
Implementing Routing Policy

A routing policy instructs the router to inspect routes, filter them, and potentially modify their attributes as
they are accepted from a peer, advertised to a peer, or redistributed from one routing protocol to another.

This module describes how routing protocols make decisions to advertise, aggregate, discard, distribute,
export, hold, import, redistribute and modify the routes based on configured routing policy.

The routing policy language (RPL) provides a single, straightforward language in which all routing policy
needs can be expressed. RPL was designed to support large-scale routing configurations. It greatly reduces
the redundancy inherent in previous routing policy configurationmethods. RPL streamlines the routing policy
configuration, reduces system resources required to store and process these configurations, and simplifies
troubleshooting.

For more information about routing policy on the Cisco IOS XR software and complete descriptions of the
routing policy commands listed in this module, see the Related Documents, on page 92 section of this module.
To locate documentation for other commands that might appear while performing a configuration task, search
online in the Cisco ASR 9000 Series Aggregation Services Router Commands Master List.

Note

Feature History for Implementing Routing Policy

ModificationRelease

This feature was introduced.Release 3.7.2

Parameterization was supported at all attach points.Release 3.9.0

The following features were added:

• Hierarchical Conditions

• Apply Condition Policies

Release 4.2.0

Implementing Routing Policy
1

ModificationRelease

The following features were introduced:

• Enhanced Prefix-length Manipulation.

• Nested Wildcard Apply Policy.

• Editing Routing Policy Language set elements Using XML.

• Support 'set' as a valid operator for the 'med' attribute at the bgp export and bgp import
attach points.

Release 4.2.1

The following features were introduced:

• VRF RPL Based Import Policy

• Flexible L3VPN Label Allocation

Release 4.3.1

• Prerequisites for Implementing Routing Policy, on page 2
• Restrictions for Implementing Routing Policy, on page 2
• Information About Implementing Routing Policy, on page 3
• How to Implement Routing Policy, on page 80
• Configuration Examples for Implementing Routing Policy, on page 84
• Additional References, on page 91

Prerequisites for Implementing Routing Policy
The following are prerequisites for implementing Routing Policy on Cisco IOS XR Software:

• You must be in a user group associated with a task group that includes the proper task IDs. The command
reference guides include the task IDs required for each command. If you suspect user group assignment
is preventing you from using a command, contact your AAA administrator for assistance.

• Border Gateway Protocol (BGP), integrated Intermediate System-to-Intermediate System (IS-IS), or
Open Shortest Path First (OSPF) must be configured in your network.

Restrictions for Implementing Routing Policy
These restrictions apply when working with Routing Policy Language implementation on Cisco IOS XR
software:

• An individual policy definition of up to 1000 statements are supported. The total number of statements
within a policy can be extended to 4000 statements using hierarchical policy constructs. However, this
limit is restricted with the use of apply statements.

• You cannot change the next hop address to an IPv6 address through RPL policy for a route that starts
from an IPv4 peer.

• When a policy that is attached directly or indirectly to an attach point needs to be modified, a single
commit operation cannot be performed when:

Implementing Routing Policy
2

Implementing Routing Policy
Prerequisites for Implementing Routing Policy

• Removing a set or policy referred by another policy that is attached to any attach point directly or
indirectly.

• Modifying the policy to remove the reference to the same set or policy that is getting removed.

The commit must be performed in two steps:

1. Modify the policy to remove the reference to the policy or set and then commit.

2. Remove the policy or set and commit.

• Default number of lines of config (both policies and sets) to be configured in the system is 65536 (64000).

• Default number of policies to be configured in the system is 3500.

• Maximum number of policies to be configured in the system is 5000.

• Maximum number of lines of config (both policies and sets) to be configured in the system is 131072
(128000).

• Maximum number of conditions in a policy statement [if conditions] to be configured in the system is
16.

• Maximum depth of policy statements [if depth] to be configured in the system is 64.

• Maximum length of policy name is 66.

• Irrespective of the number of elements in a set, the length of a set as 3 is considered.

The show rpl maximum comamnd on the router or the device shows the number of policies configured,
current limit and max limit.
Router#show rpl maximum

Tue Aug 30 16:18:53.497 IST
Current Current Max
Total Limit Limit

--
Lines of configuration 6 65536 131072
Policies 1 3500 5000
Compiled policies size (kB) 0

You can modify policy limit using the following CLI:
Router(config)#rpl maximum policies ?

<1-5000> Enter the number of policies limit.

Information About Implementing Routing Policy
To implement RPL, you need to understand the following concepts:

Routing Policy Language
This section contains the following information:

Implementing Routing Policy
3

Implementing Routing Policy
Information About Implementing Routing Policy

Routing Policy Language Overview
RPL was developed to support large-scale routing configurations. RPL has several fundamental capabilities
that differ from those present in configurations oriented to traditional route maps, access lists, and prefix lists.
The first of these capabilities is the ability to build policies in a modular form. Common blocks of policy can
be defined and maintained independently. These common blocks of policy can then be applied from other
blocks of policy to build complete policies. This capability reduces the amount of configuration information
that needs to be maintained. In addition, these common blocks of policy can be parameterized. This
parameterization allows for policies that share the same structure but differ in the specific values that are set
or matched against to be maintained as independent blocks of policy. For example, three policies that are
identical in every way except for the local preference value they set can be represented as one common
parameterized policy that takes the varying local preference value as a parameter to the policy.

The policy language introduces the notion of sets. Sets are containers of similar data that can be used in route
attribute matching and setting operations. Four set types exist: prefix-sets, community-sets, as-path-sets, and
extcommunity-sets. These sets hold groupings of IPv4 or IPv6 prefixes, community values, AS path regular
expressions, and extended community values, respectively. Sets are simply containers of data. Most sets also
have an inline variant. An inline set allows for small enumerations of values to be used directly in a policy
rather than having to refer to a named set. Prefix lists, community lists, and AS path lists must be maintained
even when only one or two items are in the list. An inline set in RPL allows the user to place small sets of
values directly in the policy body without having to refer to a named set.

Decision making, such as accept and deny, is explicitly controlled by the policy definitions themselves. RPL
combines matching operators, which may use set data, with the traditional Boolean logic operators AND, OR,
and NOT into complex conditional expressions. All matching operations return a true or false result. The
execution of these conditional expressions and their associated actions can then be controlled by using simple
if then, elseif, and else structures, which allow the evaluation paths through the policy to be fully specified
by the user.

User can use the command show rpl regexp to evaluate the performanceofios-regex and dfa-regex engines,
which will display the execution time of both the engines.

Examples:

Router#show rpl regexp
'_(174|209|286|701|1239|1299|2828|2914|3257|3320|3356|3549|5511|6453|6461|6762|7018|12956)_'
'6461 6461 6461 6461 4637 4637 4637 4637 1221$'

Regular Expression
(174|209|286|701|1239|1299|2828|2914|3257|3320|3356|3549|5511|6453|6461|6762|7018|12956)
Input string 6461 6461 6461 6461 4637 4637 4637 4637 1221$

Regex Engine Match Execution Time
--
ios-regex PASS 7us
dfa-regex PASS 37us

Routing Policy Language Structure
This section describes the basic structure of RPL.

Names

The policy language provides two kinds of persistent, namable objects: sets and policies. Definition of these
objects is bracketed by beginning and ending command lines. For example, to define a policy named test, the
configuration syntax would look similar to the following:

Implementing Routing Policy
4

Implementing Routing Policy
Routing Policy Language Overview

route-policy test
[. . . policy statements . . .]
end-policy

Legal names for policy objects can be any sequence of the upper- and lowercase alphabetic characters; the
numerals 0 to 9; and the punctuation characters period, hyphen, and underscore. A name must begin with a
letter or numeral.

Sets

In this context, the term set is used in its mathematical sense to mean an unordered collection of unique
elements. The policy language provides sets as a container for groups of values for matching purposes. Sets
are used in conditional expressions. The elements of the set are separated by commas. Null (empty) sets are
allowed.

In the following example:

prefix-set backup-routes
currently no backup routes are defined

end-set

a condition such as:

if destination in backup-routes then

evaluates as FALSE for every route, because there is no match-condition in the prefix set that it satisfies.

Five kinds of sets exist: as-path-set, on page 6, community-set, on page 7, extcommunity-set, on page 8,
prefix-set, on page 10, and rd-set, on page 11. You may want to perform comparisons against a small number
of elements, such as two or three community values, for example. To allow for these comparisons, the user
can enumerate these values directly. These enumerations are referred to as inline sets. Functionally, inline
sets are equivalent to named sets, but allow for simple tests to be inline. Thus, comparisons do not require
that a separate named set be maintained when only one or two elements are being compared. See the set types
described in the following sections for the syntax. In general, the syntax for an inline set is a comma-separated
list surrounded by parentheses as follows: (element-entry, element-entry, element-entry, ...element-entry),
where element-entry is an entry of an item appropriate to the type of usage such as a prefix or a community
value.

The following is an example using an inline community set:

route-policy sample-inline
if community matches-any ([10..15]:100) then
set local-preference 100
endif
end-policy

The following is an equivalent example using the named set test-communities:

community-set test-communities
10:100,

Implementing Routing Policy
5

Implementing Routing Policy
Sets

11:100,
12:100,
13:100,
14:100,
15:100
end-set

route-policy sample
if community matches-any test-communities then
set local-preference 100
endif
end-policy

Both of these policies are functionally equivalent, but the inline form does not require the configuration of
the community set just to store the six values. You can choose the form appropriate to the configuration
context. In the following sections, examples of both the named set version and the inline form are provided
where appropriate.

as-path-set

An AS path set comprises operations for matching an AS path attribute. The only matching operation is a
regular expression match.

as-set is faster than as-path-set if the only requirement is to check the origin of AS, see as-set.Note

Named Set Form

The named set form uses the ios-regex keyword to indicate the type of regular expression and requires single
quotation marks around the regular expression.

The following is a sample definition of a named AS path set:

as-path-set aset1
ios-regex ’_42$’,
ios-regex ’_127$’
end-set

This AS path set comprises two elements. When used in a matching operation, this AS path set matches any
route whose AS path ends with either the autonomous system (AS) number 42 or 127.

To remove the named AS path set, use the no as-path-set aset1 command-line interface (CLI) command.

Regular expression matching is CPU intensive. The policy performance can be substantially improved by
either collapsing the regular expression patterns together to reduce the total number of regular expression
invocations or by using equivalent native as-path match operations such as ‘as-path neighbor-is’, ‘as-path
originates-from’ or ‘as-path passes-through’.

Note

Implementing Routing Policy
6

Implementing Routing Policy
as-path-set

https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/routing/command/reference/b-routing-cr-asr9000/routing-policy-language-commands.html#wp9265949860

Inline Set Form

The inline set form is a parenthesized list of comma-separated expressions, as follows:

(ios-regex '_42$', ios-regex '_127$')

This set matches the same AS paths as the previously named set, but does not require the extra effort of
creating a named set separate from the policy that uses it.

community-set

A community-set holds community values for matching against the BGP community attribute. A community
is a 32-bit quantity. Integer community values must be split in half and expressed as two unsigned decimal
integers in the range from 0 to 65535, separated by a colon. Single 32-bit community values are not allowed.
The following is the named set form:

Named Set Form

community-set cset1
12:34,
12:56,
12:78,
internet
end-set

Inline Set Form

(12:34, 12:56, 12:78)
($as:34, $as:$tag1, 12:78, internet)

The inline form of a community-set also supports parameterization. Each 16-bit portion of the community
may be parameterized. See the Parameterization, on page 16 for more information.

RPL provides symbolic names for the standard well-known community values: internet is 0:0, no-export is
65535:65281, no-advertise is 65535:65282, and local-as is 65535is-empty:65283.

RPL also provides a facility for using wildcards in community specifications. A wildcard is specified by
inserting an asterisk (*) in place of one of the 16-bit portions of the community specification; the wildcard
indicates that any value for that portion of the community matches. Thus, the following policy matches all
communities in which the autonomous system part of the community is 123:

community-set cset3
123:*

end-set

A community set can either be empty, or contain one or more community values. When used with an empty
community set, the is-empty operator will evaluate to TRUE and the matches-any and matches-every
operators will evaluate to FALSE.

Implementing Routing Policy
7

Implementing Routing Policy
community-set

extcommunity-set

An extended community-set is analogous to a community-set except that it contains extended community
values instead of regular community values. It also supports named forms and inline forms. As with community
sets, the inline form supports parameterization within parameterized policies. Either portion of the extended
community value can be parameterized.

Wildcards (*) and regular expressions are allowed for extended community set elements.

Every extended community-set must contain at least one extended community value. Empty extended
community-sets are invalid and rejected.

The extended communities attribute is a transitive optional BGP attribute, with the Type Code 16. Each
extended community is encoded as an 8-octet quantity, as follows: - Type Field: 1 or 2 octets - Value Field:
Remaining octets
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type high | Type low(*) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Value |
| |
+-+

For more information, see RFC4360.

The following types of extended community sets are supported:

• bandwidth—Advertises the bandwidth of an autonomous system exit link as an extended community for
links between directly connected external BGP (eBGP) neighbors. The extended community is used with
BGP multipath features to configure load balancing over links with unequal bandwidth. When this
community set is enabled, the routes learned from the external neighbors are propagated through the
internal BGP (iBGP) network with the bandwidth of the source external link.
extcommunity-set bandwidth extcomm-bw
100:25000

end-set

The demilitarized zone (DMZ) link-bandwidth value is configured using outbound route-policy using
routing table or adding the additive keyword. If additive keyword is not added, other extended communities
such as route targets are removed. Removal of route targets will lead to the routes-not-imported condition
at the receiving end of the peer.
extcommunity-set bandwidth dmz_ext

1:8000
end-set
!
route-policy dmz_rp_vpn
set extcommunity bandwidth dmz_ext additive <<< 'additive' keyword.
pass

end-policy

In the above example,

• 1:8000—The first number (1) indicates the ASN of the router sending the
extended community. This ASN is a 16-bit decimal number. The second
number (8000) indicates the bandwidth in bytes per second. The bandwidth
is a 32-bit decimal number.

Note

Implementing Routing Policy
8

Implementing Routing Policy
extcommunity-set

• cost—Allows to customize the BGP best path selection process for a local autonomous system or
confederation. The cost community is a nontransitive, extended community attribute that is passed to
iBGP and confederation peers, but not to eBGP peers. The cost community attribute is applied to internal
routes in a route map. The cost community set clause is configured with a cost community ID number
(0-255). The cost community ID number determines the preference for the path selection process. The
path with the lowest cost community ID number is preferred.
extcommunity-set cost a_cost_set

IGP:1:10
end-set

• opaque—Configures the color extended community.
extcommunity-set opaque a_opaque_set
12345

end-set

• rt—Identifies a set of sites and VRFs that may receive routes tagged with the configured route target.
Configuring the route target (RT) extended community attribute with a route allows that route to be
placed in the per-site forwarding tables to route traffic that is received from corresponding sites. The
attribute adds the route target extended community attributes to the VRF's list of import, export, or both
(import and export) route-target extended communities. You can also specify route targets in the import
and export statements under Global VRF configuration.
extcommunity-set rt a_rt_set

1.2.3.4:666
1234:666,
1.2.3.4:777,
4567:777

end-set

Inline Set Form for Extcommunity-set RT
(1.2.3.4:666, 1234:666, 1.2.3.4:777, 4567:777)
($ipadrr:666, 1234:$tag, 1.2.3.4:777, $tag2:777)

• seg-nh—Indicates the Point-to-Multipoint (P2MP) segmented next-hop extended community to indicate
LSPs should be segmented when the BGP MVPN I-PMSI or S-PMSI autodiscovery (AD) routes are
advertised or propagated to signal inter-area P2MP service. This extended community must be included
in the I-PMSI or S-PMSI AD route by the PE that originates such a route, or an ASBR that re-advertises
such a route into its own AS.
extcommunity-set seg-nh seg_set
1.1.1.1

end-set

• soo—The site-of-origin (SoO) extended community is a BGP extended community attribute that is used
to identify routes that have originated from a site so that the readvertisement of that prefix back to the
source site can be prevented. The SoO extended community uniquely identifies the site from which a
router has learned a route. BGP can use the SoO value associated with a route to prevent routing loops
between CEs in the same site when AS-override is used .

The extended community value takes one of the following formats:

• 16-bit autonomous system number, a colon, and a 32-bit number

• 32-bit IP address, a colon, and a 16-bit number

Implementing Routing Policy
9

Implementing Routing Policy
extcommunity-set

extcommunity-set soo a_soo_set
1.1.1.2:51,
100:200

end-set

prefix-set

A prefix-set holds IPv4 or IPv6 prefix match specifications, each of which has four parts: an address, a mask
length, a minimum matching length, and a maximum matching length. The address is required, but the other
three parts are optional. The address is a standard dotted-decimal IPv4 or colon-separated hexadecimal IPv6
address. The mask length, if present, is a nonnegative decimal integer in the range from 0 to 32 (0 to 128 for
IPv6) following the address and separated from it by a slash. The optional minimum matching length follows
the address and optional mask length and is expressed as the keyword ge (mnemonic for greater than or equal
to), followed by a nonnegative decimal integer in the range from 0 to 32 (0 to 128 for IPv6). The optional
maximum matching length follows the rest and is expressed by the keyword le (mnemonic for less than or
equal to), followed by yet another nonnegative decimal integer in the range from 0 to 32 (0 to 128 for IPv6).
A syntactic shortcut for specifying an exact length for prefixes to match is the eq keyword (mnemonic for
equal to).

If a prefix match specification has no mask length, then the default mask length is 32 for IPv4 and 128 for
IPv6. The default minimum matching length is the mask length. If a minimum matching length is specified,
then the default maximum matching length is 32 for IPv4 and 128 for IPv6. Otherwise, if neither minimum
nor maximum is specified, the default maximum is the mask length.

The prefix-set itself is a comma-separated list of prefix match specifications. The following are examples:

prefix-set legal-ipv4-prefix-examples
10.0.1.1,
10.0.2.0/24,
10.0.3.0/24 ge 28,
10.0.4.0/24 le 28,
10.0.5.0/24 ge 26 le 30,
10.0.6.0/24 eq 28,
10.0.7.2/32 ge 16 le 24,
10.0.8.0/26 ge 8 le 16

end-set

prefix-set legal-ipv6-prefix-examples
2001:0:0:1::/64,
2001:0:0:2::/64 ge 96,
2001:0:0:2::/64 ge 96 le 100,
2001:0:0:2::/64 eq 100

end-set

The first element of the prefix-set matches only one possible value, 10.0.1.1/32 or the host address 10.0.1.1.
The second element matches only one possible value, 10.0.2.0/24. The third element matches a range of prefix
values, from 10.0.3.0/28 to 10.0.3.255/32. The fourth element matches a range of values, from 10.0.4.0/24 to
10.0.4.240/28. The fifth element matches prefixes in the range from 10.0.5.0/26 to 10.0.5.252/30. The sixth
element matches any prefix of length 28 in the range from 10.0.6.0/28 through 10.0.6.240/28. The seventh
element matches any prefix of length 32 in the range 10.0.[0..255].2/32 (from 10.0.0.2/32 to 10.0.255.2). The
eighth element matches any prefix of length 26 in the range 10.[0..255].8.0/26 (from 10.0.8.0/26 to
10.255.8.0/26).

The following prefix-set consists entirely of invalid prefix match specifications:

Implementing Routing Policy
10

Implementing Routing Policy
prefix-set

prefix-set ILLEGAL-PREFIX-EXAMPLES
10.1.1.1 ge 16,
10.1.2.1 le 16,
10.1.3.0/24 le 23,
10.1.4.0/24 ge 33,
10.1.5.0/25 ge 29 le 28

end-set

Neither the minimum length nor maximum length is valid without a mask length. For IPv4, the minimum
length must be less than 32, the maximum length of an IPv4 prefix. For IPv6, the minimum length must be
less than 128, the maximum length of an IPv6 prefix. The maximum length must be equal to or greater than
the minimum length.

Enhanced Prefix-length Manipulation

The enhanced prefix-length manipulation support in a prefix-set enhances the prefix-range on using ge
semantics in prefix match specifications. This caters to have a single entry that matches prefixes 0.0.0.0/0,
0.0.0.0/1, 0.0.0.0/2,, 0.0.0.0/32. The prefix-length can be manipulated with ge semantics as prefix-set
(0.0.0.0/30 ge 0 le 32) that will match all prefixes in the range 0.0.0.0/0 to 0.0.0.3/32. With this, the single
prefix-set entry 0.0.0.0/32 ge 0 le 32 will match prefixes 0.0.0.0/0, 0.0.0.0/1, 0.0.0.0/2,, 0.0.0.0/32.

These are prefix ranges with the IPv4 prefix syntax along with corresponding mask length ranges:

• <A.B.C.D>/<len> ge <G> le <L>

• <A.B.C.D>/[<len>..<G>] (if <len> is lesser than <G>)

• <A.B.C.D>/[<G>..<len>] (if <len> is greater than <G>)

• <A.B.C.D>/<len> ge <G>

• <A.B.C.D>/[<len>..<G>] (if <len> is lesser than <G>)

• <A.B.C.D>/[<G>..<len>] (if <len> is greater than <G>)

• <A.B.C.D>/<len> eq <E>

• <A.B.C.D>/[<len>..<E>] (if <len> is lesser than <E>)

• <A.B.C.D>/[<E>..<len>] (if <len> is greater than <E>)

ACL Support in RPL Prefix Sets

Access Control List (ACL) type prefix set entries holds IPv4 or IPv6 prefix match specifications, each of
which has an address and a wildcard mask. The address and wildcard mask is a standard dotted-decimal IPv4
or colon-separated hexadecimal IPv6 address. The set of bits to be matched are provided in the form of wildcard
also called as inverted mask in which a binary 0 means a mandatory match and binary 1 means a do not match
condition. The prefix set allows to specify contiguous and non-contiguous set of bits that should be matched
in any route.

rd-set

An rd-set is used to create a set with route distinguisher (RD) elements. An RD set is a 64-bit value prepended
to an IPv4 address to create a globally unique Border Gateway Protocol (BGP) VPN IPv4 address.

Implementing Routing Policy
11

Implementing Routing Policy
Enhanced Prefix-length Manipulation

You can define RD values with the following commands:

• a.b.c.d:m:*—BGPVPNRD in IPv4 format with awildcard character. For example, 10.0.0.2:255.255.0.0:*.

• a.b.c.d/m:n—BGP VPN RD in IPv4 format with a mask. For example, 10.0.0.2:255.255.0.0:666.

• a.b.c.d:**—BGPVPNRD in IPv4 format with a wildcard character. For example, 10.0.0.2:255.255.0.0.

• a.b.c.d:n—BGP VPN RD in IPv4 format. For example, 10.0.0.2:666.

• asn:*— BGP VPN RD in ASN format with a wildcard character. For example, 10002:255.255.0.0.

• asn:n—BGP VPN RD in ASN format. For example, 10002:666.

The following is an example of an rd-set:

rd-set rdset1
10.0.0.0/8:*,
10.0.0.0/8:777,
10.0.0.0:*,
10.0.0.0:777,
65000:*,
65000:777

end-set

Routing Policy Language Components
Four main components in the routing policy language are involved in defining, modifying, and using policies:
the configuration front end, policy repository, execution engine, and policy clients themselves.

The configuration front end (CLI) is the mechanism to define and modify policies. This configuration is then
stored on the router using the normal storage means and can be displayed using the normal configuration
show commands.

The second component of the policy infrastructure, the policy repository, has several responsibilities. First,
it compiles the user-entered configuration into a form that the execution engine can understand. Second, it
performs much of the verification of policies; and it ensures that defined policies can actually be executed
properly. Third, it tracks which attach points are using which policies so that when policies are modified the
appropriate clients are properly updated with the new policies relevant to them.

The third component is the execution engine. This component is the piece that actually runs policies as the
clients request. The process can be thought of as receiving a route from one of the policy clients and then
executing the actual policy against the specific route data.

The fourth component is the policy clients (the routing protocols). This component calls the execution engine
at the appropriate times to have a given policy be applied to a given route, and then perform some number of
actions. These actions may include deleting the route if policy indicated that it should be dropped, passing
along the route to the protocol decision tree as a candidate for the best route, or advertising a policy modified
route to a neighbor or peer as appropriate.

Routing Policy Language Usage
This section provides basic routing policy language usage examples. See the How to Implement Routing
Policy, on page 80 for detailed information on how to implement routing policy language.

Implementing Routing Policy
12

Implementing Routing Policy
Routing Policy Language Components

Pass PolicyPass Policy

The following example shows how the policy accepts all presented routes without modifying the routes.

route-policy quickstart-pass
pass
end-policy

Drop Everything Policy

The following example shows how the policy explicitly rejects all routes presented to it. This type of policy
is used to ignore everything coming from a specific peer.

route-policy quickstart-drop
drop
end-policy

Ignore Routes with Specific AS Numbers in the Path

The following example shows the policy definition in three parts. First, the as-path-set command defines
three regular expressions to match against an AS path. Second, the route-policy command applies the AS
path set to a route. If the AS path attribute of the route matches the regular expression defined with the
as-path-set command, the protocol refuses the route. Third, the route policy is attached to BGP neighbor
10.0.1.2. BGP consults the policy named ignore_path_as on routes received (imported) from neighbor 10.0.1.2.

as-path-set ignore_path
ios-regex '_11_',
ios-regex '_22_',
ios-regex '_33_'
end-set

route-policy ignore_path_as
if as-path in ignore_path then
drop
else
pass
endif
end-policy

router bgp 2
neighbor 10.0.1.2 address-family ipv4 unicast policy ignore_path_as in

Set Community Based on MED

The following example shows how the policy tests the MED of a route and modifies the community attribute
of the route based on the value of the MED. If the MED value is 127, the policy adds the community 123:456
to the route. If the MED value is 63, the policy adds the value 123:789 to the community attribute of the route.
Otherwise, the policy removes the community 123:123 from the route. In any case, the policy instructs the
protocol to accept the route.

route-policy quickstart-med
if med eq 127 then
set community (123:456) additive
elseif med eq 63 then

Implementing Routing Policy
13

Implementing Routing Policy
Routing Policy Language Usage

set community (123:789) additive
else
delete community in (123:123)
endif
pass
end-policy

Set Local Preference Based on Community

The following example shows how the community-set named quickstart-communities defines community
values. The route policy named quickstart-localpref tests a route for the presence of the communities specified
in the quickstart-communities community set. If any of the community values are present in the route, the
route policy sets the local preference attribute of the route to 31. In any case, the policy instructs the protocol
to accept the route.

community-set quickstart-communities
987:654,
987:543,
987:321,
987:210
end-set

route-policy quickstart-localpref
if community matches-any quickstart-communities then
set local-preference 31
endif
pass
end-policy

Persistent Remarks

The following example shows how comments are placed in the policy to clarify the meaning of the entries in
the set and the statements in the policy. The remarks are persistent, meaning they remain attached to the policy.
For example, remarks are displayed in the output of the show running-config command. Adding remarks to
the policy makes the policy easier to understand, modify at a later date, and troubleshoot if an unexpected
behavior occurs.

prefix-set rfc1918
These are the networks defined as private in RFC1918 (including
all subnets thereof)
10.0.0.0/8 ge 8,
172.16.0.0/12 ge 12,
192.168.0.0/16 ge 16
end-set

route-policy quickstart-remarks
Handle routes to RFC1918 networks
if destination in rfc1918 then
Set the community such that we do not export the route
set community (no-export) additive

endif
end-policy

Implementing Routing Policy
14

Implementing Routing Policy
Routing Policy Language Usage

Routing Policy Configuration Basics
Route policies comprise series of statements and expressions that are bracketed with the route-policy and
end-policy keywords. Rather than a collection of individual commands (one for each line), the statements
within a route policy have context relative to each other. Thus, instead of each line being an individual
command, each policy or set is an independent configuration object that can be used, entered, andmanipulated
as a unit.

Each line of a policy configuration is a logical subunit. At least one new line must follow the then , else ,
and end-policy keywords. A new line must also follow the closing parenthesis of a parameter list and the
name string in a reference to an AS path set, community set, extended community set, or prefix set. At least
one new line must precede the definition of a route policy, AS path set, community set, extended community
set, or prefix set. One or more new lines can follow an action statement. One or more new lines can follow a
comma separator in a named AS path set, community set, extended community set, or prefix set. A new line
must appear at the end of a logical unit of policy expression and may not appear anywhere else.

Policy Definitions
Policy definitions create named sequences of policy statements. A policy definition consists of the CLI
route-policy keyword followed by a name, a sequence of policy statements, and the end-policy keyword.
For example, the following policy drops any route it encounters:

route-policy drop-everything
drop
end-policy

The name serves as a handle for binding the policy to protocols. To remove a policy definition, issue the no
route-policy name command.

Policies may also refer to other policies such that common blocks of policy can be reused. This reference to
other policies is accomplished by using the apply statement, as shown in the following example:

route-policy check-as-1234
if as-path passes-through ‘1234.5’ then
apply drop-everything
else
pass
endif
end-policy

The apply statement indicates that the policy drop-everything should be executed if the route under
consideration passed through autonomous system 1234.5 before it is received. If a route that has autonomous
system 1234.5 in its AS path is received, the route is dropped; otherwise, the route is accepted without
modification. This policy is an example of a hierarchical policy. Thus, the semantics of the apply statement
are just as if the applied policy were cut and pasted into the applying policy:

route-policy check-as-1234-prime
if as-path passes-through '1234.5' then

drop
else

pass
endif

Implementing Routing Policy
15

Implementing Routing Policy
Routing Policy Configuration Basics

end-policy

You may have as many levels of hierarchy as desired. However, many levels may be difficult to maintain and
understand.

Parameterization
In addition to supporting reuse of policies using the apply statement, policies can be defined that allow for
parameterization of some of the attributes. The following example shows how to define a parameterized policy
named param-example. In this case, the policy takes one parameter, $mytag. Parameters always begin with
a dollar sign and consist otherwise of any alphanumeric characters. Parameters can be substituted into any
attribute that takes a parameter.

In the following example, a 16-bit community tag is used as a parameter:

route-policy param-example ($mytag)
set community (1234:$mytag) additive
end-policy

This parameterized policy can then be reused with different parameterization, as shown in the following
example. In this manner, policies that share a common structure but use different values in some of their
individual statements can be modularized. For details on which attributes can be parameterized, see the
individual attribute sections.

route-policy origin-10
if as-path originates-from ‘10.5’ then
apply param-example(10.5)
else
pass
endif
end-policy

route-policy origin-20
if as-path originates-from ‘20.5’ then
apply param-example(20.5)
else
pass
endif
end-policy

The parameterized policy param-example provides a policy definition that is expanded with the values provided
as the parameters in the apply statement. Note that the policy hierarchy is always maintained, Thus, if the
definition of param-example changes, then the behavior of origin_10 and origin_20 changes to match.

The effect of the origin-10 policy is that it adds the community 1234:10 to all routes that pass through this
policy and have an AS path indicating the route originated from autonomous system 10. The origin-20 policy
is similar except that it adds to community 1234:20 for routes originating from autonomous system 20.

Implementing Routing Policy
16

Implementing Routing Policy
Parameterization

Parameterization at Attach Points
In addition to supporting parameterization using the apply statement described in the Parameterization, on
page 16, policies can also be defined that allow for parameterization the attributes at attach points.
Parameterization is supported at all attach points.

In the following example, we define a parameterized policy "param-example". In this example, the policy
takes two parameters "$mymed" and “$prefixset”. Parameters always begin with a dollar sign, and consist
otherwise of any alphanumeric characters. Parameters can be substituted into any attribute that takes a parameter.
In this example we are passing a MED value and prefix set name as parameters.

route-policy param-example ($mymed, $prefixset)
if destination in $prefixset then
set med $mymed
endif

end-policy

This parameterized policy can then be reused with different parameterizations as shown in the example below.
In this manner, policies that share a common structure but use different values in some of their individual
statements can be modularized. For details on which attributes can be parameterized, see the individual
attributes for each protocol.

router bgp 2
neighbor 10.1.1.1
remote-as 3
address-family ipv4 unicast
route-policy param-example(10, prefix_set1)
route-policy param-example(20, prefix_set2)

The parameterized policy param-example provides a policy definition that is expanded with the values provided
as the parameters in the neighbor route-policy in and out statement.

Global Parameterization
RPL supports the definition of systemwide global parameters that can be used inside policy definition. Global
parameters can be configured as follows:

Policy-global
glbpathtype ‘ebgp’
glbtag ‘100’

end-global

The global parameter values can be used directly inside a policy definition similar to the local parameters of
parameterized policy. In the following example, the globalparam argument, which makes use of the global
parameters gbpathtype and glbtag, is defined for a nonparameterized policy.

route-policy globalparam
if path-type is $glbpathtype then
set tag $glbtag

endif
end-policy

Implementing Routing Policy
17

Implementing Routing Policy
Parameterization at Attach Points

When a parameterized policy has a parameter name “collision” with a global parameter name, parameters
local to policy definition take precedence, effectively masking off global parameters. In addition, a validation
mechanism is in place to prevent the deletion of a particular global parameter if it is referred by any policy.

Semantics of Policy Application
This section discusses how routing policies are evaluated and applied. The following concepts are discussed:

Boolean Operator Precedence
Boolean expressions are evaluated in order of operator precedence, from left to right. The highest precedence
operator is NOT, followed by AND, and then OR. The following expression:

med eq 10 and not destination in (10.1.3.0/24) or community matches-any ([10..25]:35)

if fully parenthesized to display the order of evaluation, would look like this:

(med eq 10 and (not destination in (10.1.3.0/24))) or community matches-any ([10..25]:35)

The inner NOT applies only to the destination test; the AND combines the result of the NOT expression with
the Multi Exit Discriminator (MED) test; and the OR combines that result with the community test. If the
order of operations are rearranged:

not med eq 10 and destination in (10.1.3.0/24) or community matches-any ([10..25]:35)

then the expression, fully parenthesized, would look like the following:
((not med eq 10) and destination in (10.1.3.0/24)) or community matches-any ([10..25]:35)

Multiple Modifications of the Same Attribute
When a policy replaces the value of an attribute multiple times, the last assignment wins because all actions
are executed. Because the MED attribute in BGP is one unique value, the last value to which it gets set to
wins. Therefore, the following policy results in a route with a MED value of 12:

set med 9
set med 10
set med 11
set med 12

This example is trivial, but the feature is not. It is possible to write a policy that effectively changes the value
for an attribute. For example:

set med 8
if community matches-any cs1 then

Implementing Routing Policy
18

Implementing Routing Policy
Semantics of Policy Application

set local-preference 122
if community matches-any cs2 then
set med 12
endif
endif

The result is a route with a MED of 8, unless the community list of the route matches both cs1 and cs2, in
which case the result is a route with a MED of 12.

In the case in which the attribute being modified can contain only one value, it is easy to think of this case as
the last statement wins. However, a few attributes can contain multiple values and the result of multiple actions
on the attribute is cumulative rather than as a replacement. The first of these cases is the use of the additive
keyword on community and extended community evaluation. Consider a policy of the form:

route-policy community-add
set community (10:23)
set community (10:24) additive
set community (10:25) additive
end-policy

This policy sets the community string on the route to contain all three community values: 10:23, 10:24, and
10:25.

The second of these cases is AS path prepending. Consider a policy of the form:

route-policy prepend-example
prepend as-path 2.5 3
prepend as-path 666.5 2
end-policy

This policy prepends 666.5 666.5 2.5 2.5 2.5 to the AS path. This prepending is a result of all actions being
taken and to the AS path being an attribute that contains an array of values rather than a simple scalar value.

When Attributes Are Modified
A policy does not modify route attribute values until all tests have been completed. In other words, comparison
operators always run on the initial data in the route. Intermediate modifications of the route attributes do not
have a cascading effect on the evaluation of the policy. Take the following example:

ifmed eq 12 then
set med 42
if med eq 42 then
drop
endif
endif

This policy never executes the drop statement because the second test (med eq 42) sees the original, unmodified
value of the MED in the route. Because the MED has to be 12 to get to the second test, the second test always
returns false.

Implementing Routing Policy
19

Implementing Routing Policy
When Attributes Are Modified

Default Drop Disposition
All route policies have a default action to drop the route under evaluation unless the route has been modified
by a policy action or explicitly passed. Applied (nested) policies implement this disposition as though the
applied policy were pasted into the point where it is applied.

Consider a policy to allow all routes in the 10 network and set their local preference to 200 while dropping
all other routes. You might write the policy as follows:

route-policy two
if destination in (10.0.0.0/8 ge 8 le 32) then
set local-preference 200
endif
end-policy

route-policy one
apply two
end-policy

It may appear that policy one drops all routes because it neither contains an explicit pass statement nor modifies
a route attribute. However, the applied policy does set an attribute for some routes and this disposition is
passed along to policy one. The result is that policy one passes routes with destinations in network 10, and
drops all others.

Control Flow
Policy statements are processed sequentially in the order in which they appear in the configuration. Policies
that hierarchically reference other policy blocks are processed as if the referenced policy blocks had been
directly substituted inline. For example, if the following policies are defined:

route-policy one
set weight 100
end-policy

route-policy two
set med 200
end-policy

route-policy three
apply two
set community (2:666) additive
end-policy

route-policy four
apply one
apply three
pass
end-policy

Policy four could be rewritten in an equivalent way as follows:

route-policy four-equivalent
set weight 100
set med 200
set community (2:666) additive

Implementing Routing Policy
20

Implementing Routing Policy
Default Drop Disposition

pass
end-policy

The pass statement is not required and can be removed to represent the equivalent policy in another way.Note

Policy Verification
Several different types of verification occur when policies are being defined and used.

Range Checking

As policies are being defined, some simple verifications, such as range checking of values, is done. For
example, the MED that is being set is checked to verify that it is in a proper range for the MED attribute.
However, this range checking cannot cover parameter specifications because they may not have defined values
yet. These parameter specifications are verified when a policy is attached to an attach point. The policy
repository also verifies that there are no recursive definitions of policy, and that parameter numbers are correct.
At attach time, all policies must be well formed. All sets and policies that they reference must be defined and
have valid values. Likewise, any parameter values must also be in the proper ranges.

Incomplete Policy and Set References

As long as a given policy is not attached at an attach point, the policy is allowed to refer to nonexistent sets
and policies, which allows for freedom of workflow. You can build configurations that reference sets or policy
blocks that are not yet defined, and then can later fill in those undefined policies and sets, thereby achieving
much greater flexibility in policy definition. Every piece of policy you want to reference while defining a
policy need not exist in the configuration. Thus, a user can define a policy sample that references the policy
bar using an apply statement even if the policy bar does not exist. Similarly, a user can enter a policy statement
that refers to a nonexistent set.

However, the existence of all referenced policies and sets is enforced when a policy is attached. If you attempt
to attach the policy sample with the reference to an undefined policy bar at an inbound BGP policy using the
neighbor 1.2.3.4 address-family ipv4 unicast policy sample in command, the configuration attempt is
rejected because the policy bar does not exist.

Likewise, you cannot remove a route policy or set that is currently in use at an attach point because this
removal would result in an undefined reference. An attempt to remove a route policy or set that is currently
in use results in an error message to the user.

A condition exists that is referred to as a null policy in which the policy bar exists but has no statements,
actions, or dispositions in it. In other words, the policy bar does exist as follows:

route-policy bar
end-policy

This is a valid policy block. It effectively forces all routes to be dropped because it is a policy block that never
modifies a route, nor does it include the pass statement. Thus, the default action of drop for the policy block
is followed.

Implementing Routing Policy
21

Implementing Routing Policy
Policy Verification

Attached Policy Modification

Policies that are in use do, on occasion, need to be modified. Traditionally, configuration changes are done
by completely removing the relevant configuration and then re-entering it. However, this allows for a window
of time in which no policy is attached and the default action takes place. RPL provides a mechanism for an
atomic change so that if a policy is redeclared, or edited using a text editor, the new configuration is applied
immediately—which allows for policies that are in use to be changed without having a window of time in
which no policy is applied at the given attach point.

Verification of Attribute Comparisons and Actions

The policy repository knows which attributes, actions, and comparisons are valid at each attach point. When
a policy is attached, these actions and comparisons are verified against the capabilities of that particular attach
point. Take, for example, the following policy definition:

route-policy bad
set med 100
set level level-1-2
set ospf-metric 200
end-policy

This policy attempts to perform actions to set the BGP attribute med, IS-IS attribute level, and OSPF attribute
cost. The system allows you to define such a policy, but it does not allow you to attach such a policy. If you
had defined the policy bad and then attempted to attach it as an inbound BGP policy using the BGP
configuration statement neighbor 1.2.3.4 address-family ipv4 unicast route-policy bad in the systemwould
reject this configuration attempt. This rejection results from the verification process checking the policy and
realizing that while BGP could set the MED, it has no way of setting the level or cost as the level and cost
are attributes of IS-IS and OSPF, respectively. Instead of silently omitting the actions that cannot be done,
the system generates an error to the user. Likewise, a valid policy in use at an attach point cannot be modified
in such a way as to introduce an attempt to modify a nonexistent attribute or to compare against a nonexistent
attribute. The verifiers test for nonexistent attributes and reject such a configuration attempt.

Policy Statements
Four types of policy statements exist: remark, disposition (drop and pass), action (set), and if (comparator).

Remark
A remark is text attached to policy configuration but otherwise ignored by the policy language parser. Remarks
are useful for documenting parts of a policy. The syntax for a remark is text that has each line prepended with
a pound sign (#):

This is a simple one-line remark.

This
is a remark
comprising multiple
lines.

In general, remarks are used between complete statements or elements of a set. Remarks are not supported in
the middle of statements or within an inline set definition.

Implementing Routing Policy
22

Implementing Routing Policy
Attached Policy Modification

Unlike traditional !-comments in the CLI, RPL remarks persist through reboots and when configurations are
saved to disk or a TFTP server and then loaded back onto the router.

Disposition
If a policy modifies a route, by default the policy accepts the route. RPL provides a statement to force the
opposite—the drop statement. If a policy matches a route and executes a drop, the policy does not accept the
route. If a policy does not modify the route, by default the route is dropped. To prevent the route from being
dropped, the pass statement is used.

The drop statement indicates that the action to take is to discard the route. When a route is dropped, no further
execution of policy occurs. For example, if after executing the first two statements of a policy the drop
statement is encountered, the policy stops and the route is discarded.

All policies have a default drop action at the end of execution.Note

The pass statement allows a policy to continue executing even though the route has not been modified. When
a policy has finished executing, any route that has been modified in the policy or any route that has received
a pass disposition in the policy, successfully passes the policy and completes the execution. If route policy
B_rp is applied within route policy A_rp, execution continues from policy A_rp to policy B_rp and back to
policy A_rp provided prefix is not dropped by policy B_rp.

route-policy A_rp
set community (10:10)
apply B_rp

end-policy
!

route-policy B_rp
if destination in (121.23.0.0/16 le 32, 155.12.0.0/16 le 32) then
set community (121:155) additive
endif

end-policy
!

By default, a route is dropped at the end of policy processing unless either the policymodifies a route attribute
or it passes the route by means of an explicit pass statement. For example, if route-policy B is applied within
route-policy A, then execution continues from policy A to policy B and back to policy A, provided the prefix
is not dropped by policy B.

route-policy A
if as-path neighbor-is '123' then
apply B
policy statement N

end-policy

Whereas the following policies pass all routes that they evaluate.

route-policy PASS-ALL
pass
end-policy

Implementing Routing Policy
23

Implementing Routing Policy
Disposition

route-policy SET-LPREF
set local-preference 200
end-policy

In addition to being implicitly dropped, a route may be dropped by an explicit drop statement.Drop statements
cause a route to be dropped immediately so that no further policy processing is done. Note also that a drop
statement overrides any previously processed pass statements or attribute modifications. For example, the
following policy drops all routes. The first pass statement is executed, but is then immediately overridden by
the drop statement. The second pass statement never gets executed.

route-policy DROP-EXAMPLE
pass
drop
pass
end-policy

When one policy applies another, it is as if the applied policy were copied into the right place in the applying
policy, and then the same drop-and-pass semantics are put into effect. For example, policies ONE and TWO
are equivalent to policy ONE-PRIME:

route-policy ONE
apply two
if as-path neighbor-is '123' then
pass

endif
end-policy

route-policy TWO
if destination in (10.0.0.0/16 le 32) then
drop
endif
end-policy

route-policy ONE-PRIME
if destination in (10.0.0.0/16 le 32) then
drop
endif
if as-path neighbor-is '123' then
pass
endif
end-policy

Because the effect of an explicit drop statement is immediate, routes in 10.0.0.0/16 le 32 are dropped without
any further policy processing. Other routes are then considered to see if they were advertised by autonomous
system 123. If they were advertised, they are passed; otherwise, they are implicitly dropped at the end of all
policy processing.

The done statement indicates that the action to take is to stop executing the policy and accept the route. When
encountering a done statement, the route is passed and no further policy statements are executed. All
modifications made to the route prior to the done statement are still valid.

Implementing Routing Policy
24

Implementing Routing Policy
Disposition

Action
An action is a sequence of primitive operations that modify a route. Most actions, but not all, are distinguished
by the set keyword. In a route policy, actions can be grouped together. For example, the following is a route
policy comprising three actions:

route-policy actions
set med 217
set community (12:34) additive
delete community in (12:56)
end-policy

If
In its simplest form, an if statement uses a conditional expression to decide which actions or dispositions
should be taken for the given route. For example:

if as-path in as-path-set-1 then
drop
endif

The example indicates that any routes whose AS path is in the set as-path-set-1 are dropped. The contents of
the then clause may be an arbitrary sequence of policy statements.

The following example contains two action statements:

if origin is igp then
set med 42
prepend as-path 73.5 5
endif

The CLI provides support for the exit command as an alternative to the endif command.

The if statement also permits an else clause, which is executed if the if condition is false:

if med eq 8 then
set community (12:34) additive
else
set community (12:56) additive
endif

The policy language also provides syntax, using the elseif keyword, to string together a sequence of tests:

if med eq 150 then
set local-preference 10
elseif med eq 200 then
set local-preference 60
elseif med eq 250 then
set local-preference 110
else
set local-preference 0
endif

Implementing Routing Policy
25

Implementing Routing Policy
Action

The statements within an if statement may themselves be if statements, as shown in the following example:

if community matches-any (12:34,56:78) then
if med eq 150 then
drop
endif
set local-preference 100
endif

This policy example sets the value of the local preference attribute to 100 on any route that has a community
value of 12:34 or 56:78 associated with it. However, if any of these routes has a MED value of 150, then these
routes with either the community value of 12:34 or 56:78 and a MED of 150 are dropped.

Boolean Conditions
In the previous section describing the if statement, all of the examples use simple Boolean conditions that
evaluate to either true or false. RPL also provides a way to build compound conditions from simple conditions
by means of Boolean operators.

Three Boolean operators exist: negation (not), conjunction (and), and disjunction (or). In the policy language,
negation has the highest precedence, followed by conjunction, and then by disjunction. Parentheses may be
used to group compound conditions to override precedence or to improve readability.

The following simple condition:

med eq 42

is true only if the value of the MED in the route is 42, otherwise it is false.

A simple condition may also be negated using the not operator:

not next-hop in (10.0.2.2)

Any Boolean condition enclosed in parentheses is itself a Boolean condition:

(destination in prefix-list-1)

A compound condition takes either of two forms. It can be a simple expression followed by the and operator,
itself followed by a simple condition:

med eq 42 and next-hop in (10.0.2.2)

A compound condition may also be a simpler expression followed by the or operator and then another simple
condition:

origin is igp or origin is incomplete

Implementing Routing Policy
26

Implementing Routing Policy
Boolean Conditions

An entire compound condition may be enclosed in parentheses:

(med eq 42 and next-hop in (10.0.2.2))

The parentheses may serve to make the grouping of subconditions more readable, or they may force the
evaluation of a subcondition as a unit.

In the following example, the highest-precedence not operator applies only to the destination test, the and
operator combines the result of the not expression with the community test, and the or operator combines
that result with the MED test.

med eq 10 or not destination in (10.1.3.0/24) and community matches-any ([12..34]:[56..78])

With a set of parentheses to express the precedence, the result is the following:

med eq 10 or ((not destination in (10.1.3.0/24)) and community matches-any
([12..34]:[56..78])

The following is another example of a complex expression:

(origin is igp or origin is incomplete or not med eq 42) and next-hop in (10.0.2.2)

The left conjunction is a compound condition enclosed in parentheses. The first simple condition of the inner
compound condition tests the value of the origin attribute; if it is Interior Gateway Protocol (IGP), then the
inner compound condition is true. Otherwise, the evaluation moves on to test the value of the origin attribute
again, and if it is incomplete, then the inner compound condition is true. Otherwise, the evaluation moves to
check the next component condition, which is a negation of a simple condition.

apply
As discussed in the sections on policy definitions and parameterization of policies, the apply command
executes another policy (either parameterized or unparameterized) from within another policy, which allows
for the reuse of common blocks of policy. When combined with the ability to parameterize common blocks
of policy, the apply command becomes a powerful tool for reducing repetitive configuration.

Attach Points
Policies do not become useful until they are applied to routes, and for policies to be applied to routes they
need to be made known to routing protocols. In BGP, for example, there are several situations where policies
can be used, the most common of these is defining import and export policy. The policy attach point is the
point in which an association is formed between a specific protocol entity, in this case a BGP neighbor, and
a specific named policy. It is important to note that a verification step happens at this point. Each time a policy
is attached, the given policy and any policies it may apply are checked to ensure that the policy can be validly
used at that attach point. For example, if a user defines a policy that sets the IS-IS level attribute and then

Implementing Routing Policy
27

Implementing Routing Policy
apply

attempts to attach this policy as an inbound BGP policy, the attempt would be rejected because BGP routes
do not carry IS-IS attributes. Likewise, when policies are modified that are in use, the attempt to modify the
policy is verified against all current uses of the policy to ensure that the modification is compatible with the
current uses.

Each protocol has a distinct definition of the set of attributes (commands) that compose a route. For example,
BGP routes may have a community attribute, which is undefined in OSPF. Routes in IS-IS have a level
attribute, which is unknown to BGP. Routes carried internally in the RIB may have a tag attribute.

When a policy is attached to a protocol, the protocol checks the policy to ensure the policy operates using
route attributes known to the protocol. If the protocol uses unknown attributes, then the protocol rejects the
attachment. For example, OSPF rejects attachment of a policy that tests the values of BGP communities.

The situation is made more complex by the fact that each protocol has access to at least two distinct route
types. In addition to native protocol routes, for example BGP or IS-IS, some protocol policy attach points
operate on RIB routes, which is the common central representation. Using BGP as an example, the protocol
provides an attach point to apply policy to routes redistributed from the RIB to BGP. An attach point dealing
with two different kinds of routes permits a mix of operations: RIB attribute operations for matching and BGP
attribute operations for setting.

The protocol configuration rejects attempts to attach policies that perform unsupported operations.Note

The following sections describe the protocol attach points, including information on the attributes (commands)
and operations that are valid for each attach point.

See Routing Command Reference for Cisco ASR 9000 Series Routers for more information on the attributes
and operations.

New para for test

BGP Policy Attach Points
This section describes each of the BGP policy attach points and provides a summary of the BGP attributes
and operators.

Additional-Path

The additional-path attach point provides increased control based on various attribute match operations. This
attach point is used to decide whether a route-policy should be used to select additional-paths for a BGP
speaker to be able to send multiple paths for the prefix.

The add path enables BGP prefix independent convergence (PIC) at the edge routers.

This example shows how to set a route-policy "add-path-policy" to be used for enabling selection of additional
paths:
router bgp 100
address-family ipv4 unicast
additional-paths selection route-policy add-path-policy

Implementing Routing Policy
28

Implementing Routing Policy
BGP Policy Attach Points

Dampening

The dampening attach point controls the default route-dampening behavior within BGP. Unless overridden
by a more specific policy on the associate peer, all routes in BGP apply the associated policy to set their
dampening attributes.

The following policy sets dampening values for BGP IPv4 unicast routes. Those routes that are more specific
than a /25 take longer to recover after they are dampened than the routes that are less specific than /25.

When the dampening policy runs for a route, then the last "set dampening" statement that is encountered,
takes effect.

• If a "drop" statement is encountered, then the route is not dampened; even if the "set dampening" statement
is encountered.

• If a "pass" or "done" statement is encountered but not the "set dampening" statement, then the route is
dampened using the default dampening parameters.

For example:

• When policy1 applies another policy that is called policy2 and if a "pass" statement is encountered in
policy2, then policy2 exits and continues to execute policy1.

• If a "done" statement is encountered in policy2, then both policy1 and policy2 exits immediately.

Note

route-policy sample_damp
if destination in (0.0.0.0/0 ge 25) then
set dampening halflife 30 others default

else
set dampening halflife 20 others default

endif
end-policy

router bgp 2
address-family ipv4 unicast
bgp dampening route-policy sample_damp
.
.
.

Default Originate

The default originate attach point allows the default route (0.0.0.0/0) to be conditionally generated and
advertised to a peer, based on the presence of other routes. It accomplishes this configuration by evaluating
the associated policy against routes in the Routing Information Base (RIB). If any routes pass the policy, the
default route is generated and sent to the relevant peer.

The following policy generates and sends a default-route to the BGP neighbor 10.0.0.1 if any routes that match
10.0.0.0/8 ge 8 le 32 are present in the RIB.

route-policy sample-originate
if rib-has-route in (10.0.0.0/8 ge 8 le 32) then

pass
endif

end-policy

Implementing Routing Policy
29

Implementing Routing Policy
Dampening

router bgp 2
neighbor 10.0.0.1
remote-as 3
address-family ipv4 unicast
default-originate route-policy sample-originate
.
.
.

Neighbor Export

The neighbor export attach point selects the BGP routes to send to a given peer or group of peers. The routes
are selected by running the set of possible BGP routes through the associated policy. Any routes that pass the
policy are then sent as updates to the peer or group of peers. The routes that are sent may have had their BGP
attributes altered by the policy that has been applied.

The following policy sends all BGP routes to neighbor 10.0.0.5. Routes that are tagged with any community
in the range 2:100 to 2:200 are sent with a MED of 100 and a community of 2:666. The rest of the routes are
sent with a MED of 200 and a community of 2:200.

route-policy sample-export
if community matches-any (2:[100-200]) then
set med 100
set community (2:666)

else
set med 200
set community (2:200)

endif
end-policy

router bgp 2
neighbor 10.0.0.5
remote-as 3

address-family ipv4 unicast
route-policy sample-export out
.
.
.

Neighbor Import

The neighbor import attach point controls the reception of routes from a specific peer. All routes that are
received by a peer are run through the attached policy. Any routes that pass the attached policy are passed to
the BGP Routing Information Base (BRIB) as possible candidates for selection as best path routes.

When a BGP import policy is modified, it is necessary to rerun all the routes that have been received from
that peer against the new policy. The modified policy may now discard routes that were previously allowed
through, allow through previously discarded routes, or change the way the routes are modified. A new
configuration option in BGP (bgp auto-policy-soft-reset) that allows this modification to happen automatically
in cases for which either soft reconfiguration is configured or the BGP route-refresh capability has been
negotiated.

The following example shows how to receive routes from neighbor 10.0.0.1. Any routes received with the
community 3:100 have their local preference set to 100 and their community tag set to 2:666. All other routes
received from this peer have their local preference set to 200 and their community tag set to 2:200.

Implementing Routing Policy
30

Implementing Routing Policy
Neighbor Export

route-policy sample_import
if community matches-any (3:100) then
set local-preference 100
set community (2:666)

else
set local-preference 200
set community (2:200)

endif
end-policy

router bgp 2
neighbor 10.0.0.1
remote-as 3
address-family ipv4 unicast
route-policy sample_import in
.
.
.

Network

The network attach point controls the injection of routes from the RIB into BGP. A route policy attached at
this point is able to set any of the valid BGP attributes on the routes that are being injected.

The following example shows a route policy attached at the network attach point that sets the well-known
community no-export for any routes more specific than /24:

route-policy NetworkControl
if destination in (0.0.0.0/0 ge 25) then
set community (no-export) additive

endif
end-policy

router bgp 2
address-family ipv4 unicast
network 172.16.0.5/27 route-policy NetworkControl

Redistribute

The redistribute attach point within OSPF injects routes from other routing protocol sources into the OSPF
link-state database, which is done by selecting the routes it wants to import from each protocol. It then sets
the OSPF parameters of cost and metric type. The policy can control how the routes are injected into OSPF
by using the set metric-type or set ospf-metric command.

The following example shows how to redistribute routes from IS-IS instance instance_10 into OSPF instance
1 using the policy OSPF-redist. The policy sets the metric type to type-2 for all redistributed routes. IS-IS
routes with a tag of 10 have their cost set to 100, and IS-IS routes with a tag of 20 have their OSPF cost set
to 200. Any IS-IS routes not carrying a tag of either 10 or 20 are not be redistributed into the OSPF link-state
database.

route-policy OSPF-redist
set metric-type type-2
if tag eq 10 then
set ospf cost 100

elseif tag eq 20 then
set ospf cost 200

else

Implementing Routing Policy
31

Implementing Routing Policy
Network

drop
endif

end-policy
router ospf 1
redistribute isis instance_10 policy OSPF-redist
.
.
.

Show BGP

The show bgp attach point allows the user to display selected BGP routes that pass the given policy. Any
routes that are not dropped by the attached policy are displayed in a manner similar to the output of the show
bgp command.

In the following example, the show bgp route-policy command is used to display any BGP routes carrying
a MED of 5:

route-policy sample-display
if med eq 5 then
pass

endif
end-policy
!
show bgp route-policy sample-display

A show bgp policy route-policy command also exists, which runs all routes in the RIB past the named policy
as if the RIB were an outbound BGP policy. This command then displays what each route looked like before
it was modified and after it was modified, as shown in the following example:

show rpl route-policy test2

route-policy test2
if (destination in (10.0.0.0/8 ge 8 le 32)) then
set med 333

endif
end-policy
!

show bgp

BGP router identifier 10.0.0.1, local AS number 2
BGP main routing table version 11
BGP scan interval 60 secs
Status codes:s suppressed, d damped, h history, * valid, > best

i - internal, S stale
Origin codes:i - IGP, e - EGP, ? - incomplete

Network Next Hop Metric LocPrf Weight Path
*> 10.0.0.0 10.0.1.2 10 0 3 ?
*> 10.0.0.0/9 10.0.1.2 10 0 3 ?
*> 10.0.0.0/10 10.0.1.2 10 0 3 ?
*> 10.0.0.0/11 10.0.1.2 10 0 3 ?
*> 10.1.0.0/16 10.0.1.2 10 0 3 ?
*> 10.3.30.0/24 10.0.1.2 10 0 3 ?
*> 10.3.30.128/25 10.0.1.2 10 0 3 ?
*> 10.128.0.0/9 10.0.1.2 10 0 3 ?
*> 10.255.0.0/24 10.0.101.2 1000 555 0 100 e
*> 10.255.64.0/24 10.0.101.2 1000 555 0 100 e

Implementing Routing Policy
32

Implementing Routing Policy
Show BGP

....

show bgp policy route-policy test2

10.0.0.0/8 is advertised to 10.0.101.2

Path info:
neighbor:10.0.1.2 neighbor router id:10.0.1.2
valid external best

Attributes after inbound policy was applied:
next hop:10.0.1.2
MET ORG AS
origin:incomplete neighbor as:3 metric:10
aspath:3

Attributes after outbound policy was applied:
next hop:10.0.1.2
MET ORG AS
origin:incomplete neighbor as:3 metric:333
aspath:2 3

...

Table Policy

The table policy feature in BGP allows you to configure traffic index values on routes as they are installed in
the global routing table. This feature is enabled using the table-policy command and supports the BGP policy
accounting feature.

BGP policy accounting uses traffic indices that are set on BGP routes to track various counters. See the
Implementing Routing Policy on Cisco ASR 9000 Series Router module in the Routing Configuration Guide
for Cisco ASR 9000 Series Routers for details on table policy use. See the Cisco Express Forwarding
Commands on Cisco ASR 9000 Series Router module in the IP Addresses and Services Command Reference
for Cisco ASR 9000 Series Routers for details on BGP policy accounting.

Table policy also provides the ability to drop routes from the RIB based on match criteria. This feature can
be useful in certain applications and should be used with caution as it can easily create a routing ‘black hole’
where BGP advertises routes to neighbors that BGP does not install in its global routing table and forwarding
table.

Import

The import attach point provides control over the import of routes from the global VPN IPv4 table to a
particular VPN routing and forwarding (VRF) instance.

For Layer 3 VPN networks, provider edge (PE) routers learn of VPN IPv4 routes through the Multiprotocol
Internal Border Gateway Protocol (MP-iBGP) from other PE routers and automatically filters out route
announcements that do not contain route targets that match any import route targets of its VRFs.

This automatic route filtering happens without RPL configuration; however, to provide more control over the
import of routes in a VRF, you can configure a VRF import policy.

The following example shows how to perform matches based on a route target extended community and then
sets the next hop. If the route has route target value 10:91, then the next hop is set to 172.16.0.1. If the route
has route target value 11:92, then the next hop is set to 172.16.0.2. If the route has Site-of-Origin (SoO) value
10:111111 or 10:111222, then the route is dropped. All other non-matching routes are dropped.

When you configure import route policy for a particular VRF, you must define the import route-target values.
Configuring import route-policy command does not take effect until you configure the import route-target

Implementing Routing Policy
33

Implementing Routing Policy
Table Policy

command with the route-target value. The import route target value acts as a first-level filter. The import
policy that you configure using the import route-policy command acts as a second-level filter.

route-policy bgpvrf_import
if extcommunity rt matches-any (10:91) then
set next-hop 172.16.0.1

elseif extcommunity rt matches-every (11:92) then
set next-hop 172.16.0.2

elseif extcommunity soo matches-any (10:111111, 10:111222) then
pass

endif
end-policy

vrf vrf_import
address-family ipv4 unicast
import route-policy bgpvrf_import

import route-target
65001:2200
!
export route-target
65001:2201

'Set' is a valid operator for the 'med' attribute at the bgp import attach point.Note

Export

The export attach point provides control over the export of routes from a particular VRF to a global VPN
IPv4 table.

For Layer 3 VPN networks, export route targets are added to the VPN IPv4 routes when VRF IPv4 routes are
converted into VPN IPv4 routes and advertised through the MP-iBGP to other PE routers (or flow from one
VRF to another within a PE router).

A set of export route targets is configured with the VRF without RPL configuration; however, to set route
targets conditionally, you can configure a VRF export policy.

The following example shows some match and set operations supported for the export route policy. If a route
matches 172.16.1.0/24 then the route target extended community is set to 10:101, and the weight is set to 211.
If the route does not match 172.16.1.0/24 but the origin of the route is egp, then the local preference is set to
212 and the route target extended community is set to 10:101. If the route does not match those specified
criteria, then the route target extended community 10:111222 is added to the route. In addition, RT 10:111222
is added to the route that matches any of the previous conditions as well.

route-policy bgpvrf_export
if destination in (172.16.1.0/24) then
set extcommunity rt (10:101)
set weight 211

elseif origin is egp then
set local-preference 212
set extcommunity rt (10:101)

endif
set extcommunity rt (10:111222) additive

end-policy

vrf vrf-export

Implementing Routing Policy
34

Implementing Routing Policy
Export

address-family ipv4 unicast
export route-policy bgpvrf-export
.
.
.

'Set' is a valid operator for the 'med' attribute at the bgp export attach point.Note

Allocate-Label

The allocate-label attach point provides increased control based on various attribute match operations. This
attach point is typically used in inter-AS option C to decide whether the label should be allocated or not when
sending updates to the neighbor for the IPv4 labeled unicast address family. The attribute setting actions
supported are for pass and drop.

The following example shows how to configure a route policy that passes the prefix 0.0.0.0 with prefix length
0. Label allocation happens only if prefix 0.0.0.0 exists.

route-policy label_policy
if destination in (0.0.0.0/0) then
pass

endif
end-policy

router bgp 2
vrf vrf1
rd auto

address-family ipv4 unicast
allocate-label route-policy label-policy
.
.
.

Retain Route-Target

The retain route target attach point within BGP allows the specification of match criteria based only on route
target extended community. The attach point is useful at the route reflector (RR) or at the Autonomous System
Boundary Router (ASBR).

Typically, an RR has to retain all IPv4 VPN routes to peer with its PE routers. These PEs might require routers
tagged with different route target IPv4 VPN routes resulting in non-scalable RRs. You can achieve scalability
if you configure an RR to retain routes with a defined set of route target extended communities, and a specific
set of VPNs to service.

Another reason to use this attach point is for an ASBR. ASBRs do not require that VRFs be configured, but
need this configuration to retain the IPv4 VPN prefix information.

The following example shows how to configure the route policy retainer and apply it to the retain route target
attach point. The route is accepted if the route contains route target extended communities 10:615, 10:6150,
and 15.15.15.15.15:15. All other non-matching routes are dropped.

extcommunity-set rt rtset1
0:615,
10:6150,

Implementing Routing Policy
35

Implementing Routing Policy
Allocate-Label

15.15.15.15.15:15
end-set

route-policy retainer
if extcommunity rt matches-any rtset1 then
pass

endif
end-policy

router bgp 2
address-family vpnv4 unicast
retain route-target route-policy retainer
.
.
.

Label-Mode

The label-mode attachpoint provides facility to choose label mode based on arbitrary match criteria such as
prefix value, community. This attach point is typically used to set the type of label mode to per-ce or per-vrf
or per-prefix based on deployment preferences. The attribute setting actions supported are for pass and drop.

This example shows label mode selection at VPNv4 AF (address family) level and at VRF IPv4 AF level:

route-policy set_label_mode
set label-mode per-prefix

end-policy
!
router bgp 100
address-family vpnv4 unicast
vrf all
label mode route-policy pass-all
!
!
vrf abc
rd 1:1
address-family ipv4 unicast
label mode route-policy set_label_mode
!
!
!
end

Neighbor-ORF

The neighbor-orf attach point provides the filtering of incoming BGP route updates using only prefix-based
matching. In addition to using this as an inbound filter, the prefixes and disposition (drop or pass) are sent to
upstream neighbors as an Outbound Route Filter (ORF) to allow them to perform filtering.

The following example shows how to configure a route policy orf-preset and apply it to the neighbor ORF
attach point. The prefix of the route is dropped if it matches any prefix specified in orf-preset (172.16.1.0/24,
172.16.5.0/24, 172.16.11.0/24). In addition to this inbound filtering, BGP also sends these prefix entries to
the upstream neighbor with a permit or deny so that the neighbor can filter updates before sending them on
to their destination.

prefix-set orf-preset
172.16.1.0/24,
172.16.5.0/24,
172.16.11.0/24

end-set

Implementing Routing Policy
36

Implementing Routing Policy
Label-Mode

route-policy policy-orf
if orf prefix in orf-preset then
drop

endif
if orf prefix in (172.16.3.0/24, 172.16.7.0/24, 172.16.13.0/24) then
pass

endif

router bgp 2
neighbor 1.1.1.1
remote-as 3
address-family ipv4 unicast
orf route-policy policy-orf

.

.

.

Next-hop

The next-hop attach point provides increased control based on protocol and prefix-based match operations.
The attach point is typically used to decide whether to act on a next-hop notification (up or down) event.

Support for next-hop tracking allows BGP to monitor reachability for routes in the Routing Information Base
(RIB) that can directly affect BGP prefixes. The route policy at the BGP next-hop attach point helps limit
notifications delivered to BGP for specific prefixes. The route policy is applied on RIB routes. Typically,
route policies are used in conjunction with next-hop tracking to monitor non-BGP routes.

The following example shows how to configure the BGP next-hop tracking feature using a route policy to
monitor static or connected routes with the prefix 10.0.0.0 and prefix length 8.

route-policy nxthp_policy_A
if destination in (10.0.0.0/8) and protocol in (static, connected) then
pass

endif
end-policy

router bgp 2
address-family ipv4 unicast
nexthop route-policy nxthp_policy_A
.
.
.

Clear-Policy

The clear-policy attach point provides increased control based on various AS path match operations when
using a clear bgp command. This attach point is typically used to decide whether to clear BGP flap statistics
based on AS-path-based match operations.

The following example shows how to configure a route policy where the in operator evaluates to true if one
or more of the regular expression matches in the set my-as-set successfully match the AS path associated with
the route. If it is a match, then the clear command clears the associated flap statistics.

as-path-set my-as-set
ios-regex '_12$',
ios-regex '_13$'

end-set

Implementing Routing Policy
37

Implementing Routing Policy
Next-hop

route-policy policy_a
if as-path in my-as-set then
pass

else
drop

endif
end-policy

clear bgp ipv4 unicast flap-statistics route-policy policy_a

Debug

The debug attach point provides increased control based on prefix-based match operations. This attach point
is typically used to filter debug output for various BGP commands based on the prefix of the route.

The following example shows how to configure a route policy that will only pass the prefix 20.0.0.0 with
prefix length 8; therefore, the debug output shows up only for that prefix.

route-policy policy_b
if destination in (10.0.0.0/8) then
pass

else
drop

endif
end-policy

debug bgp update policy_b

BGP Attributes and Operators

Feature DescriptionRelease InformationFeature Name

This feature introduces an
event-based method to track the
prefixes in the RIB, so that if a
prefix is added or removed from
the RIB, BGP is notified and
returns the policy.

This feature introduces the async
keyword to the rib-has-routeBGP
command.

Release 7.4.1RIB Prefix Change Notification

Implementing Routing Policy
38

Implementing Routing Policy
Debug

This table summarizes the BGP attributes and operators per attach points.

Table 1: BGP Attributes and Operators

SetMatchAttributeAttach Point

set—path-selectionadditional-paths

—matches-every

is-empty

matches-any

community

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathaggregation

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete in

delete not in

delete all

is-empty

matches-any

matches-every

community

—indestination

set

set additive

—extcommunity cost

setis, ge, le, eqlocal-preference

setset +set -is, eg, ge, lemed

setinnext-hop

setisorigin

—insource

suppress-route—suppress-route

set—weight

Implementing Routing Policy
39

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathallocate-label

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

—indestination

set—label

—is, ge, le, eqlocal-preference

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathclear-policy

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

Implementing Routing Policy
40

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathdampening

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

set dampening

(to set values that control the
dampening, see Dampening, on page
29)

—/dampening

—indestination

—is, ge, le, eqlocal-preference

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

—indestinationdebug

Implementing Routing Policy
41

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

prependN/Aas-pathdefault-originate

set

set additive

N/Acommunity

community with `peeras'

set

set additive

N/Aextcommunity cost

setN/Aextcommunity rt

setN/Aextcommunity soo

setN/Alocal-preference

set

set +

set-assign igp

N/Amed

set

set-to-peer-address

set-to-self

N/Anext-hop

setN/Aorigin

N/Ainrib-has-route

N/Aasyncrib-has-route

Implementing Routing Policy
42

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

N/Ain

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathexport (VRF)

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete in

delete not in

delete all

is-empty

matches-any

matches-every

community

—indestination

set

additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

matches-within

extcommunity rt

—is-empty

matches-any

matches-every

matches-within

extcommunity soo

setis, ge, le, eqlocal-preference

setis, eg, ge, lemed

—innext-hop

—isorigin

—insource

set—weight

Implementing Routing Policy
43

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathimport (VRF)

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

Set, only if the RD with which the
remote route was received is different
from the locally configured RD for
the VRF.

—weight

—is-empty

matches-any

matches-every

community

—indestination

—is-empty

matches-any

matches-every

matches-within

extcommunity rt

—is-empty

matches-any

matches-every

matches-within

extcommunity soo

setis, ge, le, eqlocal-preference

setis, eg, ge, lemed

set

set peer address

set destination vrf

innext-hop

—isorigin

Implementing Routing Policy
44

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

—insource

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathlabel-mode

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

—indestination

set—label

—is, ge, le, eqlocal-preference

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

Implementing Routing Policy
45

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend

prepend most-recent

replace

in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathneighbor-in

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

communitycommunitywith ‘peeras’

—indestination

—inrd

—isevpn-route-type

yesinesi

yesinetag

yesinmac

—inevpn-originator

—inevpn-gateway

set

set additive

—extcommunity cost

set

additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

matches-within

extcommunity rt

—extcommunity soo

Implementing Routing Policy
46

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

is-empty

matches-any

matches-every

matches-within

setis, ge, le, eqlocal-preference

set

set +

set -

is, eg, ge, lemed

set

set peer address

innext-hop

setisorigin

—insource

set—weight

Implementing Routing Policy
47

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend

prepend most-recent

replace

in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathneighbor-out

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

set

set additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

communitycommunitywith ‘peeras’

—indestination

—inrd

—isevpn-route-type

Yesinesi

Yesinetag

Yesinmac

—inevpn-originator

—inevpn-gateway

set

set additive

—extcommunity cost

set

additive

delete-in

delete-not-in

delete-all

is-empty

matches-any

matches-every

matches-within

extcommunity rt

—extcommunity soo

Implementing Routing Policy
48

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

is-empty

matches-any

matches-every

matches-within

setis, ge, le, eqlocal-preference

set

set +

set -

set max-unreachable

set igp-cost

is, eg, ge, lemed

set

set self

innext-hop

setisorigin

—ispath-type

—inrd

—insource

unsuppress-route—unsuppress-route

set—vpn-distinguisher

n/ainorf-prefixneighbor-orf

Implementing Routing Policy
49

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend—as-pathnetwork

set

set additive

delete-in

delete-not-in

delete-all

—community

—indestination

set

set additive

—extcommunity cost

—route-has-labelmpls-label

set—local-preference

set

set+

set-

—med

setinnext-hop

set—origin

—isroute-type

—is, ge, le, eqtag

set—weight

—indestinationnext-hop

—is,inprotocol

—insource

Implementing Routing Policy
50

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

prepend—as-pathredistribute

set

set additive

delete in

delete not in

delete all

—community

—indestination

setset additive—extcommunity cost

set—local-preference

set

set+

set-

—med

setinnext-hop

set—origin

—route-has-labelmpls-label

—isroute-type

—is, eq, ge, letag

set—weight

—is-empty

matches-any

matches-every

matches-within

extcommunity rtretain-rt

Implementing Routing Policy
51

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

—in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-pathshow

—is, ge, le, eqas-path-length

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

—indestination

—is-empty

matches-any

matches-every

matches-within

extcommunity rt

—is-empty

matches-any

matches-every

matches-within

extcommunity soo

—is, eg, ge, lemed

—innext-hop

—isorigin

—insource

Implementing Routing Policy
52

Implementing Routing Policy
BGP Attributes and Operators

SetMatchAttributeAttach Point

table-policy —in

is-local

length

neighbor-is

originates-from

passes-through

unique-length

as-path

—is, ge, le, eqas-path-unique-length

—is-empty

matches-any

matches-every

community

—is, ge, le, eqlocal-preference

—indestination

—is, eg, ge, lemed

—innext-hop

—isorigin

set—rib-metric

—insource

set—tag

set—traffic-index

Some BGP route attributes are inaccessible from some BGP attach points for various reasons. For example,
the set med igp-cost only command makes sense when there is a configured igp-cost to provide a source
value.

Default-Information Originate

The default-information originate attach point allows the user to conditionally inject the default route 0.0.0.0/0
into the OSPF link-state database, which is done by evaluating the attached policy. If any routes in the local
RIB pass the policy, then the default route is inserted into the link-state database.

The following example shows how to generate a default route if any of the routes that match 10.0.0.0/8 ge 8
le 25 are present in the RIB:

route-policy ospf-originate
if rib-has-route in (10.0.0.0/8 ge 8 le 25) then
pass

endif

Implementing Routing Policy
53

Implementing Routing Policy
Default-Information Originate

end-policy

router ospf 1
default-information originate policy ospf-originate
.
.
.

RPL - if prefix is-best-path/is-best-multipath

Border Gateway Protocol (BGP) routers receive multiple paths to the same destination. As a standard, by
default the BGP best path algorithm decides the best path to install in IP routing table. This is used for traffic
forwarding.

BGP assigns the first valid path as the current best path. It then compares the best path with the next in the
list. This process continues, until BGP reaches the end of the list of valid paths. This contains all rules used
to determine the best path. When there are multiple paths for a given address prefix, BGP:

• Selects one of the paths as the best path as per the best-path selection rules.

• Installs the best path in its forwarding table. Each BGP speaker advertises only the best-path to its peers.

The advertisement rule of sending only the best path does not convey the full routing state of a destination,
present on a BGP speaker to its peers.

Note

After the BGP speaker receives a path from one of its peers; the path is used by the peer for forwarding packets.
All other peers receive the same path from this peer. This leads to a consistent routing in a BGP network. To
improve the link bandwidth utilization, most BGP implementations choose additional paths satisfy certain
conditions, as multi-path, and install them in the forwarding table. Incoming packets for such are load-balanced
across the best-path and the multi-path(s). You can install the paths in the forwarding table that are not
advertised to the peers. The RR route reflector finds out the best-path and multi-path. This way the route
reflector uses different communities for best-path and multi-path. This feature allows BGP to signal the local
decision done by RR or Border Router. With this new feature, selected by RR using community-string (if
is-best-path then community 100:100). The controller checks which best path is sent to all R's. Border Gateway
Protocol routers receive multiple paths to the same destination. While carrying out best path computation
there will be one best path, sometimes equal and few non-equal paths. Thus, the requirement for a best-path
and is-equal-best-path.

The BGP best path algorithm decides the best path in the IP routing table and used for forwarding traffic. This
enhancement within the RPL allows creating policy to take decisions. Adding community-string for local
selection of best path. With introduction of BGP Additional Path (Add Path), BGP now signals more than the
best Path. BGP can signal the best path and the entire path equivalent to the best path. This is in accordance
to the BGP multi-path rules and all backup paths.

OSPF Policy Attach Points
This section describes each of the OSPF policy attach points and provides a summary of the OSPF attributes
and operators.

Implementing Routing Policy
54

Implementing Routing Policy
RPL - if prefix is-best-path/is-best-multipath

Default-Information Originate

The default-information originate attach point allows the user to conditionally inject the default route 0.0.0.0/0
into the OSPF link-state database, which is done by evaluating the attached policy. If any routes in the local
RIB pass the policy, then the default route is inserted into the link-state database.

The following example shows how to generate a default route if any of the routes that match 10.0.0.0/8 ge 8
le 25 are present in the RIB:

route-policy ospf-originate
if rib-has-route in (10.0.0.0/8 ge 8 le 25) then
pass

endif
end-policy

router ospf 1
default-information originate policy ospf-originate
.
.
.

Redistribute

The redistribute attach point within OSPF injects routes from other routing protocol sources into the OSPF
link-state database, which is done by selecting the routes it wants to import from each protocol. It then sets
the OSPF parameters of cost and metric type. The policy can control how the routes are injected into OSPF
by using the set metric-type or set ospf-metric command.

The following example shows how to redistribute routes from IS-IS instance instance_10 into OSPF instance
1 using the policy OSPF-redist. The policy sets the metric type to type-2 for all redistributed routes. IS-IS
routes with a tag of 10 have their cost set to 100, and IS-IS routes with a tag of 20 have their OSPF cost set
to 200. Any IS-IS routes not carrying a tag of either 10 or 20 are not be redistributed into the OSPF link-state
database.

route-policy OSPF-redist
set metric-type type-2
if tag eq 10 then
set ospf cost 100

elseif tag eq 20 then
set ospf cost 200

else
drop

endif
end-policy
router ospf 1
redistribute isis instance_10 policy OSPF-redist
.
.
.

Area-in

The area-in attach point within OSPF allows you to filter inbound OSPF type-3 summary link-state
advertisements (LSAs). The attach point provides prefix-based matching and hence increased control for
filtering type-3 summary LSAs.

Implementing Routing Policy
55

Implementing Routing Policy
Default-Information Originate

The following example shows how to configure the prefix for OSPF summary LSAs. If the prefix matches
any of 10 .105.3.0/24, 10 .105.7.0/24, 10 .105.13.0/24, it is accepted. If the prefix matches any of 10 .106.3.0/24,
10 .106.7.0/24, 10 .106.13.0/24, it is dropped.

route-policy OSPF-area-in
if destination in (10

.105.3.0/24, 10

.105.7.0/24, 10

.105.13.0/24) then
drop

endif
if destination in (10

.106.3.0/24, 10

.106.7.0/24, 10

.106.13.0/24) then
pass

endif
end-policy

router ospf 1
area 1
route-policy OSPF-area-in in

Area-out

The area-out attach point within OSPF allows you to filter outbound OSPF type-3 summary LSAs. The attach
point provides prefix-based matching and, hence, increased control for filtering type-3 summary LSAs.

The following example shows how to configure the prefix for OSPF summary LSAs. If the prefix matches
any of 10 .105.3.0/24, 10 .105.7.0/24, 10 .105.13.0/24, it is announced. If the prefix matches any of
10.105.3.0/24, 10 .105.7.0/24, 10 .105.13.0/24, it is dropped and not announced.

route-policy OSPF-area-out
if destination in (10

.105.3.0/24, 10

.105.7.0/24, 10

.105.13.0/24) then
drop

endif
if destination in (10

.105.3.0/24, 10

.105.7.0/24, 10

.105.13.0/24) then
pass

endif
end-policy

router ospf 1
area 1
route-policy OSPF-area-out out

SPF Prefix-priority

The spf-prefix-priority attach point within OSPF allows you to define the route policy to apply to OSPFv2
prefix prioritization.

Implementing Routing Policy
56

Implementing Routing Policy
Area-out

OSPF Attributes and Operators

This table summarizes the OSPF attributes and operators per attach points.

Table 2: OSPF Attributes and Operators

SetMatchAttributeAttach Point

n/a

n/a

n/a

in

in

eq, ge, is, le

destination

rib-metric

tag

distribute-list-in-area

n/a

n/a

n/a

in

in

eq, ge, is, le

destination

rib-metric

tag

distribute-list-in-instance

n/a

n/a

n/a

in

in

eq, ge, is, le

destination

rib-metric

tag

distribute-list-in-interface

set—ospf-metricdefault-information
originate

set—metric-type

set—tag

—inrib-has-route

—indestinationredistribute

set—metric-type

set—ospf-metric

—innext-hop

—route-has-labelmpls-label

n/ais, le, ge, eqrib-metric

—isroute-type

setis, eq, ge, letag

—indestinationarea-in

—indestinationarea-out

n/aindestinationspf-prefix-priority

setn/aspf-priority

n/ais, le, ge, eqtag

Implementing Routing Policy
57

Implementing Routing Policy
OSPF Attributes and Operators

Distribute-list in

The distribute-list in attach point within OSPF allows use of route policies to filter OSPF prefixes. The
distribute-list in route-policy can be configured at OSPF instance, area, and interface levels. The route-policy
used in the distribute-list in command supports match statements, "destination" and "rib-metric". The "set"
commands are not supported in the route-policy.

These are examples of valid route-policies for "distribute-list in":

route-policy DEST
if destination in (10.10.10.10/32) then
drop

else
pass

endif
end-policy

route-policy METRIC
if rib-metric ge 10 and rib-metric le 19 then
drop

else
pass

endif
end-policy

prefix-set R-PFX
10.10.10.30

end-set

route-policy R-SET
if destination in R-PFX and rib-metric le 20 then
pass

else
drop

endif
end-policy

OSPFv3 Policy Attach Points
This section describes each of the OSPFv3 policy attach points and provides a summary of the OSPFv3
attributes and operators.

Default-Information Originate

The default-information originate attach point allows the user to conditionally inject the default route 0::/0
into the OSPFv3 link-state database, which is done by evaluating the attached policy. If any routes in the local
RIB pass the policy, then the default route is inserted into the link-state database.

The following example shows how to generate a default route if any of the routes that match 2001::/96 are
present in the RIB:

route-policy ospfv3-originate
if rib-has-route in (2001::/96) then
pass

endif
end-policy

Implementing Routing Policy
58

Implementing Routing Policy
Distribute-list in

router ospfv3 1
default-information originate policy ospfv3-originate
.
.

Redistribute

The redistribute attach point within OSPFv3 injects routes from other routing protocol sources into the OSPFv3
link-state database, which is done by selecting the route types it wants to import from each protocol. It then
sets the OSPFv3 parameters of cost and metric type. The policy can control how the routes are injected into
OSPFv3 by using the metric type command.

The following example shows how to redistribute routes from BGP instance 15 into OSPF instance 1 using
the policy OSPFv3-redist. The policy sets the metric type to type-2 for all redistributed routes. BGP routes
with a tag of 10 have their cost set to 100, and BGP routes with a tag of 20 have their OSPFv3 cost set to 200.
Any BGP routes not carrying a tag of either 10 or 20 are not be redistributed into the OSPFv3 link-state
database.

route-policy OSPFv3-redist
set metric-type type-2
if tag eq 10 then
set extcommunity cost 100

elseif tag eq 20 then
set extcommunity cost 200

else
drop

endif
end-policy

router ospfv3 1
redistribute bgp 15 policy OSPFv3-redist
.
.
.

OSPFv3 Attributes and Operators

This table summarizes the OSPFv3 attributes and operators per attach points.

Table 3: OSPFv3 Attributes and Operators

SetMatchAttributeAttach Point

set—ospf-metricdefault-information
originate

set—metric-type

set—tag

—inrib-has-route

Implementing Routing Policy
59

Implementing Routing Policy
Redistribute

SetMatchAttributeAttach Point

—indestinationredistribute

set—ospf-metric

set—metric-type

—isroute-type

—is, eq, ge,
le

tag

IS-IS Policy Attach Points
This section describes each of the IS-IS policy attach points and provides a summary of the IS-IS attributes
and operators.

Redistribute

The redistribute attach point within IS-IS allows routes from other protocols to be readvertised by IS-IS. The
policy is a set of control structures for selecting the types of routes that a user wants to redistribute into IS-IS.
The policy can also control which IS-IS level the routes are injected into and at what metric values.

The following describes an example. Here, routes from IS-IS instance 1 are redistributed into IS-IS instance
instance_10 using the policy ISIS-redist. This policy sets the level to level-1-2 for all redistributed routes.
IS-IS routes with a tag of 10 have their metric set to 100, and IS-IS routes with a tag of 20 have their IS-IS
metric set to 200. Any IS-IS routes not carrying a tag of either 10 or 20 are not be redistributed into the IS-IS
database.

route-policy ISIS-redist
set level level-1-2
if tag eq 10 then
set isis-metric 100

elseif tag eq 20 then
set isis-metric 200

else
drop

endif
end-policy

router isis instance_10
address-family ipv4 unicast
redistribute isis 1 policy ISIS-redist
.
.
.

Default-Information Originate

The default-information originate attach point within IS-IS allows the default route 0.0.0.0/0 to be conditionally
injected into the IS-IS route database.

The following example shows how to generate an IPv4 unicast default route if any of the routes that match
10.0.0.0/8 ge 8 le 25 is present in the RIB. The cost of the IS-IS route is set to 100 and the level is set to
level-1-2 on the default route that is injected into the IS-IS database.

Implementing Routing Policy
60

Implementing Routing Policy
IS-IS Policy Attach Points

route-policy isis-originate
if rib-has-route in (10.0.0.0/8 ge 8 le 25) then
set metric 100
set level level-1-2

endif
end-policy

router isis instance_10
address-family ipv4 unicast
default-information originate policy isis_originate
.

Inter-area-propagate

The inter-area-propagate attach point within IS-IS allows the prefixes to be conditionally propagated from
one level to another level within the same IS-IS instance.

The following example shows how to allow prefixes to be leaked from the level 1 LSP into the level 2 LSP
if any of the prefixes match 10.0.0.0/8 ge 8 le 25.

route-policy isis-propagate
if destination in (10.0.0.0/8 ge 8 le 25) then
pass

endif
end-policy

router isis instance_10
address-family ipv4 unicast
propagate level 1 into level 2 policy isis-propagate
.

Implementing Routing Policy
61

Implementing Routing Policy
Inter-area-propagate

IS-IS Attributes and Operators

This table summarizes the IS-IS attributes and operators per attach points.

Table 4: IS-IS Attributes and Operators

SetMatchAttributeAttach Point

setis, eq, ge, letagredistribution

—is

The following route-type cannot be matched:
ospf-nssa-type-1 and ospf-nssa-type-2

Note

route-type

—indestination

—innext-hop

—route-has-labelmpls-label

set—level

set—isis-metric

set—metric-type

—inrib-has-routedefault-information
originate

set—level

set—isis-metric

set—tag

—indestinationinter-area-propagate

EIGRP Policy Attach Points
This section describes each of the EIGRP policy attach points and provides a summary of the EIGRP attributes
and operators.

Default-Accept-In

The default-accept-in attach point allows you to set and reset the conditional default flag for EIGRP routes
by evaluating the attached policy.

The following example shows a policy that sets the conditional default flag for all routes that match 10.0.0.0/8
and longer prefixes up to 10.0.0.0/25:

route-policy eigrp-cd-policy-in
if destination in (10.0.0.0/8 ge 8 le 25) then
pass

endif
end-policy
!
router eigrp 100

Implementing Routing Policy
62

Implementing Routing Policy
IS-IS Attributes and Operators

address-family ipv4
default-information allowed in route-policy eigrp-cd-policy-in
.
.
.

Default-Accept-Out

The default-accept-out attach point allows you to set and reset the conditional default flag for EIGRP routes
by evaluating the attached policy.

The following example shows a policy that sets the conditional default flag for all routes that match 10
.10.0.0/16:

route-policy eigrp-cd-policy-out
if destination in (10

.10.0.0/16) then
pass

endif
end-policy
!
router eigrp 100
address-family ipv4
default-information allowed out route-policy eigrp-cd-policy-out
.
.
.

Policy-In

The policy-in attach point allows you to filter and modify inbound EIGRP routes. This policy is applied to
all interfaces for which there is no interface inbound route policy.

The following example shows the command under EIGRP:

router eigrp 100
address-family ipv4
route-policy global-policy-in in
.
.
.

Policy-Out

The policy-out attach point allows you to filter and modify outbound EIGRP routes. This policy is applied to
all interfaces for which there is no interface outbound route policy.

The following example shows the command under EIGRP:

router eigrp 100
address-family ipv4
route-policy global-policy-out out
.
.
.

Implementing Routing Policy
63

Implementing Routing Policy
Default-Accept-Out

If-Policy-In

The if-policy-in attach point allows you to filter routes received on a particular EIGRP interface. The following
example shows an inbound policy for GigabitEthernet interface 0/2/0/3:

router eigrp 100
address-family ipv4
interface GigabitEthernet0/2/0/3
route-policy if-filter-policy-in in

.

.

.

If-Policy-Out

The if-policy-out attach point allows you to filter routes sent out on a particular EIGRP interface. The following
example shows an outbound policy for GigabitEthernet interface 0/2/0/3:

router eigrp 100
address-family ipv4
interface GigabitEthernet0/2/0/3
route-policy if-filter-policy-out out

.

.

.

Redistribute

The redistribute attach point in EIGRP allows you to filter redistributed routes from other routing protocols
and modify some routing parameters before installing the route in the EIGRP database. The following example
shows a policy filter redistribution of RIP routes into EIGRP.

router-policy redistribute-rip
if destination in (100.1.1.0/24) then
set eigrp-metric 5000000 4000 150 30 2000

else
set tag 200

endif
end-policy

router eigrp 100
address-family ipv4
redistribute rip route-policy redistribute-rip
.
.
.

EIGRP Attributes and Operators

This table summarizes the EIGRP attributes and operators per attach points.

Table 5: EIGRP Attributes and Operators

SetMatchAttributeAttach Point

—indestinationdefault-accept-in

Implementing Routing Policy
64

Implementing Routing Policy
If-Policy-In

SetMatchAttributeAttach Point

—indestinationdefault-accept-out

—indestinationif-policy-in

—innext-hop

add,
set

—eigrp-metric

setis, eq, ge, letag

—indestinationif-policy-out

—innext-hop

—is, inprotocol

add,
set

—eigrp-metric

setis, eq, ge, letag

—indestinationpolicy-in

—innext-hop

add,
set

—eigrp-metric

setis, eq, ge, letag

—indestinationpolicy-out

—innext-hop

—is, inprotocol

add,
set

—eigrp-metric

setis, eq, ge, letag

—indestinationredistribute

—innext-hop

—route-has-labelmpls-label

add,
set

—eigrp-metric

—isroute-type

setis, eq, ge, letag

Implementing Routing Policy
65

Implementing Routing Policy
EIGRP Attributes and Operators

RIP Policy Attach Points
This section describes each of the RIP policy attach points and provides a summary of the RIP attributes and
operators.

Default-Information Originate

The default-information originate attach point allows you to conditionally inject the default route 0.0.0.0/0
into RIP updates by evaluating the attached policy. If any routes in the local RIB pass the policy, then the
default route is inserted.

The following example shows how to generate a default route if any of the routes that match 10.0.0.0/8 ge 8
le 25 are present in the RIB:

route-policy rip-originate
if rib-has-route in (10.0.0.0/8 ge 8 le 25) then
pass

endif
end-policy

router rip
default-information originate route-policy rip-originate

Redistribute

The redistribution attach point within RIP allows you to inject routes from other routing protocol sources into
the RIP database.

The following example shows how to inject OSPF routes into RIP:

route-policy redist-ospf
set rip-metric 5

end-policy

router rip
redistribute ospf 1 route-policy redist-ospf

Global-Inbound

The global-inbound attach point for RIP allows you to filter or update inbound RIP routes that match a route
policy.

The following example shows how to filter the inbound RIP routes that match the route policy named rip-in:

router rip
route-policy rip-in in

Global-Outbound

The global-outbound attach point for RIP allows you to filter or update outbound RIP routes that match a
route-policy.

The following example shows how to filter the outbound RIP routes that match the route policy named rip-out:

router rip

Implementing Routing Policy
66

Implementing Routing Policy
RIP Policy Attach Points

route-policy rip-out out

Interface-Inbound

The interface-inbound attach point allows you to filter or update inbound RIP routes that match a route policy
for a specific interface.

The following example shows how to filter inbound RIP routes that match the route policy for interface
0/1/0/1:

router rip
interface GigabitEthernet0/1/0/1
route-policy rip-in in

Interface-Outbound

The interface-outbound attach point allows you to filter or update outbound RIP routes that match a route
policy for a specific interface.

The following example shows how to filter outbound RIP routes that match the route policy for interface
0/2/0/1:

router rip
interface GigabitEthernet0/2/0/1
route-policy rip-out out

RIP Attributes and Operators

This table summarizes the RIP attributes and operators per attach points.

Table 6: RIP Attributes and Operators

SetMatchAttributeAttach Point

setnanext-hopdefault-information
originate

setnarip-metric

setnarip-tag

nainrib-has-route

naindestinationglobal-inbound

nainnext-hop

addnarip-metric

naindestinationglobal-outbound

nais, inprotocol

addnarip-metric

Implementing Routing Policy
67

Implementing Routing Policy
Interface-Inbound

SetMatchAttributeAttach Point

naindestinationinterface-inbound

nainnext-hop

addnarip-metric

naindestinationinterface-outbound

nais, inprotocol

addnarip-metric

naindestinationredistribute

setinnext-hop

setnarip-metric

setnarip-tag

naroute-has-labelmpls-label

naisroute-type

setis, eq, ge, letag

PIM Policy Attach Points
This section describes the PIM policy rpf-topology attach point and provides a summary of the PIM attributes
and operators.

Nondestructive Editing of Routing Policy
The Nondestructive Editing of Routing Policy changes the default exit behavior under routing policy
configuration mode to abort the configuration.

The default exit command acts as end-policy, end-set, or end-if. If the exit command is executed under route
policy configuration mode, the changes are applied and configuration is updated. This destructs the existing
policy. The rpl set-exit-as-abort command allows to overwrite the default behavior of the exit command
under the route policy configuration mode.

Attached Policy Modification
Policies that are in use do, on occasion, need to be modified. In the traditional configuration model, a policy
modification would be done by completely removing the policy and reentering it. However, this model allows
for a window of time in which no policy is attached and default actions to be used, which is an opportunity
for inconsistencies to exist. To close this window of opportunity, you can modify a policy in use at an attach
point by respecifying it, which allows for policies that are in use to be changed, without having a window of
time in which no policy is applied at the given attach point.

Implementing Routing Policy
68

Implementing Routing Policy
PIM Policy Attach Points

A route policy or set that is in use at an attach point cannot be removed because this removal would result in
an undefined reference. An attempt to remove a route policy or set that is in use at an attach point results in
an error message to the user.

Note

Nonattached Policy Modification
As long as a given policy is not attached at an attach point, the policy is allowed to refer to nonexistent sets
and policies. Configurations can be built that reference sets or policy blocks that are not yet defined, and then
later those undefined policies and sets can be filled in. This method of building configurations gives much
greater flexibility in policy definition. Every piece of policy you want to reference while defining a policy
need not exist in the configuration. Thus, you can define a policy sample1 that references a policy sample2
using an apply statement even if the policy sample2 does not exist. Similarly, you can enter a policy statement
that refers to a nonexistent set.

However, the existence of all referenced policies and sets is enforced when a policy is attached. Thus, if a
user attempts to attach the policy sample1 with the reference to an undefined policy sample2 at an inbound
BGP policy using the statement neighbor 1.2.3.4 address-family ipv4 unicast policy sample1 in, the
configuration attempt is rejected because the policy sample2 does not exist.

Editing Routing Policy Configuration Elements
RPL is based on statements rather than on lines. That is, within the begin-end pair that brackets policy statements
from the CLI, a new line is merely a separator, the same as a space character.

The CLI provides the means to enter and delete route policy statements. RPL provides a means to edit the
contents of the policy between the begin-end brackets, using a text editor. The following text editors are
available on Cisco IOS XR software for editing RPL policies:

• Nano (default)

• Emacs

• Vim

In RPL, you can use the rpl editor vim configuration to update the default editor.
Router(config)#rpl editor ?
emacs Set default RPL editor to Emacs
nano Set default RPL editor to nano
vim Set default RPL editor to Vim

Editing Routing Policy Configuration Elements Using the Nano Editor

To edit the contents of a routing policy using the Nano editor, use the following CLI command in EXEC
mode:

edit route-policy

name

nano

Implementing Routing Policy
69

Implementing Routing Policy
Nonattached Policy Modification

A copy of the route policy is copied to a temporary file and the editor is launched. After editing, enter Ctrl-X
to save the file and exit the editor. The available editor commands are displayed on screen.

Detailed information on using the Nano editor is available at this URL: http://www.nano-editor.org/.

Not all Nano editor features are supported on Cisco IOS XR software.

Editing Routing Policy Configuration Elements Using the Emacs Editor

To edit the contents of a routing policy using the Emacs editor, use the following CLI command in EXEC
mode:

edit

route-policy

name

emacs

A copy of the route policy is copied to a temporary file and the editor is launched. After editing, save the
editor buffer by using the Ctrl-X and Ctrl-S keystrokes. To save and exit the editor, use the Ctrl-X and Ctrl-C
keystrokes. When you quit the editor, the buffer is committed. If there are no parse errors, the configuration
is committed:

RP/0/RSP0/CPU0:router# edit route-policy policy_A
--
== MicroEMACS 3.8b () == rpl_edit.139281 ==
if destination in (2001::/8) then
drop

endif
end-policy
!

== MicroEMACS 3.8b () == rpl_edit.139281 ==
Parsing.
83 bytes parsed in 1 sec (82)bytes/sec
Committing.
1 items committed in 1 sec (0)items/sec
Updating.
Updated Commit database in 1 sec

If there are parse errors, you are asked whether editing should continue:

RP/0/RSP0/CPU0:router#edit route-policy policy_B
== MicroEMACS 3.8b () == rpl_edit.141738
route-policy policy_B

Implementing Routing Policy
70

Implementing Routing Policy
Editing Routing Policy Configuration Elements Using the Emacs Editor

http://www.nano-editor.org/

set metric-type type_1
if destination in (2001::/8) then

drop
endif

end-policy
!
== MicroEMACS 3.8b () == rpl_edit.141738 ==
Parsing.
105 bytes parsed in 1 sec (103)bytes/sec

% Syntax/Authorization errors in one or more commands.!! CONFIGURATION
FAILED DUE TO SYNTAX/AUTHORIZATION ERRORS
set metric-type type_1
if destination in (2001::/8) then

drop
endif

end-policy
!

Continue editing? [no]:

If you answer yes, the editor continues on the text buffer fromwhere you left off. If you answer no, the running
configuration is not changed and the editing session is ended.

Editing Routing Policy Configuration Elements Using the Vim Editor

Editing elements of a routing policy with Vim (Vi IMproved) is similar to editing them with Emacs except
for some feature differences such as the keystrokes to save and quit. To write to a current file and exit, use
the :wq or :x or ZZ keystrokes. To quit and confirm, use the :q keystrokes. To quit and discard changes, use
the :q! keystrokes.

You can reference detailed online documentation for Vim at this URL: http://www.vim.org/

Editing Routing Policy Configuration Elements Using CLI

The CLI allows you to enter and delete route policy statements. You can complete a policy configuration
block by entering applicable commands such as end-policy or end-set. Alternatively, the CLI interpreter
allows you to use the exit command to complete a policy configuration block. The abort command is used
to discard the current policy configuration and return to global configuration mode.

Editing Routing Policy Language set elements Using XML

RPL supports editing set elements using XML. Entries can be appended, prepended, or deleted to an existing
set without replacing it through XML.

Hierarchical Policy Conditions
The Hierarchical Policy Conditions feature enables the ability to specify a route policy within the "if" statement
of another route policy. This ability enables route-policies to be applied for configurations that are based on
hierarchical policies.

With the Hierarchical Policy Conditions feature, Cisco IOS XR RPL supports Apply Condition policies that
can be used with various types of Boolean operators along with various other matching statements.

Implementing Routing Policy
71

Implementing Routing Policy
Editing Routing Policy Configuration Elements Using the Vim Editor

http://www.vim.org/

Apply Condition Policies
Apply Condition policies, which Cisco IOS XR RPL supports, allow usage of a route-policy within an "if"
statement of another route-policy.

Consider route-policy configurations Parent, Child A, and Child B:
route-policy Child A
if destination in (10.10.0.0/16) then
set local-pref 111
endif
end-policy
!

route-policy Child B
if as-path originates-from '222' then
set community (333:222) additive
endif
end-policy
!

route-policy Parent
if apply Child A and apply Child B then
set community (333:333) additive
else
set community (333:444) additive
endif
end-policy
!

In the above scenarios, whenever the policy Parent is executed, the decision of the "if" condition in that is
selected based on the result of policies Child A and Child B. The policy Parent is equivalent to policy merged
as given below:

route-policy merged
if destination in (10.10.0.0/16) and as-path originates-from '222' then
set local-pref 111
set community (333:222, 333:333) additive
elseif destination in (10.10.0.0/16) then /*Only Policy Child A is pass */
set local-pref 111
set community (333:444) additive /*From else block */
elseif as-path originates-from '222' then /*Only Policy Child B is pass */
set community (333:222, 333:444) additive /*From else block */
else
set community (333:444) additive /*From else block */
endif
end-policy

Apply Conditions can be used with parameters and are supported on all attach points and on all clients.
Hierarchical Apply Conditions can be used without any constraints on a cascaded level.

Existing route policy semantics can be expanded to include this Apply Condition:

Route-policy policy_name
If apply policyA and apply policyB then

Set med 100
Else if not apply policyD then

Set med 200
Else

Set med 300

Implementing Routing Policy
72

Implementing Routing Policy
Apply Condition Policies

Endif
End-policy

Behavior of pass/drop/done RPL Statements for Simple Hierarchical Policies

This table describes the behavior of pass/drop/done RPL statements, with a possible sequence for executing
the done statement for Simple Hierarchical Policies.

BehaviorPossible done statement execution
sequence

Route-policies with simple
hierarchical policies

Marks the prefix as "acceptable"
and continues with execution of
continue_list statements.

pass

Continue_list

pass

Rejects the route immediately on
hitting the drop statement and stops
policy execution.

Stmts_list

drop

drop

Accepts the route immediately on
hitting the done statement and stops
policy execution.

Stmts_list

done

done

Exits immediately at the done
statement with "accept route".

pass

Statement_list

done

pass followed by done

This is an invalid scenario at
execution point of time. Policy
terminates execution at the drop
statement itself, without going
through the statement list or the
done statement; the prefix will be
rejected or dropped.

drop

Statement list

done

drop followed by done

Behavior of pass/drop/done RPL Statements for Hierarchical Policy Conditions

This section describes the behavior of pass/drop/doneRPL statements, with a possible sequence for executing
the done statement for Hierarchical Policy Conditions.

Terminology for policy execution: "true-path", "false-path", and "continue-path".

Route-policy parent
If apply hierarchical_policy_condition then

TRUE-PATH : if hierarchical_policy_condition returns TRUE then this path will
be executed.
Else

FALSE-PATH : if hierarchical_policy_condition returns FALSE then this path will
be executed.
End-if
CONTINUE-PATH : Irrespective of the TRUE/FALSE this path will be executed.
End-policy

Implementing Routing Policy
73

Implementing Routing Policy
Behavior of pass/drop/done RPL Statements for Simple Hierarchical Policies

BehaviorPossible done statement execution
sequence

Hierarchical policy conditions

Marks the return value as "true" and
continues execution within the
same policy condition.

If there is no statement after "pass",
returns "true".

pass

Continue_list

pass

Marks the return value as "true" and
continues execution till the done
statement. Returns "true" to the
apply policy condition to take
"true-path".

pass or set action statement

Stmt_list

done

pass followed by done

Returns " false". Condition takes
"false-path".

Stmt_list without pass or set
operation

DONE

done

The prefix is dropped or rejected.Stmt_list

drop

Stmt_list

drop

Nested Wildcard Apply Policy
The hierarchical constructs of Routing Policy Language (RPL) allows one policy to refer to another policy.
The referred or called policy is known as a child policy. The policy from which another policy is referred is
called calling or parent policy. A calling or parent policy can nest multiple child policies for attachment to a
common set of BGP neighbors. The nested wildcard apply policy allows wildcard (*) based apply nesting.
The wildcard operation permits declaration of a generic apply statement that calls all policies that contain a
specific defined set of alphanumeric characters, defined on the router.

A wildcard is specified by placing an asterisk (*) at the end of the policy name in an apply statement. Passing
parameters to wildcard policy is not supported. The wildcard indicates that any value for that portion of the
apply policy matches.

To illustrate nested wildcard apply policy, consider this policy hierarchy:
route-policy Nested_Wilcard
apply service_policy_customer*
end-policy

route-policy service_policy_customer_a
if destination in prfx_set_customer_a then
set extcommunity rt (1:1) additive
endif
end-policy

route-policy service_policy_customer_b
if destination in prfx_set_customer_b then
set extcommunity rt (1:1) additive
endif
end-policy

Implementing Routing Policy
74

Implementing Routing Policy
Nested Wildcard Apply Policy

route-policy service_policy_customer_c
if destination in prfx_set_customer_c then
set extcommunity rt (1:1) additive
endif
end-policy

Here, a single parent apply statement (apply service_policy_customer*) calls (inherits) all child polices that
contain the identified character string "service_policy_customer". As each child policy is defined globally,
the parent dynamically nests the child policies based on the policy name. The parent is configured once and
inherits each child policy on demand. There is no direct association between the parent and the child policies
beyond the wildcard match statement.

Wildcards for Route Policy Sets
Route policies are defined in a modular form, and comprise of sets of comparative statements. Using wildcards
to define a range of sets, significantly reduces the complexity of a policy.

Wildcards can be used to define a range of prefix sets, community sets, AS-path sets, or extended community
sets. For information on using wildcards in policy sets, see Use Wildcards For Routing Policy Sets, on page
75.

Use Wildcards For Routing Policy Sets
This section describes examples of configuring routing policy sets with wildcards.

Use Wildcards for Prefix Sets

Use the following example to configure a routing policy with wildcards for prefix sets.

1. Configure the required prefix sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# prefix-set pfx_set1
RP/0/RSP0/CPU0:router(config-pfx)# 1.2.3.4/32
RP/0/RSP0/CPU0:router(config-pfx)# end-set
RP/0/RSP0/CPU0:router(config)# prefix-set pfx_set2
RP/0/RSP0/CPU0:router(config-pfx)# 198.51.100.1/32
RP/0/RSP0/CPU0:router(config-pfx)# end-set

2. Configure a route policy with wildcards to refer to the prefix sets.

RP/0/RSP0/CPU0:router(config)# route-policy WILDCARD_PREFIX_SET
RP/0/RSP0/CPU0:router(config-rpl)# if destination in prefix-set* then pass else drop
endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

This route policy configuration accepts routes with the prefixes mentioned in the two prefix sets, and
drops all other non-matching routes.

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

This completes the configuration of routing policy with wildcards for prefix sets. For detailed information on
prefix sets, see prefix-set.

Implementing Routing Policy
75

Implementing Routing Policy
Wildcards for Route Policy Sets

Use Wildcards for AS-Path Sets

Use the following example to configure a routing policy with wildcards for AS-path sets.

1. Configure the required AS-path sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# as-path-set AS_SET1
RP/0/RSP0/CPU0:router(config-as)# ios-regex '_22$',
RP/0/RSP0/CPU0:router(config-as)# ios-regex '_25$'
RP/0/RSP0/CPU0:router(config-as)# end-set
RP/0/RSP0/CPU0:router(config)# as-path-set AS_SET2
RP/0/RSP0/CPU0:router(config-as)# ios-regex '_42$',
RP/0/RSP0/CPU0:router(config-as)# ios-regex '_47$'
RP/0/RSP0/CPU0:router(config-as)# end-set

2. Configure a route policy with wildcards to refer to the AS-path sets.

RP/0/RSP0/CPU0:router(config)# route-policy WILDCARD_AS_SET
RP/0/RSP0/CPU0:router(config-rpl)# if as-path in as-path-set* then pass else drop endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

This route policy configuration accepts routes with AS-path attributes as mentioned in the two AS-path
sets, and drops all other non-matching routes.

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

This completes the configuration of routing policy with wildcards for AS-path sets. For detailed information
on AS-path sets, see as-path-set.

Use Wildcards for Community Sets

Use the following example to configure a routing policy with wildcards for community sets.

1. Configure the required community sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# community-set CSET1
RP/0/RSP0/CPU0:router(config-comm)# 12:24,
RP/0/RSP0/CPU0:router(config-comm)# 12:36,
RP/0/RSP0/CPU0:router(config-comm)# 12:72
RP/0/RSP0/CPU0:router(config-comm)# end-set
RP/0/RSP0/CPU0:router(config)# community-set CSET2
RP/0/RSP0/CPU0:router(config-comm)# 24:12,
RP/0/RSP0/CPU0:router(config-comm)# 24:42,
RP/0/RSP0/CPU0:router(config-comm)# 24:64
RP/0/RSP0/CPU0:router(config-comm)# end-set

2. Configure a route policy with wildcards to refer to the community sets.

RP/0/RSP0/CPU0:router(config)# route-policy WILDCARD_COMMUNITY_SET
RP/0/RSP0/CPU0:router(config-rpl)# if community matches-any community-set* then pass
else drop endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

This route policy configuration accepts routes with community set values as mentioned in the two
community sets, and drops all other non-matching routes.

3. Commit your configuration.

Implementing Routing Policy
76

Implementing Routing Policy
Use Wildcards For Routing Policy Sets

RP/0/RSP0/CPU0:router(config)# commit

This completes the configuration of routing policy with wildcards for community sets. For detailed information
on community path sets, see community-set.

Use Wildcards for Extended Community Sets

Use the following example to configure a routing policy with wildcards for extended community sets.

1. Configure the extended community sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# extcommunity-set rt RT_SET1
RP/0/RSP0/CPU0:router(config-ext)# 1.2.3.4:555,
RP/0/RSP0/CPU0:router(config-ext)# 1234:555
RP/0/RSP0/CPU0:router(config-ext)# end-set
RP/0/RSP0/CPU0:router(config)# extcommunity-set rt RT_SET2
RP/0/RSP0/CPU0:router(config-ext)# 192.0.2.1:777,
RP/0/RSP0/CPU0:router(config-ext)# 1111:777
RP/0/RSP0/CPU0:router(config-ext)# end-set

2. Configure a route policy with wildcards to refer to the extended community sets.

RP/0/RSP0/CPU0:router(config)# route-policy WILDCARD_EXT_COMMUNITY_SET
RP/0/RSP0/CPU0:router(config-rpl)# if extcommunity rt matches-any extcommunity-set* then
pass else drop endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

This route policy configuration accepts routes with extended community set values as mentioned in the
two extended community sets, and drops all other non-matching routes.

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

This completes the configuration of routing policy with wildcards for extended community sets. For detailed
information on extended community path sets, see extcommunity-set.

Use Wildcards for Route Distinguisher Sets

Use the following example to configure a routing policy with wildcards for route distinguisher sets.

1. Configure the route distinguisher sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# rd-set rd_set_demo
RP/0/RSP0/CPU0:router(config-rd)# 10.0.0.1/8:77,
RP/0/RSP0/CPU0:router(config-rd)# 10.0.0.2:888,
RP/0/RSP0/CPU0:router(config-rd)# 65000:777
RP/0/RSP0/CPU0:router(config-rd)# end-set
RP/0/RSP0/CPU0:router(config)# rd-set rd_set_demo2
RP/0/RSP0/CPU0:router(config-rd)# 20.0.0.1/7:99,
RP/0/RSP0/CPU0:router(config-rd)# 4784:199
RP/0/RSP0/CPU0:router(config-rd)# end-set

2. Configure a route policy with wildcards to refer to the route distinguisher set.

RP/0/RSP0/CPU0:router(config)# route-policy use_rd_set
RP/0/RSP0/CPU0:router(config-rpl)# if rd in rd-set* then set local-preference 100

Implementing Routing Policy
77

Implementing Routing Policy
Use Wildcards For Routing Policy Sets

RP/0/RSP0/CPU0:router(config-rpl-if)# elseif rd in(10.0.0.2:888, 10.0.0.2:999)then set
local-preference 300
RP/0/RSP0/CPU0:router(config-rpl-elseif)# endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

4. (Optional) Verify your configuration.

RP/0/RSP0/CPU0:router(config)# show configuration
...
Building configuration...
!! IOS XR Configuration 0.0.0
!
rd-set rd_set_demo
10.0.0.1/8:77,
10.0.0.2:888,
65000:777

end-set
!
!
rd-set rd_set_demo2
20.0.0.1/7:99,
4784:199

end-set
!

route-policy use_rd_set
if rd in rd-set* then
set local-preference 100

elseif rd in (10.0.0.2:888, 10.0.0.2:999) then
set local-preference 300

endif
end-policy
!
end

This completes the configuration of routing policy with wildcards for route distinguisher sets. For more
information on route distinguisher sets, see rd-set.

Use Wildcards for OSPF Area Sets

Use the following example to configure a routing policy with wildcards for OSPF area sets.

1. Configure the OSPF area set in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# ospf-area-set ospf_area_set_demo1
RP/0/RSP0/CPU0:router(config-ospf-area)# 10.0.0.1,
RP/0/RSP0/CPU0:router(config-ospf-area)# 3553
RP/0/RSP0/CPU0:router(config-ospf-area)# end-set

RP/0/RSP0/CPU0:router(config)# ospf-area-set ospf_area_set_demo2
RP/0/RSP0/CPU0:router(config-ospf-area)# 20.0.0.2,
RP/0/RSP0/CPU0:router(config-ospf-area)# 3673
RP/0/RSP0/CPU0:router(config-ospf-area)# end-set

2. Configure a route policy with wildcards to refer to the OSPF area set.

RP/0/RSP0/CPU0:router(config)# route-policy use_ospf_area_set

Implementing Routing Policy
78

Implementing Routing Policy
Use Wildcards For Routing Policy Sets

RP/0/RSP0/CPU0:router(config-rpl)# if ospf-area in ospf-area-set* then set ospf-metric
200
RP/0/RSP0/CPU0:router(config-rpl-if)# elseif ospf-area in(10.0.0.1, 10.0.0.2)then set
ospf-metric 300
RP/0/RSP0/CPU0:router(config-rpl-elseif)# endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

4. (Optional) Verify your configuration.
RP/0/RSP0/CPU0:router(config)# show configuration
Building configuration...
!! IOS XR Configuration 0.0.0
!
ospf-area-set ospf_area_set_demo1
10.0.0.1,
3553

end-set
!
!
ospf-area-set ospf_area_set_demo2
20.0.0.2,
3673

end-set
!

route-policy use_ospf_area_set
if ospf-area in ospf-area-set* then
set ospf-metric 200

elseif ospf-area in (10.0.0.1, 10.0.0.2) then
set ospf-metric 300

endif
end-policy
!
end

This completes the configuration of routing policy with wildcards for OSPF area sets.

VRF Import Policy Enhancement
The VRF RPL based import policy feature provides the ability to perform import operation based solely on
import route-policy, by matching on route-targets (RTs) and other criteria specified within the policy. No
need to explicitly configure import RTs under global VRF-address family configuration mode. If the import
RTs and import route-policy are already defined, then the routes will be imported from RTs configured under
import RT and then follows the route-policy attached at import route-policy. In other words, if the import RT
is already defined, it will still add the RTs mentioned in the policy to the imported route-targets list but without
the use of the import command.

Use the source rt import-policy command under VRF sub-mode of VPN address-family configuration
mode to enable this feature.

Configuring VRF Import Policy

/* Configure import policy */
/* The below task configures import policy. However, it does not enable importing of routes.
*/

Implementing Routing Policy
79

Implementing Routing Policy
VRF Import Policy Enhancement

Router(config)# route-policy VRF_Import
Router(config-rpl)# if extcommunity rt matches-any (65500:1000) and destination in
(10.28.0.128/28) then
Router(config-rpl-if)# pass
Router(config-rpl-if)# endif
Router(config-rpl)# end-policy

/* Enable the import of routes */
The below task enables the import of routes. */
Router(config)# vrf vrf1
Router(config-vrf)# address-family ipv4 unicast
Router(config-vrf-af)# import route-policy VRF_Import
Router(config-vrf-af)# export route-target 65500:2000

/* Enable the import of routes using the source rt command */
/* The below task enables the route-targets to be imported from the import-policy.
There is no need to explicit configure the import command. If you configure the vrf vrf1
command, routes with RT 65500:1000 are imported. If you configure the import command, that
only adds to the list of route-targets to import. */

Router(config)# router bgp 1
Router(config-bgp)# address-family vpnv4 unicast
Router(config-bgp-af)# vrf all
Router(config-bgp-af-vrf-all) source rt import-policy

Flexible L3VPN Label Allocation Mode
The flexible L3VPN label allocation feature provides the ability to set label allocationmode using a route-policy,
where different allocation modes can be used for different sets of prefixes. Thus, label mode can be chosen
based on arbitrary match criteria such as prefix value and community.

Use the label mode command to set the MPLS/VPN label mode based on prefix value. The Label-Mode
attach point enables you to choose label mode based on any arbitrary criteria.

Match Aggregated Route
The Match Aggregated Route feature helps to match BGP aggregated route from the non-aggregated route.
BGP can aggregate a group of routes into a single prefix before sending updates to a neighbor. With Match
Aggregated Route feature, route policy separates this aggregated route from other routes.

Set Administrative Distance
The Set Administrative Distance modifies the administrative distance of each of the individual prefixes in
BGP. When RIB has two routes to the same destination, RIB chooses the route with lower administrative
distance for forwarding. The set-administrative-distance command sets the administrative distance of BGP
route to a value such that RIB chooses the route which is required.

How to Implement Routing Policy
This section contains the following procedures:

Implementing Routing Policy
80

Implementing Routing Policy
Flexible L3VPN Label Allocation Mode

Defining a Route Policy
This task explains how to define a route policy.

• If you want to modify an existing routing policy using the command-line interface (CLI), you must
redefine the policy by completing this task.

• Modifying the RPL scale configuration may take a long time.

• BGPmay crash either due to large scale RPL configuration changes, or during consecutive RPL changes.
To avoid BGP crash, wait until there are no messages in the BGP In/Out queue before committing further
changes.

Note

You can programmatically configure the route policy using openconfig-routing-policy.yang OpenConfig
data model. To get started with using data models, see the Programmability Configuration Guide for Cisco
ASR 9000 Series Routers.

Tip

SUMMARY STEPS

1. configure
2. route-policy name [parameter1 , parameter2 , . . . , parameterN]
3. end-policy
4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RSP0/CPU0:router# configure

Enters route-policy configuration mode.route-policy name [parameter1 , parameter2 , . . . ,
parameterN]

Step 2

• After the route-policy has been entered, a group of
commands can be entered to define the route-policy.Example:

RP/0/RSP0/CPU0:router(config)# route-policy sample1

Ends the definition of a route policy and exits route-policy
configuration mode.

end-policy

Example:

Step 3

RP/0/RSP0/CPU0:router(config-rpl)# end-policy

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

Implementing Routing Policy
81

Implementing Routing Policy
Defining a Route Policy

PurposeCommand or Action

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Attaching a Routing Policy to a BGP Neighbor
This task explains how to attach a routing policy to a BGP neighbor.

Before you begin

A routing policy must be preconfigured and well defined prior to it being applied at an attach point. If a policy
is not predefined, an error message is generated stating that the policy is not defined.

SUMMARY STEPS

1. configure
2. router bgp as-number

3. neighbor ip-address

4. address-family { ipv4 unicast | ipv4 multicast | ipv4 labeled-unicast | ipv4 tunnel | ipv4 mdt |
ipv6 unicast | ipv6 multicast | ipv6 labeled-unicast | vpnv4 unicast | vpnv6 unicast }

5. route-policy policy-name { in | out }
6. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RSP0/CPU0:router# configure

Configures a BGP routing process and enters router
configuration mode.

router bgp as-number

Example:

Step 2

• The as-number argument identifies the autonomous
system in which the router resides. Valid values areRP/0/RSP0/CPU0:router(config)# router bgp 125

from 0 to 65535. Private autonomous system numbers
that can be used in internal networks range from 64512
to 65535.

Implementing Routing Policy
82

Implementing Routing Policy
Attaching a Routing Policy to a BGP Neighbor

PurposeCommand or Action

Specifies a neighbor IP address.neighbor ip-address

Example:

Step 3

RP/0/RSP0/CPU0:router(config-bgp)# neighbor
10.0.0.20

Specifies the address family.address-family { ipv4 unicast | ipv4 multicast | ipv4
labeled-unicast | ipv4 tunnel | ipv4 mdt | ipv6 unicast

Step 4

| ipv6 multicast | ipv6 labeled-unicast | vpnv4 unicast
| vpnv6 unicast }

Example:

RP/0/RSP0/CPU0:router(config-bgp-nbr)#
address-family ipv4 unicast

Attaches the route-policy, which must be well formed and
predefined.

route-policy policy-name { in | out }

Example:

Step 5

RP/0/RSP0/CPU0:router(config-bgp-nbr-af)#
route-policy example1 in

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Modifying a Routing Policy Using a Text Editor
This task explains how to modify an existing routing policy using a text editor. See "Editing Routing Policy
Configuration Elements" section for information on text editors.

SUMMARY STEPS

1. edit { route-policy | prefix-set | as-path-set | community-set | extcommunity-set { rt | soo } |
policy-global | rd-set } name [nano | emacs | vim | inline { add | prepend | remove }
set-element]

2. show rpl route-policy [name [detail] | states | brief]
3. show rpl prefix-set [name | states | brief]

Implementing Routing Policy
83

Implementing Routing Policy
Modifying a Routing Policy Using a Text Editor

DETAILED STEPS

PurposeCommand or Action

Identifies the route policy, prefix set, AS path set,
community set, or extended community set name to be
modified.

edit { route-policy | prefix-set | as-path-set |
community-set | extcommunity-set { rt | soo } |
policy-global | rd-set } name [nano | emacs | vim |
inline { add | prepend | remove } set-element]

Step 1

• A copy of the route policy, prefix set, AS path set,
community set, or extended community set is copied
to a temporary file and the editor is launched.

Example:

RP/0/RSP0/CPU0:router# edit route-policy sample1
• After editing with Nano, save the editor buffer and
exit the editor by using the Ctrl-X keystroke.

• After editing with Emacs, save the editor buffer by
using the Ctrl-X and Ctrl-S keystrokes. To save and
exit the editor, use the Ctrl-X and Ctrl-C keystrokes.

• After editing with Vim, to write to a current file and
exit, use the :wq or :x or ZZ keystrokes. To quit and
confirm, use the :q keystrokes. To quit and discard
changes, use the :q! keystrokes.

(Optional) Displays the configuration of a specific named
route policy.

show rpl route-policy [name [detail] | states | brief
]

Step 2

Example: • Use the detail keyword to display all policies and
sets that a policy uses.

RP/0/RSP0/CPU0:router# show rpl route-policy
sample2 • Use the states keyword to display all unused, inactive,

and active states.

• Use the brief keyword to list the names of all
extended community sets without their configurations.

(Optional) Displays the contents of a named prefix set.show rpl prefix-set [name | states | brief]Step 3

Example: • To display the contents of a named AS path set,
community set, or extended community set, replace

RP/0/RSP0/CPU0:router# show rpl prefix-set
prefixset1

the prefix-set keyword with as-path-set ,
community-set , or extcommunity-set , respectively.

Configuration Examples for Implementing Routing Policy
This section provides the following configuration examples:

Routing Policy Definition: Example
In the following example, a BGP route policy named sample1 is defined using the route-policy name command.
The policy compares the network layer reachability information (NLRI) to the elements in the prefix set test.
If it evaluates to true, the policy performs the operations in the then clause. If it evaluates to false, the policy

Implementing Routing Policy
84

Implementing Routing Policy
Configuration Examples for Implementing Routing Policy

performs the operations in the else clause, that is, sets the MED value to 200 and adds the community 2:100
to the route. The final steps of the example commit the configuration to the router, exit configuration mode,
and display the contents of route policy sample1.

configure
route-policy sample1
if destination in test then
drop
else
set med 200
set community (2:100) additive
endif
end-policy
end
show config running route-policy sample1
Building configuration...
route-policy sample1
if destination in test then
drop
else
set med 200
set community (2:100) additive
endif
end-policy

Simple Inbound Policy: Example
The following policy discards any route whose network layer reachability information (NLRI) specifies a
prefix longer than /24, and any route whose NLRI specifies a destination in the address space reserved by
RFC 1918. For all remaining routes, it sets the MED and local preference, and adds a community to the list
in the route.

For routes whose community lists include any values in the range from 101:202 to 106:202 that have a 16-bit
tag portion containing the value 202, the policy prepends autonomous system number 2 twice, and adds the
community 2:666 to the list in the route. Of these routes, if the MED is either 666 or 225, then the policy sets
the origin of the route to incomplete, and otherwise sets the origin to IGP.

For routes whose community lists do not include any of the values in the range from 101:202 to 106:202, the
policy adds the community 2:999 to the list in the route.

prefix-set too-specific
0.0.0.0/0 ge 25 le 32
end-set

prefix-set rfc1918
10.0.0.0/8 le 32,
172.16.0.0/12 le 32,
192.168.0.0/16 le 32
end-set

route-policy inbound-tx
if destination in too-specific or destination in rfc1918 then
drop
endif
set med 1000
set local-preference 90
set community (2:1001) additive
if community matches-any ([101..106]:202) then
prepend as-path 2.30 2

Implementing Routing Policy
85

Implementing Routing Policy
Simple Inbound Policy: Example

set community (2:666) additive
if med is 666 or med is 225 then
set origin incomplete
else
set origin igp
endif
else
set community (2:999) additive
endif
end-policy

router bgp 2
neighbor 10.0.1.2 address-family ipv4 unicast route-policy inbound-tx in

Modular Inbound Policy: Example
The following policy example shows how to build two inbound policies, in-100 and in-101, for two different
peers. In building the specific policies for those peers, the policy reuses some common blocks of policy that
may be common to multiple peers. It builds a few basic building blocks, the policies common-inbound,
filter-bogons, and set-lpref-prepend.

The filter-bogons building block is a simple policy that filters all undesirable routes, such as those from the
RFC 1918 address space. The policy set-lpref-prepend is a utility policy that can set the local preference and
prepend the AS path according to parameterized values that are passed in. The common-inbound policy uses
these filter-bogons building blocks to build a common block of inbound policy. The common-inbound policy
is used as a building block in the construction of in-100 and in-101 along with the set-lpref-prepend building
block.

This is a simple example that illustrates the modular capabilities of the policy language.

prefix-set bogon
10.0.0.0/8 ge 8 le 32,
0.0.0.0,
0.0.0.0/0 ge 27 le 32,
192.168.0.0/16 ge 16 le 32

end-set
!
route-policy in-100
apply common-inbound
if community matches-any ([100..120]:135) then
apply set-lpref-prepend (100,100,2)
set community (2:1234) additive

else
set local-preference 110

endif
if community matches-any ([100..666]:[100..999]) then
set med 444
set local-preference 200
set community (no-export) additive

endif
end-policy
!
route-policy in-101
apply common-inbound
if community matches-any ([101..200]:201) then
apply set-lpref-prepend(100,101,2)
set community (2:1234) additive

else
set local-preference 125

endif

Implementing Routing Policy
86

Implementing Routing Policy
Modular Inbound Policy: Example

end-policy
!
route-policy filter-bogons
if destination in bogon then

drop
else
pass
endif

end-policy
!
route-policy common-inbound
apply filter-bogons
set origin igp
set community (2:333)

end-policy
!
route-policy set-lpref-prepend($lpref,$as,$prependcnt)
set local-preference $lpref
prepend as-path $as $prependcnt

end-policy

Use Wildcards For Routing Policy Sets
This section describes examples of configuring routing policy sets with wildcards.

Use Wildcards for Prefix Sets

Use the following example to configure a routing policy with wildcards for prefix sets.

1. Configure the required prefix sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# prefix-set pfx_set1
RP/0/RSP0/CPU0:router(config-pfx)# 1.2.3.4/32
RP/0/RSP0/CPU0:router(config-pfx)# end-set
RP/0/RSP0/CPU0:router(config)# prefix-set pfx_set2
RP/0/RSP0/CPU0:router(config-pfx)# 198.51.100.1/32
RP/0/RSP0/CPU0:router(config-pfx)# end-set

2. Configure a route policy with wildcards to refer to the prefix sets.

RP/0/RSP0/CPU0:router(config)# route-policy WILDCARD_PREFIX_SET
RP/0/RSP0/CPU0:router(config-rpl)# if destination in prefix-set* then pass else drop
endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

This route policy configuration accepts routes with the prefixes mentioned in the two prefix sets, and
drops all other non-matching routes.

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

This completes the configuration of routing policy with wildcards for prefix sets. For detailed information on
prefix sets, see prefix-set.

Use Wildcards for AS-Path Sets

Use the following example to configure a routing policy with wildcards for AS-path sets.

Implementing Routing Policy
87

Implementing Routing Policy
Use Wildcards For Routing Policy Sets

1. Configure the required AS-path sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# as-path-set AS_SET1
RP/0/RSP0/CPU0:router(config-as)# ios-regex '_22$',
RP/0/RSP0/CPU0:router(config-as)# ios-regex '_25$'
RP/0/RSP0/CPU0:router(config-as)# end-set
RP/0/RSP0/CPU0:router(config)# as-path-set AS_SET2
RP/0/RSP0/CPU0:router(config-as)# ios-regex '_42$',
RP/0/RSP0/CPU0:router(config-as)# ios-regex '_47$'
RP/0/RSP0/CPU0:router(config-as)# end-set

2. Configure a route policy with wildcards to refer to the AS-path sets.

RP/0/RSP0/CPU0:router(config)# route-policy WILDCARD_AS_SET
RP/0/RSP0/CPU0:router(config-rpl)# if as-path in as-path-set* then pass else drop endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

This route policy configuration accepts routes with AS-path attributes as mentioned in the two AS-path
sets, and drops all other non-matching routes.

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

This completes the configuration of routing policy with wildcards for AS-path sets. For detailed information
on AS-path sets, see as-path-set.

Use Wildcards for Community Sets

Use the following example to configure a routing policy with wildcards for community sets.

1. Configure the required community sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# community-set CSET1
RP/0/RSP0/CPU0:router(config-comm)# 12:24,
RP/0/RSP0/CPU0:router(config-comm)# 12:36,
RP/0/RSP0/CPU0:router(config-comm)# 12:72
RP/0/RSP0/CPU0:router(config-comm)# end-set
RP/0/RSP0/CPU0:router(config)# community-set CSET2
RP/0/RSP0/CPU0:router(config-comm)# 24:12,
RP/0/RSP0/CPU0:router(config-comm)# 24:42,
RP/0/RSP0/CPU0:router(config-comm)# 24:64
RP/0/RSP0/CPU0:router(config-comm)# end-set

2. Configure a route policy with wildcards to refer to the community sets.

RP/0/RSP0/CPU0:router(config)# route-policy WILDCARD_COMMUNITY_SET
RP/0/RSP0/CPU0:router(config-rpl)# if community matches-any community-set* then pass
else drop endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

This route policy configuration accepts routes with community set values as mentioned in the two
community sets, and drops all other non-matching routes.

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

Implementing Routing Policy
88

Implementing Routing Policy
Use Wildcards For Routing Policy Sets

This completes the configuration of routing policy with wildcards for community sets. For detailed information
on community path sets, see community-set.

Use Wildcards for Extended Community Sets

Use the following example to configure a routing policy with wildcards for extended community sets.

1. Configure the extended community sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# extcommunity-set rt RT_SET1
RP/0/RSP0/CPU0:router(config-ext)# 1.2.3.4:555,
RP/0/RSP0/CPU0:router(config-ext)# 1234:555
RP/0/RSP0/CPU0:router(config-ext)# end-set
RP/0/RSP0/CPU0:router(config)# extcommunity-set rt RT_SET2
RP/0/RSP0/CPU0:router(config-ext)# 192.0.2.1:777,
RP/0/RSP0/CPU0:router(config-ext)# 1111:777
RP/0/RSP0/CPU0:router(config-ext)# end-set

2. Configure a route policy with wildcards to refer to the extended community sets.

RP/0/RSP0/CPU0:router(config)# route-policy WILDCARD_EXT_COMMUNITY_SET
RP/0/RSP0/CPU0:router(config-rpl)# if extcommunity rt matches-any extcommunity-set* then
pass else drop endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

This route policy configuration accepts routes with extended community set values as mentioned in the
two extended community sets, and drops all other non-matching routes.

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

This completes the configuration of routing policy with wildcards for extended community sets. For detailed
information on extended community path sets, see extcommunity-set.

Use Wildcards for Route Distinguisher Sets

Use the following example to configure a routing policy with wildcards for route distinguisher sets.

1. Configure the route distinguisher sets in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# rd-set rd_set_demo
RP/0/RSP0/CPU0:router(config-rd)# 10.0.0.1/8:77,
RP/0/RSP0/CPU0:router(config-rd)# 10.0.0.2:888,
RP/0/RSP0/CPU0:router(config-rd)# 65000:777
RP/0/RSP0/CPU0:router(config-rd)# end-set
RP/0/RSP0/CPU0:router(config)# rd-set rd_set_demo2
RP/0/RSP0/CPU0:router(config-rd)# 20.0.0.1/7:99,
RP/0/RSP0/CPU0:router(config-rd)# 4784:199
RP/0/RSP0/CPU0:router(config-rd)# end-set

2. Configure a route policy with wildcards to refer to the route distinguisher set.

RP/0/RSP0/CPU0:router(config)# route-policy use_rd_set
RP/0/RSP0/CPU0:router(config-rpl)# if rd in rd-set* then set local-preference 100
RP/0/RSP0/CPU0:router(config-rpl-if)# elseif rd in(10.0.0.2:888, 10.0.0.2:999)then set
local-preference 300

Implementing Routing Policy
89

Implementing Routing Policy
Use Wildcards For Routing Policy Sets

RP/0/RSP0/CPU0:router(config-rpl-elseif)# endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

4. (Optional) Verify your configuration.

RP/0/RSP0/CPU0:router(config)# show configuration
...
Building configuration...
!! IOS XR Configuration 0.0.0
!
rd-set rd_set_demo
10.0.0.1/8:77,
10.0.0.2:888,
65000:777

end-set
!
!
rd-set rd_set_demo2
20.0.0.1/7:99,
4784:199

end-set
!

route-policy use_rd_set
if rd in rd-set* then
set local-preference 100

elseif rd in (10.0.0.2:888, 10.0.0.2:999) then
set local-preference 300

endif
end-policy
!
end

This completes the configuration of routing policy with wildcards for route distinguisher sets. For more
information on route distinguisher sets, see rd-set.

Use Wildcards for OSPF Area Sets

Use the following example to configure a routing policy with wildcards for OSPF area sets.

1. Configure the OSPF area set in the global configuration mode.

RP/0/RSP0/CPU0:router(config)# ospf-area-set ospf_area_set_demo1
RP/0/RSP0/CPU0:router(config-ospf-area)# 10.0.0.1,
RP/0/RSP0/CPU0:router(config-ospf-area)# 3553
RP/0/RSP0/CPU0:router(config-ospf-area)# end-set

RP/0/RSP0/CPU0:router(config)# ospf-area-set ospf_area_set_demo2
RP/0/RSP0/CPU0:router(config-ospf-area)# 20.0.0.2,
RP/0/RSP0/CPU0:router(config-ospf-area)# 3673
RP/0/RSP0/CPU0:router(config-ospf-area)# end-set

2. Configure a route policy with wildcards to refer to the OSPF area set.

RP/0/RSP0/CPU0:router(config)# route-policy use_ospf_area_set
RP/0/RSP0/CPU0:router(config-rpl)# if ospf-area in ospf-area-set* then set ospf-metric
200

Implementing Routing Policy
90

Implementing Routing Policy
Use Wildcards For Routing Policy Sets

RP/0/RSP0/CPU0:router(config-rpl-if)# elseif ospf-area in(10.0.0.1, 10.0.0.2)then set
ospf-metric 300
RP/0/RSP0/CPU0:router(config-rpl-elseif)# endif
RP/0/RSP0/CPU0:router(config-rpl)# end-policy

3. Commit your configuration.
RP/0/RSP0/CPU0:router(config)# commit

4. (Optional) Verify your configuration.
RP/0/RSP0/CPU0:router(config)# show configuration
Building configuration...
!! IOS XR Configuration 0.0.0
!
ospf-area-set ospf_area_set_demo1
10.0.0.1,
3553

end-set
!
!
ospf-area-set ospf_area_set_demo2
20.0.0.2,
3673

end-set
!

route-policy use_ospf_area_set
if ospf-area in ospf-area-set* then
set ospf-metric 200

elseif ospf-area in (10.0.0.1, 10.0.0.2) then
set ospf-metric 300

endif
end-policy
!
end

This completes the configuration of routing policy with wildcards for OSPF area sets.

VRF Import Policy Configuration: Example
This is a sample configuration for VRF import policy.

router bgp 100
address-family vpnv4 unicast
vrf all
source rt import-policy
!

Additional References
The following sections provide references related to implementing RPL.

Implementing Routing Policy
91

Implementing Routing Policy
VRF Import Policy Configuration: Example

Related Documents

Document TitleRelated Topic

Routing Policy Language Commands on Cisco ASR 9000
Series Router module of the Routing Command Reference
for Cisco ASR 9000 Series Routers

Routing policy language commands: complete
command syntax, commandmodes, command
history, defaults, usage guidelines, and
examples

Understanding Regular Expressions, Special Characters and
Patterns appendix in the Cisco ASR 9000 Series Aggregation
Services Router Getting Started Guide

Regular expression syntax

Standards

TitleStandards

—No new or modified standards are supported by this feature, and support for existing standards has not
been modified by this feature.

MIBs

MIBs LinkMIBs

To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the
following URL and choose a platform under the Cisco Access Products menu:
https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index

—

RFCs

TitleRFCs

ABorder Gateway Protocol 4 (BGP-4)RFC
1771

BGP Extended Communities AttributeRFC
4360

Technical Assistance

LinkDescription

http://www.cisco.com/
techsupport

The Cisco Technical Support website contains thousands of pages of
searchable technical content, including links to products, technologies,
solutions, technical tips, and tools. Registered Cisco.com users can log in
from this page to access even more content.

Implementing Routing Policy
92

Implementing Routing Policy
Additional References

https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index
http://www.cisco.com/techsupport
http://www.cisco.com/techsupport

	Implementing Routing Policy
	Prerequisites for Implementing Routing Policy
	Restrictions for Implementing Routing Policy
	Information About Implementing Routing Policy
	Routing Policy Language
	Routing Policy Language Overview
	Routing Policy Language Structure
	Names
	Sets
	as-path-set
	community-set
	extcommunity-set
	prefix-set
	Enhanced Prefix-length Manipulation
	ACL Support in RPL Prefix Sets

	rd-set

	Routing Policy Language Components
	Routing Policy Language Usage

	Routing Policy Configuration Basics
	Policy Definitions
	Parameterization
	Parameterization at Attach Points
	Global Parameterization

	Semantics of Policy Application
	Boolean Operator Precedence
	Multiple Modifications of the Same Attribute
	When Attributes Are Modified
	Default Drop Disposition
	Control Flow
	Policy Verification
	Range Checking
	Incomplete Policy and Set References
	Attached Policy Modification
	Verification of Attribute Comparisons and Actions

	Policy Statements
	Remark
	Disposition
	Action
	If
	Boolean Conditions
	apply

	Attach Points
	BGP Policy Attach Points
	Additional-Path
	Dampening
	Default Originate
	Neighbor Export
	Neighbor Import
	Network
	Redistribute
	Show BGP
	Table Policy
	Import
	Export
	Allocate-Label
	Retain Route-Target
	Label-Mode
	Neighbor-ORF
	Next-hop
	Clear-Policy
	Debug
	BGP Attributes and Operators
	Default-Information Originate
	RPL - if prefix is-best-path/is-best-multipath

	OSPF Policy Attach Points
	Default-Information Originate
	Redistribute
	Area-in
	Area-out
	SPF Prefix-priority
	OSPF Attributes and Operators
	Distribute-list in

	OSPFv3 Policy Attach Points
	Default-Information Originate
	Redistribute
	OSPFv3 Attributes and Operators

	IS-IS Policy Attach Points
	Redistribute
	Default-Information Originate
	Inter-area-propagate
	IS-IS Attributes and Operators

	EIGRP Policy Attach Points
	Default-Accept-In
	Default-Accept-Out
	Policy-In
	Policy-Out
	If-Policy-In
	If-Policy-Out
	Redistribute
	EIGRP Attributes and Operators

	RIP Policy Attach Points
	Default-Information Originate
	Redistribute
	Global-Inbound
	Global-Outbound
	Interface-Inbound
	Interface-Outbound
	RIP Attributes and Operators

	PIM Policy Attach Points

	Nondestructive Editing of Routing Policy
	Attached Policy Modification
	Nonattached Policy Modification
	Editing Routing Policy Configuration Elements
	Editing Routing Policy Configuration Elements Using the Nano Editor
	Editing Routing Policy Configuration Elements Using the Emacs Editor
	Editing Routing Policy Configuration Elements Using the Vim Editor
	Editing Routing Policy Configuration Elements Using CLI
	Editing Routing Policy Language set elements Using XML

	Hierarchical Policy Conditions
	Apply Condition Policies
	Behavior of pass/drop/done RPL Statements for Simple Hierarchical Policies
	Behavior of pass/drop/done RPL Statements for Hierarchical Policy Conditions

	Nested Wildcard Apply Policy
	Wildcards for Route Policy Sets
	Use Wildcards For Routing Policy Sets

	VRF Import Policy Enhancement
	Flexible L3VPN Label Allocation Mode
	Match Aggregated Route
	Set Administrative Distance

	How to Implement Routing Policy
	Defining a Route Policy
	Attaching a Routing Policy to a BGP Neighbor
	Modifying a Routing Policy Using a Text Editor

	Configuration Examples for Implementing Routing Policy
	Routing Policy Definition: Example
	Simple Inbound Policy: Example
	Modular Inbound Policy: Example
	Use Wildcards For Routing Policy Sets
	VRF Import Policy Configuration: Example

	Additional References

