Implementing Secure Socket Layer

This module describes how to implement SSL.

The Secure Socket Layer (SSL) protocol and Transport Layer Security (TLS) are application-level protocols that provide for secure communication between a client and server by allowing mutual authentication, the use of hash for integrity, and encryption for privacy. SSL and TLS rely on certificates, public keys, and private keys.

Certificates are similar to digital ID cards. They prove the identity of the server to clients. Certificates are issued by certification authorities (CAs), such as VeriSign or Thawte. Each certificate includes the name of the authority that issued it, the name of the entity to which the certificate was issued, the entity's public key, and time stamps that indicate the certificate's expiration date.

Public and private keys are the ciphers used to encrypt and decrypt information. Although the public key is shared quite freely, the private key is never given out. Each public-private key pair works together: Data encrypted with the public key can be decrypted only with the private key.

For a complete description of the Public Key Infrastructure (PKI) commands used here, see the Public Key Infrastructure Commands module in System Security Command Reference for Cisco ASR 9000 Series Routers.

Feature History for Implementing Secure Socket Layer

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release 3.7.2</td>
<td>This feature was introduced.</td>
</tr>
</tbody>
</table>

- Prerequisites for Implementing Secure Shell, on page 2
- Restrictions for Implementing Secure Shell, on page 2
- Information About Implementing Secure Shell, on page 3
- How to Implement Secure Shell, on page 7
- Configuration Examples for Implementing Secure Shell, on page 13
- Multi-channeling in SSH, on page 13
- Additional References, on page 15
Prerequisites for Implementing Secure Shell

The following prerequisites are required to implement Secure Shell:

• You must be in a user group associated with a task group that includes the proper task IDs. The command reference guides include the task IDs required for each command. If you suspect user group assignment is preventing you from using a command, contact your AAA administrator for assistance.

• Download the required image on your router. The SSH server and SSH client require you to have a crypto package (data encryption standard [DES], 3DES and AES) from Cisco downloaded on your router.

• To run an SSHv2 server, you must have a VRF. This may be the default VRF or a specific VRF. VRF changes are applicable only to the SSH v2 server.

• Configure user authentication for local or remote access. You can configure authentication with or without authentication, authorization, and accounting (AAA). For more information, see the Authentication, Authorization, and Accounting Commands on Cisco IOS XR Software module in the System Security Command Reference for Cisco ASR 9000 Series Routers publication and Configuring AAA Services on Cisco IOS XR Software module in the System Security Configuration Guide for Cisco ASR 9000 Series Routers publication.

• AAA authentication and authorization must be configured correctly for Secure Shell File Transfer Protocol (SFTP) to work.

Restrictions for Implementing Secure Shell

The following are some basic SSH restrictions and limitations of the SFTP feature:

• A VRF is not accepted as inband if that VRF is already set as an out-of-band VRF. SSH v1 continues to bind only to the default VRF.

• In order for an outside client to connect to the router, the router needs to have an RSA (for SSHv1 or SSHv2) or DSA (for SSHv2) key pair configured. DSA and RSA keys are not required if you are initiating an SSH client connection from the router to an outside routing device. The same is true for SFTP: DSA and RSA keys are not required because SFTP operates only in client mode.

• In order for SFTP to work properly, the remote SSH server must enable the SFTP server functionality. For example, the SSHv2 server is configured to handle the SFTP subsystem with a line such as /etc/ssh2/sshd2_config:

 subsystem-sftp /usr/local/sbin/sftp-server

 The SFTP server is usually included as part of SSH packages from public domain and is turned on by default configuration.

 SFTP is compatible with sftp server version OpenSSH_2.9.9p2 or higher.

• RSA-based user authentication is supported in the SSH and SFTP servers. The support however, is not extended to the SSH client.

• Execution shell and SFTP are the only applications supported.
• The AES encryption algorithm is supported on the SSHv2 server and client, but not on the SSHv1 server and client. Any requests for an AES cipher sent by an SSHv2 client to an SSHv1 server are ignored, with the server using 3DES instead.

• The SFTP client does not support remote filenames containing wildcards (*, ?, []). The user must issue the sftp command multiple times or list all of the source files from the remote host to download them on to the router. For uploading, the router SFTP client can support multiple files specified using a wildcard provided that the issues mentioned in the first through third bullets in this section are resolved.

• The cipher preference for the SSH server follows the order AES128, AES192, AES256, and, finally, 3DES. The server rejects any requests by the client for an unsupported cipher, and the SSH session does not proceed.

• Use of a terminal type other than vt100 is unsupported, and the software generates a warning message in this case.

• Password messages of “none” are unsupported on the SSH client.

• Because the router infrastructure does not provide support for UNIX-like file permissions, files created on the local device lose the original permission information. For files created on the remote file system, the file permission adheres to the umask on the destination host and the modification and last access times are the time of the copy.

Information About Implementing Secure Shell

To implement SSH, you should understand the following concepts:

SSH Server

The SSH server feature enables an SSH client to make a secure, encrypted connection to a Cisco router. This connection provides functionality that is similar to that of an inbound Telnet connection. Before SSH, security was limited to Telnet security. SSH allows a strong encryption to be used with the Cisco IOS XR software authentication. The SSH server in Cisco IOS XR software works with publicly and commercially available SSH clients.

SSH Client

The SSH client feature is an application running over the SSH protocol to provide device authentication and encryption. The SSH client enables a Cisco router to make a secure, encrypted connection to another Cisco router or to any other device running the SSH server. This connection provides functionality that is similar to that of an outbound Telnet connection except that the connection is encrypted. With authentication and encryption, the SSH client allows for a secure communication over an insecure network.

The SSH client in the Cisco IOS XR software worked with publicly and commercially available SSH servers. The SSH client supported the ciphers of AES, 3DES, message digest algorithm 5 (MD5), SHA1, and password authentication. User authentication was performed in the Telnet session to the router. The user authentication mechanisms supported for SSH were RADIUS, TACACS+, and the use of locally stored usernames and passwords.

The SSH client supports setting DSCP value in the outgoing packets.

```bash
ssh client dscp <value from 0 - 63>
```
If not configured, the default DSCP value set in packets is 16 (for both client and server).

The SSH client supports the following options:

• **DSCP**—DSCP value for SSH client sessions.

```plaintext
RP/0/5/CPU0:router#configure
RP/0/5/CPU0:router(config)#ssh client
    Provide SSH client service
    server Provide SSH server service
    timeout Set timeout value for SSH
```

• **Knownhost**—Enable the host pubkey check by local database.

• **Source-interface**—Source interface for SSH client sessions.

```plaintext
RP/0/5/CPU0:router(config)#ssh client source-interface

ATM ATM Network Interface(s)
BVI Bridge-Group Virtual Interface
Bundle-Ether Aggregated Ethernet interface(s)
Bundle-POS Aggregated POS interface(s)
CEM Circuit Emulation interface(s)
GigabitEthernet GigabitEthernet/IEEE 802.3 interface(s)
IMA ATM Network Interface(s)
IMtestmain IM Test Interface
Loopback Loopback interface(s)
MgmtEth Ethernet/IEEE 802.3 interface(s)
Multilink Multilink network interface(s)
Null Null interface
PFItestmain PFI Test Interface
PFItestnothw PFI Test Not-HW Interface
POS Packet over SONET/SDH network interface(s)
PW-Ether PWHE Ethernet Interface
PW-1W PWHE VC11 IP Interworking Interface
Serial Serial network interface(s)
VASILeft VASI Left interface(s)
VASSIRight VASI Right interface(s)
test-bundle-channel Aggregated Test Bundle interface(s)
tunnel-ipsec IPSec Tunnel interface(s)
tunnel-mte MPLS Traffic Engineering P2MP Tunnel interface(s)
tunnel-te MPLS Traffic Engineering Tunnel interface(s)
tunnel-tp MPLS Transport Protocol Tunnel interface
```

• **VRF**—Source interface VRF for SSH client sessions:

```plaintext
RP/0/5/CPU0:router(config)#ssh client vrf
    WORD VRF name (max:32 chars)
```

SSH also supports remote command execution as follows:

```plaintext
RP/0/5/CPU0:router#ssh A.B.C.D
    WORD IPv4 (A.B.C.D) address
    WORD Hostname of the remote node
    X:XXX IPv6 (A:B:C::1) address
    vrf vrf table for the route lookup
```

```plaintext
RP/0/5/CPU0:router#ssh 1.1.1.1
    cipher Accept cipher type
    command Specify remote command (non-interactive)
    source-interface Specify source interface
    username Accept userid for authentication
```
SFTP Feature Overview

SSH includes support for standard file transfer protocol (SFTP), a new standard file transfer protocol introduced in SSHv2. This feature provides a secure and authenticated method for copying router configuration or router image files.

The SFTP client functionality is provided as part of the SSH component and is always enabled on the router. Therefore, a user with the appropriate level can copy files to and from the router. Like the copy command, the sftp command can be used only in EXEC mode.

The SFTP client is VRF-aware, and you may configure the secure FTP client to use the VRF associated with a particular source interface during connections attempts. The SFTP client also supports interactive mode, where the user can log on to the server to perform specific tasks via the Unix server.

The SFTP Server is a sub-system of the SSH server. In other words, when an SSH server receives an SFTP server request, the SFTP API creates the SFTP server as a child process to the SSH server. A new SFTP server instance is created with each new request.

The SFTP requests for a new SFTP server in the following steps:

- The user runs the sftp command with the required arguments
- The SFTP API internally creates a child session that interacts with the SSH server
- The SSH server creates the SFTP server child process
- The SFTP server and client interact with each other in an encrypted format
- The SFTP transfer is subject to LPTS policer "SSH-Known". Low policer values will affect SFTP transfer speeds

Note

In IOS-XR SW release 4.3.1 onwards the default policer value for SSH-Known has been reset from 2500pps to 300pps. Slower transfers are expected due to this change. You can adjust the lpts policer value for this punt cause to higher values that will allow faster transfers.

When the SSH server establishes a new connection with the SSH client, the server daemon creates a new SSH server child process. The child server process builds a secure communications channel between the SSH client and server via key exchange and user authentication processes. If the SSH server receives a request for the sub-system to be an SFTP server, the SSH server daemon creates the SFTP server child process. For each incoming SFTP server subsystem request, a new SSH server child and a SFTP server instance is created. The SFTP server authenticates the user session and initiates a connection. It sets the environment for the client and the default directory for the user.
Once the initialization occurs, the SFTP server waits for the SSH_FXP_INIT message from the client, which is essential to start the file communication session. This message may then be followed by any message based on the client request. Here, the protocol adopts a 'request-response' model, where the client sends a request to the server; the server processes this request and sends a response.

The SFTP server displays the following responses:

- Status Response
- Handle Response
- Data Response
- Name Response

The server must be running in order to accept incoming SFTP connections.

Note

Verifying the authenticity of a server is the first step to a secure SSH connection. This process is called the host authentication, and is conducted to ensure that a client connects to a valid server.

The host authentication is performed using the public key of a server. The server, during the key-exchange phase, provides its public key to the client. The client checks its database for known hosts of this server and the corresponding public-key. If the client fails to find the server's IP address, it displays a warning message to the user, offering an option to either save the public key or discard it. If the server’s IP address is found, but the public-key does not match, the client closes the connection. If the public key is valid, the server is verified and a secure SSH connection is established.

The IOS XR SSH server and client had support for DSA based host authentication. But for compatibility with other products, like IOS, RSA based host authentication support is also added.

RSA Based User Authentication

One of the method for authenticating the user in SSH protocol is RSA public-key based user authentication. The possession of a private key serves as the authentication of the user. This method works by sending a signature created with a private key of the user. Each user has a RSA keypair on the client machine. The private key of the RSA keypair remains on the client machine.

The user generates an RSA public-private key pair on a unix client using a standard key generation mechanism such as ssh-keygen. The max length of the keys supported is 4096 bits, and the minimum length is 512 bits. The following example displays a typical key generation activity:

```
bash-2.05b$ ssh-keygen -b 1024 -t rsa
Generating RSA private key, 1024 bit long modulus
```

The public key must be in base64 encoded (binary) format for it to be imported correctly into the box. You can use third party tools available on the Internet to convert the key to the binary format.

Once the public key is imported to the router, the SSH client can choose to use the public key authentication method by specifying the request using the “-o” option in the SSH client. For example:
client$ ssh -o PreferredAuthentications publickey 1.2.3.4

If a public key is not imported to a router using the RSA method, the SSH server initiates the password based authentication. If a public key is imported, the server proposes the use of both the methods. The SSH client then chooses to use either method to establish the connection. The system allows only 10 outgoing SSH client connections.

Currently, only SSH version 2 and SFTP server support the RSA based authentication. For more information on how to import the public key to the router, see the Implementing Certification Authority Interoperability on the Cisco ASR 9000 Series Router chapter in this guide.

Note
The preferred method of authentication would be as stated in the SSH RFC. The RSA based authentication support is only for local authentication, and not for TACACS/RADIUS servers.

Authentication, Authorization, and Accounting (AAA) is a suite of network security services that provide the primary framework through which access control can be set up on your Cisco router or access server. For more information on AAA, see the Authentication, Authorization, and Accounting Commands on the Cisco ASR 9000 Series Router Software module in the System Security Command Reference for Cisco ASR 9000 Series Routers publication and the Configuring AAA Services on the Cisco ASR 9000 Series Router module in the System Security Configuration Guide for Cisco ASR 9000 Series Routers publication.

SSHv2 Client Keyboard-Interactive Authentication

An authentication method in which the authentication information is entered using a keyboard is known as keyboard-interactive authentication. This method is an interactive authentication method in the SSH protocol. This type of authentication allows the SSH client to support different methods of authentication without having to be aware of their underlying mechanisms.

Currently, the SSHv2 client supports the keyboard-interactive authentication. This type of authentication works only for interactive applications.

Note
The password authentication is the default authentication method. The keyboard-interactive authentication method is selected if the server is configured to support only the keyboard-interactive authentication.

How to Implement Secure Shell

To configure SSH, perform the tasks described in the following sections:

Configuring SSH

Note
For SSHv1 configuration, Step 1 to Step 4 are required. For SSHv2 configuration, Step 1 to Step 4 are optional.

SSH server supports setting DSCP value in the outgoing packets.
ssh server dscp <value from 0 – 63>

If not configured, the default DSCP value set in packets is 16 (for both client and server).

This is the syntax for setting DSCP value:

```plaintext
RP/0/5/CPU0:router(config)#ssh server dscp ?
<0-63>  DSCP value range
```

```plaintext
RP/0/5/CPU0:router(config)#ssh server dscp 63 ?
<cr>
```

```plaintext
RP/0/5/CPU0:router(config)#ssh client dscp ?
<0-63>  DSCP value range
```

```plaintext
RP/0/5/CPU0:router(config)#ssh client dscp 0 ?
<cr>
```

Perform this task to configure SSH.

SUMMARY STEPS

1. configure
2. hostname hostname
3. domain name domain-name
4. Use the commit or end command.
5. crypto key generate rsa [usage keys | general-keys] [keypair-label]
6. crypto key generate dsa
7. configure
8. ssh timeout seconds
9. Do one of the following:
 - ssh server [vrf vrf-name] [ipv4 access-list|IPv4 access-list name] [ipv6 access-list IPv6 access-list name]
 - ssh server v2
10. Use the commit or end command.
11. show ssh
12. show ssh session details

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
| configure | Enters global configuration mode. |
| Example:
| `RP/0/RSP0/CPU0:router# configure` | |
| **Step 2**
<p>| hostname hostname | Configures a hostname for your router. |
| Example: | |</p>
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>RP/0/RSP0/CPU0:router(config)# hostname router1</code></td>
<td>Defines a default domain name that the software uses to complete unqualified host names.</td>
</tr>
</tbody>
</table>
| **Step 3** | **domain name** `domain-name`
Example:
`RP/0/RSP0/CPU0:router(config)# domain name cisco.com` | **commit** — Saves the configuration changes and remains within the configuration session.
end — Prompts user to take one of these actions:
• **Yes** — Saves configuration changes and exits the configuration session.
• **No** — Exits the configuration session without committing the configuration changes.
• **Cancel** — Remains in the configuration session, without committing the configuration changes. |
| **Step 4** | Use the **commit** or **end** command. |
| **Step 5** | `crypto key generate rsa [usage keys | general-keys] [keypair-label]`
Example:
`RP/0/RSP0/CPU0:router# crypto key generate rsa general-keys` | Generates an RSA key pair. The RSA key modulus can be in the range of 512 to 4096 bits.
• To delete the RSA key pair, use the `crypto key zeroize rsa` command.
• This command is used for SSHv1 only. |
| **Step 6** | `crypto key generate dsa`
Example:
`RP/0/RSP0/CPU0:router# crypto key generate dsa` | Enables the SSH server for local and remote authentication on the router. The supported key sizes are: 512, 768 and 1024 bits.
• The recommended minimum modulus size is 1024 bits.
• Generates a DSA key pair.
To delete the DSA key pair, use the `crypto key zeroize dsa` command.
• This command is used only for SSHv2. |
| **Step 7** | `configure`
Example:
`RP/0/RSP0/CPU0:router# configure` | Enters global configuration mode. |
| **Step 8** | `ssh timeout seconds`
Example: | (Optional) Configures the timeout value for user authentication to AAA. |
Command or Action
```
RP/0/RSP0/CPU0:router(config)# ssh timeout 60
```

Purpose
- If the user fails to authenticate itself to AAA within the configured time, the connection is terminated.
- If no value is configured, the default value of 30 seconds is used. The range is from 5 to 120.

Step 9
Do one of the following:
- `ssh server [vrf vrf-name [ipv4 access-listIPv4 access-list name] [ipv6 access-list IPv6 access-list name]]`
- `ssh server v2

Example:
```
RP/0/RSP0/CPU0:router(config)# ssh
```
```
or
```
```
RP/0/RSP0/CPU0:router(config)# ssh server v2
```

Note
The SSH server can be configured for multiple VRF usage.
- (Optional) Forces the SSH server to accept only SSHv2 clients if you configure the SSHv2 option by using the `ssh server v2` command. If you choose the `ssh server v2` command, only the SSH v2 client connections are accepted.

Step 10
Use the `commit` or `end` command.
- `commit` — Saves the configuration changes and remains within the configuration session.
- `end` — Prompts user to take one of these actions:
 - **Yes** — Saves configuration changes and exits the configuration session.
 - **No** — Exits the configuration session without committing the configuration changes.
 - **Cancel** — Remains in the configuration session, without committing the configuration changes.

Step 11
`show ssh

Example:
```
RP/0/RSP0/CPU0:router# show ssh
```

Step 12
`show ssh session details

Example:
```
RP/0/RSP0/CPU0:router# show ssh session details
```

(Optional) Displays all of the incoming and outgoing SSHv1 and SSHv2 connections to the router.

(Optional) Displays a detailed report of the SSHv2 connections to and from the router.
Configuring the SSH Client

Perform this task to configure an SSH client.

SUMMARY STEPS

1. configure
2. ssh client knownhost *device* :*/filename*
3. Use the commit or end command.
4. ssh {ipv4-address | hostname} [username user-id | cipher des | source-interface type instance]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2 ssh client knownhost device :/filename</td>
<td>(Optional) Enables the feature to authenticate and check the server public key (pubkey) at the client end.</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router(config)# ssh client knownhost slot1:/server_pubkey</td>
<td>Note: The complete path of the filename is required. The colon (:) and slash mark (/) are also required.</td>
</tr>
<tr>
<td>Step 3 Use the commit or end command.</td>
<td>commit —Saves the configuration changes and remains within the configuration session. end —Prompts user to take one of these actions: • Yes —Saves configuration changes and exits the configuration session. • No —Exits the configuration session without committing the configuration changes. • Cancel —Remains in the configuration session, without committing the configuration changes.</td>
</tr>
<tr>
<td>Step 4 ssh {ipv4-address</td>
<td>hostname} [username user-id</td>
</tr>
<tr>
<td>Example: RP/0/RSP0/CPU0:router# ssh remotehost username user1234</td>
<td>• To run an SSHv2 server, you must have a VRF. This may be the default or a specific VRF. VRF changes are applicable only to the SSH v2 server. • The SSH client tries to make an SSHv2 connection to the remote peer. If the remote peer supports only the SSHv1 server, the peer internally spawns an SSHv1 connection to the remote server. • The cipher des option can be used only with an SSHv1 client.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td>• The SSHv1 client supports only the 3DES encryption algorithm option, which is still available by default for those SSH clients only.</td>
<td></td>
</tr>
<tr>
<td>• If the hostname argument is used and the host has both IPv4 and IPv6 addresses, the IPv6 address is used.</td>
<td></td>
</tr>
</tbody>
</table>

• If you are using SSHv1 and your SSH connection is being rejected, the reason could be that the RSA key pair might have been zeroed out or that you have not successfully generated an RSA key pair for your router. Another reason could be that the SSH server to which the user is connecting to using SSHv1 client does not accept SSHv1 connections. Make sure that you have specified a hostname and domain. Then use the `crypto key generate rsa` command to generate an RSA host-key pair, and then enable the SSH server.

• If you are using SSHv2 and your SSH connection is being rejected, the reason could be that the DSA, RSA host-key pair might have been zeroed out. Make sure you follow similar steps as mentioned above to generate the required host-key pairs, and then enable the SSH server.

• When configuring the RSA or DSA key pair, you might encounter the following error messages:

 • No hostname specified
 You must configure a hostname for the router using the *hostname* command.

 • No domain specified
 You must configure a host domain for the router using the *domain-name* command.

• The number of allowable SSH connections is limited to the maximum number of virtual terminal lines configured for the router. Each SSH connection uses a vty resource.

• From Cisco IOS XR Release 6.3.1 onwards, the `ssh client enable cipher` command is added for backward compatibility with the older Cisco IOS XR versions.

For FIPS compliance, in Cisco IOS XR Releases later than 6.2.1, support for weaker ciphers like 3DES and AES CBC was removed and only AES-CTR cipher is supported.

• SSH uses either local security or the security protocol that is configured through AAA on your router for user authentication. When configuring AAA, you must ensure that the console is not running under AAA by applying a keyword in the global configuration mode to disable AAA on the console.

Note
If you are using Putty version 0.63 or higher to connect to the SSH client, set the 'Chokes on PuTTY’s SSH2 winadj request' option under SSH > Bugs in your Putty configuration to 'On.' This helps avoid a possible breakdown of the session whenever some long output is sent from IOS XR to the Putty client.
Configuration Examples for Implementing Secure Shell

This section provides the following configuration example:

Configuring Secure Shell: Example

This example shows how to configure SSHv2 by creating a hostname, defining a domain name, enabling the SSH server for local and remote authentication on the router by generating a DSA key pair, bringing up the SSH server, and saving the configuration commands to the running configuration file.

After SSH has been configured, the SFTP feature is available on the router.

```bash
configure
hostname router1
domain name cisco.com
exit
crypto key generate dsa
configure
ssh server
end
```

Multi-channeling in SSH

The multi-channeling (also called multiplexing) feature on the Cisco IOS XR software server allows you to establish multiple channels over the same TCP connection. Thus, rather than opening a new TCP socket for each SSH connection, all the SSH connections are multiplexed into one TCP connection. For example, with multiplexing support on your XR software server, on a single SSH connection you can simultaneously open a pseudo terminal, remotely execute a command and transfer a file using any file transfer protocol. Multiplexing offers the following benefits:

- You are required to authenticate only once at the time of creating the session. After that, all the SSH clients associated with a particular session use the same TCP socket to communicate to the server.
- Saves time consumed otherwise wasted in creating a new connection each time.

Multiplexing is enabled by default in the Cisco IOS XR software server. If your client supports multiplexing, you must explicitly set up multiplexing on the client for it to be able to send multi-channel requests to the server. You can use OpenSSH, Putty, Perl, WinSCP, Putty, FileZilla, TTSSH, Cygwin or any other SSH-based tool to set up multiplexing on the client. Configure Client for Multiplexing provides an example of how you can configure the client for multiplexing using OpenSSH.

For more information on Multi-channel feature, see the Cisco ASR 9000 Series Aggregation Services Router System Security Configuration Guide, Release 5.1.1.

Restrictions for Multi-channeling Over SSH

- Do not use client multiplexing for heavy transfer of data as the data transfer speed is limited by the TCP speed limit. Hence, for a heavy data transfer it is advised that you run multiple SSH sessions, as the TCP speed limit is per connection.
- Client multiplexing must not be used for more than 15 concurrent channels per session simultaneously.
You must ensure that the first channel created at the time of establishing the session is always kept alive in order for other channels to remain open.

Client and Server Interaction Over Multichannel Connection

The figure below provides an illustration of a client-server interaction over a SSH multichannel connection.

As depicted in the illustration,
- The client multiplexes the collection of channels into a single connection. This allows different operations to be performed on different channels simultaneously. The dotted lines indicate the different channels that are open for a single session.
- After receiving a request from the client to open up a channel, the server processes the request. Each request to open up a channel represents the processing of a single service.

Note
The Cisco IOX software supports server-side multiplexing only.

Configure Client for Multiplexing

The SSH client opens up one TCP socket for all the connections. In order to do so, the client multiplexes all the connections into one TCP connection. Authentication happens only once at the time of creating the session. After that, all the SSH clients associated with the particular session uses the same TCP socket to communicate to the server. Use the following steps to configure client multiplexing using OpenSSH:

SUMMARY STEPS

1. Edit the ssh_config file.
2. Add entries `ControlMaster auto` and `ControlPath`
3. Create a temporary folder.
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Edit the ssh_config file.</td>
<td>Open the ssh_config file with your favorite text editor to configure values for session multiplexing. The system-wide SSH configuration file is located under /etc/ssh/ssh_config. The user configuration file is located under ~/.ssh/config or $HOME/.ssh/config.</td>
</tr>
</tbody>
</table>
| Step 2 | Add entries **ControlMaster auto** and **ControlPath** Example:
Host *
ControlMaster auto
ControlPath ~/.ssh/tmp/%r@%h:%p | Add the entry ControlMaster auto and ControlPath to the ssh_config file, save it and exit.
- ControlMaster determines whether SSH will listen for control connections and what to do about them. Setting the ControlMaster to 'auto' creates a primary session automatically but if there is a primary session already available, subsequent sessions are automatically multiplexed.
- ControlPath is the location for the control socket used by the multiplexed sessions. Specifying the ControlPath ensures that any time a connection to a particular server uses the same specified primary connection. |
| Step 3 | Create a temporary folder. | Create a temporary directory inside the /.ssh folder for storing the control sockets. |

Additional References

The following sections provide references related to implementing secure shell.

Related Documents

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host services and applications commands: complete command syntax, command modes, command history, defaults, usage guidelines, and examples</td>
<td>Host Services and Applications Commands on the Cisco ASR 9000 Series Router module in IP Addresses and Services Command Reference for Cisco ASR 9000 Series Routers.</td>
</tr>
</tbody>
</table>
Related Topic

<table>
<thead>
<tr>
<th>Document Title</th>
</tr>
</thead>
</table>

Note

IPSec is supported only for Open Shortest Path First version 3 (OSPFv3).

<table>
<thead>
<tr>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secure Shell Commands on the Cisco ASR 9000 Series Router Software module in System Security Command Reference for Cisco ASR 9000 Series Routers</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft-ietf-secs-connect-17.txt</td>
<td>SSH Connection Protocol, July 2003</td>
</tr>
<tr>
<td>Draft-ietf-secs-architecture-14.txt</td>
<td>SSH Protocol Architecture, July 2003</td>
</tr>
</tbody>
</table>

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml</td>
</tr>
</tbody>
</table>

RFCs

<table>
<thead>
<tr>
<th>RFCs</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 6020</td>
<td>Netconf/ Yang</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.</td>
<td>http://www.cisco.com/techsupport</td>
</tr>
</tbody>
</table>