

Configuring Modular QoS on Link Bundles

A link bundle is a group of one or more ports that are aggregated together and treated as a single link. This module describes QoS on link bundles.

Line Card, SIP, and SPA Support

Feature	ASR 9000 Ethernet Line Cards	SIP 700 for the ASR 9000
QoS on Link Bundles	Yes	Yes

Feature History for Configuring Modular QoS on Link Bundles on Cisco ASR 9000 Series Routers

Release	Modification
Release 3.9.0	The QoS on Link Bundles feature was introduced on ASR 9000 Ethernet Line Cards.
Release 6.0.1	The aggregate bundle QoS feature was introduced on ASR 9000 Ethernet Line Cards.

- Link Bundling Overview, on page 1
- Load Balancing, on page 2
- QoS and Link Bundling, on page 3
- QoS for POS link bundling, on page 3
- Aggregate Bundle QoS Mode, on page 4
- Additional References, on page 7

Link Bundling Overview

The Link Bundling feature allows you to group multiple point-to-point links together into one logical link and provide higher bidirectional bandwidth, redundancy, and load balancing between two routers. A virtual interface is assigned to the bundled link. The component links can be dynamically added and deleted from the virtual interface.

The virtual interface is treated as a single interface on which one can configure an IP address and other software features used by the link bundle. Packets sent to the link bundle are forwarded to one of the links in the bundle.

A link bundle is simply a group of ports that are bundled together and act as a single link. The advantages of link bundles are as follows:

- Multiple links can span several line cards to form a single interface. Thus, the failure of a single link does not cause a loss of connectivity.
- Bundled interfaces increase bandwidth availability, because traffic is forwarded over all available members of the bundle. Therefore, traffic can flow on the available links if one of the links within a bundle fails. Bandwidth can be added without interrupting packet flow.

All the individual links within a single bundle must be of the same type and the same speed.

Cisco IOS XR software supports these methods of forming bundles of Ethernet interfaces:

- IEEE 802.3ad—Standard technology that employs a Link Aggregation Control Protocol (LACP) to ensure that all the member links in a bundle are compatible. Links that are incompatible or have failed are automatically removed from a bundle.
- EtherChannel —Cisco proprietary technology that allows the user to configure links to join a bundle, but has no mechanisms to check whether the links in a bundle are compatible.

Load Balancing

Load balancing is supported on all links in the bundle. Load balancing function is a forwarding mechanism to distribute traffic over multiple links based on Layer 3 routing information in the router. There are two types of load balancing schemes:

- Per-Destination Load Balancing
- · Per-Packet Load Balancing

When a traffic stream arrives at the router, per-packet load balancing allows the traffic to be evenly distributed among multiple equal cost links. Per-packet schemes make routing decision based on round-robin techniques, regardless of the individual source-destination hosts.

Only Per-Destination Load Balancing is supported.

Per-destination load balancing allows the router to distribute packets over one of the links in the bundle to achieve load sharing. The scheme is realized through a hash calculating based on the source-destination address and user sessions.

When the per-destination load balancing is enabled, all packets for a certain source-destination pair will go through the same link, though there are multiple links available. In other words, per-destination load balancing can ensure that packets for a certain source-destination pair could arrive in order.

Layer 3 Load Balancing on Link Bundles

By default, load balancing on Layer 2 link bundles is done based on the MAC SA/DA fields in the packet header. Layer 3 load balancing for link bundles is done on Ethernet Flow Points (EFPs) and is based on the IPv4 source and destination addresses in the packet. When Layer 3 service-specific load balancing is configured, all egressing bundles are load balanced based on the IPv4 source and destination addresses. When packets do not have IPv4 addresses, default load-balancing is used.

QoS and Link Bundling

All Quality of Service (QoS) features, currently supported on physical interfaces and subinterfaces, are also supported on all Link Bundle interfaces and subinterfaces. QoS is configured on Link Bundles in the same way that it is configured on individual interfaces. However, the following points should be noted:

- When a QoS policy is applied on a bundle (ingress or egress directions), the policy is applied at each
 member interface. Any queues and policers in the policy map (ingress or egress directions) will be
 replicated on each bundle member.
- If a QoS policy is not applied to a bundle interface or bundle VLAN, both the ingress and egress traffic will use the per link members port default queue.
- Link bundle members may appear across multiple Network Processing Units and linecards. The shape rate specified in the bundle policymap is not an aggregate for all bundle members. The shape rate applied to the bundle will depend on the load balancing of the links. For example, if a policy map with a shape rate of 10 Mbps is applied to a bundle with two member links, and if the traffic is always load-balanced to the same member link, then an overall rate of 10 Mbps will apply to the bundle. However, if the traffic is load-balanced evenly between the two links, the overall shape rate for the bundle will be 20 Mbps.

Example 1 shows how a traffic policy is applied on an Ethernet link bundle, in the ingress direction. The policy is applied to all interfaces that are members of the Ethernet link bundle.

Example 1 Applying a Traffic Policy to an Ethernet Link Bundle

```
interface Bundle-Ether bundle-id
  service-policy input policy-1
end
```

QoS for POS link bundling

For POS link bundles, percentage-based bandwidth is supported for policers and output queues. Time-based queue limit is supported for output queues.

Input QoS Policy setup

For input QoS, queuing is not supported and thus bandwidth is used for policer only. As a member link is added or removed from a bundle with input QoS configured, the aggregate bundle bandwidth for that affected line card will change. One input QoS policy instance is assigned for each SIP 700 line card that is part of the POS link bundle.

Output QoS Policy setup

When a member link is added to a bundle with output QoS configured, the policy-map of the bundle is applied to the member link.

Example 2 shows the output QoS policy supported on POS link bundles.

Example 2: Output QoS policy supported on POS link bundles

```
policy-map out-sample
class voice
  priority level 1
  police rate percent 10
class premium
  bandwidth percent 30
  queue-limit 100 ms
class class-default
  queue-limit 100 ms
```

Aggregate Bundle QoS Mode

Aggregated Bundle QoS allows the shape, bandwidth, police rates, and burst values to be distributed between the active members of a bundle where a QoS policy-map is applied. For instance, consider that the traffic is load-balanced among the members of the bundle. In aggregate mode, the bundle ethernet traffic is shaped to 10 Mbps to match the configuration of QoS policy.

When the policy is applied on a member of the bundle, a ratio can be calculated based on the total bandwidth of the bundle to that of the bandwidth of a member in the bundle. For example, if the bandwidth of the bundle is 20 Gbps, and the bandwidth of a member in the bundle is 10 Gbps, then the ratio will be 2:1.

A change in the bundle (with a member down, added, removed or activated) or mode results in the automatic recalculation of QoS rate.

The user QoS policy is invalid when applied to the bundle interface under the following scenarios:

- A 10 Gbps interface and 40 Gbps interface are part of a bundle, and the 40 Gbps interface is inactive. Currently, QoS policy is also programmed on non-active members. When programming the 40 Gbps bundle member, the bundle bandwidth is 10 Gpbs, but the member bandwidth is 40 Gbps. The ratio of bundle bandwidth to member bandwidth does not work for this member.
- Consider a shape of 15 Gbps. This action is valid on bundles with multiple 10G active members, but invalid when only one member is active and that member is in QoS inconsistent state. To view inconsistency details for the QoS policy, run the **show qos inconsistency** command in EXEC mode. This scenario is also applicable during the reload of a router where only few interfaces in line cards (LC) becomes available before the rest of the interfaces in all LCs.
- A failure in the hardware when programming a rate change during the bundle bandwidth change or when a new member is added to the bundle.
- If an interface has the QoS policy configured to an absolute value, you cannot change the aggregated bundle mode from enabled to disabled. You must modify the policy or remove it before attempting to disable the aggregate bundle mode.
- An invalid policy combination, with the absolute values of port shaper less than the policy shape rate is accepted without an error in console or log file.

Load Balancing in Aggregate Bundle QoS

Load balancing requires a large number of flows in order to distribute the traffic among the members of the bundle. Ensure that load is balanced evenly among the members of the bundle before using the aggregate

bundle QoS mode. If the under-lying traffic is only a few tunnels (GRE, TE-TUNNELS), it may be possible that the load balancing is not distributing the traffic evenly and may cause problems.

For example, consider bandwidth of a bundle is 20 Gbps, and the bandwidth of a member in the bundle is 10 Gbps. If the traffic is not load balanced, the aggregate traffic output may not reach 10 Mbps even when more than 10 Mbps is sent to the bundle-ether interface.

QoS Policy in Aggregate bundle mode

The following table shows the behavior of aggregate QoS policy mode to various actions:

Action	Behavior
Policing and Shaping / Bandwidth	Percentage: No change. The percentage is calculated based on parent max-rate / interface bandwidth
	PPS / Absolute rate : Divide the rate based on bandwidth ratio
	Burst-size: If time-units, no change. Convert time-units to bytes based on service-rate
	If configured in absolute value, divide the absolute value based on bandwidth ratio
Wred / Queue-Limit Threshold	Time-Units: No Change. Use the service-rate to convert to bytes
	Absolute value : Divide the absolute value based on bandwidth ratio

Enabling Aggregate Bundle QoS

To enable the aggregate bundle QoS, perform these steps:

SUMMARY STEPS

- 1. configure
- 2. hw-module all qos-modeaggregate-bundle-mode
- 3. class class-name
- 4. end or commit

DETAILED STEPS

	Command or Action	Purpose
Step 1	configure	Enters global configuration mode.
	Example:	
	RP/0/RSP0/CPU0:router# configure	
Step 2	hw-module all qos-modeaggregate-bundle-mode	Enters policy map configuration mode.

Command or Action	Purpose
Example: RP/0/RSP0/CPU0:router(config) # hw-module all qos-mode aggregate-bundle-mode	When aggregated bundle mode changes, QoS polices on bundle interfaces and sub-interfaces are modified automatically. A reload of the line card is not required.
class class-name	Enters policy map class configuration mode.
Example:	Specifies the name of the class whose policy you want to create or change.
RP/0/RSP0/CPU0:router(config-pmap)# class class-default	
end or commit	
Example:	
RP/0/RSP0/CPU0:router(config-pmap-c-police)# end	
or	
RP/0/RSP0/CPU0:router(config-pmap-c-police)# commit	
	Example: RP/0/RSP0/CPU0:router(config)# hw-module all qos-mode aggregate-bundle-mode class class-name Example: RP/0/RSP0/CPU0:router(config-pmap)# class class-default end or commit Example: RP/0/RSP0/CPU0:router(config-pmap-c-police)# end

Policing using Aggregate Bundle QoS

```
policy-map grand-parent
class class-default
 service-policy parent
 police rate 200 mbps burst 1 kbytes
end-policy-map
policy-map parent
class class-default
 service-policy child
 police rate 300 mbps
end-policy-map
policy-map child
class 3play-voip
 police rate 10 mbps burst 10 kbytes peak-rate 20 mbps peak-burst 20 kbytes
   conform-color red-cos
   \verb|conform-action| set precedence 1|\\
   exceed-action set precedence 2
  violate-action drop
class 3play-video
 police rate 15 mbps burst 10 kbytes peak-rate 30 mbps peak-burst 20 kbytes
   conform-color yellow-cos
   conform-action set precedence 1
   exceed-action set precedence 2
   violate-action drop
 class 3play-premium
 police rate 25 mbps burst 10 kbytes peak-rate 35 mbps peak-burst 20 kbytes
  conform-color green-cos
   conform-action set precedence 1
   exceed-action set precedence 2
```

```
violate-action drop
!
!
class class-default
police rate 6 mbps
!
!
end-policy-map
```

Additional References

These sections provide references related to implementing QoS on Link Bundles.

Related Documents

Related Topic	Document Title
Initial system bootup and configuration	Cisco ASR 9000 Series Aggregation Services Router Getting Started Guide
Link Bundling	"Configuring Link Bundling on the Cisco ASR 9000 Series Router" module of Cisco ASR 9000 Series Aggregation Services Router Interface and Hardware Component Configuration Guide
QoS commands	Cisco ASR 9000 Series Aggregation Services Router Modular Quality of Service Command Reference
User groups and task IDs	"Configuring AAA Services on Cisco ASR 9000 Series Router" module of Cisco Cisco ASR 9000 Series Aggregation Services Router System Security Configuration Guide

Standards

Standards	Title
No new or modified standards are supported by this feature, and support for existing standards has not been modified by this feature.	

MIBs

MIBs	MIBs Link
	To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the following URL and choose a platform under the Cisco Access Products menu: http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml

RFCs

RFCs	Title
No new or modified RFCs are supported by this feature, and support for existing RFCs has not been modified by this feature.	

Technical Assistance

Description	Link
The Cisco Technical Support website contains thousands of pages of searchable technical content, including links to products, technologies, solutions, technical tips, and tools. Registered Cisco.com users can log in from this page to access even more content.	