Process Scripts

Cisco I0S XR process scripts are also called daemon scripts. The process scripts are persistent scripts that
continue to run as long as you have activated the scripts. An IOS XR process, Application manager (AppMgr
or app manager), manages the lifecycle of process scripts. The scripts are registered as an application on the
app manager. This application represents the instance of the script that is running on the router.

The app manager is used to:
» Start, stop, monitor, or retrieve the operational status of the script.
* Maintain the startup dependencies between the processes.

* Restart the process if the script terminates unexpectedly based on the configured restart policy.

Process scripts support Python 3.5 programming language. For the list of supported packages, see Cisco I0S
XR Python Packages.

This chapter gets you started with provisioning your Python automation scripts on the router.

N

Note This chapter does not delve into creating Python scripts, but assumes that you have basic understanding of
Python programming language. This section will walk you through the process involved in deploying and
using the scripts on the router. A process script refers to code that runs continuously or endlessly.

» Workflow to Run Process Scripts, on page 1
* Managing Actions on Process Script, on page 10
» Example: Check CPU Utilization at Regular Intervals Using Process Script, on page 11

Workflow to Run Process Scripts

Complete the following tasks to provision process scripts:

» Download the script—Store the script on an external server or copy to the harddisk of the router. Add
the script from the external server or harddisk to the script management repository on the router using
the script add process command.

* Configure the checksum—Check script integrity and authenticity using the script process <script.py>
checksum command.

Process Scripts JJJj



Process Scripts |
. Workflow to Run Process Scripts

* Register the script—Register the script as an application in the app manager using appmgr process-script
command.

» Activate the script—Activate the registered application using appmgr process-script activate command.

* View the script execution details—Retrieve the operational data using the show appmgr process-script
command.

The following image shows the workflow diagram representing the steps that are involved in using a process
script:

] Process Scripts



| Process Scripts

Workflow to Run Process Scripts .

Create script and store the script in an
HTTP server or copy to routers’ harddisk

,

Add script from HTTP server or harddisk
to the script management repository

| script add |

y

Verify that the script is added successfully

| show script status |

y

Configure checksum

‘ script process <script> checksum ‘

y

Register the process as an application

‘ appmgr process-script ‘

y

Activate the registered application

‘ appmgr process-script activate ‘

Investigate and

Checksum
No match?

rectify checksum
mismatch

[ | cLlcommand

i i Internal operation

show script status

Activation
successful?

Rectify error

View operational status of the application

show appmgr process-script

522064

Process Scripts .



Process Scripts |
. Download the Script to the Router

Download the Script to the Router

To manage the scripts, you must add the scripts to the script management repository on the router. A
subdirectory is created for each script type. By default, this repository stores the downloaded scripts in the
appropriate subdirectory based on script type.

Script Type Download Location

config harddisk:/mirror/script-mgmt/config
exec harddisk:/mirror/script-mgmt/exec
process harddisk:/mirror/script-mgmt/process
eem harddisk:/mirror/script-mgmt/eem

The scripts are added to the script management repository using two methods:

* Method 1: Add script from a server

» Method 2: Copy script from external repository to harddisk using scp or copy command

In this section, you learn how to add process-script.py script to the script management repository.

Procedure

Step 1 Add the script to the script management repository on the router using one of the two options:
» Add Script From a Server

Add the script from any server or the harddisk location in the router.

Router#script add process <script-location> <script.py>

The following example shows a process script process-script.py downloaded from an external repository
http://192.0.2.0/scripts:

Router#script add process http://192.0.2.0/scripts process-script.py
Fri Aug 20 05:03:40.791 UTC
process-script.py has been added to the script repository

The script add process supports the HTTP, HTTPS, FTP, TFTP, and SCP protocols for copying a script.
You can add a maximum of 10 scripts simultaneously.
Router#script add process <script-location> <scriptl.py> <script2.py> ... <scriptlO.py>

You can also specify the checksum value while downloading the script. This value ensures that the file being copied
is genuine. You can fetch the checksum of the script from the server from where you are downloading the script.
However, specifying checksum while downloading the script is optional.

Router#script add process http://192.0.2.0/scripts process-script.py checksum SHA256
<checksum-value>

For multiple scripts, use the following syntax to specify the checksum:

Router#script add process http://192.0.2.0/scripts <scriptl.py> <scriptl-checksum> <script2.py>
<script2-checksum>
. <scriptl0.py> <scriptlO-checksum>

] Process Scripts



| Process Scripts

Step 2

Configure Checksum for Process Script .

If you specify the checksum for one script, you must specify the checksum for all the scripts that you download.

Note
Only SHA256 checksum is supported.

» Copy the Script from an External Repository

You can copy the script from the external repository to the routers' harddisk and then add the script to the script
management repository.

a. Copy the script from a remote location to harddisk using scp or copy command.
Router#scp userx@192.0.2.0:/scripts/process-script.py /harddisk:/
b. Add the script from the harddisk to the script management repository.

Router#script add process /harddisk:/ process-script.py
Fri Aug 20 05:03:40.791 UTC
process-script.py has been added to the script repository

Verify that the scripts are downloaded to the script management repository on the router.

Example:

Router#show script status
Wed Aug 25 23:10:50.453 UTC

Name | Type | Status | Last Action | Action Time

process-script.py | process | Config Checksum | NEW | Tue Aug 24 10:44:53 2021

Script process-script.py is copied to harddisk: /mirror/script-mgmt/process directory on the router.

Configure Checksum for Process Script

Step 1

Every script is associated with a checksum hash value. This value ensures the integrity of the script, and that
the script is not tampered. The checksum is a string of numbers and letters that acts as a fingerprint for script.
The checksum of the script is compared with the configured checksum. If the values do not match, the script
is not run and a warning message is displayed.

It is mandatory to configure the checksum to run the script.

)

Note Process scripts support the SHA256 checksum hash.

Before you begin

Ensure that the script is added to the script management repository. See Download the Script to the Router.

Procedure

Retrieve the SHA256 checksum hash value for the script from the IOS XR Linux bash shell.

Process Scripts JJJj


b-programmability-cg-asr9000-77x_chapter10.pdf#nameddest=unique_55

. Configure Checksum for Process Script

Step 2

Step 3

Step 4

Example:

Router#run

Process Scripts |

[node0 RPO_CPUO:~] $sha256sum /harddisk:/mirror/script-mgmt/process/process-script.py
94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b

/harddisk:/mirror/script-mgmt/process/process-script.py

Make note of the checksum value.

View the status of the script.

Example:

Routert#show script status detail
Fri Aug 20 05:04:13.539 UTC

Last Action

Action Time

Name | Type | Status
process-script.py | process | Config Checksum
Script Name : process-script.py
History:
1. Action : NEW
Time : Fri Aug 20 05:03:41 2021
Description : User action IN CLOSE WRITE

The status shows that the checksum is not configured.

Configure the checksum.

Example:

Router#configure

Router (config) #script process process-script.py checksum SHA256
94336£3997521d6elaeclOee6faab0233562d53d4de7b0092e80b53caed58414b

Router (config) #commit
Tue Aug 20 05:10:10.546 UTC
Router (config) #end

Verify the status of the script.

Example:

Router#show script status detail
Fri Aug 20 05:15:17.296 UTC

Name | Type | Status | Last Action | Action Time
process-script.py | process | Ready | NEW | Fri Aug 20 05:20:41 2021
Script Name : process-script.py
Checksum : 94336£3997521d6elaeclOee6faab0233562d53d4de7b0092e80b53caed58414b
History:
1. Action : NEW
Time : Fri Aug 20 05:20:41 2021
Checksum : 94336£3997521d6elaeclOee6faab0233562d53d4de7b0092e80b53caed58414b
Description : User action IN CLOSE WRITE

] Process Scripts



| Process Scripts

Register the Process Script as an Application .

The status ready indicates that the checksum is configured and the script is ready to be run. When the script is run, the
checksum value is recalculated to check if it matches with the configured hash value. If the values differ, the script fails.
It is mandatory for the checksum values to match for the script to run.

Register the Process Script as an Application

Step 1

Step 2

Step 3

Register the process script with the app manager to enable the script. The registration is mandatory for using
process script on the router.

Before you begin
Ensure that the following prerequisites are met before you register the script:

* Download the Script to the Router

* Configure Checksum for Process Script, on page 5

Procedure

Register the script with an application (instance) name in the app manager.

Example:

Router#configure

Fri Aug 20 06:10:19.284 UTC

Router (config) #appmgr process-script my-process-app
Router (config-process) #executable process-script.py

Here, my-process-app is the application for the executable process-script.py script.

Provide the arguments for the script.

Example:

Router (config-process) #run-args --host <host-name> --runtime 3 --log script
Set a restart policy for the script if there is an error.

Example:

Router (config-process) #restart on-failure max-retries 3
Router (config-process) #commit

Here, the maximum attempts to restart the script is set to 3. After 3 attempts, the script stops.

You can set more options to restart the process:

Keyword Description

always Always restart automatically. If the process exits, a scheduler queues the script and restarts
the script.
Note
This is the default restart policy.

Process Scripts JJJj


b-programmability-cg-asr9000-77x_chapter10.pdf#nameddest=unique_55

Process Scripts |
. Activate the Process Script

Keyword Description

never Never restart automatically. If the process exits, the script is not rerun unless you provide
an action command to invoke the process.

on-failure Restart on failure automatically. If the script exits successfully, the script is not scheduled
again.

unless-errored Restart script automatically unless errored.

unless-stopped Restart script automatically unless stopped by the user using an action command.

Step 4 View the status of the registered script.

Example:

Routerf#show appmgr process-script-table
Fri Aug 20 06:15:44.244 UTC
Name Executable Activated Status Restart Policy Config Pending

my-process-app process-script.py No Not Started On Failure No

The script is registered but is not active.

Activate the Process Script

Activate the process script that you registered with the app manager.

Before you begin

Ensure that the following prerequisites are met before you run the script:
* Download the Script to the Router
* Configure Checksum for Process Script, on page 5

* Register the Process Script as an Application, on page 7

Procedure

Step 1 Activate the process script.

Example:

Router#appmgr process-script activate name my-process-app
Fri Aug 20 06:20:55.006 UTC

The instance my-process-app is activated for the process script.

Step 2 View the status of the activated script.

Example:

Router#show appmgr process-script-table
Fri Aug 20 06:22:03.201 UTC

] Process Scripts


b-programmability-cg-asr9000-77x_chapter10.pdf#nameddest=unique_55

| Process Scripts

Obtain Operational Data and Logs .

Name Executable Activated Status Restart Policy Config Pending

my-process-app process-script.py Yes Running On Failure No
The process script is activated and running.

Note

You can modify the script while the script is running. However, for the changes to take effect, you must deactivate and
activate the script again. Until then, the configuration changes are pending. The status of the modification is indicated in
the config Pending option. In the example, value no indicates that there are no configuration changes that must be
activated.

Obtain Operational Data and Logs

Step 1

Retrieve the operational data and logs of the script.

Before you begin

Ensure that the following prerequisites are met before you obtain the operational data:
» Download the Script to the Router
* Configure Checksum for Process Script, on page 5
* Register the Process Script as an Application, on page 7

* Activate the Process Script, on page 8

Procedure

View the registration information, pending configuration, execution information, and run time of the process script.

Example:

Router#show appmgr process-script my-process-app info
Fri Aug 20 06:20:21.947 UTC
Application: my-process-app

Registration info:

Executable : process-script.py

Run arguments : ——host <host-name> --runtime 3 --log script
Restart policy : On Failure

Maximum restarts : 3

Pending Configuration:
Run arguments : ——host <host-name> --runtime 3 --log script
Restart policy : Always

Execution info and status:

Activated : Yes

Status : Running

Executable Checksum : 94336£3997521d6elaecOee6faab0233562d53d4de7b0092e80b53caed58414b
Last started time : Fri Aug 20 06:20:21.947

Restarts since last activate : 0/3

Process Scripts JJJj


b-programmability-cg-asr9000-77x_chapter10.pdf#nameddest=unique_55

. Managing Actions on Process Script

Log location
/harddisk:/mirror/script-mgmt/logs/process-script.py process my-process-app
Last exit code

Process Scripts |

Step 2 View the logs for the process scripts. App manager shows the logs for errors and output.

Example:

The following example shows the output logs:

Router#show appmgr process-script my-process-app logs output
Fri Aug 20 06:25:20.912 UTC

[2021-08-20 06:20:55,6009]
[2021-08-20 06:20:55,6009]
[2021-08-20 06:20:56,610] INFO
[2021-08-20 06:20:58,6009]

INFO
INFO

INFO

sample-process
sample-process
sample-process
sample-process

]
1::
1::
]

The following example shows the error logs with errors:

Beginning execution of process..
Connecting to host '<host-name>'
Reading database..

Listening for requests..

Router#show appmgr process-script my-process-app logs errors
Fri Aug 20 06:30:20.912 UTC
—————————— Run ID:1632914459
Traceback (most recent call last):

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 121, in <module>

main (args)

Fri Aug 20 06:30:20 2021----------

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 97, in main

printer ()

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 37, in wrapper

result =

func (*args,

**kwargs)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 88, in printer

time.sleep (1)

File "/harddisk:/mirror/script-mgmt/process/process-script.py", line 30, in _handle timeout

raise TimeoutError (error message)

~_main .TimeoutError: Timer expired
—————————— Run ID:1632914460

Fri Aug 20 06:31:03 2021----------

This example shows the log without errors:

Router#show appmgr process-script my-process-app

Fri Aug 20 06:

30

ID:
ID:
ID:
11624346223
ID:
ID:
ID:
ID:
ID:

ID

:20.912 UTC

1624346220
1624346221
1624346222

1624346224
1624346225
1624346226
1624346227
1624346228

Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri

Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug

20
20
20
20
20
20
20
20
20

10:
10:
10:
10:
11:
11:
11:
11:
11:

46
47
52
53

08
09
10

:44
:50
:39
:45
07:
123
:29
:35
11:

17

logs errors

Managing Actions on Process Script

The process script runs as a daemon continuously. You can, however, perform the following actions on the
process script and its application:

] Process Scripts



| Process Scripts

Table 1: Feature History Table

Example: Check CPU Utilization at Regular Intervals Using Process Script .

Action

Description

Deactivate

Clears all the resources that the application uses.

Router#appmgr process-script deactivate name my-process-app

You can modify the script while the script is running. However, for the changes
to take effect, you must deactivate and activate the script again. Until then, the
configuration changes do not take effect.

Kill

Terminates the script if the option to stop the script is unresponsive.

Router#appmgr process-script kill name my-process-app

Restart

Restarts the process script.

Router#appmgr process-script restart name my-process-app

Start

Starts an application that is already registered and activated with the app manager.

Router#appmgr process-script start name my-process-app

Stop

Stops an application that is already registered, activated, and is currently running.
Only the application is stopped; resources that the application uses is not cleared.

Router#appmgr process-script stop name my-process-app

Example: Check CPU Utilization at Regular Intervals Using

Process Script

In this example, you use the process script to check CPU utilization at regular intervals. The script does the

following actions:

» Monitor the CPU threshold value.

» If the threshold value equals or exceeds the value passed as argument to the script, log an error message
that the threshold value has exceeded.

Before you begin

Ensure you have completed the following prerequisites before you register and activate the script:

1. Create a process script cpu-utilization-process.py. Store the script on an external server or copy the
script to the harddisk of the router.

import time
import os

import xmltodict
import re

import argparse

from cisco.script mgmt import xrlog
from iosxr.netconf.netconf 1lib import NetconfClient

log = xrlog.getScriptLogger ('Sample')

Process Scripts JJJj



Process Scripts |

. Example: Check CPU Utilization at Regular Intervals Using Process Script

syslog = xrlog.getSysLogger ('Sample')

def

cpu_memory check (threshold) :

Check total routes in router

filter string = """

<system-monitoring xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-wdsysmon-fd-oper">
<cpu-utilization>

<node-name>0/RP0/CPUO</node-name>
<total-cpu-one-minute/>

</cpu-utilization>

</system-monitoring>"""

nc = NetconfClient (debug=True)

nc.connect ()

do_get(nc, filter=filter string)

ret dict = xml to _dict(nc.reply, 'system-monitoring')
total cpu =
int (ret_dict['system-monitoring']['cpu-utilization']['total-cpu-one-minute'])

if total cpu >= threshold:
syslog.error ("CPU utilization is %s, threshold value is %s"

% (str(total_cpu),str (threshold)))

def

def

if name == ' main

nc.close ()

_xml_to_dict(xml output, xml tag=None) :
convert netconf rpc request to dict
:param xml_output:

creturn:
if xml tag:
pattern = "<data>\s+(<%s.*</%s>).*</data>" % (xml tag, xml tag)
else:
pattern = " (<data>.*</data>)"
xml_output = xml output.replace('\n', ' ')
xml_data match = re.search(pattern, xml output)

ret dict = xmltodict.parse(xml_data match.group (1))
return ret dict

do_get (nc, filter=None, path=None) :
try:
if path is not None:
nc.rpc.get (file=path)
elif filter is not None:
nc.rpc.get (request=filter)
else:
return False
except Exception as e:
return False
return True

parser = argparse.ArgumentParser ()
parser.add argument ("threshold", help="cpu utilization threshold", type=int)
args = parser.parse_args()
threshold = args.threshold
while (1) :
cpu_memory check (threshold)
time.sleep (30)

Configure the script with the desired threshold criteria. This default threshold is configured to alert when
CPU utilization exceeds this value. The script checks the CPU utilization every 30 seconds.

] Process Scripts



| Process Scripts
Example: Check CPU Utilization at Regular Intervals Using Process Script .

2. Add the script from the external server or harddisk to the script management repository. See Download
the Script to the Router.

3. Configure the checksum to verify the authenticity and integrity of the script. See Configure Checksum
for Process Script, on page 5.

Procedure

Step 1 Register the process script cpu-utilization-process.py With an instance name my-process-app in the app manager.

Example:

Router (config) fappmgr process-script my-process-app
Router (config-process) #executable cpu-utilization-process.py
Router (config-process) #run-args <threshold-value>

Step 2 Activate the registered application.

Example:

Router (config-process) #appmgr process-script activate name my-process-app

Step 3 Check the script status.

Example:

Router#show appmgr process-script-table
Thu Sep 30 18:15:03.201 UTC
Name Executable Activated Status Restart Policy Config Pending

my-process-app cpu-utilization-process.py Yes Running On Failure No

Step 4 View the log.

Example:

Router#show appmgr process-script my-process-app logs errors
RP/0/RPO/CPUO:Sep 30 18:03:54.391 UTC: python3 xr[68378]: $O0S-SCRIPT MGMT-3-ERROR
Script-test process: CPU utilization is 6, threshold value is 5

An error message is displayed that the CPU utilization has exceeded the configured threshold value, and helps you take
corrective actions.

Process Scripts JJJj


b-programmability-cg-asr9000-77x_chapter10.pdf#nameddest=unique_55
b-programmability-cg-asr9000-77x_chapter10.pdf#nameddest=unique_55

Process Scripts |
. Example: Check CPU Utilization at Regular Intervals Using Process Script

] Process Scripts



	Process Scripts
	Workflow to Run Process Scripts
	Download the Script to the Router
	Configure Checksum for Process Script
	Register the Process Script as an Application
	Activate the Process Script
	Obtain Operational Data and Logs

	Managing Actions on Process Script
	Example: Check CPU Utilization at Regular Intervals Using Process Script


