Multicast Routing and Forwarding Commands

This module describes the commands used to configure and monitor multicast routing.

For detailed information about multicast routing concepts, configuration tasks, and examples, refer to the Implementing Multicast Routing on Cisco IOS XR Software configuration module in the Cisco ASR 9000 Series Aggregation Services Router Multicast Configuration Guide.

- accounting per-prefix, page 4
- accounting per-prefix forward-only, page 6
- address-family (multicast), page 8
- address-family ipv4 mvpn (bgp), page 11
- bgp auto-discovery mldp inter-as, page 14
- boundary, page 15
- clear mfib counter, page 16
- clear mfib database, page 18
- clear mfib hardware resource-counters, page 19
- clear mfib hardware route statistics, page 21
- disable (multicast), page 23
- enable (multicast), page 25
- forwarding-latency, page 27
- interface (multicast), page 28
- interface all enable, page 30
- interface-inheritance disable, page 32
- log-traps, page 34
- maximum disable, page 35
- mdt data, page 36
- mdt data ingress replication, page 38
- mdt default, page 39
• mdt mtu, page 41
• mdt source, page 43
• multicast-routing, page 45
• multipath, page 47
• nsf (multicast), page 48
• oom-handling, page 50
• rate-per-route, page 52
• recursive-fec, page 53
• retain route-target all, page 54
• route-policy, page 55
• show mfib bvi, page 56
• show mfib connections, page 57
• show mfib counter, page 59
• show mfib encap-info, page 61
• show mfib hardware interface, page 63
• show mfib hardware ltrace, page 68
• show mfib hardware resource-counters, page 72
• show mfib hardware route accept-bitmap, page 75
• show mfib hardware route internal, page 77
• show mfib hardware route location, page 82
• show mfib hardware route mofrr, page 84
• show mfib hardware route olist, page 90
• show mfib hardware route statistics, page 100
• show mfib hardware route summary, page 104
• show mfib hardware table, page 107
• show mfib interface, page 109
• show mfib nsf, page 112
• show mfib route, page 115
• show mfib table-info, page 121
• show mrib client, page 124
• show mrib bvi, page 127
• show mrib mpls forwarding, page 128
• show mrib mpls route, page 130
- show mrib mpls traffic-eng fast-reroute, page 131
- show mrib nsf, page 133
- show mrib platform trace, page 135
- show mrib route, page 137
- show mrib route-collapse, page 139
- show mrib route outgoing-interface, page 141
- show mrib table-info, page 143
- show mrib tlc, page 145
- show mrib vrf vrf_name route, page 147
- static-rpf, page 148
- ttl-threshold (multicast), page 150
- vrf (multicast), page 152
accounting per-prefix

To enable accounting for multicast routing, use the accounting per-prefix command in the appropriate configuration mode. To return to the default behavior, use the no form of this command.

accounting per-prefix

no accounting per-prefix

Syntax Description
This command has no keywords or arguments.

Command Default
This feature is disabled by default.

Command Modes
- Multicast routing configuration
- Multicast routing address family IPv4 configuration
- Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The accounting per-prefix command is used to enable per-prefix counters only in hardware. Cisco IOS XR Software counters are always present. When enabled, every existing and new (S, G) route is assigned forward, punt, and drop counters on the ingress route and forward and punt counters on the egress route. The (*, G) routes are assigned a single counter.

There are a limited number of counters on all nodes. When a command is enabled, counters are assigned to routes only if they are available.

To display packet statistics, use the show mfib route and the show mfib hardware route statistics commands. These commands display "N/A" for counters when no hardware statistics are available or when the accounting per-prefix command is disabled.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable accounting for multicast routing:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# accounting per-prefix
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib hardware route statistics, on page 100</td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information for the packet and byte counters for each route.</td>
</tr>
<tr>
<td>show mfib route, on page 115</td>
<td>Displays route entries in the Multicast Forwarding Information Base (MFIB).</td>
</tr>
</tbody>
</table>
accounting per-prefix forward-only

To reduce hardware statistics resource allocations when enabling accounting, particularly for multicast VPN (MVPN), use the `accounting per-prefix forward-only` command under multicast routing configuration mode. To return to the default mode of accounting per-prefix, on page 4, use the `no` form of this command.

```
accounting per-prefix forward-only
no accounting per-prefix forward-only
```

Syntax Description

This command has no keywords or arguments.

Command Default

If no counters were configured, there is no default.

- If the accounting per-prefix counter was previously configured, it becomes the default.
- If no accounting was configured for multicast routing, forwarding-only is the default mode and triggers a data MDT transition in the case of MVPN deployment.

Command Modes

- Multicast routing configuration
- Multicast routing address family IPv4 and IPv6 configuration
- Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

- The `accounting per-prefix forward-only` command has only one `fwd-only` counter. In other words, there is no `punt` or `drop` counter allocated.

- We recommended this command for configuration of multicast VPN routing or for any line card that has a route-intensive configuration. Each individual router can support up to 150,000 routes.

- To verify the number of statistics allocated or free on a line card, use the `show mfib hardware resource-counters`, on page 72 command in EXEC mode.

- There are a limited number of counters on all nodes. When accounting on a prefix is enabled, counters are assigned to routes only if they are available.

- To display packet statistics, use the `show mfib route` and the `show mfib hardware route statistics` commands. These commands display "N/A" for counters when no hardware statistics are available or when
neither the `accounting per-prefix, on page 4` command nor the `accounting per-prefix forward-only` command are enabled.

You may switch between `accounting-perprefix` and `accounting per-prefix forward-only` statistics for ipv4 or ipv6 multicast family. However, be aware that only one set of counters is supported on the (*,G) routes (with fwd/punt/drop on ingress and fwd/drop on egress) regardless of whether you enabled the `accounting-perprefix` or `accounting-perprefix fwd-only` command.

Although you can switch accounting modes, this involves freeing the hardware statistics and reallocating them, thereby resulting in a loss of any previously collected data. Therefore, it is preferable to decide which statistics mode you want to use at the start to avoid the resource cost entailed by resetting the statistics counter values with a change in mode.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable accounting per-prefix forward-only for MVPN routing:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# accounting per-prefix forward-only
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>accounting per-prefix, on page 4</code></td>
<td>Enables accounting for multicast routing.</td>
</tr>
<tr>
<td><code>clear mfib hardware resource-counters, on page 19</code></td>
<td>Clears global resource counters.</td>
</tr>
</tbody>
</table>
address-family (multicast)

To display available IP prefixes to enable multicast routing and forwarding on all router interfaces, use the `address-family` command in multicast-routing configuration mode or multicast VRF configuration submode. To disable use of an IP address prefix for routing, use the `no` form of this command.

```
address-family [vrf vrf-name] {ipv4| ipv6}
no address-family [vrf vrf-name] {ipv4| ipv6}
```

Syntax Description

- `vrf vrf-name` (Optional) Specifies a VPN routing and forwarding (VRF) instance.
- `ipv4` Specifies IPv4 address prefixes.
- `ipv6` Specifies IPv6 address prefixes.

Command Default

No default behavior or values

Command Modes

Multicast routing configuration
Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 4.2.0</td>
<td>The <code>ipv6</code> keyword was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `address-family` command either from multicast routing configuration mode or from multicast VRF configuration sub to enter either the multicast IPv4 or IPv6 address family configuration submode, depending on which keyword was chosen. Use the `address-family` command with the `multicast-routing`, on page 45 command to start the following multicast processes:

- Multicast Routing Information Base (MRIB)
- Multicast Forwarding Engine (MFWD)
- Protocol Independent Multicast Sparse mode (PIM-SM)
- Internet Group Management Protocol (IGMP)
- Multicast Listener Discovery Protocol (MLD)

Basic multicast services start automatically when the multicast PIE is installed, without any explicit configuration required. The following multicast services are started automatically:
Multicast Routing Information Base (MRIB)
Multicast Forwarding Engine (MFWD)
Protocol Independent Multicast Sparse mode (PIM-SM)
Internet Group Management Protocol (IGMP)

Other multicast services require explicit configuration before they start. For example, to start the Multicast Source Discovery Protocol (MSDP) process, you must enter the `router msdp` command and explicitly configure it.

To enable multicast routing and protocols on interfaces, you must explicitly enable the interfaces using the `interface` command in multicast routing configuration mode. This action can be performed on individual interfaces or by configuring a wildcard interface using the `alias` command.

To enable multicast routing on all interfaces, use the `interface all enable` command in multicast routing configuration mode. For any interface to be fully enabled for multicast routing, it must be enabled specifically (or configured through the `interface all enable` command for all interfaces) in multicast routing configuration mode, and it must not be disabled in the PIM and IGMP configuration modes.

The `enable` and `disable` keywords available under the IGMP and PIM interface configuration modes have no effect unless the interface is enabled in multicast routing configuration mode—either by default or by explicit interface configuration.

To allow multicast forwarding functionality, while turning multicast routing functionality off, use `interface-inheritance disable, on page 32` command on a per interface or `interface all enable` basis in PIM or IGMP configuration mode.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to enter IPv4 and IPv6 multicast routing configuration mode:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# address-family ipv4
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4)#
RP/0/RSP0/CPU0:router(config-mcast)# address-family ipv6
RP/0/RSP0/CPU0:router(config-mcast-default-ipv6)#
```

This example shows how to enter IPv4 and IPv6 VRF multicast routing configuration submode:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# vrf vrf-name address-family ipv4
RP/0/RSP0/CPU0:router(config-mcast-vrf-name-ipv4)#
RP/0/RSP0/CPU0:router(config-mcast)# vrf vrf-name address-family ipv6
RP/0/RSP0/CPU0:router(config-mcast-vrf-name-ipv6)#
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alias</td>
<td>Creates a command alias.</td>
</tr>
<tr>
<td>interface all enable, on page 30</td>
<td>Enables multicast routing and forwarding on all new and existing interfaces.</td>
</tr>
<tr>
<td>interface all disable</td>
<td>Disables PIM processing on all new and existing interfaces.</td>
</tr>
<tr>
<td>interface-inheritance disable, on page 32</td>
<td>Separates the disabling of multicast routing and forwarding.</td>
</tr>
<tr>
<td>interface (multicast), on page 28</td>
<td>Configures multicast interface properties.</td>
</tr>
</tbody>
</table>
address-family ipv4 mvpn (bgp)

To enable Border Gateway Protocol (BGP) on a specific IPv4 unicast destination address prefix, use the `address-family ipv4 mvpn` command in the BGP sub-configuration mode. To disable this feature, use the `no` form of this command.

```
address-family ipv4 mvpn [additional-paths| advertise best-external| as-path-loopcheck out disable| bgp \{client-to-client reflection cluster-id ip_address disable| dampening \{time value| route-policy policy param_value\}| label-delay time\} inter-as install nexthop \{resolution prefix-length minimum value\} route-policy policy param_value| trigger-delay \{critical value| non-critical value\}| retain| route-target download| update limit \{address-family limit| sub-group \{ebgp limit| ibgp limit\}\}]
```

```
o address-family ipv4 mvpn [additional-paths| advertise best-external| as-path-loopcheck out disable| bgp \{client-to-client reflection cluster-id ip_address disable| dampening \{time value| route-policy policy param_value\}| label-delay time\} inter-as install nexthop \{resolution prefix-length minimum value\} route-policy policy param_value| trigger-delay \{critical value| non-critical value\}| retain| route-target download| update limit \{address-family limit| sub-group \{ebgp limit| ibgp limit\}\}]
```

Syntax Description

- **additional-paths**: Specifies the additional paths configuration.
- **advertise**: Advertises the border gateway protocol path.
- **as-path-loopcheck**: Configures AS path loop checking.
- **bgp**: Configures the border gateway protocol commands.
- **inter-as**: Controls the installation of the BGP MVPN routes into PIM/MLDP.
- **nexthop**: Specifies the BGP nexthop location.
- **retain**: Accepts or retains the specified BGP parameters.
- **route-target**: Routes the target RIB installation.
- **update**: Specifies the BGP update generation configuration.

Command Default

No default behavior or values

Command Modes

Multicast routing configuration

Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
Modification

Release	Modification
4.2.0 | The `ipv6` keyword was added.

Usage Guidelines

Use the **address-family** command either from multicast routing configuration mode or from multicast VRF configuration submode to enter either the multicast IPv4 or IPv6 address family configuration submode, depending on which keyword was chosen. Use the **address-family** command with the **multicast-routing**, on page 45 command to start the following multicast processes:

- Multicast Routing Information Base (MRIB)
- Multicast Forwarding Engine (MFWD)
- Protocol Independent Multicast Sparse mode (PIM-SM)
- Internet Group Management Protocol (IGMP)
- Multicast Listener Discovery Protocol (MLD)

Basic multicast services start automatically when the multicast PIE is installed, without any explicit configuration required. The following multicast services are started automatically:

- Multicast Routing Information Base (MRIB)
- Multicast Forwarding Engine (MFWD)
- Protocol Independent Multicast Sparse mode (PIM-SM)
- Internet Group Management Protocol (IGMP)

Other multicast services require explicit configuration before they start. For example, to start the Multicast Source Discovery Protocol (MSDP) process, you must enter the **router msdp** command and explicitly configure it.

To enable multicast routing and protocols on interfaces, you must explicitly enable the interfaces using the **interface** command in multicast routing configuration mode. This action can be performed on individual interfaces or by configuring a wildcard interface using the **alias** command.

To enable multicast routing on all interfaces, use the **interface all enable** command in multicast routing configuration mode. For any interface to be fully enabled for multicast routing, it must be enabled specifically (or configured through the **interface all enable** command for all interfaces) in multicast routing configuration mode, and it must not be disabled in the PIM and IGMP configuration modes.

Note

The `enable` and `disable` keywords available under the IGMP and PIM interface configuration modes have no effect unless the interface is enabled in multicast routing configuration mode—either by default or by explicit interface configuration.

To allow multicast forwarding functionality, while turning multicast routing functionality off, **interface-inheritance disable**, on page 32 command on a per interface or **interface all enable** basis in PIM or IGMP configuration mode.
Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to enter IPv4 and IPv6 multicast routing configuration mode:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# address-family ipv4
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4)#
RP/0/RSP0/CPU0:router(config-mcast)# address-family ipv6
RP/0/RSP0/CPU0:router(config-mcast-default-ipv6)#
```

This example shows how to enter IPv4 and IPv6 VRF multicast routing configuration submode:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# vrf vrf-name address-family ipv4
RP/0/RSP0/CPU0:router(config-mcast-vrf-name-ipv4)#
RP/0/RSP0/CPU0:router(config-mcast-vrf-name-ipv6)#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alias</td>
<td>Creates a command alias.</td>
</tr>
<tr>
<td>interface all enable, on page 30</td>
<td>Enables multicast routing and forwarding on all new and existing interfaces.</td>
</tr>
<tr>
<td>interface all disable</td>
<td>Disables PIM processing on all new and existing interfaces.</td>
</tr>
<tr>
<td>interface-inheritance disable, on page 32</td>
<td>Separates the disabling of multicast routing and forwarding.</td>
</tr>
<tr>
<td>interface (multicast), on page 28</td>
<td>Configures multicast interface properties.</td>
</tr>
</tbody>
</table>
bgp auto-discovery mldp inter-as

To enable the MLDP I-PMSI core tree support, use the `bgp auto-discovery mldp inter-as` command in the BGP MVPN address-family sub configuration mode.

Syntax Description

This command has no keywords or arguments.

Command Default

No default behavior or values

Command Modes

BGP MVPN address-family sub configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

```
RP/0/RSP0/CPU0:router(config-mcast)# vrf vrf1
RP/0/RSP0/CPU0:router(config-mcast-vrf1)# address-family ipv4
RP/0/RSP0/CPU0:router(config-mcast-vrf1-ipv4)# bgp auto-discovery mldp inter-as
```
boundary

To configure the multicast boundary on an interface for administratively scoped multicast addresses, use the **boundary** command in the appropriate configuration mode. To return to the default behavior, use the **no** form of this command.

boundary access-list

no boundary access-list

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>access-list</td>
<td>Access list specifying scoped multicast groups. The name cannot contain a space or quotation mark; it may contain numbers.</td>
</tr>
</tbody>
</table>

| Command Default | A multicast boundary is not configured. |
| Command Modes | Multicast routing interface configuration
Multicast routing VRF interface configuration |

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

| Usage Guidelines | The **boundary** command is used to set up a boundary to keep multicast packets from being forwarded.
The boundary acl can specify a mcast source address in addition to a mcast group address. The keyword "any" can be added before the mcast group range. |

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
<th>The following example shows how to set up a boundary for all administratively scoped addresses:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router(config) # ipv4 access-list myboundary2</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router (config) # 10 deny ipv4 any 239.0.0.0 0.255.255.255</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router (config) # 20 permit ipv4 any 224.0.0.0 15.255.255.255</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router (config)# multicast-routing</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router (config-mcast) # address-family ipv4</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router (config-mcast-default-ipv4)# interface GigE 0/2/0/2</td>
</tr>
<tr>
<td></td>
<td>RP/0/RSP0/CPU0:router (config-mcast-default-ipv4-if)# boundary myboundary2</td>
</tr>
</tbody>
</table>
clear mfib counter

To clear Multicast Forwarding Information Base (MFIB) route packet counters, use the `clear mfib counter` command in the appropriate mode.

```
clear mfib [vrf vrf-name] ipv4 counter [group-address|source-address] [location {node-id|all}]
```

Syntax Description

- **vrf vrf-name** (Optional) Specifies a VPN routing and forwarding (VRF) instance.
- **ipv4** (Optional) Specifies IPv4 address prefixes.
- **group-address** (Optional) IP address of the multicast group.
- **source-address** (Optional) IP address of the source of the multicast route.
- **location node-id** (Optional) Clears route packet counters from the designated node.
- **all** The `all` keyword clears route packet counters on all nodes

Command Default

IPv4 addressing is the default.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command only clears MFIB route packet software counters. To clear MFIB hardware statistics counters use the `clear mfib hardware route statistics` command.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>
Examples

The following example shows how to clear MFIB route packet counters on all nodes:

```
RP/0/RSP0/CPU0:router# clear mfib counter location all
```
clear mfib database

To clear the Multicast Forwarding Information Base (MFIB) database, use the `clear mfib database` command in the appropriate mode.

```
clear mfib [ipv4| ipv6] database [location \{node-id\ all\}]
```

Syntax Description

- `ipv4` (Optional) Specifies IPv4 address prefixes.
- `location node-id` (Optional) Clears global resource counters from the designated node.
- `all` The `all` keyword clears all global resource counters.

Command Default

IPv4 addressing is the default.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write, execute</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to clear the Multicast Forwarding Information Base (MFIB) database on all nodes:

```
RP/0/RSP0/CPU0:router# clear mfib database location all
```
clear mfib hardware resource-counters

To clear global resource counters, use the clear mfib hardware resource-counters command in EXEC mode.

```
clear mfib [vrf vrf-name] [ipv4|ipv6] hardware resource-counters [location {node-id|all}]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>location node-id</td>
<td>(Optional) Clears global resource counters from the designated node.</td>
</tr>
<tr>
<td>all</td>
<td>The all keyword clears all global resource counters.</td>
</tr>
</tbody>
</table>

Command Default

IPv4 addressing is the default.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the clear mfib hardware resource-counters to estimate resource usage for an operation.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write, execute</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to clear all global resource counters:

```
RP/0/RSP0/CPU0:router# clear mfib hardware resource-counters location all
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib hardware resource-counters</td>
<td>Displays the allocated and freed hardware resources for the Multicast Forwarding Information Base (MFIB) process.</td>
</tr>
</tbody>
</table>

Command

clear mfib hardware resource-counters

Description

Displays the allocated and freed hardware resources for the Multicast Forwarding Information Base (MFIB) process.
clear mfib hardware route statistics

To reset all allocated counter values regardless of the Multicast Forwarding Information Base (MFIB) hardware statistics mode (accounting per-prefix or accounting per-prefix forward-only), use the clear mfib hardware route statistics command in EXEC mode.

`clear mfib [vrf vrf-name] [ipv4] [ipv6] hardware route statistics {egress| ingress| ingress-and-egress} [*| source-address] [group-address [/prefix-length]] [location {node-id| all}]`

Syntax Description

- `vrf vrf-name` (Optional) Specifies a VPN routing and forwarding (VRF) instance.
- `ipv4` (Optional) Specifies IPv4 address prefixes.
- `ipv6` (Optional) Specifies IPv6 address prefixes.
- `ingress-and-egress` (Optional) Clears hardware statistics on both the incoming (ingress) and outgoing (egress) routes.
- `*` (Optional) Clears shared tree route statistics.
- `source-address` (Optional) IP address or hostname of the multicast route source.
- `group-address` (Optional) IP address or hostname of the multicast group.
- `/prefix-length` (Optional) Prefix length of the multicast group. A decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value.
- `location` (Optional) Clears route packet counters from the designated node.
- `node-id` The `node-id` argument is entered in the `rack/slot/module` notation.
- `all` The `all` keyword clears route packet counters on all nodes

Command Default

If not specified, IPv4 addressing is the default.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
To use this command, you must be in a user group associated with a task group that includes the proper task IDs.

The Multicast Forwarding (MFWD) process exists on each line card and assigns hardware counters to each (S, G) route. Additionally, one global counter is assigned for all (*, G) routes, depending on resource availability.

To clear the set of counters for (*, G) routes, the MFWD process assigns a single set of counters to count packets that match (*, G) routes. Consequently, the `clear mfib hardware route statistics` command must be used in a form that either clears counters on all routes or matches all (*, G) routes.

Note

This command only clears MFIB hardware statistics counters. To clear MFIB route packet software counters, use the `clear mfib counter` command.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write, execute</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following command shows how to clear counters by route statistics for all multicast routes on both ingress and egress forwarding engines for the line card 0/1/CPU0:

```
RP/0/RSP0/CPU0:router# clear mfib ipv4 hardware route statistics ingress-and-egress location 0/1/CPU0
```
disable (multicast)

To disable multicast routing and forwarding on an interface, use the disable command in the appropriate configuration mode. To return to the default behavior, use the no form of this command.

disable
no disable

Syntax Description
This command has no keywords or arguments.

Command Default
Multicast routing and forwarding settings are inherited from the global interface enable all command. Otherwise, multicast routing and forwarding is disabled.

Command Modes
Multicast routing interface configuration
Multicast routing VRF interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The disable command modifies the behavior of a specific interface to disabled. This command is useful if you want to disable multicast routing on specific interfaces, but leave it enabled on all remaining interfaces.

The following guidelines apply when the enable and disable commands (and the no forms) are used in conjunction with the interface all enable command:

- If the interface all enable command is configured:
 - The enable and no forms of the command have no additional effect on a specific interface.
 - The disable command disables multicast routing on a specific interface.
 - The no disable command enables a previously disabled interface.

- If the interface all enable command is not configured:
 - The enable command enables multicast routing on a specific interface.
 - The no enable command enables the previously disabled interface.
 - The disable and no forms of the command have no additional effect on a specific interface.
The following example shows how to enable multicast routing on all interfaces and disable the feature only on GigabitEthernet interface 0/1/0/0:

```plaintext
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# interface all enable
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4)# interface GigE 0/1/0/0
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4-if)# disable
```
enable (multicast)

To enable multicast routing and forwarding on an interface, use the `enable` command in the appropriate configuration mode. To return to the default behavior, use the `no` form of this command.

```
enable
no enable
```

Syntax Description
This command has no keywords or arguments.

Command Default
Multicast routing and forwarding settings are inherited from the global `interface enable all` command. Otherwise, multicast routing and forwarding is disabled.

Command Modes
Multicast routing interface configuration
Multicast routing VRF interface configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
The `enable` command modifies the behavior of a specific interface to enabled. This command is useful if you want to enable multicast routing on specific interfaces, but leave it disabled on all remaining interfaces.

The following guidelines apply when the `enable` and `disable` commands (and the `no` forms) are used in conjunction with the `interface all enable` command:

- If the `interface all enable` command is configured:
 - The `enable` and `no` forms of the command have no additional effect on a specific interface.
 - The `disable` command disables multicast routing on a specific interface.
 - The `no disable` command enables a previously disabled interface.

- If the `interface all enable` command is not configured:
 - The `enable` command enables multicast routing on a specific interface.
 - The `no enable` command enables a previously enabled interface.
 - The `disable` and `no` forms of the command have no additional effect on a specific interface.
Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable multicast routing on a specific interface only:

```plaintext
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# interface GigE 0/1/0/0
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4-if)# enable
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable (multicast), on page 23</td>
<td>Disables multicast routing and forwarding on an interface.</td>
</tr>
<tr>
<td>interface all enable, on page 30</td>
<td>Enables multicast routing and forwarding on all new and existing interfaces.</td>
</tr>
</tbody>
</table>
forwarding-latency

To delay traffic being forwarded on a route, use the **forwarding-latency** command. To return to the default behavior, use the **no** form of this command.

forwarding-latency [delay milliseconds]

no forwarding-latency

Syntax Description

| delay milliseconds | (Optional) Specifies the delay time in milliseconds. Range is 5 - 500. |

Command Default

The default delay time is 30 milliseconds.

Command Modes

Multicast routing configuration
IPv4 and IPv6 multicast routing configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.8.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **forwarding-latency** command when you expect a receiver to leave and rejoin the same multicast group within a very short period such as 20 or 30 milliseconds. The delay may be required to provide the router sufficient time to update its Multicast Forwarding Information Base (MFIB) table.

When the **forwarding-latency** command is enabled, each interface is allocated a separate table lookup unit (TLU) block in the output interface list (olist), thereby increasing TLU hardware resource usage, and, for this reason, it should be used with caution when many multicast routes are present.

When the **forwarding-latency** command is disabled, up to three interfaces may share a single TLU block in the olist.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to delay traffic from being forwarded for 120 milliseconds:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router# forwarding-latency delay 120
```
interface (multicast)

To configure multicast interface properties, use the `interface` command in the appropriate configuration mode. To disable multicast routing for interfaces, use the `no` form of this command.

```
interface type interface-path-id
no interface type interface-path-id
```

Syntax Description

- **type**: Interface type. For more information, use the question mark (?) online help function.
- **interface-path-id**: Physical interface or virtual interface.

Note

- Use the `show interfaces` command in EXEC mode to see a list of all interfaces currently configured on the router.
- For more information about the syntax for the router, use the question mark (?) online help function.

Command Default

No default behavior or values

Command Modes

- Multicast routing configuration
- IPv4 or multicast routing configuration
- Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the `interface` command to configure multicast routing properties for specific interfaces.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable multicast routing on all interfaces and disable the feature only on GigabitEthernet interface 0/1/0/0:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# interface all enable
```
Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable (multicast), on page 23</td>
<td>Disables multicast routing and forwarding on an interface.</td>
</tr>
<tr>
<td>enable (multicast), on page 25</td>
<td>Enables multicast routing and forwarding on an interface.</td>
</tr>
<tr>
<td>interface all enable, on page 30</td>
<td>Enables multicast routing and forwarding on all new and existing interfaces.</td>
</tr>
</tbody>
</table>

RP/0/RSP0/CPU0:router(config-mcast-default-ipv4-if)# interface GigE 0/1/0/0
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4-if)# disable
interface all enable

To enable multicast routing and forwarding on all new and existing interfaces, use the interface all enable command in the appropriate configuration mode. To return to the default behavior, use the no form of this command.

interface all enable
no interface all enable

Syntax Description
This command has no keywords or arguments.

Command Default
Multicast routing and forwarding is disabled by default.

Command Modes
Multicast routing configuration
Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines
This command modifies the default behavior for all new and existing interfaces to enabled unless overridden by the enable or disable keywords available in interface configuration mode.

The following guidelines apply when the enable and disable commands (and the no forms) are used in conjunction with the interface all enable command:

- If the interface all enable command is configured:
 - The enable and no forms of the command have no additional effect on a specific interface.
 - The disable command disables multicast routing on a specific interface.
 - The no disable command enables a previously disabled interface.

- If the interface all enable command is not configured:
 - The enable command enables multicast routing on a specific interface.
 - The no enable command enables a previously enabled interface.
 - The disable and no forms of the command have no additional effect on a specific interface.
Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable multicast routing on all interfaces and disable the feature only on GigabitEthernet interface 0/1/0/0:

RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# interface all enable
RP/0/RSP0/CPU0:router(config-mcast)# interface GigE 0/1/0/0
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4-if)# disable

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>disable (multicast), on page 23</td>
<td>Disables multicast routing and forwarding on an interface.</td>
</tr>
<tr>
<td>enable (multicast), on page 25</td>
<td>Enables multicast routing and forwarding on an interface.</td>
</tr>
</tbody>
</table>
interface-inheritance disable

To separate PIM and IGMP routing from multicast forwarding on all interfaces, use the `interface-inheritance disable` command under multicast routing address-family IPv4 submode. To restore the default functionality, use the `no` form of the command.

```
interface-inheritance disable
no interface-inheritance disable
```

Syntax Description

This command has no keywords or arguments.

Command Default

This feature is not enabled by default.

Command Modes

Multicast routing configuration
Address-family IPv4 configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use of the `interface-inheritance disable` command together with the `interface type interface-path-id` or `interface all enable` command under multicast routing address-family IPv4 submode separates PIM and IGMP routing functionality from multicast forwarding on specified interfaces. You can nonetheless enable multicast routing functionality explicitly under PIM or IGMP routing configuration mode for individual interfaces.

Although you can explicitly configure multicast routing functionality on individual interfaces, you cannot explicitly disable the functionality. You can only disable the functionality on all interfaces.

Used from the address-family ipv4 configuration submode, it prevents IGMP and PIM from inheriting the multicast-routing interface configuration.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>
Examples

The following configuration disables PIM and IGMP routing functionality on all the interfaces using the `interface-inheritance disable` command, but multicast forwarding is still enabled on all the interfaces in the example, based on use of the keywords `interface all enable`.

PIM is enabled on `Loopback 0` based on its explicit configuration (`interface Loopback0 enable`) under router pim configuration mode.

IGMP protocol is enabled on `GigabitEthernet0/6/0/3`, because it too has been configured explicitly under router igmp configuration mode (`interface GigabitEthernet0/6/0/3 router enable`):

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# address-family ipv4
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4)# interface-inheritance disable
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4)# interface Loopback0 enable
```

With the `interface-inheritance disable` command in use, IGMP and PIM configuration are enabled in the protocol configuration as follows:

```
router igmp
interface loopback 0
   router enable

router pim
   interface loopback 0
      enable

router pim vrf default address-family ipv4
interface Loopback0
   enable
```

```
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4)# show run router igmp
```

```
router igmp
vrf default
   interface GigabitEthernet0/6/0/3
      router enable
```
log-traps

To enable logging of trap events, use the `log-traps` command in the appropriate configuration mode. To remove this functionality, use the `no` form of this command.

```
log-traps
no log-traps
```

Syntax Description
This command has no keywords or arguments.

Command Default
This command is disabled by default.

Command Modes
Multicast routing configuration
Multicast routing address family IPv4 configuration
Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable logging of trap events:

```
RP/0/RSP0/CPU0:router# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# log-traps
```
maximum disable

To disable maximum state limits, use the **maximum disable** command in the appropriate configuration mode. To remove this functionality, use the **no** form of this command.

```
maximum disable
no maximum disable
```

Syntax Description

This command has no keywords or arguments.

Command Default

Maximum state limits are enabled.

Command Modes

Multicast routing configuration
Multicast routing address family IPv4 configuration
Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **maximum disable** command to override the default software limit on the number of multicast routes.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to disable maximum state limits:

```
RP/0/RSP0/CPU0:router# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# maximum disable
```
To configure multicast data to be part of a multicast distribution tree (MDT) data group for multicast VPN (MVPN), use the `mdt data` command in the appropriate configuration mode. To remove this functionality, use the `no` form of this command.

```
mdt data mdt-group-address/mask [threshold threshold-value] [ acl-name ]
no mdt data mdt-group-address/prefix-length [threshold threshold-value] [ acl-name ]
```

Syntax Description

- **mdt-group-address**: IP address of the MDT group.
- **/ mask**: A decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value.
- **threshold threshold**: Specifies the traffic rate threshold to trigger data MDT. Range is 1 to 4294967295.
- **acl-name**: Access list (ACL) for the customer’s VRF groups allowed to perform data MDT.

Command Default

`threshold : 1`

Command Modes

Multicast routing configuration
Multicast routing address family IPv4 and IPv6 configuration
Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.5.0</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 3.7.0</td>
<td>Additional keyword information was added to the command.</td>
</tr>
<tr>
<td></td>
<td>The bottom of the threshold value range was increased by 1.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When certain multicast streams exceed a configured bandwidth, the multicast data is moved to an MDT data group that is dynamically chosen from an available pool of multicast addresses. If the traffic bandwidth falls below the threshold, the source is switched back to the default MDT. To avoid transitions between the MDTs, traffic only reverts to the default MDT if traffic below the data MDT threshold is at least one minute old.
Multicast Routing and Forwarding Commands

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to configure the data MDT group:

```
RP/0/RSP0/CPU0:router# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# mdt data 172.23.2.2/24 threshold 1200 acl_A
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdt default, on page 39</td>
<td>Configures the default group address of the multicast VPN (MVPN) multicast distribution tree (MDT).</td>
</tr>
<tr>
<td>mdt mtu, on page 41</td>
<td>Configures the maximum transmission unit (MTU) configuration of the multicast VPN (MVPN) multicast distribution tree (MDT).</td>
</tr>
<tr>
<td>mdt source, on page 43</td>
<td>Configures the interface used to set the multicast VPN (MVPN) data multicast distribution tree (MDT) source address.</td>
</tr>
</tbody>
</table>
mdt data ingress replication

To configure ingress replication (IR) data for Multicast Distribution Trees (MDT), use the `mdt data ingress replication` command in the appropriate mode. To remove the configuration, use the `no` form of the command.

```
mdt data ingress replication [ acl_name | immediate-switch | number value | threshold value]
no mdt data ingress replication [ acl_name | immediate-switch | number value | threshold value]
```

Syntax Description

- **immediate-switch**: Enables switching to data MDT immediately.
- **acl_name**: ACL for vrf groups that are enabled for data MDT.
- **number value**: Maximum number of data MDTs to be triggered. Range is 1 to 262143.
- **immediate-switch value**: Traffic rate threshold (in kbps) to trigger data MDT. Range is 1 to 4294967.

Command Default

None

Command Modes

Multicast routing VRF address-family configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 5.1.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

This example shows how to run the `mdt data ingress replication` command:

```
RP/0/RSP0/CPU0:router (config-mcast-v1-ipv4) # mdt data ingress-replication immediate-switch
```
mdt default

To configure the default group address of the multicast VPN (MVPN) multicast distribution tree (MDT), use the `mdt default` command in the appropriate configuration mode. To remove this functionality, use the `no` form of this command.

```
mdt default {mdt-default-group-address|ipv4 mdt-default-address}
no mdt default {mdt-default-group-address|ipv4 mdt-default-address}
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mdt-default-group-address</code></td>
<td>IP address of the MDT default group entered in <code>A.B.C.D.</code> format.</td>
</tr>
<tr>
<td><code>ipv4</code></td>
<td>Specifies IPv4-encapsulated MDT.</td>
</tr>
<tr>
<td><code>mdt-default-address</code></td>
<td>MDT IPv4 default address entered in <code>A.B.C.D.</code> format</td>
</tr>
</tbody>
</table>

Command Default

The MDT default group address must be unique.

Command Modes

Multicast routing configuration
Multicast routing address family IPv4 and IPv6 configuration
Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.5.0</td>
<td>This command was introduced.</td>
</tr>
<tr>
<td>Release 3.7.0</td>
<td>Additional keyword information was added.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The default MDT has a unique group address used to create MVPN multicast tunnel interfaces. Although within the multicast VRF configuration submode, the MDT configuration uses either the `ipv4` or `ipv6` keyword to distinguish the appropriate multicast VPN, the MDT core tree is IPv4.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>
Examples

The following example shows how to configure the MDT default group address from multicast routing configuration mode:

```
RP/0/RSP0/CPU0:router# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# mdt default 172.16.10.1
```

The following example shows how to configure the MDT default group address from multicast VRF configuration submode for an IPv6 address family:

```
RP/0/RSP0/CPU0:router# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# vrf vrf-name address-family ipv6
RP/0/RSP0/CPU0:router(config-mcast-vrf-name-ipv6)# mdt default 172.16.10.1
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdt data, on page 36</td>
<td>Configures multicast data to be part of a multicast distribution tree (MDT) data group for multicast VPN (MVPN).</td>
</tr>
<tr>
<td>mdt mtu, on page 41</td>
<td>Configures the maximum transmission unit (MTU) configuration of the multicast VPN (MVPN) multicast distribution tree (MDT).</td>
</tr>
<tr>
<td>mdt source, on page 43</td>
<td>Configures the interface used to set the multicast VPN (MVPN) data multicast distribution tree (MDT) source address.</td>
</tr>
</tbody>
</table>
mdt mtu

To configure the maximum transmission unit (MTU) configuration of the multicast VPN (MVPN) multicast distribution tree (MDT), use the `mdt mtu` command in multicast VPN configuration mode. To remove this functionality, use the `no` form of this command.

```
mdt mtu value
no mdt mtu value
```

Syntax Description

`value` Specifies the MTU value and ranges between 401 to 65535. The configured `mdt mtu` value includes 24 bytes of GRE encapsulation.

Command Default

The MDT tunnel default size is 1376.

Command Modes

Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.5.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to configure the MTU of the multicast distribution tree:

```
RP/0/RSP0/CPU0:router# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# vrf vrf_A
RP/0/RSP0/CPU0:router(config-mcast-vrf_A-ipv4)# mdt mtu 2345
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdt data, on page 36</td>
<td>Configures multicast data to be part of a multicast distribution tree (MDT) data group for multicast VPN (MVPN).</td>
</tr>
<tr>
<td>mdt default, on page 39</td>
<td>Configures the default group address of the multicast VPN (MVPN) multicast distribution tree (MDT).</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>mdt source, on page 43</td>
<td>Configures the interface used to set the multicast VPN (MVPN) data multicast distribution tree (MDT) source address.</td>
</tr>
</tbody>
</table>
mdt source

To configure the interface used to set the multicast VPN (MVPN) data multicast distribution tree (MDT) source address, use the `mdt source` command in the appropriate configuration mode. To remove this functionality, use the `no` form of this command.

```
mdt source type interface-path-id
no mdt source type interface-path-id
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>type</code></td>
<td>Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td><code>interface-path-id</code></td>
<td>Physical interface or virtual interface.</td>
</tr>
</tbody>
</table>

Note

Use the `show interfaces` command to see a list of all interfaces currently configured on the router.

For more information about the syntax for the router, use the question mark (?) online help function.

Command Default

No default behavior or values

Command Modes

Multicast routing configuration

Multicast routing address family IPv4 configuration

Multicast VRF configuration

Usage Guidelines

Use the `mdt source` command to identify the root of the multicast distribution tree in the service provider network. This address is used to update all MVPN peers through multiprotocol BGP.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to configure the interface used to set the MDT source address:

```
RP/0/RSP0/CPU0:router# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# mdt source POS 0/1/0/0
```
Per VRF MDT Source is a new feature introduced in IOS XR Software Release 3.9.0 apart from the existing default MDT source. Each VRF can have its own MDT source interface co-existing with the default MDT source to achieve core diversity.

The following example shows how to configure a per VRF MDT source:

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# address-family ipv4
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4)# mdt source loopback0
RP/0/RSP0/CPU0:router(config-mcast)# vrf foo
RP/0/RSP0/CPU0:router(config-mcast-foo)# address-family ipv4
RP/0/RSP0/CPU0:router(config-mcast-foo-ipv4)# mdt source loopback1 !
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdt data, on page 36</td>
<td>Configures multicast data to be part of a multicast distribution tree (MDT) data group for multicast VPN (MVPN).</td>
</tr>
<tr>
<td>mdt default, on page 39</td>
<td>Configures the default group address of the multicast VPN (MVPN) multicast distribution tree (MDT).</td>
</tr>
<tr>
<td>mdt mtu, on page 41</td>
<td>Configures the maximum transmission unit (MTU) configuration of the multicast VPN (MVPN) multicast distribution tree (MDT).</td>
</tr>
</tbody>
</table>
multicast-routing

To enter multicast routing configuration mode, use the `multicast-routing` command in global configuration mode. To return to the default behavior, use the `no` form of this command.

```
multicast-routing
no multicast-routing
```

Syntax Description
This command has no keywords or arguments.

Command Default
No default behavior or values.

Command Modes
Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples
The following example shows how to enter multicast routing configuration mode:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)#
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accounting per-prefix, on page 4</td>
<td>Enables per-prefix counters only in hardware.</td>
</tr>
<tr>
<td>alias</td>
<td>Creates a command alias.</td>
</tr>
<tr>
<td>interface (multicast), on page 28</td>
<td>Configures multicast interface properties.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>interface all enable, on page 30</td>
<td>Enables multicast routing and forwarding on all new and existing interfaces.</td>
</tr>
</tbody>
</table>
multipath

To enable Protocol Independent Multicast (PIM) to divide the multicast load among several equal cost paths, use the `multipath` command in the appropriate configuration mode. To return to the default behavior, use the `no` form of this command.

```
[address-family ipv4] multipath [hash {source| source next-hop}]
no multipath
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>hash</code></td>
<td>(Optional) Enables multipath hashing.</td>
</tr>
<tr>
<td><code>source</code></td>
<td>Enables source-based multipath hashing.</td>
</tr>
<tr>
<td><code>source-next-hop</code></td>
<td>(Optional) Enables source with next-hop hashing.</td>
</tr>
</tbody>
</table>

Command Default

This command is disabled by default.

Command Modes

Multicast routing configuration
Multicast routing address-family ipv4
Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

By default, equal-cost multipath (ECMP) paths are not load balanced. A single path from each unicast route is used for all multicast routes (which is the equivalent of the `no` form of the multipath command).

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable multipath functionality:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# multipath hash
```
nsf (multicast)

To turn on the nonstop forwarding (NSF) capability for the multicast routing system, use the `nsf` command in multicast routing configuration mode. To turn off this function, use the `no` form of this command.

```
nsf [lifetime seconds]  
no nsf [lifetime]
```

Syntax Description

| lifetime seconds | (Optional) Specifies the maximum time (in seconds) for NSF mode. Range is 30 to 3600. |

Command Default

This command is disabled by default.

Command Modes

- Multicast routing configuration
- Multicast routing address family ipv4 configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `nsf` command does not enable or disable the multicast routing system, but just the NSF capability for all the relevant components. When the `no` form of this command is used, the NSF configuration is returned to its default disabled state.

Enable multicast NSF when you require enhanced availability of multicast forwarding. When enabled, failures of the control-plane multicast routing components Multicast Routing Information Base (MRIB) or Protocol Independent Multicast (PIM) will not cause multicast forwarding to stop. When these components fail or communication with the control plane is otherwise disrupted, existing Multicast Forwarding Information Base (MFIB) entries continue to forward packets until either the control plane recovers or the MFIB NSF timeout expires.

Enable multicast NSF when you upgrade control-plane Cisco IOS XR Software packages so that the live upgrade process does not interrupt forwarding.

When the MFIB partner processes enter NSF mode, forwarding on stale (nonupdated) MFIB entries continues as the control-plane components attempt to recover gracefully. Successful NSF recovery is signaled to the Multicast Forwarding Engine (MFWD) partner processes by MRIB. MRIB remains in NSF mode until Internet Group Management Protocol (IGMP) has recovered state from the network and host stack and until PIM has recovered state from the network and IGMP. When both PIM and IGMP have recovered and fully updated the MRIB, MRIB signals the MFIBs that NSF is ending, and begins updating the stale MFIB entries. When all updates have been sent, the MFWD partner processes delete all remaining stale MFIB entries and returns...
to normal operation, ending the NSF mode. MFIB NSF timeout prior to the signal from MRIB may cause
NSF to end, and thus forwarding to stop.

When forwarding is in NSF mode, multicast flows may continue longer than necessary when network conditions
change due to multicast routing protocols, unicast routing protocol reachability information, or local sender
and receiver changes. The MFWD partner processes halt forwarding on stale MFIB entries when the potential
for a multicast loop is detected by receipt of incoming data on a forwarding interface for the matching MFIB
entry.

Note

For NSF to operate successfully in your multicast network, you must also enable NSF for the unicast
protocols (such as Intermediate System-to-Intermediate System [IS-IS], Open Shortest Path First [OSPF]
and Border Gateway Protocol [BGP]) that PIM relies on for Reverse Path Forwarding (RPF) information.
See the appropriate configuration modules to learn how to configure NSF for unicast protocols.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable NSF for the multicast routing system:

```plaintext
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# nsf
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsf lifetime (IGMP)</td>
<td>Configures the maximum time for the NSF timeout value under IGMP.</td>
</tr>
<tr>
<td>nsf lifetime (PIM)</td>
<td>Configures the NSF timeout value for the PIM process.</td>
</tr>
<tr>
<td>show igmp nsf</td>
<td>Displays the state of NSF operation in IGMP.</td>
</tr>
<tr>
<td>show mfib nsf</td>
<td>Displays the state of NSF operation for the MFIB line cards.</td>
</tr>
<tr>
<td>show mrib nsf, on page 133</td>
<td>Displays the state of NSF operation in the MRIB.</td>
</tr>
<tr>
<td>show pim nsf</td>
<td>Displays the state of NSF operation for PIM.</td>
</tr>
</tbody>
</table>
oom-handling

To enable the out-of-memory (OOM) functionality on multicast routing software components, use the oom-handling command in multicast routing configuration mode. To remove this functionality, use the no form of this command.

oom-handling
no oom-handling

Syntax Description

This command has no keywords or arguments.

Command Default

This command is disabled by default.

Command Modes

Multicast routing configuration
Multicast routing address family ipv4 configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

When the oom-handling command is enabled, and the router memory is low or in a warning state, the following states are not created:

- Protocol Independent Multicast (PIM) route states in response to PIM join and prune messages, and register messages
- Internet Group Management Protocol (IGMP) group states
- External Source-Active (SA) states in Multicast Source Discovery Protocol (MSDP)

Multicast routing show commands such as the show pim topology command indicate when the router is running low on memory and that new state creation has stopped.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable the out-of-memory functionality:

```
RP/0/RSP0/CPU0:router# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# oom-handling
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show pim topology</td>
<td>Displays PIM topology table information.</td>
</tr>
</tbody>
</table>
rate-per-route

To enable individual (source, group [S, G]) rate calculations, use the rate-per-route command in the appropriate configuration mode. To remove this functionality, use the no form of this command.

rate-per-route
no rate-per-route

Syntax Description
This command has no keywords or arguments.

Command Default
This command is disabled by default.

Command Modes
Multicast routing configuration
Multicast routing address family ipv4 configuration
Multicast VRF configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

The following example shows how to enable individual route calculations:

```
RP/0/RSP0/CPU0:router# multicast-routing vrf vpn12 address-family ipv4
RP/0/RSP0/CPU0:router(config-mcast)# rate-per-route
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib route, on page 115</td>
<td>Displays route entries in the Multicast Forwarding Information Base (MFIB).</td>
</tr>
</tbody>
</table>
recursive-fec

To enable the MLDP Recursive FEC support, use the **recursive-fec** command in the MPLS LDP MLDP sub configuration mode.

recursive-fec

Syntax Description
This command has no keywords or arguments.

Command Default
No default behavior or values

Command Modes
MPLS LDP MLDP sub configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

```
RP/0/RSP0/CPU0:router(config)# mpls ldp
RP/0/RSP0/CPU0:router(config-ldp)# router-id 1.23.4.4
RP/0/RSP0/CPU0:router(config-ldp)# mldp
RP/0/RSP0/CPU0:router(config-ldp-mldp)# recursive-fec
```
retain route-target all

To accept or retain updates containing at least one route target for the specified bgp parameters, use the retain route-target all command in the BGP Address-family configuration mode. To disable this feature, use the no form of this command.

Syntax Description
This command has no keywords or arguments.

Command Default
No default behavior or values

Command Modes
BGP Address-family Configuration mode

Command History
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

```
RP/0/RSP0/CPU0:router(config)# router bgp 100 RP/0/RSP0/CPU0:router(config-bgp)# bgp router-id 10.10.10.10
RP/0/RSP0/CPU0:router(config-bgp)# address-family ipv4 mvpn
RP/0/RSP0/CPU0:router(config-bgp-af)# retain route-target all
```
route-policy

To apply route policy to a neighbor, either to inbound routes or outbound routes, use the route-policy command in the BGP neighbor address-family configuration mode. To disable this feature, use the no form of this command.

route-policy policy_name[in| out]

Syntax Description

policy-name	Specifies the name of the route policy.
in	Applies route policy to inbound routes.
out	Applies route policy to outbound routes.

Command Default

No default behavior or values

Command Modes

BGP Neighbor Address-family Configuration mode

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

Examples

RP/0/RSP0/CPU0:router(config-bgp-nbr)# address-family vpnv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all in
RP/0/RSP0/CPU0:router(config-bgp-nbr-af)# route-policy pass-all out

Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference, Release 4.2.x
show mfib bvi

To display the Bridge Virtual Interface (BVI) details in the Multicast Forwarding Information Base (MFIB), use the `show mfib bvi` command EXEC mode.

```
show mfib bvi[interface| route]bvi_number
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>interface</td>
<td>MFIB BVI interface.</td>
</tr>
<tr>
<td>route</td>
<td>BVI route entry.</td>
</tr>
<tr>
<td>bvi_number</td>
<td>BVI interface number. Range is from 1 to 65535.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command Default</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command Modes</td>
<td>EXEC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command History</th>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Release 5.1.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

This example shows how to run the `show mfib bvi` command:

```
RP/0/RSP0/CPU0:router # show mfib bvi route bvi 200
```
show mfib connections

To display the status of Multicast Forwarding Information Base (MFIB) connections to servers, use the **show mfib connections** command in the appropriate mode.

Syntax Description

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>location</td>
<td>(Optional) Specifies MFIB connections associated with an interface of the</td>
</tr>
<tr>
<td>node-id</td>
<td>designated node.</td>
</tr>
</tbody>
</table>

Command Default

IPv4 addressing is the default.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Use the **show mfib connections** command to display a list of servers connected to the MFIB and the status of the connections.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the **show mfib connections** command:

```
RP/0/RSP0/CPU0:router# show mfib connections
Netio : connected
IM : connected
Pakman : connected
MRIB : connected
IFH : connected
SysDB-Global : connected
SysDB-Local : connected
SysDB-NSF : connected
SYSDB-EDM : connected
SYSDB-Action : connected
AIB : connected
```
show mfib connections

MLIB : connected
IDB : connected
IIR : connected
IPARM : connected
GSP : connected

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib interface, on page 109</td>
<td>Displays interface-related information used during software multicast switching in the Multicast Forwarding Information Base (MFIB) process.</td>
</tr>
<tr>
<td>show mfib route, on page 115</td>
<td>Displays route entries in the Multicast Forwarding Information Base (MFIB).</td>
</tr>
</tbody>
</table>
show mfib counter

To display Multicast Forwarding Information Base (MFIB) counter statistics for packets that have dropped, use the `show mfib counter` command in the appropriate mode.

```
show mfib [vrf vrf-name] ipv4 counter [location node-id]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>location</td>
<td>(Optional) Specifies MFIB counter statistics associated with an interface</td>
</tr>
<tr>
<td></td>
<td>of the designated node.</td>
</tr>
</tbody>
</table>

Command Default

IPv4 addressing is the default.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show mfib counter` command displays packet drop statistics for packets that cannot be accounted for under route counters.

Examples

The following is sample output from the `show mfib counter` command:

```
RP/0/RSP0/CP00:router# show mfib counter location 0/1/CP00
MFIB global counters are :
* Packets [no input idb] : 0
* Packets [failed route lookup] : 0
* Packets [Failed idb lookup] : 0
* Packets [Mcast disabled on input I/F] : 0
* Packets [encap drops due to ratelimit] : 0
* Packets [MC disabled on input I/F (iarm nfn)] : 0
```
This table describes the significant fields shown in the display.

Table 1: `show mfib counter` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packets [no input idb]</td>
<td>Packets dropped because no input interface information was found in the packet.</td>
</tr>
<tr>
<td>Packets [failed route lookup]</td>
<td>Packets dropped because of failure to match any multicast route.</td>
</tr>
<tr>
<td>Packets [Failed idb lookup]</td>
<td>Packets dropped because the descriptor block was not found for an interface (incoming or outgoing).</td>
</tr>
<tr>
<td>Packets [Mcast disabled on input I/F]</td>
<td>Packets dropped because arriving on an interface that was not enabled for the multicast routing feature.</td>
</tr>
<tr>
<td>Packets [encap drops due to ratelimit]</td>
<td>Packets dropped because of rate limit.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mfib interface</code>, on page 109</td>
<td>Displays interface-related information used during software multicast switching in the Multicast Forwarding Information Base (MFIB) process.</td>
</tr>
<tr>
<td><code>show mfib route</code>, on page 115</td>
<td>Displays route entries in the Multicast Forwarding Information Base (MFIB).</td>
</tr>
</tbody>
</table>
show mfib encap-info

To display the status of encapsulation information for Multicast Forwarding Information Base (MFIB), use the `show mfib encap-info` command in the appropriate mode.

```
show mfib [vrf vrf-name] [ipv4|ipv6] encap-info [location node-id]
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>location node-id</td>
<td>(Optional) Specifies MFIB connections associated with an interface of the designated node.</td>
</tr>
</tbody>
</table>

Command Default

IPv4 addressing is the default.

Command Modes

EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show mfib encap-info` command:

```
RP/0/RSP0/CPU0:router# show mfib vrf vrf_a encap-info

----------------------------
Encaps String Dependent Encaps MDT Name/ Routes # Table ID Handle
(192.168.5.203, 255.1.1.1) 5 0xe0000000 mdtA1 (0x100a480)
```
<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib interface, on page 109</td>
<td>Displays interface-related information used during software multicast switching in the Multicast Forwarding Information Base (MFIB) process.</td>
</tr>
<tr>
<td>show mfib route, on page 115</td>
<td>Displays route entries in the Multicast Forwarding Information Base (MFIB).</td>
</tr>
</tbody>
</table>
show mfib hardware interface

To display hardware switching interface information for the Multicast Forwarding Information Base (MFIB) process, use the `show mfib hardware interface` command in EXEC mode.

`show mfib [vrf vrf-name] [ipv4 | ipv6] hardware interface [detail] [type interface-path-id] [location node-id]`

Syntax Description

- `vrf vrf-name` (Optional) Specifies a VPN routing and forwarding (VRF) instance.
- `ipv4` (Optional) Specifies IPv4 address prefixes.
- `ipv6` (Optional) Specifies IPv6 address prefixes.
- `detail` (Optional) Displays detailed information about the MFIB interface.
- `type` (Optional) Interface type. For more information, use the question mark (?) online help function.
- `interface-path-id` (Optional) Physical interface or virtual interface.
- `location node-id` (Optional) Specifies an MFIB-designated node.

Command Default
IPv4 addressing is the default.

Command Modes
EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

The `show mfib hardware interface` command displays multicast-specific information about the software switching interfaces of the router hardware. This command will not display any useful output if only RSP is specified or if no location is specified.
The following is sample output from the `show mfib hardware interface` command.

```
RP/0/RSP0/CPU0:router# show mfib hardware interface location 0/0/CPU0

LC Type: Trident

<table>
<thead>
<tr>
<th>Interface</th>
<th>Handle</th>
<th>RefCnt</th>
<th>TTL</th>
<th>Routes</th>
<th>uIDB</th>
<th>Enbld Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/0/0/4</td>
<td>0x180</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>True success</td>
</tr>
<tr>
<td>Gi0/0/0/5</td>
<td>0x1c0</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>True success</td>
</tr>
<tr>
<td>Gi0/0/0/6</td>
<td>0x200</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>True success</td>
</tr>
<tr>
<td>Gi0/0/0/7</td>
<td>0x240</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>True success</td>
</tr>
<tr>
<td>Gi0/0/0/8</td>
<td>0x280</td>
<td>30</td>
<td>0</td>
<td>2</td>
<td>9</td>
<td>True success</td>
</tr>
</tbody>
</table>

ROUTE INFORMATION:
Legend:
S: Source, G: Group, P: Prefix length, PI: Packets cn, PO: packets out,
RF: RPF failures, TF: TTL failures, OF: OLIST failures, F: Other failures

Route flags - (Ingress)
C: Chip ID, IC: BACL check, IP: Punt this packet to LC CPU,
ID: Directly connected, IS: RPF interface signal, IU: Punt copy to RP,
IF: Punt to LC CPU if forwarded, IM: Result match, IV: Valid entry,
IR: RPF IF, IA: Fabric slotmask, IG: Mulicast group ID

Route flags - (Egress)
ET: Table ID to be used for OLIST lookup, EO: OLIST count bit,
ER: Route MGID to be used for OLIST/NRPF lookup, EM: Result match,
EV: Valid entry, EC: Count of OLIST members on this chip,
BS: Base of the statistics pointer

Interface: Gi0/0/0/4
```

```
S:4.0.0.2 G:227.0.0.1 P:32 PI:1 PO:0 RF:0 TF:0 OF:0 F:0

<table>
<thead>
<tr>
<th>C</th>
<th>IC</th>
<th>IP</th>
<th>ID</th>
<th>IS</th>
<th>IU</th>
<th>IF</th>
<th>IM</th>
<th>IV</th>
<th>IR</th>
<th>IA</th>
<th>IG</th>
<th>ET</th>
<th>EO</th>
<th>ER</th>
<th>EM</th>
<th>EV</th>
<th>EC</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180</td>
<td>0x1</td>
<td>0x8006</td>
<td>0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x5518a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180</td>
<td>0x1</td>
<td>0x8006</td>
<td>0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x5518a</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180</td>
<td>0x1</td>
<td>0x8006</td>
<td>0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x5518a</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180</td>
<td>0x1</td>
<td>0x8006</td>
<td>1</td>
<td>T</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>3</td>
<td>0x555c2</td>
<td></td>
</tr>
</tbody>
</table>
```

```
S:0.0.0.0 G:227.0.0.1 P:32 PI:4 PO:0 RF:0 TF:0 OF:0 F:0

<table>
<thead>
<tr>
<th>C</th>
<th>IC</th>
<th>IP</th>
<th>ID</th>
<th>IS</th>
<th>IU</th>
<th>IF</th>
<th>IM</th>
<th>IV</th>
<th>IR</th>
<th>IA</th>
<th>IG</th>
<th>ET</th>
<th>EO</th>
<th>ER</th>
<th>EM</th>
<th>EV</th>
<th>EC</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0</td>
<td>0x1</td>
<td>0x8004</td>
<td>0</td>
<td>F</td>
<td>5</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55185</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0</td>
<td>0x1</td>
<td>0x8004</td>
<td>0</td>
<td>F</td>
<td>5</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55185</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0</td>
<td>0x1</td>
<td>0x8004</td>
<td>0</td>
<td>F</td>
<td>5</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55185</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0</td>
<td>0x1</td>
<td>0x8004</td>
<td>1</td>
<td>T</td>
<td>5</td>
<td>T</td>
<td>T</td>
<td>3</td>
<td>0x555bd</td>
<td></td>
</tr>
</tbody>
</table>
```

Interface: Gi0/0/0/5
This interface is not part of the olist of any route

Interface: Gi0/0/0/6
```
S:4.0.0.2 G:227.0.0.1 P:32 PI:1 PO:0 RF:0 TF:0 OF:0 F:0

<table>
<thead>
<tr>
<th>C</th>
<th>IC</th>
<th>IP</th>
<th>ID</th>
<th>IS</th>
<th>IU</th>
<th>IF</th>
<th>IM</th>
<th>IV</th>
<th>IR</th>
<th>IA</th>
<th>IG</th>
<th>ET</th>
<th>EO</th>
<th>ER</th>
<th>EM</th>
<th>EV</th>
<th>EC</th>
<th>BS</th>
</tr>
</thead>
</table>
```
The following example shows a sample output for `show mfib hardware interface` command on the Cisco ASR 9000 Series SIP-700 line card:

```
RP/0/RSP0/CPU0# show mfib hardware interface serial 0/4/0/0/1 location 0/4/CPU0

LC Type: A9K-SIP-700

Hardware Interface Information
Interface Handle Type TTL Number of Routes Multicast Enabled Num bundles
-------------------------------------------------------------
Se0/4/0/0/1 0xc000ec0 0 0 2 True 0

Header : IDB Route Information
Source : Source address
Group : Group Address
M : Mask Length
PI : Packets in
PO : Packets out
RF : RPF failures
TF : TTL failures
OF : OLIST failures
F : Other failures
C : Directly connected check flag
RPF : Accepting interface for non-bidir entries
S : Signal if packet arrived on RPF interface
IC : Aggregated Internal copy flag
PR : Punt to RP flag for Internal copy in the Loopback interface
PK : PEEK flag
```

```
show mfib hardware interface

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>MFIB interface name.</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Handle</td>
<td>A 32-bit system-wide identifier of the MFIB interface.</td>
</tr>
<tr>
<td>RefCnt</td>
<td>Number of times various data structures referred to this MFIB interface structure.</td>
</tr>
<tr>
<td>TTL</td>
<td>Multicast time-to-live threshold that was configured on this MFIB interface.</td>
</tr>
<tr>
<td>Routes</td>
<td>The number of routes that include this interface as a member.</td>
</tr>
<tr>
<td>uIDB</td>
<td>The ucode Interface Descriptor Block index.</td>
</tr>
<tr>
<td>Enbld</td>
<td>If true, multicast is enabled on the MFIB interface.</td>
</tr>
<tr>
<td>Comment</td>
<td>Indicates whether there were problems when reading hardware information.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib interface, on page 109</td>
<td>Displays interface-related information used during software multicast switching in the Multicast Forwarding Information Base (MFIB) process.</td>
</tr>
</tbody>
</table>
show mfib hardware ltrace

To display IP Multicast platform specific trace information for the Multicast Forwarding Information Base (MFIB) process, use the **show mfib hardware ltrace** command in EXEC mode.

```shell
show mfib [vrf vrf-name] [ipv4] [ipv6] hardware ltrace [error| event| frequent-event| hexdump| init| last| netio| reverse| stats| tailf| unique| verbose| wrapping] file file-name location node-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>error</td>
<td>(Optional) Displays error events.</td>
</tr>
<tr>
<td>event</td>
<td>(Optional) Displays non-frequent events.</td>
</tr>
<tr>
<td>frequent-event</td>
<td>(Optional) Displays frequent events.</td>
</tr>
<tr>
<td>hexdump</td>
<td>(Optional) Displays traces in hexadecimal output.</td>
</tr>
<tr>
<td>init</td>
<td>(Optional) Displays initiation and configuration events.</td>
</tr>
<tr>
<td>last</td>
<td>(Optional) Displays the last n entries.</td>
</tr>
<tr>
<td>netio</td>
<td>(Optional) Displays the netio events.</td>
</tr>
<tr>
<td>reverse</td>
<td>(Optional) Displays the traces in the reverse order starting with the latest events.</td>
</tr>
<tr>
<td>stats</td>
<td>(Optional) Displays the statistics.</td>
</tr>
<tr>
<td>tailf</td>
<td>(Optional) Displays the new traces as they are added.</td>
</tr>
<tr>
<td>unique</td>
<td>(Optional) Displays the unique entries with the counts.</td>
</tr>
<tr>
<td>verbose</td>
<td>(Optional) Displays the internal debugging information.</td>
</tr>
<tr>
<td>wrapping</td>
<td>(Optional) Displays the wrapping entries.</td>
</tr>
<tr>
<td>file file-name</td>
<td>(Optional) Specifies the file name.</td>
</tr>
<tr>
<td>location node-id</td>
<td>Specifies an MFIB-designated node.</td>
</tr>
</tbody>
</table>
IPv4 addressing is the default.

**Command Modes**
EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command will not display any useful output if only RSP is specified or if no location is specified.

**Examples**

The following is sample output from the `show mfib hardware ltrace` command:

```
RP/0/RSP0/CPU0# show mfib hardware ltrace error location 0/1/cpu
3079 wrapping entries (4096 possible, 0 filtered, 4242 total)
May 21 01:45:32.865 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f0
May 21 01:45:32.877 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f2
May 21 01:58:37.019 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f0
May 21 01:58:37.019 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f2
May 21 02:15:38.620 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f0
May 21 02:15:38.620 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f2
May 21 02:26:06.440 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f0
May 21 02:26:06.440 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f2
May 21 03:11:18.805 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f0
May 21 03:11:18.805 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f2
May 21 03:36:31.240 ipmcast/error 0/1/CPU0 t1 Traffic Loss msg rxed, Null Route , cntid=0x705f0
```

The following is a sample output for the `show mfib hardware ltrace` command on the Cisco ASR 9000 Series SIP-700 line card:

```
RP/0/RSP0/CPU0# show mfib hardware ltrace location 0/4/CPU0
```

---

Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference, Release 4.2.x
Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference, Release 4.2.x
show mfib hardware resource-counters

To display the allocated and freed hardware resources for the Multicast Forwarding Information Base (MFIB) process, use the `show mfib hardware resource-counters` command in EXEC mode.

```
show mfib [vrf vrf-name] [ipv4|ipv6] hardware resource-counters location node-id
```

**Syntax Description**

- `vrf vrf-name` (Optional) Specifies a VPN routing and forwarding (VRF) instance.
- `ipv4` (Optional) Specifies IPv4 address prefixes.
- `ipv6` (Optional) Specifies IPv6 address prefixes.
- `location node-id` Specifies an MFIB-designated node.

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show mfib hardware resource-counters` command to understand the table lookup unit (TLU) resource usage by MFIB.

- Usage for each channel
- Storing of specific data
- Allocation counts for metro statistics
- Failure counts for metro statistics

**Note**

Use the location option in the `show mfib hardware resource-counters` command to indicate for which linecard you need information. The command will not display any useful output if only RSP is specified or if no location is specified.
Examples

The following is a sample output from the `show mfib hardware resource-counters` command on the Cisco ASR 9000 Series SIP-700 line card:

```
RP/0/RSP0/CPU0:router# show mfib hardware resource-counters location 0/4/CPU0
LC Type: A9K-SIP-700
PD Memory Alloc/Free/In Use Stats:

<table>
<thead>
<tr>
<th>Type</th>
<th>Allocated</th>
<th>Freed</th>
<th>In Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>table extension</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>route extension</td>
<td>18</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>interface extension</td>
<td>18</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>idb extension</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EDM bag data</td>
<td>26</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>vpn extension</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mdt ea extension</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Ingress Hardware Resource Counters:

<table>
<thead>
<tr>
<th>Type</th>
<th>Allocated</th>
<th>Freed</th>
<th>In Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix stats resource</td>
<td>18</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>PLU prefix resource</td>
<td>18</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

Egress Hardware Resource Counters:

<table>
<thead>
<tr>
<th>Type</th>
<th>Allocated</th>
<th>Freed</th>
<th>In Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix stats resource</td>
<td>18</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>PLU prefix resource</td>
<td>18</td>
<td>11</td>
<td>7</td>
</tr>
</tbody>
</table>

Ingress Hardware Global Multicast Statistics:

| Punt Packets: | 3 |
| Punt Drop Packets: | 0 |
| Inject Packets: | 0 |
| Inject Drop Packets: | 0 |
| Drop Packets/Bytes: | 0/0 |

Egress Hardware Global Multicast Statistics:

| Punt Packets: | 0 |
| Punt Drop Packets: | 0 |
| Inject Packets: | 0 |
| Inject Drop Packets: | 0 |
| Drop Packets/Bytes: | 0/0 |
The following is a sample output of the `show mfib hardware resource-counters` command:

```
RP/0/RSP0:CPU0:router# show mfib hardware resource-counters location 0/0/CPU0

LC Type: Trident
prm_stat success calls: ingress: 4250,4092 egress: 0,0
prm_stat failure calls: ingress: 0,0 egress: 0,0

Memory alloc stats
-----------------------------------------------------
<table>
<thead>
<tr>
<th>Type</th>
<th>Allocated</th>
<th>Freed</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>global</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>table extension</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>route extension</td>
<td>187</td>
<td>180</td>
<td>7</td>
</tr>
<tr>
<td>interface extension</td>
<td>221</td>
<td>215</td>
<td>6</td>
</tr>
<tr>
<td>idb extension</td>
<td>52</td>
<td>47</td>
<td>5</td>
</tr>
<tr>
<td>kmrs</td>
<td>159</td>
<td>159</td>
<td>0</td>
</tr>
<tr>
<td>kmrs key</td>
<td>652</td>
<td>652</td>
<td>0</td>
</tr>
<tr>
<td>kmrs result</td>
<td>488</td>
<td>488</td>
<td>0</td>
</tr>
<tr>
<td>uidb data</td>
<td>437</td>
<td>437</td>
<td>0</td>
</tr>
<tr>
<td>EDM bag data</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

This table describes the significant fields shown in the display.

**Table 3: show mfib hardware resource counters Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prm_stat success calls</td>
<td>The number of successful calls to allocate and free statistics blocks, for ingress and egress statistics.</td>
</tr>
<tr>
<td>prm_stat failure calls</td>
<td>The number of failed calls to allocate and free statistics blocks, for ingress and egress statistics.</td>
</tr>
<tr>
<td>Type</td>
<td>Describes the structure type.</td>
</tr>
<tr>
<td>Allocated</td>
<td>The number of blocks allocated per structure type.</td>
</tr>
<tr>
<td>Freed</td>
<td>The number of blocks freed per structure type.</td>
</tr>
<tr>
<td>Delta</td>
<td>The difference between allocated and freed blocks per structure type.</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib interface, on page 109</td>
<td>Displays interface-related information used during software multicast switching in the Multicast Forwarding Information Base (MFIB) process.</td>
</tr>
</tbody>
</table>
show mfib hardware route accept-bitmap

To display platform-specific Multicast Forwarding Information Base (MFIB) information for the interface list that accepts bidirectional routes, use the **show mfib hardware route accept-bitmap** command in EXEC mode.

```
show mfib [vrf vrf-name] [ipv4] [ipv6] hardware route accept-bitmap [*] [group-address [/prefix-length]] [detail] [location node-id]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>*</td>
<td>(Optional) Displays shared tree entry.</td>
</tr>
<tr>
<td>source-address</td>
<td>(Optional) IP address or hostname of the multicast route source:</td>
</tr>
<tr>
<td>group-address</td>
<td>(Optional) IP address or hostname of the multicast group.</td>
</tr>
<tr>
<td>/ prefix-length</td>
<td>(Optional) Prefix length of the multicast group. A decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Detailed list of the routing database.</td>
</tr>
<tr>
<td>location node-id</td>
<td>(Optional) Specifies an MFIB-designated node.</td>
</tr>
</tbody>
</table>

### Command Default

IPv4 addressing is the default.

### Command Modes

EXEC

### Command History

```
<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>
```

### Usage Guidelines

The command does not display any useful output if only RSP is specified or if no location is specified.
The following is sample output from the `show mfib hardware route accept-bitmap` command:

```
RP/0RSP0/CPU0:RTP-VIKING-MCAST-04# show mfib hardware route accept-bitmap detail 227.0.0.0/8 location 0/2/cPU0
LC Type: Typhoon A9K-MOD80-SE
Source: * Group: 227.0.0.0 Mask: 8 RPF Int: None
Accept bitmap summary (HW)
+-----------------+-----------------+-----------------+-----------------+-----------------+
| NP | IIF Count | Row Count |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| 0 | 2 | 1 |
| 1 | 2 | 1 |
+-----------------+-----------------+-----------------+-----------------+-----------------+
IIFs in Accept bitmap (HW)
+-----------------+-----------------+-----------------+-----------------+-----------------+
| NP | IIF Count | Row Count |
+-----------------+-----------------+-----------------+-----------------+-----------------+
| 0 | 0 | 1 |

<table>
<thead>
<tr>
<th>Interface</th>
<th>Ifhandle</th>
<th>uIDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet0/2/0/16</td>
<td>0x080004c0</td>
<td>17</td>
</tr>
<tr>
<td>GigabitEthernet0/2/0/17</td>
<td>0x08000500</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interface</th>
<th>Ifhandle</th>
<th>uIDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet0/2/0/16</td>
<td>0x080004c0</td>
<td>17</td>
</tr>
<tr>
<td>GigabitEthernet0/2/0/17</td>
<td>0x08000500</td>
<td>18</td>
</tr>
</tbody>
</table>

Raw Accept bitmap (HW)
+-----------------+-----------------+-----------------+-----------------+-----------------+
| NP | Key Bits | IIF Count | Row Count | Key Bits | IIF Count | Row Count |
+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+-----------------+
| 0 | 0 | 4 | 8 | 12 | 0 | 4 | 8 |

| 0x0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0x0000 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
| NP: 1 [Parent MLI: 305] |
| Key 8 | Bits 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
```

**Examples**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mfib interface</code>, on page 109</td>
<td>Displays interface-related information used during software multicast switching in the Multicast Forwarding Information Base (MFIB) process.</td>
</tr>
</tbody>
</table>
show mfib hardware route internal

To display the route internal structures for the platform-specific Multicast Forwarding Information Base (MFIB) in the hardware, use the `show mfib hardware route internal` command in EXEC mode.

```
show mfib [vrf vrf-name] [ipv4|ipv6] hardware route internal [*] [source-address] [group-address [prefix-length]] [detail] [location node-id]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>*</code></td>
<td>(Optional) Displays shared tree entries.</td>
</tr>
<tr>
<td><code>A.B.C.D</code></td>
<td>(Optional) Source IP address or hostname of the MFIB route.</td>
</tr>
<tr>
<td><code>A.B.C.D/length</code></td>
<td>(Optional) Group IP address or hostname of the MFIB route and the prefix</td>
</tr>
<tr>
<td></td>
<td>length. Prefix length of the MFIB group address is a decimal value that</td>
</tr>
<tr>
<td></td>
<td>indicates how many of the high-order contiguous bits of the address</td>
</tr>
<tr>
<td></td>
<td>compose the prefix (the network portion of the address). A slash must</td>
</tr>
<tr>
<td></td>
<td>precede the decimal value.</td>
</tr>
<tr>
<td><code>detail</code></td>
<td>(Optional) Details of each route (requires 140 columns).</td>
</tr>
<tr>
<td><code>location node-id</code></td>
<td>(Optional) Specifies the MFIB location.</td>
</tr>
<tr>
<td><code>ipv4</code></td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td><code>ipv6</code></td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
</tbody>
</table>

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

*Note*

The command does not display any useful output if only RSP is specified or if no location is specified.
### Examples

The following example shows a sample output of the command:

```bash
RP/0/RSP0/CPU0:router# show mfib hardware route internal detail location 0/1/CPU0
```

LC Type: Trident

<table>
<thead>
<tr>
<th>Legend</th>
<th>Route Information - (Ingress)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET: Table ID to be used for OLIST lookup, EO: OLIST count bit, ER: Route MGID to be used for OLIST/NRPF lookup, EM: Result match, EV: Valid entry, EC: Count of OLIST members on this chip, BS: Base of the statistics pointer</td>
<td></td>
</tr>
</tbody>
</table>

**Route Information - (MDT)**

| TU: Tunnel Route, TE: Tunnel Encap, TD: Tunnel Decap, CD: Conditional Decap, MC: Multicast Encap Information |
| Software Route Information (PD) |
| T: Tunnel Route, E: Encap, D: Decap, CD: Conditional Decap, MVET-ID: MDT Encap Table ID, MVD: MVET Entry Dirty, TUS: Tunnel UIDB Set, TID: Table ID, UIDB: Tunnel UIDB, MRTU: Tunnel MTU |

**Source:** * 
**Group:** 224.0.0.0  
**Mask length:** 4  
**RPF Int:** None

<table>
<thead>
<tr>
<th>Route Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 T F T F F F T T 0x0 0x0 0x8080 0 F 3 T T 0 0x3640f F F F</td>
</tr>
<tr>
<td>1 T F T F F F T T 0x0 0x0 0x8080 0 F 3 T T 0 0x3640f F F F</td>
</tr>
<tr>
<td>2 T F T F F F T T 0x0 0x0 0x8080 0 F 3 T T 0 0x3640f F F F</td>
</tr>
<tr>
<td>3 T F T F F F T T 0x0 0x0 0x8080 0 F 3 T T 0 0x3640f F F F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software Route Information (PD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F F F F 0x0 0x0 0x0 0x0 0x0 0x0</td>
</tr>
</tbody>
</table>

**Source:** * 
**Group:** 224.0.0.0  
**Mask length:** 24  
**RPF Int:** None

<table>
<thead>
<tr>
<th>Route Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 T F F F F F T T 0x0 0x0 0x8084 0 F 0 T T 0 0x36400 F F F</td>
</tr>
</tbody>
</table>

**Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference, Release 4.2.x**
Multicast Routing and Forwarding Commands

show mfib hardware route internal

```
1 T F F F F F T 0x0 0x0 0x8084 0 F 0 T T 0 0x36400 F F
2 T F F F F F T 0x0 0x0 0x8084 0 F 0 T T 0 0x36400 F F
3 T F F F F F T 0x0 0x0 0x8084 0 F 0 T T 0 0x36400 F F

Software Route Information (PD)

T E D CD MVET-ID MVD TUS TID UIDB T-ifh TMTU

F F F F 0x0 0x0 0x0 0x0 0

Source: * Group: 224.0.1.39 Mask length: 32 RPF Int: None

Route Information

Source: * Group: 224.0.1.40 Mask length: 32 RPF Int: None

Route Information

Source: * Group: 232.0.0.0 Mask length: 8 RPF Int: None

Route Information

Source: * Group: 239.60.0.0 Mask length: 16 RPF Int: Gi0/1/
```

Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference, Release 4.2.x

79
### Route Information

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>P</td>
<td>D</td>
<td>S</td>
<td>U</td>
<td>F</td>
<td>M</td>
<td>V</td>
<td>R</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>O</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x2000500</td>
<td>0x0</td>
<td>0x8081</td>
<td>0</td>
<td>F</td>
<td>6</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x2000500</td>
<td>0x0</td>
<td>0x8081</td>
<td>0</td>
<td>F</td>
<td>6</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x2000500</td>
<td>0x0</td>
<td>0x8081</td>
<td>0</td>
<td>F</td>
<td>6</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x2000500</td>
<td>0x0</td>
<td>0x8081</td>
<td>0</td>
<td>F</td>
<td>6</td>
<td>T</td>
</tr>
</tbody>
</table>

#### Software Route Information (PD)

<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>D</th>
<th>CD</th>
<th>MVET-ID</th>
<th>MVD</th>
<th>TUS</th>
<th>TID</th>
<th>UIDB</th>
<th>T-ifh</th>
<th>TMTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0x0</td>
<td>F</td>
<td>F</td>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: *  
Group: 239.60.60.60  
Mask length: 32  
RPF Int: None

---

### Route Information

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>P</td>
<td>D</td>
<td>S</td>
<td>U</td>
<td>F</td>
<td>M</td>
<td>V</td>
<td>R</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>O</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x0</td>
<td>0x8089</td>
<td>0</td>
<td>F</td>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x0</td>
<td>0x8089</td>
<td>0</td>
<td>F</td>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x0</td>
<td>0x8089</td>
<td>0</td>
<td>F</td>
<td>5</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x0</td>
<td>0x8089</td>
<td>0</td>
<td>F</td>
<td>5</td>
<td>T</td>
</tr>
</tbody>
</table>

#### Software Route Information (PD)

<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>D</th>
<th>CD</th>
<th>MVET-ID</th>
<th>MVD</th>
<th>TUS</th>
<th>TID</th>
<th>UIDB</th>
<th>T-ifh</th>
<th>TMTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0x0</td>
<td>F</td>
<td>F</td>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: *  
Group: 239.60.62.62  
Mask length: 32  
RPF Int: None

---

### Route Information

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>I</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>P</td>
<td>D</td>
<td>S</td>
<td>U</td>
<td>F</td>
<td>M</td>
<td>V</td>
<td>R</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>O</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x0</td>
<td>0x8088</td>
<td>0</td>
<td>F</td>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x0</td>
<td>0x8088</td>
<td>0</td>
<td>F</td>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x0</td>
<td>0x8088</td>
<td>0</td>
<td>F</td>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x0</td>
<td>0x8088</td>
<td>0</td>
<td>F</td>
<td>4</td>
<td>T</td>
</tr>
</tbody>
</table>

#### Software Route Information (PD)

<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>D</th>
<th>CD</th>
<th>MVET-ID</th>
<th>MVD</th>
<th>TUS</th>
<th>TID</th>
<th>UIDB</th>
<th>T-ifh</th>
<th>TMTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0x0</td>
<td>F</td>
<td>F</td>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: *  
Group: 239.60.64.64  
Mask length: 32  
RPF Int: None

---

### Route Information

<p>| | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>I</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>P</td>
<td>C</td>
<td>P</td>
<td>D</td>
<td>S</td>
<td>U</td>
<td>F</td>
<td>M</td>
<td>V</td>
<td>R</td>
<td>A</td>
<td>G</td>
<td>T</td>
<td>O</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x2</td>
<td>0x8082</td>
<td>0</td>
<td>F</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x2</td>
<td>0x8082</td>
<td>0</td>
<td>F</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x2</td>
<td>0x8082</td>
<td>0</td>
<td>F</td>
<td>8</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>0x0</td>
<td>0x2</td>
<td>0x8082</td>
<td>0</td>
<td>F</td>
<td>8</td>
<td>T</td>
</tr>
</tbody>
</table>

#### Software Route Information (PD)

<table>
<thead>
<tr>
<th>T</th>
<th>E</th>
<th>D</th>
<th>CD</th>
<th>MVET-ID</th>
<th>MVD</th>
<th>TUS</th>
<th>TID</th>
<th>UIDB</th>
<th>T-ifh</th>
<th>TMTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>0x0</td>
<td>F</td>
<td>F</td>
<td>0x0</td>
<td>0x0</td>
<td>0x0</td>
<td>0</td>
</tr>
</tbody>
</table>
Show mfib hardware route internal

Source: * Group: 239.60.66.66 Mask length: 32 RPF Int: None

Route Information
------------------

Software Route Information (PD)
-------------------------------

Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference, Release 4.2.x
show mfib hardware route location

To display the platform-specific Multicast Forwarding Information Base (MFIB)-enabled location in the hardware, use the **show mfib hardware route location** command in EXEC mode.

```
show mfib [vrf vrf-name] [ipv4|ipv6] [*] [source-address] [group-address [prefix-length]] location node-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>source-address</td>
<td>(Optional) IP address or hostname of the multicast route source.</td>
</tr>
<tr>
<td>group-address</td>
<td>(Optional) IP address or hostname of the multicast group.</td>
</tr>
<tr>
<td>/ prefix-length</td>
<td>(Optional) Prefix length of the multicast group. A decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value.</td>
</tr>
<tr>
<td>node-id</td>
<td>Node ID for an MFIB-designated node.</td>
</tr>
</tbody>
</table>

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 5.0.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

- The command does not display any useful output if only RSP is specified or if no location is specified.
Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the **show mfib hardware route location** command:

```
RP/0/RSP0CPU0:RTP-VIKING-MCAST-04#show mfib hardware route detail 227.0.0.0/8 location 0/2/cPU0

LC Type: Typhoon A9K-MOD80-SE
--
Legend:
Route Information
NP: NP ID B: BACL check
S: RPF Interface signal DC: Directly connected
PL: Punt to LC CPU PR: Punt to RP
PF: Punt if forwarded DR: Drop all
RI: RPF interface T: Table ID for lookup
OC: Count of OLIST members MF: MoFRR enabled
TR: Tunnel Route TE: Tunnel Encap
TD: Tunnel Decap CD: Conditional Decap
MI: MVET index Base: Base of the statistics pointer
NI: Not Installed BD: Bidir

MVPN Information
MLI: MVFN table index VTID: VRF Table ID
RPFID: RPF Identifier TUIDB: Tunnel uIDB
MVET entry dirty NP: NP ID
TStat: Tunnel stat pointer TUIDB: Tunnel uIDB
TIFH: Tunnel Interface handle

MoFRR Information
MLI: Multicast leaf index A: Active RPF interface
RI: RPF interface (or RPF ID) WDI: Watchdog counter index

--
Source: * Group: 227.0.0.0 Mask: 8 RPF Int: None
MGID: 17178 MLI: 305 Fabric Slotmask: 0x10 FGID: 0x10
Parent MLI: 305 IIF Count: 2 AB Rows: 1

Route Information
NP B S DC PL PR PF DR BD RI T OC MF TR TE TD CD MI Base
--
0 F F F F F F T 0x0 0 1 F F F F F 0x0 0x5302ed
1 F F F F F F T 0x0 0 0 F F F F 0x0 0x530106

Software MGID Information
MGID: 17178 Mask: 0x1 Old MGID: 0 Old Mask: 0x1
```
**show mfib hardware route mofrr**

To display the platform-specific Multicast Forwarding Information Base (MFIB) information for the MoFRR (multicast only fast reroute)- enabled list stored in the hardware, use the `show mfib hardware route mofrr` command in EXEC mode.

```
show mfib hardware route mofrr {[*] | [source-address] [group-address [/prefix-length]] [detail] | [location node-id]}
```

**Syntax Description**

- `*` (Optional) Displays all the MoFRR routes configured in the platform.
- `source-address` (Optional) IP address or hostname of the multicast route source.
- `group-address` (Optional) IP address or hostname of the multicast group.
- `detail` (Optional) Displays a detailed list of the MoFRR routing database.
- `location node-id` Specifies the Node ID for an MFIB-designated node.

**Command Default**
IPv4 addressing is the default. Currently, MoFRR supports only IPv4 routes.

**Command Modes**
EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.9.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

MoFRR is a mechanism in which two copies of the same multicast stream flow through disjoint paths in the network. At the point in the network (usually the PE closer to the receivers) where the two streams merge, one of the streams is accepted and forwarded on the downstream links, while the other stream is discarded. When a failure is detected in the primary stream due to a link or node failure in the network, MoFRR instructs the forwarding plane to start accepting packets from the backup stream (which now becomes the primary stream).

MoFRR is triggered when the hardware detects traffic loss on the primary path of a given flow or route. Traffic loss is defined as no data packet having been received for 30 ms. When MoFRR is triggered, the primary and secondary reverse-path forwarding (RPF) interfaces are exposed to the forwarding plane and switchover occurs entirely at the hardware level.
The `show mfib hardware route mofrr` command displays the output MoFRR route list of the platform. If there is no MoFRR route enabled in the platform, then the output result is “There are no MoFRR routes configured”.

The command does not display any useful output if only RSP is specified or if no location is specified.

### Examples

The following is a sample output from the `show mfib hardware route mofrr` command:

```
RP/0/RSP0/CPU0:router# show mfib hardware route mofrr location 0/0/cpu0

LC Type: Trident
--
Legend:
Route MoFRR Information
A: Active RPF interface, MS: Monitoring State,
WDI: Watchdog Count Index, NP: Network Processor,
--
Source: 20.20.20.1 Group: 225.0.0.1 Mask length: 64 RPF Int: Gi0/0/0/8
--
Primary: Gi0/0/0/8 T 2 1846768
Backup: Gi0/0/0/18 F 0 1846769
--
OIFS

NP Intf

1 Gi0/0/0/28

Sequence num: 1 Num of switchovers: 0
WatchDog Counters:
--
NP Profile Valid Current-Cnt Last-cnt
Prim WDC 0 0 0 3848 12
Prim WDC 1 0 0 3848 12
Prim WDC 2 0 0 3848 12
Prim WDC 3 1 1 3848 12
Back WDC 0 0 0 3848 12
Back WDC 1 0 0 3848 12
Back WDC 2 0 0 3848 12
Back WDC 3 0 0 3848 12
--
MoFRR Statistics:
--
NP Prim pkt rx Back pkt rx Interrupts Punts
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 406213 0 1 1
--
Source: 20.20.20.1 Group: 225.0.0.2 Mask length: 64 RPF Int: Gi0/0/0/8
```
The following is sample output from the show mfib hardware route MoFRR command with only one multicast group:

RP/0/RSP0/CPU0:router# show mfib hardware route mofrr 225.0.0.1 location 0/0/CPU0

LC Type: Trident

Legend:
Route MoFRR Information
A: Active RPF interface, MS: Monitoring State, WDI: Watchdog Count Index, NP: Network Processor,
The following is sample output from the show mfib hardware route MoFRR command with only one multicast source:

```
RP/0/RSP0/CPU0# show mfib hardware route mofrr 20.20.20.1 location 0/0/CPU0
LC Type: Trident

Legend:
Route MoFRR Information
A: Active RPF interface, MS: Monitoring State,
WDI: Watchdog Count Index, NP: Network Processor,

Source: 20.20.20.1 Group: 225.0.0.1 Mask length: 64 RPF Int: Gi0/0/0/8

RPFS Interface A MS WDI

Primary: Gi0/0/0/8 T 2 1846772
Backup: Gi0/0/0/18 F 0 1846773

OIFS

NP Intf
1 Gi0/0/0/28

Sequence num: 1 Num of switchovers: 0

WatchDog Counters:

NP Profile Valid Current-Cnt Last-cnt
Prim WDC 0 0 0 3848 12
Prim WDC 1 0 0 3848 12
Prim WDC 2 0 0 3848 12
Prim WDC 3 1 1 3848 12
Back WDC 0 0 0 3848 12
Back WDC 1 0 0 3848 12
Back WDC 2 0 0 3848 12
Back WDC 3 0 0 3848 12

MoFRR Statistics:

NP Prim pkt rx Back pkt rx Interrupts Punts
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 400465 0 1 1
```
```plaintext
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPFS</td>
<td>Primary and backup RPF of the route.</td>
</tr>
<tr>
<td>A</td>
<td>Currently active RPF for forwarding the traffic to the egress (OLIST). T: means true, F: means false.</td>
</tr>
<tr>
<td>MS</td>
<td>Monitoring state. It has three states. MS=0, indicates that the monitoring state disabled. MS=1, indicates that active RPF is monitoring traffic activity. MS=2, indicates that active RPF is monitoring traffic loss.</td>
</tr>
<tr>
<td>WDI</td>
<td>Watchdog Count Index. Each MoFRR route has two Line card specific watchdog indexes, associated with primary and backup RPF, respectively.</td>
</tr>
</tbody>
</table>
```

This table describes the significant fields shown in the display.

**Table 4: show mfib hardware route mofrr Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Prim pkt rx Back pkt rx Interrupts Punts</td>
</tr>
<tr>
<td>0</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>2</td>
<td>0 0 0 0</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
</tr>
</tbody>
</table>
If there is no MoFRR route enabled in the platform, the output result will be as follows:

```
RP/0/RSP0/CPU0:router# show mfib hardware route mofrr location 0/0/CPU0
LC Type: Trident
No matching routes in MFIB
There are no MoFRR routes configured.
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>show mfib hardware route olist</strong>, on page 90</td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information in the output interface list (olist) stored in the hardware.</td>
</tr>
<tr>
<td><strong>show mfib hardware route statistics</strong>, on page 100</td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information for the packet and byte counters for each route.</td>
</tr>
<tr>
<td><strong>show mfib hardware route summary</strong>, on page 104</td>
<td>Displays summary platform-specific Multicast Forwarding Information Base (MFIB) hardware information for each route entry.</td>
</tr>
<tr>
<td><strong>show mfib route</strong>, on page 115</td>
<td>Displays route entries in the Multicast Forwarding Information Base (MFIB).</td>
</tr>
<tr>
<td><strong>show mrrib route</strong>, on page 137</td>
<td>Displays all entries in the Multicast Routing Information Base (MRIB).</td>
</tr>
</tbody>
</table>
show mfib hardware route olist

To display platform-specific Multicast Forwarding Information Base (MFIB) information in the output interface list (olist) stored in the hardware, use the **show mfib hardware route olist** command in the appropriate mode.

```
show mfib [vrf vrf-name] [ipv4|ipv6] hardware route olist {[*]| source-address [group-address [prefix-length]]} [location node-id]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>*</td>
<td>(Optional) Displays shared tree entries.</td>
</tr>
<tr>
<td>source-address</td>
<td>(Optional) IP address or hostname of the multicast route source.</td>
</tr>
<tr>
<td>group-address</td>
<td>(Optional) IP address or hostname of the multicast group.</td>
</tr>
<tr>
<td>/ prefix-length</td>
<td>(Optional) Prefix length of the multicast group. A decimal value that</td>
</tr>
<tr>
<td></td>
<td>indicates how many of the high-order contiguous bits of the address</td>
</tr>
<tr>
<td></td>
<td>compose the prefix (the network portion of the address). A slash must</td>
</tr>
<tr>
<td></td>
<td>precede the decimal value.</td>
</tr>
<tr>
<td>location node-id</td>
<td>Specifies an MFIB-designated node.</td>
</tr>
</tbody>
</table>

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **show mfib hardware route olist** command displays the output interface list (olist) for each route. The Multicast Forwarding (MFWD) process stores olist interfaces in a table lookup unit (TLU) block (in groups of three). As such, the command displays each route three times. The command does not display any useful output if only RSP is specified or if no location is specified.
Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the `show mfib hardware route olist` command. (The output fields are described in the header.)

```
RP/0/RSP0/CP00# show mfib hardware route olist location 0/0/CP00

LC Type: Trident

Legend:
Route Information - (Ingress)
C: Chip ID, IC: BACL check, IP: Punt copy to RP,
ID: Directly connected, IS: RPF interface signal, IU: Punt copy to RP,
IF: Punt to LC CPU if forwarded, IM: Result match, IV: Valid entry,
IR: RPF IF, IA: Fabric slotmask, IG: Multicast group ID
Route Information - (Egress)
ET: Table ID to be used for OLIST lookup, EO: OLIST count bit,
ER: Route MGID to be used for OLIST/NRPF lookup, EM: Result match,
EV: Valid entry, EC: Count of OLIST members on this chip,
BS: Base of the statistics pointer

Hardware Information
C: Chip ID, T: Table ID; M: Member ID; Intf: Interface, U: uIDB index,
I: HW IC flag, B: HW BACL bit, Base: Base of statistics pointer

--
```

Source: * Group: 224.0.0.0 Mask length: 24

```
Route Information
C IC IP ID IS IU IF IM IV IR IA IG ET EO ER EM EV EC BS
--
0 T F F F F T T 0x0 0x0 0x8002 0 F 2 T T 0 0x5516c
1 T F F F F T T 0x0 0x0 0x8002 0 F 2 T T 0 0x5516c
2 T F F F F T T 0x0 0x0 0x8002 0 F 2 T T 0 0x5516c
3 T F F F F T T 0x0 0x0 0x8002 0 F 2 T T 0 0x555a4
--
```

Source: * Group: 224.0.1.39 Mask length: 32

```
Route Information
C IC IP ID IS IU IF IM IV IR IA IG ET EO ER EM EV EC BS
--
0 F T F F F T T 0x0 0x0 0x8000 0 F 0 T T 0 0x55162
1 F T F F F T T 0x0 0x0 0x8000 0 F 0 T T 0 0x55162
2 F T F F F T T 0x0 0x0 0x8000 0 F 0 T T 0 0x55162
3 F T F F F T T 0x0 0x0 0x8000 0 F 0 T T 0 0x5559a
--
```

Source: * Group: 224.0.1.40 Mask length: 32

```
Route Information
C IC IP ID IS IU IF IM IV IR IA IG ET EO ER EM EV EC BS
--
0 F T F F F T T 0x0 0x0 0x8001 0 F 1 T T 0 0x55167
1 F T F F F T T 0x0 0x0 0x8001 0 F 1 T T 0 0x55167
2 F T F F F T T 0x0 0x0 0x8001 0 F 1 T T 0 0x55167
3 F T F F F T T 0x0 0x0 0x8001 0 F 1 T T 0 0x5559f
--
```

Source: * Group: 227.0.0.0 Mask length: 16
### Route Information

<table>
<thead>
<tr>
<th>C</th>
<th>IC</th>
<th>IP ID</th>
<th>IS</th>
<th>IU</th>
<th>IF</th>
<th>IM</th>
<th>IV</th>
<th>IR</th>
<th>IA</th>
<th>IG</th>
<th>ET</th>
<th>EO</th>
<th>ER</th>
<th>EM</th>
<th>EV</th>
<th>EC</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x280 0x0</td>
<td>0x8009 0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55199</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x280 0x0</td>
<td>0x8009 0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55199</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x280 0x0</td>
<td>0x8009 0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55199</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x280 0x0</td>
<td>0x8009 0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x555d1</td>
</tr>
</tbody>
</table>

Source: * Group: 227.0.0.1 Mask length: 32

<table>
<thead>
<tr>
<th>C</th>
<th>IC</th>
<th>IP ID</th>
<th>IS</th>
<th>IU</th>
<th>IF</th>
<th>IM</th>
<th>IV</th>
<th>IR</th>
<th>IA</th>
<th>IG</th>
<th>ET</th>
<th>EO</th>
<th>ER</th>
<th>EM</th>
<th>EV</th>
<th>EC</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x1</td>
<td>0x8004 0</td>
<td>F</td>
<td>5</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55185</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x1</td>
<td>0x8004 0</td>
<td>F</td>
<td>5</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55185</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x1</td>
<td>0x8004 0</td>
<td>F</td>
<td>5</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55185</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x1</td>
<td>0x8004 0</td>
<td>F</td>
<td>1</td>
<td>T</td>
<td>T</td>
<td>3</td>
<td>0x555bd</td>
</tr>
</tbody>
</table>

### Interface Information

<table>
<thead>
<tr>
<th>C</th>
<th>T</th>
<th>M</th>
<th>Intf</th>
<th>U</th>
<th>I</th>
<th>B</th>
<th>Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>Gi0/0/0/8</td>
<td>9</td>
<td>F</td>
<td>F</td>
<td>0x5540c</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>Gi0/0/0/4</td>
<td>5</td>
<td>F</td>
<td>F</td>
<td>0x5540f</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>Gi0/0/0/6</td>
<td>7</td>
<td>F</td>
<td>F</td>
<td>0x55412</td>
</tr>
</tbody>
</table>

Source: * Group: 230.0.0.0 Mask length: 8

<table>
<thead>
<tr>
<th>C</th>
<th>IC</th>
<th>IP ID</th>
<th>IS</th>
<th>IU</th>
<th>IF</th>
<th>IM</th>
<th>IV</th>
<th>IR</th>
<th>IA</th>
<th>IG</th>
<th>ET</th>
<th>EO</th>
<th>ER</th>
<th>EM</th>
<th>EV</th>
<th>EC</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x0</td>
<td>0x8005 0</td>
<td>F</td>
<td>3</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55176</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x0</td>
<td>0x8005 0</td>
<td>F</td>
<td>3</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55176</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x0</td>
<td>0x8005 0</td>
<td>F</td>
<td>3</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55176</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x0</td>
<td>0x8005 0</td>
<td>F</td>
<td>3</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x555ae</td>
</tr>
</tbody>
</table>

Source: * Group: 232.0.0.0 Mask length: 8

<table>
<thead>
<tr>
<th>C</th>
<th>IC</th>
<th>IP ID</th>
<th>IS</th>
<th>IU</th>
<th>IF</th>
<th>IM</th>
<th>IV</th>
<th>IR</th>
<th>IA</th>
<th>IG</th>
<th>ET</th>
<th>EO</th>
<th>ER</th>
<th>EM</th>
<th>EV</th>
<th>EC</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180 0x0</td>
<td>0x8007 0</td>
<td>F</td>
<td>7</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x5518f</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180 0x0</td>
<td>0x8007 0</td>
<td>F</td>
<td>7</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x5518f</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180 0x0</td>
<td>0x8007 0</td>
<td>F</td>
<td>7</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x5518f</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180 0x0</td>
<td>0x8007 0</td>
<td>F</td>
<td>7</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x555cf</td>
</tr>
</tbody>
</table>

Source: * Group: 233.1.0.0 Mask length: 16

<table>
<thead>
<tr>
<th>C</th>
<th>IC</th>
<th>IP ID</th>
<th>IS</th>
<th>IU</th>
<th>IF</th>
<th>IM</th>
<th>IV</th>
<th>IR</th>
<th>IA</th>
<th>IG</th>
<th>ET</th>
<th>EO</th>
<th>ER</th>
<th>EM</th>
<th>EV</th>
<th>EC</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180 0x0</td>
<td>0x8007 0</td>
<td>F</td>
<td>7</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x5518f</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180 0x0</td>
<td>0x8007 0</td>
<td>F</td>
<td>7</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x5518f</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180 0x0</td>
<td>0x8007 0</td>
<td>F</td>
<td>7</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x5518f</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x180 0x0</td>
<td>0x8007 0</td>
<td>F</td>
<td>7</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x555c</td>
</tr>
</tbody>
</table>

Source: * Group: 233.4.0.0 Mask length: 16

<table>
<thead>
<tr>
<th>C</th>
<th>IC</th>
<th>IP ID</th>
<th>IS</th>
<th>IU</th>
<th>IF</th>
<th>IM</th>
<th>IV</th>
<th>IR</th>
<th>IA</th>
<th>IG</th>
<th>ET</th>
<th>EO</th>
<th>ER</th>
<th>EM</th>
<th>EV</th>
<th>EC</th>
<th>BS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x0</td>
<td>0x8009 0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55199</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x0</td>
<td>0x8009 0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55199</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x0</td>
<td>0x8009 0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x55199</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>0x0 0x0</td>
<td>0x8009 0</td>
<td>F</td>
<td>6</td>
<td>T</td>
<td>T</td>
<td>0</td>
<td>0x555d1</td>
</tr>
</tbody>
</table>
show mfib hardware route olist location 0/4/CPU0

LC Type: A9K-SIP-700

Header : Hardware Route Information
Source : Source address
Group : Group Address
M : Mask Length
C : Directly connected check flag
RPF : Accepting interface for non-bidir entries
S : Signal if packet arrived on RPF interface
IC : Aggregated Internal copy flag
PR : Punt to RP flag for Internal copy in the Loopback interface
PK : PEEK flag
FGID : Fabric Group ID
MGID : Multicast Group ID
PAL Olist : PAL Olist handle
CPP Olist : CPP Olist handle
Num OCE : Number of OCE entries

Header : Route OCE Entry Information
Interface : Interface name
Handle : Interface handle
IC : Internal copy flag
Accept : Accept flag
NS : Negate Signal flag
F/EG : Forwarding flag

Ingress CPP Prefix Information

--- QFP Multicast prefix info ---
Root: a60394c4, Flags: 2 First leaf: 0
Number of nodes: 00000000, leaves: 00000000 RPF i/f: 00000000
RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
RPF Fast Convergence timer: 0 ext_leaf: 0x8b900100

Egress CPP Prefix Information

--- QFP Multicast prefix info ---
Root: a60394c4, Flags: 2 First leaf: 0
Number of nodes: 00000000, leaves: 00000000 RPF i/f: 00000000
RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
RPF Fast Convergence timer: 0 ext_leaf: 0x8ce80100

Route OCE Entry Information
Route Rx Adjacency Information

OCE RX Adj Data for 0x8bb00000:
  base: 39(CPP HW RX ADJ IPV4 MCAST)  adj_flags: 0x0
  pd_16: 0x0  pd_32: 0x4244
  output_uidb: 0x1fab  counters_ptr: 0x893f5c30
  byte count: 0  packet count: 0

Hardware Route Information

Source | Group | M | C | RPF | S | IC | PR | PK | FGID | MGID | PAL Olist Handle | CPP OLIST
Handle | Num OCE|
* | 224.0.0.0 | 24 | F | Null | F | F | F | F | 0 | 16962 | 0x9e07d2e4 | 0x9dc86924
| 0 |

Ingress CPP Prefix Information

--- QFP Multicast prefix info ---
Root: 9e07d270, Flags: 0  First leaf: 0
Number of nodes: 0x000001, leaves: 00000000  RPF i/f: 00000000
RPF Fast Convergence flags: 00000000  Secondary RPF: 00000000
RPF Fast Convergence timer: 0  ext_leaf: 0x8b900180

Egress CPP Prefix Information

--- QFP Multicast prefix info ---
Root: 9e07d270, Flags: 0  First leaf: 0
Number of nodes: 0x000001, leaves: 00000000  RPF i/f: 00000000
RPF Fast Convergence flags: 00000000  Secondary RPF: 00000000
RPF Fast Convergence timer: 0  ext_leaf: 0x8ce80180

Route OCE Entry Information

Route OCE List Information

TREE .. : root : 9e07d270 num_nodes 1 num_leaves 0
(in cp) Node: 9e07d270 num_child:0 cum[wt:0 free:7]
(in cpp) Node : 0x8d080120 flags : 0x4
  child[0]: [NULL]
  child[1]: [NULL]
  child[2]: [NULL]
  child[3]: [NULL]
  child[4]: [NULL]
  child[5]: [NULL]
  child[6]: [NULL]

Route Rx Adjacency Information

OCE RX Adj Data for 0x8bb00120:
  base: 39(CPP HW RX ADJ IPV4 MCAST)  adj_flags: 0x0
  pd_16: 0x0  pd_32: 0x4242
  output_uidb: 0x1fab  counters_ptr: 0x893f5c10
  byte count: 0  packet count: 0

Hardware Route Information

Source | Group | M | C | RPF | S | IC | PR | PK | FGID | MGID | PAL Olist Handle | CPP OLIST
Handle | Num OCE|
* | 224.0.1.39 | 32 | F | Null | T | F | F | F | 0 | 16960 | 0x9e07d678 | 0x9dc86970
| 0 |
--- QFP Multicast prefix info ---
Root: 9e07d604, Flags: 1 First leaf: 0
Number of nodes: 0x000001, leaves: 00000000 RPF i/f: 00000000
RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
RPF Fast Convergence timer: 0 ext_leaf: 0x8b9001c0

Egress CPP Prefix Information
-----------------------------------------------

--- QFP Multicast prefix info ---
Root: 9e07d604, Flags: 1 First leaf: 0
Number of nodes: 0x000001, leaves: 00000000 RPF i/f: 00000000
RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
RPF Fast Convergence timer: 0 ext_leaf: 0x8ce801c0

Route OCE Entry Information
Route OLIST Information
-----------------------------------------------

TREE .. : root : 9e07d604 num_nodes 1 num_leaves 0
(in cp) Node: 9e07d604 num_child:0 cum[wt:0 free:7]
(child[0]: [NULL])
(child[1]: [NULL])
(child[2]: [NULL])
(child[3]: [NULL])
(child[4]: [NULL])
(child[5]: [NULL])
(child[6]: [NULL])

Route Rx Adjacency Information
-----------------------------------------------
OCE RX Adj Data for 0x8bb000f0:
base: 39(CPP HW RX ADJ IPV4 MCAST) adj_flags: 0x0
pd_16: 0x0 pd_32: 0x4240
output_uidb: 0x1fab counters_ptr: 0x893f5c00
byte count: 0 packet count: 0

Hardware Route Information
-----------------------------------------------
Source |Group |M |C|RPF |S|IC|PR|PK|FGID |MGID |PAL Olist Handle|CPP OLIST Handle|Num OCE
Handle|Num OCE|
-----------------------------------------------
* |224.0.1.40|32 |F|Null |T| F| F| F |0 |16961|0x9dcbda40 |0x9dc869bc
  |0 |

Ingress CPP Prefix Information
-----------------------------------------------

--- QFP Multicast prefix info ---
Root: 9dcbda40, Flags: 1 First leaf: 0
Number of nodes: 0x000001, leaves: 00000000 RPF i/f: 00000000
RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
RPF Fast Convergence timer: 0 ext_leaf: 0x8b9000c0

Egress CPP Prefix Information
-----------------------------------------------

--- QFP Multicast prefix info ---
Root: 9dcbda40, Flags: 1 First leaf: 0
Number of nodes: 0x000001, leaves: 00000000 RPF i/f: 00000000
RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
RPF Fast Convergence timer: 0 ext_leaf: 0x8ce800c0

Route OCE Entry Information
Route OLIST Information
-----------------------------------------------

TREE .. : root : 9dcbda40 num_nodes 1 num_leaves 0
(in cp) Node: 9dcbda40 num_child:0 cum[wt:0 free:7]
Route Rx Adjacency Information

OCE RX Adj Data for 0x8bb00040:

- Base: 39 (CPP HW RX ADJ IPV4 MCAST)
- Adj Flags: 0x0
- PD_16: 0x0
- PD_32: 0x4241
- Output Uldb: 0x1fab
- Counters Ptr: 0x893f5c40
- Byte Count: 0
- Packet Count: 0

Hardware Route Information

- Source | Group | M | C | RPF | S | IC | PR | PK | FGID | MGID | PAL Olist Handle | CPP OLIST
- Handle | Num OCE |

| 225.0.0.0 | 32 | T | Se0/4/0/0/1 | F | F | F | F | 64 | 17013 | 0x9dc5d5a4 | 0x9dc86a08 |
| 2 |

Ingress CPP Prefix Information

--- QFP Multicast Prefix info ---
- Root: 9dcbd530, Flags: 2
- First Leaf: 9dcbd9bc
- Number of Nodes: 0x000001, Leaves: 0x000001
- RPF I/F: 0x007fff
- RPF Fast Convergence Flags: 00000000
- Secondary RPF: 00000000
- RPF Fast Convergence Timer: 0
- Ext Leaf: 0x8b900080

Egress CPP Prefix Information

--- QFP Multicast Prefix info ---
- Root: 9dcbd530, Flags: 2
- First Leaf: 9dcbd9bc
- Number of Nodes: 0x000001, Leaves: 0x000001
- RPF I/F: 0x007fff
- RPF Fast Convergence Flags: 00000000
- Secondary RPF: 00000000
- RPF Fast Convergence Timer: 0
- Ext Leaf: 0x8ce80080

Route OCE Entry Information

- Interface Handle IC Accept NS F/EG

Se0/4/0/0/1 0xc00000c0  F  T  T  F

**** Leaf Info (in cp) : [9dcbd9bc]
oce Flags = 0x6
next Obj Type : 11
next Obj Handle : a73e9104

**** Leaf Info (in cpp): [0]
leaf Flags= 0x1
oce Flags: 0
oce Ptr: 0x8c5800c0

-----------------------------

Interface Handle IC Accept NS F/EG
Gi0/4/3/0 0xc0000080  F  F  T  T

**** Leaf Info (in cp) : [9dcbd450]
oce Flags = 0x5
next Obj Type : 11
next Obj Handle : a73e907c

**** Leaf Info (in cpp): [0x8c5800f0]
leaf Flags= 0x2
oce Flags: 0
oce Ptr: 0x8c580000

Route OLIST Information

TREE .. : root : 9dcbd530 num_nodes 1 num_leaves 1
(in cpp) Node: 0x8d080080 flags : 0x4
child[0]: [Leaf] in cp : 9dcbd450 in cpp : 0x8c5800f0)
Route Rx Adjacency Information
----------------------------------------------------------
OCE RX Adj Data for 0x8bb00160:
  base: 39(CPP HW RX ADJ IPV4 MCAST)  adj_flags: 0x0
  pd_16: 0x40  pd_32: 0x4275
  output_uidb: 0x1fab  counters_ptr: 0x893f5c50
  byte count: 9800  packet count: 196

Hardware Route Information
----------------------------------------------------------
Source |Group |M |C|RPF |S|IC|PR|PK|FGID |MGID |PAL Olist Handle|CPP OLIST Handle|Num OCE|
----------------------------------------------------------
12.12.12.2|225.0.0.0 |64 |F|Se0/4/0/0/1|F| F| F|F |64 |17024|0x9dcbcecc |0x9dc86a54 |2 |

Ingress CPP Prefix Information
----------------------------------------------------------
--- QFP Multicast prefix info ---
  Root: 9dcbcbfc0, Flags: 0 First leaf: 9dcbccfc
  Number of nodes: 0x000001, leaves: 0x000001 RPF i/f: 0x007fff
  RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
  RPF Fast Convergence timer: 0 ext_leaf: 0x8b900200

Egress CPP Prefix Information
----------------------------------------------------------
--- QFP Multicast prefix info ---
  Root: 9dcbcbfc0, Flags: 0 First leaf: 9dcbccfc
  Number of nodes: 0x000001, leaves: 0x000001 RPF i/f: 0x007fff
  RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
  RPF Fast Convergence timer: 0 ext_leaf: 0x8ce80200

Route OCE Entry Information
----------------------------------------------------------
Interface Handle IC Accept NS F/EG
----------------------------------------------------------
Se0/4/0/0/1 0xc000ec0 F T F F
  **** Leaf Info (in cp) : [9dcbccfc]
  oce flags = 0x2 next obj type : 11 next obj handle : a73e9104
  **** Leaf Info (in cpp) : [0]
  leaf_flags= 0x1 oce_flags: 0 oce_ptr: 0x8c5800c0

G10/4/3/0 0xc0000800 F F T T
  **** Leaf Info (in cp) : [9dcbccfc]
  oce flags = 0x5 next obj type : 11 next obj handle : a73e907c
  **** Leaf Info (in cpp) : [0x8c5800d0]
  leaf_flags= 0x1 oce_flags: 0x2 oce_ptr: 0x8c5800ce

Route OLIST Information
----------------------------------------------------------
TREE .. : root : 9dcbcbfc0 num_nodes 1 num_leaves 1
  (in cp) Node: 9dcbcbfc0 num_child:1 cum[w:t:1 free:6]
  (in cpp) Node : 0x8d080000 flags : 0x4
  child[0]: [Leaf] in cp : 9dcbccd0 in cpp : 0x8c5800d0
  child[1]: [NULL]
  child[2]: [NULL]
show mfib hardware route olist

--- QFP Multicast prefix info ---
Root: 9e07d110, Flags: 0 First leaf: 0
Number of nodes: 0x0000001, leaves: 00000000 RPF i/f: 00000000
RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
RPF Fast Convergence timer: 0 ext_leaf: 0x8b900140

--- QFP Multicast prefix info ---
Root: 9e07d110, Flags: 0 First leaf: 0
Number of nodes: 0x0000001, leaves: 00000000 RPF i/f: 00000000
RPF Fast Convergence flags: 00000000 Secondary RPF: 00000000
RPF Fast Convergence timer: 0 ext_leaf: 0x8ce80140

The following is sample output from the show mfib hardware route olist command with only one multicast group:

RP/0/RSP0/CPU0:router# show mfib hardware route olist 227.0.0.1 location 0/0/CPU0

Legend:
Route Information - (Ingress)
C: Chip ID, IC: BACL check, IP: Punt this packet to LC CPU,
ID: Directly connected, IS: RPF interface signal, IU: Punt copy to RP,
IF: Punt to LC CPU if forwarded, IM: Result match, IV: Valid entry,
IR: RPF IF, IA: Fabric slotmask, IG: Multicast group ID
Route Information - (Egress)
ET: Table ID to be used for OLIST lookup, EO: OLIST count bit,
ER: Route MGID to be used for OLIST/NRPF lookup, EM: Result match,
EV: Valid entry, EC: Count of OLIST members on this chip,
BS: Base of the statistics pointer
Hardware Information
C: Chip ID; T: Table ID; M: Member ID; Intf: Interface, U: uIDB index,
I: HW IC flag, B: HW BACL bit, Base: Base of statistics pointer
---------------------------------------------------------------------
Source: *      Group: 227.0.0.1    Mask length: 32
Route Information
----------------------------------------------------------------------------------
C IC IP ID IS IU IF IM IV IR IA IG ET EO ER EM EV EC BS
----------------------------------------------------------------------------------
 0 T F F F F F T T 0x0 0x1 0x8004 0 F 5 T T 0 0x55185
 1 T F F F F F T T 0x0 0x1 0x8004 0 F 5 T T 0 0x55185
 2 T F F F F F T T 0x0 0x1 0x8004 0 F 5 T T 0 0x55185
 3 T F F F F F T T 0x0 0x1 0x8004 1 T 5 T T 3 0x555bd
----------------------------------------------------------------------------------
Interface Information
-------------------------------------
C T M Intf U I B Base
-------------------------------------
 3 1 0 Gi0/0/0/8 9 F F 0x5540c
 3 1 1 Gi0/0/0/4 5 F F 0x5540f
 3 1 2 Gi0/0/0/6 7 F F 0x55412
-------------------------------------
Related Commands
Command Description
 show mfib hardware route accept-bitmap Displays platform-specific Multicast Forwarding Information Base (MFIB) information for the interface list that accepts bidirectional routes.
on page 75
 show mfib hardware route statistics Displays platform-specific Multicast Forwarding Information Base (MFIB) information for the packet and byte counters for each route.
on page 100
 show mfib hardware route summary Displays summary platform-specific Multicast Forwarding Information Base (MFIB) hardware information for each route entry.
on page 104
 show mfib route, Displays route entries in the Multicast Forwarding Information Base (MFIB).
on page 115
# show mfib hardware route statistics

To display platform-specific Multicast Forwarding Information Base (MFIB) information for the packet and byte counters for each route, use the `show mfib hardware route statistics` command in EXEC mode.

```
show mfib [vrf vrf-name] [ipv4 | ipv6] hardware route statistics [detail] [*] [source-address] [group-address [prefix-length]] [location node-id]
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>*</td>
<td>(Optional) Displays shared tree entries.</td>
</tr>
<tr>
<td>source-address</td>
<td>(Optional) IP address or hostname of the multicast route source.</td>
</tr>
<tr>
<td>group-address</td>
<td>(Optional) IP address or hostname of the multicast group.</td>
</tr>
<tr>
<td>/ prefix-length</td>
<td>(Optional) Prefix length of the multicast group. A decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays a detailed list of the routing database.</td>
</tr>
<tr>
<td>location node-id</td>
<td>(Optional) Specifies an MFIB-designated node.</td>
</tr>
</tbody>
</table>

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show mfib hardware route statistics` command to display the hardware packet and byte counter for a route. Route counters are kept for (S, G) routes only. A single set of counters is provided for all (*, G) routes.
This command displays the hardware packet and bytes count on a per-route basis. Per-route hardware counters are kept for (S, G) routes only. However, counters are managed dynamically and allocated on a priority basis and may not be available for each (S, G) route. There is a single set of counters for all (*, G) routes. For example, interface counters and access list counters have higher priority than route counters.

Note

Route counters are local to each line card.

---

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

---

### Examples

The following is sample output from the `show mfib hardware route statistics` command.

```
RP/0/RSP0/CPU0:router# show mfib hardware route statistics location 0/4/CPU0

LC Type: A9K-GIP-700
Hardware Prefix Statistics
--
(s, g) RX/TX: Pkt/Byte: Forward(Pkt/Byte) Punt(Pkt/Byte) RPF Fail(Pkt/Byte) Drop(Pkt/Byte)
--
(* , 224.0.0.0) RX: 0/0 0/0 0/0 0/0
 0/0
(* , 224.0.0.0) TX: 0/0 0/0 0/0 0/0
 0/0
(* , 224.0.0.0) RX: 0/0 0/0 0/0 0/0
 0/0
(* , 224.0.0.0) TX: 0/0 0/0 0/0 0/0
 0/0
(* , 224.0.1.39) RX: 0/0 0/0 0/0 0/0
 0/0
(* , 224.0.1.39) TX: 0/0 0/0 0/0 0/0
 0/0
(* , 224.0.1.40) RX: 0/0 0/0 0/0 0/0
 0/0
(* , 224.0.1.40) TX: 0/0 0/0 0/0 0/0
 0/0
(* , 225.0.0.0) RX: 0/0 0/0 0/0 0/0
 0/0
(* , 225.0.0.0) TX: 0/0 0/0 0/0 0/0
 0/0
(12.12.12.2, 225.0.0.0) RX: 7931284/364839064 3/138 0/0 0/0
 0/0
(12.12.12.2, 225.0.0.0) TX: 7931288/364839248 0/0 0/0 0/0 0/0
 0/0
(* , 232.0.0.0) RX: 0/0 0/0 0/0 0/0
 0/0
(* , 232.0.0.0) TX: 0/0 0/0 0/0 0/0
 0/0
RP/0/RSP0/CPU0:router# show mfib hardware route statistics location 0/0/CPU0

LC Type: Trident
Legend:
S: Source, G: Group, Pr: Prefix Length, C: Chip ID, R: Received, P: Punted to CPU, F: Forwarded, ID: Ingress Drop, ED: Egress Drop
S: * G: 224.0.0.0 Pr:24
```

---

Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference, Release 4.2.x
### Show Multicast Hardware Route Statistics

```
C R(packets:bytes)/F(packets:bytes)/P(packets)/ID(packets)/ED(packets)
0 0:0 / 0:0 / 0 / 0 / 0
1 0:0 / 0:0 / 0 / 0 / 0
2 0:0 / 0:0 / 0 / 0 / 0
3 0:0 / 0:0 / 0 / 0 / 0
```

No OLIST interfaces found for this route

```
S: * G: 224.0.1.39 Pr:32
C R(packets:bytes)/F(packets:bytes)/P(packets)/ID(packets)/ED(packets)
0 0:0 / 0:0 / 0 / 0 / 0
1 0:0 / 0:0 / 0 / 0 / 0
2 0:0 / 0:0 / 0 / 0 / 0
3 0:0 / 0:0 / 0 / 0 / 0
```

No OLIST interfaces found for this route

```
S: * G: 224.0.1.40 Pr:32
C R(packets:bytes)/F(packets:bytes)/P(packets)/ID(packets)/ED(packets)
0 0:0 / 0:0 / 0 / 0 / 0
1 0:0 / 0:0 / 0 / 0 / 0
2 0:0 / 0:0 / 0 / 0 / 0
3 0:0 / 0:0 / 0 / 0 / 0
```

No OLIST interfaces found for this route

```
S: * G: 227.0.0.1 Pr:32
C R(packets:bytes)/F(packets:bytes)/P(packets)/ID(packets)/ED(packets)
0 0:0 / 0:0 / 0 / 0 / 0
1 0:0 / 0:0 / 0 / 0 / 0
2 0:0 / 0:0 / 0 / 0 / 0
3 0:0 / 0:0 / 0 / 0 / 0
```

```
S: * G: 230.0.0.0 Pr:8
C R(packets:bytes)/F(packets:bytes)/P(packets)/ID(packets)/ED(packets)
0 0:0 / 0:0 / 0 / 0 / 0
1 0:0 / 0:0 / 0 / 0 / 0
2 0:0 / 0:0 / 0 / 0 / 0
```

```
S: * G: 230.0.0.0 Pr:8
C R(packets:bytes)/F(packets:bytes)/P(packets)/ID(packets)/ED(packets)
0 0:0 / 0:0 / 0 / 0 / 0
1 0:0 / 0:0 / 0 / 0 / 0
2 0:0 / 0:0 / 0 / 0 / 0
```

```
S: * G: 230.0.0.0 Pr:8
C R(packets:bytes)/F(packets:bytes)/P(packets)/ID(packets)/ED(packets)
0 0:0 / 0:0 / 0 / 0 / 0
1 0:0 / 0:0 / 0 / 0 / 0
2 0:0 / 0:0 / 0 / 0 / 0
```
No OLIST interfaces found for this route
S: * G: 232.0.0.0 Pr:8

<table>
<thead>
<tr>
<th>S</th>
<th>G</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:0:0 / 0:0 / 0 / 0 / 0</td>
<td>0:0 / 0:0 / 0 / 0 / 0</td>
<td></td>
</tr>
</tbody>
</table>

This table describes the significant fields shown in the display.

Table 5: show mfib hardware route statistics Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress Counter</td>
<td>Unique identifier of the ingress counter.</td>
</tr>
<tr>
<td>Egress Counter</td>
<td>Unique identifier of the egress counter.</td>
</tr>
<tr>
<td>Forward</td>
<td>Number of forwarded packets and bytes.</td>
</tr>
<tr>
<td>Punt</td>
<td>Number of bytes punted from the line card CPU.</td>
</tr>
<tr>
<td>Drop</td>
<td>Number of dropped bytes.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib hardware route accept-bitmap, on page 75</td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information for the interface list that accepts bidirectional routes.</td>
</tr>
<tr>
<td>show mfib hardware route olist, on page 90</td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information in the output interface list (olist) stored in the hardware.</td>
</tr>
<tr>
<td>show mfib hardware route summary, on page 104</td>
<td>Displays summary platform-specific Multicast Forwarding Information Base (MFIB) hardware information for each route entry.</td>
</tr>
<tr>
<td>show mfib route, on page 115</td>
<td>Displays route entries in the Multicast Forwarding Information Base (MFIB).</td>
</tr>
</tbody>
</table>
show mfib hardware route summary

To display summary platform-specific Multicast Forwarding Information Base (MFIB) hardware information for each route entry, use the `show mfib hardware route summary` command in EXEC mode.

```
show mfib [vrf vrf-name] [ipv4|ipv6] hardware route summary location node-id
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>location</td>
<td>(Optional) Specifies an MFIB-designated node.</td>
</tr>
<tr>
<td>node-id</td>
<td></td>
</tr>
</tbody>
</table>

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use the `show mfib hardware summary` command to display hardware information for the route of the node.

The hardware information of MoFRR (multicast only fast reroute) enabled routes are also displayed. In IOS XR Software Release 3.9.0, the maximum platform supported MoFRR routes are 1024.

The longest-prefix match route is displayed depending on the provided source and group addresses. The command does not display any useful output if only RSP is specified or if no location is specified.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show mfib hardware route summary location 0/1/cpu0` command:

```
RP/0/RSP0/CPU0:router# show mfib hardware route summary location 0/1/cpu0
```
LC Type: Trident
H/W IP Multicast Forwarding Information Base Summary
No. of (*,G) routes = 5
No. of (S,G) routes = 10
RP/0/RSP0/CPU0:router# show mfib hardware route summary location 0/0/CPU0

LC Type: Trident
H/W IP Multicast Forwarding Information Base Summary
No. of (*,G) routes = 6
No. of (S,G) routes = 5
No. of (S,G) MoFRR routes = 0, Maximum supported MoFRR routes = 1024
RP/0/RSP0/CPU0:router# show mfib hardware route summary location 0/4/cPU0

LC Type: A9K-SIP-700
Hardware IP Multicast Forwarding Information Base Route Summary
Number of hardware (*, G) routes = 6
Number of hardware (S, G) routes = 1
Number of hardware route-interfaces = 4
Number of hardware Rx adjacencies = 7
Number of hardware Tx adjacencies = 3
Number of ref to decap adjacency = 0
Mvpn master LC status = False
If there is no MoFRR configured in the platform:

RP/0/RSP0/CPU0:router# show mfib hardware route summary location 0/0/CPU0

LC Type: Trident
H/W IP Multicast Forwarding Information Base Summary
No. of (*,G) routes = 6
No. of (S,G) routes = 5
No. of (S,G) MoFRR routes = 0, Maximum supported MoFRR routes = 1024
This table describes the significant fields shown in the display.

Table 6: show mfib hardware route summary Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of (*,G) routes</td>
<td>Number of (*,G) routes installed in hardware.</td>
</tr>
<tr>
<td>No. of (S,G) routes</td>
<td>Number of (S,G) routes installed in hardware.</td>
</tr>
<tr>
<td>No. of (S,G) MoFRR routes</td>
<td>Number of MoFRR (S,G) routes installed in hardware.</td>
</tr>
<tr>
<td>Maximum supported MoFRR routes</td>
<td>Maximum number of MoFRR routes supported in hardware.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib hardware route</td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB)</td>
</tr>
<tr>
<td>accept-bitmap, on page 75</td>
<td>information for the interface list that accepts bidirectional routes.</td>
</tr>
<tr>
<td>show mfib hardware route mofrr,</td>
<td>Displays the platform-specific Multicast Forwarding Information</td>
</tr>
<tr>
<td>on page 84</td>
<td>Base (MFIB) information for the MoFRR (multicast only fast reroute)-</td>
</tr>
<tr>
<td></td>
<td>enabled list stored in the hardware.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>show mfib hardware route olist</code>, on page 90</td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information in the output interface list (olist) stored in the hardware.</td>
</tr>
<tr>
<td><code>show mfib hardware route statistics</code>, on page 100</td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information for the packet and byte counters for each route.</td>
</tr>
<tr>
<td><code>show mfib route</code>, on page 115</td>
<td>Displays route entries in the Multicast Forwarding Information Base (MFIB).</td>
</tr>
</tbody>
</table>
show mfib hardware table

To display the platform-specific multicast table information for the Multicast Forwarding Information Base (MFIB) in the hardware, use the `show mfib hardware table` command in EXEC mode.

```
show mfib [vrf vrf-name] [ipv4|ipv6] hardware table [detail] [location node-id]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>detail</td>
<td>(Optional) Displays detailed platform-specific multicast table information.</td>
</tr>
<tr>
<td>location node-id</td>
<td>(Optional) Specifies the MFIB location.</td>
</tr>
</tbody>
</table>

### Command Default
IPv4 addressing is the default.

### Command Modes
EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.9.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

**Note**
The command does not display any useful output if only RSP is specified or if no location is specified.

### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

### Examples

The following example shows a sample output of the `show mfib hardware table` command:

```
RP/0/RSP0/CPU0:router# show mfib hardware table detail location 0/1/CPU0
LC Type: Trident
```
This table describes the significant fields shown in the display.

### Table 7: `show mfib hardware table` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>Specifies the network processor.</td>
</tr>
<tr>
<td>MNP</td>
<td>Specifies the master network processor.</td>
</tr>
<tr>
<td>SW OC</td>
<td>Specifies the software OLIST count.</td>
</tr>
<tr>
<td>TID</td>
<td>Specifies the Table ID.</td>
</tr>
</tbody>
</table>
show mfib interface

To display interface-related information used during software multicast switching in the Multicast Forwarding Information Base (MFIB) process, use the **show mfib interface** command in EXEC mode.

```
show mfib [vrf vrf-name] ipv4 interface [type interface-path-id] [detail] route [location node-id]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>vrf vrf-name</strong></td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td><strong>ipv4</strong></td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td><strong>type</strong></td>
<td>(Optional) Interface type. For more information, use the question mark (?) online help function.</td>
</tr>
<tr>
<td><strong>interface-path-id</strong></td>
<td>(Optional) Physical interface or virtual interface.</td>
</tr>
<tr>
<td><strong>detail</strong></td>
<td>(Optional) Specifies detailed information for packet statistics on interfaces.</td>
</tr>
<tr>
<td><strong>route</strong></td>
<td>(Optional) Specifies a list of routes associated with the interface. This option is available if an interface <strong>type</strong> and <strong>instance</strong> are specified.</td>
</tr>
<tr>
<td><strong>location node-id</strong></td>
<td>(Optional) Specifies packet statistics associated with an interface of the designated node.</td>
</tr>
</tbody>
</table>

### Command Default

IPv4 addressing is the default.

### Command Modes

EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

The **show mfib interface** command displays counters for the number of packets and bytes that are handled by software switching. Counters for packets processed by hardware are displayed by the appropriate **show mfib hardware** command.
Examples

The following is sample output from the `show mfib interface` command for the multicast route on node 0/2/CPU0 that is associated with the Gigabit Ethernet interface 0/2/0/2:

```
RP/0/RSP0/CPU0:router# show mfib interface GigE 0/2/0/2 location 0/2/CPU0
Interface : GigE0/2/0/2 (Enabled)
Mcast pkts in : 5839, Mcast pkts out : 0 TTL Threshold : 0 Ref Count : 18
```

The following is sample output from the `show mfib interface` command with the `detail` and `location` keywords specified:

```
RP/0/RSP0/CPU0:router# show mfib interface detail location 0/2/CPU0
Interface : FINT0/2/CPU0 [0x3000000] (Disabled) PHYSICAL Create Unknown Mcast pkts in: 0, Mcast pkts out: 0 TTL Threshold : 0, VRF ID: 0x60000000, Multicast Adjacency Ref Count: 2, Route Count: 0, Handle: 0x3000000 Primary address : 0.0.0.0/32 Secondary address : 0.0.0.0/32
Interface : GigE0/2/0/2 [0x3000900] (Enabled) PHYSICAL Create Rcvd Mcast pkts in: 5844, Mcast pkts out: 0 TTL Threshold : 0, VRF ID: 0x60000000, Multicast Adjacency Ref Count: 18, Route Count: 15, Handle: 0x3000900 Primary address : 112.112.112.203/24 Secondary address : 0.0.0.0/32
```

This table describes the significant fields shown in the display.

### Table 8: `show mfib interface` Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>Interface name. Enabled if the interface is configured for multicast routing. The word “PHYSICAL” is displayed if the interface is a nonvirtual interface.</td>
</tr>
<tr>
<td>Mcast pkts in</td>
<td>Number of incoming multicast packets entering the interface during software switching.</td>
</tr>
<tr>
<td>Mcast pkts out</td>
<td>Number of outgoing multicast packets exiting the interface during software switching.</td>
</tr>
<tr>
<td>TTL Threshold</td>
<td>Number of multicast packets that reach the configured multicast time-to-live threshold.</td>
</tr>
<tr>
<td>VRF ID</td>
<td>VPN Routing and Forwarding instance ID.</td>
</tr>
<tr>
<td>Ref Count</td>
<td>Number of references to this interface structure in the MFIB process.</td>
</tr>
<tr>
<td>Primary address</td>
<td>Primary IP address of the interface.</td>
</tr>
</tbody>
</table>
### Field

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary address</td>
<td>Secondary IP address of the interface.</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib hardware interface, on page 63</td>
<td>Displays hardware switching interface information for the Multicast Forwarding Information Base (MFIB) process.</td>
</tr>
</tbody>
</table>
show mfib nsf

To display the state of a nonstop forwarding (NSF) operation for the Multicast Forwarding Information Base (MFIB) line cards, use the `show mfib nsf` command in EXEC mode.

```
show mfib [ipv4] nsf [location node-id]
```

**Syntax Description**

- `ipv4` (Optional) Specifies IPv4 address prefixes.
- `location node-id` (Optional) Specifies the MFIB NSF designated node.

**Command Default**
IPv4 addressing is the default.

**Command Modes**
EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show mfib nsf` command displays the current multicast NSF state for the MFIB process contained on all line cards and route processors (RPs) in the router.

For multicast NSF, the state may be one of the following:

- **Normal**—Normal operation: The MFIBs in the card contain only up-to-date MFIB entries.
- **Boot Card Booting**—Card is initializing and has not yet determined its NSF state.
- **Not Forwarding**—Multicast Forwarding Disabled: Multicast routing failed to recover from a failure-induced NSF state prior to the MFIB NSF timeout.
- **Non-stop Forwarding Activated**—Multicast NSF active: The router is operating in NSF mode while attempting to recover from a control-plane failure. In this mode, data is forwarded based on MFIB entries that are either updated by the recovered Multicast Routing Information Base (MRIB), or MFIB entries that were marked stale when NSF mode began. The times remaining until multicast NSF and multicast-unicast NSF expiration are displayed.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>
Examples

The following is sample output from the `show mfib nsf` command:

```
RP/0/RSP0/CPU0:router# show mfib nsf
IP MFWD Non-Stop Forwarding Status:
 NSF Lifetime: 00:15:00
On node 0/1/CPU0 :
 Multicast routing state: Non-Stop Forwarding is activated
 NSF Time Remaining: 00:14:54
On node 0/3/CPU0 :
 Multicast routing state: Non-Stop Forwarding is activated
 NSF Time Remaining: 00:14:54
On node 0/4/CPU0 :
 Multicast routing state: Non-Stop Forwarding is activated
 NSF Time Remaining: 00:14:53
On node 0/6/CPU0 :
 Multicast routing state: Non-Stop Forwarding is activated
 NSF Time Remaining: 00:14:53
```

This table describes the significant fields shown in the display.

### Table 9: show mfib nsf Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP MFWD Non-Stop Forwarding Status</td>
<td>MFIB NSF status of each node in the system: booting, normal, not forwarding, or activated.</td>
</tr>
<tr>
<td>NSF Time Remaining</td>
<td>If MSB NSF is activated, the time remaining until NSF fails and all routes are deleted displays. Before timeout, MRIB signals that NSF (in the control plane) is finished and new, updated routes are populated in the MFIB (which makes the transition to Normal status).</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsf lifetime (IGMP)</td>
<td>Configures the maximum time for the NSF timeout value under IGMP.</td>
</tr>
<tr>
<td>nsf (multicast), on page 48</td>
<td>Configures the NSF capability for the multicast routing system.</td>
</tr>
<tr>
<td>nsf lifetime (PIM)</td>
<td>Configures the NSF timeout value for the PIM process.</td>
</tr>
<tr>
<td>show igmp nsf</td>
<td>Displays the state of NSF operation in IGMP.</td>
</tr>
<tr>
<td>show mrib nsf, on page 133</td>
<td>Displays the state of NSF operation in the MRIB.</td>
</tr>
<tr>
<td>Command</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td>show pim nsf</td>
<td>Displays the state of NSF operation for PIM.</td>
</tr>
</tbody>
</table>
**show mfib route**

To display route entries in the Multicast Forwarding Information Base (MFIB), use the `show mfib route` command in EXEC mode.

```
show mfib [vrf vrf-name] ipv4 route [rate] *[source-IP-address] group-IP-address/prefix-length| detail| summary| location node-id]
```

**Syntax Description**

* (Optional) Display shared tree entries.

`source-IP-address` (Optional) IP address or hostname of the multicast route source. Format is:

```
A.B.C.D
```

`group-IP-address` (Optional) IP address or hostname of the multicast group. Format is:

```
A.B.C.D
```

`/prefix-length` (Optional) Group IP prefix length of the multicast group. A decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). Format is:

```
A.B.C.D/length
```

`vrf vrf-name` (Optional) Specifies a VPN routing and forwarding (VRF) instance.

`ipv4` (Optional) Specifies IPv4 address prefixes.

`ipv6` (Optional) Specifies IPv6 address prefixes.

`detail` (Optional) Specifies detailed route information.

`location node-id` (Optional) Specifies an MFIB-designated node.

`rate` (Optional) Displays individual (S, G) rates.

`sources-only` (Optional) Restricts display of any shared-tree entries.

`summary` (Optional) Displays a brief list of the routing database.

`tech-support` (Optional) Displays technical support information.

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC
Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

All entries in the MFIB table are derived from the Multicast Routing Information Base (MRIB). The flags have the same connotation as in the MRIB. The flags determine the forwarding and signaling behavior according to a set of forwarding rules for multicast packets. In addition to the list of interfaces and flags, each route entry shows various counters. Byte count is the number of total bytes forwarded. Packet count is the number of packets received for this entry.

The **show mfib counter** command displays global counters independent of the routes.

This command displays counters for the number of packets and bytes that are handled by software switching. Counters for packets processed by hardware are displayed by the appropriate **show mfib hardware** command.

The command displays the cumulative rates per route for all line cards in the Multicast Forwarding Information Base (MFIB) table when the **rate** keyword is used with the source and group IP addresses.

The show mfib route rate command is not supported on interfaces such as bundle virtual interfaces and Bridge Group virtual interfaces (BVIs).

The command displays the rate per route for one line card in Multicast Forwarding Information Base (MFIB) table when the **statistics** keyword is used.

Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following is sample output from the **show mfib route** command with the **location** keyword specified (the output fields are described in the header):

RE/0/RSP0/CPU0:router# show mfib route location 0/1/CPU0

IP Multicast Forwarding Information Base

Entry flags: C - Directly-Connected Check, S - Signal, D - Drop, IE - Inherit Encap, IF - Inherit From, MA - MDT Address, ME - MDT Encap, MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT Interface handle, CD - Conditional Decap, DT - MDT Decap True

Interface flags: F - Forward, A - Accept, IC - Internal Copy, NS - Negate Signal, DP - Don't Preserve, SP - Signal Present, EG - Egress, EI - Encapsulation Interface, MI - MDT Interface

Forwarding Counts: Packets in/Packets out/Bytes out

Failure Counts: RPF / TTL / Empty Olist / Encap RL / Other

{*,224.0.0.0/24}, Flags: D
Up: 02:16:52
Last Used: never
SW Forwarding Counts: 0/0/0
SW Failure Counts: 0/0/0/0/0

{*,224.0.1.39}, Flags: S
Up: 02:16:52
The following is sample output from the `show mfib route` command with the `summary` and `location` keywords specified:

```
RP/0/RSP0/CPU0:router# show mfib route summary location 0/0/CPU0
IP Multicast Forwarding Information Base Summary for VRF default
No. of (*,G) routes = 5
No. of (S,G) routes = 1
```

The following is sample output from the `show mfib route` command with the `statistics` and `location` keywords specified. If the hardware counters show N/A, it means no hardware statistic blocks were assigned to the route. However, routes may show that both hardware and software statistic blocks are assigned. The output fields are described in the header.

```
RP/0/RSP0/CPU0:router# show mfib route statistics location 0/0/CPU0
IP Multicast Forwarding Information Base
Entry flags: C - Directly-Connected Check, S - Signal, D - Drop, IA - Inherit Accept, IF - Inherit From, MA - MDT Address, ME - MDT Encap, MD - MDT Decap, MT - MDT Threshold Crossed, MI - MDT Interface handle, CD - Conditional Decap, DT - MDT Decap True
Interface flags: F - Forward, A - Accept, IC - Internal Copy, NS - Negate Signal, DP - Don't Preserve, SP - Signal Present, EG - Egress, EI - Encapsulation Interface, MI - MDT Interface
SW/HW Forwarding Counts: Packets in/Packets out/Bytes out
SW Failure Counts: RPF / TTL / Empty Olist / Encap RL / Other
HW Drop Counts: Ingress / Egress
HW Forwarding Rates: bps In/pps In/bps Out/pps Out
```

```
(*,224.0.0.0/24), Flags: D
Up: 02:21:15
Last Used: never
SW Forwarding Counts: 0/0/0
SW Failure Counts: 0/0/0
HW Forwarding Counts: 0/0/0
HW Drop Counts: 0/0
HW Forwarding Rates: N/A /N/A /N/A /N/A
```
show mfib route

RP/0/RSP0/CPU0:router# show mfib route

IP Multicast Forwarding Information Base
Entry flags: C - Directly-Connected Check, S - Signal, D - Drop,
IA - Inherit Accept, IF - Inherit From, MA - MDT Address,
ME - MDT Encap, MD - MDT Decap, NT - MDT Threshold Crossed,
MH - MDT Interface handle, CD - Conditional Decap,
DT - MDT Decap True, EX - Extranet
MoFE - MoFRR Enabled, MoFS - MoFRR State
Interface flags: F - Forward, A - Accept, IC - Internal Copy,
NS - Negate Signal, DP - Don’t Preserve, SP - Signal Present,
EG - Egress, EI - Encapsulation Interface, MI - MDT Interface,
EX - Extranet, AZ - Secondary Accept
Forwarding/Replication Counts: Packets in/Packets out/Bytes out
Failure Counts: RPF / TTL / Empty Olist / Encap RL / Other
(20.20.20.1,225.0.0.1), Flags: MoFE MoFS
Up: 03:22:30
Last Used: never
SW Forwarding Counts: 0/0/0
SW Replication Counts: 0/0/0
SW Failure Counts: 0/0/0/0
GigabitEthernet0/0/0/8 Flags: A, Up:03:22:30
GigabitEthernet0/0/0/18 Flags: A2, Up:03:22:30
GigabitEthernet0/0/0/28 Flags: NS, Up:03:22:30

(20.20.20.1,225.0.0.2), Flags: MoFE MoFS
Up: 03:22:30
Last Used: never
SW Forwarding Counts: 0/0/0
SW Replication Counts: 0/0/0
SW Failure Counts: 0/0/0/0
GigabitEthernet0/0/0/8 Flags: A, Up:03:22:30
GigabitEthernet0/0/0/18 Flags: A2, Up:03:22:30
GigabitEthernet0/0/0/28 Flags: NS, Up:03:22:30

In the above command, A flag represents the primary RPF of the MoFRR route, and A2 flag represents the backup RPF of the MoFRR route.

RP/0/RSP0/CPU0# show mfib route detail

IP Multicast Forwarding Information Base
Entry flags: C - Directly-Connected Check, S - Signal, D - Drop, IA - Inherit Accept, IP - Inherit From, MA - MDT Address, ME - MDT Encap, MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle, CD - Conditional Decap, DT - MDT Decap True, EX - Extranet
MoFE - MoFRR Enabled, MoFS - MoFRR State
Interface flags: F - Forward, A - Accept, IC - Internal Copy, NS - Negate Signal, DP - Don't Preserve, SP - Signal Present, EG - Egress, EI - Encapsulation Interface, MI - MDT Interface, EX - Extranet, A2 - Secondary Accept
Forwarding/Replication Counts: Packets in/Packets out/Bytes out
Failure Counts: RPF / TTL / Empty Olist / Encap RL / Other
(20.20.20.1,225.0.0.1), Flags: MoFE MoFS
Up: 03:25:31
Last Used: never
SW Forwarding Counts: 0/0/0
SW Replication Counts: 0/0/0
SW Failure Counts: 0/0/0/0
Route ver: 0x4a13
MVPN Info :-
  MDT Handle: 0x0, MDT Probe:N [N], Rate:N, Acc:N
  MDT SW Ingress Encap V4/V6, Egress decap: 0 / 0, 0
  MoFRR State: Inactive Sequence No 1
GigabitEthernet0/0/0/8 Flags: A, Up:03:25:31
GigabitEthernet0/0/0/18 Flags: A2, Up:03:25:31
GigabitEthernet0/0/0/28 Flags: NS, Up:03:25:31
(20.20.20.1,225.0.0.2), Flags: MoFE MoFS
Up: 03:25:31
Last Used: never
SW Forwarding Counts: 0/0/0
SW Replication Counts: 0/0/0
SW Failure Counts: 0/0/0/0
Route ver: 0x443e
MVPN Info :-
  MDT Handle: 0x0, MDT Probe:N [N], Rate:N, Acc:N
  MDT SW Ingress Encap V4/V6, Egress decap: 0 / 0, 0
  MoFRR State: Inactive Sequence No 1
GigabitEthernet0/0/0/8 Flags: A, Up:03:25:31
GigabitEthernet0/0/0/18 Flags: A2, Up:03:25:31
GigabitEthernet0/0/0/28 Flags: NS, Up:03:25:31

The detail option illustrates the MoFRR state of each MoFRR route. At any moment, only one RPF forwards the traffic to the egress. The inactive state means the primary RPF forwards the traffic to the egress. The active state means that the backup RPF forwards the traffic to the egress. The sequence number reflects the number of switchovers of the MoFRR route.
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mfib counter, on page 59</code></td>
<td>Displays Multicast Forwarding Information Base (MFIB) counter statistics for packets that have dropped.</td>
</tr>
<tr>
<td><code>show mfib hardware route accept-bitmap, on page 75</code></td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information for the interface list that accepts bidirectional routes.</td>
</tr>
<tr>
<td><code>show mfib hardware route olist, on page 90</code></td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information in the output interface list (olist) stored in the hardware.</td>
</tr>
<tr>
<td><code>show mfib hardware route statistics, on page 100</code></td>
<td>Displays platform-specific Multicast Forwarding Information Base (MFIB) information for the packet and byte counters for each route.</td>
</tr>
<tr>
<td><code>show mfib interface, on page 109</code></td>
<td>Displays interface-related information used during software multicast switching in the Multicast Forwarding Information Base (MFIB) process.</td>
</tr>
<tr>
<td><code>show mrrib route, on page 137</code></td>
<td>Displays all entries in the Multicast Routing Information Base (MRIB).</td>
</tr>
</tbody>
</table>
show mfib table-info

To display Multicast Forwarding Information Base (MFIB) table information, use the `show mfib table-info` command in EXEC mode.

`show mfib [ipv4| ipv6] table-info {table-id| vrf-name} [local| remote] [location node-id]`

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>table-id</td>
<td>Specifies the table identifier. Range is 0 to 4294967295.</td>
</tr>
<tr>
<td>vrf-name</td>
<td>Specifies the VRF name.</td>
</tr>
<tr>
<td>local</td>
<td>Specifies local tables only.</td>
</tr>
<tr>
<td>remote</td>
<td>Specifies remote tables only.</td>
</tr>
<tr>
<td>location</td>
<td>(Optional) Specifies MFIB connections associated with an interface of the</td>
</tr>
<tr>
<td></td>
<td>designated node.</td>
</tr>
</tbody>
</table>

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show mfib table-info` command:

```
RP/0/RSP0/CPU0:router# show mfib table-info table-id location 0/0/CPU0
```
show mfib table-info

Table Name : vrf15
VRid/TID/VID : 0x0 / 0xe000000f / 0x6000000f
Table type : TBL_TYPE_NAME_VID
Active/Linked : Y / Y
Prev Table ID : 0x0
Location : Local
Local ifccount : 2
Child routes : (5.5.5.5, 225.101.1.15/32)
Default MDT Handle : 0x0 (Ha0x0)
MDT Master LC : Y
Loopback (Encap Src) : 0x9000180 (Loopback0)
Local EG intf cnt : 508
Data MDT : Acl - (-), All vrf routes N, 0 Kbps

This table describes the significant fields shown in the display.

Table 10: show mfib table-info Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table Name</td>
<td>Name of the MFIB table.</td>
</tr>
<tr>
<td>VRid/TID/VID</td>
<td>Table identifiers.</td>
</tr>
<tr>
<td>Table type</td>
<td>Type of MFIB table.</td>
</tr>
<tr>
<td>Active/Linked</td>
<td>Table is active and linked.</td>
</tr>
<tr>
<td>Location</td>
<td>Location of the MFIB table.</td>
</tr>
<tr>
<td>Local ifccount</td>
<td>Local interface count.</td>
</tr>
<tr>
<td>Child routes</td>
<td>Child routes shows the number of extranet routes in receiver VRFs that reference this source VRF.</td>
</tr>
<tr>
<td>Default MDT Encap</td>
<td>Default MDT encapsulation.</td>
</tr>
<tr>
<td>Default MDT Handle</td>
<td>Default MDT interface handle for this VRF.</td>
</tr>
<tr>
<td>MDT Master LC</td>
<td>Field contains &quot;Y&quot; if this line card is a master line card for this VRF.</td>
</tr>
<tr>
<td>Loopback (Encap Src)</td>
<td>Loopback (encapsulation source).</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Local EG intf cnt</td>
<td>Shows the number of local egress interfaces for this VRF and location.</td>
</tr>
<tr>
<td>Data MDT</td>
<td>Routes for which multicast data for a multicast distribution tree (MDT) was triggered.</td>
</tr>
</tbody>
</table>
show mrib client

To display the state of the Multicast Routing Information Base (MRIB) client connections, use the `show mrib client` command in the appropriate mode.

```
show mrib [vrf vrf-name] ipv4 [filter] [client-name]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>ipv6</td>
<td>(Optional) Specifies IPv6 address prefixes.</td>
</tr>
<tr>
<td>filter</td>
<td>(Optional) Displays route and interface level flag changes that various MRIB clients have registered and shows what flags are owned by the MRIB clients.</td>
</tr>
<tr>
<td>client-name</td>
<td>(Optional) Name of a multicast routing protocol that acts as a client of MRIB, such as Protocol Independent Multicast (PIM) or Internet Group Management Protocol (IGMP).</td>
</tr>
</tbody>
</table>

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show mrib client` command using the `filter` option:

```
RP/0/RSP0/CPU0:router# show mrib client filter
IP MRIB client-connections
igmp:417957 (connection id 0)
```
ownership filter:
interface attributes: II ID LI LD
groups:
  include 0.0.0.0/0
interfaces:
  include All
pim:417959 (connection id 1)
interest filter:
  entry attributes: E
  interface attributes: SP II ID LI LD
  groups:
    include 0.0.0.0/0
    interfaces:
      include All
ownership filter:
  entry attributes: L S C IA IF D
  interface attributes: F A IC NS DP DI EI
  groups:
    include 0.0.0.0/0
    interfaces:
      include All
ownership filter:
  entry attributes: L S C IA IF D
  interface attributes: F A IC NS DP DI EI
  groups:
    include 0.0.0.0/0
    interfaces:
      include All
bcdl_agent:1 (connection id 2)
interest filter:
  entry attributes: S C IA IF D
  interface attributes: F A IC NS DP SP EI
  groups:
    include 0.0.0.0/0
    interfaces:
      include All
ownership filter:
  groups:
    include 0.0.0.0/0
    interfaces:
      include All

This table describes the significant fields shown in the display.

Table 11: show mrib client Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>igmp</td>
<td>Name of the client.</td>
</tr>
<tr>
<td>417957</td>
<td>Personal identifier (PID) or a unique ID assigned by MRIB.</td>
</tr>
<tr>
<td>(connection id 0)</td>
<td>Unique client connection identifier.</td>
</tr>
<tr>
<td>ownership filter:</td>
<td>Specifies all the route entry and interface-level flags that are owned by</td>
</tr>
<tr>
<td></td>
<td>the client. As the owner of the flag, only the client can add or remove</td>
</tr>
<tr>
<td></td>
<td>the flag. For example, only the Internet Group Management Protocol (IGMP)</td>
</tr>
<tr>
<td></td>
<td>client can add the II flag on an interface. MRIB does not allow a non-</td>
</tr>
<tr>
<td></td>
<td>owner to register or modify the same flag.</td>
</tr>
</tbody>
</table>
Groups and interfaces registered by the clients consisting of two lists. One is an include list (items for which the client requests to be notified.) The use of "All" implies all interfaces and 0.0.0.0/0 to indicate all groups. Not shown in this example is the exclude list. This list contains items for which the client requests not to be notified when modifications occur.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>groups: include 0.0.0.0/0</td>
<td>Groups and interfaces registered by the clients consisting of two lists.</td>
</tr>
<tr>
<td>interfaces: include All</td>
<td>One is an include list (items for which the client requests to be notified.)</td>
</tr>
<tr>
<td></td>
<td>The use of &quot;All&quot; implies all interfaces and 0.0.0.0/0 to indicate all groups.</td>
</tr>
</tbody>
</table>

Interface-level flags set on the interface belong to a route.

Interface attributes:
II ID LI LD

Interests filter:
Specifies all the flags, groups, and interfaces from which the client requests information. When a flag of interest for a client is modified, the client is notified.

Entry attributes:
S C IA IF D

Entry-level flags that are set on the route.

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mfib nsf, on page 112</td>
<td>Displays the state of a nonstop forwarding (NSF) operation for the Multicast Forwarding Information Base (MFIB) line cards.</td>
</tr>
<tr>
<td>show mfib route, on page 115</td>
<td>Displays route entries in the Multicast Forwarding Information Base (MFIB).</td>
</tr>
<tr>
<td>show mrib nsf, on page 133</td>
<td>Displays the state of nonstop forwarding (NSF) operation in the Multicast Routing Information Base (MRIB).</td>
</tr>
</tbody>
</table>
**show mrib bvi**

To display the Bridge Virtual Interface (BVI) details in the Multicast Routing Information Base (MRIB), use the `show mrib bvi` command in EXEC mode.

```
show mrib bvi[interface| route]bvi bvi_number
```

<table>
<thead>
<tr>
<th><strong>Syntax Description</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>interface</strong></td>
<td>MRIB BVI interface.</td>
</tr>
<tr>
<td><strong>route</strong></td>
<td>BVI route entry.</td>
</tr>
<tr>
<td><strong>bvi_number</strong></td>
<td>BVI interface number. Range is from 1 to 65535.</td>
</tr>
</tbody>
</table>

| **Command Default**    | None                  |
| **Command Modes**      | EXEC                  |

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 5.1.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

<table>
<thead>
<tr>
<th><strong>Task ID</strong></th>
<th><strong>Operation</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

This example shows how to run the `show mrib bvi` command:

```
RP/0/RSP0/CPU0:router # show mrib bvi route bvi 200
```
show mrib mpls forwarding

To display the Multicast Routing Information Base (MRIB) MPLS forwarding table information of all tunnels, use the `show mrib mpls forwarding` command in EXEC mode.

```
show mrib mpls forwarding [detail | labels | s2l | source | summary | tunnels]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>Provides the detail information of each tunnel.</td>
</tr>
<tr>
<td><code>labels</code></td>
<td>Filters based on label.</td>
</tr>
<tr>
<td><code>s2l</code></td>
<td>Filters based on s2l.</td>
</tr>
<tr>
<td><code>source</code></td>
<td>Filters based on source PE address.</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>Displays the summary output of entries.</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.1.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following is a sample output from the `show mrib mpls forwarding` command:

```
RP/0/RSP0/CPU0:router# show mrib mpls forwarding
LSP information (RSVP-TE) :
 Name: tunnel-mte26 Role: Head State: binding
 TUNNEL-ID: 26 P2MP-ID: 26 LSP-ID: 10012
```
Source Address: 192.1.1.1  Extended-ID: 192.1.1.1(0xc0010101)

Incoming Label : (16008)
Transported Protocol : IPv4
Explicit Null : IPv6 Explicit Null
IP lookup : enabled

Outsegment Info #1 [Head/Push]:
  Outgoing Label: 16008  Outgoing IF: GigabitEthernet0/0/0/5(P)  Outgoing Node ID: 0x1
  Nexthop: 192.14.1.44

LSP information (RSVP-TE) :
Name: tunnel-mte27  Role: Head  State: binding
TUNNEL-ID: 27  P2MP-ID: 27  LSP-ID: 10012
Source Address: 192.1.1.1  Extended-ID: 192.1.1.1(0xc0010101)

Incoming Label : (16007)
Transported Protocol : IPv4
Explicit Null : IPv6 Explicit Null
IP lookup : enabled
Platform information : FGID: 51075, 51076  frr_slotmask: 0x1

Outsegment Info #1 [Head/Push]:
  Outgoing Label: 16007  Outgoing IF: GigabitEthernet0/0/0/5(P)  Outgoing Node ID: 0x1
  Nexthop: 192.14.1.44

The following is a sample output from the `show mrib mpls forwarding` command with the detail keyword:

RP/0/RSP0/CPU0:router# show mrib mpls forwarding tunnel 27 detail

LSP information (RSVP-TE) :
Name: ------  Role: Head  State: binding
TUNNEL-ID: 27  P2MP-ID: 27  LSP-ID: 1002
Source Address: 192.1.1.1  Extended-ID: 192.1.1.1(0xc0010101)

Incoming Label : 16001
Transported Protocol : IPv4
Explicit Null : IPv6 Explicit Null
IP lookup : enabled
Platform information : FGID: 44045, 44046  frr_slotmask: 0x24

Outsegment Info #1 [Tail/Pop]:
  No info.
Outsegment Info #2 [Mid/Swap]:
  Outgoing Label: 16001  Outgoing IF: GigabitEthernet0/5/0/6(P)  Outgoing Node ID: 0x51
  Nexthop: 192.168.12.2
Outsegment Info #3 [Mid/Swap]:
  Outgoing Label: 16001  Outgoing IF: GigabitEthernet0/2/0/4(P)  Outgoing Node ID: 0x21
  Nexthop: 192.168.13.2

RP/0/RSP0/CPU0:router# show mrib mpls forwarding tunnel 26 detail

LSP information (RSVP-TE) :
Name: ------  Role: Tail
TUNNEL-ID: 26  P2MP-ID: 26  LSP-ID: 10012
Source Address: 192.1.1.1  Extended-ID: 192.1.1.1(0xc0010101)

Incoming Label : 16008
Transported Protocol : IPv4
Explicit Null : IPv6 Explicit Null
IP lookup : enabled
Platform information : FGID: 51082, 51083  frr_slotmask: 0x0
Outsegment Info #1 [Tail/Pop]:
  No info.
To display the Multicast Routing Information Base (MRIB) multicast groups to tunnels mappings, use the `show mrib mpls route` command in EXEC mode.

```
show mrib mpls route [interface| summary]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface</code></td>
<td>(Optional) Specify the type of interface.</td>
</tr>
<tr>
<td><code>summary</code></td>
<td>(Optional) Displays the summary information.</td>
</tr>
</tbody>
</table>

### Command Default

None

### Command Modes

EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.1.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

### Examples

This is a sample output from the `show mrib mpls route` command:

```
RP/0/RSP0/CPU0:router# show mrib mpls route

Tunnel Interface: tunnel-mte28
 (192.19.1.9, 239.232.2.1) (192.19.1.9, 239.232.2.2) (192.19.1.9, 239.232.2.3)
Tunnel Interface: tunnel-mte27
 (192.19.1.9, 239.232.1.1) (192.19.1.9, 239.232.1.2) (192.19.1.9, 239.232.1.3)
Tunnel Interface: tunnel-mte26
 (192.19.1.9, 239.232.0.1) (192.19.1.9, 239.232.0.2) (192.19.1.9, 239.232.0.3)
```
show mrib mpls traffic-eng fast-reroute

To display the Multicast Routing Information Base (MRIB) MPLS traffic engineering fast reroute information, use the `show mrib mpls traffic-eng fast-reroute` command in EXEC mode.

`show mrib mpls traffic-eng fast-reroute database {backup-interface| labels| role| state| summary}`

**Syntax Description**

<table>
<thead>
<tr>
<th>database</th>
<th>Displays the fast reroute database information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup-interface</td>
<td>(Optional) Filter based on backup outgoing interface</td>
</tr>
<tr>
<td>labels</td>
<td>(Optional) Filter based on incoming label</td>
</tr>
<tr>
<td>role</td>
<td>(Optional) Filter based on LSPs with specified role</td>
</tr>
<tr>
<td>state</td>
<td>(Optional) Filter based on LSPs with specified FRR (fast-reroute) state</td>
</tr>
<tr>
<td>summary</td>
<td>(Optional) Summary of total active and ready FRR states in MRIB</td>
</tr>
</tbody>
</table>

**Command Default**

None

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.1.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

This is a sample output from the `show mrib mpls traffic-eng fast-reroute` command:

```
RP/0/RSP0/CPU0:router# show mrib mpls traffic-eng fast-reroute database
LSP midpoint item frr information:
ExtTunId/TunId/P2MPId/LSPId In Lbl Out intf/Lbl FRR intf/Lbl Status
-- --------- --------- -------- ----- |
192.192.5.3/3001/3001/10002 16513 Te0/5/0:17028 tt21:17028 Ready
```
192.192.5.3/3002/3002/10002  16514  Te0/5/0/5:1048564  tt24:1048564  Ready
192.192.5.3/3003/3003/10002  16515  Te0/5/0/5:1048565  tt24:1048565  Ready
192.192.5.3/3004/3004/10002  16516  Te0/5/0/5:1048566  tt24:1048566  Ready
192.192.5.3/3005/3005/10002  16517  Te0/5/0/5:1048567  tt24:1048567  Ready
192.192.5.3/3006/3006/10002  16518  Te0/5/0/5:1048568  tt24:1048568  Ready
192.192.5.3/3007/3007/10002  16519  Te0/5/0/5:1048569  tt24:1048569  Ready
show mrib nsf

To display the state of nonstop forwarding (NSF) operation in the Multicast Routing Information Base (MRIB), use the `show mrib nsf` command in the appropriate mode.

show mrib ipv4 nsf

**Syntax Description**

| ipv4 | (Optional) Specifies IPv4 address prefixes. |

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The `show mrib nsf` command displays the current multicast NSF state for the MRIB. The state may be normal or activated for NSF. The activated state indicates that recovery is in progress due to a failure in MRIB or Protocol Independent Multicast (PIM). The total NSF timeout and time remaining are displayed until NSF expiration.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show mrib nsf` command:

```
RP/0/RSP0/CPU0:router# show mrib nsf
IF MRIB Non-Stop Forwarding Status:
Multicast routing state: Non-Stop Forwarding Activated
NSF Lifetime: 00:03:00
NSF Time Remaining: 00:01:40
This table describes the significant fields shown in the display.
```
Table 12: show mrib nsf Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast routing state</td>
<td>Multicast NSF status of the MRIB (Normal or NSF Activated).</td>
</tr>
<tr>
<td>NSF Lifetime</td>
<td>Timeout for MRIB NSF, computed as the maximum of the PIM and Internet Group Management Protocol (IGMP) NSF lifetimes, plus 60 seconds.</td>
</tr>
<tr>
<td>NSF Time Remaining</td>
<td>If MRIB NSF state is activated, the time remaining until MRIB reverts to Normal mode displays. Before this timeout, MRIB receives notifications from IGMP and PIM, triggering a successful end of NSF and cause the transition to normal state. If notifications are not received, the timer triggers a transition back to normal mode, causing new routes to download to MFIB and old routes to be deleted.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nsf (multicast), on page 48</td>
<td>Configures the NSF capability for the multicast routing system.</td>
</tr>
<tr>
<td>nsf lifetime (IGMP)</td>
<td>Configures the maximum time for the NSF timeout value under IGMP.</td>
</tr>
<tr>
<td>nsf lifetime (PIM)</td>
<td>Configures the NSF timeout value for the PIM process.</td>
</tr>
<tr>
<td>show igmp nsf</td>
<td>Displays the state of NSF operation in IGMP.</td>
</tr>
<tr>
<td>show mfib nsf</td>
<td>Displays the state of NSF operation in the MFIB line cards.</td>
</tr>
<tr>
<td>show pim nsf</td>
<td>Displays the state of NSF operation for PIM.</td>
</tr>
</tbody>
</table>
show mrib platform trace

To display platform-specific data for the Multicast Routing Information Base (MRIB), use the `show mrib` command in EXEC mode.

```
show mrib [vrf vrf-name] ipv4 platform trace [file| hexdump| last| reverse| stats| tailf| unique| verbose| wrapping] location[all| node-id]
```

### Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td>file</td>
<td>(Optional) Specifies the filename.</td>
</tr>
<tr>
<td>hexdump</td>
<td>(Optional) Displays the traces in hexadecimal form.</td>
</tr>
<tr>
<td>last</td>
<td>(Optional) Displays the last $n$ entries.</td>
</tr>
<tr>
<td>reverse</td>
<td>(Optional) Displays the traces in reverse order.</td>
</tr>
<tr>
<td>stats</td>
<td>(Optional) Displays statistics.</td>
</tr>
<tr>
<td>tailf</td>
<td>(Optional) Displays new traces as they are added.</td>
</tr>
<tr>
<td>unique</td>
<td>(Optional) Displays unique entries with counts.</td>
</tr>
<tr>
<td>verbose</td>
<td>(Optional) Displays internal debugging information.</td>
</tr>
<tr>
<td>wrapping</td>
<td>(Optional) Displays wrapping entries.</td>
</tr>
<tr>
<td>location node-id</td>
<td>(Optional) Specifies the location of the trace.</td>
</tr>
<tr>
<td>location all</td>
<td>(Optional) Specifies that the trace be performed for all locations.</td>
</tr>
</tbody>
</table>

### Command Default

IPv4 addressing is the default.

### Command Modes

EXEC

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference, Release 4.2.x
show mrib platform trace

Usage Guidelines

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

Examples

The following example shows a sample output of `show mrib platform trace` command:

```
RP/0/RSP0/CPU0:router#show mrib platform trace
2 wrapping entries (512 possible, 0 filtered, 2 total)
```
**show mrib route**

To display all entries in the Multicast Routing Information Base (MRIB), use the `show mrib route` command in the appropriate mode.

```
show mrib [vrf vrf-name] [ipv4|ipv6] [old-output] route [summary|outgoing-interface] [*|source-address] [group-address [/prefix-length]] [detail]
```

**Syntax Description**

- **vrf vrf-name** (Optional) Specifies a VPN routing and forwarding (VRF) instance.
- **ipv4** (Optional) Specifies IPv4 address prefixes.
- ***** (Optional) Displays shared tree entries.
- **source-address** (Optional) Source IP address or hostname of the MRIB route. Format is: `A.B.C.D` or `X:X::X`.
- **group-address** (Optional) Group IP address or hostname of the MRIB route. Format is: `A.B.C.D` or `X:X::X`.
- **/prefix-length** (Optional) Prefix length of the MRIB group address. A decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value. Format is: `A.B.C.D` or `X:X::X`.
- **outgoing-interface** (Optional) Displays the outgoing-interface information.
- **summary** (Optional) Displays a summary of the routing database.
- **detail** (Optional) Displays the routing database with the platform data.

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

Release 3.7.2 This command was introduced.

**Usage Guidelines**

Each line card has an individual Multicast Forwarding Information Base (MFIB) table. The MFIB table maintains a subset of entries and flags updated from MRIB. The flags determine the forwarding and signaling
behavior according to a set of forwarding rules for multicast packets. In addition to the list of interfaces and flags, each route entry shows various counters. Byte count is the number of total bytes forwarded. Packet count is the number of packets received for this entry.

The `show mfib counter, on page 59` command displays global counters independent of the routes.

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show mfib counter, on page 59</code></td>
<td>Displays MFIB counter statistics for packets that have dropped.</td>
</tr>
<tr>
<td><code>show mrib route-collapse, on page 139</code></td>
<td>Displays the contents of the MRIB route collapse database.</td>
</tr>
<tr>
<td><code>show mrib route, on page 115</code></td>
<td>Displays all entries in the MFIB table.</td>
</tr>
</tbody>
</table>
show mrib route-collapse

To display the contents of the Multicast Routing Information Base (MRIB) route-collapse database, use the `show mrib route-collapse` command in the appropriate mode.

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td><code>ipv4</code></td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
<tr>
<td><code>core-tree</code></td>
<td>(Optional) IPv4 Multicast Distribution Tree (MDT) group address.</td>
</tr>
</tbody>
</table>

**Command Default**
IPv4 addressing is the default.

**Command Modes**
EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show mrib route-collapse` command:

```
RP/0/RSP0/CPU0:router# show mrib route-collapse
226.1.1.1 TID: 0xe0000038 TLC TID: 0xe0000038
Customer route database count: 5
 (192.168.5.204,224.0.1.40/32)
 (*,226.226.226.226/32)
 (*.228.228.228.228/32)
 (192.168.113.17,228.228.228.228/32)
 (*.229.229.229.229/32)
Core route database count: 4
 (*.226.1.1.1/32)
 (192.168.5.201,226.1.1.1/32)
 (192.168.5.202,226.1.1.1/32)
 (192.168.5.204,226.1.1.1/32)
```
Core egress node database count: 1
  nodeid slot refcount
  0x20 0/2/CPU0 1

192.168.27.1  TID: 0xe0000039  TLC TID: 0xe0000039
Customer route database count: 1
  (192.168.113.33,227.227.227.227/32)
Core route database count: 3
  (*,227.27.27.1/32)
  (192.168.5.201,227.27.27.1/32)
  (192.168.5.202,227.27.27.1/32)
Core egress node database count: 1
  nodeid slot refcount
  0x20 0/2/CPU0 1

192.168.28.1  TID: 0xe000003a  TLC TID: 0xe000003a
Customer route database count: 2
  (192.168.5.204,224.0.1.40/32)
  (192.168.113.49,229.229.229.229/32)
Core route database count: 3
  (192.168.5.201,228.28.28.1/32)
  (192.168.5.202,228.28.28.1/32)
  (192.168.5.204,228.28.28.1/32)
Core egress node database count: 1
  nodeid slot refcount
  0x20 0/2/CPU0 1

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mrib route, on page 137</td>
<td>Displays all entries in the Multicast Routing Information Base (MRIB).</td>
</tr>
</tbody>
</table>
show mrib route outgoing-interface

To display the outgoing-interface information on the Multicast Routing Information Base (MRIB), use the `show mrib route outgoing-interface` command in the appropriate mode.

**show mrib route outgoing-interface [\* source-address] [group-address [/prefix-length]]**

**Syntax Description**

* (Optional) Displays shared tree entries.

A.B.C.D (Optional) Source IP address or hostname of the MRIB route. Format is: A.B.C.D

A.B.C.D (Optional) Group IP address or hostname of the MRIB route and the prefix length.

/prefix-length (Optional) Prefix length of the MRIB group address. A decimal value that indicates how many of the high-order contiguous bits of the address compose the prefix (the network portion of the address). A slash must precede the decimal value. Format is: A.B.C.D

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.9.0</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show mrib route outgoing-interface` command:

RP/0/RSP0/CPU0:router# show mrib route outgoing-interface
IP Multicast Routing Information Base
Entry flags: L - Domain-Local Source, E - External Source to the Domain, 
C - Directly-Connected Check, S - Signal, IA - Inherit Accept, 
IF - Inherit From, D - Drop, MA - MDT Address, ME - MDT Encap, 
MD - MDT Decap, MT - MDT Threshold Crossed, MH - MDT interface handle 
CD - Conditional Decap, MPLS - MPLS Decap, MF - MPLS Encap, EX - Extranet 
MoFE - MoFRR Enabled, MoFS - MoFRR State

(*,224.0.0.0/4), Up:6d10h, OIF count:0, flags: C
(*,224.0.0.0/24), Up:6d10h, OIF count:0, flags: D
(*,224.0.1.39), Up:6d10h, OIF count:3, flags: S
(10.1.1.1,224.0.1.39), Up:6d10h, OIF count:11, flags:
(10.2.2.2,224.0.1.39), Up:6d10h, OIF count:11, flags:
(10.3.3.3,224.0.1.39), Up:6d10h, OIF count:11, flags:
(10.4.4.4,224.0.1.39), Up:6d10h, OIF count:11, flags:
(10.5.5.5,224.0.1.39), Up:6d10h, OIF count:11, flags:
(10.6.6.6,224.0.1.39), Up:6d10h, OIF count:11, flags:
(10.7.7.7,224.0.1.39), Up:00:04:17, OIF count:11, flags:
(10.8.8.8,224.0.1.39), Up:6d10h, OIF count:11, flags:
(10.9.9.9,224.0.1.39), Up:6d10h, OIF count:11, flags:
(10.10.10.10,224.0.1.39), Up:6d10h, OIF count:11, flags:
(10.21.21.21,224.0.1.39), Up:6d10h, OIF count:11, flags:
(*,224.0.1.40), Up:6d10h, OIF count:2, flags: S
(10.1.1.1,224.0.1.40), Up:6d10h, OIF count:11, flags:
(10.2.2.2,224.0.1.40), Up:6d10h, OIF count:11, flags:
(10.6.6.6,224.0.1.40), Up:6d10h, OIF count:11, flags:
(10.13.3.3,224.0.1.40), Up:6d10h, OIF count:11, flags:
(10.14.8.4,224.0.1.40), Up:6d10h, OIF count:11, flags:
(10.21.21.21,224.0.1.40), Up:6d06h, OIF count:11, flags:
(10.23.3.3,224.0.1.40), Up:00:02:38, OIF count:11, flags:
(10.23.8.3,224.0.1.40), Up:00:02:38, OIF count:11, flags:
(10.34.8.3,224.0.1.40), Up:6d10h, OIF count:11, flags:
(*,225.0.0.0/8), Up:6d06h, OIF count:0, flags: C
(*,226.0.0.0/8), Up:6d06h, OIF count:0, flags: C
(*,228.0.0.0/24), Up:6d10h, OIF count:0, flags: D
(10.6.6.6,232.1.1.1), Up:6d10h, OIF count:3, flags:
(10.7.7.7,232.1.1.1), Up:6d10h, OIF count:2, flags:
(10.8.8.8,232.1.1.1), Up:6d10h, OIF count:2, flags:
(10.10.10.10,232.1.1.1), Up:6d10h, OIF count:2, flags:
(10.21.21.21,232.1.1.1), Up:6d06h, OIF count:3, flags:

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mrib route outgoing-interface</td>
<td>Displays all entries in the Multicast Routing Information Base (MRIB).</td>
</tr>
</tbody>
</table>
show mrib table-info

To display Multicast Routing Information Base (MRIB) table information, use the `show mrib table-info` command in the appropriate mode.

`show mrib [vrf vrf-name] ipv4 table-info`

**Syntax Description**

- `vrf vrf-name` (Optional) Specifies a VPN routing and forwarding (VRF) instance.
- `ipv4` (Optional) Specifies IPv4 address prefixes.

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show mrib table-info` command:

```
RP/0/RSP0/CPU0:router# show mrib vrf vrf101 table-info
VRF: default [tid 0xe0000000]
Registered Client:
lpm [ccbid: 0 cltid: 4485366]
plm [ccbid: 1 cltid: 4485368]
bcdl_agent [ccbid: 2 cltid: 1]
msdp [ccbid: 3 cltid: 8827135]
```
Table 13: show mrib table-info Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRF</td>
<td>Default VRF or a VRF configured for the purpose of an override in MVPN.</td>
</tr>
<tr>
<td>cltid</td>
<td>Client ID.</td>
</tr>
<tr>
<td>bcdl_agent</td>
<td>A process like igmp and pim, which is used to download routes to line card.</td>
</tr>
<tr>
<td>MDT handle</td>
<td>MDT interface handle for this VRF.</td>
</tr>
<tr>
<td>MDT group</td>
<td>Default MDT group associated with this VRF.</td>
</tr>
<tr>
<td>MDT source</td>
<td>Per-VRF MDT source information.</td>
</tr>
</tbody>
</table>

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show mrib tlc, on page 145</td>
<td>Displays the contents of the Multicast Routing Information Base (MRIB) table-line card (TLC) database.</td>
</tr>
</tbody>
</table>
show mrib tlc

To display the contents of the Multicast Routing Information Base (MRIB) table-line card (TLC) database, use the `show mrib tlc` command in the appropriate mode.

```
show mrib [vrf vrf-name] ipv4 tlc
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vrf vrf-name</td>
<td>(Optional) Specifies a VPN routing and forwarding (VRF) instance.</td>
</tr>
<tr>
<td>ipv4</td>
<td>(Optional) Specifies IPv4 address prefixes.</td>
</tr>
</tbody>
</table>

**Command Default**

IPv4 addressing is the default.

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
<td></td>
</tr>
</tbody>
</table>

**Examples**

The following is sample output from the `show mrib tlc` command:

```
RP/0/RSP0/CPU0:router# show mrib tlc
VRF: default [tid 0xe0000000]
Master LC slot: Not selected
Associated MDT group: 0
Forwarding LC node: 0
```

This table describes the significant fields shown in the display.

**Table 14: show msdp peer Field Descriptions**

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated MDT group</td>
<td>IP address of the MSDP peer.</td>
</tr>
</tbody>
</table>

Cisco ASR 9000 Series Aggregation Services Router Multicast Command Reference, Release 4.2.x
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master LC slot</td>
<td>Indicates whether the master LC slot has been selected.</td>
</tr>
<tr>
<td>Forwarding LC node</td>
<td>Autonomous system to which the peer belongs.</td>
</tr>
<tr>
<td>Associated MDT group</td>
<td>Indicates the number of associated MDT groups.</td>
</tr>
</tbody>
</table>

show mrib tlc
show mrib vrf vrf_name route

To display the detail routing DB with platform data information for multicast routing information base, use the `show mrib vrf vrf_name route` command in the EXEC mode.

`show mrib vrf vrf_name route ip_address detail`

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>detail</code></td>
<td>Displays routing DB with platform data.</td>
</tr>
<tr>
<td><code>ip_address</code></td>
<td>Specifies the group IP address.</td>
</tr>
</tbody>
</table>

**Command Default**

No default behavior or values

**Command Modes**

EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 4.2.1</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read</td>
</tr>
</tbody>
</table>

**Examples**

```
RP/0/RSP0/CPU0:router# show mrib vrf vrf1 route 232.1.1.1 detail
(192.1.1.2,232.1.1.1) Ver: 0x32b9 RPF nbr: 192.1.1.2 Flags: EID, PD: Slotmask: 0x0
MGID: 17754
Up: 12:35:50, Route node: 0x504f8df8
RPF-ID: 0, Encap-ID: 4, EPtr: 0x505463c4, Hd: 0x502df6f8, Cts: 1, 0, 0
Acc: 1 (MDT: 0), Fwd: 1 (0), SRD: (0,0), Encap-next: 0x0
Incoming Interface List
GigabitEthernet0/0/0/1.1 Flags: A, Up: 05:30:09, Ptrs: 0x502df438, 0x0
Outgoing Interface List
tunnel-mte1 Flags: F NS LI LVIF, Up: 12:35:50, Ptrs: 0x502df6f8, 0x0
LI add redist count: 2
```
**static-rpf**

To configure a static Reverse Path Forwarding (RPF) rule for a specified prefix mask, use the **static-rpf** command in an appropriate configuration mode. To return to the default behavior, use the **no** form of this command.

```
static-rpf prefix-address prefix-mask type path-id next-hop-address
no static-rpf
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix-address</td>
<td>IP address of a prefix for an address range.</td>
</tr>
<tr>
<td>prefix-mask</td>
<td>Prefix mask for an address range. Range is 0 to 32 for IPv4.</td>
</tr>
<tr>
<td>type</td>
<td>Interface type. For more information, use the question mark ( ? ) online help function.</td>
</tr>
<tr>
<td>interface-path-id</td>
<td>Physical interface or virtual interface.</td>
</tr>
<tr>
<td>next-hop-address</td>
<td>IP address for an RPF neighbor.</td>
</tr>
</tbody>
</table>

**Command Default**

A static RPF rule for a specified prefix mask is not configured.

**Command Modes**

Multicast routing address family ipv4 and ipv6 configuration
Multicast VRF configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The **static-rpf** command is used to configure incompatible topologies for unicast and multicast traffic. Use the **static-rpf** command to configure a static route to be used for RPF checking in Protocol Independent Multicast (PIM) instead of using the unicast routing table.
### Task ID

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

### Examples

The following example configures the static RPF rule for IP address 10.0.0.1:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# vrf green
RP/0/RSP0/CPU0:router(config-mcast)# static-rpf 10.0.0.1 32 GigE 0/0/5/0 10.1.1.1
```

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show pim context</td>
<td>Displays reverse path forwarding (RPF) table information configured for a VRF context.</td>
</tr>
</tbody>
</table>
**ttl-threshold (multicast)**

To configure the time-to-live (TTL) threshold for packets being forwarded out an interface, use the `ttl-threshold` command in the appropriate configuration mode. To return to the default behavior, use the `no` form of this command.

```
ttl-threshold ttl
no ttl-threshold ttl
```

**Syntax Description**

| `ttl` | Time to live value. Range is 1 to 255. |

**Command Default**

`ttl`: 0

**Command Modes**

- Multicast routing interface configuration
- Multicast routing VRF interface configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Only multicast packets with a TTL value greater than the threshold are forwarded out of the interface. The TTL threshold is compared to the TTL of the packet after it has been decremented by one and before being forwarded.

Configure the TTL threshold only on border routers.

**Note**

Do not confuse this command with the `ttl-threshold (MSDP)` command in router MSDP configuration mode that is used to confine the multicast data packet TTL to be sent by an Multicast Source Discovery Protocol (MSDP) Source-Active (SA) message.
Examples

The following example shows how to configure the TTL threshold to 23, which means that a multicast packet is dropped and not forwarded out of the GigE 0/1/0/0 interface:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# interface GigE 0/1/0/CPU0
RP/0/RSP0/CPU0:router(config-mcast-default-ipv4-if)# ttl-threshold 23
```

Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ttl-threshold (MSDP)</td>
<td>Limits which multicast data packets are sent in SA messages to an MSDP peer.</td>
</tr>
</tbody>
</table>
vrf (multicast)

To configure a virtual routing and forwarding (VRF) instance for a VPN table, use the vrf command in multicast routing configuration mode. To remove the VRF instance from the configuration file and restore the system to its default condition, use the no form of this command.

```
vrf vrf-name ipv4
no vrf vrf-name ipv4
```

**Syntax Description**

- **vrf-name**: Name of the VRF instance. The following names cannot be used: all, default, and global.
- **ipv4**: (Optional) Configures IPv4 address prefixes.

**Command Default**

No default behavior or values.

**Command Modes**

Multicast routing configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

A VRF instance is a collection of VPN routing and forwarding tables maintained at the provider edge (PE) router.

**Task ID**

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>multicast</td>
<td>read, write</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to configure a VRF instance and enter VRF configuration mode:

```
RP/0/RSP0/CPU0:router(config)# multicast-routing
RP/0/RSP0/CPU0:router(config-mcast)# vrf vrf_1
RP/0/RSP0/CPU0:router(config-mcast-vrf_1-ipv4)# mdt ?
```

data: Data MDT group configuration
default: MDT default group address
mtu: MDT mtu configuration
source: Interface used to set MDT source address
**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boundary, on page 15</td>
<td>Configures a boundary to keep multicast packets from being forwarded.</td>
</tr>
<tr>
<td>accounting per-prefix, on page 4</td>
<td>Enables per-prefix counters only in hardware.</td>
</tr>
<tr>
<td>interface (multicast), on page 28</td>
<td>Configures multicast interface properties.</td>
</tr>
<tr>
<td>log-traps, on page 34</td>
<td>Enables logging of trap events.</td>
</tr>
<tr>
<td>multipath, on page 47</td>
<td>Enables Protocol Independent Multicast (PIM) to divide the multicast load among several equal-cost paths.</td>
</tr>
<tr>
<td>rate-per-route, on page 52</td>
<td>Enables individual (source, group [S, G]) rate calculations.</td>
</tr>
<tr>
<td>ssm</td>
<td>Defines the Protocol Independent Multicast (PIM)-Source Specific Multicast (SSM) range of IP multicast addresses.</td>
</tr>
<tr>
<td>static-rpf, on page 148</td>
<td>Configures a static Reverse Path Forwarding (RPF) rule for a specified prefix mask.</td>
</tr>
</tbody>
</table>