

Configure Performance Measurement

Network performance metrics is a critical measure for traffic engineering (TE) in service provider networks. Network performance metrics include the following:

- · Packet loss
- Delay
- Delay variation
- · Bandwidth utilization

These network performance metrics provide network operators information about the performance characteristics of their networks for performance evaluation and help to ensure compliance with service level agreements. The service-level agreements (SLAs) of service providers depend on the ability to measure and monitor these network performance metrics. Network operators can use Segment Routing Performance Measurement (SR-PM) feature to monitor the network metrics for links and end-to-end TE label switched paths (LSPs).

The following table explains the functionalities supported by performance measurement feature for measuring delay for links or SR policies.

Table 1: Performance Measurement Functionalities

Functionality	Details
Profiles	You can configure different default profiles for different types of delay measurements. Use the "interfaces" delay profile type for link-delay measurement. The "sr-policy" delay profile type is used for SR policy delay measurements. Delay profile allows you to schedule probe and configure metric advertisement parameters for delay measurement.
Protocols	MPLS (using RFC6374 with MPLS encap) or Two-Way Active Measurement Protocol (TWAMP) Light (using RFC 5357 with IP/UDP encap).
Probe and burst scheduling	Schedule probes and configure metric advertisement parameters for delay measurement.
Metric advertisements	Advertise measured metrics periodically using configured thresholds. Also supports accelerated advertisements using configured thresholds.
Measurement history and counters	Maintain packet delay and loss measurement history, session counters, and packet advertisement counters.

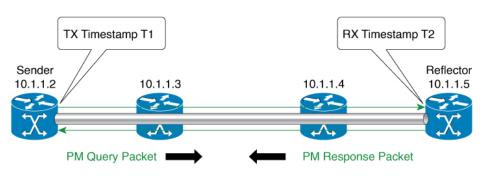
521501

- Measurement Modes, on page 2
- Link Delay Measurement, on page 4
- IP Endpoint Delay Measurement and Liveness Monitoring, on page 21
- SR Policy End-to-End Delay Measurement, on page 33
- SR Policy Liveness Monitoring, on page 40

Measurement Modes

The following table compares the different hardware and timing requirements for the measurement modes supported in SR PM.

Table 2: Measurement Mode Requirements


Measurement Mode	Sender: PTP-Capable HW and HW Timestamping	Reflector: PTP-Capable HW and HW Timestamping	PTP Clock Synchronization between Sender and Reflector
One-way	Required	Required	Required
Two-way	Required	Required	Not Required
Loopback	Required	Not Required	Not Required

One-Way Measurement Mode

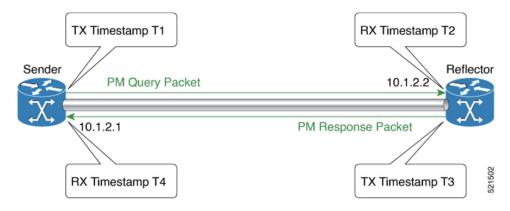
One-way measurement mode provides the most precise form of one-way delay measurement. PTP-capable hardware and hardware timestamping are required on both Sender and Reflector, with PTP Clock Synchronization between Sender and Reflector.

Delay measurement in one-way mode is calculated as (T2 - T1).

Figure 1: One-Way

- One Way Delay = (T2 − T1)
- Hardware clock synchronized using PTP (IEEE 1588) between sender and reflector nodes (all nodes for higher accuracy)

The PM query and response for one-way delay measurement can be described in the following steps:


- 1. The local-end router sends PM query packets periodically to the remote side once the egress line card on the router applies timestamps on packets.
- 2. The ingress line card on the remote-end router applies time-stamps on packets as soon as they are received.
- 3. The remote-end router sends the PM packets containing time-stamps back to the local-end router.
- **4.** One-way delay is measured using the time-stamp values in the PM packet.

Two-Way Measurement Mode

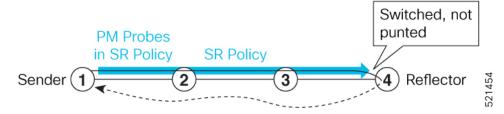
Two-way measurement mode provides two-way measurements. PTP-capable hardware and hardware timestamping are required on both Sender and Reflector, but PTP clock synchronization between Sender and Reflector is not required.

Delay measurement in two-way mode is calculated as ((T4 - T1) - (T3 - T2))/2

Figure 2: Two-Way

The PM query and response for two-way delay measurement can be described in the following steps:

- 1. The local-end router sends PM query packets periodically to the remote side once the egress line card on the router applies timestamps on packets.
- 2. Ingress line card on the remote-end router applies time-stamps on packets as soon as they are received.
- **3.** The remote-end router sends the PM packets containing time-stamps back to the local-end router. The remote-end router time-stamps the packet just before sending it for two-way measurement.
- **4.** The local-end router time-stamps the packet as soon as the packet is received for two-way measurement.
- **5.** Delay is measured using the time-stamp values in the PM packet.


Loopback Measurement Mode

Loopback meaurement mode provides two-way and one-way measurements. PTP-capable hardware and hardware timestamping are required on the Sender, but are not required on the Reflector.

Delay measurements in Loopback mode are calculated as follows:

- Round-Trip Delay = (T4 T1)
- One-Way Delay = Round-Trip Delay/2

Figure 3: Loopback

The PM query and response for Loopback delay measurement can be described in the following steps:

- 1. The local-end router sends PM probe packets periodically on the SR Policy.
- 2. The probe packets are loopback on the endpoint node (not punted), with no timestamping on endpoint node.
- 3. Round-trip Delay = T4 T1.

Link Delay Measurement

Table 3: Feature History Table

Feature Name	Release Information	Feature Description
Link Delay Measurement with IPv6 Link Local Address	Release 7.3.1	The performance measurement for link delay determines the source and destination IP addresses used in the OAM packet based on the IP address of the interface, where the delay measurement operation is enabled. This feature enables using the IPv6 link-local address as the OAM packet source IP address, when no IPv4 or IPv6 address is configured in the interface.

Feature Name	Release Information	Feature Description
SR Performance Measurement Named Profiles	Release 7.3.1	You can use this feature to create specific performance measurement delay and liveness profiles, and associate it with an SR policy.
		This way, a delay or liveness profile can be associated with a policy for which the performance measurement probes are enabled, and performance measurement is precise, and enhanced.
		The performance-measurement delay-profile sr-policy command was updated with the name <i>profile</i> keyword-argument combination.
		The performance-measurement liveness-profile sr-policy command was updated with the name <i>profile</i> keyword-argument combination.
		The performance-measurement delay-measurement command was updated with delay-profile name <i>profile</i> .
		The performance-measurement liveness-detection command was updated with liveness-profile name <i>profile</i>

The PM for link delay uses the IP/UDP packet format defined in RFC 5357 (TWAMP-Light) for probes. Two-Way Active Measurement Protocol (TWAMP) adds two-way or round-trip measurement capabilities. TWAMP employs time stamps applied at the echo destination (reflector) to enable greater accuracy. In the case of TWAMP Light, the Session-Reflector doesn't necessarily know about the session state. The Session-Reflector simply copies the Sequence Number of the received packet to the Sequence Number field of the reflected packet. The controller receives the reflected test packets and collects two-way metrics. This architecture allows for collection of two-way metrics.

Usage Guidelines and Restrictions for PM for Link Delay

The following restrictions and guidelines apply for the PM for link delay feature for different links.

- For broadcast links, only point-to-point (P2P) links are supported. P2P configuration on IGP is required for flooding the value.
- For link bundles, the hashing function may select a member link for forwarding but the reply may come from the remote line card on a different member link of the bundle.
- For one-way delay measurement, clocks should be synchronized on two end-point nodes of the link using PTP.

Link delay measurement is supported on IPv4 unnumbered interfaces. An IPv4 unnumbered interface is
identified by a node ID (a loopback address) and the local SNMP index assigned to the interface. Note
that the reply messages could be received on any interface, since the packets are routed at the responder
based on the loopback address used to identify the link.

Configuration Example: PM for Link Delay

This example shows how to configure performance-measurement functionalities for link delay as a global default profile. The default values for the different parameters in the PM for link delay is given as follows:

- **probe measurement mode**: The default measurement mode for probe is two-way delay measurement. If you are configuring one-way delay measurement, hardware clocks must be synchronized between the local-end and remote-end routers using precision time protocol (PTP). See Measurement Modes, on page 2 for more information.
- protocol:
 - **twamp-light**: Interface delay measurement using RFC 5357 with IP/UDP encap. This is the default protocol.
 - pm-mpls: Interface delay measurement using RFC6374 with MPLS encap.
- protocol: Interface delay measurement using RFC 5357 with IP/UDP encap (TWAMP-Light).
- **burst interval**: Interval for sending probe packet. The default value is 3000 milliseconds and the range is from 30 to 15000 milliseconds.
- computation interval: Interval for metric computation. Default is 30 seconds; range is 1 to 3600 seconds.
- periodic advertisement: Periodic advertisement is enabled by default.
- **periodic-advertisement interval**: The default value is 120 seconds and the interval range is from 30 to 3600 seconds.
- **periodic-advertisement threshold**: Checks the minimum-delay metric change for threshold crossing for periodic advertisement. The default value is 10 percent and the range is from 0 to 100 percent.
- **periodic-advertisement minimum change**: The default value is 1000 microseconds (usec) and the range is from 0 to 100000 microseconds.
- accelerated advertisement: Accelerated advertisement is disabled by default.
- accelerated-advertisement threshold: Checks the minimum-delay metric change for threshold crossing for accelerated advertisement. The default value is 20 percent and the range is from 0 to 100 percent.
- accelerated-advertisement minimum change: The default value is 500 microseconds and the range is from 0 to 100000 microseconds.

```
RP/0/0/CPU0:router(config) # performance-measurement delay-profile interfaces
RP/0/0/CPU0:router(config-pm-dm-intf) # probe
RP/0/0/CPU0:router(config-pm-dm-intf-probe) # measurement-mode one-way
RP/0/0/CPU0:router(config-pm-dm-intf-probe) # burst-interval 60
RP/0/0/CPU0:router(config-pm-dm-intf-probe) # computation-interval 60
RP/0/0/CPU0:router(config-pm-dm-intf-probe) # exit

RP/0/0/CPU0:router(config-pm-dm-intf) # advertisement periodic
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per) # interval 120
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per) # threshold 20
```

```
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per)# minimum-change 1000
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per)# exit

RP/0/0/CPU0:router(config-pm-dm-intf)# advertisement accelerated
RP/0/0/CPU0:router(config-pm-dm-intf-adv-acc)# threshold 30
RP/0/0/CPU0:router(config-pm-dm-intf-adv-acc)# minimum-change 1000
RP/0/0/CPU0:router(config-pm-dm-intf-adv-per)# exit
```

Configure the UDP Destination Port

Configuring the UDP port for TWAMP-Light protocol is optional. By default, PM uses port 862 as the TWAMP-reserved UDP destination port for delay.

The UDP port is configured for each PM measurement probe type (delay, loss, protocol, authentication mode, etc.) on querier and responder nodes. If you configure a different UDP port, the UDP port for each PM measurement probe type must match on the querier and the responder nodes.

Note

The same UDP destination port is used for delay measurement for links and SR Policy.

This example shows how to configure the UDP destination port for delay.

```
Router(config)# performance-measurement

Router(config-perf-meas)# protocol twamp-light

Router(config-pm-protocol)# measurement delay unauthenticated

Router(config-pm-proto-mode)# querier-dst-port 12000
```

Enable PM for Link Delay Over an Interface

This example shows how to enable PM for link delay over an interface.

```
RP/0/0/CPU0:router(config)# performance-measurement
RP/0/0/CPU0:router(config-perf-meas)# interface TenGigE0/0/0/0
RP/0/0/CPU0:router(config-pm-intf)# next-hop ipv4 10.10.10.2 // Optional IPv4 or IPv6
next-hop address
RP/0/0/CPU0:router(config-pm-intf)# delay-measurement
RP/0/0/CPU0:router(config-pm-intf-dm)# exit
```

The source and destination IP addresses used in the OAM packet are determined by the IP address present on the interface where the delay-measurement operation is enabled and the setting of the optional **next-hop** address.

When the **next-hop** address is not specified, the following rules apply to determine the source and destination IP addresses used in the OAM packet:

- If an IPv4 address is configured under the interface, then:
 - OAM packet source IP address = Interface's IPv4 address
 - OAM packet destination IP address = 127.0.0.0
- Else, if an IPv6 global address is configured under the interface, then:
 - OAM packet source IP address = Interface's IPv6 global address
 - OAM packet destination IP address = 0::ff:127.0.0.0

- Else, if an IPv6 link-local address is assigned to the interface, then:
 - OAM packet source IP address = Interface's IPv6 link-local address
 - OAM packet destination IP address = 0::ff:127.0.0.0

When the **next-hop** {**ipv4** | **ipv6**} address is configured, the following rules apply to determine the source and destination IP addresses used in the OAM packet:

- If a next-hop IPv4 address is configured, then:
 - OAM packet source IP address = Interface's IPv4 address
 - OAM packet destination IP address = Configured next-hop IPv4 address

Note

If there is no IPv4 address configured under the interface, then the delay-measurement probe does not send OAM packets.

- If a next-hop IPv6 address is configured, then:
 - OAM packet source IP address = Interface's IPv6 global address
 - OAM packet destination IP address = Configured next-hop IPv6 address

Note

If there is no IPv6 global address configured under the interface, then the delay-measurement probe does not send OAM packets.

This example shows how to enable PM for link delay over an interface with IPv4 address configured:

```
interface TenGigE0/0/0/0
  ipv4 address 10.10.10.1 255.255.255.0
performance-measurement
  interface TenGigE0/0/0/0
  delay-measurement
```

This example shows how to enable PM for link delay over an interface IPv6 address configured:

```
interface TenGigE0/0/0/0
  ipv6 address 10:10:10::1/64

performance-measurement
  interface TenGigE0/0/0/0
  delay-measurement
```

This example shows how to enable PM for link delay over an interface with a specified next-hop IPv4 address:

```
interface TenGigE0/0/0/0
ipv4 address 10.10.10.1 255.255.255.0
```

```
performance-measurement
interface TenGigE0/0/0/0
next-hop ipv4 10.10.10.2
delay-measurement
```

This example shows how to enable PM for link delay over an interface with a specified next-hop IPv6 address:

```
interface TenGigE0/0/0/0
  ipv6 address 10:10:10::1/64

performance-measurement
  interface TenGigE0/0/0/0
   next-hop ipv6 10:10:10::2
  delay-measurement
```

This example shows how to enable PM for link delay over an interface with only IPv6 link-local address:

```
interface TenGigE0/0/0/0
  ipv6 enable

performance-measurement
  interface TenGigE0/0/0/0
  delay-measurement
```

Verification

```
RP/0/0/CPU0:router# show performance-measurement profile interface
Thu Dec 12 14:13:16.029 PST
0/0/CPU0
______
Interface Delay-Measurement:
 Profile configuration:
   Measurement Type
                                           : Two-Way
   Probe computation interval
                                           : 30 (effective: 30) seconds
   Type of services
                                           : Traffic Class: 6, DSCP: 48
   Burst interval
                                           : 3000 (effective: 3000) mSec
                                           : 10 packets
   Burst count
   Encap mode
                                           : UDP
                                           : TWAMP-light
   Payload Type
   Destination sweeping mode
                                           : Disabled
   Periodic advertisement
                                           : Enabled
                                           : 120 (effective: 120) sec
     Interval
     Threshold
                                           : 10%
     Minimum-Change
                                           : 500 uSec
                                          : Disabled
   Advertisement accelerated
   Threshold crossing check
                                           : Minimum-delay
RP/0/0/CPU0:router# show performance-measurement summary detail location 0/2/CPU0
Thu Dec 12 14:09:59.162 PST
0/2/CPU0
Total interfaces
                                           : 1
Total SR Policies
                                           : 0
Total RSVP-TE tunnels
                                           : 0
```

```
Total Maximum PPS
                                                : 2000 pkts/sec
Total Interfaces PPS
                                               : 0 pkts/sec
Maximum Allowed Multi-hop PPS
                                              : 2000 pkts/sec
Multi Hop Requested PPS
                                              : 0 pkts/sec (0% of max allowed)
Dampened Multi Hop Requested PPS
                                              : 0% of max allowed
Inuse Burst Interval Adjustment Factor
                                               : 100% of configuration
Interface Delay-Measurement:
 Total active sessions
                                                . 1
  Counters:
   Packets:
                                                : 26
     Total sent
     Total received
                                                : 26
   Errors:
       TX:
          Reason interface down
                                                : 0
                                               : 0
         Reason no MPLS caps
         Reason no IP address
                                              : 0
         Reason other
                                              : 0
        RX:
         Reason negative delay
         Reason delay threshold exceeded
Reason missing TX timestamp
Reason missing RX timestamp
                                               : 0
                                               : 0
                                              : 0
         Reason probe full
                                              : 0
         Reason probe not started
                                              : 0
          Reason control code error
         Reason control code notif
                                               : 0
    Probes:
     Total started
                                              : 3
                                               : 2
     Total completed
     Total incomplete
                                               : 0
     Total advertisements
                                                : 0
SR Policy Delay-Measurement:
 Total active sessions
                                               : 0
  Counters:
   Packets:
                                                . 0
     Total sent
     Total received
                                               : 0
   Errors:
       TX:
         Reason interface down
                                               : 0
         Reason no MPLS caps
                                               : 0
         Reason no IP address
                                              : 0
         Reason other
                                               : 0
       RX:
         Reason negative delay
         Reason missing TX timestamp
Reason missing TX timestamp
                                               : 0
                                               : 0
                                               : 0
         Reason missing RX timestamp
                                              : 0
          Reason probe full
                                              : 0
                                              : 0
         Reason probe not started
         Reason control code error
         Reason control code notif
                                               : 0
    Probes:
     Total started
                                              : 0
     Total completed
                                               : 0
     Total incomplete
                                                : 0
     Total advertisements
                                                : 0
RSVP-TE Delay-Measurement:
  Total active sessions
                                               : 0
```

```
Counters:
   Packets:
     Total sent
                                              : 0
     Total received
                                               : 0
   Errors:
       TX:
                                              : 0
         Reason interface down
         Reason no MPLS caps
                                              : 0
         Reason no IP address
                                              : 0
         Reason other
                                              : 0
         Reason negative delay
         Reason delay threshold exceeded
                                              : 0
         Reason missing TX timestamp
                                              : 0
         Reason missing RX timestamp
                                              : 0
                                              : 0
         Reason probe full
         Reason probe not started
         Reason control code error
                                              : 0
         Reason control code notif
                                             : 0
    Probes:
                                              : 0
     Total started
     Total completed
                                              : 0
     Total incomplete
                                               : 0
     Total advertisements
                                               : 0
Global Delay Counters:
                                              : 26
 Total packets sent
  Total query packets received
                                              : 26
 Total invalid session id
                                               : 0
 Total missing session
                                               : 0
\texttt{RP/0/0/CPU0:} router \texttt{\# show performance-measurement interfaces detail}
Thu Dec 12 14:16:09.692 PST
0/0/CPU0
______
0/2/CPU0
______
Interface Name: GigabitEthernet0/2/0/0 (ifh: 0x1004060)
 Delay-Measurement : Enabled
 Loss-Measurement
Configured IPv4 Address
Configured IPv6 Address
Link Local IPv6 Address
Configured Next-hop Address
Local MAC Address
'------hop MAC Address
 Loss-Measurement
                                 : Disabled
                                 : 10.10.10.2
: 10:10:10::2
: fe80::3a:6fff:fec9:cd6b
                                 : Unknown
                                 Primary VLAN Tag
 Secondary VLAN Tag
                                  : None
 State
                                  qU:
 Delay Measurement session:
   Session ID
   Last advertisement:
     Advertised at: Dec 12 2019 14:10:43.138 (326.782 seconds ago)
     Advertised reason: First advertisement
     Advertised delays (uSec): avg: 839, min: 587, max: 8209, variance: 297
   Next advertisement:
     Threshold check scheduled in 1 more probe (roughly every 120 seconds)
```

```
Aggregated delays (uSec): avg: 751, min: 589, max: 905, variance: 112
 Rolling average (uSec): 756
Current Probe:
 Started at Dec 12 2019 14:15:43.154 (26.766 seconds ago)
  Packets Sent: 9, received: 9
 Measured delays (uSec): avg: 795, min: 631, max: 1199, variance: 164
 Next probe scheduled at Dec 12 2019 14:16:13.132 (in 3.212 seconds)
 Next burst packet will be sent in 0.212 seconds
 Burst packet sent every 3.0 seconds
 Probe samples:
    Packet Rx Timestamp
                         Measured Delay (nsec)
   Dec 12 2019 14:15:43.156 689223
   Dec 12 2019 14:15:46.156
                                    876561
   Dec 12 2019 14:15:49.156
                                    913548
                                   1199620
   Dec 12 2019 14:15:52.157
    Dec 12 2019 14:15:55.156
                                     794008
    Dec 12 2019 14:15:58.156
                                     631437
    Dec 12 2019 14:16:01.157
                                    656440
    Dec 12 2019 14:16:04.157
                                    658267
    Dec 12 2019 14:16:07.157
                                    736880
```

You can also use the following commands for verifying the PM for link delay on the local-end router.

Command	Description
show performance-measurement history probe interfaces [interface]	Displays the PM link-delay probe history for interfaces.
show performance-measurement history aggregated interfaces [interface]	Displays the PM link-delay aggregated history for interfaces.
show performance-measurement history advertisement interfaces [interface]	Displays the PM link-delay advertisement history for interfaces.
show performance-measurement counters [interface interface] [location location-name]	Displays the PM link-delay session counters.

You can also use the following commands for verifying the PM for link-delay configuration on the remote-end router.

Command	Description
show performance-measurement responder summary [location location-name]	Displays the PM for link-delay summary on the remote-end router (responder).
show performance-measurement responder interfaces [interface]	Displays PM for link-delay for interfaces on the remote-end router.
show performance-measurement responder counters [interface interface] [location location-name]	Displays the PM link-delay session counters on the remote-end router.

Configure a Static Delay Value on an Interface

You can configure an interface to advertise a static delay value, instead of the measured delay value. When you configure a static delay value, the advertisement is triggered immediately. The average, minimum, and maximum advertised values will use the static delay value, with a variance of 0.

Scheduled probes will continue, and measured delay metrics will be aggregated and stored in history buffer. However, advertisement threshold checks are suppressed so that there are no advertisements of the actual measured delay values. If the configured static delay value is removed, the next scheduled advertisement threshold check will update the advertised measured delay values.

The static delay value can be configured from 1 to 16777215 microseconds (16.7 seconds).

This example shows how to configure a static delay of 1000 microseconds:

```
RP/0/0/CPU0:router(config) # performance-measurement
RP/0/0/CPU0:router(config-perf-meas) # interface TenGigE0/0/0/0
RP/0/0/CPU0:router(config-pm-intf) # delay-measurement
RP/0/0/CPU0:router(config-pm-intf-dm) # advertise-delay 1000
```

Running Configuration

```
performance-measurement
  interface GigabitEthernet0/0/0/0
  delay-measurement
   advertise-delay 1000
  !
  !
!
```

Verification

```
{\tt RP/0/RSP0/CPU0:ios\#\ show\ performance-measurement\ interfaces\ detail}
```

```
O/O/CPU0

Interface Name: GigabitEthernet0/0/0/0 (ifh: 0x0)
Delay-Measurement : Enabled

. . .

Last advertisement:
Advertised at: Nov 29 2021 21:53:00.656 (7.940 seconds ago)
Advertised reason: Advertise delay config
Advertised delays (uSec): avg: 1000, min: 1000, max: 1000, variance: 0
```

SR Performance Measurement Named Profiles

You can create a named performance measurement profile for delay or liveness.

Delay Profile

This example shows how to create a named SR performance measurement delay profile.

```
Router(config)# performance-measurement delay-profile sr-policy profile2
Router(config-pm-dm-srpolicy)# probe
Router(config-pm-dm-srpolicy-probe)# burst-interval 60
Router(config-pm-dm-srpolicy-probe)# computation-interval 60
Router(config-pm-dm-srpolicy-probe)# protocol twamp-light
Router(config-pm-dm-srpolicy-probe)# tos dscp 63

Router(config-pm-dm-srpolicy)# advertisement
Router(config-pm-dm-srpolicy-adv)# periodic
Router(config-pm-dm-srpolicy-adv-per)# interval 60
```

```
Router(config-pm-dm-srpolicy-adv-per) # minimum-change 1000
Router(config-pm-dm-srpolicy-adv-per) # threshold 20
Router(config-pm-dm-srpolicy-adv-per) # commit
Apply the delay profile for an SR Policy.
Router(config)# segment-routing traffic-eng
Router(config-sr-te) # policy TEST
Router(config-sr-te-policy) # color 4 end-point ipv4 10.10.10.10
Router (config-sr-te-policy) # performance-measurement
Router(config-sr-te-policy-perf-meas)# delay-measurement delay-profile name profile2
Router(config-sr-te-policy)# candidate-paths
Router(config-sr-te-policy-path) # preference 100
Router(config-sr-te-policy-path-pref)# explicit segment-list LIST1
Router(config-sr-te-pp-info) # weight 2
Router(config-sr-te-policy-path-pref) # explicit segment-list LIST2
Router(config-sr-te-pp-info) # weight 3
Running Configuration
Router# show run segment-routing traffic-eng policy TEST
segment-routing
traffic-eng
 policy TEST
   color 4 end-point ipv4 10.10.10.10
  candidate-paths
   preference 100
    explicit segment-list LIST1
     weight 2
    explicit segment-list LIST2
     weight 3
   .
   performance-measurement
    delay-measurement
    delay-profile name profile2
Verification
Router# show performance-measurement profile named-profile delay sr-policy name profile2
0/RSP0/CPU0
______
SR Policy Delay Measurement Profile Name: profile2
  Profile configuration:
   Measurement mode
                                               : One-way
   Protocol type
                                               : TWAMP-light
   Encap mode
                                               : UDP
   Type of service:
     PM-MPLS traffic class
     TWAMP-light DSCP
                                               : 63
   Probe computation interval
                                               : 60 (effective: 60) seconds
                                              : 60 (effective: 60) mSec
   Burst interval
   Packets per computation interval
                                              : 1000
   Periodic advertisement
                                               : Enabled
     Interval
                                               : 60 (effective: 60) sec
                                               : 20%
```

: 1000 uSec

: Disabled

Threshold
Minimum-change

Advertisement accelerated

```
Advertisement logging:

Delay exceeded : Disabled (default)
Threshold crossing check : Maximum-delay
Router alert : Disabled (default)
Destination sweeping mode : Disabled
Liveness detection parameters:

Multiplier : 3
Logging state change : Disabled
```

On-Demand SR Policy

```
Router(config-sr-te)# on-demand color 20
Router(config-sr-te-color)# performance-measurement delay-measurement
Router(config-sr-te-color-delay-meas)# delay-profile name profile2
Router(config-sr-te-color-delay-meas)# commit
```

Running Configuration

```
Router# show run segment-routing traffic-eng on-demand color 20

segment-routing
traffic-eng
on-demand color 20
performance-measurement
delay-measurement
delay-profile name profile2
```

Liveness Profile

This example shows how to create a *named* SR performance measurement liveness profile.

```
Router(config) # performance-measurement liveness-profile sr-policy name profile3
Router(config-pm-ld-srpolicy) # probe
Router(config-pm-ld-srpolicy-probe) # burst-interval 60
Router(config-pm-ld-srpolicy-probe) # measurement-mode loopback
Router(config-pm-ld-srpolicy-probe) # tos dscp 10
Router(config-pm-ld-srpolicy-probe) # liveness-detection
Router(config-pm-ld-srpolicy-probe) # multiplier 5
Router(config-pm-ld-srpolicy-probe) # commit
```

Apply the Liveness Profile for the SR Policy

This example shows how to enable PM for SR policy liveness for a specific policy.

For the same policy, you cannot enable delay-measurement (delay-profile) and liveness-detection (liveness-profile) at the same time. For example, if delay measurement is enabled, use the **no delay-measurement** command to disable it, and then enable the following command for enabling liveness detection.

```
Router(config) # segment-routing traffic-eng
Router(config-sr-te) # policy TRST2
Router(config-sr-te-policy) # color 40 end-point ipv4 20.20.20.20
Router(config-sr-te-policy) # candidate-paths
Router(config-sr-te-policy-path) # preference 50
Router(config-sr-te-policy-path-pref) # explicit segment-list LIST3
Router(config-sr-te-policy-path-pref) # explicit segment-list LIST4
Router(config-sr-te-policy-path-pref) # explicit segment-list LIST4
Router(config-sr-te-policy) # performance-measurement
Router(config-sr-te-policy-perf-meas) # liveness-detection liveness-profile name profile3
```

Running Configuration

Router# show run segment-routing traffic-eng policy TRST2

```
segment-routing
traffic-eng
policy TRST2
color 40 end-point ipv4 20.20.20.20
candidate-paths
  preference 50
    explicit segment-list LIST3
    weight 2
!
    explicit segment-list LIST4
    weight 3
!
!
    performance-measurement
    liveness-detection
    liveness-profile name profile3
```

Verification

Router# show performance-measurement profile named-profile delay

```
0/RSP0/CPU0
-----
SR Policy Liveness Detection Profile Name: profile1
  Profile configuration:
   Measurement mode
                                               : Loopback
   Protocol type
                                               : TWAMP-light
   Type of service:
     TWAMP-light DSCP
                                               : 10
                                               : 60 (effective: 60) mSec
   Burst interval
   Destination sweeping mode
                                              : Disabled
   Liveness detection parameters:
     Multiplier
                                               : 3
     Logging state change
                                               : Disabled
SR Policy Liveness Detection Profile Name: profile3
  Profile configuration:
                                               : Loopback
   Measurement mode
   Protocol type
                                               : TWAMP-light
   Type of service:
     TWAMP-light DSCP
                                               : 10
   Burst interval
                                              : 60 (effective: 60) mSec
   Destination sweeping mode
                                              : Disabled
   Liveness detection parameters:
     Multiplier
      Logging state change
                                               : Disabled
```

On-Demand SR Policy

For the same policy, you cannot enable delay-measurement (delay-profile) and liveness-detection (liveness-profile) at the same time. For example, to disable delay measurement, use the **no delay-measurement** command, and then enable the following command for enabling liveness detection.

```
Router(config-sr-te)# on-demand color 30
Router(config-sr-te-color)# performance-measurement
Router(config-sr-te-color-pm)# liveness-detection liveness-profile name profile1
Router(config-sr-te-color-delay-meas)# commit
```

Running Configuration

Router# show run segment-routing traffic-eng on-demand color 30

```
segment-routing
traffic-eng
on-demand color 30
performance-measurement
liveness-detection
liveness-profile name profile1
```

Verification

Router# show performance-measurement profile named-profile liveness sr-policy name profile1

```
0/RSP0/CPU0
SR Policy Liveness Detection Profile Name: profile1
  Profile configuration:
   Measurement mode
                                                : Loopback
                                                : TWAMP-light
   Protocol type
   Type of service:
      TWAMP-light DSCP
                                                : 10
    Burst interval
                                                : 60 (effective: 60) mSec
   Destination sweeping mode
                                                : Disabled
   Liveness detection parameters:
      Multiplier
                                                : 3
      Logging state change
                                                : Disabled
```

Delay Normalization

Table 4: Feature History Table

Feature Name	Release Information	Feature Description
SR-TE Delay Normalization for OSPF	Release 7.3.1	This feature extends the current Delay Normalization feature to support OSPF.

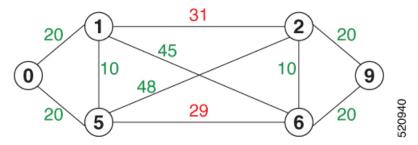
Performance measurement (PM) measures various link characteristics like packet loss and delay. Such characteristics can be used by IS-IS as a metric for Flexible Algorithm computation. Low latency routing using dynamic delay measurement is one of the primary use cases for Flexible Algorithm technology.

Delay is measured in microseconds. If delay values are taken as measured and used as link metrics during the IS-IS topology computation, some valid ECMP paths might be unused because of the negligible difference in the link delay.

The Delay Normalization feature computes a normalized delay value and uses the normalized value instead. This value is advertised and used as a metric during the Flexible Algorithm computation.

The normalization is performed when the delay is received from the delay measurement component. When the next value is received, it is normalized and compared to the previous saved normalized value. If the values are different, then the LSP generation is triggered.

The following formula is used to calculate the normalized value:


- **Dm** measured Delay
- Int configured normalized Interval

- Off configured normalized Offset (must be less than the normalized interval Int)
- **Dn** normalized Delay
- $\mathbf{a} = D\mathbf{m} / Int$ (rounded down)
- $\mathbf{b} = \mathbf{a} * Int + Off$

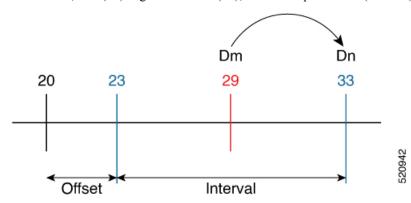
If the measured delay (Dm) is less than or equal to \mathbf{b} , then the normalized delay (Dn) is equal to \mathbf{b} . Otherwise, Dn is $\mathbf{b} + \mathbf{Int}$.

Example

The following example shows a low-latency service. The intent is to avoid high-latency links (1-6, 5-2). Links 1-2 and 5-6 are both low-latency links. The measured latency is not equal, but the difference is insignificant.

We can normalize the measured latency before it is advertised and used by IS-IS. Consider a scenario with the following:

- Interval = 10
- Offset = 3

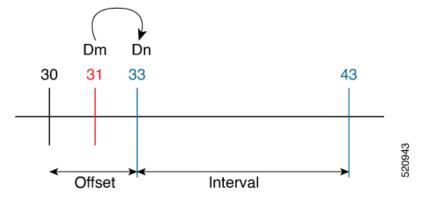

The measured delays will be normalized as follows:

• **Dm** =
$$29$$

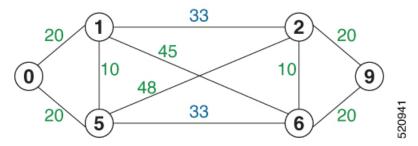
$$a = 29 / 10 = 2$$
 (2.9, rounded down to 2)

$$\mathbf{b} = 2 * 10 + 3 = 23$$

In this case, **Dm** (29) is greater than **b** (23); so **Dn** is equal to $\mathbf{b}+\mathbf{I}$ (23 + 10) = 33



• Dm = 31


a = 31 / 10 = 3 (3.1, rounded down to 3)

$$\mathbf{b} = 3 * 10 + 3 = 33$$

In this case, **Dm** (31) is less than **b** (33); so **Dn** is $\mathbf{b} = 33$

The link delay between 1-2 and 5-6 is normalized to 33.

Configuration

Delay normalization is disabled by default. To enable and configure delay normalization, use the **delay normalize interval** [offset offset] command.

- *interval* The value of the normalize interval in microseconds.
- *offset* The value of the normalized offset in microseconds. This value must be smaller than the value of normalized interval.

IS-IS Configuration

```
router isis 1
interface GigEth 0/0/0/0
  delay normalize interval 10 offset 3
address-family ipv4 unicast
  metric 77
```

OSPF Configuration

```
router ospf 1
area 0
  interface GigabitEthernet0/0/0/0
  delay normalize interval 10 offset 3
!
!
```

Link Anomaly Detection with IGP Penalty

Table 5: Feature History Table

Feature Name	Release Information	Feature Description
Link Anomaly Detection with IGP Penalty	Release 7.4.1	This feature allows you to define thresholds above the measured delay that is considered "anomalous" or unusual. When this threshold is exceeded, an anomaly (A) bit/flag is set along with link delay attribute that is sent to clients.

Customers might experience performance degradation issues, such as increased latency or packet loss on a link. Degraded links might be difficult to troubleshoot and can affect applications, especially in cases where traffic is sent over multiple ECMP paths where one of those paths is degraded.

The Anomaly Detection feature allows you to define a delay anomaly threshold to identify unacceptable link delays. Nodes monitor link performance using link delay monitoring probes. The measured value is compared against the delay anomaly threshold values. When the upper bound threshold is exceeded, the link is declared "abnormal", and performance measurement sets an anomaly bit (A-bit). When IGP receives the A-bit, IGP can automatically increase the IGP metric of the link by a user-defined amount to make this link undesirable or unusable. When the link recovers (lower bound threshold), PM resets the A-bit.

For information on configuring IGP penality, see the following:

- IS-IS Penalty for Link Delay Anomaly
- OSPF Penalty for Link Delay Anomaly

Usage Guidelines and Limitations

This feature is not active when narrow metrics are configured because the performance measurement advertisement requires the "wide" metric type length values.

Configuration Example

The following example shows how to configure the upper and lower anomoly thresholds. The range for *upper_bound* and *lower_bound* is from 1 to 200,000 microseconds. The *lower_bound* value must be less than the *upper_bound* value.

```
RP/0/0/CPU0:router(config) # performance-measurement delay-profile interfaces default
RP/0/0/CPU0:router(config-pm-dm-intf) # advertisement
RP/0/0/CPU0:router(config-pm-dm-intf-adv) # anomaly-check upper-bound 5000 lower-bound 1000
RP/0/0/CPU0:router(config-pm-dm-intf-adv) # commit
```

Running Configuration

```
performance-measurement
delay-profile interfaces default
advertisement
anomaly-check
upper-bound 5000 lower-bound 1000
!
```

! ! end

IP Endpoint Delay Measurement and Liveness Monitoring

Table 6: Feature History Table

Feature Name	Release Information	Feature Description
IP Endpoint Delay Measurement and Liveness Monitoring	Release 7.4.1Release 7.3.2	This feature measures the end-to-end delay and monitors liveness of a specified IP endpoint node, including VRF-aware (awareness of multiple customers belonging to different VRFs). This feature is supported on IPv4, IPv6, and MPLS data planes.

The Segment Routing Performance Measurement (SR-PM) for IP Endpoint feature dynamically measures the end-to-end delay and liveness towards a specified IP endpoint. IP endpoints can be located in default or non-default VRFs.

The following are benefits of this feature:

- Performance values (delay metrics and liveness states) are computed using TWAMP light, which is a commonly supported protocol.
- Performance values, including Histograms, are sent out using Streaming Telemetry, which is a push-based data collection technique, rather than a manual data collection technique.
- The feature is applicable to multiple data plane types (e.g. IPv4, IPv6, and MPLS).

Configuring IP Endpoint Performance Measurement

Configuring Probe Endpoint Source and Destination Addresses

Observe the following usage guidelines and limitations:

- The endpoint of a probe is specified with an IP address. IPv4 and IPv6 endpoint addresses are supported.
- The endpoint of a probe can be any IP address reachable by the sender. For example, a local interface or a remote node or host located within an operator's network or reachable through a VRF.
- The endpoint's IP address can be located in the global routing table or under a user-specified VRF routing table.
- VRF-awareness allows operators to deploy probes in the following scenarios:
 - Managed Customer Equipment (CE) scenarios:
 - PE to CE probes
 - CE to CE probes

- Unmanaged Customer Equipment (CE) scenarios:
 - PE to PE probes
 - PE to PE (source from PE-CE interface) probes
- SRv6 locator prefix and VRF SRv6 locator/function (uDT4/uDT6) as IPv6 endpoint of a probe is not supported.
- The endpoint's IP address can be reached through an IP path, MPLS LSP, or IP tunnel (GRE).
- When the endpoint is reachable using an MPLS LSP (for example, SR, LDP, RSVP-TE, SR Policy), the forwarding stage imposes the corresponding MPLS transport labels.
- When the endpoint is reachable via a GRE tunnel, the forwarding stage imposes the corresponding GRE header.
- PM probe over GREv4 and GREv6 is supported.
- When the endpoint is reachable via a VRF in an MPLS network, the forwarding stage imposes the corresponding MPLS service labels. In the forward path, sender node uses the configured VRF for the endpoint address. In the return path, reflector node derives the VRF based on which incoming VRF label the probe packet is received with.

Use the **performance-measurement endpoint** {**ipv4** | **ipv6**} *ip_addr* [**vrf** *WORD*] **source-address** {**ipv4** | **ipv6**} *ip_addr* command to configure a probe endpoint source and destination addresses on a sender node.

Example:

```
Router(config) # performance-measurement endpoint ipv4 10.1.1.5 source-address ipv4 10.1.1.1
Router(config) # performance-measurement endpoint ipv4 10.10.10.100 vrf green source-address ipv4 10.1.1.1
```

Configuring Probe Description

Use the **performance-measurement endpoint** {**ipv4** | **ipv6**} *ip_addr* [**vrf** *WORD*] **description** *LINE* command to configure a probe description.

Example:

```
Router(config) # performance-measurement endpoint ipv4 10.1.1.5 description Probe to 10.1.1.5

Router(config) # performance-measurement endpoint ipv4 10.10.10.100 vrf green description

Probe to 10.10.10.100
```

Configuring Probe Segment-lists

Observe the following usage guidelines and limitations:

 You can specify a custom labeled path via one or more user-configured segment-list. User-configured segment-list represents the forwarding path from sender to reflector when probe configured in delay-measurement mode.

- User-configured segment-list can also represent the reverse path (reflector to sender) when probe configured in livenes-detection mode.
- Up to 128 segment-lists can be configured under a probe.
- An additional PM session is created for each segment-list.
- Examples of the custom segment-list include:
 - Probe in delay-measurement mode with segment-list that includes Flex-Algo prefix SID of the end-point
 - Probe in liveness-detection mode with segment-list that includes both Flex-Algo prefix SID of the end-point and the sender
 - Probe in delay-measurement mode with segment-list that includes SID-list with labels to reach the end-point or the sender (forward direction)
 - Probe in liveness-detection mode with segment-list that includes SID-list with labels to reach the end-point and then back to sender (forward and reverse directions, respectively)
 - Probe in delay-measurement mode with segment-list that includes BSID associated with SR policy to reach the end-point
- Endpoint segment list configuration not supported under non-default VRF.

Segment-lists are configured under **segment-routing traffic-eng segment-list** submode. See SR-TE Policy with Explicit Path for details about configuring segment lists.

Use the **performance-measurement endpoint** {**ipv4** | **ipv6**} *ip_addr* [**vrf** *WORD*] **segment-list name** *WORD* command to configure probe segment-lists.

Example:

```
Router(config) # performance-measurement endpoint ipv4 10.1.1.5 segment-list name SIDLIST1

Router(config) # performance-measurement endpoint ipv4 10.10.10.100 vrf green segment-list
name SIDLIST1
```

Enabling Delay Measurement

Observe the following usage guidelines and limitations:

- Probe dynamically measures end-to-end performance delay values of an IP endpoint.
- Probe can be configured in either liveness-monitoring or delay-measurement modes; not both concurrently.

Use the **performance-measurement endpoint** {**ipv4** | **ipv6**} *ip_addr* [**vrf** *WORD*] **delay-measurement** command to enable delay measurement.

Example:

```
Router(config) # performance-measurement endpoint ipv4 10.1.1.5 delay-measurement

Router(config) # performance-measurement endpoint ipv4 10.10.10.100 vrf green delay-measurement
```

Assigning a Delay-Profile to the Probe

Use the **performance-measurement endpoint** {**ipv4** | **ipv6**} *ip_addr* [**vrf** *WORD*] **delay-measurement delay-profile name** *WORD* command to assign a delay-profile associated with the probe.

Example:

Router (config) # performance-measurement endpoint ipv4 10.1.1.5 delay-measurement delay-profile name PROFILE1

Router(config) # performance-measurement endpoint ipv4 10.10.10.100 vrf green delay-measurement delay-profile name PROFILE1

Enabling Liveness Detection

Observe the following usage guidelines and limitations:

- Probe dynamically monitors liveness of an IP endpoint.
- Liveness monitoring uses "self-addressed" PM IP packets crafted by the sender (where IP DA = sender's own IP address); this mode of operation is referred as "loopback mode".
- Liveness monitoring applies to endpoints reachable through MPLS LSP or IP tunnel.
- Liveness monitoring does not apply to endpoints reachable through IP path since sender's self-addressed PM IP packets would not be able to reach the intended endpoint destination.
- Probe can be configured in either liveness-monitoring or delay-measurement modes; not both concurrently.

Use the **performance-measurement endpoint** {**ipv4** | **ipv6**} *ip_addr* [**vrf** *WORD*] **liveness-detection** command to enable liveness detection.

Example:

```
Router(config) # performance-measurement endpoint ipv4 10.1.1.5 liveness-detection

Router(config) # performance-measurement endpoint ipv4 10.10.10.100 vrf green
liveness-detection
```

Assigning Liveness-Profile to the Probe

Use the **performance-measurement endpoint** {**ipv4** | **ipv6**} *ip_addr* [**vrf** *WORD*] **liveness-detection liveness-profile name** *WORD* command to configure the liveness-profile associated with the probe.

Example:

```
Router(config)# performance-measurement endpoint ipv4 10.1.1.5 liveness-detection liveness-profile name PROFILE3
```

Router(config)# performance-measurement endpoint ipv4 10.10.100 vrf green liveness-detection liveness-profile name PROFILE3

Collecting IP Endpoint Probe Statistics

• Statistics associated with the probe (computed delay metrics and liveness state) are available via Histogram and Streaming Telemetry.

- Model Driven Telemetry (MDT) is supported for the following data:
 - Summary, endpoint, session, and counter show command bags
 - · History buffers data
- Model Driven Telemetry (MDT) and Event Driven Telemetry (EDT) are supported for the following data:
 - Delay metrics computed in the last probe computation-interval (event: probe-completed)
 - Delay metrics computed in the last aggregation-interval; i.e. end of the periodic advertisement-interval (event: advertisement-interval expired)
 - Delay metrics last notified (event: notification-triggered)
- The following xpaths for MDT/EDT are supported:
 - Cisco-IOS-XR-perf-meas-oper:performance-measurement/nodes/node/endpoints/ endpoint-delay/endpoint-last-probes
 - Cisco-IOS-XR-perf-meas-oper:performance-measurement/nodes/node/endpoints/ endpoint-delay/endpoint-last-aggregations
 - Cisco-IOS-XR-perf-meas-oper:performance-measurement/nodes/node/endpoints/ endpoint-delay/endpoint-last-advertisements

IP Endpoint Performance Measurement Use Cases

The following use-cases show different ways to deploy delay measurement and liveness detection for IP endpoints.

Use-Case 1: Delay Measurement Probe Toward an IP Endpoint Reachable in the Global Routing Table

The following figure illustrates a delay measurement probe toward an IP endpoint reachable in the global routing table. The network interconnecting the sender and the reflector provides plain IP connectivity.

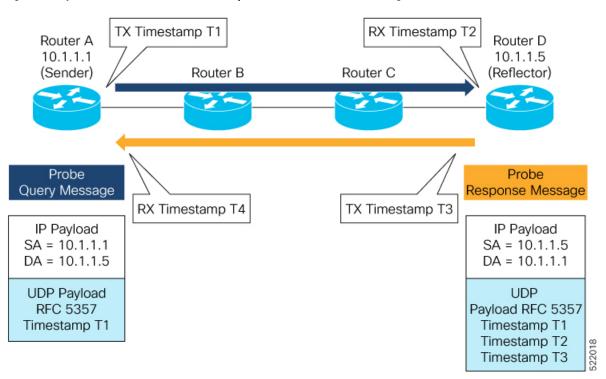


Figure 4: Delay Measurement Probe Toward an IP Endpoint Reachable in the Global Routing Table

Configuration

```
RouterA(config) # performance-measurement
RouterA(config-perf-meas) # endpoint ipv4 10.1.1.5
RouterA(config-pm-ep) # source-address ipv4 10.1.1.1
RouterA(config-pm-ep) # delay-measurement
RouterA(config-pm-ep-dm) # exit
RouterA(config-pm-ep) # exit
RouterA(config-perf-meas) # delay-profile endpoint default
RouterA(config-pm-dm-ep) # probe
RouterA(config-pm-dm-ep-probe) # measurement-mode one-way
```

Running Configuration

```
performance-measurement
  endpoint ipv4 10.1.1.5
   source-address ipv4 10.1.1.1
  delay-measurement
  !
  !
  delay-profile endpoint default
  probe
    measurement-mode one-way
  !
  !
}
```

Verification

RouterA# show performance-measurement endpoint ipv4~10.1.1.5

0/RSP0/CPU0

```
Endpoint name: IPv4-10.1.1.5-vrf-default
 Source address : 10.1.1.1
                          : default
 VRF name
 Delay-measurement
                            : Enabled
 Description
                            : Not set
 Profile Keys:
   Profile name
                           : default
   Profile type
                           : Endpoint Delay Measurement
 Seament-list
                            : None
  Delay Measurement session:
   Session ID : 33554433
   Last advertisement:
     No advertisements have occured
   Next advertisement:
     Threshold check scheduled in 4 more probes (roughly every 120 seconds)
     No probes completed
   Current computation:
     Started at: Jul 19 2021 16:28:06.723 (17.788 seconds ago)
     Packets Sent: 6, received: 0
     Measured delays (uSec): avg: 0, min: 0, max: 0, variance: 0
     Next probe scheduled at: Jul 19 2021 16:28:36.718 (in 12.207 seconds)
     Next burst packet will be sent in 0.207 seconds
     Burst packet sent every 3.0 seconds
```

Use-Case 2: Delay Measurement Probe Toward an IP Endpoint Reachable in a User-Specified VRF

The following figure illustrates a delay measurement probe toward an IP endpoint reachable in a user-specified L3VPN's VRF routing table. The L3VPN ingress PE (Router A) acts as the sender. The reflector is located in a CE device behind the L3VPN egress PE (Router E). The network interconnecting the L3VPN PEs provides MPLS connectivity with Segment Routing.

Probe Query Message Label = 20005 Label = 16005 (VRF) Label = 20005 IP Payload IP Payload (VRF) SA = 10.1.1.1SA = 10.1.1.1DA = 10.10.10.100 DA = 10.10.10.100 IP Payload SA = 10.1.1.1UDP UDP DA = 10.10.10.100 Payload RFC 5357 Payload RFC 5357 Timestamp T1 Timestamps T1 UDP Payload RFC 5357 Router A (L3VPN PE) Timestamp T1 Router E 10.1.1.1 (L3VPN PE) Router CE Prefix SID 16001 10.10.10.100 10.1.1.5 Prefix SID 16005 (Sender) Router B Router C (Reflector) SR MPLS Label = 20001 Probe Label = 16001 (VRF) Response Message Label = 20001 IP Payload IP Payload (VRF) SA = 10.10.10.100 SA = 10.10.10.100 DA = 10.1.1.1IP Payload DA = 10.1.1.1SA = 10.10.10.100 UDP DA = 10.1.1.1UDP Payload RFC 5357 Payload RFC 5357 Timestamp T1, T2, T3 UDP Timestamps T1, T2, T3 Payload RFC 5357 Timestamp T1, T2, T3

Figure 5: Delay Measurement Probe Toward an IP Endpoint Reachable in a User-Specified VRF

Configuration

```
RouterA(config) # performance-measurement
RouterA(config-perf-meas) # endpoint ipv4 10.10.10.100 vrf green
RouterA(config-pm-ep) # source-address ipv4 10.1.1.1
RouterA(config-pm-ep) # delay-measurement
RouterA(config-pm-ep-dm) # exit
RouterA(config-pm-ep) # exit
RouterA(config-perf-meas) # delay-profile endpoint default
RouterA(config-pm-dm-ep) # probe
RouterA(config-pm-dm-ep) # measurement-mode one-way
```

Running Configuration

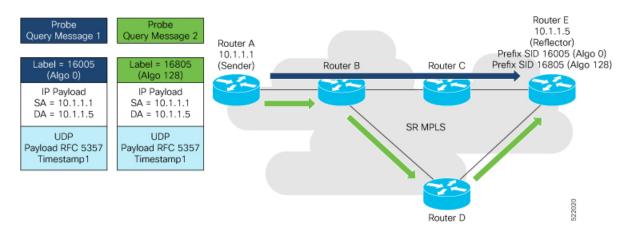
```
performance-measurement
  endpoint ipv4 10.10.10.10.100 vrf green
   source-address ipv4 10.1.1.1
  delay-measurement
!
!
delay-profile endpoint default
  probe
  measurement-mode one-way
```

```
!
!
```

Verification

RouterA# show performance-measurement endpoint vrf green

0/RSP0/CPU0


```
Endpoint name: IPv4-10.10.10.100-vrf-green
 Source address
                           : 10.1.1.1
 VRF name
                           : green
 Delay-measurement
                          : Enabled
 Description
                          : Not set
 Profile Keys:
   Profile name
                           : default
   Profile type
                           : Endpoint Delay Measurement
 Segment-list
                            : None
 Delay Measurement session:
   Session ID : 33554434
   Last advertisement:
     No advertisements have occured
   Next advertisement:
     Advertisement not scheduled as the probe is not running
   Current computation:
     Not running: Unable to resolve (non-existing) vrf
```

Use Case 3: Delay Measurement Probe Toward an IP Endpoint Using Custom Labeled Paths

The following figure illustrates a delay measurement probe toward an IP endpoint learned by the IGP. The network interconnecting the sender and reflector provides MPLS connectivity with Segment Routing.

The IP endpoint is advertised with multiple SR algorithms (Algo 0 and Flex Algo 128). The probe is configured with two custom-labeled paths in order to monitor the LSP for each algorithm separately.

Figure 6: Delay Measurement Probe Toward an IP Endpoint Using Custom Labeled Paths

Note

The probe response messages are not shown in the above figure.

Configuration

```
RouterA(config) # segment-routing
RouterA(config-sr)# traffic-eng
RouterA(config-sr-te) # segment-list name SIDLIST1-Algo0
RouterA(config-sr-te-sl)# index 10 mpls label 16005
RouterA(config-sr-te-sl)# exit
RouterA(config-sr-te)# segment-list name SIDLIST2-FlexAlgo128
RouterA(config-sr-te-sl)# index 10 mpls label 16085
RouterA(config-sr-te-sl)# exit
RouterA(config-sr-te)# exit
RouterA(config-sr)# exit
RouterA(config) # performance-measurement
RouterA(config-perf-meas)# endpoint ipv4 10.1.1.5
RouterA(config-pm-ep)# source-address ipv4 10.1.1.1
RouterA(config-pm-ep)# segment-list name SIDLIST1-Algo0
RouterA(config-pm-ep-sl)# exit
RouterA(config-pm-ep) # segment-list name SIDLIST2-FlexAlgo128
RouterA(config-pm-ep-sl)# exit
RouterA(config-pm-ep) # delay-measurement
RouterA(config-pm-ep-dm)# exit
RouterA(config-pm-ep)# exit
RouterA(config-perf-meas)# delay-profile endpoint default
RouterA(config-pm-dm-ep)# probe
RouterA(config-pm-dm-ep-probe) # measurement-mode one-way
```

Running Configuration

```
segment-routing
traffic-eng
  segment-list SIDLIST1-Algo0
   index 10 mpls label 16005
  segment-list SIDLIST2-FlexAlgo128
  index 10 mpls label 16085
   !
  -!
 !
performance-measurement
 endpoint ipv4 10.1.1.5
  segment-list name SIDLIST1-Algo0
  segment-list name SIDLIST2-FlexAlgo128
  source-address ipv4 10.1.1.1
  delay-measurement
  !
 delay-profile endpoint default
 probe
  measurement-mode one-way
  !
 !
```

Verification

RouterA# show performance-measurement endpoint ipv4 10.1.1.5

0/RSP0/CPU0

```
Endpoint name: IPv4-10.1.1.5-vrf-default
 Source address
                             : 10.1.1.1
 VRF name
                             : default
 Delay-measurement
                            : Enabled
 Description
                            : Not set
  Profile Keys:
   Profile name
                             : default
                             : Endpoint Delay Measurement
   Profile type
  Segment-list
                             : None
  Delay Measurement session:
   Session ID : 33554433
   Last advertisement:
     No advertisements have occured
   Next advertisement:
     Threshold check scheduled in 4 more probes (roughly every 120 seconds)
     No probes completed
    Current computation:
     Started at: Jul 19 2021 16:31:53.827 (15.844 seconds ago)
     Packets Sent: 6, received: 0
     Measured delays (uSec): avg: 0, min: 0, max: 0, variance: 0
     Next probe scheduled at: Jul 19 2021 16:32:22.957 (in 13.286 seconds)
     Next burst packet will be sent in 1.286 seconds
     Burst packet sent every 3.0 seconds
  Segment-list
                             : SIDLIST1-Algo0
  Delay Measurement session:
   Session ID
               : 33554435
   Last advertisement:
     No advertisements have occured
   Next advertisement:
     Threshold check scheduled in 4 more probes (roughly every 120 seconds)
     No probes completed
   Current computation:
     Started at: Jul 19 2021 16:31:53.827 (15.844 seconds ago)
     Packets Sent: 4, received: 0
     Measured delays (uSec): avg: 0, min: 0, max: 0, variance: 0
     Next probe scheduled at: Jul 19 2021 16:32:22.957 (in 13.286 seconds)
     Next burst packet will be sent in 2.940 seconds
     Burst packet sent every 3.0 seconds
  Segment-list
                             : SIDLIST2-FlexAlgo128
  Delay Measurement session:
   Session ID
                 : 33554436
   Last advertisement:
     No advertisements have occured
   Next advertisement:
     Threshold check scheduled in 4 more probes (roughly every 120 seconds)
     No probes completed
    Current computation:
```

```
Started at: Jul 19 2021 16:31:53.827 (15.844 seconds ago)
Packets Sent: 4, received: 0
Measured delays (uSec): avg: 0, min: 0, max: 0, variance: 0
Next probe scheduled at: Jul 19 2021 16:32:22.957 (in 13.286 seconds)
Next burst packet will be sent in 2.940 seconds
Burst packet sent every 3.0 seconds
```

Use-Case 4: Liveness Detection Probe Toward an IP Endpoint

IP endpoint liveness detection leverages the loopback measurement-mode. The following workflow describes the sequence of events.

1. The sender creates and transmits the PM probe packets.

The IP destination address (DA) on the probe packets is set to the loopback value of the sender itself.

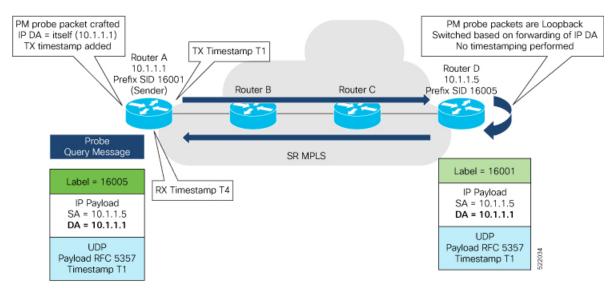
The transmit timestamp (T1) is added to the payload.

The probe packet is encapsulated with the label corresponding to the endpoint.

- 2. The network delivers the PM probe packets following the LSP toward the endpoint.
- 3. The end-point receives the PM probe packets.

Packets are forwarded back to the sender based on the forwarding entry associated with the IP DA of the PM probe packet. If an LSP exists, the probe packet is encapsulated with the label of the sender.

4. The sender node receives the PM probe packets.


The received timestamp (T4) stored.

If the sender node doesn't receive the specified number of probe packets (based on the configured multiplier), the sender node declares the PM session as down.

The following figure illustrates a liveness detection probe toward an IP endpoint learned by the IGP. The network interconnecting the sender and reflector provides MPLS connectivity with Segment Routing.

The liveness detection multiplier is set to 5 to specify the number of consecutive missed probe packets before the PM session is declared as down.

Figure 7: IP Endpoint Liveness Detection

Configuration

```
RouterA(config) # performance-measurement
RouterA(config-perf-meas)# endpoint ipv4 10.1.1.5
RouterA(config-pm-ep)# source-address ipv4 10.1.1.1
RouterA(config-pm-ep) # liveness-detection
RouterA(config-pm-ep-ld)# exit
RouterA(config-pm-ep)# exit
RouterA(config-perf-meas)# liveness-profile endpoint default
RouterA(config-pm-ld-ep) # liveness-detection
RouterA(config-pm-ld-ep-ld) # multiplier 5
RouterA(config-pm-ld-ep-ld)# exit
RouterA(config-pm-ld-ep)# probe
RouterA(config-pm-ld-ep-probe) # measurement-mode loopback
Running Configuration
performance-measurement
 endpoint ipv4 10.1.1.5
  source-address ipv4 10.1.1.1
  liveness-detection
 liveness-profile endpoint default
 liveness-detection
  multiplier 5
 probe
  measurement-mode loopback
 .
end
Verification
RouterA# show performance-measurement endpoint ipv4 10.1.1.5
0/RSP0/CPU0
Endpoint name: IPv4-10.1.1.5-vrf-default
  Source address
  VRF name
                              : default
 Liveness Detection
                             : Enabled
  Profile Keys:
   Profile name
                             : default
   Profile type
                             : Endpoint Liveness Detection
  Segment-list
                              : None
```

SR Policy End-to-End Delay Measurement

Session State: Down Missed count: 0

The extended TE link delay metric (minimum-delay value) can be used to compute paths for SR policies as an optimization metric or as an accumulated delay bound.

There is a need to monitor the end-to-end delay experienced by the traffic sent over an SR policy to ensure that the delay does not exceed the requested "upper-bound" and violate SLAs. You can verify the end-to-end

delay values before activating the candidate-path or the segment lists of the SR policy in forwarding table, or to deactivate the active candidate-path or the segment lists of the SR policy in forwarding table.

Note

The end-to-end delay value of an SR policy will be different than the path computation result (for example, the sum of TE link delay metrics) due to several factors, such as queuing delay within the routers.

Restrictions and Usage Guidelines for PM for SR Policy Delay

Hardware clocks must be synchronized between the querier and the responder nodes of the link using PTP for one-way delay measurement.

Configuring Performance Measurement Parameters

This example shows how to configure performance-measurement parameters for SR policy delay as a global default profile. The default values for the different parameters in the PM for SR policy delay is given as follows:

- **probe**: The default mode for probe is one-way delay measurement. Two-way delay and loopback modes are supported. See Measurement Modes, on page 2 for more information.
- burst interval: Interval for sending probe packet. The default value is 3000 milliseconds and the range is from 30 to 15000 milliseconds.
- computation interval: Interval for metric computation. Default is 30 seconds; range is 1 to 3600 seconds.
- protocol:
 - **twamp-light**: SR Policy delay measurement using RFC 5357 with IP/UDP encap. This is the default protocol.
 - pm-mpls: SR Policy delay measurement using RFC6374 with MPLS encap.
- tos: Type of Service
 - dscp value: The default value is 48 and the range is from 0 to 63.
 - **traffic-class** *value*: The default value is 6 and the range is from 0 to 7.
- advertisement threshold-check: minimum-delay/maximum-delay The default value of periodic advertisement threshold-check is maximum-delay.
- **periodic advertisement**: Periodic advertisement is enabled by default.
- **periodic-advertisement interval**: The default value is 120 seconds and the interval range is from 30 to 3600 seconds.
- **periodic-advertisement threshold**: Checks the minimum-delay metric change for threshold crossing for periodic advertisement. The default value is 10 percent and the range is from 0 to 100 percent.
- **periodic-advertisement minimum-change**: The default value is 500 microseconds (usec) and the range is from 0 to 100000 microseconds.
- accelerated advertisement: Accelerated advertisement is disabled by default.

- accelerated-advertisement threshold: Checks the minimum-delay metric change for threshold crossing for accelerated advertisement. The default value is 20 percent and the range is from 0 to 100 percent.
- accelerated-advertisement minimum: The default value is 500 microseconds and the range is from 1 to 100000 microseconds.

```
Router(config) # performance-measurement delay-profile sr-policy
Router(config-pm-dm-srpolicy) # probe
Router(config-pm-dm-srpolicy-probe) # burst-interval 60
Router(config-pm-dm-srpolicy-probe) # computation-interval 60
Router(config-pm-dm-srpolicy-probe) # protocol twamp-light
Router(config-pm-dm-srpolicy-probe) # tos dscp 63
Router(config-pm-dm-srpolicy-probe) # exit
Router(config-pm-dm-srpolicy) # advertisement
Router(config-pm-dm-srpolicy-adv)# periodic
Router(config-pm-dm-srpolicy-adv-per) # interval 60
Router(config-pm-dm-srpolicy-adv-per) # minimum-change 1000
Router(config-pm-dm-srpolicy-adv-per) # threshold 20
Router(config-pm-dm-srpolicy-adv-per)# exit
Router(config-pm-dm-srpolicy-adv) # accelerated
Router(config-pm-dm-srpolicy-adv-acc) # minimum-change 1000
Router(config-pm-dm-srpolicy-adv-acc) # threshold 10
Router(config-pm-dm-srpolicy-adv-acc) # exit
Router(config-pm-dm-srpolicy-adv) # threshold-check minimum-delay
Router(config-pm-dm-srpolicy-adv) # exit
Router(config-pm-dm-srpolicy)#
```

Configure the UDP Destination Port

Configuring the UDP port for TWAMP-Light protocol is optional. By default, PM uses port 862 as the TWAMP-reserved UDP destination port for delay.

The UDP port is configured for each PM measurement probe type (delay, loss, protocol, authentication mode, etc.) on querier and responder nodes. If you configure a different UDP port, the UDP port for each PM measurement probe type must match on the querier and the responder nodes.

Note

The same UDP destination port is used for delay measurement for links and SR Policy.

This example shows how to configure the UDP destination port for delay.

```
Router(config)# performance-measurement

Router(config-perf-meas)# protocol twamp-light

Router(config-pm-protocol)# measurement delay unauthenticated

Router(config-pm-proto-mode)# querier-dst-port 12000
```

Enable Performance Measurement for SR Policy

This example shows how to enable PM for SR policy delay for a specific policy.

```
Router(config) # segment-routing traffic-eng
Router(config-sr-te) # policy foo
Router(config-sr-te-policy) # performance-measurement
```

Router(config-sr-te-policy-perf-meas) # delay-measurement

SR Policy Probe IP/UDP ECMP Hashing Configuration

This example shows how to configure SR Policy ECMP IP-hashing mode.

• The destination IPv4 address 127.x.x.x – 127.y.y.y is used in the Probe messages to take advantages of 3-tuple IP hashing (source-address, destination-address, and local router ID) for ECMP paths of SR-MPLS Policy.

Note

The destination IPv4 address must be 127/8 range (loopback), otherwise it will be rejected.

- One PM session is always created for the actual endpoint address of the SR Policy.
- You can specify the number of IP addresses to sweep. The range is from 0 (default, no sweeping) to 128.
- Platforms may have a limitation for large label stack size to not check IP address for hashing.

```
Router(config) # performance-measurement delay-profile sr-policy
Router(config-pm-dm-srpolicy) # probe
Router(config-pm-dm-srpolicy-probe)# sweep
Router(config-pm-dm-srpolicy-probe-sweep) # destination ipv4 127.0.0.1 range 28
```

Verification

```
Router# show performance-measurement sr-policy
Mon Jan 20 18:48:41.002 PST
0/0/CPU0
______
                 LSP ID Tx/Rx
Policy Name
                               Avg/Min/Max/Variance
srte_c_10_ep_192.168.0.4 2 6/6 27012/26906/27203/106
```

Router# show performance-measurement sr-policy name srte c 10 ep 192.168.0.4 detail verbose Mon Jan 20 18:44:22.400 PST

```
0/0/CPU0
SR Policy name: srte_c_10_ep_192.168.0.4
 Color
       : 10
 Endpoint
                         : 192.168.0.4
 Number of candidate-paths : 1
 Candidate-Path:
   Instance
                       : 2
                       : 100
   Preference
                    : Configured
   Protocol-origin
                        : 100
```

Discriminator Source address : 192.168.0.2 Reverse path label : Not configured

Number of segment-lists : 1

```
Last advertisement:
 No advertisements have occured
Next advertisement:
 Check scheduled at the end of the current probe (roughly every 30 seconds)
 Aggregated delays (uSec): avg: 45218, min: 26512, max: 82600, variance: 18706
  Rolling average (uSec): 45218
Last probe:
 Packets Sent: 9, received: 9
 Measured delays (uSec): avg: 45218, min: 26512, max: 82600, variance: 18706
Current Probe:
  Started at Jan 20 2020 18:44:19.170 (3.453 seconds ago)
  Packets Sent: 3, received: 3
 Measured delays (uSec): avg: 26588, min: 26558, max: 26630, variance: 30
Next probe scheduled at Jan 20 2020 18:44:34.166 (in 11.543 seconds)
Next burst packet will be sent in 1.543 seconds
Burst packet sent every 5.0 seconds
Liveness Detection: Disabled
Segment-List
                          : R4
   16004
 Number of atomic paths : 3
  Last advertisement:
   No advertisements have occured
 Next advertisement:
   Aggregated delays (uSec): avg: 45218, min: 26512, max: 82600, variance: 18706
   Rolling average (uSec): 45218
 Last probe:
   Packets Sent: 9, received: 9
   Measured delays (uSec): avg: 45218, min: 26512, max: 82600, variance: 18706
  Current probe:
   Packets Sent: 3, received: 3
   Measured delays (uSec): avg: 26588, min: 26558, max: 26630, variance: 30
  Liveness Detection: Disabled
 Atomic path:
                          : 127.0.0.0
   Hops
   Session ID
                          : 33554434
   Last advertisement:
     No advertisements have occured
   Next advertisement:
     Aggregated delays (uSec): avg: 45407, min: 26629, max: 82600, variance: 18778
      Rolling average (uSec): 45407
   Last Probe:
      Packets Sent: 3, received: 3
      Measured delays (uSec): avg: 45407, min: 26629, max: 82600, variance: 18778
    Current Probe:
      Packets Sent: 1, received: 1
     Measured delays (uSec): avg: 26630, min: 26630, max: 26630, variance: 0
    Probe samples:
                               Measured Delay (nsec)
      Packet Rx Timestamp
      Jan 20 2020 18:44:19.198
                                     26630730
    Liveness Detection: Disabled
 Atomic path:
   Hops
                          : 127.0.0.1
    Session ID
                          : 33554435
    Last advertisement:
     No advertisements have occured
    Next advertisement:
     Aggregated delays (uSec): avg: 45128, min: 26521, max: 81961, variance: 18607
      Rolling average (uSec): 45128
    Last Probe:
      Packets Sent: 3, received: 3
      Measured delays (uSec): avg: 45128, min: 26521, max: 81961, variance: 18607
```

```
Current Probe:
         Packets Sent: 1, received: 1
         Measured delays (uSec): avg: 26576, min: 26576, max: 26576, variance: 0
       Probe samples:
                                 Measured Delay (nsec)
         Packet Rx Timestamp
         Jan 20 2020 18:44:19.198
                                    26576938
       Liveness Detection: Disabled
     Atomic path:
                            : 192.168.0.4
       Hops
       Session ID
                            : 33554433
       Last advertisement:
         No advertisements have occured
       Next advertisement:
         Aggregated delays (uSec): avg: 45119, min: 26512, max: 81956, variance: 18607
         Rolling average (uSec): 45119
       Last Probe:
         Packets Sent: 3, received: 3
         Measured delays (uSec): avg: 45119, min: 26512, max: 81956, variance: 18607
       Current Probe:
         Packets Sent: 1, received: 1
         Measured delays (uSec): avg: 26558, min: 26558, max: 26558, variance: 0
       Probe samples:
         Packet Rx Timestamp
                                Measured Delay (nsec)
         Jan 20 2020 18:44:19.198
                                      26558375
       Liveness Detection: Disabled
Router# show performance-measurement history probe sr-policy
Mon Jan 20 18:46:55.445 PST
SR Policy name: srte c 10 ep 192.168.0.4
 Color
 Endpoint
                            : 192.168.0.4
 Candidate-Path:
   Preference
                            : 100
   Protocol-origin
                            : Configured
                            : 100
   Discriminator
   Delay-Measurement history (uSec):
     Probe Start Timestamp Pkt(TX/RX)
                                          Average
                                                       Min
                                                                 Max
                              9/9
                                          26880
     Jan 20 2020 18:46:34.174
                                                      26684
                                                                27070
     Jan 20 2020 18:46:19.174
                                    9/9
                                            26899
                                                      26822
                                                                27004
                                   9/9
                                           26813
     Jan 20 2020 18:46:04.173
                                                      2.6571
                                                               27164
     Jan 20 2020 18:45:49.172
                                   9/9
                                           26985
                                                     26713
     Jan 20 2020 18:45:34.172
                                   9/9
                                           26744
                                                     26557
                                                              27005
     Jan 20 2020 18:45:19.171
                                    9/9
                                            26740
                                                      26435
                                                               27093
    Jan 20 2020 18:45:04.171
                                   9/9
                                           27115
                                                     26938
                                                               27591
     Jan 20 2020 18:44:49.171
                                    9/9
                                            26878
                                                      26539
                                                               27143
                                          26824
                                   9/9
     Jan 20 2020 18:44:34.171
                                                     26562
                                                               27265
     Jan 20 2020 18:44:19.170
                                   9/9
                                           26944
                                                     26558
                                                               27422
     Jan 20 2020 18:44:06.543
                                    9/9
                                            45218
                                                     26512
                                                               82600
    Segment-List
                            : R4
     16004
     Delay-Measurement history (uSec):
       Probe Start Timestamp Pkt(TX/RX)
                                           Average
                                                         Min
                                                                   Max
                                            26880
                                 9/9
       Jan 20 2020 18:46:34.174
                                                       26684
                                                                 27070
                                       9/9
       Jan 20 2020 18:46:19.174
                                              26899
                                                       26822
                                                                 27004
                                             26813
                                                       26571
       Jan 20 2020 18:46:04.173
                                      9/9
                                                                 27164
       Jan 20 2020 18:45:49.172
                                     9/9
                                           26985
                                                       26713
                                                                 27293
```

Jan 20 2020 18:45:34.1	72 9/9	26744	26557	27005
Jan 20 2020 18:45:19.1	71 9/9	26740	26435	27093
Jan 20 2020 18:45:04.1	- , -	27115	26938	27591
Jan 20 2020 18:44:49.1		26878	26539	27143
Jan 20 2020 18:44:34.1		26824	26562	27265
Jan 20 2020 18:44:19.1	70 9/9	26944	26558	27422
Jan 20 2020 18:44:06.5	43 9/9	45218	26512	82600
Atomic path:				
Hops	: 127.0.0.0			
Delay-Measurement hist	orv (uSec):			
Probe Start Timestam	=	71102200	Min	Max
Jan 20 2020 18:46:34		26927	26747	27070
Jan 20 2020 18:46:19		26982	26970	27004
Jan 20 2020 18:46:04		26895	26647	27164
Jan 20 2020 18:45:49	.172 3/3	27054	26764	27293
Jan 20 2020 18:45:34	.172 3/3	26801	26694	27005
Jan 20 2020 18:45:19	.171 3/3	26807	26524	27093
Jan 20 2020 18:45:04	.171 3/3	27226	26938	27591
Jan 20 2020 18:44:49		26976	26644	
Jan 20 2020 18:44:34		26880	26679	27265
Jan 20 2020 18:44:19		26994	26630	27422
Jan 20 2020 18:44:06	.543 3/3	45407	26629	82600
Atomic path:				
Hops	: 127.0.0.1			
Delay-Measurement hist	ory (uSec):			
Probe Start Timestam	o Pkt(TX/RX)	Average	Min	Max
Jan 20 2020 18:46:34	.174 3/3	26865	26705	26988
Jan 20 2020 18:46:19		26846	26822	26881
Jan 20 2020 18:46:04		26787	26581	26939
Jan 20 2020 18:45:49		26954	26728	27180
Jan 20 2020 18:45:34		26724	26577	26957
Jan 20 2020 18:45:19		26705	26452	27032
Jan 20 2020 18:45:04		27043	26972	27124
Jan 20 2020 18:44:49	.171 3/3	26848	26550	27062
Jan 20 2020 18:44:34	.171 3/3	26800	26562	27204
Jan 20 2020 18:44:19	.170 3/3	26927	26576	27327
Jan 20 2020 18:44:06		45128	26521	81961
Atomic path:				
-	: 192.168.0.4			
±				
Delay-Measurement hist	=	_		
Probe Start Timestam	•	_	Min	Max
Jan 20 2020 18:46:34		26848	26684	26967
Jan 20 2020 18:46:19	.174 3/3	26871	26833	26913
Jan 20 2020 18:46:04	.173 3/3	26759	26571	26876
Jan 20 2020 18:45:49		26947	26713	27163
Jan 20 2020 18:45:34		26708	26557	26939
Jan 20 2020 18:45:19		26708	26435	27075
Jan 20 2020 18:45:19			27016	
		27078		27138
Jan 20 2020 18:44:49		26812	26539	27043
Jan 20 2020 18:44:34		26793	26582	27181
Jan 20 2020 18:44:19		26911	26558	27308
Jan 20 2020 18:44:06	.543 3/3	45119	26512	81956

Router# show performance-measurement counters sr-policy name srte_c_10_ep_192.168.0.4 Mon Jan 20 18:47:55.499 PST

0/0/CPU0

SR Policy name: srte_c_10_ep_192.168.0.4
Candidate-Path:

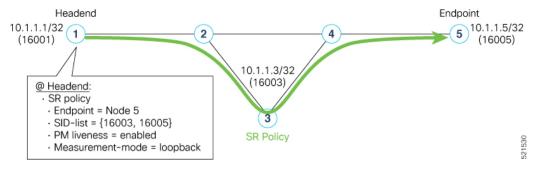
```
Instance : 2
Preference : 100
Protocol-origin : Configured
Discriminator : 100
Discriminator
Packets:
  Total sent
                                              : 141
  Total received
                                              : 141
Errors:
  Total sent errors
                                              : 0
  Total received errors
                                              : 0
Probes:
  Total started
                                             : 16
                                             : 15
  Total completed
  Total incomplete
                                             : 0
  Total advertisements
                                              : 2
Segment-List : R4
  16004
  Packets:
    Total sent
                                              : 141
    Total received
                                              : 141
  Errors:
    Total sent errors
    Total received errors
                                              : 0
  Probes:
    Total started
                                             : 16
    Total completed
                                             : 15
    Total incomplete
                                             . 0
    Total advertisements
```

SR Policy Liveness Monitoring

Table 7: Feature History Table

Feature Name	Release Information	Feature Description
SR Policy Liveness Monitoring	Release 7.3.1	This feature allows you to verify end-to-end traffic forwarding over an SR Policy candidate path by periodically sending performance monitoring packets.

SR Policy liveness monitoring allows you to verify end-to-end traffic forwarding over an SR Policy candidate path by periodically sending performance monitoring (PM) packets. The head-end router sends PM packets to the SR policy's endpoint router, which sends them back to the head-end without any control-plane dependency on the endpoint router.


The following are benefits to using SR-PM liveness monitoring:

- Allows both liveness monitoring and delay measurement using a single-set of PM packets as opposed
 to running separate monitoring sessions for each purpose. This improves the overall scale by reducing
 the number of PM sessions required.
- Eliminates network and device complexity by reducing the number of monitoring protocols on the network (for example, no need for Bidirectional Failure Detection [BFD]). It also simplifies the network and device operations by not requiring any signaling to bootstrap the performance monitoring session.

- Improves interoperability with third-party nodes because signaling protocols aren't required. In addition, it leverages the commonly supported TWAMP protocol for packet encoding.
- Improves liveness detection time because PM packets aren't punted on remote nodes
- Provides a common solution that applies to data-planes besides MPLS, including IPv4, IPv6, and SRv6.

The workflow associated with liveness detection over SR policy is described in the following sequence.

Consider an SR policy programmed at head-end node router 1 towards end-point node router 5. This SR policy is enabled for liveness detection using the loopback measurement-mode.

• A: The head-end node creates and transmits the PM probe packets.

The IP destination address (DA) on the probe packets is set to the loopback value of the head-end node itself.

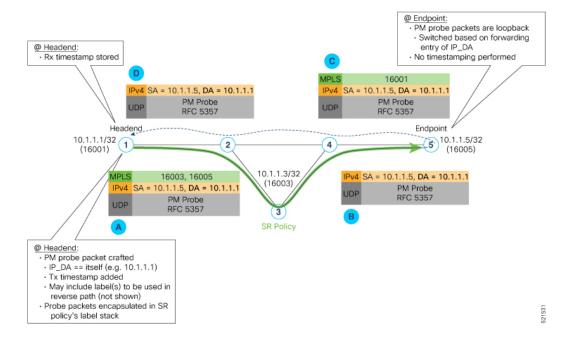
A transmit (Tx) timestamp is added to the payload.

Optionally, the head-end node may also insert extra encapsulation (labels) to enforce the reverse path at the endpoint node.

Finally, the packet is injected into the data-plane using the same encapsulation (label stack) of that of the SR policy being monitored.

- B: The network delivers the PM probe packets as it would user traffic over the SR policy.
- C: The end-point node receives the PM probe packets.

Packets are switched back based on the forwarding entry associated with the IP DA of the packet. This would typically translate to the end-point node pushing the prefix SID label associated with the head-end node.


If the head-end node inserted label(s) for the reverse path, then the packets are switched back at the end-point node based on the forwarding entry associated with the top-most reverse path label.

• **D**: Headend node receives the PM probe packets.

A received (Rx) timestamp stored.

If the head-end node receives the PM probe packets, the head-end node assume that the SR policy active candidate path is up and working.

If the head-end node doesn't receive the specified number of consecutive probe packets (based on configured multiplier), the head-end node assumes the candidate path is down and a configured action is trigerred.

Usage Guidelines and Limitations

The following usage guidelines and limitations apply:

Configuring SR Policy Liveness Monitoring

Configuring SR Policy liveness monitoring involves the following steps:

- Configuring a performance measurement liveness profile to customize generic probe parameters
- Enabling liveness monitoring under SR Policy by associating a liveness profile, and customizing SR policy-specific probe parameters

Configuring Performance Measurement Liveness Profile

Liveness monitoring parameters are configured under **performance-measurement liveness-profile** sub-mode. The following parameters are configurable:

- liveness-profile sr-policy {default | name name}
- Parameters defined under the **sr-policy default** liveneness-profile apply to any SR policy with liveness monitoring enabled and that does not reference a non-default (named) liveneness-profile.
- **probe**: Configure the probe parameters.
- measurement-mode: Liveness detection must use loopback mode (see Measurement Modes, on page 2).
- **burst interval**: Interval for sending probe packet. The default value is 3000 milliseconds and the range is from 30 to 15000 milliseconds.
- tos dscp *value*: The default value is 48 and the range is from 0 to 63. You can modify the DSCP value of the probe packets, and use this value to priortize the probe packets from headend to tailend.

• sweep destination ipv4 127.x.x.x range range: Configure SR Policy ECMP IP-hashing mode. Specifiy the number of IP addresses to sweep. The range is from 0 (default, no sweeping) to 128. The option is applicable to IPv4 packets.

Note

The destination IPv4 headendaddress 127.x.x.x – 127.y.y.y is used in the Probe messages to take advantages of 3-tuple IP hashing (source-address, destination-address, and local router ID) for ECMP paths of SR-MPLS Policy.

The destination IPv4 address must be 127/8 range (loopback), otherwise it will be rejected.

Note

One PM session is always created for the actual endpoint address of the SR Policy.

- **liveness-detection**: Configure the liveness-detection parameters:
- multiplier: Number of consecutive missed probe packets before the PM session is declared as down. The range is from 2 to 10, and the default is 3.

Note

The detection-interval is equal to (burst-interval * multiplier).

Enabling Liveness Monitoring under SR Policy

Enable liveness monitoring under SR Policy, associate a liveness-profile, and configure SR Policy-specific probe parameters under the **segment-routing traffic-eng policy performance-measurement** sub-mode. The following parameters are configurable:

- **liveness-detection**: Enables end-to-end SR Policy Liveness Detection for all segment-lists of the active and standby candidate-path that are in the forwarding table.
- liveness-profile name *name*: Specifies the profile name for named profiles.
- invalidation-action {down | none}:
 - **Down (default)**: When the PM liveness session goes down, the candidate path is immediately operationally brought down.
 - **None**: When the PM liveness session goes down, no action is taken. If logging is enabled, the failure is logged but the SR Policy operational state isn't modified.
- logging session-state-change: Enables Syslog messages when the session state changes.
- reverse-path label {BSID-value | NODE-SID-value}: Specifies the MPLS label to be used for the reverse path for the reply. If you configured liveness detection with ECMP hashing, you must specify the reverse path. The default reverse path uses IP Reply.
 - *BSID-value*: The Binding SID (BSID) label for the reverse SR Policy. (This is practical for manual SR policies with a manual BSID.)

• *NODE-SID-value*: The absolute SID label of the (local) Sender Node to be used for the reverse path for the reply.

Configuration Examples

Configure a Default SR-Policy PM Liveness-Profile

The following example shows a default sr-policy liveness-profile:

```
RP/0/RSP0/CPU0:ios(config) # performance-measurement
RP/0/RSP0/CPU0:ios(config-perf-meas) # liveness-profile sr-policy default
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy) # probe
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # measurement-mode loopback
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # burst-interval 1500
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # tos dscp 52
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # exit
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy) # liveness-detection
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-ld) # multiplier 5
```

Running Configuration:

```
performance-measurement
  liveness-profile sr-policy default
   liveness-detection
   multiplier 5
  !
  probe
   tos dscp 52
   measurement-mode loopback
   burst-interval 1500
  !
  !
  end
```

Configure a Named (Non-Default) SR-Policy PM Liveness-Profile

The following example shows a named sr-policy liveness-profile:

```
RP/0/RSP0/CPU0:ios(config) # performance-measurement
RP/0/RSP0/CPU0:ios(config-perf-meas) # liveness-profile name sample-profile
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy) # probe
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # measurement-mode loopback
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # burst-interval 1500
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # tos dscp 52
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # exit
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy) # liveness-detection
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-ld) # multiplier 5
```

Running Configuration:

```
performance-measurement
  liveness-profile sr-policy name sample-profile
  liveness-detection
   multiplier 5
  !
  probe
   tos dscp 52
   measurement-mode loopback
   burst-interval 1500
  !
```

```
!
!
end
```

Configure a SR-Policy PM Liveness-Profile with Sweep Parameters

The following example shows a named liveness-profile with sweep parameters:

```
RP/0/RSP0/CPU0:ios(config) # performance-measurement
RP/0/RSP0/CPU0:ios(config-perf-meas) # liveness-profile name sample-profile
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy) # probe
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # measurement-mode loopback
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # burst-interval 1500
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # tos dscp 52
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # sweep
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe-sweep) # destination ipv4 127.0.0.1 range 25
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe-sweep) # exit
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-probe) # exit
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy) # liveness-detection
RP/0/RSP0/CPU0:ios(config-pm-ld-srpolicy-ld) # multiplier 5
```

Running Configuration

```
performance-measurement
  liveness-profile sr-policy name sample-profile
  liveness-detection
   multiplier 5
  !
  probe
   tos dscp 52
   sweep
   destination ipv4 127.0.0.1 range 25
  !
  measurement-mode loopback
  burst-interval 1500
  !
  !
  !
end
```

Enable Liveness Monitoring Under SR Policy

The following example shows how to enable liveness monitoring under SR Policy, associate a liveness-profile, and configure the invalidation action:

```
RP/0/RSP0/CPU0:ios(config) # segment-routing traffic-eng
RP/0/RSP0/CPU0:ios(config-sr-te)# policy FOO
RP/0/RSP0/CPU0:ios(config-sr-te-policy)# performance-measurement
RP/0/RSP0/CPU0:ios(config-sr-te-policy-perf-meas)# liveness-detection
RP/0/RSP0/CPU0:ios(config-sr-te-policy-live-detect)# liveness-profile name sample-profile
RP/0/RSP0/CPU0:ios(config-sr-te-policy-live-detect)# invalidation-action none
```

Running Config

```
segment-routing
traffic-eng
policy FOO
 performance-measurement
  liveness-detection
   liveness-profile name sample-profile
   invalidation-action none
 !
!
!
```

! end

Enable Liveness Monitoring under SR Policy with Optional Parameters

The following example shows how to enable liveness monitoring under SR Policy, associate a liveness-profile, and configure reverse path label and session logging:

```
RP/0/RSP0/CPU0:ios(config) # segment-routing traffic-eng
RP/0/RSP0/CPU0:ios(config-sr-te) # policy BAA
RP/0/RSP0/CPU0:ios(config-sr-te-policy) # performance-measurement
RP/0/RSP0/CPU0:ios(config-sr-te-policy-perf-meas) # liveness-detection
RP/0/RSP0/CPU0:ios(config-sr-te-policy-live-detect) # liveness-profile name sample-profile
RP/0/RSP0/CPU0:ios(config-sr-te-policy-live-detect) # invalidation-action down
RP/0/RSP0/CPU0:ios(config-sr-te-policy-live-detect) # logging session-state-change
RP/0/RSP0/CPU0:ios(config-sr-te-policy-live-detect) # exit
RP/0/RSP0/CPU0:ios(config-sr-te-policy-perf-meas) # reverse-path label 16001
```

Running Config

```
segment-routing
traffic-eng
policy BAA
performance-measurement
liveness-detection
logging
session-state-change
!
liveness-profile name sample-profile
invalidation-action down
!
reverse-path
label 16001
!
!
!
end
```