
Cisco Agile Metro Edge Fabric Manager

This chapter covers details on Cisco Agile Metro Edge Fabric automation use cases that include fabric
definition, commissioning of devices participating in an Edge Fabric, and operations such as software life-cycle
management and configuration template management.

• Metro Edge Fabric Manager, on page 1
• Metro Edge Fabric automation, on page 2
• Use Case: Device Fabric onboarding, on page 2
• Use Case: Fabric software lifecycle management, on page 10
• Use Case: Configuration template management , on page 14

Metro Edge Fabric Manager
Fabric Manager is a container for fabric attributes, fabrics, fabric devices, and fabric connections. It also
supports API calls to perform compliance actions.

Primary elements of Metro Edge Fabric Manager

These are the primary elements of Metro Edge Fabric Manager:

• Fabric definition: is a container or database that is used to store all attributes of the fabric including the
devices, their roles, and the connectivity between fabric devices.

• Role definition: is a container for a set of attributes which may be applied to multiple devices in the same
role.

The role definition must contain the topology role (leaf or spine) along with all required role attributes.
The role definitions are located outside of a specific Fabric instance. So, they may be applied across
devices in different fabrics.

• Fabric connectivity: is a part of a specific fabric instance that is used to define the connection between
all devices and contains information about the type of connection and the explicit endpoints of the
connection.

Cisco Agile Metro Edge Fabric Manager
1

Metro Edge Fabric automation
Metro Edge Fabric automation use cases

Metro Edge Fabric automation covers these use cases:

• Device fabric onboarding: that covers the commissioning of devices participating in an Edge Fabric

• Compliance operations that include

• Fabric Software Life-Cycle Management (FSLM): that ensures that the devices in the fabric match
their intended OS software version, and

• Configuration Template Management: that ensures that the configuration on devices that are
previously deployed matches the updated configuration template.

Metro Edge Fabric automation components

The automation components of Metro Edge Fabric include

• NSO fabric service: for fabric definition

• CX fabric-enabled ZTP: for automating fabric device onboarding

• CX fabric compliance functions: for OS version and template compliance, and

• CWM workflows: to better automate Fabric management that includes operations such as performing
device upgrades, template compliance check, applying new templates, and so on.

Use Case: Device Fabric onboarding

Fabric-enabled ZTP
You can manually onboard devices into the fabric or use zero touch provisioning (ZTP).

Zero touch provisioning (ZTP) is the method used for automated device onboarding, with support for various
ZTP attributes and scripts to complete device and fabric onboarding.

Components of Fabric-enabled ZTP

These are the high-level components of fabric-enabled ZTP.

Cisco Agile Metro Edge Fabric Manager
2

Cisco Agile Metro Edge Fabric Manager
Metro Edge Fabric automation

Figure 1: High-level components of Fabric-enabled ZTP

Fabric

The Fabric Definition is the container or database used to store all attributes of the fabric including the devices,
their roles, and the connectivity between fabric devices.

A fabric is defined along with device roles to be assigned to devices when onboarded.

Sample configuration:

config xmlns="http://tail-f.com/ns/config/1.0">
<fabrics xmlns="http://fabric.manager/edge-fabric-manager-instance">
<fabric-id>edge123</fabric-id>
<device-role>
<device-role-name>xr-leaf</device-role-name>
<device-model>N540-12Z20G-SYS-A</device-model>
<topology-role>leaf</topology-role>
<role-templates>
<role-template-id>day1-leaf-l2vpn</role-template-id>

</role-templates>
<interface-template>
<interface-template-id>leaf-interface-connection</interface-template-id>

</interface-template>
<target-os-version></target-os-version>

</device-role>
<device-role>
<device-role-name>xr-spine</device-role-name>
<device-model>NCS-5501-SE</device-model>
<topology-role>spine</topology-role>

Cisco Agile Metro Edge Fabric Manager
3

Cisco Agile Metro Edge Fabric Manager
Fabric-enabled ZTP

<role-templates>
<role-template-id>day1-leaf-l2vpn</role-template-id>

</role-templates>
<role-templates>
<role-template-id>day1-leaf-l3vpn</role-template-id>

</role-templates>
<interface-template>
<interface-template-id>leaf-interface-connection</interface-template-id>
<interface-template-variables>
<name>MTU</name>

</interface-template-variables>
</interface-template>
<target-os-version></target-os-version>

</device-role>
</fabrics>

</config>

Device role

The role definition is at the global <fabrics> level and you can use it across different fabrics.

Along with attributes such as device role name, device model, the device role in turn contains these templates:

• Role templates: templates defined under a role that are applied when the device is added to the fabric
with a specific role.

You can apply multiple configuration templates for a single role.

• Interface templates: templates that are applied when a fabric connection is made between two devices.

Variables inside this template refer to template variables. The variables are assigned values when a device
or a connection is added.

Sample configuration:

<device-role>
<device-role-name>xr-leaf-xvpn</device-role-name>
<device-model>NCS-5501-SE</device-model>
<topology-role>spine</topology-role>
<role-templates>
<role-template-id>day1-leaf-l2vpn</role-template-id>

</role-templates>
<role-templates>
<role-template-id>day1-leaf-l3vpn</role-template-id>

</role-templates>
<interface-template>
<interface-template-id>spine-interface-connection</interface-template-id>
<interface-template-variables>
<name>MTU</name>

</interface-template-variables>
</interface-template>
<target-os-version></target-os-version>

</device-role>

Manually onboard devices

Before you begin

• Onboard the device into NSO before onboarding into a fabric.

Cisco Agile Metro Edge Fabric Manager
4

Cisco Agile Metro Edge Fabric Manager
Manually onboard devices

• Create the fabric and define the roles.

Procedure

Step 1 Define the device fabric attributes (fabric-id, device-role-id) in the ZTP attributes when manually onboarding the device

Example:

//Template

<config xmlns="http://tail-f.com/ns/config/1.0">
<fabrics xmlns="http://fabric.manager/edge-fabric-manager-instance">
<fabric-id>edge123</fabric-id>
<devices>
<device-name>fabric-spine2</device-name>
<device-role-name>xr-spine</device-role-name>
<device-model>NCS-5501-SE</device-model>
<device-role-templates>
<role-template-id>day1-leaf-l2vpn</role-template-id>

</device-role-templates>
<interface-template-id>leaf-interface-connection</interface-template-id>
<geo-location>west</geo-location>
<oper-state>READY</oper-state>

</devices>
</fabrics>

</config>

Config templates are applied when the device is onboarded.

Step 2 Manually onboard devices.

• CLI: using the edge-fabric-actions onboard-device-into-fabric-apply-day1 command
edge-fabric-actions onboard-device-into-fabric-apply-day1 commit-type commit devices { device-name
fabric-leaf2 serial-number FOC123456 }

• API: API call to NSO

http://<NSO_IP>:8080/restconf/operations/edge-fabric-manager:edge-fabric-actions/onboard-device-into-fabric-apply-day1

Payload:

{
"onboard-device-into-fabric-apply-day1": {

"commit-type":"commit",
"devices": [

{
"device-name": "fabric-leaf2",
"serial-number": "FOC2127R4F9"

}
]

}
}

Cisco Agile Metro Edge Fabric Manager
5

Cisco Agile Metro Edge Fabric Manager
Manually onboard devices

Onboard devices using ZTP

Before you begin

• Required components to onboard devices using ZTP:

• DHCP server (not supplied by Cisco) to bootstrap the device

• Web server to download ZTP artifacts

• CX NSO ZTP package

• Define fabric and roles before onboarding the devices.

Procedure

Step 1 Install and configure DHCP server.
Step 2 Install CX NSO ZTP package and define device ZTP attributes.
Step 3 Install Fabric Manager package.

Guidelines and sample configurations for onboarding devices using ZTP

Sample configuration for ISC DHCPD

If you execute iPXE boot, then the system downloads and boots the image. If you perform non-iPXE ZTP,
then the system downloads and executes Python script to perform NSO onboarding.

Although this example maps specific host to IP address, it is not mandatory to do so.

dhcpd.conf

allow bootp;
allow booting;

log-facility local7;

ddns-update-style none;
ignore client-updates;
default-lease-time 21600;
max-lease-time 43200;

class "vendor-classes" {
match option vendor-class-identifier;

}

option space VendorInfo;
option VendorInfo.clientId code 1 = string;
option VendorInfo.authCode code 2 = unsigned integer 8;
option VendorInfo.md5sum code 3 = string;
option vendor-specific code 43 = encapsulate VendorInfo;
deny client-updates;

Cisco Agile Metro Edge Fabric Manager
6

Cisco Agile Metro Edge Fabric Manager
Onboard devices using ZTP

OOB ZTP on MGMT Network

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.5 192.168.1.50;
default-lease-time 28000;
max-lease-time 72000;
next-server 192.168.1.1;
option routers 192.168.1.1;
option domain-name "edgefabric.local";
option domain-name-servers 192.168.1.1;
set client-id = substring(option dhcp-client-identifier, 1, 20);
log (info, concat("CLIENT IDENTIFIER", client-id));
log (info, concat("VENDOR IDENTIFIER: ", option vendor-class-identifier));

host fabric-spine1-oob {
option dhcp-client-identifier "FOC2033R311";
hardware ethernet 00:a2:ee:3f:6a:c8;
fixed-address 192.168.1.200;
if exists user-class and option user-class = "iPXE" {

filename = "http://192.168.1.1:8080/images/ncs5500-mini-x-7.11.1.iso";
} elsif exists user-class and option user-class = "xr-config" {

filename = "http://192.168.1.1:8080/scripts/ncs_ztp_script_lab.py";
}

}
}

Sample configuration for CX NSO ZTP device definition

Device configuration:

<config xmlns="http://tail-f.com/ns/config/1.0">
<devices xmlns="http://tail-f.com/ns/ncs">
<dhcp-devices xmlns="http://com/cisco/as/servicepack/ztp">
<serial-number>FOC2033R311</serial-number>
<device-host-name>fabric-spine1</device-host-name>
<fabric-id>edge123</fabric-id>
<geo-location>west</geo-location>
<nso-authgroup>fabric</nso-authgroup>
<nso-device-group>ALL-ACCESS</nso-device-group>
<device-role-name>xr-spine</device-role-name>
<mgmt-ip>192.168.1.192</mgmt-ip>
<subnet-mask>26</subnet-mask>
<resource-pool-name>fabric-lab</resource-pool-name>

</dhcp-devices>
</devices>

</config>

Resource pool configuration:

<config xmlns="http://tail-f.com/ns/config/1.0">
<resource-pools xmlns="http://tail-f.com/pkg/resource-allocator">
<ip-address-pool xmlns="http://tail-f.com/pkg/ipaddress-allocator">
<name>fabric-lab</name>
<allocation>
<id>fabric-spine2</id>
<username>nso</username>
<allocating-service

xmlns:ncs="http://tail-f.com/ns/ncs">/ncs:devices/ncs:device[ncs:name='fabric-spine2']</allocating-service>

<redeploy-type>default</redeploy-type>

Cisco Agile Metro Edge Fabric Manager
7

Cisco Agile Metro Edge Fabric Manager
Guidelines and sample configurations for onboarding devices using ZTP

<request>
<subnet-size>26</subnet-size>

</request>
</allocation>
<subnet>
<address>192.168.1.0</address>
<cidrmask>24</cidrmask>

</subnet>
</ip-address-pool>

</resource-pools>
</config>

Guidelines for CX NSO ZTP device definition

Follow these guidelines for defining CX NSO ZTP devices:

• Configure DHCP ZTP devices under the NSO devices->dhcp-devices tree.

• Provide serial number because it is the primary key.

• Define the ZTP definition since the fabric ID and device role are defined under ZTP.

• Use standard NSO IP resource pool package to allocate management addresses.

This example allocated a /26 out of 192.168.1.0/24.

Create fabric connections
Fabric connections express the intent of connections between two routers. Each connection has a maximum
of two endpoints but can have a single endpoint to pre-configure nodes ahead of time.

When you make a fabric connection, the system applies the interface configuration template, if defined in the
role definition. You can apply the template through NSO CLI or API.

Procedure

Step 1 Create a fabric connection.

• CLI: using the NSO populate-fabric-connections command

edge-fabric-actions populate-fabric-connections commit-type commit response-type show-dry-run
fabric-connection-details { fabric-id edge123 fabric-connections { connection-id d1-d2
connection-type d1-d2-type endpoints { endpoint fabric-leaf2 interface HundredGigE1/1 ip-address
209.165.200.225/27 } } }

• API: using the populate-fabric-connections

Sample postman payload:

URL:
http://<NSO_IP>:8080/restconf/operations/edge-fabric-manager:edge-fabric-actions/populate-fabric-connections
Method: POST
Header: Content-Type : application/yang-data+json
JSON Input payload:

{
"populate-fabric-connections": {

Cisco Agile Metro Edge Fabric Manager
8

Cisco Agile Metro Edge Fabric Manager
Create fabric connections

"commit-type": "commit",
"response-type": "show-dry-run",
"fabric-connection-details": [

{
"fabric-id": "edge123",
"fabric-connections": [

{
"connection-id": "d1-d2",
"connection-type": "d1-d2-type",
"endpoints": {

"endpoint": "fabric-leaf2",
"interface": "HundredGigE1/1",
"ip-address": "192.168.1.2/24"

}
}

]
}

]
}

}

This action API invokes methods used to add Fabric connection details by using the templates whose name is
configured under the /edge-fabric-manager-instance:fabrics{<FABRIC_ID>}/device-role/.

Input payload has different options for these parameters:

• commit-type: can be commit or dry-run

• response-type: can be save-dry-run or show-dry-run

The save-dry-run option saves the dry-run output to a file under the path configured in
/fabric-static-config:fabric-static-config{dry-run-location}

Step 2 Verify fabric connections.

Example:

Router#show fabrics fabric-connections

FABRIC CONNECTION
ID CONNECTION ID TYPE ENDPOINT INTERFACE IP ADDRESS

edge123 fabric-leaf1-connection d1-d2-type fabric-leaf1 TenGigE0/0/0/0 192.168.1.22/24

fabric-spine1 TenGigE0/0/0/0 192.168.1.24/24

fabric-spine1-connection d1-d2-type fabric-leaf1 TenGigE0/0/0/0 192.168.1.34/24

fabric-spine1 TenGigE0/0/0/0 192.168.1.26/24

fabric-spine2-connection d1-d2-type fabric-leaf1 TenGigE0/0/0/0 192.168.1.31/24

fabric-spine2 TenGigE0/0/0/0 192.168.1.24/24

Cisco Agile Metro Edge Fabric Manager
9

Cisco Agile Metro Edge Fabric Manager
Create fabric connections

Use Case: Fabric software lifecycle management

Fabric software lifecycle management
Fabric software lifecycle management (FSLM) is a process that ensures that the devices in the fabric match
their intended OS software version.

The NSO Edge Fabric Manager performs the compliance check, and compliance enforcement or remediation.

Supported FSLM base functionalities

FSLM supports these base functionalities:

• Upgrade or downgrade single device based on {fabric, device}

• Upgrade or downgrade a set of devices based on {fabric, role}

• Upgrade or downgrade all devices based on {fabric}

• Upgrade cycles including the use of GISO for evolved XR (eXR) and XR7 operating systems

• Pre- and post-operations on the device and adjacent fabric devices that can be used for pre- and
post-upgrade checks

• The dry-run capabilities to determine devices that are not running their target software version

• Upgrades as a set of atomic functions—for example, software download (staging), software upgrade,
and software commit

Unsupported FSLM functionalities

FSLM does not support these functionalities:

• Automated graceful maintenance: the upgrade use case does not cover moving traffic off the node being
upgraded. You can modify your own pre-check and post-check scripts as needed to perform these tasks.

• Service awareness

• User-guided interaction

FSLM Components

FSLM involves these components:

• CX NSO OS Upgrade application

• Crosswork Workflow Manager (CWM)

How to upgrade or downgrade a set of devices
The workflow for upgrading or downgrading a set of devices is based on these user inputs: {fabric}, {fabric,
role}, or {fabric, device}.

Cisco Agile Metro Edge Fabric Manager
10

Cisco Agile Metro Edge Fabric Manager
Use Case: Fabric software lifecycle management

Fabric Manager definition has a metadata field at the role and device level for target-sw-version. The
device-level field is preferred in case the field is defined at both levels. When you want to upgrade the OS
software on a device or set of devices you must augment the target-sw-version value using NSO CLI, Web
UI, or API.

Process summary

The defined CWMworkflows utilize the fabric database of the Fabric Manager application, or API to retrieve
data regarding devices belonging to a specific fabric or role. The upgrade process is intent based, where one
workflow determines the intended software version from the device or role metadata.

The FSLM workflow consists of

• compliance workflow: a workflow that checks the current software version in comparison to the intended
software version and determines the set of devices that are currently non-compliant, and

• remediation workflow: a workflow that interacts with the OS upgrade NSO application to update the set
of devices based on either {fabric-id}, {fabric-id, role}, or {fabric-id, device} input.

Automated and user-driven remediation: The compliance and remediation flows are sub-flows. You can use
them independently or combine them into a single parent flow. The parent flow has an option to upgrade a
set of devices without prompt—the devices will be upgraded to the target version without any further user
intervention.

Cisco Agile Metro Edge Fabric Manager
11

Cisco Agile Metro Edge Fabric Manager
How to upgrade or downgrade a set of devices

Workflow

Figure 2: FSLM workflow

These stages describe how FSLM works:

1. The user executes OS compliance check workflow with these input fields: {{Fabric ID}}, {{Role ID}},
{{Device List}}.

The {{Fabric ID}} is the only mandatory attribute.

2. The CWMworkflow retrieves the list of devices in a Fabric and their attributes using the Fabric Manager
API.

The input fields are evaluated for granularity and are used as a filter to retrieve an end set of devices. In
Cisco Agile Metro Release 1.0, these are free text strings and must match a defined Fabric and role in the
Fabric Manager.

3. Once the set of devices is retrieved, CWM evaluates the list to determine which set of devices match the
user input.

4. The next workflow evaluates which devices need to be upgraded.

Cisco Agile Metro Edge Fabric Manager
12

Cisco Agile Metro Edge Fabric Manager
How to upgrade or downgrade a set of devices

5. CWM uses information from the NSO device data or live status to retrieve the current software version
from each device.

Devices which do not match the target version will be upgraded or downgraded to match the target version.

6. The result of this flow feeds into another flow interacting with the CX NSO OS Upgrade package to
perform the relevant upgrades.

The upgrade process may be iterative across a single device or done through batches in parallel.

Check OS compliance
This example shows how to check the version for all nodes in the Fabric. It checks the role definition for each
device against the runtime version.

Procedure

Check OS compliance using the check-compliance command.

Example:

Router# edge-fabric-actions check-compliance compliance-type os-version-compliance fabric-details
{fabric-id edge123}
fabrics {

fabric-id edge123
devices {

device-name fabric-leaf1
os-compliant-status false
response Device fabric-leaf1 OS version is not compliant. Existing version is: 7.9.2 and

target version is: 24.4.1.
}
devices {

device-name fabric-spine1
os-compliant-status true
response Device fabric-spine1 OS version is compliant.

}
devices {

device-name fabric-spine2
os-compliant-status true
response Device fabric-spine2 OS version is compliant.

}
}

Pre-upgrade and post-upgrade MOP
In the context of upgrades, the upgrade flow commonly includes a pre- and post-upgrade method-of-procedure
(MOP) which perform multiple functions:

• Pre-upgradeMOP: ensures that the device and upgrade components are ready for the upgrade procedure.
You can also use it to capture network state information for comparison after upgrade to ensure that the
network returns to the correct state post-upgrade.

Cisco Agile Metro Edge Fabric Manager
13

Cisco Agile Metro Edge Fabric Manager
Check OS compliance

• Post-upgrade MOP: captures network and device state data or perform additional tasks post-upgrade.
For example, in IOS XR routers, you can ensure that the device state is correct before executing install
commit command post-upgrade.

NSO upgrade application

Cisco Agile Metro Release 1.0 uses the CX OS-Upgrade NSO application to perform device upgrades. The
application remains unchanged to support Edge Fabrics. The OS upgrade package must be pre-populated with
data required for the upgrade. This includes the platform to software image mapping and image repository
details.

Platform dependent software

The target software version is based on the NOS name and the NOS-specific numbering schema. For example,
XR7 OS with software version 24.1.1. There may be platform-specific versions of the same NOS, such as
eXR and XR7. In the current CX OS-Upgrade package, the platform type is identified as part of the upgrade
process.

Error handling

Each component is responsible for its own error handling for its functions. The CWMworkflow is ultimately
responsible for monitoring and managing the lifecycle of the upgrades and reporting events generated by
sub-components. As an example, if an upgrade is attempted on a device that is not currently reachable it would
generate an event in CX OS-Upgrade which is being monitored by CWM. CWM would then report this
underlying error in its own event reporting.

Use Case: Configuration template management

Configuration compliance
As part of the ongoing fabric infrastructure management, updates may need to be made to templates that were
previously deployed. Configuration compliance mechanism helps to update the configuration on devices that
were previously deployed to match the updated configuration template. The Crosswork Workflow Manager
(CWM) drives this automation to update a set of devices.

Templates in Release 1.0 are defined at the fabric, role, and interface level. See theMetro Edge FabricManager,
on page 1 section for details on configuration template definition.

Configuration template versioning

Configuration template versioning is done in two ways:

• Template versioning managed by the user: When a new template is built for a role, use a different name
for the template and update the template being used in the fabric manager role definition.

• Templates stored with a revision number: Templates in NSO used for fabric management will be stored
with a revision number. When a device is onboarded into the fabric with a specific role, the latest version
of the template referenced in the role definition is used for configuration. At the device level, we also
record the latest role and interface templates assigned to the device.

Cisco Agile Metro Edge Fabric Manager
14

Cisco Agile Metro Edge Fabric Manager
Use Case: Configuration template management

Device template compliance check and remediation

The compliance action starts with a CWM workflow that is used to first determine which devices are using
a non-compliant template and then remediation of the device by deploying the correct template.

In the Fabric Manager, the compliance action is used with the config type to check each device to make sure
that it is utilizing the correct template. The enforce-compliance API call is then used with the config type
along with the list of devices to deploy the correct template.

Configuration enforcement dry-run

The configuration compliance includes a dry-run capability to see the changes prior to device provisioning.

Use this existing command in the CX Fabric Manager:

edge-fabric-actions enforce-compliance enforce-compliance-type config-compliance commit-type
dry-run response-type show-dry-run fabric-details { fabric-id edge123 devices { device
fabric-leaf2 } }

Cisco Agile Metro Edge Fabric Manager
15

Cisco Agile Metro Edge Fabric Manager
Configuration compliance

Cisco Agile Metro Edge Fabric Manager
16

Cisco Agile Metro Edge Fabric Manager
Configuration compliance

	Cisco Agile Metro Edge Fabric Manager
	Metro Edge Fabric Manager
	Metro Edge Fabric automation
	Use Case: Device Fabric onboarding
	Fabric-enabled ZTP
	Manually onboard devices
	Onboard devices using ZTP
	Guidelines and sample configurations for onboarding devices using ZTP

	Create fabric connections

	Use Case: Fabric software lifecycle management
	Fabric software lifecycle management
	How to upgrade or downgrade a set of devices
	Check OS compliance
	Pre-upgrade and post-upgrade MOP

	Use Case: Configuration template management
	Configuration compliance

