

Implementing VRRP

The Virtual Router Redundancy Protocol (VRRP) feature allows for transparent failover at the first-hop IP router, enabling a group of routers to form a single virtual router.

Note

For a complete description of the VRRP commands listed in this module, refer to the *Cisco ASR 9000 Series Aggregation Services Router IP Addresses and Services Command Reference* publication. To locate documentation of other commands that appear in this chapter, use the command reference master index, or search online.

Feature	History	/ for	Imn	lementing	VRRP
i calui c	matury	101	mp	iemenung	VNNF

Release	Modification
Release 3.7.2	This feature was introduced.
Release 3.9.0	 BFD for VRRP feature was added. MIB support for VRRP feature was added.
Release 4.1.0	VRRP over IPv6 feature was added.

- Prerequisites for Implementing VRRP on Cisco IOS XR Software, on page 2
- Restrictions for Implementing VRRP on Cisco IOS XR Software , on page 2
- Information About Implementing VRRP , on page 2
- Configuring VRRP, on page 5
- Multiple Group Optimization for Virtual Router Redundancy Protocol, on page 11
- MIB support for VRRP, on page 15
- Hot Restartability for VRRP, on page 16
- Configuration Examples for VRRP Implementation on Cisco IOS XR Software , on page 16
- Additional References, on page 18

Prerequisites for Implementing VRRP on Cisco IOS XR Software

You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

Restrictions for Implementing VRRP on Cisco IOS XR Software

VRRP is supported on Ethernet interfaces, Ethernet sub-interfaces and Ethernet link bundles.

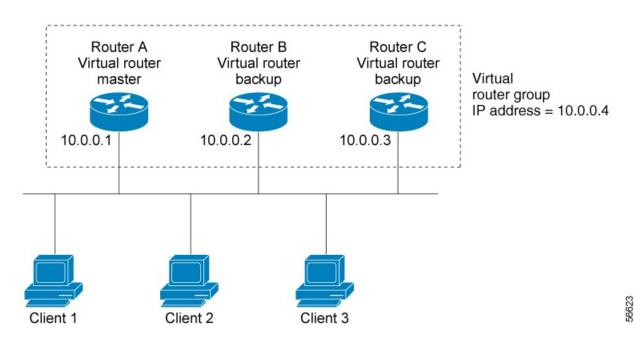
The following are restrictions for implementing VRRP:

- ICMP redirects are not supported.
- Upto 4000 sessions are permitted on Ethernet sub-interfaces.
- On bundle interfaces, the number of sessions per member vary depending on the number of bundle members and their location on network processor (NP) as listed here:
 - One member on one NP: 3999 VRRP sessions
 - Two members on same NP: 1999 VRRP sessions
 - Four members on same NP: 999 VRRP sessions
 - Two members, one on each NP: 3999 VRRP sessions
 - Four members, two on each NP: 1999 VRRP sessions

Information About Implementing VRRP

To implement VRRP, you need to understand the following concepts:

VRRP Overview


A LAN client can use a dynamic process or static configuration to determine which router should be the first hop to a particular remote destination. The client examples of dynamic router discovery are as follows:

- Proxy ARP—The client uses Address Resolution Protocol (ARP) to get the destination it wants to reach, and a router responds to the ARP request with its own MAC address.
- Routing protocol—The client listens to dynamic routing protocol updates (for example, from Routing Information Protocol [RIP]) and forms its own routing table.
- IRDP (ICMP Router Discovery Protocol) client—The client runs an Internet Control Message Protocol (ICMP) router discovery client.

The drawback to dynamic discovery protocols is that they incur some configuration and processing overhead on the LAN client. Also, in the event of a router failure, the process of switching to another router can be slow. An alternative to dynamic discovery protocols is to statically configure a default router on the client. This approach simplifies client configuration and processing, but creates a single point of failure. If the default gateway fails, the LAN client is limited to communicating only on the local IP network segment and is cut off from the rest of the network.

The Virtual Router Redundancy Protocol (VRRP) feature can solve the static configuration problem. VRRP is an IP routing redundancy protocol designed to allow for transparent failover at the first-hop IP router. VRRP enables a group of routers to form a single *virtual router*. The LAN clients can then be configured with the virtual router as their default gateway. The virtual router, representing a group of routers, is also known as a *VRRP group*.

For example, Figure 1: Basic VRRP Topology, on page 3 shows a LAN topology in which VRRP is configured. In this example, Routers A, B, and C are *VRRP routers* (routers running VRRP) that compose a virtual router. The IP address of the virtual router is the same as that configured for the interface of Router A (10.0.0.1).

Figure 1: Basic VRRP Topology

Because the virtual router uses the IP address of the physical interface of Router A, Router A assumes the role of the *master virtual router* and is also known as the *IP address owner*. As the master virtual router, Router A controls the IP address of the virtual router and is responsible for forwarding packets sent to this IP address. Clients 1 through 3 are configured with the default gateway IP address of 10.0.0.1.

Routers B and C function as *backup virtual routers*. If the master virtual router fails, the router configured with the higher priority becomes the master virtual router and provides uninterrupted service for the LAN hosts. When Router A recovers, it becomes the master virtual router again.

Note

We recommend that you disable Spanning Tree Protocol (STP) on switch ports to which the virtual routers are connected. Enable RSTP or rapid-PVST on the switch interfaces if the switch supports these protocols.

Multiple Virtual Router Support

You can configure up to 100 virtual routers on a router interface. The actual number of virtual routers that a router interface can support depends on the following factors:

- Router processing capability
- · Router memory capability
- · Router interface support of multiple MAC addresses

In a topology where multiple virtual routers are configured on a router interface, the interface can act as a master for one or more virtual routers and as a backup for one or more virtual routers.

VRRP Router Priority

An important aspect of the VRRP redundancy scheme is VRRP router priority. Priority determines the role that each VRRP router plays and what happens if the master virtual router fails.

If a VRRP router owns the IP address of the virtual router and the IP address of the physical interface, this router functions as a master virtual router.

If no VRRP router owns the IP address, the priority of a VRRP router, combined with the reempt settings, determines if a VRRP router functions as a master or a backup virtual router. By default, the highest priority VRRP router functions as master, and all the others function as backups. Priority also determines the order of ascendancy to becoming a master virtual router if the master virtual router fails. You can configure the priority of each backup virtual router with a value of 1 through 254, using the **vrrp priority** command.

For example, if Router A, the master virtual router in a LAN topology, fails, an election process takes place to determine if backup virtual Routers B or C should take over. If Routers B and C are configured with the priorities of 101 and 100, respectively, Router B is elected to become master virtual router because it has the higher priority. If Routers B and C are both configured with the priority of 100, the backup virtual router with the higher IP address is elected to become the master virtual router.

By default, a preemptive scheme is enabled whereby a higher-priority backup virtual router that becomes available takes over from the current master virtual router. You can disable this preemptive scheme using the **vrrp preempt disable** command. If preemption is disabled, the backup virtual router that is elected to become master upon the failure of the original higher priority master, remains the master even if the original master virtual router recovers and becomes available again.

VRRP Advertisements

The master virtual router sends VRRP advertisements to other VRRP routers in the same group. The advertisements communicate the priority and state of the master virtual router. The VRRP advertisements are encapsulated in IP packets and sent to the IP Version 4 multicast address assigned to the VRRP group. The advertisements are sent every second by default; the interval is configurable.

Benefits of VRRP

The benefits of VRRP are as follows:

• Redundancy— VRRP enables you to configure multiple routers as the default gateway router, which reduces the possibility of a single point of failure in a network.

- Load Sharing—You can configure VRRP in such a way that traffic to and from LAN clients can be shared by multiple routers, thereby sharing the traffic load more equitably among available routers.
- Multiple Virtual Routers—VRRP supports up to 100 virtual routers (VRRP groups) on a router interface, subject to the platform supporting multiple MAC addresses. Cisco ASR 9000 Series Routers support up to a limit of 100 per system with default timers. Multiple virtual router support enables you to implement redundancy and load sharing in your LAN topology.
- Multiple IP Addresses—The virtual router can manage multiple IP addresses, including secondary IP addresses. Therefore, if you have multiple subnets configured on an Ethernet interface, you can configure VRRP on each subnet.
- Preemption—The redundancy scheme of VRRP enables you to preempt a backup virtual router that has taken over for a failing master virtual router with a higher-priority backup virtual router that has become available.
- Text Authentication—You can ensure that VRRP messages received from VRRP routers that comprise a virtual router are authenticated by configuring a simple text password.
- Advertisement Protocol—VRRP uses a dedicated Internet Assigned Numbers Authority (IANA) standard multicast address (224.0.0.18) for VRRP advertisements. This addressing scheme minimizes the number of routers that must service the multicasts and allows test equipment to accurately identify VRRP packets on a segment. The IANA assigns VRRP the IP protocol number 112.

Configuring VRRP

This section contains instructions for configuring VRRP for IPv4 and IPv6 networks.

Note

The VRRP virtual router id (vrid) has to be different for different sub-interfaces, for a given physical interface.

Configuring VRRP for IPv4 Networks

This section describes the procedure for configuring and verifying VRRP for IPv4 networks.

Configuration

Router(config-if) # commit

Use the following configuration for configuring VRRP for IPv4 networks.


```
Note
```

Certain customizations (as mentioned) are recommended to control the behavior of the VRRP group on committing the VRRP configuration on the Router. If the following customizations are not configured, then the Router seizes control of the VRRP group, and immediately assumes the role of the master virtual Router.

```
/* Enter the interface configuration mode and configure an IPv4 address for the interface.
 */
Router(config)# interface gigabitEthernet 0/0/0/1
Router(config-if)# ipv4 address 10.10.10.1 255.255.255.0
Router(config-if)# no shut
```

Fri Dec 8 13:49:24.142 IST Router:Dec 8 13:49:24.285 : ifmgr[402]: %PKT INFRA-LINK-3-UPDOWN : Interface GigabitEthernet0/0/0/1, changed state to Down Router:Dec 8 13:49:24.711 : ifmgr[402]: %PKT INFRA-LINK-3-UPDOWN : Interface GigabitEthernet0/0/0/1, changed state to Up $\$ Router(config-if) # exit Router(config) # do show ip int brief Fri Dec 8 13:50:05.505 IST Status Protocol Vrf-Name Interface TP-Address Down GigabitEthernet0/0/0/0 unassigned Shutdown default GigabitEthernet0/0/0/1 10.10.10.1 Up Up default GigabitEthernet0/0/0/2 Shutdown default unassigned Down GigabitEthernet0/0/0/3 unassigned Shutdown Down default unassigned GigabitEthernet0/0/0/4 Shutdown Down default /* Enter the VRRP configuration mode and add the configured interface. */Router (config) # router vrrp Router(config-vrrp) # interface GigabitEthernet 0/0/0/1 /* CUSTOMIZATION: Configure a delay for the startup of the state machine when the interface comes up. */ Router (config-vrrp) # delay minimum 2 reload 10 */ /* Configure VRRP version 3 for IPv4 */ Router(config-vrrp-if)# address-family ipv4 vrrp 100 version 3 Router(config-vrrp-virtual-router)# address 10.10.10.1 /* CUSTOMIZATION: Disable the installation of routes for the VRRP virtual addresses. */ Router(config-vrrp-virtual-Router)# accept-mode disable /* CUSTOMIZATION: Set a priority for the virtual Router. */ Router(config-vrrp-virtual-Router)# priority 254 /* CUSTOMIZATION: Configure a preempt delay value that controls the selection of the master virtual Router. */ Router(config-vrrp-virtual-Router)# preempt delay 15 /* CUSTOMIZATION: Configure the interval between successive advertisements by the master virtual Router. */ Router(config-vrrp-virtual-Router)#timer 4 /* CUSTOMIZATION: Configure VRRP to track an interface. */ Router (config-vrrp-virtual-Router) # track interface GigabitEthernet0/0/0/1 30 /* Commit the configuration */ Router(config-vrrp-virtual-Router)# commit

You have successfully configured VRRP for IPv4 networks.

Validation

Use the following commands to validate the configuration.

```
/* Validate the configuration */
Router(config-vrrp-virtual-router)# do show run interface GigabitEthernet 0/0/0/1
Fri Dec 8 15:04:38.140 IST
interface GigabitEthernet0/0/0/1
ipv4 address 10.10.10.1 255.255.255.0
!
```

```
Router (config) # show running-config router vrrp
Fri Dec 8 13:50:18.959 IST
router vrrp
interface GigabitEthernet0/0/0/1
   delay minimum 2 reload 10
  address-family ipv4
   vrrp 100 version 3
   priority 254
    preempt delay 15
    timer 4
    track interface GigabitEthernet0/0/0/2 30
    address 10.10.10.1
    accept-mode disable
   1
  !
 !
```

Router(config-vrrp-virtual-router)# do show vrrp ipv4 interface gigabitEthernet 0/0/0/1 Fri Dec 8 15:02:56.952 IST IPv4 Virtual Routers: A indicates IP address owner | P indicates configured to preempt | |

```
InterfacevrID Prio A P StateMaster addrVRouter addrGi0/0/0/1100255 A P Masterlocal10.10.10.1
```

```
Router(config-vrrp-virtual-router)# end
Router# show vrrp detail
Fri Dec 8 15:08:36.469 IST
GigabitEthernet0/0/0/1 - IPv4 vrID 100
  State is Master, IP address owner
   1 state changes, last state change 01:19:06
   State change history:
   Dec 8 13:49:30.147 IST Init
                                     -> Master
                                                 Delay timer expired
  Last resign sent: Never
  Last resign received: Never
  Virtual IP address is 10.10.10.1
  Virtual MAC address is 0000.5E00.0164, state is active
 Master router is local
  Version is 3
  Advertise time 1 secs
   Master Down Timer 3.003 (3 x 1 + (1 x 1/256))
  Minimum delay 1 sec, reload delay 5 sec
  Current priority 255
    Configured priority 100, may preempt
      minimum delay 0 secs
```

You have successfully validated VRRP for IPv4 networks.

Configuring VRRP for IPv6 Networks

This section describes the procedure for configuring and verifying VRRP for IPv6 networks.

Configuration

The following sample includes the configuration and customization of VRRP for IPv6 networks.

Note

Certain customizations (as mentioned) are recommended to control the behavior of the VRRP group on committing the VRRP configuration on the Router. If the following customizations are not configured, then the Router seizes control of the VRRP group, and immediately assumes the role of the master virtual Router.

```
/* Enter the interface configuration mode and configure an IPv6 address ^{*/}
Router# interface GigabitEthernet 0/0/0/2
Router(config-if) # ipv6 address 10::1/64
Router(config-if) # no shut
/* Exit the interface configuration mode and enter the vrrp configuration mode */
Router(config-if) # exit
Router (config) # Router vrrp
/* Add the configured interface for VRRP */
Router(config-vrrp)# interface GigabitEthernet 0/0/0/2
/* CUSTOMIZATION: Configure a delay for the startup of the state machine when the interface
comes up. */
Router(config-vrrp)# delay minimum 2 reload 10 */
/* Enable the IPv6 global and link local address family on the interface */
Router(config-vrrp-if) # address-family ipv6 vrrp 50
Router(config-vrrp-virtual-Router)# address linklocal autoconfig
/* CUSTOMIZATION: Disable the installation of routes for the VRRP virtual addresses. */
Router(config-vrrp-virtual-Router) # accept-mode disable
/* CUSTOMIZATION: Set a priority for the virtual Router. */
Router(config-vrrp-virtual-Router)# priority 254
/* CUSTOMIZATION: Configure a preempt delay value that controls the selection of the master
virtual Router. */
Router(config-vrrp-virtual-Router)# preempt delay 15
/* CUSTOMIZATION: Configure the interval between successive advertisements by the master
virtual Router. */
Router (config-vrrp-virtual-Router) #timer 4
/* CUSTOMIZATION: Configure VRRP to track an interface. ^{\star/}
Router(config-vrrp-virtual-Router)# track interface GigabitEthernet0/0/0/2 30
/* Commit the configuration */
Router(config-vrrp-virtual-Router)# commit
```

You have successfully configured VRRP for IPv6 networks.

Validation

Use the following commands to validate the configuration.

```
/* Validate the configuration */
Router(config-vrrp-virtual-router)# do show run interface GigabitEthernet 0/0/0/2
Fri Dec 8 14:55:48.378 IST
interface GigabitEthernet0/0/0/2
ipv6 address 10::1/64
!
```

Router(config-vrrp-virtual-router)# do show running-config router vrrp

```
. . .
router vrrp
interface GigabitEthernet0/0/0/2
 delay minimum 2 reload 10
  address-family ipv6
  vrrp 50
   priority 254
   preempt delay 15
   timer 4
    track interface GigabitEthernet0/0/0/2 30
   address linklocal autoconfig
   accept-mode disable
   1
  1
 1
!
Router(config-vrrp-virtual-router)# do show vrrp ipv6 interface gigabitEthernet 0/0/0/2
Fri Dec 8 14:59:25.547 IST
IPv6 Virtual Routers:
                      A indicates IP address owner
                      | P indicates configured to preempt
                      1 1
Interface
           vrID Prio A P State
                                   Master addr
                                                   VRouter addr
Gi0/0/0/2
              50 254 P Master local
                                               fe80::200:5eff:fe00:203
Router(config-vrrp-virtual-router)# end
Router# show vrrp detail
Fri Dec 8 15:08:36.469 IST
GigabitEthernet0/0/0/2 - IPv6 vrID 50
  State is Master
    2 state changes, last state change 00:18:01
   State change history:
   Dec 8 14:50:23.326 IST Init
                                      -> Backup
                                                  Virtual IP configured
   Dec 8 14:50:35.365 IST Backup
                                    -> Master
                                                  Master down timer expired
                     Never
  Last resign sent:
  Last resign received: Never
 Virtual IP address is fe80::200:5eff:fe00:203
  Virtual MAC address is 0000.5E00.0203, state is active
  Master router is local
  Advertise time 4 secs
   Master Down Timer 12.031 (3 x 4 + (2 x 4/256))
  Minimum delay 2 sec, reload delay 10 sec
  Current priority 254
    Configured priority 254, may preempt
     minimum delay 15 secs
    Tracked items: 1/1 up: 0 decrement
      Object name
                                 State
                                           Decrement
      GigabitEthernet0/0/0/2
                                    Up
                                                  30
```

You have successfully validated VRRP for IPv6 networks.

Clearing VRRP Statistics

Use the **clear vrrp statistics** command to clear all the software counters for the specified virtual router.

SUMMARY STEPS

1. clear vrrp statistics [ipv4 | ipv6] [interfacetype interface-path-id [vrid]]

DETAILED STEPS

	Command or Action	Purpose
Step 1	clear vrrp statistics [ipv4 ipv6] [interfacetype interface-path-id [vrid]] Example:	Clears all software counters for the specified virtual router.If no interface is specified, statistics of all virtual routers are removed.
	RP/0/RSP0/CPU0:router# clear vrrp statistics	

Disabling State Change Logging

Perform this task to disable the task of logging the VRRP state change events via syslog.

SUMMARY STEPS

- 1. configure
- 2. router vrrp
- 3. message state disable
- 4. commit

	Command or Action	Purpose
Step 1	configure	
Step 2	router vrrp	Enables the VRRP configuration mode.
	Example:	
	RP/0/RSP0/CPU0:router(config)# router vrrp	
Step 3	message state disable Example:	Disables the task of logging the VRRP state change events via syslog.
	RP/0/RSP0/CPU0:router(config-vrrp)# message state disable RP/0/RSP0/CPU0:router(config-vrrp)#	2
Step 4	commit	

Multiple Group Optimization for Virtual Router Redundancy Protocol

Multiple Group Optimization for Virtual Router Redundancy Protocol (VRRP) provides a solution for reducing control traffic in a deployment consisting of many subinterfaces. By running the VRRP control traffic for just one session, the control traffic is reduced for the subinterfaces with identical redundancy requirements. All other sessions are slaves of this primary session, and inherit their states from it.

Configuring a VRRP Session Name

Perform this task to configure a VRRP session name.

SUMMARY STEPS

- 1. configure
- 2. router vrrp
- **3.** interface type interface-path-id
- 4. address-family ipv4
- 5. vrrp group-no
- 6. name name
- 7. commit

	Command or Action	Purpose	
Step 1	configure		
Step 2	router vrrp	EnablesVRRP configuration mode.	
	Example:		
	RP/0/RSP0/CPU0:router(config)# router vrrp		
Step 3	interface type interface-path-id	Enables RP interface configuration mode on a specific interface.	
	Example:		
	RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1		
Step 4	address-family ipv4	Enables VRRP address-family configuration mode on a	
	Example:	specific interface.	
	<pre>RP/0/RSP0/CPU0:router(config-vrrp-if)# address-family ipv4</pre>		
Step 5	vrrp group-no	Enables VRRP group configuration mode on a specific	
	Example:	interface.	

	Command or Action	Purpose
	<pre>RP/0/RSP0/CPU0:router(config-vrrp-address-family)# vrrp 1</pre>	
Step 6	name name	Configures a VRRP session name.
	Example:	
	RP/0/RSP0/CPU0:router(config-vrrp-vritual-router)# name s1	
Step 7	commit	

Configuring a Slave Follow(VRRP)

Perform this task to instruct the slave group to inherit its state from a specified group.

SUMMARY STEPS

- 1. configure
- 2. router vrrp
- 3. interface type interface-path-id
- 4. address-family ipv4
- 5. vrrp group-no slave
- 6. follow mgo-session-name
- 7. commit

	Command or Action	Purpose
Step 1	configure	
Step 2	router vrrp	Enables VRRP configuration mode.
	Example:	
	RP/0/RSP0/CPU0:router(config)# router vrrp	
Step 3	interface type interface-path-id	Enables VRRP interface configuration mode on a specific
	Example:	interface.
	<pre>RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1</pre>	
Step 4	address-family ipv4	Enables VRRP address-family configuration mode on a
Example:	specific interface.	
	<pre>RP/0/RSP0/CPU0:router(config-vrrp-if)# address-family ipv4</pre>	

	Command or Action	Purpose
Step 5	vrrp group-no slave	Enables VRRP slave configuration mode on a specific
	Example:	interface.
	<pre>RP/0/RSP0/CPU0:router(config-vrrp-address-family)# vrrp 2 slave</pre>	
Step 6	follow mgo-session-name	Instructs the slave group to inherit its state from a specified
	Example:	group.
	RP/0/RSP0/CPU0:router(config-vrrp-slave)# follow m1	
Step 7	commit	

Configuring a Primary Virtual IPv4 Address for a Slave Group(VRRP)

Perform this task to configure the primary virtual IPv4 address for the slave group.

SUMMARY STEPS

- 1. configure
- 2. router vrrp
- **3.** interface type interface-path-id
- 4. address-family ipv4
- 5. vrrp group-no slave
- 6. address ip-address
- 7. commit

	Command or Action	Purpose
Step 1	configure	
Step 2	router vrrp	Enables VRRP configuration mode.
	Example:	
	RP/0/RSP0/CPU0:router(config)# router vrrp	
Step 3interface type interface-path-idExample:	interface type interface-path-id	Enables VRRP interface configuration mode on a specific
	Example:	interface.
	RP/0/RSP0/CPU0:router(config-vrrp)# interface TenGigE 0/2/0/1	
-	address-family ipv4	Enables VRRP address-family configuration mode on a
	Example:	specific interface.

I

	Command or Action	Purpose
	<pre>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</pre>	
Step 5	vrrp group-no slave	Enables VRRP slave configuration mode on a specific
	Example:	interface.
	<pre>RP/0/RSP0/CPU0:router(config-vrrp-address-family)# vrrp 2 slave</pre>	
Step 6	address ip-address	Configures the primary virtual IPv4 address for the slave
	Example:	group.
	<pre>RP/0/RSP0/CPU0:router(config-vrrp-slave)# address 10.2.3.2</pre>	
Step 7	commit	

Configuring a Secondary Virtual IPv4 address for the Slave Group

Perform this task to configure the secondary virtual IPv4 address for the slave group.

SUMMARY STEPS

- 1. configure
- 2. router hsrp
- **3.** interface type interface-path-id
- 4. address-family ipv4
- 5. hsrp group-no slave
- 6. address address secondary
- 7. commit

	Command or Action	Purpose
Step 1	configure	
Step 2	router hsrp	Enables HSRP configuration mode.
	Example:	
	RP/0/RSP0/CPU0:router(config)# router hsrp	
Step 3	interface type interface-path-id	Enables HSRP interface configuration mode on a specific
	Example:	interface.
	RP/0/RSP0/CPU0:router(config-hsrp)# interface TenGigE 0/2/0/1	

	Command or Action	Purpose
Step 4	address-family ipv4	Enables HSRP address-family configuration mode on a
	Example:	specific interface.
	<pre>RP/0/RSP0/CPU0:router(config-hsrp-if)# address-family ipv4</pre>	
Step 5	hsrp group-no slave	Enables HSRP slave configuration mode on a specific
	Example:	interface.
	RP/0/RSP0/CPU0:router(config-hsrp-address-family)# hsrp 2 slave	
Step 6	address address secondary	Configures the secondary virtual IPv4 address for a router.
	Example:	
	RP/0/RSP0/CPU0:router(config-hsrp-slave)# address 10.20.30.1 secondary	5
Step 7	commit	

MIB support for VRRP

VRRP enables one or more IP addresses to be assumed by a router when a failure occurs. For example, when IP traffic from a host reaches a failed router because the failed router is the default gateway, the traffic is transparently forwarded by the VRRP router that has assumed control. VRRP does not require configuration of dynamic routing or router discovery protocols on every end host. The VRRP router controlling the IP address(es) associated with a virtual router is called the master, and forwards packets sent to these IP addresses. The election process provides dynamic fail over(standby) in the forwarding responsibility should the master become unavailable. This allows any of the virtual router IP addresses on the LAN to be used as the default first hop router by end-hosts. The advantage gained from using VRRP is a higher availability default path without requiring configuration of dynamic routing or router discovery protocols on every end-host. SNMP traps provide information of the state changes, when the virtual routers(in standby) are moved to master state or if the standby router is made master.

Configuring SNMP server notifications for VRRP events

The **snmp-server traps vrrp events** command enables the Simple Network Management Protocol (SNMP) server notifications (traps) for VRRP.

SUMMARY STEPS

- 1. configure
- 2. snmp-server traps vrrp events
- 3. commit

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	
Step 2	snmp-server traps vrrp events	Enables the SNMP server notifications for VRRP.
	Example:	
	RP/0/RSP0/CPU0:router(config)snmp-server traps vrrp events	
Step 3	commit	

Hot Restartability for VRRP

In the event of failure of a VRRP process in one group, forced failovers in peer VRRP master router groups should be prevented. Hot restartability supports warm RP failover without incurring forced failovers to peer VRRP routers.

Configuration Examples for VRRP Implementation on Cisco IOS XR Software

This section provides the following VRRP configuration examples:

Configuring a VRRP Group: Example

This section provides the following configuration example of Router A and Router B, each belonging to three VRRP groups:

Router A:

```
config
interface tenGigE 0/4/0/4
ipv4 address 10.1.0.1/24
exit
router vrrp
interface tenGigE 0/4/0/4
address-family ipv4
vrrp 1 version 2
priority 120
text-authentication cisco
timer 3
address 10.1.0.10
vrrp 5 version 2
timer 30
address 10.1.0.50
vrrp 100 version 2
preempt disable
```

address 10.1.0.100 commit

Router B:

```
config
interface tenGigE 0/4/0/4
ipv4 address 10.1.0.2/24
exit
router vrrp
interface tenGigE 0/4/0/4
address-family ipv4
vrrp 1 version 2
priority 100
text-authentication cisco
timer 3
address 10.1.0.10
vrrp 5 version 2
priority 200
timer 30
address 10.1.0.50
vrrp 100 version 2
preempt disable
address 10.1.0.100
commit
```

In the configuration example, each group has the following properties:

- Group 1:
 - Virtual IP address is 10.1 .0.10.
 - Router A will become the master for this group with priority 120.
 - Advertising interval is 3 seconds.
 - Advertising interval is 3 seconds .
 - Preemption is enabled.
- Group 5:
 - Router B will become master for this group with priority 200.
 - Advertising interval is 30 seconds .
 - Preemption is enabled .
- Group 100:
 - Router configured first becomes master for this group first, because preempt is disabled.
 - Advertising interval is the default 1 second.
 - · Preemption is disabled .
 - Preemption is disabled.

Clearing VRRP Statistics: Example

The **clear vrrp statistics** command produces no output of its own. The command modifies the statistics given by **show vrrp statistics** command so that all the statistics are reset to zero.

The following section provides examples of the output of the **show vrrp statistics** command followed by the **clear vrrp statistics** command:

RP/0/RSP0/CPU0:router# show vrr show vrrp statistics Invalid packets:	p statistics
Invalid checksum:	0
Unknown/unsupported versions:	0
Invalid vrID:	10
Too short:	0
Protocol:	
Transitions to Master	6
Packets:	
Total received:	155
Bad TTL:	0
Failed authentication:	0
Unknown authentication:	0
Conflicting authentication:	0
Unknown Type field:	0
Conflicting Advertise time:	0
Conflicting Addresses:	0
Received with zero priority:	3
Sent with zero priority:	3
RP/0/RSP0/CPU0:router# clear vr	rp statistics
RP/0/RSP0/CPU0:router# clear vr. RP/0/RSP0/CPU0:router# show vrr	-
RP/0/RSP0/CPU0:router# show vrr	-
<pre>RP/0/RSP0/CPU0:router# show vrr Invalid packets:</pre>	p statistics
<pre>RP/0/RSP0/CPU0:router# show vrr Invalid packets: Invalid checksum:</pre>	p statistics
RP/0/RSP0/CPU0:router# show vrr Invalid packets: Invalid checksum: Unknown/unsupported versions:	p statistics 0 0
RP/0/RSP0/CPU0:router# show vrr Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID:	<pre>p statistics 0 0 0 0</pre>
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short:</pre>	p statistics 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol:</pre>	p statistics 0 0 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master</pre>	<pre>p statistics 0 0 0 0 0</pre>
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets:</pre>	p statistics 0 0 0 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets: Total received:</pre>	p statistics 0 0 0 0 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets: Total received: Bad TTL:</pre>	p statistics
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets: Total received: Bad TTL: Failed authentication:</pre>	p statistics 0 0 0 0 0 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets: Total received: Bad TTL: Failed authentication: Unknown authentication:</pre>	p statistics 0 0 0 0 0 0 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets: Total received: Bad TTL: Failed authentication: Unknown authentication: Conflicting authentication:</pre>	p statistics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets: Total received: Bad TTL: Failed authentication: Unknown authentication: Conflicting authentication: Unknown Type field:</pre>	p statistics 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets: Total received: Bad TTL: Failed authentication: Unknown authentication: Conflicting authentication: Unknown Type field: Conflicting Advertise time:</pre>	p statistics 0 0 0 0 0 0 0 0 0 0 0 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets: Total received: Bad TTL: Failed authentication: Unknown authentication: Unknown Type field: Conflicting Advertise time: Conflicting Addresses:</pre>	p statistics 0 0 0 0 0 0 0 0 0 0 0 0 0
<pre>RP/0/RSP0/CPU0:router# show vrr; Invalid packets: Invalid checksum: Unknown/unsupported versions: Invalid vrID: Too short: Protocol: Transitions to Master Packets: Total received: Bad TTL: Failed authentication: Unknown authentication: Conflicting authentication: Unknown Type field: Conflicting Advertise time:</pre>	p statistics 0 0 0 0 0 0 0 0 0 0 0 0 0

Additional References

The following sections provide references related to VRRP.

Related Documents

Related Topic	Document Title	
QoS commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples	<i>Quality of Service Commands on Modular Quality of Service</i> <i>Command Reference for Cisco ASR 9000 Series Routers</i>	
Class-based traffic shaping, traffic policing, low-latency queuing, and Modified Deficit Round Robin (MDRR)	Configuring Modular Quality of Service Congestion Management on Modular QoS Configuration Guide for Cisco ASR 9000 Series Routers	
WRED, RED, and tail drop	Configuring Modular QoS Congestion Avoidance on Modular QoS Configuration Guide for Cisco ASR 9000 Series Routers	
VRRP commands	VRRP Commands on IP Addresses and Services Command Reference for Cisco ASR 9000 Series Routers	
master command reference	Cisco ASR 9000 Series Aggregation Services Router Commands Master List	
getting started material	Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide	
Information about user groups and task IDs	Configuring AAA Services on System Security Configuration Guide for Cisco ASR 9000 Series Routers	

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	_

MIBs

MIBs	MIBs Link
	To locate and download MIBs, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: https://mibs.cloudapps.cisco.com/ITDIT/MIBS/ servlet/index

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	_

I

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	http://www.cisco.com/techsupport