Cisco VG30D Voice Gateway User Guide
April 28, 2009

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number: OL-19276-01
THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACcompanyING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If the equipment causes interference to radio or television reception, which can be determined by turning the equipment off and on, users are encouraged to try to correct the interference by using one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Modifications to this product not authorized by Cisco could void the FCC approval and negate your authority to operate the product.

Portions: Copyright (c) 1990-2007 Info-ZIP. All rights reserved.

For the purposes of this copyright and license, “Info-ZIP” is defined as the following set of individuals:

This software is provided “as is,” without warranty of any kind, express or implied. In no event shall Info-ZIP or its contributors be held liable for any direct, indirect, incidental, special or consequential damages arising out of the use of or inability to use this software.

Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the above disclaimer and the following restrictions:

1. Redistributions of source code (in whole or in part) must retain the above copyright notice, definition, disclaimer, and this list of conditions.

2. Redistributions in binary form (compiled executables and libraries) must reproduce the above copyright notice, definition, disclaimer, and this list of conditions in documentation and/or other materials provided with the distribution. The sole exception to this condition is redistribution of a standard UnZip/SFX binary (including SFxWiz) as part of a self-extracting archive; that is permitted without inclusion of this license, as long as the normal SFx banner has not been removed from the binary or disabled.

3. Altered versions—including, but not limited to, ports to new operating systems, existing ports with new graphical interfaces, versions with modified or added functionality, and dynamic, shared, or static library versions not from Info-ZIP—must be plainly marked as such and must not be misrepresented as being the original source or, if binaries, compiled from the original source. Such altered versions also must not be misrepresented as being Info-ZIP releases—including, but not limited to, labeling of the altered versions with the names “Info-ZIP” (or any variation thereof, including, but not limited to, different capitalizations), “Pocket UnZip,” “WiZ” or “MacZip” without the explicit permission of Info-ZIP. Such altered versions are further prohibited from misrepresentative use of the Zip-Bugs or Info-ZIP e-mail addresses or the Info-ZIP URL(s), such as to imply Info-ZIP will provide support for the altered versions.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCDE, CCSL, CCENT, Cisco Eos, Cisco HealthPresence, the Cisco logo, Cisco Lumin, Cisco Nexus, Cisco Nurse Connect, Cisco Stackpower, Cisco StadiumVision, Cisco TelePresence, Cisco WebEx, DCE, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS, Bringing the Meeting To You, Catalyst, CCDa, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study,
IronPort, the IronPort logo, LightStream, Linksys, MediaTone, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase, SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (0903R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental.

Cisco VG30D Voice Gateway User Guide
© 2009 Cisco Systems, Inc. All rights reserved.
CONTENTS

CHAPTER 1
Introduction 1-1
 Scope of this Guide 1-1
 The Cisco VG30D Voice Gateway Management 1-3

CHAPTER 2
Installation 2-1
 Unpacking and Inspection 2-1
 Hardware Installation 2-2
 Connection Sequence 2-3
 Front Panel Indicators 2-3
 STATUS 2-3
 LAN 2-3
 P1 and P2 2-4
 Power 2-4
 Back Panel Equipment 2-4
 Ports 2-4
 Ethernet 2-4
 Port 1 & Port 2 2-5
 Craft Port 2-5
 Alarm Port 2-5
 Switches 2-5
 Power On/Off 2-5
 POST 2-5
 Impedance Switches 2-5
 Craft Switch 2-5
 Power On Self Test and IP Address Setup 2-6
 Successful Self-Test 2-6
 Self-Test Failure 2-6

CHAPTER 3
Initial Configuration 3-1
 Gateway Management Interface 3-1
 Access Levels 3-2
 Help Facility 3-3
Contents

Logout 3-3
Access Control 3-3
 Name & Password Defaults 3-3
 Application Default Settings 3-4
Login 3-4
 Change IP Address and Name 3-4
Set Time & Date 3-4
 Change Passwords 3-5
 Set Non-Use Timeout Period 3-5
Logging Out 3-5
Resetting Applications to Defaults 3-6

CHAPTER 4
Management and Configuration 4-1
Gateway 4-1
 Set IP Address 4-1
 Set Time & Date 4-1
 Set PCM Clock Source 4-1
 Configure SNMP Traps 4-1
 Reset to Defaults 4-2
 Back Up Configuration 4-2
 Restore Configuration 4-3
Applications 4-4
 Quick Configuration 4-4
DPNSS Configuration 4-4
 Basic Settings 4-4
 Advanced Settings 4-5
 DPNSS Services 4-6
Q.931 Configuration 4-7
 Basic Settings 4-7
 Advanced Settings 4-8
 Q.931 Services 4-9
Interworking 4-11
Administration 4-12
 Access Control 4-12
 Software Upgrade 4-12
 Configuration Backups 4-12
 Software Selection 4-13
 Reboot the Cisco VG30D Voice Gateway 4-13
CHAPTER 5

Diagnostics
- General 5-1
 - System Details 5-1
 - System Log 5-1
- Ports 5-4
 - Major Alarm Log 5-4
 - Port Error Logs 5-4
 - Port Error Statistics 5-4
 - Call Statistics 5-4

CHAPTER 6

Conversions and Transparency
- Q.931/DPNSS Conversion Configuration 6-1
 - Q.931 Port 1 Configuration 6-1
 - Basic Configuration 6-1
 - Advanced Configuration 6-2
 - Services Configuration 6-2
 - DPNSS Port 2 Configuration 6-3
 - Basic Configuration 6-3
 - Services Configuration 6-3
- DPNSS/ISDN Transparency Options Configuration 6-4
 - QSIG Transparency Through a DPNSS Network 6-4
 - DPNSS Transparency Through a QSIG Network 6-4
- Advanced Service Interworking 6-5
 - DPNSS Message Waiting Implementations 6-5
 - DPNSS Networks Containing PBXs from More than One Manufacturer 6-6
 - ISDX Voice Messaging Systems 6-6
 - Name Mapping 6-6
 - DPNSS 6-6
 - QSIG 6-7
- Route Optimisation Options 6-7
 - Use of DPNSS Route Optimisation Invite String 6-7
 - Restricted Route Optimisation Call Reference Mappings 6-7
 - QSIG Facility Element Encoding 6-7
 - QSIG Diversion Restriction 6-8
 - Using Diversion Restriction 6-8
 - Limitations to Diversion Restriction 6-9
 - Configuring Diversion Restriction 6-9
 - Configuring Cisco VG30D Voice Gateway Proxy Services 6-9
 - Proxy Diversion Address Filtering 6-9
CHAPTER 7

SCN Clock Synchronisation 7-1

CHAPTER 8

SNMP Traps 8-1
- Major Alarm Traps 8-1
- Port Error Traps 8-1
- Reset Traps 8-2
- System Events Traps 8-2
- Layer 1 Alarm Traps 8-3

CHAPTER 9

DPNSS Compliance Tables 9-1
- Basic Call 9-1
- Data Call 9-4
- Executive Intrusion (Partial Support) 9-5
- Diversion 9-6
 - Diversion - Immediate 9-6
 - Diversion - On Busy 9-8
 - Diversion - On-No-Reply 9-10
- Hold 9-11
- Three Party 9-12
- Call Offer 9-13
- Service Independent Strings 9-14
- Bearer Service Selection 9-14
- Route Optimisation 9-15
- Redirection 9-16
- Centralised Operator 9-17
- Add-On Conference 9-20
- Do Not Disturb 9-20
- Loop Avoidance 9-20
- Network Address Extension 9-21

CHAPTER 10

Fault Determination 10-1
- Introduction 10-1
- Power-On Problems 10-1
Management Interface Problems 10-1
Operational Problems 10-2
Diagnostic Procedures 10-4
 Power Supply 10-5
 Self Test Failure 10-5
 Port Failure Alarm 10-6
 Checking Cables 10-7
 Call Failures 10-8
 Fatal Errors 10-9
 Event Reporting 10-9
 SNMP Traps 10-9
Browser Interface Problems 10-10

APPENDIX A
Approvals, Safety Instructions, and Statutory Information A-1
 Connection to Mains Voltage Supply A-1
 Replacing the Mains Fuse A-1
 Product Servicing A-1
 Network Connections A-2
 Equipment Port Classification A-2
 Electrical Safety Compliance A-2
 EMC Compliance A-2
 Earthing Cable A-2
 Lithium Cell A-3
 Flammability A-3
 CE Mark A-3
 EMC Declaration of Conformity A-3
 Safety Declaration of Conformity A-4
 Special National Conditions A-4
 Norway A-4
 Spain A-4
 Sweden A-4
 Switzerland A-4
 Denmark A-5

APPENDIX B
References and Technical Specifications B-1
 References B-1
Introduction

Scope of this Guide

This guide is intended for trained personnel familiar with SCN protocols and their network topology. It describes the hardware configuration and management of the Cisco VG30D Voice Gateway product, its installation, maintenance, and general operation.

The guide is divided into the following main sections:

- Chapter 1, “Introduction”
- Chapter 2, “Installation”
- Chapter 3, “Initial Configuration”
- Chapter 4, “Management and Configuration”
- Chapter 5, “Diagnostics”
- Chapter 6, “Conversions and Transparency”
- Chapter 7, “SCN Clock Synchronisation”
- Chapter 8, “SNMP Traps”
- Chapter 9, “DPNSS Compliance Tables”
- Chapter 10, “Fault Determination”

Appendices

- Appendix A, “Approvals, Safety Instructions, and Statutory Information”
- Appendix B, “References and Technical Specifications”
- Appendix C, “Connectors and Cabling”
- Appendix D, “Craft Port Management”
- Appendix E, “Useful Information”
- Glossary

The Cisco VG30D Voice Gateway

The Cisco VG30D Voice Gateway is a dual-port ISDN unit that is designed to perform signalling and service reconciliation between two unlike ISDN signalling systems.

It typically gets deployed to attach the following:
Cisco VG30D Voice Gateway

Chapter 1 Introduction

The Cisco VG30D Voice Gateway

- A QSIG (or DPNSS) PBX to a DPNSS (or QSIG) network, or
- A number of DPNSS PBXs to a QSIG or Q.931 backbone network (VoIP or ATM, for example), or
- A DPNSS PBX to a Q.931-based Public ISDN service (such as ISDN 30e).

When you are attaching a QSIG (or DPNSS) PBX to a DPNSS (or QSIG) network, Cisco VG30D Voice Gateway provides seamless service interworking between the attached PBX and other PBXs in the network, including inter-operation of most of the commonly used services.

Cisco VG30D Voice Gateway facilitates basic call interworking, including simple services such as calling and connected identity when attaching a number of DPNSS PBXs to a QSIG or Q.931 backbone network, or a DPNSS PBX to a Q.931-based Public ISDN service.

In addition, when attaching a number of DPNSS PBXs to a QSIG backbone network, the Cisco VG30D Voice Gateway can transport DPNSS signalling across the network and deliver it practically transparently through a similar InterChange unit to a remote DPNSS PBX. In this mode, all DPNSS Supplementary Services get supported apart from some link-specific Traffic Channel maintenance services.

Cisco VG30D Voice Gateway supports 2 E1 Primary Rate [2 Mbit/s (30B + D) Common Channel Signalling] interfaces; providing a single Primary Rate conversion. The unit has been designed to be installed on a 19-inch rack. It is particularly suited for use in Customer Premises Environments (CPE) to interface equipment into Virtual Private Networks.

Figure 1-1 shows DPNSS PBXs interconnected across a QSIG network. In this configuration, the combination of InterChange units and the network behave as a single DPNSS transit node and transports DPNSS supplementary signalling.

Figure 1-1 Cisco VG30D Voice Gateway in a Private Network

![Diagram showing DPNSS PBXs interconnected across a QSIG network.](image)

Figure 1-2 shows a Cisco VG30D Voice Gateway interfacing a PBX by using the UK standard DPNSS protocol to the QSIG/Q.931 protocol.
Conversions operate on the common signalling channel only. Bearer circuits get passed directly through the unit. You can configure each protocol support to meet specific application needs.

You can configure the Virtual Private Network protocol support to operate into sub-equipped ISDN trunks, which allows the user to maximise the benefits of the advantageous Primary Rate ISDN tariffs now that are being offered by some PTOs.

The Cisco VG30D Voice Gateway also provides some additional facilities:

- The ability to perform diversions on behalf of the PBX
- Support for the Q.932 redirecting number element for diversion
- Custom configuration for Cisco Unified Communications Manager and other PBXs
- The ability to display DPNSS Message Waiting Indications on telephones that are controlled by Cisco Unified Communications Manager

Management

On powering on the Cisco VG30D Voice Gateway, Power On Self Test gets performed. You can monitor the process using the Craft port and the serial cable that is supplied with the Cisco VG30D Voice Gateway. See *Power On Self Test and IP Address Setup*.

After this self test is complete, achieve configuration and management of the Cisco VG30D Voice Gateway’s signalling functions by using the Gateway Management Interface and a Web browser on a networked computer. See *Initial Configuration and Management and Configuration*.

Factory default settings were installed during manufacturing. For any advanced engineering support under the guidance of a Cisco Systems, Inc., support engineer, an additional cable will be required (Find details in *Craft Port - Factory Mode.*)
Installation

Before you can use your Cisco VG30D Voice Gateway, you will need to follow all the steps in this section. This will provide you with basic functionality. Initial Configuration and Management and Configuration describe configuration of the more advanced features of the Cisco VG30D Voice Gateway.

Note

Before unpacking the unit, check that you have received the product that you ordered. The package carton label will show the following:

- Stock Number
- Product Description
- Serial Number
- Software Version

Contact the supplier if any discrepancy exists.

Unpacking and Inspection

The Cisco VG30D Voice Gateway arrives supplied in a single package that contains the following items that are shown in Figure 1:

1. Cisco VG30D Voice Gateway Unit
2. Mains Power Cable
3. RJ45 iSDN Crossover Stub Cable for QSIG/Q.931 connection, Port 1
4. CD-ROM with PDF versions of user documentation
5. Quick start guide
6. Safety guide
The customer must supply all other cables. For details, refer to Appendix C, “Connectors and Cabling” of the Cisco VG30D Voice Gateway User Guide.

Store the packaging material in a clean, dry area for possible re-use.

Hardware Installation

The Cisco VG30D Voice Gateway may be either rack mounted (preferred) or used as a desktop unit. When you are rack mounting, pay attention to cooling. The Cisco VG30D Voice Gateway has side-to-side cooling. The design of the rack should allow for adequate airflow for either side of the unit. Refer to the rack manufacturer’s specification for suitable mounting methods.

Caution

Ensure the Cisco VG30D Voice Gateway is earthed at all times through the dedicated earth terminal on the rear of the unit as shown in **Figure 2**.

The earthing cable must conform to the following specification. It shall:
- Be PVC covered green with yellow longitudinal coloured stripes as defined in EN 60950
- Be rated at 17 amps
- Have a cross sectional area of 1.5mm²
- Be of stranded wire 7/0.53, and
- Be terminated with an M3 ring terminal 1-2.6 mm² conductor

Figure 2 Earth Screw on Rear Panel
Connection Sequence

To identify the ports, refer to Figure 4.

⚠️ Caution
Do not connect to the E1 telephony ports until first-time configuration is complete.

Step 1
Connect the earthing cable as described in the “Caution” in Hardware Installation.

Step 2
Connect the mains power cable.

Step 3
Connect the 10/100 Ethernet cable.

Front Panel Indicators

The Cisco VG30D Voice Gateway unit has 10 LEDs on its front panel. They show unit status information. This section describes the front panel indicators that Figure 3 shows.

Figure 3 Front View

STATUS

The 4 red STATUS LEDs are labelled S3, S2, S1, and S0. They indicate unit status in conjunction with the two port LEDs, P1 and P2. During unit self-test, the status LEDs will come on and go off in sequence, and in the event of a self-test failure, stop with one LED remaining on.

LAN

Three LEDs indicate LAN activity. The TxD LED flashes amber on transmission of a packet. The Link/RxD LED flashes green on receipt of a packet. The green Speed LED is ON for 100 Mbit/s or OFF for 10Mbit/s. If Ethernet is not connected, these LEDs will remain off.

Note
The RxD LED will flash for any traffic on the Ethernet, regardless of destination.
P1 and P2

The two amber Port LEDs are labelled **P1** and **P2**. Together with the **STATUS** LEDs, they indicate unit status. When the unit is operating normally and all is well, these LEDs turn on and off every few seconds with all **STATUS** LEDs off.

When a problem exists, the Port LEDs will show the problem’s location (P1 or P2, or if both P1 and P2 are lit, a major alarm exists). The **STATUS** LEDs will then indicate the problem. If more than one port has a problem, they will be shown in a cycle of 5 seconds each.

Power

The **Power** LED has two functions. When power is applied, it comes on amber to indicate that the unit is in self-test mode. When the self-test satisfactorily completes, it changes to green to indicate that the unit is functioning correctly.

Back Panel Equipment

This section describes the Cisco VG30D Voice Gateway back panel ports and switches that are shown in Figure 4.

Figure 4 Rear View

Ports

Ethernet

Use the 10/100 Base-T Port to connect to the IP Network to allow voice packets to be transmitted and received and for a computer using a Web browser to communicate with the Cisco VG30D Voice Gateway configuration and management interface.
Port 1 & Port 2

Each port has three connectors. The two BNC connectors, which are 75-ohm unbalanced, are marked Rx and Tx. The RJ45 connector is 120-ohm balanced. Ensure the Impedance Switch is set to the correct impedance. You can configure parameters for each port using the Gateway Management Interface on a Web browser.

Craft Port

The Craft Port exists primarily to enable a serial connection to a dumb terminal or a terminal emulation application on a computer that is running RS-232 at 9600 baud, 8 bit, 1 stop bit, and no parity.

Alarm Port

If required, you can connect the Cisco VG30D Voice Gateway Alarm Port to an alarm signal detector before powering on the unit.

Switches

Power On/Off

The power On/Off switch (I/O) is adjacent to the mains connector.

Caution

Before connecting any cables or changing any switches, power off the Cisco VG30D Voice Gateway.

POST

You must set the Power On Self Test (POST) switch in the POST position before powering on the Cisco VG30D Voice Gateway unit. Only Cisco Systems, Inc., engineers use the Factory position.

Impedance Switches

This allows the selection of either 75-ohm or 120-ohm impedance for the SCN ports. Use 75 ohms for coaxial BNC connection (BNC position), and 120 ohms for UTP RJ45 connectivity (RJ45 position).

Caution

Make this selection before power is applied to the unit.

Craft Switch

Use the Craft switch to switch between serial connection for initialising the Cisco VG30D Voice Gateway and Factory Engineering management. By default, the switch should stay set to Craft.
Power On Self Test and IP Address Setup

On power ON of the Cisco VG30D Voice Gateway, the unit will perform a self-test. The Power LED on the front panel shows amber, and the four STATUS LEDs come on and go off (in sequence from left to right) to indicate that the unit is performing the self-test. These tests check the correct operation of the hardware and start the operational software. This process should complete in less than 1 minute.

Successful Self-Test

When all the tests complete successfully and the software is operational, the Power LED changes colour from amber to green. Approximately 30 seconds later, you can log in to the web-based Gateway Management Interface.

The Cisco VG30D Voice Gateway has been configured with the default IP address of 192.168.1.1 and sub-net mask 255.255.255.0.

Proceed as follows:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Connect the ethernet port of the Cisco VG30D Voice Gateway directly to the ethernet port of a computer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Open a web browser and enter 192.168.1.1 directly into the IP address bar.</td>
</tr>
<tr>
<td>Note</td>
<td>You may need to change the IP address and sub-net mask of your computer to be on the same sub-net.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Log in to the Cisco VG30D Voice Gateway by using Advanced (case sensitive) for both Username and Password.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Browse to Configuration/Gateway/Set IP Address.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Set Gateway Management IP Address, Set Gateway Management Subnet Mask and, if required, Set Management Default Gateway Address and click the Submit button.</td>
</tr>
<tr>
<td>Note</td>
<td>The set parameters will get used next time that the Cisco VG30D Voice Gateway gets re-booted, but the Cisco VG30D Voice Gateway will remain accessible through the active connection until then.</td>
</tr>
</tbody>
</table>

The Cisco VG30D Voice Gateway may now be powered OFF, installed and connected to the IP network (accessible through the new IP address). As an alternative, you may continue with further configuration using the Gateway Management Interface as described in Sections 3 and 4 of the Cisco VG30D Voice Gateway User Guide.

Self-Test Failure

If any test in the sequence fails, the cycle of the STATUS LEDs will stop (with one LED remaining on) and the Power LED will remain AMBER.
You can obtain details of any failures if the unit undergoes the self-test when it is connected through the Craft Port to a dumb terminal or a terminal emulation application on a computer that is running RS-232 at 9600 baud, 8 bit, 1 stop bit, and no parity or flow control.

If an error is reported, consult Fault Determination for the appropriate corrective action or call your support contact. After errors have been corrected, make sure that the self-test runs satisfactorily to completion and proceed as described in Successful Self-Test.
Initial Configuration

Gateway Management Interface

To configure the Cisco VG30D Voice Gateway, you must now connect the Ethernet Port to the IP Network, but do NOT connect to the E1 telephony ports yet.

You need a standard Web browser application to configure the Cisco VG30D Voice Gateway unit. Ensure that your browser is set to accept cookies and always check for newer versions of stored pages.

You can set configuration parameters by using a simple intuitive menu as shown in Figure 3-1.
Figure 3-1 Configuration Menu Structure

Buttons on many pages provide the same function:

Submit Use this button to submit the configuration setting or change.

Refresh Use this button to refresh the page to see the original settings or to confirm the submitted settings or changes.

Close This button takes you back to the Menu or previous pages.

Access Levels

The Cisco VG30D Voice Gateway has 3 access levels:

- Monitor
- Configure
- Advanced
Monitor level access allows the user to view the entire system configuration but prevents them from making any changes.

Configure level access allows the user to make changes on the Application, DPNSS Basic and Q.931 Basic pages and to Back Up Configuration. At this access level, the user can view the remaining pages but cannot change them.

Advanced level access users can make changes to any part of the configuration.

Help Facility

This facility, which is available from the Main menu, will open a separate browser window that may be kept open at the same time as the Configuration window. However, it does not have the level of detail of this User Guide and does not provide guidance on communications protocols.

Logout

The Logout facility is provided because only a single user may access the Cisco VG30D Voice Gateway management interface at any one time. When a user is logged in, no other logins will be accepted. Therefore, the user should Logout at the end of the session.

An inactivity timer is provided for when a user does not log out. This timer enables another user to log in after a set period of inactivity in the event of a network or computer failure. The factory default value for the Non-Use Timeout Period is 5 minutes, but it may be set between 3 and 15 minutes. When the Non-Use Timeout Period expires, it does not log out the user. This logout occurs when another user attempts to log in.

Note

When using Internet Explorer, if you close the browser or navigate to another location without first logging out, a window will pop up to ask whether you want to log out from the Gateway Management Interface. Selecting Logout will enable another user to log in immediately. Selecting Ignore will close the window and leave you logged in until the Non-Use Timeout Period elapses.

Access Control

Name & Password Defaults

The factory default settings for the User Name (or User ID) and Password are the same as for the levels of access. For example, to access the interface at Monitor level, the User Name is Monitor and the Password is also Monitor. User Name is always the level of Access. Only the Password may get changed. Remember that the User Name and Password are case sensitive.

Cisco Systems, Inc., recommends that you change the default passwords. You can do this only when you are logged in at the Advanced level.
Application Default Settings

At any time during the configuration process you can undo your settings and start again by resetting the Cisco VG30D Voice Gateway to its default settings. Refer to Resetting Applications to Defaults.

Login

To access the Gateway Management Interface, perform the following procedure:

Step 1: Enter the Management IP address of the Cisco VG30D Voice Gateway (default is 192.168.1.1) in the Address field of your browser. When the Cisco VG30D Voice Gateway unit is located, you will be asked to enter a User Name and a Password.

Step 2: For User Name (or User ID), enter Advanced.

Step 3: For Password, enter Advanced. An introduction screen will display.

Step 4: Click Continue and the Cisco VG30D Voice Gateway Diagnostic Overview screen (the main screen) displays.

Change IP Address and Name

Step 1: Select Configuration, Gateway and then Set IP Address.

Step 2: Insert new IP address at Set Gateway Management IP Address.

Step 3: If required, insert a name for the unit at Gateway Name.

Step 4: If required, you may also change the Subnet Mask and Default Gateway Address.

Step 5: Select Submit and the displayed settings will be confirmed.

Step 6: To return to the Menu, select Close.

Note: Changes will take effect next time that the Cisco VG30D Voice Gateway is rebooted.

Set Time & Date

Step 1: Select Configuration, Gateway and then Set Time & Date.

Step 2: Select Synchronise with PC (if the computer clock is set correctly), or enter the correct values and then Set with current values.

Step 3: To return to the Menu, select Close.
Chapter 3 Initial Configuration

Access Control

Change Passwords

Note
Be aware that passwords are case sensitive and must consist of not less than seven and not more than ten alphanumeric characters.

Step 1
Select Administration and then Access Control.

Step 2
Select the Access level field and enter the new password.

Step 3
Select the next field and reenter the new password.

Step 4
Select Submit and the Change Confirmation screen will display.

Step 5
Select Go Back to return to Access Control Settings or select Close to exit Access Control.

Note
Once the password has been changed, you will not be able to change any parameters until you logout and login again with the new Password.

Step 6
Logout and then log in again with the new password at either the Advanced or the Configure level.

Set Non-Use Timeout Period

The Non-Use Timeout Period specifies the time that is allowed for a user to be logged in to the Gateway Management Interface without actively using it before being automatically logged out when another user attempts to log in. You can set it for 3 to 15 minutes.

Step 1
Select Administration and then Access Control.

Step 2
Insert a number for the Non-Use Timeout Period.

Step 3
Select Go Back to return to Access Control Settings or select Close to exit Access Control.

Logging Out

Step 1
Select Logout from the main Menu.

Step 2
Confirm that you want to log out.

Step 3
Close the browser window.
Resetting Applications to Defaults

Refer to Reset to Defaults for a list of configuration values that will be reset. IP Addresses and Time and Date settings will not get changed:

Should you want to reset the Cisco VG30D Voice Gateway to its default settings, perform the following procedure:

Step 1 Select Configuration, Gateway and then Reset to Defaults.
Step 2 Select Set to Defaults.
Step 3 Select Administration from the top level Menu
Step 4 Select Reboot the Gateway.
Step 5 When the unit has rebooted, close the current Browser window and open a new one.
Step 6 Log in again. Refer to the Login section.

Note If you do not log out, another user will not be allowed to log in until the Non-Use Timeout Period has elapsed (Refer to Set Time & Date.). If another user is unable to log in immediately, make sure the browser window has been closed. If necessary, close down the browser application.

You need to configure the Cisco VG30D Voice Gateway Ports. Refer to Management and Configuration.
Management and Configuration

This section provides an overview of all management and configuration facilities that are provided by the Cisco VG30D Voice Gateway’s Gateway Management Interface. Refer to the Gateway Management Interface section.

Gateway

Set IP Address

You should have established the Cisco VG30D Voice Gateway's IP Addresses and Subnet Masks during the initial setup process. However, you can change these addresses at any time and also insert a Default Gateway IP Address. Leaving the Default Gateway IP Address field blank signifies that no default gateway is to be used.

You can also give the Cisco VG30D Voice Gateway a Gateway Name, which will display beneath the IP address at the bottom of the Gateway Management Interface configuration pages.

IP Address changes will not be effected until the Cisco VG30D Voice Gateway has been reset. You will need to log in to the new address for any further configuration changes. Name changes take effect immediately.

Set Time & Date

You can set the time and date by entering them into the fields that are provided. You can do this by accepting the values that are displayed or by synchronising them with your computer.

Set PCM Clock Source

You can set Clock Synchronization to Port 1 or Port 2

Configure SNMP Traps

You can enable up to eight Trap Destination Addresses by inserting the address value. To disable an address, remove the address value.
Traps are grouped as follows:
- Major Alarm
- Port Errors
- Reset Traps
- System Events
- Layer 1 Alarms

To enable a group, check the box as required. To enable all groups select **Enable All**. Select **Submit** to save any changes.

Refer to **SNMP Traps** for the group tables. You will find links to the MIBs that define the Cisco VG30D Voice Gateway traps on the Gateway Management Interface page.

Reset to Defaults

This allows the user to set the following groups of the Cisco VG30D Voice Gateway configuration parameters to their default values.
- DPNSS Basic, Advanced and Services
- Q.931 Basic, Advanced and Services
- SNMP Traps
- Inter-working
- Access Control

No change will occur to the Cisco VG30D Voice Gateway’s date and time settings, IP address, software selection, logs, or statistics. Reboot the Cisco VG30D Voice Gateway for changes to take effect.

Back Up Configuration

⚠️ **Caution**

You cannot restore backups from a Westell iIQ3000 Voice Gateway to the Cisco VG30D Voice Gateway.

You cannot restore backups from a Cisco VG30D Voice Gateway to the Westell iIQ3000 Voice Gateway.

When the Cisco VG30D Voice Gateway has been satisfactorily configured, you can back up this configuration to an FTP server for restoring at a later date in the event of a nonrecoverable system failure.

To back up the configuration, perform the following procedure:

Step 1 From the main menu, select **Configuration, Cisco VG30D Voice Gateway** and **Back Up Configuration**.

Step 2 Enter the **FTP Server IP Address** onto which the configuration is to be backed up.

Step 3 Enter the **User Name** and **Password** to access the FTP Server.

Step 4 Insert the name of the **Directory** on the FTP Server.

Step 5 Give your back up configuration a file name.

Step 6 Give a brief description of the configuration. Consider this step as optional.
Step 7 Press Back Up to save the file.

Step 8 When the back up is complete, press Close to return to the Main menu.

Restore Configuration

This allows a configuration that previously has been backed up to either be restored to the Cisco VG30D Voice Gateway from which it was backed up or to be installed on another Cisco VG30D Voice Gateway unit.

Note

You can restore a configuration only to an Cisco VG30D Voice Gateway that is running the same software and version as that on the Cisco VG30D Voice Gateway from which and when the Back up Configuration was made.

To restore a configuration, perform the following procedure. Changes will not occur to IP addresses, software selection, logs or statistics.:

Step 1 From the Main Menu, select Configuration, Cisco VG30D Voice Gateway and Restore Configuration.

Step 2 Enter the IP Address of the server that contains the backup file.

Step 3 Enter a User Name and Password for the FTP server.

Step 4 Enter the Directory name that contains the backup file.

Step 5 Enter the Name and extension of the backup file.

Step 6 Click on Select and the Configuration Details window will display.

Step 7 Check that the Configuration Details are correct and compatible with the Cisco VG30D Voice Gateway to which you are restoring or installing on and select Install.

Step 8 When the Restore is confirmed, select Close. The Cisco VG30D Voice Gateway will reboot itself.

Applications

Use the following preset applications for quick configuration:

- Cisco UCM (Cisco Unified Communications Manager)
- QSIG
- VoIP
- ISDN
- Q.931
- DPNSS
- Avaya
- Nortel
• PBX

Quick Configuration

To configure any of the preceding preset applications, perform the following procedure:

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Select Configuration and then Applications.</td>
</tr>
<tr>
<td>2</td>
<td>Select the required application and the relevant settings will display.</td>
</tr>
<tr>
<td>3</td>
<td>Complete the fields as required.</td>
</tr>
<tr>
<td>4</td>
<td>Select Submit and the settings will change.</td>
</tr>
<tr>
<td>5</td>
<td>Select Close to return to the Menu.</td>
</tr>
</tbody>
</table>

Note Any active ports temporarily will get deactivated while the changes are being made to the basic configuration. Calls in progress will get lost, and service will get interrupted.

DPNSS Configuration

Basic Settings

Note Any changes that are made to the basic settings will cause the Cisco VG30D Voice Gateway to temporarily deactivate the DPNSS Port. A warning will tell you that calls in progress will be lost, and confirmation is requested before changes are submitted.

Options are:

• **Activate or deactivate DPNSS Port**
 Puts the DPNSS port (Port 2) in or out of service.

 Note You cannot activate the port if no channels are commissioned.

• **Channel Commissioning** (for up to 30 channels)
 All channels are set to **In Use** when the Cisco VG30D Voice Gateway is supplied. Channels that are not required may be decommissioned.

• **DPNSS A/B Orientation**
 Ensure the Cisco VG30D Voice Gateway is set to the opposite A/B Orientation from that of the Port on the PBX or other equipment to which the Cisco VG30D Voice Gateway is connected.

• **X or Y Channel Orientation**
 Ensure Channel Orientation is set opposite to the orientation for each of the Channels on the PBX or other SCN equipment with which the Cisco VG30D Voice Gateway is communicating.
Select or deselect **Initiate DLC Establishment**
If checked, the Cisco VG30D Voice Gateway will attempt to establish each LAP by sending SABMEs on each commissioned channel.

Select or deselect **Clear on Establish**
If checked, the Cisco VG30D Voice Gateway will send a CRM on each LAP as it is established.

Channel Allocation - Low to High / High to Low
This dictates whether channels get allocated to calls starting at the highest or the lowest enabled channel.

Advanced Settings

Available settings include the following:

- **Proxy Diversion Service**: If service is enabled and a call from the QSIG network to the DPNSS network is diverted, the Cisco VG30D Voice Gateway will intervene to ensure that the diversion takes place. If service is disabled, calls from the QSIG network that encounter diversion at a DPNSS PBX are likely to fail. This setting does not affect calls from DPNSS, either to QSIG or transparently over QSIG to other DPNSS extensions.

 You can configure diversion service to act on behalf of all calls (**All**), a specific dialed number (**Exact**), calls matching a part of the dialed number (**Match**) or calls that do not match (**No Match**) a given part of a dialed number.

- **Proxy Divert Address Filter**: The filter represents the digits against which the dialed number is matched, if the Proxy Diversion Service is set to **Exact**, **Match** or **No Match**.

- **Operator Recall Timeout**: This setting only applies if Proxy Diversion is enabled. If a call is diverted by an Operator in the DPNSS network to a phone in the QSIG network, the phone to which it has been diverted will ring for the number of seconds that is configured and then will revert to the operator (unless answered). If the **Operator Recall Timeout** is disabled, the call will continue ringing at the QSIG extension.

- **Enable ISDX VMS Emulation**: Checking this setting allows extensions on QSIG PBXs to be integrated into a Voice Mail System (VMS) that is hosted on an ISDX PBX.

- **ISDX VMS Diversion on No-reply Timer**: See DPNSS Message Waiting Implementations and ISDX Voice Messaging Systems.

- **Default ISDX VMS Number**: See DPNSS Message Waiting Implementations and ISDX Voice Messaging Systems.

- **ISDX VMS Diversion Count Threshold**: See DPNSS Message Waiting Implementations and ISDX Voice Messaging Systems.

- **Enable Supplementary String Generation**: This setting adds any supplementary service strings to the Selection field.

- **Enable Incoming Name Services**: This setting allows DPNSS text strings to be mapped into Called and Calling party names in QSIG.

- **Enable Divert Messages**: This setting allows DPNSS text strings to be mapped into QSIG Diversion service messages as names.

- **Enable Proxy Mapping of Calling Party Category**: When Proxy Mapping of Calling Party Category is enabled, the Cisco VG30D Voice Gateway will generate appropriate calling party category elements from QSIG name elements.
The Calling Party Category ‘Operator’ match string, Calling Party Category ‘PSTN’ match string, Calling Party Category ‘ISDN’ match string and the Calling Party Category ‘Decadic’ match string fields define the strings to be matched for each type CPC that can be generated in this way.

- **Segment long ISRM**: When checked, this field allows the Cisco VG30D Voice Gateway to generate ISRM(i) - SSRM(c) sequences where the incoming Q.931 Setup message that indicates sending complete would result in a generated ISRM(c) that is exceeding the maximum DPNSS PDU size.

- **Incoming Channel Mapping**: If setting is configured to **Fixed**, the channel that is used by the incoming call must get used for the outgoing call. If setting is configured to **Switched**, a different channel may get negotiated in the outgoing Q.931 call, and the Cisco VG30D Voice Gateway will switch the bearer channel internally.

- **Transparent Transport Service Support**: This setting enables the generation of information that is necessary to transport the original DPNSS messaging transparently across a QSIG network.

- **Re-attempt Transparency after transfer**: If the box is checked, the Cisco VG30D Voice Gateway will attempt to work transparently to a new destination following call transfer.

DPNSS Services

Configuration options include the following:

- **Enable Virtual Calls**: Enabling virtual calls allows the Cisco VG30D Voice Gateway to process non-bearer-related signalling used by many supplementary services.

- **SIC mapping for Telephony calls**: This option allows a received “Speech” to be mapped to a Q.931 Bearer Capability of either “Speech” or “3k1 Audio”. Additionally, progress indicators may also get generated (“Speech + PI” or “3k1 Audio + PI”).

- **Enable Data Calls**: This option allows 64kBit unrestricted digital calls to be accepted by the Cisco VG30D Voice Gateway.

- **Enable BSS-M and Enable BSS-P**: These fields control the insertion of Bearer Service Selection (BSS) strings by the Cisco VG30D Voice Gateway.

- **Enable CLC Mapping**: If CLC mapping is enabled, the Cisco VG30D Voice Gateway will attempt to map received Calling Line Category information into Q.931 Progress Indicators.

- **Enable RTI Mapping**: If RTI mapping is enabled, the Cisco VG30D Voice Gateway will attempt to map received routing information into Q.931 Progress Indicators.

- **Enable Text to Name Mapping**: If option is enabled, the Cisco VG30D Voice Gateway will generate QSIG Name Supplementary Service invocations from DPNSS Text strings.

- **Enable Three Party Working**: This option allows the Cisco VG30D Voice Gateway to operate DPNSS Call Transfer Services.

- **Enable Call Offer**: This option allows the Cisco VG30D Voice Gateway to operate DPNSS Call Offer Services.

- **Enable Route Optimisation Service**: This option allows the Cisco VG30D Voice Gateway to interwork the DPNSS Route Optimisation Service to the QSIG Path Replacement Service.

- **PBX accepts Route Optimisation Invite string**: Normally checked, this option can get used to suppress sending ROP-INV string to a DPNSS PBX that cannot accept it by unchecking the box.

- **Restrict Route Optimisation Call Ref. mappings**: This option can be used to limit the length of the embedded call reference when mapping it from the ROP-INV to Path Replacement.
• **Enable Diversion Service:** This option allows the Cisco VG30D Voice Gateway to operate Diversion Services.

• **Diversion Validation response time:** This option specifies the time (in seconds) that the Cisco VG30D Voice Gateway will wait before autonomously generating a positive response to Diversion Validation Request from the DPNSS PBX or network.

• **Enable Loop Avoidance Insertion:** If option is enabled, the Cisco VG30D Voice Gateway will insert a loop avoidance (LA) string containing the Number of Further Transits value in the outgoing signalling.

• **Loop Avoidance mapping:** If option is set to Simple the DPNSS LA value gets mapped directly to the Q.931 transit Counter, but if option is set to Enhanced it gets treated as though it is passing through a transit PBX before it is forwarded.

• **Include Loop Avoidance in CRM:** If the treatment of the LA results in the call clearing and this is checked, the LA string will get included in the Clear Request Message that is generated by the Cisco VG30D Voice Gateway.

• **En-bloc Call Forward Digit Count:** You can use this option to turn overlap dialed DPNSS calls into en-bloc calls. When the specified number of digits has been received, the call gets forwarded en-bloc. Be aware that this is only appropriate for networks with fixed-length dial plans.

• **En-bloc Call Forward Timeout:** This option acts as an interdigit timer that will forward the call when it expires. It restarts as each digit arrives. This option proves suitable for networks with variable-length dial plans, but introduces a post dial delay.

• **Default Destination Address:** You can use this field to provide a default destination address when no dialed digits are received from the Q.931/QSIG PBX or network.

• **Number of leading Destination Digits to strip:** You can use the Cisco VG30D Voice Gateway to strip leading digits such as node numbers from the dialed number, if required.

• **Enable Service Spoofing:** If this option is enabled, Transfer Hold and Diversion Validation Service may get spoofed on behalf of the Q.931 network. (The services must also be enabled.)

• **Three Party Working EEM Spoofing:** When this option is enabled, the Cisco VG30D Voice Gateway will generate EEM messages to resolve interaction between spoofed Transfer and ROP services.

Q.931 Configuration

Basic Settings

Note: Any changes that are made to the basic settings will cause the Cisco VG30D Voice Gateway to temporarily deactivate the Q.931 Port. A warning will be given that calls in progress will be lost, and confirmation is requested before changes are submitted.

Options include the following:

- **Activate Q.931 Port 1:** Checking this option puts the Q.931 port (Port 1) in service.

- **Layer 1 Framing:** Select CRC4 or Double Frame layer 1 Framing.

- **Orientation:** Select User or Network end for layer 2 framing to be the opposite of the connected PBX or network.
Chapter 4 Management and Configuration

Q.931 Configuration

- **Initiate Link Establishment**: This option determines how the link layer (layer 2) will be established. Select **Never** if the connected equipment will always initiate link establishment. Select **Immediate** if the Cisco VG30D Voice Gateway is to initiate the link, or select **Call** if the Cisco VG30D Voice Gateway has only to establish the link if it has a call to deliver and the link layer has not yet been established.

- **Action on Layer 2 Reset**: The Cisco VG30D Voice Gateway may react to a layer 2 reset or loss and re-establishment of the link in three ways while calls are in progress. The response may be to **Ignore** the layer 2 event, to send a **Status** message for each active call, or to send a **Status Enquiry** message for each call.

- **Overlap Signalling Support**: The support for overlap dialed calls can be configured to:
 - **None** when calls in both directions will be converted to en-bloc
 - **Incoming** when incoming calls overlap, outgoing calls will be converted to en-bloc
 - **Outgoing** when outgoing call overlap, incoming calls will be converted to en-bloc, or
 - **Both Ways** when all calls are treated as overlap calls.

Advanced Settings

Available settings include the following:

- **Layer 3 Protocol Profile**: Select the protocol type from **QSIG** - (ETSI QSIG 1995), **Euro-ISDN** (ETS300-403-1), **AT&T TR-41449**, or **ETSI** (Generic Q.931).

- **Service Message Supported**: Valid only in TR41449 profile, if checked this flag controls the response to a Service message with global call reference that is being received. The Cisco VG30D Voice Gateway will respond with Service Ack message if option is enabled or a Status message with cause of Message Not Implemented if disabled.

- **Call Reference Length**: Setting allows the Cisco VG30D Voice Gateway to accept one-octet or two-octet Call references. If **Single** is selected, the Cisco VG30D Voice Gateway will only send and receive one octet length call references. If **Double** is selected, only call references that are two octets in length will be deemed valid. When **Both** is selected, the Cisco VG30D Voice Gateway will accept either length for incoming calls and generate two-octet Call References on outgoing calls.

- **Send Sending Complete Element**: Unchecking the box allows the Sending Complete Information Element to be suppressed in outgoing en-bloc calls.

- **Send Connected Number Element**: Unchecking the box allows the Connected Number Information Element to be suppressed in outgoing Connect messages.

- **Enable Calling Line Id**: Unchecking the box allows the Calling Party Number Information Element to be suppressed in outgoing messages.

- **Connected Number Element Identifier**: This setting allows the encoding to be selected according to the connected network requirements. 76/0x0C provides compatibility with older TR41449 implementations that use that coding.

- **Include Octet 3a in Connected Number**: Checking this box will enable the transmission of Presentation and Screening Indicators in Connected Number Information Elements.

- **Support Progress Indicator in Call Proc. and Disconnect**: Checking this box will enable any available progress information to be sent in Call Proceeding and Disconnect messages.

Note Some types of networks do not support Progress Indicator in Call Proc. and Disconnect.
• **Support ECMA Progress Description Codes**: Checking this box will allow the Cisco VG30D Voice Gateway to process ECMA progress description codes in addition to the default ITU-T codes.

• **Change Status Element Supported**: Checking this box enables the Cisco VG30D Voice Gateway to process Change Status Information elements.

• **Channel Preference for Outgoing Calls**: This setting controls the encoding of the outgoing Channel Id Information Element and the behaviour of the Cisco VG30D Voice Gateway when requested channels are unavailable. Set to **Preferred** if you are using switched channel mapping. Otherwise, use **Exclusive**.

• **Incoming Channel Mapping**: If this setting is configured to **Fixed**, the channel that is used by the incoming call must be used for the outgoing call. If this setting is configured to **Switched**, a different channel may be used in the outgoing Q.931 call, and the Cisco VG30D Voice Gateway will switch the bearer channel internally.

• **B-channels Initial State**: This setting sets the initial state of each channel to either **Free** (and in-service) or **Out of Service**.

• **Response to Status Enquiry in Null-State**: This setting sets the response of the Cisco VG30D Voice Gateway to an incoming Status Enquiry message received when the call is in the NULL state. The Cisco VG30D Voice Gateway may respond by sending either a Release Complete message or a Status message.

• **Response to Status Enq. with Global Call Ref**: This setting sets the response of the Cisco VG30D Voice Gateway to an incoming Status Enquiry message with the Global call Reference. The Cisco VG30D Voice Gateway may be configured to **Always Null** and ignore the message or **Send Status** to send the message.

• **Send Status to Errored Optional Elements**: This setting dictates whether the Cisco VG30D Voice Gateway should send a Status message in response to a message that contains an errored Information Element. If it sends the status message, this setting dictates whether it should be the call status **Before Processing** or **After Processing** the received message.

• **Clear Forward if No Response to Setup**: This parameter allows the Cisco VG30D Voice Gateway behaviour on expiry of the Q.931 T303 timer to be specified. The Cisco VG30D Voice Gateway may be configured to **Always** send Release Complete forward, **Never** send it, or send when configured as the **Network end only**.

• **Symmetrical Call State**: When this setting is checked, call state reported in Status messages will be QSIG. Otherwise, the Cisco VG30D Voice Gateway will report Q.931 user or Network end state dependent on configuration.

• **En-bloc Call Forward Digit Count**: Overlap dialed Q.931/QSIG calls can be turned into en-bloc calls. When the specified number of digits has been received, the call gets forwarded en-bloc. This is only appropriate for networks with fixed-length dial plans.

• **En-bloc Call Forward Timeout**: This setting acts as an interdigit timer that will forward the call when it expires. It gets restarted as each digit arrives. This setting proves suitable for networks with variable-length dial plans but introduces a post dial delay.

Q.931 Services

Configuration options include the following:

• **Enable Call Independent Signalling**: This option allows the Cisco VG30D Voice Gateway to process non-bearer-related signalling necessary for supplementary services operation.
• **Enable Call Forwarding Service**: This option enables or disables acceptance and generation of QSIG Call Forwarding Services.

• **Enable Call Transfer Service**: This option enables or disables acceptance and generation of QSIG Call Transfer Services.

• **Enable Call Offer Service**: This option enables or disables acceptance and generation of QSIG Call Offer Services.

• **Enable Call Completion Service**: This option enables or disables acceptance and generation of QSIG Call Completion Services.

• **Enable Message Waiting Indication Service**: This option enables or disables acceptance and generation of QSIG Message Waiting Services.

• **Enable Name Identification Service**: This option enables or disables acceptance and generation of QSIG Name Identification Services.

• **Name Text to Display element Mapping**: This option disables or controls the direction in which DPNSS text strings and the QSIG Name Supplementary service are mapped. Options include: No mapping, Display to Name Text, Name Text to Display or Name Text to/from Display.

• **Spoof Connected Name Elements**: Checking the box allows a previously received Called Party Name or Alerting Party Name to be used as the Connected Name, if none is received.

• **Diversion Mapping**: This option selects which QSIG services will generate a DPNSS Diversion Request. Options include: No mapping, Redirect, Redirect and Call Fwd or Call Forward.

• **Enable ETSI Party Category Generation**: Checking the box enables ETSI Party Category codes as well as ITU-T codes to be accepted.

• **Enable Path Replacement Service**: Checking the box enables acceptance and generation of QSIG Path Replacement Services.

• **Enable Path Retain Service**: Checking the box enables acceptance and generation of QSIG Path Retain Services.

• **Transit Counter Mapping**: If Transit Counter Mapping is set to Simple the Q.931 Transit Counter value gets mapped directly to the DPNSS Loop Avoidance SIS. If it is set to Enhanced, it gets treated as though it is passing through a transit PBX before it is forwarded. It may also indicate Disabled.

• **Transit Counter Insertion**: If the box is checked, the Cisco VG30D Voice Gateway will insert a Transit Counter Information element with the value that is defined in Maximum Transits.

• **Maximum Transits**: If the box alongside Transit Counter Insertion is checked, the Cisco VG30D Voice Gateway will insert a Transit Counter Information element with the defined value.

• **Transparent Transport Service Support**: This option enables the generation of information that is necessary to transport the original Q.931/QSIG messaging transparently across a DPNSS network. Options include: Disabled, Generate or Carry.

• **Facility Element Coding Standard**: This option allows the selection of ISO, ETSI or ECMA encoding and decoding of Facility Information Elements.

• **Invoke Identifier Length**: This option sets the length of ROSE Components Invoke Identifiers to be generated and received by the Cisco VG30D Voice Gateway. It may be set to 1 or 2.

• **Default Outgoing Calling Number Plan**: This option gets used to force a particular number type and plan in Called and Calling Party Number Information Elements. Options include: No Default, Unknown, ISDN/E.164, Data/X.121, Telex/F.69, National or Private.
Interworking

Interworking configuration options include the following:

- **Call Completion enabled**: If box is checked, this enables the interworking of QSIG Call Completion services into DPNSS Call Back when Free and Call back when Next Used.

- **Message Waiting option**: Use this option to specify the way in which Message Waiting Supplementary service is interworked. The Cisco VG30D Voice Gateway can support interworking DPNSS into pure Q.Sig, the Cisco Call Manager method (which requires the CCM Message Waiting ON number and the CCM Message Waiting OFF number to be provided), attempt to perform **Both** methods, or **None**.

- **Facility Element coding**: Facility elements that are generated by the interworking task may get encoded by using the **ETSI** or **ISO** standard.

- **Message Waiting NSI option**: The Non Standard Information (NSI) that is used by various PBXs may be generated by the Cisco VG30D Voice Gateway. The strings that are used by **ISDX** and **MD110** PBXs are provided, or the user may specify any other string by selecting **Raw**. Refer to **DPNSS Message Waiting Implementations** for further information.

When MD110 is selected, the user must also specify the Message Waiting ON call centre number and the Message Waiting OFF call centre number.

When Raw is selected as the Message Waiting NSI option, the user must specify the entire SIS used by the recipient DPNSS PBX in the Message Waiting ON NSI string and Message Waiting OFF NSI string fields.

- **Message Waiting ON NSI string**: This option will represent the default string for the **Message Waiting NSI option** unless **Raw** has been selected, when the user must insert the string to a maximum of 30 characters.

- **Message Waiting ON call centre number**: If **MD110** or **Both** are selected in the **Message Waiting NSI option**, the user may insert up to a 10 character call centre number.
• **Message Waiting OFF NSI string:** This option will be the default string for the Message Waiting NSI option unless Raw has been selected, when the user must insert the string to a maximum of 30 characters.

• **Message Waiting OFF call centre number:** If MD110 or Both are selected in the Message Waiting NSI option, the user may insert up to a 10-character call centre number.

• **CCM Message Waiting ON number:** This destination address must be provided when a DPNSS voice mail system is attempting to send MWI notifications to phones that are controlled by Cisco Unified Communications Manager.

• **CCM Message Waiting OFF number:** This destination address must be provided when a DPNSS voice mail system is attempting to send MWI notifications to phones that are controlled by Cisco Unified Communications Manager.

• **DPNSS Message Waiting Call Back Messaging string:** This option specifies the encoding of Call Back Messaging - Request (CBM-R) and Call Back Messaging - Cancel (CBM-C) SIS strings.

Administration

To access Administration functions, you must have Advanced Access.

Access Control

Access Control settings allow the user passwords and Non-Use Timeout Period to be set. Alphanumeric characters, with the exception of space, are legal for passwords. The Non-Use Timeout Period specifies the time that is allowed for a user to be logged into the Gateway Management Interface without actively using it before being automatically logged out when another user attempts to log in. It may be set from 3 to 15 minutes.

Software Upgrade

The Cisco VG30D Voice Gateway gets supplied with an embedded default operational software. It can only get upgraded with software that is of the same type as the embedded software.

Software Upgrade allows a new version of the software application to be downloaded to the Cisco VG30D Voice Gateway by using an FTP server.

The IP address of the FTP server, a User Name and a Password are all required to access the FTP server. The directory and filename of the new application on the FTP server is also required. Selecting **Upgrade** will download the new application to the Cisco VG30D Voice Gateway.

This new application will overwrite an existing previously downloaded application but not the default application. The new application will run next time the Cisco VG30D Voice Gateway is reset, but only if the new software has been selected by using the **Software Selection** facility. Instructions on installing the software version will be provided with the new software.

Configuration Backups

Be aware that configuration backups are release specific. After the software upgrade completes successfully and is operational on the unit, a new configuration backup should be saved.

The procedure is as follows:
Chapter 4 Management and Configuration

Step 1 Upgrade to the new version of the software.
Step 2 Select the version of the software to run next time the unit is restarted.
Step 3 Restart the Cisco VG30D Voice Gateway unit. The configuration that is stored on the unit automatically gets loaded into the new version of software.
Step 4 Perform a **Back Up Configuration** as described in the **Gateway** section. A configuration backup file that is compatible with the newly activated software gets produced.

Note
You cannot restore a backed-up configuration file to a system that is running a different version of software to that under which the backup file was saved.

Note
Cisco Systems, Inc., recommends that each backup configuration file be given a unique name that includes the software release number. This will ensure that, if the configuration backup files are stored in a central location, a new backup file does not overwrite an existing file that may be required for a different location.

Software Selection

The Cisco VG30D Voice Gateway comes supplied with an embedded default operational software. **Software Selection** provides a choice between using the new software downloaded or the embedded default software that is supplied with the Cisco VG30D Voice Gateway.

Reboot the Cisco VG30D Voice Gateway

Selecting **Reboot the Cisco VG30D Voice Gateway** will, after confirming the action, immediately halt and restart the Cisco VG30D Voice Gateway.

Note
Be aware that this action is service affecting. Calls in progress will get lost and service will be interrupted until the Cisco VG30D Voice Gateway is fully operational again.
Diagnostics

The Gateway Management Interface produces logs for System, Major Alarm, and Port Errors and statistics for Port Errors and Calls.

You can print information in management diagnostics screens. As an alternative, by using the Select All, Copy and Paste facilities in the Web browser, you can export the information in ASCII text to other applications.

Note
If the system is set to Factory Defaults and the Cisco VG30D Voice Gateway is rebooted, all the logs will get cleared, and the information other than the System Log will get lost.

General

System Details

System Details provide hardware and software information for the Cisco VG30D Voice Gateway unit. You will need to be able to refer to this information when you communicate with the Helpdesk for support.

System Log

The system log is created and updated dynamically. It records the date and time of certain system events, including system crashes, automatic reboots, and manual restarts. Successful and attempted logins get recorded.

Table 5-1 defines the various events that may get generated by the Cisco VG30D Voice Gateway and get written to the System Log during operation. Event classifications indicate their seriousness. Events get classified at the following four levels:

- Critical
- Major
- Minor
- Informational.

Critical indicates an event that has caused the Cisco VG30D Voice Gateway to restart. Always report these events your supplier. Error codes for critical events include 1, 2, 303 and 601.
General

Major indicates an event that will cause calls to fail. In some cases, remedial action is possible and should be attempted before contacting your supplier.

Minor indicates an event that may have caused a single call or few calls to fail.

Informational indicates an event that contains information that may be useful but does not require any action.

Content in Table 5-1 appears in order of error code number.

Table 5-1 System Log Events

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Log Description</th>
<th>Seriousness</th>
<th>Meaning</th>
<th>Automatic Action</th>
<th>User Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Internal error, Gateway will reboot.</td>
<td>Critical</td>
<td>A software error occurred from which the gateway could not recover.</td>
<td>The gateway restarts and an entry gets written to the log.</td>
<td>Report problem to your supplier.</td>
</tr>
<tr>
<td>2</td>
<td>Watchdog timeout</td>
<td>Critical</td>
<td>A software error occurred from which the gateway could not recover.</td>
<td>The gateway restarts and an entry gets written in the log.</td>
<td>Report problem to your supplier.</td>
</tr>
<tr>
<td>400</td>
<td>System is starting</td>
<td>Informational</td>
<td>The gateway restarted due to power on, or software error, or reboot requested by user.</td>
<td>An entry gets written to the log and an SNMP trap gets generated.</td>
<td>None</td>
</tr>
<tr>
<td>600</td>
<td>Reboot requested by user</td>
<td>Informational</td>
<td>The user requested that the gateway be restarted.</td>
<td>The gateway restarts, an entry gets written to the log, and an SNMP trap gets generated.</td>
<td>None</td>
</tr>
<tr>
<td>601</td>
<td>Recovered from SCN fatal error</td>
<td>Critical</td>
<td>A software error occurred from which the gateway could not recover.</td>
<td>The gateway restarts, and an entry gets written to the log.</td>
<td>Report problem to your supplier.</td>
</tr>
<tr>
<td>602</td>
<td>The application configuration has been reset to default values</td>
<td>Informational</td>
<td>The user requested that the Gateway configuration be reset to factory default.</td>
<td>The configuration gets reset to factory default, an entry gets written to the log, and an SNMP trap gets generated.</td>
<td>None</td>
</tr>
<tr>
<td>603</td>
<td>A user has logged in to Web management</td>
<td>Informational</td>
<td>The IP address of everyone who logged into the gateway's management system is recorded.</td>
<td>An entry gets written to the log and an SNMP trap gets generated.</td>
<td>None</td>
</tr>
</tbody>
</table>
Table 5-1 System Log Events (continued)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Log Description</th>
<th>Seriousness</th>
<th>Meaning</th>
<th>Automatic Action</th>
<th>User Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>604</td>
<td>A user logged out of Web management.</td>
<td>Informational</td>
<td>Everyone who logged out of the gateway’s management system gets recorded.</td>
<td>An entry gets written to the log, and an SNMP trap gets generated.</td>
<td>None.</td>
</tr>
<tr>
<td>605</td>
<td>A user failed to log in to Web management</td>
<td>Informational</td>
<td>A login attempt to the gateway failed.</td>
<td>An entry gets written to the log, and an SNMP trap gets generated.</td>
<td>None.</td>
</tr>
<tr>
<td>608</td>
<td>Automatic reboot occurred after configuration was restored from backup file</td>
<td>Informational</td>
<td>Configuration got successfully restored from a backup file.</td>
<td>The gateway’s configuration gets changed, an entry gets written to the log, an SNMP trap gets generated, and the gateway restarts.</td>
<td>None.</td>
</tr>
<tr>
<td>609</td>
<td>Failed to restore configuration from backup file</td>
<td>Minor</td>
<td>Corruption occurred in configuration file or attempt to restore to a different software revision occurred.</td>
<td>An entry gets written to the log, and an SNMP trap gets generated.</td>
<td>Check that the software revision of the gateway and configuration file match. If this does not solve your problem, contact your supplier.</td>
</tr>
<tr>
<td>610</td>
<td>System date/time set</td>
<td>Informational</td>
<td>The gateway date and time changed by use of the Web management.</td>
<td>An entry gets written to the log.</td>
<td>None.</td>
</tr>
<tr>
<td>816</td>
<td>System date/time set from craft menu</td>
<td>Informational</td>
<td>The gateway date and time got changed by use of the Craft menu.</td>
<td>An entry gets written to the log.</td>
<td>None.</td>
</tr>
</tbody>
</table>
Ports

Major Alarm Log

The SCN Major Alarm Log records the Date, Time and a Description of hardware errors.
You can clear the log by using the Clear button that is provided. You cannot recover data that is cleared.
You may want to print or export this information as ASCII text as described at the start of this section.

Port Error Logs

Logs get created dynamically for each SCN Port. For each error, the log records the Date, Time and a brief Description.
You can clear the log for any port by using the button that is provided. You cannot recover data that is cleared. You may want to print or export this information as ASCII text as described at the start of this section.

Port Error Statistics

For each Port, SCN Port Error Statistics records the number of each of the following error types:
- Framing
- Loss of Synchronisation
- Loss of Signal
- Receiving RAI
- Receiving and Transmitting AIS
- Positive and Negative Frame Slips
- Degraded and Errored Seconds.
You can clear the statistics for any port by using the button that is provided. You cannot recover data that is cleared. You may want to print or export this information as ASCII text as described at the start of this section.

Call Statistics

For each Port, SCN Call Statistics records the number of each of the following call types:
- Current and Peak Active Calls
- Incoming and Outgoing Voice Calls
- Total Incoming and Outgoing Calls
- Incoming and Outgoing Collisions
You can clear statistics by using the button that is provided. You cannot recover data that is cleared. You may want to print or export this information as ASCII text as described at the start of this section.
Conversions and Transparency

Q.931/DPNSS Conversion Configuration

Q.931 Port 1 Configuration

Basic Configuration

The default setting of the Q.931 port at Layer 2 (Q.921) specifies USER End. You must configure this with inverse orientation to the attached equipment/network.

As the default, the Cisco VG30D Voice Gateway causes a Layer 2 RESET on recovery after physical layer failures. This causes all calls to be cleared when a Channel 0 fault is notified. Alternatively, you can configure the Cisco VG30D Voice Gateway to ignore Layer 1 fault indications and rely on periodic Layer 2 status polling to detect link problems.

Protocol Orientation

The Layer 3 orientation gets set automatically according to the profile and Layer 2 orientation.

Action on Link Layer RESET

As the default, the Cisco VG30D Voice Gateway takes action to validate Q.931 call status for all fully active calls on notification of a Link Layer RESET. Calls only get cleared if they are not fully set up or a discrepancy exists in call state.

You can configure this to cause all calls to be cleared when a Layer 2 fault is notified, regardless of their state. If the glitch sensitivity has been reduced in Channel 0 configuration, you may want to clear calls after a fault is finally notified. Status validation should be adequate in most cases.

Overlap Signalling Support

If the Q.931 network/equipment supports overlap signalling, enable it by selecting Incoming for overlap from Q.931, Outgoing for overlap towards Q.931, or Both Ways.

For transparent signalling, set overlap signalling to Both Ways.
Q.931/DPNSS Conversion Configuration

DPNSS Networks in the UK typically support overlap signalling for all calls. You can make the Cisco VG30D Voice Gateway block up incoming digits from DPNSS by setting this option to None or Incoming. In isolated cases, it may be appropriate to turn on preemptive call forwarding in the Q.931 stack. This action very rarely is required. However, if it is needed, it operates as described in DPNSS Port 2 Configuration.

If the En-bloc Call Forwarding Timeout in Advanced Configuration is set to 0, the normal Q.931 T302 timer runs to clear incomplete calls after 15 seconds without dialling activity.

Advanced Configuration

Q.931 Profile Selection

You can profile the Q.931 port to conform to ETSI, AT&T (TR 41449), Euro-ISDN or QSIG definitions. The default is QSIG.

For DPNSS/ QSIG transparency the Layer 3 protocol Profile must get set to QSIG.

The ETSI profile is based on ETSI Specification ETS 300 102-1,). The Euro-ISDN profile is based on the same specification, with amendments applied in ETSI specification ETS 300 102-1/A2. The differences between the ETSI and Euro-ISDN profiles relate to the content of messages. No changes occur to call setup and clear-down.

Cisco Systems, Inc., recommends that Euro-ISDN profile be used when you are not configuring the Cisco VG30D Voice Gateway for transparency, irrespective of a requirement for TBR-4 compliance. Choose the ETSI profile only where TBR-4 compliance is not required and where the Euro-ISDN profile is deemed to be incorrect. Where TBR-4 compliance is required, you must choose the Euro-ISDN profile.

Each profile sets particular defaults, appropriate to the standard definition, but these values can then be overridden by specific action, which allows customisation of the interface to non-standard equipment implementations. The rest of this section discusses these override options.

Services Configuration

Default Destination Address

When you are operating into a DPNSS-based public network, which may address to the subscriber number only with no private network extension number, you must ensure that a private network extension number is supplied. This enables non-DDI calls to get directed to a sensible destination such as the common operator. Normally, this would occur in the Q.931 PBX. However, in Cisco VG30D Voice Gateway AT&T and QSIG implementations, it can get configured to be supplied by the Converter.

By default, non-DDI calls get a Q.931/QSIG Called Party Address of 0 as the ubiquitous operator number. You can customize this forwarding address by configuring the appropriate private network number, including any node address, as the Default Destination Address.

You do not need the Default Destination Address for transparency.
DPNSS Port 2 Configuration

Basic Configuration

The default setting of Level 2 for the DPNSS port specifies A end. Ensure that this is configured with inverse orientation to the attached equipment/network.

Sub-Configured Links

You can configure DPNSS channels individually for operational service (that is, the DPNSS link can be sub-configured). Q.931 calls will only get generated or accepted on those channels for which an equivalent DPNSS channel is configured.

Contention (Glare) Resolution

When all channels on the associated DPNSS link are configured as X, the DPNSS equipment, being the Y end, gives precedence to incoming calls, so most channel contention problems get resolved in the DPNSS network.

Similarly, it is advantageous though not mandatory, if Cisco VG30D Voice Gateway can be configured as the “Network” end of the Q.931 link. This is because this gives it precedence for calls over the attached “User” end equipment.

Reduce channel contention (glare) problems further by influencing the choice of alternative channel. Select High to Low or Low to High as the Channel Allocation option, when you are configuring the DPNSS stack. High to Low causes the highest free channel to be selected, and Low to High causes the lowest free channel to be selected.

Services Configuration

Default Private Network Number

When you are operating into a Q.931-based public network, which may address calls to the subscriber number only, with no private network extension number, you must ensure that a private network extension number is supplied, so that non-DDI calls get directed to a sensible destination such as the common operator. Normally, this would be done in the DPNSS PBX, but you can configure it to be supplied by the converter.

By default, non-DDI calls are receive a DPNSS Called Line Identity of 0, as the ubiquitous operator number. You can customize this forwarding address by configuring the appropriate private network number, including any node address, as the Default Destination Address.

You do not need the Default Private Network Number for transparency.

Destination Address Editing

You can edit the destination address that is associated with calls from DPNSS before the address passes out to Q.931, by discarding up to three leading digits. For example, a leading 9 inserted to cause the call to be routed to an outgoing public trunk can get stripped before the call passes to the ISDN by setting Number of Destination Digits to Strip to 1.

No requirement exists for Address Editing when you are using transparency.
Preemptive Call Forwarding

Depending on whether the Q.931 implementation to which the Cisco VG30D Voice Gateway is interfaced fully supports overlap signalling, you may need to configure the **En-bloc Call Forward Timeout** and/or **En-bloc Call Forward Digit Count** parameters in the DPNSS stacks.

The converter uses these call forwarding parameters when overlap signalling is encountered from DPNSS to Q.931. The converter uses these parameters to recognise when no more digits are forthcoming and to indicate address completion and speed call setup. You should include any edited-out digits in the count of address digits after which the call must get forwarded. They are not normally required when you are interfacing into a public network because the network preempts such contrivances.

In both cases, a value 0 turns the address-phase termination function off. The **En-bloc Call Forward Timeout** represents an interdigit timer.

You do not need this feature for transparent signalling.

DPNSS/QSIG Transparency Options Configuration

Transparent operation between Cisco VG30D Voice Gateway systems across a QSIG or DPNSS network does get supported.

Caution

Never use this feature in conjunction with Cisco Unified Communications Manager.

QSIG Transparency Through a DPNSS Network

To configure the Cisco VG30D Voice Gateway to enable QSIG Transparency through a DPNSS network, in the Gateway Management Interface, perform the following procedure:

Step 1 Go to Configuration / DPNSS Services.

Step 2 Enable Virtual Calls by checking the box.

Step 3 Enable Data Calls by checking the box and click SUBMIT.

Step 4 Go to Configuration / DPNSS Advanced.

Step 5 Set Transparent Transport Service Support to Carry and click SUBMIT.

Step 6 Go to Configuration / Q.931 Services.

Step 7 Set Transparent Transport Service Support to Generate and click SUBMIT.

DPNSS Transparency Through a QSIG Network

To configure the Cisco VG30D Voice Gateway to enable DPNSS Transparency through a QSIG network, in the Gateway Management Interface, perform the following procedure:

Step 1 Go to Configuration / Q.931 Advanced.

Step 2 Set Layer 3 protocol Profile to QSIG and click SUBMIT.
Step 3 Go to Configuration / Q.931 Services.
Step 4 Enable Call Independent Signalling, by checking the box.
Step 5 Set Facility Element Coding Standard to ISO or ETSI.

Note: Ensure it set the same at both ends.

Step 6 Set Transparent Transport Services Support to Carry and click SUBMIT.
Step 7 Go to Configuration / DPNSS Advanced.
Step 8 Set Transparent Transport Service Support to Generate and click SUBMIT.

Advanced Service Interworking

DPNSS Message Waiting Implementations

Message Waiting service does not get defined in DPNSS. Therefore, it is not always possible to find an interworking service match. Various manufacturers define proprietary signalling for turning ON and OFF Message Waiting indicators, or use the DPNSS Call Back Messaging service for this purpose. To configure the Cisco VG30D Voice Gateway to interwork QSIG Message Waiting with some common PBXs, go to Configuration / Inter-Working.

Table 6-1 shows what should get selected for the various manufacturer’s products for Message Waiting NSI option on the Interworking Configuration window.

<table>
<thead>
<tr>
<th>PBX</th>
<th>Message Waiting NSI option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siemens iSDX and Realitis</td>
<td>ISDX</td>
</tr>
<tr>
<td>Ericsson</td>
<td>MD110</td>
</tr>
<tr>
<td></td>
<td>If your network requires a Call Centre id, enter the Message Centre numbers that will get appended automatically to the signalling string</td>
</tr>
<tr>
<td>Mitel</td>
<td>Default</td>
</tr>
<tr>
<td></td>
<td>No special configuration is necessary. Mitel PBXs use the DPNSS Call Back Messaging that is preconfigured into the Cisco VG30D Voice Gateway.</td>
</tr>
<tr>
<td>Avaya Definity (as a DPNSS PBX)</td>
<td>ISDX</td>
</tr>
</tbody>
</table>
Advanced Service Interworking

Table 6-1 Message Waiting NSI Options for Various Manufacturer’s PBXs

<table>
<thead>
<tr>
<th>PBX</th>
<th>Message Waiting NSI option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nortel PBXs (e.g. Meridian)</td>
<td>ISDX</td>
</tr>
<tr>
<td>Other PBXs</td>
<td>Try Default first (DPNSS Call Back Messaging is preconfigured into the Cisco VG30D Voice Gateway). If necessary, next try ISDX or call Support for further advice if preset strings do not work for your network. You can enter user-defined strings by selecting Raw.</td>
</tr>
</tbody>
</table>

DPNSS Networks Containing PBXs from More than One Manufacturer

You can combine some options that are described in preceding sections. By selecting **BOTH** in the **Message Waiting NSI option**, Ericsson, Mitel, Nortel, and Siemens (GPT) PBXs will get covered. Contact Support for further advice.

ISDX Voice Messaging Systems

Siemens implemented proprietary extensions to DPNSS Diversion to achieve better integration with their voice messaging servers (VMSs). You can configure the Cisco VG30D Voice Gateway to attempt to interwork these extensions with the QSIG Call Forwarding service. However, in some cases, interworking is partial.

In iSDX/Realitis networks where a single VMS, ensure the Cisco VG30D Voice Gateway is configured with the SPIIDG address (the Logical Extension Identifier for the VMS hunt group - sometimes called the RFD address). This is unnecessary in multiple VMS networks, where the PBXs assert the required number explicitly in their RFD signalling. ISDX VMS parameters get set up on the **DPNSS Advanced** page.

Cisco VG30D Voice Gateway units have further advanced configuration options. Your support organisation may direct you to use these options to resolve specific VMS interworking problems. The default configuration settings remain correct for most networks.

Name Mapping

Cisco VG30D Voice Gateway units support both the Q.931 display element to transfer name information (in either direction) and the QSIG Name Identification service options.

The most prevalent use of the display element option is by media gateway (DE30+) cards that are attached to the Cisco Unified Communications Manager, supporting Q.931 protocol (not QSIG).

DPNSS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Go to Configuration / DPNSS Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Check the box alongside Enable Text to Name Mapping and click SUBMIT.</td>
</tr>
</tbody>
</table>
QSIG

Step 1 Go to Configuration / Q.931 Services

Step 2 Check the box beside Enable Name Identification Service to enable the QSIG name supplementary service.

Step 3 Select from the list beside Name Text to Display element Mapping and click SUBMIT.

Route Optimisation Options

The DPNSS Services Configuration window provides two additional options when DPNSS Services / Enable Route Optimisation Service and Q.931 Services / Enable Path Replacement Service are checked:

- PBX accepts Route Optimisation Invite String
- Restrict Route Optimisation Call Ref. Mapping

Use of DPNSS Route Optimisation Invite String

If you selected full interworking, Cisco VG30D Voice Gateway can occasionally persuade the network to achieve more effective call routing by issuing a “ROP-INV” request to the DPNSS PBX. ROP-INV was a late addition to the DPNSS specification, so not all DPNSS PBXs support this request. It can prevent some of those PBXs from achieving correct Route Optimisation. You may need to ask your PBX supplier, or experiment to determine whether your PBX accepts this string.

If the DPNSS PBXs attached through this unit support ROP-INV, then no calls will fail. However, if you are in any doubt about the ability of your DPNSS PBXs to handle ROP-INV, you should not check the box beside PBX accepts Route Optimisation Invite String in DPNSS Services, because correctly operating Route Optimisation without ROP-INV is better than incorrect operation if the PBX does object to the Cisco VG30D Voice Gateway’s use of this signalling.

Restricted Route Optimisation Call Reference Mappings

When the Cisco VG30D Voice Gateway interworks the QSIG Path Replacement Network Feature with DPNSS Route Optimisation, it constructs a DPNSS Call Reference value from the Path Replacement parameters that are provided in QSIG, and vice versa. The service parameter definitions do not always match exactly. This has been rectified only in the most recent DPNSS specification (issue 7), and many PBXs do not implement the upgraded standard.

QSIG Facility Element Encoding

Cisco VG30D Voice Gateway’s QSIG Protocol and Supplementary Services support can comprise any one of three different QSIG definitions:

- The original definition defined by ECMA on behalf of ETSI in 1993 (ETS 300 172 / ETS 300 239 versions 1 & subsequently adopted service specifications).
- The ISO-aligned definition adopted by ETSI in 1995 (ETS 300 172/239 versions 3 & services).
When the Q.931 QSIG protocol profile is selected, the QSIG facility element encoding defaults to ETSI 1995.

To change the facility coding definition manually, you must make changes in two windows as follows:

Step 1 Go to Configuration / Q.931 Services.

Step 2 Set Facility Element Coding Standard to ISO (ISO 1994), ETSI (ETSI = ETSI 1995), or ECMA (ECMA = ETSI 1993), and click SUBMIT.

Step 3 Go to Configuration / Inter-Working.

Step 4 Set Facility Element coding to ISO if you need either the ISO 1994 or the ETSI 1995 definition, or ETSI for the ECMA 1993 definition, and click SUBMIT.

Note Beware the discrepancy between meanings of the ETSI selection in the two different windows.

Cisco Systems, Inc., suggests that you contact your Q.931 equipment supplier if one or more Supplementary services will not interoperate with its default ETSI (1995) encoding and you suspect the Q.931 equipment may be operating to an alternative standard. With some PBX equipment, more service capabilities are available with the PBX configured for ECMA (1993) rather than ISO operation.

QSIG Diversion Restriction

Certain DPNSS PBXs enforce an arbitrary constraint that prohibits a network user from diverting the phone to an off-net number (for example, a national mobile number). In a mixed network that includes such PBXs, the feature permits those QSIG PBXs that are capable of performing “call forward by join” to offer off-net diversion without the diversion request being referred back to and rejected by the DPNSS PBX.

In DPNSS, on determining that a call is being attempted to a phone against which a diversion is registered, the destination PBX signals this to the originating PBX. It should then attempt a new call to the “divert to” number that is identified by the destination PBX. Certain DPNSS PBXs enforce an arbitrary limit on the length of the “divert to” number. If it exceeds that length, the PBX will not attempt to divert the call, and the call fails.

This can be controlled by setting **Reject Diversion Request for Numbers Longer than**.

Some QSIG PBXs overcome this restriction, without requiring action from the originating DPNSS PBX, by making the diverting leg of the call and joining the new and original call legs. Cisco VG30D Voice Gateway can now get set up to detect the condition (overlong divert-to-number) and change its signalling to trigger the QSIG PBX to take alternative diversion action. Where the length of the divert to number is not excessive, Cisco VG30D Voice Gateway units allow the QSIG diversion request to “interwork” with the DPNSS PBX as normal. After it is configured, the diversion interception action acts entirely automatically, and you can only turn it off by reconfiguring the option.

Using Diversion Restriction

The diversion restriction problem has been encountered specifically in networks that contain Ericsson MD110 PBXs that are using DPNSS signalling.
Limitations to Diversion Restriction

Diversion Restriction should not be used unless the following conditions are true:

- The originating PBX refuses to implement certain kinds of diversion.
- You are certain that your QSIG PBXs can perform call forward by join.

Note

Call forward by join can result in non-optimal bearer paths (trombones). Because of the particular way in which the path is created, these may not always get optimised by subsequent path replacement requests.

Configuring Diversion Restriction

Changes in diversion behaviour take place by using the Cisco VG30D Voice Gateway Configuration / Q.931 Services window. Set Reject Diversion Requests for Numbers longer than to the maximum length of the number that is permitted, or set to 0 to disable diversion restriction.

Configuring Cisco VG30D Voice Gateway Proxy Services

For most applications the Cisco VG30D Voice Gateway Application windows give adequate control over the services to be proxied by the Cisco VG30D Voice Gateway on behalf of Q.931 equipment, but some more detailed tuning is possible using the Configuration / DPNSS Advanced window.

Proxy Diversion Address Filtering

In particular, you can set an address filter to determine whether the Cisco VG30D Voice Gateway will attempt to make a proxy diversion or will reject the call immediately.

The filter operates by comparing the leading digits of the diverted-to number with a pre-set number. You can configure the Cisco VG30D Voice Gateway to attempt proxy diversion if the diverted-to address digits meet any of the following criteria:

- Match the preset digits up to the length of the pre-set, but the diverted-to address may be longer than the pre-set (if your network numbering plan uses a node numbering strategy, this allows you to confine proxy diversions to a single node or group of nodes. For example you can confine the diversions to occur within the DPNSS network only);
- Fail to match the preset digit string, up to the length of that string (This is the inverse of the previous option. If your network numbering plan uses a node numbering strategy, it allows you to perform proxy diversions except to a single node or group of nodes. For example this option allows you to exclude diversions to the Q.931 equipment);
- Match the preset exactly, including having the same number of digits as the preset (This allows you to permit only one proxy diversion address. For example, this option allows you to permit configure the address of a voice mail system.);
- Are any value (That is, the Cisco VG30D Voice Gateway will attempt to proxy all diversion requests).

The address filter gets set from the Configuration/DPNSS Advanced window.
Set the **Proxy Diversion Service** as follows:

- **All**: The Cisco VG30D Voice Gateway will proxy all diversion requests regardless of the diverted-to address.
- **Exact**: The diverted-to digits must be an exact match on the filter digits.
- **Match**: The diverted-to digits must start with the filter digits.
- **No Match**: The diverted-to digits must not match the filter digits.
- **Disable**: Disables the Proxy Divert service within the Cisco VG30D Voice Gateway.

Set the **Proxy Divert Address Filter** to the required address digits against which to compare.

Operator Recall Timeout

Operator Recall Timeout applies to calls incoming to the DPNSS operator that have been transferred to a phone in the Q931 network. It ensures that, if the wanted party does not answer in a predefined period, the call gets returned to the operator. If, after speaking to the operator the caller wants to hold, the operator may reconnect the caller to the wanted number with a single key press. Otherwise, the call may get redirected to a different number.

The **Configuration/DPNSS Advanced** page allows the user to set the **Operator Recall Timeout** to the period to wait before returning the call to the operator.

Note

This configuration will not in itself enable Operator Redirection. This service only gets provided when **Proxy Diversion Service** is enabled and the **Operator Recall Timeout** is not set to zero.

Service Spoofing

Further service spoofing may get enabled or disabled within the Cisco VG30D Voice Gateway. Service spoofing covers the following areas:

- Automatic acknowledgement of DPNSS Diversion Validation requests
- Returning “last known” party number as update information to DPNSS if a call to or from a Q.931 phone is transferred within the DPNSS network. This information may be inaccurate because, unlike QSIG, the Q.931 protocol does not have a Connected Party number notification.

To enable / disable service spoofing, open the **Configuration/DPNSS Services** window. To enable Diversion Validation spoofing, check the **Enable Service Spoofing** box in the **Virtual Calls** column. To enable the spoofing of the last known number, check the **Enable Service Spoofing** box in the **Real Calls** column. Ensure the **Enable Three Party Working** box also is checked.
SCN Clock Synchronisation

Incorrect clock synchronisation on the SCN side of the Cisco VG30D Voice Gateway can cause severe problems with modem and fax quality, and lesser problems with voice quality. Calls may also get dropped.

Ensure the clock is set by using the Gateway Management Interface. Go to Configuration / Gateway / Set PCM Clock Source. Select whichever port can provide a network-provided clock. It will synchronise to the source that is selected if a valid clock is present or synchronise to the other port if a clock is not present. If you are unable to synchronise to either port, the Cisco VG30D Voice Gateway internal source will get used.

The Cisco VG30D Voice Gateway does not get specified to have its own very high resolution clock tied to the National Public Network frequency, nor does it get specified to accept a Kilostream clock input.
SNMP Traps

The Cisco VG30D Voice Gateway is configured to generate SNMP Traps for up to 8 destinations. SNMP traps have been divided into five groups as follows:

- Major Alarm
- Port Errors
- Reset Traps
- System Events
- Layer 1 Alarms

To access the MIBs which define the Cisco VG30D Voice Gateway Traps may be accessed through links provided on the SNMP Configuration page when using the Cisco VG30D Voice Gateway Management Interface. Using the Save As facility in the browser, these MIBs may be saved to allow the information to be compiled into the Network Management System (NMS).

Major Alarm Traps

<table>
<thead>
<tr>
<th>Trap Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Port is not operational</td>
</tr>
<tr>
<td>46</td>
<td>Port has been commissioned</td>
</tr>
<tr>
<td>47</td>
<td>Port has been decommissioned</td>
</tr>
</tbody>
</table>

Port Error Traps

<table>
<thead>
<tr>
<th>Trap Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Layer 1 is operational</td>
</tr>
<tr>
<td>2</td>
<td>Layer 1 is not operational</td>
</tr>
<tr>
<td>20</td>
<td>Layer 2 is misconfigured</td>
</tr>
<tr>
<td>21</td>
<td>Layer 2 is operational</td>
</tr>
<tr>
<td>22</td>
<td>Layer 2 is not operational</td>
</tr>
</tbody>
</table>
Reset Traps

<table>
<thead>
<tr>
<th>Trap Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Layer 3 is operational</td>
</tr>
<tr>
<td>31</td>
<td>Layer 3 is not operational</td>
</tr>
<tr>
<td>32</td>
<td>Layer 3 disabled</td>
</tr>
<tr>
<td>35</td>
<td>Alarm propagation on</td>
</tr>
<tr>
<td>36</td>
<td>Alarm propagation off</td>
</tr>
<tr>
<td>40</td>
<td>Loopback mode detected</td>
</tr>
<tr>
<td>41</td>
<td>Loopback mode cleared</td>
</tr>
<tr>
<td>42</td>
<td>Port impedance is set to 75 ohm</td>
</tr>
<tr>
<td>43</td>
<td>Port impedance is set to 120 ohm</td>
</tr>
<tr>
<td>55</td>
<td>Unit has been reset</td>
</tr>
<tr>
<td>90</td>
<td>Unit reset after restoring configuration</td>
</tr>
</tbody>
</table>

System Events Traps

<table>
<thead>
<tr>
<th>Trap Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Fatal or watchdog error</td>
</tr>
<tr>
<td>51</td>
<td>Major alarms have been acknowledged</td>
</tr>
<tr>
<td>62</td>
<td>Media card fatal</td>
</tr>
<tr>
<td>70</td>
<td>Factory/Post is set to POST</td>
</tr>
<tr>
<td>71</td>
<td>Factory/Post is set to FACTORY</td>
</tr>
<tr>
<td>72</td>
<td>Management IP address change from craft port</td>
</tr>
<tr>
<td>73</td>
<td>Management subnet mask change from craft port</td>
</tr>
<tr>
<td>74</td>
<td>Management IP address change from webserver</td>
</tr>
<tr>
<td>75</td>
<td>Management subnet mask change from webserver</td>
</tr>
<tr>
<td>76</td>
<td>New software has been installed</td>
</tr>
<tr>
<td>77</td>
<td>New software has been activated by the webserver</td>
</tr>
<tr>
<td>78</td>
<td>New software has been activated by the Craft port</td>
</tr>
<tr>
<td>79</td>
<td>Webserver login detected</td>
</tr>
<tr>
<td>80</td>
<td>Webserver logout detected</td>
</tr>
<tr>
<td>81</td>
<td>Webserver login fail</td>
</tr>
<tr>
<td>82</td>
<td>System fully operational</td>
</tr>
</tbody>
</table>
Layer 1 Alarm Traps

<table>
<thead>
<tr>
<th>Trap Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>Default configurations have been applied</td>
</tr>
<tr>
<td>91</td>
<td>Failed to restore configuration</td>
</tr>
</tbody>
</table>

Trap Code Description

<table>
<thead>
<tr>
<th>Trap Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Layer 1 enabled</td>
</tr>
<tr>
<td>4</td>
<td>Layer 1 disabled</td>
</tr>
<tr>
<td>5</td>
<td>Layer 1 no signal</td>
</tr>
<tr>
<td>6</td>
<td>Layer 1 receiving AIS</td>
</tr>
<tr>
<td>7</td>
<td>Layer 1 lost sync</td>
</tr>
<tr>
<td>8</td>
<td>Layer 1 transmitting AIS</td>
</tr>
<tr>
<td>9</td>
<td>Layer 1 receiving RAI</td>
</tr>
<tr>
<td>10</td>
<td>Layer 1 has excessive errors</td>
</tr>
<tr>
<td>11</td>
<td>Layer 1 receiving RAI and E bits</td>
</tr>
<tr>
<td>12</td>
<td>Layer 1 transmitting no signal</td>
</tr>
</tbody>
</table>
The following tables give an indication of the level of compliance with the DPNSS supplementary services as defined in BTNR 188 that can be achieved by a QSIG PBX interworking with DPNSS by using the Cisco VG30D Voice Gateway. Be aware that tables are derived from the Compliance section of BTNR 188 for each service.

These compliance tables clarify the specified functionality that is provided by Cisco VG30D Voice Gateway and have been prepared with due care. However, not all PBXs provide services in full compliance to the BTNR. In practice, some deviations may be found in interworking two PBXs.

Basic Call

Compliance table for a PBX that supports the simple telephony call

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originate Simple Telephony Calls?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Receive Simple Telephony Calls?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Act as Transit for Simple Telephony Calls?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
DPNSS features supported by the Cisco VG30D Voice Gateway with Cisco Unified Communications Manager (CUCM) Versions 4.1 and later.

<table>
<thead>
<tr>
<th>DPNSS 188 Section</th>
<th>Feature Description</th>
<th>Comments (specific to CUCM interworking)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Transit PBX</td>
<td>Partial support. Features supported are limited to those features that are interworked between DPNSS and QSIG. DPNSS services such as NSI strings do not get passed if you are connecting DPNSS to DPNSS through Cisco Unified Communications Manager.</td>
</tr>
<tr>
<td>6</td>
<td>Simple telephony call</td>
<td>Including OLI (Calling Party Number)</td>
</tr>
<tr>
<td>9</td>
<td>Call back when free</td>
<td>Partial support. Can only be supported where a single link exists between Cisco Unified Communications Manager and DPNSS end point</td>
</tr>
<tr>
<td>11</td>
<td>Diversion</td>
<td>For diversion and re-diversion from legacy to IP and IP to legacy (Including diverting number, required for forwarding to Voice Mail). Diversion validation gets spoofed. There is no Cisco Unified Communications Manager QSIG equivalent.</td>
</tr>
<tr>
<td>12</td>
<td>Hold</td>
<td>VG30D notifies Cisco Unified Communications Manager of Hold but spoofs the “Acknowledge” since no QSIG equivalent service exists.</td>
</tr>
</tbody>
</table>
| 13 | Three party service | Includes support for the following items:
 - 3 party enquiry
 - 3 party shuttle
 - 3 party transfer
 - 3 party conference
 - 3 party reversion to two party
 3 party add on validation does not get supported. Cisco Unified Communications Manager does not have a QSIG equivalent service. |
<table>
<thead>
<tr>
<th>DPNSS 188 Section</th>
<th>Feature Description</th>
<th>Comments (specific to CUCM interworking)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Call offer</td>
<td>Cisco Unified Communications Manager should get configured to provide “Dual Appearance”, so the telephone is never busy when a new call arrives.</td>
</tr>
<tr>
<td>15</td>
<td>Non specified information (NSI)</td>
<td>Partial support. NSI represents the “escape” clause for manufacturer-specific proprietary signalling. VG30D supports interactions for Message Waiting Indicator setting – ON/OFF for GPT/Siemens, Nortel, Ericsson, and others.</td>
</tr>
<tr>
<td>16</td>
<td>Service independent strings</td>
<td>Partial support. VG30D uses a number of these where they enhance interworking with Cisco Unified Communications Manager.</td>
</tr>
<tr>
<td>17</td>
<td>Call waiting</td>
<td>Cisco Unified Communications Manager should get configured to provide “Dual Appearance”, so the telephone does not get found busy when a new call arrives. The second call will not get dropped until the called party accepts or rejects it.</td>
</tr>
<tr>
<td>18</td>
<td>Bearer service selection</td>
<td>This gets switched off by default but can be configured if required.</td>
</tr>
<tr>
<td>19</td>
<td>Route optimisation</td>
<td>The Path Replacement timers on Cisco Unified Communications Manager need to be set to delay Cisco Unified Communications Manager from attempting to “Path Replace” until after the call reaches the connected state on a “Blind” Transfer.</td>
</tr>
<tr>
<td>22</td>
<td>Redirection</td>
<td>Partial support. Return to operator gets supported for calls that originate in DPNSS that are camped on to ringing extensions.</td>
</tr>
<tr>
<td>23</td>
<td>Series call</td>
<td>Partial support. Series call from DPNSS operator only.</td>
</tr>
</tbody>
</table>
DPNSS Compliance Tables

Data Call

Data Call Compliance table for a PBX that supports the circuit switched data call

<table>
<thead>
<tr>
<th>DPNSS 188 Section</th>
<th>Feature Description</th>
<th>Comments (specific to CUCM interworking)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Night service</td>
<td>Partial support. Supported when PBX provides diversion number. No provision for configuring a pre-set Night Service Answer Point number.</td>
</tr>
<tr>
<td>26</td>
<td>Centralised operator</td>
<td>Partial support. The following BTN 188 features get supported: 11, 12, 13, 14 & 22.</td>
</tr>
<tr>
<td>29</td>
<td>Add on conference</td>
<td>Standard conferencing functionality - supported between the Legacy and IP environments.</td>
</tr>
<tr>
<td>31</td>
<td>Call back when next used</td>
<td>Partial support. Can only be support where a single link exists between Cisco Unified Communications Manager and DPNSS end point</td>
</tr>
<tr>
<td>36</td>
<td>Call back messaging</td>
<td>Some PBXs (for example, Mitel PBXs) use this service for setting/clearing Message Waiting Indicators. The Cisco VG30D Voice Gateway supports this usage.</td>
</tr>
<tr>
<td>37</td>
<td>Loop avoidance</td>
<td>Configurable, default set to 10</td>
</tr>
<tr>
<td>48</td>
<td>Number Presentation Restriction</td>
<td>A-party number restriction only</td>
</tr>
<tr>
<td>49</td>
<td>Non-Specified Information Message</td>
<td>Fully supported in Transit Mode. Note: NSIMs get filtered out when calls are transited through Cisco Unified Communications Manager.</td>
</tr>
</tbody>
</table>

Service Variant

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originate Circuit Switched-Data Calls?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Executive Intrusion (Partial Support)

Compliance table for a PBX with operators or extensions in a network that supports executive intrusion

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act as Transit for Circuit Switched-Data Calls?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Receive Circuit Switched-Data Calls?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to originate Circuit Switched Data Calls through Analogue Traffic Channels?</td>
<td>No</td>
<td>Voice band data can get carried through 3.1K Audio circuit.</td>
</tr>
<tr>
<td>Originates Circuit Switched Data Calls through Digital Traffic Channels?</td>
<td>Yes</td>
<td>All common SICs supported</td>
</tr>
</tbody>
</table>

Compliance table for PBX with operators or extensions that can originate circuit-switched data calls

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive Circuit Switched Data Calls through Digital Traffic Channels?</td>
<td>Yes</td>
<td>All common SICs supported</td>
</tr>
<tr>
<td>Receive Circuit Switched Data Calls through Analogue Traffic Channels?</td>
<td>No</td>
<td>Voice band data can get carried through any 3.1K Audio circuit.</td>
</tr>
<tr>
<td>Able to originate Circuit Switched Data Calls through Analogue Traffic Channels?</td>
<td>No</td>
<td>Voice band data can get carried through any 3.1K Audio circuit.</td>
</tr>
</tbody>
</table>

Compliance table for PBX with operators or extensions that can receive circuit-switched data calls

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receive Circuit Switched Data Calls through Digital Traffic Channels?</td>
<td>Yes</td>
<td>All common SICs supported</td>
</tr>
<tr>
<td>Receive Circuit Switched Data Calls through Analogue Traffic Channels?</td>
<td>No</td>
<td>Voice band data can get carried through any 3.1K Audio circuit.</td>
</tr>
<tr>
<td>Able to originate Circuit Switched Data Calls through Analogue Traffic Channels?</td>
<td>No</td>
<td>Voice band data can get carried through any 3.1K Audio circuit.</td>
</tr>
</tbody>
</table>

Compliance table for transit PBXs in a network that supports circuit-switched data calls

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Circuit Switched-Data Calls between Digital Traffic channels?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Transit Circuit Switched-Data Calls between Analogue Traffic channels?</td>
<td>No</td>
<td>Voice band data can get carried through any 3.1K Audio circuit.</td>
</tr>
<tr>
<td>Transit for Circuit Switched-Data Calls between Analogue and Digital traffic channels?</td>
<td>No</td>
<td>Voice band data can get carried through any 3.1K Audio circuit.</td>
</tr>
</tbody>
</table>
Diversion

Diversion - Immediate

Compliance table for a PBX with operators or extensions in a network that supports diversion immediate service

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request executive intrusion without prior validation?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Request executive intrusion with prior validation?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Request withdrawal from intrusion?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Compliance table for a PBX with operators or extensions in a network that can request executive intrusion

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept an executive intrusion without prior validation call?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Accept an executive intrusion with prior validation call?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Respond correctly to an intrusion protection level request?</td>
<td>No</td>
<td>Mandatory for full BTNR compliance</td>
</tr>
<tr>
<td>Send and intrusion protection level request?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Apply a delay time before intrusion takes place?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Re-ring the wanted party if it hangs up during intrusion?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Default intrusion protection level assumed if signal not understood is indicated in response to intrusion level request?</td>
<td>No</td>
<td>Mandatory for full BTNR compliance</td>
</tr>
<tr>
<td>Accept a withdraw from intrusion request?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Diversion

Table: Additional compliance table for a PBX with extensions that are capable of having their calls diverted immediately

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make a diverted call through a separate channel on receipt of a Divert immediate instruction from a called extension on another DPNSS 1 PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Make a diverted call to a PBX extension on receipt of a Divert immediate instruction from a called extension on another DPNSS 1 PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accept Diverted-immediate calls through a separate channel from other DPNSS 1 PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Process a Diversion Validation Request from other DPNSS 1 PBXs?</td>
<td>Yes</td>
<td>Always accepted</td>
</tr>
<tr>
<td>Extensions on the PBX able to request Follow‐Me Diversion to extensions on other DPNSS 1 PBXs?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Request, from the nominated extension, cancellation of the Diversion‐immediate instruction on another DPNSS 1 PBX</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Request Bypass of Diversion when it is encountered on another DPNSS 1 PBX?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Additional compliance table for a PBX with extensions that are capable of having their calls diverted immediate

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process a Diversion Follow‐Me Request or Cancellation from other DPNSS 1 PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Bypass Diversion on own PBX extensions when requested by other DPNSS 1 PBXs?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Inform another DNSS 1 PBX that an incoming call has been Diverted Immediate to an extension within the PBX?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Diversion

Compliance table for a transit PBX in a network that supports the diversion on-busy service

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make a diverted call to another PBX when Diversion Immediate is encountered on a call between extensions on the PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Extensions on the PBX able to register a request that incoming DPNSS 1 calls are Diverted Immediate to extensions on other PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to instruct incoming calls to Divert Immediate to extensions on other PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to process a Diversion Immediate Cancellation from other DPNSS 1 PBXs?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Able to make a Diversion Validation Request to other DPNSS 1 PBXs</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Diversion - On Busy

Compliance table for a PBX with operators or extensions in a network that supports diversion on-busy service

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to act as a Transit PBX for Diverted-On-No-Reply Calls received on a separate channel to the original call?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to make a diverted call through a separate channel on receipt of a Divert On-Busy instruction from a called extension on another DPNSS 1 PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to make a diverted call to a PBX extension on receipt of a Divert On-Busy instruction from a called extension on another DPNSS 1 PBX?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Service Variant Compliance Table

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to accept Diverted-On-Busy calls through a separate channel from other DPNSS 1 PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to process a Diversion Validation Request from other DPNSS 1 PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Additional compliance table for a PBX with extensions that are capable of having their calls diverted-on-busy

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to Bypass Diversion on own PBX extensions when requested by other DPNSS 1 PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to inform another DPNSS 1 PBX that an incoming call has been Diverted On-Busy to an extension within the PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to make a diverted call to another PBX when Diversion On-Busy is encountered on a call between extensions on the PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Extensions on the PBX able to register a request that incoming DPNSS 1 calls are Diverted On-Busy to extensions on other PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to instruct incoming calls to Divert On-Busy to extensions on other PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to process a Diversion On-Busy Cancellation from other DPNSS 1 PBXs?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Able to make a Diversion Validation Request to other DPNSS 1 PBXs?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Compliance table for a transit PBX in a network that supports the diversion on-busy
Diversion - On-No-Reply

Compliance table for a PBX with operators or extensions in a network that supports diversion on-no-reply service

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to make a diverted call through a separate channel on receipt of a Divert On-No-Reply instruction from a called extension on another DPNSS 1 PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to make a diverted call to a PBX extension on receipt of a Divert On-No-Reply instruction from a called extension on another DPNSS 1 PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to accept Diverted-On-No-Reply calls through a separate channel from other DPNSS 1 PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to process a Diversion Validation Request from other DPNSS 1 PBXs?</td>
<td>Yes</td>
<td>Always accepted</td>
</tr>
<tr>
<td>Able to request, from the nominated extension, cancellation of the Diversion-On-No-Reply Instruction on another DPNSS 1 PBX?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Additional compliance table for a PBX with extensions that are capable of having their calls diverted-on-no-reply
Chapter 9 DPNSS Compliance Tables

Compliance table for a transit PBX in a network that supports the diversion on-busy

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to Bypass Diversion on own PBX extensions when requested by other DPNSS 1 PBXs?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Able to inform another DPNSS 1 PBX that an incoming call has been Diverted On-No-Reply to an extension within the PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to make a diverted call to another PBX when Diversion On-No-Reply is encountered on a call between extensions on the PBX?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Extensions on the PBX able to register a request that incoming DPNSS 1 calls are Diverted On-No-Reply to extensions on other PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to instruct incoming calls to Divert On-No-Reply to extensions on other PBXs?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able to make a Diversion Validation Request to other DPNSS 1 PBXs?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Able to make a Diversion Validation Request to other DPNSS 1 PBXs?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Compliance table for a transit PBX in a network that supports the diversion on-busy

Compliance table for a PBX with operators or extensions in a network that supports hold

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to act as a Transit PBX for Diverted-On-No-Reply Calls received on a separate channel to the original call?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Compliance table for a PBX with operators or extensions in a network that supports hold
Three Party

Additional compliance table for a PBX with operators or extensions that can request hold

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Put an extension on hold on receipt of a hold request from another DPNSS 1 PBX?</td>
<td>Yes</td>
<td>Hold not indicated to the QSIG PBX</td>
</tr>
<tr>
<td>Reconnect an extension which is on hold on receipt of a reconnected indication from another DPNSS 1 PBX?</td>
<td>Yes</td>
<td>Call does not get disconnected on the QSIG PBX side.</td>
</tr>
<tr>
<td>Reconnect an extension which is on hold on receipt of an indication that the holding party has cleared and is being re-rung?</td>
<td>Yes</td>
<td>Call does not get disconnected on the QSIG PBX side.</td>
</tr>
</tbody>
</table>

Three Party

Compliance table for a PBX with operators or extensions in a network that provides three-party service

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept incoming enquiry calls through separate channel?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accept transfer to extensions on other DPNSS 1 PBXs through separate channel?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accept being added into and split from a Three-Part Conference through a separate channel?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Compliance table for a PBX with operators or extensions that can request three-party service
Call Offer

Compliance table for a PBX with operators or extensions in a network that supports call offer

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish an enquiry call to an extension on another PBX through a separate channel?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able, as a Controlling PBX, to control Shuttle through a separate channel?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able, as a Controlling PBX, to transfer calls to extensions on other DPNSS 1 PBXs (calls through separate channels)?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Able, as a Controlling PBX to establish and release a Three-Party Conference (calls through separate channels, conference bridge at the controlling PBX)?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Call Offer

Compliance table for a PBX with operators or extensions in a network that can request call offer

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept a call offer request?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accept an offered call by clearing the existing call?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accept an offered call by placing the existing call on hold?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Indicate to the caller that the extension has rejected the offered call?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accept a request to convert to executive intrusion on an offered call</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Service Independent Strings

Note

Only the TEXTUAL DISPLAY string gets supported.

Compliance table for a PBX that supports service independent strings

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send a textual display string</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Display text received in a 'Textual display string</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Bearer Service Selection

Compliance table for a PBX with operators or extensions that can request bearer service selection

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearer Service Selection (BSS-M) to request specific transmission path capabilities on outgoing calls?</td>
<td>Yes</td>
<td>Capabilities set in administration</td>
</tr>
<tr>
<td>Bearer Service Selection (BSS-P) to request specific transmission path capabilities on outgoing calls?</td>
<td>Yes</td>
<td>Capabilities set in administration</td>
</tr>
<tr>
<td>Bearer Service Selection (BSS-P) to request specific transmission path capabilities on outgoing calls?</td>
<td>Yes</td>
<td>Capabilities set in administration</td>
</tr>
</tbody>
</table>

Compliance table for a transit PBX that supports bearer service selection
Route Optimisation

Compliance table for a PBX with extensions in a network that supports route optimisation

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a transmission path for the ongoing routing of a call based on the Service requirements (BSS-M, BSS-P, BSS-N) included in a received ISRM or RM?</td>
<td>Yes</td>
<td>Capabilities set in administration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish a Route Optimisation Call Set Up on of a Route Optimisation Request? through a separate channel</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Establish a Route Optimisation Call Set Up on of a Route Optimisation Request? through the same channel</td>
<td>No</td>
<td>Single Channel Working not supported</td>
</tr>
</tbody>
</table>

Compliance table for a PBX with extensions and can initiate route optimisation

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Send a Route Optimisation Request?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accept and respond correctly to a Route Optimisation Call Set Up? through a separate channel</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accept and respond correctly to a Route Optimisation Call Set Up? through the same channel</td>
<td>Yes</td>
<td>Single Channel Working not supported</td>
</tr>
</tbody>
</table>

Compliance table for a transit PBX in a network that supports route optimisation

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit Route Optimisation Requests?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Prevent Alternative Routing during Route Optimisation Call Set-Up received on a separate channel?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Redirection

Compliance table for a PBX with extensions in a network that supports the redirection service

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept redirected calls from other DPNSS1 PBXs? through a separate channel</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Accept redirected calls from other DPNSS1 PBXs? through the same channel</td>
<td>No</td>
<td>Single Channel Working not supported</td>
</tr>
</tbody>
</table>

Compliance table for a PBX with extensions and can initiate the redirection service

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate a redirected call? through a separate channel</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Only Redirection back to originating attendant group supported Initiate a redirected call? through the same channel</td>
<td>No</td>
<td>Single Channel Working not supported</td>
</tr>
</tbody>
</table>

Compliance table for a transit PBX in a network that supports the redirection service

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to act as a transit for redirected calls received on a new channel?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Centralised Operator

Compliance table for a PBX with extensions in a network that supports centralised operator

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support the Three Party service in accordance with Table 2 of the Compliance for SECTION 13 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support Call Offer in accordance with Table 2 of the Compliance for SECTION 14 of BTNR 188?</td>
<td>Partial</td>
<td>But see notes on actions on receipt of call offer.</td>
</tr>
<tr>
<td>Support the Redirection service in accordance with Table 2 of the Compliance for SECTION 22 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support Executive Intrusion in accordance with Table 2 of the Compliance for SECTION 10 of BTNR 188?</td>
<td>No</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Send service information when clearing back a call owing to a busy resource being encountered?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Support Route Optimisation in accordance with Table 2 & 3 of the Compliance for SECTION 19 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support Night Service in accordance with Table 2 of the Compliance for SECTION 25 of BTNR 188?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Support Extension status service in accordance with Table 2 of the Compliance for SECTION 20 of BTNR 188?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Centralised Operator

Compliance table for a PBX with operators a network that supports the centralised operator

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Controlled diversion in accordance with Table 2 of the Compliance for SECTION 21 of BTNR 188?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Support Series Call service in accordance with Table 2 of the Compliance for SECTION 13 of BTNR 188?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Support the Three Party Takeover in accordance with Table 2 of the Compliance for SECTION 24 of BTNR 188?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Support the Hold service in accordance with Table 2 of the Compliance for SECTION 12 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

- **Service Variant**: Provide additional displays
- **Comply**: Yes
- **Comment**: Requires supplementary string programming

- **Service Variant**: Support Call Offer in accordance with Table 3 of the Compliance for SECTION 14 of BTNR 188?
- **Comply**: Yes
- **Comment**: Requires supplementary string programming

- **Service Variant**: Support the Redirection service in accordance with Table 3 of the Compliance for SECTION 22 of BTNR 188?
- **Comply**: Yes
- **Comment**: Requires supplementary string programming

- **Service Variant**: Support Executive Intrusion in accordance with Table 3 of the Compliance for SECTION 10 of BTNR 188?
- **Comply**: Yes
- **Comment**: Requires supplementary string programming

- **Service Variant**: Support Night Service in accordance with Table 3 of the Compliance for SECTION 25 of BTNR 188?
- **Comply**: No

- **Service Variant**: Support Extension status service in accordance with Table 3 of the Compliance for SECTION 20 of BTNR 188?
- **Comply**: No
Compliance table for a transit PBX in a network that supports the centralised operator

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support Controlled diversion in accordance with Table 3 of the Compliance for SECTION 21 of BTNR 188?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Support Series Call service in accordance with Table 3 of the Compliance for SECTION 13 of BTNR 188?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Support the Three Party service in accordance with Table 6 of the Compliance for SECTION 13 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support Call Offer in accordance with Table 4 of the Compliance for SECTION 14 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support the Redirection service in accordance with Table 4 of the Compliance for SECTION 22 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support Executive Intrusion in accordance with Table 4 of the Compliance for SECTION 10 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support Route Optimisation in accordance with Table 4 of the Compliance for SECTION 19 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support Night Service in accordance with Table 4 of the Compliance for SECTION 25 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support Extension status service in accordance with Table 4 of the Compliance for SECTION 20 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Support Controlled diversion in accordance with Table 4 of the Compliance for SECTION 21 of BTNR 188?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Add-On Conference

Conference facilities that are provided beyond the DPNSS specification, allowing up to six-party conferences to be established by a single user who is using basic DPNSS telephony calls.

Do Not Disturb

Compliance table for a PBX with operators or extensions in a network that supports DND

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able as an outgoing PBX to respond correctly when it receives a DND indication from a called extension on another PBX?</td>
<td>No</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Request override of DND when it is encountered on another PBX?</td>
<td>Yes</td>
<td>Requires supplementary string programming</td>
</tr>
</tbody>
</table>

Compliance table for a PBX with extensions that are capable of having a DND condition invoked

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to inform another PBX that an incoming call has encountered an extension with DND invoked?</td>
<td>No</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Able to override DND when requested to do so by other PBX's?</td>
<td>No</td>
<td>Mandatory</td>
</tr>
</tbody>
</table>

Loop Avoidance

Compliance table for an originating PBX in a network that supports loop avoidance

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to insert a loop avoidance string in an ISRM or RM?</td>
<td>Yes</td>
<td>Initial transit count value is configurable.</td>
</tr>
<tr>
<td>Able to add an alternative-routing count to an inserted loop avoidance string?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Able to take special action on receipt of a loop avoidance string in a CRM?</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 9 DPNSS Compliance Tables

Network Address Extension

Compliance table for a terminating PBX in a network that supports loop avoidance

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Able to receive DPNSS 1 calls where the ISRM contains a loop avoidance string?</td>
<td>Yes</td>
<td>Inherent DPNSS 1 capability</td>
</tr>
</tbody>
</table>

Network Address Extension

Compliance table for a PBX that can add destination subaddresses on outgoing calls

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add either decimal or binary form of subaddresses on outgoing calls?</td>
<td>Yes</td>
<td>binary supported</td>
</tr>
<tr>
<td>React to indication that the NAE has been ignored?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Upper Limit imposed on subaddress length?</td>
<td>Yes</td>
<td>limit = 32</td>
</tr>
</tbody>
</table>

Compliance table for a PBX that has destinations to which subaddresses can be passed

<table>
<thead>
<tr>
<th>Service Variant</th>
<th>Comply</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass either decimal or binary form of subaddress to appropriate destinations?</td>
<td>Yes</td>
<td>binary supported</td>
</tr>
<tr>
<td>Upper limit imposed on subaddress lengths?</td>
<td>Yes</td>
<td>length = 32</td>
</tr>
</tbody>
</table>
Fault Determination

Introduction

This chapter on Troubleshooting has sections that cover the following:

- Power-On Problems
- Management Interface Problems
- Operational Problems
- Diagnostic Procedures
- Browser Interface Problems

These sections are written for a user attending a new or failed installation. Flow charts outline the initial diagnostic procedure and direct the user to specific procedures for the recommended recovery action.

These sections also provide an indication of the level to which remote diagnosis may assist.

Be aware that, when you are performing an installation, cabling problems are common.

The section on Port Failure Alarms shows how to diagnose the majority of these alarms by using the information that is shown on the status display.

Power-On Problems

When a Cisco VG30D Voice Gateway is powered on, it performs a series of self-tests to ensure that the hardware is functioning correctly. Normal operation of the module resumes only if all tests are successful.

The four STATUS LEDs and the Power LED on the front panel indicate the progress of tests.

If nothing is displayed, follow the Power Supply diagnosis procedure.

Management Interface Problems

You cannot log in to the Gateway Management Interface if:

- The Gateway IP Address or Subnet Mask are incorrectly set
- Another User is logged in to the Gateway Management Interface
- The last User hasn’t logged out correctly, and the Non-use timeout has not expired
Operational Problems

The Self Test has failed

Access is attempted from a different LAN segment, and the Default Gateway IP Address has not been set up in the Cisco VG30D Voice Gateway unit

or

A connection was made to the web server before the unit is fully operational. This may result in a delay in displaying the main window and could also result in question marks appearing in the SCN Status. You can resolve this by refreshing the page or by closing down and then restarting the browser.

Figure 10-1 shows how to pinpoint a failing piece of equipment or cabling by deduction from local equipment and Cisco VG30D Voice Gateway alarm relay indications, assuming that the IP network and its diagnostic information are outside the control of the local management system.

Figure 10-1 Problem Determination Flow

Problems get detected initially by one or a combination of the following symptoms:
• An alarm monitor detects that the alarm relay has triggered
• A user advising of lack of service
• An indication of Alarms from connected equipment
 and/or
• Error status on the LED display

If a fault is indicated in the Cisco VG30D Voice Gateway or the network beyond, you can interrogate for
the status of each port if management terminal access is available. Otherwise, examine the status
indications on the Cisco VG30D Voice Gateway front panel.

Examine the status LEDs. In the normal operational state, an LED is shown for each in-service port. If
this is not the case, follow the checks that are outlined in Figure 10-2. This first-level chart guides you
to the most appropriate of the specific diagnostic procedures that are described in Diagnostic Procedures.
Diagnostic Procedures

This section contains a set of diagnostic procedures that may be referenced directly or used in conjunction with the Operational Problems first level diagnosis flow charts.

Each procedure starts with a description of the symptoms of the error class, followed by diagnostic actions that allow the actual fault to be pinpointed more accurately. After this has been achieved, it should be possible for the user to attempt to correct the fault.
Power Supply

Symptoms
No LEDs illuminated.

Diagnostic Actions

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Check whether there is power to the unit and the unit is switched on.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Check for fuse failure in the power feed or on the rear panel of the unit.</td>
</tr>
<tr>
<td>Step 3</td>
<td>If you still cannot locate the problem, you must return the Cisco VG30D Voice Gateway unit for repair.</td>
</tr>
</tbody>
</table>

Self Test Failure

Symptoms
The Power LED remains amber for more than 1 minute.

Diagnostic action
The hardware self-test failed.

If the BNC cables (75 E1) are connected, power OFF the unit and disconnect the cables. Repeat the test. If the unit successfully completes self-test, the Tx and Rx cables are reversed.

Note
The unit will fail self test if the E1 ports are looped back to each other.

Power OFF and connect a dumb terminal (or computer with a terminal emulation program) to the Craft Port and set the Craft Switch to CRAFT Mode. Power ON to reset the unit. The Cisco VG30D Voice Gateway will Self Test again, and the terminal will display any failures. If no Self Test failures exist, but the Power LED remains amber, check that the POST switch has not been left in the Factory setting. If it has, power OFF the unit, switch the POST switch to POST, and power ON the unit. It should now pass and exit Self Test.

If the unit continues to fail the self test, take the following action:

- Contact your second line support engineers for assistance, if needed.
- Return the failed unit for repair, with a note of the errors that were reported to the terminal.

Symptoms
The Power LED remains amber for more than 1 minute, the S2 status LED is blinking and all other status LEDs are off.

Diagnostic action
Check whether the Craft cable is attached to the unit but the other end of the cable is not attached to a dumb terminal (or computer with a terminal emulation program). If this is the case, power OFF the unit, disconnect the cable and then power ON the unit. It should now pass and exit Self Test.

Alternatively, the IP addresses and sub-net masks may not have been configured.
Power **OFF** and connect a dumb terminal (or computer with a terminal emulation program) to the Craft Port and set the Craft Switch to **CRAFT** Mode. Power **ON** to reset the unit. The Cisco VG30D Voice Gateway will start Self-Test again and request the IP addresses and sub-net masks if they have not already been set. After Power On Self-Test runs to completion, power cycle the Gateway unit.

Port Failure Alarm

Symptoms
When a Port Failure alarm exists, it is indicated by either **P1** or **P2** LEDs showing amber.

Note
If both **P1** and **P2** LEDs show amber at the same time, this indicates that an un-acknowledge major alarm exists in the major alarm log.

Cause
The cause conditions get indicated by the **STATUS** LEDs as shown in Figure 10-3.
More detailed information may be obtained through the Management Interface.

Checking Cables

- Check for continuity of both the inner conductor and the screen.
- Check for short circuits between the inner conductor and the screen.
- Check for correct attachment of connectors to cables.
- Hold the cables firmly and move the connectors to and fro thoroughly. Then, recheck as above.
- Check that the cables are 75 ohm and not 50 ohm. The centre pin diameter differs.
- Perform local checks and ensure fault symptoms do not vary between them. If they do, a cable fault is indicated.
Call Failures

Symptom
The STATUS LEDs show no faults, but no calls can be made. No indication of failure comes from attached equipment.

Diagnostic Action
If the attached equipment is indicating a problem, you may be able to diagnose the fault by referring to that equipment’s troubleshooting documentation.

Log in to the Cisco VG30D Voice Gateway by using a web browser. Check that the Diagnostic Overview window shows no problems.

You can also monitor the Cisco VG30D Voice Gateway’s ports in turn by using a Primary Rate signalling protocol analyser. Check that calls are being received into the equipment and are being passed on to the associated port. If not, and the cause is not obvious from inspection of the analyser diagnostics, contact your support organisation for further guidance.

Symptom
Calls get dropped unexpectedly while in progress.

Diagnostic Action:
The commonest cause is transient transmission problems on the network-side connections. Check whether errors are occurring on either port. Alternatively, request that the network provider run checks on the connection.

Symptom
Higher than expected levels of unsuccessful call attempts.

Diagnostic Action:
In a DPNSS environment some or all channels may be incorrectly configured at Layer 3 (set to X or to Y at both ends), which causes failure to resolve channel contention correctly. Therefore, the configuration must be reviewed.

Symptom
DPNSS transparency is not achieved across a Q.931 network.

Diagnostic Action
The switching elements in Q.931 network do not support the Generic Functional Protocol, or do not have this function enabled. Therefore, the configuration must be reviewed.

Symptom
DPNSS services requiring virtual calls do not work.

Diagnostic Action
Switching elements in the Q.931 network do not support non-call-associated signalling or do not have this function enabled. Therefore, the configuration must be reviewed.
Fatal Errors

Symptom
Unexpected restart; calls in progress may get lost, but the unit recovers within a couple of minutes. On examination the unit appears to be functioning normally.

Cause
The software has detected an error that it cannot correct. The problem could be due to a catastrophic hardware malfunction or a fault in the software.

Any permanent hardware failure gets discovered by the self-test function, and the unit will not be returned to service. If the fault was transient, the unit reinitialises, clears any calls that may have been left hanging, and resumes normal operation.

After they are properly installed, configured and operational, gateway units are extremely reliable. Software-detected errors seldom occur. It is usually impossible to diagnose the causative factors. Unless due to a persistent hardware problem, full recovery within a couple of minutes is automatic, although calls in progress at the time of the failure will have been cleared.

Diagnostic action
The error gets recorded in the unit’s event log automatically. When the unit restarts, record the content of the following logs:
- System
- Port
- Major
- Port Error
- Call Statistics

Event Reporting

Each Cisco VG30D Voice Gateway maintains an internal cyclic log of significant events and can report the contents of this log to a terminal that is attached to the management port. During normal operation, event reporting gets disabled, but when you are investigating problem conditions you can enable the event reporting function to assist in fault diagnosis. Reports may get filtered by class and severity to reduce the amount of information to be sifted.

If your supplier suggests that you do access the event log, they should tell you what classes of event to filter. For most purposes, you only need to display Alarm conditions, but more detailed information also gets maintained within the log in case of exceptional need. In practice, the most common faults are port errors. These conditions normally get diagnosed from the status LEDs or the port alarm log without a need to access the event log.

SNMP Traps

On a Cisco VG30D Voice Gateway that has been configured to use Ethernet, certain error conditions will cause a Simple Network Management Protocol (SNMP) trap to be sent to a configured IP address. Up to eight such addresses may be configured. These will contain basic information, but on receipt of the trap, the user is intended to connect to the Cisco VG30D Voice Gateway unit by using the Gateway management Interface for a more detailed summary. The following events will result in a trap being sent:
Browser Interface Problems

Symptom
Unable to connect a Web browser to the Gateway Management Interface.

Potential Cause and Action
A user is already logged in to the Cisco VG30D Voice Gateway, or the last user failed to log out. Retry connecting after waiting for the Non-Use Timeout period to expire.

Potential Cause and Action
Incorrect IP address entered. Enter the correct IP address. Confirm IP communications by “pinging” the unit. If pings succeed, activity can be seen on the Ethernet Port LEDs. If the Non-Use Timeout expired, access the unit by using the Craft Port to confirm correct IP Addresses and Sub Net Masks. Reboot the Cisco VG30D Voice Gateway and, if communication is restored, check the logs for errors.

Symptom
Management screens not updated as expected.

Potential Causes and Action
The Web browser has presented a cached page. The time and date information that is sent from the Cisco VG30D Voice Gateway gets recorded as earlier than the cached page date and time information, or the browser has been configured not to check for newer versions of stored pages.

Make sure that the browser is appropriately configured to check for newer versions of stored pages. Use the Web browser’s “delete all temporary files” or “clear cache” facility and retry.

Symptom
A valid password does not get accepted, and no message appears stating that an incorrect password has been entered.
Potential Cause and Action
The Web browser is set to refuse cookies. Change the setting in the Web browser. If necessary, first consult your System Administrator.

Symptom
Management system menus absent and/or error messages about j/script support presented.

Potential Cause and Action
The Web browser is set to disallow javascript. Change the setting in the Web browser. If necessary, consult your System Administrator.

Symptom
Window selected from menu will appear (probably with no content) and then disappear.

Potential Cause and Action
The browser has been set to disable pop-ups. The Cisco VG30D Voice Gateway requires that pop-ups be enabled in the browser for the management program to function correctly.
Approvals, Safety Instructions, and Statutory Information

This information must be read prior to use of this equipment and overrides as appropriate any information in respect of connection and use of the equipment.
Address any enquiries regarding regulatory aspects of this equipment to Cisco Systems, Inc.

Connection to Mains Voltage Supply

The wires in the mains lead are coloured in accordance with the following code. As the colours of the wire in the mains lead may not correspond with the coloured markings in the plug, proceed as follows:

Step 1 The wire coloured GREEN and YELLOW must be connected to the terminal marked E or by the earth symbol or coloured GREEN, or GREEN and YELLOW.
Step 2 The wire coloured BLUE must be connected to the terminal marked N or coloured BLACK or BLUE.
Step 3 The wire coloured BROWN must be connected to the terminal marked L or coloured RED or BROWN.

Replacing the Mains Fuse

Warning For continued protection against the risk of fire and shock hazard, replace fuses only with the same type and rating.

Fuse type: T2A H 250V

Product Servicing

This product contains no user-serviceable parts. Any attempt by non-qualified personnel to gain access inside the product enclosure will compromise the terms of the approval quoted above. Should such access be attempted, liability will not be accepted if the equipment is shown subsequently not to be in compliance with the terms of approval.
Network Connections

This apparatus has been approved by the British Approvals Board for Telecommunication under Section 22 of the Telecommunication Act 1984 for connection to the following:

- Private Circuits at interfaces in the UK compatible with G.703 (75 Ohms) at 2048 kbit/s
- Private Circuits at interfaces compatible with G.703 (120 Ohms) at 2048 kbit/s.

Equipment Port Classification

The ports are classified as follows:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port 1</td>
<td>TNV1</td>
</tr>
<tr>
<td>Port 2</td>
<td>TNV1</td>
</tr>
<tr>
<td>Ethernet</td>
<td>SELV</td>
</tr>
<tr>
<td>Alarm</td>
<td>SELV</td>
</tr>
<tr>
<td>Craft</td>
<td>SELV</td>
</tr>
</tbody>
</table>

Electrical Safety Compliance

EMC Compliance

Earthing Cable

The units must be installed with an earthing cable in accordance with EN 60950:2000 Clause 6.1.2.2. This requires a PVC covered earth cable (longitudinal Green and Yellow coloured stripes in accordance with EN 60950 / IEC60950) and must be connected to the chassis earth stud on the back of the unit.
The specification of the earth connecting cable is:

- Current rating 17 Amps, with a cross sectional area of 1.5 mm², Wire 7/0.53 mm
- Terminated at the Cisco VG30D Voice Gateway with an M3 ring terminal 1-2.6 mm² conductor

Note

When the 75-ohm BNC connectors are in use, permanent earthing replaces the requirements of clause 6.1.2 of EN 60950 as both the TNV and the metal case have an earth connection.

Lithium Cell

This product includes an Integrated Circuit which contains a Lithium Cell. This device is identified by the words Lithium Battery on its case and is fitted in position U4 on the processor card (M48T37V-10MH 1 TR). The following warning should be strictly adhered to. Do not attempt to open this device.

Caution

Risk of explosion if battery is replaced with incorrect type. Dispose of used batteries according to instructions. Do not dispose of in fire.

Flammability

CE Mark

To meet the essential requirements of the R&TTE Directive (1999/5/EC), the following declarations are made for CE marking:

EMC Declaration of Conformity

The Cisco VG30D Voice Gateway meets the requirements of the European Electromagnetic Compatibility (EMC) Directive 89/336/EEC.

The product complies with the requirements of the following:

- EN55022:2006 Telco Lines
- EN61000-3-3:2006
- EN61000-3-3:A2:2005
Warning

This is a Class A product. In a domestic environment this product may cause radio interference, in which case the user may be required to take adequate measures.

Note

The domestic environment is an environment where the use of broadcast radio and television receivers may be expected within a distance of 10 m of the apparatus concerned.

Safety Declaration of Conformity

The Cisco VG30D Voice Gateway meets the requirements of the European Low Voltage Directive (LVD) 73/23/EEC.

The product complies with the requirements of EN60950-1:2001 for safety of information technology equipment, including electrical business equipment.

Special National Conditions

Norway

The local distributor of the Cisco VG30D Voice Gateway in Norway must attach a self adhesive label placed just above the fuse rating, which is situated above the mains inlet filter. This label displays the following text in Norwegian:

Apparatet må kun tilkoples jordet stikkontakt

Spain

The local distributor of the Cisco VG30D Voice Gateway in Spain must supply a plug compliant with the requirements of UNE-EN 50075:1993.

Sweden

The local distributor of the Cisco VG30D Voice Gateway product in Sweden must attach a self adhesive label placed just above the fuse rating, which is situated above the mains inlet filter. This label displays the following text in Swedish:

Apparaten skall anslutas till jordat uttag när den ansluts till ett natverk

Switzerland

The local distributor of the Cisco VG30D Voice Gateway in Switzerland must supply a moulded plug that conforms to SEC/ASE 1011.
Denmark

The local distributor of the Cisco VG30D Voice Gateway in Denmark must ensure that the power supply cord is provided with a moulded plug.
References and Technical Specifications

References

[10] (Environmental, Europe) ETS 300 019:1994, Part 2 Environmental conditions and environmental tests for telecommunications equipment.

Technical Specifications

Environmental

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient Temperature</td>
<td>Operating: 0°C to +40°C</td>
</tr>
<tr>
<td></td>
<td>Storage: -10°C to +60°C</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5% to 90% (noncondensing)</td>
</tr>
<tr>
<td>Safety</td>
<td>EN60950 (including amendment 4)</td>
</tr>
<tr>
<td></td>
<td>ETS 300-046</td>
</tr>
<tr>
<td></td>
<td>IEC 950 (including amendment 4)</td>
</tr>
<tr>
<td></td>
<td>TS001/AS/NZS 3260 (including amendment 4)</td>
</tr>
<tr>
<td>RFI Emissions (Class A)</td>
<td>EN 50082-1</td>
</tr>
<tr>
<td></td>
<td>EN 55022</td>
</tr>
<tr>
<td></td>
<td>CISPR22</td>
</tr>
<tr>
<td></td>
<td>AS/NZS 3548</td>
</tr>
<tr>
<td>RFI Immunity</td>
<td>Designed to meet EN55024 [7]</td>
</tr>
</tbody>
</table>

Physical

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>1U (44.45 mm)</td>
</tr>
<tr>
<td>Width</td>
<td>439 mm</td>
</tr>
<tr>
<td>Depth</td>
<td>260 mm</td>
</tr>
<tr>
<td>Chassis</td>
<td>Plated pressed steel</td>
</tr>
<tr>
<td>Front Panel</td>
<td>Plated pressed steel with paint finish</td>
</tr>
<tr>
<td>Weight</td>
<td>2.6 kg. 4 kg fully packaged.</td>
</tr>
<tr>
<td>Cooling</td>
<td>Side-to-side forced air</td>
</tr>
<tr>
<td>Mounting</td>
<td>19-inch rack mounting</td>
</tr>
</tbody>
</table>

Reliability

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF</td>
<td>> 30,000 hours</td>
</tr>
<tr>
<td>MTTR</td>
<td>30 minutes. No field repair option exists. The unit gets replaced and returned for factory repair.</td>
</tr>
</tbody>
</table>
Real Time Clock/NV RAM Devices

This device is powered by a Lithium battery:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted Operational Life</td>
<td>> 20 years</td>
</tr>
<tr>
<td>Predicted Storage Life</td>
<td>1 year at 70°C, or 4.8 years at 30°C, worst case</td>
</tr>
<tr>
<td>Clock Accuracy</td>
<td>± 1.6 minutes per month at 25°C</td>
</tr>
</tbody>
</table>

Power

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Input Voltage Range</td>
<td>100 Vac to 230 Vac</td>
</tr>
<tr>
<td>AC Frequency</td>
<td>60/50 Hz through IEC connector</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>Maximum 10 Watts</td>
</tr>
<tr>
<td>Power Supply</td>
<td>Integral Universal Input Power Supply Unit</td>
</tr>
</tbody>
</table>

Primary Rate Interfaces

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Rate Interfaces</td>
<td>2</td>
</tr>
<tr>
<td>Connectors</td>
<td>RJ 45 (120 ohm) or BNC (75 ohm)</td>
</tr>
<tr>
<td>Line Interface</td>
<td>CCITT G.703/G.704/G.732, 2.048Mbit/s, 120-ohm balanced or 75-ohm unbalanced</td>
</tr>
<tr>
<td>Line Encoding</td>
<td>HDB3, clear channel capability</td>
</tr>
<tr>
<td>Frame Structure</td>
<td>CCITT G.704 at 2.048Mbit/s; CRC-4 multiframe mode</td>
</tr>
<tr>
<td>Sub-equipped channel configurations</td>
<td>Fully configurable in DPNSS</td>
</tr>
<tr>
<td>Frame loss & alignment</td>
<td>CCITT G.706 at 2.048Mbit/s</td>
</tr>
<tr>
<td>Signalling Channel</td>
<td>TS 16 Common channel signalling timeslot 16</td>
</tr>
<tr>
<td>Signalling Protocols</td>
<td>Q.931 Euro-ISDN (ETS 300 403)</td>
</tr>
<tr>
<td></td>
<td>QSIG: ISO, ETSI, ECMA</td>
</tr>
<tr>
<td></td>
<td>DPNSS: BTNR 188 issue 7</td>
</tr>
<tr>
<td>Signalling Orientation</td>
<td>All protocols fully ET/PBX configurable</td>
</tr>
</tbody>
</table>

Clocking

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock Source</td>
<td>The unit can be synchronised to either primary port.</td>
</tr>
<tr>
<td>Internal Clock Stability</td>
<td>E1 - 2.048Mbit/s ± 100 ppm</td>
</tr>
</tbody>
</table>
Management Interface

Web Browser
- Microsoft Internet Explorer 5.0 or later
- Netscape 6.0 or later
- Firefox 1.5 or later
Connectors and Cabling

Ethernet Port - 100 Mbit/s

<table>
<thead>
<tr>
<th>Connector</th>
<th>RJ45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>TxD+</td>
</tr>
<tr>
<td>Pin 2</td>
<td>TxD-</td>
</tr>
<tr>
<td>Pin 3</td>
<td>RxD+</td>
</tr>
<tr>
<td>Pin 6</td>
<td>RxD</td>
</tr>
</tbody>
</table>

Alarm Port

<table>
<thead>
<tr>
<th>Connector</th>
<th>Weidmüller BL5.08 Orange 3 way connector with terminal screws</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>Normally Open (NO) (left pin when looking at the rear panel)</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Common</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Normally Closed (NC)</td>
</tr>
<tr>
<td>Maximum voltage/current</td>
<td>60V at 500mA over the operating ambient temperature range</td>
</tr>
</tbody>
</table>

Craft Port - Craft Mode

<table>
<thead>
<tr>
<th>V.24/V.28 (RS232)</th>
<th>9 pin, female sub-miniature D connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td></td>
</tr>
<tr>
<td>Pin 2</td>
<td>TxD</td>
</tr>
<tr>
<td>Pin 3</td>
<td>RxD</td>
</tr>
<tr>
<td>Pin 5</td>
<td>GND</td>
</tr>
</tbody>
</table>
Craft Port - Factory Mode

<table>
<thead>
<tr>
<th>Modem Control</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Control</td>
<td>None</td>
</tr>
<tr>
<td>Speed</td>
<td>9600 bit/s</td>
</tr>
<tr>
<td>Characteristic:</td>
<td>8 bits, no parity, asynchronous, 1 stop bit</td>
</tr>
<tr>
<td>Configuration</td>
<td>Interactive ASCII menu text interface</td>
</tr>
<tr>
<td>Management Protocol</td>
<td>Structured ASCII command/response interface</td>
</tr>
</tbody>
</table>

V.24/V.28 (RS232)

<table>
<thead>
<tr>
<th>Connector</th>
<th>9 pin, female sub-miniature D connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 2</td>
<td>TxD</td>
</tr>
<tr>
<td>Pin 3</td>
<td>RxD</td>
</tr>
<tr>
<td>Pin 5</td>
<td>GND</td>
</tr>
<tr>
<td>Modem Control</td>
<td>None</td>
</tr>
<tr>
<td>Flow Control</td>
<td>XON/XOFF</td>
</tr>
<tr>
<td>Speed</td>
<td>38400 bit/s</td>
</tr>
<tr>
<td>Characteristics</td>
<td>8 bits, no parity, asynchronous, 1 stop bit</td>
</tr>
<tr>
<td>Configuration</td>
<td>Interactive ASCII menu text interface</td>
</tr>
<tr>
<td>Management Protocol</td>
<td>Structured ASCII command/response interface</td>
</tr>
</tbody>
</table>

RJ45 120 - SCN

Note

Use screened cables.

<table>
<thead>
<tr>
<th>Connector</th>
<th>RJ45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>TxD</td>
</tr>
<tr>
<td>Pin 2</td>
<td>TxD</td>
</tr>
<tr>
<td>Pin 4</td>
<td>RxD</td>
</tr>
<tr>
<td>Pin 5</td>
<td>RxD</td>
</tr>
</tbody>
</table>
Craft Port Management

Craft Port Functionality & Operation

The Craft Port provides a secondary means of managing the Cisco VG30D Voice Gateway. Use it for presentation of self-test results and for basic IP address parameter setup. It also provides a means by which low-level functions and diagnostics may be accessed during normal operation.

The Craft Port would normally only be used to set up a New Management IP Address, when the unit cannot be accessed by using the web browser-based Gateway Management Interface.

Although Craft Port facilities are available with the unit in normal operation, the functions are service-affecting. Take the Cisco VG30D Voice Gateway out of service before accessing these Craft Port facilities.

Access

You can access the Craft Port by using a dumb terminal or terminal emulator on a computer by using the RJ45 crossover stub cable that is supplied with the Cisco VG30D Voice Gateway unit.

Communication settings: RS232, 9600 baud, 8 bit, no parity, 1 stop bit

Contact your support provider for instructions.
Useful Information

Using with GPT / Siemens Equipment

When using the Cisco VG30D Voice Gateway with GPT / Siemens Realitis DX or iSDX, ensure D Channel Link Tests on the PBX are switched off. Do this by using the RTCT command. See the related manufacturer’s user manual for further information.

Maintenance Replacement

In the unlikely event that an Cisco VG30D Voice Gateway should fail, you may need to replace it with a maintenance spare that will need to be configured to the same settings as the field Cisco VG30D Voice Gateway. This is best achieved by restoring a configuration backup file. Be aware that configuration backup files are software version specific. To restore the configuration of the failed Cisco VG30D Voice Gateway unit to the replacement unit, the replacement unit must first be loaded with the same software version as the failed unit.

If the replacement Cisco VG30D Voice Gateway is at a different software level, the applicable software must first be downloaded to it and then the restore performed. The software in the replacement unit can then be upgraded. If this new software version is already pre-loaded in the replacement unit as its default software, achieve upgrade by reactivating the default software. Otherwise, you must download new software. When the upgrade completes, save a new configuration backup.
Glossary

<table>
<thead>
<tr>
<th>A</th>
<th>ADPCM</th>
<th>Adaptive Differential Pulse-Code modulation.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AIS</td>
<td>Alarm Indication Signal. A signalling condition of all “1”’s on a Primary Rate interface, indicating that the PRI equipment has failed.</td>
</tr>
<tr>
<td>A</td>
<td>ASCII</td>
<td>American Standard Code for Information Interchange.</td>
</tr>
</tbody>
</table>

| B | BTNR | British Telecommunications Network Requirement. |

<table>
<thead>
<tr>
<th>C</th>
<th>CELP</th>
<th>Code Excited Linear Prediction.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>CLC</td>
<td>Calling/Called Line Category.</td>
</tr>
<tr>
<td>C</td>
<td>CLI</td>
<td>Calling Line Identifier.</td>
</tr>
<tr>
<td>C</td>
<td>Codec</td>
<td>Coder Decoder.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>DASS2</th>
<th>Digital Access Signalling System Number 2. The current version of the DASS protocol. Often just referred to as DASS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>DiffServ</td>
<td>Differentiated Services.</td>
</tr>
<tr>
<td>D</td>
<td>DPNSS</td>
<td>Digital Private Network Signalling System.</td>
</tr>
<tr>
<td>D</td>
<td>DTMF</td>
<td>Dual tone multifrequency.</td>
</tr>
</tbody>
</table>

| E | ECP | Encryption Control Protocol. |
Ethernet Baseband LAN specification invented by Xerox Corporation and developed jointly by Xerox, Intel, and Digital Equipment Corporation.

ETSI European Telecommunications Standards Institute.

F

G

G.711 Describes the 64 Kbit/s PCM voice coding technique. In G.711, encoded voice is already in the correct format for digital voice delivery in the PSTN or through PBXs. This is described in the ITU-T G-series recommendations.

G.723 Describes a compression technique that can be used for compressing speech or audio signal components at a very low bit rate as part of the H.324 family of standards.

G.729a Describes CELP compression where voice is coded into 8 Kbit/s streams. There are two variations of this standard (G.729 and G.729 Annex A) that differ mainly in computational complexity; both provide speech quality similar to 32Kbit/s ADPCM and are described in the ITU-T standard in its G-series recommendations.

H

H.225 An ITU standard that governs H.225.0 session establishment and packetisation. H.225.0 actually describes several different protocols: RAS, use of Q.931 and use of RTP.

H.245 An ITU standard that governs H.245 endpoint control.

H.323 Extension of ITU-T standard H.320 that enables videoconferencing over LANs and other packet-switched networks, as well as video over the Internet.

H.450 An ITU standard that defines supplementary services.

Hz Hertz.

I

IP Internet Protocol.

ISDN Integrated Services Digital Network.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU</td>
<td>International Telecommunication Union.</td>
</tr>
<tr>
<td>ITU-T</td>
<td>Telecommunication standardization sector of ITU.</td>
</tr>
<tr>
<td>L</td>
<td>Local Area Network.</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode.</td>
</tr>
<tr>
<td>M</td>
<td>Multipoint Control Unit.</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base.</td>
</tr>
<tr>
<td>N</td>
<td>Non-Facility Associated Signalling.</td>
</tr>
<tr>
<td>NMS</td>
<td>Network Management System.</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol.</td>
</tr>
<tr>
<td>NVRAM</td>
<td>Non-Volatile Random Access Memory.</td>
</tr>
<tr>
<td>O</td>
<td>Originating Line Indicator (ITU-T/CCS #7).</td>
</tr>
<tr>
<td>P</td>
<td>Password Authentication Protocol.</td>
</tr>
<tr>
<td>PAMS</td>
<td>Perceptual Analysis Measurement System.</td>
</tr>
<tr>
<td>PHB</td>
<td>Per-Hop Behaviour.</td>
</tr>
<tr>
<td>PBX</td>
<td>Private Branch Exchange.</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer.</td>
</tr>
<tr>
<td>POST</td>
<td>Power On Self Test.</td>
</tr>
<tr>
<td>Prepend</td>
<td>Add to the start of.</td>
</tr>
</tbody>
</table>
PRI Primary Rate Interface.
PSQM Perceptual Speech Quality Measurement.
PSTN Public Switched Telephone Network.

Q
Q.931 ITU-T specification for signalling to establish, maintain, and clear ISDN network connections.
QSIG A signalling standard. Common channel signalling protocol based on ISDN Q.931 standards and used by many digital PBXs. Q (point of the ISDN model) Signalling.
QOS Quality of Service.

R
RADIUS Remote Authentication Dial In User Service (RFC 2865).
RAI Remote Alarm Indication. An indication in the channel framing information on a Primary Rate Interface showing that the equipment signalling the condition detects a problem in the link or attached equipment.
RAS Registration Admission and Status.
RTCP Real Time Control Protocol (RFC 1889).

S
SCN Switched Circuit Network.
SIC Service Indicator Code.

T
TCP Transmission Control Protocol.
TDM Time Division Multiplex.
ToS Type of Service.
TS Time Slot.
U	UDP	User Datagram Protocol.
V	VAD	Voice Active Detector.
	VPN	Virtual Private Network.