must be unique on the local network. The virtual link-local address is analogous to an IPv4 virtual router's primary virtual IPv4 address, except that its virtual IP (VIP) state is always considered to be up, since duplicate address detection is not required for addresses whose scope is local.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv6
5. vrrp vrid version 3 address linklocal {address | autoconfigure}
6. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables the VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables the VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# router vrrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
</tbody>
</table>
Step 4

Command or Action: `address-family ipv6`

Example:

```
RP/0/RSP0/CPU0:routerconfig-vrrp-if)#
address-family ipv6
```

Purpose: Enters the IPv6 address family submode.

Step 5

Command or Action: `vrrp vrid version 3 address linklocal {address | autoconfigure}`

Example:

```
RP/0/RSP0/CPU0:routerconfig-vrrp-address-family)#
vrrp 1 version 3 address linklocal
FE80::260:3EFF:FE11:6770
RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)#
RP/0/RSP0/CPU0:router(config-vrrp-address-family)#
vrrp 1 version 3 address linklocal autoconfigure
RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)#
```

Purpose: Configures the virtual link-local IPv6 address for the virtual router.

Note
- You must disable IPv6 Duplicate Address Detection (DAD) on an interface when the VRRP router's virtual link-local address is the same as the interface's link-local address. When DAD is disabled, duplicate packets are not flagged as duplicates.
- The `version` keyword is available only for the ipv4 address family.

Step 6

Command or Action: `commit`

Disabling State Change Logging

Perform this task to disable the task of logging the VRRP state change events via syslog.

SUMMARY STEPS

1. configure
2. router vrrp
3. message state disable
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>
Multiple Group Optimization for Virtual Router Redundancy Protocol

Multiple Group Optimization for Virtual Router Redundancy Protocol (VRRP) provides a solution for reducing control traffic in a deployment consisting of many subinterfaces. By running the VRRP control traffic for just one session, the control traffic is reduced for the subinterfaces with identical redundancy requirements. All other sessions are slaves of this primary session, and inherit their states from it.

Configuring a VRRP Session Name

Perform this task to configure a VRRP session name.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv4
5. vrrp group-no
6. name name
7. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# router vrrp</td>
<td>Enables RP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables VRRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
<td>Enables VRRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables VRRP group configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp-if)# address-family ipv4</td>
<td>Configures a VRRP session name.</td>
</tr>
<tr>
<td>Step 5 vrrp group-no</td>
<td>Configures a VRRP session name.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp-address-family)# vrrp 1</td>
<td>Step 6 name name</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-vrrp-virtual-router)# name s1</td>
<td>Step 7 commit</td>
</tr>
</tbody>
</table>

Configuring a Slave Follow(VRRP)

Perform this task to instruct the slave group to inherit its state from a specified group.
SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv4
5. vrrp group-no slave
6. follow mgo-session-name
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 router vrrp</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# router vrrp</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Enables VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 address-family ipv4</td>
<td>Enables VRRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp-if)# address-family ipv4</td>
<td></td>
</tr>
<tr>
<td>Step 5 vrrp group-no slave</td>
<td>Enables VRRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp-address-family)# vrrp 2 slave</td>
<td></td>
</tr>
<tr>
<td>Step 6 follow mgo-session-name</td>
<td>Instructions the slave group to inherit its state from a specified group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-vrrp-slave)# follow m1</td>
<td></td>
</tr>
<tr>
<td>Step 7 commit</td>
<td></td>
</tr>
</tbody>
</table>
Configuring a Primary Virtual IPv4 Address for a Slave Group (VRRP)

Perform this task to configure the primary virtual IPv4 address for the slave group.

SUMMARY STEPS

1. configure
2. router vrrp
3. interface type interface-path-id
4. address-family ipv4
5. vrrp group-no slave
6. address ip-address
7. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>router vrrp</td>
<td>Enables VRRP configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# router vrrp</td>
</tr>
<tr>
<td>Step 3</td>
<td>interface type interface-path-id</td>
<td>Enables VRRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Step 4</td>
<td>address-family ipv4</td>
<td>Enables VRRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
<tr>
<td>Step 5</td>
<td>vrrp group-no slave</td>
<td>Enables VRRP slave configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrrp-address-family)# vrrp 2 slave</td>
</tr>
<tr>
<td>Step 6</td>
<td>address ip-address</td>
<td>Configures the primary virtual IPv4 address for the slave group.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-vrrp-slave)# address 10.2.3.2</td>
</tr>
</tbody>
</table>
Configuring a Secondary Virtual IPv4 address for the Slave Group

Perform this task to configure the secondary virtual IPv4 address for the slave group.

SUMMARY STEPS

1. `configure`
2. `router hsrp`
3. `interface type interface-path-id`
4. `address-family ipv4`
5. `hsrp group-no slave`
6. `address address secondary`
7. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enables HSRP configuration mode.</td>
</tr>
<tr>
<td>Step 2 <code>router hsrp</code></td>
<td>Enables HSRP interface configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# router hsrp</td>
</tr>
<tr>
<td>Step 3 <code>interface type interface-path-id</code></td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1</td>
</tr>
<tr>
<td>Step 4 <code>address-family ipv4</code></td>
<td>Enables HSRP address-family configuration mode on a specific interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</td>
</tr>
</tbody>
</table>
MIB support for VRRP

VRRP enables one or more IP addresses to be assumed by a router when a failure occurs. For example, when IP traffic from a host reaches a failed router because the failed router is the default gateway, the traffic is transparently forwarded by the VRRP router that has assumed control. VRRP does not require configuration of dynamic routing or router discovery protocols on every end host. The VRRP router controlling the IP address(es) associated with a virtual router is called the master, and forwards packets sent to these IP addresses. The election process provides dynamic fail over(standby) in the forwarding responsibility should the master become unavailable. This allows any of the virtual router IP addresses on the LAN to be used as the default first hop router by end-hosts. The advantage gained from using VRRP is a higher availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host. SNMP traps provide information of the state changes, when the virtual routers(in standby) are moved to master state or if the standby router is made master.

Configuring SNMP server notifications for VRRP events

The `snmp-server traps vrrp events` command enables the Simple Network Management Protocol (SNMP) server notifications (traps) for VRRP.

SUMMARY STEPS

1. configure
2. snmp-server traps vrrp events
3. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>snmp-server traps vrrp events</td>
<td>Enables the SNMP server notifications for VRRP.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)snmp-server traps vrrp events</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Hot Restartability for VRRP

In the event of failure of a VRRP process in one group, forced failovers in peer VRRP master router groups should be prevented. Hot restartability supports warm RP failover without incurring forced failovers to peer VRRP routers.

Configuration Examples for VRRP Implementation on Cisco IOS XR Software

This section provides the following VRRP configuration examples:

Configuring a VRRP Group: Example

This section provides the following configuration example of Router A and Router B, each belonging to three VRRP groups:

Router A:

```plaintext
cfgi
interface tenGigE 0/4/0/4
ipv4 address 10.1.0.1/24
exit
router vrrp
interface tenGigE 0/4/0/4
address-family ipv4
vrrp 1 version 2
priority 120
text-authentication cisco
timer 3
address 10.1.0.10
vrrp 5 version 2
timer 30
address 10.1.0.50
```
vrrp 100 version 2
preempt disable
address 10.1.0.100
commit

Router B:

config
interface tenGigE 0/4/0/4
ipv4 address 10.1.0.2/24
exit
router vrrp
interface tenGigE 0/4/0/4
 address-family ipv4
 vrrp 1 version 2
 priority 100
text-authentication cisco
timer 3
 address 10.1.0.10
 vrrp 5 version 2
 priority 200
timer 30
 address 10.1.0.50
vrrp 100 version 2
preempt disable
address 10.1.0.100
commit

In the configuration example, each group has the following properties:

- **Group 1:**
 - Virtual IP address is 10.1.0.10.
 - Router A will become the master for this group with priority 120.
 - Advertising interval is 3 seconds.
 - Advertising interval is 3 seconds.
 - Preemption is enabled.

- **Group 5:**
 - Router B will become master for this group with priority 200.
 - Advertising interval is 30 seconds.
 - Preemption is enabled.

- **Group 100:**
 - Router configured first becomes master for this group first, because preempt is disabled.
 - Advertising interval is the default 1 second.
 - Preemption is disabled.
 - Preemption is disabled.
Clearing VRRP Statistics: Example

The `clear vrrp statistics` command produces no output of its own. The command modifies the statistics given by `show vrrp statistics` command so that all the statistics are reset to zero.

The following section provides examples of the output of the `show vrrp statistics` command followed by the `clear vrrp statistics` command:

```
RP/0/RSP0/CPU0:router# show vrrp statistics
Invalid packets:
  Invalid checksum: 0
  Unknown/unsupported versions: 0
  Invalid vrID: 10
  Too short: 0
Protocol:
  Transitions to Master 6
Packets:
  Total received: 155
  Bad TTL: 0
  Failed authentication: 0
  Unknown authentication: 0
  Conflicting authentication: 0
  Unknown Type field: 0
  Conflicting Advertise time: 0
  Conflicting Addresses: 0
  Received with zero priority: 3
  Sent with zero priority: 3
```

```
RP/0/RSP0/CPU0:router# clear vrrp statistics
RP/0/RSP0/CPU0:router# show vrrp statistics
Invalid packets:
  Invalid checksum: 0
  Unknown/unsupported versions: 0
  Invalid vrID: 0
  Too short: 0
Protocol:
  Transitions to Master 0
Packets:
  Total received: 0
  Bad TTL: 0
  Failed authentication: 0
  Unknown authentication: 0
  Conflicting authentication: 0
  Unknown Type field: 0
  Conflicting Advertise time: 0
  Conflicting Addresses: 0
  Received with zero priority: 0
  Sent with zero priority: 0
```

Additional References

The following sections provide references related to VRRP.
Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Quality of Service Commands on Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Command Reference</td>
</tr>
<tr>
<td>Class-based traffic shaping, traffic policing, low-latency queuing, and Modified Deficit Round Robin (MDRR)</td>
<td>Configuring Modular Quality of Service Congestion Management on Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Configuration Guide</td>
</tr>
<tr>
<td>WRED, RED, and tail drop</td>
<td>Configuring Modular QoS Congestion Avoidance on Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Configuration Guide</td>
</tr>
<tr>
<td>VRRP commands</td>
<td>VRRP Commands on Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference</td>
</tr>
<tr>
<td>master command reference</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Commands Master List</td>
</tr>
<tr>
<td>getting started material</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide</td>
</tr>
<tr>
<td>Information about user groups and task IDs</td>
<td>Configuring AAA Services on Cisco ASR 9000 Series Aggregation Services Router System Security Configuration Guide</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>
RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.</td>
<td>—</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>
Implementing Video Monitoring

Configuring Video Monitoring is a four-step procedure, which includes configuring the relevant class-maps and policy maps, and binding the video monitoring policy to an interface.

- Prerequisites for Implementing Video Monitoring, page 303
- Information About Implementing Video Monitoring, page 303
- Implementing Video Monitoring, page 308
- Configuration Examples for Implementing Video Monitoring, page 331
- Additional References, page 338

Prerequisites for Implementing Video Monitoring

- You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

- You must install and activate packages for advanced video services. For detailed information about optional package installation, see Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide.

- You must install and activate a package for the multicast routing software and enable multicast routing on the system. Video monitoring is supported on interfaces that are multicast-enabled. For detailed information about multicast routing, refer to the chapter Implementing Layer 3 Multicast Routing on Cisco ASR 9000 Series Routers.

Information About Implementing Video Monitoring

Video Monitoring

Poor video experience is a major cause for concern among service providers in terms of service costs and loss of revenue. To avoid the service costs of help desk time, NOC (network operation center) troubleshooting
resources, and truck rolls, the capability of monitoring video traffic is essential. On Cisco IOS XR software, problems in video flows can be easily diagnosed by video monitoring.

Introduction to Video Monitoring

Packet loss is one common cause of video quality degradation. Its impact is more significant on compressed video flows. The video traffic transported through the service provider IP network is mostly compressed video – MPEG or similar encoding. Because of the way compression occurs, the traffic is extremely loss-sensitive. The video is encoded with an independent frame (I-frame) every few seconds, with subsequent frames being deltas from the I-frame. If the loss is in an I-frame, a 3 ms loss of traffic (roughly one IP packet) can result in a viewing degradation for up to 1.2 seconds.

Jitter is a key flow characteristic that requires careful buffer provisioning in the end device. The set top box (STB) that displays the media on a screen needs to decode the video in real-time. It buffers the incoming video stream so that it can decode and display the image smoothly. Large network jitter can lead to buffer underrun or overrun on the STB. Depending on how large the jitter is, this will create a visual artifact or even a "black screen" at the display.

End-to-end delay in transmission is not significant for a broadcast-only application. However, as the video applications get to be more interactive, the end-to-end latency (delay) becomes a critical Quality of Experience (QoE) component. Data loss is a major contributor for poor QoE.

Three main contributors to poor QoE can be summed up as:

- Packet Loss
- Jitter
- Delay

Video Monitoring plays a very significant role in improving video quality, and thus, in enhancing the QoE. Video monitoring is implemented on the routers and enables network operators to measure and track video transport performance on a per-flow basis. The video packets flow through a router. We can use the packet headers and compute a metric that gives us a measure of the network performance impacting the quality of the video. This information from multiple routers is compared for the same flow to get a clear end-to-end picture of the video issues in the network and the affected flows.

Problems in video flows (and more generally, any streaming flow) can be diagnosed by video monitoring. The purpose of video monitoring is to detect perturbations and anomalies introduced by the network that cause a degraded QoE; that is, it measures the transport performance for streaming (video) traffic. Encoding errors, audio-video-lag, and other errors too cause poor QoE. However, these are introduced by the encoding device and not the network. These latter errors are not monitored.

Key Features Supported on Video Monitoring

Direct Measurements from Data Plane

Video monitoring plays a very significant role in improving video quality and therefore enhances the QoE. Video monitoring implemented on Cisco ASR 9000 Series Routers enable the network operator to measure and track video transport performance on a per-flow basis in real time. In contrast to the conventional traffic monitoring solutions, (where sampled flows have to be sent to the control plane or additional hardware, such as dedicated blade on the router), video monitoring on Cisco ASR 9000 Series Router performs the monitoring operation.
on the data plane itself. This enables video monitoring to analyze forwarded packets in real time, to compute a metric that provides a measure of the network performance impacting the quality of the video.

Local Storage and Remote Access

Video monitoring measures packet loss and jitter at wire-speed, and stores collected information on the router, in order that the network operator can access it through a user interface. Furthermore, the performance metrics measured and stored on multiple routers can be accessed through standard SNMP from a remote operation center. These metrics provide a clear end-to-end picture of the video flow that can be composed and analyzed.

Proactive and Reactive Usages

Video monitoring on Cisco ASR 9000 Series Routers serve both reactive and proactive usage for service providers. It can be used to verify the quality of video service, before scaling up the service coverage to new customers. Also, it is a powerful tool for analysis and can be used to troubleshoot customer calls. Network operators can configure video monitoring to raise an alarm for various events such as variation in packet loss, jitter, flow rate, number of flows, and so on. Such an alarm can be configured to get triggered at any possible value or range.

Flow on Video Monitoring

Video monitoring uses four pieces of packet header fields to distinguish a unique flow - source IP address, destination IP address, source UDP port, and destination UDP port (this implies protocol ID is always UDP).

Unicast and Multicast

Video monitoring supports not only the monitoring of flows with IPv4 multicast destination address in the IP header, but also supports the monitoring of flows with unicast destination addresses. The support for video monitoring functionality for unicast flows provides backward compatibility to ASR 9000 Ethernet Line Card, and is also available on ASR 9000 Enhanced Ethernet Line Card.

Flow Rate Types and Protocol Layer

Video monitoring monitors CBR (constant bit rate) flows at the IP layer. In other words, video monitoring can monitor CBR-encoded media streams (for example, MPEG-2) encapsulated in UDP datagram, inside an IPv4 packet. Video monitoring allows users to configure packet rate at IP layer, or bit rate at media layer (along with the number and size of media packets).

Metrics

Video monitoring supports both packet loss and jitter metrics that follow MDI (media delivery index, RFC 4445) definition at the IP-UDP level. The MDI metrics are MLR (media loss rate) and DF (delay factor). Video monitoring uses MRV (media rate variation) which is an extension of MDI MLR; that is, MLR captures only loss, while MRV captures both loss and excess. Video monitoring DF is the same as MDI definition, where DF represents one nominal packet inter-arrival time in addition to the monitored MDI jitter. Along with the two key metrics, Video monitoring supports packet count, byte count, packet rate, bit rate, packet size, TTL (Time to Live) field in IP header, number of flows, raised alarms, and time stamp for various events.
The term MDI jitter, is used to signify the correctness of DF metric measured by Video monitoring. MDI jitter is measured by comparing the actual packet arrival time against the nominal arrival reference, while simple inter-packet jitter is measured by the time difference between two consecutive packet arrivals. The former captures the performance of CBR flow more precisely than the latter.

Number of Flows

In the current release, video monitoring on Cisco ASR 9000 Series Router supports 1024 flows per NP (network processor) on ASR 9000 Ethernet Line Card and a maximum of 4096 flows per NP on ASR 9000 Enhanced Ethernet Line Card, for combined unicast and multicast traffic. The number of maximum flows for each line card or for each system varies, depending on the number of NPs on the line card and the number of line cards on the system. Per-chassis flow scale depends on the number of NPs on the chassis.

For example, if you have a Cisco ASR 9000 Series Router box with 4 ASR 9000 Ethernet Line Cards, and if each LC has 8 NPs, per-chassis flow scales up to 1K*8 = 8K flows for each chassis.

High Availability Features

Video monitoring on Cisco ASR 9000 Series Router supports high availability at various levels. It supports process OIR (online insertion and removable), line card OIR, RSP (route switch processor) fail over, and router reload. Configuration is persistent for all high availability scenarios. Monitored statistics data are preserved at process OIR and RSP FO.

Interface Types and Direction

To activate video monitoring, you must configure video monitoring service policy on an interface. There are four types of interfaces to which you can attach the video monitoring policy; these are main interface, subinterface, ethernet bundle interface, and ethernet bundle subinterface. Video monitoring supports only layer 3 interfaces and not layer 2 interfaces. Video monitoring can be configured only on the input direction of the interface.

Flow Rate and DF Precision

Video monitoring on Cisco ASR 9000 Series Router offers DF metric performance of 1 ms precision. Video monitoring supports standard definition (SD) video traffic (mostly compressed) of up to 100 Mbps flow rate. For uncompressed video streams, flow rate of max 3 Gbps is supported.

User Interface for Input

Video monitoring supports traditional CLI (command line interface) input for configuration that follows MQC (modular QoS configuration) syntax. You can configure video monitoring by configuring access control list (ACL), class map, and policy map; it can be activated by attaching the service policy to an interface. In-place policy modification is not supported. Once attached to an interface, the configured service policy can be modified only after detaching it from the interface.

User Interface for Output

Video monitoring offers various show and clear commands for retrieving the monitored statistics. Refer the Video Monitoring Commands on Cisco ASR 9000 Series Routers module in the *Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference* for a detailed description of the video monitoring commands.
You can configure TCA (threshold crossing alert) as a part of the policy map to enable video monitoring to generate syslog message for various conditions. You can also retrieve standing alarms by using `show` command or through a SNMP pull. XML is supported by video monitoring.

Number of Class Maps and Policy Maps

To use video monitoring, you must configure class map and policy map that acts as a filter to determine which flow to monitor on the data plane. Video monitoring supports a maximum of 1024 class maps per policy-map, and a maximum of 1024 class maps per system. It supports a maximum of 256 policy maps on the system.

Video PIE Installation

Video monitoring requires video PIE installation. Depending on the RSP type, the video pie name has two versions:

- `asr9k-video-p.pie` (RSP2 version)
- `asr9k-video-px.pie` (RSP3 version)

Video Monitoring Trap and Clone

Trap and clone is an extension to the basic performance monitoring service feature, where the packets from a selected number of flows can be filtered (trapped), duplicated (cloned), and sent to a remote device on the network for a more fine-grained analysis of the video quality. The cloned packets are replicated by the multicast forwarding process to the interface specified in the performance traffic clone profile. The remote device can perform a deeper analysis of the data at the MPEG layer level. This device can be used both as a debugging and a monitoring tool. Also, this device can act as a service engine blade on the same router. For multicast flows, the trap and clone functionality is fully backward-compatible; however, for unicast flows, it is supported with Layer 3 Switched Port Analyzer (SPAN) on Typhoon LCs.

Note

L3 SPAN does not support SNMP. For more information on L3 SPAN, refer to [Configuring SPAN](#).

Video Monitoring Terminology

To implement and configure video monitoring service on Cisco ASR 9000 Series Routers, you must first understand video monitoring terminology and concepts.

Interval duration and interval updates

Video monitoring analyzes continuously all packets on the data plane for a time period called interval duration, which is configured by the user. Statistics are exported periodically at the end of each interval duration. These exported statistics are called interval updates. The status of a video monitoring flow and its transition is described solely in reference to these interval updates. Also, all exported video monitoring flow statistics are stored in terms of these interval updates.

The interval duration is a vital video monitoring parameter. Video monitoring configuration anchors upon interval duration for functions such as frequency of export, number of exports to store, time to delete inactive flows, and so on. All video monitoring functionalities, including raising alarm (for stopped flows and flows with performance degradation), are based on the contents of interval updates.
Video monitoring flows
A video monitoring flow is an instance of a packet stream whose header fields match the configured class map (and its associated access control list). A unique flow is local to the interface to which a video monitoring service policy is attached. A video monitoring flow is composed of a series of stored interval updates. A unique flow that is created on video monitoring after a monitoring interval is called a new flow. Therefore, a packet stream that lives for a period shorter than one monitoring interval is not exported as a video monitoring flow, and is therefore not stored.

Flow stop
If the router stops receiving packets on a monitored flow for one full interval update or longer, the monitored flow is considered as being stopped.

Flow resumption
When a stopped video monitoring flow resumes receiving packets, a normal interval update is exported in the next monitoring interval. A resumed flow has one or more zero intervals, followed by a normal interval update.

Flow switchover
A video monitoring flow on an ethernet bundle interface, or on an ethernet bundle sub-interface, may move from one physical member interface to another; that is, the packet stream stops flowing on one interface and starts flowing on another interface. This is defined as a flow switchover. In such a case, if both interfaces are on the same line card, video monitoring treats the pre-switchover flow and the post-switchover flow as the same flow. Otherwise, it treats them as two different flows.

Flow deletion
If a stopped video monitoring flow continues to export zero intervals for a configured timeout (in terms of the number of monitoring intervals), the flow is considered dead and is marked for deletion. The duration for which the user can control inactive flows is indicated using the timeout parameter. The actual deletion for all the marked flows takes place after some delay by the periodic sweeping function, which is executed every 150 seconds for Trident LC, and executed every 60 seconds for Typhoon LC. Once deleted, all exported statistics (series of interval updates including zero intervals) are completely removed from storage.

Implementing Video Monitoring
Configuring Video Monitoring is a four-step procedure, which includes configuring the relevant class-maps and policy maps, and binding the video monitoring policy to an interface.

Creating IPv4 Access Lists
This step is similar to typical IPv4 access list creation and configuration. An example configuration of ACL for video monitoring is presented here for quick reference. For more details, refer to the Implementing Access lists and Prefix lists chapter of the Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Configuration Guide.

This task configures a standard IPv4 access list.
Standard access lists use source addresses for matching operations.
Video Monitoring policy allows **deny** statements in ACL configuration, but **deny** statements are treated as **permit**. Also, log or log-input is not supported in ACL configuration.

SUMMARY STEPS

1. `configure`
2. `ipv4 access-list name`
3. `[sequence-number] remark remark`
4. `[sequence-number] permit udp source [source-port] destination [destination-port]`
5. Repeat Step 4 as necessary, adding statements by sequence number. Use the `no sequence-number` command to delete an entry.
6. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>ipv4 access-list name</code></td>
</tr>
</tbody>
</table>

Example:
```
RP/0/RSP0/CPU0:router# ipv4 access-list acl_1
```

Step 3
```
[sequence-number] remark remark
```

Example:
```
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10
remark Do not allow user1 to telnet out
```

Optional Allows you to comment on the **permit** statement that follows in the named access list.

- The remark can be up to 255 characters; anything longer is truncated.
- Remarks can be configured before or after **permit** statements, but their location details should be consistent.

<table>
<thead>
<tr>
<th>Step 4</th>
<th>[sequence-number] permit udp source [source-port] destination [destination-port]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td><code>permit udp 172.16.0.0/24 eq 5000 host 225.0.0.1 eq 5000</code></td>
</tr>
</tbody>
</table>

Allows you to specify the source and destination ports with these conditions.

- Video monitoring supports only udp.
- Use the `source` keyword to specify the network or host number from which the packet is being sent.
- Use the optional `source-wildcard` argument to specify the wildcard bits to be applied to the source.
- Use the `destination` keyword to specify the network or host number to which the packet is being sent.
- Use the optional `destination-wildcard` argument to specify the wildcard bits to be applied to the destination.
Configuring class-map

This task sets up the flow classifier. This may match either an individual flow, or it may be an aggregate filter matching several flows.

SUMMARY STEPS

1. `configure`
2. `class-map type traffic class-map-name`
3. `match access-group ipv4 acl-name`
4. `end-class-map`
5. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the class-map mode. The class-map type must always be entered as traffic.</td>
</tr>
<tr>
<td>Step 2 class-map type traffic class-map-name</td>
<td>Enter the ACL to be matched for this class. Only one ACL can be matched per class.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# class-map type traffic class1</td>
<td></td>
</tr>
<tr>
<td>Step 3 match access-group ipv4 acl-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-cmap)# match access-group ipv4 acl1</td>
<td></td>
</tr>
<tr>
<td>Step 4 end-class-map</td>
<td>Completes the class-map configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-cmap)# end-class-map</td>
<td></td>
</tr>
</tbody>
</table>
Configuring policy-map

The policy map for video monitoring is of the performance-traffic type. Only one level of hierarchy is supported for video monitoring policy-maps. This means that no hierarchical policy map configuration is supported for video monitoring.

The policy map configuration for video monitoring has these three parts:

- **Flow parameters configuration**: Specifies the different properties of the flow that are monitored such as interval duration, required history intervals, timeout, etc.
- **Metric parameters configuration**: Specifies the metrics that need to be calculated for the flow that are monitored.
- **React parameters configuration**: Specifies the parameters, based on which, alerts are generated for the flow.

The configuration hierarchy is from *policy* to *class* to *flow*. This means that all the parameters that are specified above are applied to all flows that match a particular class, in the policy-map. While specifying flow and react parameters for flows matching a given class is optional, its metric parameters is mandatory.

Configuring policy-map with metric parameters

The metric parameters in a policy map can be:

- Layer 3 packet rate or
- Media bit rate (with the number of media packet counts and size in the UDP payload specified).

Note

Layer 3 packet rate and Media rate have mutually exclusive configuration commands.

The configuration for each metric parameter is described in this section.

Layer 3 packet-rate

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
</tbody>
</table>

CISCO ASR 9000 SERIES AGGREGATION SERVICES ROUTER IP ADDRESSES AND SERVICES CONFIGURATION GUIDE, RELEASE 5.1.X
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>policy-map type</td>
<td>Enters the policy-map mode. The policy-map type should always be entered as performance traffic.</td>
</tr>
<tr>
<td></td>
<td>performance-traffic</td>
<td>policy-map-name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>class type</td>
<td>Enter the class-map to be matched for this policy. Multiple classes can be specified for a single policy.</td>
</tr>
<tr>
<td></td>
<td>traffic class-name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class-name</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>monitor</td>
<td>Enters the IP-CBR metric monitor submode.</td>
</tr>
<tr>
<td></td>
<td>metric ip-cbr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Currently only ip-cbr metric monitoring is supported for video monitoring.</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c)# monitor metric ip-cbr</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>rate layer3 packet</td>
<td>Specifies the IP layer3 packet rate in packets per second (pps).</td>
</tr>
<tr>
<td></td>
<td>packet-rate pps</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-ipcbr)# rate layer3 packet packet-rate pps</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Media bit-rate

The metric parameters for media bit-rate consist of the media bit rate, media packet count and packet size. The rate media option enables the user to specify the number of media payload packets (that is MPEG-2 datagrams) that is present in one UDP packet, and the size of each of such media payload. It is mandatory to specify the media bit rate. There are no defaults for packet count and packet size in Cisco IOS XR Software Release 3.9.1. These values must be configured.

Note

With the media bit rate configured to 1052800 bps, media packet count to 7, and media packet size to 188 bytes, the media packet rate is 100 pps at layer 3. The calculation is: 1052800 / (7 *188*8) = 100 pps.
SUMMARY STEPS

1. configure
2. policy-map type performance-traffic policy-map-name
3. class type traffic class-name
4. monitor metric ip-cbr
5. rate media bit-rate \{bps|kbps|mbps|gbps\}
6. media packet count in-layer3 packet-count
7. media packet size packet-size
8. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the policy-map mode. The policy-map type should always be entered as performance traffic.</td>
</tr>
<tr>
<td>Step 2 policy-map type performance-traffic policy-map-name</td>
<td>Enters the class-map to be matched for this policy. Multiple classes can be specified for a single policy. Example: RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class-name</td>
</tr>
<tr>
<td>Step 3 class type traffic class-name</td>
<td>Enters the IP-CBR metric monitor submode. Example: RP/0/RSP0/CPU0:router(config-pmap-c)# monitor metric ip-cbr</td>
</tr>
<tr>
<td>Step 4 monitor metric ip-cbr</td>
<td>Enters the IP-CBR metric monitor submode. Note: Currently only ip-cbr metric monitoring is supported for video monitoring. Example: RP/0/RSP0/CPU0:router(config-pmap-c-ipcbr)# rate media 100 mbps</td>
</tr>
<tr>
<td>Step 5 rate media bit-rate {bps</td>
<td>kbps</td>
</tr>
<tr>
<td>Step 6 media packet count in-layer3 packet-count</td>
<td>Specifies the number of media packets for each IP payload. Example: RP/0/RSP0/CPU0:router(config-pmap-c-ipcbr)# media packet size 188</td>
</tr>
<tr>
<td>Step 7 media packet size packet-size</td>
<td>Specifies the size in bytes for each media packet in the IP payload. Example: RP/0/RSP0/CPU0:router(config-pmap-c-ipcbr)# media packet size 188</td>
</tr>
</tbody>
</table>
Configuring policy-map with flow parameters

The flow parameters in a policy map are optional. For video monitoring, the data plane continuously monitors the flows and the metrics that are exported at the end of every interval. The duration of this interval and the number of such intervals that need to be stored for each flow (history) can also be optionally specified by the user. You can specify these flow parameters for each flow:

- **Interval Duration**: The time interval at whose end, metrics are exported. This is specified in multiples of 5 (any value between 10 and 300 seconds). The default value is 30.
- **History**: The number of intervals containing flow information (flow ID, metrics, etc.) that needs be stored for each flow. This can be any value between 1 and 60. The default value is 10.
- **Timeout**: The timeout in multiples of interval duration after which an inactive flow is marked for deletion. This can be any value between 2 and 60. The default value is 0. (Note: the timeout value of 0 has a special meaning: the flow will never be timed out and is therefore a static flow).
- **Max Flows per class**: The maximum number of flows that need to be monitored for each class in the policy. This can be any value between 1 and 1024. The default value is 1024.

SUMMARY STEPS

1. `configure`
2. `policy-map type performance-traffic policy-map-name`
3. `class type traffic class-name`
4. `monitor parameters`
5. `{interval duration duration | flows number of flows | history intervals | timeout duration}`
6. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>policy-map type performance-traffic policy-map-name</code></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 3</td>
<td>class type traffic class-name
Example:
RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor parameters
Example:
RP/0/RSP0/CPU0:router(config-pmap-c)# monitor parameters</td>
</tr>
<tr>
<td>Step 5</td>
<td>**{interval duration duration</td>
</tr>
<tr>
<td>Step 6</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring policy-map with react parameters

The react parameters in a policy map are optional.

The react parameters are a direct reference for the user to indicate the flow quality. The flow is continuously monitored, and at the end of the interval duration, the statistics are examined to determine whether the threshold specified by the user for the specific parameter has exceeded. If it has, a syslog alarm is generated on the console. Once the alarm is set, no further syslog notifications are issued for the condition.

The following react parameters are used to configure the policy-map:

- Media Rate variation (MRV): video monitoring reacts and generates an alarm if the MRV statistic of the flow crosses the user-specified threshold.
- Delay Factor: video monitoring reacts and generates an alarm if the Delay Factor statistic of the flow crosses the user-specified threshold.
• Media-Stop: video monitoring reacts and generates an alarm if a flow stops; this is to indicate that no packets were received for the flow during one full monitoring interval.

• Packet-Rate: video monitoring reacts and generates an alarm if the packet rate of the flow crosses the user-specified threshold.

• Flow-Count: video monitoring reacts and generates an alarm if the flow count for each class crosses the user-specified threshold.

SUMMARY STEPS

1. configure
2. policy-map type *performance-traffic* policy-map-name
3. class type *traffic* class-name
4. react react-id \{ mrv \| delay-factor \| packet-rate \| flow-count \| media-stop \}
5. threshold type immediate
6. threshold value \{ ge \| gt \| le \| lt \| range \} limit
7. action syslog
8. alarm severity \{ error \| critical \| alert \| emergency \}
9. alarm type \{ discrete \| grouped \}
10. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the policy-map mode. The policy-map type should always be entered as performance traffic.</td>
</tr>
<tr>
<td>Step 2 policy-map type performance-traffic policy-map-name</td>
<td>Enter the class-map to be matched for this policy. Multiple classes can be specified for a single policy.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
<td></td>
</tr>
<tr>
<td>Step 3 class type traffic class-name</td>
<td>Enter the react parameter configuration submode. The react ID specified here needs to be unique for each class.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class-name</td>
<td></td>
</tr>
<tr>
<td>Step 4 react react-id { mrv | delay-factor | packet-rate | flow-count | media-stop }</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-pmap-c)# react 1 mrv</td>
<td>For the media-stop react parameter, the threshold-type and threshold-value options are not applicable. For the flow-count react parameter, the alarm-type option is not applicable.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5</td>
<td>threshold type immediate
Example:
RP/0/RSP0/CPU0:router(config- pmap-c-react)# threshold type immediate</td>
</tr>
<tr>
<td>Step 6</td>
<td>threshold value {ge</td>
</tr>
<tr>
<td>Step 7</td>
<td>action syslog
Example:
RP/0/RSP0/CPU0:router(config- pmap-c-react)# action syslog</td>
</tr>
<tr>
<td>Step 8</td>
<td>alarm severity {error</td>
</tr>
<tr>
<td>Step 9</td>
<td>alarm type {discrete</td>
</tr>
<tr>
<td>Step 10</td>
<td>commit</td>
</tr>
</tbody>
</table>

Video Monitoring Metrics

Video monitoring supports RTP, MDI and MPLS metrics in this release.

- The variations of RTP supported are RTP-MMR, RTP-Voice, RTP-J2k, and RTP-Custom
- The variations of MDI supported are MDI-MPEG, and MDI-MPEG over RTP
- The variations of MPLS supported are RSVP-TE, P2MP-TE, LDP, and MLDP
Configuring policy-map with rtp metric parameters

The configuration for each rtp metric parameter is described in this section.

SUMMARY STEPS

1. configure
2. policy-map type performance-traffic policy-map-name
3. class type traffic class-name
4. monitor parameters
5. timeout duration
6. exit
7. monitor metric[rtp | rtp-j2k | rtp-mmr | rtp-voice]
8. clock-rate value
9. max-dropout value
10. max-misorder value
11. min-sequential value
12. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the policy-map mode. The policy-map type should always be entered as performance traffic.</td>
</tr>
<tr>
<td>Step 2 policy-map type performance-traffic policy-map-name</td>
<td>Enter the class-map to be matched for this policy. Multiple classes can be specified for a single policy.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
<td></td>
</tr>
<tr>
<td>Step 3 class type traffic class-name</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class-name</td>
<td></td>
</tr>
<tr>
<td>Step 4 monitor parameters</td>
<td>Enters the flow monitor submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-pmap-c)# monitor parameters</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 5</td>
<td>timeout duration</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# timeout 2</td>
</tr>
<tr>
<td></td>
<td>The timeout in multiples of interval duration after which an inactive flow is marked for deletion. This can be any value between 2 and 60.</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits from the flow monitor submode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>monitor metric[rtp</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# monitor metric rtp</td>
</tr>
<tr>
<td></td>
<td>• Enters the corresponding rtp metric monitor submode. The available options are:</td>
</tr>
<tr>
<td></td>
<td>• rtp - This option is used for custom rtp traffic.</td>
</tr>
<tr>
<td></td>
<td>• rtp-j2k - This option is used to monitor RTP JPEG 2000 traffic.</td>
</tr>
<tr>
<td></td>
<td>• rtp-mmr - This option is used to monitor Microsoft Mediaroom traffic.</td>
</tr>
<tr>
<td></td>
<td>• rtp-voice - This option is used to monitor RTP voice traffic.</td>
</tr>
<tr>
<td>Note</td>
<td>When rtp-j2k, rtp-mmr and rtp-voice metrics are used for monitoring, frequency mapping in the dynamic range is configured automatically for specific frequencies. The rtp metric parameter is used for custom rtp traffic. You need to configure the frequency mapping dynamically for the rtp metric parameter.</td>
</tr>
<tr>
<td>Step 8</td>
<td>clock-rate value</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-rtp)# clock-rate 97</td>
</tr>
<tr>
<td></td>
<td>This option is available with the rtp monitor metric only. Enter the dynamic payload type value. Range is from 96 to 27.</td>
</tr>
<tr>
<td></td>
<td>The RTP clock rate used for generating the RTP timestamp is independent of the number of channels and encoding. The RTP clock rate equals the number of sampling periods per second. The clock frequency for most video streams is 90 kHz. RTP supports all static payload type codes and allows a user to configure dynamic payload type frequency mapping. The available payload type values are:</td>
</tr>
<tr>
<td></td>
<td>• 8kHz frequency</td>
</tr>
<tr>
<td></td>
<td>• 16kHz frequency</td>
</tr>
<tr>
<td></td>
<td>• 11.025kHz frequency</td>
</tr>
<tr>
<td></td>
<td>• 22.050kHz frequency</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>• 44.1kHz frequency</td>
<td></td>
</tr>
<tr>
<td>• 48kHz frequency</td>
<td></td>
</tr>
<tr>
<td>• 90kHz frequency (default frequency for RTP)</td>
<td></td>
</tr>
<tr>
<td>• 27000kHz frequency</td>
<td></td>
</tr>
<tr>
<td>• 148500kHz frequency</td>
<td></td>
</tr>
<tr>
<td>• 148.5/1.001MHz frequency</td>
<td></td>
</tr>
</tbody>
</table>

Step 9 max-dropout value

Example:

```
RP/0/RSP0/CPU0:router(config-pmap-c-rtp)# max-dropout 20
```

This option is available with the rtp monitor metric only. Enter the maximum dropout value for RTP flow. The range enforced at policy map creation time is from 1 to 65536. The range enforced at bind time is from 0 to 255.

In order to identify an out-of-order packet, a sliding window is maintained to accept non-sequential packets as long as they are within the window. Max-dropout provides the look-ahead configuration for the sliding window. A packet with sequence number x is considered valid if x is no more than max-dropout ahead of current sequence number.

For RTP, 128 clock frequency-payload type mapping tables are supported.

Step 10 max-misorder value

Example:

```
RP/0/RSP0/CPU0:router(config-pmap-c-rtp)# max-misorder 20
```

This option is available with the rtp monitor metric only. Enter the maximum misorder value. The range enforced at policy map creation time is from 1 to 65536. The range enforced at bind time is from 0 to 255.

A packet with sequence number x is considered valid if x is no more than max-misorder behind the current sequence number. A sequence number is considered valid only if it is neither more than max-dropout ahead of max seq (currently seen maximum sequence number) nor more than max-misorder behind.

Step 11 min-sequential value

Example:

```
RP/0/RSP0/CPU0:router(config-pmap-c-rtp)# min-sequential 20
```

This option is available with the rtp monitor metric only. Enter the minimum sequential value. The range enforced at policy map creation time is from 1 to 65536. The range enforced at bind time is from 0 to 255.

Since UDP header does not have any protocol specific information, there is no way to uniquely identify an RTP packet. Instead, a heuristic way of examining RTP headers of N packet is used in PD to identify the flow. The number of packets is defined by metric parameter of min-sequential.

Step 12 commit
Configuring policy-map with rtp react parameters

The configuration for each rtp metric with react parameter is described in this section.

SUMMARY STEPS

1. configure
2. policy-map type performance-traffic policy-map-name
3. class type traffic class-name
4. monitor parameters
5. timeout duration
6. exit
7. monitor metric [rtp | rtp-j2k | rtp-mmr | rtp-voice]
9. action [snmp | syslog | clone]
10. alarm type [discrete | grouped {count number | percent percentage}]
11. alarm severity [alert | critical | emergency | error]
12. threshold {ge | gt | le | lt | range} limit
13. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters the policy-map mode. The policy-map type should always be entered as performance traffic.</td>
</tr>
<tr>
<td>Step 2 policy-map type performance-traffic policy-map-name</td>
<td>Enter the class-map to be matched for this policy. Multiple classes can be specified for a single policy.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
<td></td>
</tr>
<tr>
<td>Step 3 class type traffic class-name</td>
<td></td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class-name</td>
<td></td>
</tr>
<tr>
<td>Step 4 monitor parameters</td>
<td>Enters the flow monitor submode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config-pmap-c)# monitor parameters</td>
<td></td>
</tr>
</tbody>
</table>
Video Monitoring Metrics

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>timeout duration</td>
<td>The timeout in multiples of interval duration after which an inactive flow is marked for deletion. This can be any value between 2 and 60.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# timeout 2</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>exit</td>
<td>Exits from the flow monitor submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# exit</code></td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
</tbody>
</table>
| **monitor metric [rtp | rtp-j2k | rtp-mmr | rtp-voice]** | • Entersthe corresponding rtp metric monitor submode. The available options are:
 - rtp - This option is used for custom rtp traffic.
 - rtp-j2k - This option is used to monitor RTP JPEG 2000 traffic.
 - rtp-mmr - This option is used to monitor Microsoft Mediaroom traffic.
 - rtp-voice - This option is used to monitor RTP voice traffic.
| **Example:** | |
| `RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# monitor metric rtp` | |
| **Step 8** | |
| **react react-id {rtp-loss-fraction | rtp-jitter | rtp-out-of-order | rtp-loss-pkts | rtp-transport-availability | rtp-error-seconds | flow-count | packet-rate]** | Enters the react parameter configuration submode. The react ID specified here needs to be unique for each class. The available options are:
 - rtp-error-seconds - This option is used for RTP error seconds. Error seconds signifies the amount of time the stream was errored.
 - rtp-jitter - This option is used for RTP jitter. RTP jitter signifies the average interpacket jitter based on RTP timestamp.
 - rtp-loss-fraction - This option is used for RTP loss fraction. Loss fraction signifies the percentage of packets that are lost. |
<p>| Example: | |
| <code>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# react 1 rtp-loss-fraction</code> | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• rtp-loss-pkts - This option is used for RTP loss packets. Loss packets signifies the number of packets that are lost.</td>
<td></td>
</tr>
<tr>
<td>• rtp-max-jitter - This option is used for RTP max jitter. Maximum instantaneous jitter during an time interval.</td>
<td></td>
</tr>
<tr>
<td>• rtp-out-of-order - This option is used for RTP out-of-order packets. Out-of-order packets signifies the number of misordered packets.</td>
<td></td>
</tr>
<tr>
<td>• rtp-transport-availability - This option is used for RTP transport availability. Transport availability signifies the percentage of time during which the stream does not have any errors. For example, if the RTP error seconds is zero, the RTP transport availability is hundred percent.</td>
<td></td>
</tr>
<tr>
<td>• flow-count - This option is used for Flow Count. Flow count signifies the number of flows on a policy.</td>
<td></td>
</tr>
<tr>
<td>• packet-rate - This option is used for Packet Rate. Packet rate signifies the number of packets during a given time interval.</td>
<td></td>
</tr>
</tbody>
</table>

Step 9
action [snmp | syslog | clone]

Example:
```
RP/0/RSP0/CPU0:router(config-pmap-c-react) #
action snmp
```

The action keyword specifies the action to be taken if the threshold limit is surpassed.

Step 10
alarm type [discrete | grouped { count number | percent percentage}]

Example:
```
RP/0/RSP0/CPU0:router(config-pmap-c-react) #
alarm type discrete
```

Specifies the alarm type. Discrete alarm is raised for all the flows that exceed the threshold value. Count alarms are grouped based on number of flows. Percent alarms are grouped based on percentage of flows.

Step 11
alarm severity [alert | critical | emergency | error]

Example:
```
RP/0/RSP0/CPU0:router(config-pmap-c-react) #
alarm severity critical
```

 Specifies the alarm severity for syslog.

Step 12
threshold { ge | gt | le | lt | range } limit

Example:
```
RP/0/RSP0/CPU0:router(config-pmap-c-react) #
threshold value ge 50
```

Specifies the trigger value range for the threshold.
Configuring policy-map with mdi metric parameters

The configuration for each mdi metric parameter is described in this section.

SUMMARY STEPS

1. configure
2. policy-map type performance-traffic policy-map-name
3. class type class-map-name
4. monitor parameters
5. timeout duration
6. exit
7. monitor metric mdi mpeg mdi mpeg rtp
8. max-dropout value
9. monitor pids id
10. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map type performance-traffic policy-map-name</td>
</tr>
<tr>
<td></td>
<td>Enters the policy-map mode. The policy-map type should always be entered as performance traffic.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
</tr>
<tr>
<td>Step 3</td>
<td>class type class-map-name</td>
</tr>
<tr>
<td></td>
<td>Enter the class-map to be matched for this policy. Multiple classes can be specified for a single policy.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class-name</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Step 4</td>
<td>Enters the flow monitor submode.</td>
</tr>
<tr>
<td>monitor parameters</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c)# monitor parameters</td>
</tr>
<tr>
<td>Step 5</td>
<td>The timeout in multiples of interval duration after which an inactive flow is marked for deletion. This can be any value between 2 and 60.</td>
</tr>
<tr>
<td>timeout duration</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# timeout 2</td>
</tr>
<tr>
<td>Step 6</td>
<td>Exits from the flow monitor submode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# exit</td>
</tr>
<tr>
<td>Step 7</td>
<td>Enters the corresponding mdi metric monitor submode. The mdi mpeg rtp option signifies the presence of an rtp header before the mpeg header. A maximum of 7 mpeg packets per IP packet are allowed. If a packet contains more than 7 mpeg packets, then the ip packet is ignored. If encapsulation does not match, the flows will not be learned.</td>
</tr>
<tr>
<td>monitor metric [mdi mpeg</td>
<td>mdi mpeg rtp]</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c)# monitor metric mdi mpeg</td>
</tr>
<tr>
<td>Step 8</td>
<td>Enables packet filtering based on lower bound of stream rate. Range is 1 to 4294967294.</td>
</tr>
<tr>
<td>max-dropout value</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-mdi)# max-dropout 20</td>
</tr>
<tr>
<td>Step 9</td>
<td>Enable static PID monitoring. The range enforced at policy map creation time is from 1 to 65536. The range enforced at bind time is from 16 to 8191.</td>
</tr>
<tr>
<td>monitor pids id</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-mdi)# monitor pids 200</td>
</tr>
<tr>
<td>Step 10</td>
<td>commit</td>
</tr>
</tbody>
</table>
SUMMARY STEPS

1. configure
2. policy-map type performance-traffic policy-map-name
3. class type traffic class-name
4. monitor parameters
5. timeout duration
6. exit
7. react react-id {mdi-mlr | mdi-mdc | mdi-transport-availability | mpeg-loss-pkts | mdi-error-seconds | rtp-error-seconds | flow-count | mdi-jitter | packet-rate | media-stop}
8. action [snmp | syslog | clone]
9. alarm type { discrete | grouped { count number | percent percentage } }
10. alarm severity { alert | critical | emergency | error }
11. threshold { ge | gt | le | lt | range } limit
12. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>policy-map type performance-traffic policy-map-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# policy-map type performance-traffic policy1</td>
</tr>
<tr>
<td>Step 3</td>
<td>class type traffic class-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap)# class type traffic class-name</td>
</tr>
<tr>
<td>Step 4</td>
<td>monitor parameters</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c)# monitor parameters</td>
</tr>
<tr>
<td>Step 5</td>
<td>timeout duration</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# timeout 2</td>
</tr>
</tbody>
</table>

Enters the policy-map mode. The policy-map type should always be entered as performance traffic.

Enter the class-map to be matched for this policy. Multiple classes can be specified for a single policy.

Enters the flow monitor submode.

The timeout in multiples of interval duration after which an inactive flow is marked for deletion. This can be any value between 2 and 60.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-pmap-c-mparm)# exit</code></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Exits from the flow monitor submode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>**react react-id {mdi-mlr</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-pmap-c)# react 1 rtp-loss-fraction</code></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Enters the react parameter configuration submode. The react ID specified here needs to be unique for each class. The available options are:</td>
</tr>
<tr>
<td></td>
<td>- mdi-error-seconds - MDI error seconds</td>
</tr>
<tr>
<td></td>
<td>- mdi-mdc - MDI Media Disc. Count</td>
</tr>
<tr>
<td></td>
<td>- mdi-mlr - MDI Media Loss Rate</td>
</tr>
<tr>
<td></td>
<td>- mdi-transport-availability - MDI transport availability</td>
</tr>
<tr>
<td></td>
<td>- mpeg-loss-pkts - MPEG loss packets</td>
</tr>
<tr>
<td></td>
<td>- flow-count - Flow Count</td>
</tr>
<tr>
<td></td>
<td>- mdi-jitter - MDI Jitter</td>
</tr>
<tr>
<td></td>
<td>- packet-rate - Packet Rate</td>
</tr>
<tr>
<td></td>
<td>- media-stop - Media Stop Event</td>
</tr>
<tr>
<td>Step 8</td>
<td>**action [snmp</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-pmap-c-react)# action snmp</code></td>
</tr>
<tr>
<td>Purpose:</td>
<td>The action keyword specifies the action to be taken if the threshold limit is surpassed.</td>
</tr>
<tr>
<td>Step 9</td>
<td>**alarm type [discrete</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-pmap-c-react)# alarm type discrete</code></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Specifies the alarm type. Discrete alarm is raised for all the flows that exceed the threshold value. Count alarms are grouped based on the number of flows and percent alarms are grouped based on the percentage of flows.</td>
</tr>
<tr>
<td>Step 10</td>
<td>**alarm severity [alert</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-pmap-c-react)# alarm severity critical</code></td>
</tr>
<tr>
<td>Purpose:</td>
<td>Specifies the alarm severity for syslog.</td>
</tr>
</tbody>
</table>
Purpose

Command or Action

<table>
<thead>
<tr>
<th>Step 11</th>
<th>threshold</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{ge</td>
<td>gt</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config-pmap-c-react)#
threshold value ge 50
```

<table>
<thead>
<tr>
<th>Step 12</th>
<th>commit</th>
</tr>
</thead>
</table>

Configuring flow monitor

Perform this step to configure flow monitor.

SUMMARY STEPS

1. configure
2. flow monitor-map performance-traffic monitor-name
3. exporter exporter-map-name
4. record { default-rtp | default-mdi }
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config)# flow monitor-map performance-traffic m1
```

<table>
<thead>
<tr>
<th>Step 2</th>
<th>flow monitor-map performance-traffic monitor-name</th>
</tr>
</thead>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config-fmm)#
```

<table>
<thead>
<tr>
<th>Step 3</th>
<th>exporter exporter-map-name</th>
</tr>
</thead>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config-fmm)# exporter e1
```

```
Implementing Video Monitoring

Configuring service policy on an interface

The configured policy-map must be attached to an interface in ingress direction in order to enable the Video Monitoring service.

For ethernet bundle interface, service policy can be attached to only the bundle parent interface and not to the physical member interfaces. For ethernet bundle sub-interfaces, it can be attached to only sub-interfaces. For VLAN sub-interfaces, the service policy cannot be attached to the main interface.

**SUMMARY STEPS**

1. configure
2. interface type interface-path-id
3. service-policy type performance-traffic input policy-name
4. commit

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> interface</td>
<td>Configures an interface and enters interface configuration mode.</td>
</tr>
<tr>
<td>type interface-path-id</td>
<td>The type argument specifies an interface type. For more information on</td>
</tr>
<tr>
<td></td>
<td>interface types, use the question mark (?) online help function.</td>
</tr>
<tr>
<td></td>
<td>The instance argument specifies either a physical interface instance or</td>
</tr>
<tr>
<td></td>
<td>a virtual instance.</td>
</tr>
<tr>
<td></td>
<td>The naming notation for a physical interface instance is rack/slot/module/port. The slash (/) between values is required as part of the notation.</td>
</tr>
<tr>
<td></td>
<td>The number range for a virtual interface instance varies, depending on</td>
</tr>
<tr>
<td></td>
<td>the interface type.</td>
</tr>
</tbody>
</table>

Example:

```
RP/0/RSP0/CPU0:router(config)# interface type interface-path-id
```

Example:

```
RP/0/RSP0/CPU0:router(config)# record default-rtp
RP/0/RSP0/CPU0:router(config-fmm)#
```

Example:

```
RP/0/RSP0/CPU0:router(config-fmm)# record default-mdi
RP/0/RSP0/CPU0:router(config-fmm)#
```

**Purpose**

Enter the flow record map name. The available options are:

- default-rtp - Default MDI record format
- default-mdi - Default RTP record format
Configuring Trap and Clone on an interface

As trap and clone is an extension of the existing video monitoring service, the current control plane infrastructure can be extended to accommodate the configurations for trap and clone.

You can use the flow tuple information (source and destination IP addresses) to install the trap, which eventually leads the matched packets to be further analyzed by a remote device or a local probe.

These steps show how the trap and clone process works in a generic video monitoring scenario:

- You must enable video monitoring by installing the appropriate packages (multicast and video PIEs) and configure ACL, class map, policy map, and bind the policy map to an interface.

- You must configure trap and clone by specifying which flows to clone by specifying the source and the destination of the flows.

- The trap gets installed in the data plane by the VidMon control plane and VidMon data plane starts cloning the packets for the specified flows.

- The cloned packets are forwarded to the remote monitoring device for further analysis.

You can use the `show performance traffic clone profile` command to verify the installed traps. The video monitoring trap and clone feature is supported only for multicast traffic, and for unicast flows the user is required to configure SPAN. In multicast, the video monitoring trap and clone feature is implemented using static IGMP groups on the clone interface. The clone interface can be on a dedicated port connected to a local probe.

**SUMMARY STEPS**

1. `configure`
2. `performance traffic clone profile profile_name`
3. `interface type interface-path-id`
4. `flow ipv4 source <source-ip> destination <destination-ip>`
5. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 performance traffic clone profile profile_name</td>
<td>Enters the performance traffic clone profile mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# performance traffic clone profile profile1</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type interface-path-id</td>
<td>Configures the egress interface to a clone profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-perf-traf-clone-profile)# interface GigabitEthernet 0/0/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 flow ipv4 source &lt;source-ip&gt; destination &lt;destination-ip&gt;</td>
<td>Configures the traffic flows that needs to be cloned, to the clone profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config-perf-traf-clone-profile)# flow ipv4 source 23.1.1.1 destination 224.2.2.2</td>
<td></td>
</tr>
<tr>
<td>Step 5 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples for Implementing Video Monitoring

Scenario-1
An ethernet bundle interface has three physical members over which multicast video traffic is flowing at 300 pps for each flow.
Use video monitoring to monitor all the flows on this ethernet bundle, and raise a critical-level alarm, if the per-flow traffic load is over 10 % of expected rate. Raise an error-level alarm if the delay factor is greater than 4 ms. Report the collected statistics every 10 seconds. As long as the flow is active, keep the reported statistics for 10 minutes. Remove flow statistics if no packets are received for 30 seconds.

Example

ipv4 access-list sample-acl
10 permit udp any any
!
class-map type traffic match-any sample-class
match access-group ipv4 sample-acl
end-class-map
!
policy-map type performance-traffic sample-policy
class type traffic sample-class
    monitor parameters
    interval duration 10
    history 60
    timeout 3
!
    monitor metric ip-cbr
    rate layer3 packet 300 pps
!
    react 100 mrv
    threshold type immediate
    threshold value gt 10.00
    action syslog
    alarm severity error
    alarm type discrete
!
    react 101 delay-factor
    threshold type immediate
    threshold value gt 4.00
    action syslog
    alarm severity error
    alarm type discrete
!
end-policy-map

interface Bundle-Ether10
    ipv4 address 172.192.1.1 255.255.255.0
    service-policy type performance-traffic input sample-policy

interface TenGigE0/6/0/0
    bundle id 10 mode on
!
interface TenGigE0/6/0/1
    bundle id 10 mode on
!
interface TenGigE0/6/0/2
    bundle id 10 mode on
!

Scenario-2

A VLAN subinterface is carrying 100 video streams with a common multicast group address of 225.0.0.1 and varying UDP port numbers. The expected packet rate at IP layer is unknown, but the media bit rate is known to be 1052800 bps. The media payload is known to contain MPEG-2 encoded CBR flows and default packetization is used (that is, in one UDP payload, there are seven MPEG packets, where each packet is 188 bytes long).

Do not monitor over 100 flows. Do not timeout and delete any flow even if flow stops, but raise an error-level alarm if the percentage of the stopped flows is over 90%.

Example

ipv4 access-list sample-acl
    10 permit udp any host 225.0.0.1
!
class-map type traffic match-any sample-class
    match access-group ipv4 sample-acl
end-class-map
!
policy-map type performance-traffic sample-policy
    class type traffic sample-class
        monitor parameters
        flows 100
!
        monitor metric ip-cbr
        rate media 1052800 bps
react 100 media-stop
action syslog
  alarm severity error
  alarm type grouped percent 90
!
end-policy-map
!
interface GigabitEthernet0/0/0/0
  no shutdown
!
interface GigabitEthernet0/0/0/0.1
  encapsulation dot1q 500
  ipv4 address 172.192.1.1 255.255.255.0
  service-policy type performance-traffic input sample-policy
!
Under **monitor metric ip-cbr**, these two lines need not be configured as they are defaults:

- media packet count in-layer3 7
- media packet size 188

However, if these parameters are different from default values, they need to be configured.

**Scenario-3**

A main interface has three groups of multicast streams where the first group has UDP destination port of 1000, the second group has 2000, and the third group has 3000 and 4000. These three groups of streams flow at 100 pps, 200 pps, and 300 pps respectively.

Limit the maximum number of flows in each group to 300 flows and raise the error-level alarm, when they reach 90% of the provisioned flow capacity.

**Example**

```
ipv4 access-list sample-acl-1
 10 permit udp any any eq 1000
!
ipv4 access-list sample-acl-2
 10 permit udp any any eq 2000
!
ipv4 access-list sample-acl-3
 10 permit udp any any eq 3000
 20 permit udp any any eq 4000
!
class-map type traffic match-any sample-class-1
 match access-group ipv4 sample-acl-1
end-class-map
!
class-map type traffic match-any sample-class-2
 match access-group ipv4 sample-acl-2
end-class-map
!
class-map type traffic match-any sample-class-3
 match access-group ipv4 sample-acl-3
end-class-map
!
policy-map type performance-traffic sample-policy
 class type traffic sample-class-1
 monitor parameters
 interval duration 10
 history 60
 timeout 3
 flows 300
 !
 monitor metric ip-cbr
```
rate layer3 packet 100 pps
! react 100 flow-count
threshold type immediate
threshold value gt 270
action syslog
alarm severity error
!
class type traffic sample-class-2
monitor parameters
interval duration 10
history 60
timeout 3
flows 300
!
monitor metric ip-cbr
rate layer3 packet 200 pps
!
react 100 flow-count
threshold type immediate
threshold value gt 270
action syslog
alarm severity error
!
class type traffic sample-class-1
monitor parameters
interval duration 10
history 60
timeout 3
flows 300
!
monitor metric ip-cbr
rate layer3 packet 300 pps
!
react 100 flow-count
threshold type immediate
threshold value gt 270
action syslog
alarm severity error
!
!
end-policy-map
!
interface GigabitEthernet0/0/0/0
ipv4 address 172.192.1.1 255.255.255.0
service-policy type performance-traffic input sample-policy
!

Scenario-4

A 10GE main interface receives six high definition (HD) video streams from the digital contents manager (DCM), directly connected to six HD cameras in a sports stadium. Each HD video stream is uncompressed and its bandwidth is as high as 1.611 Gbps at layer 2, which is equivalent to 140625 pps. These six streams are received with multicast groups of 225.0.0.1 through 225.0.0.6, and the UDP port number is 5000.

Raise a critical-level alarm when the delay factor of any flow is above 2 ms, or media loss ratio is above 5%. Use 10s interval and keep maximum history. Do not monitor more than 6 flows on this interface. Do not time out inactive flows.

Example

ipv4 access-list sample-acl
10 permit udp any eq 5000 225.0.0.0/24 eq 5000
!
class-map type traffic match-any sample-class
match access-group ipv4 sample-acl
end-class-map
! policy-map type performance-traffic sample-policy
class type traffic sample-class
  monitor parameters
    interval duration 10
    history 60
    flows 6
  ! monitor metric ip-cbr
    rate layer3 packet 140625 pps
  ! react 100 mrv
    threshold type immediate
    threshold value gt 5.00
    action syslog
    alarm severity critical
    alarm type discrete
  ! react 200 delay-factor
    threshold type immediate
    threshold value gt 2.00
    action syslog
    alarm severity critical
    alarm type discrete
  ! end-policy-map
!
interface TenGigE0/2/0/0
  ipv4 address 172.192.1.1 255.255.255.0
  service-policy type performance-traffic input sample-policy
!

Scenario-5

An ethernet interface is configured on a Cisco ASR 9000 Series Routers over which multicast video traffic is flowing. Use video monitoring to monitor the performance of all video flows on this ethernet interface. Use the video monitoring trap and clone feature to trap these flow packets and clone (or duplicate) them to a specified egress interface.

Configure a trap and clone profile containing flows that are to be cloned to the specified egress interface. Add a description to the profile.

Example

Performance traffic clone profile profile1
  Description video flows monitored by vidmon
  Interface G1gE 0/1/1/1
    flow ipv4 source 23.1.1.1 destination 231.2.2.2

Scenario-6

A 100GE main interface is receiving 5 high definition (HD) video streams of unicast traffic. Each HD video stream is uncompressed and its bit rate is 3 Gbps. It is known that each stream is CBR flow and has packet rate of 284954 pps. The source of these streams is known as 192.1.1.2 and destinations are from 10.1.1.1 through 10.1.1.5. UDP port 7700 is used for both source and destination.

Raise a critical-level alarm when the delay factor of any of the flow is above 5 ms or CBR flow rate drops over 10% of expected nominal rate. Use 30 s interval and keep 10 intervals as history. Since this port is known to receive additional low rate VoD flows in near future, allow maximum flow count as 4000. Monitor the streams destined to 10.1.1.0/24 subnet only. When quality degradation is detected, report the alarm to NMS system in addition to the syslog output.
Example

Example

IPv4 Access-list Sample-Acl
10 Permit Udp 192.1.1.2/32 Eq 7700 10.1.1.0/24 Eq 7700
Class-Map Type Traffic Match-Any Sample-Class Match Access-Group IPv4 Sample-Acl
End-Class-Map
Policy-Map Type Performance-Traffic Sample-Policy Class Type Traffic Sample-Class
Monitor Parameters
Interval Duration 30
History 10
Flows 4000
Monitor Metric Ip-Cbr
Rate Layer3 Packet 284954 Pps
React 100 Mrv
Threshold Type Immediate
Threshold Value Lt 10.00
Action Syslog
Action Snmp
Alarm Severity Critical
Alarm Type Discrete
React 200 Delay-Factor
Threshold Type Immediate
Threshold Value Gt 5.00
Action Syslog
Action Snmp
Alarm Severity Critical
Alarm Type Discrete
End-Policy-Map
Interface HundredGigE0/1/0/1
Ipv4 Address 172.192.1.1 255.255.255.0
Service-Policy Type Performance-Traffic Input Sample-Policy

Scenario-7

Use Video Monitoring to Monitor all the Vidmon-Rtp Traffic.

Example

Ipv4 Access-list Uc
10 Permit Udp Any 20.0.0.0/24
Class-Map Type Traffic Match-Any Ucast
Match Access-Group Ipv4 Uc
End-Class-Map
Interface TenGigE0/2/0/10
Ipv4 Address 10.0.0.1 255.255.255.0
Service-Policy Type Performance Input Vidmon-Rtp
Load-Interval 30
Policy-Map Type Performance-Traffic Vidmon-Rtp
Class Type Traffic Ucast
Monitor Parameters
Interval Duration 10
History 60
Timeout 2
Monitor Metric Rtp
Clock-Rate 96 48KHz
Scenarios for Implementing Video Monitoring

Use video monitoring to monitor all the vidmon-rtp-j2k traffic.

**Example**

```plaintext
clock-rate 97 27000kHz
clock-rate 99 148500kHz
clock-rate 100 148351.648kHz
!
react 101 flow-count
 threshold type immediate
 threshold value gt 0
 action syslog
 alarm severity alert
!
react 102 media-stop
 action syslog
 alarm severity critical
 alarm type discrete
!
end-policy-map
!

Scenarios for Implementing Video Monitoring

Use video monitoring to monitor all the mdi mpeg traffic.

Example

```plaintext
clock-rate 97 27000kHz
clock-rate 99 148500kHz
clock-rate 100 148351.648kHz
!
react 101 flow-count
  threshold type immediate
  threshold value gt 0
  action syslog
  alarm severity alert
!
react 102 media-stop
  action syslog
  alarm severity critical
  alarm type discrete
!
end-policy-map
!

Scenarios for Implementing Video Monitoring

Use video monitoring to monitor all the mdi mpeg rtp traffic.

**Example**

```plaintext
clock-rate 97 27000kHz
clock-rate 99 148500kHz
clock-rate 100 148351.648kHz
!
react 101 flow-count
 threshold type immediate
 threshold value gt 0
 action syslog
 alarm severity alert
!
react 102 media-stop
 action syslog
 alarm severity critical
 alarm type discrete
!
end-policy-map
!
```
Example

policy-map type performance-traffic rtp-mdi
class type traffic ucast
  monitor parameters
    interval duration 10
    history 60
    timeout 2
  monitor metric mdi mpeg rtp
  !
end-policy-map
!

Additional References

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast command reference document</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference</td>
</tr>
<tr>
<td>Getting started material</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide</td>
</tr>
<tr>
<td>Modular quality of service command reference document</td>
<td>Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Command Reference</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: <a href="http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml">http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</a></td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC4445</td>
<td>Proposed Media Delivery Index (MDI)</td>
</tr>
</tbody>
</table>
## Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
</tbody>
</table>
INDEX

1027 69
1195, OSI IS-IS usage 254
2373 251
5-tuple hash algorithm how to configure 98
5-tuple hash algorithm, configuring 98
826 69
959 164

A

ABF (ACL-based forwarding) 18, 33
  overview 18
  security ACL, how to 33
ABF with security ACL 33
ABF-OT 18
accept-mode 283
access 19, 22
  lists 19, 22
    applying 22
    inbound or outbound interfaces, applying on 22
    IPv4 or IPv6, how to 19
access lists 19, 22
  applying 22
  IPv4 or IPv6 19
  applying 22
access lists, applying 22
ACL Counters Using SNMP 19
ACL-Chaining (Multi-ACL) 40
Adding Entries with Sequence Numbers 52
  Example command 52
Adding Entries Without Sequence Numbers 52
  Example command 52
Additional References 216, 338
  Additional References command 65, 80, 117, 159, 180, 229, 265, 270, 299
address argument 251
address command 281
address conflict resolution 247
address formats 233
address repository manager 247
Address Repository Manager 247
address repository manager function 247
address resolution 69
addresses 249, 252
  multiple, assigning 252
  primary 249
  secondary 252
advertisement 276
aggregatable global address 235
aggregatable global address format 235
aggregatable global address format, figure 235
  applying 22
ARM (Address Repository Manager) 247
ARP (Address Resolution Protocol) 67, 68, 69, 70
  address resolution 69
  cache entries 70
  definition 68
  MAC (Media Access Control) 67
  proxy ARP 69
  RFC 1027 69
  RFC 826 69
Assigning a DHCP Profile to a Bridge Domain 156
  Example command 156
assigning addresses to individual router interfaces 251
Assigning an Unnumbered Interface 264
  Example command 264

B

basic IPv6 packet header fields 237
benefits 84
BGP Attributes Download 88
BGP policy accounting, classification 85

C

cache entries 70
  cache entries, definition 70
CEF (Cisco Express Forwarding) 83, 84, 85, 86
  benefits 84
Configuring tunnel as IPv6 interface 101
Configuring Unicast RPF Checking 116
   Example command 116
Configuring VRF mode big 264
connections, how to 169, 171
Creating a Static ARP Cache Entry 79
   Example command 79
customization 277
customize, how to 277
customizing 277
Customizing HSRP 198

D

defining preemption 188
definition 68, 120, 164
description 83, 161, 183, 274
description, ICMP rate limit 256
DHCP (Dynamic Host Configuration Protocol) 120, 125
   configuring relay agent 125
   forwarding UDP broadcasts to DHCP server, figure 120
   relay agent, how to 125
DHCP relay agent 120
   definition 120
DHCP relay agent information 125
DHCP Snooping 148
DHCP snooping in a bridge domain 149
DHCPv4 Server 129
dhcpv6 database command 157
DHCPv6 Relay Agent Notification for Prefix Delegation 143
Disabling DHCP Snooping on a Specific Bridge Port 156
   Example command 156
Disabling State Change Logging 290
Displaying the ARP Table 80
   Example command 80
Displaying the Operational State of DAGR Groups 80
   Example command 80
domain services 167
   configuration 167

E

enable, how to 281
enabling 188, 190, 281
Enabling DAGR and Configuring a DAGR Group 80
   Example command 80
enabling HSRP 188
enabling HSRP for IPv6 190
enabling ICMP redirect messages 197
enabling IPv6 forward traffic globally 251
Enabling Proxy ARP 80
   Example command 80
enabling support for ICMP redirect messages 197
Enhanced Object Tracking for HSRP and IP Static 213
extended networks, using IP secondary addresses 252
extension header format, figure 237

F

failover as recovery, how to 269
features 84
Features 304
FIB (Forwarding Information Base) 85
figures 120, 235, 236, 237, 242, 244, 245
   aggregatable global address format 235
   forwarding UDP broadcasts to DHCP server 120
   IPv4 packet header format 237
   IPv4-compatible IPv6 address format 237
   IPv6 extension header format 237
   IPv6 neighbor discovery-neighbor redirect message 245
   IPv6 neighbor discovery-neighbor solicitation message 242
   IPv6 neighbor discovery-router advertisement method 244
   IPv6 packet header format 237
   link local address format 236
File Transfer Protocol (FTP) 163
file transfer services 163
   File Transfer Protocol (FTP) 163
   remote copy protocol (RCP) 163
   Trivial File Transfer Services (TFTP) 163
filtering routes by a prefix list 17
for HSRP 215
for VRRP 297
formats 233
forwarding of IPv6 traffic globally on a router, how to enable 251
forwarding UDP broadcasts to DHCP server 120
forwarding UDP broadcasts to DHCP server, figure 120
FTP 171
FTP (File Transfer Protocol) 164, 171
   configuring a router 171
   connections, how to 171
   definition 164
   troubleshooting tips 171
FTP connections 171
function 268
functions 87

G

giaddr attribute 127
Global Virtual IPv6 Address 284
groups 185
Hardware Limitations 10
hash algorithm, how to configure 98
highest IP address resolution, how to configure 259
host services and applications 161, 162, 163, 165, 167
description 161
domain services 167
configuration 167
file transfer services 163
File Transfer Protocol (FTP) 163
remote copy protocol (RCP) 163
Trivial File Transfer Services (TFTP) 163
network connectivity 162
ping tool 162
prerequisites 161
telnet 165
TFTP server 163
Hot restartability 215
for HSRP 215
Hot Restartability 297
for VRRP 297
how to configure 222
how to enable 281
HSRP 191, 195, 197
configuring activation delay 195
configuring group attributes 191
enabling ICMP redirect messages 197
HSRP (Hot Standby Router Protocol) 183, 184, 185, 188, 190, 191, 195, 197
configuring group attributes 191
configuring activation delay 195
description 183
enabling 188, 190
enabling support for ICMP redirect messages 197
groups 185
overview 184
preemption 188
HSRP (Hot Standby Router Protocol), figure 185

ICMP packet header 246
ICMP rate limiting 256
IFIB (Internal Forwarding Information Base) 220
Implementing 303
inbound connection, telnet 165
inbound or outbound interfaces, applying on 22
interfaces, IP addresses 249, 252
primary, IP address 249
introduction (IPv6 for Cisco IOS XR) 233
IP 22, 249, 252
access lists 22

IP (continued)
addresses 249, 252
multiple, assigning 252
primary 249
secondary 252
IP address conflict resolution 259
IP protocol number 277
IPARM conflict resolution 257
IPSLA support 18
IPv4 and IPv6 protocol stacks 253
IPv4 and IPv6 protocol stacks, configuring 253
IPv4 and IPv6 protocol stacks, how to 253
IPv4 or IPv6 19
IPv4 or IPv6 access lists 19
IPv4 or IPv6, how to 19
IPv4 packet header format 237
IPv4 packet header format, figure 237
IPv4-compatible IPv6 address 237
IPv4-compatible IPv6 address format 237
IPv4-compatible IPv6 address format, figure 237
IPv6 233, 237, 242, 244, 245, 246, 251
assigning addresses to individual router interfaces 251
extension header format, figure 237
neighbor redirect message 245
packet header 237
packet header format, figure 237
address argument 251
address formats 233
ICMP packet header 246
introduction (IPv6 for Cisco IOS XR) 233
neighbor discovery 242
neighbor redirect message, figure 245
neighbor solicitation message, figure 242
prefix argument 251
RFC 2460 233
router advertisement method, figure 244
IPv6 address 233
formats 233
IPv6 addresses to individual router interfaces, assigning 251
IPv6 extension header 237
IPv6 extension header format 237
IPv6 for Cisco IOS XR 233
IPv6 neighbor discovery 242, 244, 245
neighbor redirect message, figure 245
neighbor solicitation message, figure 242
router advertisement method, figure 244
IPv6 neighbor discovery-neighbor redirect message 245
IPv6 neighbor discovery-neighbor solicitation message 242
IPv6 neighbor discovery-router advertisement method 244
IPv6 neighbor redirect message 245
IPv6 packet header format 237
IPv6 packet header format, figure 237
IPv6 routing over IPv4 MPLS TE tunnels 100
IPv6 Support for IP SLA ICMP Echo operation 176
ipv6-address argument  251
ipv6-prefix argument  251

L
Layer 3 information  87
Layer 3 information (load-balancing)  87
Layer 4 information  87
Layer 4 information (load-balancing)  87
line protocol  36
link local address format  236
link local address format, figure  236
link-local address  236
list  37
lists  19, 22
        applying  22
        inbound or outbound interfaces, applying on  22
        IPv4 or IPv6, how to  19
load-balancing  87, 98
        5-tuple hash algorithm how to configure  98
        5-tuple hash algorithm, configuring  98
        functions  87
        Layer 3 information  87
        Layer 4 information  87
        overview  87
Local Packet Transport Services (LPTS)  220, 222
        components  220
        policers  220, 222
        configuring  222
        how to configure  222
        overview  220
Longest Prefix Resolution  258

M
MAC (Media Access Control)  67
master virtual router  276
MIB support for VRRP  296
Multiple Group Optimization (MGO) for HSRP  198
Multiple Group Optimization for VRRP  291
multiple, assigning  252

N
neighbor discovery  242
neighbor redirect message  245
neighbor redirect message, figure  245
neighbor solicitation message, figure  242
neighbor, IPv6  242

network connectivity  162, 165
    ping tool  162
    traceroute  162
network stack IPv4 and IPv6  247
Nonstop Routing (NSR)  268, 269
    configuring failover as recovery  269
    failover as recovery, how to  269
    function  268
    nsr process-failures switchover command  268
    nsr process-failures switchover  268
    nsr process-failures switchover command  268

O
Object Tracking  18
Option 82 information  148
OSPFv2 SPF  88
overview  18, 87, 184, 220
Overview  304

P
packet header  237
packet header fields, IPv6  237
packet header format, figure  237
packet routes  166
packet routes, checking  166
packet routes, how to check  166
ping tool  162
policers  220, 222
    configuring  222
    how to configure  222
    overview  220
Policy-map  311
    configuring  311
preemption  188
prefix argument  251
prefix list  17
prefix prioritization  88
    OSPFv2 SPF  88
Prefix Prioritization  88
    OSPFv2 SPF  88
prerequisites  161
primary  249
Primary Virtual IPv4 Address  286
primary, IP address  249
proxy ARP  69
### R

RAW protocol 268  
rcp 169  
rcp (remote copy protocol) 164, 169  
connections, how to 169  
definition 164  
rcp copy command 164  
troubleshooting tips 169  
rcp connections 169  
rcp copy 164  
rcp copy command 164  
relay agent, how to 125  
relay information option (option 82) 149  
remote copy protocol (RCP) 163  
Resequencing Entries in an Access List 51  
Example command 51  
reverse path forwarding 86  
RFC 69, 164, 251, 254  
1027 69  
1195, OSI IS-IS usage 254  
2373 251  
826 69  
959 164  
RFC 1027 69  
RFC 2460 233  
RFC 826 69  
route 37  
route filtering, prefix list 17  
route-tag support for connected routes 248  
router advertisement message 244  
router advertisement method, figure 244  
router as TFTP server 168  
router configuration 173  
rtr 38

### S

secondary 252  
secondary addresses, IP 252  
Secondary Virtual IPv4 Address 287  
security ACL, how to 33  
sequence numbering behavior 13  
server, router configuration 168  
Service policy 329  
configuring 329  
show vrrp 282  
show vrrp command 282  
simplified IPv6 packet header 237  
single LAN, process 69  
solicitation message, IPv6 242  
State Change Logging 290  
static 257  
syslog source-interface 175

### T

tasks 19, 22, 33, 125, 165, 166, 167, 168, 169, 171, 173, 174, 188, 190, 191, 195, 197, 251  
enabling IPv6 forward traffic globally 251  
ABF with security ACL 33  
access lists, applying 22  
DHCP relay agent information 125  
domain services 167  
enabling HSRP 188  
enabling HSRP for IPv6 190  
forwarding of IPv6 traffic globally on a router, how to enable 251  
FTP connections 171  
HSRP 191, 195, 197  
configuring activation delay 195  
configuring group attributes 191  
enabling ICMP redirect messages 197  
ICMP rate limiting 256  
IP address conflict resolution 259  
IPv4 and IPv6 protocol stacks 253  
IPv4 or IPv6 access lists 19  
IPv6 addresses to individual router interfaces, assigning 251  
network connectivity 165  
packet routes 166  
rcp connections 169  
router as TFTP server 168  
telnet service 174  
TFTP connections 173  
VRRP 277, 281, 282  
customization 277  
how to enable 281  
verification 282  
TCP (Transmission Control Protocol) 268  
telnet 165  
telnet service 174  
Terminology 307  
TFTP 173  
TFTP (Trivial File Transfer Protocol) 164, 168, 173  
definition 164  
router configuration 173  
server, router configuration 168  
troubleshooting tips 173  
TFTP connections 173  
TFTP server 163  
traceroute 162  
track mode 35  
track type 36, 37  
tracking type 37, 38  
Trivial File Transfer Services (TFTP) 163
troubleshooting tips 169, 171, 173
  FTP 171
  rcp 169
  TFTP 173
trusted link 148
trusted ports 148

U
UDP (User Datagram Protocol) 268
untrusted link 148
uRPF (Unicast IPv4 and IPv6 Reverse Path Forwarding) 86
  using 12
  using rcp connections 169

V
verification 282
verify, how to 282
Verifying BGP Policy Statistics 105
  Example command 105
Video Monitoring 303, 304, 307
  Implementing 303
  Overview 304
  Video Monitoring (continued)
    Terminology 307
    Features 304
Video Monitoring Trap and Clone 304, 330
  configuring 330
Vidmon Metrics 317
Virtual Link-Local IPv6 Address 289
VRRP 277, 281, 282
  customization 277
  how to enable 281
  verification 282
VRRP (Virtual Router Redundancy Protocol) 274, 276, 277, 281, 282
  description 274
  advertisement 276
  customize, how to 277
  customizing 277
  enable, how to 281
  enabling 281
  IP protocol number 277
  master virtual router 276
  show vrrp command 282
  verify, how to 282
  vrrp ipv4 command 281
vrrp ipv4 281
vrrp ipv4 command 281
VRRP Statistics, clearing 282