afran]n
CISCO.

L]
g
-
=
S
i
.-
g
=
]
e

Programmability Configuration Guide for Cisco ASR 9000 Series Routers,
10S XR Release 7.4.x

First Published: 2021-07-01

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH
THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY,
CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of
the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS" WITH ALL FAULTS.
CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN' NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network
topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional
and coincidental.

All printed copies and duplicate soft copies of this document are considered uncontrolled. See the current online version for the latest version.
Cisco has more than 200 offices worldwide. Addresses and phone numbers are listed on the Cisco website at www.cisco.com/go/offices.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL:
https://www.cisco.com/c/en/us/about/legal/trademarks.html. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (1721R)

©2021 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/c/en/us/about/legal/trademarks.html

« To receive timely, relevant information from Cisco, sign up at Cisco Profile Manager.

« To get the business results you’re looking for with the technologies that matter, visit Cisco Services.

« To submit a service request, visit Cisco Support.

« To discover and browse secure, validated enterprise-class apps, products, solutions and services, visit Cisco DevNet.
« To obtain general networking, training, and certification titles, visit Cisco Press.

« To find warranty information for a specific product or product family, access Cisco Warranty Finder.

Cisco Bug Search Tool

Cisco Bug Search Tool (BST) is a web-based tool that acts as a gateway to the Cisco bug tracking system that maintains a comprehensive list of defects and vulnerabilities in Cisco products
and software. BST provides you with detailed defect information about your products and software.

©2021 Cisco Systems, Inc. All rights reserved.

https://www.cisco.com/offer/subscribe
https://www.cisco.com/go/services
https://www.cisco.com/c/en/us/support/index.html
https://developer.cisco.com/
http://www.ciscopress.com
http://www.cisco-warrantyfinder.com
https://www.cisco.com/c/en/us/support/web/tools/bst/bsthelp/index.html

CONTENTS

CHAPTER 1 New and Changed Feature Information 1

New and Changed Programmability Features 1

CHAPTER 2 Drive Network Automation Using Programmable YANG Data Models 3
YANG Data Model 4
Access the Data Models 8
CLI to Yang Mapping Tool 9
Communication Protocols 10
NETCONF Protocol 11
gRPC Protocol 11
YANG Actions 11

CHAPTER 3 Use NETCONF Protocol to Define Network Operationswith Data Models 15
NETCONF Operations 18
Retrieve Default Parameters Using with-defaults Capability 22
Retrieve Transaction ID for NSO Operations 29
Set Router Clock Using Data Model in a NETCONF Session 31

CHAPTER 4 Use gRPC Protocol to Define Network Operationswith Data Models 37
gRPC Operations 40
gRPC Authentication Modes 41
Authenticate gRPC Services 42
gRPC Network Management Interface 43
gRPC Network Operations Interface 43
gNOIRPCs 43
Configure Interfaces Using Data Models in a gRPC Session 48

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

. Contents

CHAPTER 5 Unified Data Models 57
Unified Configuration Models 57

CHAPTER 6 Enhancementsto Data Models 65

Enhancements to Sensor Paths 65

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

CHAPTER 1

New and Changed Feature Information

This section lists all the new and changed features for the Programmability Configuration Guide.

* New and Changed Programmability Features, on page 1

New and Changed Programmability Features

Feature Description Changed | Where Documented
in
Release

Telemetry Support | This feature provides telemetry gRPC Network Release |Enhancements to
for OpenConfig | Management Interface and Use gRPC Protocol to | 7.4.2 Sensor Paths, on page
Interfaces, [IPv4 | Define Network Operations with Data Models 65
and IPv6 support for the following openconfig-if-ip.yang
Addresses and sensor paths. Previously, only NETCONF
State edit-config, get-config and get operations were

supported. With this new feature, telemetry polling

at a cadence or on-change can be retrieved for [Pv4

and IPv6 data.
Transitioning Unified models are CLI-based YANG models that |Release |Unified Configuration
Native Models to |are designed to replace the native schema-based 7.4.1 Models, on page 57
Unified Models | models. UM models are generated directly from the
(UM) I0S XR CLIs and mirror them in several ways. This

results in improved usability and faster adoption of

YANG models.

You can access the new unified models from the

Github repository.
CLI to YANG This tool provides a quick reference for IOS XR Release |CLIto Yang Mapping
Mapping tool CLIs and a corresponding YANG data model that |7.4.1 Tool, on page 9

could be used.

New command introduced for this feature: yang
describe

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

New and Changed Feature Information |
. New and Changed Programmability Features

Feature Description Changed | Where Documented
in
Release
Unique Commit ID | The network orchestrator is a central point of Release |Retrieve Transaction
for Configuration |management for the network and typical workflow |7.4.1 ID for NSO
State involves synchronizing the configuration states of Operations, on page 29

the routers it manages. Loading configurations for
comparing the states involves unnecessary data and
subsequent comparisons are load intensive. This
feature synchronizes the configuration states between
the orchestrator and the router using a unique commit
ID that the router maintains for each configuration
commit. The orchestrator retrieves this commit ID
from the router using NETCONF Remote Procedure
Calls (RPCs) to identify whether the router has the
latest configuration.

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

CHAPTER 2

Drive Network Automation Using Programmable
YANG Data Models

Typically, a network operation center is a heterogeneous mix of various devices at multiple layers of the
network. Such network centers require bulk automated configurations to be accomplished seamlessly. CLIs
are widely used for configuring and extracting the operational details of a router. But the general mechanism
of CLI scraping is not flexible and optimal. Small changes in the configuration require rewriting scripts
multiple times. Bulk configuration changes through CLIs are cumbersome and error-prone. These limitations
restrict automation and scale. To overcome these limitations, you need an automated mechanism to manage
your network.

Cisco IOS XR supports a programmatic way of configuring and collecting operational data of a network
device using data models. They replace the process of manual configuration, which is proprietary, and highly
text-based. The data models are written in an industry-defined language and is used to automate configuration
task and retrieve operational data across heterogeneous devices in a network. Although configurations using
CLIs are easier and human-readable, automating the configuration using model-driven programmability results
in scalability.

Model-driven programmability provides a simple, flexible and rich framework for device programmability.
This programmability framework provides multiple choices to interface with an IOS XR device in terms of
transport, protocol and encoding. These choices are decoupled from the models for greater flexibility.

The following image shows the layers in model-driven programmability:

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Drive Network Automation Using Programmable YANG Data Models |

[l YANG Data Model

Figure 1: Model-driven Programmability Layers

Application (client)

APls l Model-Driven APls. YANG Development Kit {YDK) J

Model-Driven

Configuration

Model-Driven Transport { SSH ’ ‘ HTTP J
Telemetry

& o [wermrmmomom |

Device (server)

369803

Data models provides access to the capabilities of the devices in a network using Network Configuration
Protocol (NETCONF Protocol) or google-defined Remote Procedure Calls (gRPC Protocol). The operations
on the router are carried out by the protocols using YANG models to automate and programme operations in
a network.

Benefits of Data Models

Configuring routers using data models overcomes drawbacks posed by traditional router management because
the data models:

* Provide a common model for configuration and operational state data, and perform NETCONF actions.
» Use protocols to communicate with the routers to get, manipulate and delete configurations in a network.

» Automate configuration and operation of multiple routers across the network.

This article describes how you benefit from using data models to programmatically manage your network
operations.

* YANG Data Model, on page 4

* Access the Data Models, on page 8

» CLI to Yang Mapping Tool, on page 9
» Communication Protocols, on page 10
* YANG Actions, on page 11

YANG Data Model

A YANG module defines a data model through the data of the router, and the hierarchical organization and
constraints on that data. Each module is uniquely identified by a namespace URL. The YANG models describe
the configuration and operational data, perform actions, remote procedure calls, and notifications for network
devices.

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, I10S XR Release 7.4.x

Drive Network Automation Using Programmable YANG Data Models
YANG Data Model [

The YANG models must be obtained from the router. The models define a valid structure for the data that is
exchanged between the router and the client. The models are used by NETCONF and gRPC-enabled
applications.

\)

Note gRPC is supported only in 64-bit platforms.

« Cisco-specific models: For a list of supported models and their representation, see Native models.

» Common models: These models are industry-wide standard YANG models from standard bodies, such
as IETF and IEEE. These models are also called Open Config (OC) models. Like synthesized models,
the OC models have separate YANG models defined for configuration data and operational data, and
actions.

YANG models can be: For a list of supported OC models and their representation, see OC models.
All data models are stamped with semantic version 1.0.0 as baseline from release 7.0.1 and later.
For more details about YANG, refer RFC 6020 and 6087.

Data models handle the following types of requirements on routers (RFC 6244):

« Configuration data: A set of writable data that is required to transform a system from an initial default
state into its current state. For example, configuring entries of the IP routing tables, configuring the
interface MTU to use a specific value, configuring an ethernet interface to run at a given speed, and so
on.

» Operational statedata: A set of data that is obtained by the system at runtime and influences the behavior
of the system in a manner similar to configuration data. However, in contrast to configuration data,
operational state data is transient. The data is modified by interactions with internal components or other
systems using specialized protocols. For example, entries obtained from routing protocols such as OSPF,
attributes of the network interfaces, and so on.

« Actions: A set of NETCONF actions that support robust network-wide configuration transactions. When
a change is attempted that affects multiple devices, the NETCONF actions simplify the management of
failure scenarios, resulting in the ability to have transactions that will dependably succeed or fail atomically.

For more information about Data Models, see RFC 6244.

YANG data models can be represented in a hierarchical, tree-based structure with nodes. This representation
makes the models easy to understand.

Each feature has a defined YANG model, which is synthesized from schemas. A model in a tree format
includes:

* Top level nodes and their subtrees
* Subtrees that augment nodes in other YANG models
* Custom RPCs

YANG defines four node types. Each node has a name. Depending on the node type, the node either defines
a value or contains a set of child nodes. The nodes types for data modeling are:

* leaf node - contains a single value of a specific type

* leaf-list node - contains a sequence of leaf nodes

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr/
https://github.com/openconfig/public/tree/master/release/models

Drive Network Automation Using Programmable YANG Data Models |
[l YANG Data Model

* list node - contains a sequence of leaf-list entries, each of which is uniquely identified by one or more
key leaves

* container node - contains a grouping of related nodes that have only child nodes, which can be any of
the four node types

Structure of CDP Data Model

Cisco Discovery Protocol (CDP) configuration has an inherent augmented model
(interface-configuration). The augmentation indicates that CDP can be configured at both the global
configuration level and the interface configuration level. The data model for CDP interface manager
in tree structure is:

module: Cisco-IOS-XR-cdp-cfg
+--rw cdp

+--rw timer? uint32
+--rw advertise-vl-only? empty
+--rw enable? boolean
+--rw hold-time? uint32
+--rw log-adjacency? empty

augment /al:interface-configurations/al:interface-configuration:
+--rw cdp
+--rw enable? empty

In the CDP YANG model, the augmentation is expressed as:

augment "/al:interface-configurations/al:interface-configuration" ({
container cdp {
description "Interface specific CDP configuration";
leaf enable {
type empty;
description "Enable or disable CDP on an interface";

}

description
"This augment extends the configuration data of
'Cisco-I0S-XR-ifmgr-cfg'";

CDP Operational YANG:

The structure of a data model can be explored using a YANG validator tool such as pyang and the
data model can be formatted in a tree structure. The following example shows the CDP operational
model in tree format.

module: Cisco-IOS-XR-cdp-oper
+--ro cdp
+--ro nodes
+--ro node* [node-name]
+--ro neighbors
| +--ro details
| | +--ro detail*
| | +--ro interface-name? xr:Interface-name
| | +--ro device-id? string
| | +--ro cdp-neighbor*
| | +--ro detail
| | | +--ro network-addresses
| | | +--ro cdp-addr-entry*
[| +--ro address
| | | +--ro address-type? Cdp-13-addr-protocol
| | | +--ro ipv4-address? inet:ipv4-address

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

https://github.com/mbj4668/pyang

| Drive Network Automation Using Programmable YANG Data Models
YANG Data Model [

| +--ro ipvé-address? In6-addr
+--ro protocol-hello-list
| +--ro cdp-prot-hello-entry*

[|

[|

[|

| | | | +--ro hello-message? yang:hex-string

| | | +--ro version? string

| | | +--ro vtp-domain? string

| | | +--ro native-vlan? uint32

| | | +--ro duplex? Cdp-duplex

| | | +--ro system-name? string

| | +--ro receiving-interface-name? xr:Interface—-name

| | +--ro device-id? string

| | +--ro port-id? string

| | +--ro header-version? uint8

| | +--ro hold-time? uintlé

| | +--ro capabilities? string

| | +--ro platform? string
.......................... (snipped) ..ttt e e

Components of a YANG Module

A YANG module defines a single data model. However, a module can reference definitions in other modules
and sub-modules by using one of these statements:

The YANG models configure a feature, retrieve the operational state of the router, and perform actions.
* import imports external modules
« include includes one or more sub-modules

 augment provides augmentations to another module, and defines the placement of new nodes in the data
model hierarchy

» when defines conditions under which new nodes are valid

* prefix references definitions in an imported module

\}

Note The gRPC YANG path or JSON data is based on YANG module name and not YANG namespace.

YANG Module Set

You can provide structured, protocol-driven access to a network management configuration and its state
information using YANG models. By default, all YANG models (native and OpenConfig) are accessible.
You can activate a desired module-set using the yang-server module-set command to access a specific set
of YANG modules.

Accessing the deprecated Cisco IOS XR YANG models generates a syslog message only once until the YANG
agent (NETCONF or Emsd) restarts. After a restart, the message is generated again. For deprecated Cisco
I0S XR data models, see Backward InCompatible (BIC) folder from Deprecated XPaths.

Configure YANG Module Set

To activate a specific set of YANG module, use the yang-server module-set command.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

https://github.com/YangModels/yang/tree/main/vendor/cisco/xr

Drive Network Automation Using Programmable YANG Data Models |
. Access the Data Models

Router# config
Router (config) # yang-server module-set XR-only
Router# end

Access the Data Models

You can access the Cisco IOS XR native and OpenConfig data models from GitHub, a software development
platform that provides hosting services for version control.

CLI-based YANG data models, also known as unified configuration models were introduced in Cisco I0S
XR, Release 7.0.1. The new set of unified YANG config models are built in alignment with the CLI commands.

You can also access the supported data models from the router. The router ships with the YANG files that
define the data models. Use NETCONF protocol to view the data models available on the router using
ietf-netconf-monitoring request.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter type="subtree">
<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">
<schemas/>
</netconf-state>
</filter>
</get>
</rpc>

All the supported YANG models are displayed as response to the RPC request.

<rpc-reply message-id="16a79f87-1d47-4f7a-al6a-9405e6d865b9"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<data>

<netconf-state xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring">

<schemas>

<schema>
<identifier>Cisco-IOS-XR-crypto-sam-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-I0S-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>Cisco-IOS-XR-crypto-sam-oper-subl</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-I0S-XR-crypto-sam-oper</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>Cisco-IOS-XR-snmp-agent-oper</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://cisco.com/ns/yang/Cisco-I0S-XR-snmp-agent-oper</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>openconfig-aft-types</identifier>
<version>1.0.0</version>

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

https://github.com/YangModels/yang/tree/master/vendor/cisco/xr
https://github.com/openconfig/public/tree/master/release/models

| Drive Network Automation Using Programmable YANG Data Models
CLI to Yang Mapping Tool .

<format>yang</format>
<namespace>http://openconfig.net/yang/fib-types</namespace>
<location>NETCONF</location>

</schema>

<schema>
<identifier>openconfig-mpls-ldp</identifier>
<version>1.0.0</version>
<format>yang</format>
<namespace>http://openconfig.net/yang/ldp</namespace>
<location>NETCONF</location>

</schema>

</schemas>

</netconf-state>

CLI to Yang Mapping Tool

Table 1: Feature History Table

Feature Name Release Information Description

CLI to YANG Mapping Tool Release 7.4.1 This tool provides a quick reference
for IOS XR CLIs and a
corresponding YANG data model
that could be used.

New command introduced for this
feature: yang describe

)

Note Starting from Release 7.11.1, the command yang-describein the Command Line Interface (CLI) is deprecated.

CLI commands are widely used for configuring and extracting the operational details of a router. But bulk
configuration changes through CLIs are cumbersome and error-prone. These limitations restrict automation
and scale. To overcome these limitations, you need an automated mechanism to manage your network. Cisco
I0S XR supports a programmatic way of configuring and collecting operational data of a router using Yang
data models. However, owing to the large number of CLI commands, it is cumbersome to determine the
mapping between the CLI command and its associated data model.

The CLI to Yang describer tool is a component in the IOS XR software. It helps in mapping the CLI command
with its equivalent data models. With this tool, network automation using data models can be adapted with
ease.

The tool simulates the CLI command and displays the following data:
* Yang model mapping to the CLI command

» List of the associated sensor paths

To retrieve the Yang equivalent of a CLI, use the following command:

Router#yang-describe ?
configuration Describe configuration commands (cisco-support)
operational Describe operational commands (cisco-support)

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Drive Network Automation Using Programmable YANG Data Models |
. Communication Protocols

The tool supports description of both operational and configurational commands.
Example: Configuration Data

In the following example, the Yang paths for configuring the MPLS label range with minimum and
maximum static values are displayed:

Router#yang-describe configuration mpls label range table 0 34000 749999 static 34000 99999

Mon May 10 12:37:27.192 UTC

YANG Paths:
Cisco-I0S-XR-um-mpls-1sd-cfg:mpls/label/range/table-0
Cisco-I0S-XR-mpls-1lsd-cfg:mpls-1sd/label-databases/label-database/label-range
Cisco-I0S-XR-mpls-1lsd-cfg:mpls-1sd/label-databases/label-database/label-range/minvalue
Cisco-I0S-XR-mpls-1lsd-cfg:mpls-1sd/label-databases/label-database/label-range/max-value

Cisco-I0S-XR-mpls-1sd-cfg:mpls-1sd/label-databases/label-database/label-range/min-static-value

Cisco-I0S-XR-mpls-1sd-cfg:mpls-1sd/label-databases/label-database/label-range/max-static-value
In the following example, the Yang paths for configuring the gRPC address are displayed:

Router#yang-describe configuration grpc address-family ipv4
Mon May 10 12:39:56.652 UTC
YANG Paths:
Cisco-IOS-XR-man-ems-cfg:grpc/enable
Cisco-IOS-XR-man-ems-cfg:grpc/address-family

Example: Operational Data
The operational data includes support for the show CLI commands.

The example shows the Yang paths to retrieve the operational data for MPLS interfaces:

Router#yang-describe operational show mpls interfaces

Mon May 10 12:34:05.198 UTC

YANG Paths:
Cisco-I0S-XR-mpls-lsd-oper:mpls-1lsd/interfaces/interface

The following example shows the Yang paths to retrieve the operational data for Virtual Router
Redundancy Protocol (VRRP):

Router#yang-describe operational show vrrp brief

Mon May 10 12:34:38.041 UTC

YANG Paths:
Cisco-I0S-XR-ipv4-vrrp-oper:vrrp/ipv4/virtual-routers/virtual-router
Cisco-I0S-XR-ipv4-vrrp-oper:vrrp/ipvé6/virtual-routers/virtual-router

Communication Protocols

Communication protocols establish connections between the router and the client. The protocols help the
client to consume the YANG data models to, in turn, automate and programme network operations.

YANG uses one of these protocols:
* Network Configuration Protocol (NETCONF)

* RPC framework (gRPC) by Google

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Drive Network Automation Using Programmable YANG Data Models
NETCONF Protocol [J|j

\)

Note gRPC is supported only in 64-bit platforms.

The transport and encoding mechanisms for these two protocols are shown in the table:

Protocol Transport Encoding/ Decoding
NETCONF ssh xml
gRPC http/2 json

NETCONF Protocol

NETCONF provides mechanisms to install, manipulate, or delete the configuration on network devices. It
uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as well as
protocol messages. You use a simple NETCONF RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. To get started with issuing NETCONF RPCs to configure
network features using data models

gRPC Protocol

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automated mechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure by defining protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a

series of name-value pairs. To get started with issuing NETCONF RPCs to configure network features using
data models

\}

Note gRPC is supported only in 64-bit platforms.

YANG Actions

IOS XR actions are RPC statements that trigger an operation or execute a command on the router. Theses
actions are defined as YANG models using RPC statements. An action is executed when the router receives

the corresponding NETCONF RPC request. Once the router executes an action, it replies with a NETCONF
RPC response.

For example, ping command is a supported action. That means, a YANG model is defined for the ping

command using RPC statements. This command can be executed on the router by initiating the corresponding
NETCONF RPC request.

\)

Note NETCONF supports XML format, and gRPC supports JSON format.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Drive Network Automation Using Programmable YANG Data Models |
Il YANG Actions

The following table shows a list of actions. For the full list of supported actions, query the device or see the
YANG Data Models Navigator.

Actions YANG Models

logmsg Cisco-I0S-XR-syslog-act

snmp Cisco-I0S-XR-snmp-test-trap-act
rollback Cisco-10S-XR-cfgmgr-rollback-act
ping Cisco-I0S-XR-ping-act

Cisco-10S-XR-ipv4-ping-act
Cisco-10S-XR-ipv6-ping-act

traceroute Cisco-I0S-XR-traceroute-act
Cisco-I0S-XR-ipv4-traceroute-act
Cisco-I0S-XR-ipv6-traceroute-act

crypto Cisco-I0S-XR-crypto-act

clear ospf Cisco-I0S-XR-ipv4-ospf-act
Cisco-I0S-XR-ipv6-ospfv3-act

clear isis Cisco-IOS-XR-isis-act

clear bgp Cisco-I0S-XR-ipv4-bgp-act

Example: PING NETCONF Action

This use case shows the IOS XR NETCONF action request to run the ping command on the router.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ping-act">
<destination>
<destination>1.2.3.4</destination>
</destination>
</ping>
</rpc>

This section shows the NETCONF action response from the router.

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ping-response xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ping-act">
<ipv4>
<destination>1.2.3.4</destination>
<repeat-count>5</repeat-count>
<data-size>100</data-size>
<timeout>2</timeout>
<pattern>0xabcd</pattern>
<rotate-pattern>0</rotate-pattern>
<reply-list>
<result>!</result>
<result>!</result>
<result>!</result>

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

https://cfnng.cisco.com/ios-xr/yang-explorer/view-data-model

| Drive Network Automation Using Programmable YANG Data Models
YANG Actions [J|]

<result>!</result>

<result>!</result>
</reply-list>
<hits>5</hits>
<total>5</total>
<success-rate>100</success-rate>
<rtt-min>1</rtt-min>
<rtt-avg>l</rtt-avg>
<rtt-max>1</rtt-max>

</ipvé>
</ping-response>
</rpc-reply>

Example: XR Process Restart Action

This example shows the process restart action sent to NETCONF agent.

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<sysmgr-process-restart xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-sysmgr-act">
<process-name>processmgr</process-name>
<location>0/RP0/CPUO</location>
</sysmgr-process-restart>
</rpc>

This example shows the action response received from the NETCONF agent.

<?xml version="1.0"?>

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Example: Copy Action
This example shows the RPC request and response for copy action:

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<copy xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-copy-act">
<sourcename>//root:<location>/100MB.txt</sourcename>
<destinationname>/</destinationname>
<sourcefilesystem>ftp:</sourcefilesystem>
<destinationfilesystem>harddisk:</destinationfilesystem>
<destinationlocation>0/RSP1/CPUO</destinationlocation>
</copy>
</rpc>

RPC response:

<?xml version="1.0"?>

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<response xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-copy-act">Successfully
completed copy operation</response>

</rpc-reply>

8.261830565s elapsed

Example: Delete Action

This example shows the RPC request and response for delete action:

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Drive Network Automation Using Programmable YANG Data Models |
Il YANG Actions

RPC request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<delete xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-delete-act">
<name>harddisk:/netconf.txt</name>
</delete>
</rpc>

RPC response:

<?xml version="1.0"?>

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<response xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-delete-act">Successfully

completed delete operation</response>
</rpc-reply>

395.099948ms elapsed

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

CHAPTER 3

Use NETCONF Protocol to Define Network
Operations with Data Models

Table 2: Feature History Table

Feature Name Release Information Description

Unified NETCONF V1.0 and V1.1 | Release 7.3.1 Cisco I0S XR supports NETCONF
1.0 and 1.1 programmable
management interfaces. With this
release, a client can choose to
establish a NETCONF 1.0 or 1.1
session using a separate interface
for both these formats. This
enhancement provides a secure
channel to operate the network with
both interface specifications.

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

Network Configuration Protocol (NETCONF) is a standard transport protocol that communicates with network
devices. NETCONF provides mechanisms to edit configuration data and retrieve operational data from network
devices. The configuration data represents the way interfaces, routing protocols and other network features

are provisioned. The operational data represents the interface statistics, memory utilization, errors, and so on.

NETCONEF uses an Extensible Markup Language (XML)-based data encoding for the configuration data, as
well as protocol messages. It uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. The client can be a script or application that runs as part of a
network manager. The server is a network device such as a router. NETCONF defines how to communicate
with the devices, but does not handle what data is exchanged between the client and the server.

\)

Note Accessing the router via NETCONTF grants by default write permissions for a user, in spite of read-only access

configured for this user for CLI access, as CLI authorization is bypassed.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use NETCONF Protocol to Define Network Operations with Data Models |

NETCONF Session

A NETCONEF session is the logical connection between a network configuration application (client) and a
network device (router). The configuration attributes can be changed during any authorized session; the effects
are visible in all sessions. NETCONF is connection-oriented, with SSH as the underlying transport. NETCONF
sessions are established with a he110 message, where features and capabilities are announced. At the end of
each message, the NETCONF agent sends the] 1>11> marker. Sessions are terminated using close or kill
messages.

Cisco I0S XR supports NETCONF 1.0 and 1.1 programmable management interfaces that are handled using
two separate interfaces. From I0S XR, Release 7.3.1, a client can choose to establish a NETCONF 1.0 or 1.1
session using an interface for both these formats. A NETCONF proxy process waits for the he110 message
from its peer. If the proxy does not receive a hel1o message within the timeout period, it sends a NETCONF
1.1 hel1o message.

<?xml version="1.0" encoding="UTF-8"?>

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<capabilities>

<capability>urn:ietf:params:netconf:base:1.0</capability>
<capability>urn:ietf:params:netconf:base:1.1</capability>
<capability>urn:ietf:params:netconf:capability:writable-running:1.0</capability>
<capability>urn:ietf:params:netconf:capability:xpath:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.0</capability>
<capability>urn:ietf:params:netconf:capability:validate:1.1</capability>
<capability>urn:ietf:params:netconf:capability:rollback-on-error:1.0</capability
--snip--

</capabilities>

<session-id>5</session-id>

</hello>]11>11>

The following examples show the he11o messages for the NETCONF versions:
netconf-xml agent listens on port 22

netconf-yang agent listens on port 830
Version 1.0 The NETCONF XML agent accepts the message.

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.0</capability>
</capabilities>

</hello>

Version 1.1 The NETCONF YANG agent accepts the message.

<hello xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<capabilities>
<capability>urn:ietf:params:netconf:base:1.1</capability>
</capabilities>

</hello>

Using NETCONF 1.1, the RPC requests begin with #<number> and end with ##. The number indicates how
many bytes that follow the request.

Example:

#371
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<filter>
<isis xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-clns-isis-oper">
<instances>
<instance>

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models

<neighbors/>
<instance-name/>
</instance>
</instances>
</isis>
</filter>
</get>
</rpc>

##

Configure NETCONF Agent

To configure a NETCONF TTY agent, use the netconf agent tty command. In this example, you configure
the throttle and session timeout parameters:

netconf agent tty
throttle (memory | process-rate)
session timeout

To enable the NETCONF SSH agent, use the following command:

ssh server v2
netconf-yang agent ssh

NETCONF Layers

NETCONF protocol can be partitioned into four layers:
Figure 2: NETCONF Layers

Lavar Example
Congenl Coadiuration Dala Moilazalion [asa
Opaations =pcil-coadin=
L <[Pz
Messapes ape-raply> sncdilizalons.
Secime Transpor S5H, TLS BEEP/TLS, SOAPMITRLS, . | §
k-l

+ Content layer: includes configuration and notification data

 Operationslayer: defines a set of base protocol operations invoked as RPC methods with XML-encoded
parameters

» Messages layer: provides a simple, transport-independent framing mechanism for encoding RPCs and
notifications

* Secure Transport layer: provides a communication path between the client and the server

For more information about NETCONF, refer RFC 6241.

This article describes, with a use case to configure the local time on a router, how data models help in a faster
programmatic configuration as compared to CLI.

* NETCONF Operations, on page 18
* Retrieve Default Parameters Using with-defaults Capability, on page 22
* Retrieve Transaction ID for NSO Operations, on page 29

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use NETCONF Protocol to Define Network Operations with Data Models |
[l NETCONF Operations

* Set Router Clock Using Data Model in a NETCONF Session, on page 31

NETCONF Operations

NETCONF defines one or more configuration datastores and allows configuration operations on the datastores.
A configuration datastore is a complete set of configuration data that is required to get a device from its initial
default state into a desired operational state. The configuration datastore does not include state data or executive
commands.

The base protocol includes the following NETCONF operations:

| +--get-config
| +--edit-Config
| +--merge

| +--replace
| +--create

| +--delete

| +--remove

| +--default-operations
|

|

|

|

|

|

|

|

+--merge
+--replace
+--none
+-—-get
+--lock

+--unLock
+--close-session
+--kill-session

These NETCONF operations are described in the following table:

NETCONF Description Example
Operation

<get-config> |Retrieves all or part of a specified | Retrieve specific interface configuration details from
configuration from a named data | running configuration using filter option
store

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<get-config>

<source>

<running/>

</source>

<filter>

<interface-configurations
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-1ifmgr-cfg"\
<interface-configuration>
<active>act</active>
<interface-name>TenGigE0/0/0/2/0</interface-name
</interface-configuration>
</interface-configurations>

</filter>

</get-config>

</rpc>

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models

NETCONF Operations]

NETCONF
Operation

Description

Example

< get>

Retrieves running configuration
and device state information

Retrieve all acl configuration and device state
information.

Request:

<get>

<filter>

<ipvé4-acl-and-prefix-list
xmlns="http://cisco.can/ns/yang/Cisco-I0S-XR-ipv4-acl-oper"/
</filter>

</get>

<edit-config>

Loads all or part of a specified
configuration to the specified
target configuration

Configure ACL configs using M erge operation

<rpc message-id="101"

xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

<edit-config>

<target><candidate/></target>

<config

xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"

<ipvé4-acl-and-prefix-list

xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-ipv4-acl-cfqg",
xc:operation="merge”>

<accesses>

<access>

<access-list-name>aclv4-1</access-list-name>

<access-list-entries>

<access-list-entry>

<sequence-number>10</sequence-number>

<remark>GUEST</remark>

</access-list-entry>

<access-list-entry>

<sequence-number>20</sequence-number>

<grant>permit</grant>

<source-network>

<source-address>172.0.0.0</source-address>

<source-wild-card-bits>0.0.255.255</source-wild-card-bits

</source-network>

</access-list-entry>

</access-list-entries>

</access>

</accesses>

</ipv4-acl-and-prefix-list>

</config>

</edit-config>

</rpc>

Commit:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<commit/>

</rpc>

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

[l NETCONF Operations

Use NETCONF Protocol to Define Network Operations with Data Models |

NETCONF
Operation

Description

Example

<lock>

Allows the client to lock the
entire configuration datastore
system of a device

Lock the running configuration.

Request:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<lock>

<target>

<running/>

</target>

</lock>

</rpc>

Response
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">|

<ok/>
</rpc-reply>

<Unlock>

Releases a previously locked
configuration.

An <unlock> operation will not
succeed if either of the following
conditions is true:

* The specified lock is not
currently active.

* The session issuing the
<unlock> operation is not
the same session that
obtained the lock.

Lock and unlock the running configuration from the same
session.

Request:

rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<unlock>

<target>

<running/>

</target>

</unlock>

</rpc>

Response -

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

<close-session>

Closes the session. The server
releases any locks and resources
associated with the session and
closes any associated
connections.

Close a NETCONF session.

Request

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<close-session/>

</rpc>

Response:

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models
NETCONF Operations]

NETCONF Description Example
Operation

<kill-session> | Terminates operations currently | Terminate a session if the ID is other session ID.
in process, releases locks and

K . Request:
resources associated with the <rpc message-id="101"
Sesﬁon,and(ﬂoseanyassockned xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
connections. <kill-session>

<session-id>4</session-id>
</kill-session>
</rpc>

Response:

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
<ok/>

</rpc-reply>

N

Note The system admin models support <get> and <get-config> operations, and only <edit-config> operations
with the <merge> operation. The other operations such as <delete>, <remove>, and <replace> are not supported
for the system admin models.

NETCONF Operation to Get Configuration
This example shows how a NETCONF <get-config> request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The
router responds with the current CDP configuration.

Netconf Request (Client to Router) Netconf Response (Router to Client)

<rpc message-id="101" <?xml version="1.0"?>
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get-config>

<source><running/></source> <data>

<filter> <cdp

<cdp smlns="http://cisco.com/ns/yang/Cisco-I0S-XR-cdp-cfg">|
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-cdp-cfg"/

</filter> <timer>10</timer>

</get-config> <enable>true</enable>

</rpc> <log-adjacency></log-adjacency>

<hold-time>200</hold-time>
<advertise-vl-only></advertise-vl-only>
</cdp>
#22
</data>
</rpc-reply>

The <rpc> element in the request and response messages enclose a NETCONF request sent between
the client and the router. The message-id attribute in the <rpc> element is mandatory. This attribute
is a string chosen by the sender and encodes an integer. The receiver of the <rpc> element does not
decode or interpret this string but simply saves it to be used in the <rpc-reply> message. The sender

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use NETCONF Protocol to Define Network Operations with Data Models |
. Retrieve Default Parameters Using with-defaults Capability

must ensure that the message-id value is normalized. When the client receives information from the
server, the <rpc-reply> message contains the same message-id.

\)

Note * From 7.0.x, cgn <var > configurations are not supported under interfaces.

* The command hw-module service sesh is not supported.

Retrieve Default Parameters Using with-defaults Capability

NETCONEF servers report default data nodes in response to RPC requests in the following ways:

» report-all: All data nodes are reported
* trim: Data nodes set to the YANG default aren't reported

» explicit: Data nodes set to the YANG default by the client are reported

Cisco IOS XR routers support only the explicit basic mode. A server that uses this mode must consider any
data node that isn’t explicitly set to be the default data.

As per RFC 6243, the router supports <with-defaults> capability to retrieve the default parameters of
configuration and state data node using a NETCONTF protocol operation. The <with-defaults> capability
indicates which default-handling basic mode is supported by the server. It also indicates support for additional
retrieval modes. These retrieval modes allow a NETCONF client to control whether the server returns the
default data.

By default, <with-defaults> capability is disabled. To enable this capability, use the following command in
Config mode:

netconf-yang agent
ssh

with-defaults-support enable
|

Once enabled, the capability is applied to all netconf-yang requests.

After enabling, the router must return the new capability as:
urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults:1.0?basic-mode=explicit

The <get>, <get-config>, <copy-config>and ,<edit-config> operations support with-defaults capability.
Example 1: Create Operation

A valid create operation attribute for a data node that is set by the server to its schema default value must
succeed. It is set or used by the device whenever the NETCONF client does not provide a specific value for
the relevant data node. In the following example, an edit-config request is sent to create a configuration:

<edit-config> request sent to the NET CONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:43efc290-c312-4df0-bblb-a6e0bf8aac50">
<edit-config>

<target>

<candidate/>

</target>

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Default Parameters Using with-defaults Capability .

<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>

<name>TenGigE0/0/0/0</name>

<subinterfaces>

<subinterface>

<index>2</index>

<config>

<enabled xc:operation="create">false</enabled>

<index xc:operation="create">2</index>

</config>

</subinterface>

</subinterfaces>

</interface>

</interfaces>

</config>

</edit-config>

</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?>

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>

</rpc-reply>

Commit the configuration.

[host 172.x.x.x session-id 2985924161] Requesting 'Commit'

[host 172.x.x.x session-id 2985924161] Sending:

<?xml version="1.0" encoding="UTF-8"?><nc:rpc
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:295eff87-1fb6-4£84-bb7d-c40b268ecablb"><nc:commit/></nc:rpc>

[host 172.x.x.x session-id 2985924161] Received:

<?xml version="1.0"?>

<rpc-reply message-id="urn:uuid:295ef£f87-1fb6-4£84-bb7d-c40b268eablb"
xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<ok/>

</rpc-reply>

CREATE operation completed

A create operation attribute for a data node that has been set by a client to its schema default value must fail
with a data-exists error tag. The client can only create a default node that was not previously created by it.
Else, the operation is rejected with the data-exists message.

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:1£29267£f-7593-4a3c-8382-6ab9%bec323ca">
<edit-config>
<target>
<candidate/>
</target>
<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<enabled xc:operation="create">false</enabled>
<index xc:operation="create">2</index>

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use NETCONF Protocol to Define Network Operations with Data Models |
. Retrieve Default Parameters Using with-defaults Capability

</config>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</config>
</edit-config>
</rpc>

[host 172.x.x.x session-id 2985924161] Received:
<?xml version="1.0"?2>
<rpc-reply message-id="urn:uuid:1£29267£-7593-4a3c-8382-6ab9%bec323ca"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<rpc-error>

<error-type>application</error-type>

<error-tag>data-exists</error-tag>

<error-severity>error</error-severity>

<error-path
xmlns:nsl="http://openconfig.net/yang/interfaces">nsl:interfaces/nsl:interface[name =
'TenGigE0/0/0/0'] /nsl:subinterfaces/nsl:subinterfacel[index = '2']/nsl:config</error-path>
</rpc-error>
</rpc-reply>

Example 2: Delete Operation

A valid delete operation attribute for a data node set by a client to its schema default value must succeed.
Whereas a valid de1ete operation attribute for a data node set by the server to its schema default value fails
with a data-missing error tag.

<edit-config> request sent to the NET CONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb">
<edit-config>

<target>

<candidate/>

</target>

<config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>

<name>TenGigE0/0/0/0</name>

<subinterfaces>

<subinterface xc:operation="delete">

<index>2</index>

</subinterface>

</subinterfaces>

</interface>

</interfaces>

</config>

</edit-config>

</rpc>

Response received from the NETCONF agent:

<?xml version="1.0"?2>

<rpc-reply message-id="urn:uuid:de95a248-29d7-4030-8351-cef8b8d47cdb"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

<rpc-error>

<error-type>application</error-type>

<error-tag>data-missing</error-tag>

<error-severity>error</error-severity>

<error-path xmlns:nsl="http://openconfig.net/yang/interfaces">nsl:interfaces/nsl:
interface[name = 'TenGigE0/0/0/0']/nsl:subinterfaces/nsl:subinterface([index =

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Default Parameters Using with-defaults Capability .

'2'"]/nsl:config</error-path></rpc-error>
</rpc-reply>

Example 3: Copy Configuration
In the following example, a copy-config request is sent to copy a configuration.

<copy-config> request sent to the NET CONF agent:

<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<copy-config>
<target>
<candidate/>
</target>
<source>
<config>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
</config>
</subinterface>
</subinterfaces>
</interface>

</interfaces>
</config>
</source>
<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
</copy-config>
</rpc>
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="102">
<commit/>
</rpc>

The show run command shows the copied configuration.

Router#show run

<data and time stamp>
Building configuration...

'l TOS XR Configuration 7.2.1

'l Last configuration change at <data and time stamp> by root
|

interface TenGigEO0/0/0/0.2
|

end
Example 4: Get Configuration

The following example shows a get-config request with explicit mode to query the default parameters
from the oc-interfaces.yang data model. The client gets the configuration values of what it sets.

<get-config> request sent to the NETCONF agent:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:63a49626-9f90-4ebe-89fd-741410cddf29">

<get-config>
<source>

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use NETCONF Protocol to Define Network Operations with Data Models |
. Retrieve Default Parameters Using with-defaults Capability

<running/>

</source>

<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
<filter type="subtree">

<interfaces xmlns="http://openconfig.net/yang/interfaces"/>

</filter>

</get-config>

</rpc>

<get-config> response received from the NETCONF agent:

<?xml version="1.0"?>
<rpc-reply message—-id="urn:uuid:99d8b2d0-ab05-474a-bc02-9242ba511308"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<config>
<index>2</index>
<enabled>false</enabled>
</config>
<ipv6 xmlns="http://openconfig.net/yang/interfaces/ip">
<config>
<enabled>false</enabled>
</config>
</ipvé>
</subinterface>
</subinterfaces>
</interface>
<interface>
<name>MgmtEth0/RSP0/CPU0/0</name>
<config>
<name>MgmtEth0/RSP0/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>

</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<config>
<auto-negotiate>false</auto-negotiate>
</config>
</ethernet>
<subinterfaces>
<subinterface>
<index>0</index>
<ipv4 xmlns="http://openconfig.net/yang/interfaces/ip">
<addresses>
<address>
<ip>172.xx.xx.xx</ip>
<config>
<ip>172.xx.xx.xx</ip>
<prefix-length>24</prefix-length>
</config>
</address>
</addresses>
</ipv4d>
</subinterface>
</subinterfaces>
</interface>
<interface>

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Default Parameters Using with-defaults Capability .

<name>MgmtEth0/RSP1/CPU0/0</name>
<config>
<name>MgmtEth0/RSP1/CPU0/0</name>
<type xmlns:idx="urn:ietf:params:xml:ns:yang:iana-if-type">idx:ethernetCsmacd</type>
<enabled>false</enabled>
</config>
<ethernet xmlns="http://openconfig.net/yang/interfaces/ethernet">
<config>
<auto-negotiate>false</auto-negotiate>
</config>
</ethernet>
</interface>
</interfaces>
</data>
</rpc-reply>
READ operation completed

Example5: Get Operation

The following example shows a get request with explicit mode to query the default parameters from the
oc-interfaces.yang data model.

<get-config> request sent to the NETCONF agent:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="urn:uuid:d8e52f0f-ceac-4193-89£6-d377ab8292d5">
<get>

<with-defaults
xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">explicit</with-defaults>
<filter type="subtree">

<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>

<name>TenGigE0/0/0/0</name>

<subinterfaces>

<subinterface>

<index>2</index>

<state/>

</subinterface>

</subinterfaces>

</interface>

</interfaces>

</filter>

</get>

</rpc>

<get> response received from the NET CONF agent:

<?xml version="1.0"?>
<rpc-reply message-id="urn:uuid:933df011-191f-4f31-9549-c4f7f6edd291"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<interfaces xmlns="http://openconfig.net/yang/interfaces">
<interface>
<name>TenGigE0/0/0/0</name>
<subinterfaces>
<subinterface>
<index>2</index>
<state>
<index>2</index>
<name>TenGigE0/0/0/0.2</name>
<enabled>false</enabled>
<admin-status>DOWN</admin-status>
<oper-status>DOWN</oper-status>

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use NETCONF Protocol to Define Network Operations with Data Models |
. Retrieve Default Parameters Using with-defaults Capability

<last-change>0</last-change>
<counters>
<in-unicast-pkts>0</in-unicast-pkts>
<in-pkts>0</in-pkts>
<in-broadcast-pkts>0</in-broadcast-pkts>
<in-multicast-pkts>0</in-multicast-pkts>
<in-octets>0</in-octets>
<out-unicast-pkts>0</out-unicast-pkts>
<out-broadcast-pkts>0</out-broadcast-pkts>
<out-multicast-pkts>0</out-multicast-pkts>
<out-pkts>0</out-pkts>
<out-octets>0</out-octets>
<out-discards>0</out-discards>
<in-discards>0</in-discards>
<in-unknown-protos>0</in-unknown-protos>
<in-errors>0</in-errors>
<in-fcs-errors>0</in-fcs—-errors>
<out-errors>0</out-errors>
<carrier-transitions>0</carrier-transitions>
<last-clear>2020-03-02T15:35:30.927+00:00</last-clear>
</counters>
<ifindex>92</ifindex>
<logical>true</logical>
</state>
</subinterface>
</subinterfaces>
</interface>
</interfaces>
</data>
</rpc-reply>
READ operation completed

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models
Retrieve Transaction ID for NSO Operations .

Retrieve Transaction ID for NSO Operations

Table 3: Feature History Table

Feature Name Release Information Description
Unique Commit ID for Release 7.4.1 The network orchestrator is a
Configuration State central point of management for the

network and typical workflow
involves synchronizing the
configuration states of the routers
it manages. Loading configurations
for comparing the states involves
unnecessary data and subsequent
comparisons are load intensive.
This feature synchronizes the
configuration states between the
orchestrator and the router using a
unique commit ID that the router
maintains for each configuration
commit. The orchestrator retrieves
this commit ID from the router
using NETCONF Remote
Procedure Calls (RPCs) to identify
whether the router has the latest
configuration.

Cisco Network Services Orchestrator (NSO) is a data model-driven platform for automating your network
orchestration. NSO uses NETCONF-based Network Element Drivers (NED) to synchronize the configuration
states of the routers it manages. NEDs comprise of the network-facing part of NSO and communicate over
the native protocol supported by the router, such as Network Configuration Protocol (NETCONF).

IOS XR configuration manager maintains commit IDs (also known as the transaction IDs) for each commit
operation. The manageability interfaces use these IDs. Currently, the operational data model provides a list
of up to 100 last commits for NETCONF requests. The YANG client querying the last commit ID collects
the entire list and finds the latest ID. Loading configurations for comparison to the orchestrator's configuration
state can involve huge redundant data. The subsequent comparisons are also load intensive.

To overcome these limitations, the router maintains a unique last commit ID that is ideal for NSO operations.
This ID indicates the latest configuration state on the router. The ID provides a one-step operation and increases
the performance of configuration updates for the orchestrator.

An augmented configuration manageability model cisco-T0S-XR-config-cfgmgr-exec-augmented-oper
provides a single 1ast-commit-id for the unique commit state. This model is available as part of the base
package.

The following table lists the synchronization support between NSO and the IOS XR variants:

Entity 32-bhit Routers 64-bit Routers (Releases |64-bit Routers (Releases
Earlier than 7.4.1) 7.4.1 and Later)
cfgmgr Yes Yes Yes

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

. Retrieve Transaction ID for NSO Operations

Use NETCONF Protocol to Define Network Operations with Data Models |

Entity 32-bit Routers 64-bit Routers (Releases |64-bit Routers (Releases
Earlier than 7.4.1) 7.4.1 and Later)

sysadmin No Yes Yes

cfgmgr-aug No No Yes

Leaf Data commit-id NA cfgmgr-aug

Check synchronization | Yes No Yes

(NSO functionality from

release 7.4.1 and later)

Where:

* commit-id represents

Cisco-I0S-XR-config-cfgmgr-exec—-oper:config-manager/global/config-commit/commits/commit/commit-id
* cfgmgr is the XR configuration manager
* sysadmin represents the cisco-I0S-xR-sysadmin-system data model

» cfgmgr-aug represents the Cisco-T0S-XR-config-cfgmgr-exec-augmented-oper data model

The last commit ID is obtained from the configuration manager. The following example shows a sample
NETCONEF request and response to retrieve the commit ID:

Request:
<rpc message-id="test" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>
<filter type="subtree">
<config-manager xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-config-cfgmgr-exec-oper">
<global>
<config-commit>
<last-commit-id
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-config-cfgmgr-exec-augmented-oper"/>
</config-commit>
</global>
</config-manager>
</filter>
</get>
</rpc>

Response:
<rpc-reply message-id="test" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<config-manager xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-config-cfgmgr-exec-oper">
<global>
<config-commit>
<last-commit-id
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-config-cfgmgr-exec-augmented-oper">
XR:1000000009;Admin:1595-891537-949905</last-commit-id>
</config-commit>
</global>
</config-manager>
</data>
</rpc-reply>

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models
Set Router Clock Using Data Model in a NETCONF Session .

Set Router Clock Using Data Model in a NETCONF Session

The process for using data models involves:

* Obtain the data models.
* Establish a connection between the router and the client using NETCONF communication protocol.

» Manage the configuration of the router from the client using data models.

)

Note Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System
Security Configuration Guide.

The following image shows the tasks involved in using data models.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use NETCONF Protocol to Define Network Operations with Data Models |
. Set Router Clock Using Data Model in a NETCONF Session

Figure 3: Process for Using Data Models

Router Client Application
Load software image;
data models are
part of image
k.
Enable protocol for Make YANG models available.
transport > Download from Github or
(NETCONF, gRPC) use NETCOMF query

l

Connect to router
over NETCONF

i

: : : For a configuration change
Configuration changes are made;
NETCONE reply s sent (EEEEEE in the fouter, NETCONF request
is sent using <edit-config=

L

. Far aperational data,
NETCONF reply is sent R
i ration - NETCOMF request is sent

using <get= or <get-config=

AEEMN3A

In this section, you use native data models to configure the router clock and verify the clock state using a
NETCONEF session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER?2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper [P addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models

Procedure

Step 1

Step 2

Set Router Clock Using Data Model in a NETCONF Session .

Figure 4: Network Topology for gRPC session

Controller Out-of-band network
NETCONF
198.18.1.127/24
v
198.18.1.11/24 198.18.1.111/24 198.18.1.112/24 198.18.1.12/24
) g0/0/0/0 % g0/0/0f2 % g0/0/0/0
00 172.16.1.0/31 lo0 172.16.2.4/31 lo0 172.16.2.0/31 loD
LER1 LSR1 LSR2 LER2
z
2
8

You use Cisco IOS XR native models Cisco-IOS-XR-infra-clock-linux-cfg.yang and
Cisco-IOX-XR-shellutil-oper to programmatically configure the router clock. You can explore the structure
of the data model using YANG validator tools such as pyang.

Before you begin

Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

Explore the native configuration model for the system local time zone.

Example:
controller:netconf$ pyang --format tree Cisco-IOS-XR-infra-infra-clock-linux-cfg.yang
module: Cisco-IOS-XR-infra-infra-clock-linux-cfg

+--rw clock
+--rw time-zone!
+--rw time-zone-name string
+--rw area-name string

Explore the native operational state model for the system time.

Example:

controller:netconf$ pyang --format tree Cisco-IOS-XR-shellutil-oper.yang
module: Cisco-IOS-XR-shellutil-oper
+--ro system-time
+--ro clock

| +--ro year? uintlé

| +--ro month? uint8

| +--ro day? uint8

| +--ro hour? uint8

| +--ro minute? uint8

| +--ro second? uint8

| +—-ro millisecond? uintlé6
| +--ro wday? uintlé

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

https://github.com/mbj4668/pyang

Use NETCONF Protocol to Define Network Operations with Data Models |
. Set Router Clock Using Data Model in a NETCONF Session

| +--ro time-zone? string
| +--ro time-source? Time-source
+--ro uptime
+--ro host-name? string
+--ro uptime? uint32

Step 3 Retrieve the current time on router LERI.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper"/>
controller:netconf$ netconf get --filter xr-system-time-oper.xml
198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper">
<clock>
<year>2019</year>
<month>8</month>
<day>22</day>
<hour>17</hour>
<minute>30</minute>
<second>37</second>
<millisecond>690</millisecond>
<wday>1</wday>
<time-zone>UTC</time-zone>
<time-source>calendar</time-source>
</clock>
<uptime>
<host-name>lerl</host-name>
<uptime>851237</uptime>
</uptime>
</system-time>

Notice that the timezone vTc indicates that a local timezone is not set.

Step 4 Configure Pacific Standard Time (PST) as local time zone on LERI.

Example:

controller:netconf$ more xr-system-time-oper.xml <system-time
xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper"/>
controller:netconf$ get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0S-XR-shellutil-oper">
<clock>
<year>2019</year>
<month>8</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>
</clock>
<uptime>
<host-name>lerl</host-name>
<uptime>852530</uptime>
</uptime>
</system-time>

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use NETCONF Protocol to Define Network Operations with Data Models
Set Router Clock Using Data Model in a NETCONF Session .

Step 5 Verify that the router clock is set to PST time zone.

Example:

controller:netconf$ more xr-system-time-oper.xml
<system-time xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-shellutil-oper"/>

controller:netconf$ netconf get --filter xr-system-time-oper.xml
<username>:<password>@198.18.1.11:830
<?xml version="1.0" ?>
<system-time xmlns="http://cisco.com/ns/yang/Cisco-I0OS-XR-shellutil-oper">
<clock>
<year>2018</year>
<month>12</month>
<day>22</day>
<hour>9</hour>
<minute>52</minute>
<second>10</second>
<millisecond>134</millisecond>
<wday>1</wday>
<time-zone>PST</time-zone>
<time-source>calendar</time-source>
</clock>
<uptime>
<host-name>lerl</host-name>
<uptime>852530</uptime>
</uptime>
</system-time>

In summary, router LER1, which had no local timezone configuration, is programmatically configured using data models.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use NETCONF Protocol to Define Network Operations with Data Models |
. Set Router Clock Using Data Model in a NETCONF Session

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

CHAPTER 4

Use gRPC Protocol to Define Network Operations
with Data Models

XR devices ship with the YANG files that define the data models they support. Using a management protocol
such as NETCONF or gRPC, you can programmatically query a device for the list of models it supports and
retrieve the model files.

gRPC is an open-source RPC framework. It is based on Protocol Buffers (Protobuf), which is an open source
binary serialization protocol. gRPC provides a flexible, efficient, automated mechanism for serializing structured
data, like XML, but is smaller and simpler to use. You define the structure using protocol buffer message
types in .proto files. Each protocol buffer message is a small logical record of information, containing a
series of name-value pairs.

gRPC encodes requests and responses in binary. gRPC is extensible to other content types along with Protobuf.
The Protobuf binary data object in gRPC is transported over HTTP/2.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server. The structure of the data is defined by YANG models.

N

Note

TCP protocol.

All 64-bit IOS XR platforms support gRPC and TCP protocols. All 32-bit IOS XR platforms support only

Cisco gRPC IDL uses the protocol buffers interface definition language (IDL) to define service methods, and
define parameters and return types as protocol buffer message types. The gRPC requests are encoded and sent
to the router using JSON. Clients can invoke the RPC calls defined in the IDL to program the router.

The following example shows the syntax of the proto file for a gRPC configuration:

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {
rpc GetConfig(ConfigGetArgs) returns (stream ConfigGetReply) {};
rpc MergeConfig (ConfigArgs) returns (ConfigReply) {};

rpc DeleteConfig (ConfigArgs) returns (ConfigReply) {};

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use gRPC Protocol to Define Network Operations with Data Models |

rpc ReplaceConfig(ConfigArgs) returns (ConfigReply) {};
rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};
rpc GetOper (GetOperArgs) returns (stream GetOperReply) {};

rpc CommitReplace (CommitReplaceArgs) returns (CommitReplaceReply) {};
}
message ConfigGetArgs {

int64 ReqId = 1;

string yangpathijson = 2;

message ConfigGetReply {
int64 ResReqgld = 1;
string yangjson = 2;
string errors = 3;

message GetOperArgs {
int64 ReqId = 1;
string yangpathijson = 2;

message GetOperReply {
int64 ResReqId = 1;
2;

string yangjson =
string errors = 3;

}

message ConfigArgs {
int64 ReqId = 1;
string yangjson = 2;

message ConfigReply {
int64 ResReqId = 1;
string errors = 2;

message CliConfigArgs {
int64 ReqId = 1;
string cli = 2;

message CliConfigReply {
int64 ResReqld = 1;
string errors = 2;

message CommitReplaceArgs {
int64 ReqId = 1;
string cli = 2;
string yangjson = 3;

message CommitReplaceReply {
int64 ResReqgld = 1;
string errors = 2;

}
Example for gRPCExec configuration:

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

Use gRPC Protocol to Define Network Operations with Data Models

service gRPCExec {
rpc ShowCmdTextOutput (ShowCmdArgs) returns(stream ShowCmdTextReply) {};
rpc ShowCmdJSONOutput (ShowCmdArgs) returns(stream ShowCmdJSONReply) {};

message ShowCmdArgs {
int64 ReqId 1;
string cli = 2;

message ShowCmdTextReply {
int64 ResReqgld =1;
string output = 2;
string errors = 3;

Example for OpenConfiggRPC configuration:

service OpenConfiggRPC {
rpc SubscribeTelemetry (SubscribeRequest) returns (stream SubscribeResponse) {};
rpc UnSubscribeTelemetry (CancelSubscribeReq) returns (SubscribeResponse) {};
rpc GetModels (GetModelsInput) returns (GetModelsOutput) {};

message GetModelsInput {

uint64 requestId = 1;
string name = 2;
string namespace = 3;
string version = 4;

enum MODLE_REQUEST_ TYPE {
SUMMARY = 0;
DETAIL = 1;
}
MODLE_REQUEST TYPE requestType = 5;

message GetModelsOutput {

uint64 requestId = 1;
message ModelInfo {
string name =1;
string namespace = 2;
string version = 3;

GET_MODEL_TYPE modelType = 4;
string modelData = 5;
}
repeated ModelInfo models 2;
OC_RPC_RESPONSE TYPE responseCode = 3;
string msg = 4;

}

This article describes, with a use case to configure interfaces on a router, how data models helps in a faster
programmatic and standards-based configuration of a network, as comapared to CLI.

* gRPC Operations, on page 40

» gRPC Network Management Interface, on page 43

» gRPC Network Operations Interface , on page 43

* Configure Interfaces Using Data Models in a gRPC Session, on page 48

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

. gRPC Operations

gRPC Operations

The following are the defined manageability service gRPC operations for Cisco I0OS XR:

Use gRPC Protocol to Define Network Operations with Data Models |

gRPC Operation Description

GetConfig Retrieves the configuration from the router.

GetModels Gets the supported Yang models on the router

MergeConfig Merges the input config with the existing device configuration.
DeleteConfig Deletes one or more subtrees or leaves of configuration.
ReplaceConfig Replaces part of the existing configuration with the input configuration.
CommitReplace Replaces all existing configuration with the new configuration provided.
GetOper Retrieves operational data.

CliConfig Invokes the input CLI configuration.

ShowCmdTextOutput Returns the output of a show command in the text form
ShowCmdJSONOutput Returns the output of a show command in JSON form.

gRPC Operation to Get Configuration

This example shows how a gRPC GetConfig request works for CDP feature.

The client initiates a message to get the current configuration of CDP running on the router. The
router responds with the current CDP configuration.

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use gRPC Protocol to Define Network Operations with Data Models

gRPC Authentication Modes .

gRPC Request (Client to Router)

gRPC Response (Router to Client)

rpc GetConfig
{
"Cisco-I0S-XR-cdp-cfg:cdp": [
"cdp": "running-configuration"
]
}

rpc GetConfig
{

"11ldp": "running-configuration"
]
}

"Cisco-I0S-XR-ethernet-1ldp-cfg:11ldp":

{
"Cisco-I0S-XR-cdp-cfg:cdp": {

"timer": 50,
"enable": true,
"log-adjacency": [
null

1,
"hold-time": 180,
"advertise-vl-only": [
null
1

}

}

{
"Cisco-I0S-XR-ethernet-1ldp-cfg:11ldp": {

"timer": 60,
"enable": true,
"reinit": 3,

"holdtime": 150

gRPC Authentication Modes

gRPC supports the following authentication modes to secure communication between clients and servers.
These authentication modes help ensure that only authorized entities can access the gRPC services, like gNOI,
gRIBI, and P4RT. Upon receiving a gRPC request, the device will authenticate the user and perform various

authorization checks to validate the user.

The following table lists the authentication type and configuration requirements:

Table 4: gRPC Authentication Modes and Configuration Requirements

Type Authentication Authorization Configuration Requirement From
Method Method Requirement Client

Metadata with TLS |username, password | username grpc username, password,
and CA

Metadata without | username, password | username grpc no-tls username, password

TLS

Metadata with username, password | username grpc tlsmutual username, password,

Mutual TLS client certificate,
client key, and CA

Certificate based client certificate's | username from grpc tlsmutual client certificate,

Authentication common name field | client certificate's client key, and CA

common name field

and

grpc certificate
authentication

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use gRPC Protocol to Define Network Operations with Data Models |
. Authenticate gRPC Services

Certificate based Authentication
In Extensible Manageability Services (EMS) gRPC, the certificates play a vital role in ensuring secure and
authenticated communication. The EMS gRPC utilizes the following certificates for authentication:

/misc/config/grpc/ems.pem
/misc/config/grpc/ems.key
/misc/config/grpc/ca.cert

\)

Note For clients to use the certificates, ensure to copy the certificates from /misc/config/grpc/

Generation of Certificates

These certificates are typically generated using a Certificate Authority (CA) by the device. The EMS certificates,
including the server certificate (ems.pem), public key (ems.key), and CA certificate (ca.cert), are generated
with specific parameters like the common name ems.cisco.com to uniquely identify the EMS server and
placed in the /misc/config/grpc/ location.

The default certificates that are generated by the server are Server-only TLS certificates and by using these
certificates you can authenticate the identity of the server.

Usage of Certificates

These certificates are used for enabling secure communication through Transport Layer Security (TLS) between
gRPC clients and the EMS server. The client should use ems.pem and ca.cert to initiate the TLS authentication.

To update the certificates, ensure to copy the new certificates that has been generated earlier to the location
and restart the server.

Custom Certificates

If you want to use your own certificates for EMS gRPC communication, then you can follow a workflow to
generate a custom certificates with the required parameters and then configure the EMS server to use these
custom certificates. This process involves replacing the default EMS certificates with the custom ones and
ensuring that the gRPC clients also trust the custom CA certificate. For more information on how to customize
the common-name, see Certificate Common-Name For Dial-in Using gRPC Protocol.

Authenticate gRPC Services
Y

Note Typically, gRPC clients include the username and password in the gRPC metadata fields.

Procedure

Use any one of the following configuration type to authenticate any gRPC service.
» Metadatawith TLS

Router#config
Router (config) #grpec
Router (config-grpc) #commit

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use gRPC Protocol to Define Network Operations with Data Models

gRPC Network Management Interface .

« Metadatawithout TLS

Router#config

Router (config) #grpe

Router (config-grpc) #no-tls
Router (config-grpc) #commit

Metadata with Mutual TLS

Router#config

Router (config) #grpe

Router (config-grpc) #tls-mutual
Router (config-grpc) #commit

Certificate based Authentication

Router (config) #grpec

Router (config-grpc) #certificate—-authentication

(

Router (config-grpc) #tls-mutual
(
(

Router (config-grpc) #commit

gRPC Network Management Interface

gRPC Network Management Interface (gNMI) is a gRPC-based network management protocol used to modify,
install or delete configuration from network devices. It is also used to view operational data, control and
generate telemetry streams from a target device to a data collection system. It uses a single protocol to manage
configurations and stream telemetry data from network devices.

The subscription in a gNMI does not require prior sensor path configuration on the target device. Sensor paths
are requested by the collector (such as pipeline), and the subscription mode can be specified for each path.
gNMI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

gRPC Network Operations Interface

gNOI RPCs

gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. These services are to be used in conjunction with gRPC network
management interface (gNMI) for all target state and operational state of a network. gNOI uses gRPC as the
transport protocol and the configuration is same as that of gRPC. For more information about gNOI, see the
Github repository.

To send gNOI RPC requests, you need a client that implements the gNOI client interface for each RPC.

All messages within the gRPC service definition are defined as protocol buffer (.proto) files. gNOI OpenConfig
proto files are located in the Github repository.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

https://github.com/openconfig/gnoi
https://github.com/openconfig/gnoi

Bl onoirees

Table 5: Feature History Table

Use gRPC Protocol to Define Network Operations with Data Models |

Feature Name

Release Information | Description

gNOI System Proto

Release 7.8.1 You can now avail the services of cancelReboot

to terminate outstanding reboot request, and
Killprocess RPCs to restart the process on
device.

gNOI supports the following remote procedure calls (RPCs):

System RPCs

The RPCs are used to perform key operations at the system level such as upgrading the software, rebooting

the device, and troubleshooting the network.

The system.proto file is available in the Github repository.

RPC

Description

Reboot

Reboots the target. The router supports the following reboot
options:

¢ COLD = 1; Shutdown and restart OS and all hardware
* POWERDOWN = 2; Halt and power down

« HALT = 3; Halt

* POWERUP = 7; Apply power

RebootStatus

Returns the status of the target reboot.

SetPackage

Places a software package including bootable images on the
target device.

Ping

Pings the target device and streams the results of the ping
operation.

Traceroute

Runs the traceroute command on the target device and streams
the result. The default hop count is 30.

Time

Returns the current time on the target device.

SwitchControlProcessor

Switches from the current route processor to the specified route
processor. If the target does not exist, the RPC returns an error
message.

File RPCs

The RPCs are used to perform key operations at the file level such as reading the contents if a file and its
metadata. The file.proto file is available in the Github repository.

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

https://github.com/openconfig/gnoi/blob/main/system/system.proto
https://github.com/openconfig/gnoi/blob/main/file/file.proto

| Use gRPC Protocol to Define Network Operations with Data Models

gnoirees I
RPC Description
Get Reads and streams the contents of a file from the target device.
The RPC streams the file as sequential messages with 64 KB of
data.
Remove Removes the specified file from the target device. The RPC

returns an error if the file does not exist or permission is denied
to remove the file.

Stat Returns metadata about a file on the target device.
Put Streams data into a file on the target device.
TransferToRemote Transfers the contents of a file from the target device to a

specified remote location. The response contains the hash of the
transferred data. The RPC returns an error if the file does not
exist, the file transfer fails or an error when reading the file. This
is a blocking call until the file transfer is complete.

Certificate Management (Cert) RPCs

The RPCs are used to perform operations on the certificate in the target device. The cert.proto file is available
in the Github repository.

RPC Description

Rotate Replaces an existing certificate on the target device by creating
anew CSR request and placing the new certificate on the target
device. If the process fails, the target rolls back to the original
certificate.

Install Installs a new certificate on the target by creating a new CSR
request and placing the new certificate on the target based on
the CSR.

GetCertificates Gets the certificates on the target.

RevokeCertificates Revokes specific certificates.

CanGenerateCSR Asks a target if the certificate can be generated.

Interface RPCs
The RPCs are used to perform operations on the interfaces. The inter face.proto file is available in the Github
repository.

RPC Description

SetLoopbackMode Sets the loopback mode on an interface.

GetLoopbackMode Gets the loopback mode on an interface.

ClearInterfaceCounters Resets the counters for the specified interface.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

https://github.com/openconfig/gnoi/blob/main/cert/cert.proto
https://github.com/openconfig/gnoi/blob/cc419f3696d3a6d3e1a3999b75c51231b4773ace/interface/interface.proto

Bl onoirees

Use gRPC Protocol to Define Network Operations with Data Models |

Layer2 RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The layer 2.proto file is available in the Github repository.

Feature Name Description
ClearLLDPInterface Clears all the LLDP adjacencies on the specified interface.
BGP RPCs

The RPCs are used to perform operations on the Link Layer Discovery Protocol (LLDP) layer 2 neighbor
discovery protocol. The bgp.proto file is available in the Github repository.

Feature Name Description

ClearBGPNeighbor Clears a BGP session.

Diagnostic (Diag) RPCs

The RPCs are used to perform diagnostic operations on the target device. You assign each bit error rate test
(BERT) operation a unique ID and use this ID to manage the BERT operations. The diag.proto file is available
in the Github repository.

Feature Name Description

StartBERT Starts BERT on a pair of connected ports between devices in
the network.

StopBERT Stops an already in-progress BERT on a set of ports.

GetBERTResult Gets the BERT results during the BERT or after the operation
is complete.

gNOI RPCs

The following examples show the representation of few gNOI RPCs:
Get RPC

Streams the contents of a file from the target.

RPC to 10.105.57.106:57900
RPC start time: 20:58:27.513638

RPC start time: 20:58:27.513668
remote file: "harddisk:/giso image repo/test.log"
RPC end time: 20:58:27.518413

contents: "GNOI \n\n"

hash {
method: MD5

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

https://github.com/openconfig/gnoi/blob/main/layer2/layer2.proto
https://github.com/openconfig/gnoi/blob/main/bgp/bgp.proto
https://github.com/openconfig/gnoi/blob/main/diag/diag.proto

| Use gRPC Protocol to Define Network Operations with Data Models
gnoirees I

hash: "D\002\375h\237\322\024\341\370\3619k\310\333\016\343"
}

Remove RPC

Remove the specified file from the target.

RPC to 10.105.57.106:57900

RPC start time: 21:07:57.089554

————————————————————— File Remove Request-—-——-----———-—--——————-—-
remote file: "harddisk:/sample.txt"

RPC end time: 21:09:27.796217
File removal harddisk:/sample.txt successful

Reboot RPC
Reloads a requested target.

RPC to 10.105.57.106:57900
RPC start time: 21:12:49.811536

RPC start time: 21:12:49.811561
method: COLD
message: "Test Reboot"

subcomponents {

origin: "openconfig-platform"
elem {

name: "components"

}

elem {

name: "component"

key {

key: "name"
value: "O/RPO"

elem {
name: "state"

elem {
name: "location"

RPC end time: 21:12:50.023604
Set Package RPC

Places software package on the target.

RPC to 10.105.57.106:57900

RPC start time: 21:12:49.811536

————————————————————— Set Package Request--—--—---—--—--—-—-—-—-—-
RPC start time: 15:33:34.378745

Sending SetPackage RPC

package {

filename: "harddisk:/giso image repo/<platform-version>-giso.iso"
activate: true

}

method: MD5

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use gRPC Protocol to Define Network Operations with Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

hash: "C\314\207\354\217\270=\021\341y\355\240\274\003\034\334"
RPC end time: 15:47:00.928361

Reboot Status RPC

Returns the status of reboot for the target.

RPC to 10.105.57.106:57900
RPC start time: 22:27:34.209473

subcomponents {

origin: "openconfig-platform"
elem {

name: "components"

}

elem {

name: "component"

key {

key: "name"
value: "O/RPO"
}

}

elem {

name: "state"

}

elem

name: "location"

}
}

RPC end time: 22:27:34.319618

Active : False

Wait : O

When : O

Reason : Test Reboot
Count : O

Configure Interfaces Using Data Models in a gRPC Session

Google-defined remote procedure call () is an open-source RPC framework. gRPC supports IPv4 and IPv6
address families. The client applications use this protocol to request information from the router, and make
configuration changes to the router.

The process for using data models involves:

* Obtain the data models.
» Establish a connection between the router and the client using gRPC communication protocol.

* Manage the configuration of the router from the client using data models.

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use gRPC Protocol to Define Network Operations with Data Models

\)

Configure Interfaces Using Data Models in a gRPC Session .

Note

Configure AAA authorization to restrict users from uncontrolled access. If AAA authorization is not configured,
the command and data rules associated to the groups that are assigned to the user are bypassed. An IOS-XR
user can have full read-write access to the IOS-XR configuration through Network Configuration Protocol
(NETCONF), google-defined Remote Procedure Calls (gRPC) or any YANG-based agents. In order to avoid
granting uncontrolled access, enable AAA authorization using aaa authorization exec command before
setting up any configuration. For more information about configuring AAA authorization, see the System

Security Configuration Guide.

In this section, you use native data models to configure loopback and ethernet interfaces on a router using a
gRPC session.

Consider a network topology with four routers and one controller. The network consists of label edge routers
(LER) and label switching routers (LSR). Two routers LER1 and LER?2 are label edge routers, and two routers
LSR1 and LSR2 are label switching routers. A host is the controller with a gRPC client. The controller
communicates with all routers through an out-of-band network. All routers except LER1 are pre-configured
with proper IP addressing and routing behavior. Interfaces between routers have a point-to-point configuration
with /31 addressing. Loopback prefixes use the format 172.16.255.x/32.

The following image illustrates the network topology:

Figure 5: Network Topology for gRPC session

Controller Qut-of-band network
] oo
3
198.18.1.127/24
v
198.18.1.11/24 198.18.1.111/24 198.18.1.112/24 198.18.1.12/24
% g0/0/0/0 % go/0/0/2 % g0/0/0/0 %
172.16.1.0/31 172.16.2.4/31 172.16.2.0/31
LER1 LSR1 LSR2 LER2
lo0 lo0 100 lo0
172.16.255.1/32 172.16.255.101/32 172.16.255.102/32 172.16.255.2/32
g0/0rM
172.16.1.2/31 g0/0/0 -
172.16.2.2/31 g

You use Cisco IOS XR native model cisco-10S-XR-ifmgr-cfg.yang to programmatically configure router
LERI.

Before you begin

* Retrieve the list of YANG modules on the router using NETCONF monitoring RPC. For more information

* Configure Transport Layer Security (TLS). Enabling gRPC protocol uses the default HTTP/2 transport
with no TLS. gRPC mandates AAA authentication and authorization for all gRPC requests. If TLS is

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use gRPC Protocol to Define Network Operations with Data Models |

. Configure Interfaces Using Data Models in a gRPC Session

Procedure

Step 1

not configured, the authentication credentials are transferred over the network unencrypted. Enabling
TLS ensures that the credentials are secure and encrypted. Non-TLS mode can only be used in secure
internal network.

Enable gRPC Protocol

To configure network devices and view operational data, gRPC proptocol must be enabled on the server. In this example,
you enable gRPC protocol on LER1, the server.

Note
Cisco I0OS XR 64-bit platforms support gRPC protocol. The 32-bit platforms do not support gRPC protocol.

a)

b)

Enable gRPC over an HTTP/2 connection.

Example:

Router#configure

Router (config) #grpc

Router (config-grpc) #port <port-number>

The port number ranges from 57344 to 57999. If a port number is unavailable, an error is displayed.
Set the session parameters.

Example:

Router (config) #grpc {address-family | certificate-authentication | dscp | max-concurrent-streams
| max-request-per-user | max-request-total | max-streams |
max-streams-per-user | no-tls | tlsvl-disable | tls-cipher | tls-mutual | tls-trustpoint |
service-layer | vrf}
where:
* address-family: set the address family identifier type.
* certificate-authentication: enables certificate based authentication
* dscp: set QoS marking DSCP on transmitted gRPC.
* max-request-per-user: set the maximum concurrent requests per user.

* max-request-total: set the maximum concurrent requests in total.

* max-streams: set the maximum number of concurrent gRPC requests. The maximum subscription limit is 128
requests. The default is 32 requests.

* max-streams-per-user: set the maximum concurrent gRPC requests for each user. The maximum subscription
limit is 128 requests. The default is 32 requests.

* no-t1s: disable transport layer security (TLS). The TLS is enabled by default
* tlsvl-disable: disable TLS version 1.0

* service-layer: enable the grpc service layer configuration.

This parameter is not supported in Cisco ASR 9000 Series Routers, Cisco NCS560 Series Routers, , and Cisco
NCS540 Series Routers.

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use gRPC Protocol to Define Network Operations with Data Models

Step 2

Configure Interfaces Using Data Models in a gRPC Session .

* tls-cipher: enable the gRPC TLS cipher suites.
* tls-mutual: set the mutual authentication.
* tls-trustpoint: configure trustpoint.

* server-vrf: enable server vrf.
After gRPC is enabled, use the YANG data models to manage network configurations.

Configure the interfaces.

In this example, you configure interfaces using Cisco IOS XR native model cisco-10S-XR-ifmgr-cfg.yang. You gain
an understanding about the various gRPC operations while you configure the interface. For the complete list of operations,
see gRPC Operations, on page 40. In this example, you merge configurations with merge-config RPC, retreive operational
statistics using get-oper RPC, and delete a configuration using delete-config RPC. You can explore the structure of

the data model using YANG validator tools such as pyang.

LERI1 is the gRPC server, and a command line utility grpcc is used as a client on the controller. This utility does not
support YANG and, therefore, does not validate the data model. The server, LER1, validates the data mode.

Note
The OC interface maps all IP configurations for parent interface under a VLAN with index 0. Hence, do not configure a
sub interface with tag 0.

a) Explore the XR configuration model for interfaces and its IPv4 augmentation.

Example:

controller:grpc$ pyang --format tree --tree-depth 3 Cisco-IOS-XR-ifmgr-cfg.yang
Cisco-I0S-XR-ipv4-io-cfg.yang
module: Cisco-IOS-XR-ifmgr-cfg
+--rw global-interface-configuration
| +--rw link-status? Link-status-enum
+--rw interface-configurations
+--rw interface-configuration* [active interface-name]
+--rw dampening
\
+--rw mtus
\
+--rw encapsulation
\
+--rw shutdown? empty
+--rw interface-virtual? empty
+--rw secondary-admin-state? Secondary-admin-state-enum
+--rw interface-mode-non-physical? Interface-mode-enum
+--rw bandwidth? uint32
+--rw link-status? empty
+--rw description? string
+--rw active Interface-active
+--rw interface-name xr:Interface-name
+--rw ipvé4-io-cfg:ipv4-network
\

+--rw ipvé4-io-cfg:ipv4-network-forwarding
b) Configure a loopback0 interface on LER1.

Example:

controller:grpc$ more xr-interfaces-lo0-cfg.json

{

"Cisco-IOS-XR-ifmgr-cfg:interface-configurations":

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

https://github.com/mbj4668/pyang

Use gRPC Protocol to Define Network Operations with Data Models |

Configure Interfaces Using Data Models in a gRPC Session

{ "interface-configuration": [
{
"active": "act",
"interface-name": "LoopbackO",
"description": "LOCAL TERMINATION ADDRESS",
"interface-virtual": [
null
:I 4
"Cisco-IOS-XR-ipv4-io-cfg:ipv4-network": {
"addresses": {
"primary": {
"address": "172.16.255.1",
"netmask": "255.255.255.255"

c) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server addr 198.18.1.11:57400 -json_in file xr-interfaces-giO-cfg.json
emsMergeConfig: Sending Reqld 1

emsMergeConfig: Received RegId 1, Response '

T

d) Configure the ethernet interface on LER1.

Example:

controller:grpc$ more xr-interfaces-giO-cfg.json
{
"Cisco-IOS-XR-ifmgr-cfg:interface-configurations": {
"interface-configuration": [
{
"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"description": "CONNECTS TO LSR1 (g0/0/0/0)",
"Cisco-I0S-XR-ipvéd-io-cfg:ipvd-network": {
"addresses": {
"primary": {
"address": "172.16.1.0",
"netmask": "255.255.255.254"

e) Merge the configuration.

Example:

controller:grpc$ grpcc -username admin -password admin -oper merge-config
-server addr 198.18.1.11:57400 -json_in file xr-interfaces-giO-cfg.json
emsMergeConfig: Sending Regld 1

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session .

emsMergeConfig: Received ReqId 1, Response '
Al

f) Enable the ethernet interface GigabitEthernet 0/0/0/0 on LERI to bring up the interface. To do this, delete shutdown
configuration for the interface.

Example:

controller:grpc$ grpcc -username admin -password admin -oper delete-config
-server addr 198.18.1.11:57400 -yang path "$(< xr-interfaces-giO-shutdown-cfg.json)"
emsDeleteConfig: Sending RegId 1, yangJdson {
"Cisco-I0S-XR-ifmgr-cfg:interface-configurations": ({
"interface-configuration": [

{

"active": "act",
"interface-name": "GigabitEthernet0/0/0/0",
"shutdown": [

null

emsDeleteConfig: Received RegId 1, Response ''

Step 3 Verify that the loopback interface and the ethernet interface on router LER1 are operational.
Example:
controller:grpc$ grpcc -username admin -password admin -oper get-oper

-server addr 198.18.1.11:57400 -oper yang path "$(< xr-interfaces-briefs-oper-filter.json)"
emsGetOper: Sending ReqId 1, yangPath {

"Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": {
"interface-briefs": [
null
]
}
}
{ "Cisco-IOS-XR-pfi-im-cmd-oper:interfaces": ({

"interface-briefs": {

"interface-brief": [

{
"interface-name": "GigabitEthernet0/0/0/0",
"interface": "GigabitEthernet0/0/0/0",
"type": "IFT GETHERNET",
"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

}I

"interface-name": "GigabitEthernet0/0/0/1",
"interface": "GigabitEthernet0/0/0/1",
"type": "IFT GETHERNET",

"state": "im-state-up",

"actual-state": "im-state-up",
"line-state": "im-state-up",

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

. Configure Interfaces Using Data Models in a gRPC Session

"actual-line-state": "im-state-up",
"encapsulation": "ether",
"encapsulation-type-string": "ARPA",
"mtu": 1514,
"sub-interface-mtu-overhead": 0,

"l2-transport": false,
"bandwidth": 1000000
}I

"interface-name": "LoopbackO",
"interface": "LoopbackO",

"type": "IFT_ LOOPBACK",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "loopback",

"encapsulation-type-string": "Loopback",

"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

"interface-name": "MgmtEthO/RPO/CPU0O/0",

"interface": "MgmtEthO0/RP0O/CPUO/O",
"type": "IFT ETHERNET",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "ether",

"encapsulation-type-string": "ARPA",

"mtu": 1514,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 1000000

"interface-name": "NullO",
"interface": "NullO",

"type": "IFT NULL",

"state": "im-state-up",
"actual-state": "im-state-up",
"line-state": "im-state-up",
"actual-line-state": "im-state-up",
"encapsulation": "null",

"encapsulation-type-string": "Null",

"mtu": 1500,
"sub-interface-mtu-overhead": 0,
"l2-transport": false,
"bandwidth": 0

emsGetOper: Reqgld 1, byteRecv: 2325

Use gRPC Protocol to Define Network Operations with Data Models |

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Use gRPC Protocol to Define Network Operations with Data Models
Configure Interfaces Using Data Models in a gRPC Session .

In summary, router LER1, which had minimal configuration, is now programmatically configured using data models
with an ethernet interface and is assigned a loopback address. Both these interfaces are operational and ready for network
provisioning operations.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Use gRPC Protocol to Define Network Operations with Data Models |
. Configure Interfaces Using Data Models in a gRPC Session

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

CHAPTER 5

Unified Data Models

CLI-based YANG data models, also known as unified configuration models are introduced in Cisco IOS XR
Software Release 7.0.1. The unified models provide a full coverage of the router functionality, and serves as
a single abstraction for YANG and CLI commands. Unified models are generated from the CLI and replaces
the native schema-based models.

The unified models are available in pkg/ yang location. The presence of um in the model name indicates that
the model is a unified model. For example, Cisco-IOS-XR-um-<feature>-cfg.yang.

You can access the models supported on the router using the following command:

Router#run

[node] $ed /pkg/yang

[node:pkg/yang]$ls

The unified models are also available in the Github repository.

* Unified Configuration Models, on page 57

Unified Configuration Models

Table 6: Feature History Table

Feature Name Release Information | Description

Unified Data Model to map script | Release 7.5.3 Use the

file to the custom OID Cisco-I0S-XR-um-script-server-cfg.yang
unified data model to map script file to the custom
OID.

Transitioning Native Models to | Release 7.4.1 Unified models are CLI-based YANG models

Unified Models (UM) that are designed to replace the native

schema-based models. UM models are generated
directly from the IOS XR CLIs and mirror them
in several ways. This results in improved usability
and faster adoption of YANG models.

You can access the new unified models from the
Github repository.

The following table lists the unified models supported on Cisco IOS XR routers.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

https://github.com/YangModels/yang/blob/master/vendor/cisco/xr/
https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

Unified Data Models |
. Unified Configuration Models

Table 7: Unified Models

Unified Models Introduced in Release
Cisco-I0S-XR-um-script-server-cfg Release 7.5.3
Cisco-I0S-XR-um-script-cfg Release 7.5.3
Cisco-I0S-XR-um-if-ipsubscriber-cfg Release 7.5.1
Cisco-I0S-XR-um-session-redundancy-cfg Release 7.5.1
Cisco-IOS-XR-um-subscriber-accounting-cfg Release 7.5.1
Cisco-10S-XR-um-subscriber-cfg Release 7.5.1
Cisco-10S-XR-um-subscriber-redundancy-cfg Release 7.5.1
Cisco-10S-XR-um-dyn-tmpl-opendns-cfg Release 7.5.1
Cisco-10S-XR-um-dynamic-template-cfg Release 7.5.1
Cisco-IOS-XR-um-dynamic-template-cfg Release 7.5.1
Cisco-10S-XR-um-Ipts-profiling-cfg Release 7.5.1
Cisco-10S-XR-um-ppp-cfg Release 7.5.1
Cisco-I0S-XR-um-pppoe-cfg Release 7.5.1
Cisco-10S-XR-um-vpdn-cfg Release 7.5.1
Cisco-10S-XR-um-aaa-subscriber-cfg Release 7.5.1
Cisco-I0S-XR-um-dynamic-template-ipv4-cfg Release 7.5.1
Cisco-I0S-XR-um-dynamic-template-ipv6-cfg Release 7.5.1
Cisco-I0S-XR-um-dynamic-template-vrf-cfg Release 7.5.1
Cisco-10S-XR-um-mibs-subscriber-cfg Release 7.5.1
Cisco-I0S-XR-um-dyn-tmpl-monitor-session-cfg Release 7.5.1
Cisco-10S-XR-um-12tp-class-cfg Release 7.5.1
Cisco-IOS-XR-um-dynamic-template-dhcpv6d-cfg Release 7.5.1
Cisco-10S-XR-um-dyn-tmpl-service-policy-cfg Release 7.5.1
Cisco-I0S-XR-um-snmp-server mroutemib send-all-cfg | Release 7.5.1
Cisco-I0S-XR-um-aaa-cfg Release 7.4.1
Cisco-I0S-XR-um-aaa-diameter-cfg Release 7.4.1
Cisco-I0S-XR-um-aaa-nacm-cfg Release 7.4.1

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Unified Data Models

Unified Configuration Models .

Unified Models

Introduced in Release

Cisco-IO0S-XR-um-aaa-tacacs-server-cfg

Release 7.4.1

Cisco-I0S-XR-um-aaa-task-user-cfg

Release 7.4.1

Cisco-I0S-XR-um-banner-cfg

Release 7.4.1

Cisco-10S-XR-um-bfd-sbfd-cfg

Release 7.4.1

Cisco-I0S-XR-um-call-home-cfg

Release 7.4.1

Cisco-IOS-XR-um-cdp-cfg

Release 7.4.1

Cisco-I0S-XR-um-cef-accounting-cfg

Release 7.4.1

Cisco-I0S-XR-um-cfg-mibs-cfg

Release 7.4.1

Cisco-I0S-XR-um-cli-alias-cfg

Release 7.4.1

Cisco-I0S-XR-um-clock-cfg

Release 7.4.1

Cisco-I0S-XR-um-config-hostname-cfg

Release 7.4.1

Cisco-I0S-XR-um-cont-breakout-cfg

Release 7.4.1

Cisco-IOS-XR-um-cont-optics-cfg

Release 7.4.1

Cisco-10S-XR-um-control-plane-cfg

Release 7.4.1

Cisco-I0S-XR-um-crypto-cfg

Release 7.4.1

Cisco-I0S-XR-um-domain-cfg

Release 7.4.1

Cisco-I0S-XR-um-ethernet-cfm-cfg

Release 7.4.1

Cisco-IOS-XR-um-ethernet-oam-cfg

Release 7.4.1

Cisco-I0S-XR-um-exception-cfg

Release 7.4.1

Cisco-I0S-XR-um-flowspec-cfg

Release 7.4.1

Cisco-I0S-XR-um-frequency-synchronization-cfg

Release 7.4.1

Cisco-I0S-XR-um-hostname-cfg

Release 7.4.1

Cisco-I0S-XR-um-hw-module-port-range-cfg

Release 7.4.1

Cisco-10S-XR-um-hw-module-profile-cfg

Release 7.4.1

Cisco-IOS-XR-um-ip-virtual-cfg

Release 7.4.1

Cisco-I0S-XR-um-ipsla-cfg

Release 7.4.1

Cisco-I0S-XR-um-12vpn-cfg

Release 7.4.1

Cisco-I0S-XR-um-line-cfg

Release 7.4.1

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

. Unified Configuration Models

Unified Data Models |

Unified Models

Introduced in Release

Cisco-IOS-XR-um-line-exec-timeout-cfg

Release 7.4.1

Cisco-I0S-XR-um-line-general-cfg

Release 7.4.1

Cisco-I0S-XR-um-line-timestamp-cfg

Release 7.4.1

Cisco-I0S-XR-um-1ldp-cfg

Release 7.4.1

Cisco-IO0S-XR-um-location-cfg

Release 7.4.1

Cisco-IOS-XR-um-logging-cfg

Release 7.4.1

Cisco-I0S-XR-um-logging-correlator-cfg

Release 7.4.1

Cisco-I0S-XR-um-Ipts-pifib-cfg

Release 7.4.1

Cisco-10S-XR-um-Ipts-pifib-domain-cfg

Release 7.4.1

Cisco-10S-XR-um-Ipts-pifib-dynamic-flows-cfg

Release 7.4.1

Cisco-I0S-XR-um-mibs-cbqosmib-cfg

Release 7.4.1

Cisco-I0S-XR-um-mibs-fabric-cfg

Release 7.4.1

Cisco-IOS-XR-um-mibs-ifmib-cfg

Release 7.4.1

Cisco-I0S-XR-um-mibs-rfmib-cfg

Release 7.4.1

Cisco-I0S-XR-um-mibs-sensormib-cfg

Release 7.4.1

Cisco-I0S-XR-um-monitor-session-cfg

Release 7.4.1

Cisco-I0S-XR-um-mpls-oam-cfg

Release 7.4.1

Cisco-IOS-XR-um-ntp-cfg

Release 7.4.1

Cisco-I0S-XR-um-pce-cfg

Release 7.4.1

Cisco-I0S-XR-um-pool-cfg

Release 7.4.1

Cisco-10S-XR-um-priority-flow-control-cfg

Release 7.4.1

Cisco-I0S-XR-um-rcc-cfg

Release 7.4.1

Cisco-10S-XR-um-router-hsrp-cfg

Release 7.4.1

Cisco-10S-XR-um-router-vrrp-cfg

Release 7.4.1

Cisco-IOS-XR-um-service-timestamps-cfg

Release 7.4.1

Cisco-I0S-XR-um-ssh-cfg

Release 7.4.1

Cisco-I0S-XR-um-tcp-cfg

Release 7.4.1

Cisco-I0S-XR-um-telnet-cfg

Release 7.4.1

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Unified Data Models

Unified Configuration Models .

Unified Models

Introduced in Release

Cisco-IOS-XR-um-tpa-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-bridgemib-cfg

Release 7.4.1

Cisco-10S-XR-um-traps-config-copy-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-entity-cfg

Release 7.4.1

Cisco-10S-XR-um-traps-entity-redundancy-cfg

Release 7.4.1

Cisco-IOS-XR-um-traps-entity-state-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-flash-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-fru-ctrl-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-ipsec-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-12tun-cfg

Release 7.4.1

Cisco-10S-XR-um-traps-otn-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-power-cfg

Release 7.4.1

Cisco-IOS-XR-um-traps-selective-vrf-download-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-syslog-cfg

Release 7.4.1

Cisco-I0S-XR-um-traps-system-cfg

Release 7.4.1

Cisco-10S-XR-um-udp-cfg

Release 7.4.1

Cisco-I0S-XR-um-vty-pool-cfg

Release 7.4.1

Cisco-IOS-XR-um-xml-agent-cfg

Release 7.4.1

Cisco-10S-XR-um-conflict-policy-cfg

Release 7.3.1

Cisco-I0S-XR-um-flow-cfg

Release 7.2.1

Cisco-I0S-XR-um-if-access-group-cfg

Release 7.2.1

Cisco-10S-XR-um-if-ipv4-cfg

Release 7.2.1

Cisco-10S-XR-um-if-ipv6-cfg

Release 7.2.1

Cisco-10S-XR-um-if-service-policy-qos-cfg

Release 7.2.1

Cisco-I0S-XR-um-ipv4-access-list-cfg

Release 7.2.1

Cisco-I0S-XR-um-ipv6-access-list-cfg

Release 7.2.1

Cisco-I0S-XR-um-12-ethernet-cfg

Release 7.2.1

Cisco-I0S-XR-um-multicast-routing-cfg

Release 7.2.1

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

. Unified Configuration Models

Unified Data Models |

Unified Models

Introduced in Release

Cisco-IOS-XR-um-object-group-cfg

Release 7.2.1

Cisco-I0S-XR-um-policymap-classmap-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-igmp-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-pim-cfg

Release 7.2.1

Cisco-I0S-XR-um-statistics-cfg

Release 7.2.1

Cisco-IOS-XR-um-ethernet-services-access-list-cfg

Release 7.2.1

Cisco-10S-XR-um-if-12transport-cfg

Release 7.2.1

Cisco-I0S-XR-um-ipv4-prefix-list-cfg

Release 7.2.1

Cisco-I0S-XR-um-ipvo6-prefix-list-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-amt-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-mld-cfg

Release 7.2.1

Cisco-10S-XR-um-router-msdp-cfg

Release 7.2.1

Cisco-I0S-XR-um-router-bgp-cfg

Release 7.1.1

Cisco-10S-XR-um-mpls-te-cfg

Release 7.1.1

Cisco-IOS-XR-um-router-isis-cfg

Release 7.1.1

Cisco-10S-XR-um-router-ospf-cfg

Release 7.1.1

Cisco-I0S-XR-um-router-ospfv3-cfg

Release 7.1.1

Cisco-IOS-XR-um-grpc-cfg

Release 7.0.1

Cisco-10S-XR-um-if-bundle-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-ethernet-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-ip-address-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-vrf-cfg

Release 7.0.1

Cisco-I0S-XR-um-interface-cfg

Release 7.0.1

Cisco-I0S-XR-um-mpls-13vpn-cfg

Release 7.0.1

Cisco-IO0S-XR-um-netconf-yang-cfg

Release 7.0.1

Cisco-I0S-XR-um-router-rib-cfg

Release 7.0.1

Cisco-I0S-XR-um-router-static-cfg

Release 7.0.1

Cisco-10S-XR-um-snmp-server-cfg

Release 7.0.1

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

| Unified Data Models

Unified Configuration Models .

Unified Models

Introduced in Release

Cisco-IOS-XR-um-telemetry-model-driven-cfg

Release 7.0.1

Cisco-I0S-XR-um-vrf-cfg

Release 7.0.1

Cisco-IOS-XR-um-arp-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-arp-cfg

Release 7.0.1

Cisco-I0S-XR-um-if-mpls-cfg

Release 7.0.1

Cisco-IOS-XR-um-if-tunnel-cfg

Release 7.0.1

Cisco-10S-XR-um-mpls-1dp-cfg

Release 7.0.1

Cisco-I0S-XR-um-mpls-lsd-cfg

Release 7.0.1

Cisco-I0S-XR-um-rsvp-cfg

Release 7.0.1

Cisco-I0S-XR-um-traps-mpls-1dp-cfg

Release 7.0.1

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

Unified Data Models |
. Unified Configuration Models

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

CHAPTER 6

Enhancements to Data Models

This section provides an overview of the enhancements made to data models.

» Enhancements to Sensor Paths, on page 65

Enhancements to Sensor Paths

This section provides an overview about the sensor paths introduced or enhanced across Cisco IOS XR releases.

Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x .

. Enhancements to Sensor Paths

Table 8: Feature History Table

Enhancements to Data Models |

Interfaces, IPv4 and
IPv6 Addresses and
State

Feature Name Release Description

Information
Telemetry Support for | Release 7.4.2 | This feature provides telemetry gRPC Network Management Interface
OpenConfig and Use gRPC Protocol to Define Network Operations with Data

Models support for the following openconfig-if-ip.yang sensor
paths. Previously, only NETCONF edit-config, get-config and get
operations were supported. With this new feature, telemetry polling
at a cadence or on-change can be retrieved for IPv4 and IPv6 data.

* /oc-if:interfaces/oc-if:interface/oc-if:subinterfaces/oc-if:subinterface/ipv6/
* addresses/address[ip]/state/ip
* addresses/address[ip]/state/prefix-length
* addresses/address[ip]/state/origin
* state/enabled
* state/mtu
* state/dup-addr-detect-transmits
* state/counters/in-pkts
* state/counters/in-octets
* state/counters/out-pkts
* state/counters/out-octets

* state/openconfig-if-ip-ext:autoconf/create-global-addresses

* /oc-if:interfaces/oc-ifinterface/oc-if:subinterfaces/oc-if:subinterface/ipv4/
* addresses/address[ip]/state/ip
* addresses/address[ip]/state/prefix-length
* addresses/address[ip]/state/origin
* state/mtu
« state/dhcp-client
* state/in-pkts
* state/in-octets
* state/out-pkts

« state/out-octets

You can access this data model from the Github repository.

. Programmability Configuration Guide for Cisco ASR 9000 Series Routers, 10S XR Release 7.4.x

https://github.com/openconfig/public/tree/master/release/models

	Programmability Configuration Guide for Cisco ASR 9000 Series Routers, IOS XR Release 7.4.x
	Contents
	New and Changed Feature Information
	New and Changed Programmability Features

	Drive Network Automation Using Programmable YANG Data Models
	YANG Data Model
	Access the Data Models
	CLI to Yang Mapping Tool
	Communication Protocols
	NETCONF Protocol
	gRPC Protocol

	YANG Actions

	Use NETCONF Protocol to Define Network Operations with Data Models
	NETCONF Operations
	Retrieve Default Parameters Using with-defaults Capability
	Retrieve Transaction ID for NSO Operations
	Set Router Clock Using Data Model in a NETCONF Session

	Use gRPC Protocol to Define Network Operations with Data Models
	gRPC Operations
	gRPC Authentication Modes
	Authenticate gRPC Services

	gRPC Network Management Interface
	gRPC Network Operations Interface
	gNOI RPCs

	Configure Interfaces Using Data Models in a gRPC Session

	Unified Data Models
	Unified Configuration Models

	Enhancements to Data Models
	Enhancements to Sensor Paths

