
Configuring and Managing Embedded Event
Manager Policies

The Cisco IOS XR Software Embedded Event Manager (EEM) functions as the central clearing house for the
events detected by any portion of the Cisco IOS XR Software processor failover services. The EEM is
responsible for detection of fault events, fault recovery, and process reliability statistics in a Cisco IOS XR
Software system. The EEM events are notifications that something significant has occurred within the system,
such as:

• Operating or performance statistics outside the allowable values (for example, free memory dropping
below a critical threshold).

• Online insertion or removal (OIR).

• Termination of a process.

The EEM relies on software agents or event detectors to notify it when certain system events occur. When
the EEM has detected an event, it can initiate corrective actions. Actions are prescribed in routines called
policies. Policies must be registered before an action can be applied to collected events. No action occurs
unless a policy is registered. A registered policy informs the EEM about a particular event that is to be detected
and the corrective action to be taken if that event is detected.When such an event is detected, the EEM enables
the corresponding policy. You can disable a registered policy at any time.

The EEM monitors the reliability rates achieved by each process in the system, allowing the system to detect
the components that compromise the overall reliability or availability.

This module describes the new and revised tasks you need to configure and manage EEM policies on your
the Cisco ASR 9000 Series Router and write and customize the EEM policies using Tool Command Language
(Tcl) scripts to handle Cisco IOS XR Software faults and events.

For complete descriptions of the event management commands listed in this module, see the RelatedDocuments,
on page 53 section of this module.

Note

Feature History for Configuring and Managing Embedded Event Manager Policies

ModificationRelease

This feature was introduced.Release 4.0.0

Configuring and Managing Embedded Event Manager Policies
1

• Prerequisites for Configuring and Managing Embedded Event Manager Policies, on page 2
• Information About Configuring and Managing Embedded Event Manager Policies, on page 2
• How to Configure and Manage Embedded Event Manager Policies, on page 14
• Configuration Examples for Event Management Policies , on page 41
• Configuration Examples for Writing Embedded Event Manager Policies Using Tcl , on page 43
• Additional References, on page 53
• Embedded Event Manager Policy Tcl Command Extension Reference, on page 54

Prerequisites for Configuring and Managing Embedded Event
Manager Policies

You must be in a user group associated with a task group that includes the proper task IDs. The command
reference guides include the task IDs required for each command. If you suspect user group assignment is
preventing you from using a command, contact your AAA administrator for assistance.

Information About Configuring and Managing Embedded Event
Manager Policies

Event Management
Embedded Event Management (EEM) in the Cisco IOS XR Software system essentially involves system
event management. An event can be any significant occurrence (not limited to errors) that has happened within
the system. The Cisco IOS XR Software EEM detects those events and implements appropriate responses.
The EEM can also be used to prevent or contain faults and to assist in fault recovery.

The EEM enables a system administrator to specify appropriate action based on the current state of the system.
For example, a system administrator can use EEM to request notification by e-mail when a hardware device
needs replacement.

The EEM also maintains reliability metrics for each process in the system.

System Event Detection
The EEM interacts with routines, “event detectors,” that actively monitor the system for events. The EEM
relies on an event detector that it has provided to syslog to detect that a certain system event has occurred. It
uses a pattern match with the syslog messages. It also relies on a timer event detector to detect that a certain
time and date has occurred.

Policy-Based Event Response

When the EEM has detected an event, it can initiate actions in response. These actions are contained in routines
called policy handlers. While the data for event detection is collected, no action occurs unless a policy for
responding to that event has been registered. At registration, a policy informs the EEM that it is looking for
a particular event. When the EEM detects the event, it enables the policy.

Configuring and Managing Embedded Event Manager Policies
2

Configuring and Managing Embedded Event Manager Policies
Prerequisites for Configuring and Managing Embedded Event Manager Policies

Reliability Metrics

The EEM monitors the reliability rates achieved by each process in the system. These metrics can be used
during testing to determine which components do not meet their reliability or availability goals so that corrective
action can be taken.

System Event Processing
When the EEM receives an event notification, it takes these actions:

• Checks for established policy handlers:

• If a policy handler exists, the EEM initiates callback routines (EEM handlers) or runs Tool Command
Language (Tcl) scripts (EEM scripts) that implement policies. The policies can include built-in
EEM actions.

• If a policy handler does not exist, the EEM does nothing.

• Notifies the processes that have subscribed for event notification.

A difference exists between scripts with policy actions and scripts that subscribe
to receive events. Scripts with policy actions are expected to implement a policy.
They are bound by a rule to prevent recursion. Scripts that subscribe to
notifications are not bound by such a rule.

Note

• Records reliability metric data for each process in the system.

• Provides access to EEM-maintained system information through an application program interface (API).

Embedded Event Manager Management Policies
When the EEM has detected an event, it can initiate corrective actions. Actions are prescribed in routines
called policies. Policies are defined by Tcl scripts (EEM scripts) written by the user through a Tcl API. (See
the Embedded EventManager Scripts and the Scripting Interface (Tcl), on page 3.) Policies must be registered
before any action can be applied to collected events. No action occurs unless a policy is registered. A registered
policy informs the EEM about a particular event to detect and the corrective action to take if that event is
detected. When such an event is detected, the EEM runs the policy. You can disable a registered policy at any
time.

Embedded Event Manager Scripts and the Scripting Interface (Tcl)
EEM scripts are used to implement policies when an EEM event is published. EEM scripts and policies are
identified to the EEM using the event manager policy configuration command. An EEM script remains
available to be scheduled by the EEM until the no event manager policy command is entered.

The EEM uses these two types of EEM scripts:

• Regular EEM scripts identified to the EEM through the eem script CLI command. Regular EEM scripts
are standalone scripts that incorporate the definition of the event they will handle.

Configuring and Managing Embedded Event Manager Policies
3

Configuring and Managing Embedded Event Manager Policies
Reliability Metrics

• EEM callback scripts identified to the EEM when a process or EEM script registers to handle an event.
EEM callback scripts are essentially named functions that are identified to the EEM through the C
Language API.

This example shows the usage for the CLI in scripts:

sjc-cde-010:/tftpboot/cnwei/fm> cat test_cli_eem.tcl
::cisco::eem::event_register_syslog occurs 1 pattern $_syslog_pattern maxrun 90

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

set errorInfo ""

1. query the information of latest triggered fm event
array set arr_einfo [event_reqinfo]

if {$_cerrno != 0} {
set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \

$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]
error $result

}

set msg $arr_einfo(msg)
set config_cmds ""

2. execute the user-defined config commands
if [catch {cli_open} result] {

error $result $errorInfo
} else {

array set cli1 $result
}

if [catch {cli_exec $cli1(fd) "config"} result] {
error $result $errorInfo

}

if {[info exists _config_cmd1]} {
if [catch {cli_exec $cli1(fd) $_config_cmd1} result] {

error $result $errorInfo
}

append config_cmds $_config_cmd1
}

if {[info exists _config_cmd2]} {
if [catch {cli_exec $cli1(fd) $_config_cmd2} result] {

error $result $errorInfo
}
append config_cmds "\n"
append config_cmds $_config_cmd2

}

if [catch {cli_exec $cli1(fd) "end"} result] {
error $result $errorInfo

}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo
}

action_syslog priority info msg "Ran config command $_config_cmd1 $_config_cmd2

Configuring and Managing Embedded Event Manager Policies
4

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Scripts and the Scripting Interface (Tcl)

Script Language
The scripting language is Tool Command Language (Tcl) as implemented within the Cisco IOS XR Software.
All Embedded Event Manager scripts are written in Tcl. This full Tcl implementation has been extended by
Cisco, and an eem command has been added to provide the interface between Tcl scripts and the EEM.

Tcl is a string-based command language that is interpreted at run time. The version of Tcl supported is Tcl
version 8.3.4, plus added script support. Scripts are defined using an ASCII editor on another device, not on
the networking device. The script is then copied to the networking device and registered with EEM. Tcl scripts
are supported by EEM. As an enforced rule, Embedded Event Manager policies are short-lived, run-time
routines that must be interpreted and executed in less than 20 seconds of elapsed time. If more than 20 seconds
of elapsed time are required, the maxrun parameter may be specified in the event_register statement to specify
any desired value.

EEM policies use the full range of the Tcl language's capabilities. However, Cisco provides enhancements to
the Tcl language in the form of Tcl command extensions that facilitate the writing of EEM policies. The main
categories of Tcl command extensions identify the detected event, the subsequent action, utility information,
counter values, and system information.

EEM allows you to write and implement your own policies using Tcl. Writing an EEM script involves:

• Selecting the event Tcl command extension that establishes the criteria used to determine when the policy
is run.

• Defining the event detector options associated with detecting the event.

• Choosing the actions to implement recovery or respond to the detected event.

Regular Embedded Event Manager Scripts
Regular EEM scripts are used to implement policies when an EEM event is published. EEM scripts are
identified to the EEM using the event manager policy configuration command. An EEM script remains
available to be scheduled by the EEM until the no event manager policy command is entered.

The first executable line of code within an EEM script must be the eem event register keyword. This keyword
identifies the EEM event for which that script should be scheduled. The keyword is used by the event manager
policy configuration command to register to handle the specified EEM event.

EEM scripts may use any of the EEM script services listed in Embedded Event Manager Policy Tcl Command
Extension Categories, on page 6.

When an EEM script exits, it is responsible for setting a return code that is used to tell the EEM whether to
run the default action for this EEM event (if any) or no other action. If multiple event handlers are scheduled
for a given event, the return code from the previous handler is passed into the next handler, which can leave
the value as is or update it.

An EEM script cannot register to handle an event other than the event that caused it to be scheduled.Note

Embedded Event Manager Callback Scripts
EEM callback scripts are entered as a result of an EEM event being raised for a previously registered EEM
event that specifies the name of this script in the eem_handler_spec.

Configuring and Managing Embedded Event Manager Policies
5

Configuring and Managing Embedded Event Manager Policies
Script Language

When an EEM callback script exits, it is responsible for setting a return code that is used to tell the EEM
whether or not to run the default action for this EEM event (if any). If multiple event handlers are scheduled
for a given event, the return code from the previous handler is passed into the next handler, which can leave
the value as is or update it.

EEM callback scripts are free to use any of the EEM script services listed in Table 1: Embedded EventManager
Tcl Command Extension Categories, on page 6, except for the eem event register keyword, which is not
allowed in an EEM callback script.

Note

Embedded Event Manager Policy Tcl Command Extension Categories
This table lists the different categories of EEM policy Tcl command extensions.

The Tcl command extensions available in each of these categories for use in all EEM policies are described
in later sections in this document.

Note

Table 1: Embedded Event Manager Tcl Command Extension Categories

DefinitionCategory

These Tcl command extensions are represented by the
event_register_xxx family of event-specific commands. There is a
separate event information Tcl command extension in this category as
well: event_reqinfo. This is the command used in policies to query the
EEM for information about an event. There is also an EEM event
publish Tcl command extension event_publish that publishes an
application-specific event.

EEM event Tcl command
extensions(three types: event
information, event registration, and
event publish)

These Tcl command extensions (for example, action_syslog) are used
by policies to respond to or recover from an event or fault. In addition
to these extensions, developers can use the Tcl language to implement
any action desired.

EEM action Tcl command
extensions

These Tcl command extensions are used to retrieve, save, set, or modify
application information, counters, or timers.

EEM utility Tcl command
extensions

These Tcl command extensions are represented by the sys_reqinfo_xxx
family of system-specific information commands. These commands
are used by a policy to gather system information.

EEM system information Tcl
command extensions

These Tcl command extensions are used to store and retrieve a Tcl
context (the visible variables and their values).

EEM context Tcl command
extensions

Cisco File Naming Convention for Embedded Event Manager
All EEM policy names, policy support files (for example, e-mail template files), and library filenames are
consistent with the Cisco file-naming convention. In this regard, EEM policy filenames adhere to the following
specifications:

Configuring and Managing Embedded Event Manager Policies
6

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Policy Tcl Command Extension Categories

• An optional prefix—Mandatory.—indicating, if present, that this is a system policy that should be
registered automatically at boot time if it is not already registered; for example, Mandatory.sl_text.tcl.

• A filename body part containing a two-character abbreviation (see table below) for the first event specified;
an underscore part; and a descriptive field part that further identifies the policy.

• A filename suffix part defined as .tcl.

EEM e-mail template files consist of a filename prefix of email_template, followed by an abbreviation that
identifies the usage of the e-mail template.

EEM library filenames consist of a filename body part containing the descriptive field that identifies the usage
of the library, followed by _lib, and a filename suffix part defined as .tcl.

Table 2: Two-Character Abbreviation Specification

SpecificationTwo-Character Abbreviation

event_register_applap

event_register_counterct

event_register_statst

event_register_noneno

event_register_oiroi

event_register_processpr

event_register_syslogsl

event_register_timertm

event_register_timer_subscriberts

event_register_wdsysmonwd

Embedded Event Manager Built-in Actions
EEM built-in actions can be requested from EEM handlers when the handlers run.

This table describes each EEM handler request or action.

Table 3: Embedded Event Manager Built-In Actions

DescriptionEmbedded Event Manager Built-In
Action

Sends a message to the syslog. Arguments to this action are priority
and the message to be logged.

Log a message to syslog

Writes the command to the specified channel handler to execute
the command by using the cli_exec command extension.

Execute a CLI command

Configuring and Managing Embedded Event Manager Policies
7

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Built-in Actions

DescriptionEmbedded Event Manager Built-In
Action

Logs amessage by using the action_syslogTcl command extension.Generate a syslog message

Runs an EEM policy within a policy while the event manager run
command is running a policy in EXEC mode.

Manually run an EEM policy

Publishes an application-specific event by using the event_publish
appl Tcl command extension.

Publish an application-specific event

Causes a router to be reloaded by using the EEM action_reload
command.

Reload the Cisco IOS software

Represents the sys_reqinfo_xxx family of system-specific
information commands by a policy to gather system information.

Request system information

Sends the e-mail out using SimpleMail Transfer Protocol (SMTP).Send a short e-mail

Modifies a counter value.Set or modify a counter

EEM handlers require the ability to run CLI commands. A command is available to the Tcl shell to allow
execution of CLI commands from within Tcl scripts.

Application-specific Embedded Event Management
AnyCisco IOSXRSoftware application can define and publish application-defined events. Application-defined
events are identified by a name that includes both the component name and event name, to allow application
developers to assign their own event identifiers. Application-defined events can be raised by a Cisco IOS XR
Software component even when there are no subscribers. In this case, the EEM dismisses the event, which
allows subscribers to receive application-defined events as needed.

An EEM script that subscribes to receive system events is processed in the following order:

1. This CLI configuration command is entered: event manager policy scriptfilename username username.

2. The EEM scans the EEM script looking for an eem event event_type keyword and subscribes the EEM
script to be scheduled for the specified event.

3. The Event Detector detects an event and contacts the EEM.

4. The EEM schedules event processing, causing the EEM script to be run.

5. The EEM script routine returns.

Event Detection and Recovery
Events are detected by routines called event detectors. Event detectors are separate programs that provide an
interface between other Cisco IOS XR Software components and the EEM. They process information that
can be used to publish events, if necessary.

These event detectors are supported:

Configuring and Managing Embedded Event Manager Policies
8

Configuring and Managing Embedded Event Manager Policies
Application-specific Embedded Event Management

An EEM event is defined as a notification that something significant has happened within the system. Two
categories of events exist:

• System EEM events

• Application-defined events

System EEM events are built into the EEM and are grouped based on the fault detector that raises them. They
are identified by a symbolic identifier defined within the API.

Some EEM system events are monitored by the EEMwhether or not an application has requested monitoring.
These are called built-in EEM events. Other EEM events are monitored only if an application has requested
EEM event monitoring. EEM event monitoring is requested through an EEM application API or the EEM
scripting interface.

Some event detectors can be distributed to other hardware cards within the same secure domain router (SDR)
or within the administration plane to provide support for distributed components running on those cards.

General Flow of EEM Event Detection and Recovery
EEM is a flexible, policy-driven framework that supports in-box monitoring of different components of the
systemwith the help of software agents known as event detectors. The relationship is between the EEM server,
the core event publishers (event detectors), and the event subscribers (policies). Event publishers screen events
and publish them when there is a match on an event specification that is provided by the event subscriber.
Event detectors notify the EEM server when an event of interest occurs.

When an event or fault is detected, Embedded Event Manager determines from the event publishers—an
example would be the OIR events publisher—if a registration for the encountered fault or event has occurred.
EEM matches the event registration information with the event data itself. A policy registers for the detected
event with the Tcl command extension event_register_xxx. The event information Tcl command extension
event_reqinfo is used in the policy to query the Embedded Event Manager for information about the detected
event.

System Manager Event Detector
The System Manager Event Detector has four roles:

• Records process reliability metric data.

• Screens for processes that have EEM event monitoring requests outstanding.

• Publishes events for those processes that match the screening criteria.

• Asks the System Manager to perform its default action for those events that do not match the screening
criteria.

The System Manager Event Detector interfaces with the System Manager to receive process startup and
termination notifications. The interfacing is made through a private API available to the System Manager. To
minimize overhead, a portion of the API resides within the System Manager process space. When a process
terminates, the SystemManager invokes a helper process (if specified in the process.startup file) before calling
the Event Detector API.

Processes can be identified by component ID, System Manager assigned job ID, or load module pathname
plus process instance ID. POSIX wildcard filename pattern support using *, ?, or [...] is provided for load
module pathnames. Process instance ID is an integer assigned to a process to differentiate it from other

Configuring and Managing Embedded Event Manager Policies
9

Configuring and Managing Embedded Event Manager Policies
General Flow of EEM Event Detection and Recovery

processes with the same pathname. The first instance of a process is assigned an instance ID value of 1, the
second 2, and so on.

The System Manager Event Detector handles EEM event monitoring requests for the EEM events shown in
this table.

Table 4: System Manager Event Detector Event Monitoring Requests

DescriptionEmbedded Event Manager Event

Occurs when a process matching the screening criteria
terminates.

Normal process termination EEM event—built in

Occurs when a process matching the screening criteria
terminates abnormally.

Abnormal process termination EEM event—built
in

Occurs when a process matching the screening criteria
starts.

Process startup EEM event—built in

When SystemManager Event Detector abnormal process termination events occur, the default action restarts
the process according to the built-in rules of the System Manager.

The relationship between the EEM and System Manager is strictly through the private API provided by the
EEM to the System Manager for the purpose of receiving process start and termination notifications. When
the System Manager calls the API, reliability metric data is collected and screening is performed for an EEM
event match. If a match occurs, a message is sent to the System Manager Event Detector. In the case of
abnormal process terminations, a return is made indicating that the EEM handles process restart. If a match
does not occur, a return is made indicating that the System Manager should apply the default action.

Timer Services Event Detector
The Timer Services Event Detector implements time-related EEM events. These events are identified through
user-defined identifiers so that multiple processes can await notification for the same EEM event.

The Timer Services Event Detector handles EEM event monitoring requests for the Date/Time Passed EEM
event. This event occurs when the current date or time passes the specified date or time requested by an
application.

Syslog Event Detector
The syslog Event Detector implements syslogmessage screening for syslog EEM events. This routine interfaces
with the syslog daemon through a private API. To minimize overhead, a portion of the API resides within the
syslog daemon process.

Screening is provided for the message severity code or the message text fields. POSIX regular expression
pattern support is provided for the message text field.

The Syslog Event Detector handles EEM event monitoring requests for the events are shown in this table.

Configuring and Managing Embedded Event Manager Policies
10

Configuring and Managing Embedded Event Manager Policies
Timer Services Event Detector

Table 5: Syslog Event Detector Event Monitoring Requests

DescriptionEmbedded Event Manager Event

Occurs for a just-logged message. It occurs when there is a match for
either the syslog message severity code or the syslog message text
pattern. Both can be specified when an application requests a syslog
message EEM event.

Syslog message EEM event

Occurs when the event-processed count for a specified process is either
greater than or equal to a specified maximum or is less than or equal
to a specified minimum.

Process event manager EEM
event—built in

None Event Detector
The None Event Detector publishes an event when the Cisco IOS XR Software event manager run CLI
command executes an EEM policy. EEM schedules and runs policies on the basis of an event specification
that is contained within the policy itself. An EEM policy must be identified and registered to be permitted to
run manually before the event manager run command will execute.

Event manager none detector provides user the ability to run a tcl script using the CLI. The script is registered
first before running. Cisco IOS XR Software version provides similar syntax with Cisco IOS EEM (refer to
the applicable EEMDocumentation for details), so scripts written using Cisco IOS EEM is run on Cisco IOSXR
Software with minimum change.

Watchdog System Monitor Event Detector

Watchdog System Monitor (IOSXRWDSysMon) Event Detector for Cisco IOS XR Software

The Cisco IOS XR Software Watchdog System Monitor Event Detector publishes an event when one of the
following occurs:

• CPU utilization for a Cisco IOS XR Software process crosses a threshold.

• Memory utilization for a Cisco IOS XR Software process crosses a threshold.

Cisco IOS XR Software processes are used to distinguish them from Cisco IOS XR Software Modularity
processes.

Note

Two events may be monitored at the same time, and the event publishing criteria can be specified to require
one event or both events to cross their specified thresholds.

Configuring and Managing Embedded Event Manager Policies
11

Configuring and Managing Embedded Event Manager Policies
None Event Detector

The Cisco IOS XR Software Watchdog System Monitor Event Detector handles the events as shown in this
table.

Table 6: Watchdog System Monitor Event Detector Requests

DescriptionEmbedded Event Manager Event

Occurs when the CPU time for a specified process is either greater
than or equal to a specified maximum percentage of available CPU
time or is less than or equal to a specified minimum percentage of
available CPU time.

Process percent CPU EEM
event—built in

Occurs when the CPU time for a specified processor complex is
either greater than or equal to a specified maximum percentage of
available CPU time or is less than or equal to a specified minimum
percentage of available CPU time.

Total percent CPU EEM event—built
in

Occurs when the memory used for a specified process has either
increased or decreased by a specified value.

Process percent memory EEM
event—built in

Occurs when the availablememory for a specified processor complex
has either increased or decreased by a specified value.

Total percent available Memory EEM
event—built in

Occurs when the used memory for a specified processor complex
has either increased or decreased by a specified value.

Total percent used memory EEM
event—built in

Watchdog System Monitor (WDSysMon) Event Detector for Cisco IOS XR Software Modularity

The Cisco IOS XR Software Software Modularity Watchdog System Monitor Event Detector detects infinite
loops, deadlocks, and memory leaks in Cisco IOS XR Software Modularity processes.

Distributed Event Detectors
Cisco IOS XR Software components that interface to EEM event detectors and that have substantially
independent implementations running on a distributed hardware card should have a distributed EEM event
detector. The distributed event detector permits scheduling of EEM events for local processes without requiring
that the local hardware card to the EEM communication channel be active.

These event detectors run on a Cisco IOS XR Software line card:

• System Manager Fault Detector

• Wdsysmon Fault Detector

• Counter Event Detector

• OIR Event Detector

• Statistic Event Detector

Embedded Event Manager Event Scheduling and Notification
When an EEM handler is scheduled, it runs under the context of the process that creates the event request (or
for EEM scripts under the Tcl shell process context). For events that occur for a process running an EEM

Configuring and Managing Embedded Event Manager Policies
12

Configuring and Managing Embedded Event Manager Policies
Distributed Event Detectors

handler, event scheduling is blocked until the handler exits. The defined default action (if any) is performed
instead.

The EEM Server maintains queues containing event scheduling and notification items across client process
restarts, if requested.

Reliability Statistics
Reliability metric data for the entire processor complex is maintained by the EEM. The data is periodically
written to checkpoint.

Hardware Card Reliability Metric Data
Reliability metric data is kept for each hardware card in a processor complex. Data is recorded in a table
indexed by disk ID.

Data maintained by the hardware card is as follows:

• Most recent start time

• Most recent normal end time (controlled switchover)

• Most recent abnormal end time (asynchronous switchover)

• Most recent abnormal type

• Cumulative available time

• Cumulative unavailable time

• Number of times hardware card started

• Number of times hardware card shut down normally

• Number of times hardware card shut down abnormally

Process Reliability Metric Data
Reliability metric data is kept for each process handled by the System Manager. This data includes standby
processes running on either the primary or backup hardware card. Data is recorded in a table indexed by
hardware card disk ID plus process pathname plus process instance for those processes that have multiple
instances.

Process terminations include the following cases:

• Normal termination—Process exits with an exit value equal to 0.

• Abnormal termination by process—Process exits with an exit value not equal to 0.

• Abnormal termination by QNX—Neutrino operating system terminates the process.

• Abnormal termination by kill process API—API kill process terminates the process.

Data to be maintained by process is as follows:

• Most recent process start time

• Most recent normal process end time

Configuring and Managing Embedded Event Manager Policies
13

Configuring and Managing Embedded Event Manager Policies
Reliability Statistics

• Most recent abnormal process end time

• Most recent abnormal process end type

• Previous ten process end times and types

• Cumulative process available time

• Cumulative process unavailable time

• Cumulative process run time (the time when the process is actually running on the CPU)

• Number of times started

• Number of times ended normally

• Number of times ended abnormally

• Number of abnormal failures within the past 60 minutes

• Number of abnormal failures within the past 24 hours

• Number of abnormal failures within the past 30 days

How to Configure and Manage Embedded Event Manager
Policies

Configuring Environmental Variables
EEM environmental variables are Tcl global variables that are defined external to the policy before the policy
is run. The EEM policy engine receives notifications when faults and other events occur. EEM policies
implement recovery, based on the current state of the system and actions specified in the policy for a given
event. Recovery actions are triggered when the policy is run.

Environment Variables
By convention, the names of all environment variables defined by Cisco begin with an underscore character
to set them apart; for example, _show_cmd.

Spaces may be used in the var-value argument of the event manager environment command. The command
interprets everything after the var-name argument to the end of the line to be part of the var-value argument.

Use the show event manager environment command to display the name and value of all EEM environment
variables after they have been set using the event manager environment command.

SUMMARY STEPS

1. show event manager environment
2. configure
3. event manager environment var-name var-value

4. Repeat Step 3 for every environment value to be reset.
5. Use the commit or end command.

Configuring and Managing Embedded Event Manager Policies
14

Configuring and Managing Embedded Event Manager Policies
How to Configure and Manage Embedded Event Manager Policies

6. show event manager environment

DETAILED STEPS

PurposeCommand or Action

Displays the names and values of all EEM environment
variables.

show event manager environment

Example:

Step 1

RP/0/RSP0/CPU0:router# show event manager
environment

Enters global configuration mode.configure

Example:

Step 2

RP/0/RSP0/CPU0:router# configure

Resets environment variables to new values.event manager environment var-name var-valueStep 3

Example: • The var-name argument is the name assigned to the
EEM environment configuration variable.

RP/0/RSP0/CPU0:router(config)# event manager
environment _cron_entry 0-59/2 0-23/1 * * 0-7 • The var-value argument is the series of characters,

including embedded spaces, to be placed in the
environment variable var-name.

• By convention, the names of all environment variables
defined by Cisco begin with an underscore character
to set them apart; for example, _show_cmd.

• Spaces may be used in the var-value argument. The
command interprets everything after the var-name
argument to the end of the line to be part of the
var-value argument.

—Repeat Step 3 for every environment value to be reset.Step 4

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring and Managing Embedded Event Manager Policies
15

Configuring and Managing Embedded Event Manager Policies
Environment Variables

PurposeCommand or Action

Displays the reset names and values of all EEM environment
variables; allows you to verify the environment variable
names and values set in Step 3.

show event manager environment

Example:

RP/0/RSP0/CPU0:router# show event manager
environment

Step 6

What to do next

After setting up EEM environment variables, find out what policies are available to be registered and then
register those policies, as described in the Registering Embedded Event Manager Policies, on page 16.

Registering Embedded Event Manager Policies
Register an EEM policy to run a policy when an event is triggered.

Embedded Event Manager Policies
Registering an EEM policy is performed with the event manager policy command in global configuration
mode. An EEM script is available to be scheduled by the EEM until the no form of this command is entered.
Prior to registering a policy, display EEM policies that are available to be registered with the show event
manager policy available command.

The EEM schedules and runs policies on the basis of an event specification that is contained within the policy
itself. When the event manager policy command is invoked, the EEM examines the policy and registers it
to be run when the specified event occurs.

Username

To register an EEM policy, you must specify the username that is used to run the script. This name can be
different from the user who is currently logged in, but the registering user must have permissions that are a
superset of the username that will run the script. Otherwise, the script is not registered and the command is
rejected. In addition, the username that will run the script must have access privileges to the commands run
by the EEM policy being registered.

AAA authorization (such as the aaa authorization eventmanager command) must be configured before
EEM policies can be registered. See the Configuring AAA Services module of Configuring AAA Services on
Cisco IOS XR Software for more information about AAA authorization configuration.

Note

Persist-time

An optional persist-time keyword for the username can also be defined. The persist-time keyword defines
the number of seconds the username authentication is valid. When a script is first registered, the configured
username for the script is authenticated. After the script is registered, the username is authenticated again each
time a script is run. If the AAA server is down, the username authentication can be read from memory. The
persist-time keyword determines the number of seconds this username authentication is held in memory.

• If the AAA server is down and the persist-time keyword has not expired, then the username is
authenticated from memory and the script runs.

Configuring and Managing Embedded Event Manager Policies
16

Configuring and Managing Embedded Event Manager Policies
Registering Embedded Event Manager Policies

• If the AAA server is down, and the persist-time keyword has expired, then user authentication will fail
and the script will not run.

The following values can be used for the persist-time keyword.

• The default persist-time is 3600 seconds (1 hour). Enter the event manager policy command without
the persist-time keyword to set the persist-time to 1 hour.

• Enter 0 to stop the username authentication from being cached. If the AAA server is down, the username
will not authenticate and the script will not run.

• Enter infinite to stop the username from being marked as invalid. The username authentication held in
the cache will not expire. If the AAA server is down, the username will be authenticated from the cache.

System or user keywords

If you enter the event manager policy command without specifying either the system or user keyword, the
EEM first tries to locate the specified policy file in the system policy directory. If the EEM finds the file in
the system policy directory, it registers the policy as a system policy. If the EEM does not find the specified
policy file in the system policy directory, it looks in the user policy directory. If the EEM locates the specified
file in the user policy directory, it registers the policy file as a user policy. If the EEM finds policy files with
the same name in both the system policy directory and the user policy directory, the policy file in the system
policy directory takes precedence and is registered as a system policy.

Once policies have been registered, their registration can be verified through the show event manager policy
registered command. The output displays registered policy information in two parts. The first line in each
policy description lists the index number assigned to the policy, the policy type (system or user), the type of
event registered, the time when the policy was registered, and the name of the policy file. The remaining lines
of each policy description display information about the registered event and how the event is to be handled,
and come directly from the Tcl command arguments that make up the policy file.

SUMMARY STEPS

1. show event manager policy available [system | user]
2. configure
3. event manager policy policy-name username username [persist-time { seconds | infinite }] | type {

system | user }
4. Repeat Step 3 for every EEM policy to be registered.
5. Use the commit or end command.
6. show event manager policy registered

DETAILED STEPS

PurposeCommand or Action

Displays all EEM policies that are available to be registered.show event manager policy available [system | user]Step 1

Example: • Entering the optional system keyword displays all
available system policies.

RP/0/RSP0/CPU0:router# show event manager policy
available • Entering the optional user keyword displays all

available user policies.

Configuring and Managing Embedded Event Manager Policies
17

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Policies

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 2

RP/0/RSP0/CPU0:router# configure

Registers an EEM policy with the EEM.event manager policy policy-name username username
[persist-time { seconds | infinite }] | type { system | user
}

Step 3

• An EEM script is available to be scheduled by the
EEM until the no form of this command is entered.

Example:
• Enter the required username keyword and argument,
where username is the username that runs the script.RP/0/RSP0/CPU0:router(config)# event manager policy

cron.tcl username tom type user • Enter the optional persist-time keyword to determine
how long the username authentication is held in
memory:

• Enter the number of seconds for the persist-time
keyword.

• Enter the infinite keyword to make the
authentication permanent (the authentication will
not expire).

• Entering the optional type system keywords registers
a system policy defined by Cisco.

• Entering the optional type user keywords registers a
user-defined policy.

AAA authorization (such as aaa authorization
eventmanager) must be configured before
EEM policies can be registered. See the
Configuring AAA Services module of System
Security Configuration Guide for Cisco ASR
9000 Series Routers for more information
about AAA authorization configuration.

Note

—Repeat Step 3 for every EEM policy to be registered.Step 4

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuring and Managing Embedded Event Manager Policies
18

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Policies

PurposeCommand or Action

Displays all EEM policies that are already registered,
allowing verification of Step 3.

show event manager policy registered

Example:

Step 6

RP/0/RSP0/CPU0:router# show event manager policy
registered

How to Write Embedded Event Manager Policies Using Tcl
This section provides information on how to write and customize Embedded Event Manager (EEM) policies
using Tool Command Language (Tcl) scripts to handle Cisco IOS XR Software faults and events.

This section contains these tasks:

Registering and Defining an EEM Tcl Script
Perform this task to configure environment variables and register an EEM policy. EEM schedules and runs
policies on the basis of an event specification that is contained within the policy itself. When an EEM policy
is registered, the software examines the policy and registers it to be run when the specified event occurs.

Before you begin

A policy must be available that is written in the Tcl scripting language. Sample policies are provided in the
Sample EEM Policies, on page 25. Sample policies are stored in the system policy directory.

SUMMARY STEPS

1. show event manager environment [all | environment-name]
2. configure
3. event manager environment var-name [var-value]
4. Repeat Step 3, on page 20 to configure all the environment variables required by the policy to be registered

in Step 5, on page 20.
5. event manager policy policy-name username username [persist-time [seconds | infinite] | type [

system | user]]
6. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

(Optional) Displays the name and value of EEM
environment variables.

show event manager environment [all |
environment-name]

Step 1

Example: • The all keyword displays all the EEM environment
variables.

RP/0/RSP0/CPU0:router# show event manager
environment all • The environment-name argument displays information

about the specified environment variable.

Configuring and Managing Embedded Event Manager Policies
19

Configuring and Managing Embedded Event Manager Policies
How to Write Embedded Event Manager Policies Using Tcl

PurposeCommand or Action

Enters global configuration mode.configure

Example:

Step 2

RP/0/RSP0/CPU0:router# configure

Resets environment variables to new values.event manager environment var-name [var-value]Step 3

Example: • The var-name argument is the name assigned to the
EEM environment configuration variable.

RP/0/RSP0/CPU0:router(config)# event manager
environment _cron_entry 0-59/2 0-23/1 * * 0-7 • The var-value argument is the series of characters,

including embedded spaces, to be placed in the
environment variable var-name .

• By convention, the names of all environment variables
defined by Cisco begin with an underscore character
to set them apart; for example, _show_cmd.

• Spaces may be used in the var-value argument. The
command interprets everything after the var-name
argument to the end of the line to be part of the
var-value argument.

—Repeat Step 3, on page 20 to configure all the environment
variables required by the policy to be registered in Step 5,
on page 20.

Step 4

Registers the EEMpolicy to be run when the specified event
defined within the policy occurs.

event manager policy policy-name username username
[persist-time [seconds | infinite] | type [system | user
]]

Step 5

• Use the system keyword to register a system policy
defined by Cisco.Example:

RP/0/RSP0/CPU0:router(config)# event manager policy
tm_cli_cmd.tcl username user_a type system

• Use the user keyword to register a user-defined
system policy.

• Use the persist-time keyword to specify the length
of time the username authentication is valid.

In this example, the sample EEM policy named
tm_cli_cmd.tcl is registered as a system policy.

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 6

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

Configuring and Managing Embedded Event Manager Policies
20

Configuring and Managing Embedded Event Manager Policies
Registering and Defining an EEM Tcl Script

PurposeCommand or Action

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Displaying EEM Registered Policies
Perform this optional task to display EEM registered policies.

SUMMARY STEPS

1. show event manager policy registered [event-type type] [system | user] [time-ordered |
name-ordered]

DETAILED STEPS

PurposeCommand or Action

Displays information about currently registered policies.show event manager policy registered [event-type type
] [system | user] [time-ordered | name-ordered]

Step 1

• The event-type keyword displays the registered
policies for a specific event type.Example:

RP/0/RSP0/CPU0:router# show event manager policy
registered system

• The time-ordered keyword displays information about
currently registered policies sorted by time.

• The name-ordered keyword displays the policies in
alphabetical order by the policy name.

Unregistering EEM Policies
Perform this task to remove an EEM policy from the running configuration file. Execution of the policy is
canceled.

SUMMARY STEPS

1. show event manager policy registered [event-type type] [system | user] [time-ordered |
name-ordered]

2. configure
3. no event manager policy policy-name

4. Use the commit or end command.
5. Repeat Step 1, on page 21to ensure that the policy has been removed.

DETAILED STEPS

PurposeCommand or Action

Displays information about currently registered policies.show event manager policy registered [event-type type
] [system | user] [time-ordered | name-ordered]

Step 1

• The event-type keyword displays the registered
policies for a specific event type.Example:

Configuring and Managing Embedded Event Manager Policies
21

Configuring and Managing Embedded Event Manager Policies
Displaying EEM Registered Policies

PurposeCommand or Action

RP/0/RSP0/CPU0:router# show event manager policy
registered system

• The time-ordered keyword displays information about
currently registered policies sorted by time.

• The name-ordered keyword displays the policies in
alphabetical order by the policy name.

Enters global configuration mode.configure

Example:

Step 2

RP/0/RSP0/CPU0:router# configure

Removes the EEM policy from the configuration, causing
the policy to be unregistered.

no event manager policy policy-name

Example:

Step 3

RP/0/RSP0/CPU0:router(config)# no event manager
policy tm_cli_cmd.tcl

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

—Repeat Step 1, on page 21to ensure that the policy has been
removed.

Step 5

Suspending EEM Policy Execution
Perform this task to immediately suspend the execution of all EEM policies. Suspending policies, instead of
unregistering them, might be necessary for reasons of temporary performance or security.

SUMMARY STEPS

1. show event manager policy registered [event-type type] [system | user] [time-ordered | name-ordered
]

2. configure
3. event manager scheduler suspend
4. Use the commit or end command.

Configuring and Managing Embedded Event Manager Policies
22

Configuring and Managing Embedded Event Manager Policies
Suspending EEM Policy Execution

DETAILED STEPS

PurposeCommand or Action

Displays information about currently registered policies.show event manager policy registered [event-type type]
[system | user] [time-ordered | name-ordered]

Step 1

• The event-type keyword displays the registered
policies for a specific event type.Example:

RP/0/RSP0/CPU0:router# show event manager policy
registered system

• The time-ordered keyword displays information about
currently registered policies sorted by time.

• The name-ordered keyword displays the policies in
alphabetical order by the policy name.

Enters global configuration mode.configure

Example:

Step 2

RP/0/RSP0/CPU0:router# configure

Immediately suspends the execution of all EEM policies.event manager scheduler suspend

Example:

Step 3

RP/0/RSP0/CPU0:router(config)# event manager
scheduler suspend

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Managing EEM Policies
Perform this task to specify a directory to use for storing user library files or user-defined EEM policies.

This task applies only to EEM policies that are written using Tcl scripts.Note

SUMMARY STEPS

1. show event manager directory user [library | policy]
2. configure
3. event manager directory user {library path | policy path}

Configuring and Managing Embedded Event Manager Policies
23

Configuring and Managing Embedded Event Manager Policies
Managing EEM Policies

4. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Displays the directory to use for storing EEM user library
or policy files.

show event manager directory user [library | policy]

Example:

Step 1

• The optional library keyword displays the directory
to use for user library files.RP/0/RSP0/CPU0:router# show event manager directory

user library
• The optional policy keyword displays the directory to
use for user-defined EEM policies.

Enters global configuration mode.configure

Example:

Step 2

RP/0/RSP0/CPU0:router# configure

Specifies a directory to use for storing user library files or
user-defined EEM policies.

event manager directory user {library path | policy path}

Example:

Step 3

• Use the path argument to specify the absolute
pathname to the user directory.RP/0/RSP0/CPU0:router(config)# event manager

directory user library disk0:/usr/lib/tcl

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 4

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Displaying Software Modularity Process Reliability Metrics Using EEM
Perform this optional task to display reliability metrics for Cisco IOS XR Software processes.

SUMMARY STEPS

1. show event manager metric process {all | job-id | process-name} location {all | node-id}

Configuring and Managing Embedded Event Manager Policies
24

Configuring and Managing Embedded Event Manager Policies
Displaying Software Modularity Process Reliability Metrics Using EEM

DETAILED STEPS

PurposeCommand or Action

Displays the reliabilitymetric data for processes. The system
keeps a record of when processes start and end, and this
data is used as the basis for reliability analysis.

show event manager metric process {all | job-id |
process-name} location {all | node-id}

Example:

Step 1

RP/0/RSP0/CPU0:router# show event manager
environment

Sample EEM Policies
Cisco IOS XR Software contains some sample policies in the images that contain the EEM. Developers of
EEM policies may modify these policies by customizing the event for which the policy is to be run and the
options associated with logging and responding to the event. In addition, developers may select the actions
to be implemented when the policy runs.

The Cisco IOS XR Software includes a set of sample policies (see Sample EEM Policy Descriptions table).
The sample policies can be copied to a user directory and then modified. Tcl is currently the only scripting
language supported by Cisco for policy creation. Tcl policies can be modified using a text editor such as
Emacs. Policies must execute within a defined number of seconds of elapsed time, and the time variable can
be configured within a policy. The default is 20 seconds.

Sample EEM policies can be seen on the router using the CLI
Show event manager policy available system

This table describes the sample EEM policies.

Table 7: Sample EEM Policy Descriptions

DescriptionName of Policy

This policy is triggered when the _cron_entry_diag cron entry expires.Then, the
output of this fixed set is collect for the fixed set of commands and the output is sent
by email.

periodic_diag_cmds.tcl

This policy is triggered when the _cron_entry_procavail cron entry expires. Then
the output of this fixed set is collect for the fixed set of commands and the output
is sent by email.

periodic_proc_avail.tcl

This policy is triggered when the _cron_entry_log cron entry expires, and collects
the output for the show log command and a few other commands. If the environment
variable _log_past_hours is configured, it collects the logmessages that are generated
in the last _log_past_hours hours. Otherwise, it collects the full log.

periodic_sh_log.tcl

This policy is triggered when the script looks for the sysdb timeout ios_msgs and
obtains the output of the show commands. The output is written to a file named after
the blocking process.

sl_sysdb_timeout.tcl

This policy runs using a configurable CRON entry. It executes a configurable CLI
command and e-mails the results.

tm_cli_cmd.tcl

Configuring and Managing Embedded Event Manager Policies
25

Configuring and Managing Embedded Event Manager Policies
Sample EEM Policies

DescriptionName of Policy

This policy runs at midnight each day and e-mails a process crash history report to
a specified e-mail address.

tm_crash_hist.tcl

For more details about the sample policies available and how to run them, see the EEMEvent Detector Demo:
Example , on page 43.

SUMMARY STEPS

1. show event manager policy available [system | user]
2. configure
3. event manager directory user {library path | policy path}
4. event manager policy policy-name username username [persist-time [seconds | infinite] | type [system

| user]]
5. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

Displays EEM policies that are available to be registered.show event manager policy available [system | user]

Example:

Step 1

RP/0/RSP0/CPU0:router# show event manager policy
available

Enters global configuration mode.configure

Example:

Step 2

RP/0/RSP0/CPU0:router# configure

Specifies a directory to use for storing user library files or
user-defined EEM policies.

event manager directory user {library path | policy path}

Example:

Step 3

RP/0/RSP0/CPU0:router(config)# event manager
directory user library disk0:/user_library

Registers the EEMpolicy to be run when the specified event
defined within the policy occurs.

event manager policy policy-name username username
[persist-time [seconds | infinite] | type [system | user]]

Example:

Step 4

RP/0/RSP0/CPU0:router(config)# event manager policy
test.tcl username user_a type user

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 5

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

Configuring and Managing Embedded Event Manager Policies
26

Configuring and Managing Embedded Event Manager Policies
Sample EEM Policies

PurposeCommand or Action

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Programming EEM Policies with Tcl
Perform this task to help you program a policy using Tcl command extensions. We recommend that you copy
an existing policy and modify it. There are two required parts that must exist in an EEM Tcl policy: the
event_register Tcl command extension and the body. All other sections shown in the Tcl Policy Structure and
Requirements, on page 27 are optional.

Tcl Policy Structure and Requirements

All EEM policies share the same structure, shown in Figure 1: Tcl Policy Structure and Requirements , on
page 27. There are two parts of an EEM policy that are required: the event_register Tcl command extension
and the body. The remaining parts of the policy are optional: environmental must defines, namespace import,
entry status, and exit status.

Figure 1: Tcl Policy Structure and Requirements

The start of every policy must describe and register the event to detect using an event_register Tcl command
extension. This part of the policy schedules the running of the policy. For a list of the available EEM
event_register Tcl command extensions, see the Embedded EventManager Event Registration Tcl Command
Extensions, on page 54. The following example Tcl code shows how to register the event_register_timer
Tcl command extension:

::cisco::eem::event_register_timer cron name crontimer2 cron_entry $_cron_entry maxrun 240

The following example Tcl code shows how to check for, and define, some environment variables:

Check if all the env variables that we need exist.
If any of them does not exist, print out an error msg and quit.
if {![info exists _email_server]} {
set result \
"Policy cannot be run: variable _email_server has not been set"

error $result $errorInfo
}
if {![info exists _email_from]} {

Configuring and Managing Embedded Event Manager Policies
27

Configuring and Managing Embedded Event Manager Policies
Programming EEM Policies with Tcl

set result \
"Policy cannot be run: variable _email_from has not been set"

error $result $errorInfo
}
if {![info exists _email_to]} {
set result \
"Policy cannot be run: variable _email_to has not been set"

error $result $errorInfo
)

The namespace import section is optional and defines code libraries. The following example Tcl code shows
how to configure a namespace import section:

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

The body of the policy is a required structure and might contain the following:

• The event_reqinfo event information Tcl command extension that is used to query the EEM for
information about the detected event. For a list of the available EEM event information Tcl command
extensions, see the Embedded Event Manager Event Information Tcl Command Extension, on page 78.

• The action Tcl command extensions, such as action_syslog, that are used to specify actions specific to
EEM. For a list of the available EEM action Tcl command extensions, see the Embedded Event Manager
Action Tcl Command Extensions, on page 97.

• The system information Tcl command extensions, such as sys_reqinfo_routername, that are used to
obtain general system information. For a list of the available EEM system information Tcl command
extensions, see the Embedded Event Manager System Information Tcl Command Extensions, on page
114.

• Use of the SMTP library (to send e-mail notifications) or the CLI library (to run CLI commands) from
a policy. For a list of the available SMTP library Tcl command extensions, see the SMTP Library
Command Extensions, on page 124. For a list of the available CLI library Tcl command extensions, see
the CLI Library Command Extensions, on page 126.

• The context_save and con text_retrieve Tcl command extensions that are used to save Tcl variables
for use by other policies.

The following example Tcl code shows the code to query an event and to log a message as part of the body
section:

Query the event info and log a message.
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {
set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
global timer_type timer_time_sec
set timer_type $arr_einfo(timer_type)
set timer_time_sec $arr_einfo(timer_time_sec)

Log a message.
set msg [format "timer event: timer type %s, time expired %s" \
$timer_type [clock format $timer_time_sec]]
action_syslog priority info msg $msg
if {$_cerrno != 0} {
set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

Configuring and Managing Embedded Event Manager Policies
28

Configuring and Managing Embedded Event Manager Policies
Tcl Policy Structure and Requirements

error $result
}

EEM Entry Status

The entry status part of an EEM policy is used to determine if a prior policy has been run for the same event,
and to determine the exit status of the prior policy. If the _entry_status variable is defined, a prior policy has
already run for this event. The value of the _entry_status variable determines the return code of the prior
policy.

Entry status designations may use one of three possible values:

• 0 (previous policy was successful)

• Not=0 (previous policy failed),

• Undefined (no previous policy was executed).

EEM Exit Status

When a policy finishes running its code, an exit value is set. The exit value is used by the EEM to determine
whether or not to apply the default action for this event, if any. A value of zero means that the default action
should not be performed. A value of nonzero means that the default action should be performed. The exit
status is passed to subsequent policies that are run for the same event.

EEM Policies and Cisco Error Number

Some EEMTcl command extensions set a Cisco Error Number Tcl global variable _cerrno.Whenever _cerrno
is set, the other Tcl global variables are derived from _cerrno and are set along with it (_cerr_sub_num,
_cerr_sub_err, _cerr_posix_err, and _cerr_str).

For example, the action_syslog command in the following example sets these global variables as a side effect
of the command execution:

action_syslog priority warning msg "A sample message generated by action_syslog"
if {$_cerrno != 0} {
set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

_cerrno: 32-Bit Error Return Values

The _cerrno set by a command can be represented as a 32-bit integer of the following form:

XYSSSSSSSSSSSSSEEEEEEEEPPPPPPPPP

For example, the following error return value might be returned from an EEM Tcl command extension:

862439AE

This number is interpreted as the following 32-bit value:

10000110001001000011100110101110

Configuring and Managing Embedded Event Manager Policies
29

Configuring and Managing Embedded Event Manager Policies
EEM Entry Status

This 32-bit integer is divided up into the five variables shown in this table.

Table 8: _cerrno: 32-Bit Error Return Value Variables

DescriptionVariable

The error class (indicates the severity of the error). This variable corresponds to the first
two bits in the 32-bit error return value; 10 in the preceding case, which indicates
CERR_CLASS_WARNING:

See Table 9: Error Class Encodings, on page 30 for the four possible error class
encodings specific to this variable.

XY

The subsystem number that generated the most recent error(13 bits = 8192 values). This
is the next 13 bits of the 32-bit sequence, and its integer value is contained in
$_cerr_sub_num.

SSSSSSSSSSSSSS

The subsystem specific error number (8 bits = 256 values). This segment is the next 8
bits of the 32-bit sequence, and the string corresponding to this error number is contained
in $_cerr_sub_err.

EEEEEEEE

The pass-through POSIX error code (9 bits = 512 values). This represents the last of the
32-bit sequence, and the string corresponding to this error code is contained in
$_cerr_posix_err.

PPPPPPPP

Error Class Encodings for XY

The first variable, XY, references the possible error class encodings shown in this table.

Table 9: Error Class Encodings

Error ClassError Return
Value

CERR_CLASS_SUCCESS00

CERR_CLASS_INFO01

CERR_CLASS_WARNING10

CERR_CLASS_FATAL11

An error return value of zero means SUCCESS.

SUMMARY STEPS

1. show event manager policy available [system | user]
2. Cut and paste the contents of the sample policy displayed on the screen to a text editor.
3. Define the required event_register Tcl command extension.
4. Add the appropriate namespace under the ::cisco hierarchy.
5. Program the must defines section to check for each environment variable that is used in this policy.
6. Program the body of the script.
7. Check the entry status to determine if a policy has previously run for this event.

Configuring and Managing Embedded Event Manager Policies
30

Configuring and Managing Embedded Event Manager Policies
Error Class Encodings for XY

8. Check the exit status to determine whether or not to apply the default action for this event, if a default
action exists.

9. Set Cisco Error Number (_cerrno) Tcl global variables.
10. Save the Tcl script with a new filename, and copy the Tcl script to the router.
11. configure
12. event manager directory user {library path | policy path}
13. event manager policy policy-name username username [persist-time [seconds | infinite] | type [system

| user]]
14. Use the commit or end command.
15. Cause the policy to execute, and observe the policy.
16. Use debugging techniques if the policy does not execute correctly.

DETAILED STEPS

PurposeCommand or Action

Displays EEM policies that are available to be registered.show event manager policy available [system | user]

Example:

Step 1

RP/0/RSP0/CPU0:router# show event manager policy
available

—Cut and paste the contents of the sample policy displayed
on the screen to a text editor.

Step 2

Choose the appropriate event_register Tcl command
extension for the event that you want to detect, and add it

Define the required event_register Tcl command extension.Step 3

to the policy. The following are valid Event Registration
Tcl Command Extensions:

• event_register_appl

• event_register_counter

• event_register_stat

• event_register_wdsysmon

• event_register_oir

• event_register_process

• event_register_syslog

• event_register_timer

• event_register_timer_subscriber

• event_register_hardware

• event_register_none

Policy developers can use the new namespace ::cisco in
Tcl policies to group all the extensions used by Cisco IOS

Add the appropriate namespace under the ::cisco hierarchy.Step 4

XR EEM. There are two namespaces under the ::cisco

Configuring and Managing Embedded Event Manager Policies
31

Configuring and Managing Embedded Event Manager Policies
Error Class Encodings for XY

PurposeCommand or Action

hierarchy. The following are the namespaces and the EEM
Tcl command extension categories that belongs under each
namespace:

• ::cisco::eem

• EEM event registration

• EEM event information

• EEM event publish

• EEM action

• EEM utility

• EEM context library

• EEM system information

• CLI library

• ::cisco::lib

• SMTP library

Ensure that the appropriate namespaces
are imported, or use the qualified
command names when using the
preceding commands.

Note

This is an optional step. Must defines is a section of the
policy that tests whether any EEM environment variables

Program the must defines section to check for each
environment variable that is used in this policy.

Step 5

that are required by the policy are defined before the
recovery actions are taken. The must defines section is not
required if the policy does not use any EEM environment
variables. EEM environment variables for EEM scripts
are Tcl global variables that are defined external to the
policy before the policy is run. To define an EEM
environment variable, use the EEM configuration
command event manager environment . By convention,
all Cisco EEM environment variables begin with "_" (an
underscore). To avoid future conflict, customers are urged
not to define new variables that start with "_".

You can display the Embedded Event
Manager environment variables set on your
system by using the show event manager
environment command in EXEC mode.

Note

For example, EEM environment variables defined by the
sample policies include e-mail variables. The sample
policies that send e-mail must have the following variables

Configuring and Managing Embedded Event Manager Policies
32

Configuring and Managing Embedded Event Manager Policies
Error Class Encodings for XY

PurposeCommand or Action

set in order to function properly. The following are the
e-mail-specific environment variables used in the sample
EEM policies.

• _email_server—A Simple Mail Transfer Protocol
(SMTP)mail server used to send e-mail (for example,
mailserver.example.com)

• _email_to—The address to which e-mail is sent (for
example, engineering@example.com)

• _email_from—The address from which e-mail is
sent (for example, devtest@example.com)

• _email_cc—The address to which the e-mail must
be copied (for example, manager@example.com)

In this section of the script, you can define any of the
following:

Program the body of the script.Step 6

• The event_reqinfo event information Tcl command
extension that is used to query the EEM for
information about the detected event.

• The action Tcl command extensions, such as
action_syslog, that are used to specify actions specific
to EEM.

• The system information Tcl command extensions,
such as sys_reqinfo_routername, that are used to
obtain general system information.

• The context_save and context_retrieveTcl command
extensions that are used to save Tcl variables for use
by other policies.

• Use of the SMTP library (to send e-mail notifications)
or the CLI library (to run CLI commands) from a
policy.

If the prior policy is successful, the current policy may or
may not require execution. Entry status designations may

Check the entry status to determine if a policy has
previously run for this event.

Step 7

use one of three possible values: 0 (previous policy was
successful), Not=0 (previous policy failed), and Undefined
(no previous policy was executed).

A value of zero means that the default action should not
be performed. A value of nonzero means that the default

Check the exit status to determine whether or not to apply
the default action for this event, if a default action exists.

Step 8

action should be performed. The exit status is passed to
subsequent policies that are run for the same event.

Some EEM Tcl command extensions set a Cisco Error
Number Tcl global variable _cerrno. Whenever _cerrno

Set Cisco Error Number (_cerrno) Tcl global variables.Step 9

Configuring and Managing Embedded Event Manager Policies
33

Configuring and Managing Embedded Event Manager Policies
Error Class Encodings for XY

PurposeCommand or Action

is set, four other Tcl global variables are derived from
_cerrno and are set along with it (_cerr_sub_num,
_cerr_sub_err, _cerr_posix_err, and _cerr_str).

Embedded Event Manager policy filenames adhere to the
following specification:

Save the Tcl script with a new filename, and copy the Tcl
script to the router.

Step 10

• An optional prefix—Mandatory.—indicating, if
present, that this is a system policy that should be
registered automatically at boot time if it is not
already registered. For example:
Mandatory.sl_text.tcl.

• A filename body part containing a two-character
abbreviation (see Table 2: Two-Character
Abbreviation Specification, on page 7) for the first
event specified, an underscore character part, and a
descriptive field part further identifying the policy.

• A filename suffix part defined as .tcl.

For more details, see theCisco File Naming Convention
for Embedded Event Manager, on page 6.

Copy the file to the flash file system on the
router—typically disk0:.

Enters global configuration mode.configure

Example:

Step 11

RP/0/RSP0/CPU0:router# configure

Specifies a directory to use for storing user library files or
user-defined EEM policies.

event manager directory user {library path | policy
path}

Example:

Step 12

RP/0/RSP0/CPU0:router(config)# event manager
directory user library disk0:/user_library

Registers the EEM policy to be run when the specified
event defined within the policy occurs.

event manager policy policy-name username username
[persist-time [seconds | infinite] | type [system | user]]

Example:

Step 13

RP/0/RSP0/CPU0:router(config)# event manager
policy test.tcl username user_a type user

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 14

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

Configuring and Managing Embedded Event Manager Policies
34

Configuring and Managing Embedded Event Manager Policies
Error Class Encodings for XY

PurposeCommand or Action

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

—Cause the policy to execute, and observe the policy.Step 15

—Use debugging techniques if the policy does not execute
correctly.

Step 16

Creating an EEM User Tcl Library Index
Perform this task to create an index file that contains a directory of all the procedures contained in a library
of Tcl files. This task allows you to test library support in EEM Tcl. In this task, a library directory is created
to contain the Tcl library files, the files are copied into the directory, and an index tclIndex) is created that
contains a directory of all the procedures in the library files. If the index is not created, the Tcl procedures are
not found when an EEM policy that references a Tcl procedure is run.

SUMMARY STEPS

1. On your workstation (UNIX, Linux, PC, or Mac) create a library directory and copy the Tcl library files
into the directory.

2. tclsh
3. auto_mkindex directory_name *.tcl
4. Copy the Tcl library files from Step 1, on page 35and the tclIndex file from Step 3, on page 36to the

directory used for storing user library files on the target router.
5. Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM

policies on the target router.
6. configure
7. event manager directory user library path

8. event manager directory user policy path

9. event manager policy policy-name username username [persist-time [seconds | infinite] | type [system
| user]]

10. event manager run policy [argument]
11. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

The following example files can be used to create a
tclIndex on a workstation running the Tcl shell:

On your workstation (UNIX, Linux, PC, or Mac) create a
library directory and copy the Tcl library files into the
directory.

Step 1

lib1.tcl

proc test1 {} {
puts "In procedure test1"

}
proc test2 {} {

Configuring and Managing Embedded Event Manager Policies
35

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Library Index

PurposeCommand or Action
puts "In procedure test2"

}

lib2.tcl

proc test3 {} {
puts "In procedure test3"

}

Enters the Tcl shell.tclsh

Example:

Step 2

workstation% tclsh

Use the auto_mkindex command to create the tclIndex
file. The tclIndex file contains a directory of all the

auto_mkindex directory_name *.tcl

Example:

Step 3

procedures contained in the Tcl library files. We

workstation% auto_mkindex eem_library *.tcl
recommend that you run auto_mkindex inside a directory,
because there can be only a single tclIndex file in any
directory and you may have other Tcl files to be grouped
together. Running auto_mkindex in a directory determines
which Tcl source file or files are indexed using a specific
tclIndex.

The following sample TclIndex is created when the lib1.tcl
and lib2.tcl files are in a library file directory and the
auto_mkindex command is run:

tclIndex

Tcl autoload index file, version 2.0
This file is generated by the "auto_mkindex"
command
and sourced to set up indexing information for
one or
more commands. Typically each line is a command
that
sets an element in the auto_index array, where
the
element name is the name of a command and the
value is
a script that loads the command.
set auto_index(test1) [list source [file join $dir
lib1.tcl]]
set auto_index(test2) [list source [file join $dir
lib1.tcl]]
set auto_index(test3) [list source [file join $dir
lib2.tcl]]

—Copy the Tcl library files from Step 1, on page 35and the
tclIndex file from Step 3, on page 36to the directory used
for storing user library files on the target router.

Step 4

The directory can be the same directory used in Step 4, on
page 36.

Copy a user-defined EEM policy file written in Tcl to the
directory used for storing user-defined EEM policies on
the target router.

Step 5

Configuring and Managing Embedded Event Manager Policies
36

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Library Index

PurposeCommand or Action

The following example user-defined EEM policy can be
used to test the Tcl library support in EEM:

libtest.tcl

::cisco::eem::event_register_none
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
global auto_index auto_path
puts [array names auto_index]
if { [catch {test1} result]} {
puts "calling test1 failed result = $result

$auto_path"
}
if { [catch {test2} result]} {
puts "calling test2 failed result = $result

$auto_path"
}
if { [catch {test3} result]} {
puts "calling test3 failed result = $result

$auto_path"
}

Enters global configuration mode.configure

Example:

Step 6

RP/0/RSP0/CPU0:router# configure

Specifies the EEM user library directory; this is the
directory to which the files in Step 4, on page 36 were
copied.

event manager directory user library path

Example:

RP/0/RSP0/CPU0:router(config)# event manager
directory user library disk2:/eem_library

Step 7

Specifies the EEM user policy directory; this is the
directory to which the file in Step 5, on page 36was copied.

event manager directory user policy path

Example:

Step 8

RP/0/RSP0/CPU0:router(config)# event manager
directory user policy disk2:/eem_policies

Registers a user-defined EEM policy.event manager policy policy-name username username
[persist-time [seconds | infinite] | type [system | user]]

Step 9

Example:

RP/0/RSP0/CPU0:router(config)# event manager
policy libtest.tcl username user_a

Manually runs an EEM policy.event manager run policy [argument]

Example:

Step 10

RP/0/RSP0/CPU0:router(config)# event manager run
libtest.tcl

Configuring and Managing Embedded Event Manager Policies
37

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Library Index

PurposeCommand or Action

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 11

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Creating an EEM User Tcl Package Index
Perform this task to create a Tcl package index file that contains a directory of all the Tcl packages and version
information contained in a library of Tcl package files. Tcl packages are supported using the Tcl package
keyword.

Tcl packages are located in either the EEM system library directory or the EEM user library directory. When
a package require Tcl command is executed, the user library directory is searched first for a pkgIndex.tcl
file. If the pkgIndex.tcl file is not found in the user directory, the system library directory is searched.

In this task, a Tcl package directory—the pkgIndex.tcl file—is created in the appropriate library directory
using the pkg_mkIndex command to contain information about all the Tcl packages contained in the directory
along with version information. If the index is not created, the Tcl packages are not found when an EEM
policy that contains a package require Tcl command is run.

Using the Tcl package support in EEM, users can gain access to packages such as XML_RPC for Tcl. When
the Tcl package index is created, a Tcl script can easily make an XML-RPC call to an external entity.

Packages implemented in C programming code are not supported in EEM.Note

SUMMARY STEPS

1. On your workstation (UNIX, Linux, PC, or Mac) create a library directory and copy the Tcl package
files into the directory.

2. tclsh
3. pkg_mkindex directory_name *.tcl
4. Copy the Tcl package files from Step 1 and the pkgIndex file from Step 3 to the directory used for

storing user library files on the target router.
5. Copy a user-defined EEM policy file written in Tcl to the directory used for storing user-defined EEM

policies on the target router.
6. configure
7. event manager directory user library path

8. event manager directory user policy path

Configuring and Managing Embedded Event Manager Policies
38

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Package Index

9. event manager policy policy-name username username [persist-time [seconds | infinite] | type [system
| user]]

10. event manager run policy [argument]
11. Use the commit or end command.

DETAILED STEPS

PurposeCommand or Action

—On your workstation (UNIX, Linux, PC, or Mac) create a
library directory and copy the Tcl package files into the
directory.

Step 1

Enters the Tcl shell.tclsh

Example:

Step 2

workstation% tclsh

Use the pkg_mkindex command to create the pkgIndex
file. The pkgIndex file contains a directory of all the

pkg_mkindex directory_name *.tcl

Example:

Step 3

packages contained in the Tcl library files. We recommend

workstation% pkg_mkindex eem_library *.tcl
that you run the pkg_mkindex command inside a
directory, because there can be only a single pkgIndex file
in any directory and you may have other Tcl files to be
grouped together. Running the pkg_mkindex command
in a directory determines which Tcl package file or files
are indexed using a specific pkgIndex.

The following example pkgIndex is created when some
Tcl package files are in a library file directory and the
pkg_mkindex command is run:

pkgIndex

Tcl package index file, version 1.1
This file is generated by the "pkg_mkIndex"
command
and sourced either when an application starts
up or
by a "package unknown" script. It invokes the
"package ifneeded" command to set up
package-related
information so that packages will be loaded
automatically
in response to "package require" commands. When
this
script is sourced, the variable $dir must
contain the
full path name of this file's directory.
package ifneeded xmlrpc 0.3 [list source [file
join $dir xmlrpc.tcl]]

—Copy the Tcl package files from Step 1 and the pkgIndex
file from Step 3 to the directory used for storing user
library files on the target router.

Step 4

Configuring and Managing Embedded Event Manager Policies
39

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Package Index

PurposeCommand or Action

The directory can be the same directory used in Step 4, on
page 39.

Copy a user-defined EEM policy file written in Tcl to the
directory used for storing user-defined EEM policies on
the target router.

Step 5

The following example user-defined EEM policy can be
used to test the Tcl library support in EEM:

packagetest.tcl

::cisco::eem::event_register_none maxrun
1000000.000
#
test if xmlrpc available
#
#
Namespace imports
#
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
#
package require xmlrpc
puts "Did you get an error?"

Enters global configuration mode.configure

Example:

Step 6

RP/0/RSP0/CPU0:router# configure

Specifies the EEM user library directory; this is the
directory to which the files in Step 4, on page 39were
copied.

event manager directory user library path

Example:

RP/0/RSP0/CPU0:router(config)# event manager
directory user library disk2:/eem_library

Step 7

Specifies the EEM user policy directory; this is the
directory to which the file in Step 5, on page 40was copied.

event manager directory user policy path

Example:

Step 8

RP/0/RSP0/CPU0:router(config)# event manager
directory user policy disk2:/eem_policies

Registers a user-defined EEM policy.event manager policy policy-name username username
[persist-time [seconds | infinite] | type [system | user]]

Step 9

Example:

RP/0/RSP0/CPU0:router(config)# event manager
policy packagetest.tcl username user_a

Manually runs an EEM policy.event manager run policy [argument]

Example:

Step 10

RP/0/RSP0/CPU0:router(config)# event manager run
packagetest.tcl

Configuring and Managing Embedded Event Manager Policies
40

Configuring and Managing Embedded Event Manager Policies
Creating an EEM User Tcl Package Index

PurposeCommand or Action

commit —Saves the configuration changes and remains
within the configuration session.

Use the commit or end command.Step 11

end —Prompts user to take one of these actions:

• Yes — Saves configuration changes and exits the
configuration session.

• No —Exits the configuration session without
committing the configuration changes.

• Cancel —Remains in the configuration session,
without committing the configuration changes.

Configuration Examples for Event Management Policies

Environmental Variables Configuration: Example
This configuration sets the environment variable cron_entry:

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router#(config)# event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7

User-Defined Embedded Event Manager Policy Registration: Example
This configuration registers a user-defined event management policy:

RP/0/RSP0/CPU0:router# configure
RP/0/RSP0/CPU0:router(config)# event manager policy cron.tcl username tom user

Display Available Policies: Example
This is the sample output from the show event manager policy available command displaying available
policies:

RP/0/RSP0/CPU0:router# show event manager policy available

No. Type Time Created Name
1 system Mon Mar 15 21:32:14 2004 periodic_diag_cmds.tcl
2 system Mon Mar 15 21:32:14 2004 periodic_proc_avail.tcl
3 system Mon Mar 15 21:32:16 2004 periodic_sh_log.tcl
4 system Mon Mar 15 21:32:16 2004 tm_cli_cmd.tcl
5 system Mon Mar 15 21:32:16 2004 tm_crash_hist.tcl

Configuring and Managing Embedded Event Manager Policies
41

Configuring and Managing Embedded Event Manager Policies
Configuration Examples for Event Management Policies

Display Embedded Event Manager Process: Example
Reliability metric data is kept for each process handled by the System Manager. This data includes standby
processes running on either the primary or backup hardware card. Data is recorded in a table indexed by
hardware card disk ID plus process pathname plus process instance for those processes that have multiple
instances. This is the sample output from the show event manager metric process command displaying
reliability metric data:

RP/0/RSP0/CPU0:router# show event manager metric process all location 0/1/CPU0

=====================================
job id: 78, node name: 0/1/CPU0
process name: wd-critical-mon, instance: 1

last event type: process start
recent start time: Mon Sep 10 21:36:49 2007
recent normal end time: n/a
recent abnormal end time: n/a
number of times started: 1
number of times ended normally: 0
number of times ended abnormally: 0
most recent 10 process start times:

Mon Sep 10 21:36:49 2007

most recent 10 process end times and types:

cumulative process available time: 59 hours 33 minutes 42 seconds 638 milliseconds
cumulative process unavailable time: 0 hours 0 minutes 0 seconds 0 milliseconds
process availability: 1.000000000
number of abnormal ends within the past 60 minutes (since reload): 0
number of abnormal ends within the past 24 hours (since reload): 0
number of abnormal ends within the past 30 days (since reload): 0
=====================================
job id: 56, node name: 0/1/CPU0
process name: dllmgr, instance: 1

last event type: process start
recent start time: Mon Sep 10 21:36:49 2007
recent normal end time: n/a
recent abnormal end time: n/a
number of times started: 1
number of times ended normally: 0
number of times ended abnormally: 0
most recent 10 process start times:

Mon Sep 10 21:36:49 2007

most recent 10 process end times and types:

cumulative process available time: 59 hours 33 minutes 42 seconds 633 milliseconds
cumulative process unavailable time: 0 hours 0 minutes 0 seconds 0 milliseconds
process availability: 1.000000000
number of abnormal ends within the past 60 minutes (since reload): 0
number of abnormal ends within the past 24 hours (since reload): 0
number of abnormal ends within the past 30 days (since reload): 0
=====================================

Configuring and Managing Embedded Event Manager Policies
42

Configuring and Managing Embedded Event Manager Policies
Display Embedded Event Manager Process: Example

Configuration Examples for Writing Embedded Event Manager
Policies Using Tcl

EEM Event Detector Demo: Example
This example uses the sample policies to demonstrate how to use Embedded Event Manager policies. Proceed
through the following sections to see how to use the sample policies:

EEM Sample Policy Descriptions
The configuration example features one sample EEM policy. The tm_cli_cmd.tcl runs using a configurable
CRON entry. This policy executes a configurable CLI command and e-mails the results.

Event Manager Environment Variables for the Sample Policies
Event manager environment variables are Tcl global variables that are defined external to the EEM policy
before the policy is registered and run. The sample policies require three of the e-mail environment variables
to be set; only _email_cc is optional. Other required and optional variable settings are outlined in the following
tables.

This table describes a list of the e-mail variables.

Table 10: E-mail-Specific Environmental Variables Used by the Sample Policies

ExampleDescriptionEnvironment
Variable

example.comThe default domain name._domainname

mailserver.example.comSimple Mail Transfer Protocol (SMTP) mail server used
to send e-mail.

_email_server

engineering@example.comAddress to which e-mail is sent._email_to

devtest@example.comAddress from which e-mail is sent._email_from

manager@example.comAddress to which the e-mail must be copied._email_cc

This table describes the EEM environment variables that must be set before the sl_intf_down.tcl sample policy
is run.

Table 11: Environment Variables Used in the sl_intf_down.tcl Policy

ExampleDescriptionEnvironment
Variable

interface
gigabitEthernet1/0/5/0

First configuration command that is run._config_cmd1

Configuring and Managing Embedded Event Manager Policies
43

Configuring and Managing Embedded Event Manager Policies
Configuration Examples for Writing Embedded Event Manager Policies Using Tcl

ExampleDescriptionEnvironment
Variable

no shutdownSecond configuration command that is run. This
variable is optional and need not be specified.

_config_cmd2

.*UPDOWN.*FastEthernet0/0.*Regular expression pattern match string that is used
to compare syslog messages to determine when the
policy runs.

_syslog_pattern

This table describes the EEM environment variables that must be set before the tm_cli_cmd.tcl sample policy
is run.

Table 12: Environment Variables Used in the tm_cli_cmd.tcl Policy

ExampleDescriptionEnvironment
Variable

0-59/1 0-23/1 * * 0-7CRON specification that determines when the policy will run._cron_entry

show versionCLI command to be executed when the policy is run._show_cmd

This table describes the EEM environment variables that must be set before the tm_crash_reporter.tcl sample
policy is run.

Table 13: Environment Variables Used in the tm_crash_reporter.tcl Policy

ExampleDescriptionEnvironment Variable

1Value that identifies whether debug
information for tm_crash_reporter.tcl
will be enabled. This variable is
optional and need not be specified.

_crash_reporter_debug

http://www.example.com/fm/interface_tm.cgiURL location to which the crash
report is sent.

_crash_reporter_url

This table describes the EEM environment variables that must be set before the tm_fsys_usage.tcl sample
policy is run.

Table 14: Environment Variables Used in the tm_fsys_usage.tcl Policy

ExampleDescriptionEnvironment Variable

0-59/1 0-23/1 * *
0-7

CRON specification that is used in the event_register Tcl
command extension. If unspecified, the tm_fsys_usage.tcl
policy is triggered once per minute. This variable is optional
and need not be specified.

_tm_fsys_usage_cron

1When this variable is set to a value of 1, disk usage information
is displayed for all entries in the system. This variable is
optional and need not be specified.

_tm_fsys_usage_debug

Configuring and Managing Embedded Event Manager Policies
44

Configuring and Managing Embedded Event Manager Policies
Event Manager Environment Variables for the Sample Policies

ExampleDescriptionEnvironment Variable

disk2:98000000Free byte threshold for systems or specific prefixes. If free
space falls below a given value, a warning is displayed. This
variable is optional and need not be specified.

_tm_fsys_usage_freebytes

nvram:25

disk2:5

Disk usage percentage thresholds for systems or specific
prefixes. If the disk usage percentage exceeds a given
percentage, a warning is displayed. If unspecified, the default
disk usage percentage is 80 percent for all systems. This
variable is optional and need not be specified.

_tm_fsys_usage_percent

Registration of Some EEM Policies
Some EEM policies must be unregistered and then reregistered if an EEM environment variable is modified
after the policy is registered. The event_register_ xxx statement that appears at the start of the policy contains
some of the EEM environment variables, and this statement is used to establish the conditions under which
the policy is run. If the environment variables are modified after the policy has been registered, the conditions
may become invalid. To avoid any errors, the policymust be unregistered and then reregistered. The following
variables are affected:

• _cron_entry in the tm_cli_cmd.tcl policy

• _syslog_pattern in the sl_intf_down.tcl policy

Basic Configuration Details for All Sample Policies
To allow e-mail to be sent from the Embedded Event Manager (EEM), the hostname and domain-name
commands must be configured. The EEM environment variables must also be set. After a Cisco IOS XR
Software image has been booted, use the following initial configuration, substituting appropriate values for
your network. The environment variables for the tm_fsys_usage sample policy (see Table 14: Environment
Variables Used in the tm_fsys_usage.tcl Policy, on page 44) are all optional and are not listed here:

hostname cpu
domain-name example.com
event manager environment _email_server ms.example.net
event manager environment _email_to username@example.net
event manager environment _email_from engineer@example.net
event manager environment _email_cc projectgroup@example.net
event manager environment _cron_entry 0-59/2 0-23/1 * * 0-7
event manager environment _show_cmd show event manager policy registered
event manager environment _syslog_pattern .*UPDOWN.*FastEthernet0/0
event manager environment _config_cmd1 interface Ethernet1/0
event manager environment _config_cmd2 no shutdown
event manager environment _crash_reporter_debug 1
event manager environment _crash_reporter_url
http://www.example.com/fm/interface_tm.cgi
end

Using the Sample Policies
This section contains these configuration scenarios to demonstrate how to use the four sample Tcl policies:

Configuring and Managing Embedded Event Manager Policies
45

Configuring and Managing Embedded Event Manager Policies
Registration of Some EEM Policies

Running the sl_intf_down.tcl Sample Policy

This sample policy demonstrates the ability to modify the configuration when a syslog message with a specific
pattern is logged. The policy gathers detailed information about the event and uses the CLI library to run the
configuration commands specified in the EEM environment variables _config_cmd1 and, optionally,
_config_cmd2. An e-mail message is sent with the results of the CLI command.

The following sample configuration demonstrates how to use this policy. Starting in EXEC mode, use the
show event manager policy registered command to verify that no policies are currently registered. The next
command is the show event manager policy available command, which displays policies that are available
to be installed. After you enter the configure command to reach global configuration mode, you can register
the sl_intf_down.tcl policywith EEMusing the event manager policy command. Exit from global configuration
mode and enter the show event manager policy registered command again, to verify that the policy has been
registered.

The policy runs when an interface goes down. Enter the show event manager environment command to
display the current environment variable values. Unplug the cable (or configure a shutdown) for the interface
specified in the _syslog_pattern EEM environment variable. The interface goes down, prompting the syslog
daemon to log a syslog message about the interface being down, and the syslog event detector is called.

The syslog event detector reviews the outstanding event specifications and finds a match for interface status
change. The EEM server is notified, and the server runs the policy that is registered to handle this
event—sl_intf_down.tcl.

enable
show event manager policy registered
show event manager policy available
configure terminal
event manager policy sl_intf_down.tcl
end
show event manager policy registered
show event manager environment

Running the tm_cli_cmd.tcl Sample Policy

This sample policy demonstrates the ability to periodically run a CLI command and to e-mail the results. The
CRON specification "0-59/2 0-23/1 * * 0-7" causes this policy to be run on the second minute of each hour.
The policy gathers detailed information about the event and uses the CLI library to execute the configuration
commands specified in the EEM environment variable _show_cmd. An e-mail message is sent with the results
of the CLI command.

The following sample configuration demonstrates how to use this policy. Starting in EXEC mode, enter the
show event manager policy registered command to verify that no policies are currently registered. The next
command is the show event manager policy available command, which displays the policies that are available
to be installed. After you enter the configure command to reach global configuration mode, you can register
the tm_cli_cmd.tcl policy with EEMusing the event manager policy command. Exit from global configuration
mode and enter the show event manager policy registered command to verify that the policy has been
registered.

The timer event detector triggers an event for this case periodically, according to the CRON string set in the
EEM environment variable _cron_entry. The EEM server is notified, and the server runs the policy that is
registered to handle this event—tm_cli_cmd.tcl.

enable
show event manager policy registered
show event manager policy available
configure terminal

Configuring and Managing Embedded Event Manager Policies
46

Configuring and Managing Embedded Event Manager Policies
Running the sl_intf_down.tcl Sample Policy

event manager policy tm_cli_cmd.tcl
end
show event manager policy registered

Running the tm_crash_reporter.tcl Sample Policy

This sample policy demonstrates the ability to send an HTTP-formatted crash report to a URL location. If the
policy registration is saved in the startup configuration file, the policy is triggered 5 seconds after bootup.
When triggered, the script attempts to find the reload reason. If the reload reason was due to a crash, the policy
searches for the related crashinfo file and sends this information to a URL location specified by the user in
the environment variable _crash_reporter_url. A CGI script, interface_tm.cgi, has been created to receive the
URL from the tm_crash_reporter.tcl policy and save the crash information in a local database on the target
URL machine.

A Perl CGI script, interface_tm.cgi, has been created and is designed to run on a machine that contains an
HTTP server and is accessible by the router that runs the tm_crash_reporter.tcl policy. The interface_tm.cgi
script parses the data passed into it from tm_crash_reporter.tcl and appends the crash information to a text
file, creating a history of all crashes in the system. Additionally, detailed information on each crash is stored
in three files in a crash database directory that is specified by the user. Another Perl CGI script,
crash_report_display.cgi, has been created to display the information stored in the database created by the
interface_tm.cgi script. The crash_report_display.cgi script should be placed on the samemachine that contains
interface_tm.cgi. The machine should be running a web browser such as Internet Explorer or Netscape. When
the crash_report_display.cgi script is run, it displays the crash information in a readable format.

The following sample configuration demonstrates how to use this policy. Starting in EXEC mode, enter the
show event manager policy registered command to verify that no policies are currently registered. Next,
enter the show event manager policy available command to display which policies are available to be
installed. After you enter the configure command to reach global configuration mode, you can register the
tm_crash_reporter.tcl policy with EEM using the event manager policy command. Exit from global
configuration mode and enter the show event manager policy registered command to verify that the policy
has been registered.

enable
show event manager policy registered
show event manager policy available
configure terminal
event manager policy tm_crash_reporter.tcl
end
show event manager policy registered

Running the tm_fsys_usage.tcl Sample Policy

This sample policy demonstrates the ability to periodically monitor disk space usage and report through syslog
when configurable thresholds have been crossed.

The following sample configuration demonstrates how to use this policy. Starting in user EXEC mode, enter
the show event manager policy registered command to verify that no policies are currently registered. Next,
enter the show event manager policy available command to display which policies are available to be
installed. After you enter the configure command to reach global configuration mode, you can register the
tm_fsys_usage.tcl policy with EEM using the event manager policy command. Exit from global configuration
mode and enter the show event manager policy registered command again to verify that the policy has been
registered. If you had configured any of the optional environment variables that are used in the tm_fsys_usage.tcl
policy, the show event manager environment command displays the configured variables.

enable
show event manager policy registered

Configuring and Managing Embedded Event Manager Policies
47

Configuring and Managing Embedded Event Manager Policies
Running the tm_crash_reporter.tcl Sample Policy

show event manager policy available
configure terminal
event manager policy tm_fsys_usage.tcl
end
show event manager policy registered
show event manager environment

Programming Policies with Tcl: Sample Scripts Example
This section contains two of the sample policies that are included as EEM system policies. For more details
about these policies, see the EEM Event Detector Demo: Example , on page 43.

tm_cli_cmd.tcl Sample Policy
The following sample policy runs a configurable CRON entry. The policy executes a configurable Cisco IOSXR
SoftwareCLI command and e-mails the results. An optional log file can be defined to which the output is
appended with a time stamp.

::cisco::eem::event_register_timer cron name crontimer2 cron_entry $_cron_entry maxrun 240
#--
EEM policy that will periodically execute a cli command and email the
results to a user.
#
July 2005, Cisco EEM team
#
Copyright (c) 2005 by cisco Systems, Inc.
All rights reserved.
#--
The following EEM environment variables are used:
###
_cron_entry (mandatory) - A CRON specification that determines
when the policy will run. See the
IOS XR Embedded Event Manager
documentation for more information
on how to specify a cron entry.
Example: _cron_entry 0-59/1 0-23/1 * * 0-7
###
_log_file (mandatory without _email_....)
- A filename to append the output to.
If this variable is defined, the
output is appended to the specified
file with a timestamp added.
Example: _log_file disk0:/my_file.log
###
_email_server (mandatory without _log_file)
- A Simple Mail Transfer Protocol (SMTP)
mail server used to send e-mail.
Example: _email_server mailserver.example.com
###
_email_from (mandatory without _log_file)
- The address from which e-mail is sent.
Example: _email_from devtest@example.com
###
_email_to (mandatory without _log_file)
- The address to which e-mail is sent.
Example: _email_to engineering@example.com
###
_email_cc (optional) - The address to which the e-mail must
be copied.
Example: _email_cc manager@example.com

Configuring and Managing Embedded Event Manager Policies
48

Configuring and Managing Embedded Event Manager Policies
Programming Policies with Tcl: Sample Scripts Example

###
_show_cmd (mandatory) - The CLI command to be executed when
the policy is run.
Example: _show_cmd show version
###
check if all required environment variables exist
If any required environment variable does not exist, print out an error msg and quit
if {![info exists _log_file]} {

if {![info exists _email_server]} {
set result \
"Policy cannot be run: variable _log_file or _email_server has not been set"
error $result $errorInfo

}
if {![info exists _email_from]} {

set result \
"Policy cannot be run: variable _log_file or _email_from has not been set"
error $result $errorInfo

}
if {![info exists _email_to]} {

set result \
"Policy cannot be run: variable _log_file ore _email_to has not been set"
error $result $errorInfo

}
if {![info exists _email_cc]} {

#_email_cc is an option, must set to empty string if not set.
set _email_cc ""

}
}
if {![info exists _show_cmd]} {

set result \
"Policy cannot be run: variable _show_cmd has not been set"

error $result $errorInfo
}
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
query the event info and log a message
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
global timer_type timer_time_sec
set timer_type $arr_einfo(timer_type)
set timer_time_sec $arr_einfo(timer_time_sec)
log a message
set msg [format "timer event: timer type %s, time expired %s" \

$timer_type [clock format $timer_time_sec]]
action_syslog priority info msg $msg
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
1. execute the command
if [catch {cli_open} result] {

error $result $errorInfo
} else {

array set cli1 $result
}

save exact execution time for command
set time_now [clock seconds]
execute command

Configuring and Managing Embedded Event Manager Policies
49

Configuring and Managing Embedded Event Manager Policies
tm_cli_cmd.tcl Sample Policy

if [catch {cli_exec $cli1(fd) $_show_cmd} result] {
error $result $errorInfo

} else {
set cmd_output $result
format output: remove trailing router prompt
regexp {\n*(.*\n)([^\n]*)$} $result dummy cmd_output

}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo
}
2. log the success of the CLI command
set msg [format "Command \"%s\" executed successfully" $_show_cmd]
action_syslog priority info msg $msg
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
3. if _log_file is defined, then attach it to the file
if {[info exists _log_file]} {

attach output to file
if [catch {open $_log_file a+} result] {

error $result
}
set fileD $result
save timestamp of command execution
(Format = 00:53:44 PDT Mon May 02 2005)
set time_now [clock format $time_now -format "%T %Z %a %b %d %Y"]
puts $fileD "%%% Timestamp = $time_now"
puts $fileD $cmd_output
close $fileD

}
4. if _email_server is defined send the email out
if {[info exists _email_server]} {

set routername [info hostname]
if {[string match "" $routername]} {

error "Host name is not configured"
}
if [catch {smtp_subst [file join $tcl_library email_template_cmd.tm]} \
result] {

error $result $errorInfo
}
if [catch {smtp_send_email $result} result] {

error $result $errorInfo
}

}

sl_intf_down.tcl Sample Policy
The following sample policy runs when a configurable syslog message is logged. The policy executes a
configurable CLI command and e-mails the results.

::cisco::eem::event_register_syslog occurs 1 pattern $_syslog_pattern maxrun 90
#--
EEM policy to monitor for a specified syslog message.
Designed to be used for syslog interface-down messages.
When event is triggered, the given config commands will be run.
#
July 2005, Cisco EEM team
#
Copyright (c) 2005 by cisco Systems, Inc.
All rights reserved.
#--

Configuring and Managing Embedded Event Manager Policies
50

Configuring and Managing Embedded Event Manager Policies
sl_intf_down.tcl Sample Policy

The following EEM environment variables are used:
###
_syslog_pattern (mandatory) - A regular expression pattern match string
that is used to compare syslog messages
to determine when policy runs
Example: _syslog_pattern .*UPDOWN.*FastEthernet0/0.*
###
_email_server (mandatory) - A Simple Mail Transfer Protocol (SMTP)
mail server used to send e-mail.
Example: _email_server mailserver.example.com
###
_email_from (mandatory) - The address from which e-mail is sent.
Example: _email_from devtest@example.com
###
_email_to (mandatory) - The address to which e-mail is sent.
Example: _email_to engineering@example.com
###
_email_cc (optional) - The address to which the e-mail must
be copied.
Example: _email_cc manager@example.com
###
_config_cmd1 (optional) - The first configuration command that
is executed.
Example: _config_cmd1 interface Ethernet1/0
###
_config_cmd2 (optional) - The second configuration command that
is executed.
Example: _config_cmd2 no shutdown
###
check if all the env variables we need exist
If any of them doesn't exist, print out an error msg and quit
if {![info exists _email_server]} {

set result \
"Policy cannot be run: variable _email_server has not been set"

error $result $errorInfo
}
if {![info exists _email_from]} {

set result \
"Policy cannot be run: variable _email_from has not been set"

error $result $errorInfo
}
if {![info exists _email_to]} {

set result \
"Policy cannot be run: variable _email_to has not been set"

error $result $errorInfo
}
if {![info exists _email_cc]} {

#_email_cc is an option, must set to empty string if not set.
set _email_cc ""

}
namespace import ::cisco::eem::*
namespace import ::cisco::lib::*
1. query the information of latest triggered eem event
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
set msg $arr_einfo(msg)
set config_cmds ""
2. execute the user-defined config commands
if [catch {cli_open} result] {

error $result $errorInfo

Configuring and Managing Embedded Event Manager Policies
51

Configuring and Managing Embedded Event Manager Policies
sl_intf_down.tcl Sample Policy

} else {
array set cli1 $result

}

if [catch {cli_exec $cli1(fd) "config t"} result] {
error $result $errorInfo

}
if {[info exists _config_cmd1]} {

if [catch {cli_exec $cli1(fd) $_config_cmd1} result] {
error $result $errorInfo

}
append config_cmds $_config_cmd1

}
if {[info exists _config_cmd2]} {

if [catch {cli_exec $cli1(fd) $_config_cmd2} result] {
error $result $errorInfo

}
append config_cmds "\n"
append config_cmds $_config_cmd2

}
if [catch {cli_exec $cli1(fd) "end"} result] {

error $result $errorInfo
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo
}
after 60000
3. send the notification email
set routername [info hostname]
if {[string match "" $routername]} {

error "Host name is not configured"
}
if [catch {smtp_subst [file join $tcl_library email_template_cfg.tm]} result] {

error $result $errorInfo
}
if [catch {smtp_send_email $result} result] {

error $result $errorInfo
}

The following e-mail template file is used with the preceding EEM sample policy:

email_template_cfg.tm
Mailservername: $_email_server
From: $_email_from
To: $_email_to
Cc: $_email_cc
Subject: From router $routername: Periodic $_show_cmd Output
$cmd_output

Tracing Tcl set Command Operations: Example
Tcl is a flexible language. One of the flexible aspects of Tcl is that you can override commands. In this
example, the Tcl set command is renamed as _set, and a new version of the set command is created that
displays a message containing the text "setting" and appends the scalar variable that is being set. This example
can be used to trace all instances of scalar variables being set.

rename set _set
proc set {var args} {

puts [list setting $var $args]
uplevel _set $var $args

Configuring and Managing Embedded Event Manager Policies
52

Configuring and Managing Embedded Event Manager Policies
Tracing Tcl set Command Operations: Example

};
When this is placed in a policy, a message is displayed anytime a scalar variable is set,
for example:

02:17:58: sl_intf_down.tcl[0]: setting test_var 1

Additional References
The following sections provide references related to configuring and managing Embedded Event Manager
policies.

Related Documents

Document TitleRelated Topic

Embedded Event Manager Commands module in the System
Monitoring Command Reference for Cisco ASR 9000 Series
Routers

Embedded Event Manager commands

Hardware Redundancy and Node Administration Commands
module in the Interface and Hardware Component Command
Reference for Cisco ASR 9000 Series Routers

Route processor failover commands

Cisco IOS XR XML API GuideCisco IOS XR XML API material

Cisco ASR 9000 Series Aggregation Services Router Getting
Started Guide

Cisco IOS XR getting started material

Configuring AAA Services module in the System Security
Configuration Guide for Cisco ASR 9000 Series Routers

Information about user groups and task
IDs

Standards

TitleStandards

—No new or modified standards are supported by this feature, and support for existing standards has not
been modified by this feature.

MIBs

MIBs LinkMIBs

To locate and download MIBs using Cisco IOS XR software, use the Cisco MIB Locator found at the
following URL and choose a platform under the Cisco Access Products menu:
http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml

—

Configuring and Managing Embedded Event Manager Policies
53

Configuring and Managing Embedded Event Manager Policies
Additional References

http://cisco.com/public/sw-center/netmgmt/cmtk/mibs.shtml

RFCs

TitleRFCs

—No new or modified RFCs are supported by this feature, and support for existing RFCs has not been
modified by this feature.

Technical Assistance

LinkDescription

http://www.cisco.com/cisco/web/
support/index.html

The Cisco Technical Support website contains thousands of pages of
searchable technical content, including links to products, technologies,
solutions, technical tips, and tools. Registered Cisco.com users can log
in from this page to access even more content.

Embedded Event Manager Policy Tcl Command Extension
Reference

This section documents the following EEM policy Tcl command extension categories:

For all EEM Tcl command extensions, if there is an error, the returned Tcl result string contains the error
information.

Note

Arguments for which no numeric range is specified take an integer from -2147483648 to 2147483647, inclusive.Note

The following conventions are used for the syntax documented on the Tcl command extension pages:

• An optional argument is shown within square brackets, for example:

[type ?]

• A question mark ? represents a variable to be entered.

• Choices between arguments are represented by pipes, for example:

[queue_priority low|normal|high]

Embedded Event Manager Event Registration Tcl Command Extensions
The following EEM event registration Tcl command extensions are supported:

Configuring and Managing Embedded Event Manager Policies
54

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Policy Tcl Command Extension Reference

event_register_appl
Registers for an application event. Use this Tcl command extension to run a policy when an application event
is triggered following another policy's execution of an event_publish Tcl command extension; the event_publish
command extension publishes an application event.

To register for an application event, a subsystem must be specified. Either a Tcl policy or the internal EEM
API can publish an application event. If the event is being published by a policy, the sub_system argument
that is reserved for a policy is 798.

Syntax

event_register_appl [sub_system ?] [type ?] [queue_priority low|normal|high] [maxrun ?]
[nice 0|1]

Arguments

(Optional) Number assigned to the EEM policy that published the application event. The
number is set to 798, because all other numbers are reserved for Cisco use. If this argument
is not specified, all components are matched.

sub_system

(Optional) Event subtype within the specified event. The sub_system and type arguments
uniquely identify an application event. If this argument is not specified, all types are matched.
If you specify this argument, you must choose an integer between 1 and 4294967295,
inclusive.

Theremust be amatch of component and type between the event_publish command extension
and the event_register_appl command extension for the publishing and registration to work.

type

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

If multiple conditions exist, the application event is raised when all the conditions are satisfied.

Result String

None

Set _cerrno

No

Configuring and Managing Embedded Event Manager Policies
55

Configuring and Managing Embedded Event Manager Policies
event_register_appl

event_register_cli
Registers for a CLI event. Use this Tcl command extension to run a policy when a CLI command of a specific
pattern is entered based on pattern matching performed against an expanded CLI command. This will be
implemented as a new process in IOS-XR which will be dlrsc_tracker. This ED will not do pattern match on
admin commands of XR.

You can enter an abbreviated CLI command, such as sh mem summary, and the parser will expand the
command to show memory summary to perform the matching. The functionality provided in the CLI event
detector only allows a regular expression pattern match on a valid XR CLI command itself. This does not
include text after a pipe character when redirection is used.

Note

Syntax

event_register_cli [tag ?]
[occurs ?] [period ?] pattern ? [default ?] [queue_priority low|normal|high|last] [maxrun
?] [nice 0|1]

Arguments

(Optional) String identifying a tag that can be used with the trigger Tcl command extension to support
multiple event statements within a Tcl script.

tag

(Optional) The number of occurrences before the event is raised. If this argument is not specified,
the event is raised on the first occurrence. If this argument is specified, it must be an integer between
1 and 4294967295, inclusive.

occurs

(Optional) Specifies a backward looking time window in which all CLI events must occur (the occurs
clause must be satisfied) in order for an event to be published (specified in SSSSSSSSSS[.MMM]
format, where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMMmust be an integer representing milliseconds between 0 and 999). If this
argument is not specified, the most recent event is used.

period

(Mandatory) Specifies the regular expression used to perform the CLI command pattern match.pattern

(Optional) The time period during which the CLI event detector waits for the policy to exit (specified
in SSSSSSSSSS[.MMM] format, where SSSSSSSSSS must be an integer representing seconds
between 0 and 4294967295, inclusive, and whereMMMmust be an integer representingmilliseconds
between 0 and 999). If the default time period expires before the policy exits, the default action will
be executed. The default action is to run the command. If this argument is not specified, the default
time period is set to 30 seconds.

default

If multiple conditions are specified, the CLI event will be raised when all the conditions are matched.

Result String

None

Set _cerrno

No

Configuring and Managing Embedded Event Manager Policies
56

Configuring and Managing Embedded Event Manager Policies
event_register_cli

event_register_config
Registers for a change in running configuration. Use this Tcl command extension to trigger a policy when
there is any configuration change. This will be implemented as a new process in IOS-XR which will be
dlrsc_tracker. This ED will not check for admin config changes in XR.

Syntax

event_register_config
[queue_priority low|normal|high|last]
[maxrun ?] [nice 0|1]

Arguments

(Optional) Priority level at which the script will be queued:

• queue_priority low-Specifies that the script is to be queued at the lowest of the three
priority levels.

• queue_priority normal-Specifies that the script is to be queued at a priority level greater
than low priority but less than high priority.

• queue_priority high-Specifies that the script is to be queued at the highest of the three
priority levels.

• queue_priority last-Specifies that the script is to be queued at the lowest priority level.

If more than one script is registered with the "queue_priority_last" argument set, these scripts
will execute in the order in which the events are published.

The queue_priority argument specifies the queuing priority, but not the execution
priority, of the script being registered.

Note

If this argument is not specified, the default queuing priority is normal.

queue_priority

(Optional)Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format, where
SSSSSSSSSSmust be an integer representing seconds between 0 and 4294967295, inclusive,
and where MMM must be an integer representing milliseconds between 0 and 999). If this
argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

If multiple conditions are specified, the syslog event will be raised when all the conditions are matched.

Result String

None

Set _cerrno

No

Configuring and Managing Embedded Event Manager Policies
57

Configuring and Managing Embedded Event Manager Policies
event_register_config

event_register_counter
Registers for a counter event as both a publisher and a subscriber. Use this Tcl command extension to run a
policy on the basis of a named counter crossing a threshold. This event counter, as a subscriber, identifies the
name of the counter to which it wants to subscribe and depends on another policy or another process to actually
manipulate the counter. For example, let policyB act as a counter policy, whereas policyA (although it does
not need to be a counter policy) uses register_counter, counter_modify, or unregister_counter Tcl command
extensions to manipulate the counter defined in policyB.

Syntax

event_register_counter name ? entry_op gt|ge|eq|ne|lt|le entry_val ?
exit_op gt|ge|eq|ne|lt|le exit_val ? [queue_priority low|normal|high]
[maxrun ?] [nice 0|1]

Arguments

(Mandatory) Name of the counter.name

(Mandatory) Entry comparison operator used to compare the current counter value with the
entry value; if true, an event is raised and event monitoring is disabled until exit criteria are
met.

entry_op

(Mandatory) Value with which the current counter value should be compared, to decide if
the counter event should be raised.

entry_val

(Mandatory) Exit comparison operator used to compare the current counter value with the
exit value; if true, event monitoring for this event is reenabled.

exit_op

(Mandatory) Value with which the current counter value should be compared to decide if
the exit criteria are met.

exit_val

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

Result String

None

Set _cerrno

No

Configuring and Managing Embedded Event Manager Policies
58

Configuring and Managing Embedded Event Manager Policies
event_register_counter

event_register_hardware
Registers for an environmental monitoring hardware device that is specified by the hardware event and
condition.

Syntax

event_register_hardware env_device ? env_cond ?
[priority normal|low|high] [maxrun_sec ?] [maxrun_nsec ?] [nice 0|1]

Arguments

(Mandatory) Environmental device that is used to monitor.The integer number must be
inclusively between 1 and 2147483647. This is a bit mask that monitors multiple types
of environmental devices.

The following supported devices and their corresponding bitmasks are listed:

• 0x0001 chassis

• 0x0002 backplane

• 0x0004 slot

• 0x0008 card

• 0x0010 port

• 0x0020 fan

• 0x0040 group of power supplies

• 0x0080 power supply

• 0x0100 sensor

They can be bit wise OR'ed to monitor multiple devices.

env_device

(Mandatory) Environmental condition that is used to monitor. This is a bit mask that
monitors multiple kinds of environmental conditions. The following supported
environmental conditions and their corresponding bitmasks are listed:

• 0x0001 low warning

• 0x0002 high warning

• 0x0004 warning

• 0x0010 low critical

• 0x0020 high critical

• 0x0040 critical

• 0x0100 pre-shutdown

• 0x0200 shutdown

env_cond

Configuring and Managing Embedded Event Manager Policies
59

Configuring and Managing Embedded Event Manager Policies
event_register_hardware

(Optional) Priority level that the script is queued. If not specified, the default uses the
normal priority.

priority

(Optional) Maximum runtime of the script that is specified in seconds and nanoseconds.
The integer number must be inclusively between 0 and 2147483647. If not specified, use
the default 20-second run-time limit.

maxrun_sec,
maxrun_nsec

(Optional) Maximum runtime of the script that is specified in seconds and nanoseconds.
The integer number must be inclusively between 0 and 2147483647. If not specified, use
the default 20-second run-time limit.

nice

Result String

None

Set _cerrno

No

event_register_none
Registers for an event that is triggered by the event manager run command. These events are handled by the
None event detector that screens for this event.

Syntax

event_register_none [queue_priority low|normal|high] [maxrun ?] [nice 0|1]

Arguments

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

Result String

None

Set _cerrno

No

Configuring and Managing Embedded Event Manager Policies
60

Configuring and Managing Embedded Event Manager Policies
event_register_none

event_register_oir
Registers for an online insertion and removal (OIR) event. Use this Tcl command extension to run a policy
on the basis of an event raised when a hardware card OIR occurs. These events are handled by the OIR event
detector that screens for this event.

Syntax

event_register_oir [queue_priority low|normal|high] [maxrun ?] [nice 0|1]

Arguments

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

Result String

None

Set _cerrno

No

event_register_process
Registers for a process event. Use this Tcl command extension to run a policy on the basis of an event raised
when a Cisco IOS XR software modularity process starts or stops. These events are handled by the system
manager event detector that screens for this event. This Tcl command extension is supported only in software
modularity images.

Syntax

event_register_process abort|term|start
[job_id ?] [instance ?] [path ?] [node ?]
[queue_priority low|normal|high] [maxrun ?] [nice 0|1] [tag?]

Arguments

(Mandatory) Abnormal process termination. Process may terminate because of exiting with
a nonzero exit status, receiving a kernel-generated signal, or receiving a SIGTERM or
SIGKILL signal that is not sent because of user request.

abort

(Mandatory) Normal process termination.term

Configuring and Managing Embedded Event Manager Policies
61

Configuring and Managing Embedded Event Manager Policies
event_register_oir

(Mandatory) Process start.start

(Optional) Number assigned to the EEM policy that published the process event. Number is
set to 798, because all other numbers are reserved for Cisco use.

job_id

(Optional) Process instance ID. If specified, this argument must be an integer between 1 and
4294967295, inclusive.

instance

(Optional) Process pathname (regular expression string).path

(Optional) The node name is a string that consists of the word "node" followed by two fields
separated by a slash (/), using the following format:

node<slot-number>/<cpu-number>

The slot-number is the hardware slot number. The cpu-number is the hardware CPU number.
For example, the SP CPU in a Supervisor card on a Cisco Catalyst 6500 series switch located
in slot 0 would be specified as node0/0. The RP CPU in a Supervisor card on a Cisco Catalyst
6500 series switch located in slot 0 would be addressed as node0/1. If the node argument
is not specified, the default node specification is always the regular expression pattern match
of * representing all applicable nodes.

node

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

Tag is acceptable but ignored. Cisco IOS EEM scripts with the tag option can run in an
Cisco IOS XR software environment without any error. Since Cisco IOS XR software does
not support multiple events, the tag has no effect.

tag

If an optional argument is not specified, the event matches all possible values of the argument. If multiple
arguments are specified, the process event will be raised when all the conditions are matched.

Result String

None

Set _cerrno

No

event_register_snmp
Registers for a Simple NetworkManagement Protocol (SNMP) statistics event. Use this Tcl command extension
to run a policy when a given counter specified by an SNMP object ID (oid) crosses a defined threshold. When
a snmp policy is registered, a poll timer is specified. Event matching occurs when the poll timer for the

Configuring and Managing Embedded Event Manager Policies
62

Configuring and Managing Embedded Event Manager Policies
event_register_snmp

registered event expires. The snmp-server managerCLI commandmust be enabled for the SNMP notifications
to work using Tcl policies.

Syntax

event_register_snmp [tag ?] oid ? get_type exact|next
entry_op gt|ge|eq|ne|lt|le entry_val ?
entry_type value|increment|rate
[exit_comb or|and]
[exit_op gt|ge|eq|ne|lt|le] [exit_val ?]
[exit_type value|increment|rate]
[exit_time ?] poll_interval ? [average_factor ?]
[queue_priority low|normal|high|last]
[maxrun ?] [nice 0|1]

Aruguments

(Optional) String identifying a tag that can be used with the trigger Tcl command extension
to support multiple event statements within a Tcl script.

tag

(Mandatory) Entry comparison operator used to compare the current OID data value with
the entry value; if true, an event will be raised and event monitoring will be disabled until
exit criteria are met.

entry_op

(Mandatory) Type of SNMP get operation that needs to be applied to the OID specified. If
the get_type argument is "exact," the value of the specified OID is retrieved; if the get_type
argument is "next," the value of the lexicographical successor to the specified OID is retrieved.

get_type

(Mandatory) Value with which the current oid data value should be compared to decide if
the SNMP event should be raised.

entry_val

Specifies a type of operation to be applied to the object ID specified by the entry-val argument.

Value is defined as the actual value of the entry-val argument.

Increment uses the entry-val field as an incremental difference and the entry-val is compared
with the difference between the current counter value and the value when the event was last
triggered (or the first polled sample if this is a new event). A negative value checks the
incremental difference for a counter that is decreasing.

Rate is defined as the average rate of change over a period of time. The time period is the
average-factor value multiplied by the poll-interval value. At each poll interval the difference
between the current sample and the previous sample is taken and recorded as an absolute
value. An average of the previous average-factor value samples is taken to be the rate of
change.

entry-type

(Optional) Exit combination operator used to indicate the combination of exit condition tests
required to decide if the exit criteria are met so that the event monitoring can be reenabled.
If it is "and," both exit value and exit time tests must be passed to meet the exit criteria. If
it is "or," either exit value or exit time tests can be passed to meet the exit criteria

When exit_comb is "and," exit_op, and exit_val (exit_time) must exist.

When exit_comb is "or," (exit_op and exit_val) or (exit_time) must exist.

exit_comb

(Optional) Exit comparison operator used to compare the current oid data value with the exit
value; if true, event monitoring for this event will be reenabled.

exit_op

Configuring and Managing Embedded Event Manager Policies
63

Configuring and Managing Embedded Event Manager Policies
event_register_snmp

(Optional) Value with which the current oid data value should be compared to decide if the
exit criteria are met.

exit_val

(Optional) Specifies a type of operation to be applied to the object ID specified by the exit-val
argument. If not specified, the value is assumed.

Value is defined as the actual value of the exit-val argument.

Increment uses the exit-val field as an incremental difference and the exit-val is compared
with the difference between the current counter value and the value when the event was last
triggered (or the first polled sample if this is a new event). A negative value checks the
incremental difference for a counter that is decreasing.

Rate is defined as the average rate of change over a period of time. The time period is the
average-factor value multiplied by the poll-interval value. At each poll interval the difference
between the current sample and the previous sample is taken and recorded as an absolute
value. An average of the previous average-factor value samples is taken to be the rate of
change.

exit-type

(Optional) Number of POSIX timer units after an event is raised when event monitoring will
be enabled again. Specified in SSSSSSSSSS[.MMM] format where SSSSSSSSSS must be
an integer number representing seconds between 0 and 4294967295, inclusive. MMM
represents milliseconds and must be an integer number between 0 and 999.

exit_time

(Mandatory) Interval between consecutive polls in POSIX timer units. Currently the interval
is forced to be at least 1 second (specified in SSSSSSSSSS[.MMM] format, where
SSSSSSSSSSmust be an integer representing seconds between 0 and 4294967295, inclusive,
and where MMM must be an integer representing milliseconds between 0 and 999).

poll_interval

(Optional) Number in the range from 1 to 64 used to calculate the period used for rate-based
calculations. The average-factor value is multiplied by the poll-interval value to derive the
period in milliseconds. The minimum average factor value is 1.

average-factor

Result string

None

Set _cerrno

No

event_register_snmp_notification
Registers for a Simple NetworkManagement Protocol (SNMP) notification trap event. Use this Tcl command
extension to run a policy when an SNMP trap with the specified SNMP object ID (oid) is encountered on a
specific interface or address. The snmp-server manager CLI command must be enabled for the SNMP
notifications to work using Tcl policies.

Syntax

event_register_snmp_notification [tag ?] oid ? oid_val ?
op {gt|ge|eq|ne|lt|le}
[src_ip_address ?]
[dest_ip_address ?]
[queue_priority {normal|low|high|last}]

Configuring and Managing Embedded Event Manager Policies
64

Configuring and Managing Embedded Event Manager Policies
event_register_snmp_notification

[maxrun ?]
[nice {0|1}]
[default ?]
[direction {incoming|outgoing}]
[msg_op {drop|send}]

Argument

(Optional) String identifying a tag that can be used with the trigger Tcl command extension
to support multiple event statements within a Tcl script.

tag

(Mandatory) OID number of the data element in SNMP dot notation (for example,
1.3.6.1.2.1.2.1.0). If the specified OID ends with a dot (.), then all OIDs that start with the
OID number before the dot are matched. It supports all OID supported by SNMP in XR.

oid

(Mandatory) OID value with which the current OID data value should be compared to
decide if the SNMP event should be raised.

oid_val

(Mandatory) Comparison operator used to compare the current OID data value with the
SNMP Protocol Data Unit (PDU) OID data value; if this is true, an event is raised.

op

(Optional) Source IP address where the SNMP notification trap originates. The default is
all; it is set to receive SNMP notification traps from all IP addresses. This option will not
be supported in XR as src_ip_address is only for incoming trap which is not supported in
EEM XR.

src_ip_address

(Optional) Destination IP address where the SNMP notification trap is sent. The default is
all; it is set to receive SNMP traps from all destination IP addresses.

dest_ip_address

(Optional) Specifies the time period in seconds during which the snmp notification event
detector waits for the policy to exit. Thetime periodis specified in ssssssssss[.mmm] format,
where ssssssssss must be an integer representing seconds between 0 and 4294967295 and
mmm must be an integer representing milliseconds between 0 and 999

default

(Optional) The direction of the incoming or outgoing SNMP trap or inform PDU to filter.
The default value is outgoing. For XR direction incoming will not be supported and policy
registration will fail if user provides direction as incoming.

direction

(Optional) The action to be taken on the SNMP PDU (drop it or send it) once the event is
triggered. The default value is send. For XR msg_op drop will not be supported and policy
registration will fail if user provides msg_op as drop.

msg_op

Result String

None

Set _cerrno

No

event_register_stat
Registers for a statistics event. Use this Tcl command extension to run a policy when a given statistical counter
crosses a defined threshold.

Configuring and Managing Embedded Event Manager Policies
65

Configuring and Managing Embedded Event Manager Policies
event_register_stat

The following three fields are listed to uniquely identify the statistics counter that the EEM keywordmonitors:

• Data element name corresponds to the argument name. For example, the ifstats-generic name is defined
as interface generic statistics.

• The first modifier of the data element corresponds to themodifier_1 argument. For example, Ethernet1_0
is defined as the first modifier for ifstats-generic, which qualifies the interface generic statistics to be
specific for the Ethernet interface.

• The secondmodifier of the data element corresponds to themodifier_2 argument. For example, input-ptks
is defined as the second modifier for ifstats-generic, which further qualifies the interface statistics for
the specific Ethernet interface is the number of packets received.

Syntax

event_register_stat name ? [modifier_1 ?] [modifier_2 ?]

entry_op gt|ge|eq|ne|lt|le entry_val ? [exit_comb or|and]

[exit_op gt|ge|eq|ne|lt|le] [exit_val ?] [exit_time_sec ?] [exit_time_nsec ?]
[poll_interval_sec ?] [poll_interval_nsec ?] [priority normal|low|high]
[maxrun_sec ?] [maxrun_nsec ?] [nice 0|1] [tag ?]

Arguments

(Mandatory) Statistics data element name.name

Mandatory for interface statistics but optional for others. For interface statistics, this
variable is the interface name. To get the interface name, use the show interface brief
command. This command lists all the currently configured interface names designated
by a slash (/), for example, Ethernet 1/0. When you want this interface to be configured
for the modifier_1 argument, change the slash to an underscore.

modifier_1

Mandatory for interface statistics but optional for others. For interface statistics, this
variable is the interface statistic name. To get the interface statistic name, use the show
event manager statistics -table command with the all keyword to list all the classes of
statistics. Then, use the show event manager statistics -table command with the name
argument to get the specific statistics name for modifier_2.

modifier_2

(Mandatory) Entry comparison operator that is used to compare the current statistics
value with the entry value. If true, an event is raised and event monitoring is disabled
until the exit criteria is met.

entry_op

(Mandatory) Value in which the current statistical counter value that is compared to
decide if the statistical event can be raised.

entry_val

Configuring and Managing Embedded Event Manager Policies
66

Configuring and Managing Embedded Event Manager Policies
event_register_stat

(Mandatory) Exit combination operator that indicates the combination of exit condition
tests that are required to decide if the exit criteria is met so that event monitoring is
reenabled. If so, both exit value and exit time tests must be passed to meet the exit
criteria.Or either exit value or exit time tests are passed to meet the exit criteria.

exit_comb and exit_op, exit_val arguments (exit_time_sec argument or exit_time_nsec
argument) must exist.

exit_comb argument or (exit_op and exit_val arguments) or (exit_time_sec argument or
exit_time_nsec argument) must exist.

exit_comb

Exit comparison operator that is used to compare the current statistics value with the exit
value. If true, event monitoring for this event is reenabled.

exit_op

Value in which the current statistical counter value is compared to decide if the exit
criteria is met.

exit_val

Number of POSIX timer units after the event is raised when event monitoring is enabled
again. The integer number must be between 0 and 2147483647, inclusive.

exit_time_sec

exit_time_nse

Either the poll_interval_sec or poll_interval_nsec arguments must be specified. The
interval must be between the consecutive polls in POSIX time units. Currently, it is forced
to be at least one second. The integer number must be between 0 and 2147483647,
inclusive.

poll_interval_sec

poll_interval_nsec

(Optional) Priority level that is queued for the script. If not specified, the default is using
the normal priority.

priority

(Optional) Maximum run time of the script that is specified in seconds and nanoseconds.
If not specified, 20-second run-time limit is used as the default. The integer number must
be between 0 and 2147483647, inclusive.

maxrun_sec,

maxrun_nsec

(Optional)When the nice argument is set to the value of 1, the policy is run at a run-time
priority that is less than the default priority. The default value is 0.

nice

Tag is acceptable but ignored.Cisco IOS EEM scripts with the tag option can run in an
Cisco IOS XR software environment without any error. Since Cisco IOS XR software
does not support multiple events, the tag has no effect.

tag

Exit criteria can be time-based, value-based, or both. Event monitoring is not reenabled until the exit criteria
is met.

Note

If multiple conditions exist, the statistics event is raised when all of the conditions are satisfied.

Reslt String

None

Set _cerrno

No

Configuring and Managing Embedded Event Manager Policies
67

Configuring and Managing Embedded Event Manager Policies
event_register_stat

event_register_syslog
Registers for a syslog event. Use this Tcl command extension to trigger a policy when a syslog message of a
specific pattern is logged after a certain number of occurrences during a certain period of time.

Syntax

event_register_syslog [occurs ?] [period ?] pattern ?
[priority all|emergencies|alerts|critical|errors|warnings|notifications|
informational|debugging|0|1|2|3|4|5|6|7]
[queue_priority low|normal|high]
[severity_fatal] [severity_critical] [severity_major]
[severity_minor] [severity_warning] [severity_notification]
[severity_normal] [severity_debugging]
[maxrun ?] [nice 0|1]

Arguments

(Optional) Number of occurrences before the event is raised; if not specified, the event is
raised on the first occurrence. If specified, the value must be greater than 0.

occurs

(Optional) Time interval, in seconds and milliseconds, during which the one or more
occurrences must take place in order to raise an event (specified in SSSSSSSSSS[.MMM]
format where SSSSSSSSSS must be an integer number representing seconds between 0 and
4294967295, inclusive, and where MMM represents milliseconds and must be an integer
number between 0 and 999). If this argument is not specified, no period check is applied.

period

(Mandatory) Regular expression used to perform syslogmessage patternmatch. This argument
is what the policy uses to identify the logged syslog message.

pattern

(Optional) Message priority to be screened. If this argument is specified, only messages that
are at the specified logging priority level, or lower, are screened. If this argument is not
specified, the default priority is 0.

priority

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

If multiple conditions are specified, the syslog event is raised when all the conditions are matched.

Table 15: Severity Level Mapping For Syslog Events

DescriptionSyslog PrioritySeverity Keyword

System is unusable.LOG_EMERG (0)severity_fatal

Configuring and Managing Embedded Event Manager Policies
68

Configuring and Managing Embedded Event Manager Policies
event_register_syslog

DescriptionSyslog PrioritySeverity Keyword

Critical conditions, immediate attention required.LOG_ALERT (1)severity_critical

Major conditions.LOG_CRIT (2)severity_major

Minor conditions.LOG_ERR (3)severity_minor

Warning conditions.LOG_WARNING(4)severity_warning

Basic notification, informational messages.LOG_NOTICE (5)severity_notification

Normal event, indicates returning to a normal state.LOG_INFO (6)severity_normal

Debugging messages.LOG_DEBUG (7)severity_debugging

Result String

None

Set _cerrno

No

event_register_timer
Creates a timer and registers for a timer event as both a publisher and a subscriber. Use this Tcl command
extension when there is a need to trigger a policy that is time specific or timer based. This event timer is both
an event publisher and a subscriber. The publisher part indicates the conditions under which the named timer
is to go off. The subscriber part identifies the name of the timer to which the event is subscribing.

Both the CRON and absolute time specifications work on local time.Note

Syntax

event_register_timer watchdog|countdown|absolute|cron
[name ?] [cron_entry ?]
[time ?]
[queue_priority low|normal|high] [maxrun ?]
[nice 0|1]

Arguments

(Mandatory) Watchdog timer.watchdog

(Mandatory) Countdown timer.countdown

(Mandatory) Absolute timer.absolute

(Mandatory) CRON timer.cron

Configuring and Managing Embedded Event Manager Policies
69

Configuring and Managing Embedded Event Manager Policies
event_register_timer

(Optional) Name of the timer.name

(Optional) Entry must be specified if the CRON timer type is specified. Must not be specified
if any other timer type is specified. A cron_entry is a partial UNIX crontab entry (the first
five fields) as used with the UNIX CRON daemon.

A cron_entry specification consists of a text string with five fields. The fields are separated
by spaces. The fields represent the time and date when CRON timer events will be triggered.
The fields are described in Table 16: Time and Date When CRON Events Will Be Triggered
, on page 71 .

Ranges of numbers are allowed. Ranges are two numbers separated with a hyphen. The
specified range is inclusive. For example, 8-11 for an hour entry specifies execution at hours
8, 9, 10, and 11.

A field may be an asterisk (*), which always stands for "first-last."

Lists are allowed. A list is a set of numbers (or ranges) separated by commas. Examples:
"1,2,5,9" and "0-4,8-12".

Step values can be used in conjunction with ranges. Following a range with "/<number>"
specifies skips of the number's value through the range. For example, "0-23/2" is used in the
hour field to specify an event that is triggered every other hour. Steps are also permitted after
an asterisk, so if you want to say "every two hours", use "*/2".

Names can also be used for the month and the day of week fields. Use the first three letters
of the particular day or month (case does not matter). Ranges or lists of names are not allowed.

The day on which a timer event is triggered can be specified by two fields: day of month and
day of week. If both fields are restricted (that is, are not *), an event will be triggered when
either field matches the current time. For example, "30 4 1,15 * 5" would cause an event to
be triggered at 4:30 a.m. on the 1st and 15th of each month, plus every Friday.

Instead of the first five fields, one of seven special strings may appear. These seven special
strings are described in Table 17: Special Strings for cron_entry, on page 71.

Example 1: "0 0 1,15 * 1" would trigger an event at midnight on the 1st and 15th of each
month, as well as on every Monday. To specify days by only one field, the other field should
be set to *; "0 0 * * 1" would trigger an event at midnight only on Mondays.

Example 2: "15 16 1 * *" would trigger an event at 4:15 p.m. on the first day of each month.

Example 3: "0 12 * * 1-5" would trigger an event at noon on Monday through Friday of each
week.

Example 4: "@weekly" would trigger an event at midnight once a week on Sunday.

cron_entry

(Optional) Time must be specified if a timer type other than CRON is specified. Must not be
specified if the CRON timer type is specified. For watchdog and countdown timers, the
number of seconds andmilliseconds until the timer expires; for the absolute timer, the calendar
time of the expiration time. Time is specified in SSSSSSSSSS[.MMM] format, where
SSSSSSSSSSmust be an integer representing seconds between 0 and 4294967295, inclusive,
andwhereMMMmust be an integer representingmilliseconds between 0 and 999. An absolute
expiration date is the number of seconds and milliseconds since January 1, 1970. If the date
specified has already passed, the timer expires immediately.

time

Configuring and Managing Embedded Event Manager Policies
70

Configuring and Managing Embedded Event Manager Policies
event_register_timer

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional)Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format, where
SSSSSSSSSSmust be an integer representing seconds between 0 and 4294967295, inclusive,
and where MMM must be an integer representing milliseconds between 0 and 999). If this
argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

Table 16: Time and Date When CRON Events Will Be Triggered

Allowed ValuesField

0-59minute

0-23hour

1-31day of
month

1-12 (or names, see Table 17: Special Strings for cron_entry, on page 71)month

0-7 (0 or 7 is Sun, or names; see Table 17: Special Strings for cron_entry, on page 71)day of week

Table 17: Special Strings for cron_entry

MeaningString

Trigger once a year, "0 0 1 1 *".@yearly

Same as @yearly.@annually

Trigger once a month, "0 0 1 * *".@monthly

Trigger once a week, "0 0 * * 0".@weekly

Trigger once a day, "0 0 * * *".@daily

Same as @daily.@midnight

Trigger once an hour, "0 * * * *".@hourly

Result String

None

Set _cerrno

No

Configuring and Managing Embedded Event Manager Policies
71

Configuring and Managing Embedded Event Manager Policies
event_register_timer

See Also

event_register_timer_subscriber, on page 72

event_register_timer_subscriber
Registers for a timer event as a subscriber. Use this Tcl command extension to identify the name of the timer
to which the event timer, as a subscriber, wants to subscribe. The event timer depends on another policy or
another process to actually manipulate the timer. For example, let policyB act as a timer subscriber policy,
but policyA (although it does not need to be a timer policy) uses register_timer, timer_arm, or timer_cancel
Tcl command extensions to manipulate the timer referenced in policyB.

Syntax

event_register_timer_subscriber watchdog|countdown|absolute|cron
name ? [queue_priority low|normal|high] [maxrun ?] [nice 0|1]

Arguments

(Mandatory) Watchdog timer.watchdog

(Mandatory) Countdown timer.countdown

(Mandatory) Absolute timer.absolute

(Mandatory) CRON timer.cron

(Mandatory) Name of the timer.name

(Optional) Priority level at which the script will be queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but queuing
priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy is
run at a run-time priority that is less than the default priority. The default value is 0.

nice

An EEM policy that registers for a timer event or a counter event can act as both publisher and subscriber.Note

Result String

None

Set _cerrno

No

Configuring and Managing Embedded Event Manager Policies
72

Configuring and Managing Embedded Event Manager Policies
event_register_timer_subscriber

See Also

event_register_timer, on page 69

event_register_track
Registers for a report event from the Object Tracking component in XR. Use this Tcl command extension to
trigger a policy on the basis of a Object Tracking component report for a specified track. This will be
implemented as a new process in IOS-XR which will be dlrsc_tracker. Please note that the manageability
package should be installed for the track ED to be functional.

Syntax

event_register_track ? [tag ?] [state up|down|any] [queue_priority low|normal|high|last]
[maxrun ?]
[nice 0|1]

Arguments

(Mandatory) Tracked object name.? (represents a
string)

(Optional) String identifying a tag that can be used with the trigger Tcl command extension
to support multiple event statements within a Tcl script.

tag

(Optional) Specifies that the tracked object transition will cause an event to be raised. If up
is specified, an event will be raised when the tracked object transitions from a down state
to an up state. If down is specified, an event will be raised when the tracked object transitions
from an up state to a down state. If any is specified, an event will be raised when the tracked
object transitions to or from any state.

state

(Optional) Priority level at which the script will be queued:

• queue_priority low-Specifies that the script is to be queued at the lowest of the three
priority levels.

• queue_priority normal-Specifies that the script is to be queued at a priority level greater
than low priority but less than high priority.

• queue_priority high-Specifies that the script is to be queued at the highest of the three
priority levels.

• queue_priority last-Specifies that the script is to be queued at the lowest priority level.

If more than one script is registered with the "queue_priority_last" argument set, these scripts
will execute in the order in which the events are published.

The queue_priority argument specifies the queuing priority, but not the
execution priority, of the script being registered.

Note

If this argument is not specified, the default queuing priority is normal.

queue_priority

(Optional) Maximum run time of the script (specified in SSSSSSSSSS[.MMM] format,
where SSSSSSSSSS must be an integer representing seconds between 0 and 4294967295,
inclusive, and where MMM must be an integer representing milliseconds between 0 and
999). If this argument is not specified, the default 20-second run-time limit is used.

maxrun

Configuring and Managing Embedded Event Manager Policies
73

Configuring and Managing Embedded Event Manager Policies
event_register_track

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the policy
is run at a run-time priority that is less than the default priority. The default value is 0.

nice

If an optional argument is not specified, the event matches all possible values of the argument.

Result String

None

Set _cerrno

No

event_register_wdsysmon
Registers for a Watchdog system monitor event. Use this Tcl command extension to register for a composite
event which is a combination of several subevents or conditions. For example, you can use the
event_register_wdsysmon command to register for the combination of conditions wherein the CPU usage
of a certain process is over 80 percent, and the memory used by the process is greater than 50 percent of its
initial allocation. This Tcl command extension is supported only in Software Modularity images.

Syntax

event_register_wdsysmon [timewin ?]
[sub12_op and|or|andnot]
[sub23_op and|or|andnot]
[sub34_op and|or|andnot]
[sub1 subevent-description]
[sub2 subevent-description]
[sub3 subevent-description]
[sub4 subevent-description] [node ?]
[queue_priority low|normal|high]
[maxrun ?] [nice 0|1]

Arguments

(Optional) Time window within which all of the subevents have to occur in order for
an event to be generated and is specified in SSSSSSSSSS[.MMM] format. SSSSSSSSSS
format must be an integer representing seconds between 0 and 4294967295, inclusive.
MMM format must be an integer representing milliseconds between 0 and 999).

timewin

(Optional) Combination operator for comparison between subevent 1 and subevent 2.sub12_op

(Optional) Combination operator for comparison between subevent 1 and 2, subevent
3, and subevent 4.

sub34_op

(Optional) Subevent 1 is specified.sub1

(Optional) Syntax for the subevent.subevent-description

(Optional) Subevent 2 is specified.sub2

(Optional) Subevent 3 is specified.sub3

Configuring and Managing Embedded Event Manager Policies
74

Configuring and Managing Embedded Event Manager Policies
event_register_wdsysmon

(Optional) Subevent 4 is specified.sub4

(Optional) Node name to be monitored for deadlock conditions is a string that consists
of the word ‘node’, which is followed by two fields separated by a slash (/) using the
following format:

node<slot-number>/<cpu-number>

The slot-number is the hardware slot number. The cpu-number is the hardware CPU
number. For example, the SP CPU in a Supervisor card on a
Cisco Catalyst 6500 Series Switch located in slot 0 is specified as node0/0. The RP
CPU in a Supervisor card on a Cisco Catalyst 6500 Series Switch located in slot 0 is
addressed as node0/1. If the node argument is not specified, the default node specification
is the local node on which the registration is done.

node

(Optional) Priority level at which the script is queued; normal priority is greater than
low priority but less than high priority. The priority here is not execution priority, but
queuing priority. If this argument is not specified, the default priority is normal.

queue_priority

(Optional) Maximum run time of the script that is specified in SSSSSSSSSS[.MMM]
format. SSSSSSSSSS format must be an integer representing seconds between 0 and
4294967295, inclusive. MMM format must be an integer representing milliseconds
between 0 and 999. If this argument is not specified, the default 20-second run-time
limit is used.

maxrun

(Optional) Policy run-time priority setting. When the nice argument is set to 1, the
policy is run at a run-time priority that is less than the default priority. The default value
is 0.

nice

Subevents

The syntax of subevent descriptions can be one of seven cases.

For arguments in subevent description, the following constraints apply on the value of number arguments:

• For dispatch_mgr, val must be an integer between 0 and 4294967295, inclusive.

• For cpu_proc and cpu_tot, val must be an integer between 0 and 100, inclusive.

• For mem_proc, mem_tot_avail, and mem_tot_used, if is_percent is FALSE, val must be an integer
between 0 and 4294967295, inclusive.

1. deadlock procname ?

Arguments

(Mandatory) Regular expression that specifies the process name that you want to monitor for
deadlock conditions. This subevent ignores the time window even if it is given.

procname

1. dispatch_mgr [procname ?] [op gt|ge|eq|ne|lt|le] [val ?] [period ?]

Configuring and Managing Embedded Event Manager Policies
75

Configuring and Managing Embedded Event Manager Policies
event_register_wdsysmon

Arguments

(Optional) Regular expression that specifies the process name that you want to monitor for the
dispatch_manager status.

procname

(Optional) Comparison operator that is used to compare the collected number of events with the
specified value. If true, an event is raised.

op

(Optional) Value in which the number of events that have occurred is compared.val

(Optional) Time period for the number of events that have occurred and is specified in
SSSSSSSSSS[.MMM] format. SSSSSSSSSS format must be an integer representing seconds
between 0 and 4294967295, inclusive. MMM format must be an integer representing milliseconds
between 0 and 999. If this argument is not specified, the most recent sample is used.

period

1. cpu_proc [procname ?] [op gt|ge|eq|ne|lt|le] [val ?] [period ?]

Arguments

(Optional) Regular expression that specifies the process name that you want to monitor for CPU
utilization conditions.

procname

(Optional) Comparison operator that is used to compare the collected CPU usage sample percentage
with the specified percentage value. If true, an event is raised.

op

(Optional) Percentage value in which the average CPU usage during the sample period is compared.val

(Optional) Time period for averaging the collection of samples and is specified in
SSSSSSSSSS[.MMM] format. SSSSSSSSSS format must be an integer representing seconds
between 0 and 4294967295, inclusive. MMM format must be an integer representing milliseconds
between 0 and 999. If this argument is not specified, the most recent sample is used.

period

1. cpu_tot [op gt|ge|eq|ne|lt|le] [val ?] [period ?]

Arguments

(Optional) Comparison operator that is used to compare the collected total system CPU usage sample
percentage with the specified percentage value. If true, an event is raised.

op

(Optional) Percentage value in which the average CPU usage during the sample period is compared.val

(Optional) Time period for averaging the collection of samples and is specified in SSSSSSSSSS[.MMM]
format. SSSSSSSSSS format must be an integer representing seconds between 0 and 4294967295,
inclusive. MMM format must be an integer representing milliseconds between 0 and 999. If this
argument is not specified, the most recent sample is used.

period

1. mem_proc [procname ?] [op gt|ge|eq|ne|lt|le] [val ?] [is_percent TRUE|FALSE] [period ?]

Configuring and Managing Embedded Event Manager Policies
76

Configuring and Managing Embedded Event Manager Policies
event_register_wdsysmon

Arguments

(Optional) Regular expression that specifies the process name that you want to monitor for memory
usage.

procname

(Optional) Comparison operator that is used to compare the collected memory used with the
specified value. If true, an event is raised.

op

(Optional) Percentage or an absolute value that is specified in kilobytes. A percentage represents
the difference between the oldest sample in the specified time period and the latest sample. If
memory usage increased from 150 KB to 300 KB within the time period, the percentage increase
is 100. This is the value in which the measured value is compared.

val

(Optional) If set to TRUE, the percentage value is collected and compared. Otherwise, the absolute
value is collected and compared.

is_percent

(Optional) If is_percent is set to TRUE, the time period for the percentage is computed. Otherwise,
the time period for the collection samples is averaged and is specified in SSSSSSSSSS[.MMM]
format. SSSSSSSSSS format must be an integer representing seconds between 0 and 4294967295,
inclusive. MMM format must be an integer representing milliseconds between 0 and 999. If this
argument is not specified, the most recent sample is used.

period

1. mem_tot_avail [op gt|ge|eq|ne|lt|le] [val ?] [is_percent TRUE|FALSE] [period ?]

Arguments

(Optional) Comparison operator that is used to compare the collected available memory with the
specified value. If true, an event is raised.

op

(Optional) Percentage or an absolute value that is specified in kilobytes. A percentage represents
the difference between the oldest sample in the specified time period and the latest sample. If
available memory usage has decreased from 300 KB to 150 KB within the time period, the
percentage decrease is 50. This is the value in which the measured value is compared.

val

(Optional) If set to TRUE, the percentage value is collected and compared. Otherwise, the absolute
value is collected and compared.

is_percent

(Optional) If is_percent is set to TRUE, the time period for the percentage is computed. Otherwise,
the time period for the collection samples is averaged and is specified in SSSSSSSSSS[.MMM]
format. SSSSSSSSSS format must be an integer representing seconds between 0 and 4294967295,
inclusive. MMM format must be an integer representing milliseconds between 0 and 999). If this
argument is not specified, the most recent sample is used.

period

1. mem_tot_used [op gt|ge|eq|ne|lt|le] [val ?] [is_percent TRUE|FALSE] [period ?]

Arguments

(Optional) Comparison operator that is used to compare the collected used memory with the
specified value. If true, an event is raised.

op

Configuring and Managing Embedded Event Manager Policies
77

Configuring and Managing Embedded Event Manager Policies
event_register_wdsysmon

(Optional) Percentage or an absolute value that is specified in kilobytes. A percentage represents
the difference between the oldest sample in the specified time period and the latest sample. If
memory usage has increased from 150 KB to 300 KB within the time period, the percentage
increase is 100. This is the value in which the measured value is compared.

val

(Optional) If set to TRUE, the percentage value is collected and compared. Otherwise, the absolute
value is collected and compared.

is_percent

(Optional) If is_percent is set to TRUE, the time period for the percentage is computed. Otherwise,
the time period for the collection samples is averaged and is specified in SSSSSSSSSS[.MMM]
format. SSSSSSSSSS format must be an integer representing seconds between 0 and 4294967295,
inclusive. MMM format must be an integer representing milliseconds between 0 and 999). If this
argument is not specified, the most recent sample is used.

This argument is mandatory if is_percent is set to TRUE; otherwise, it is optional.Note

period

Result String

None

Set _cerrno

No

Inside a subevent description, each argument is position as independent.Note

Embedded Event Manager Event Information Tcl Command Extension
The following EEM Event Information Tcl Command Extensions are supported:

event_reqinfo
Queries information for the event that caused the current policy to run.

Syntax

event_reqinfo

Arguments

None

Result String

If the policy runs successfully, the characteristics for the event that triggered the policy will be returned. The
following sections show the characteristics returned for each event detector.

Configuring and Managing Embedded Event Manager Policies
78

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Event Information Tcl Command Extension

For EEM_EVENT_APPLICATION

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"sub_system 0x%x type %u data1 {%s} data2 {%s} data3 {%s} data4 {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

The time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Number assigned to the EEM policy that published the application event.
Number is set to 798 because all other numbers are reserved for Cisco use.

sub_system

Event subtype within the specified component.type

Argument data that is passed to the application-specific event when the
event is published. The data is character text, an environment variable, or
a combination of the two.

data1data2data3data4

For EEM_EVENT_COUNTER

"event_id %u event_type %u event_type_string {%s} %u event_pub_sec %u event_pub_msec %u"
"name {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

The time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Counter name.name

For EEM_EVENT_NONE

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"

Configuring and Managing Embedded Event Manager Policies
79

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

For EEM_EVENT_OIR

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"slot %u event %s"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event ID.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Slot number for the affected card.slot

Indicates a string, removed or online, that represents either an OIR removal
event or an OIR insertion event.

event

For EEM_EVENT_PROCESS (Software Modularity Only)

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"sub_system 0x%x instance %u process_name {%s} path {%s} exit_status 0x%x"
"respawn_count %u last_respawn_sec %ld last_respawn_msec %ld fail_count %u"
"dump_count %u node_name {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the
same event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Configuring and Managing Embedded Event Manager Policies
80

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

Time, in seconds and milliseconds, when the event was published to
the Embedded Event Manager.

event_pub_secevent_pub_msec

Number assigned to the EEM policy that published the
application-specific event. Number is set to 798 because all other
numbers are reserved for Cisco use.

sub_system

Process instance ID.instance

Process name.process_name

Process absolute name including path.path

Process last exit status.exit_status

Number of times that the process was restarted.respawn_count

Calendar time when the last restart occurred.last_respawn_seclast_respawn_msec

Number of restart attempts of the process that failed. This count will
be reset to 0 when the process is successfully restarted.

fail_count

DescriptionEvent Type

Number of core dumps taken of the process.dump_count

Name of the node that the process is on. The node name is a string that
consists of the word “node” followed by two fields separated by a slash
character using the following format:

node<slot-number>/<cpu-number>

The slot-number is the hardware slot number. The cpu-number is the
hardware CPU number.

node_name

For EEM_EVENT_RF

"event_id %u event_type %u event_type_string {%s} %u event_pub_sec %u event_pub_msec %u"
"event {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Configuring and Managing Embedded Event Manager Policies
81

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

RF progression or status event notification that caused this event to be
published.

event

For EEM_EVENT_SYSLOG_MSG

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"msg {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Last syslog message that matches the pattern.msg

For EEM_EVENT_TIMER_ABSOLUTE

EEM_EVENT_TIMER_COUNTDOWN

EEM_EVENT_TIMER_WATCHDOG

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"timer_type %s timer_time_sec %ld timer_time_msec %ld"
"timer_remain_sec %ld timer_remain_msec %ld"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the
same event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to
the Embedded Event Manager.

event_pub_secevent_pub_msec

Configuring and Managing Embedded Event Manager Policies
82

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

Type of the timer. Can be one of the following:

• watchdog

• countdown

• absolute

timer_type

Time when the timer expired.timer_time_sectimer_time_msec

Remaining time before the next expiration.timer_remain_sectimer_remain_msec

For EEM_EVENT_TIMER_CRON

"event_id %u event_type %u event_type_string {%s} event_pub_sec %u event_pub_msec %u"
"timer_type {%s} timer_time_sec %ld timer_time_msec %ld"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Type of the timer.timer_type

Time when the timer expired.timer_time_sectimer_time_msec

For EEM_EVENT_TRACK

"event_id %u event_type %u event_type_string {%s} %u event_pub_sec %u event_pub_msec %u"
"track_number {%u} track_state {%s}"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event ID.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Configuring and Managing Embedded Event Manager Policies
83

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionEvent Type

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Number of the tracked object that caused the event to be triggered.track_number

State of the tracked object when the event was triggered; valid states are up
or down.

track_state

For EEM_EVENT_WDSYSMON

"event_id %u event_type %u event_type_string {%s} %u event_pub_sec %u event_pub_msec %u"
"num_subs %u"

DescriptionEvent Type

Unique number that indicates the ID for this published event. Multiple
policies may be run for the same event, and each policy will have the same
event_id.

event_id

Type of event.event_type

ASCII string that represents the name of the event for this event type.event_type_string

Time, in seconds and milliseconds, when the event was published to the
Embedded Event Manager.

event_pub_secevent_pub_msec

Subevent number.num_subs

Where the subevent info string is for a deadlock subevent:

"{type %s num_entries %u entries {entry 1, entry 2, ...}}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Number of processes and threads in the deadlock.num_entries

Information of processes and threads in the deadlock.entries

Where each entry is:

"{node {%s} procname {%s} pid %u tid %u state %s b_node %s b_procname %s b_pid %u
b_tid %u}"

Assume that the entry describes the scenario in which Process A thread m is blocked on process B thread n:

Configuring and Managing Embedded Event Manager Policies
84

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionSubevent
Type

Name of the node that process A thread m is on.node

Name of process A.procname

Process ID of process A.pid

Thread ID of process A thread m.tid

Thread state of process A thread m. Can be one of the following:

• STATE_CONDVAR

• STATE_DEAD

• STATE_INTR

• STATE_JOIN

• STATE_MUTEX

• STATE_NANOSLEEP

• STATE_READY

• STATE_RECEIVE

• STATE_REPLY

• STATE_RUNNING

• STATE_SEM

• STATE_SEND

• STATE_SIGSUSPEND

• STATE_SIGWAITINFO

• STATE_STACK

• STATE_STOPPED

• STATE_WAITPAGE

• STATE_WAITTHREAD

state

Name of the node that process B thread is on.b_node

Name of process B.b_procname

Process ID of process B.b_pid

Thread ID of process B thread n; 0 means that process A thread m is blocked on all threads
of process B.

b_tid

Configuring and Managing Embedded Event Manager Policies
85

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

For dispatch_mgr Subevent

"{type %s node {%s} procname {%s} pid %u value %u sec %ld msec %ld}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node that the POSIX process is on.node

POSIX process name for this subevent.procname

POSIX process ID for this subevent.

The three preceding fields describe the owner process of this dispatch manager.Note

pid

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the number of events processed by the dispatch manager is in the
latest sample. If a time window is specified and is greater than zero in the event registration
Tcl command extension, the total number of events processed by this dispatch manager is
in the given time window.

value

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

For cpu_proc Subevent

"{type %s node {%s} procname {%s} pid %u value %u sec %ld msec %ld}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node that the POSIX process is on.node

POSIX process name for this subevent.procname

POSIX process ID for this subevent.

The three preceding fields describe the process whose CPU utilization is being
monitored.

Note

pid

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the process CPU utilization is in the latest sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the
averaged process CPU utilization is in the given time window.

value

Configuring and Managing Embedded Event Manager Policies
86

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionSubevent
Type

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

For cpu_tot Subevent

"{type %s node {%s} value %u sec %ld msec %ld}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node on which the total CPU utilization is being monitored.node

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the total CPU utilization is in the latest sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the
averaged total CPU utilization is in the given time window.

value

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

For mem_proc Subevent

"{type %s node {%s} procname {%s} pid %u is_percent %s value %u diff %d sec %ld msec %ld}"

DescriptionSubevent Type

Type of wdsysmon subevent.type

Name of the node that the POSIX process is on.node

POSIX process name for this subevent.procname

POSIX process ID for this subevent.

The three preceding fields describe the process whose memory usage is being
monitored.

Note

pid

Can be either TRUE or FALSE. TRUE means that the value is a percentage value; FALSE
means that the value is an absolute value (may be an averaged value).

is_percent

Configuring and Managing Embedded Event Manager Policies
87

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionSubevent Type

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the process used memory is in the latest sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the
averaged process used memory utilization is in the given time window.

value

DescriptionSubevent Type

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the diff is the percentage difference between the first process used
memory sample ever collected and the latest process usedmemory sample. If a timewindow
is specified and is greater than zero in the event registration Tcl command extension, the
diff is the percentage difference between the oldest and latest process used memory
utilization in the specified time window.

diff

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

If the is_percent argument is FALSE, and the sec and msec arguments are specified as 0 or are unspecified
in the event registration Tcl command extension:

• value is the process used memory in the latest sample.

• diff is 0.

• sec and msec are both 0.

If the is_percent argument is FALSE, and a time window is specified as greater than zero in the event
registration Tcl command extension:

• value is the averaged process used memory sample value in the specified time window.

• diff is 0.

• sec andmsec are both the actual time difference between the time stamps of the oldest and latest samples
in this time window.

If the is_percent argument is TRUE, and a time window is specified as greater than zero in the event registration
Tcl command extension:

• value is 0.

• diff is the percentage difference between the oldest and latest process used memory samples in the
specified time window.

• sec and msec are the actual time difference between the time stamps of the oldest and latest process used
memory samples in this time window.

If the is_percent argument is TRUE, and the sec and msec arguments are specified as 0 or are unspecified in
the event registration Tcl command extension:

• value is 0.

Configuring and Managing Embedded Event Manager Policies
88

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

• diff is the percentage difference between the first process used memory sample ever collected and the
latest process used memory sample.

• sec and msec are the actual time difference between the time stamps of the first process used memory
sample ever collected and the latest process used memory sample.

For mem_tot_avail Subevent

"{type %s node {%s} is_percent %s used %u avail %u diff %d sec %ld msec %ld}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node for which the total available memory is being monitored.node

Can be either TRUE or FALSE. TRUE means that the value is a percentage value; FALSE
means that the value is an absolute value (may be an averaged value).

is_percent

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the total used memory is in the latest sample. If a time window is
specified and is greater than zero in the event registration Tcl command extension, the
averaged total used memory utilization is in the given time window.

used

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the avail is in the latest total available memory sample. If a time
window is specified and is greater than zero in the event registration Tcl command extension,
the avail is the total available memory utilization in the specified time window.

avail

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the diff is the percentage difference between the first total available
memory sample ever collected and the latest total available memory sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the diff
is the percentage difference between the oldest and latest total available memory utilization
in the specified time window.

diff

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, they are the actual time difference
between the time stamps of the oldest and latest samples in this time window.

secmsec

If the is_percent argument is FALSE, and the sec and msec arguments are specified as 0 or are unspecified
in the event registration Tcl command extension:

• used is the total used memory in the latest sample.

• avail is the total available memory in the latest sample.

• diff is 0.

• sec and msec are both 0.

Configuring and Managing Embedded Event Manager Policies
89

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

If the is_percent argument is FALSE, and a time window is specified as greater than zero in the event
registration Tcl command extension:

• used is 0.

• avail is the averaged total available memory sample value in the specified time window.

• diff is 0.

• sec and msec are both the actual time difference between the time stamps of the oldest and latest total
available memory samples in this time window.

If the is_percent argument is TRUE, and a time window is specified as greater than zero in the event registration
Tcl command extension:

• used is 0.

• avail is 0.

• diff is the percentage difference between the oldest and latest total available memory samples in the
specified time window.

• sec and msec are both the actual time difference between the time stamps of the oldest and latest total
available memory samples in this time window.

If the is_percent argument is TRUE, and the sec and msec arguments are specified as 0 or are unspecified in
the event registration Tcl command extension:

• used is 0.

• avail is 0.

• diff is the percentage difference between the first total available memory sample ever collected and the
latest total available memory sample.

• sec and msec are the actual time difference between the time stamps of the first total available memory
sample ever collected and the latest total available memory sample.

For mem_tot_used Subevent

"{type %s node {%s} is_percent %s used %u avail %u diff %d sec %ld msec %ld}"

DescriptionSubevent
Type

Type of wdsysmon subevent.type

Name of the node for which the total used memory is being monitored.node

Can be either TRUE or FALSE. TRUE means that the value is a percentage value; FALSE
means that the value is an absolute value (may be an averaged value).

is_percent

Configuring and Managing Embedded Event Manager Policies
90

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

DescriptionSubevent
Type

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the total used memory is in the latest sample. If a time window is
specified and is greater than zero in the event registration Tcl command extension, the
averaged total used memory utilization is in the given time window.

used

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the avail is in the latest total used memory sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the
avail is the total used memory utilization in the specified time window.

avail

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, the diff is the percentage difference between the first total used
memory sample ever collected and the latest total used memory sample. If a time window
is specified and is greater than zero in the event registration Tcl command extension, the diff
is the percentage difference between the oldest and latest total used memory utilization in
the specified time window.

diff

If the sec and msec variables are specified as 0 or are unspecified in the event registration
Tcl command extension, they are both 0. If a time window is specified and is greater than
zero in the event registration Tcl command extension, the sec and msec variables are the
actual time difference between the time stamps of the oldest and latest samples in this time
window.

secmsec

If the is_percent argument is FALSE, and the sec and msec arguments are specified as 0 or are unspecified
in the event registration Tcl command extension:

• used is the total used memory in the latest sample,

• avail is the total available memory in the latest sample,

• diff is 0,

• sec and msec are both 0,

If the is_percent argument is FALSE, and a time window is specified as greater than zero in the event
registration Tcl command extension:

• used is the averaged total used memory sample value in the specified time window,

• avail is 0,

• diff is 0,

• sec and msec are both the actual time difference between the time stamps of the oldest and latest total
used memory samples in this time window,

If the is_percent argument is TRUE, and a time window is specified as greater than zero in the event registration
Tcl command extension:

• used is 0.

• avail is 0.

Configuring and Managing Embedded Event Manager Policies
91

Configuring and Managing Embedded Event Manager Policies
event_reqinfo

• diff is the percentage difference between the oldest and latest total used memory samples in the specified
time window.

• sec and msec are both the actual time difference between the time stamps of the oldest and latest total
used memory samples in this time window.

If the is_percent argument is TRUE, and the sec and msec arguments are specified as 0 or are unspecified in
the event registration Tcl command extension:

• used is 0.

• avail is 0.

• diff is the percentage difference between the first total used memory sample ever collected and the latest
total used memory sample.

• sec andmsec are the actual time difference between the time stamps of the first total usedmemory sample
ever collected and the latest total used memory sample.

Set _cerrno

Yes

event_reqinfo_multi
Adds a new function to retrieve the event_reqinfo data for every event that contributed to the triggering of
the script. The data returned will be a list of result strings indexed by event specification tag. Error processing
is the same as in event_reqinfo function.

Syntax

event_reqinfo_multi

Arguments

None

Result String

The following section shows the result string from the event reqinfo multi call:
"<ev-tag> {event_id %u event_type %u event_type_string
{%s} event_pub_sec %ld event_pub_msec %ld timer_type {%s} timer_time_sec
%ld timer_time_msec %ld timer_remain_sec %ld timer_remain_msec %ld}

<ev-tag> {event_id %u event_type %u event_type_string
{%s} event_pub_sec %ld event_pub_msec %ld oid {%s} val {%s} delta_val
{%s} exit_event {%s}}"

Typical usage for a multi-event consisting of both a timer event and an
SNMP event might be:

array set arr_minfo [event_reqinfo_multi]
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
array set arr_einfo $arr_minfo(<ev-tag-for-timer-event-spec>)
global timer_type timer_time_sec

Configuring and Managing Embedded Event Manager Policies
92

Configuring and Managing Embedded Event Manager Policies
event_reqinfo_multi

set timer_type $arr_einfo(timer_type)
set timer_time_sec $arr_einfo(timer_time_sec)

The output of event_reqinfo_multi is ordered from most recent to least recent event that contributed to the
triggering of the policy.

Embedded Event Manager Event Publish Tcl Command Extension

event_publish appl
Publishes an application-specific event.

Syntax

event_publish sub_system ? type ? [arg1 ?] [arg2 ?] [arg3 ?] [arg4 ?]

Arguments

(Mandatory) Number assigned to the EEM policy that published the application-specific
event. Number is set to 798 because all other numbers are reserved for Cisco use.

sub_system

(Mandatory) Event subtype within the specified component. The sub_system and type
arguments uniquely identify an application event. Must be an integer between 1 and
4294967295, inclusive.

type

(Optional) Four pieces of application event publisher string data.[arg1 ?]-[arg4
?]

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

Sample Usage

This example demonstrates how to use the event_publish appl Tcl command extension to execute a script n
times repeatedly to perform some function (for example, to measure the amount of CPU time taken by a given
group of Tcl statements). This example uses two Tcl scripts.

Script1 publishes a type 9999 EEM event to cause Script2 to run for the first time. Script1 is registered as a
none event and is run using the Cisco IOSXR software CLI event manager run command. Script2 is registered
as an EEM application event of type 9999, and this script checks to see if the application publish arg1 data
(the iteration number) exceeds the EEM environment variable test_iterations value. If the test_iterations value
is exceeded, the script writes a message and exits; otherwise the script executes the remaining statements and

Configuring and Managing Embedded Event Manager Policies
93

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Event Publish Tcl Command Extension

reschedules another run. To measure the CPU utilization for Script2, use a value of test_iterations that is a
multiple of 10 to calculate the amount of average CPU time used by Script2.

To run the Tcl scripts, enter the following Cisco IOS XR software commands:

configure terminal
event manager environment test_iterations 100
event manager policy script1.tcl
event manager policy script2.tcl
end
event manager run script1.tcl

The Tcl script Script2 is executed 100 times. If you execute the script without the extra processing and derive
the average CPU utilization, and then add the extra processing and repeat the test, you can subtract the former
CPU utilization from the later CPU utilization to determine the average for the extra processing.

Script1 (script1.tcl)

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

Query the event info.
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

action_syslog priority info msg "EEM application_publish test start"
if {$_cerrno != 0} {

set result [format \
"component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

Cause the first iteration to run.
event_publish sub_system 798 type 9999 arg1 0
if {$_cerrno != 0} {

set result [format \
"component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

Script2 (script2.tcl)

::cisco::eem::event_register_appl sub_system 798 type 9999

Check if all the required environment variables exist.
If any required environment variable does not exist, print out an error msg and quit.
if {![info exists test_iterations]} {

set result \
"Policy cannot be run: variable test_iterations has not been set"

error $result $errorInfo
}

Configuring and Managing Embedded Event Manager Policies
94

Configuring and Managing Embedded Event Manager Policies
event_publish appl

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

Query the event info.
array set arr_einfo [event_reqinfo]
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
Data1 contains the arg1 value used to publish this event.
set iter $arr_einfo(data1)

Use the arg1 info from the previous run to determine when to end.
if {$iter >= $test_iterations} {

Log a message.
action_syslog priority info msg "EEM application_publish test end"
if {$_cerrno != 0} {
set result [format \

"component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}
exit 0

}
set iter [expr $iter + 1]

Log a message.
set msg [format "EEM application_publish test iteration %s" $iter]
action_syslog priority info msg $msg
if {$_cerrno != 0} {

set result [format "component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

Do whatever processing that you want to measure here.

Cause the next iteration to run. Note that the iteration is passed to the
next operation as arg1.
event_publish sub_system 798 type 9999 arg1 $iter
if {$_cerrno != 0} {

set result [format \
"component=%s; subsys err=%s; posix err=%s;\n%s" \
$_cerr_sub_num $_cerr_sub_err $_cerr_posix_err $_cerr_str]

error $result
}

Embedded Event Manager Multiple Event Support Tcl Command Extensions

Attribute
Specifies a complex event used for Multi Event Support.

Syntax

attribute tag ? [occurs ?]

Configuring and Managing Embedded Event Manager Policies
95

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Multiple Event Support Tcl Command Extensions

Arguments

Specifies a tag using the event-tag argument that can be used with the attribute command to associate
an event.

tag

(Optional) Specifies the number of occurrences before an EEM event is triggered. If not specified,
an EEM event is triggered on the first occurrence. The range is from 1 to 4294967295

occurs

Result String

None

Example:

attribute tag 1 occurs 1

Correlate
Builds a single complex event and allows Boolean logic to relate events.

Syntax

correlate event ? event ?

Arguments

Specifies the event that can be used with the trigger command to support multiple event statements
within an script.

If the event associated with the event-tag argument occurs for the number of times specified by the
trigger command, the result is true. If not, the result is false.

event

(Optional) Specifies that if event 1 occurs the action is executed, and if event 2 and event 3 occur
together the action is not executed.

andnot

(Optional) Specifies that if event 1 occurs the action is executed, and if event 2 and event 3 occur
together the action is executed.

and

(Optional) Specifies that if event 1 occurs the action is executed, or else if event 2 and event 3 occur
together the action is executed.

or

Result String

None

Example:

correlate event 1 or event 2 and event 3

Trigger
Specifies the multiple event configuration ability of Embedded Event Manager (EEM) events. A multiple
event is one that can involve one or more event occurrences and a time period for the event to occur. The
events are raised based on the specified parameters.

Configuring and Managing Embedded Event Manager Policies
96

Configuring and Managing Embedded Event Manager Policies
Correlate

Syntax

trigger [occurs ?] [period ?] [period-start ?] [delay ?]

Arguments

(Optional) Specifies the number of times the total correlation occurs before an EEM event is
raised. When a number is not specified, an EEM event is raised on the first occurrence. The
range is from 1 to 4294967295.

occurs

(Optional) Time interval in seconds and optional milliseconds, during which the one or more
occurrences must take place. This is specified in the format ssssssssss[.mmm], where ssssssssss
must be an integer number representing seconds between 0 and 4294967295, inclusive and
mmm represents milliseconds and must be an integer number between 0 to 999.

period

(Optional) Specifies the start of an event correlation window. If not specified, event monitoring
is enabled after the first CRON period occurs.

period-start

(Optional) Specifies the number of seconds and optional milliseconds after which an event
will be raised if all the conditions are true (specified in the format ssssssssss[.mmm], where
ssssssssss must be an integer number representing seconds between 0 and 4294967295,
inclusive and mmm represents milliseconds and must be an integer number between 0 to 999).

delay

Result String

None

Example:

trigger occurs 1 period-start "0 8 * * 1-5" period 720

Embedded Event Manager Action Tcl Command Extensions

action_process
Starts, restarts, or kills a Software Modularity process. This Tcl command extension is supported only in
Software Modularity images.

Syntax

action_process start|restart|kill [job_id ?]
[process_name ?] [instance ?]

Arguments

(Mandatory) Specifies that a process is to be started.start

(Mandatory) Specifies that a process is to be restarted.restart

(Mandatory) Specifies that a process is to be stopped (killed).kill

Configuring and Managing Embedded Event Manager Policies
97

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager Action Tcl Command Extensions

(Optional) System manager assigned job ID for the process. If you specify this argument, it
must be an integer between 1 and 4294967295, inclusive.

job_id

(Optional) Process name. Either job_id must be specified or process_name and instance must
be specified.

process_name

(Optional) Process instance ID. If you specify this argument, it must be an integer between 1
and 4294967295, inclusive.

instance

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 14) FH_ENOSUCHACTION (unknown action type)

This error means that the action command requested was unknown.

(_cerr_sub_num = 425, _cerr_sub_err = 1) SYSMGR_ERROR_INVALID_ARGS (Invalid arguments
passed)

This error means that the arguments passed in were invalid.

(_cerr_sub_num = 425, _cerr_sub_err = 2) SYSMGR_ERROR_NO_MEMORY (Could not allocate required
memory)

This error means that an internal SYSMGR request for memory failed.

(_cerr_sub_num = 425, _cerr_sub_err = 5) SYSMGR_ERROR_NO_MATCH (This process is not known
to sysmgr)

This error means that the process name was not known.

(_cerr_sub_num = 425, _cerr_sub_err = 14) SYSMGR_ERROR_TOO_BIG (outside the valid limit)

This error means that an object size exceeded its maximum.

(_cerr_sub_num = 425, _cerr_sub_err = 15) SYSMGR_ERROR_INVALID_OP (Invalid operation for
this process)

This error means that the operation was invalid for the process.

action_program
Allows a Tcl script to run a POSIX process (program), optionally with a given argument string, environment
string, Standard Input (stdin) pathname, Standard Output (stdout) pathname, or Standard Error (stderr)
pathname. This Tcl command extension is supported only in Software Modularity images.

Configuring and Managing Embedded Event Manager Policies
98

Configuring and Managing Embedded Event Manager Policies
action_program

Syntax

action_program path ? [argv ?] [envp ?] [stdin ?] [stdout ?] [stderr ?]

Arguments

(Mandatory) Pathname of a program to run.path

(Optional) Argument string of the program.argv

(Optional) Environment string of the program.envp

(Optional) Pathname for stdin.stdin

(Optional) Pathname for stdout.stdout

(Optional) Pathname for stderr.stderr

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 14) FH_ENOSUCHACTION (unknown action type)

This error means that the action command requested was unknown.

(_cerr_sub_err = 34) FH_EMAXLEN (maximum length exceeded)

This error means that the object length or number exceeded the maximum.

action_script
Allows a Tcl script to enable or disable the execution of all Tcl scripts (enables or disables the script scheduler).

Syntax

action_script [status enable|disable]

Arguments

(Optional) Flag to indicate script execution status. If this argument is set to enable, script execution is
enabled; if this argument is set to disable, script execution is disabled.

status

Configuring and Managing Embedded Event Manager Policies
99

Configuring and Managing Embedded Event Manager Policies
action_script

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 14) FH_ENOSUCHACTION (unknown action type)

This error means that the action command requested was unknown.

(_cerr_sub_err = 52) FH_ECONFIG (configuration error)

This error means that a configuration error has occurred.

action_setver_prior
Revert the process identified by the absolute path to the prior version.

Syntax

action_setver_prior [path ?]

Arguments

(Mandatory) The process executable path.path

Result String

None

Set _cerrno

Yes

action_setnode
Switches to the given node to enable subsequent EEM commands to be performed on that node. The following
EEM commands use action_setnode to set their target node:

• action_process

• sys_reqinfo_proc

• sys_reqinfo_proc_all

Configuring and Managing Embedded Event Manager Policies
100

Configuring and Managing Embedded Event Manager Policies
action_setver_prior

• sys_reqinfo_crash_history

• sys_reqinfo_proc_version

Syntax

action_setnode [node ?]

Arguments

(Mandatory)Name of the node.node

Result String

None

Set _cerrno

Yes

action_syslog
Logs a message.

Syntax

action_syslog [priority emerg|alert|crit|err|warning|notice|info|debug]
[msg ?]

Arguments

(Optional) Action_syslog message facility level. If this argument is not specified, the default priority
is LOG_INFO.

priority

(Optional) Message to be logged.msg

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 14) FH_ENOSUCHACTION (unknown action type)

This error means that the action command requested was unknown.

Configuring and Managing Embedded Event Manager Policies
101

Configuring and Managing Embedded Event Manager Policies
action_syslog

action_track_read
Reads the state of a tracked object when an Embedded Event Manager (EEM) script is triggered.

Syntax

action_track_read ?

Arguments

(Mandatory) Tracked object name.? (represents a string)

Result String

name {%s}

state {%s}

Set _cerrno

Yes
FH_ENOTRACK

This error means that the tracked object name was not found.

Embedded Event Manager Utility Tcl Command Extensions

appl_read
Reads Embedded Event Manager (EEM) application volatile data. This Tcl command extension provides
support for reading EEM application volatile data. EEM application volatile data can be published by a
Cisco IOS XR software process that uses the EEM application publish API. EEM application volatile data
cannot be published by an EEM policy.

Currently there are no Cisco IOS XR software processes that publish application volatile data.Note

Syntax

appl_read name ? length ?

Arguments

(Mandatory) Name of the application published string data.name

(Mandatory) Length of the string data to read.Must be an integer number between 1 and 4294967295,
inclusive.

length

Configuring and Managing Embedded Event Manager Policies
102

Configuring and Managing Embedded Event Manager Policies
action_track_read

Result String

data %s

Where data is the application published string data to be read.

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 7) FH_ENOSUCHKEY (could not find key)

This error means that the application event detector info key or other ID was not found.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

appl_reqinfo
Retrieves previously saved information from the Embedded Event Manager (EEM). This Tcl command
extension provides support for retrieving information from EEM that has been previously saved with a unique
key, which must be specified in order to retrieve the information. Note that retrieving the information deletes
it from EEM. It must be resaved if it is to be retrieved again.

Syntax

appl_reqinfo key ?

Arguments

(Mandatory) String key of the data.key

Result String

data %s

Where data is the application string data to be retrieved.

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

Configuring and Managing Embedded Event Manager Policies
103

Configuring and Managing Embedded Event Manager Policies
appl_reqinfo

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 7) FH_ENOSUCHKEY (could not find key)

This error means that the application event detector info key or other ID was not found.

appl_setinfo
Saves information in the EEM. This Tcl command extension provides support for saving information in the
EEM that can be retrieved later by the same policy or by another policy. A unique key must be specified. This
key allows the information to be retrieved later.

Syntax

appl_setinfo key ? data ?

Arguments

(Mandatory) String key of the data.key

(Mandatory) Application string data to save.data

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 8) FH_EDUPLICATEKEY (duplicate appl info key)

This error means that the application event detector info key or other ID was a duplicate.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

(_cerr_sub_err = 34) FH_EMAXLEN (maximum length exceeded)

This error means that the object length or number exceeded the maximum.

Configuring and Managing Embedded Event Manager Policies
104

Configuring and Managing Embedded Event Manager Policies
appl_setinfo

(_cerr_sub_err = 43) FH_EBADLENGTH (bad API length)

This error means that the API message length was invalid.

counter_modify
Modifies a counter value.

Syntax

counter_modify event_id ? val ? op nop|set|inc|dec

Arguments

(Mandatory) Counter event ID returned by the register_counter Tcl command extension. Must
be an integer between 0 and 4294967295, inclusive.

event_id

(Mandatory)

• If op is set, this argument represents the counter value that is to be set.

• If op is inc, this argument is the value by which to increment the counter.

• If op is dec, this argument is the value by which to decrement the counter.

val

(Mandatory)

• nop—Retrieves the current counter value.

• set—Sets the counter value to the given value.

• inc—Increments the counter value by the given value.

• dec—Decrements the counter value by the given value.

op

Result String

val_remain %d

Where val_remain is the current value of the counter.

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

Configuring and Managing Embedded Event Manager Policies
105

Configuring and Managing Embedded Event Manager Policies
counter_modify

(_cerr_sub_err = 11) FH_ENOSUCHESID (unknown event specification ID)

This error means that the event specification ID could not be matched when the event was being registered
or that an event detector internal event structure is corrupt.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 30) FH_ECTBADOPER (bad counter threshold operator)

This error means that the counter event detector set or modify operator was invalid.

fts_get_stamp
Returns the time period elapsed since the last software boot. Use this Tcl command extension to return the
number of nanoseconds since boot in an array “nsec nnnn” where nnnn is the number of nanoseconds.

Syntax

fts_get_stamp

Arguments

None

Result String

nsec %d

Where nsec is the number of nanoseconds since boot.

Set _cerrno

No

register_counter
Registers a counter and returns a counter event ID. This Tcl command extension is used by a counter publisher
to perform this registration before using the event ID to manipulate the counter.

Syntax

register_counter name ?

Arguments

(Mandatory) The name of the counter to be manipulated.name

Configuring and Managing Embedded Event Manager Policies
106

Configuring and Managing Embedded Event Manager Policies
fts_get_stamp

Result String

event_id %d
event_spec_id %d

Where event_id is the counter event ID for the specified counter; it can be used to manipulate the counter by
the unregister_counter or counter_modify Tcl command extensions. The event_spec_id argument is the
event specification ID for the specified counter.

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 4) FH_EINITONCE (Init() is not yet done, or done twice.)

This error means that the request to register the specific event was made before the EEM event detector had
completed its initialization.

(_cerr_sub_err = 6) FH_EBADEVENTTYPE (unknown EEM event type)

This error means that the event type specified in the internal event specification was invalid.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

(_cerr_sub_err = 10) FH_ECORRUPT (internal EEM API context is corrupt)

This error means that the internal EEM API context structure is corrupt.

(_cerr_sub_err = 11) FH_ENOSUCHESID (unknown event specification ID)

This error means that the event specification ID could not be matched when the event was being registered
or that an event detector internal event structure is corrupt.

(_cerr_sub_err = 12) FH_ENOSUCHEID (unknown event ID)

This error means that the event ID could not be matched when the event was being registered or that an event
detector internal event structure is corrupt.

(_cerr_sub_err = 16) FH_EBADFMPPTR (bad ptr to fh_p data structure)

This error means that the context pointer that is used with each EEM API call is incorrect.

Configuring and Managing Embedded Event Manager Policies
107

Configuring and Managing Embedded Event Manager Policies
register_counter

(_cerr_sub_err = 17) FH_EBADADDRESS (bad API control block address)

This error means that a control block address that was passed in the EEM API was incorrect.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 25) FH_ESUBSEXCEED (number of subscribers exceeded)

This error means that the number of timer or counter subscribers exceeded the maximum.

(_cerr_sub_err = 26) FH_ESUBSIDXINV (invalid subscriber index)

This error means that the subscriber index was invalid.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

(_cerr_sub_err = 56) FH_EFDCONNERR (event detector connection error)

This error means that the EEM event detector that handles this request is not available.

register_timer
Registers a timer and returns a timer event ID. This Tcl command extension is used by a timer publisher to
perform this registration before using the event ID to manipulate the timer if it does not use the
event_register_timer command extension to register as a publisher and subscriber.

Syntax

register_timer watchdog|countdown|absolute|cron name ?

Arguments

(Mandatory) Name of the timer to be manipulated.name

Result String

event_id %u

Where event_id is the timer event ID for the specified timer (can be used to manipulate the timer by the
timer_arm or timer_cancel command extensions).

Set _cerrno

Yes

Configuring and Managing Embedded Event Manager Policies
108

Configuring and Managing Embedded Event Manager Policies
register_timer

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 4) FH_EINITONCE (Init() is not yet done, or done twice.)

This error means that the request to register the specific event was made before the EEM event detector had
completed its initialization.

(_cerr_sub_err = 6) FH_EBADEVENTTYPE (unknown EEM event type)

This error means that the event type specified in the internal event specification was invalid.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

(_cerr_sub_err = 10) FH_ECORRUPT (internal EEM API context is corrupt)

This error means that the internal EEM API context structure is corrupt.

(_cerr_sub_err = 11) FH_ENOSUCHESID (unknown event specification ID)

This error means that the event specification ID could not be matched when the event was being registered
or that an event detector internal event structure is corrupt.

(_cerr_sub_err = 16) FH_EBADFMPPTR (bad ptr to fh_p data structure)

This error means that the context pointer that is used with each EEM API call is incorrect.

(_cerr_sub_err = 17) FH_EBADADDRESS (bad API control block address)

This error means that a control block address that was passed in the EEM API was incorrect.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 25) FH_ESUBSEXCEED (number of subscribers exceeded)

This error means that the number of timer or counter subscribers exceeded the maximum.

(_cerr_sub_err = 26) FH_ESUBSIDXINV (invalid subscriber index)

This error means that the subscriber index was invalid.

Configuring and Managing Embedded Event Manager Policies
109

Configuring and Managing Embedded Event Manager Policies
register_timer

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

(_cerr_sub_err = 56) FH_EFDCONNERR (event detector connection error)

This error means that the EEM event detector that handles this request is not available.

timer_arm
Arms a timer. The type could be CRON, watchdog, countdown, or absolute.

Syntax

timer_arm event_id ? cron_entry ?|time ?

Arguments

(Mandatory)Timer event ID returned by the register_timer command extension. Must be an
integer between 0 and 4294967295, inclusive.

event_id

(Mandatory)Must exist if the timer type is CRON.Must not exist for other types of timer. CRON
timer specification uses the format of the CRON table entry.

cron_entry

(Mandatory) Must exist if the timer type is not CRON. Must not exist if the timer type is CRON.
For watchdog and countdown timers, the number of seconds and milliseconds until the timer
expires; for an absolute timer, the calendar time of the expiration time (specified in
SSSSSSSSSS[.MMM] format, where SSSSSSSSSS must be an integer representing seconds
between 0 and 4294967295, inclusive, and where MMM must be an integer representing
milliseconds between 0 and 999). An absolute expiration date is the number of seconds and
milliseconds since January 1, 1970. If the date specified has already passed, the timer expires
immediately.

time

Result String

sec_remain %ld msec_remain %ld

Where sec_remain and msec_remain are the remaining time before the next expiration of the timer.

A value of 0 is returned for the sec_remain and msec_remain arguments if the timer type is CRON.Note

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

Configuring and Managing Embedded Event Manager Policies
110

Configuring and Managing Embedded Event Manager Policies
timer_arm

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 6) FH_EBADEVENTTYPE (unknown EEM event type)

This error means that the event type specified in the internal event specification was invalid.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

(_cerr_sub_err = 11) FH_ENOSUCHESID (unknown event specification ID)

This error means that the event specification ID could not be matched when the event was being registered
or that an event detector internal event structure is corrupt.

(_cerr_sub_err = 12) FH_ENOSUCHEID (unknown event ID)

This error means that the event ID could not be matched when the event was being registered or that an event
detector internal event structure is corrupt.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 27) FH_ETMDELAYZR (zero delay time)

This error means that the time specified to arm a timer was zero.

(_cerr_sub_err = 42) FH_ENOTREGISTERED (request for event spec that is unregistered)

This error means that the event was not registered.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

(_cerr_sub_err = 56) FH_EFDCONNERR (event detector connection error)

This error means that the EEM event detector that handles this request is not available.

timer_cancel
Cancels a timer.

Syntax

timer_cancel event_id ?

Configuring and Managing Embedded Event Manager Policies
111

Configuring and Managing Embedded Event Manager Policies
timer_cancel

Arguments

(Mandatory) Timer event ID returned by the register_timer command extension. Must be an
integer between 0 and 4294967295, inclusive.

event_id

Result String

sec_remain %ld msec_remain %ld

Where sec_remain and msec_remain are the remaining time before the next expiration of the timer.

A value of 0 will be returned for sec_remain and msec_remain if the timer type is CRON.Note

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 6) FH_EBADEVENTTYPE (unknown EEM event type)

This error means that the event type specified in the internal event specification was invalid.

(_cerr_sub_err = 7) FH_ENOSUCHKEY (could not find key)

This error means that the application event detector info key or other ID was not found.

(_cerr_sub_err = 11) FH_ENOSUCHESID (unknown event specification ID)

This error means that the event specification ID could not be matched when the event was being registered
or that an event detector internal event structure is corrupt.

(_cerr_sub_err = 12) FH_ENOSUCHEID (unknown event ID)

This error means that the event ID could not be matched when the event was being registered or that an event
detector internal event structure is corrupt.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

Configuring and Managing Embedded Event Manager Policies
112

Configuring and Managing Embedded Event Manager Policies
timer_cancel

This error means that the event detector was unavailable.

(_cerr_sub_err = 56) FH_EFDCONNERR (event detector connection error)

This error means that the EEM event detector that handles this request is not available.

unregister_counter
Unregisters a counter. This Tcl command extension is used by a counter publisher to unregister a counter that
was previously registered with the register_counter Tcl command extension.

Syntax

unregister_counter event_id ? event_spec_id ?

Arguments

(Mandatory) Counter event ID returned by the register_counter command extension. Must
be an integer between 0 and 4294967295, inclusive.

event_id

(Mandatory) Counter event specification ID for the specified counter returned by the
register_counter command extension. Must be an integer between 0 and 4294967295,
inclusive.

event_spec_id

Result String

None

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

(_cerr_sub_err = 11) FH_ENOSUCHESID (unknown event specification ID)

This error means that the event specification ID could not be matched when the event was being registered
or that an event detector internal event structure is corrupt.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

Configuring and Managing Embedded Event Manager Policies
113

Configuring and Managing Embedded Event Manager Policies
unregister_counter

(_cerr_sub_err = 26) FH_ESUBSIDXINV (invalid subscriber index)

This error means that the subscriber index was invalid.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

(_cerr_sub_err = 56) FH_EFDCONNERR (event detector connection error)

This error means that the EEM event detector that handles this request is not available.

Embedded Event Manager System Information Tcl Command Extensions

All EEM system information commands—sys_reqinfo _xxx—have the Set _cerrno section set to yes.Note

sys_reqinfo_cpu_all
Queries the CPU utilization of the top processes (both POSIX processes and IOS processes) during a specified
time period and in a specified order. This Tcl command extension is supported only in Software Modularity
images.

Syntax

sys_reqinfo_cpu_all order cpu_used [sec ?] [msec ?] [num ?]

Arguments

(Mandatory) Order used for sorting the CPU utilization of processes.order

(Mandatory) Specifies that the average CPU utilization, for the specified time window, will be
sorted in descending order.

cpu_used

(Optional) Time period, in seconds and milliseconds, during which the average CPU utilization
is calculated. Must be integers in the range from 0 to 4294967295. If not specified, or if both sec
and msec are specified as 0, the most recent CPU sample is used.

secmsec

(Optional) Number of entries from the top of the sorted list of processes to be displayed. Must be
an integer in the range from 1 to 4294967295. Default value is 5.

num

Result String

rec_list {{process CPU info string 0},{process CPU info string 1}, ...}

Where each process CPU info string is:

Configuring and Managing Embedded Event Manager Policies
114

Configuring and Managing Embedded Event Manager Policies
Embedded Event Manager System Information Tcl Command Extensions

pid %u name {%s} cpu_used %u

Marks the start of the process CPU information list.rec_list

Process ID.pid

Process name.name

Specifies that if sec and msec are specified with a number greater than zero, the average percentage
is calculated from the process CPU utilization during the specified time period. If sec and msec
are both zero or not specified, the average percentage is calculated from the process CPU utilization
in the latest sample.

cpu_used

Set _cerrno

Yes

sys_reqinfo_crash_history
Queries the crash information of all processes that have ever crashed. This Tcl command extension is supported
only in Software Modularity images.

Syntax

sys_reqinfo_crash_history

Arguments

None

Result String

rec_list {{crash info string 0},{crash info string 1}, ...}

Where each crash info string is:

job_id %u name {%s} respawn_count %u fail_count %u dump_count %u
inst_id %d exit_status 0x%x exit_type %d proc_state {%s} component_id 0x%x
crash_time_sec %ld crash_time_msec %ld

System manager assigned job ID for the process. An integer between 1 and 4294967295,
inclusive.

job_id

Process name.name

Total number of restarts for the process.respawn_count

Number of restart attempts of the process. This count is reset to zero when the process is
successfully restarted.

fail_count

Number of core dumps performed.dump_count

Process instance ID.inst_id

Configuring and Managing Embedded Event Manager Policies
115

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_crash_history

Last exit status of the process.exit_status

Last exit type.exit_type

Sysmgr process states. One of the following: error, forced_stop, hold, init, ready_to_run,
run, run_rnode, stop, waitEOltimer, wait_rnode, wait_spawntimer, wait_tpl.

proc_state

Version manager assigned component ID for the component to which the process belongs.component_id

Seconds and milliseconds since January 1, 1970, which represent the last time the process
crashed.

crash_time_sec

crash_time_msec

Set _cerrno

Yes

sys_reqinfo_mem_all
Queries the memory usage of the top processes (both POSIX and IOS) during a specified time period and in
a specified order. This Tcl command extension is supported only in Software Modularity images.

Syntax

sys_reqinfo_mem_all order allocates|increase|used [sec ?] [msec ?] [num ?]

Arguments

(Mandatory) Order used for sorting the memory usage of processes.order

(Mandatory) Specifies that the memory usage is sorted by the number of process allocations during
the specified time window, and in descending order.

allocates

(Mandatory) Specifies that the memory usage is sorted by the percentage of process memory
increase during the specified time window, and in descending order.

increase

(Mandatory) Specifies that the memory usage is sorted by the current memory used by the process.used

(Optional) Time period, in seconds and milliseconds, during which the process memory usage is
calculated. Must be integers in the range from 0 to 4294967295. If both sec and msec are specified
and are nonzero, the number of allocations is the difference between the number of allocations in
the oldest and latest samples collected in the time period. The percentage is calculated as the the
percentage difference between the memory used in the oldest and latest samples collected in the
time period. If not specified, or if both sec andmsec are specified as 0, the first sample ever collected
is used as the oldest sample; that is, the time period is set to be the time from startup until the
current moment.

secmsec

(Optional) Number of entries from the top of the sorted list of processes to be displayed. Must be
an integer in the range from 1 to 4294967295. Default value is 5.

num

Configuring and Managing Embedded Event Manager Policies
116

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_mem_all

Result String

rec_list {{process mem info string 0},{process mem info string 1}, ...}

Where each process mem info string is:

pid %u name {%s} delta_allocs %d initial_alloc %u current_alloc %u percent_increase %d

Marks the start of the process memory usage information list.rec_list

Process ID.pid

Process name.name

Specifies the difference between the number of allocations in the oldest and latest samples
collected in the time period.

delta_allocs

Specifies the amount of memory, in kilobytes, used by the process at the start of the time
period.

initial_alloc

Specifies the amount of memory, in kilobytes, currently used by the process.current_alloc

Specifies the percentage difference between the memory used in the oldest and latest
samples collected in the time period. The percentage difference can be expressed as
current_alloc minus initial_alloc times 100 and divided by initial_alloc.

percent_increase

Set _cerrno

Yes

sys_reqinfo_proc
Queries the information about a single POSIX process. This Tcl command extension is supported only in
Software Modularity images.

Syntax

sys_reqinfo_proc job_id ?

Arguments

(Mandatory) System manager assigned job ID for the process. Must be an integer between 1 and
4294967295, inclusive.

job_id

Result String

job_id %u component_id 0x%x name {%s} helper_name {%s} helper_path {%s} path {%s}
node_name {%s} is_respawn %u is_mandatory %u is_hold %u dump_option %d
max_dump_count %u respawn_count %u fail_count %u dump_count %u
last_respawn_sec %ld last_respawn_msec %ld inst_id %u proc_state %s

Configuring and Managing Embedded Event Manager Policies
117

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_proc

level %d exit_status 0x%x exit_type %d

System manager assigned job ID for the process. An integer between
1 and 4294967295, inclusive.

job_id

Version manager assigned component ID for the component to which
the process belongs.

component_id

Process name.name

Helper process name.helper_name

Executable path of the helper process.helper_path

Executable path of the process.path

Systemmanager assigned node name for the node to which the process
belongs.

node_name

Flag that specifies that the process can be respawned.is_respawn

Flag that specifies that the process must be alive.is_mandatory

Flag that specifies that the process is spawned until called by the API.is_hold

Core dumping options.dump_option

Maximum number of core dumping permitted.max_dump_count

Total number of restarts for the process.respawn_count

Number of restart attempts of the process. This count is reset to zero
when the process is successfully restarted.

fail_count

Number of core dumps performed.dump_count

Seconds and milliseconds in POSIX timer units since January 1, 1970,
which represent the last time the process was started.

last_respawn_seclast_respawn_msec

Process instance ID.inst_id

Sysmgr process states. One of the following: error, forced_stop, hold,
init, ready_to_run, run, run_rnode, stop, waitEOltimer, wait_rnode,
wait_spawntimer, wait_tpl.

proc_state

Process run level.level

Last exit status of the process.exit_status

Last exit type.exit_type

Set _cerrno

Yes

Configuring and Managing Embedded Event Manager Policies
118

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_proc

sys_reqinfo_proc_all
Queries the information of all POSIX processes. This Tcl command extension is supported only in Software
Modularity images.

Syntax

sys_reqinfo_proc_all

Arguments

None

Result String

rec_list {{process info string 0}, {process info string 1},...}

Where each process info string is the same as the result string of the sysreq_info_proc Tcl command extension.

Set _cerrno

Yes

sys_reqinfo_proc_version
Queries the version of the given process.

Syntax

sys_reqinfo_proc_version [job_id ?]

Arguments

(Mandatory) System manager assigned job ID for the process.

The integer number must be inclusively between 1 and 2147483647.

job_id

Result String

version_id %02d.%02d.%04d

Where version_id is the version manager that is assigned the version number of the process.

Set _cerrno

Yes

sys_reqinfo_routername
Queries the router name.

Configuring and Managing Embedded Event Manager Policies
119

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_proc_all

Syntax

sys_reqinfo_routername

Arguments

None

Result String

routername %s

Where routername is the name of the router.

Set _cerrno

Yes

sys_reqinfo_syslog_freq
Queries the frequency information of all syslog events.

Syntax

sys_reqinfo_syslog_freq

Arguments

None

Result String

rec_list {{event frequency string 0}, {log freq str 1}, ...}

Where each event frequency string is:

time_sec %ld time_msec %ld match_count %u raise_count %u occurs %u
period_sec %ld period_msec %ld pattern {%s}

Seconds and milliseconds in POSIX timer units since January 1, 1970, which
represent the time the last event was raised.

time_sectime_msec

Number of times that a syslog message matches the pattern specified by this syslog
event specification since event registration.

match_count

Number of times that this syslog event was raised.raise_count

Number of occurrences needed in order to raise the event; if not specified, the event
is raised on the first occurrence.

occurs

Number of occurrences must occur within this number of POSIX timer units in
order to raise the event; if not specified, the period check does not apply.

period_secperiod_msec

Configuring and Managing Embedded Event Manager Policies
120

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_syslog_freq

Regular expression used to perform syslog message pattern matching.pattern

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 9) FH_EMEMORY (insufficient memory for request)

This error means that an internal EEM request for memory failed.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 45) FH_ESEQNUM (sequence or workset number out of sync)

This error means that the event detector sequence or workset number was invalid.

(_cerr_sub_err = 46) FH_EREGEMPTY (registration list is empty)

This error means that the event detector registration list was empty.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

sys_reqinfo_syslog_history
Queries the history of the specified syslog message.

Syntax

sys_reqinfo_syslog_history

Arguments

None

Result String

rec_list {{log hist string 0}, {log hist str 1}, ...}

Where each log hist string is:

Configuring and Managing Embedded Event Manager Policies
121

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_syslog_history

time_sec %ld time_msec %ld msg {%s}

Seconds and milliseconds since January 1, 1970, which represent the time the message was
logged.

time_sec

time_msec

Syslog message.msg

Set _cerrno

Yes

(_cerr_sub_err = 2) FH_ESYSERR (generic/unknown error from OS/system)

This error means that the operating system reported an error. The POSIX errno value that is reported with the
error should be used to determine the cause of the operating system error.

(_cerr_sub_err = 22) FH_ENULLPTR (event detector internal error - ptr is null)

This error means that an internal EEM event detector pointer was null when it should have contained a value.

(_cerr_sub_err = 44) FH_EHISTEMPTY (history list is empty)

This error means that the history list was empty.

(_cerr_sub_err = 45) FH_ESEQNUM (sequence or workset number out of sync)

This error means that the event detector sequence or workset number was invalid.

(_cerr_sub_err = 54) FH_EFDUNAVAIL (connection to event detector unavailable)

This error means that the event detector was unavailable.

sys_reqinfo_stat
Queries the value of the statistic entity that is specified by name, and optionally the first modifier and the
second modifier.

Syntax

sys_reqinfo_stat [name ?][mod1 ?][mod2 ?]

Arguments

(Mandatory) Statistics data element name.name

(Optional) Statistics data element modifier
1.

mod_1

Configuring and Managing Embedded Event Manager Policies
122

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_stat

(Optional) Statistics data element modifier
2.

mod_2

Result String

name %s value %s

Statistics data element name.name

Value string of the statistics data element.value

Set _cerrno

Yes

sys_reqinfo_snmp
Queries the value of the entity specified by a Simple Network Management Protocol (SNMP) object ID.

Syntax

sys_reqinfo_snmp oid ? get_type exact|next

Arguments

(Mandatory) SNMP OID in dot notation (for example, 1.3.6.1.2.1.2.1.0).oid

(Mandatory) Type of SNMP get operation that needs to be applied to the specified oid. If the
get_type is "exact," the value of the specified oid is retrieved; if the get_type is "next," the value
of the lexicographical successor to the specified oid is retrieved.

get_type

Result String

oid {%s} value {%s}

SNMP OID.oid

Value string of the associated SNMP data element.value

sys_reqinfo_snmp_trap
This command is used to send a trap.

Syntax

sys_reqinfo_snmp_trap enterprise_oid ent-oid generic_trapnum gen-trapnum specific_trapnum
spe-trapnum
trap_oid oid trap_var varname

• Use the enterprise_oid argument to specify the enterprise oid of the trap.

• Use the generic_trapnum argument to specify generic trap number of the trap.

Configuring and Managing Embedded Event Manager Policies
123

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_snmp

• Use the specific_trapnum argument to specify specific trap number of the trap.

• Use the trap_oid argument to specify oid of the trap to send.

• Use the trap_var argument to specify the variable of oid(s) to send.

Example

sys_reqinfo_snmp_trap enterprise_oid 1.3.6.1.4.1.9.9.41.2 generic_trapnum 6 specific_trapnum
1 trap_oid 1.3.6.1.4.1.9.9.41.2.0.1 trap_var var1

sys_reqinfo_snmp_trapvar
This command is used to setup an array of oid and value given a trap variable. Similar to IOS, the trap variable
can contain a list of 10 multiple oids and values.

Syntax

sys_reqinfo_snmp_trapvar var varname oid oid int|uint|counter|gauge|octet|string|ipv4 value

• Use the var argument to specify the trap variable name.

• Use the oid argument to specify the oid of the trap.

Example

sys_reqinfo_snmp_trapvar var var1 oid 1.3.6.1.4.1.9.9.41.1.2.3.1.3 int 4

SMTP Library Command Extensions
All Simple Mail Transfer Protocol (SMTP) library command extensions belong to the ::cisco::lib namespace.

To use this library, the user needs to provide an e-mail template file. The template file can include Tcl global
variables so that the e-mail service and the e-mail text can be configured through the
event manager environmentCisco IOSXR software command-line interface (CLI) configuration command.
There are commands in this library to substitute the global variables in the e-mail template file and to send
the desired e-mail context with the To address, CC address, From address, and Subject line properly configured
using the configured e-mail server.

E-Mail Template

The e-mail template file has the following format:

Mailservername:<space><the list of candidate SMTP server addresses>
From:<space><the e-mail address of sender>
To:<space><the list of e-mail addresses of recipients>
Cc:<space><the list of e-mail addresses that the e-mail will be copied to>
Subject:<subject line>
<a blank line>
<body>

Configuring and Managing Embedded Event Manager Policies
124

Configuring and Managing Embedded Event Manager Policies
sys_reqinfo_snmp_trapvar

The template normally includes Tcl global variables to be configured.Note

The following is a sample e-mail template file:

Mailservername: $_email_server
From: $_email_from
To: $_email_to
Cc: $_email_cc
Subject: From router $routername: Process terminated

process name: $process_name
subsystem: $sub_system
exit status: $exit_status
respawn count: $respawn_count

Exported Tcl Command Extensions

smtp_send_email
Given the text of an e-mail template file with all global variables already substituted, sends the e-mail out
using SimpleMail Transfer Protocol (SMTP). The e-mail template specifies the candidatemail server addresses,
To addresses, CC addresses, From address, subject line, and e-mail body.

A list of candidate e-mail servers can be provided so that the library will try to connect the servers on the list
one by one until it can successfully connect to one of them.

Note

Syntax

smtp_send_email text

Arguments

(Mandatory) Text of an e-mail template file with all global variables already substituted.text

Result String

None

Set _cerrno

• Wrong 1st line format—Mailservername:list of server names.

• Wrong 2nd line format—From:from-address.

• Wrong 3rd line format—To:list of to-addresses.

• Wrong 4th line format—CC:list of cc-addresses.

Configuring and Managing Embedded Event Manager Policies
125

Configuring and Managing Embedded Event Manager Policies
smtp_send_email

• Error connecting to mail server:—$sock closed by remote server (where $sock is the name of the socket
opened to the mail server).

• Error connecting to mail server:—$sock reply code is $k instead of the service ready greeting (where
$sock is the name of the socket opened to the mail server; $k is the reply code of $sock).

• Error connecting to mail server:—cannot connect to all the candidate mail servers.

• Error disconnecting from mail server:—$sock closed by remote server (where $sock is the name of the
socket opened to the mail server).

Sample Scripts

After all needed global variables in the e-mail template are defined:

if [catch {smtp_subst [file join $tcl_library email_template_sm]} result] {
puts stderr $result
exit 1

}
if [catch {smtp_send_email $result} result] {

puts stderr $result
exit 1

}

smtp_subst
Given an e-mail template file e-mail_template, substitutes each global variable in the file by its user-defined
value. Returns the text of the file after substitution.

Syntax

smtp_subst e-mail_template

Arguments

(Mandatory) Name of an e-mail template file in which global variables need to be substituted
by a user-defined value. An example filename could be /disk0://example.template which
represents a file named example.template in a top-level directory on an ATA flash disk in
slot 0.

e-mail_template

Result String

The text of the e-mail template file with all the global variables substituted.

Set _cerrno

• cannot open e-mail template file

• cannot close e-mail template file

CLI Library Command Extensions
All command-line interface (CLI) library command extensions belong to the ::cisco::eem namespace.

Configuring and Managing Embedded Event Manager Policies
126

Configuring and Managing Embedded Event Manager Policies
smtp_subst

This library provides users the ability to run CLI commands and get the output of the commands in Tcl. Users
can use commands in this library to spawn an exec and open a virtual terminal channel to it, write the command
to execute to the channel so that the command will be executed by exec, and read back the output of the
command.

There are two types of CLI commands: interactive commands and non-interactive commands.

For interactive commands, after the command is entered, there will be a “Q&A” phase in which the router
will ask for different user options, and the user is supposed to enter the answer for each question. Only after
all the questions have been answered properly will the command run according to the user’s options until
completion.

For noninteractive commands, once the command is entered, the command will run to completion. To run
different types of commands using an EEM script, different CLI library command sequences should be used,
which are documented in the Using the CLI Library to Run a Noninteractive Command, on page 132 and in
the Using the CLI Library to Run an Interactive Command, on page 133.

Exported Tcl Command Extensions

cli_close
Closes the exec process and releases the VTY and the specified channel handler connected to the command-line
interface (CLI).

Syntax

cli_close fd tty_id

Arguments

(Mandatory) The CLI channel handler.fd

(Mandatory) The TTY ID returned from the cli_open command extension.tty_id

Result String

None

Set _cerrno

Cannot close the channel.

cli_exec
Writes the command to the specified channel handler to execute the command. Then reads the output of the
command from the channel and returns the output.

Syntax

cli_exec fd cmd

Configuring and Managing Embedded Event Manager Policies
127

Configuring and Managing Embedded Event Manager Policies
cli_close

Arguments

(Mandatory) The command-line interface (CLI) channel handler.fd

(Mandatory) The CLI command to execute.cmd

Result String

The output of the CLI command executed.

Set _cerrno

Error reading the channel.

cli_get_ttyname
Returns the real and pseudo tty names for a given TTY ID.

Syntax

cli_get_ttyname tty_id

Arguments

(Mandatory) The TTY ID returned from the cli_open command extension.tty_id

Result String

pty %s tty %s

Set _cerrno

None

cli_open
Allocates a vty, creates an EXEC command-line interface (CLI) session, and connects the vty to a channel
handler. Returns an array including the channel handler.

Each call to cli_open initiates a Cisco IOS XR software EXEC session that allocates a Cisco IOS XR software
vty. The vty remains in use until the cli_close routine is called. Vtys are allocated from the pool of vtys that
are configured using the line vty vty-pool CLI configuration command. Be aware that the cli_open routine
fails when two or fewer vtys are available, preserving the remaining vtys for Telnet use.

Note

Syntax

cli_open

Configuring and Managing Embedded Event Manager Policies
128

Configuring and Managing Embedded Event Manager Policies
cli_get_ttyname

Arguments

None

Result String

"tty_id {%s} pty {%d} tty {%d} fd {%d}"

DescriptionEvent
Type

TTY ID.tty_id

PTY device name.pty

TTY device name.tty

CLI channel
handler.

fd

Set _cerrno

• Cannot get pty for EXEC.

• Cannot create an EXEC CLI session.

• Error reading the first prompt.

cli_read
Reads the command output from the specified command-line interface (CLI) channel handler until the pattern
of the router prompt occurs in the contents read. Returns all the contents read up to the match.

Syntax

cli_read fd

Arguments

(Mandatory) CLI channel handler.fd

Result String

All the contents read.

Set _cerrno

Cannot get router name.

This Tcl command extension blocks waiting for the router prompt to show up in the contents read.Note

Configuring and Managing Embedded Event Manager Policies
129

Configuring and Managing Embedded Event Manager Policies
cli_read

cli_read_drain
Reads and drains the command output of the specified command-line interface (CLI) channel handler. Returns
all the contents read.

Syntax

cli_read_drain fd

Arguments

(Mandatory) The CLI channel handler.fd

Result String

All the contents read.

Set _cerrno

None

cli_read_line
Reads one line of the command output from the specified command-line interface (CLI) channel handler.
Returns the line read.

Syntax

cli_read_line fd

Arguments

(Mandatory) CLI channel handler.fd

Result String

The line read.

Set _cerrno

None

This Tcl command extension blocks waiting for the end of line to show up in the contents read.Note

cli_read_pattern
Reads the command output from the specified command-line interface (CLI) channel handler until the pattern
that is to be matched occurs in the contents read. Returns all the contents read up to the match.

Configuring and Managing Embedded Event Manager Policies
130

Configuring and Managing Embedded Event Manager Policies
cli_read_drain

The pattern matching logic attempts a match by looking at the command output data as it is delivered from
the Cisco IOS XR software command. The match is always done on the most recent 256 characters in the
output buffer unless there are fewer characters available, in which case the match is done on fewer characters.
If more than 256 characters in the output buffer are required for the match to succeed, the pattern will not
match.

Note

Syntax

cli_read_pattern fd ptn

Arguments

(Mandatory) CLI channel handler.fd

(Mandatory) Pattern to be matched when reading the command output from the channel.ptn

Result String

All the contents read.

Set _cerrno

None

This Tcl command extension blocks waiting for the specified pattern to show up in the contents read.Note

cli_write
Writes the command that is to be executed to the specified CLI channel handler. The CLI channel handler
executes the command.

Syntax

cli_write fd cmd

Arguments

(Mandatory) The CLI channel handler.fd

(Mandatory) The CLI command to execute.cmd

Result String

None

Configuring and Managing Embedded Event Manager Policies
131

Configuring and Managing Embedded Event Manager Policies
cli_write

Set _cerrno

None

Sample Usage

As an example, use configuration CLI commands to bring up Ethernet interface 1/0:

if [catch {cli_open} result] {
puts stderr $result
exit 1
} else {
array set cli1 $result
}
if [catch {cli_exec $cli1(fd) "config t"} result] {
puts stderr $result
exit 1
}
if [catch {cli_exec $cli1(fd) "interface Ethernet1/0"} result] {
puts stderr $result
exit 1
}
if [catch {cli_exec $cli1(fd) "no shut"} result] {
puts stderr $result
exit 1
}
if [catch {cli_exec $cli1(fd) "end"} result] {
puts stderr $result
exit 1
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} } result] {
puts stderr $result
exit 1

Using the CLI Library to Run a Noninteractive Command

To run a noninteractive command, use the cli_exec command extension to issue the command, and then wait
for the complete output and the router prompt. For example, the following shows the use of configuration
CLI commands to bring up Ethernet interface 1/0:

if [catch {cli_open} result] {
error $result $errorInfo
} else {
set fd $result
}
if [catch {cli_exec $fd "config t"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "interface Ethernet1/0"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "no shut"} result] {
error $result $errorInfo
}
if [catch {cli_exec $fd "end"} result] {
error $result $errorInfo
}
if [catch {cli_close $fd} result] {
error $result $errorInfo
}

Configuring and Managing Embedded Event Manager Policies
132

Configuring and Managing Embedded Event Manager Policies
cli_write

Using the CLI Library to Run an Interactive Command

To run interactive commands, three phases are needed:

• Phase 1: Issue the command using the cli_write command extension.

• Phase 2: Q&A Phase. Use the cli_read_pattern command extension to read the question (the regular
pattern that is specified to match the question text) and the cli_write command extension to write back
the answers alternately.

• Phase 3: Noninteractive phase. All questions have been answered, and the commandwill run to completion.
Use the cli_read command extension to wait for the complete output of the command and the router
prompt.

For example, use CLI commands to do squeeze bootflash: and save the output of this command in the Tcl
variable cmd_output.

if [catch {cli_open} result] {
error $result $errorInfo
} else {
array set cli1 $result
}

Phase 1: issue the command
if [catch {cli_write $cli1(fd) "squeeze bootflash:"} result] {
error $result $errorInfo
}

Phase 2: Q&A phase
wait for prompted question:
All deleted files will be removed. Continue? [confirm]
if [catch {cli_read_pattern $cli1(fd) "All deleted"} result] {
error $result $errorInfo
}
write a newline character
if [catch {cli_write $cli1(fd) "\n"} result] {
error $result $errorInfo
}
wait for prompted question:
Squeeze operation may take a while. Continue? [confirm]
if [catch {cli_read_pattern $cli1(fd) "Squeeze operation"} result] {
error $result $errorInfo
}
write a newline character
if [catch {cli_write $cli1(fd) "\n"} result] {
error $result $errorInfo
}

Phase 3: noninteractive phase
wait for command to complete and the router prompt
if [catch {cli_read $cli1(fd) } result] {
error $result $errorInfo
} else {
set cmd_output $result
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {
error $result $errorInfo
}

Configuring and Managing Embedded Event Manager Policies
133

Configuring and Managing Embedded Event Manager Policies
cli_write

The following example causes a router to be reloaded using the CLI reload command. Note that the EEM
action_reload command accomplishes the same result in a more efficient manner, but this example is presented
to illustrate the flexibility of the CLI library for interactive command execution.

1. execute the reload command
if [catch {cli_open} result] {

error $result $errorInfo
} else {

array set cli1 $result
}
if [catch {cli_write $cli1(fd) "reload"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_read_pattern $cli1(fd) ".*(System configuration has been modified. Save\\\?
\\\[yes/no\\\]:)"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_write $cli1(fd) "no"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_read_pattern $cli1(fd) ".*(Proceed with reload\\\? \\\[confirm\\\])"} result]
{

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_write $cli1(fd) "y"} result] {

error $result $errorInfo
} else {

set cmd_output $result
}
if [catch {cli_close $cli1(fd) $cli1(tty_id)} result] {

error $result $errorInfo
}

Tcl Context Library Command Extensions
All the Tcl context library command extensions belong to the ::cisco::eem namespace.

Exported Commands

context_retrieve
Retrieves Tcl variable(s) identified by the given context name, and possibly the scalar variable name, the array
variable name, and the array index. Retrieved information is automatically deleted.

Once saved information is retrieved, it is automatically deleted. If that information is needed by another policy,
the policy that retrieves it (using the context_retrieve command extension) should also save it again (using
the context_save command extension).

Note

Configuring and Managing Embedded Event Manager Policies
134

Configuring and Managing Embedded Event Manager Policies
Tcl Context Library Command Extensions

Syntax

context_retrieve ctxt [var] [index_if_array]

Arguments

(Mandatory) Context name.ctxt

(Optional) Scalar variable name or array variable name. Defaults to a null string if this
argument is not specified.

var

(Optional) Array index.index_if_array

The index_if_array argument is ignored when the var argument is a scalar variable.Note

If var is unspecified, retrieves the whole variable table saved in the context.

If var is specified and index_if_array is not specified, or if index_if_array is specified but var is a scalar
variable, retrieves the value of var.

If var is specified, and index_if_array is specified, and var is an array variable, retrieves the value of the
specified array element.

Result String

Resets the Tcl global variables to the state that they were in when the save was performed.

Set _cerrno

• A string displaying _cerrno, _cerr_sub_num, _cerr_sub_err, _cerr_posix_err, _cerr_str due to appl_reqinfo
error.

• Variable is not in the context.

Sample Usage

The following examples show how to use the context_save and context_retrieve command extension
functionality to save and retrieve data. The examples are shown in save and retrieve pairs.

Example 1: Save

If var is unspecified or if a pattern if specified, saves multiple variables to the context.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

set testvara 123
set testvarb 345
set testvarc 789
if {[catch {context_save TESTCTX “testvar*”} errmsg]} {

action_syslog msg "context_save failed: $errmsg"

Configuring and Managing Embedded Event Manager Policies
135

Configuring and Managing Embedded Event Manager Policies
context_retrieve

} else {
action_syslog msg "context_save succeeded"

}

Example 1: Retrieve

If var is unspecified, retrieves multiple variables from the context.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

if {[catch {foreach {var value} [context_retrieve TESTCTX] {set $var $value}} errmsg]} {
action_syslog msg "context_retrieve failed: $errmsg"

} else {
action_syslog msg "context_retrieve succeeded"

}
if {[info exists testvara]} {

action_syslog msg "testvara exists and is $testvara"
} else {

action_syslog msg "testvara does not exist"
}
if {[info exists testvarb]} {

action_syslog msg "testvarb exists and is $testvarb"
} else {

action_syslog msg "testvarb does not exist"
}
if {[info exists testvarc]} {

action_syslog msg "testvarc exists and is $testvarc"
} else {

action_syslog msg "testvarc does not exist"
}

Example 2: Save

If var is specified, saves the value of var.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

set testvar 123
if {[catch {context_save TESTCTX testvar} errmsg]} {

action_syslog msg "context_save failed: $errmsg"
} else {

action_syslog msg "context_save succeeded"
}

Example 2: Retrieve

If var is specified and index_if_array is not specified, or if index_if_array is specified but var is a scalar
variable, retrieves the value of var.

::cisco::eem::event_register_none

Configuring and Managing Embedded Event Manager Policies
136

Configuring and Managing Embedded Event Manager Policies
context_retrieve

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

if {[catch {set testvar [context_retrieve TESTCTX testvar]} errmsg]} {
action_syslog msg "context_retrieve failed: $errmsg"

} else {
action_syslog msg "context_retrieve succeeded"

}
if {[info exists testvar]} {

action_syslog msg "testvar exists and is $testvar"
} else {

action_syslog msg "testvar does not exist"
}

Example 3: Save

If var is specified, saves the value of var even if it is an array.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

array set testvar “testvar1 ok testvar2 not_ok”
if {[catch {context_save TESTCTX testvar} errmsg]} {

action_syslog msg "context_save failed: $errmsg"
} else {

action_syslog msg "context_save succeeded"
}

Example 3: Retrieve

If var is specified, and index_if_array is not specified, and var is an array variable, retrieves the entire array.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

if {[catch {array set testvar [context_retrieve TESTCTX testvar]} errmsg]} {
action_syslog msg "context_retrieve failed: $errmsg"

} else {
action_syslog msg "context_retrieve succeeded"

}
if {[info exists testvar]} {

action_syslog msg "testvar exists and is [array get testvar]"
} else {

action_syslog msg "testvar does not exist"
}

Example 4: Save

If var is specified, saves the value of var even if it is an array.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*

Configuring and Managing Embedded Event Manager Policies
137

Configuring and Managing Embedded Event Manager Policies
context_retrieve

namespace import ::cisco::lib::*

array set testvar “testvar1 ok testvar2 not_ok”
if {[catch {context_save TESTCTX testvar} errmsg]} {

action_syslog msg "context_save failed: $errmsg"
} else {

action_syslog msg "context_save succeeded"
}

Example 4: Retrieve

If var is specified, and index_if_array is specified, and var is an array variable, retrieves the specified array
element value.

::cisco::eem::event_register_none

namespace import ::cisco::eem::*
namespace import ::cisco::lib::*

if {[catch {set testvar [context_retrieve TESTCTX testvar testvar1]} errmsg]} {
action_syslog msg "context_retrieve failed: $errmsg"

} else {
action_syslog msg "context_retrieve succeeded"

}
if {[info exists testvar]} {

action_syslog msg "testvar exists and is $testvar"
} else {

action_syslog msg "testvar doesn't exist"
}

context_save
Saves Tcl variables that match a given pattern in current and global namespaces with the given context name
as identification. Use this Tcl command extension to save information outside of a policy. Saved information
can be retrieved by a different policy using the context_retrieve command extension.

Once saved information is retrieved, it is automatically deleted. If that information is needed by another policy,
the policy that retrieves it (using the context_retrieve command extension) should also save it again (using
the context_save command extension).

Note

Syntax

context_save ctxt [pattern]

Arguments

(Mandatory) Context name.ctxt

Configuring and Managing Embedded Event Manager Policies
138

Configuring and Managing Embedded Event Manager Policies
context_save

(Optional) Glob-style pattern as used by the string match Tcl command. If this argument is not
specified, the pattern defaults to the wildcard *.

There are three constructs used in glob patterns:

• * = all characters

• ? = 1 character

• [abc] = match one of a set of characters

pattern

Result String

None

Set _cerrno

A string displaying _cerrno, _cerr_sub_num, _cerr_sub_err, _cerr_posix_err,_cerr_str due to appl_setinfo
error.

Sample Usage

For examples showing how to use the context_save and context_retrieve command extension functionality
to save and retrieve data, see the Sample Usage, on page 135.

Configuring and Managing Embedded Event Manager Policies
139

Configuring and Managing Embedded Event Manager Policies
context_save

Configuring and Managing Embedded Event Manager Policies
140

Configuring and Managing Embedded Event Manager Policies
context_save

	Configuring and Managing Embedded Event Manager Policies
	Prerequisites for Configuring and Managing Embedded Event Manager Policies
	Information About Configuring and Managing Embedded Event Manager Policies
	Event Management
	System Event Detection
	Policy-Based Event Response
	Reliability Metrics

	System Event Processing

	Embedded Event Manager Management Policies
	Embedded Event Manager Scripts and the Scripting Interface (Tcl)
	Script Language
	Regular Embedded Event Manager Scripts
	Embedded Event Manager Callback Scripts
	Embedded Event Manager Policy Tcl Command Extension Categories
	Cisco File Naming Convention for Embedded Event Manager

	Embedded Event Manager Built-in Actions
	Application-specific Embedded Event Management
	Event Detection and Recovery
	General Flow of EEM Event Detection and Recovery
	System Manager Event Detector
	Timer Services Event Detector
	Syslog Event Detector
	None Event Detector
	Watchdog System Monitor Event Detector
	Distributed Event Detectors

	Embedded Event Manager Event Scheduling and Notification
	Reliability Statistics
	Hardware Card Reliability Metric Data
	Process Reliability Metric Data

	How to Configure and Manage Embedded Event Manager Policies
	Configuring Environmental Variables
	Environment Variables

	Registering Embedded Event Manager Policies
	Embedded Event Manager Policies

	How to Write Embedded Event Manager Policies Using Tcl
	Registering and Defining an EEM Tcl Script
	Displaying EEM Registered Policies
	Unregistering EEM Policies
	Suspending EEM Policy Execution
	Managing EEM Policies
	Displaying Software Modularity Process Reliability Metrics Using EEM
	Sample EEM Policies
	Programming EEM Policies with Tcl
	Tcl Policy Structure and Requirements
	EEM Entry Status
	EEM Exit Status
	EEM Policies and Cisco Error Number
	_cerrno: 32-Bit Error Return Values
	Error Class Encodings for XY

	Creating an EEM User Tcl Library Index
	Creating an EEM User Tcl Package Index

	Configuration Examples for Event Management Policies
	Environmental Variables Configuration: Example
	User-Defined Embedded Event Manager Policy Registration: Example
	Display Available Policies: Example
	Display Embedded Event Manager Process: Example

	Configuration Examples for Writing Embedded Event Manager Policies Using Tcl
	EEM Event Detector Demo: Example
	EEM Sample Policy Descriptions
	Event Manager Environment Variables for the Sample Policies
	Registration of Some EEM Policies
	Basic Configuration Details for All Sample Policies
	Using the Sample Policies
	Running the sl_intf_down.tcl Sample Policy
	Running the tm_cli_cmd.tcl Sample Policy
	Running the tm_crash_reporter.tcl Sample Policy
	Running the tm_fsys_usage.tcl Sample Policy

	Programming Policies with Tcl: Sample Scripts Example
	tm_cli_cmd.tcl Sample Policy
	sl_intf_down.tcl Sample Policy

	Tracing Tcl set Command Operations: Example

	Additional References
	Embedded Event Manager Policy Tcl Command Extension Reference
	Embedded Event Manager Event Registration Tcl Command Extensions
	event_register_appl
	event_register_cli
	event_register_config
	event_register_counter
	event_register_hardware
	event_register_none
	event_register_oir
	event_register_process
	event_register_snmp
	event_register_snmp_notification
	event_register_stat
	event_register_syslog
	event_register_timer
	event_register_timer_subscriber
	event_register_track
	event_register_wdsysmon

	Embedded Event Manager Event Information Tcl Command Extension
	event_reqinfo
	event_reqinfo_multi

	Embedded Event Manager Event Publish Tcl Command Extension
	event_publish appl

	Embedded Event Manager Multiple Event Support Tcl Command Extensions
	Attribute
	Correlate
	Trigger

	Embedded Event Manager Action Tcl Command Extensions
	action_process
	action_program
	action_script
	action_setver_prior
	action_setnode
	action_syslog
	action_track_read

	Embedded Event Manager Utility Tcl Command Extensions
	appl_read
	appl_reqinfo
	appl_setinfo
	counter_modify
	fts_get_stamp
	register_counter
	register_timer
	timer_arm
	timer_cancel
	unregister_counter

	Embedded Event Manager System Information Tcl Command Extensions
	sys_reqinfo_cpu_all
	sys_reqinfo_crash_history
	sys_reqinfo_mem_all
	sys_reqinfo_proc
	sys_reqinfo_proc_all
	sys_reqinfo_proc_version
	sys_reqinfo_routername
	sys_reqinfo_syslog_freq
	sys_reqinfo_syslog_history
	sys_reqinfo_stat
	sys_reqinfo_snmp
	sys_reqinfo_snmp_trap
	sys_reqinfo_snmp_trapvar

	SMTP Library Command Extensions
	smtp_send_email
	smtp_subst

	CLI Library Command Extensions
	cli_close
	cli_exec
	cli_get_ttyname
	cli_open
	cli_read
	cli_read_drain
	cli_read_line
	cli_read_pattern
	cli_write

	Tcl Context Library Command Extensions
	context_retrieve
	context_save

