Configuring Authentication, Authorization, and Accounting Functions

This chapter provides information about configuring authentication, authorization, and accounting (AAA) functions on the BNG router. BNG interacts with the RADIUS server to perform AAA functions. A group of RADIUS servers form a server group that is assigned specific AAA tasks. A method list defined on a server or server group lists methods by which authorization is performed. Some of the RADIUS features include creating specific AAA attribute formats, load balancing of RADIUS servers, throttling of RADIUS records, Change of Authorization (CoA), and Service Accounting for QoS.

Table 1: Feature History for Configuring Authentication, Authorization, and Accounting Functions

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.2.0</td>
<td>Initial release</td>
</tr>
<tr>
<td>Release 5.3.2</td>
<td>Service accounting support was added for line card subscribers.</td>
</tr>
</tbody>
</table>

This chapter covers these topics:

- AAA Overview, page 2
- Using RADIUS Server Group, page 3
- Specifying Method List, page 5
- Defining AAA Attributes, page 7
- Making RADIUS Server Settings, page 17
- Balancing Transaction Load on the RADIUS Server, page 23
- Throttling of RADIUS Records, page 25
- RADIUS Change of Authorization (CoA) Overview, page 29
- Service Accounting, page 31
- Understanding Per-VRF AAA Function, page 35
- Additional References, page 35
AAA Overview

AAA acts as a framework for effective network management and security. It helps in managing network resources, enforcing policies, auditing network usage, and providing bill-related information. BNG connects to an external RADIUS server that provides the AAA functions.

The RADIUS server performs the three independent security functions (authentication, authorization, and accounting) to secure networks against unauthorized access. The RADIUS server runs the Remote Authentication Dial-In User Service (RADIUS) protocol. (For details about RADIUS protocol, refer to RFC 2865). The RADIUS server manages the AAA process by interacting with BNG, and databases and directories containing user information.

The RADIUS protocol runs on a distributed client-server system. The RADIUS client runs on BNG (Cisco ASR 9000 Series Router) that sends authentication requests to a central RADIUS server. The RADIUS server contains all user authentication and network service access information.

The AAA processes, the role of RADIUS server during these processes, and some BNG restrictions, are explained in these sections:

Authentication

The authentication process identifies a subscriber on the network, before granting access to the network and network services. The process of authentication works on a unique set of criteria that each subscriber has for gaining access to the network. Typically, the RADIUS server performs authentication by matching the credentials (username and password) the subscriber enters with those present in the database for that subscriber. If the credentials match, the subscriber is granted access to the network. Otherwise, the authentication process fails, and network access is denied.

Authorization

After the authentication process, the subscriber is authorized for performing certain activity. Authorization is the process that determines what type of activities, resources, or services a subscriber is permitted to use. For example, after logging into the network, the subscriber may try to access a database, or a restricted website. The authorization process determines whether the subscriber has the authority to access these network resources.

AAA authorization works by assembling a set of attributes based on the authentication credentials provided by the subscriber. The RADIUS server compares these attributes, for a given username, with information contained in a database. The result is returned to BNG to determine the actual capabilities and restrictions that are to be applied for that subscriber.

Accounting

The accounting keeps track of resources used by the subscriber during network access. Accounting is used for billing, trend analysis, tracking resource utilization, and capacity planning activities. During the accounting process, a log is maintained for network usage statistics. The information monitored include, but are not limited to - subscriber identities, applied configurations on the subscriber, the start and stop times of network connections, and the number of packets and bytes transferred to, and from, the network.

BNG reports subscriber activity to the RADIUS server in the form of accounting records. Each accounting record comprises of an accounting attribute value. This value is analyzed and used by the RADIUS server for network management, client billing, auditing, etc.

The accounting records of the subscriber sessions may timeout if the BNG does not receive acknowledgments from the RADIUS server. This timeout can be due to RADIUS server being unreachable or due to network
connectivity issues leading to slow performance of the RADIUS server. If the sessions on the BNG are not acknowledged for their Account-Start request, loss of sessions on route processor fail over (RPFO) and other critical failures are reported. It is therefore recommended that a RADIUS server `deadtime` be configured on the BNG, to avoid loss of sessions. Once this value is configured, and if a particular session is not receiving an accounting response even after retries, then that particular RADIUS server is considered to be non-working and further requests are not sent to that server.

The `radius-server deadtime limit` command can be used to configure the `deadtime` for RADIUS server. For details, see Configuring RADIUS Server Settings, on page 18.

Restrictions

- On BNG, local authentication and local authorization are not supported. It must be done by the RADIUS server.
- On session disconnect, transmission of the Accounting-Stop request to RADIUS may be delayed for a few seconds while the system waits for the "final" session statistics to be collected from the hardware. The Event-Timestamp attribute in that Accounting-Stop request should, however, reflect the time the client disconnects, and not the transmission time.
- RADIUS over IPv6 is not supported.

Using RADIUS Server Group

A RADIUS server group is a named group of one or more RADIUS servers. Each server group is used for a particular service. For example, in an AAA network configuration having two RADIUS server groups, the first server group can be assigned the authentication and authorization task, while the second group can be assigned the accounting task.

Server groups can include multiple host entries for the same server. Each entry, however, must have a unique identifier. This unique identifier is created by combining an IP address and a UDP port number. Different ports of the server, therefore, can be separately defined as individual RADIUS hosts providing a specific AAA service. In other words, this unique identifier enables RADIUS requests to be sent to different UDP ports on the same server. Further, if two different host entries on the same RADIUS server are configured for the same service (like the authentication process), then the second host entry acts as a fail-over backup for the first one. That is, if the first host entry fails to provide authentication services, BNG tries with the second host entry. (The RADIUS host entries are tried in the order in which they are created.)

For assigning specific actions to the server group, see Configuring RADIUS Server Group, on page 3.

Configuring RADIUS Server Group

Perform this task to define a named server group as the server host.
SUMMARY STEPS

1. configure
2. aaa group server radius name
3. accounting accept radius_attribute_list_name
4. authorization reply accept radius_attribute_list_name
5. deadtime limit
6. load-balance method least-outstanding batch-size size ignore-preferred-server
7. server host_name acct-port accounting_port_number auth-port authentication_port_number
8. source-interface name value
9. vrf name
10. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Configures the RADIUS server group named r1.</td>
</tr>
<tr>
<td>Step 2 aaa group server radius name</td>
<td>Configures the radius attribute filter for the accounting process to accept only the attributes specified in the list.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# aaa group server radius r1</td>
</tr>
<tr>
<td>Step 3 accounting accept radius_attribute_list_name</td>
<td>Configures the radius attribute filter for the authorization process to accept only the attributes specified in the list.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-sg-radius)# accounting accept att_list1</td>
</tr>
<tr>
<td>Step 4 authorization reply accept radius_attribute_list_name</td>
<td>Configures the RADIUS server-group deadtime. The deadtime limit is configured in minutes. The range is from 1 to 1440, and the default is 0.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-sg-radius)# deadtime 40</td>
</tr>
<tr>
<td>Step 5 load-balance method least-outstanding batch-size size ignore-preferred-server</td>
<td>Configures load balancing batch size after which the next host is picked.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-sg-radius)# load-balance method least-outstanding batch-size 50 ignore-preferred-server</td>
</tr>
</tbody>
</table>
Specifying Method List

Method lists for AAA define the methods using which authorization is performed, and the sequence in which these methods are executed. Before any defined authentication method is performed, the method list must be applied to the configuration mechanism responsible for validating user-access credentials. The only exception to this requirement is the default method list (named "default"). The default method list is automatically applied if no other method list is defined. A defined method list overrides the default method list.

On BNG, you have to specify the method list and the server group that will be used for AAA services. For specifying method lists, see **Configuring Method Lists for AAA, on page 6.**
Configuring Method Lists for AAA

Perform this task to assign the method list to be used by the server group for subscriber authentication, authorization, and accounting.

SUMMARY STEPS

1. configure
2. aaa authentication subscriber default method-list-name group server-group-name
3. aaa authorization subscriber default method-list-name group server-group-name radius
4. aaa accounting subscriber default method-list-name group server-group-name
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa authentication subscriber default method-list-name group server-group-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# aaa authentication subscriber default method1 group1 radius group group2 group group3 ...</td>
</tr>
<tr>
<td>Step 3</td>
<td>aaa authorization subscriber default method-list-name group server-group-name radius</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# aaa authorization subscriber default method1 group1 radius group group2 group group3 ...</td>
</tr>
<tr>
<td>Step 4</td>
<td>aaa accounting subscriber default method-list-name group server-group-name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# aaa accounting subscriber default method1 group1 radius group group2 group group3 ...</td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring Method-list for AAA: An example

```plaintext
configure
```
aaa authentication subscriber default group radius group rad2 group rad3
aaa authorization subscriber default group radius group rad1 group rad2 group rad3
aaa accounting subscriber default group radius group rad1 group rad2 group rad3
!
end

Defining AAA Attributes

The AAA attribute is an element of RADIUS packet. A RADIUS packet transfers data between a RADIUS server and a RADIUS client. The AAA attribute parameter, and its value - form a Attribute Value Pair (AVP). The AVP carries data for both requests and responses for the AAA transaction.

The AAA attributes either can be predefined as in Internet Engineering Task Force (IETF) attributes or vendor defined as in vendor-specific attributes (VSAs). For more information about the list of BNG supported attributes, see RADIUS Attributes.

The RADIUS server provides configuration updates to BNG in the form of attributes in RADIUS messages. The configuration updates can be applied on a subscriber during session setup through two typical methods—per-user attributes, which applies configuration on a subscriber as part of the subscriber's authentication Access Accept, or through explicit domain, port, or service authorization Access Accepts. This is all controlled by the Policy Rule Engine's configuration on the subscriber.

When BNG sends an authentication or an authorization request to an external RADIUS server as an Access Request, the server sends back configuration updates to BNG as part of the Access Accept. In addition to RADIUS configuring a subscriber during setup, the server can send a change of authorization (CoA) message autonomously to the BNG during the subscriber's active session life cycle, even when the BNG did not send a request. These RADIUS CoA updates act as dynamic updates, referencing configured elements in the BNG and instructing the BNG to update a particular control policy or service policy.

BNG supports the concept of a "service", which is a group of configured features acting together to represent that service. Services can be represented as either features configured on dynamic-templates through CLI, or as features configured as RADIUS attributes inside Radius Servers. Services are activated either directly from CLI or RADIUS through configured "activate" actions on the Policy Rule Engine, or through CoA "activate-service" requests. Services can also be deactivated directly (removing all the involved features within the named service) through configured "deactivate" action on the Policy Rule Engine or through CoA "deactivate-service" requests.

The attribute values received from RADIUS interact with the subscriber session in this way:

- BNG merges the values received in the RADIUS update with the existing values that were provisioned statically by means of CLI commands, or from prior RADIUS updates.
- In all cases, values received in a RADIUS update take precedence over any corresponding CLI provisioned values or prior RADIUS updates. Even if you reconfigured the CLI provisioned values, the system does not override session attributes or features that were received in a RADIUS update.
- Changes made to CLI provision values on the dynamic template take effect immediately on all sessions using that template, assuming the template features have not already been overridden by RADIUS. Same applies to service updates made through CoA "service-update" requests.

AAA Attribute List

An attribute list is named list that contains a set of attributes. You can configure the RADIUS server to use a particular attribute list to perform the AAA function.
AAA Attribute Format

It is possible to define a customized format for some attributes. The configuration syntax for creating a new format is:

```
aaa attribute format <format-name> format-string [length] <string> *[<Identity-Attribute>]
```

where:

- **format-name** — Specifies the name given to the attribute format. This name is referred when the format is applied on an attribute.
- **length** — (Optional) Specifies the maximum length of the formatted attribute string. If the final length of the attribute string is greater than the value specified in LENGTH, it is truncated to LENGTH bytes. The maximum value allowed for LENGTH is 255. If the argument is not configured, the default is also 255.
- **string** — Contains regular ASCII characters that includes conversion specifiers. Only the % symbol is allowed as a conversion specifier in the STRING. The STRING value is enclosed in double quotes.
- **Identity-Attribute** — Identifies a session, and includes user-name, ip-address, and mac-address. A list of currently-defined identity attributes is displayed on the CLI.

Once the format is defined, the FORMAT-NAME can be applied to various AAA attributes such as username, nas-port-ID, calling-station-ID, and called-station-ID. The configurable AAA attributes that use the format capability are explained in the section Creating Attributes of Specific Format, on page 8.

To create a customized nas-port attribute and apply a predefined format to nas-port-ID attribute, see Configuring RADIUS Attribute Format, on page 14.

Specific functions can be defined for an attribute format for specific purposes. For example, if the input username is "text@abc.com", and only the portion after "@" is required as the username, a function can be defined to retain only the portion after "@" as the username. Then, "text" is dropped from the input, and the new username is "abc.com". To apply username truncation function to a named-attribute format, see Configuring AAA Attribute Format Function, on page 16.

Creating Attributes of Specific Format

BNG supports the use of configurable AAA attributes. The configurable AAA attributes have specific user-defined formats. The following sections list some of the configurable AAA attributes used by BNG.

Username

BNG has the ability to construct AAA username and other format-supported attributes for subscribers using MAC address, circuit-ID, remote-ID, and DHCP Option-60 (and a larger set of values available in CLI). The DHCP option-60 is one of the newer options that is communicated by the DHCP client to the DHCP server in its requests; it carries Vendor Class Identifier (VCI) of the DHCP client's hardware.

The MAC address attribute is specified in the CLI format in either of these forms:

- `mac-address: for example, 0000.4096.3e4a`
- `mac-address-ietf: for example, 00-00-40-96-3E-4A`
- `mac-address-raw: for example, 000040963e4a`
An example of constructing a username in the form "mac-address@vendor-class-ID" is:

```
aaa attribute format USERNAME-FORMAT format-string "%s@%s" mac-address dhcp-vendor-class
```

NAS-Port-ID

The NAS-Port-ID is constructed by combining BNG port information and access-node information. The BNG port information consists of a string in this form:

```
"eth phy_slot/phy_subslot/phy_port:XPI.XCI"
```

For 802.1Q tunneling (QinQ), XPI is the outer VLAN tag and XCI is the inner VLAN tag.

If the interface is QinQ, the default format of nas-port-ID includes both the VLAN tags; if the interface is single tag, it includes a single VLAN tag.

In the case of a single VLAN, only the outer VLAN is configured, using this syntax:

```
<slot>/<subslot>/<port>/<outer_vlan>
```

In the case of QinQ, the VLAN is configured using this syntax:

```
<slot>/<subslot>/<port>/<inner_vlan>.<outer_vlan>
```

In the case of a bundle-interface, the phy_slot and phy_subslot are set to zero (0); whereas the phy_port number is the bundle number. For example, 0/0/10/30 is the NAS-Port-ID for a Bundle-Ether10.41 with an outer VLAN value 30.

The nas-port-ID command is extended to use the 'nas-port-type' option so that the customized format (configured with the command shown above) can be used on a specific interface type (nas-port-type). The extended nas-port-ID command is:

```
aaa radius attribute nas-port-id format <FORMAT_NAME> [type <NAS_PORT_TYPE>]
```

If 'type' option is not specified, then the nas-port-ID for all interface types is constructed according to the format name specified in the command. An example of constructing a maximum 128 byte NAS-Port-ID, by combining the BNG port information and Circuit-ID is:

```
aaa attribute format NAS-PORT-ID-FORMAT1 format-string length 128 "eth %s/%s/%s:%s.%s %s"
physical-slot physical-subslot physical-port outer-vlan-Id inner-vlan-id circuit-id-tag
```

An example of constructing the NAS-Port-ID from just the BNG port information, and with "0/0/0/0/0/0" appended at the end for circuit-ID, is:

```
aaa attribute format NAS-PORT-ID-FORMAT2 format-string "eth %s/%s/%s:%s.%s 0/0/0/0/0/0"
physical-slot physical-subslot physical-port outer-vlan-Id inner-vlan-id
```

An example of constructing the NAS-Port-ID from just the Circuit-ID is:

```
aaa attribute format NAS-PORT-ID-FORMAT3 format-string "%s" circuit-id-tag
```

The NAS-Port-ID formats configured in the above examples, can be specified in the nas-port-ID command, thus:

For IPoEoQINQ interface:
```
aaa radius attribute nas-port-id format NAS-PORT-ID-FORMAT1 type 41
```

For Virtual IPoEoQINQ interface:
```
aaa radius attribute nas-port-id format NAS-PORT-ID-FORMAT2 type 44
```

For IPoEoE interface:
```
aaa radius attribute nas-port-id format NAS-PORT-ID-FORMAT3 type 39
```

NAS-Port-Type on Interface or VLAN Sub-interface

In order to have different production models for subscribers on the same BNG router, but different physical interfaces of same type, the NAS-Port-Type is made configurable for each physical interface, or VLAN sub-interface. With a different NAS-Port-Type value configured on the interface, the NAS-Port and
NAS-Port-ID gets formatted according to the formats defined globally for the new NAS-Port-Type configured on the interface, instead of the actual value of NAS-Port-Type that the interface has. This in turn sends different formats of NAS-Port, NAS-Port-ID and NAS-Port-Type to the RADIUS server for the subscribers under different production models.

In the case of sub-interfaces, the hierarchy to be followed in deciding the format of NAS-Port-Type to be sent to the RADIUS server is:

1. Verify whether the NAS-Port-Type is configured on the sub-interface in which the subscriber session arrives.
2. If NAS-Port-Type is not configured on the sub-interface, verify whether it is configured on the main physical interface.

 The format of NAS-Port or NAS-Port-ID is based on the NAS-Port-Type retrieved in Step 1 or Step 2.
3. If NAS-Port-Type is configured on neither the sub-interface nor the main physical interface, the format of NAS-Port or NAS-Port-ID is based on the format of the default NAS-Port-Type of the sub-interface.
4. If a NAS-Port or NAS-Port-ID format is not configured for the NAS-Port-Type retrieved in steps 1, 2 or 3, the format of NAS-Port or NAS-Port-ID is based on the default formats of NAS-Port or NAS-Port-ID.

Use this command to configure NAS-Port-Type per interface or VLAN sub-interface:

```bash
aaa radius attribute nas-port-type <nas-port-type>
```

where:

- `<nas-port-type>` is either a number ranging from 0 to 44, or a string specifying the nas-port-type.

Refer Configuring RADIUS Attribute Nas-port-type, on page 15.

Calling-Station-ID and Called-Station-ID

BNG supports the use of configurable calling-station-ID and called-station-ID. The calling-station-ID is a RADIUS attribute that uses Automatic Number Identification (ANI), or similar technology. It allows the network access server (NAS) to send to the Access-Request packet, the phone number from which the call came from. The called-station-ID is a RADIUS attribute that uses Dialed Number Identification (DNIS), or similar technology. It allows the NAS to send to the Access-Request packet, the phone number that the user called from.

The command used to configure the calling-station-ID and called-station-ID attributes is:

```bash
aaa radius attribute calling-station-id format <FORMAT_NAME>
```

```bash
aaa radius attribute called-station-id format <FORMAT_NAME>
```

Examples of constructing calling-station-ID from mac-address, remote-ID, and circuit-ID are:

```bash
aaa radius attribute calling-station-id format CLID-FORMAT
```

```bash
aaa attribute format CLID-FORMAT format-string “%s:%s:%s” client-mac-address-ietf remote-id-tag circuit-id-tag
```

Examples of constructing called-station-ID from mac-address, remote-ID, and circuit-ID are:

```bash
aaa radius attribute called-station-id format CLDID-FORMAT
```

```bash
aaa attribute format CLDID-FORMAT format-string “%s:%s” client-mac-address-raw circuit-id-tag
```
NAS-Port Format

NAS-Port is a 4-byte value that has the physical port information of the Broadband Remote Access Server (BRAS), which connects the Access Aggregation network to BNG. It is used both by Access-Request packets and Accounting-Request packets. To uniquely identify a physical port on BRAS, multiple pieces of information such as shelf, slot, adapter, and so on is used along with the port number. A configurable format called format-e is defined to allow individual bits or group of bits in 32 bits of NAS-Port to represent or encode various pieces that constitute port information.

Individual bits in NAS-Port can be encoded with these characters:

- Zero: 0
- One: 1
- PPPoX slot: S
- PPPoX adapter: A
- PPPoX port: P
- PPPoX VLAN Id: V
- PPPoX VPI: I
- PPPoX VCI: C
- Session-Id: U
- PPPoX Inner VLAN ID: Q

aaa radius attribute nas-port format e [string] [type {nas-port-type}]

The above command is used to configure a format-e encode string for a particular interface of NAS-Port type (RADIUS attribute 61). The permissible nas-port type values are:

<table>
<thead>
<tr>
<th>Nas-port-types</th>
<th>Values</th>
<th>Whether value can be derived from associated interface</th>
<th>Whether value can be configured on the interface configuration mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASYNC</td>
<td>0</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>SYNC</td>
<td>1</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ISDN</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ISDN_V120</td>
<td>3</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ISDN_V110</td>
<td>4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>VIRTUAL</td>
<td>5</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ISDN_PIAFS</td>
<td>6</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>X75</td>
<td>9</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ETHERNET</td>
<td>15</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Nas-port-types

<table>
<thead>
<tr>
<th>Nas-port-types</th>
<th>Values</th>
<th>Whether value can be derived from associated interface</th>
<th>Whether value can be configured on the interface configuration mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPPATM</td>
<td>30</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PPPOEOA</td>
<td>31</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>PPPOEOE</td>
<td>32</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PPPOEOVLAN</td>
<td>33</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PPPOEOQINQ</td>
<td>34</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VIRTUAL_PPPOEOE</td>
<td>35</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VIRTUAL_PPPOEOVLAN</td>
<td>36</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VIRTUAL_PPPOEOQINQ</td>
<td>37</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPSEC</td>
<td>38</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>IPOEOE</td>
<td>39</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPOEOVLAN</td>
<td>40</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>IPOEOQINQ</td>
<td>41</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VIRTUAL_IPOEOE</td>
<td>42</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VIRTUAL_IPOEOVLAN</td>
<td>43</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>VIRTUAL_IPOEOQINQ</td>
<td>44</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Examples:

For non-bundle: GigabitEthernet0/1/2/3.11.pppoe5

where:
PPPoEoQinQ (assuming 2 vlan tags): interface-type
1: slot
2: adapter
3: port
vlan-ids: whatever the outer and inner vlan-ids received in the PADR were
5: session-id

aaa radius attribute nas-port format e SSAAPPPPQQQQQQQQQQVVVVVVVVVUUUUU type 34
Generated NAS-Port: 01100011QQQQQQQQQQVVVVVVVVVV0101

For bundle: Bundle-Ether17.23.pppoe8

where:
Virtual-PPPoEoQinQ (assuming 2 vlan tags): interface-type
0: slot
0: adapter
17 (bundle-id): port
Vlan-Ids: whatever the outer and inner vlan-ids received in the PADR were.
8: session-id
aaa radius attribute nas-port format e PPPPPPPPPPPPPPPPPPPPVVVVVVVUUUUUU type 37
 Generated NAS-Port: 010001QQQQQQQQQQVVVVVVVVVVVU00101

NAS-port format for IP/DHCP sessions are represented in these examples:

For IPoEoVLAN interface type:
 aaa radius attribute nas-port format e SSAAAPPFPVVVVVVVVVVVVVVVV type 40
For IPoEoQinQ:
 aaa radius attribute nas-port format e SSAAAPPFPQQQQQQQQQQQVVVVVVVV type 41
For virtual IPoEoVLAN:
 aaa radius attribute nas-port format e PPPPPPPPPPPPPPPPPPPVVVVVVUUUUUUU type 43

NAS-port format for PPPoE sessions are represented in these examples:

For PPPoEoVLAN interface type:
 aaa radius attribute nas-port format e SSAAAPPFPVVVVVVVVVVVVVVVVUUUUU type 33
For Virtual PPPoEoVLAN:
 aaa radius attribute nas-port format e PPPPPPPPPPPPPPPPPPPVVVVVVUUUUUUU type 36

Note

If a NAS-Port format is not configured for a NAS-Port-Type, the system looks for a default CLI configuration for the NAS-Port format. In the absence of both these configurations, for sessions with that particular NAS-Port-Type, the NAS-Port attribute is not sent to the RADIUS server.

Configuring RADIUS Attribute List

Perform this task to create a RADIUS attribute list that is used for filtering authorization and accounting attributes.

SUMMARY STEPS

1. `configure`
2. `radius-server attribute list listname`
3. `attribute list_of_radius_attributes`
4. `attribute vendor-id vendor-type number`
5. `vendor-type vendor-type-value`
6. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
</tbody>
</table>
Configuring RADIUS Attribute List

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 radius-server attribute list listname</td>
<td>Defines the name of the attribute list.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config)# radius-server attribute list li</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 attribute list_of_radius_attributes</td>
<td>Populates the list with radius attributes.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-attribute-filter)# attribute a1, a2</code></td>
<td>Note For more information about supported attributes, see RADIUS Attributes.</td>
</tr>
<tr>
<td>Step 4 attribute vendor-id vendor-type number</td>
<td>Configures the attribute filtering to be applied to vendor specific attributes (VSAs) by allowing vendor specific information for VSAs to be specified in radius attribute list CLI. Vendor specific information comprises of vendor-id, vendor-type, and optional attribute name in case of Cisco generic VSA. The vendor-id ranges from 0 to 4294967295.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config)# attribute vendor-id 6456</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 vendor-type vendor-type-value</td>
<td>Configures the vendor specific information such as the vendor-type to be specified in radius attribute list. The range of the vendor-type value is from 1 to 254.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config-attribute-filter-vsa)# vendor-type 54</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring RADIUS Attribute List: An example

```
configure
radius-server attribute list list1 attribute B C
attribute vendor-id vendor-type 10
    vendor-type 30
end
```

Configuring RADIUS Attribute Format

Perform this task to define RADIUS attribute format for the nas-port attribute, and apply a predefined format on nas-port-ID attribute.
SUMMARY STEPS

1. configure
2. aaa radius attribute
3. nas-port format e string type nas-port-type value
4. nas-port-id format format name
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa radius attribute</td>
<td>Configures the AAA radius attribute.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# aaa radius attribute</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>nas-port format e string type nas-port-type value</td>
<td>Configures the format for nas-port attribute. The string represents a 32 character string representing the format to be used. The nas-port-value ranges from 0 to 44.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# nas-port format e format1 type 30</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>nas-port-id format format name</td>
<td>Applies a predefined format to the nas-port-ID attribute.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# nas-port-id format format2</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring RADIUS Attribute Format: An example

configure
aaa radius attribute
nas-port format e abcd type 40
nas-port-id format ADEF
!
end

Configuring RADIUS Attribute Nas-port-type

Perform this task to configure RADIUS Attribute nas-port-type on a physical interface or VLAN sub-interface:
SUMMARY STEPS

1. `configure`
2. `interface type interface-name`
3. `aaa radius attribute nas-port-type {value | name}`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router# configure</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enters the interface configuration mode.</td>
</tr>
<tr>
<td><code>interface type interface-name</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config)# interface gigabitEthernet 0/0/0/0</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Configures the RADIUS Attribute nas-port-type value.</td>
</tr>
<tr>
<td>`aaa radius attribute nas-port-type {value</td>
<td>name}`</td>
</tr>
<tr>
<td>Example:</td>
<td><code>RP/0/RSP0/CPU0:router(config-if)# aaa radius attribute nas-port-type 30</code></td>
</tr>
<tr>
<td>or</td>
<td><code>RP/0/RSP0/CPU0:router(config-if)# aaa radius attribute nas-port-type Ethernet</code></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td><code>commit</code></td>
<td></td>
</tr>
</tbody>
</table>

Configuring RADIUS Attribute Nas-port-type: An example

```
configure
interface gigabitEthernet 0/0/0/0
  aaa radius attribute nas-port-type Ethernet
end
```

Configuring AAA Attribute Format Function

Perform this task to configure a function for the AAA attribute format. The function is for stripping the user-name till the delimiter.
SUMMARY STEPS

1. configure
2. aaa attribute format format-name
3. username-strip prefix-delimiter prefix_delimiter
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 aaa attribute format format-name</td>
<td>Specifies the format name for which the function is defined.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# aaa attribute format red</td>
</tr>
<tr>
<td>Step 3 username-strip prefix-delimiter prefix_delimiter</td>
<td>Configures the function to strip the username preceding the prefix delimiter, which is @.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-id-format)# username-strip prefix-delimiter @</td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring AAA Attribute Format Function: An example

```
configure
aaa attribute format red
username-strip prefix-delimiter @
```

Making RADIUS Server Settings

In order to make BNG interact with the RADIUS server, certain server specific settings must be made on the BNG router. This table lists some of the key settings:

<table>
<thead>
<tr>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server host</td>
<td>Defines the RADIUS server details to which BNG will connect.</td>
</tr>
<tr>
<td>Attribute list</td>
<td>Defines which attribute list is to be used.</td>
</tr>
<tr>
<td>Server key</td>
<td>Defines the encryption status.</td>
</tr>
<tr>
<td>Dead criteria</td>
<td>Defines the criteria that is used to mark a RADIUS server as dead.</td>
</tr>
</tbody>
</table>
Configuring RADIUS Server Settings

<table>
<thead>
<tr>
<th>Settings</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retransmit value</td>
<td>Defines the number of retries the BNG makes to send data to RADIUS server.</td>
</tr>
<tr>
<td>Timeout value</td>
<td>Defines how long BNG waits for the RADIUS server to reply.</td>
</tr>
<tr>
<td>Automated testing</td>
<td>Defines the duration after which automated testing will start and the username to be tested.</td>
</tr>
<tr>
<td>IP DSCP</td>
<td>Allows RADIUS packets to be marked with a specific Differentiated Services Code Point (DSCP) value.</td>
</tr>
</tbody>
</table>

For more making RADIUS server settings, see Configuring RADIUS Server Settings, on page 18.

For more making specific automated testing settings, see Configuring Automated Testing, on page 22.

For more making specific IP DSCP settings, see Setting IP DSCP for RADIUS Server, on page 22.

Restriction

The service profile push or asynchronously pushing a profile to the system is not supported. To download a profile from Radius, the profile must be requested initially as part of the subscriber request. Only service-update is supported and can be used to change a service that was previously downloaded.

Configuring RADIUS Server Settings

Perform this task to make RADIUS server specific settings on the BNG router.

SUMMARY STEPS

1. configure
2. radius-server host ip-address acct-port accounting_port_number auth-port authentication_port_number
3. radius-server attribute list list_name attribute_list
4. radius-server key 7 encrypted_text
5. radius-server disallow null-username
6. radius-server dead-criteria time value
7. radius-server dead-criteria tries value
8. radius-server deadtime limit
9. radius-server ipv4 dscp codepoint_value
10. radius-server load-balance method least-outstanding ignore-preferred-server batch-size size
11. radius-server retransmit retransmit_value
12. radius-server source-port extended
13. radius-server timeout value
14. radius-server vsa attribute ignore unknown
15. radius source-interface Loopback value vrf vrf_name
16. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>radius-server host ip-address acct-port accounting_port_number auth-port authentication_port_number</code></td>
<td>Specifies the radius server and its IP address. Configures the UDP port for RADIUS accounting and authentication requests. The accounting and authentication port numbers range from 0 to 65535. If no value is specified, then the default is 1645 for the auth-port and 1646 for the acct-port. IPv6 address is not supported for the RADIUS server host.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server host 1.2.3.4 acct-port 455 auth-port 567</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>radius-server attribute list list_name attribute_list</code></td>
<td>Specifies the radius server attributes list, and customizes the selected radius attributes.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server attribute list rad_list a b</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>radius-server key 7 encrypted_text</code></td>
<td>Specifies the per-server encryption key that overrides the default, and takes the value 0 or 7, which indicates that the unencrypted key will follow.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-radius-host)# radius-server key 7 rngiry</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>radius-server disallow null-username</code></td>
<td>Specifies that the null-username is disallowed for the radius server.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server disallow null-username</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>radius-server dead-criteria time value</code></td>
<td>Specifies the dead server detection criteria for a configured RADIUS server. The time (in seconds) specifies the minimum time that must elapse since a response is received from this RADIUS server.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server dead-criteria time 40</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>radius-server dead-criteria tries value</code></td>
<td>Specify the value for the number of consecutive timeouts that must occur on the router before the RADIUS server is marked as dead. The value ranges from 1 to 100.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server dead-criteria tries 50</td>
<td></td>
</tr>
<tr>
<td>Step 8</td>
<td><code>radius-server deadtime limit</code></td>
<td>Specifies the time in minutes for which a RADIUS server is marked dead. The deadtime limit is specified in minutes and ranges from 1 to 1440. If no value is specified, the default is 0.</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server deadtime 67</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>9</td>
<td>radius-server ipv4 dscp codepoint_value</td>
<td>Allows radius packets to be marked with a specific differentiated services code point (DSCP) value. This code point value ranges from 0 to 63.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server ipv4 dscp 45</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>radius-server load-balance method least-outstanding ignore-preferred-server batch-size size</td>
<td>Configures the radius load-balancing options by picking the server with the least outstanding transactions. This load-balancing method uses the batch-size for the selection of the server. The size ranges from 1 to 1500. If no value is specified, the default is 25.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server load-balance method least-outstanding ignore-preferred-server batch-size 500</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>radius-server retransmit retransmit_value</td>
<td>Specifies the number of retries to the active server. The retransmit value indicates the number of retries in numeric and ranges from 1 to 100. If no value is specified, then the default is 3.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server retransmit 45</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>radius-server source-port extended</td>
<td>Configures BNG to use a total of 200 ports as the source ports for sending out RADIUS requests.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server source-port extended</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>radius-server timeout value</td>
<td>Specifies the time to wait for a radius server to reply. The value is in seconds and ranges from 1 to 1000. The default is 5.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server timeout</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>radius-server vsa attribute ignore unknown</td>
<td>Ignores the unknown vendor-specific attributes for the radius server.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server vsa attribute ignore unknown</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>radius source-interface Loopback value vrf vrf_name</td>
<td>Specifies loopback interface for source address in RADIUS packets. The value ranges from 0 to 65535.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# radius source-interface Loopback 655 vrf vrf_1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring RADIUS Server Settings: Examples

```
\Configuring RADIUS Server Options
  configure
```
radius-server attribute list list1 a b
radius-server dead-criteria time 100
radius-server deadtime 30
radius-server disallow null-username
radius-server host 1.2.3.4 acct-port 655 auth-port 566
radius-server ipv4 dscp 34
radius-server key 7 ERITY$
radius-server load-balance method least-outstanding ignore-preferred-server batch-size 25
radius-server retransmit 50
radius-server source-port extended
radius-server timeout 500
radius-server vsa attribute ignore unknown
!
end

```bash
\ Configuring RADIUS Attribute List
radius-server attribute list list1 attribute B C
attribute vendor-id vendor-type 10
vendor-type 30
!
end
```

```bash
\ Configuring RADIUS Server Host
configure
radius-server host 1.3.5.7 acct-port 56 auth-port 66
idle-time 45
ignore-acct-port
ignore-auth-port 3.4.5.6
key 7 ERWQ
retransmit 50
test username username
timeout 500
!
end
```

```bash
\ Configuring RADIUS Server Key
configure
radius-server key 7 ERWQ
!
end
```

```bash
\ Configuring Load Balancing for RADIUS Server
configure
radius-server load-balance method least-outstanding batch-size 25
radius-server load-balance method least-outstanding ignore-preferred-server batch-size 45
!
end
```

```bash
\ Ignoring Unknown VSA Attributes in RADIUS Server
configure
radius-server vsa attribute ignore unknown
!
end
```

```bash
\ Configuring Dead Criteria for RADIUS Server
configure
radius-server dead-criteria time 60
radius-server dead-criteria tries 60
!
end
```

```bash
\ Disallow Username
configure
radius-server disallow null-username
!
end
```

```bash
\ Setting IP DSCP for RADIUS Server
configure
radius-server ipv4 dscp 43
radius-server ipv4 dscp default
!
```
Configuring Automated Testing

Perform this task to test if the external RADIUS server is UP or not.

SUMMARY STEPS

1. `configure`
2. `radius-server idle-time idle_time`
3. `radius-server test username username`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>radius-server idle-time idle_time</code>
Example:
<code>RP/0/RSP0/CPU0:router(config-radius-host)# radius-server idle-time 45</code>
Specifies the idle-time after which the automated test should start. The idle time is specified in minutes, and ranges from 1 to 60.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>radius-server test username username</code>
Example:
<code>RP/0/RSP0/CPU0:router(config-radius-host)# radius-server test username user1</code>
Specifies the username to be tested for the automated testing functionality.</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring Automated Testing: An example

```
configure
radius-server idle-time 60
radius-server test username user_1
! end
```

Setting IP DSCP for RADIUS Server

Perform this task to set IP differentiated services code point (DSCP) for RADIUS server.
SUMMARY STEPS

1. configure
2. radius-server ipv4 dscp codepoint_value
3. radius-server ipv4 dscp default
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>radius-server ipv4 dscp codepoint_value</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server ipv4 dscp 45</td>
</tr>
<tr>
<td></td>
<td>Allows radius packets to be marked with a specific differentiated services code point (DSCP) value that replaces the outdated IP precedence, a 3-bit field in the Type of Service byte of the IP header originally used to classify and prioritize types of traffic. This code point value ranges from 0 to 63.</td>
</tr>
<tr>
<td>Step 3</td>
<td>radius-server ipv4 dscp default</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# radius-server ipv4 dscp default</td>
</tr>
<tr>
<td></td>
<td>Matches the packets with default dscp (000000).</td>
</tr>
<tr>
<td>Step 4</td>
<td>commit</td>
</tr>
</tbody>
</table>

Setting IP DSCP for RADIUS Server: An example

```
configure
radius-server ipv4 dscp 43
radius-server ipv4 dscp default
!
end
```

Balancing Transaction Load on the RADIUS Server

The RADIUS load-balancing feature is a mechanism to share the load of RADIUS access and accounting transactions, across a set of RADIUS servers. Each AAA request processing is considered to be a transaction. BNG distributes batches of transactions to servers within a server group.

When the first transaction for a new is received, BNG determines the server with the lowest number of outstanding transactions in its queue. This server is assigned that batch of transactions. BNG keeps repeating this determination process to ensure that the server with the least-outstanding transactions always gets a new batch. This method is known as the least-outstanding method of load balancing.

You can configure the load balancing feature either globally, or for RADIUS servers that are part of a server group. In the server group, if a preferred server is defined, you need to include the keyword "ignore-preferred-server" in the load-balancing configuration, to disable the preference.
For configuring the load balancing feature globally, see Configuring Load Balancing for Global RADIUS Server Group, on page 24.

For configuring the load balancing feature on RADIUS servers that are part of a named server group, see Configuring Load Balancing for a Named RADIUS Server Group, on page 25.

Configuring Load Balancing for Global RADIUS Server Group

Perform this task to activate the load balancing function for the global RADIUS server group. As an example, in this configuration the preferred server is set to be ignored.

SUMMARY STEPS

1. configure
2. radius-server load-balance method least-outstanding batch-size **size**
3. radius-server load-balance method least-outstanding ignore-preferred-server batch-size **size**
4. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 radius-server load-balance method least-outstanding batch-size size</td>
<td>Configures the radius load-balancing options by picking the server with the least-outstanding transactions. This load-balancing method uses the batch-size for the selection of the server. The size ranges from 1 to 1500. If no value is specified, the default is 25.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0# radius-server load-balance method least-outstanding batch-size 500</td>
<td></td>
</tr>
<tr>
<td>Step 3 radius-server load-balance method least-outstanding ignore-preferred-server batch-size size</td>
<td>Configures the radius load-balancing options by disabling the preferred server for this Server Group. This load-balancing method uses the batch-size for the selection of the server. The size ranges from 1 to 1500. If no value is specified, the default is 25.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0# radius-server load-balance method least-outstanding ignore-preferred-server batch-size 500</td>
<td></td>
</tr>
<tr>
<td>Step 4 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Load Balancing for RADIUS Server: An example

```
configure
radius-server load-balance method least-outstanding batch-size 25
radius-server load-balance method least-outstanding ignore-preferred-server batch-size 45
!
end
```
Configuring Load Balancing for a Named RADIUS Server Group

Perform this task to activate the load balancing function for a named RADIUS server group. As an example, in this configuration the preferred server is set to be ignored.

SUMMARY STEPS

1. `configure`
2. `aaa group server radius server_group_name load-balance method least-outstanding batch-size size`
3. `aaa group server radius server_group_name load-balance method least-outstanding ignore-preferred-server batch-size size`
4. `commit`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Configures the radius load-balancing options by picking the server with the least-outstanding transactions. This load-balancing method uses the batch-size for the selection of the server. The size ranges from 1 to 1500. If no value is specified, the default is 25.</td>
</tr>
</tbody>
</table>
| Step 2 `aaa group server radius server_group_name load-balance method least-outstanding batch-size size` | **Example:**
RP/0/RSP0/CPU0:router(config)# aaa group server radius sg1 load-balance method least-outstanding batch-size 500 |
| Step 3 `aaa group server radius server_group_name load-balance method least-outstanding ignore-preferred-server batch-size size` | **Example:**
RP/0/RSP0/CPU0:router(config)# aaa group server radius sg1 load-balance method least-outstanding ignore-preferred-server batch-size 500 |
| Step 4 commit | |

Throttling of RADIUS Records

The Throttling of AAA (RADIUS) records is a mechanism to avoid RADIUS congestion and instability. This function is useful in situations when there is insufficient bandwidth to accommodate a sudden burst of AAA requests generated by the BNG for the RADIUS server.

While configuring throttling, a threshold rate, which corresponds to the maximum number of outstanding requests, is defined. It is possible to configure independent throttling rates for access (authentication and authorization) and accounting requests. After a threshold value is reached for a server, no further requests of
that type are sent to the server. However, for the pending requests, a retransmit timer is started, and if the outstanding request count (which is checked after every timer expiry), is less than the threshold, then the request is sent out.

As a session may timeout due to throttle on the access requests, a limit is set for the number of retransmit attempts. After this limit is reached, further access requests are dropped. Throttled accounting requests, however, are processed through the server-group failover process.

The throttling feature can be configured globally, or for a server-group. However, the general rule of configuration preference is that the server-group configuration overrides global configuration, if any.

The syntax for the throttling CLI command is:

```
radius-server throttle {{[accounting THRESHOLD] [access THRESHOLD [access-timeout NUMBER_OF-TIMEOUTS]]}}
```

where:

- **accounting THRESHOLD**—Specifies the threshold for accounting requests. The range is from 0 to 65536. The default is 0, and indicates that throttling is disabled for accounting requests.

- **access THRESHOLD**—Specifies the threshold for access requests. The range is from 0 to 65536. The default is 0, and indicates that throttling is disabled for accounting requests.

- **access-timeout NUMBER_OF-TIMEOUTS**—Specifies the number of consecutive timeouts that must occur on the router, after which access-requests are dropped. The range of is from 0 to 10. The default is 3.

Note

By default, the throttling feature is disabled on BNG.

For activating throttling globally, see Configuring RADIUS Throttling Globally, on page 26.

For activating throttling on a server group, see Configuring RADIUS Throttling on a Server Group, on page 27.

Configuring RADIUS Throttling Globally

Perform this task to activate RADIUS throttling globally.

SUMMARY STEPS

1. `configure`
2. `radius-server throttle access threshold_value`
3. `radius-server throttle access threshold_value access-timeout value`
4. `radius-server throttle access threshold_value access-timeout value accounting threshold_value`
5. `radius-server throttle accounting threshold_value access value access-timeout value`
6. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
</tbody>
</table>
| 2 | radius-server throttle access **threshold_value**
Example:
RP/0/RSP0/CPU0:router(config)# radius-server throttle access 10
| controls the number of access requests sent to a RADIUS server. The threshold value denotes the number of outstanding access requests after which throttling should be performed. The range is from 0 to 65535, and the preferred value is 100. |
| 3 | radius-server throttle access **threshold_value** access-timeout **value**
Example:
RP/0/RSP0/CPU0:router(config)# radius-server throttle access 10 access-timeout 5
| specifies the number of timeouts, after which a throttled access request is dropped. The value denotes the number of timeouts for a transaction. The range is from 1 to 10, and the default is 3. |
| 4 | radius-server throttle access **threshold_value** access-timeout **value** accounting **threshold_value**
Example:
RP/0/RSP0/CPU0:router(config)# radius-server throttle access 10 access-timeout 5 accounting 10
| controls the number of access timeout requests sent to a RADIUS server. The threshold value denotes the number of outstanding accounting transactions after which throttling should be performed. The range is from 0 to 65535, and the preferred value is 100. |
| 5 | radius-server throttle accounting **threshold_value** access **value** access-timeout **value**
Example:
RP/0/RSP0/CPU0:router(config)# radius-server throttle accounting 56 access 10 access-timeout 5
| controls the number of accounting requests sent to a RADIUS server. The threshold value denotes the number of outstanding accounting transactions after which throttling should be performed. The value ranges between 0 to 65535 and the preferred value is 100. |
| 6 | commit | |

Configuring RADIUS Throttling Globally: An example

```plaintext
configure
radius-server throttle access 10 access-timeout 5 accounting 10
end
```

Configuring RADIUS Throttling on a Server Group

Perform this task to activate RADIUS throttling on a server group.
SUMMARY STEPS

1. configure
2. aaa group server radius server_group_name
3. server hostname acct-port acct_port_value auth-port auth_port_value
4. throttle access threshold_value access-timeout value accounting threshold_value
5. commit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure</td>
</tr>
<tr>
<td>Step 2</td>
<td>aaa group server radius server_group_name</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config)# aaa group server radius SG1</td>
</tr>
<tr>
<td>Step 3</td>
<td>server hostname acct-port acct_port_value auth-port auth_port_value</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-sg-radius)# server 99.1.1.10 auth-port 1812 acct-port 1813</td>
</tr>
<tr>
<td>Step 4</td>
<td>throttle access threshold_value access-timeout value accounting threshold_value</td>
</tr>
<tr>
<td>Example:</td>
<td>RP/0/RSP0/CPU0:router(config-sg-radius)# radius-server throttle access 10 access-timeout 5 accounting 10</td>
</tr>
<tr>
<td>Step 5</td>
<td>commit</td>
</tr>
</tbody>
</table>

Configuring RADIUS Throttling on a Server Group: An example

```plaintext
configure
aaa group server radius SG1
server 99.1.1.10 auth-port 1812 acct-port 1813
radius-server throttle access 10 access-timeout 5 accounting 10
end
```
RADIUS Change of Authorization (CoA) Overview

The Change of Authorization (CoA) function allows the RADIUS server to change the authorization settings for a subscriber who is already authorized. CoA is an extension to the RADIUS standard that allows sending asynchronous messages from RADIUS servers to a RADIUS client, like BNG.

Note
A CoA server can be a different from the RADIUS server.

To identify the subscriber whose configuration needs to be changed, a RADIUS CoA server supports and uses a variety of keys (RADIUS attributes) such as Accounting-Session-ID, Username, IP-Address, and ipv4:vrf-id.

The RADIUS CoA supports:

• account-logon — When a user logs into a network, an external web portal that supports CoA sends an account-logon request to BNG with the user’s credentials (username and password). Account-logon on BNG then attempts to authenticate the user through RADIUS with those credentials.

• account-logoff — BNG processes the account-logoff request as a disconnect event for the subscriber and terminates the session.

Note
The RADIUS CoA server does not differentiate between originators of the disconnect event. Hence, when the BNG receives an account-logoff request from the RADIUS CoA server, for both a user-initiated and an administrator-initiated request, the Acct-Terminate-Cause to be sent to the RADIUS server is always set as Admin-Reset.

• account-update — BNG parses and applies the attributes received as part of the CoA profile. Only subscriber-specific attributes are supported and applied on the user profile.

• activate-service — BNG starts a predefined service on a subscriber. The service settings can either be defined locally by a dynamic template, or downloaded from the RADIUS server.

• deactivate-service — BNG stops a previously started service on the subscriber, which is equivalent to deactivating a dynamic-template.

For a list of supported Vendor-Specific Attributes for account operations, see Vendor-Specific Attributes for Account Operations.

Note
In order for BNG to enable interim accounting, it is mandatory for the CoA request to have both accounting method list from the dynamic-template and Acct-Interim-Interval attribute from the user profile. This behavior is applicable for accounting enabled through dynamic-template.

Service Activate from CoA

BNG supports activating services through CoA requests. The CoA service-activate command is used for activating services. The CoA request for the service activate should contain these attributes:
• "subscriber:command=activate-service" Cisco VSA
• "subscriber:service-name=<service name>" Cisco VSA
• Other attributes that are part of the service profile

The "<subscriber:sa=<service-name>" can also be used to activate services from CoA and through RADIUS. Duplicate service activate requests can be sent to BNG from the CoA server. BNG does not take any action on services that are already activated. BNG sends a CoA ACK message to the CoA server under these scenarios:

• When a duplicate request with identical parameters comes from the CoA for a service that is already active.
• When a duplicate request with identical parameters comes from the CoA to apply a parameterized service.

BNG sends a CoA NACK message to the CoA server with an error code as an invalid attribute under these scenarios:

• When a request comes from the CoA to deactivate a non-parameterized service that is not applied to the session.
• When a request comes from the CoA to deactivate a parameterized service that is not applied to the session.
• When a duplicate request to apply a parameterized service is made with non-identical parameters from the CoA.
• When a request with non-identical parameters comes from CoA to deactivate a parameterized service.

Service Update from CoA

The service update feature allows an existing service-profile to be updated with a new RADIUS attribute list representing the updated service. This impacts any subscriber who is already activated with the service and new subscriber who activate the service in the future. The new CoA service-update command is used for activating this feature. The CoA request for the service update should have these attributes:

• "subscriber:command=service-update" Cisco VSA
• 'subscriber:service-name=<service name>" Cisco VSA
• Other attributes that are part of the service profile

A service update CoA should have a minimum of these attributes:

• vsa cisco generic 1 string "subscriber:command=service-update"
• vsa cisco generic 1 string "subscriber:service-name=<service name>"

Web Logon with RADIUS Based CoA

To support Web Logon, a set of Policy Rule Events need to be configured in an ordered manner. These events are as follows:

• session-start:
 • On the start of a session, a subscriber is setup to get internet connectivity. The service is activated to redirect HTTP traffic to a Web portal for web-based logon.
• Start the timer with duration for the maximum waiting period for authentication.

• account-logon — The Web portal collects the user credentials such as username and password and triggers a CoA account-logon command. When this event is triggered, subscriber username and password are authenticated by the RADIUS server. Once the authentication is successful, the HTTP redirect service is deactivated, granting user access to already connected internet setup. Also, the timer established in session-start must be stopped. However, if the authentication fails during account-logon, BNG sends a NAK CoA request, allowing for further authentication attempts to take place.

• timer expiry — When the timer expires, the subscriber session is disconnected based on the configuration.

Service Accounting

Accounting records for each service enabled on a subscriber can be sent to the configured RADIUS server. These records can include service-start, service-stop, and service-interim records containing the current state of the service and any associated counters. This feature is the Service Accounting feature. Service accounting records are consolidated accounting records that represent the collection of features that make up a service as part of a subscriber session.

Service accounting starts when a subscriber session comes up with a service enabled on it. This can happen through a dynamic template applied through a control policy, through access-accept (AA) messages when the session is authorized, or through a change of authorization (CoA), when a new service is applied on a subscriber session. Service accounting stops either when the session is terminated, or a service is removed from the session through CoA, or some other event that deactivates the service. Start records have no counters; interim and stop records with QoS counters are generated when service accounting is enabled for QoS. Interim accounting records can be generated, in between start and stop accounting, as an option with a pre-defined periodic interval. When the interim period is zero, interim accounting records are not created. Different interim intervals are based on every service for each session. Service accounting is enabled on each template, based on the configuration.

Note

The policy-map associated to a dynamic template can be edited to change the service parameters. However, this does not update the accounting records. Therefore, to generate all the accounting records accurately, it is recommended that a new service with all the required service parameters be created and associated to the new service, through a CoA.

For service accounting, statistics for ingress and egress QoS policies, which are applied under each service for a given subscriber, may need to be reported as part of the accounting interim and stop records. For each service, these QoS counters can be reported as part of the accounting records:

• BytesIn — Aggregate of bytes matching all classes of the ingress QoS policy for the service minus the policer drops.

• PacketsIn — Aggregate of packets matching all classes of the ingress QoS policy for the service minus the policer drops.

• BytesOut — Aggregate of bytes matching all classes of the egress QoS policy for the service minus the queuing drops.

• PacketsOut — Aggregate of packets matching all classes of the egress QoS policy for the service minus the queuing drops.
Dynamic template features that support accounting statistic collection and require that their statistics be reported in the AAA service accounting records can enable accounting statistics on their features using the newly-introduced optional `acct-stats` configuration option. This option is not available for the features that do not support statistic collection. By default, QoS accounting statistics are disabled to optimize performance.

Note
The QoS counters for each direction is reported only if a QoS policy is applied for that service in the given direction. For example, if a service does not have an ingress policy applied, BytesIn and PacketsIn counters are reported as being 0.

Pre-requisites
- Subscriber accounting, the parent accounting record for service accounting, must be configured to enable the service accounting feature to work.
- The keyword `acct-stats` must be configured in service-policy configuration to enable the service accounting feature to report feature counter information as part of the records.

Restriction
- Service accounting is supported on bundle subscriber interfaces but not on line card subscriber interfaces.
- IPv4 and IPv6 subscriber sessions has a single set of service accounting records. They are merged into one set of bytes_in, bytes_out, packets_in, packets_out counters.

Configuring Service Accounting

Perform this task to configure service accounting through the dynamic template:

Before You Begin
You must configure subscriber accounting before performing this task. Refer Creating Dynamic Template for IPv4 or IPv6 Subscriber Session for configuring procedure.

SUMMARY STEPS

1. `configure`
2. `aaa accounting service {list_name | default} {broadcast group {group_name | radius} |group {group_name | radius}}`
3. `aaa service-accounting [extended | brief]`
4. `dynamic-template`
5. `type service dynamic-template-name`
6. `accounting aaa list {method_list_name | default} type service [periodic-interval time]`
7. `{ipv4 | ipv6} access-group access-list-name`
8. `service-policy {input | output | type} service-policy_name [acct-stats]`
9. `commit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>aaa accounting service {list_name</td>
<td>default} {broadcast group {group_name</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# aaa accounting service l1 group srGroup1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>aaa service-accounting [extended</td>
<td>brief]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# aaa service-accounting brief</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>dynamic-template</td>
<td>Enters the dynamic-template configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config)# dynamic-template</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>type service {dynamic_template_name}</td>
<td>Creates a dynamic-template with a user-defined name for a service.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dynamic-template)# type service s1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>accounting aaa list {method_list_name</td>
<td>default} {periodic_interval {time}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dynamic-template-type)# accounting aaa list l1 type service periodic-interval 1000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>{ipv4</td>
<td>ipv6} access-group {access-list_name}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dynamic-template-type)# ipv4 access-group ACL1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dynamic-template-type)# ipv6 access-group ACL2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>service-policy {input</td>
<td>output</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dynamic-template-type)# service-policy input QoS1 acct-stats</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config-dynamic-template-type)# service-policy output QoS2 acct-stats</td>
<td></td>
</tr>
</tbody>
</table>
Statistics Infrastructure

The accounting counters are maintained by the service accounting statistics IDs (statsD) infrastructure. Service accounting interacts with the statistics infrastructure in this manner:

- Each feature has a statistics collector process that is responsible for returning statistics counters for that feature.
- A single collector can handle counters for multiple features.
- An accounting process, the service accounting management agent, uses the access library to register for notifications and request statistics, and pushes to a radius server.

There is a polling period to pull the data from statsD. To support sub-second accuracy on stop records, the statistics are immediately pulled when the session is terminated, without waiting for any polling method to get accurate data. The same method is followed by session accounting and service accounting. Sub-second accuracy is not supported for data reported in interim records, because no data is pulled while sending interim accounting records.

Configuring Statistics IDs (statsD)

The statsD is configured to poll feature statistics by default every 900 seconds (that is, every 15 minutes). Perform this task to change the default figure to either increase or decrease the polling interval.

SUMMARY STEPS

1. configure
2. statistics period service-accounting {period | disable}
3. commit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 statistics period service-accounting {period</td>
<td>disable}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>RP/0/RSP0/CPU0:router(config)# statistics period service-accounting 1800</td>
<td></td>
</tr>
<tr>
<td>Step 3 commit</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Service Accounting: Example

```bash
configure
statistics period service-accounting 1800
end
```

Understanding Per-VRF AAA Function

The Per VRF AAA function allows authentication, authorization, and accounting (AAA) on the basis of virtual routing and forwarding (VRF) instances. This feature permits the Provider Edge (PE) or Virtual Home Gateway (VHG) to communicate directly with the customer's RADIUS server, (which is associated with the customer's Virtual Private Network (VPN)), without having to go through a RADIUS proxy.

ISPs must be able to define operational parameters such as AAA server groups, method lists, system accounting, and protocol-specific parameters, and associate those parameters to a particular VRF instance.

The Per VRF AAA feature is supported with VRF extensions to server-group, RADIUS, and system accounting commands. The list of servers in server groups is extended to include definitions of private servers, in addition to references to the hosts in the global configuration. This allows simultaneous access to both customer servers and global service provider servers. The syntax for the command used to configure per-vrf AAA globally is:

```
radius source-interface subinterface-name [vrf vrf-name]
```

RADIUS Double-Dip Feature

BNG supports the RADIUS double-dip feature, where BNG sends the first authentication or authorization request to a service provider's RADIUS server, which in turn responds with the correct VRF associated with the subscriber session. Subsequently, the BNG redirects the original request, and sends it as a second request, to the correct RADIUS server that is associated with the designated VRF.

Additional References

These sections provide references related to implementing RADIUS.
RFCs

<table>
<thead>
<tr>
<th>Standard/RFC - AAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC-2865</td>
</tr>
<tr>
<td>RFC-2866</td>
</tr>
<tr>
<td>RFC-2867</td>
</tr>
<tr>
<td>RFC-2868</td>
</tr>
<tr>
<td>RFC-2869</td>
</tr>
<tr>
<td>RFC-3575</td>
</tr>
<tr>
<td>RFC-4679</td>
</tr>
<tr>
<td>RFC-5176</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at the following URL: http://www.cisco.com/go/mibs</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>