
Script Infrastructure and Sample Templates

Table 1: Feature History Table

DescriptionRelease InformationFeature Name

When you create and run Python
scripts on the router, this feature
enables a contextual interaction
between the scripts, the IOS XR
software, and the external servers.
This context, programmed in the
script, uses Cisco IOS XR Python
packages, modules, and libraries to:

• obtain operational data from
the router

• set configurations and
conditions

• detect events in the network
and trigger an appropriate
action

Release 7.3.2Contextual Script Infrastructure

You can create Python scripts and execute the scripts on routers running Cisco IOSXR software. The software
supports the Python packages, libraries and dictionaries in the software image. For more informtion about the
script types and to run the scripts using CLI commands To run the same actions using NETCONF RPCs,

Cisco IOS XR, Release 7.3.2 supports creating scripts using Python version 3.5.

Cisco IOS XR, Release 7.5.1 supports creating scripts using Python version 3.9.

• Cisco IOS XR Python Packages, on page 2
• Cisco IOS XR Python Libraries, on page 4
• Sample Script Templates, on page 5
• Use Automation Scripts to Interact with the Router via gNMI RPCs, on page 8

Script Infrastructure and Sample Templates
1

Cisco IOS XR Python Packages
Table 2: Feature History Table

DescriptionRelease InformationFeature Name

This upgrade adds new modules
and capabilities to create Python
scripts and execute the scripts on
routers running Cisco IOS XR
software. Some of the modules
added as part of the upgraded IOS
XR Python 3.9 are: hashlib, idna,
packaging, pyparsing, six, yaml.

Release 7.5.1Upgraded IOS XR Python from
Version 3.5 to Version 3.9

With on-box Python scripting, automation scripts that was run from an external controller is now run on the
router. To achieve this functionality, Cisco IOS XR software provides contextual support using SDK libraries
and standard protocols.

The following Python third party application packages are supported by the scripting infrastructure and can
be used to create automation scripts.

Support Introduced in ReleaseDescriptionPackage

Release 7.3.2Chooses the appropriate
platform-specific directories for
user data.

appdirs

Release 7.3.2Defines an object type that can
compactly represent an array of
basic values: characters, integers,
floating point numbers.

array

Release 7.3.2Parses and serializes Abstract
Syntax Notation One (ASN.1) data
structures.

asn1crypto

Release 7.3.2Universal character encoding
auto-detector.

chardet

Release 7.3.2Provides a high-level interface for
asynchronously executing callables.

concurrent.futures

Release 7.3.2Implements Elliptic Curve Digital
Signature Algorithm (ECDSA)
cryptography library to create
keypairs (signing key and verifying
key), sign messages, and verify the
signatures.

ecdsa

Script Infrastructure and Sample Templates
2

Script Infrastructure and Sample Templates
Cisco IOS XR Python Packages

Support Introduced in ReleaseDescriptionPackage

Release 7.3.2Enumerates symbolic names
(members) bound to unique,
constant values.

enum

Release 7.3.2Manages email messages.email

Release 7.3.2Supports language-neutral,
platform-neutral, extensible
mechanism for serializing
structured data.

google.protobuf

Release 7.5.1Implements a common interface to
many different secure hash and
message digest algorithms.

hashlib

Release 7.5.1Supports the Internationalized
Domain Names in Applications
(IDNA) protocol as specified in
RFC 5891.

idna

Release 7.3.2Provides capability to create,
manipulate and operate on IPv4 and
IPv6 addresses and networks.

ipaddress

Release 7.3.2Supports adding functionality
useful for templating environments.

jinja2

Release 7.3.2Provides a lightweight data
interchange format.

json

Release 7.3.2Implements a text object that
escapes characters so it is safe to
use in HTML and XML.

markupsafe

Release 7.3.2Enables system-independent
network address manipulation and
processing of Layer 3 network
addresses.

netaddr

Release 7.5.1Add the necessary files and
structure to create the package.

packaging

Release 7.3.2Defines an interactive source code
debugger for Python programs.

pdb

Release 7.3.2Provides runtime facilities for
finding, introspecting, activating
and using installed distributions.

pkg_resources

Script Infrastructure and Sample Templates
3

Script Infrastructure and Sample Templates
Cisco IOS XR Python Packages

Support Introduced in ReleaseDescriptionPackage

Release 7.3.2Provides library to retrieve
information on running processes
and system utilization such as CPU,
memory, disks, sensors and
processes.

psutil

Release 7.3.2Provides a collection of ASN.1
modules expressed in form of
pyasn1 classes. Includes protocols
PDUs definition (SNMP, LDAP
etc.) and various data structures
(X.509, PKCS).

pyasn1

Release 7.5.1Provides a library of classes to
construct the grammar directly in
Python code.

pyparsing

Release 7.3.2Allows sending HTTP/1.1 requests
using Python.

requests

Release 7.3.2Defines the function that returns a
shell-escaped version of a Python
string.

shellescape

Release 7.5.1Provides simple utilities for
wrapping over differences between
Python 2 and Python 3.

six

Release 7.3.2Spawns new processes, connects to
input/output/error pipes, and obtain
return codes.

subprocess

Release 7.3.2HTTP client for Python.urllib3

Release 7.3.2Makes working with XML feel like
you are working with JSON.

xmltodict

Release 7.5.1Provides a human-friendly format
for structured data, that is both easy
to write for humans and still
parsable by computers.

yaml

Cisco IOS XR Python Libraries
Cisco IOS XR software provides support for the following SDK libraries and standard protocols.

Script Infrastructure and Sample Templates
4

Script Infrastructure and Sample Templates
Cisco IOS XR Python Libraries

SyntaxLibrary

To generate syslogs
from cisco.script_mgmt import xrlog

syslog = xrlog.getSysLogger('template_exec')

xrlog

#To connect to netconf client #
from iosxr.netconf.netconf_lib import
NetconfClient

nc = NetconfClient(debug=True)

netconf

To run native xr cli and config commands
from iosxr.xrcli.xrcli_helper import *

helper = XrcliHelper(debug = True)

xrclihelper

To validate configuration
import cisco.config_validation as xr

config_validation

For EEM operations
from iosxr import eem

eem

For Precommit script operations
from cisco.script_mgmt import precommit

precommit

Sample Script Templates
Table 3: Feature History Table

DescriptionRelease InformationFeature Name

You now have access to sample
scripts and templates published on
the Github repository. You can
leverage these samples to use the
python packages and libraries
developed by Cisco to build your
custom automation scripts for your
network

Release 7.5.1Github Repository for Automation
Scripts

Use these sample script templates based on script type to build your custom script.

To get familiar with IOS XR Python scripts, see the samples and templates on the Cisco Devnet developer
program and Github repository.

Follow these instructions to download the sample scripts from the Github repository to your router, and run
the scripts:

1. Clone the Github repository.
$git clone https://github.com/CiscoDevNet/iosxr-ops.git

2. Copy the Python files to the router's harddisk or a remote repository.

Script Infrastructure and Sample Templates
5

Script Infrastructure and Sample Templates
Sample Script Templates

https://github.com/CiscoDevNet/xr-python-scripts
https://developer.cisco.com/codeexchange/github/repo/CiscoDevNet/xr-python-scripts
https://github.com/CiscoDevNet/xr-python-scripts

Precommit Script

The following example shows the template for precommit scripts
from cisco.script_mgmt import precommit

def sample_method():
"""
Method documentation
"""

cfg = precommit.get_target_configs()
cfg = precommit.get_target_configs(format="sysdb") for target config in sysdb format

process and verify target configs here.

precommit.config_warning("Print a warning message in commit report")
precommit.config_error("Print an error message in commit report and abort commit

operation")

if __name__ == '__main__':

sample_method()

Config Script

The following example shows a code snippet for config script. Use this snippet in your script to import the
libraries required to validate configuration and also generate syslogs.
#Needed for config validation
import cisco.config_validation as xr

#Used for generating syslogs
from cisco.script_mgmt import xrlog
syslog = xrlog.getSysLogger('Add script name here')

def check_config(root):
#Add config validations
pass

xr.register_validate_callback([<Add config path here>],check_config)

Exec Script

Use this sample code snippet in your exec script to import Python libraries to connect to NETCONF client
and also to generate syslogs.
#To connect to netconf client
from iosxr.netconf.netconf_lib import NetconfClient

#To generate syslogs
syslog = xrlog.getSysLogger('template_exec')

def test_exec():
"""
Testcase for exec script
"""
nc = NetconfClient(debug=True)
nc.connect()
#Netconf or processing operations
nc.close()

Script Infrastructure and Sample Templates
6

Script Infrastructure and Sample Templates
Sample Script Templates

if __name__ == '__main__':
test_exec()

Process Script

Use the following sample code snippet to trigger a process script and perform various actions on the script.
You can leverage this snippet to create your own custom process script. Any exec script can be used as a
process script.
To trigger script
Step 1: Add and configure script as shown in README.MD

Step 2: Register the application with Appmgr

Configuraton:
appmgr process-script my-process-app
executable test_process.py
run args --threshold <threshold-value>

Step 3: Activate the registered application
appmgr process-script activate name my-process-app

Step 4: Check script status
show appmgr process-script-table

Router#show appmgr process-script-table
Name Executable Activated Status Restart Policy Config Pending
--------------- ------------------ --------- ------------- ---------------- --------------
my-process-app test_process.py Yes Running On Failure No

Step 5: More operations
Router#appmgr process-script ?
activate Activate process script
deactivate Deactivate process script
kill Kill process script
restart Restart process script
start Start process script
stop Stop process script

"""

#To connect to netconf client
from iosxr.netconf.netconf_lib import NetconfClient

#To generate syslogs
syslog = xrlog.getSysLogger('template_exec')

def test_process():
"""
Testcase for process script
"""
nc = NetconfClient(debug=True)
nc.connect()
#Netconf or any other operations
nc.close()

if __name__ == '__main__':
test_process()

Script Infrastructure and Sample Templates
7

Script Infrastructure and Sample Templates
Sample Script Templates

EEM Script

You can leverage the following sample code to import Python libraries to create your custom eem script and
also generate syslogs.
Required configuration:
User and AAA configuration

event manager event-trigger <trigger-name>
type syslog pattern "PROC_RESTART_NAME"

event manager action <action-name>
username <user>
type script script-name <script-name> checksum sha256 <checksum>

event manager policy-map policy1
trigger event <trigger-name>
action <action-name>

To verify:
Check for syslog EVENT SCRIPT EXECUTED: User restarted <process-name>

"""
#Needed for eem operations
from iosxr import eem

#Used to generate syslogs
from cisco.script_mgmt import xrlog
syslog = xrlog.getSysLogger(<add your script name here>)

event_dict consists of details of the event
rc, event_dict = eem.event_reqinfo()

#You can process the information as needed and take action for example: generate a syslog.
#Syslog type can be emergency, alert, critical, error, exception, warning, notification,
info, debug

syslog.info(<Add you syslog here>)

Use Automation Scripts to Interact with the Router via gNMI
RPCs

Table 4: Feature History Table

DescriptionRelease InformationFeature Name

You can create automation scripts to connect
to the gRPC Network Management Interface
(gNMI) server and interact with the router
using gNMI services. Based on gNMI-defined
RPCs, you can use the automation script to
connect to the gNMI server, manage the
configuration of network devices, and query
the operational data.

Release 7.5.2Automation Scripts for gNMIRPCs

Script Infrastructure and Sample Templates
8

Script Infrastructure and Sample Templates
Use Automation Scripts to Interact with the Router via gNMI RPCs

gRPC Network Management Interface (gNMI) is developed by Google. gNMI provides the mechanism to
install, manipulate, and delete the configuration of network devices, and also to view operational data. The
content provided through gNMI can be modeled using YANG. The supported operations are based on the
gNMI defined RPCs:
from iosxr.gnmi.gnmi_lib import GNMIClient
gnmi = GNMIClient()

#Connect
gnmi.connect()

#Capabilities
cap = gnmi.capabilities()

#Get
get = gnmi.get(get_request)

#Set
set = gnmi.set(set_request)

#Disconnect
gnmi.disconnect()

• gNMI Capabilities RPC: This RPC allows the client to retrieve the gNMI capabilities that is supported
by the target (router). This allows the target to validate the service version that is implemented and retrieve
the set of models that the target supports. The models can then be specified in subsequent RPCs to restrict
the set of data that is utilized. The CapabilityRequest RPC returns a response CapabilityResponse
RPC.

• gNMI GET RPC: This RPC specifies how to retrieve one or more of the configuration attributes, state
attributes or all attributes associated with a supported mode from a date tree. A GetRequest RPC is sent
from a client to the target to retrieve values from the data tree. A GetResponse RPC is sent in response
to the request.

• gNMI SET RPC: This RPC specifies how to set one or more configurable attributes associated with a
supported model. A SetRequest RPC is sent from a client to a target to update the values in the data tree.
The actions contained in a SetRequest RPC is treated as a single transaction. If any element of the
transaction fails, the entire transaction fails and is rolled back. A SetResponse RPC is sent in response
to the request.

• gNMI Connect RPC: This RPC specifies how to initiaize a connection to the client.

• gNMI Disconnect RPC: This RPC specifies how to end the connection with the client.

Restrictions for the gNMI Protocol

The following restrictions apply to the gNMI protocol:

• Subscribe RPC services are not supported.

• Only JSON_IETF encoding for GET and SET requests is supported

• CLI over GNMI is not supported

Follow the procedure to use automation scripts to interact with the router via gNMI services:

Step 1 Create script using the GNMIClient python module.

Script Infrastructure and Sample Templates
9

Script Infrastructure and Sample Templates
Use Automation Scripts to Interact with the Router via gNMI RPCs

Example:

In this example, you create a script to connect with the router using gNMI capabilities.
from iosxr.gnmi.gnmi_lib import GNMIClient

gnmi = GNMIClient()
gnmi.connect()
print("Getting capabilities")
cap = gnmi.capabilities()
print("Get")
get_req = """
path: {

elem: {
name: "network-instances"

}
elem: {

name: "network-instance"
key: {

key: "name"
value: "vrf_1"

}
}
origin: "openconfig-network-instance"

}
type: CONFIG
encoding: JSON_IETF
"""
get = gnmi.get(get_req)
print("Set")
set_req = """
prefix: <

origin:"openconfig-interfaces"
>
update: <
path: <

elem: <
name: "interfaces"

>
elem: <

name: "interface"
key: <

key: "name"
value: "MgmtEth0/RP0/CPU0/0"

>
>
elem: <

name: "config"
>

>
val: <

json_ietf_val: '{"description":"Testing failover case: testrole200"}'
>

>
"""
set = gnmi.set(set_req)
import pdb;pdb.set_trace()

Step 2 Configure gRPC.

Example:
Router#config
Router(config)#grpc
Router(config-grpc)#local connection

Script Infrastructure and Sample Templates
10

Script Infrastructure and Sample Templates
Use Automation Scripts to Interact with the Router via gNMI RPCs

Router(config-grpc)#no-tls
Router(config-grpc)#commit

Step 3 Copy the script to the router.
Step 4 Verify that the script is available on the router.

Example:
Router#show script status detail
Tue Apr 12 23:10:50.453 UTC
==
Name | Type | Status | Last Action | Action Time

gnmi-sample-script.py | exec | Config Checksum | NEW | Tue Apr 12 10:18:23 2021
==
Script Name : gnmi-sample-scripy.py
Checksum : 94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Script Description : View gNMI capabilities
History:

1. Action : NEW

Time : Tue Apr 12 05:03:41 2021
Description : User action IN_CLOSE_WRITE

===
Router(config)#exit

Step 5 Add the script to the script management repository.

Example:
Router#script add <type> <location> <name>

In this example, you add an Exec script gnmi-sample-script.py to the router.
Router#script add exec /harddisk\: gnmi-sample-scripy.py
Tue Apr 18 16:16:46.427 UTC
Copying script from /harddisk:/gnmi-sample-scripy.py
gnmi-sample-scripy.py has been added to the script repository

Step 6 Configure the checksum.

Example:
Router(config)#script <type> <name> checksum SHA 256 <checksum>

In this example, you configure the checksum for the Exec script gnmi-sample-script.py to the router.

Example:
Router(config)#script exec gnmi-sample-script.py checksum SHA 256
94336f3997521d6e1aec0ee6faab0233562d53d4de7b0092e80b53caed58414b
Router(config)#commit
Router(config)#end

Step 7 Run the script.

Example:
Router#script run gnmi-sample-script.py
Tue Apr 18 16:17:46.427 UTC
Script run scheduled: gnmi-sample-script.py. Request ID: 1634055439
Getting capabilities
..................................

The following example shows the output of the gNMI get operation:

Script Infrastructure and Sample Templates
11

Script Infrastructure and Sample Templates
Use Automation Scripts to Interact with the Router via gNMI RPCs

notification: <
timestamp: 1649917466577514766
update: <
path: <
origin: "openconfig-interfaces"
elem: <
name: "interfaces"

>
elem: <
name: "interface"
key: <
key: "name"
value: "TenGigE0/0/0/0"

>
>

>
val: <
json_ietf_val: "{\n \"config\": {\n \"name\": \"TenGigE0/0/0/0\",\n \"type\":

\"iana-if-type:ethernetCsmacd\",\n \"enabled\": false\n },\n \"openconfig-if-ethernet:
ethernet\": {\n \"config\": {\n \"auto-negotiate\": false\n }\n }\n}\n"

>
>
update: <
path: <
origin: "openconfig-interfaces"
elem: <
name: "interfaces"

>
elem: <
name: "interface"
key: <
key: "name"
value: "TenGigE0/0/0/1"

>
>

>
val: <
json_ietf_val: "{\n \"config\": {\n \"name\": \"TenGigE0/0/0/1\",\n \"type\":

\"iana-if-type:ethernetCsmacd\",\n \"enabled\": false\n },\n \"openconfig-if-ethernet:
ethernet\": {\n \"config\": {\n \"auto-negotiate\": false\n }\n }\n}\n"

>
------------------------------- Output truncated for brevity ---

Script Infrastructure and Sample Templates
12

Script Infrastructure and Sample Templates
Use Automation Scripts to Interact with the Router via gNMI RPCs

	Script Infrastructure and Sample Templates
	Cisco IOS XR Python Packages
	Cisco IOS XR Python Libraries
	Sample Script Templates
	Use Automation Scripts to Interact with the Router via gNMI RPCs

