

Configure EVPN IRB

This chapter introduces you to Ethernet VPN (EVPN) Integrated Routing and Bridging (IRB) feature and describe how you can configure the EVPN IRB feature.

- EVPN IRB, on page 1
- EVPN single-homing access EVPN gateway, on page 3
- EVPN multi-homing active-active, on page 5
- EVPN single-active multihoming for anycast gateway IRB, on page 8
- EVPN IRB Support, on page 14
- Distributed Anycast Gateway, on page 14
- Centralized Anycast Gateway for EVPN IRB, on page 16
- BVI-Coupled Mode, on page 20
- VM Mobility Support, on page 22
- Configuring EVPN IRB, on page 22
- Running Configuration for EVPN IRB, on page 24
- Verify EVPN IRB, on page 25
- EVPN IPv6 Hosts with Mobility, on page 34
- EVPN IRB: DHCPv4 and DHCPv6 Relay, on page 45
- Duplicate IP Address Detection, on page 51
- EVPN E-Tree Using RT Constraints, on page 53
- EVPN E-Tree Per-PE (Scenario1b), on page 67

EVPN IRB

Ethernet Virtual Private Network Integrated Routing and Bridging (EVPN IRB) is a category of network technology that provides an extensible and flexible solution for Layer 2 (L2) and Layer 3 (L3) connectivity among hosts across different IP subnets over an MPLS core and IP network.

The EVPN IRB feature is a component that

- enables L3 forwarding among hosts across different IP subnets,
- while maintaining the multi-homing capabilities of EVPN.
- Additionally, it allows EVPN hosts or subnets to communicate with IP VPNs, enhancing network flexibility and connectivity.

EVPN IRB components

To implement EVPN IRB, the network uses these key components to ensure effective traffic management and routing:

- **BGP** (**Border Gateway Protocol**): It advertises subnet and host routes to the EVPN core using route-type 5 and route-type 2 messages.
- EVPN: It manages ethernet segment configurations and handles host route advertisements and failover scenarios.
- L2RIB (Layer 2 Routing Information Base): It handles MAC or IP mobility, resolves routes, and computes the best routes.
- BVI MA (Bridge Virtual Interface Manager): It manages IRB interfaces and supports routing by advertising the BVI's subnet and MAC addresses.
- L2FIB (Layer 2 Forwarding Information Base): It ensures correct forwarding based on MAC and IP addresses.

EVPN IRB environments

The EVPN IRB supports these environments:

- **Single-homing interface**: Customer Edge (CE) devices connect directly to a single Physical Edge (PE) router.
- Multi-homing interface: CE device connect to multiple PE routers through dual links, a Link Aggregation Group (LAG), or a switch.
- Anycast gateway or Bridge Virtual Interface (BVI): BVI interfaces use the same IP and MAC addresses on all PE routers, enabling devices in the network to reach the gateway using the same address, regardless of which router is the designated forwarder.

EVPN-IRB core and access options

EVPN-IRB supports these core and access options:

- Core options:
 - **Host routing**: Enable or disable host routing to manage subnet and host route advertisements.
 - VRF: Integrate with VRF for seamless route management.
- Access options:
 - Switch devices: Supports switch devices with or without LAG.
 - **Y-cable configurations**: Use Y-cable configurations for redundancy.
 - **Mixed environments connections**: Operate in mixed environments with single-homing, single-active multi-homing, and all-active multi-homing connections.
 - Single-Flow-Active (SFA) load-balancing mode: Implement SFA for load balancing.

Limitations and restrictions for EVPN IRB

These are the limitations and restrictions for EVPN IRB:

- Traffic from the Bridge Virtual Interface (BVI) does not use the BVI's configured MAC address but instead uses the MAC address of the physical interface, devices in the network are unable to properly learn the BVI's MAC address. This results in unnecessary traffic flooding as devices repeatedly attempt to resolve the MAC address associated with the BVI IP. To address this, implement a configurable timer under the BVI interface to periodically broadcast the BVI's MAC and IP pairing using Gratuitous ARP (GARP) for IPv4 or unsolicited Neighbor Advertisement for IPv6.
- You must enable host routing when configuring EVPN-IRB.

EVPN single-homing access **EVPN** gateway

EVPN single-homing access EVPN gateway is a network architecture that leverages EVPN technology to provide L2 and L3 VPN services. This setup is particularly useful for connecting CE devices to a service provider's network in a single-homed configuration by connecting each CE device to only one PE device.

How EVPN single-homing access EVPN gateway works

Summary

EVPN IRB single-homing workflow includes these key components:

- CE or host routers:
 - CE1 or Host-1 with IP address 10.0.0.1/32
 - CE2 or Host-2 with IP address 10.0.0.2/32
 - CE3 or Host-3 with IP address 10.0.0.3/32
 - CE5 or Host-5 with IP address 20.0.0.1/32

• PE routers:

- PE1 with BVI IP address 10.0.0.5/24 and BVI mac address 0.0.5
- PE2 with BVI IP address 10.0.0.5/24 and BVI mac address 0.0.5
- PE5

• Interfaces:

- IF1: Connects Host-1 to PE1
- IF2: Connects Host-3 to PE1
- IF3: Connects PE1 to Host-3
- IF4: Connects PE2 to Host-3
- IF5: Connects Host-3 to PE2

· Paths:

- Path 1: Host-1 communicating with Host-2 using a EVPN single-homing access EVPN gateway interface
- Path 2: Host-1 communicating with Host-3 using a EVPN single-homing access EVPN gateway interface
- Path 3: Host-3 communicating with Host-5 using a EVPN single-active multihoming interface
- Path 4: Host-2 communicating with Host-5 using a EVPN multihoming active-active interface
- Switch device: SW1, connects Host-3 to PE1 and PE2
- Host routing is enabled on PE1 and PE2.
- IRB interfaces are configured as anycast.
- Host-1 and Host-2 connect to PE1 and PE2 using a EVPN single-homing interfaces.
- Host-3 connect to PE1 and PE2 using a EVPN multihoming interfaces.
- IOS XR Software performs the Designated Forwarder (DF) election for the shared Ethernet Segment Identifier (ESI) and elects IF2 as DF and IF5 as Non-Designated Forwarder (NDF).
- Interface IF5 is set to blocked state which blocks both BUM and unicast traffic.

Workflow

Figure 1: EVPN IRB single-homing network topology

Let's consider these scenarios:

- Where Host-1 wants to communicate with Host-2, which are in same subnet.
- 1. Host-1 sends an ARP request, which is received by the Bridge Domain (BD) on PE1.
- 2. PE1 learn the Host-1 MAC and IP addresses from these ARP packets and replicates this information across all output interfaces.
- **3.** PE1 advertises Host-1 route using EVPN route type-2 to remote PEs. Remote PEs, such as PE2, import and install this route as a remote route.
- **4.** Since Host-2 is directly connected to PE2, it receives the ARP request and responds with a unicast ARP response.
- **5.** The ARP process ensures that PE2 learns Host-2 IP address 10.0.0.2/32.
- **6.** PE2 performs a MAC lookup for Host-1 and forwards packet to peering PE1, enabling communication between Host-2 and Host-1.
- Where Host-1 wants to communicate with Host-3, which are in same subnet.
- 1. Host-1 sends an ARP request, which is received by the BD on PE1.
- **2.** PE1 learn the Host-1 MAC and IP addresses from these ARP packets and replicates this information across all output interfaces.
- **3.** Since Host-3 is directly connected to PE1, it receives the ARP request and responds with a unicast ARP response.
- **4.** The ARP process ensures that PE1 learns Host-3 IP address 10.0.0.3/32, enabling communication between Host-1 and Host-3.

EVPN multi-homing active-active

EVPN multi-homing access gateway enables redundant network connectivity by allowing a CE device to connect to more than one PE devices. Disruptions to the network connectivity are prevented by allowing a CE device to be connected to a PE device or several PE devices through multi-homing. Ethernet segment is the bunch of Ethernet links through which a CE device is connected to more than one PE devices.

In EVPN IRB, both EVPN and IP VPN (both VPNv4 and VPNv6) address families are enabled between ASR 9000 Data Center Interconnect (DCI) gateways. When Layer 2 (L2) stretch is not available in multiple datacenters (DC), routing is established through VPNv4 or VPNv6 routes. When Layer 2 stretch is available, host routing is applied where IP-MAC routes are learnt by ARP/IPv6 ND and are distributed to EVPN/BGP. In remote peer gateway, these IP-MAC EVPN routes are imported into IP VPN routing table from EVPN route-type 2 routes with secondary label and Layer 3 VRF route-target.

How EVPN multi-homing active-active works

Summary

EVPN IRB multi-homing active-active workflow includes these key components:

- CE or host routers:
 - CE1 or Host-1 with IP address 10.0.0.1/32

- CE2 or Host-2 with IP address 10.0.0.2/32
- CE3 or Host-3 with IP address 10.0.0.3/32
- CE5 or Host-5 with IP address 20.0.0.1/32

• PE routers:

- PE1 with BVI IP address 10.0.0.5/24 and BVI mac address 0.0.5
- PE2 with BVI IP address 10.0.0.5/24 and BVI mac address 0.0.5
- PE5

• Interfaces:

- IF1: Connects Host-1 to PE1
- IF2: Connects Host-3 to PE1
- IF3: Connects PE1 to Host-3
- IF4: Connects PE2 to Host-3
- IF5: Connects Host-3 to PE2

· Paths:

- Path 1: Host-1 communicating with Host-2 using a EVPN single-homing access EVPN gateway interface
- Path 2: Host-1 communicating with Host-3 using a EVPN single-homing access EVPN gateway interface
- Path 3: Host-3 communicating with Host-5 using a EVPN single-active multihoming interface
- Path 4: Host-2 communicating with Host-5 using a EVPN multihoming active-active interface
- Switch device: SW1, connects Host-3 to PE1 and PE2
- Host routing is enabled on PE1 and PE2.
- IRB interfaces are configured as anycast.
- Host-1 and Host-2 connect to PE1 and PE2 using a EVPN single-homing interfaces.
- Host-3 connect to PE1 and PE2 using a EVPN multihoming interfaces.
- IOS XR Software performs the Designated Forwarder (DF) election for the shared Ethernet Segment Identifier (ESI) and elects IF2 as DF and IF5 as Non-Designated Forwarder (NDF).
- Interface IF5 is set to blocked state which blocks both BUM and unicast traffic.

Workflow

Figure 2: EVPN IRB multi-homing network topology

Let's consider these scenarios:

- Where Host-2 wants to communicate with Host-5, which are in different subnet.
- 1. Host-2 send an ARP request to its gateway which is IRB interface. It basically ARPs the BVI IP address 10.0.0.5.
- **2.** PE2 learn the Host-2 MAC and IP addresses from these ARP packets and replicates this information across all output interfaces where it is added to the BVI interface.
- **3.** The BVI interface on PE2 sends an ARP response to Host-2 using its BVI IP address 10.0.0.5 and MAC address 0.0.5.
- **4.** PE2 advertises Host-2 route using EVPN route type-2 to remote PEs. Remote PEs, such as PE5, import and install this route as a remote route.
- **5.** Since Host-5 is directly connected to PE5, it receives the ARP request and responds with a unicast ARP response.
- **6.** The ARP process ensures that PE5 learns Host-5 IP address 20.0.0.1/32, enabling communication between Host-2 and Host-5.
- 7. If PE2 doesn't have Host-5 specific route, it may use an EVPN route type-5 to forward traffic to PE5, where ARP resolves Host-5, enabling Host-2 and Host-5 to communicate.
- Where Host-5 sends a packet to Host-2. If Host-2 hasn't communicated yet, PE5 might not have Host-2 specific route.

- If PE5 directs traffic to PE1 first, a Generalized Learning (G-LEAN) adjacency process occurs, and traffic is dropped until it is resolved.
- Once PE5 identifies PE2 as the best destination for Host-2, it forwards the packet to PE2, and PE2 performs these steps:
 - 1. PE2 performs an IP lookup, finding the BVI interface as the destination.
- 2. Destination MAC is set to Host-2 MAC as learned by ARP and source MAC remains as the BVI MAC address 0.0.5.
- 3. PE2 performs a MAC lookup within the bridge domain and forwards the packet to Host-2.

EVPN single-active multihoming for anycast gateway IRB

The EVPN single-active multihoming for anycast gateway IRB feature supports single-active redundancy mode. In this mode, the PE nodes locally connected to an Ethernet Segment load balance traffic to and from the Ethernet Segment based on EVPN service instance (EVI). Within an EVPN service instance, only one PE forwards traffic to and from the Ethernet Segment (ES). This feature supports intersubnet scenario only.

How EVPN single-active multihoming works

Summary

EVPN IRB single-active multihoming workflow includes these key components:

• CE or host routers:

- CE1 or Host-1 with IP address 10.0.0.1/32
- CE2 or Host-2 with IP address 10.0.0.2/32
- CE3 or Host-3 with IP address 10.0.0.3/32
- CE5 or Host-5 with IP address 20.0.0.1/32

• PE routers:

- PE1 with BVI IP address 10.0.0.5/24 and BVI mac address 0.0.5
- PE2 with BVI IP address 10.0.0.5/24 and BVI mac address 0.0.5
- PE5

• Interfaces:

- IF1: Connects Host-1 to PE1
- IF2: Connects Host-3 to PE1
- IF3: Connects PE1 to Host-3
- IF4: Connects PE2 to Host-3
- IF5: Connects Host-3 to PE2

• Paths:

- Path 1: Host-1 communicating with Host-2 using a EVPN single-homing access EVPN gateway interface
- Path 2: Host-1 communicating with Host-3 using a EVPN single-homing access EVPN gateway interface
- Path 3: Host-3 communicating with Host-5 using a EVPN single-active multihoming interface
- Path 4: Host-2 communicating with Host-5 using a EVPN multihoming active-active interface
- Switch device: SW1, connects Host-3 to PE1 and PE2
- Host routing is enabled on PE1 and PE2.
- IRB interfaces are configured as anycast.
- Host-1 and Host-2 connect to PE1 and PE2 using a EVPN single-homing interfaces.
- Host-3 connect to PE1 and PE2 using a EVPN multihoming interfaces.
- IOS XR Software performs the Designated Forwarder (DF) election for the shared Ethernet Segment Identifier (ESI) and elects IF2 as DF and IF5 as Non-Designated Forwarder (NDF).
- Interface IF5 is set to blocked state which blocks both BUM and unicast traffic.

Workflow

Figure 3: EVPN IRB single-active multihoming network topology

Let's consider these scenarios:

- Where Host-3 wants to communicate with Host-5, which are in different subnet.
- 1. Host-3 sends an ARP request to its IRB gateway, configured with the BVI IP address 10.0.0.5.
- 2. SW1 learns Host-3 MAC and IP addresses as it forwards the ARP response to PE1, which is the DF. The packet sent to PE2 is dropped since IF5 is in a blocked state as a NDF.
- **3.** PE1 learns Host-3's MAC and IP addresses from the ARP packet and replicates this information across all output interfaces associated with the BVI interface.
- **4.** The BVI interface on PE1 sends an ARP response to Host-3 using its BVI IP address 10.0.0.5 and MAC address 0.0.5.
 - **a.** SW1 updates its MAC address table with the BVI MAC address of PE1 as it forwards the ARP response to Host-3.
- **5.** PE1 advertises Host-3 host route through EVPN using route type-2. Remote PEs, including PE2 and PE5, learn about Host-3 and install the route in their hardware tables.
- **6.** Since Host-5 is directly connected to PE5, it receives an ARP request and responds with a unicast ARP response.
- 7. The ARP process ensures that PE5 learns Host-5 IP address 20.0.0.1/32, enabling communication between Host-5 and Host-3.
- Where Host-5 sends a packet to Host-3. If Host-3 hasn't communicated yet, PE5 might not have Host-3 specific route.
 - If PE5 directs traffic to PE2, a Generalized Learning (G-LEAN) adjacency process occurs, and traffic is dropped until it is resolved.
 - If PE2 receives, it performs these steps:
 - 1. PE2 floods an ARP request within the bridge domain to resolve Host-3 MAC address. However, as PE2 is the NDF, direct forwarding to Host-3 is not possible due to the blocked state of IF5.
 - **2.** A copy of the ARP request is sent to PE1 through the L2 stretch.
 - **3.** PE1 forwards the ARP request to Host-3. Once Host-3 responds to the ARP request, PE1 learns Host-3 MAC address.
 - **4.** After receiving the ARP response, PE1 updates the route for Host-3 and advertises it as an EVPN route type-2 across the network.
 - **5.** This allows packets from Host-5 to reach Host-3 efficiently once the address resolution is complete.

Configure EVPN Single-Active Multihoming

Perform the following tasks on PE1 and PE2 to configure EVPN Single-Active Multihoming feature:

- Configure EVPN IRB with host routing
- Configure EVPN Ethernet Segment
- Configure Layer 2 Interface

- Configure a Bridge Domain
- Configure VRF

Configure EVPN IRB with Host Routing

Perform this task to configure EVPN IRB with host routing.

Configuration Example

```
Router# configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group 6005
Router(config-12vpn-bg) # bridge-domain 6005
Router(config-12vpn-bg-bd) # routed interface BVI50
Router(config-12vpn-bg-bd-bvi)# exit
Router(config-12vpn-bg-bd-bvi) # interface Bundle-Ether2.1
Router(config-12vpn-bg-bd-ac)# evi 6005
Router(config-12vpnbg-bd-evi)# commit
Router(config-12vpnbg-bd-evi)# exit
Router(config) # interface BVI50
Router(config-if) # host-routing
Router(config-if)# vrf 30
Router(config-if) # ipv4 address 10.0.0.5 255.0.0.0
Router(config-if)# local-proxy-arp
Router(config-if) # mac-address 1.1.1
Router(config-if)# commit
```

Running Configuration

This section shows EVPN IRB with host routing running configuration.

```
configure
12vpn
bridge group 6005
bridge-domain 6005
interface Bundle-Ether2.1
evi 6005
!
!
interface BVI34
host-routing
vrf 30
ipv4 address 10.0.0.5 255.0.0.0
arp learning local
local-proxy-arp
mac-address 1.1.1
```

Configure EVPN Ethernet Segment

Perform this task to configure the EVPN Ethernet segment.

```
Router# configure
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether1
Router(config-evpn-ac) # ethernet-segment
Router(config-evpn-ac-es) # identifier type 0 40.00.00.00.00.00.00.00
Router(config-evpn-ac-es) # load-balancing-mode single-active
```

```
Router(config-evpn-ac-es)# bgp route-target 4000.0000.0001
Router(config-evpn-ac-es)# commit
```

Running Configuration

```
configure
evpn
interface Bundle-Ether1
  ethernet-segment
  identifier type 0 40.00.00.00.00.00.00.00.01
  load-balancing-mode single-active
  bgp route-target 4000.0000.0001
!
!
!
```

Configure EVPN Service Instance (EVI) Parameters

Perform this task to define EVPN service instance (EVI) parameters.

```
Router# configure
Router(config)# evpn
Router(config-evpn)# evi 6005
Router(config-evpn-evi)# bgp
Router(config-evpn-evi-bgp)# rd 200:50
Router(config-evpn-evi-bgp)# route-target import 100:6005
Router(config-evpn-evi-bgp)# route-target export 100:6005
Router(config-evpn-evi-bgp)# commit
```

Running Configuration

```
configure
evpn
evi 6005
bgp
rd 200:50
route-target import 100:6005
route-target export 100:6005
!
!
```

Configure Layer 2 Interface

Perform this task to define Layer 2 interface.

```
Router# configure
Router(config)# interface bundle-ether2.1 l2transport
Router(config-subif-l2)# no shutdown
Router(config-subif-l2)# encapsulation dotlq 1
Router(config-subif-l2)# rewrite ingress tag pop 1 symmetric
Router(config-subif-l2)#commit
Router(config-subif-l2)#exit
```

Running Configuration

This section shows the Layer 2 interface running configuration.

```
configure
```

```
interface bundle-ether2.1 l2transport
no shutdown
encapsulation dot1q 1
rewrite ingress tag pop 1 symmetric
```

Configure a Bridge Domain

Perform the following steps to configure the bridge domain on PE1 and PE2.

```
Router# configure
Router(config)# 12vpn
Router(config-12vpn)# bridge group 6005
Router(config-12vpn-bg)# bridge-domain 6005
Router(config-12vpn-bg-bd)# interface Bundle-Ether2.1
Router(config-12vpn-bg-bd-ac)# evi 6005
Router(config-12vpnbg-bd-evi)# commit
Router(config-12vpnbg-bd-evi)# exit
```

Running Configuration

This section shows the bridge domain running configuration.

```
configure
12vpn
bridge group 6005
bridge-domain 6005
interface Bundle-Ether2.1
evi 6005
!
```

Configure VRF

Perform this task to configure VRF.

Configuration Example

```
Router# configure
Router(config)# vrf 30
Router(config-vrf)# address-family ipv4 unicast
Router(config-l2vpn-vrf-af)# route-target import 100:6005
Router(config-l2vpn-vrf-af)# route-target export 100:6005
Router(config-l2vpn-vrf-af)# commit
```

Running Configuration

This section shows the VRF running configuration.

```
configure
vrf 30
  address-family ipv4 unicast
  route-target import 100:6005
  route-target export 100:6005
```

EVPN IRB Support

EVPN IRB supports the following scenarios:

- In single-homing scenario, only physical, VLAN, .1q, .1ad, or QinQ access methods are supported.
- In dual-homing scenario, only two PE gateways in a redundancy group are supported.
- Both IPv4 and IPv6 are supported.

Distributed Anycast Gateway

EVPN IRB for the given subnet is configured on all the EVPN PEs that are hosted on this subnet. To facilitate optimal routing while supporting transparent virtual machine mobility, hosts are configured with a single default gateway address for their local subnet. That single (anycast) gateway address is configured with a single (anycast) MAC address on all EVPN PE nodes locally supporting that subnet. This process is repeated for each locally defined subnet requires Anycast Gateway support.

The host-to-host Layer 3 traffic, similar to Layer 3 VPN PE-PE forwarding, is routed on the source EVPN PE to the destination EVPN PE next-hop over an IP or MPLS tunnel, where it is routed again to the directly connected host. Such forwarding is also known as Symmetric IRB because the Layer 3 flows are routed at both the source and destination EVPN PEs.

The following solutions are part of the Distributed Anycast Gateway feature:

EVPN IRB with Active-Active Multi-Homing with Subnet Stretch or Host-Routing across the Fabric

For a bridge domain or subnet that is stretched across remote EVPN PEs, both /32 host routes and MAC routes are distributed in a EVPN overlay control plane to enable Layer 2 and Layer 3 traffic to the end points in a stretched subnet.

This type of multi-homing has the following characteristics:

- Layer 2 or Layer 3 ECMP for the fabric for dual-homed hosts based on Route Type 1 and Route Type
- Layer 3 unipath over the Fabric for single-homed hosts based on Route Type 2
- Layer 2 subnet stretch over the fabric
- Layer 2 stretch within redundancy group of leafs with orphan ports

MAC and IP Unicast Control Plane

This use case has following types:

Prefix Routing or No Subnet Stretch

IP reachability across the fabric is established using subnet prefix routes that are advertised using EVPN Route Type 5 with the VPN label and VRF RTs. Host ARP and MAC sync are established across multi-homing

EVPN PEs using MAC+IP Route Type 2 based on a shared ESI to enable local switching through both the multi-homing EVPN PEs.

Host Routing or Stretched Subnet

When a host is discovered through ARP, the MAC and IP Route Type 2 is advertised with both MAC VRF and IP VRF router targets, and with VPN labels for both MAC-VRF and IP-VRF. Particularly, the VRF route targets and Layer 3 VPN label are associated with Route Type 2 to achieve PE-PE IP routing identical to traditional L3VPNs. A remote EVPN PE installs IP/32 entries directly in Layer 3 VRF table through the advertising EVPN PE next-hop with the Layer 3 VPN label encapsulation, much like a Layer 3 VPN imposition PE. This approach avoids the need to install separate adjacency rewrites for each remote host in a stretched subnet. Instead, it inherits a key Layer 3 VPN scale benefit of being able to share a common forwarding rewrite or load-balance resource across all IP host entries reachable through a set of EVPN PEs.

ARP and MAC sync

For hosts that are connected through LAG to more that one EVPN PE, the local host ARP and MAC entries are learnt in data plane on either or both of the multihoming EVPN PEs. Local ARP and MAC entries are synced across the two multihoming EVPN PEs using MAC and IP Route Type 2 based on a shared ESI to enable local switching through both the multihoming EVPN PEs. Essentially, a MAC and IP Route Type 2 that is received with a local ESI causes the installation of a synced MAC entry that points to the local AC port, and a synced ARP entry that is installed on the local BVI interface.

Note

Only one Ethernet Flow Point (EFP) is supported per non-Zero ESI per bridge domain or EVI. This is a limitation of EVPN.

MAC and IP Route Re-origination

MAC and IP Route Type 2 received with a local ESI, which is used to sync MAC and ARP entries, is also re-originated from the router that installs a SYNC entry, if the host is not locally learnt and advertised based on local learning. This route re-origination is required to establish overlay IP ECMP paths on remote EVPN PEs, and to minimize traffic hit on local AC link failures, that can result in MAC and IP route withdraw in the overlay.

Intra-subnet Unicast Data Plane

The Layer 2 traffic is bridged on the source EVPN PE using ECMP paths to remote EVPN PEs, established through MAC+IP RT2, for every ES and for every EVI, ES and EAD Route Type 2 routes that are advertised from the local EVPN PEs.

Inter-subnet Unicast Data Plane

Inter-subnet traffic is routed on the source EVPN PEs through overlay ECMP to the destination EVPN PEs next-hops. Data packet are encapsulated with the VPN label advertised from the EVPN PE and tunnel label for the BGP next-hop towards the spine. It is then routed again on the destination EVPN PE using a local ARP adjacency towards the host. IP ECMP on the remote EVPN PEs is established through local and re-originated routes advertised from the local EVPN PEs.

Centralized Anycast Gateway for EVPN IRB

Table 1: Feature History Table

Feature Name	Release Information	Feature Description
Centralized Anycast Gateway for EVPN IRB	Release 7.5.1	This feature enables configuring the IRB interface in a central location called the Centralized Anycast Gateway. Such a centralized, single-point makes it easier to configure and maintain, reducing the overall operational cost. It also makes it easy to configure the IRB because it's configured only on the centralized gateway of edge L2 devices. This feature is supported only on Single-active mode and this feature introduces virtual access-evi command.

EVPN Integrated Routing and Bridging (IRB) allows hosts across the overlay to communicate with each other across the subnets in the VPN. Distributed anycast gateway allows you to configure EVPN IRB for the given subnet on all the access side EVPN PEs that are hosted on the subnet. The distributed gateway provides inner and intra subnet optimal forwarding.

However, the distributed anycast gateway doesn't provide a centralized point to perform services such as QOS and ACL. Moreover, distributed gateway brings the complexity of setting up and maintaining IRB L3 domains across leaf or edge nodes. Distributed anycast is a bit complex for mobile networks. Customers are looking at connecting and aggregating mobile antennas using cell site routers to core backbone networks in a simple way especially when access networks aren't complex or multilayered Cos fabrics. There's a need for a single gateway device to carry the load at a lesser cost and that is easy to configure.

With this feature, you can add a centralized gateway to configure IRB in the central location that is known as Centralized Anycast Gateway. The gateway is centralized on a pair of nodes that act as an interface point between the layer-2 and layer-3 routed networks. The Centralized Anycast Gateway uses anycast IRB.

Centralized Anycast GW supports the following services:

- Unicast Traffic IPv4/IPv6 on BVI, Global VRF, customer VRF
- Core Isolation
- Cost-in/Cost-out
- DHCP Relay Agent
- MAC Mobility
- Convergence with Unicast traffic

How Does Centralized Anycast Gateway Work?

EVPN performs DF election between centralized gateways to elect DF and non-DF node at EVI level for load balancing across subnets.

This example shows the centralized gateway without locally attached interface running in a single-active multi-homing mode.

Figure 4: Topology

In this topology, PE1 and PE2 are the centralized gateways where IRB interfaces are configured. Centralized gateways perform EVPN DF election based on EVI/ESI. PE1 is elected as DF whereas PE2 is elected as non-DF.

The following describes the centralized anycast gateway advertisement:

• PE1 is DF and PE2 is non-DF.

- PE1 advertises its EVI to remote PE (PE3 and PE4) where it gets installed as remote entry in the MAC forwarding database. PE2 does not install PE1 as remote MAC.
- PE1 and PE2 advertise their route to the remote PEs (PE3 and PE4).
- PE2 blocks all traffic from EVI to BVI interface.
- MAC-IP addresses of hosts are learned only at the IRB termination point, which is the centralized gateway. PE1 and PE2 advertise host MAC-IP to synchronize with the access EVI.

The following describes how the inter subnet communication happens:

- Host attached to PE3 sends an ARP request to EVPN L2 fabric.
- PE3 learns the host MAC as local and advertises its reachability using EVPN Route-Type2 to remote PEs, including gateways.
- The ARP request reaches PE1 through dataplane and gets blocked on PE2.
- PE1 learns the ARP request locally as the first-hop router.
- PE1 synchronizes ARP entry with PE2 to complete the adjacency.
- PE1 and PE2 receive corresponding host MAC route from BGP and installs it as remote MAC.
- PE1 responds with appropriate ARP reply to source host through PE3.
- PE3 sends unicast traffic to PE1.

The following describes how the intra subnet communication with a host connected to PE4 happens:

- EVPN layer-2 bridging capability where MAC reachability is learned over EVPN Route-Type2.
- Host H3 (attached to PE3) sends direct ARP request to the host IP connected to PE4.
- The PE4 host responds with an ARP reply using the unicast MAC address.

Restrictions

- Physical and bundle AC interfaces are not supported on centralized gateway. Configuration is not
 prevented but a warning syslog is generated and traffic from locally attached ACs is not supported.
- Only single-active multihoming mode is supported.
- Locally attached interface on gateway is supported only when the access-EVI is configured as Virtual Interface (VES) and EVPN non-DF blocking scheme is used.
- IRB interfaces on peering PE must be configured with anycast gateway.

Configuration

Perform this task to configure centralized gateway. You must have the same configuration on PE1 and PE2:

```
/* EVPN configuration */
Router(config)# evpn
Router(config-evpn)# virtual access-evi
Router(config-evpn-ac-evi)# ethernet-segment
```

```
Router(config-evpn-ac-evi-es)# exit
Router(config-evpn-ac-evi) # core-isolation-group 1
Router(config-evpn-ac-evi) # exit
Router(config-evpn) # exit
/* L2VPN configuration for centralized gateway */
Router(config) # 12vpn
Router(config-12vpn) #bridge group evpn access evi 8
Router(config-l2vpn-bg) #bridge-domain bd_8001
Router(config-12vpn-bg-bd) #access-evi 8001
Router (config-12vpn-bg-bd) #routed interface BVI8001
Router(config-12vpn-bg-bd-bvi) #exit
Router(config-12vpn-bg-bd) #exit
Router(config-12vpn-bg) #exit
Router(config-12vpn)#exit
/* BVI configuration */
Router(config) #Interface BVI8001
Router(config-if) #ipv4 address 10.1.1.1/24
Router(config-if) #mac-address 00aa.8001.00aa
Router(config-if) #commit
Show running configuration for centralized gateway:
interface BVI8001
ipv4 address 10.1.1.1 255.255.255.0
mac-address aa.8001.aa
evpn
virtual access-evi
 ethernet-segment
  identifier type 0 00.00.00.34.34.34.34.34.34
 core-isolation-group 1
12vpn
bridge group evpn access evi 8
 bridge-domain bd 8001
   access-evi 8001
   routed interface BVI8001
   - !
 !
Perform this task to configure PE2 and PE3:
```

Router(config-evpn-ac-evi-es)# identifier type 0 00.00.00.34.34.34.34.34.34.34

Note

Regular L2 EVPN configuration on PE2 and PE3 and BVI configurations aren't required.

```
Router#configure
Router(config)#evpn
Router(config-evpn)#evi 8001
Router(config-evpn-instance)#advertise-mac
```

```
Router(config) #interface bundle-ether80.1 12transport
Router(config-subif) #encapsulation dot1q 0
Router(config-subif) #rewrite ingress tag pop 1 symmetric
Router(config-subif) #exit

Router(config) #12vpn
Router(config-12vpn) #bridge group evpn_access_evi_8
Router(config-12vpn-bg) #bridge-domain bd_8001
Router(config-12vpn-bg-bd) #interface bundle-ether 80.1
Router(config-12vpn-bg-bd-ac) #evi 8001
Router(config-12vpn-bg-bd-evi) #
```

Verification

Verify the configuration on PE1 and PE2 using the following show commands:

ARP ND sync for DF and non-DF:

For DF, the state should be dynamic and for non-DF, it shows EVPN-SYNC.

BVI-Coupled Mode

When ACs go down, the BVI also goes down. However, with this mode enabled, the state of the BVI remains Up even though the ACs go down. Hence, the BVI state becomes EVPN-aware.

BVI tracks the Up or Down state of ACs and PWs in a bridge. When the EVPN port is available, there may be an L2 redirect path over EVI to carry the traffic between L3 to L2. However, this depends on the remote or peer EVI-EAD routes received.

Under certain conditions, you can reduce the churns of BVI state adjacency by keeping the BVI state Up. BVI state drives the state of EVPN_SYNC adjacencies being pushed to forwarding entries, thereby reducing the churns further. Keeping the BVI state Up, the router creates adjacencies in the forwarding table, which indicates that a local adjacency is invalid when an interface is down.

Configure BVI-Coupled Mode

Perform this task to configure BVI-coupled mode.

```
evpn
evi 101
bgp
route-target import 60000:101
route-target export 60000:101
!
bvi-coupled-mode

12vpn
bridge group BG-1
bridge-domain BD-1
interface Bundle-Ether100.101
!
routed interface BVI101
!
evi 101
```

Verification

Verify that the BVI-coupled mode is enabled.

Router# show evpn evi detail

```
VPN-TD
                   Bridge Domain
         Encap
                                               Type
101 MPLS BD-1
                                               EVPN
  Stitching: Regular
  Unicast Label : 35048
  Multicast Label: 33000
  Reroute Label: 0
  Flow Label: N
  Control-Word: Enabled
  E-Tree: Root
  Forward-class: 0
  Advertise MACs: Yes
  Advertise BVI MACs: No
  Aliasing: Enabled
  UUF: Enabled
  Re-origination: Enabled
  Multicast:
    Source connected : No
    IGMP-Snooping Proxy: No
    MLD-Snooping Proxy : No
  BGP Implicit Import: Enabled
  VRF Name: cust1
  Preferred Nexthop Mode: Off
BVI Coupled Mode: Yes -----> enabled
  BVI Subnet Withheld: ipv4 No, ipv6 No
  RD Config: none
  RD Auto : (auto) 201.201.201.1:101
  RT Auto : 60000:101
                             Type
  Route Targets in Use
```

60000:101	Import
60000:101	Export

VM Mobility Support

VM mobility is the ability of virtual machines to migrate between one server and another while retaining their existing MAC and IP addresses.

The following are the two key components in EVPN Route Type 2 that enable VM Mobility:

- Host MAC advertisement component that is imported into local bridge MAC table, and Layer 2 bridged traffic across the network overlay.
- Host IP advertisement component that is imported into the IP routing table in a symmetric IRB design, enables routed traffic across the network overlay.

The above-mentioned components are advertised together in a single MAC + IP host route advertisement. An additional MAC-only route could also be advertised.

The following behaviors of VM are supported. The VM can:

- retain existing MAC and acquire a new IP address
- retain existing IP address and acquire a new MAC
- · retain both existing MAC and IP address

Note

IRB solution supports VM mobility with IP+MAC pair. VM mobility move, with new IP to MAC, or new MAC to IP, is not supported.

Configuring EVPN IRB

```
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface Bundle-Ether 3
RP/0/RSP0/CPU0:router(config-if)# lacp system mac 1.1.1
RP/0/RSP0/CPU0:router(config-if)# exit

/* Configure EVPN L3VRF per DC tenant. */

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# vrf irb1
RP/0/RSP0/CPU0:router(config-vrf)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-vrf-af)# import route-target 1000:1
RP/0/RSP0/CPU0:router(config-vrf-af)# export route-target 1000:1
RP/0/RSP0/CPU0:router(config-vrf-af)# exit

/* Configure Layer 2 attachment circuit (AC) from multichassis (MC) bundle interface, and bridge-group virtual interface (BVI) per bridge domain. */
/* Note: When a VM migrates from one subnet to another (subnet stretching), apply the
```

```
following IRB configuration to both the EVPN PEs. *\
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# interface bvi 1001
RP/0/RSP0/CPU0:router(config-if) # host-routing
RP/0/RSP0/CPU0:router(config-if)# vrf irb1
RP/0/RSP0/CPU0:router(config-if)# ipv4 address 10.10.0.4 255.255.255.0
RP/0/RSP0/CPU0:router(config-if)# ipv4 address 172.16.0.1 secondary
RP/0/RSP0/CPU0:router(config-if) # mac-address 00aa.1001.00aa
/* Configure EVPN Layer 2 bridging service. Note: This configuration is performed in Layer
 2 gateway or bridging scenario. */
Router# configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group 1
Router(config-l2vpn-bg) # bridge-domain 1-1
Router(config-12vpn-bg-bd) # interface GigabitEthernet 0/0/0/1.1
Router(config-l2vpn-bg-bd-ac)# evi 1
Router(config-12vpn-bg-bd-ac-evi) # commit
Router(config-12vpnbg-bd-ac-evi) # exit
/* Configure BGP. */
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config) # router bgp 3107
RP/0/RSP0/CPU0:router(config-bgp)# vrf irb1
RP/0/RSP0/CPU0:router(config-bgp-vrf) # rd auto
RP/0/RSP0/CPU0:router(config-bgp-vrf)# address-family ipv4 unicast
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute connected
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# redistribute static
RP/0/RSP0/CPU0:router(config-bgp-vrf-af)# exit
^{\prime\star} Configure EVPN, and configure main bundle ethernet segment parameters in EVPN. ^{\star\prime}
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config) # evpn
RP/0/RSP0/CPU0:router(config-evpn)# evi 2001
RP/0/RSP0/CPU0:router(config-evpn-evi) # bgp
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp)# route-target import 1000:1
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp) # route-target export 1000:1
RP/0/RSP0/CPU0:router(config-evpn-evi-bgp)# exit
RP/0/RSP0/CPU0:router(config-evpn-evi)# advertise-mac
RP/0/RSP0/CPU0:router(config-evpn-evi)# unknown-unicast-suppression
/* Configure Layer 2 VPN. */
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config) # 12vpn
RP/0/RSP0/CPU0:router(config-12vpn) # bridge group irb
RP/0/RSP0/CPU0:router(config-12vpn-bg)# bridge-domain irb1
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd)# interface bundle-Ether3.1001
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-ac)# routed interface BVI100
RP/0/RSP0/CPU0:router(config-12vpn-bg-bd-bvi) # split-horizon group core
RP/0/RSP0/CPU0:router(config-l2vpn-bg-bd-bvi)# evi 10001
```

Running Configuration for EVPN IRB

```
/* Configure LACP */
interface Bundle-Ether3
lacp system mac 1.1.1
/* Configure EVPN Layer 3 VRF per DC tenant. */
vrf irb1
address-family ipv4 unicast
 import route-target
  1000:1
  export route-target
  1000:1
1
/* Configure Layer 2 attachment circuit (AC) from multichassis (MC) bundle interface, and
bridge-group virtual interface (BVI) per bridge domain./*
interface Bundle-Ether3.1001 12transport
encapsulation dot1q 1001
rewrite ingress tag pop 1 symmetric
interface BVI1001
host-routing
vrf irb1
ipv4 address 10.0.1.1 255.255.255.0
mac-address 0000.3030.1
/* Configure BGP. */
router bgp 3107
vrf irb1
 rd auto
 address-family ipv4 unicast
 redistribute connected
 redistribute static
/* Configure EVPN. */
evpn
evi 10001
  route-target import 1000:1
  route-target export 1000:1
 advertise-mac
 unknown-unicast-suppression
/* Configure Layer2 VPN. */
```

```
12vpn
bridge group irb
bridge-domain irb1
interface Bundle-Ether3.1001
!
routed interface BVI1001
split-horizon group core
!
evi 10001
!
```

Verify EVPN IRB

Verify the Address Resolution Protocol (ARP) protocol entries, and synced entries in multi-homing scenarios.

RP/0/RSP0/CPU0:router# show arp vrf evpn1

0/1/CPU0					
	Age				Interface
10.1.1.11 10.1.1.93 10.1.2.1 10.1.2.91	- 02:23:46 - 02:24:14 02:21:52	1000.0001.0001 0000.f65a.357c 0011.0112.0001 0000.f65a.3570	Interface Dynamic EVPN_SYNC Interface Dynamic Dynamic	ARPA ARPA ARPA	
0/0/CPU0					
	Age				
10.1.1.11 10.1.1.93 10.1.2.1	- 02:24:14	1000.0001.0001 0000.f65a.357c 0011.0112.0001	Interface Dynamic EVPN_SYNC Interface Dynamic Dynamic	ARPA ARPA I	BVI1 BVI1 BVI2 BVI2

Verify the adjacency entries, particularly verify newly added information for synced IPv4 and IP ARP entries.

RP/0/RSP0/CPU0:router# show adjacency ipv4 BVI 1 internal detail location 0/0/CPU0

```
BVII, 10.1.1.93 (ipv4)
Version: 1169, references: 2, transient lock: 0
Encapsulation information (14 bytes) 0000f65a357c0000f65a357c0800 MTU: 1500
Adjacency pointer is: 0x770a9278
Platform adjacency pointer is: 0x7d7bc380
Last updated: Feb 28 15:58:21.998
Adjacency producer: arp (prod_id: 10)
Flags: incomplete adj,
Additional Adjacency Information (4 bytes long),
Upto first 4 bytes (in hex): 01000000
Netio idb pointer not cached Cached interface type: 78
```

```
Adjacency references:
bfd agent (JID 150, PID 3637), 0 reference
12fib mgr (JID 185, PID 4003), 0 reference
fib mgr (JID 294, PID 3605), 1 reference
aib (JID 314, PID 3590), 1 reference
BVI1, 10.1.1.11 (ipv4) Version: 1493,
references: 3, transient lock: 0
Encapsulation information (14 bytes) 1000000100010001000100010800
MTU: 1500
Adjacency pointer is: 0x770ab778
Platform adjacency pointer is: 0x7d7bcb10
Last updated: Mar 2 17:22:00.544
Adjacency producer: arp (prod id: 10)
Flags: incomplete adj,
Netio idb pointer not cached Cached interface type: 78
Adjacency references:
bfd agent (JID 150, PID 3637), 0 reference
12fib mgr (JID 185, PID 4003), 1 reference
fib mgr (JID 294, PID 3605), 1 reference
aib (JID 314, PID 3590), 1 reference
```

Verify the entries to obtain details learnt in L2FIB line cards. In multi-homing active-active scenario, the link-local addresses are also updated and distributed to EVPN peer gateways.

RP/0/RSP0/CPU0:router# show 12vpn mac-learning mac-ipv4 all location 0/0/cPU0

Topo ID	Producer	Next Hop(s)	Mac Address	ΙP	Address
6	0/0/CPU0	BV1	1000.0001.0001		10.1.1.11
7	0/0/CPU0	BV2	0000.f65a.3570		10.1.2.91
7	0/0/CPU0	BV2	0000.f65a.357d		10.1.2.93

RP/0/RSP0/CPU0:router# show 12vpn mac-learning mac-ipv4 all location 0/0/cPU0

```
Topo ID Producer Next Hop(s) Mac Address IP Address

6 0/0/CPU0 BV1 0000.f65a.357c fe80::200:f6ff:fe5a:357c

7 0/0/CPU0 BV2 0000.f65a.3570 10:1:2::91

7 0/0/CPU0 BV2 0000.f65a.357d 10:1:2::93

7 0/0/CPU0 BV2 0000.f65a.3570 fe80::200:f6ff:fe5a:3570
```

Verify sequence ID for VM mobility.

RP/0/RSP0/CPU0:router# show 12route evpn mac-ip all detail

```
Sun Apr 30 18:09:19.368 PDT
Flags: (Stt)=Static; (L)=Local; (R)=Remote; (F)=Flood;
(N)=No Redistribution; (Rtr)=Router MAC; (B)=Best Route;
(P)=Probe; (S)=Peer Sync; (F)=Flush;
(D)=Duplicate MAC; (Z)=Frozen MAC;
```

```
Last Update: Sun Apr 30 15:00:01.911 PDT

33 0022.6730.0002 10.130.0.3 LOCAL Bundle-Ether6.1300 0 B N/A N/A
```

Verify the entries to obtain details learnt in L2FIB RP when it is an aggregator. Route processor (RP) entries are aggregated entries obtained from the line cards. In some cases of MAC move, there could be different states for the same MAC. This is displayed in RP aggregated entries. RP determines the update to be sent to L2RIB according to MAC-Learning algorithms.

RP/0/RSP0/CPU0:router# show 12vpn mac-learning mac-ipv4 all location 0/RSP0/CPU0

Topo ID	Producer	Next Hop(s)	Mac Address	IP Address
6	0/0/CPU0	BV1	1000.0001.0001	10.1.1.11
7	0/0/CPU0	BV2	0000.f65a.3570	10.1.2.91
7	0/0/CPU0	BV2	0000.f65a.357d	10.1.2.93

Verify the entries in L2RIB that are updated by RP L2FIB. Note the following when you verify the entries:

- The entries with producer as L2VPN and NH as remote IP are learnt from the remote peer gateways, which are learnt from BGP, updated to EVPN, and then updated to L2RIB. So these entries are not from local IP-MAC learning.
- The entries with producer as L2VPN and NH as local bundle interfaces are synced entries from MH-AA peer gateway.
- The entries with producer as LOCAL and NH as local bundle interfaces are dynamically learnt local entries.

RP/0/RSP0/CPU0:router# show 12route evpn mac-ip evi 6

Topo ID	Mac Address	IP Address	Prod	Next Hop(s)
6	0000.f65a.3569	10.1.1.101	L2VPN	172.16.0.2/24014/ME
6	0000.f65a.3575	10.1.1.97	L2VPN	172.16.0.7/24025/ME
6	0000.f65a.3575	10:1:1::97	L2VPN	172.16.0.7/24025/ME
6	0000.f65a.3575	fe80::200:f6ff:fe5a:3575	L2VPN	172.16.0.7/24025/ME
6	0000.f65a.357c	10.1.1.93	L2VPN	Bundle-Ether1.11
6	0000.f65a.357c	10:1:1::93	L2VPN	Bundle-Ether1.11
6	0000.f65a.357c	fe80::200:f6ff:fe5a:357c	LOCAL	Bundle-Ether1.11
6	0010.0001.0012	10.1.1.12	L2VPN	172.16.0.7/24025/ME
6	1000.0001.0001	10.1.1.11	LOCAL	Bundle-Ether1.11
6	90e2.ba8e.c0c9	10.1.1.102	L2VPN	172.16.0.2/24014/ME

Verify entries to obtain details of EVPN.

```
RP/0/RSP0/CPU0:router# show evpn evi vpn-id 1 mac ipv4 10.1.1.93 detail
```

EVI MAC address IP address Nexthop Label

```
_____
                                                 _____
                           10.1.1.93
         0000.f65a.357c
                                               172.16.0.2
                                                                   24014
1
Ethernet Tag: 0
Multi-paths Resolved : True
Static : No
Local Ethernet Segment : N/A
Remote Ethernet Segment: 0100.6cbc.a77c.c180.0000
Local Sequence Number : N/A
Remote Sequence Number: 0
Local Encapsulation : N/A
Remote Encapsulation : MPLS
```

Verify local BGP entries with appropriate second label and second IP VRF route-target.

```
RP/0/RSP0/CPU0:router# show bqp 12vpn evpn rd 172.16.0.1:1
[2][0][48][0000.f65a.357c][32][10.1.1.93]/136
BGP routing table entry for [2][0][48][0000.f65a.357c][32][10.1.1.93]/136, Route
Distinguisher: 172.16.0.1:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 3772 3772
Local Label: 24013
Last Modified: Feb 28 16:06:37.073 for 2d19h
Paths: (2 available, best #1)
Advertised to peers (in unique update groups):
172.16.0.9
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
172.16.0.9
Local
0.0.0.0 from 0.0.0.0 (172.16.0.1)
                                                  >>>> Second label when IRB host-routing
Second Label 24027
is enabled.
Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate,
Received Path ID 0, Local Path ID 0, version 3772
Extended community: So0:172.16.0.2:1 RT:100:100
EVPN ESI: 0100.6cbc.a77c.c180.0000
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 (metric 101) from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24031
Origin IGP, localpref 100, valid, internal, add-path, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 2, version 3769
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100 >>> Second RT is IP VRF RT for
remote to import into IP VRF routing table.
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
RP/0/RSP0/CPU0:router# show bgp 12vpn evpn rd 172.16.0.1:1
[2][0][48][0000.f65a.357c][128][10:1:1::93]/232
[2][0][48][0000.f65a.357c][128][10:1:1::93]/232
BGP routing table entry for [2][0][48][0000.f65a.357c][128][10:1:1::93]/232, Route
```

```
Distinguisher: 172.16.0.1:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 3172 3172
Local Label: 24013
Last Modified: Feb 28 11:34:33.073 for 3d00h
Paths: (2 available, best #1)
Advertised to peers (in unique update groups):
Path #1: Received by speaker 0
Advertised to peers (in unique update groups):
172.16.0.9
Local
0.0.0.0 from 0.0.0.0 (172.16.0.1)
Second Label 24029
Origin IGP, localpref 100, valid, redistributed, best, group-best, import-candidate,
rib-install
Received Path ID 0, Local Path ID 0, version 3172
Extended community: So0:172.16.0.2:1 RT:100:100
EVPN ESI: 0100.6cbc.a77c.c180.0000
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 (metric 101) from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24033
Origin IGP, localpref 100, valid, internal, add-path, import-candidate, imported, rib-install
Received Path ID 0, Local Path ID 2, version 3167
Extended community: So0:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
```

Verify the remote peer gateway BGP entries with correct label and route-target. Particularly verify the local auto-generated RD on a remote EVPN gateway. EVPN type-2 routes are imported into EVPN. The host routes of IPv4/32 addresses are imported only into IP VRF route-table in the remote EVPN gateway, but not in the local EVPN gateway where local BVI adjacency is used to overwrite RIB entries.

```
RP/0/RSP0/CPU0:router# show bgp 12vpn evpn rd 172.16.0.7:1
[2][0][48][0000.f65a.357c][32][10.1.1.93]/136
BGP routing table entry for [2][0][48][0000.f65a.357c][32][10.1.1.93]/136, Route
Distinguisher: 172.16.0.7:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 16712 16712
Last Modified: Feb 28 16:06:36.448 for 2d19h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24013, Second Label 24027 >>>> First label for L2 MAC unicast bridging;
second label for EVPN IRB host-routing
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported,
rib-install
Received Path ID 0, Local Path ID 0, version 16712
Extended community: So0:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
```

```
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24031
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported,
rib-install
Received Path ID 0, Local Path ID 1, version 16706
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
RP/0/RSP0/CPU0:router# show bgp 12vpn evpn rd 172.16.0.7:1
[2][0][48][0000.f65a.357c][128][10:1:1::93]/232
BGP routing table entry for [2][0][48][0000.f65a.357c][128][10:1:1::93]/232, Route
Distinguisher: 172.16.0.7:1
Versions:
Process bRIB/RIB SendTblVer
Speaker 6059 6059
Last Modified: Feb 28 12:03:22.448 for 2d23h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24013, Second Label 24029
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported,
rib-install
Received Path ID 0, Local Path ID 0, version 6043
Extended community: So0:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1
Path #2: Received by speaker 0
Not advertised to any peer
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24014, Second Label 24033
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported,
rib-install
Received Path ID 0, Local Path ID 1, version 6059
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
EVPN ESI: 0100.6cbc.a77c.c180.0000
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
Verify the remote peer gateway with host routes of IPv4/32 addresses imported into the IP VRF routing table.
RP/0/RSP0/CPU0:router# show bgp vpnv4 unicast vrf evpn1 10.1.1.93/32
BGP routing table entry for 10.1.1.93/32, Route Distinguisher: 172.16.0.7:11
Versions:
```

```
Process bRIB/RIB SendTblVer
Speaker 22202 22202
Last Modified: Feb 28 16:06:36.447 for 2d19h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24027
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 22202
Extended community: So0:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1 >>>>
The source from
   >>>> L2VPN and from
   >>>> synced ARP entry.
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24031
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 22201
Extended community: So0:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 17.0.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1 >>>>
The source from
   >>>> L2VPN and
   >>>> from dynamic
   >>>> ARP entry.
RP/0/RSP0/CPU0:router# show bgp vpnv6 unicast vrf evpn1 10:1:1::93/128
BGP routing table entry for 10:1:1::93/128, Route Distinguisher: 172.16.0.7:11
Versions:
Process bRIB/RIB SendTblVer
Speaker 22163 22163
Last Modified: Feb 28 12:09:30.447 for 2d23h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24029
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 22163
Extended community: SoO:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1 >>>>
Source from
   >>>> L2VPN and from
```

```
>>>> synced ARP entry.
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24033
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 22163
Extended community: So0:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1 >>>>
Source from
   >>>> L2VPN and from
   >>>> dynamic ARP entry.
RP/0/RSP0/CPU0:router# show bgp vpnv6 unicast vrf evpn1 10:1:1::93/128
BGP routing table entry for 10:1:1::93/128, Route Distinguisher: 172.16.0.7:11
Versions:
Process bRIB/RIB SendTblVer
Speaker 22163 22163
Last Modified: Feb 28 12:09:30.447 for 2d23h
Paths: (2 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
172.16.0.1 from 172.16.0.9 (172.16.0.1)
Received Label 24029
Origin IGP, localpref 100, valid, internal, best, group-best, import-candidate, imported
Received Path ID 0, Local Path ID 0, version 22163
Extended community: SoO:172.16.0.2:1 RT:100:1 RT:100:100
Originator: 172.16.0.1, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.1:1
Path #2: Received by speaker 0
Not advertised to any peer
Local
172.16.0.2 from 172.16.0.9 (172.16.0.2)
Received Label 24033
Origin IGP, localpref 100, valid, internal, backup, add-path, import-candidate, imported
Received Path ID 0, Local Path ID 1, version 22163
Extended community: SoO:172.16.0.2:1 RT:200:1 RT:700:100
Originator: 172.16.0.2, Cluster list: 172.16.0.9
Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 172.16.0.2:1
```

Verify local forwarding with local adjacency which overwrite the RIB entries, and remote peer that use the IP VRF host route entries for IP VPN forwarding.

```
RP/0/RSP0/CPU0:router# show bgp vpnv4 unicast vrf evpn1 10.1.1.93/32

-- For local routing and forwarding
RP/0/RSP0/CPU0:PE11-R1#show route vrf evpn1 10.1.1.93
Routing entry for 10.1.1.93/32
Known via "bgp 3107", distance 200, metric 0, type internal
Installed Feb 28 15:57:28.154 for 2d20h
```

```
Routing Descriptor Blocks
                               >>> From MH-AA peer.
172.16.0.2, from 172.16.0.9
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
No advertising protos.
RP/0/RSP0/CPU0:PE11-R1# show cef vrf evpn1 10.1.1.93 location 0/0/CPU0
10.1.1.93/32, version 0, internal 0x1120001 0x0 (ptr 0x7b40052c) [1], 0x0 (0x7b286010), 0x0
 (0x0)
Updated Feb 28 15:58:22.688
local adjacency 10.1.1.93
Prefix Len 32, traffic index 0, Adjacency-prefix, precedence n/a, priority 15
via 10.1.1.93/32, BVI1, 2 dependencies, weight 0, class 0 [flags 0x0]
path-idx 0 NHID 0x0 [0x7f531f88 0x0]
next hop
                             >>> Forwarding with local synced ARP adjacency entries.
local adjacency
For remote routing and forwarding:
RP/0/RSP0/CPU0:router# show route vrf evpn1 10.1.1.93
Routing entry for 10.1.1.93/32
Known via "bgp 3107", distance 200, metric 0
Number of pic paths 1 , type internal
Installed Feb 28 16:06:36.431 for 2d20h
Routing Descriptor Blocks
172.16.0.1, from 172.16.0.9
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
172.16.0.2, from 172.16.0.9, BGP backup path
Nexthop in Vrf: "default", Table: "default", IPv4 Unicast, Table Id: 0xe0000000
Route metric is 0
No advertising protos.
RP/0/RSP0/CPU0:router# show cef vrf evpn1 10.1.1.93 location 0/0/CPU0
10.1.1.93/32, version 86, internal 0x5000001 0x0 (ptr 0x99fac884) [1], 0x0 (0x0), 0x208
(0x96c58494)
Updated Feb 28 16:06:39.285
Prefix Len 32, traffic index 0, precedence n/a, priority 3
via 172.16.0.1/32, 15 dependencies, recursive [flags 0x6000]
path-idx 0 NHID 0x0 [0x97955380 0x0]
recursion-via-/32
next hop VRF - 'default', table - 0xe0000000
next hop 172.16.0.1/32 via 34034/0/21
next hop 100.0.57.5/32 Te0/0/0/3 labels imposed {ImplNull 24011 24027}
next hop 100.0.67.6/32 Te0/0/0/1 labels imposed {ImplNull 24009 24027}
via 172.16.0.2/32, 11 dependencies, recursive, backup [flags 0x6100]
path-idx 1 NHID 0x0 [0x979554a0 0x0]
recursion-via-/32
next hop VRF - 'default', table - 0xe0000000
next hop 172.16.0.2/32 via 34035/0/21
next hop 100.0.57.5/32 Te0/0/0/3 labels imposed [ImplNull 24012 24031]
next hop 100.0.67.6/32 Te0/0/0/1 labels imposed {ImplNull 24010 24031}
```

The following sections describe how to verify the subnet stretching.

Verify the VRF.

RP/0/RP0/CPU0:leafW# show run vrf cust130

Verify the BGP configuration.

```
RP/0/RP0/CPU0:leafW# show run router bgp | begin vrf cust130
vrf cust130
  rd auto
  address-family ipv4 unicast
  label mode per-vrf
  maximum-paths ibgp 10
  redistribute connected
!
!
```

Verify the L2VPN.

```
RP/0/RP0/CPU0:leafW# show run 12vpn bridge group bg130

12vpn
bridge group bg130
  bridge-domain bd130
  interface Bundle-Ether1.1300
  !
  interface Bundle-Ether5.1300
  !
  routed interface BVI130
  evi 130
  !
  !
  !
  !
  !
}
```

EVPN IPv6 Hosts with Mobility

EVPN IPv6 Hosts with Mobility feature enables you to provide EVPN IPv6 service over IPv4-MPLS core network. This feature supports all-active multihoming and virtual machine (VM) or host move.

Service Providers (SPs) use a stable and established core with IPv4-MPLS backbone for providing IPv4 VPN services. The IPv6 VPN Provider Edge Transport over MPLS (IPv6 on Provider Edge Routers [6PE] and IPv6 on VPN Provider Edge Routers [6VPE]) facilitates SPs to offer IPv6 VPN services over IPv4 backbone without an IPv6 core. The provide edge (PE) routers run MP-iBGP to advertise IPv6 reachability and IPv6 label distribution. For 6PE, the labels are allocated per IPv6 prefix learnt from connected customer edge (CE) routers and for 6VPE, the PE router can be configured to allocate labels on a per-prefix or per-CE and per-VRF level.

Mobility Support

In global VRF, mobility is not supported. However, you can move a host from one ES to another ES within the same bridge domain. The host gets a new MAC address and IP address. The host can have multiple IP addresses for the same MAC address.

In non-default VRF, mobility is supported with the following conditions:

- Basic MAC move: The IP address and MAC address remains the same. You can move a host from one ES to another ES with the same IP address and MAC address.
- Same MAC address but with a different IP address: The host gets a new IP address
- Same IP address but with a different MAC address: The host gets a new MAC address but retains the same IP address
- Multiple IP addresses with the same MAC address: Many VMs are involved in the same the MAC move

Restrictions

• In customer VRFs, when host routing is not configured, MAC-IP advertisement is different between zero ESI and none-zero ESI. When host routing is not configured, MAC-IP with non-zero ESI is advertised without L3 RT (VRF RT). MAC-IP with zero ESI is not advertised. The following table lists the behavior of MAC-IP advertisement with respect to ESI and host routing.

ESI Type	With host routing	Without host routing
MAC-IP with non-zero ESI	Advertised with L3 VRF RT	Advertised without L3 VRF RT
MAC-IP with zero ESI	Advertised with L3 VRF RT	Not advertised

- In global VRF, Layer 2 stretch is not supported.
- MAC move in global VRF is only supported if the host is within the same bridge domain. You can move a host from one ES to another ES within the same bridge domain.
- Duplication of IP address detection is not supported.
- Maximum number of leafs allowed per ESI is two.

Configure EVPN IPv6 Hosts with Mobility

Perform the following tasks to configure EVPN IPv6 Hosts with Mobility feature:

- Configure VRF
- Configure ISIS
- Configure BGP
- Configure AC interface
- Configure BVI interface
- Configure EVPN
- Configure L2VPN

Note

- You cannot configure the EVPN remote peer using the VPNv4 unicast if you have configured the advertise vpnv4 unicast re-originated command under the L2VPN EVPN address-family. You can either configure the VPNv4 unicast or the advertise vpnv4 unicast re-originated under L2VPN EVPN address-family.
- You cannot configure the EVPN remote peer using the VPNv6 unicast if
 you have configured the advertise vpnv6 unicast re-originated command
 under the L2VPN EVPN address-family. You can either configure the VPNv6
 unicast or the advertise vpnv6 unicast re-originated under L2VPN EVPN
 address-family.

```
/* Configure VRF */
Router# configure
Router(config) # vrf cust102
Router(config-vrf) # address-family ipv4 unicast
Router(config-vrf-af) # import route-target 160102:16102
Router(config-vrf-af)# export route-target 160102:16102
Router(config-vrf-af)# exit
Router(config-vrf) # address-family ipv6 unicast
Router(config-vrf-af) # import route-target 6160102:16102
Router(config-vrf-af)# export route-target 6160102:16102
Router(config-vrf-af) # commit
/* Configure ISIS */
Router# configure
Route(config) # router isis v6
Route(config-isis)# 49.0001.0000.0160.0005.00
Route(config-isis) # nsr
Route(config-isis) # log adjacency changes
Route (config-isis) # lsp-gen-interval maximum-wait 5000 initial-wait 1 secondary-wait
Route(config-isis) # lsp-mtu 1468
Route(config-isis)# lsp-refresh-interval 65000
Route(config-isis) # max-lsp-lifetime 65535
Route (config-isis) # address-family ipv4 unicast
Route(config-isis-af)# metric-style wide
Route(config-isis-af) # microloop avoidance protected
Route(config-isis-af) # spf-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
Route(config-isis-af) # segment-routing mpls sr-prefer
Route(config-isis-af)# segment-routing prefix-sid-map advertise-local
Route(config-isis-af)# exit
Route(config-isis) # interface Bundle-Ether10
Route(config-isis-if) # point-to-point
Route(config-isis-if)# address-family ipv4 unicast
Route(config-isis-af)# fast-reroute per-prefix
Route(config-isis-af) # fast-reroute per-prefix ti-lfa
Route(config-isis-af) # metric 10
Route(config-isis-af)# exit
Route(config-isis)# interface Bundle-Ether20
```

```
Route(config-isis-if) # point-to-point
Route(config-isis-if) # address-family ipv4 unicast
Route(config-isis-af)# fast-reroute per-prefix
Route(config-isis-af) # fast-reroute per-prefix ti-lfa
Route(config-isis-af) # metric 10
Route(config-isis-af)# exit
Route(config-isis) # interface loopback0
Route(config-isis-if) # passive
Route(config-isis-if) # address-family ipv4 unicast
Route(config-isis-af)# exit
Route(config-isis)# interface loopback10
Route(config-isis-if) # passive
Route(config-isis-if) # address-family ipv4 unicast
Route(config-isis-af) # prefix-sid index 1605
Route(config-isis-af) # commit
Route(config-isis-af)# exit
/* Configure Segment Routing */
Router# configure
Router(config) # segment-routing
Router(config-sr)# global-block 16000 23999
Router(config-sr) # commit
/* Configure BGP */
Router(config) # router bgp 100
Router(config-bgp)# bfd minimum-interval 50
Router(config-bgp) # bfd multiplier 3
Router (config-bgp) # bgp router-id 160.0.0.5
Router(config-bgp)# address-family ipv4 unicast
                                                     ---> To support V4 Global VRF
Router(config-bgp-af)# maximum-paths ibgp 10 unequal-cost ---> ECMP
Router(config-bgp-af)# redistribute connected
                                                 --> V4 Global VRF
Router(config-bgp-af) # exit
Router(config-bgp) # address-family ipv4 unicast
                                                     ---> VRF
Router(config-bgp-af) # vrf all
Router(config-bgp-af) # label mode per-vrf
Router(config-bgp-af)# exit
Router(config-bgp) # address-family ipv6 unicast ---> For 6PE
Router(config-bgp-af) # label mode per-vrf
Router(config-bgp-af) # maximum-paths ibgp 8
Router(config-bgp-af)# redistribute static
Router(config-bgp-af) # allocate-label all
Router(config-bgp-af) # exit
Router(config-bgp)# address-family vpnv6 unicast ---> 6 VPE
Router(config-bqp-af) # vrf all
Router(config-bgp-af) # label mode per-vrf
Router(config-bgp-af)# exit
Router(config-bgp) # address-family 12vpn evpn
                                               ---> EVPN
Router(config-bgp-af) # bgp implicit-import
                                                ---> Global VRF
Router(config-bgp-af)# exit
Router(config-bgp) # neighbor-group evpn-rr
Router(config-bgp-nbr)# remote-as 100
Router(config-bgp-nbr)# bfd fast-detect
Router(config-bgp-nbr)# update-source loopback0
```

```
Router(config-bgp-nbr)# address-family ipv4 unicast
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af)# route-policy nh-lo10 out
Router(config-bgp-nbr-af) # exit
Router(config-bgp-nbr) # address-family ipv6 labeled-unicast ----> For 6PE
Router(config-bgp-nbr-af)# route-policy pass-all out
Router(config-bgp-nbr-af) # exit
Router(config-bgp-nbr)# address-family 12vpn evpn
Router(config-bgp-nbr-af)# route-policy pass-all in
Router(config-bgp-nbr-af) # route-policy nh-lo10 out
Router(config-bgp-nbr-af) # advertise vpnv4 unicast re-originated -> For Route Type 5
Router(config-bgp-nbr-af)# advertise vpnv6 unicast re-originated -> For Route Type 5
Router(config-bgp-nbr-af)# exit
Router(config-bgp) # neighbor 160.0.0.1
Router(config-bgp-nbr)# use neighbor-group evpn-rr
Router(config-bqp-nbr)# exit
Router(config-bgp)# neighbor 160.0.0.2
Router(config-bgp-nbr)# use neighbor-group evpn-rr
Router(config-bgp-nbr) # exit
Router(config-bgp) # vrf all
Router(config-bgp-vrf) # rd 1605:102
Router(config-bgp-vrf) # address-family ipv4 unicast
Router(config-bgp-vrf-af)# label mode per-vrf
Router(config-bgp-vrf-af) # maximum-paths ibgp 10 unequal-cost
Router(config-bgp-vrf-af)# redistribute connected ---> Triggers Route Type 5
Router(config-bgp-vrf-af)# exit
Router(config-bgp-vrf) # address-family ipv6 unicast
Router(config-bqp-vrf-af) # label mode per-vrf
Router(config-bgp-vrf-af)# maximum-paths ibgp 10 unequal-cost
Router(config-bgp-vrf-af) # redistribute connected
Router(config-bgp-vrf-af)# exit
/* Configure AC interface */
Router(config) # interface Bundle-Ether1.102 l2transport
Router(config-l2vpn-subif)# encapsulation dot1q 102
Router(config-12vpn-subif)# rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
Router(config-12vpn-subif)# exit
/* Configure BVI interface */
Router(config) # interface BVI100
Router(config-if) # ipv4 address 56.78.100.1 255.255.255.0
Router(config-if) # ipv6 address 56:78:100::1/64
Router(config-if) # mac-address 22.22.22
Router(config-if)# exit
Router(config) # interface BVI102
Router(config-if) # host-routing
Router(config-if)# vrf cust102
Router(config-if-vrf)# ipv4 address 56.78.102.1 255.255.255.0
Router(config-if-vrf)# ipv6 nd dad attempts 0
Router(config-if-vrf) # ipv6 address 56:78:100::1/64
Router(config-if-vrf) # ipv6 address 56:78:102::1/64
Router(config-if-vrf) # mac-address 22.22.22
```

```
Router(config-if) # commit
^{\prime \star} Configure EVPN, and configure main bundle ethernet segment parameters in EVPN ^{\star \prime}
Router# configure
Router(config) # evpn
Router(config-evpn) # evi 102
Router(config-evpn-evi)# bgp
Router(config-evpn-evi)# rd 1605:102
Router(config-evpn-evi-bgp)# route-target import 160102:102
Router(config-evpn-evi-bgp) # route-target export 160102:102
Router(config-evpn-evi-bgp) # exit
Router(config-evpn-evi) # advertise-mac
Router(config-evpn-evi)# exit
Router(config-evpn) # interface Bundle-Ether1
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 56.56.56.56.56.56.56.56.01
Router(config-evpn-ac-es)# exit
Router(config-evpn) # interface Bundle-Ether2
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 56.56.56.56.56.56.56.6.02
Router(config-evpn-ac-es)# commit
/* Configure L2VPN */
Router# configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group bg102
Router(config-12vpn-bg)# bridge-domain bd102
Router(config-12vpn-bg-bd) # interface Bundle-Ether1.102
Router(config-l2vpn-bg-bd-ac)# exit
Router(config-12vpn-bg-bd) # interface Bundle-Ether2.102
Router(config-12vpn-bg-bd-ac)# exit
Router(config-12vpn-bg-bd) # interface Bundle-Ether3.102
Router(config-12vpn-bg-bd-ac)# exit
Router(config-12vpn-bg-bd) # interface Bundle-Ether4.102
Router(config-12vpn-bg-bd-ac)# exit
Router (config-12vpn-bg-bd) # interface Bundle-Ether5.102
Router(config-12vpn-bg-bd-ac) # routed interface BVI102
Router(config-12vpn-bg-bd-bvi)# evi 102
Router(config-12vpn-bg-bd-bvi-evi)# commit
```

Running Configuration

```
/* Configure VRF */
vrf cust102
  address-family ipv4 unicast
  import route-target
  160102:16102
!
  export route-target
  160102:16102
```

```
address-family ipv6 unicast
import route-target
6160102:16102
export route-target
6160102:16102
/ * Configure ISIS */
router isis v6
net 49.0001.0000.0160.0005.00
log adjacency changes
lsp-gen-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
lsp-mtu 1468
lsp-refresh-interval 65000
max-lsp-lifetime 65535
address-family ipv4 unicast
metric-style wide
microloop avoidance protected
spf-interval maximum-wait 5000 initial-wait 1 secondary-wait 20
 segment-routing mpls sr-prefer
 segment-routing prefix-sid-map advertise-local
interface Bundle-Ether10
point-to-point
address-family ipv4 unicast
fast-reroute per-prefix
 fast-reroute per-prefix ti-lfa
metric 10
interface Bundle-Ether20
point-to-point
address-family ipv4 unicast
fast-reroute per-prefix
fast-reroute per-prefix ti-lfa
metric 10
interface Loopback0
passive
address-family ipv4 unicast
interface Loopback10
passive
address-family ipv4 unicast
prefix-sid index 1605
 !
/ * Configure Segment Routing */
segment-routing
global-block 16000 23999
```

```
/ * Configure BGP */
router bgp 100
bfd minimum-interval 50
bfd multiplier 3
bgp router-id 160.0.0.5
                                ---> To support V4 Global VRF
address-family ipv4 unicast
 maximum-paths ibgp 10 unequal-cost ---> ECMP
 redistribute connected
                          --> V4 Global VRF
 address-family vpnv4 unicast ---> VRF
 vrf all
  label mode per-vrf
address-family ipv6 unicast ---> For 6PE
 label mode per-vrf
 maximum-paths ibgp 8
 redistribute connected
 redistribute static
 allocate-label all
 address-family vpnv6 unicast ---> 6VPE
 vrf all
  label mode per-vrf
address-family 12vpn evpn ----> EVPN
bgp implicit-import
                            ---> Global VRF
neighbor-group evpn-rr
remote-as 100
bfd fast-detect
update-source Loopback0
 address-family ipv4 unicast
 route-policy pass-all in
 route-policy nh-lo10 out
 address-family ipv6 labeled-unicast ----> For 6PE
 route-policy pass-all out
address-family 12vpn evpn
 route-policy pass-all in
 route-policy nh-lo10 out
 advertise vpnv4 unicast re-originated
                                        ---> For Route Type 5
                                       ---> For Route Type 5
 advertise vpnv6 unicast re-originated
 neighbor 160.0.0.1
use neighbor-group evpn-rr
neighbor 160.0.0.2
use neighbor-group evpn-rr
vrf cust102
rd 1605:102
 address-family ipv4 unicast
label mode per-vrf
maximum-paths ibgp 10 unequal-cost
 redistribute connected <---- Triggers Route Type 5
 address-family ipv6 unicast
 label mode per-vrf
maximum-paths ibgp 10 unequal-cost
 redistribute connected
```

```
/* Configure AC interface */
interface Bundle-Ether1.102 12transport
encapsulation dot1q 102
rewrite ingress tag pop 1 symmetric
/* Configure BVI interface */
interface BVI100
ipv4 address 56.78.100.1 255.255.255.0
ipv6 address 56:78:100::1/64
mac-address 22.22.22
interface BVI102
host-routing
vrf cust102
ipv4 address 56.78.102.1 255.255.255.0
ipv6 nd dad attempts 0
ipv6 address 56:78:100::1/64
ipv6 address 56:78:102::1/64
mac-address 22.22.22
/* Configure EVPN */
evpn
evi 102
bgp
rd 1605:102
route-target import 160102:102
route-target export 160102:102
advertise-mac
interface Bundle-Ether1
ethernet-segment
identifier type 0 56.56.56.56.56.56.56.01
interface Bundle-Ether2
ethernet-segment
identifier type 0 56.56.56.56.56.56.56.02
/* Configure L2VPN */
12vpn
bridge group bg102
bridge-domain bd102
interface Bundle-Ether1.102
interface Bundle-Ether2.102
interface Bundle-Ether3.102
interface Bundle-Ether4.102
```

```
! interface Bundle-Ether5.102 ! routed interface BVI102 ! evi 102 !
```

Verification

Verify that you have configured EVPN IPv6 Hosts with Mobility feature is configured.

```
/* 6PE and Static Route Advertisement */
Host route is advertised as EVPN Route Type 2
Router# show bgp ipv6 unicast 56:78:100::2
BGP routing table entry for 56:78:100::2/128
Versions:
Process bRIB/RIB SendTblVer
Speaker 212 212
Local Label: 2
Last Modified: Oct 31 19:13:10.998 for 00:00:19
Paths: (1 available, best #1)
Not advertised to any peer
Path #1: Received by speaker 0
Not advertised to any peer
Local
160.5.5.5 (metric 20) from 160.0.0.1 (160.0.0.5)
 Received Label 2
Origin IGP, localpref 100, valid, internal, best, group-best, imported
Received Path ID 0, Local Path ID 0, version 212
Extended community: Flags 0x20: So0:160.5.5.5:100 RT:160100:100
mac: 00:06:01:00:01:02
Originator: 160.0.0.5, Cluster list: 100.0.0.4
 Source AFI: L2VPN EVPN, Source VRF: default, Source Route Distinguisher: 1605:100
/* Manually configured static route in global VRF */
Router# show bgp ipv6 unicast 56:78:100::2
BGP routing table entry for 30::1/128
Versions:
Process bRIB/RIB SendTblVer
Speaker 9 9
Local Label: 2
Last Modified: Oct 30 20:25:17.159 for 23:15:55
Paths: (2 available, best #2)
Advertised to update-groups (with more than one peer):
0.2
Path #1: Received by speaker 0
Not advertised to any peer
Local
160.0.0.6 (metric 20) from 160.0.0.1 (160.0.0.6)
Received Label 2
Origin incomplete, metric 0, localpref 100, valid, internal, labeled-unicast
Received Path ID 0, Local Path ID 0, version 0
mac: 10:11:04:64:f2:7f
Originator: 160.0.0.6, Cluster list: 100.0.0.4
Path #2: Received by speaker 0
Advertised to update-groups (with more than one peer):
```

```
0.2
Local
56:78:100::2 from :: (160.0.0.5)
Origin incomplete, metric 0, localpref 100, weight 32768, valid, redistributed, best,
group-best
Received Path ID 0, Local Path ID 0, version 9
mac: 10:11:04:64:f2:7f
/* Verify Ethernet Segments are peering for Dual homing */
Router# show evpn ethernet-segment int bundle-Ether 1
Ethernet Segment Id Interface Nexthops
0056.5656.5656.5656.5601 BE1 160.5.5.5
                           160.6.6.6
/* Verify DF election */
Router# show evpn ethernet-segment int bundle-Ether 1 carving detail
Legend:
A - Load-balancing mode and Access Protection incompatible,
B - No Forwarders EVPN-enabled,
C - Backbone Source MAC missing (PBB-EVPN),
RT - ES-Import Route Target missing,
E - ESI missing,
H - Interface handle missing,
 I - Name (Interface or Virtual Access) missing,
M - Interface in Down state,
O - BGP End of Download missing,
P - Interface already Access Protected,
Pf - Interface forced single-homed,
R - BGP RID not received,
S - Interface in redundancy standby state,
X - ESI-extracted MAC Conflict
SHG - No local split-horizon-group label allocated
Ethernet Segment Id Interface Nexthops
 0056.5656.5656.5656.5601 BE1 160.5.5.5
160.6.6.6
ES to BGP Gates : Ready
ES to L2FIB Gates : Ready \,
Main port :
Interface name : Bundle-Ether1
Interface MAC: 008a.9644.acdd
IfHandle: 0x080004dc
State : Up
Redundancy : Not Defined
ESI type : 0
Value: 56.5656.5656.5656.5601
ES Import RT : 5656.5656.5656 (from ESI)
Source MAC : 0000.0000.0000 (N/A)
Topology :
Operational : MH
Configured : All-active (AApF) (default)
Primary Services : Auto-selection
Secondary Services: Auto-selection
Service Carving Results:
Forwarders : 161
 Permanent: 10
EVI:ETag P : 700:1, 701:1, 702:1, 703:1, 704:1, 705:1
EVI:ETag P: 706:1, 707:1, 708:1, 709:1
```

```
Elected: 76
EVI E: 100, 102, 104, 106, 108, 110
EVI E: 112, 114, 116, 118, 120, 122,
EVI E: 124, 126, 128, 130, 132, 134,
EVI E : 136, 138, 140, 142, 144,
EVI E: 148, 150, 152, 154, 156,
EVI E: 160, 162, 164, 166, 168, 170,
EVI E: 172, 174, 176, 178, 180, 182,
EVI E: 184, 186, 188, 190, 192, 194,
EVI E : 196, 198, 200, 202, 204, 206,
EVI E: 208, 210, 212, 214, 216, 218,
EVI E: 220, 222, 224, 226, 228, 230,
EVI E: 232, 234, 236, 238, 240, 242,
EVI E: 244, 246, 248, 250
Not Elected: 75
EVI NE : 101, 103, 105, 107, 109, 111
EVI NE : 113, 115, 117, 119, 121,
EVI NE: 125, 127, 129, 131, 133, 135,
EVI NE: 137, 139, 141, 143, 145, 147,
EVI NE: 149, 151, 153, 155, 157, 159,
EVI NE : 161, 163, 165, 167, 169, 171,
EVI NE : 173, 175, 177, 179, 181, 183,
EVI NE : 185, 187, 189, 191, 193, 195,
EVI NE : 197, 199, 201, 203, 205, 207,
EVI NE : 209, 211, 213, 215, 217, 219,
EVI NE: 221, 223, 225, 227, 229, 231,
EVI NE : 233, 235, 237, 239, 241, 243,
EVI NE : 245, 247, 249
MAC Flushing mode : STP-TCN
Peering timer : 3 sec [not running]
Recovery timer: 30 sec [not running]
Carving timer: 0 sec [not running]
Local SHG label: 68663
Remote SHG labels: 1
68670 : nexthop 160.6.6.6
```

EVPN IRB: DHCPv4 and DHCPv6 Relay

EVPN IRB: DHCPv4 and DHCPv6 Relay feature provides DHCP support for the end users in EVPN multi-homing Active-Active (MH-AA) deployment scenario. This feature enables reduction of traffic flooding, increase in load sharing at VTEP, faster convergence during link and device failures, and simplification of data center automation.

DHCPv4 and DHCPv6 Relay agents relay request packets, coming over the access interface, to external DHCPv4 and DHCPv4 server to request allocation of addresses (/32) and IANA (::/128) for the end user.

DHCPv4 and DHCPv6 Relay profiles are configured on BVI interfaces which relay DHCPv4 or DHCPv4 requests from Layer 2 (L2) attachment circuit (AC) to external DHCP servers for host IPv4 addresses (/32) and IANA (::128) IPv6 addresses.

This feature is compliant with RFC-6607.

Multi-homing Active-Active EVPN Gateways

Multi-homing Active-Active EVPN Gateways are configured with anycast IP address and MAC addresses. ASR 9000 devices have centralized L2//Layer 3 (L3) gateway. Based on native EVPN and MAC learning, IRB uses distributed anycast IP and anycast MAC address. Static clients are configured with anycast gateway address as the default gateway. DHCP client sends DHCP requests for IP addresses with BVI as the gateway. L2 access can be either single homing or multi-homing, Not all access protocols is supported with IRB. There

may or may not be L2 stretch between DC centers. Internet gateway is also included for clients to access external network. No EVPN is configured on the Internet gateway.

EVPN IRB Route Distribution

In EVPN IRB DHCPv4 and DHCPv6, DHCP application processes and DHCP packet forwarding are independent of EVPN IRB L2 and L3 routing. There is no subscriber routing information with the stateless DHCP relay. But DHCP clients work similar to static clients in the EVPN core for L2 and L3 bridging and routing. When the **relay information option**, **relay information option vpn**, **relay information option von-mode cisco** and **relay information option von-mode rfc** commands are configured on the DHCP relay agent, the DHCP relay agent inserts the sub options of DHCP Option 82, such as subnet selection and VPN ID options. These options are considered by DHCP server while allocating IP address.

DHCP clients use the L2 AC interface to access EVPN bridge domain and use BVI interface as default gateway. So the clients must get the IP addresses from the DHCP server as in the same subnet of BVI interface.

DHCP Request Forwarding Path

Clients broadcast requests to the access switch with DHAA to EVPN PE routers. The access switch does load balancing. The load balancing configurations in access switch will impact PE in DH-AA and DHCP to send the DHCP requests. The DHCP request reaches the Bridge Domain (BD) BVI interface which is configured with DHCP relay. Because AA PE routers are configured the same IP addresses, BVI IP addresses cannot be used as DHCP relay source IP address.

For DHCPv4, configuring GIADDR field for each DHCP relay profile is allowed. Loopback interface with unique IP addresses can be configured in VRF which is reachable to DHCP servers. Configuring DHCP relay source address is not supported.

In case of DHCPv6 servers, DHCPv6 relay picks up an available Loopback interface IPv6 address as DHCPv6 relay source IP address. After the DHCP clients get the IP address. DHCP clients are not normally routable to DHCP servers. DHCP clients send unicast DHCP renew messages to the DHCP server. If the DHCP servers are not routable, the DHCP unicast messages fail, then the DHCP client sends broadcast rebinding messages with the corrsponding DHCP relay.

In the below figure, DHCP clients are configured on PE11 and PE12.

Figure 5: EVPN IRB with ASR 9000 as Centralized DCI Gateway

Configure EVPN IRB: DHCPv4 and DHCPv6 Relay

Perform the following tasks to configure the EVPN IRB: DHCPv4 and DHCPv6 Relay feature:

```
/* PE11 configuration */
Router(config) # dhcp ipv4
Router(config-dhcpv4) # profile DHCPv4 RELAY relay
Router(config-dhcpv4-relay-profile) # helper-address vrf default 10.20.20.20 giaddr 192.0.2.1
Router(config-dhcpv4-relay-profile) # relay information option vpn
Router(config-dhcpv4-relay-profile) # relay information option vpn-mode rfc
Router(config-dhcpv4-relay-profile) # exit
Router(config-dhcpv4)# exit
Router(config)# interface BVI1 relay profile DHCPv4 RELAY
Router(config) # dhcp ipv6
Router(config-dhcpv6)# profile DHCPv6_RELAY relay
Router(config-dhcpv6-relay-profile) # helper-address vrf default 20::20
Router(config-dhcpv6-relay-profile) # exit
Router(config-dhcpv6)# exit
Router(config) # interface BVI1 relay profile DHCPv6_RELAY
Router(config-if) # exit
Router(config) # interface Loopback 5
Router(config-if) # ipv4 address 192.0.2.1 255.255.255.255
Router(config-if)# exit
Router(config) # interface BVI1
Router(config-if) # host-routing
Router(config-if) # ipv4 address 10.10.10.2 255.255.255.0
Router(config-if) # ipv6 address 2001:DB8:0:ABCD::1/64
Router(config-if) # ipv6 enable
Router(config-if) # mac-address 0.12.3456
/* PE12 configuration */
Router# dhcp ipv4
Router(config-dhcpv4) # profile DHCPv4 RELAY relay
Router (config-dhcpv4-relay-profile) # helper-address vrf default 10.20.20.20 giaddr 127.0.0.1
Router(config-dhcpv4-relay-profile) # relay information option vpn
Router(config-dhcpv4-relay-profile) # relay information option vpn-mode cisco
Router(config-dhcpv4-relay-profile) # exit
Router(config-dhcpv4)# exit
Router(config) # interface BVI1 relay profile DHCPv4_RELAY
Router(config) # dhcp ipv6
Router(config-dhcpv6) # profile DHCPv6 RELAY relay
Router(config-dhcpv6-relay-profile) # helper-address vrf default 20::20
Router(config-dhcpv6-relay-profile) # exit
Router(config-dhcpv6)# exit
Router(config) interface BVI1 relay profile DHCPv6_RELAY
Router(config)# interface Loopback 6
Router(config) # exit
Router(config-if) # ipv4 address 127.0.0.1 255.255.255.255
Router(config) # interface BVI1
Router(config-if) # host-routing
Router(config-if) # vrf evpn 1
Router(config-if) # exit
Router(config-if) # ipv4 address 10.10.10.2 255.255.255.0
Router(config-if)# proxy-arp
Router(config-if) # ipv6 address 3000:0:0:8003::2/64
Router(config-if) # ipv6 enable
Router(config-if) # mac-address 1122.3344.5566
```

Running Configuration

```
/* PE11 Configuration */
dhcp ipv4
profile DHCPv4_RELAY relay
 helper-address vrf default 10.20.20.20 giaddr 192.0.2.1
  relay information option vpn
relay information option vpn-mode cisco
interface BVI1 relay profile DHCPv4 RELAY
dhcp ipv6
profile DHCPv6 RELAY relay
 helper-address vrf default 20::20
interface BVI1 relay profile DHCPv6_RELAY
interface Loopback5
ipv4 address 192.0.2.1 255.255.255.0
interface BVI1
host-routing
ipv4 address 10.10.10.2 255.255.255.0
ipv6 address 2001:DB8:0:ABCD::1/64
ipv6 enable
mac-address 0.12.3456
/* PE12 Configuration */
dhcp ipv4
profile DHCPv4 RELAY relay
 helper-address vrf default 10.20.20.20 giaddr 127.0.0.1
 relay information option vpn
 relay information option vpn-mode cisco
interface BVI1 relay profile DHCPv4 RELAY
dhcp ipv6
profile DHCPv6 RELAY relay
 helper-address vrf default 20::20
interface BVI1 relay profile DHCPv6_RELAY
interface Loopback6
ipv4 address 127.0.0.1 255.255.255.255
interface BVI1
host-routing
vrf evpn1
ipv4 address 10.10.10.2 255.255.255.0
proxy-arp
ipv6 address 3000:0:0:8003::2/64
ipv6 enable
mac-address 1122.3344.5566
```

Verification

Verify the DHCPv4 configuration.

```
Router# show running-configuration dhcp ipv4
Thu Feb 15 21:44:31.550 IST
dhcp ipv4
profile DHCPv4_RELAY relay
helper-address vrf default 10.20.20.20 giaddr 192.0.2.1
relay information option vpn
relay information option vpn-mode rfc
!
interface BVI1 relay profile DHCPv4_RELAY
!
```

Verify the DHCPv4 relay profile details.

```
Router# show dhcp ipv4 relay profile name DHCPv4_RELAY
Thu Feb 15 21:47:32.247 IST
Profile: DHCPv4 RELAY
Helper Addresses:
       10.20.20.20, vrf default, giaddr 192.0.2.1
Information Option: Disabled
Information Option Allow Untrusted: Disabled
Information Option VPN: Enabled
Information Option VPN Mode: RFC
Information Option Policy: Replace
Information Option Check: Disabled
GIADDR Policy: Keep
Broadcast-flag Policy: Ignore
Mac Mismatch Action: Forward
VRF References:
Interface References: BVI1
```

Verify the DHCPv4 relay packet statistics.

Router# show dhcp ipv4 relay statistics

Fri Feb 16 12:34:51.202 IST

VRF	1	RX	-	TX	DR	
default	I	4		4	0	
**nVSatellite	I	0	-	0	0	

Verify DHCPv4 relay packet statistics in detail.

Router# show dhcp vrf default ipv4 relay statistics

Fri Feb 16 12:36:05.544 IST

DHCP IPv4 Relay Statistics for VRF default:

TYPE		RECEIVE	-	TRANSMIT	I	DROP		-
DISCOVER		1		1			0	
OFFER		1		1			0	
REQUEST	I	1		1			0	

DECLINE	1	0	0	1	0	
ACK		1	1		0	
NAK		0	0		0	
RELEASE		0	0		0	
INFORM		0	0		0	
LEASEQUERY		0	0		0	
LEASEUNASSIGNED		0	0		0	
LEASEUNKNOWN		0	0		0	
LEASEACTIVE		0	0		0	
BOOTP-REQUEST		0	0		0	
BOOTP-REPLY		0	0		0	
BOOTP-INVALID	1	0	0	1	0 1	

Verify the DHCPv6 configuration.

```
Router# show running-configuration dhcp ipv6
Fri Feb 16 15:40:52.721 IST
dhcp ipv6
profile DHCPv6_RELAY relay
helper-address vrf default 20::20
!
interface BVI1 relay profile DHCPv6_RELAY
!
```

Verify DHCPv6 relay profile.

Router# show dhcp ipv6 relay statistics Fri Feb 16 15:41:00.456 IST

VRF	I	RX	l 	TX		DR		 	 	 	 	
default	I	4		4		0	I					
**nVSatellite		0	1	0	1	0	1					

Verify DHCPv6 relay packet statistics in detail.

Routerr# show dhcp ipv6 relay statistics vrf default Fri Feb 16 15:41:09.991 IST

DHCP IPv6 Relay Statistics for VRF default:

TYPE	1	RECEIVE	- 1	TRANSMIT	- 1	DROP		- 1
SOLICIT				0				
SOLICII	1	Τ.		U	- 1		U	- 1
ADVERTISE		0		1			0	
REQUEST		1		0	- 1		0	
REPLY	1	0		1			0	
CONFIRM	1	0		0			0	
DECLINE	1	0		0			0	
RENEW	1	0		0			0	
REBIND	1	0		0			0	
RELEASE	1	0	1	0	1		0	1
RECONFIG	i	0	İ	0	i		0	i
INFORM	i	0	İ	0	i		0	i
RELAY FWD	i	0	i	0	i		0	i

RELAY_REP	1	0	0	0	
LEASEQUERY		0	0	0	
LEASEQUERY REP		0	0	0	
LEASEQUERY DONE		0	0	0	
LEASEOUERY DATA		0	0	0	

Duplicate IP Address Detection

The Duplicate IP Address Detection feature automatically detects any host with a duplicate IP address and blocks all MAC-IP routes that have a duplicate IP address.

This protects the network from hosts that are assigned duplicate IP addresses unintentionally or by malicious intent in an EVPN fabric. Hosts with duplicate IP address cause unnecessary churn in a network and causes traffic loss to either or both the hosts with the same IP address.

The system handles mobility of EVPN hosts by keeping track of MAC and IP addresses as they move from one host to another. If two hosts are assigned the same IP address, the IOS XR system keeps learning and re-learning MAC-IP routes from both the hosts. Each time it learns the MAC-IP route from one host, it is counted as one move since the newly learnt route supersedes the route previously learnt from the other host. This continues back and forth until the IP address is marked as duplicate based on the configured parameters.

It uses the following parameters to determine when an IP address should be marked as duplicate, and frozen or unfrozen as it moves between different hosts. The configurable parameters are:

- move-interval: The period within which a MAC or IP address has to move certain number of times between different hosts to be considered as duplicate and frozen temporarily. This number is specified in the move-count parameter.
- move-count: The number of times a MAC or IP address has to move within the interval specified for the move-interval parameter between different hosts to be considered a duplicate.
- **freeze-time**: The length of time a MAC or IP address is locked after it has been detected as a duplicate. After this period, the IP address is unlocked and it is allowed to learn again.
- **retry-count**: The number of times a MAC or IP address is unlocked after it has been detected as a duplicate before it is frozen permanently.

The system maintains a count of the number of times an IP address has been moved from one host to another host, either to another local host or to a host behind a remote Top of Rack (TOR). If an IP address moves certain number of times specified in the **move-count** parameter within the interval specified in the **move-interval** parameter is considered a duplicate IP address. All MAC-IP routes with that IP address is frozen for the time specified in the **freeze-time** parameter. A syslog notifies the user that the particular IP address is frozen. While an IP address is frozen, any new MAC-IP routes or updates to existing MAC-IP routes with the frozen IP address are ignored.

After **freeze-time** has elapsed, the corresponding MAC-IP routes are unfrozen and the value of the **move-count** is reset to zero. For any unfrozen local MAC-IP routes, an ARP probe and flush are initiated while the remote MAC-IP routes are put in the probe mode. This restarts the duplicate detection process.

The system also maintains the information about the number of times a particular IP address has been frozen and unfrozen. If an IP address is marked as duplicate after it is unfrozen **retry-count** times, it is frozen permanently until user manually unfreezes it. Use the following commands to manually unfreeze frozen MAC, IPv4 and IPv6 addresses respectively:

• clear l2route evpn mac{mac-address} | all [evi evi] frozen-flag

```
• clear l2route evpn ipv4{ipv4-address} | all [evi evi] frozen-flag
```

```
• clear l2route evpn ipv6{ipv6-address} | all [evi evi] frozen-flag
```

Configure Duplicate IP Address Detection

Perfrom these tasks to configure Duplicate IP Address Detection feature.

Configuration Example

```
/* Ipv4 Address Duplicate Detection Configuration */
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# evpn
RP/0/RSP0/CPU0:router(config-evpn) # host ipv4-address duplicate-detection
RP/0/RSP0/CPU0:router(config-evpn-host-ipv4-addr)# move-count 2
RP/0/RSP0/CPU0:router(config-evpn-host-ipv4-addr)# freeze-time 10
RP/0/RSP0/CPU0:router(config-evpn-host-ipv4-addr)# retry-count 2
RP/0/RSP0/CPU0:router(config-evpn-host-ipv4-addr)# commit
/* Ipv6 Address Duplicate Detection Configuration */
RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# evpn
RP/0/RSP0/CPU0:router(config-evpn) # host ipv6-address duplicate-detection
RP/0/RSP0/CPU0:router(config-evpn-host-ipv6-addr)# move-count 2
RP/0/RSP0/CPU0:router(config-evpn-host-ipv6-addr)# freeze-time 10
RP/0/RSP0/CPU0:router(config-evpn-host-ipv6-addr)# retry-count 2
RP/0/RSP0/CPU0:router(config-evpn-host-ipv6-addr)# commit
```

Running Configuration

This section shows the running configuration to detect duplicate IP address.

```
evpn
host ipv4-address duplicate-detection
move-count 2
freeze-time 10
retry-count 2
!
evpn
host ipv6-address duplicate-detection
move-count 2
freeze-time 10
retry-count 2
!
```

Verification

The show output given in the following section display the details of the duplicate IP address detection and recovery parameters.

Related Topics

• Duplicate IP Address Detection, on page 51

Associated Commands

- evpn host ipv4-address duplicate-detection
- evpn host ipv6-address duplicate-detection
- show 12route evpn mac-ip all detail

EVPN E-Tree Using RT Constraints

The EVPN E-Tree using RT constraints feature enables you to configure BGP RT import and export policies for an attachment circuit. This feature allows you to define communication between the leaf and root nodes. The provider edge (PE) nodes can receive L2 traffic either from the attachment circuit (AC) of a bridge domain (BD) or from the remote PE node. For a given BD, L2 communication can only happen from root to leaf and leaf to root. This feature does not allow any L2 communication between the ACs of two or more leafs. This feature uses two BGP RTs for every EVI. Associate one RT with root ACs and the other with leaf ACs. For example, there are two distinct sets of RTs, one for root-rt and another for leaf-rt.

This feature provides you with the following benefits by performing filtering of unicast and multicast traffic at the ingress PE nodes:

- Achieve efficiency of the BGP MAC routes scale
- Reduce the consumption of hardware resources
- Utilize the link bandwidth efficiently

Rules for Import and Export Policies under the BGP of EVPN EVI Instances

- Root PE exports its ROOT-RT using BGP export policy. It also imports other ROOT-RT from the corresponding root PE for the same EVI. This is necessary where there is more than one root for a particular BD and EVPN EVI. For example, in a multihome active-active scenario or multihome port-active and single-active scenarios.
- Root PE imports LEAF-RT using BGP import policy for a EVPN EVI. This enables the root to be aware
 of all remote L2 MAC addresses through EVPN RT2 advertisement of leaf PE node for a given E-Tree
 EVI
- Leaf PE exports its LEAF-RT using BGP export policy to let the root to be aware of the reachability of its directly connected L2 endpoints through EVPN RT2 advertisement.

- Leaf PE imports ROOT-RT using BGP import policy. It helps the leaf to know about the L2 endpoints which are reachable through the AC of BD under EVPN EVI instance of root PE. You must not import LEAF-RT using BGP Import policy to avoid L2 Communication between two leaf PEs.
- Use split-horizon filtering to block traffic among leaf ACs on a BD for a given E-Tree EVI.

The BGP import and export policies applies to all EVPN RTs along with the RT2 advertisement.

MAC Address Learning

- L2 MAC addresses are learnt on AC of a particular BD on leaf PE as type LOCAL. The same MAC address is advertised to root PE as EVPN RT2. On the remote root PE, the MAC table replicates the entry of MAC address with the learn type as L2VPN. Also, it associates the MPLS label of its BGP peer, which advertises RT2 to root PE node.
- L2 MAC addresses are learnt on AC of a particular BD on the root as type LOCAL. The same MAC address is advertised to peer root (except for MH A/A) or leaf PE as EVPN RT2. On the remote root PE or leaf PE, the MAC table replicates the entry of MAC address with the learn type as L2VPN. Also, it associates the MPLS label of its BGP peer, which advertises RT2 to PE node.
- L2 MAC addresses are learnt on AC of a particular BD on the root as type LOCAL. The same MAC address is advertised to peer root for MH A/A as EVPN RT2. The MAC table of the peer root node synchronizes the replicated entry of MAC address with the learn type as L2VPN for same the ESI and with the same AC as the next hop. This avoids flooding and duplication of known unicast traffic.

The following scenario describes the feature topology:

CE with Multihoming Active-Active and CE with Multihoming Active-Active

Consider a topology where you connect CE-02 and CE-03 to PE-01 and PE-02. Both the CEs are in multihoming active-active mode. Connect CE-02 to PE-01 and PE-02 using AC BE-800.305. Connect CE-03 to PE-01 and PE-02 using AC BE-820.305. Connect CE-06 and CE-07 to PE-03 and PE-04. Connect CE-06 to PE-03 and PE-04 using AC BE-700.305. Connect CE-07 to PE-03 and PE-04 using AC BE-720.305. Associate the bridge domain BD-305 with other AC on the respective PEs along with EVI-305 instance. Configure the respective RT on root and leaf with its import and export RTs for EVI-305. Configure PE-01 and PE-02 as root. Configure PE-03 and PE-04 as leaf.

Configuration

Perform the following tasks on PE-01, PE-02, PE-03, and PE-04.

- Configure bridge domain
- Configure attachment circuit
- Configure EVPN EVI
- Configure bundle Ethernet
- Configure EVPN interface

Note

Use the **etree rt-leaf** command only if the leaf sites are in the EVPN all-active multihoming mode and not required for EVPN single homing mode.

Configuration Example

```
/* Configure PE-01 (as root) */
/* Configure bridge domain */
Router # configure
```

```
Router(config) # 12vpn
Router(config-12vpn) # bridge group EVPN_BD
Router(config-12vpn-bg) # bridge-domain evpn_bvi_305
Router(config-12vpn-bg-bd) # interface Bundle-Ether800.305
Router(config-12vpn-bg-bd-ac) # exit
Router (config-12vpn-bg-bd) # interface Bundle-Ether820.305
Router(config-12vpn-bg-bd-ac)# exit
Router (config-12vpn-bg-bd) # evi 305
Router (config-12vpn-bg-bd-evi) # commit
/* Configure attachment circuit */
Router# configure
Router(config) # interface Bundle-Ether800.305 12transport
Router(config-l2vpn-subif)# encapsulation dot1q 305
Router(config-12vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif)# commit
Router# configure
Router(config) # interface Bundle-Ether820.305 12transport
Router(config-l2vpn-subif) # encapsulation dot1q 305
Router(config-12vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
/* Configure EVPN EVI */
Router# configure
Router(config)# evpn
Router(config-evpn) # evi 305
Router(config-evpn-instance) # bgp
Router(config-evpn-instance-bgp)# route-target import 1001:305
Router(config-evpn-instance-bgp)# route-target export 1001:305
Router(config-evpn-instance-bgp)# route-target import 1001:5305
Router(config-evpn-instance-bgp)# exit
Router(config-evpn-instance) # control-word-disable
Router (config-evpn-instance) # advertise-mac
Router(config-evpn-instance-mac) # commit
/* Configure bundle Ethernet */
Router# configure
Router(config) # interface Bundle-Ether800
Router(config-if) # lacp system mac 00aa.aabb.2020
Router(config-if)# lacp switchover suppress-flaps 300
Router(config-if)# lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if) # commit
Router# configure
Router(config)# interface Bundle-Ether820
Router(config-if) # lacp system mac 00aa.aabb.2222
Router(config-if)# lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if) # commit
/* Configure EVPN interface */
Router(config)# evpn
Router(config-evpn)# interface Bundle-Ether800
Router(config-evpn-ac) # ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.88.88.88.88.88.88.88.00
Router(config-evpn-ac-es)# bgp route-target 0001.0000.0001
Router(config-evpn-ac-es)# commit
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether820
```

```
Router(config-evpn-ac) # ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.88.88.88.88.88.88.88.20
Router(config-evpn-ac-es) # bgp route-target 0001.0000.0020
Router(config-evpn-ac-es) # commit
/* Configure PE-02 (as root) */
/* Configure bridge domain */
Router # configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group EVPN BD
Router(config-12vpn-bg) # bridge-domain evpn bvi 305
Router(config-12vpn-bg-bd)# interface Bundle-Ether800.305
Router(config-l2vpn-bg-bd-ac)# exit
Router (config-12vpn-bg-bd) # interface Bundle-Ether820.305
Router(config-12vpn-bg-bd-ac) # exit
Router (config-12vpn-bg-bd)# evi 305
Router (config-12vpn-bg-bd-evi) # commit
/* Configure attachment circuit */
Router# configure
Router(config) # interface Bundle-Ether800.305 12transport
Router(config-12vpn-subif)# encapsulation dot1q 305
Router(config-12vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
Router# configure
Router(config) # interface Bundle-Ether820.305 12transport
Router(config-l2vpn-subif)# encapsulation dot1q 305
Router(config-l2vpn-subif)# rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
/* Configure EVPN EVI */
Router# configure
Router(config)# evpn
Router(config-evpn)# evi 305
Router(config-evpn-instance) # bgp
Router(config-evpn-instance-bgp) # route-target import 1001:305
Router(config-evpn-instance-bgp) # route-target export 1001:305
Router(config-evpn-instance-bgp)# route-target import 1001:5305
Router(config-evpn-instance-bgp) # exit
Router (config-evpn-instance) # control-word-disable
Router(config-evpn-instance) # advertise-mac
Router(config-evpn-instance-mac) # commit
/* Configure bundle Ethernet */
Router# configure
Router(config) # interface Bundle-Ether800
Router(config-if) # lacp system mac 00aa.aabb.2020
Router(config-if)# lacp switchover suppress-flaps 300
Router(config-if)# lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if) # commit
Router# configure
Router(config) # interface Bundle-Ether820
Router(config-if) # lacp system mac 00aa.aabb.2222
Router(config-if) # lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if)# commit
```

```
/* Configure EVPN interface */
Router(config)# evpn
Router(config-evpn)# interface Bundle-Ether800
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.88.88.88.88.88.88.88.00
Router(config-evpn-ac-es)# bgp route-target 0001.0000.0001
Router(config-evpn-ac-es)# commit
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether820
Router(config-evpn-ac) # ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.88.88.88.88.88.88.88.20
Router(config-evpn-ac-es) # bgp route-target 0001.0000.0020
Router(config-evpn-ac-es)# commit
/* Configure PE-03 (as leaf) */
/* Configure bridge domain */
Router # configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group EVPN_BD
Router(config-12vpn-bg) # bridge-domain evpn_bvi_305
Router(config-12vpn-bg-bd) # interface Bundle-Ether700.305
Router(config-12vpn-bg-bd-ac)# split-horizon group
Router (config-12vpn-bg-bd-ac) # exit
Router(config-12vpn-bg-bd) # interface Bundle-Ether720.305
Router(config-12vpn-bg-bd-ac)# split-horizon group
Router (config-12vpn-bg-bd-ac) # exit
Router (config-12vpn-bg-bd) # evi 305
Router (config-12vpn-bg-bd-evi) # commit
/* Configure attachment circuit */
Router# configure
Router(config) # interface Bundle-Ether700.305 12transport
Router(config-l2vpn-subif)# encapsulation dot1q 305
Router(config-12vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif)# commit
Router# configure
Router(config)# interface Bundle-Ether720.305 12transport
Router(config-l2vpn-subif)# encapsulation dot1q 305
Router(config-12vpn-subif) # rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
/* Configure EVPN EVI */
Router# configure
Router(config)# evpn
Router(config-evpn)# evi 305
Router(config-evpn-instance) # bqp
Router(config-evpn-instance-bgp)# route-target import 1001:305
Router(config-evpn-instance-bgp)# route-target export 1001:5305
Router(config-evpn-instance-bgp) # exit
Router(config-evpn-instance) # etree
Router (config-evpn-instance-etree) # rt-leaf
Router(config-evpn-instance)# exit
Router(config-evpn-instance) # control-word-disable
Router (config-evpn-instance) # advertise-mac
Router(config-evpn-instance-mac) # commit
/* Configure bundle Ethernet */
Router# configure
Router(config) # interface Bundle-Ether700
```

```
Router(config-if) # lacp system mac 00aa.aabb.1010
Router(config-if)# lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if) # commit
Router# configure
Router(config) # interface Bundle-Ether720
Router(config-if) # lacp system mac 00aa.aabb.1212
Router(config-if)# lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if)# commit
/* Configure EVPN interface */
Router(config)# evpn
Router(config-evpn) # interface Bundle-Ether700
Router(config-evpn-ac) # ethernet-segment
Router(config-evpn-ac-es) # identifier type 0 00.77.77.77.77.77.77.77.00
Router(config-evpn-ac-es) # bgp route-target 0000.0000.0001
Router(config-evpn-ac-es) # commit
Router(config) # evpn
Router(config-evpn) # interface Bundle-Ether720
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.77.77.77.77.77.77.20
Router(config-evpn-ac-es) # bgp route-target 0000.0000.0020
Router(config-evpn-ac-es) # commit
/* Configure PE-04 (as leaf) */
/* Configure bridge domain */
Router # configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group EVPN BD
Router(config-12vpn-bg) # bridge-domain evpn bvi 305
Router(config-12vpn-bg-bd)# interface Bundle-Ether700.305
Router(config-12vpn-bg-bd-ac)# split-horizon group
Router (config-12vpn-bg-bd-ac) # exit
Router(config-12vpn-bg-bd) # interface Bundle-Ether720.305
Router(config-12vpn-bg-bd-ac)# split-horizon group
Router (config-12vpn-bg-bd-ac) # exit
Router (config-12vpn-bg-bd) # evi 305
Router (config-12vpn-bg-bd-evi) # commit
/* Configure attachment circuit */
Router# configure
Router(config) # interface Bundle-Ether700.305 12transport
Router(config-12vpn-subif) # encapsulation dot1q 305
Router(config-l2vpn-subif)# rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
Router# configure
Router(config) # interface Bundle-Ether720.305 12transport
Router(config-12vpn-subif)# encapsulation dot1q 305
Router(config-l2vpn-subif)# rewrite ingress tag pop 1 symmetric
Router(config-12vpn-subif) # commit
/* Configure EVPN EVI */
Router# configure
Router(config) # evpn
Router(config-evpn) # evi 305
```

```
Router(config-evpn-instance) # bgp
Router(config-evpn-instance-bgp)# route-target import 1001:305
Router(config-evpn-instance-bgp)# route-target export 1001:5305
Router(config-evpn-instance-bgp) # exit
Router(config-evpn-instance) # etree
Router (config-evpn-instance-etree) # rt-leaf
Router(config-evpn-instance)# exit
Router (config-evpn-instance) # control-word-disable
Router(config-evpn-instance) # advertise-mac
Router(config-evpn-instance-mac) # commit
/* Configure bundle Ethernet */
Router# configure
Router(config) # interface Bundle-Ether700
Router(config-if) # lacp system mac 00aa.aabb.1010
Router(config-if) # lacp switchover suppress-flaps 300
Router(config-if) # lacp cisco enable link-order signaled
Router(config-if) # bundle wait-while 100
Router(config-if) # commit
Router# configure
Router(config)# interface Bundle-Ether720
Router(config-if) # lacp system mac 00aa.aabb.1212
Router(config-if) # lacp switchover suppress-flaps 300
Router(config-if)# lacp cisco enable link-order signaled
Router(config-if)# bundle wait-while 100
Router(config-if) # commit
/* Configure EVPN interface */
Router(config)# evpn
Router(config-evpn) # interface Bundle-Ether700
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.77.77.77.77.77.77.77.00
Router(config-evpn-ac-es)# bgp route-target 0000.0000.0001
Router(config-evpn-ac-es)# commit
Router(config)# evpn
Router(config-evpn) # interface Bundle-Ether720
Router(config-evpn-ac)# ethernet-segment
Router(config-evpn-ac-es)# identifier type 0 00.77.77.77.77.77.77.20
Router(config-evpn-ac-es)# bgp route-target 0000.0000.0020
Router(config-evpn-ac-es)# commit
```

Running Configuration

This section shows the PE-01, PE-02, PE-3, and PE-04 running configuration.

```
interface Bundle-Ether820.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
evpn
evi 305
 bgp
  route-target import 1001:305
  route-target export 1001:305
  route-target import 1001:5305
 control-word-disable
 advertise-mac
 - 1
 !
interface Bundle-Ether800
lacp system mac 00aa.aabb.2020
 lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
interface Bundle-Ether820
lacp system mac 00aa.aabb.2222
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
evpn
interface Bundle-Ether800
 ethernet-segment
  identifier type 0 00.88.88.88.88.88.88.00
  bgp route-target 0001.0000.0001
!
evpn
interface Bundle-Ether820
  ethernet-segment
  identifier type 0 00.88.88.88.88.88.88.20
  bgp route-target 0001.0000.0020
 !
!
/* PE-02 Configuration */
12vpn
bridge group EVPN_BD
 bridge-domain evpn bvi 305
   interface Bundle-Ether800.305
   interface Bundle-Ether820.305
   evi 305
   !
 interface Bundle-Ether800.305 12transport
 encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
interface Bundle-Ether820.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
```

```
evpn
evi 305
 bgp
  route-target import 1001:305
  route-target export 1001:305
  route-target import 1001:5305
 control-word-disable
 advertise-mac
 !
interface Bundle-Ether800
lacp system mac 00aa.aabb.2020
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
interface Bundle-Ether820
lacp system mac 00aa.aabb.2222
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
evpn
interface Bundle-Ether800
 ethernet-segment
  identifier type 0 00.88.88.88.88.88.88.00
  bgp route-target 0001.0000.0001
 !
evpn
interface Bundle-Ether820
  ethernet-segment
  identifier type 0 00.88.88.88.88.88.88.20
  bgp route-target 0001.0000.0020
 !
 !
/* PE-03 Configuration */
12vpn
bridge group EVPN BD
 bridge-domain evpn bvi 305
  interface Bundle-Ether700.305
   split-horizon group
  interface Bundle-Ether720.305
   split-horizon group
   !
  evi 305
  !
  1
interface Bundle-Ether700.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
interface Bundle-Ether720.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
evpn
evi 305
 bgp
```

```
route-target import 1001:305
  route-target export 1001:5305
  etree
  rt-leaf
 control-word-disable
 advertise-mac
interface Bundle-Ether700
lacp system mac 00aa.aabb.1010
 lacp switchover suppress-flaps 300
 lacp cisco enable link-order signaled
bundle wait-while 100
interface Bundle-Ether720
lacp system mac 00aa.aabb.1212
 lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
evpn
interface Bundle-Ether700
 ethernet-segment
  identifier type 0 00.77.77.77.77.77.77.00
  bgp route-target 0000.0000.0001
!
evpn
interface Bundle-Ether720
  ethernet-segment
  identifier type 0 00.77.77.77.77.77.77.20
  bgp route-target 0000.0000.0020
 1
 !
/* PE-04 Configuration */
12vpn
bridge group EVPN BD
 bridge-domain evpn bvi 305
  interface Bundle-Ether700.305
   split-horizon group
  interface Bundle-Ether720.305
   split-horizon group
   !
  evi 305
  !
interface Bundle-Ether700.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
interface Bundle-Ether720.305 12transport
encapsulation dot1q 305
rewrite ingress tag pop 1 symmetric
evpn
evi 305
```

```
route-target import 1001:305
  route-target export 1001:5305
  etree
  rt-leaf
 control-word-disable
  advertise-mac
 - 1
interface Bundle-Ether700
lacp system mac 00aa.aabb.1010
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
interface Bundle-Ether720
lacp system mac 00aa.aabb.1212
lacp switchover suppress-flaps 300
lacp cisco enable link-order signaled
bundle wait-while 100
evpn
interface Bundle-Ether700
 ethernet-segment
  identifier type 0 00.77.77.77.77.77.77.00
  bgp route-target 0000.0000.0001
!
evpn
interface Bundle-Ether720
 ethernet-segment
  identifier type 0 00.77.77.77.77.77.77.20
  bgp route-target 0000.0000.0020
 !
!
```

Verification

This section shows how the L2 MAC addresses are synchronized as LOCAL and L2VPN with multihoming active-active peers PE. Also, the root PE is aware of MAC addresses learnt on leaf PE remotely through RT2 advertisements.

	E-01# show 12ro Mac Address	_	all Next Hop(s)	
204 204 204 204 204 204 204 204	001f.0100.0001 001f.0100.0001 001f.0100.0002 001f.0100.0002 001f.0100.0003 001f.0100.0003	L2VPN LOCAL L2VPN LOCAL L2VPN	Bundle-Ether820.305, Bundle-Ether820.305, Bundle-Ether820.305, Bundle-Ether820.305, Bundle-Ether820.305, Bundle-Ether820.305, Bundle-Ether820.305,	N/A N/A N/A N/A
204 204 204 204 204	001f.0100.0004 001f.0100.0005 001f.0100.0005 0020.0100.0001 0020.0100.0002	LOCAL L2VPN L2VPN	Bundle-Ether820.305, Bundle-Ether820.305, Bundle-Ether820.305, 26791/I/ME, N/A 26791/I/ME, N/A	N/A

```
204
         0020.0100.0003 L2VPN
                                     26791/I/ME, N/A
204
         0020.0100.0004 L2VPN
                                     26791/I/ME, N/A
204
         0020.0100.0005 L2VPN
                                     26791/I/ME, N/A
204
         0021.0100.0001 L2VPN
                                     Bundle-Ether800.305, N/A
         0021.0100.0002 L2VPN
                                     Bundle-Ether800.305, N/A
204
         0021.0100.0003 LOCAL
204
                                     Bundle-Ether800.305, N/A
204
         0021.0100.0004 L2VPN
                                     Bundle-Ether800.305, N/A
204
         0021.0100.0005 LOCAL
                                     Bundle-Ether800.305, N/A
204
         0022.0100.0001 L2VPN
                                     26790/I/ME, N/A
                                     26790/I/ME, N/A
         0022.0100.0002 L2VPN
204
204
         0022.0100.0003 L2VPN
                                     26790/I/ME, N/A
204
         0022.0100.0004 L2VPN
                                     26790/I/ME, N/A
                                     26790/I/ME, N/A
2.04
         0022.0100.0005 L2VPN
Router: PE-02# show 12route evpn mac all
Topo ID Mac Address Producer Next Hop(s)
         001f.0100.0001 LOCAL
204
                                     Bundle-Ether820.305, N/A
204
         001f.0100.0001 L2VPN
                                     Bundle-Ether820.305, N/A
         001f.0100.0002 LOCAL
204
                                     Bundle-Ether820.305, N/A
204
         001f.0100.0002 L2VPN
                                     Bundle-Ether820.305, N/A
         001f.0100.0003 LOCAL
                                     Bundle-Ether820.305, N/A
204
204
         001f.0100.0003 L2VPN
                                     Bundle-Ether820.305, N/A
204
         001f.0100.0004 LOCAL
                                    Bundle-Ether820.305, N/A
204
         001f.0100.0004 L2VPN
                                     Bundle-Ether820.305, N/A
204
         001f.0100.0005 LOCAL
                                     Bundle-Ether820.305, N/A
         001f.0100.0005 L2VPN
                                     Bundle-Ether820.305, N/A
2.04
204
         0020.0100.0001 L2VPN
                                     27367/I/ME, N/A
204
         0020.0100.0002 L2VPN
                                     27367/I/ME, N/A
2.04
         0020.0100.0003 T2VPN
                                     27367/I/ME, N/A
2.04
         0020.0100.0004 L2VPN
                                     27367/I/ME, N/A
204
         0020.0100.0005 L2VPN
                                     27367/I/ME, N/A
204
         0021.0100.0001 LOCAL
                                     Bundle-Ether800.305, N/A
204
         0021.0100.0002 LOCAL
                                     Bundle-Ether800.305, N/A
2.04
         0021.0100.0003 L2VPN
                                     Bundle-Ether800.305, N/A
204
         0021.0100.0004 LOCAL
                                     Bundle-Ether800.305, N/A
         0021.0100.0005 L2VPN
                                     Bundle-Ether800.305, N/A
204
                                     27366/I/ME, N/A
         0022.0100.0001 L2VPN
204
204
         0022.0100.0002 L2VPN
                                     27366/I/ME, N/A
2.04
         0022.0100.0003 L2VPN
                                     27366/I/ME, N/A
                                     27366/I/ME, N/A
2.04
         0022.0100.0004 L2VPN
         0022.0100.0005 L2VPN
                                     27366/I/ME, N/A
```

The following output shows how the multihoming PE is aware of its local L2 MAC addresses as well as the MAC addresses learnt on the root node only. Leaf multihoming PE is not aware of any other MAC addresses learnt on other leaf PE nodes except if they are learnt on a multihoming active-active ethernet-segment on the peer leaf PE.

Router:PH	E-03# show 12ro u	ıte evpn mac	all	
Topo ID	Mac Address	Producer	Next Hop(s)	
200	0011.0100.0003	L2VPN	30579/I/ME, N/A	
200	0011.0100.0005	L2VPN	30579/I/ME, N/A	
204	001f.0100.0001	L2VPN	30588/I/ME, N/A	
204	001f.0100.0002	L2VPN	30588/I/ME, N/A	
204	001f.0100.0003	L2VPN	30588/I/ME, N/A	
204	001f.0100.0004	L2VPN	30588/I/ME, N/A	
204	001f.0100.0005	L2VPN	30588/I/ME, N/A	
204	0020.0100.0001	LOCAL	Bundle-Ether720.305,	N/A
204	0020.0100.0001	L2VPN	Bundle-Ether720.305,	N/A
204	0020.0100.0002	LOCAL	Bundle-Ether720.305,	N/A
204	0020.0100.0002	L2VPN	Bundle-Ether720.305,	N/A
204	0020.0100.0003	LOCAL	Bundle-Ether720.305,	N/A

```
204
         0020.0100.0003 L2VPN
                                    Bundle-Ether720.305, N/A
204
         0020.0100.0004 LOCAL
                                    Bundle-Ether720.305, N/A
2.04
         0020.0100.0004 L2VPN
                                    Bundle-Ether720.305, N/A
204
         0020.0100.0005 LOCAL
                                    Bundle-Ether720.305, N/A
         0020.0100.0005 L2VPN
204
                                    Bundle-Ether720.305, N/A
                                    30587/I/ME, N/A
204
         0021.0100.0001 L2VPN
                                    30587/I/ME, N/A
204
         0021.0100.0002 L2VPN
204
         0021.0100.0003 L2VPN
                                    30587/I/ME, N/A
                                    30587/I/ME, N/A
         0021.0100.0004 L2VPN
204
         0021.0100.0005 L2VPN
                                    30587/I/ME, N/A
204
204
         0022.0100.0001 LOCAL
                                    Bundle-Ether700.305, N/A
204
         0022.0100.0001 L2VPN
                                    Bundle-Ether700.305, N/A
                                    Bundle-Ether700.305, N/A
2.04
         0022.0100.0002 LOCAL
204
         0022.0100.0002 L2VPN
                                    Bundle-Ether700.305, N/A
204
         0022.0100.0003 LOCAL
                                    Bundle-Ether700.305, N/A
                                    Bundle-Ether700.305, N/A
204
         0022.0100.0003 L2VPN
204
         0022.0100.0004 LOCAL
                                    Bundle-Ether700.305, N/A
2.04
         0022.0100.0004 L2VPN
                                    Bundle-Ether700.305, N/A
204
         0022.0100.0005 LOCAL
                                    Bundle-Ether700.305, N/A
204
         0022.0100.0005 L2VPN
                                    Bundle-Ether700.305, N/A
Router: PE-04# show 12route evpn mac all
Topo ID Mac Address
                       Producer
                                  Next Hop(s)
        ______
200
         0011.0100.0003 L2VPN
                                    30545/I/ME, N/A
         0011.0100.0005 L2VPN
                                    30545/I/ME, N/A
200
                                    30550/I/ME, N/A
         001f.0100.0001 L2VPN
2.04
204
         001f.0100.0002 L2VPN
                                    30550/I/ME, N/A
204
         001f.0100.0003 L2VPN
                                    30550/I/ME, N/A
204
         001f.0100.0004 L2VPN
                                    30550/I/ME, N/A
204
         001f.0100.0005 L2VPN
                                    30550/I/ME, N/A
204
         0020.0100.0001 LOCAL
                                    Bundle-Ether720.305, N/A
204
         0020.0100.0001 L2VPN
                                    Bundle-Ether720.305, N/A
         0020.0100.0002 LOCAL
204
                                    Bundle-Ether720.305, N/A
2.04
         0020.0100.0002 L2VPN
                                    Bundle-Ether720.305, N/A
         0020.0100.0003 LOCAL
                                    Bundle-Ether720.305, N/A
204
         0020.0100.0003 L2VPN
                                    Bundle-Ether720.305, N/A
204
204
         0020.0100.0004 LOCAL
                                    Bundle-Ether720.305, N/A
204
         0020.0100.0004 L2VPN
                                    Bundle-Ether720.305, N/A
204
         0020.0100.0005 LOCAL
                                    Bundle-Ether720.305, N/A
2.04
         0020.0100.0005 L2VPN
                                    Bundle-Ether720.305, N/A
204
         0021.0100.0001 L2VPN
                                    30549/I/ME, N/A
204
         0021.0100.0002 L2VPN
                                    30549/I/ME, N/A
         0021.0100.0003 L2VPN
                                    30549/I/ME, N/A
204
         0021.0100.0004 L2VPN
                                    30549/I/ME, N/A
204
2.04
         0021.0100.0005 L2VPN
                                    30549/I/ME, N/A
2.04
         0022.0100.0001 LOCAL
                                    Bundle-Ether700.305, N/A
204
         0022.0100.0001 L2VPN
                                    Bundle-Ether700.305, N/A
         0022.0100.0002 LOCAL
                                    Bundle-Ether700.305, N/A
204
204
         0022.0100.0002 L2VPN
                                    Bundle-Ether700.305, N/A
204
         0022.0100.0003 LOCAL
                                    Bundle-Ether700.305, N/A
2.04
         0022.0100.0003 L2VPN
                                    Bundle-Ether700.305, N/A
         0022.0100.0004 LOCAL
                                    Bundle-Ether700.305, N/A
204
204
         0022.0100.0004 L2VPN
                                    Bundle-Ether700.305, N/A
204
         0022.0100.0005 LOCAL
                                    Bundle-Ether700.305, N/A
204
         0022.0100.0005 L2VPN
                                    Bundle-Ether700.305, N/A
```

Related Topics

• EVPN E-Tree Using RT Constraints, on page 53

Associated Commands

- etree rt-leaf
- show 12route evpn mac all

EVPN E-Tree Per-PE (Scenario1b)

Table 2: Feature History Table

Feature Name	Release Information	Feature Description
EVPN E-Tree Per-PE (Scenario1b)	Release 7.5.1	This feature allows you to configure an attachment circuit on a PE device either as a root site or a leaf site using the etree leaf label for a given bridge-domain. By preventing communication among leaf ACs connected to the same PE and belonging to the same bridge-domain, you can segregate traffic received and sent from different geographical locations. This segregation helps in securing traffic and Denial of Service Prevention (DoS). This feature is compliant with RFC 8317.

EVPN Ethernet Tree (E-Tree) is a rooted-multipoint Ethernet service over MPLS core and enables you to define attachment circuits (ACs) as either a root site or a leaf site. The provider edge (PE) nodes can receive L2 traffic either from the attachment circuit (AC) of a bridge domain (BD) or from the remote PE node. For a given BD, L2 communication can only happen from root to leaf and leaf to root, and root to root. L2 communication between the ACs of two or more leafs is not allowed.

You can implement E-Tree in the following two ways:

- Scenario 1 All ACs at a particular PE for a given BD can be either root or leaf site and all traffic for an EVI from a PE in the network is from either a root or a leaf. In this scenario you have two options to configure E-Tree:
 - Scenario 1a You can configure E-Tree with route-targets (RT) constraints using two RTs per EVI. For more information, see the *EVPN E-Tree Using RT Constraints* section.
 - Scenario 1b You can configure E-Tree without route-targets (RT) constraints and using **etree leaf** label.
- Scenario 2 A PE for a given EVI can have both root and leaf sites. The root and leaf designation increases from bridge-domain level in Scenario 1, to a per AC level. For more information, see the *EVPN ETREE Per-AC (Scenario 2)* section.

Scenario 1b

In this scenario, you can configure E-Tree without route-targets (RT) constraints and using **etree leaf** label.

When you configure E-Tree with Scenario 1b, for known unicast traffic, MAC advertisements originating from a leaf site is identified with an **etree leaf** label to classify that the source is a leaf. Ingress filtering is performed, and traffic originating at leaf AC destined for a remote leaf MAC is dropped. If the remote PE is

also a leaf, the ingress traffic from the source leaf is dropped. If the remote PE is a root, the ingress traffic from the source leaf is forwarded.

For BUM traffic, egress filtering is performed and leaf nodes transmit an **etree leaf** label to identify that leaf sites are connected to the PE. Then, at the ingress node, BUM traffic originating from a leaf node is tagged with the corresponding remote **etree leaf** label. At the egress PE, traffic is tagged with the matching **etree leaf** label that is dropped at leaf ACs.

Scenario 1b Behavior

- E-Tree leaf is configured per bridge domain. If there is no leaf configuration, the bridge domain is always a root.
- All ACs inherit E-Tree leaf designation from the bridge domain.
- Split-horizon group between ACs of a leaf is enabled automatically.
- All local MACs learned under the BD is advertised to BGP with **etree leaf** indicator.
- Upon first leaf configuration, a special E-Tree ethernet segment with ESI-0 is created to allocate a split-horizon label, referred to as the local etree leaf label.
- ES/EAD with ESI-0 (ES-0/EAD) is advertised to BGP with etree leaf label.

You can use scenario 1b to interact with scenario 2 when a remote node is NCS 5500, NCS 540, or NCS 560, and configure E-Tree using scenario 1b with ASR 9000.

Configure EVPN E-Tree Per-PE (Scenario1b)

Perform this task to configure EVPN E-Tree Per-PE (Scenario1b).

Configure EVPN E-Tree leaf per bridge domain.

```
Router# configure
Router(config) # 12vpn
Router(config-12vpn) # bridge group bg1
Router(config-l2vpn-bg)# bridge-domain bd_1
Router(config-12vpn-bg-bd)# etree
Router(config-12vpn-bg-bd-etree) # leaf
Router(config-12vpn-bg-bd-etree) # interface Bundle-Ether400.1
Router(config-12vpn-bg-bd-ac)# exit
Router(config-12vpn-bg-bd-etree) # interface Bundle-Ether401.1001
Router(config-12vpn-bg-bd-ac)# exit
Router(config-12vpn-bg-bd-etree) # interface Bundle-Ether4701.2001
Router(config-12vpn-bg-bd-ac)# exit
Router(config-12vpn-bg-bd-ac)# exit
Router(config-12vpn-bg-bd) # routed interface BVI1
Router(config-12vpn-bg-bd-bvi)# split-horizon group core
Router(config-12vpn-bg-bd-bvi)# exit
Router(config-12vpn-bg-bd) # evi 200
Router(config-12vpn-bg-bd-evi) # commit
```

Running Configuration

```
12vpn
bridge group bg1
bridge-domain bd_1
etree
```

```
leaf
!
interface Bundle-Ether400.1
!
interface Bundle-Ether401.1001
!
interface Bundle-Ether4701.2001
!
routed interface BVI1
split-horizon group core
!
evi 200
!
!
```

EVPN ETREE Per-AC (Scenario 2)

Table 3: Feature History Table

Feature Name	Release Information	Feature Description
EVPN E-TREE Per-AC (Scenario 2)	Release 7.5.1	This feature allows a provider edge (PE) device to have both root and leaf sites for a given EVI. This feature increases the granularity of leaf designation from the entire bridge to AC bridge ports; ACs under a bridge may be root or leaf.

Customer sites represented by ACs can be defined as root or leaf. PE can receive traffic from both root and leaf ACs for a given EVI from a remote node. An EVI can be associated with both root(s) and leaf(s). If an AC is not configured as E-Tree leaf, it is considered as root by default.

In Scenario 2, a PE for a given EVI can have both root and leaf sites. The granularity of root or leaf designation increases from bridge-domain level in Scenario 1 to a per AC level. Traffic for an EVI from a PE in the network can be from either a root or a leaf site.

Scenario 2 Behavior

For unicast traffic:

- Remote PE performs ingress filtering to prevent traffic from being sent unnecessarily over the core to be filtered at egress PE.
- PE indicates if the MAC address is associated with a root or a leaf.
- MAC advertisements originating from a leaf site are colored with a leaf-indication flag in an extended community; routes that do not have this flag are from a root site.
- Remote PEs perform ingress filtering, when MAC is programmed and the leaf-indication is present, a cross-check is performed with the originating AC; if the AC is also a leaf, packets will not be forwarded.
- Supports E-Tree extcomm of type 0x06 (EVPN) and sub-type 0x05 used for leaf-indication for known-unicast and BUM traffic.
- Enable unknown unicast suppression at EVIs connected to both root and leaf sites to prevent egress unknown unicast traffic arriving at an EVI from being flooded to ACs. This eliminates the leaf-to-leaf traffic during a BD MAC flush.

• MAC advertises local ESI and there is no leaf indicator from root.

When processing the root sync-route, the root or leaf status of the individual AC is considered, instead of the entire bridge-domain. If a root MAC with a matching local ESI is received, and if the corresponding AC is a leaf, a syslog message is generated for the misconfiguration.

For BUM traffic:

- The PE performs egress filtering for BUM traffic. BUM traffic originating from leaf sites is filtered at egress nodes if the destination is also a leaf.
- A PE with leaf sites allocate a leaf label, and communicate this label to remote PEs using an ES/EAD route with ESI 0 with the ETREE extended community.
- BUM traffic originating from single-homed leaf AC is tagged with destination **etree leaf** label.
- BUM traffic originating from single-homed root AC is not tagged with any ESI or **etree leaf** label.
- BUM traffic originating from multi-homed leaf AC is tagged with destination **etree leaf** label.
- BUM traffic originating from multi-homed root AC is tagged with ESI label.
- The ingress PE tags MPLS frames with the **etree leaf** label for traffic originating from a leaf site; this label allows the disposition PE to perform egress filtering to native EVPN ESI label filtering.
- Intra-PE forwarding between leaf sites is prevented by putting all leaf ACs under a given bridge domain in a single split-horizon group.

Restrictions

- This feature is supporteed only on physical and bundle interfaces.
- You can use either Scenario 1 or Scenario 2 for a given EVI within a network.
- Scenario 2 interoperates only with scenario 1b and vice-versa.
- You can use scenario 1b to interact with scenario 2 when a remote node is NCS 5500, NCS 540, or NCS 560, and configure E-Tree using scenario 1b with ASR 9000.