
Implementing Access Lists and Prefix Lists

An access control list (ACL) consists of one or more access control entries (ACE) that collectively define the
network traffic profile. This profile can then be referenced by Cisco IOS XR softwarefeatures such as traffic
filtering, route filtering, QoS classification, and access control. Each ACL includes an action element (permit
or deny) and a filter element based on criteria such as source address, destination address, protocol, and
protocol-specific parameters.

Prefix lists are used in route maps and route filtering operations and can be used as an alternative to access
lists in many Border Gateway Protocol (BGP) route filtering commands. A prefix is a portion of an IP address,
starting from the far left bit of the far left octet. By specifying exactly how many bits of an address belong to
a prefix, you can then use prefixes to aggregate addresses and perform some function on them, such as
redistribution (filter routing updates).

This module describes the new and revised tasks required to implement access lists and prefix lists on the
Cisco ASR 9000 Series Router

For a complete description of the access list and prefix list commands listed in this module, refer to the IP
Addresses and Services Command Reference for Cisco ASR 9000 Series Routers.

Note

Feature History for Implementing Access Lists and Prefix Lists

ModificationRelease

This feature was introduced.Release 3.7.2

IPv6 ACL over BVI interface feature was added.Release 4.2.1

ACL in Class map feature was added.Release 4.2.1

Multi-level ACL Chaining feature was added for Cisco ASR 9000 High Density 100GE
Ethernet Line Card.

Release 5.3.2

• Prerequisites for Implementing Access Lists and Prefix Lists , on page 2
• Restrictions for Implementing Access Lists and Prefix Lists, on page 2
• Restrictions for Implementing ACL-Based Forwarding, on page 3
• Hardware Limitations, on page 4
• Information About Implementing Access Lists and Prefix Lists , on page 4

Implementing Access Lists and Prefix Lists
1

• Information About Implementing ACL-based Forwarding, on page 13
• Configuring IPv4/IPv6 ACLs to Filter By Packet Length , on page 13
• ACL Counters Using SNMP, on page 14
• How to Implement Access Lists and Prefix Lists , on page 15
• How to Implement ACL-based Forwarding, on page 28
• Configuring Pure ACL-Based Forwarding for IPv6 ACL, on page 33
• ACL-Chaining, on page 34
• ACL Scale Enhancements, on page 37
• Atomic ACL Updates By Using the Disable Option, on page 43
• Configuring ACL Counters for SNMP Query, on page 45
• Configuration Examples for Implementing Access Lists and Prefix Lists , on page 47
• Atomic ACL Updates By Using the Disable Option, on page 49
• IPv6 ACL in Class Map, on page 51
• IPv4 and IPv6 ACL Over BVI, on page 54
• Configuring ABFv4/v6 over IRB/BVI interface, on page 55
• Configuring ABFv4 over IRB/BVI interface: Example, on page 58
• Configuring ABFv6 over IRB/BVI interface: Example, on page 58
• Configuring an Interface to accept Common ACL - Examples, on page 59
• Configuring ACL Counters for SNMP Query: Example, on page 60
• Additional References, on page 61

Prerequisites for Implementing Access Lists and Prefix Lists
The following prerequisite applies to implementing access lists and prefix lists:

All command task IDs are listed in individual command references and in the Cisco IOSXRTask ID Reference
Guide.If you need assistance with your task group assignment, contact your system administrator.

Restrictions for Implementing Access Lists and Prefix Lists
The following restrictions apply to implementing access lists and prefix lists:

• From Release 5.3.2 onward, on Cisco ASR 9000 High Density 100GE Ethernet Line Cards, up to 4095
unique IPv4 and Ethernet Service (ES) ACLs and up to 4095 unique IPv6 ACLs are supported.

• Layer 2/Layer 3 ACLs are not supported on Layer 2 interfaces.

• IPv4 ACLs are not supported for loopback and interflex interfaces.

• IPv4 and IPv6 ACLs are not supported on service application and service infrastructure interfaces.

• If the TCAM utilization is high and large ACLs are modified, then an error may occur. During such
instances, do the following to edit an ACL:

Implementing Access Lists and Prefix Lists
2

Implementing Access Lists and Prefix Lists
Prerequisites for Implementing Access Lists and Prefix Lists

1. Remove the ACL from the interface.

2. Reconfigure the ACL.

3. Reapply the ACL to the interface.

Use the show prm server tcam summary all acl all location and show pfilter-ea
fea summary location commands to view the TCAM utilization.

Note

• Filtering of MPLS packets through common ACL and interface ACL is not supported.

If the packet comes on an ASR 9000 Ethernet Line Card, and is labeled as part of an MPLS flow, then
the ingress ASR 9000 Ethernet Line Card cannot apply ACL. Also, for ASR 9000 Ethernet Line Cards,
if the label is popped because it is routed to an attached customer edge (CE), then the egress line card
(LC) sees a plain IP. But, it still cannot apply an egress (outbound) ACL on the IP packet. Whereas, an
ASR 9000 Enhanced Ethernet Line Card can perform an egress IP ACL on this packet before sending it
to the directly attached CE.

• Video Monitoring is not supported through ACLs on IPv6 interfaces.

• You can configure an ACL name with a maximum of 64 characters.

• You can configure an ACL name to comprise of only letters and numbers.

Restrictions for Implementing ACL-Based Forwarding
The following restrictions apply for implementing ACL-based forwarding (ABF):

• ABF is not supported for for-us packets (packets destined for the router).

• The following nexthop configurations are not supported: attaching ACL having a nexthop option in the
egress direction, modifying an ACL attached in the egress direction having nexthop, denying an ACE
with a nexthop.

• The A9K-SIP-700 LC and ASR 9000 Enhanced Ethernet LC support ABFv4 and ABFv6 in Release
4.2.0. ASR 9000 Ethernet LC does not support ABFv6 in Release 4.2.0, it only supports ABFv4.

• ABFv4 is supported on BVI interfaces for ASR 9000 Enhanced Ethernet line card. It is not supported
for ASR 9000 Ethernet line card.

Nexthop egress over A9K-SIP-700 line card, ASR 9000 Ethernet line card, or
virtual interfaces like GRE or BVI is supported when ABFv4 is configured for
a BVI interface.

Note

• ABFv6 is supported on IRB/BVI interfaces for ASR 9000 Enhanced Ethernet line card. It is not supported
for ASR 9000 Ethernet line card.

Implementing Access Lists and Prefix Lists
3

Implementing Access Lists and Prefix Lists
Restrictions for Implementing ACL-Based Forwarding

There is one exception to this. In case of IP to TAG, the label is imposed by the ingress LC (based on ABF
nexthop), and the packet crosses the fabric as a tag packet. These packets are handled by A9K-SIP-700 without
any issue.

Note

• Packets punted in the ingress direction from the NPU to the LC CPU are not subjected to ABF treatment
due to lack of ABF support in the slow path.

• IP packet(s) needing fragmentation are not subjected to ABF. The packet is forwarded in the traditional
way. Fragmented packets received are handled by ABF.

Hardware Limitations
• Support for ABF is only for IPv4 and Ethernet line cards. IPv6 and other interfaces are not supported.

• ABF is an ingress line card feature and the egress line card must be ABF aware.

Information About Implementing Access Lists and Prefix Lists
To implement access lists and prefix lists, you must understand the following concepts:

Access Lists and Prefix Lists Feature Highlights
This section lists the feature highlights for access lists and prefix lists.

• Cisco IOS XR software provides the ability to clear counters for an access list or prefix list using a
specific sequence number.

• Cisco IOS XR software provides the ability to copy the contents of an existing access list or prefix list
to another access list or prefix list.

• Cisco IOS XR software allows users to apply sequence numbers to permit or deny statements and to
resequence, add, or remove such statements from a named access list or prefix list.

Resequencing is only for IPv4 prefix lists.Note

• Cisco IOSXR software does not differentiate between standard and extended access lists. Standard access
list support is provided for backward compatibility.

• To double the TCAM scale value of the extended ACL for IPv4/IPv6 in Cisco ASR 9000 High Density
100GE Ethernet line cards, users must disable ISSU (and reload).

Implementing Access Lists and Prefix Lists
4

Implementing Access Lists and Prefix Lists
Hardware Limitations

Purpose of IP Access Lists
Access lists perform packet filtering to control which packets move through the network and where. Such
controls help to limit network traffic and restrict the access of users and devices to the network. Access lists
have many uses, and therefore many commands accept a reference to an access list in their command syntax.
Access lists can be used to do the following:

• Filter incoming packets on an interface.

• Filter outgoing packets on an interface.

• Restrict the contents of routing updates.

• Limit debug output based on an address or protocol.

• Control vty access.

• Identify or classify traffic for advanced features, such as congestion avoidance, congestion management,
and priority and custom queueing.

How an IP Access List Works
An access list is a sequential list consisting of permit and deny statements that apply to IP addresses and
possibly upper-layer IP protocols. The access list has a name by which it is referenced. Many software
commands accept an access list as part of their syntax.

An access list can be configured and named, but it is not in effect until the access list is referenced by a
command that accepts an access list. Multiple commands can reference the same access list. An access list
can control traffic arriving at the router or leaving the router, but not traffic originating at the router. Note
that, traffic such as SSH, ICMP and telnet traffic are blocked by ACL, in spite of being originated from the
router. This is because, those packets are not injected as high priority packets, and hence get subjected to ACL
processing. At the same time, BGP traffic bypasses the ACL applied on the interface, as it is a control packet
which is injected as a critical inject packet from RSP or LC. Such packets are handled in the system with high
priority and do not get dropped.

IP Access List Process and Rules
Use the following process and rules when configuring an IP access list:

• The software tests the source or destination address or the protocol of each packet being filtered against
the conditions in the access list, one condition (permit or deny statement) at a time.

• If a packet does not match an access list statement, the packet is then tested against the next statement
in the list.

• If a packet and an access list statement match, the remaining statements in the list are skipped and the
packet is permitted or denied as specified in the matched statement. The first entry that the packet matches
determines whether the software permits or denies the packet. That is, after the first match, no subsequent
entries are considered.

• If the access list denies the address or protocol, the software discards the packet and returns an Internet
ControlMessage Protocol (ICMP) Host Unreachable message. ICMP is configurable in the Cisco IOSXR
software.

Implementing Access Lists and Prefix Lists
5

Implementing Access Lists and Prefix Lists
Purpose of IP Access Lists

• If no conditions match, the software drops the packet because each access list ends with an unwritten or
implicit deny statement. That is, if the packet has not been permitted or denied by the time it was tested
against each statement, it is denied.

• The access list should contain at least one permit statement or else all packets are denied.

• Because the software stops testing conditions after the first match, the order of the conditions is critical.
The same permit or deny statements specified in a different order could result in a packet being passed
under one circumstance and denied in another circumstance.

• Only one access list per interface, per protocol, per direction is allowed.

• Inbound access lists process packets arriving at the router. Incoming packets are processed before being
routed to an outbound interface. An inbound access list is efficient because it saves the overhead of
routing lookups if the packet is to be discarded because it is denied by the filtering tests. If the packet is
permitted by the tests, it is then processed for routing. For inbound lists, permit means continue to process
the packet after receiving it on an inbound interface; deny means discard the packet.

• Outbound access lists process packets before they leave the router. Incoming packets are routed to the
outbound interface and then processed through the outbound access list. For outbound lists, permit means
send it to the output buffer; deny means discard the packet.

• An access list can not be removed if that access list is being applied by an access group in use. To remove
an access list, remove the access group that is referencing the access list and then remove the access list.

• An access list must exist before you can use the ipv4 access group command.

Helpful Hints for Creating IP Access Lists
Consider the following when creating an IP access list:

• Create the access list before applying it to an interface.

• Organize your access list so that more specific references in a network or subnet appear before more
general ones.

• To make the purpose of individual statements more easily understood at a glance, you can write a helpful
remark before or after any statement.

Source and Destination Addresses
Source address and destination addresses are two of the most typical fields in an IP packet on which to base
an access list. Specify source addresses to control packets from certain networking devices or hosts. Specify
destination addresses to control packets being sent to certain networking devices or hosts.

Wildcard Mask and Implicit Wildcard Mask
Address filtering uses wildcard masking to indicate whether the software checks or ignores corresponding IP
address bits when comparing the address bits in an access-list entry to a packet being submitted to the access
list. By carefully setting wildcard masks, an administrator can select a single or several IP addresses for permit
or deny tests.

Wildcard masking for IP address bits uses the number 1 and the number 0 to specify how the software treats
the corresponding IP address bits. A wildcard mask is sometimes referred to as an inverted mask, because a
1 and 0 mean the opposite of what they mean in a subnet (network) mask.

Implementing Access Lists and Prefix Lists
6

Implementing Access Lists and Prefix Lists
Helpful Hints for Creating IP Access Lists

• A wildcard mask bit 0 means check the corresponding bit value.

• A wildcard mask bit 1 means ignore that corresponding bit value.

You do not have to supply a wildcard mask with a source or destination address in an access list statement.
If you use the host keyword, the software assumes a wildcard mask of 0.0.0.0.

From Release 5.2.2, you can supply a wildcard mask with a source or destination address in an access list
statement. The wildcard masking feature now supports IPv6 ACL with wildcard masking. This feature is
supported in ASR 9000 Enhanced Ethernet Line Card.

Unlike subnet masks, which require contiguous bits indicating network and subnet to be ones, wildcard masks
allow noncontiguous bits in the mask. For IPv6 access lists, only contiguous bits are supported.

You can also use CIDR format (/x) in place of wildcard bits. For example, the IPv4 address 1.2.3.4
0.255.255.255 corresponds to 1.2.3.4/8 and for IPv6 address 2001:db8:abcd:0012:0000:0000:0000:0000
corresponds to 2001:db8:abcd:0012::0/64.

Transport Layer Information
You can filter packets on the basis of transport layer information, such as whether the packet is a TCP, UDP,
ICMP, or IGMP packet.

IP Access List Entry Sequence Numbering
The ability to apply sequence numbers to IP access-list entries simplifies access list changes. Prior to this
feature, there was no way to specify the position of an entry within an access list. If a user wanted to insert
an entry (statement) in the middle of an existing list, all the entries after the desired position had to be removed,
then the new entry was added, and then all the removed entries had to be reentered. This method was
cumbersome and error prone.

The IP Access List Entry Sequence Numbering feature allows users to add sequence numbers to access-list
entries and resequence them. When you add a new entry, you choose the sequence number so that it is in a
desired position in the access list. If necessary, entries currently in the access list can be resequenced to create
room to insert the new entry.

Sequence Numbering Behavior
The following details the sequence numbering behavior:

• If entries with no sequence numbers are applied, the first entry is assigned a sequence number of 10, and
successive entries are incremented by 10. The maximum configurable sequence number is 2147483643
for IPv4 and IPv6 entries. For other entries, the maximum configurable sequence number is 2147483646.
If the generated sequence number exceeds this maximum number, the following message displays:

Exceeded maximum sequence number.

• If you provide an entry without a sequence number, it is assigned a sequence number that is 10 greater
than the last sequence number in that access list and is placed at the end of the list.

• ACL entries can be added without affecting traffic flow and hardware performance.

• If a new access list is entered from global configuration mode, then sequence numbers for that access
list are generated automatically.

Implementing Access Lists and Prefix Lists
7

Implementing Access Lists and Prefix Lists
Transport Layer Information

• Distributed support is provided so that the sequence numbers of entries in the route processor (RP) and
line card (LC) are synchronized at all times.

• This feature works with named standard and extended IP access lists. Because the name of an access list
can be designated as a number, numbers are acceptable.

Understanding IP Access List Logging Messages
Cisco IOS XR software can provide logging messages about packets permitted or denied by a standard IP
access list. That is, any packet that matches the access list causes an informational logging message about the
packet to be sent to the console. The level of messages logged to the console is controlled by the logging
console command in global configuration mode.

ACL logging isn’t supported for ingress MPLS packetsNote

The first packet that triggers the access list causes an immediate logging message, and subsequent packets
are collected over 5-minute intervals before they are displayed or logged.

However, you can use the { ipv4 | ipv6 } access-list log-update threshold command to set the number of
packets that, when they match an access list (and are permitted or denied), cause the system to generate a log
message. You might do this to receive log messages more frequently than at 5-minute intervals.

If you set the update-number argument to 1, a log message is sent right away, rather than caching it; every
packet that matches an access list causes a log message. A setting of 1 isn’t recommended because the volume
of log messages could overwhelm the system.

Caution

Even if you use the { ipv4 | ipv6} access-list log-update threshold command, the 5-minute timer remains
in effect, so each cache is emptied at the end of 5 minutes, regardless of the number of messages in each cache.
Regardless of when the log message is sent, the cache is flushed and the count reset to 0 for that message the
same way it’s when a threshold isn’t specified.

The logging facility might drop some logging message packets if there are too many to be handled or if more
than one logging message is handled in 1 second. This behavior prevents the router from using excessive CPU
cycles because of too many logging packets. Therefore, the logging facility shouldn’t be used as a billing tool
or as an accurate source of the number of matches to an access list.

Note

Enable Logging on ACE

This section shows you how to enable the ACE of an ACL to log informational messages when it matches
incoming packets, using the optional keyword log. The router supports this feature only for IPv4 or IPv6
ingress ACLs. The logging message includes the access list number, whether the packet was permitted or
denied, the source IP address of the packet, and the number of packets from that source permitted or denied
in the prior 5-minute interval.
Router#configure
Router(config)#ipv4 access-list test
Router(config-ipv4-acl)#10 permit udp 10.85.1.0 255.255.255.0 log

Implementing Access Lists and Prefix Lists
8

Implementing Access Lists and Prefix Lists
Understanding IP Access List Logging Messages

Router(config-ipv4-acl)#exit
Router(config)# interface FortyGigE0/0/0/22
Router(config-if)# ipv4 access-group test ingress
Router(config-if)# commit

Set log-level to informational or higher with the logging console command, so that the router displays the
ACL log-messages on the console.
Router#configure
Router(config)#logging console informational
Router(config)# commit

For more information on log-levels, see section Syslog Message Severity Levels in the Implementing System
Logging chapter of the System Monitoring Configuration Guide.

Note

The following snippet shows a sample log message:
Router: ipv4_acl_mgr[350]: %ACL-IPV4_ACL-6-IPACCESSLOGP : access-list test (10) permit udp

10.85.1.2(0) -> 10.0.0.1(0), 1 packet

Extended Access Lists with Fragment Control
In earlier releases, the non-fragmented packets and the initial fragments of a packet were processed by IP
extended access lists (if you apply this access list), but non-initial fragments were permitted, by default.
However, now, the IP Extended Access Lists with Fragment Control feature allows more granularity of control
over non-initial fragments of a packet. Using this feature, you can specify whether the system examines
non-initial IP fragments of packets when applying an IP extended access list.

As non-initial fragments contain only Layer 3 information, these access-list entries containing only Layer 3
information, can now be applied to non-initial fragments also. The fragment has all the information the system
requires to filter, so the access-list entry is applied to the fragments of a packet.

This feature adds the optional fragments keyword to the following IP access list commands: deny (IPv4),
permit (IPv4) , deny (IPv6) , permit (IPv6). By specifying the fragments keyword in an access-list entry,
that particular access-list entry applies only to non-initial fragments of packets; the fragment is either permitted
or denied accordingly.

The behavior of access-list entries regarding the presence or absence of the fragments keyword can be
summarized as follows:

Implementing Access Lists and Prefix Lists
9

Implementing Access Lists and Prefix Lists
Extended Access Lists with Fragment Control

Then...If the Access-List Entry has...

For an access-list entry containing only Layer 3 information:

• The entry is applied to non-fragmented packets, initial fragments, and
non-initial fragments.

For an access-list entry containing Layer 3 and Layer 4 information:

• The entry is applied to non-fragmented packets and initial fragments.

• If the entry matches and is a permit statement, the packet or
fragment is permitted.

• If the entry matches and is a deny statement, the packet or fragment
is denied.

• The entry is also applied to non-initial fragments in the followingmanner.
Because non-initial fragments contain only Layer 3 information, only
the Layer 3 portion of an access-list entry can be applied. If the Layer
3 portion of the access-list entry matches, and

• If the entry is a permit statement, the non-initial fragment is
permitted.

• If the entry is a deny statement, the next access-list entry is
processed.

Note that the deny statements are handled differently for
non-initial fragments versus non-fragmented or initial
fragments.

Note

...no fragments keyword and
all of the access-list entry
information matches

The access-list entry is applied only to non-initial fragments.

The fragments keyword cannot be configured for an access-list
entry that contains any Layer 4 information.

Note

...the fragments keyword
and all of the access-list entry
information matches

You should not add the fragments keyword to every access-list entry, because the first fragment of the IP
packet is considered a non-fragment and is treated independently of the subsequent fragments. Because an
initial fragment will not match an access list permit or deny entry that contains the fragments keyword, the
packet is compared to the next access list entry until it is either permitted or denied by an access list entry that
does not contain the fragments keyword. Therefore, you may need two access list entries for every deny
entry. The first deny entry of the pair will not include the fragments keyword, and applies to the initial
fragment. The second deny entry of the pair will include the fragments keyword and applies to the subsequent
fragments. In the cases where there are multiple deny access list entries for the same host but with different
Layer 4 ports, a single deny access-list entry with the fragments keyword for that host is all that has to be
added. Thus all the fragments of a packet are handled in the same manner by the access list.

Packet fragments of IP datagrams are considered individual packets and each fragment counts individually
as a packet in access-list accounting and access-list violation counts.

Implementing Access Lists and Prefix Lists
10

Implementing Access Lists and Prefix Lists
Extended Access Lists with Fragment Control

The fragments keyword cannot solve all cases involving access lists and IP fragments.Note

Within the scope of ACL processing, Layer 3 information refers to fields located within the IPv4 header; for
example, source, destination, protocol. Layer 4 information refers to other data contained beyond the IPv4
header; for example, source and destination ports for TCP or UDP, flags for TCP, type and code for ICMP.

Note

Policy Routing
Fragmentation and the fragment control feature affect policy routing if the policy routing is based on the
match ip address command and the access list had entries that match on Layer 4 through Layer 7 information.
It is possible that noninitial fragments pass the access list and are policy routed, even if the first fragment was
not policy routed or the reverse.

By using the fragments keyword in access-list entries as described earlier, a better match between the action
taken for initial and noninitial fragments can be made and it is more likely policy routing will occur as intended.

Comments About Entries in Access Lists
You can include comments (remarks) about entries in any named IP access list using the remark access list
configuration command. The remarks make the access list easier for the network administrator to understand
and scan. Each remark line is limited to 255 characters.

The remark can go before or after a permit or deny statement. You should be consistent about where you put
the remark so it is clear which remark describes which permit or deny statement. For example, it would be
confusing to have some remarks before the associated permit or deny statements and some remarks after the
associated statements. Remarks can be sequenced.

Remember to apply the access list to an interface or terminal line after the access list is created. See
the“Applying Access Lists, on page 17” section for more information.

Access Control List Counters
In Cisco IOS XR software, ACL counters are maintained both in hardware and software. Hardware counters
are used for packet filtering applications such as when an access group is applied on an interface. Software
counters are used by all the applications mainly involving software packet processing.

Packet filtering makes use of 64-bit hardware counters per ACE. If the same access group is applied on
interfaces that are on the same line card in a given direction, the hardware counters for the ACL are shared
between two interfaces.

To display the hardware counters for a given access group, use the show access-lists ipv4 [access-list-name
hardware {ingress | egress} [interface type interface-path-id] {location node-id}] command in EXECmode.

To clear the hardware counters, use the clear access-list ipv4 access-list-name [hardware {ingress | egress}
[interface type interface-path-id] {location node-id}] command in EXEC mode.

Hardware counting is not enabled by default for IPv4 ACLs because of a small performance penalty. To
enable hardware counting, use the ipv4 access-group access-list-name {ingress | egress} [hardware-count]

Implementing Access Lists and Prefix Lists
11

Implementing Access Lists and Prefix Lists
Policy Routing

command in interface configuration mode. This command can be used as desired, and counting is enabled
only on the specified interface.

Hardware counters are enabled by default on 100Gigabit ethernet interfaces, Cisco ASR 9000 Ethernet line
cards, and Cisco ASR 9000 Enhanced Ethernet line cards.

Note

Software counters are updated for the packets processed in software, for example, exception packets punted
to the LC CPU for processing, or ACL used by routing protocols, and so on. The counters that are maintained
are an aggregate of all the software applications using that ACL. To display software-only ACL counters, use
the show access-lists ipv4 access-list-name [sequence number] command in EXEC mode.

All the above information is true for IPv6, except that hardware counting is always enabled; there is no
hardware-count option in the IPv6 access-group command-line interface (CLI).

BGP Filtering Using Prefix Lists
Prefix lists can be used as an alternative to access lists in many BGP route filtering commands. The advantages
of using prefix lists are as follows:

• Significant performance improvement in loading and route lookup of large lists.

• Incremental updates are supported.

• More user friendly CLI. The CLI for using access lists to filter BGP updates is difficult to understand
and use because it uses the packet filtering format.

• Greater flexibility.

Before using a prefix list in a command, you must set up a prefix list, and you may want to assign sequence
numbers to the entries in the prefix list.

How the System Filters Traffic by Prefix List
Filtering by prefix list involves matching the prefixes of routes with those listed in the prefix list. When there
is a match, the route is used. More specifically, whether a prefix is permitted or denied is based upon the
following rules:

• An empty prefix list permits all prefixes.

• An implicit deny is assumed if a given prefix does not match any entries of a prefix list.

• When multiple entries of a prefix list match a given prefix, the longest, most specific match is chosen.

Sequence numbers are generated automatically unless you disable this automatic generation. If you disable
the automatic generation of sequence numbers, you must specify the sequence number for each entry using
the sequence-number argument of the permit and deny commands in either IPv4 or IPv6 prefix list
configuration command. Use the no form of the permit or deny command with the sequence-number
argument to remove a prefix-list entry.

The show commands include the sequence numbers in their output.

Implementing Access Lists and Prefix Lists
12

Implementing Access Lists and Prefix Lists
BGP Filtering Using Prefix Lists

Information About Implementing ACL-based Forwarding
To implement access lists and prefix lists, you must understand the following concepts:

ACL-based Forwarding Overview
Converged networks carry voice, video and data. Users may need to route certain traffic through specific
paths instead of using the paths computed by routing protocols. This is achieved by specifying the next-hop
address in ACL configurations, so that the configured next-hop address from ACL is used for fowarding
packet towards its destination instead of routing packet-based destination address lookup. This feature of
using next-hop in ACL configurations for forwarding is called ACL Based Forwarding (ABF).

ACL-based forwarding enables you to choose service from multiple providers for broadcast TV over IP, IP
telephony, data, and so on, which provides a cafeteria-like access to the Internet. Service providers can divert
user traffic to various content providers.

The ABF feature can be configured along with object groups while defining an ACEs (Access Control Entry).

ABF-OT
To provide flexibility to the user in selecting the suitable next hop, the ABF functionality is enhanced to
interact with object-tracking (OT), which impacts:

• Tracking prefix in CEF

• Tracking the line-state protocol

• IPSLA (IP Service Level Agreement)

IPv6 ACL Based Forwarding Object Tracking
The IPv6 ACL based forwarding (ABF) object tracking feature enables ABF to decide which next hop address
to use, based on the state of the object being tracked for the next hop. IPv6 SLA echos are used to determine
reachability to the next hop address. If the primary route is unreachable, the secondary route is used to forward
traffic. IPv6 ABF object tracking is supported on ASR 9000 Enhanced Ethernet line cards only.

For information about the object command which is used to configure an object for tracking, see the System
Management Command Reference for Cisco ASR 9000 Series Routers.

IPSLA support for Object tracking
The OT-module interacts with the IPSLA-module to get reachability information. With IPSLA, the routers
perform periodic measurements

Configuring IPv4/IPv6 ACLs to Filter By Packet Length
You can configure an access control list to filter packets by the packet length at an ingress or egress interface.
Depending on whether a packet matches the packet-length condition in a permit or deny statement, the packet
is either processed or dropped respectively at the interface.

Implementing Access Lists and Prefix Lists
13

Implementing Access Lists and Prefix Lists
Information About Implementing ACL-based Forwarding

The ACL packet length match condition can be configured in simple or scaled ACLs in IPv4 or IPv6 networks.

To learn about the various packet-length options, see the Cisco ASR 9000 Series Aggregation Services Router
IP Addresses and Services Command Reference.

ACLs with packet length filtering are supported in both IPv4 and IPv6 networks only on Cisco ASR 9000
High Density 100GE Ethernet line cards. The following limitations must be noted:

• When an ACL is applied to a BVI interface on a chassis that contains other line cards in addition to the
Cisco ASR 9000 High Density 100GE Ethernet line card, the ACL configuration cannot be committed.

• When an ACL is applied to a link bundle that includes a port from a Cisco ASR 9000 High Density
100GE Ethernet line card and a different line card, then the ACL configuration cannot be committed.

Note

ACL Counters Using SNMP
Apart from viewing the access control list counters using commands, you can also get the ACL counter
information using SNMP. When the router receives an SNMP request for ACE counters, the router responds
by sending the packet count that matches each access control entry along with the byte count to the SNMP
server.

You can use the counter counter-name command to aggregate several ACEs into a single counter.

The following features are supported when you retrieve ACL counters using SNMP:

• Hardware counters for interface ACLs applied with the interface-statistics command.

• Hardware ACL statistics on GigabitEthernet, TenGigabitEthernet, HundredGigabitEthernet, Bundle
Ethernet interfaces, and subinterfaces.

• ACE label counter statistics.

The following features are not supported when you retrieve ACL counters using SNMP:

• Software counters.

• Counter names cannot be configured on ABF ACLs.

• Common ACLs. If an interface has both common ACL and interface ACL, statistics pertaining to ACEs
from the common ACL are not returned.

• Hardware statistics for subscriber interfaces.

• Hardware statistics for ACEs with the same counter name.

Only Cisco ASR 9000 Enhanced Ethernet Line Cards support this feature. We recommend that you do not
enable more than 50 unique counters in an ACL.

Implementing Access Lists and Prefix Lists
14

Implementing Access Lists and Prefix Lists
ACL Counters Using SNMP

How to Implement Access Lists and Prefix Lists
IPv6 ACL support is available on the Cisco ASR 9000 SIP 700 linecard and the ASR 9000 Ethernet linecards.
The relevant scale is:

• ACL enabled interfaces - 1000 (500 in each direction); for ASR 9000 Ethernet linecards- 4000

• Unique ACLs - 512 (with 5 ACEs each); for ASR 9000 Ethernet linecards- 2000

• Maximum ACEs per ACL - 8000 (for ASR 9000 Ethernet lincards, ACEs could be 16000, 8000, 4000-
based on the LC model)

• IPv6 ACL log will also be supported.

This section contains the following procedures:

Configuring Extended Access Lists
This task configures an extended IPv4 or IPv6 access list.

SUMMARY STEPS

1. configure
2. {ipv4 | ipv6} access-list name

3. [sequence-number] remark remark

4. Do one of the following:

• [sequence-number]{permit | deny} source source-wildcard destination destination-wildcard
[precedence precedence] [dscp dscp] [fragments] [log | log-input]

• [sequence-number] {permit | deny} protocol {source-ipv6-prefix/prefix-length | any | host
source-ipv6-address} [operator {port | protocol-port}] {destination-ipv6-prefix/prefix-length | any
| host destination-ipv6-address} [operator {port | protocol-port}] [dscp value] [routing] [authen]
[destopts] [fragments] [log | log-input]

5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no
sequence-number command to delete an entry.

6. commit
7. show access-lists {ipv4 | ipv6} [access-list-name hardware {ingress | egress} [interface type

interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name
[sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters either IPv4 or IPv6 access list configuration mode
and configures the named access list.

{ipv4 | ipv6} access-list name

Example:

Step 2

Implementing Access Lists and Prefix Lists
15

Implementing Access Lists and Prefix Lists
How to Implement Access Lists and Prefix Lists

PurposeCommand or Action

RP/0/RSP0/CPU0:router(config)# ipv4 access-list
acl_1

or

RP/0/RSP0/CPU0:router(config)# ipv6 access-list
acl_2

(Optional) Allows you to comment about a permit or
deny statement in a named access list.

[sequence-number] remark remark

Example:

Step 3

• The remark can be up to 255 characters; anything
longer is truncated.RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 remark

Do not allow user1 to telnet out
• Remarks can be configured before or after permit or

deny statements, but their location should be
consistent.

Specifies one or more conditions allowed or denied in IPv4
access list acl_1.

Do one of the following:Step 4

• [sequence-number]{permit | deny} source
source-wildcard destination destination-wildcard • The optional log keyword causes an information

logging message about the packet that matches the
entry to be sent to the console.

[precedence precedence] [dscp dscp] [fragments]
[log | log-input]

• [sequence-number] {permit | deny} protocol
{source-ipv6-prefix/prefix-length | any | host

• The optional log-input keyword provides the same
function as the log keyword, except that the logging
message also includes the input interface.source-ipv6-address} [operator {port | protocol-port}]

{destination-ipv6-prefix/prefix-length | any | host
destination-ipv6-address} [operator {port | or
protocol-port}] [dscp value] [routing] [authen]
[destopts] [fragments] [log | log-input] Specifies one or more conditions allowed or denied in IPv6

access list acl_2.
Example:

• Refer to the deny (IPv6) and permit (IPv6)
commands for more information on filtering IPv6RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit

172.16.0.0 0.0.255.255 traffic based on based on IPv6 option headers and
optional, upper-layer protocol type information.RP/0/RSP0/CPU0:router(config-ipv4-acl)# 20 deny

192.168.34.0 0.0.0.255

or Every IPv6 address list has two implicit
permits used for neighbor advertisement and
solicitation: Implicit Neighbor
Discovery–Neighbor Advertisement (NDNA)
permit, and Implicit Neighbor
Discovery–Neighbor Solicitation (NDNS)
permit.

Note

RP/0/RSP0/CPU0:router(config-ipv6-acl)# 20 permit
icmp any any
RP/0/RSP0/CPU0:router(config-ipv6-acl)# 30 deny
tcp any any gt 5000

Every IPv6 access list has an implicit deny
ipv6 any any statement as its last match
condition. An IPv6 access list must contain at
least one entry for the implicit deny ipv6 any
any statement to take effect.

Note

Implementing Access Lists and Prefix Lists
16

Implementing Access Lists and Prefix Lists
Configuring Extended Access Lists

PurposeCommand or Action

Allows you to revise an access list.Repeat Step 4 as necessary, adding statements by sequence
number where you planned. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

(Optional) Displays the contents of current IPv4 or IPv6
access lists.

show access-lists {ipv4 | ipv6} [access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 7

{sequence number | location node-id} | summary • Use the access-list-name argument to display the
contents of a specific access list.[access-list-name] | access-list-name [sequence-number] |

maximum [detail] [usage {pfilter location node-id}]]

Example: • Use the hardware , ingress or egress , and location
or sequence keywords to display the access-list

RP/0/RSP0/CPU0:router# show access-lists ipv4 acl_1 hardware contents and counters for all interfaces that
use the specified access list in a given direction (ingress
or egress). The access group for an interface must be
configured using the ipv4 access-group command
for access-list hardware counters to be enabled.

• Use the summary keyword to display a summary of
all current IPv4 or IPv6 access-lists.

• Use the interface keyword to display interface
statistics.

What to do next

After creating an access list, you must apply it to a line or interface. See the Applying Access Lists, on page
17 section for information about how to apply an access list.

ACL commit fails while adding and removing unique Access List Entries (ACE). This happens due to the
absence of an assigned manager process. The user has to exit the config-ipv4-acl mode to configuration mode
and re-enter the config-ipv4-acl mode before adding the first ACE.

Applying Access Lists
After you create an access list, you must reference the access list to make it work. Access lists can be applied
on either outbound or inbound interfaces. This section describes guidelines on how to accomplish this task
for both terminal lines and network interfaces.

Set identical restrictions on all the virtual terminal lines, because a user can attempt to connect to any of them.

For inbound access lists, after receiving a packet, Cisco IOS XR software checks the source address of the
packet against the access list. If the access list permits the address, the software continues to process the
packet. If the access list rejects the address, the software discards the packet and returns an ICMP host
unreachable message. The ICMP message is configurable.

For outbound access lists, after receiving and routing a packet to a controlled interface, the software checks
the source address of the packet against the access list. If the access list permits the address, the software sends
the packet. If the access list rejects the address, the software discards the packet and returns an ICMP host
unreachable message.

Implementing Access Lists and Prefix Lists
17

Implementing Access Lists and Prefix Lists
Applying Access Lists

When you apply an access list that has not yet been defined to an interface, the software acts as if the access
list has not been applied to the interface and accepts all packets. Note this behavior if you use undefined access
lists as a means of security in your network.

Controlling Access to an Interface
This task applies an access list to an interface to restrict access to that interface.

Access lists can be applied on either outbound or inbound interfaces.

SUMMARY STEPS

1. configure
2. interface type interface-path-id

3. Do one of the following:

• ipv4 access-group access-list-name {ingress | egress} [hardware-count] [interface-statistics]
• ipv6 access-group access-list-name {ingress | egress} [interface-statistics]

4. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Configures an interface and enters interface configuration
mode.

interface type interface-path-id

Example:

Step 2

• The type argument specifies an interface type. For
more information on interface types, use the question
mark (?) online help function.

RP/0/RSP0/CPU0:router(config)# interface
GigabitEthernet 0/2/0/2

• The instance argument specifies either a physical
interface instance or a virtual instance.

• The naming notation for a physical interface
instance is rack/slot/module/port. The slash (/)
between values is required as part of the notation.

• The number range for a virtual interface instance
varies depending on the interface type.

Controls access to an interface.Do one of the following:Step 3

• ipv4 access-group access-list-name {ingress |
egress} [hardware-count] [interface-statistics]

• Use the access-list-name argument to specify a
particular IPv4 or IPv6 access list.

• ipv6 access-group access-list-name {ingress |
egress} [interface-statistics] • Use the in keyword to filter on inbound packets or the

out keyword to filter on outbound packets.
Example:

• Use the hardware-count keyword to enable hardware
counters for the IPv4 access group.

Implementing Access Lists and Prefix Lists
18

Implementing Access Lists and Prefix Lists
Controlling Access to an Interface

PurposeCommand or Action

RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group
• Hardware counters are automatically enabled for
IPv6 access groups.

p-in-filter in

• Use the interface-statistics keyword to specify
per-interface statistics in the hardware.

RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group
p-out-filter out

This example applies filters on packets inbound and
outbound from GigabitEthernet interface 0/2/0/2.

commitStep 4

Controlling Access to a Line
This task applies an access list to a line to control access to that line.

SUMMARY STEPS

1. configure
2. line {aux | console | default | template template-name}
3. access-class list-name{ingress | egress}
4. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Specifies either the auxiliary, console, default, or a
user-defined line template and enters line template
configuration mode.

line {aux | console | default | template template-name}

Example:

RP/0/RSP0/CPU0:router(config)# line default

Step 2

• Line templates are a collection of attributes used to
configure and manage physical terminal line
connections (the console and auxiliary ports) and vty
connections. The following templates are available in
Cisco IOS XR software:

• Aux line template—The line template that applies
to the auxiliary line.

• Console line template— The line template that
applies to the console line.

• Default line template—The default line template
that applies to a physical and virtual terminal
lines.

• User-defined line templates—User-defined line
templates that can be applied to a range of virtual
terminal lines.

Implementing Access Lists and Prefix Lists
19

Implementing Access Lists and Prefix Lists
Controlling Access to a Line

PurposeCommand or Action

Restricts incoming and outgoing connections using an IPv4
or IPv6 access list.

access-class list-name{ingress | egress}

Example:

Step 3

• In the example, outgoing connections for the default
line template are filtered using the IPv6 access list
acl_2.

RP/0/RSP0/CPU0:router(config-line)# access-class
acl_2 out

commitStep 4

Configuring Prefix Lists
This task configures an IPv4 or IPv6 prefix list.

SUMMARY STEPS

1. configure
2. {ipv4 | ipv6} prefix-list name

3. [sequence-number] remark remark

4. [sequence-number] {permit | deny} network/length [ge value] [le value] [eq value]
5. Repeat Step 4 as necessary. Use the no sequence-number command to delete an entry.
6. commit
7. Do one of the following:

• show prefix-list ipv4 [name] [sequence-number]
• show prefix-list ipv6 [name] [sequence-number] [summary]

8. clear {ipv4 | ipv6} prefix-list name [sequence-number]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters either IPv4 or IPv6 prefix list configuration mode
and configures the named prefix list.

{ipv4 | ipv6} prefix-list name

Example:

Step 2

• To create a prefix list, you must enter at least one
permit or deny clause.RP/0/RSP0/CPU0:router(config)# ipv4 prefix-list

pfx_1
• Use the no {ipv4 | ipv6} prefix-list name command
to remove all entries in a prefix list.or

RP/0/RSP0/CPU0:router(config)# ipv6 prefix-list
pfx_2

(Optional) Allows you to comment about the following
permit or deny statement in a named prefix list.

[sequence-number] remark remark

Example:

Step 3

• The remark can be up to 255 characters; anything
longer is truncated.RP/0/RSP0/CPU0:router(config-ipv4_pfx)# 10 remark

Deny all routes with a prefix of 10/8

Implementing Access Lists and Prefix Lists
20

Implementing Access Lists and Prefix Lists
Configuring Prefix Lists

PurposeCommand or Action

RP/0/RSP0/CPU0:router(config-ipv4_pfx)# 20 deny
10.0.0.0/8 le 32

• Remarks can be configured before or after permit or
deny statements, but their location should be
consistent.

Specifies one or more conditions allowed or denied in the
named prefix list.

[sequence-number] {permit | deny} network/length [ge
value] [le value] [eq value]

Step 4

Example: • This example denies all prefixes matching /24 in
128.0.0.0/8 in prefix list pfx_2.

RP/0/RSP0/CPU0:router(config-ipv6_pfx)# 20 deny
128.0.0.0/8 eq 24

Allows you to revise a prefix list.Repeat Step 4 as necessary. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

(Optional) Displays the contents of current IPv4 or IPv6
prefix lists.

Do one of the following:Step 7

• show prefix-list ipv4 [name] [sequence-number]
• Use the name argument to display the contents of a
specific prefix list.

• show prefix-list ipv6 [name] [sequence-number]
[summary]

• Use the sequence-number argument to specify the
sequence number of the prefix-list entry.

Example:

RP/0/RSP0/CPU0:router# show prefix-list ipv4 pfx_1
• Use the summary keyword to display summary
output of prefix-list contents.

or

RP/0/RSP0/CPU0:router# show prefix-list ipv6 pfx_2
summary

(Optional) Clears the hit count on an IPv4 or IPv6 prefix
list.

clear {ipv4 | ipv6} prefix-list name [sequence-number]

Example:

Step 8

The hit count is a value indicating the number
of matches to a specific prefix-list entry.

Note
RP/0/RSP0/CPU0:router# clear prefix-list ipv4 pfx_1
30

Configuring Standard Access Lists
This task configures a standard IPv4 access list.

Standard access lists use source addresses for matching operations.

SUMMARY STEPS

1. configure
2. ipv4 access-list name

3. [sequence-number] remark remark

4. [sequence-number] {permit | deny} source [source-wildcard] [log | log-input]

Implementing Access Lists and Prefix Lists
21

Implementing Access Lists and Prefix Lists
Configuring Standard Access Lists

5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no
sequence-number command to delete an entry.

6. commit
7. show access-lists [ipv4 | ipv6] [access-list-name hardware {ingress | egress} [interface type

interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name
[sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters IPv4 access list configuration mode and configures
access list acl_1.

ipv4 access-list name

Example:

Step 2

RP/0/RSP0/CPU0:router# ipv4 access-list acl_1

(Optional) Allows you to comment about the following
permit or deny statement in a named access list.

[sequence-number] remark remark

Example:

Step 3

• The remark can be up to 255 characters; anything
longer is truncated.RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 remark

Do not allow user1 to telnet out
• Remarks can be configured before or after permit or

deny statements, but their location should be
consistent.

Specifies one or more conditions allowed or denied, which
determines whether the packet is passed or dropped.

[sequence-number] {permit | deny} source
[source-wildcard] [log | log-input]

Step 4

Example: • Use the source argument to specify the number of
network or host from which the packet is being sent.

RP/0/RSP0/CPU0:router(config-ipv4-acl)# 20 permit
172.16.0.0 0.0.255.255 • Use the optional source-wildcard argument to specify

the wildcard bits to be applied to the source.
or

• The optional log keyword causes an information
logging message about the packet that matches the
entry to be sent to the console.

RRP/0/RSP0/CPU0:routerrouter(config-ipv4-acl)# 30
deny 192.168.34.0 0.0.0.255

• The optional log-input keyword provides the same
function as the log keyword, except that the logging
message also includes the input interface.

Allows you to revise an access list.Repeat Step 4 as necessary, adding statements by sequence
number where you planned. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

(Optional) Displays the contents of the named IPv4 access
list.

show access-lists [ipv4 | ipv6] [access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 7

{sequence number | location node-id} | summary

Implementing Access Lists and Prefix Lists
22

Implementing Access Lists and Prefix Lists
Configuring Standard Access Lists

PurposeCommand or Action

[access-list-name] | access-list-name [sequence-number] |
maximum [detail] [usage {pfilter location node-id}]]

• The contents of an IPv4 standard access list are
displayed in extended access-list format.

Example:

RP/0/RSP0/CPU0:router# show access-lists ipv4 acl_1

What to do next

After creating a standard access list, you must apply it to a line or interface. See the Applying Access Lists,
on page 17” section for information about how to apply an access list.

Copying Access Lists
This task copies an IPv4 or IPv6 access list.

SUMMARY STEPS

1. copy access-list {ipv4 | ipv6}source-acl destination-acl

2. show access-lists {ipv4 | ipv6}[access-list-name hardware {ingress | egress} [interface type
interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name
[sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

Creates a copy of an existing IPv4 or IPv6 access list.copy access-list {ipv4 | ipv6}source-acl destination-aclStep 1

Example: • Use the source-acl argument to specify the name of
the access list to be copied.

RP/0/RSP0/CPU0:router# copy ipv6 access-list list-1
list-2 • Use the destination-acl argument to specify where

to copy the contents of the source access list.

• The destination-acl argument must be a unique
name; if the destination-acl argument name
exists for an access list, the access list is not
copied.

(Optional) Displays the contents of a named IPv4 or IPv6
access list. For example, you can verify the output to see

show access-lists {ipv4 | ipv6}[access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 2

that the destination access list list-2 contains all the
information from the source access list list-1.

{sequence number | location node-id} | summary
[access-list-name] | access-list-name [sequence-number] |
maximum [detail] [usage {pfilter location node-id}]]

Example:

RP/0/RSP0/CPU0:router# show access-lists ipv4
list-2

Implementing Access Lists and Prefix Lists
23

Implementing Access Lists and Prefix Lists
Copying Access Lists

Sequencing Access-List Entries and Revising the Access List
This task shows how to assign sequence numbers to entries in a named access list and how to add or delete
an entry to or from an access list. It is assumed that a user wants to revise an access list. Resequencing an
access list is optional.

When an ACL is configured under an interface and its resequenced and rolled back, the interface experiences
traffic loss for a short period of time.

Note

SUMMARY STEPS

1. resequence access-list {ipv4 | ipv6} name [base [increment]]
2. configure
3. {ipv4 | ipv6} access-list name

4. Do one of the following:

• [sequence-number] {permit | deny} source source-wildcard destination destination-wildcard
[precedence precedence] [dscp dscp] [fragments] [log | log-input]

• [sequence-number] {permit | deny} protocol {source-ipv6-prefix/prefix-length | any | host
source-ipv6-address} [operator {port | protocol-port}] {destination-ipv6-prefix/prefix-length | any
| host destination-ipv6-address} [operator {port | protocol-port}] [dscp value] [routing] [authen]
[destopts] [fragments] [log | log-input]

5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no
sequence-number command to delete an entry.

6. commit
7. show access-lists [ipv4 | ipv6] [access-list-name hardware {ingress | egress} [interface type

interface-path-id] {sequence number | location node-id} | summary [access-list-name] | access-list-name
[sequence-number] | maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

(Optional) Resequences the specified IPv4 or IPv6 access
list using the starting sequence number and the increment
of sequence numbers.

resequence access-list {ipv4 | ipv6} name [base
[increment]]

Example:

Step 1

• This example resequences an IPv4 access list named
acl_3. The starting sequence number is 20 and theRP/0/RSP0/CPU0:router# resequence access-list ipv4

acl_3 20 15 increment is 15. If you do not select an increment, the
default increment 10 is used.

configureStep 2

Enters either IPv4 or IPv6 access list configuration mode
and configures the named access list.

{ipv4 | ipv6} access-list name

Example:

Step 3

RP/0/RSP0/CPU0:router(config)# ipv4 access-list
acl_1

Implementing Access Lists and Prefix Lists
24

Implementing Access Lists and Prefix Lists
Sequencing Access-List Entries and Revising the Access List

PurposeCommand or Action

or

RP/0/RSP0/CPU0:router(config)# ipv6 access-list
acl_2

Specifies one or more conditions allowed or denied in IPv4
access list acl_1.

Do one of the following:Step 4

• [sequence-number] {permit | deny} source
source-wildcard destination destination-wildcard • The optional log keyword causes an information

logging message about the packet that matches the
entry to be sent to the console.

[precedence precedence] [dscp dscp] [fragments]
[log | log-input]

• [sequence-number] {permit | deny} protocol
{source-ipv6-prefix/prefix-length | any | host

• The optional log-input keyword provides the same
function as the log keyword, except that the logging
message also includes the input interface.source-ipv6-address} [operator {port | protocol-port}]

{destination-ipv6-prefix/prefix-length | any | host
destination-ipv6-address} [operator {port | • This access list happens to use a permit statement

first, but a deny statement could appear first,
depending on the order of statements you need.

protocol-port}] [dscp value] [routing] [authen]
[destopts] [fragments] [log | log-input]

Example:
or

RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit Specifies one or more conditions allowed or denied in IPv6
access list acl_2.172.16.0.0 0.0.255.255

RP/0/RSP0/CPU0:router(config-ipv4-acl)# 20 deny
192.168.34.0 0.0.0.255 • Refer to the permit (IPv6) and deny (IPv6)

commands for more information on filtering IPv6or
traffic based on IPv6 option headers and upper-layer
protocols such as ICMP, TCP, and UDP.RP/0/RSP0/CPU0:router(config-ipv6-acl)# 20 permit

icmp any any
Every IPv6 access list has an implicit deny
ipv6 any any statement as its last match
condition. An IPv6 access list must contain at
least one entry for the implicit deny ipv6 any
any statement to take effect.

NoteRP/0/RSP0/CPU0:router(config-ipv6-acl)# 30 deny
tcp any any gt 5000

Allows you to revise the access list.Repeat Step 4 as necessary, adding statements by sequence
number where you planned. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

(Optional) Displays the contents of a named IPv4 or IPv6
access list.

show access-lists [ipv4 | ipv6] [access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 7

{sequence number | location node-id} | summary • Review the output to see that the access list includes
the updated information.[access-list-name] | access-list-name [sequence-number] |

maximum [detail] [usage {pfilter location node-id}]]

Example:

RP/0/RSP0/CPU0:router# show access-lists ipv4 acl_1

Implementing Access Lists and Prefix Lists
25

Implementing Access Lists and Prefix Lists
Sequencing Access-List Entries and Revising the Access List

What to do next

If your access list is not already applied to an interface or line or otherwise referenced, apply the access list.
See the “Applying Access Lists, on page 17” section for information about how to apply an access list.

Copying Prefix Lists
This task copies an IPv4 or IPv6 prefix list.

SUMMARY STEPS

1. copy prefix-list {ipv4 | ipv6} source-name destination-name

2. Do one of the following:

• show prefix-list ipv4 [name] [sequence-number] [summary]
• show prefix-list ipv6 [name] [sequence-number] [summary]

DETAILED STEPS

PurposeCommand or Action

Creates a copy of an existing IPv4 or IPv6 prefix list.copy prefix-list {ipv4 | ipv6} source-name
destination-name

Step 1

• Use the source-name argument to specify the name
of the prefix list to be copied and the destination-nameExample:
argument to specify where to copy the contents of the
source prefix list.RP/0/RSP0/CPU0:router# copy prefix-list ipv6 list_1

list_2
• The destination-name argument must be a unique
name; if the destination-name argument name exists
for a prefix list, the prefix list is not copied.

(Optional) Displays the contents of current IPv4 or IPv6
prefix lists.

Do one of the following:Step 2

• show prefix-list ipv4 [name] [sequence-number]
[summary] • Review the output to see that prefix list list_2 includes

the entries from list_1.• show prefix-list ipv6 [name] [sequence-number]
[summary]

Example:

RP/0/RSP0/CPU0:router# show prefix-list ipv6 list_2

Sequencing Prefix List Entries and Revising the Prefix List
This task shows how to assign sequence numbers to entries in a named prefix list and how to add or delete
an entry to or from a prefix list. It is assumed a user wants to revise a prefix list. Resequencing a prefix list
is optional.

Implementing Access Lists and Prefix Lists
26

Implementing Access Lists and Prefix Lists
Copying Prefix Lists

Before you begin

Resequencing IPv6 prefix lists is not supported.Note

SUMMARY STEPS

1. resequence prefix-list ipv4 name [base [increment]]
2. configure
3. {ipv4 | ipv6} prefix-list name

4. [sequence-number] {permit | deny} network/length [ge value] [le value] [eq value]
5. Repeat Step 4 as necessary, adding statements by sequence number where you planned. Use the no

sequence-number command to delete an entry.
6. commit
7. Do one of the following:

• show prefix-list ipv4 [name] [sequence-number]
• show prefix-list ipv6 [name] [sequence-number] [summary]

DETAILED STEPS

PurposeCommand or Action

(Optional) Resequences the named IPv4 prefix list using
the starting sequence number and the increment of sequence
numbers.

resequence prefix-list ipv4 name [base [increment]]

Example:

RP/0/RSP0/CPU0:router# resequence prefix-list ipv4
pfx_1 10 15

Step 1

• This example resequences a prefix list named pfx_1.
The starting sequence number is 10 and the increment
is 15.

configureStep 2

Enters either IPv4 or IPv6 prefix list configuration mode
and configures the named prefix list.

{ipv4 | ipv6} prefix-list name

Example:

Step 3

RP/0/RSP0/CPU0:router(config)# ipv6 prefix-list
pfx_2

Specifies one or more conditions allowed or denied in the
named prefix list.

[sequence-number] {permit | deny} network/length [ge
value] [le value] [eq value]

Example:

Step 4

RP/0/RSP0/CPU0:router(config-ipv6_pfx)# 15 deny
128.0.0.0/8 eq 24

Allows you to revise the prefix list.Repeat Step 4 as necessary, adding statements by sequence
number where you planned. Use the no sequence-number
command to delete an entry.

Step 5

commitStep 6

Implementing Access Lists and Prefix Lists
27

Implementing Access Lists and Prefix Lists
Sequencing Prefix List Entries and Revising the Prefix List

PurposeCommand or Action

(Optional) Displays the contents of current IPv4 or IPv6
prefix lists.

Do one of the following:Step 7

• show prefix-list ipv4 [name] [sequence-number]
• Review the output to see that prefix list pfx_2 includes
all new information.

• show prefix-list ipv6 [name] [sequence-number]
[summary]

Example:

RP/0/RSP0/CPU0:router# show prefix-list ipv6 pfx_2

How to Implement ACL-based Forwarding
This section contains the following procedures:

Configuring ACL-based Forwarding with Security ACL
Perform this task to configure ACL-based forwarding with security ACL.

SUMMARY STEPS

1. configure
2. ipv4 access-list name

3. [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence
precedence] [[default] nexthop1 [ipv4 ipv4-address1] nexthop2[ipv4 ipv4-address2] nexthop3[ipv4
ipv4-address3]] [dscp dscp] [fragments] [log | log-input] [[track track-name] [ttl ttl [value1 ... value2]]

4. commit
5. show access-list ipv4 [[access-list-name hardware {ingress | egress} [interface type interface-path-id]

{sequence number | location node-id} | summary [access-list-name] | access-list-name [sequence-number]
| maximum [detail] [usage {pfilter location node-id}]]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters IPv4 access list configuration mode and configures
the specified access list.

ipv4 access-list name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# ipv4 access-list
security-abf-acl

Sets the conditions for an IPv4 access list. The configuration
example shows how to configure ACL-based forwarding
with security ACL.

[sequence-number] permit protocol source
source-wildcard destination destination-wildcard
[precedence precedence] [[default] nexthop1 [ipv4

Step 3

ipv4-address1] nexthop2[ipv4 ipv4-address2]

Implementing Access Lists and Prefix Lists
28

Implementing Access Lists and Prefix Lists
How to Implement ACL-based Forwarding

PurposeCommand or Action

nexthop3[ipv4 ipv4-address3]] [dscp dscp] [fragments]
[log | log-input] [[track track-name] [ttl ttl [value1 ...
value2]]

• The nexthop1, nexthop2, nexthop3 keywords
forward the specified next hop for this entry. You can
configure a mximum of 3 nexthops per ACEs.

Example: • Enable object-tracking for each next-hop in the ACE
to decide which next hop address to use, based on the
state of the object being tracked for the next hop.RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit

ipv4 10.0.0.0 0.255.255.255 any nexthop 50.1.1.2
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 15 permit • If the default keyword is configured, ACL-based

forwarding action is taken only if the results of theipv4 30.2.1.0 0.0.0.255 any
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 20 permit

PLU lookup for the destination of the packetsipv4 30.2.0.0 0.0.255.255 any nexthop 40.1.1.2
determine a default route; that is, no specified route is
determined to the destination of the packet.

RP/0/RSP0/CPU0:router(config-ipv4-acl)# 25 permit
ipv4 any any

commitStep 4

Displays the information for ACL software.show access-list ipv4 [[access-list-name hardware
{ingress | egress} [interface type interface-path-id]

Step 5

{sequence number | location node-id} | summary
[access-list-name] | access-list-name [sequence-number] |
maximum [detail] [usage {pfilter location node-id}]]

Example:

RP/0/RSP0/CPU0:router# show access-lists ipv4
security-abf-acl

Implementing IPSLA-OT
In this section, the following procedures are discussed:

• Enabling track mode, on page 30

• Configuring track type, on page 30

• Configuring tracking type (line protocol), on page 30

• Configuring track type (list), on page 31

• Configuring tracking type (route), on page 32

• Configuring tracking type (rtr), on page 32

When a large number of IPSLA instances need to be configured, it's more convenient to create a configuration
file with all the configurations and then load the configuration file. The configuration statements in the
configuration file should be properly indented including the exit statements, otherwise the configuration won't
work when loading the configuration file.

Note

Implementing Access Lists and Prefix Lists
29

Implementing Access Lists and Prefix Lists
Implementing IPSLA-OT

Enabling track mode

SUMMARY STEPS

1. configure
2. track track-name

3. commit

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RSP0/CPU0:router# configure

Enters track configuration mode.track track-name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# track t1

commitStep 3

Configuring track type
There are different mechanisms to track the availability of the next-hop device. The tracking type can be of
four types, using:

• line protocol

• list

• route

• IPSLA

Configuring tracking type (line protocol)
Line protocol is one of the object types the object tracker component can track. This object type provides an
option for tracking state change notification from an interface. Based on the interface state change notification,
it decides whether the track state should be UP or DOWN.

SUMMARY STEPS

1. configure
2. track track-name

3. type line-protocol state interface type interface-path-id

4. commit

Implementing Access Lists and Prefix Lists
30

Implementing Access Lists and Prefix Lists
Enabling track mode

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RSP0/CPU0:router# configure

Enters track configuration mode.track track-name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# track t1

Sets the interface which needs to be tracked for state change
notifications.

type line-protocol state interface type interface-path-id

Example:

Step 3

RP/0/RSP0/CPU0:router(config-track)# type
line-protocol state interface tengige 0/4/4/0

commitStep 4

Configuring track type (list)
List is a boolen object type. Boolean refers to the capability of performing a boolean AND or boolean OR
operation on combinations of different object types supported by object tracker.

SUMMARY STEPS

1. configure
2. track track-name

3. type list boolean and
4. commit

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RSP0/CPU0:router# configure

Enters track configuration mode.track track-name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# track t1

Sets the list of track objects on which boolean AND or
boolean OR operations could be performed.

type list boolean and

Example:

Step 3

RP/0/RSP0/CPU0:router(config-track)# type list
boolean and

commitStep 4

Implementing Access Lists and Prefix Lists
31

Implementing Access Lists and Prefix Lists
Configuring track type (list)

Configuring tracking type (route)
Route is a route object type. The object tracker tracks the fib notification to determine the route reachability
and the track state.

SUMMARY STEPS

1. configure
2. track track-name

3. type route reachability
4. commit

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

RP/0/RSP0/CPU0:router# configure

Enters track configuration mode.track track-name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# track t1

Sets the route on which reachability state needs to be learnt
dynamically.

type route reachability

Example:

Step 3

RP/0/RSP0/CPU0:router(config-track)# type route
reachability

commitStep 4

Configuring tracking type (rtr)
IPSLA is an ipsla object type. The object tracker tracks the return code of ipsla operation to determine the
track state changes.

SUMMARY STEPS

1. configure
2. track track-name

3. type rtr ipsla operation id reachability
4. commit

DETAILED STEPS

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 1

Implementing Access Lists and Prefix Lists
32

Implementing Access Lists and Prefix Lists
Configuring tracking type (route)

PurposeCommand or Action
RP/0/RSP0/CPU0:router# configure

Enters track configuration mode.track track-name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# track t1

Sets the ipsla operation id which needs to be tracked for
reachability.

type rtr ipsla operation id reachability

Example:

Step 3

RP/0/RSP0/CPU0:routertype rtr 100 reachability

commitStep 4

Configuring Pure ACL-Based Forwarding for IPv6 ACL
SUMMARY STEPS

1. configure
2. {ipv6 } access-list name

3. [sequence-number] permit protocol source source-wildcard destination destination-wildcard [precedence
precedence] [dscp dscp] [fragments] [log | log-input]] [ttl ttl value [value1 ... value2]][default] nexthop1
[track track-name-1] [vrf vrf-name1][ipv6 ipv6-address1] [nexthop2 [track track-name-2] [vrf
vrf-name2] [ipv6 ipv6-address2] [nexthop3 [track track-name-3] [vrf vrf-name3] [ipv6ipv6-address3
]]]

4. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters IPv6 access list configuration mode and configures
the specified access list.

{ipv6 } access-list name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# ipv6 access-list
security-abf-acl

Sets the conditions for an IPv6 access list. The configuration
example shows how to configure pure ACL-based
forwarding for ACL.

[sequence-number] permit protocol source
source-wildcard destination destination-wildcard
[precedence precedence] [dscp dscp] [fragments] [log |

Step 3

log-input]] [ttl ttl value [value1 ... value2]][default] • Forwards the specified next hop for this entry.
nexthop1 [track track-name-1] [vrf vrf-name1][ipv6
ipv6-address1] [nexthop2 [track track-name-2] [vrf • The track option specifies object tracking name for the

corresponding next hop.vrf-name2] [ipv6 ipv6-address2] [nexthop3 [track
track-name-3] [vrf vrf-name3] [ipv6ipv6-address3]]]

Example:

Implementing Access Lists and Prefix Lists
33

Implementing Access Lists and Prefix Lists
Configuring Pure ACL-Based Forwarding for IPv6 ACL

PurposeCommand or Action

RP/0/RSP0/CPU0:router(config-ipv6-acl)# 10 permit
ipv6 any any default nexthop1 vrf vrf_A ipv6 11::1
nexthop2 vrf vrf_B ipv6 nexthop3 vrf vrf_C ipv6
33::3

commitStep 4

ACL-Chaining
ACL-Chaining also known asMulti-ACL enables customers to apply two IPv4 or IPv6 (common and interface)
ACLs on an interface for packet filtering at the router. One ACL is common across multiple interfaces on the
line card. This provides Ternary Content Addressable Memory(TCAM)/HW scalability. This feature is
supported on A9K-SIP-700 Line Card and ASR 9000 Enhanced Ethernet Line Card only.

ACL-Chaining Overview
Currently, the packet filter process (pfilter_ea) supports only one ACL to be applied per direction and per
protocol on an interface. This leads to manageability issues if there are common ACL entries needed on most
interfaces. Duplicate ACEs are configured for all those interfaces, and any modification to the common ACEs
needs to be performed for all ACLs.

A typical ACL on the edge box for an ISP has two sets of ACEs:

• common ISP specific ACEs (ISP protected address block)

• customer/interface specific ACEs (Customer source address block)

The purpose of these address blocks is to deny access to ISP’s protected infrastructure networks and
anti-spoofing protection by allowing only customer source address blocks. This results in configuring unique
ACL per interface and most of the ACEs being common across all the ACLs on a box. ACL provisioning and
modification is very cumbersome. Any changes to the ACE impacts every customer interface. (This also
wastes the HW/TCAM resources as the common ACEs are being replicated in all ACLs).

The ACL chaining feature also known as Multi-ACL allows you to configure more than one ACL that can
be applied to a single interface. The goal is to separate various types of ACLs for management, and also allow
you to apply both of them on the same interface, in a defined order.

Restrictions for Common ACL
The following restrictions apply while implementing Common ACL:

• Common ACL is supported in only ingress direction and for L3 interfaces only.

• The interface-statistics option is not available for common ACLs.

• The hardware-count option is available for only IPv4 ACLs.

• Only one common IPv4 and IPv6 ACL is supported on each line card.

• The common ACL option is not available for Ethernet Service (ES) ACLs.

Implementing Access Lists and Prefix Lists
34

Implementing Access Lists and Prefix Lists
ACL-Chaining

• The IPv4 and IPv6 commonACL is limited to 200 Ternary Content AddressableMemory(TCAM) entries
for the ASR 9000 Enhanced Ethernet line card and A9K-SIP-700 line card. Although, A9K-SIP-700 line
card may support more.

• Common ACL is not supported on ASR 9000 Ethernet Line Card and ASR 9000 Enhanced Ethernet-TR
Line Card.

• You can specify only common ACL or only interface ACL or both common and interface ACL in this
command.

• The compress option is not supported for common ACLs.

• Object-groups are not supported with common ACLs.

• The interface-statistics and hardware-count options are not supported for ACLs on the A9K-SIP-700
line card.

Configuring an Interface to accept Common ACL
Perform this task to configure the interface to accept a common ACL along with the interface specific ACL:

SUMMARY STEPS

1. configure
2. interface type interface-path-id

3. { ipv4 | ipv6 } access-group { common access-list-name { [access-list-name ingress [
interface-statistics]] | ingress } |access-list-name { ingress | egress } [interface-statistics
] } [hardware-count]

4. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

This command configures an interface (in this case a
TenGigabitEThernet interface) and enters the interface
configuration mode.

interface type interface-path-id

Example:

RP/0/RSP0/CPU0:router(config)# interface TenGigE
0/2/0/1

Step 2

Configures the interface to accept a common ACL along
with the interface specific ACL.

{ ipv4 | ipv6 } access-group { common
access-list-name { [access-list-name ingress [

Step 3

interface-statistics]] | ingress } |access-list-name The interface-statistics and hardware-count
options are not supported for ACLs on the
A9K-SIP-700 line card.

Note
{ ingress | egress } [interface-statistics] } [
hardware-count]

Example:

RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group
common acl-p acl1 ingress

Implementing Access Lists and Prefix Lists
35

Implementing Access Lists and Prefix Lists
Configuring an Interface to accept Common ACL

PurposeCommand or Action

commitStep 4

Configuring an Interface to Accept Multiple ACLs on Cisco ASR 9000 High
Density 100GE Ethernet Line Cards

You can configure an interface on Cisco ASR 9000 High Density 100GE Ethernet line cards (such as
A9K-8x100G-LB-SE and A9K-8x100G-LB-TR) to accept up to five IPv4 and/or IPv6 ACLs. This feature
extends the ACL chaining from two ACLs to a maximum of five ACLs on Cisco ASR 9000 High Density
100GE Ethernet line cards only.

The following restrictions apply while configuring multiple ACLs on Cisco ASR 9000 High Density 100GE
Ethernet line cards:

•
• Multi-level ACL is supported only in the ingress direction and for L3 interfaces only.

• The multi-level ACL feature is not available for Ethernet Service (ES) ACLs.

• ACLs with obj-groups are not supported.

• Compression is not supported.

• Access List Based Forwarding (ABF) enabled rules for ACLs are not supported.

• An ACL already applied in per-ace mode cannot be applied elsewhere in interface-stats mode.

• Accessing the ACL counters using SNMP query is not supported.

Perform this task to configure an interface on Cisco ASR 9000 High Density 100GE Ethernet line cards to
accept up to five IPv4 and/or IPv6 ACLs:

SUMMARY STEPS

1. configure
2. interface type interface-path-id

3. [ipv4 | ipv6] access-group common acl-c1 common acl-c2 acl-i2 acl-i4 acl-i5 ingress
4. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

This command configures an interface (in this case a
GigabitEthernet interface) and enters the interface
configuration mode.

interface type interface-path-id

Example:

RP/0/RSP0/CPU0:router(config)# interface
GigabitEthernet 0/1/0/0

Step 2

Implementing Access Lists and Prefix Lists
36

Implementing Access Lists and Prefix Lists
Configuring an Interface to Accept Multiple ACLs on Cisco ASR 9000 High Density 100GE Ethernet Line Cards

PurposeCommand or Action

Configures the interface to accept five ACLs in the inbound
direction. There can be any combination of common and/or
interface ACLs up to a total of five ACLs. In this command:

[ipv4 | ipv6] access-group common acl-c1 common
acl-c2 acl-i2 acl-i4 acl-i5 ingress

Example:

Step 3

• "acl_c1 and "acl_c2" are common ACLs, each
preceded by the "common" keywordRP/0/RSP0/CPU0:router(config-if)# ipv4 access-group

common acl-a common acl-b acl-x acl-y acl-z
ingress • "acl_i2", "acl_i4," and "acl_i5" are interface ACLs

commitStep 4

ACL Scale Enhancements
The Access Control List (ACL) Scale enhancements feature enables you to define ACL rules as a set of several
rules (super-set of ACEs (Access Control Entry)). This is achieved with object-groups of prefixes and ports,
which are referred by ACE in the same way as single source address or destination address prefix and ports
are referred.

The ACL Scale enhancements feature is not supported on first generation ASR 9000 Ethernet Line Card.Note

ACL Scale Enhancements: Backward Compatibility
With the support of object-groups, configuring ACE in the existing way in which one ACE entry uses object
groups, while another ACE entry does not use object groups is supported.

From Release 4.3.1, object group is only supported on ASR 9000 Enhanced Ethernet Line Card.Note

ipv4 access-list acl1
10 permit tcp net-group group1 host 10.10.10.1 eq 2200
20 permit tcp 10.10.10.3/32 host 1.1.1.2 eq 2000

!

It is possible that a user configures a host or prefix in an ACE entry, where the same host or prefix is added
to an existing source group, eliminating the need to configure a separate ACE entry. However, such an
optimization is not automated. A user could intentionally configure a particular prefix in a separate ACE for
the purpose of separate counter or accounting for that prefix.

The object-groups can be configured along with ABF while defining an ACEs (Access Control Entry).

Implementing Access Lists and Prefix Lists
37

Implementing Access Lists and Prefix Lists
ACL Scale Enhancements

Configuring a Network Object-Group
Perform this task to configure a network object group and to enter the network object group configuration
mode.

SUMMARY STEPS

1. configure
2. object-group network { ipv4 | ipv6 }object-group-name

3. description description

4. host address

5. address { mask | prefix }

6. range address address

7. object-group name

8. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Configures a network object group and enters the network
object group configuration mode.

object-group network { ipv4 | ipv6 }object-group-name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# object-group network
ipv4 ipv4_type5_obj1

Describes the object group.description description

Example:

Step 3

RP/0/RSP0/CPU0:router(config-object-group-ipv4)#
description network-object-group

Configures the host IPv4 address for the object group.host address

Example:

Step 4

RP/0/RSP0/CPU0:router(config-object-group-ipv4)#
host 10.20.2.3

Configures the host address mask or prefix.address { mask | prefix }

Example:

Step 5

RP/0/RSP0/CPU0:router(config-object-group-ipv4)#
10.20.20.3 255.255.255.0

Implementing Access Lists and Prefix Lists
38

Implementing Access Lists and Prefix Lists
Configuring a Network Object-Group

PurposeCommand or Action

Configures the range of host IPv4 address for the object
group.

range address address

Example:

Step 6

RP/0/RSP0/CPU0:router(config-object-group-ipv4)#
range 10.20.20.10 10.20.20.40

Specifies the name of the nested object group.object-group name

Example:

Step 7

RP/0/RSP0/CPU0:router(config-object-group-ipv4)#
object-group

commitStep 8

Configuring a Port Object-Group
Perform this task to configure a port object group and to enter the port object group configuration mode.

SUMMARY STEPS

1. configure
2. object-group port object-group-name

3. description description

4. { eq | lt | gt }{ protocol | number }

5. range range range

6. object-group name

7. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Configures a port object group and enters the port object
group configuration mode.

object-group port object-group-name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# object-group port
ipv4_type5_obj1

Configures the description for the object group.description description

Example:

Step 3

RP/0/RSP0/CPU0:router(config-object-group-port)#

Implementing Access Lists and Prefix Lists
39

Implementing Access Lists and Prefix Lists
Configuring a Port Object-Group

PurposeCommand or Action
description port-object-group

Matches packets on ports equal to, less than, or greater than
the specified port number or protocol.

{ eq | lt | gt }{ protocol | number }

Example:

Step 4

RP/0/RSP0/CPU0:router(config-object-group-port)#
eq ftp
or
RP/0/RSP0/CPU0:router(config-object-group-port)#
eq 21

Configures the range of host ports for the object group.range range range

Example:

Step 5

RP/0/RSP0/CPU0:router(config-object-group-port)#
range 1000 2000

Specifies the name of the nested object group.object-group name

Example:

Step 6

RP/0/RSP0/CPU0:router(config-object-group-port)#
object-group port-group2

commitStep 7

Configuring ACL with Object-Groups
You must be aware of the following information that apply to object-group ACLs:

• You can configure ACLs that contain both conventional and object-group ACEs.

• You can modify the objects in an object group dynamically without redefining the object group or the
ACE that references the object group.

• You can configure an object-group ACL multiple times with a source group, or a destination group, or
both source and destination groups.

• The command show access-lists access-list-name hardware ingress detail location location

displays compressed output for source and destination IP addresses when the detail keyword is used
while attaching ACLs to interfaces.

Configuring object-group ACLs involves the following restrictions:

• Compression level 0 is the default compression mode for object-group ACLs.

• Object-group ACLs can only be configured on an interface. They cannot be used or referenced by
applications like SSH, SNMP, NTP.

Implementing Access Lists and Prefix Lists
40

Implementing Access Lists and Prefix Lists
Configuring ACL with Object-Groups

• Compression is not supported on L2 interfaces.

• To delete an object-group, you must first delete it from all ACLs.

• Compression requires only internal TCAM lookups for both compressionmode 0 and compressionmode
3.

• When object-groups ACLs are edited, it leads to a full replacement of the old ACL with the edited ACL.
Therefore, the TCAM should have enough space to support the old ACL and the edited ACL until the
edited ACL configuration is committed and the old ACL is deleted.

• Compression is supported on Cisco ASR 9000 4th Generation QSFP28 based dense 100GE line cards.
You can configure only one compression mode per protocol on a line card.

• Compression is supported only on IPv4 and IPv6 protocols.

• You cannot configure object-group ACLs along with QoS policies.

• Object-group ACLs are not supported in any policy based configuration.

Perform this task to configure ACL with object groups.

SUMMARY STEPS

1. configure
2. { ipv4 | ipv6 } access-list name

3. [sequence-number] permit protocol net-group source-net-object-group-name port-group
source-port-object-group-name net-group destination-net-object-group-name port-group
destination-port-object-group-name [precedence precedence] [[default] nexthop1 [vrf vrf-name][ipv4
ipv4-address1] nexthop2[vrf vrf-name][ipv4 ipv4-address2] nexthop3[vrf vrf-name][ipv4
ipv4-address3]] [dscp range dscp dscp] [fragments] [packet-length operator packet-length value] [log
| log-input] [[track track-name] [ttl ttl [value1 ... value2]]

4. exit
5. interface type interface-path-id

6. ipv4 access-group access-list-name {ingress | egress } compress level level [hardware-count]
[interface-statistics]

7. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Configures the specified access list, and enters IPv4 or IPv6
access list configuration mode.

{ ipv4 | ipv6 } access-list name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# ipv4 access-list
acl1

Implementing Access Lists and Prefix Lists
41

Implementing Access Lists and Prefix Lists
Configuring ACL with Object-Groups

PurposeCommand or Action

Configures ACL with object groups.[sequence-number] permit protocol net-group
source-net-object-group-name port-group

Step 3

You must configure network object groups
and port object groups before configuring
ACL. For more information about configuring
network object groups, see Configuring a
NetworkObject-Group, on page 38. For more
information about configuring port object
groups, see Configuring a Port Object-Group,
on page 39.

When a network or port object-group is part
of an ACL attached to an interface, you can
add or remove members from the
corresponding network or port object-group.

When a network or port object-group is part
of an ACL attached to an interface, adding or
removing object-groups which are part of
inherited or nested object-groups is not
supported.

A member is either an IPv4/IPv6
address/prefix or port.

Note
source-port-object-group-name net-group
destination-net-object-group-name port-group
destination-port-object-group-name [precedence
precedence] [[default] nexthop1 [vrf vrf-name][ipv4
ipv4-address1] nexthop2[vrf vrf-name][ipv4
ipv4-address2] nexthop3[vrf vrf-name][ipv4
ipv4-address3]] [dscp range dscp dscp] [fragments]
[packet-length operator packet-length value] [log |
log-input] [[track track-name] [ttl ttl [value1 ... value2]]

Example:

RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit
tcp net-group network-group-west net-group
network-group-east port-group
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 20 permit
ipv4 net-group network-group-west1 net-group
network-group-east1

Returns to global configuration mode.exit

Example:

Step 4

RP/0/RSP0/CPU0:router(config-ipv4-acl)# exit

Configures an interface and enters interface configuration
mode.

interface type interface-path-id

Example:

Step 5

• The type argument specifies an interface type. For
more information on interface types, use the question
mark (?) online help function.

RP/0/RSP0/CPU0:router(config)# interface
gigabitethernet 0/2/0/2

• The interface-path-id argument specifies either a
physical interface instance or a virtual instance.The
interface-path-id argument specifies either a physical
interface instance or a virtual instance.

Controls access to an interface. Use the compress level
keyword to specify ACL compression in the hardware.

ipv4 access-group access-list-name {ingress | egress }
compress level level [hardware-count]
[interface-statistics]

Step 6

• level 0 indicates no compression
Example:

• level 1 indicates source compression

• level 3 indicates all compression
RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group
acl1 ingress compress level 1

Implementing Access Lists and Prefix Lists
42

Implementing Access Lists and Prefix Lists
Configuring ACL with Object-Groups

PurposeCommand or Action
RP/0/RSP0/CPU0:router(config-if)# ipv4 access-group
acl1 engress compress level 3

commitStep 7

Atomic ACL Updates By Using the Disable Option
Atomic ACL updates involve the insertion, modification, or removal of Access List Entries (ACEs) on an
interface that is in operation. Such atomic updates consume up to 50% of TCAM resources. There can be an
instance where multiple modifications are required and the available resources are not sufficient. The solution
to this problem is to disable atomic ACL updates such that the old ACEs are deleted before the new ACEs
are added.

When you configure the atomic-disable statement in an ACL, any ACEmodification detaches the ACL, until
the modification is complete. In addition to this, the ACL rules are not applied during the modification process.
Hence, it is recommended to configure to either permit or deny all traffic until the modification is complete.

Note

Configuration for Disabling Atomic ACL Updates

To disable atomic updates on the hardware, by permitting all packets, use the following configuration.
RP/0/RSP0/CPU0:router# hardware access-list atomic-disable

Modifying ACLs when Atomic ACL Updates are Disabled
On disabling atomic ACL updates on the hardware, use the steps in this section to modify ACLs.

Add an ACE

Use the following steps to add an ACE.

1. Locate the ACL you want to modify.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
!
ipv4 access-list list1
10 permit ipv4 10.1.1.0/24 any
20 permit ipv4 20.1.1.0/24 any
!

2. Add the ACE to the ACL.
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 30 permit ipv4 30.1.1.0/24 any
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit

3. Verify if your ACE was added successfully.

Implementing Access Lists and Prefix Lists
43

Implementing Access Lists and Prefix Lists
Atomic ACL Updates By Using the Disable Option

RP/0/RSP0/CPU0:router(config)# do show access-lists
...
!
ipv4 access-list list1
10 permit ipv4 10.1.1.0/24 any
20 permit ipv4 20.1.1.0/24 any
30 permit ipv4 30.1.1.0/24 any
!

You have successfully added an ACE.

Delete an ACE

Use the steps in this section to delete an ACE.

1. Locate the ACL containing the ACE that you want deleted.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
!
ipv4 access-list list1
10 permit ipv4 10.1.1.0/24 any
20 permit ipv4 20.1.1.0/24 any
30 permit ipv4 30.1.1.0/24 any
!

2. Delete the ACE.
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# no 30
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit

3. Verify if the ACE has been removed from the ACL.
RP/0/RSP0/CPU0:router(config-ipv4-acl)# do show access-lists
...
ipv4 access-list list1
10 permit ipv4 10.1.1.0 0.0.0.255 any
20 permit ipv4 20.1.1.0 0.0.0.255 any

You have successfully deleted an ACE.

Replace an ACE

Use the steps in this section to replace an ACE.

1. Locate the ACL you want to modify.
RP/0/RSP0/CPU0:router(config-ipv4-acl)#do show access-lists
...
ipv4 access-list list1
10 permit ipv4 10.1.1.0 0.0.0.255 any
20 permit ipv4 20.1.1.0 0.0.0.255 any

2. Configure the new ACE to replace the existing ACE.
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit ipv4 11.1.1.0/24 any
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit

3. Verify if the ACE replacement is successful.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...

Implementing Access Lists and Prefix Lists
44

Implementing Access Lists and Prefix Lists
Modifying ACLs when Atomic ACL Updates are Disabled

ipv4 access-list list1
10 permit ipv4 11.1.1.0 0.0.0.255 any
20 permit ipv4 20.1.1.0 0.0.0.255 any

You have successfully replaced an ACE.

Delete an ACE and Add a New ACE

Use the following steps to delete an ACE and add a new ACE.

1. Locate the ACL you want to modify.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
ipv4 access-list list1
10 permit ipv4 11.1.1.0 0.0.0.255 any
20 permit ipv4 20.1.1.0 0.0.0.255 any

2. Delete the required ACE, and add the new ACE.
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# no 20
RP/0/RSP0/CPU0:router(config-ipv4-acl)# permit ipv4 12.1.1.0/24 any
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit

3. Verify if the modification is successful.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
ipv4 access-list list1
10 permit ipv4 11.1.1.0 0.0.0.255 any
20 permit ipv4 12.1.1.0 0.0.0.255 any

You have successfully deleted an ACE, and added a new ACE.

Similarly, you can combine the addition, removal, and replacement of ACEs.

Configuring ACL Counters for SNMP Query
You can configure ACL counters and access the counters using SNMP query. This section explains how to
configure ACL counters for SNMP query.

SUMMARY STEPS

1. configure
2. {ipv4 | ipv6} access-list name

3. Do one of the following:

• [sequence-number] {permit | deny} source {[source source-wildcard] | [destination
destination-wildcard]} counter counter-name

• [sequence-number] {permit | deny} protocol {[source-ipv6-prefix/prefix-length | any | host
source-ipv6-address | [destination-ipv6-prefix/prefix-length | any | host destination-ipv6-address]}
counter counter-name

4. Repeat Step 3 as necessary, adding statements by sequence number where you planned. Use the no
sequence-number command to delete an entry.

5. commit

Implementing Access Lists and Prefix Lists
45

Implementing Access Lists and Prefix Lists
Configuring ACL Counters for SNMP Query

6. show access-lists {ipv4 | ipv6} [access-list-name]

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters either IPv4 or IPv6 access list configuration mode
and configures the named access list.

{ipv4 | ipv6} access-list name

Example:

Step 2

RP/0/RSP0/CPU0:router(config)# ipv4 access-list
acl_1

or

RP/0/RSP0/CPU0:router(config)# ipv6 access-list
acl_2

Specifies one or more conditions allowed or denied in IPv4
access list acl_1 or IPv6 access list acl_2.

Do one of the following:Step 3

• [sequence-number] {permit | deny} source {[source
source-wildcard] | [destination destination-wildcard]}
counter counter-name

The counter counter-name keyword enables ACL counters
which you can access using SNMP query.

• [sequence-number] {permit | deny} protocol
{[source-ipv6-prefix/prefix-length | any | host
source-ipv6-address |
[destination-ipv6-prefix/prefix-length | any | host
destination-ipv6-address]} counter counter-name

Example:

RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit
172.16.0.0 0.0.255.255 counter counter1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 20 deny
192.168.34.0 0.0.0.255 counter counter2

or

RP/0/RSP0/CPU0:router(config-ipv6-acl)# 20 permit
icmp any any counter counter3
RP/0/RSP0/CPU0:router(config-ipv6-acl)# 30 deny
tcp any any gt 5000 counter counter4

Allows you to revise an access list.Repeat Step 3 as necessary, adding statements by sequence
number where you planned. Use the no sequence-number
command to delete an entry.

Step 4

commitStep 5

(Optional) Displays the contents of current IPv4 or IPv6
access lists.

show access-lists {ipv4 | ipv6} [access-list-name]

Example:

Step 6

RP/0/RSP0/CPU0:router# show access-lists ipv4 acl_1

Implementing Access Lists and Prefix Lists
46

Implementing Access Lists and Prefix Lists
Configuring ACL Counters for SNMP Query

Configuration Examples for Implementing Access Lists and
Prefix Lists

This section provides the following configuration examples:

Resequencing Entries in an Access List: Example
The following example shows access-list resequencing. The starting value in the resequenced access list is
10, and increment value is 20. The subsequent entries are ordered based on the increment values that users
provide, and the range is from 1 to 2147483646.

When an entry with no sequence number is entered, by default it has a sequence number of 10 more than the
last entry in the access list.
ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34
20 permit icmp any any
30 permit tcp any host 10.3.3.3
40 permit ip host 10.4.4.4 any
60 permit ip host 172.16.2.2 host 10.3.3.12
70 permit ip host 10.3.3.3 any log
80 permit tcp host 10.3.3.3 host 10.1.2.2
100 permit ip any any

configure
ipv4 access-list acl_1
end
resequence ipv4 access-list acl_1 10 20

show access-lists ipv4 acl_1

10 permit ip host 10.3.3.3 host 172.16.5.34
30 permit icmp any any
50 permit tcp any host 10.3.3.3
70 permit ip host 10.4.4.4 any
90 permit ip host 172.16.2.2 host 10.3.3.12
110 permit ip host 10.3.3.3 any log
130 permit tcp host 10.3.3.3 host 10.1.2.2
150 permit ip any any

ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34
20 permit icmp any any
30 permit tcp any host 10.3.3.3
40 permit ip host 10.4.4.4 any
60 permit ip host 172.16.2.2 host 10.3.3.12
70 permit ip host 10.3.3.3 any log
80 permit tcp host 10.3.3.3 host 10.1.2.2
100 permit ip any any

configure
ipv6 access-list acl_1
end
resequence ipv6 access-list acl_1 10 20

ipv4 access-list acl_1
10 permit ip host 10.3.3.3 host 172.16.5.34

Implementing Access Lists and Prefix Lists
47

Implementing Access Lists and Prefix Lists
Configuration Examples for Implementing Access Lists and Prefix Lists

30 permit icmp any any
50 permit tcp any host 10.3.3.3
70 permit ip host 10.4.4.4 any
90 Dynamic test permit ip any any
110 permit ip host 172.16.2.2 host 10.3.3.12
130 permit ip host 10.3.3.3 any log
150 permit tcp host 10.3.3.3 host 10.1.2.2
170 permit ip host 10.3.3.3 any
190 permit ip any any

Adding Entries with Sequence Numbers: Example
In the following example, an new entry is added to IPv4 access list acl_5.
ipv4 access-list acl_5
2 permit ipv4 host 10.4.4.2 any
5 permit ipv4 host 10.0.0.44 any
10 permit ipv4 host 10.0.0.1 any
20 permit ipv4 host 10.0.0.2 any
configure
ipv4 access-list acl_5
15 permit 10.5.5.5 0.0.0.255
end
ipv4 access-list acl_5
2 permit ipv4 host 10.4.4.2 any
5 permit ipv4 host 10.0.0.44 any
10 permit ipv4 host 10.0.0.1 any
15 permit ipv4 10.5.5.5 0.0.0.255 any
20 permit ipv4 host 10.0.0.2 any

Adding Entries Without Sequence Numbers: Example
The following example shows how an entry with no specified sequence number is added to the end of an
access list. When an entry is added without a sequence number, it is automatically given a sequence number
that puts it at the end of the access list. Because the default increment is 10, the entry will have a sequence
number 10 higher than the last entry in the existing access list.

configure
ipv4 access-list acl_10
permit 10 .1.1.1 0.0.0.255
permit 10 .2.2.2 0.0.0.255
permit 10 .3.3.3 0.0.0.255
end

ipv4 access-list acl_10
10 permit ip 10 .1.1.0 0.0.0.255 any
20 permit ip 10 .2.2.0 0.0.0.255 any
30 permit ip 10 .3.3.0 0.0.0.255 any

configure
ipv4 access-list acl_10
permit 10 .4.4.4 0.0.0.255
end

ipv4 access-list acl_10
10 permit ip 10 .1.1.0 0.0.0.255 any
20 permit ip 10 .2.2.0 0.0.0.255 any
30 permit ip 10 .3.3.0 0.0.0.255 any
40 permit ip 10 .4.4.0 0.0.0.255 any

Implementing Access Lists and Prefix Lists
48

Implementing Access Lists and Prefix Lists
Adding Entries with Sequence Numbers: Example

Atomic ACL Updates By Using the Disable Option
Atomic ACL updates involve the insertion, modification, or removal of Access List Entries (ACEs) on an
interface that is in operation. Such atomic updates consume up to 50% of TCAM resources. There can be an
instance where multiple modifications are required and the available resources are not sufficient. The solution
to this problem is to disable atomic ACL updates such that the old ACEs are deleted before the new ACEs
are added.

When you configure the atomic-disable statement in an ACL, any ACEmodification detaches the ACL, until
the modification is complete. In addition to this, the ACL rules are not applied during the modification process.
Hence, it is recommended to configure to either permit or deny all traffic until the modification is complete.

Note

Configuration for Disabling Atomic ACL Updates

To disable atomic updates on the hardware, by permitting all packets, use the following configuration.
RP/0/RSP0/CPU0:router# hardware access-list atomic-disable

Modifying ACLs when Atomic ACL Updates are Disabled
On disabling atomic ACL updates on the hardware, use the steps in this section to modify ACLs.

Add an ACE

Use the following steps to add an ACE.

1. Locate the ACL you want to modify.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
!
ipv4 access-list list1
10 permit ipv4 10.1.1.0/24 any
20 permit ipv4 20.1.1.0/24 any
!

2. Add the ACE to the ACL.
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 30 permit ipv4 30.1.1.0/24 any
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit

3. Verify if your ACE was added successfully.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
!
ipv4 access-list list1
10 permit ipv4 10.1.1.0/24 any
20 permit ipv4 20.1.1.0/24 any
30 permit ipv4 30.1.1.0/24 any
!

Implementing Access Lists and Prefix Lists
49

Implementing Access Lists and Prefix Lists
Atomic ACL Updates By Using the Disable Option

You have successfully added an ACE.

Delete an ACE

Use the steps in this section to delete an ACE.

1. Locate the ACL containing the ACE that you want deleted.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
!
ipv4 access-list list1
10 permit ipv4 10.1.1.0/24 any
20 permit ipv4 20.1.1.0/24 any
30 permit ipv4 30.1.1.0/24 any
!

2. Delete the ACE.
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# no 30
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit

3. Verify if the ACE has been removed from the ACL.
RP/0/RSP0/CPU0:router(config-ipv4-acl)# do show access-lists
...
ipv4 access-list list1
10 permit ipv4 10.1.1.0 0.0.0.255 any
20 permit ipv4 20.1.1.0 0.0.0.255 any

You have successfully deleted an ACE.

Replace an ACE

Use the steps in this section to replace an ACE.

1. Locate the ACL you want to modify.
RP/0/RSP0/CPU0:router(config-ipv4-acl)#do show access-lists
...
ipv4 access-list list1
10 permit ipv4 10.1.1.0 0.0.0.255 any
20 permit ipv4 20.1.1.0 0.0.0.255 any

2. Configure the new ACE to replace the existing ACE.
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit ipv4 11.1.1.0/24 any
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit

3. Verify if the ACE replacement is successful.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
ipv4 access-list list1
10 permit ipv4 11.1.1.0 0.0.0.255 any
20 permit ipv4 20.1.1.0 0.0.0.255 any

You have successfully replaced an ACE.

Implementing Access Lists and Prefix Lists
50

Implementing Access Lists and Prefix Lists
Modifying ACLs when Atomic ACL Updates are Disabled

Delete an ACE and Add a New ACE

Use the following steps to delete an ACE and add a new ACE.

1. Locate the ACL you want to modify.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
ipv4 access-list list1
10 permit ipv4 11.1.1.0 0.0.0.255 any
20 permit ipv4 20.1.1.0 0.0.0.255 any

2. Delete the required ACE, and add the new ACE.
RP/0/RSP0/CPU0:router(config)# ipv4 access-list list1
RP/0/RSP0/CPU0:router(config-ipv4-acl)# no 20
RP/0/RSP0/CPU0:router(config-ipv4-acl)# permit ipv4 12.1.1.0/24 any
RP/0/RSP0/CPU0:router(config-ipv4-acl)# commit

3. Verify if the modification is successful.
RP/0/RSP0/CPU0:router(config)# do show access-lists
...
ipv4 access-list list1
10 permit ipv4 11.1.1.0 0.0.0.255 any
20 permit ipv4 12.1.1.0 0.0.0.255 any

You have successfully deleted an ACE, and added a new ACE.

Similarly, you can combine the addition, removal, and replacement of ACEs.

IPv6 ACL in Class Map
In Release 4.2.1, Quality of Service (Qos) features on ASR 9000 Ethernet line card and ASR 9000 Enhanced
Ethernet line card are enhanced to support these:

• ASR 9000 Enhanced Ethernet LC:

• Support on L2 and L3 interface and sub-interface

• Support on bundle L2 and L3 interface and sub-interface

• Support for both ingress and egress directions

• ICMP code and type for IPv4/IPv6

• ASR 9000 Ethernet LC:

• Support on only L3 interface and sub-interface

• Support on L3 bundle interface and sub-interface

• Support for both ingress and egress directions

• ICMP code and type for IPv4/IPv6

• IPv6-supported match fields:

• IPv6 Source Address

• IPv6 Destination Address

Implementing Access Lists and Prefix Lists
51

Implementing Access Lists and Prefix Lists
IPv6 ACL in Class Map

• IPv6 Protocol

• Time to live (TTL) or hop limit

• Source Port

• Destination Port

• TCP Flags

• IPv6 Flags (Routing Header(RH), Authentication Header(AH) and Destination Option Header(DH))

• Class map with IPv6 ACL that also supports:

• IPv4 ACL

• Discard class

• QoS Group

• Outer CoS

• Inner CoS

• Outer VLAN (ASR 9000 Enhanced Ethernet LC only)

• Inner VLAN (ASR 9000 Enhanced Ethernet LC only)

• match-not option

• type of service (TOS) support

• Policy-map with IPv6 ACL supports:

• hierarchical class-map

Configuring IPv6 ACL QoS - An Example
This example shows how to configure IPv6 ACL QoS with IPv4 ACL and other fields :

ipv6 access-list aclv6
10 permit ipv6 1111:6666::2/64 1111:7777::2/64 authen
30 permit tcp host 1111:4444::2 eq 100 host 1111:5555::2 ttl eq 10
!

ipv4 access-list aclv4
10 permit ipv4 host 10.6.10.2 host 10.7.10.2
!

class-map match-any c.aclv6
match access-group ipv6 aclv6
match access-group ipv4 aclv4
match cos 1
end-class-map
!

policy-map p.aclv6
class c.aclv6

Implementing Access Lists and Prefix Lists
52

Implementing Access Lists and Prefix Lists
Configuring IPv6 ACL QoS - An Example

set precedence 3
!
class class-default
!
end-policy-map
!

show qos-ea km policy p.aclv6 vmr interface tenGigE 0/1/0/6.10 hw

==
B : type & id E : ether type VO : vlan outer VI : vlan inner
Q : tos/exp/group X : Reserved DC : discard class Fl : flags
F2: L2 flags F4: L4 flags SP/DP: L4 ports
T : IP TTL D : DFS class# L : leaf class#
Pl: Protocol G : QoS Grp M : V6 hdr ext. C : VMR count
--
policy name p.aclv6 and km format type 4
Total Egress TCAM entries: 5
|B F2 VO VI Q G DC T F4 Pl SP DP M IPv4/6 SA IPv4/6
DA
==
V|3019 00 0000 0000 00 00 00 00 00 00 0000 0000 80 11116666:00000000:00000000:00000000
11117777:00000000:00000000:00000000
M|0000 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF 7F 00000000:00000000:FFFFFFFF:FFFFFFFF
00000000:00000000:FFFFFFFF:FFFFFFFF
R| C=0 03080200 000000A6 F06000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000
V|3019 00 0000 0000 00 00 00 0A 01 00 0064 0000 00 11114444:00000000:00000000:00000002
11115555:00000000:00000000:00000002
M|0000 FF FFFF FFFF FF FF FF 00 FE FF 0000 FFFF FF 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
R| C=1 03080200 000000A6 F06000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000
V|3018 00 0000 0000 00 00 00 00 00 00 0000 0000 00 0A060A02 -------- -------- --------
0A070A02 -------- -------- --------
M|0000 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF 00000000 -------- -------- --------
00000000 -------- -------- --------
R| C=2 03080200 000000A6 F06000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000
V|3018 00 2000 0000 00 00 00 00 00 00 0000 0000 00 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
M|0003 FF 1FFF FFFF FF FF FF FF FF FF FFFF FFFF FF FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
R| C=3 03080200 000000A6 F06000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000
V|3018 00 0000 0000 00 00 00 00 00 00 0000 0000 00 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
M|0003 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
R| C=4 03000200 00010002 FF0000FF 0000FF00 0002FF00 00FF0000 FF000000 00000000

This example shows how to configure hierarchical policy map:

ipv6 access-list aclv6.p
10 permit ipv6 1111:1111::/8 2222:2222::/8

ipv6 access-list aclv6.c
10 permit ipv6 host 1111:1111::2 host 2222:2222::3

class-map match-any c.aclv6.c
match not access-group ipv6 aclv6.c
end-class-map
!

Implementing Access Lists and Prefix Lists
53

Implementing Access Lists and Prefix Lists
Configuring IPv6 ACL QoS - An Example

class-map match-any c.aclv6.p
match access-group ipv6 aclv6.p
end-class-map
!

policy-map child
class c.aclv6.c
set precedence 7

!

policy-map parent
class c.aclv6.p
service-policy child
set precedence 1

(config)#do show qos-ea km policy parent vmr interface tenGigE 0/1/0/6 hw

==
B : type & id E : ether type VO : vlan outer VI : vlan inner
Q : tos/exp/group X : Reserved DC : discard class Fl : flags
F2: L2 flags F4: L4 flags SP/DP: L4 ports
T : IP TTL D : DFS class# L : leaf class#
Pl: Protocol G : QoS Grp M : V6 hdr ext. C : VMR count

==
policy name parent and format type 4
Total Ingress TCAM entries: 3
|B F2 VO VI Q G DC T F4 Pl SP DP M IPv4/6 SA IPv4/6
DA
==
V|200D 00 0000 0000 00 00 00 00 00 00 0000 0000 00 11111111:00000000:00000000:00000002
22222222:00000000:00000000:00000003
M|0000 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
R| C=0 11800200 00020000 29000000 80004100 00000000 00000000 00000000 00000000
V|200D 00 0000 0000 00 00 00 00 00 00 0000 0000 00 11000000:00000000:00000000:00000000
22000000:00000000:00000000:00000000
M|0000 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF 00FFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
00FFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
R| C=1 11800200 00010000 29000000 80004700 00000000 00000000 00000000 00000000
V|200C 00 0000 0000 00 00 00 00 00 00 0000 0000 00 00000000:00000000:00000000:00000000
00000000:00000000:00000000:00000000
M|0003 FF FFFF FFFF FF FF FF FF FF FF FFFF FFFF FF FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
FFFFFFFF:FFFFFFFF:FFFFFFFF:FFFFFFFF
R| C=2 11000200 00030000 00000000 00000000 00000000 00000000 00000000 00000000

IPv4 and IPv6 ACL Over BVI
IPv4 and IPv6 ACLs are supported over BVI from Cisco ASR 9000 Second Generation Line Cards.

On the A9K-SIP-700 line cards and Cisco ASR 9000 First Generation Line Cards, ACLs on BVIs are not
supported.

Implementing Access Lists and Prefix Lists
54

Implementing Access Lists and Prefix Lists
IPv4 and IPv6 ACL Over BVI

For Cisco ASR 9000 First Generation Line Cards, ACLs can be applied on the EFP level (IPv4 L3 ACL can
be applied on an L2 interface).

Note

Configuring IPv4 ACL over BVI interface - An Example
This example shows how to configure IPv4 ACL over a BVI interface:

ipv4 access-list bvi-acl
10 permit ipv4 any any ttl eq 70
20 deny ipv4 any any ttl eq 60

Configuring ABFv4/v6 over IRB/BVI interface
Perform this task to configure ABF (access-list based forwarding) v4/v6 over Integrated Routing and
Bridging(IRB) or Bridge-Group Virtual Interface (BVI) interface:

SUMMARY STEPS

1. configure
2. ipv4 access-list access-list-name

3. [sequence-number] permit protocol source source-wildcard destination destination-wildcard nexthop1
[vrf vrf-name][ipv4 ipv4-address1] nexthop2 [vrf vrf-name] [ipv4 ipv4-address2] nexthop3 [vrf
vrf-name] [ipv4 ipv4-address3]

4. exit
5. ipv6 access-list access-list-name

6. [sequence-number] permit protocol source source-wildcard destination destination-wildcard nexthop1
[vrf vrf-name][ipv6 ipv6-address1] nexthop2 [vrf vrf-name] [ipv6 ipv6-address2] nexthop3 [vrf
vrf-name] [ipv6 ipv6-address3]

7. exit
8. interface type interface-path-id

9. { ipv4 | ipv6} address address {network-mask | ipv6-prefix}

10. { ipv4 | ipv6} access-group access-list-name {ingress | egress}
11. commit

DETAILED STEPS

PurposeCommand or Action

configureStep 1

Enters the IPv4 access list configuration mode, and
configures the named access list.

ipv4 access-list access-list-name

Example:

Step 2

Implementing Access Lists and Prefix Lists
55

Implementing Access Lists and Prefix Lists
Configuring IPv4 ACL over BVI interface - An Example

PurposeCommand or Action
RP/0/RSP0/CPU0:router(config)# ipv4 acess-list
abf-v4

Configures the permit conditions for an IPv4 access list.[sequence-number] permit protocol source
source-wildcard destination destination-wildcard

Step 3

nexthop1 [vrf vrf-name][ipv4 ipv4-address1] nexthop2
[vrf vrf-name] [ipv4 ipv4-address2] nexthop3 [vrf
vrf-name] [ipv4 ipv4-address3]

Example:

RP/0/RSP0/CPU0:router(config-ipv4-acl)# 10 permit
ipv4 any any nexthop1 ipv4 192.168.1.20 nexthop2
ipv4 192.168.9.2 nexthop3 ipv4
192.168.10.2

Returns to global configuration mode.exit

Example:

Step 4

RP/0/RSP0/CPU0:router(config-ipv4-acl)# exit
RP/0/RSP0/CPU0:router(config)#

Enters the IPv6 access list configuration mode, and
configures the named access list.

ipv6 access-list access-list-name

Example:

Step 5

RP/0/RSP0/CPU0:router(config)# ipv6 acess-list
abf-v6

Configures the permit conditions for an IPv6 access list.[sequence-number] permit protocol source
source-wildcard destination destination-wildcard

Step 6

nexthop1 [vrf vrf-name][ipv6 ipv6-address1] nexthop2
[vrf vrf-name] [ipv6 ipv6-address2] nexthop3 [vrf
vrf-name] [ipv6 ipv6-address3]

Example:

RP/0/RSP0/CPU0:router(config-ipv6-acl)# 10 permit
ipv6 any any nexthop1 ipv6 5001:5001::2 nexthop2
ipv6 9001:9001::2 nexthop3 ipv6
1901:1901::2

Returns to global configuration mode.exit

Example:

Step 7

RP/0/RSP0/CPU0:router(config-ipv4-acl)# exit

Implementing Access Lists and Prefix Lists
56

Implementing Access Lists and Prefix Lists
Configuring ABFv4/v6 over IRB/BVI interface

PurposeCommand or Action
RP/0/RSP0/CPU0:router(config)#

Configures an interface and enters interface configuration
mode.

interface type interface-path-id

Example:

Step 8

• The type argument specifies an interface type. For
more information on interface types, use the question
mark (?) online help function.

RP/0/RSP0/CPU0:router(config)# interface BVI 18

• The instance argument specifies either a physical
interface instance or a virtual instance.

• The naming notation for a physical interface
instance is rack/slot/module/port. The slash (/)
between values is required as part of the
notation.

• The number range for a virtual interface instance
varies depending on the interface type.

Configures the primary IPv4 address or IPv6 address for
an interface.

{ ipv4 | ipv6} address address {network-mask |
ipv6-prefix}

Step 9

Example: The network mask can be specified in either of two ways:

RP/0/RSP0/CPU0:router(config-if)#ipv4 address
• The network mask can be a four-part dotted decimal
address. For example, 255.0.0.0 indicates that each192.168.18.1 255.255.255.0
bit equal to 1 means the corresponding address bit
belongs to the network address.

or
RP/0/RSP0/CPU0:router(config-if)#ipv6 address
1801:1801::1/64

• The network mask can be indicated as a slash (/) and
number. For example, /8 indicates that the first 8 bits
of the mask are ones, and the corresponding bits of
the address are network address.

This ipv6-prefix must be in the form documented in RFC
2373 where the address is specified between colons in
hexadecimal using 16-bit values.

Controls access to an interface. The ipv6 access-group
command is similar to the ipv4 access-group command,

{ ipv4 | ipv6} access-group access-list-name {ingress |
egress}

Step 10

except that it is IPv6-specific. Use the access-list-name to
Example: specify a particular IPv6 access list. Use the ingress

RP/0/RSP0/CPU0:router(config-if)# ipv4
keyword to filter on inbound packets or the egress keyword
to filter on outbound packets.access-group abfv4 ingress

or
RP/0/RSP0/CPU0:router(config-if)# ipv6
access-group abfv6 ingress

commitStep 11

Implementing Access Lists and Prefix Lists
57

Implementing Access Lists and Prefix Lists
Configuring ABFv4/v6 over IRB/BVI interface

Configuring ABFv4 over IRB/BVI interface: Example
This example shows how to configure ABFv4 over Integrated Routing and Bridging (IRB)/Bridge-Group
Virtual Interface (BVI) interface:

interface BVI18
ipv4 address 192.168.18.1 255.255.255.0
ipv4 access-group abfv4 ingress
!

l2vpn
bridge group bg18
bridge-domain bd18
interface GigabitEthernet0/0/1/18
!
routed interface BVI18
!
!
!

ipv4 access-list abfv4
10 permit ipv4 any any nexthop1 ipv4 192.168.1.20 nexthop2 ipv4 192.168.9.2 nexthop3 ipv4
192.168.10.2
!

Configuring ABFv6 over IRB/BVI interface: Example
This example shows how to configure ABFv6 over Integrated Routing and Bridging (IRB) or Bridge-Group
Virtual Interface (BVI) interface:

interface BVI18
ipv4 address 192.168.18.1 255.255.255.0
ipv6 address 1801:1801::1/64
ipv4 access-group abfv4 ingress
ipv6 access-group abfv6 ingress
!

l2vpn
bridge group bg18
bridge-domain bd18
interface GigabitEthernet0/0/1/18
!
routed interface BVI18
!
!
!
ipv4 access-list abfv4
10 permit ipv4 any any nexthop1 ipv4 192.168.1.20 nexthop2 ipv4 192.168.9.2 nexthop3 ipv4
192.168.10.2
!
ipv4 access-list ipv4-abf
10 permit ipv4 any any nexthop1 vrf 1 ipv4 45.45.45.2
!

Implementing Access Lists and Prefix Lists
58

Implementing Access Lists and Prefix Lists
Configuring ABFv4 over IRB/BVI interface: Example

ipv6 access-list ipv6-abf
10 permit ipv6 any any nexthop1 vrf 1 ipv6 2040::2
!
ipv6 access-list ipv6-vrf
10 permit ipv6 2001::1/64 any nexthop1 ipv6 2075::2
!
ipv6 access-list abfv6-bvi
10 permit ipv6 any any nexthop1 ipv6 5001:5001::2 nexthop2 ipv6 9001:9001::2 nexthop3 ipv6
1901:1901::2
!
ipv6 access-list ipv6-thor
10 permit ipv6 any any nexthop1 vrf 4 ipv6 2001::2
!

Configuring an Interface to accept Common ACL - Examples
This section provides configuration examples of common ACL.

This example shows how to replace an ACL configured on the interface without explicitly deleting the ACL:

Interface Pos0/2/0/0
ipv4 access-group common C_acl ACL1 ingress
commit
replace Interface acl ACL1 by ACL2
Interface Pos0/2/0/0
ipv4 access-group common C_acl ACL2 ingress
commit

This example shows how common ACL cannot be replaced on interfaces without deleting it explicitly from
the interface:

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit
change the common acl to C_acl2
Interface Pos0/2/0/0
no ipv4 access-group common C_acl1 ACL1 ingress
commit
Interface Pos0/2/0/0
ipv4 access-group common C_acl2 ACL1 ingress
commit

When reconfiguring common ACL, you must ensure that no other interface on the line card is attached to the
common ACL. In other words, atomic replacement of common ACL is not possible.

Note

Implementing Access Lists and Prefix Lists
59

Implementing Access Lists and Prefix Lists
Configuring an Interface to accept Common ACL - Examples

If both common ACL and interface ACL are attached to an interface and only one of the above is reconfigured
on the interface, then the other will be removed automatically.

Note

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit

Interface Pos0/2/0/0
ipv4 access-group ACL1 ingress
commit
This removes the common acl.

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ingress
commit

This example shows how the interface ACL is removed:

Interface Pos0/2/0/0
ipv4 access-group common C_acl1 ACL1 ingress
commit

Interface Pos0/2/0/0
no ipv4 access-group common acl acl ingress
Commit

Configuring ACL Counters for SNMP Query: Example
The following example shows how to configure IPv4 ACL counters for SNMP query.

configure
ipv4 access-list CounterExample
permit any ?
counter Count matches on this entry
log Log matches against this entry
log-input Log matches against this entry, including input interface

permit any counter ?
WORD Name of counter

permit any counter TestCounter
show configuration

Building configuration...
!! IOS XR Configuration 0.0.0
ipv4 access-list CounterExample
10 permit ipv4 any any counter TestCounter
permit tcp any any counter TestCounter2

show configuration
Building configuration...

Implementing Access Lists and Prefix Lists
60

Implementing Access Lists and Prefix Lists
Configuring ACL Counters for SNMP Query: Example

!! IOS XR Configuration 0.0.0
ipv4 access-list CounterExample
10 permit ipv4 any any counter TestCounter
20 permit tcp any any counter TestCounter2

commit

show access-lists ipv4 CounterExample

ipv4 access-list CounterExample
10 permit ipv4 any any counter TestCounter
20 permit tcp any any counter TestCounter2

The following example shows how to configure IPv6 ACL counters for SNMP query.

conf igure
ipv6 access-list V6CounterExample
permit tcp any any counter ?
WORD Name of counter

permit tcp any any counter TestCounter6

show configconfiguration
Building configuration...
!! IOS XR Configuration 0.0.0
ipv6 access-list V6CounterExample
10 permit tcp any any counter TestCounter6

commit

show access-lists ipv6 V6CounterExample

ipv6 access-list V6CounterExample
10 permit tcp any any counter TestCounter6

Additional References
The following sections provide references related to implementing access lists and prefix lists.

Related Documents

Document TitleRelated Topic

Access List Commands module in IP Addresses and
Services Command Reference for Cisco ASR 9000
Series Routers

Access list commands: complete command syntax,
command modes, command history, defaults, usage
guidelines, and examples

Prefix List Commands module in IP Addresses and
Services Command Reference for Cisco ASR 9000
Series Routers

Prefix list commands: complete command syntax,
command modes, command history, defaults, usage
guidelines, and examples

Terminal Services Commands module in System
Management Command Reference for Cisco ASR
9000 Series Routers

Terminal services commands: complete command
syntax, command modes, command history, defaults,
usage guidelines, and examples

Implementing Access Lists and Prefix Lists
61

Implementing Access Lists and Prefix Lists
Additional References

Standards

TitleStandards

—No new or modified standards are supported by this feature, and support for existing standards has not
been modified by this feature.

MIBs

MIBs LinkMIBs

To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a
platform under the Cisco Access Products menu: https://mibs.cloudapps.cisco.com/ITDIT/MIBS/
servlet/index

—

RFCs

TitleRFCs

—No new or modified RFCs are supported by this feature, and support for existing RFCs has not been
modified by this feature.

Technical Assistance

LinkDescription

http://www.cisco.com/techsupportThe Cisco Technical Support website contains thousands of pages of
searchable technical content, including links to products, technologies,
solutions, technical tips, and tools. Registered Cisco.com users can log
in from this page to access even more content.

Implementing Access Lists and Prefix Lists
62

Implementing Access Lists and Prefix Lists
Additional References

https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index
https://mibs.cloudapps.cisco.com/ITDIT/MIBS/servlet/index
http://www.cisco.com/techsupport

	Implementing Access Lists and Prefix Lists
	Prerequisites for Implementing Access Lists and Prefix Lists
	Restrictions for Implementing Access Lists and Prefix Lists
	Restrictions for Implementing ACL-Based Forwarding
	Hardware Limitations
	Information About Implementing Access Lists and Prefix Lists
	Access Lists and Prefix Lists Feature Highlights
	Purpose of IP Access Lists
	How an IP Access List Works
	IP Access List Process and Rules
	Helpful Hints for Creating IP Access Lists
	Source and Destination Addresses
	Wildcard Mask and Implicit Wildcard Mask
	Transport Layer Information

	IP Access List Entry Sequence Numbering
	Sequence Numbering Behavior

	Understanding IP Access List Logging Messages
	Extended Access Lists with Fragment Control
	Policy Routing

	Comments About Entries in Access Lists
	Access Control List Counters
	BGP Filtering Using Prefix Lists
	How the System Filters Traffic by Prefix List

	Information About Implementing ACL-based Forwarding
	ACL-based Forwarding Overview
	ABF-OT
	IPv6 ACL Based Forwarding Object Tracking

	IPSLA support for Object tracking

	Configuring IPv4/IPv6 ACLs to Filter By Packet Length
	ACL Counters Using SNMP
	How to Implement Access Lists and Prefix Lists
	Configuring Extended Access Lists
	Applying Access Lists
	Controlling Access to an Interface
	Controlling Access to a Line

	Configuring Prefix Lists
	Configuring Standard Access Lists
	Copying Access Lists
	Sequencing Access-List Entries and Revising the Access List
	Copying Prefix Lists
	Sequencing Prefix List Entries and Revising the Prefix List

	How to Implement ACL-based Forwarding
	Configuring ACL-based Forwarding with Security ACL
	Implementing IPSLA-OT
	Enabling track mode
	Configuring track type
	Configuring tracking type (line protocol)
	Configuring track type (list)
	Configuring tracking type (route)
	Configuring tracking type (rtr)

	Configuring Pure ACL-Based Forwarding for IPv6 ACL
	ACL-Chaining
	ACL-Chaining Overview
	Restrictions for Common ACL
	Configuring an Interface to accept Common ACL
	Configuring an Interface to Accept Multiple ACLs on Cisco ASR 9000 High Density 100GE Ethernet Line Cards

	ACL Scale Enhancements
	ACL Scale Enhancements: Backward Compatibility
	Configuring a Network Object-Group
	Configuring a Port Object-Group
	Configuring ACL with Object-Groups

	Atomic ACL Updates By Using the Disable Option
	Modifying ACLs when Atomic ACL Updates are Disabled

	Configuring ACL Counters for SNMP Query
	Configuration Examples for Implementing Access Lists and Prefix Lists
	Resequencing Entries in an Access List: Example
	Adding Entries with Sequence Numbers: Example
	Adding Entries Without Sequence Numbers: Example

	Atomic ACL Updates By Using the Disable Option
	Modifying ACLs when Atomic ACL Updates are Disabled

	IPv6 ACL in Class Map
	Configuring IPv6 ACL QoS - An Example

	IPv4 and IPv6 ACL Over BVI
	Configuring IPv4 ACL over BVI interface - An Example

	Configuring ABFv4/v6 over IRB/BVI interface
	Configuring ABFv4 over IRB/BVI interface: Example
	Configuring ABFv6 over IRB/BVI interface: Example
	Configuring an Interface to accept Common ACL - Examples
	Configuring ACL Counters for SNMP Query: Example
	Additional References

