The shared port adapter (SPA) digital signal processor (DSP) is a single-width, half-height, high-power, SPA module that can be used across multiple Cisco platforms. The SPA DSP is designed for DSP-based voice and video solutions in the SPAs on the Cisco mid-range and high-end routers.

In Cisco IOS XE Release 3.2S, the following SPA DSP features have been deployed on the Cisco ASR 1000 Series Router for the session border controller (SBC):

- Associating SBC configuration with a DSP farm profile.
- Voice transcoding and transrating support using onboard DSP services.
- Dual tone multifrequency (DTMF) interworking using onboard DSP services.
- VoIPv4 and VoIPv6 transcoding and transrating support.
- Transcoding, transrating, and DTMF interworking call control and signaling control.

Cisco Unified Border Element (SP Edition) was earlier known as Integrated Session Border Controller, and is referred to as SBC in this document.

For information about all the Cisco IOS commands, use the Command Lookup Tool at http://tools.cisco.com/Support/CLILookup or the Cisco IOS master commands list.

Feature History of SPA DSP on the Cisco Unified Border Element (SP Edition)

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS XE Release 3.2S</td>
<td>The SPA DSP onboard services were introduced on the Cisco ASR 1000 Series Routers.</td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.3S</td>
<td>The Call Recovery feature was added.</td>
</tr>
<tr>
<td>Cisco IOS XE Release 3.8S</td>
<td>The AMR-WB feature was supported on the SBC on the Cisco ASR 1000 Aggregation Services Routers.</td>
</tr>
</tbody>
</table>
Restrictions

The following restrictions are applicable to a SPA DSP:

- Voice, audio, and video conferencing are not supported.
- HA, system-level In-Service Software Upgrade (ISSU), and Nonstop Forwarding (NSF) are not supported.
- Video codecs are not supported.
- Although Online Insertion and Removal (OIR) is supported, the sessions going through a SPA at the time of removal are lost.
- The Cisco Unified Communications Manager is not supported.

Prerequisites for the SPA DSP Services

The DSP farm definition and SBC configuration and activation must be completed before transcoding the SBC calls. For more information about SPA configuration, see the “Configuring the Cisco DSP SPA for the ASR 1000 Series” chapter in Cisco ASR 1000 Series Aggregation Services Routers SIP and SPA Software Configuration Guide at:

Information About the SPA DSP Services

A SPA DSP contains digital signal processors and related hardware to provide voice transcoding capability for the SBC. In addition, Cisco Unified Border Element, Enterprise can use a SPA DSP for simple voice transcoding services.

You can find more information on terminating and generating the RTCP by the SPA-DSP at:
Transcoding the SBC

SBC transcoding is used for codec translation between two VoIP networks as part of the Data Border Element (DBE) functions. Figure 41-1 shows how a SPA DSP performs codec transcoding for unified SBC and Figure 41-2 shows how a SPA DSP performs codec transcoding for distributed SBC.

Figure 41-1 SPA DSP Transcoding for Unified SBC

Figure 41-2 SPA DSP Transcoding for Distributed SBC

The SPA DSP allows the translation of one type of media stream or codec to another type of media stream that uses different media encoding and decoding technologies. Other translation activities include:

- Translation between different codecs
- Translation between different packetization settings (transrating)
- DTMF interworking

Transcoding the Distributed SBC

Transcoding is inferred from a Session Description Protocol (SDP) that is used to program a call. Programming terminations in the same call containing different codecs implicitly instruct the distributed SBC to perform transcoding.
Transrating the Distributed SBC

Transrating is inferred from the SDP that is used to program a call. Programming terminations in the same call with different ptime implicitly instruct the distributed SBC to perform transrating.

Note

Transrating is supported only for the different rates using the same codec, not across codecs. Therefore, transrating and transcoding cannot be performed simultaneously.

RTP Telephone-Event Codec-to-SIP Interworking

When an RTP packet is marked as DTMF using the telephone-event codec, the RTP packet is removed from the stream. The DBE sends an H.248 message to the signaling border element (SBE), indicating that a DTMF event has occurred, and that the RTP packet should be converted into a SIP DTMF event.

The call must meet the following conditions:

- The telephone-event codec (for RFC 2833) is present in side A of the SDP, but not in side B.
- The dd/etd event is subscribed for side A, but not for side B.

SIP-to-RTP Telephone-Event Codec Interworking

When an endpoint generates a SIP signal, the SIP DTMF signals arrive completely out of band. An endpoint that supports SIP DTMF generates the signals to be sent to the SBE. In turn, the SBE recognizes that this is a DTMF message and sends an H.248 message to the DBE, indicating that a DTMF tone is required to be inserted into the RTP stream. The DBE then inserts the RTP DTMF packets into the audio stream using telephone-event codec.

The call must meet the following conditions:

- The telephone-event codec (for RFC 2833) is present in side B of the SDP, but not in side A.
- The dd/etd event is subscribed for side B, but not for side A.

RTP Telephone-Event Codec-to-RTP In-Band Waveform

After the RTP packet is marked as DTMF using the telephone-event codec, the RTP packet is removed from the stream, and an RTP stream containing the DTMF waveform is sent to the other endpoint.

The call must meet the following conditions:

- The telephone-event codec (for RFC 2833) is present in side A of SDP, but not in side B.
- The dd/etd event is subscribed for side A and side B.

RTP In-Band Waveform-to-RTP Telephone-Event Codec

After the DTMF is sent as part of the voice waveform, the RTP packets are removed from the stream, and the DBE inserts the a new RTP packet with the payload-type telephone event into the audio stream.

The call must meet the following conditions:

- The telephone-event codec (for RFC 2833) is present in side B of the SDP, but not in side A.
- The dd/etd event is subscribed for side A and side B.
SIP-to-RTP In-Band Waveform

After an endpoint generates a SIP signal, the SIP DTMF signals arrive completely out of band. The endpoint that supports SIP DTMF generates the signals to be sent to the SBE. In turn, the SBE recognizes that this is a DTMF message, and sends an H.248 message to the DBE, indicating that a DTMF tone is required to be inserted into the RTP stream. The DBE then inserts a stream containing the DTMF waveform.

The call must meet the following conditions:
- The telephone-event codec (for RFC 2833) is not present on either side A or side B.
- The dd/etd event is subscribed for side B.

RTP In-Band Waveform-to-SIP

When the DTMF is sent as part of the voice waveform, the RTP packets are removed from the stream, and the DBE sends an H.248 message to the SBE, indicating that a DTMF event has occurred, and that the RTP packets should be converted into a SIP DTMF event.

The call must meet the following conditions:
- The telephone-event codec (for RFC 2833) is not present on either side A or side B.
- The dd/etd event is subscribed for side A.

Call Recovery

From Cisco IOS XE Release 3.3S, calls on a partially crashed SPA DSP can be recovered within the call outage time of 2.5s.

When part of a SPA DSP crashes, a crash recovery process runs, and then the RP reprograms the crashed part of the SPA DSP with all calls that were previously on it. For example, a simple transcoding scenario, a-law to u-law transcoding, can represent up to 129 calls that require reprogramming.

Depending on the part of the SPA DSP that crashes, the total recovery time may be longer because it might have to recover more components and also reprogram more calls. However, the entire media path outage time for all the recovered calls is less than 2.5s.

In all cases of the SPA DSP call recovery, the call recovery occurs on the same SPA DSP where the call existed prior to the crash. The calls are not moved to another SPA DSP.

The SPA DSP failure call recovery can be disabled or rendered ineffective if the SPA DSP crash dumps are enabled. It can push the call outage time beyond 2.5s.

The `show voice dsp group all` command indicates when a SPA DSP is undergoing call recovery.

Router# show voice dsp group all

Show DSP group all

DSP groups on slot 0 bay 0:
dsp 1:
 State: UP
 HA State : DSP_HA_STATE_PENDING1
 Max signal/voice channel: 43/43
 Max credits: 645
 num_of_sig_chnls_allocated: 43
 Transcoding channels allocated: 43
 Group: FLEX_GROUP_XCODE, complexity: LOW
Information About the SPA DSP Services

Shared credits: 0, reserved credits: 645
Transcoding channels allocated: 24
Credits used (rounded-up): 360

Note: The `show voice dsp group all` command displays the output **HA State : DSP_HA_STATE_PENDING1** only during the recovery process which can be up to a few milliseconds.

AMR-WB Transcoding Support

Adaptive Multi-Rate Wideband (AMR-WB) is a patented speech coding standard based on Adaptive Multi-Rate encoding, using a methodology that is similar to the Algebraic code-excited linear prediction (ACELP). AMR-WB, which was specified by 3GPP, provides improved speech quality due to a wider speech bandwidth of 50 to 7000Hz compared to narrowband speech coders what are in general optimized for Plain old telephone service (POTS) wireline quality of 300 to 3400 Hz.

AMR-WB is codified as G.722.2, an ITU-T standard speech codec, formally known as Wideband coding of speech at around 16 kbps using AMR-WB. G.722.2 AMR-WB is the same codec as the 3GPP AMR-WB.

AMR-WB operates like AMR with nine different bit rates. The lowest bit rate providing excellent speech quality in a clean environment is 12.65 kbps. Higher bit rates are useful in background noise conditions and for music. Also, lower bit rates of 6.60 and 8.85 kbps provide reasonable quality, especially compared to narrowband codecs.

Note: The AMR-WB feature requires DSP firmware with AMR-WB codec support.
Table 41-1 shows the relationship between the AMR rate mode and bit-rate.

<table>
<thead>
<tr>
<th>Rate Mode</th>
<th>AMR Bit-Rate (kbps)</th>
<th>AMR-WB/G.722.2 Bit-Rate (kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.75</td>
<td>6.60</td>
</tr>
<tr>
<td>1</td>
<td>5.15</td>
<td>8.85</td>
</tr>
<tr>
<td>2</td>
<td>5.90</td>
<td>12.65</td>
</tr>
<tr>
<td>3</td>
<td>6.70</td>
<td>14.25</td>
</tr>
<tr>
<td>4</td>
<td>7.40</td>
<td>15.85</td>
</tr>
<tr>
<td>5</td>
<td>7.95</td>
<td>18.25</td>
</tr>
<tr>
<td>6</td>
<td>10.20</td>
<td>19.85</td>
</tr>
<tr>
<td>7</td>
<td>12.20</td>
<td>23.05</td>
</tr>
<tr>
<td>8</td>
<td>SID(^1)</td>
<td>23.85</td>
</tr>
<tr>
<td>9</td>
<td>—</td>
<td>SID</td>
</tr>
</tbody>
</table>

1. SID: Silence Indicator

Configuring the SPA DSP Services for SBC

This section describes the tasks to involved in configuring the SPA DSP services for the SBC:
- Setting Up a SPA DSP for DSP Farm Services, page 41-7
- Configuring a DSP Farm Profile, page 41-8

Setting Up a SPA DSP for DSP Farm Services

Use the following procedure to set up the SPA DSP in the DSP farm mode for the DSP services:

SUMMARY STEPS

1. configure terminal
2. voice-card slot number/subslot number
3. dsp services dspfarm
4. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 voice-card slot number/subslot number</td>
<td>Specifies the slot number of the voice card and enters the voice card interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# voice-card 0/2</td>
<td></td>
</tr>
<tr>
<td>Step 3 dsp services dspfarm</td>
<td>Allows DSP farm services on the SPA DSP voice card.</td>
</tr>
<tr>
<td>Example: Router(config-voicecard)# dsp services dspfarm</td>
<td></td>
</tr>
<tr>
<td>Step 4 end</td>
<td>Exits the voice card interface configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-voicecard)# end</td>
<td></td>
</tr>
</tbody>
</table>

For more information about configuring DSP farm services on a SPA DSP, see the “Configuring the Cisco DSP SPA for ASR 1000 Series” chapter in the Cisco ASR 1000 Series Aggregation Services Routers SIP and SPA Software Configuration Guide at:

Configuring a DSP Farm Profile

Use the following steps to configure a DSP farm profile:

SUMMARY STEPS

1. configure terminal
2. `dspfarm profile profile-identifier {conference | mtp | transcode}`
3. `description profile-description-text`
4. `codec codec-name`
5. `associate application {cube | sbc | sccp}`
6. `maximum session number`
7. `no shutdown`
8. `end`
Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**

`configure terminal`

Enters the global configuration mode.

Example:

```
Router# configure terminal
```

| **Step 2**

`dspfarm profile profile-identifier {conference | mtp | transcode}`

Enables the DSP farm service for the specified DSP farm profile, and enters a DSP farm profile configuration mode. The service options are:

- `conference`—Enables conferencing.
- `mtp`—Enables media termination point.
- `transcode`—Enables transcoding of information.

Note In Cisco IOS Release 3.2S, only the transcode service is supported.

Example:

```
Router(config)# dspfarm profile 20 transcode
```

| **Step 3**

`description profile-description-text`

Specifies a description for a defined profile.

Example:

```
Router(config-dspfarm-profile)# description enables transcoding
```

| **Step 4**

`no codec codec-name`

Adds codecs or removes the codec from a codec list. The codec must be present in the list of codecs that the SBE is hard-coded to recognize.

Example:

```
Router(config-dspfarm-profile)# codec g711ulaw
Router(config-dspfarm-profile)# codec g711alaw
Router(config-dspfarm-profile)# codec g729ar8
Router(config-dspfarm-profile)# codec g729abr8
Router(config-dspfarm-profile)# codec g729r8
Router(config-dspfarm-profile)# codec g723r63
Router(config-dspfarm-profile)# codec ilbc
Router(config-dspfarm-profile)# codec gsmamr-nb
Router(config-dspfarm-profile)# codec g726r32
Router(config-dspfarm-profile)# codec g729br8
```

| **Step 5**

`associate application {cube | sbc | sccp}; profile-description-text`

Associates an application to the profile. The applications that can be associated are:

- `cube`—Associates the Cisco Unified Border Element application to a defined profile in the DSP farm.
- `sbc`—Associates the SBC application to a defined profile in the DSP farm.
- `sccp`—Associates the client control protocol application to a defined profile in the DSP farm.

Note The `sbc` application keyword is available only when a DSP farm profile transcode service is used.

Example:

```
Router(config-dspfarm-profile)# associate application sbc
```
Chapter 41 Cisco Unified Border Element (SP Edition)—SPA DSP Services

Configuring the Unified SBC

This section explains the various ways in which to configure the SBC for the SPA DSP voice card:

- Associating the Unified SBC with a DSP Farm Profile, page 41-10
- Configuring the Unified SBC to Enable Transcoding, page 41-11
- Configuring the Unified SBC to Enable Transrating, page 41-17
- Configuring the Unified SBC to Enable SRTP and Transcoding, page 41-22
- Configuring the Unified SBC for Inband DTMF Interworking, page 41-28
- Configuring the Unified SBC to Support AMR-WB, page 41-33

Associating the Unified SBC with a DSP Farm Profile

Association of the SBC to the DSP farm profiles is possible only after the corresponding DSP farm profile is created. Use the `associate dspfarm profile` command in the global configuration mode.

SUMMARY STEPS

1. `show dspfarm {all | dsp | profile}
2. `configure terminal
3. `sbc `sbc-name
4. `associate dspfarm profile {profile-number | all}
5. `end

Configuring the Unified SBC

Association of the SBC to the DSP farm profiles is possible only after the corresponding DSP farm profile is created. Use the `associate dspfarm profile` command in the global configuration mode.

SUMMARY STEPS

1. `show dspfarm {all | dsp | profile}
2. `configure terminal
3. `sbc `sbc-name
4. `associate dspfarm profile {profile-number | all}
5. `end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>show dspfarm {all</td>
<td>dsp</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show dspfarm profile all</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enables the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>sbc sbc-name</td>
<td>Creates the SBC service on the SBC, and enters the SBC configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# sbc mySBC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>associate dspfarm profile {profile-number</td>
<td>all}</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sbc)# associate dspfarm profile 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Exits the configuration mode.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sbc-sbe)# end</td>
<td></td>
</tr>
</tbody>
</table>

Configuring the Unified SBC to Enable Transcoding

This task configures the SBC for enabling the transcoding feature.

Note

The `caller` and `callee` commands have been used in this procedure. In some scenarios, the `branch` command can be used as an alternative to the `caller` and `callee` command pair. The `branch` command has been introduced in Release 3.5.0. See the `?Sparanum>Configuring Directed Nonlimiting CAC Policies? section on page 7-37 for information about this command.

SUMMARY STEPS

1. configure terminal
2. sbc sbc-name
3. sbe
4. cac-policy-set policy-set-id
5. first-cac-scope scope-name
6. first-cac-table `table-name`
7. cac-table `table-name`
8. table-type limit `list of limit tables`
9. entry `entry-id`
10. match-value `key`
11. callee-codec-list `list-name`
12. caller-codec-list `list-name`
13. media police `strip | reject | degrade`
14. action cac-complete
15. complete
16. cac-policy-set global `cac-policy-num`
17. codec-list `list-name`
18. codec `codec-name`
19. exit
20. codec-list `list-name`
21. codec `codec-name`
22. exit
23. end
24. show sbc `sbc-name` sbc-call-stats global current5min

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enables global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 sbc <code>sbc-name</code></td>
<td>Creates the SBC service on the SBC, and enters the SBC configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# sbc mySBC</td>
<td></td>
</tr>
<tr>
<td>Step 3 sbe</td>
<td>Enters the signaling border element (SBE) function mode of the SBC.</td>
</tr>
<tr>
<td>Example: Router(config-sbc)# sbe</td>
<td></td>
</tr>
<tr>
<td>Step 4 cac-policy-set <code>policy-set-id</code></td>
<td>Enters the CAC policy set configuration mode within an SBE entity, creating a new policy set, if necessary:</td>
</tr>
<tr>
<td>Example: Router(config-sbc-sbe)# cac-policy-set 1</td>
<td>- <code>policy-set-id</code>—Integer chosen by a user to identify the policy set. The range is from 1 to 2147483647.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 5</th>
<th>first-cac-scope scope-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy)# first-cac-scope dst-adjacency</td>
</tr>
</tbody>
</table>

Configures the scope at which limits should be initially defined to perform tasks at the admission control stage of the policy. Each CAC policy has a scope that can be applied to it. This CAC policy is applicable on a per call basis.

scope-name has one of the following values:

- **adj-group**—Limits for events from members of the same adjacency group.
- **call**—Limits are per single call.
- **category**—Limits per category.
- **dst-account**—Limits for events sent to the same account.
- **dst-adj-group**—Limits for events sent to the same adjacency group.
- **dst-adjacency**—Limits for events sent to the same adjacency.
- **dst-number**—Limits for events that have the same adjacency number.
- **global**—Limits are global and should not be combined with any other option.
- **src-account**—Limits for events from the same account.
- **src-adj-group**—Limits for events from the same adjacency group.
- **arc-adjacency**—Limits for events from the same adjacency.
- **src-number**—Limits for events that have the same source number.

<table>
<thead>
<tr>
<th>Step 6</th>
<th>first-cac-table table-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy)# first-cac-table codec-dst-acc</td>
</tr>
</tbody>
</table>

Configures the name of the first policy table to be processed. A CAC policy may have many tables configured. To start applying the CAC policy, the first table that is used must be defined:

table-name—The admission control table that should be processed first.

<table>
<thead>
<tr>
<th>Step 7</th>
<th>cac-table table-name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy)# cac-table codec-dst-acc</td>
</tr>
</tbody>
</table>

Enters the CAC table mode for configuration of an admission control table (creating one, if necessary) within the context of an SBE policy set.

table-name—Name of the admission control table.
Configuring the Unified SBC

Step 8
Command or Action:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>table-type limit list of limit tables</code></td>
<td>Configures a new CAC Limit table type in which the criteria used to match the entries must be entered.</td>
</tr>
</tbody>
</table>

Example:

Router(config-sbc-sbe-cacpolicy-cactable)#

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>table-type limit dst-adjacency</code></td>
<td><code>list of limit tables</code> can be one of the following values:</td>
</tr>
</tbody>
</table>

- **account**—Compare the name of the account.
- **adj-group**—Compare the name of the adjacency group.
- **adjacency**—Compare the name of the adjacency.
- **all**—No comparison type. All events match this type.
- **call-priority**—Compare with call priority.
- **category**—Compare the number analysis assigned category.
- **dst-account**—Compare the name of the destination account.
- **dst-adj-group**—Compare the name of the destination adjacency group.
- **dst-adjacency**—Compare the name of the destination adjacency.
- **dst-prefix**—Compare the beginning of the dialed digit string.
- **event-type**—Compare with CAC policy event types.
- **src-account**—Compare the name of the source account.
- **src-adj-group**—Compare the name of the source adjacency group.
- **src-adjacency**—Compare the name of the source adjacency.
- **src-prefix**—Compare the beginning of the calling number string.

Step 9
Command or Action:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>entry entry-id</code></td>
<td>Enters the CAC table entry mode to modify an entry in an admission control table.</td>
</tr>
</tbody>
</table>

Example:

Router(config-sbc-sbe-cacpolicy-cactable)#

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>entry 1</code></td>
<td><code>entry-id</code>—Specifies the table entry.</td>
</tr>
</tbody>
</table>

Step 10
Command or Action:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>match-value key</code></td>
<td>Configures the match value of an entry in a CAC Limit table type.</td>
</tr>
</tbody>
</table>

Example:

Router(config-sbc-sbe-cacpolicy-cactable-entry)#

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>match-value nava</code></td>
<td><code>key</code>—Specifies the match value.</td>
</tr>
</tbody>
</table>

Step 11
Command or Action:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>callee-codec-list list-name</code></td>
<td>Lists the codecs that the callee leg of a call is allowed to use.</td>
</tr>
</tbody>
</table>

Example:

Router(config-sbc-sbe-cacpolicy-cactable-entry)#

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>callee-codec-list PCMU</code></td>
<td><code>list-name</code>—Specifies the list name.</td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step 12</th>
<th>caller-codec-list list-name</th>
<th>Purpose</th>
<th>Lists the codecs that the caller leg of a call is allowed to use.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy-cactable-entry) # caller-codec-list PCMA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 13</th>
<th>media police strip</th>
<th>reject</th>
<th>degrade</th>
<th>Purpose</th>
<th>Configures the manner in which the SBC will handle the media streams that exceed the bandwidth limit for media calls.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy-cactable-entry) # media police strip</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 14</th>
<th>action cac-complete</th>
<th>Purpose</th>
<th>When an event matches, the CAC policy is considered complete.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy-cactable-entry) # action cac-complete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 15</th>
<th>complete</th>
<th>Purpose</th>
<th>Completes the CAC policy set when you have committed the full set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy)# complete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 16</th>
<th>cac-policy-set global policy-num</th>
<th>Purpose</th>
<th>Activates the global CAC policy set. The CAC policy set must be in a complete state before it can be assigned as the default policy.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe)# cac-policy-set global 1</td>
<td></td>
<td>• policy-num—The call policy set number, ranging from 1 to 2147483647. The policy set must be in a complete state before it can be assigned as the default policy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 17</th>
<th>codec-list list-name</th>
<th>Purpose</th>
<th>Creates a codec list, and enters the Codec list configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe)# codec-list PCMU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 18</th>
<th>codec codec-name</th>
<th>Purpose</th>
<th>Adds a codec to a codec list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-codec-list)# codec PCMU</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 19</th>
<th>exit</th>
<th>Purpose</th>
<th>Exits the codec list configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-codec-list)# exit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 20</th>
<th>codec-list list-name</th>
<th>Purpose</th>
<th>Creates a codec list, and enters the Codec list configuration mode.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe)# codec-list PCMA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 21</th>
<th>codec codec-name</th>
<th>Purpose</th>
<th>Adds a codec to a codec list.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-codec-list)# codec PCMA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 41 Cisco Unified Border Element (SP Edition)—SPA DSP Services

Configuring the Unified SBC

Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 22</td>
<td>exit</td>
<td>Exits the codec list configuration mode.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-sbc-sbe-codec-list)# exit
```

| Step 23 | **end** | Ends the configuration session. |

Example:

```
Router(config-sbc-sbe)# end
```

| Step 24 | **show sbc sbc-name sbe call-stats global current5min** | Lists the statistics for all the calls on the specified SBE. |

Example:

```
Router# show sbc mySBC sbe call-stats global current5min
```

The following example shows an output of the **show sbc sbc-name sbe call-stats global current5min** command that lists the count of the active transcoded and transrated calls.

```
Router# show sbc mySBC sbe call-stats global current5min

SBC Service "mySBC"
Statistics for the current 5 mins for global counters
Call count totals:
  Total call attempts = 0
  Total active calls = 1
  Total active IPv6 calls = 0
  Total activating calls = 0
  Total de-activating calls = 0
  Total active emergency calls = 0
  Total active e2 emergency calls = 0
  Total IMS rx active calls = 0
  Total IMS rx call renegotiation attempts = 0
  Total SRTP-RTP interworked calls = 0
  Total active calls not using SRTP = 1
  Total active transcoded calls = 1
  Total active transrated calls = 0
General call failure counters:
  Total call setup failures = 0
  Total active call failures = 0
  Total failed call attempts = 0
  Total failed calls due to update failure = 0
  Total failed calls due to resource failure = 0
  Total failed calls due to congestion = 0
  Total failed calls due to media failure = 0
  Total failed calls due to signaling failure = 0
  Total failed calls due to IMS rx setup failure = 0
  Total failed calls due to IMS rx renegotiation failure = 0
  Total failed calls due to RTP disallowed on call leg = 0
  Total failed calls due to SRTP disallowed on call leg = 0
```
Configuring the Unified SBC to Enable Transrating

Note
Transrating is supported only for different rates using the same codec, not across codecs. Therefore, transrating and transcoding cannot be performed simultaneously.

This section describes how to enable transrating using either of the following methods:

- Transrating Using the Same Codec Policy, page 41-17
- Transrating Using a New Codec Policy, page 41-21

Transrating Using the Same Codec Policy

This task configures the SBC for enabling the transrating using the same codec policy.

Note
The caller and callee commands have been used in this procedure. In some scenarios, the branch command can be used as an alternative to the caller and callee command pair. The branch command has been introduced in Release 3.5.0. See the Configuring Directed Nonlimiting CAC Policies? section on page 7-37 for information about this command.

SUMMARY STEPS

1. configure terminal
2. sbc sbc-name
3. sbe
4. cac-policy-set policy-set-id
5. first-cac-table table-name
6. cac-table table-name
7. table-type {policy-set | limit {list of limit tables}}
8. entry entry-id
9. cac-scope {list of scope options}
10. callee ptime 0-100
11. caller ptime 0-100
12. media police strip | reject | degrade
13. action cac complete
14. complete
15. cac-policy-set global cac-policy-num
16. end
Configuring the Unified SBC

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Enables global configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>sbc sbc-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# sbc mySBC</td>
</tr>
<tr>
<td>Creates the SBC service on the SBC, and enters the SBC configuration mode.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>sbe</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc)# sbe</td>
</tr>
<tr>
<td>Enters the SBE function mode of the SBC.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>cac-policy-set policy-set-id</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe)# cac-policy-set 1</td>
</tr>
<tr>
<td>Enters the CAC policy set configuration mode within an SBE entity, creating a new policy set, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>first-cac-table table-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy)# first-cac-table Transrate</td>
</tr>
<tr>
<td>Configures the name of the first policy table to be processed. A CAC policy may have many tables configured. To start applying the CAC policy, the first table that is used must be defined:</td>
<td></td>
</tr>
<tr>
<td>* table-name—The admission control table that should be processed first.</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>cac-table table-name</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy)# cac-table Transrate</td>
</tr>
<tr>
<td>Enters the CAC table mode for configuration of an admission control table (creating one, if necessary) within the context of an SBE policy set:</td>
<td></td>
</tr>
<tr>
<td>* table-name—Name of the admission control table.</td>
<td></td>
</tr>
</tbody>
</table>
Step 7

Command or Action

```
table-type {policy-set | limit (list of limit tables)}
```

Example:
```
Router(config-sbc-sbe-cacpolicy-cactable)#
table-type policy-set
```

Purpose

Configures the table type of a CAC table within the context of an SBC policy set.

list of limit tables can be one of the following values:

- **account**—Compare the name of the account.
- **adj-group**—Compare the name of the adjacency group.
- **adjacency**—Compare the name of the adjacency.
- **all**—No comparison type. All events match this type.
- **call-priority**—Compare with call priority.
- **category**—Compare the number analysis assigned category.
- **dst-account**—Compare the name of the destination account.
- **dst-adj-group**—Compare the name of the destination adjacency group.
- **dst-adjacency**—Compare the name of the destination adjacency.
- **dst-prefix**—Compare the beginning of the dialed digit string.
- **event-type**—Compare with CAC policy event types.
- **src-account**—Compare the name of the source account.
- **src-adj-group**—Compare the name of the source adjacency group.
- **src-adjacency**—Compare the name of the source adjacency.
- **src-prefix**—Compare the beginning of the calling number string.

Features can be enabled or disabled per adjacency group through CAC configuration the same way this is done per individual adjacencies. The adj-group table type matches either the source adjacency group or the destination adjacency group.

When the **policy-set** keyword is specified, use the **cac-scope** command to configure the scope within each of the entries in which limits are applied in a CAC Policy Set table.

Step 8

Command or Action

```
entry entry-id
```

Example:
```
Router(config-sbc-sbe-cacpolicy-cactable)#
entry 1
```

Purpose

Enters the CAC table entry mode to create or modify an entry in an admission control table.
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 9 | cac-scope (list of scope options) | Enables the selection of a scope at which CAC limits are applied within each entry in a Policy Set table.
Example:
```
Router(config-sbc-sbe-cacpolicy-cactable-entry) # cac-scope call
```
list of scope options—Specifies one of the following strings used to match events:
- *account*—Events that are from the same account.
- *adjacency*—Events that are from the same adjacency.
- *adj-group*—Events that are from members of the same adjacency group.
- *call*—Scope limits are per single call.
- *category*—Events that have the same category.
- *dst-account*—Events that are sent to the same account.
- *dst-adj-group*—Events that are sent to the same adjacency group.
- *dst-adjacency*—Events that are sent to the same adjacency.
- *dst-number*—Events that have the same destination.
- *global*—Scope limits are global.
- *src-account*—Events that are from the same account.
- *src-adj-group*—Events that are from the same adjacency group.
- *src-adjacency*—Events that are from the same adjacency.
- *src-number*—Events that have the same source number. |
| 10 | callee ptime <0-100> | Configures the packetization time on the callee side that is forced for calls using this CAC entry.
Example:
```
Router(config-sbc-sbe-cacpolicy-cactable-entry) # callee ptime 30
```
By default, 0 ms is configured, which means no transrating occurs. |
| 11 | caller ptime <0-100> | Configures the packetization time on the caller side that is forced for calls using this CAC entry.
Example:
```
Router(config-sbc-sbe-cacpolicy-cactable-entry) # caller ptime 40
```
By default, 0 ms is configured, which means no transrating occurs. |
| 12 | media police strip | reject | degrade | Configures the manner in which the SBC handles the media streams that exceed the bandwidth limit for media calls. |

Example:
```
Router(config-sbc-sbe-cacpolicy-cactable-entry) # media police strip
```
| 13 | action cac-complete | When an event matches, this CAC policy is complete. |

Example:
```
Router(config-sbc-sbe-cacpolicy-cactable-entry) # action cac complete
```
Chapter 41 Cisco Unified Border Element (SP Edition)—SPA DSP Services

Configuring the Unified SBC

Transrating Using a New Codec Policy

This task configures the SBC for enabling the transrating feature. This is an alternative mechanism to that described in the Transrating Using the Same Codec Policy section on page 41-17 for configuring transrating.

SUMMARY STEPS

1. configure terminal
2. sbc sbc-name
3. sbe
4. codec list list-name
5. policy {minimum | transrating}
6. codec codec-name packetization-period packet-period [priority priority-value]
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enables global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 sbc sbc-name</td>
<td>Creates the SBC service on the SBC, and enters into the SBC configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# sbc mySBC</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Unified SBC to Enable SRTP and Transcoding

Although Secure Real-time Transport Protocol (SRTP) is independent of transcoding, both can be configured to be used simultaneously.

This task configures the unified SBC to enable the SRTP and transcoding features.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3 sbe</td>
<td>Enters the SBE function mode of the SBC.</td>
</tr>
<tr>
<td>Example: Router(config-sbc)# sbe</td>
<td></td>
</tr>
<tr>
<td>Step 4 codec list list-name</td>
<td>Creates the codec list and enters the codec list mode.</td>
</tr>
<tr>
<td>Example: Router(config-sbc-sbe)# codec list PCMU</td>
<td></td>
</tr>
<tr>
<td>Step 5 policy {minimum</td>
<td>Configures the packetization period policy that is to be specified as either of the following:</td>
</tr>
<tr>
<td>transrating}</td>
<td>• minimum—Packetization period is the minimum.</td>
</tr>
<tr>
<td>Example: Router(config-sbc-sbe-codec-list)# policy minimum</td>
<td>• transrating—Packetization period is transrating.</td>
</tr>
<tr>
<td>Step 6 codec codec-name packetization-period packet-period [priority priority-value]</td>
<td>Adds a codec to a codec list, and sets a minimum packetization period and priority value for the codec.</td>
</tr>
<tr>
<td>Example: Router(config-sbc-sbe-codec-list)# codec PCMU packetization-period 200 priority 1</td>
<td></td>
</tr>
<tr>
<td>Step 7 end</td>
<td>Exits the CAC configuration mode, and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-sbc-sbe-codec-list)# end</td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY STEPS

1. configure terminal
2. sbc sbc-name
3. sbe
4. cac-policy-set policy-set-id
5. first-cac-table table-name
6. cac-table table-name
7. `table-type {policy-set | limit {list of limit tables}}`
8. `entry entry-id`
9. `cac-scope {list of scope options}`
10. `srtp support allow`
11. `srtp caller forbid | mandate | allow | prefer`
12. `srtp callee forbid | mandate | allow | prefer`
13. `srtp interworking forbid | allow`
14. `srtp media interworking forbid | allow`
15. `action next-table goto-table-name`
16. `exit`
17. `exit`
18. `cac-table table-name`
19. `table-type limit list of limit tables`
20. `entry entry-id`
21. `match-value key`
22. `callee-codec-list list-name`
23. `action cac-complete`
24. `complete`
25. `cac-policy-set global cac-policy-num`
26. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enables global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2 sbc sbc-name</td>
<td>Creates the SBC service on the SBC, and enters into the SBC configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config)# sbc mySBC</td>
<td></td>
</tr>
<tr>
<td>Step 3 sbe</td>
<td>Enters the SBE function mode of the SBC.</td>
</tr>
<tr>
<td>Example: Router(config-sbc)# sbe</td>
<td></td>
</tr>
<tr>
<td>Step 4 cac-policy-set policy-set-id</td>
<td>Enters the CAC policy set configuration mode within an SBE entity, creating a new policy set, if necessary.</td>
</tr>
<tr>
<td>Example: Router(config-sbc-sbe)# cac-policy-set 3</td>
<td></td>
</tr>
</tbody>
</table>
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 5** | `first-cac-table table-name` | Configures the name of the first policy table to be processed. A CAC policy may have many tables configured. To start applying the CAC policy, the first table that is used must be defined:
- `table-name`—The admission control table that should be processed first. |
| | **Example:**
Router(config-sbc-sbe-cacpolicy)# first-cac-table C3 | |
| **Step 6** | `cac-table table-name` | Enters the CAC table mode for configuration of an admission control table (creating one, if necessary) within the context of an SBE policy set:
- `table-name`—Name of the admission control table. |
| | **Example:**
Router(config-sbc-sbe-cacpolicy)# cac-table C3 | |
Step 7
table-type *(policy-set | limit (list of limit tables))*

Example:
Router(config-sbc-sbe-cacpolicy-cactable)#
table-type policy-set

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 table-type *(policy-set</td>
<td>limit (list of limit tables))**</td>
</tr>
<tr>
<td>Example: Router(config-sbc-sbe-cacpolicy-cactable)# table-type policy-set</td>
<td>list of limit tables can be one of the following values:</td>
</tr>
<tr>
<td></td>
<td>• account—Compare the name of the account.</td>
</tr>
<tr>
<td></td>
<td>• adj-group—Compare the name of the adjacency group.</td>
</tr>
<tr>
<td></td>
<td>• adjacency—Compare the name of the adjacency.</td>
</tr>
<tr>
<td></td>
<td>• all—No comparison type. All events match this type.</td>
</tr>
<tr>
<td></td>
<td>• call-priority—Compare with call priority.</td>
</tr>
<tr>
<td></td>
<td>• category—Compare the number analysis assigned category.</td>
</tr>
<tr>
<td></td>
<td>• dst-account—Compare the name of the destination account.</td>
</tr>
<tr>
<td></td>
<td>• dst-adj-group—Compare the name of the destination adjacency group.</td>
</tr>
<tr>
<td></td>
<td>• dst-adjacency—Compare the name of the destination adjacency.</td>
</tr>
<tr>
<td></td>
<td>• dst-prefix—Compare the beginning of the dialed digit string.</td>
</tr>
<tr>
<td></td>
<td>• event-type—Compare with CAC policy event types.</td>
</tr>
<tr>
<td></td>
<td>• src-account—Compare the name of the source account.</td>
</tr>
<tr>
<td></td>
<td>• src-adj-group—Compare the name of the source adjacency group.</td>
</tr>
<tr>
<td></td>
<td>• src-adjacency—Compare the name of the source adjacency.</td>
</tr>
<tr>
<td></td>
<td>• src-prefix—Compare the beginning of the calling number string.</td>
</tr>
<tr>
<td>Features can be enabled or disabled per adjacency group through CAC configuration the same way this is done per individual adjacency. The adj-group table type matches on either the source adjacency group or the destination adjacency group.</td>
<td></td>
</tr>
<tr>
<td>When the policy-set keyword is specified, use the cac-scope command to configure the scope within each entry in which limits are applied in a CAC Policy Set table.</td>
<td></td>
</tr>
</tbody>
</table>

Step 8
entry *entry-id*

Example:
Router(config-sbc-sbe-cacpolicy-cactable)#
entry 1

Command or Action

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8 entry entry-id</td>
<td>Enters the mode to create or modify an entry in an admission control table.</td>
</tr>
</tbody>
</table>
Configuring the Unified SBC

Step 9

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `cac-scope` *(list of scope options)* | Choose a scope at which CAC limits are applied within each entry in a Policy Set table.
list of scope options—Specifies one of the following strings used to match events:
- `account`—Events that are from the same account.
- `adjacency`—Events that are from the same adjacency.
- `adj-group`—Events that are from members of the same adjacency group.
- `call`—Scope limits are per single call.
- `category`—Events that have the same category.
- `dst-account`—Events that are sent to the same account.
- `dst-adj-group`—Events that are sent to the same adjacency group.
- `dst-adjacency`—Events that are sent to the same adjacency.
- `dst-number`—Events that have the same destination.
- `global`—Scope limits are global.
- `src-account`—Events that are from the same account.
- `src-adj-group`—Events that are from the same adjacency group.
- `src-adjacency`—Events that are from the same adjacency.
- `src-number`—Events that have the same source number. |

Example:

```
Router(config-sbc-sbe-cacpolicy-cactable-entry)
# cac-scope global
```

Step 10

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>srtp support allow</code></td>
<td>Configures SRTP support.</td>
</tr>
</tbody>
</table>

Example:

```
Router(config-sbc-sbe-cacpolicy-cactable-entry)
# srtp support allow
```

Step 11

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `srtp caller forbid | mandate | allow | prefer` | Configures SRTP for the caller side of the call with one of the following SRTP settings:
- `forbid`—SRTP is not supported on the caller side of the call.
- `mandate`—SRTP is mandatory on the caller side of the call.
- `allow`—SRTP is optional on the caller side of the call.
- `prefer`—SRTP is preferred on this adjacency. Both RTP and SRTP are accepted inbound, but only SRTP is offered outbound. |

Example:

```
Router(config-sbc-sbe-cacpolicy-cactable-entry)
# srtp caller mandate
```
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command/Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 12 | srtp callee forbid | Configures SRTP for the callee side of the call:
- **forbid**—SRTP is not supported on the callee side of the call.
- **mandate**—SRTP is mandatory on the callee side of the call.
- **allow**—SRTP is optional on the callee side of the call.
- **prefer**—SRTP is preferred on this adjacency. Both RTP and SRTP are accepted inbound, but only SRTP is offered outbound. |
| Example: | Router(config-sbc-sbe-cacpolicy-cactable-entry) # srtp callee mandate |

| Step 13 | srtp interworking forbid | Configures SRTP-to-RTP interworking:
- **forbid**—Prohibits SRTP-to-RTP interworking on a call.
- **allow**—Allows SRTP-to-RTP interworking on a call. |
| Example: | Router(config-sbc-sbe-cacpolicy-cactable-entry) # srtp interworking allow |

| Step 14 | srtp media interworking forbid | Configures SRTP-to-RTP media interworking:
- **forbid**—Prohibits SRTP-to-RTP media interworking on a call.
- **allow**—Allows SRTP-to-RTP media interworking on a call. |
| Example: | Router(config-sbc-sbe-cacpolicy-cactable-entry) # srtp media interworking allow |

| Step 15 | action next-table goto-table-name | Configures the action to be taken when the routing entry is chosen:
- **goto-table-name**—Specifies the next routing table to be processed when an event matches the entry. |
| Example: | Router(config-sbc-sbe-cacpolicy-cactable-entry) # action next-table xcode |

| Step 16 | exit | Exits the CAC table entry configuration mode. |
| Example: | Router(config-sbc-sbe-cacpolicy-cactable-entry) # exit |

| Step 17 | exit | Exits the CAC table configuration mode. |
| Example: | Router(config-sbc-sbe-cacpolicy-cactable)# exit |

| Step 18 | cac-table table-name | Enters the CAC table mode for configuration of an admission control table (creating one, if necessary) within the context of an SBE policy set:
- **table-name**—Name of the admission control table. |
| Example: | Router(config-sbc-sbe-cacpolicy)# cac-table xcode |

| Step 19 | table-type limit list of limit tables | Configures the limit of the table types to be matched by the **match-value** command. For the example provided here, use the following table type:
- **dst-adjacency**—Compares the name of the destination adjacency. |
| Example: | Router(config-sbc-sbe-cacpolicy-cactable)# table-type limit dst-adjacency |
Configuring the Unified SBC for Inband DTMF Interworking

A SPA DSP can be used to detect the DTMF tones, called inband, that are played in the real-time transport protocol (RTP) stream. Inband DTMF interworking uses SPA DSP resources, and can be used for plain calls and transcoded calls.

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 20 entry entry-id</td>
<td>Enters the CAC table entry mode to modify an entry in an admission control table.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy-cactable)# entry 1</td>
</tr>
<tr>
<td>Step 21 match-value key</td>
<td>Configures the match-value of an entry in a Call Admission Control (CAC) Limit table:</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy-cactable-entry) # match-value nav4B</td>
</tr>
<tr>
<td>Step 22 callee-codec-list list-name</td>
<td>Lists the codecs that the callee leg of a call is allowed to use:</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy-cactable-entry) # callee-codec-list PCMU</td>
</tr>
<tr>
<td>Step 23 action cac-complete</td>
<td>When the event matches, this CAC policy is complete.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy-cactable-entry) # action cac-complete</td>
</tr>
<tr>
<td>Step 24 complete</td>
<td>Completes the CAC policy set when you have committed the full set.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy)# complete</td>
</tr>
<tr>
<td>Step 25 cac-policy-set global policy-num</td>
<td>Activates the global CAC policy set. The CAC policy set must be in a complete state before it can be assigned as the default policy.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe)# cac-policy-set global 3</td>
</tr>
<tr>
<td>Step 26 end</td>
<td>Exits the CAC configuration mode and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-sbc-sbe-cacpolicy-cactable-entry) # end</td>
</tr>
</tbody>
</table>
The **caller** and **callee** commands have been used in this procedure. In some scenarios, the **branch** command can be used as an alternative to the **caller** and **callee** command pair. The **branch** command has been introduced in Release 3.5.0. See the ?$paranum>Configuring Directed Nonlimiting CAC Policies? section on page 7-37 for information about this command.

SUMMARY STEPS

1. configure terminal
2. sbc sbc-name
3. sbe
4. cac-policy-set policy-set-id
5. first-cac-table table-name
6. cac-table table-name
7. table-type { policy-set | limit { list of limit tables } }
8. entry entry-id
9. cac-scope { list of scope options }
10. callee inband-dtmf-mode always
11. caller inband-dtmf-mode never
12. action next-table goto-table-name
13. complete
14. cac-policy-set global cac-policy-num
15. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
configure terminal | Enables global configuration mode. |

Example:
```
Router# configure terminal
```

| **Step 2**
sbc sbc-name | Creates the SBC service on the SBC, and enters into the SBC configuration mode. |

Example:
```
Router(config)# sbc mySBC
```

| **Step 3**
sbe | Enters the SBE function mode of the SBC. |

Example:
```
Router(config-sbc)# sbe
```
Configuring the Unified SBC

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4 cac-policy-set policy-set-id</td>
<td>Enters the CAC policy set configuration mode within an SBE entity, creating a new policy set, if necessary.</td>
</tr>
</tbody>
</table>

Example:
```
Router(config-sbc-sbe)# cac-policy-set 4
```

<table>
<thead>
<tr>
<th>Step 5 first-cac-table table-name</th>
<th>Configures the name of the first policy table to be processed. A CAC policy may have many tables configured. To start applying the CAC policy, the first table that is used must be defined:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sbc-sbe-cacpolicy)# first-cac-table C4</td>
<td>• table-name—The admission control table that should be processed first.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 6 cac-table table-name</th>
<th>Enters the CAC table mode for configuration of an admission control table (creating one, if necessary) within the context of an SBE policy set:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-sbc-sbe-cacpolicy)# cac-table C4</td>
<td>• table-name—Name of the admission control table.</td>
</tr>
</tbody>
</table>
Chapter 41 Cisco Unified Border Element (SP Edition)—SPA DSP Services

Configuring the Unified SBC

Step 7
Command or Action:
```
    table-type {policy-set | limit }  
    (list of limit tables)
```

Example:

Router(config-sbc-sbe-cacpolicy-cactable)#
```table-type policy-set
```

Purpose:
Configures the table type of a CAC table within the context of an SBC policy set.

list of limit tables can be one of the following values:

- **account**—Compare the name of the account.
- **adj-group**—Compare the name of the adjacency group.
- **adjacency**—Compare the name of the adjacency.
- **all**—No comparison type. All events match this type.
- **call-priority**—Compare with call priority.
- **category**—Compare the number analysis assigned category.
- **dst-account**—Compare the name of the destination account.
- **dst-adj-group**—Compare the name of the destination adjacency group.
- **dst-adjacency**—Compare the name of the destination adjacency.
- **dst-prefix**—Compare the beginning of the dialed digit string.
- **event-type**—Compare with CAC policy event types.
- **src-account**—Compare the name of the source account.
- **src-adj-group**—Compare the name of the source adjacency group.
- **src-adjacency**—Compare the name of the source adjacency.
- **src-prefix**—Compare the beginning of the calling number string.

Features can be enabled or disabled per adjacency group through CAC configuration the same way this is done per individual adjacency. The adj-group table type matches either the source adjacency group or destination adjacency group.

When the policy-set keyword is specified, use the **cac-scope** command to configure the scope within each entry at which limits are applied in a CAC Policy Set table.

Step 8
Command or Action:
```
    entry entry-id
```

Example:

Router(config-sbc-sbe-cacpolicy-cactable)#
```
    entry 1
```

Purpose:
Enters the CAC table entry mode to create or modify an entry in an admission control table.
Configuring the Unified SBC

Step 9
Command or Action
cac-scope *(list of scope options)*

Example:
Router(config-sbc-sbe-cacpolicy-cactable-entry)
cac-scope global

Purpose: Choose the scope at which CAC limits are applied within each entry in a Policy Set table.

list of scope options—Specifies one of the following strings used to match events:

- **account**—Events that are from the same account.
- **adjacency**—Events that are from the same adjacency.
- **adj-group**—Events that are from members of the same adjacency group.
- **call**—Scope limits are per single call.
- **category**—Events that have the same category.
- **dst-account**—Events that are sent to the same account.
- **dst-adj-group**—Events that are sent to the same adjacency group.
- **dst-adjacency**—Events that are sent to the same adjacency.
- **dst-number**—Events that have the same destination.
- **global**—Scope limits are global
- **src-account**—Events that are from the same account.
- **src-adj-group**—Events that are from the same adjacency group.
- **src-adjacency**—Events that are from the same adjacency.
- **src-number**—Events that have the same source number.

Step 10
Command or Action
callee inband-dtmf-mode {always | inherit | maybe | never}

Example:
Router(config-sbc-sbe-cacpolicy-cactable-entry)
callee inband-dtmf-mode always

Purpose: Configures the DTMF inband mode for the callee side.

- **always**—The inband DTMF tones are always in use by the endpoint.
- **inherit**—The inband DTMF mode for the endpoint is not affected by this CAC entry.
- **maybe**—The inband DTMF tones are used by the endpoint unless signaling indicates that an alternative format for DTMF is in use.
- **never**—The endpoint never uses inband DTMF.

Step 11
Command or Action
caller inband-dtmf-mode {always | inherit | maybe | never}

Example:
Router(config-sbc-sbe-cacpolicy-cactable-entry)
caller inband-dtmf-mode never

Purpose: Configures the DTMF inband mode for the caller side.

- **always**—The inband DTMF tones are always in use by the endpoint.
- **inherit**—The inband DTMF mode for the endpoint is not affected by this CAC entry.
- **maybe**—The inband DTMF tones are used by the endpoint unless signaling indicates that an alternative format for DTMF is in use.
- **never**—The endpoint never uses inband DTMF.
Configuring the Unified SBC to Support AMR-WB

This section explains how to configure the Unified SBC to support AMR-WB.

SUMMARY STEPS

1. configure terminal
2. dspfarm profile profile-identifier transcode
3. codec amr-wb
4. sbc sbc-name
5. associate dspfarm profile profile-identifier
6. activate
Detailed Steps

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
</tbody>
</table>

Example:
```
Router# configure terminal
```

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dspfarm profile profile-identifier transcode</td>
<td>Enters the DSP farm profile configuration mode, and defines a profile for DSP farm services.</td>
</tr>
</tbody>
</table>

Example:
```
Router(config)# dspfarm profile 20 transcode
```

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>codec amr-wb</td>
<td>Specifies the AMR-WB codec in the DSP farm profile.</td>
</tr>
</tbody>
</table>

Example:
```
Router(config-dspfarm-profile)# codec amr-wb
```

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sbc sbc-name</td>
<td>Enters the mode of an SBC service.</td>
</tr>
</tbody>
</table>

Example:
```
Router(config)# sbc mySBC dbe
```

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>associate dspfarm profile profile-identifier</td>
<td>Associates a DSP farm profile to a Cisco Call Manager group.</td>
</tr>
</tbody>
</table>

Example:
```
Router(config-sbc-dbe)# associate profile 20
```

<table>
<thead>
<tr>
<th>Step 6</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>activate</td>
<td>Initiates the DBE service of the SBC.</td>
</tr>
</tbody>
</table>

Example:
```
Router(config-sbc-dbe)# activate
```

Configuration Examples of the SPA DSP Services for the SBC

This section contains the following examples:

- Example: Enabling DSP Farm Service on the SPA DSP, page 41-34
- Example: Configuring a DSP Farm Profile, page 41-35
- Example: Viewing a DSP Farm Profile Configuration and Status, page 41-35

Example: Enabling DSP Farm Service on the SPA DSP

The following example shows how to enable DSP farm services on the SPA DSP:
```
enable
cfg terminal
voice-card 0/2
dsp services dspfarm
end
```
Example: Configuring a DSP Farm Profile

The following example shows how to configure a DSP farm profile:

```
enable
configure terminal
dspfarm profile 1 transcode
description enables transcoding
codec g711ulaw
codec g711alaw
codec g729ar8
codec g729abr8
codec g729r8
codec g723r63
codec ilbc
codec gsmamr-nb
codec g726r32
codec g729br8
associate application sbc
maximum session 300
end
```

Example: Viewing a DSP Farm Profile Configuration and Status

After a DSP farm profile is created, use the `show` command to display a DSP farm profile configuration and status. The following examples show the output of the `show` commands:

```
Router# show running-config
!
voice-card 2/0
no dspfarm
dsp services dspfarm
!
dspfarm profile 20 transcode
codec g711ulaw
codec g711alaw
codec g729ar8
codec g729abr8
codec g729r8
codec g729br8
codec g726r32
codec g729br8
rsvp
maximum sessions 5
associate application SBC
!
Router# show dspfarm profile 20

Dspfarm Profile Configuration
Profile ID = 20, Service = TRANSCODING, Resource ID = 1
Profile Description :
Profile Admin State : UP
Profile Operation State : ACTIVE
Application : SBC Status : ASSOCIATED
Resource Provider : FLEX_DSPRM Status : UP
Number of Resource Configured : 5
Number of Resource Available : 5
Codec Configuration
Codec : g729abr8, Maximum Packetization Period : 60
Codec : g711alaw, Maximum Packetization Period : 30
Codec : g711ulaw, Maximum Packetization Period : 30
Codec : g729r8, Maximum Packetization Period : 60
```
Codec : g729ar8, Maximum Packetization Period : 60
Codec : g729br8, Maximum Packetization Period : 60
RSVP : ENABLED

Router# show dspfarm all

DSPFARM Configuration Information:
Admin State: UP, Oper Status: ACTIVE - Cause code: NONE
Transcoding Sessions: 0 (Avail: 0), Conferencing Sessions: 2 (Avail: 2)
Trans sessions for mixed-mode conf: 0 (Avail: 0), RTP Timeout: 600
Connection check interval 600 Codec G729 VAD: ENABLED
Total number of active session(s) 0, and connection(s) 0
SLOT DSP CHNL STATUS USE TYPE SESS-ID CONN-ID PKTS-RXED PKTS-TXED
0 0 1 UP FREE conf - - - -
0 0 2 UP FREE conf - - - -
0 0 3 UP FREE conf - - - -
0 0 4 UP FREE conf - - - -
0 0 5 UP FREE conf - - - -
0 0 6 UP FREE conf - - - -

Configuration Examples of Unified SBC

This section contains the following examples:

- Example: Associating the Unified SBC with a DSP Farm Profile, page 41-36
- Example: Configuring the Unified SBC to Enable Transcoding, page 41-36
- Example: Configuring the Unified SBC to Enable Transrating, page 41-37
- Example: Configuring the Unified SBC to Enable SRTP and Transcoding, page 41-38
- Example: Configuring the Unified SBC for In-Band DTMF Interworking, page 41-38
- Example: Configuring the Unified SBC to Support AMR-WB, page 41-39

Example: Associating the Unified SBC with a DSP Farm Profile

The following example shows how to associate the Unified SBC with a DSP farm profile:

```
enable
configure terminal
sbc mySBC
associate dspfarm profile 1
end
```

Example: Configuring the Unified SBC to Enable Transcoding

The following example shows how to configure the unified SBC to enable transcoding.

```
Note

The `caller` and `callee` commands have been used in this procedure. In some scenarios, the `branch` command can be used as an alternative to the `caller` and `callee` command pair. The `branch` command has been introduced in Release 3.5.0. See the `?Sparanum>Configuring Directed Nonlimiting CAC Policies?` section on page 7-37 for information about this command.
```
enable
configure terminal
sbc mySBC
sbe
cac-policy-set 1
first-cac-scope dst-adjacency
first-cac-table codec-dst-acc
cac-table codec-dst-acc
table-type limit dst-adjacency
entry 1
match-value nava
caller-codec-list PCMU
callee-codec-list PCMA
media police strip
action cac-complete
complete
cac-policy-set global 1
codec-list PCMU
codec PCMU
exit
codec-list PCMA
codec PCMA
exit
end

Example: Configuring the Unified SBC to Enable Transrating

Note
Transrating is supported only for different rates using the same codec, not across codecs. Therefore, transrating and transcoding cannot be performed simultaneously.

The following example shows how to configure the unified SBC for enabling the transrating feature using the same codec policy:

enable
configure terminal
sbc mySBC
sbe
cac-policy-set 2
first-cac-table Transrate
cac-table Transrate
table-type policy-set
entry 1
cac-scope call
callee ptime 30
caller ptime 20
media police strip
action cac complete
complete
cac-policy-set global 2
end

The following example shows how to configure the Unified SBC for enabling the transrating feature using the same codec policy:

enable
configure terminal
sbc MySBC
sbe
codec list PCMU
Example: Configuring the Unified SBC to Enable SRTP and Transcoding

The following example shows how to configure SBC to enable the SRTP and transcoding features.

```
enable
configure terminal
sbc mySBC
sbe
  cac-policy-set 3
  first-cac-table C3
cac-table c3
table-type policy-set
table C3
entry 1
  cac-scope global
  srtp support allow
  srtp caller mandate
  srtp callee mandate
  srtp interworking allow
  srtp media interworking allow
  action next-table xcode
  exit
exit
cac-table xcode
table-type limit dst-adjacency
table xcode
entry 1
  match-value nav4b
callee-codec-list PCMU
action cac-complete
constant
exit
 cac-policy-set global 3
end
```

Example: Configuring the Unified SBC for In-Band DTMF Interworking

The following example shows how to configure the unified SBC for inband DTMF transmission.

```
# Note
The caller and callee commands have been used in this procedure. In some scenarios, the branch command can be used as an alternative to the caller and callee command pair. The branch command has been introduced in Release 3.5.0. See the Configuring Directed Nonlimiting CAC Policies? section on page 7-37 for information about this command.

enable
configure terminal
sbc mySBC
sbe
  cac-policy-set 4
  first-cac-table C4
cac-table c4
table-type policy-set
table c4
entry 1
  cac-scope global
callee inband-dtmf-mode always
caller inband-dtmf-mode never
```
Example: Configuring the Unified SBC to Support AMR-WB

The following example shows how to configure the Unified SBC to support AMR-WB:

```
action next-table xcode
exit
exit
cac-table xcode
table-type limit dst-adjacency
entry 1
match-value spab
callee-codec-list PCMU
action cac-complete
complete
cac-policy-set global 4
end
```

```
enable
configure terminal
sbc mySBC
sbe
cac-policy-set 1
first-cac-scope dst-adjacency
first-cac-table codec-dst-acc
cac-table codec-dst-acc
table-type limit dst-adjacency
entry 1
match-value nava
caller-codec-list AMRWB
callee-codec-list PCMA
media police strip
action cac-complete
complete
cac-policy-set global 1
codec-list AMRWB
codec AMR-WB
exit
codec-list PCMA
codec PCMA
exit
```