Troubleshooting Cisco 800 Series Routers

Use the information in this chapter to help isolate problems you might encounter or to rule out the router as the source of a problem.

- Getting Started, page 1
- Before Contacting Cisco or Your Reseller, page 1
- ADSL Troubleshooting, page 2
- SHDSL Troubleshooting, page 2
- VDSL2 Troubleshooting, page 3
- show interfaces Troubleshooting Command, page 3
- ATM Troubleshooting Commands, page 5
- Software Upgrade Methods, page 10
- Recovering a Lost Password, page 10
- Enabling SIM Fast Switchover, page 15
- Cisco Configuration Professional Express, page 16

Getting Started

Before troubleshooting a software problem, you must connect a terminal or PC to the router by using the light-blue console port. With a connected terminal or PC, you can view status messages from the router and enter commands to troubleshoot a problem.

You can also remotely access the interface (Ethernet, ADSL, or telephone) by using Telnet. The Telnet option assumes that the interface is up and running.

Before Contacting Cisco or Your Reseller

If you cannot locate the source of a problem, contact your local reseller for advice. Before you call, you should have the following information ready:
ADSL Troubleshooting

If you experience trouble with the ADSL connection, verify the following:

- The ADSL line is connected and is using pins 3 and 4. For more information on the ADSL connection, see the hardware guide for your router.
- The ADSL CD LED is on. If it is not on, the router may not be connected to the DSL access multiplexer (DSLAM). For more information on the ADSL LEDs, see the hardware installation guide specific for your router.
- The correct Asynchronous Transfer Mode (ATM) virtual path identifier/virtual circuit identifier (VPI/VCI) is being used.
- The DSLAM supports discrete multi-tone (DMT) Issue 2.
- The ADSL cable that you connect to the Cisco router must be 10BASE-T Category 5, unshielded twisted-pair (UTP) cable. Using regular telephone cable can introduce line errors.

SHDSL Troubleshooting

Symmetrical high-data-rate digital subscriber line (SHDSL) is available on the Cisco 888 routers. If you experience trouble with the SHDSL connection, verify the following:

- The SHDSL line is connected and using pins 3 and 4. For more information on the G.SHDSL connection, see the hardware guide for your router.
- The G.SHDSL LED is on. If it is not on, the router may not be connected to the DSL access multiplexer (DSLAM). For more information on the G.SHDSL LED, see the hardware installation guide specific for your router.
- The correct asynchronous transfer mode (ATM) virtual path identifier/virtual circuit identifier (VPI/VCI) is being used.
- The DSLAM supports the G.SHDSL signaling protocol.

Use the `show controllers dsl 0` command in EXEC mode to view an SHDSL configuration.
VDSL2 Troubleshooting

Very-high-data-rate digital subscriber line 2 (VDSL2) is available on the Cisco 887 routers. If you experience trouble with the VDSL2 connection, verify the following:

- The VDSL2 line is connected and using pins 3 and 4. For more information on the VDSL2 connection, see the hardware guide for your router.
- The VDSL2 LED CD light is on. If it is not on, the router may not be connected to the DSL access multiplexer (DSLAM). For more information on the VDSL2 LED, see the hardware installation guide specific for your router.
- The DSLAM supports the VDSL2 signaling protocol.

Use the `show controllers vdsl 0` command in EXEC mode to view a VDSL2 configuration. The debug vdsl 0 daemon state command can be used to enable the debug messages that print the state transition of VDSL2 training.

If there is trouble with the VDSL firmware file, you can reload or upgrade it without upgrading your Cisco IOS image. Use the command:

`controller vdsl 0 firmware flash:<firmware file name>`

to load the firmware file into the VDSL modem chipset. Then enter shutdown/no shutdown commands on the controller vdsl 0 interface. After this, the new firmware will be downloaded and the VDSL2 line starts training up.

Note Cisco 860VAE series ISRs require that the router be reloaded (IOS reload) before the new VDSL firmware will be loaded.

If the command is not present or the named firmware file is corrupt or not available, the default firmware file `flash:vdsl.bin` is checked to be present and not corrupt. The firmware in this file is then downloaded to the modem chipset.

Note Cisco 860VAE series ISRs will state the reason of failure during bootup if the new VDSL firmware fails to load after IOS reload.

show interfaces Troubleshooting Command

Use the `show interfaces` command to display the status of all physical ports (Ethernet, Fast Ethernet, and ATM) and logical interfaces on the router. Table 1: show interfaces Command Output Description, on page 4 describes messages in the command output.

The following example shows how to view the status of Ethernet or Fast Ethernet Interfaces:

```
Router# show interfaces ethernet 0 **similar output for show interfaces fastethernet 0 command **
Ethernet0 is up, line protocol is up
Hardware is PQUICC Ethernet, address is 0000.0c13.a4db
(bia0010.9181.1281)
Internet address is 170.1.4.101/24
```
MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, reliability 255/255, txload 1/255, rxload 1/255
Encapsulation ARPA, loopback not set
Keepalive set (10 sec)

The following example shows how to view the status of ATM Interfaces:

Router# show interfaces atm 0
ATM0 is up, line protocol is up
Hardware is PQUICC_SAR (with Alcatel ADSL Module)
Internet address is 14.0.0.16/8
MTU 1500 bytes, sub MTU 1500, BW 640 Kbit, DLY 80 usec, reliability 40/255, txload 1/255, rxload 1/255
Encapsulation ATM, loopback not set
Keepalive not set
Encapsulation(s): AAL5, PVC mode
10 maximum active VCs, 1 current VCCs
VC idle disconnect time 300 seconds
Last input 01:16:31, output 01:16:31, output hang never
Last clearing of "show interface" counters never
Input queue: 0/75/0 (size/max/drops); Total output drops: 0
Queueing strategy: Per VC Queueing
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
512 packets input, 59780 bytes, 0 no buffer
Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
0 input errors, 0 input buffer failures, 0 input buffers swapped out

The following example shows how to view the status of Dialer Interfaces:

Router# show interfaces dialer 1
Dialer 1 is up, line protocol is up
Hardware is Dialer interface
Internet address is 1.1.1.1/24
MTU 1500 bytes, BW 100000 Kbit, DLY 100000 usec, reliability 255/255, txload 1/255, rxload 1/255
Encapsulation PPP, loopback not set
Keepalive not supported
DTR is pulsed for 5 seconds on reset
LCP Closed

The table below describes possible command output for the `show interfaces` command.

<table>
<thead>
<tr>
<th>Output</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>For ATM Interfaces</td>
<td></td>
</tr>
<tr>
<td>ATM 0 is up, line protocol is up</td>
<td>The ATM line is up and operating correctly.</td>
</tr>
<tr>
<td>ATM 0 is down, line protocol is down</td>
<td></td>
</tr>
<tr>
<td>• The ATM interface has been disabled with</td>
<td>• The ATM line is down, possibly because the ADSL cable is connected</td>
</tr>
<tr>
<td>the shutdown command.</td>
<td>or the wrong type of cable is connected to the ATM port.</td>
</tr>
</tbody>
</table>

Cisco 800 Series Integrated Services Routers Software Configuration Guide
<table>
<thead>
<tr>
<th>Output</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM 0.n is up, line protocol is up</td>
<td>The specified ATM subinterface is up and operating correctly.</td>
</tr>
<tr>
<td>ATM 0.n is administratively down, line protocol is down</td>
<td>The specified ATM subinterface has been disabled with the shutdown command.</td>
</tr>
<tr>
<td>ATM 0.n is down, line protocol is down</td>
<td>The specified ATM subinterface is down, possibly because the ATM line has been disconnected (by the service provider).</td>
</tr>
<tr>
<td>For Ethernet/Fast Ethernet Interfaces</td>
<td></td>
</tr>
<tr>
<td>Ethernet/Fast Ethernet n is up, line protocol is up</td>
<td>The specified Ethernet/Fast Ethernet interface is connected to the network and operating correctly.</td>
</tr>
<tr>
<td>Ethernet/Fast Ethernet n is up, line protocol is down</td>
<td>The specified Ethernet/Fast Ethernet interface has been correctly configured and enabled, but the Ethernet cable might be disconnected from the LAN.</td>
</tr>
<tr>
<td>Ethernet/Fast Ethernet n is administratively down, line protocol is down</td>
<td>The specified Ethernet/Fast Ethernet interface has been disabled with the shutdown command, and the interface is disconnected.</td>
</tr>
<tr>
<td>For Dialer Interfaces</td>
<td></td>
</tr>
<tr>
<td>Dialer n is up, line protocol is up</td>
<td>The specified dialer interface is up and operating correctly.</td>
</tr>
</tbody>
</table>
| Dialer n is down, line protocol is down | • This is a standard message and may not indicate anything is actually wrong with the configuration.
 or
 • If you are having problems with the specified dialer interface, this can mean it is not operating, possibly because the interface has been brought down with the **shutdown** command, or the ADSL cable is disconnected. |

ATM Troubleshooting Commands

Use the following commands to troubleshoot your ATM interface:
ping atm interface Command

Use the ping atm interface command to determine whether a particular PVC is in use. The PVC does not need to be configured on the router to use this command. The below example shows the use of this command to determine whether PVC 8/35 is in use.

The following example shows how to determine if a PVC is in use:

Router# ping atm interface atm 0 8 35 seg-loopback
Type escape sequence to abort.
Sending 5, 53-byte segment OAM echoes, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 148/148/148 ms
This command sends five OAM F5 loopback packets to the DSLAM (segment OAM packets). If the PVC is configured at the DSLAM, the ping is successful.

To test whether the PVC is being used at the aggregator, enter the following command:

Router# ping atm interface atm 0 8 35 end-loopback
Type escape sequence to abort.
Sending 5, 53-byte end-to-end OAM echoes, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 400/401/404 ms
This command sends end-to-end OAM F5 packets, which are echoed back by the aggregator.

show atm interface Command

To display ATM-specific information about an ATM interface, use the show atm interface atm 0 command from privileged EXEC mode.

The following example shows how to view information about an ATM interface:

Router# show atm interface atm 0
Interface ATM0:
 AAL enabled: AAL5, Maximum VCs:11, Current VCCs:0
 Maximum Transmit Channels:0
 Max. Datagram Size:1528
 PLIM Type:INVALID = 640Kbps, Framing is INVALID,
 DS3 lbo:short, TX clocking:LINE
 0 input, 0 output, 0 IN fast, 0 OUT fast
 Avail bw = 640
 Config. is ACTIVE
The table below describes some of the fields shown in the command output.

Table 2: show atm interface Command Output Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM interface</td>
<td>Interface number. Always 0 for the Cisco 860 and Cisco 880 series access routers.</td>
</tr>
<tr>
<td>AAL enabled</td>
<td>Type of AAL enabled. The Cisco 860 and Cisco 880 series access routers support AAL5.</td>
</tr>
</tbody>
</table>
Field Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum VCs</td>
<td>Maximum number of virtual connections this interface supports.</td>
</tr>
<tr>
<td>Current VCCs</td>
<td>Number of active virtual channel connections (VCCs).</td>
</tr>
<tr>
<td>Maximum Transmit Channels</td>
<td>Maximum number of transmit channels.</td>
</tr>
<tr>
<td>Max Datagram Size</td>
<td>Configured maximum number of bytes in the largest datagram.</td>
</tr>
<tr>
<td>PLIM Type</td>
<td>Physical layer interface module (PLIM) type.</td>
</tr>
</tbody>
</table>

debug atm Commands

Use the `debug` commands to troubleshoot configuration problems that you might be having on your network. The `debug` commands provide extensive, informative displays to help you interpret any possible problems.

Guidelines for Using Debug Commands

Read the following guidelines before using debug commands to ensure appropriate results.

- All debug commands are entered in privileged EXEC mode.
- To view debugging messages on a console, enter the `logging console debug` command.
- Most `debug` commands take no arguments.
- To disable debugging, enter the `undebug all` command.
- To use `debug` commands during a Telnet session on your router, enter the `terminal monitor` command.

⚠️ **Caution**

Debugging is assigned a high priority in your router CPU process, and it can render your router unusable. For this reason, use `debug` commands only to troubleshoot specific problems. The best time to use debug commands is during periods of low network traffic so that other activity on the network is not adversely affected.

You can find additional information and documentation about the `debug` commands in the Cisco IOS Debug Command Reference.

debug atm errors Command

Use the `debug atm errors` command to display ATM errors. The `no` form of this command disables debugging output.

The following example shows how to view the ATM errors:

```
Router# debug atm errors
```
debug atm Commands

Use the debug atm events command to display events that occur on the ATM interface processor and to diagnose problems in an ATM network. This command provides an overall picture of the stability of the network. The no form of this command disables debugging output.

If the interface is successfully communicating with the Digital Subscriber Line Access Multiplexer (DSLAM) at the telephone company, the modem state is 0x10. If the interface is not communicating with the DSLAM, the modem state is 0x8. Note that the modem state does not transition to 0x10.

The following example shows how to view the ATM interface processor events—success:

```
Router# debug atm events
Router# 00:02:57: DSL: Send ADSL_OPEN command.
00:02:57: DSL: Using subfunction 0xA
00:02:57: DSL: Using subfunction 0xA
00:02:57: DSL: Sent command 0x5
00:02:57: DSL: Received response: 0x26
00:02:57: DSL: Unexpected response 0x26
00:02:57: DSL: Send ADSL_OPEN command.
00:02:57: DSL: Using subfunction 0xA
00:02:57: DSL: Using subfunction 0xA
00:02:57: DSL: Sent command 0x5
00:03:00: DSL: 1: Modem state = 0x8
00:03:00: DSL: Received response: 0x24
00:03:09: DSL: Showtime!
```

The following example shows how to view the ATM interface processor events—failure:

```
Router# debug atm events
Router# 00:02:57: DSL: Send ADSL_OPEN command.
00:02:57: DSL: Using subfunction 0xA
00:02:57: DSL: Using subfunction 0xA
00:02:57: DSL: Sent command 0x5
00:02:57: DSL: Received response: 0x26
00:02:57: DSL: Unexpected response 0x26
00:02:57: DSL: Send ADSL_OPEN command.
00:02:57: DSL: Using subfunction 0xA
00:02:57: DSL: Using subfunction 0xA
00:02:57: DSL: Sent command 0x5
```
debug atm packet Command

Use the `debug atm packet` command to display all process-level ATM packets for both outbound and inbound packets. The output reports information online when a packet is received or a transmission is attempted. The `no` form of this command disables debugging output.

⚠️ **Caution**

Because the `debug atm packet` command generates a significant amount of output for every packet processed, use it only when network traffic is low, so that other system activities are not adversely affected.

The command syntax is:

```command
debug atm packet [interface atm number [vcd vcd-number ][vc vpi/vci number]]
```

Where the keywords are defined as follows:

- `interface atm number` (Optional) ATM interface or subinterface number.
- `vcd vcd-number` (Optional) Number of the virtual circuit designator (VCD).
- `vc vpi/vci number` VPI/VCI value of the ATM PVC.

The below example shows sample output for the `debug atm packet` command.

```
Router# debug atm packet
Router# 01:23:48:ATM0(O):
VCD:0x1 VPI:0x1 VCI:0x64 DM:0x0 SAP:AAAA CTL:03 OUI:000000 TYPE:0800 Length:0x70
01:23:48:4500 0064 0008 0000 FF01 0001 0010 0000 0001 0800 0000 0000 0000 0000 0000 0000 0000
01:23:48:0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
01:23:48:ABCD ABCD ABCD
01:23:48:
01:23:48:ATM0(I):
VCD:0x1 VPI:0x1 VCI:0x64 DM:0x0 SAP:AAAA CTL:03 OUI:000000 TYPE:0800 Length:0x70
01:23:48:4500 0064 0008 0000 FE01 0001 0010 0000 0001 0800 0000 0000 0000 0000 0000 0000 0000
01:23:48:0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
01:23:48:ABCD ABCD ABCD
01:23:48:
```

The table below describes some of the fields shown in the `debug atm packet` command output.

Table 3: debug atm packet Command Output Description

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM0</td>
<td>Interface that is generating the packet.</td>
</tr>
<tr>
<td>(O)</td>
<td>Output packet. (I) would mean receive packet.</td>
</tr>
<tr>
<td>VCD: 0xn</td>
<td>Virtual circuit associated with this packet, where (n) is some value.</td>
</tr>
<tr>
<td>VPI: 0xn</td>
<td>Virtual path identifier for this packet, where (n) is some value.</td>
</tr>
<tr>
<td>DM: 0xn</td>
<td>Descriptor mode bits, where (n) is some value.</td>
</tr>
</tbody>
</table>
Software Upgrade Methods

Several methods are available for upgrading software on the Cisco 860 and Cisco 880 series Integrated Services Routers, including:

- Copy the new software image to flash memory over the LAN or WAN while the existing Cisco IOS software image is operating.
- Copy the new software image to flash memory over the LAN while the boot image (ROM monitor) is operating.
- Copy the new software image over the console port while in ROM monitor mode.
- From ROM monitor mode, boot the router from a software image that is loaded on a TFTP server. To use this method, the TFTP server must be on the same LAN as the router.

Recovering a Lost Password

To recover a lost enable or lost enable-secret password:

1. Change the Configuration Register, on page 10
2. Reset the Router, on page 12
3. Reset the Password and Save Your Changes, on page 13 (for lost enable secret passwords only)
4. Reset the Configuration Register Value, on page 14

Note

Recovering a lost password is only possible when you are connected to the router through the console port. These procedures cannot be performed through a Telnet session.

Tip

See the “Hot Tips” section on Cisco.com for additional information on replacing enable secret passwords.

Change the Configuration Register

To change a configuration register, follow these steps:
SUMMARY STEPS

1. Connect an ASCII terminal or a PC running a terminal emulation program to the CONSOLE port on the router.
2. Configure the terminal to operate at 9600 baud, 8 data bits, no parity, and 1 stop bit.
3. At the privileged EXEC prompt (router_name #), enter the show version command to display the existing configuration register value (shown in bold at the bottom of this output example):

 Example:

   ```
   Router# show version
   Cisco IOS Software, C880 Software (C880-ADVENTERPRISEK9-M), Version 12.3(nightly .PCBU_WIRELESS041110) NIGHTLY BUILD, synced to haw_t_pll_pcbu HAW_T_PLL_PCBU_20040924
   Copyright (c) 1986-2004 by Cisco Systems, Inc.
   Compiled Thu 11-Nov-04 03:37 by jsomebody
   ROM: System Bootstrap, Version 1.0.0.6(20030916:100755) [jsomebody], DEVELOPMENT SOFTWARE
   Router uptime is 2467 minutes
   System returned to ROM by power-on
   System image file is "flash:c880-adventerprisek9-mz.pcbu_wireless.041110"
   This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply use. Delivery of Cisco cryptographic products does not imply compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately. A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html
   If you require further assistance please contact us by sending email to export@cisco.com.
   Cisco 877 (MPC8272) processor (revision 0x00) with 59392K/6144K bytes of memory.
   Processor board ID
   MPC8272 CPU Rev: Part Number 0xC, Mask Number 0x10
   4 FastEthernet interfaces
   1 ATM interface
   1 802.11 Radio
   128K bytes of non-volatile configuration memory.
   20480K bytes of processor board System flash (Intel Strataflash)
   Configuration register is 0x2102
   ```

4. Record the setting of the configuration register.
5. To enable the break setting (indicated by the value of bit 8 in the configuration register), enter the config-register 0x01 command from privileged EXEC mode.

 • Break enabled—Bit 8 is set to 0.

DETAILED STEPS

Step 1 Connect an ASCII terminal or a PC running a terminal emulation program to the CONSOLE port on the router.

Step 2 Configure the terminal to operate at 9600 baud, 8 data bits, no parity, and 1 stop bit.

Step 3 At the privileged EXEC prompt (router_name #), enter the show version command to display the existing configuration register value (shown in bold at the bottom of this output example):

   ```
   ```

Step 4 Record the setting of the configuration register.

Step 5 To enable the break setting (indicated by the value of bit 8 in the configuration register), enter the config-register 0x01 command from privileged EXEC mode.
• Break disabled (default setting)—Bit 8 is set to 1.

Reset the Router

To reset the router, follow these steps:

SUMMARY STEPS

1. If break is enabled, go to Step 2, on page 12. If break is disabled, turn the router off (O), wait 5 seconds, and turn it on (|) again. Within 60 seconds, press the Break key. The terminal displays the ROM monitor prompt. Go to Step 3, on page 12.
2. Press break. The terminal displays the following prompt:
3. Enter `confreg 0x142` to reset the configuration register:
4. Initialize the router by entering the `reset` command:
5. Enter `no` in response to the prompts until the following message is displayed:
6. Press Return. The following prompt appears:
7. Enter the enable command to enter enable mode. Configuration changes can be made only in enable mode:
8. Enter the `show startup-config` command to display an enable password in the configuration file:

DETAILED STEPS

Step 1
If break is enabled, go to Step 2, on page 12. If break is disabled, turn the router off (O), wait 5 seconds, and turn it on (|) again. Within 60 seconds, press the Break key. The terminal displays the ROM monitor prompt. Go to Step 3, on page 12.

Note Some terminal keyboards have a key labeled Break. If your keyboard does not have a Break key, see the documentation that came with the terminal for instructions on how to send a break.

Step 2
Press break. The terminal displays the following prompt:

Example:

```
rommon 2>
```

Step 3
Enter `confreg 0x142` to reset the configuration register:

Example:

```
rommon 2> confreg 0x142
```

Step 4
Initialize the router by entering the `reset` command:

Example:

```
rommon 2> reset
```

The router cycles its power, and the configuration register is set to 0x142. The router uses the boot ROM system image, indicated by the system configuration dialog:
Example:

--- System Configuration Dialog ---

Step 5 Enter no in response to the prompts until the following message is displayed:

Example:

Press RETURN to get started!

Step 6 Press Return. The following prompt appears:

Example:

Router>

Step 7 Enter the enable command to enter enable mode. Configuration changes can be made only in enable mode:

Example:

Router> enable
The prompt changes to the privileged EXEC prompt:

Example:

Router#

Step 8 Enter the show startup-config command to display an enable password in the configuration file:

Example:

Router# show startup-config

What to Do Next

If you are recovering an enable password, do not perform the steps in the Reset the Password and Save your Changes section. Instead, complete the password recovery process by performing the steps in the Reset the Configuration Register Value section.

If you are recovering an enable secret password, it is not displayed in the show startup-config command output. Complete the password recovery process by performing the steps in the Reset the Password and Save your Changes section.

Reset the Password and Save Your Changes

To reset your password and save the changes, follow these steps:
SUMMARY STEPS

1. Enter the `configure terminal` command to enter global configuration mode:
2. Enter the `enable secret` command to reset the enable secret password in the router:
3. Enter `exit` to exit global configuration mode:
4. Save your configuration changes:

DETAILED STEPS

Step 1
Enter the `configure terminal` command to enter global configuration mode:

Example:

```
Router# configure terminal
```

Step 2
Enter the `enable secret` command to reset the enable secret password in the router:

Example:

```
Router(config)# enable secret password
```

Step 3
Enter `exit` to exit global configuration mode:

Example:

```
Router(config)# exit
```

Step 4
Save your configuration changes:

Example:

```
Router# copy running-config startup-config
```

Reset the Configuration Register Value

To reset the configuration register value after you have recovered or reconfigured a password, follow these steps:

SUMMARY STEPS

1. Enter the `configure terminal` command to enter global configuration mode:
2. Enter the `configure register` command and the original configuration register value that you recorded.
3. Enter `exit` to exit configuration mode:
4. Reboot the router, and enter the recovered password.
DETAILED STEPS

Step 1 Enter the `configure terminal` command to enter global configuration mode:

Example:

```
Router# configure terminal
```

Step 2 Enter the `configure register` command and the original configuration register value that you recorded.

Example:

```
Router(config)# config-reg
value
```

Step 3 Enter `exit` to exit configuration mode:

Example:

```
Router(config)# exit
```

Note To return to the configuration being used before you recovered the lost enable password, do not save the configuration changes before rebooting the router.

Step 4 Reboot the router, and enter the recovered password.

Enabling SIM Fast Switchover

This feature enables faster SIM switching between the SIMs in slot 0 and slot 1, if the carriers corresponding to both the SIM cards use the same firmware.

Feature Overview

SIM Fast Switchover provides the following:

- Avoids a modem-reset when a SIM switchover happens between the same carrier SIM cards.
- Supported on C8xx platforms with MC7430 or MC7455 modems. This feature is not supported on C897VAGW and C819GW routers.
- The new CLI `lte sim fast-switchover enable` enables this feature.

Enabling SIM Fast Switchover

Perform the following tasks to enable SIM Fast Switchover:

```
Router# config t
Router(config)# Controller Cellular Cellular Interface Number
Router(config-controller)# lte sim fast-switchover enable
```

Perform the following task to disable SIM Fast Switchover:

```
Router(config-controller)# no lte sim fast-switchover enable
```

The following examples show some of the command outputs:

```
Router(config-controller)# lte sim ?
authenticate CHV1 authentication
data-profile Data Profile number
```
fast-switchover Fast sim switchover
max-retry Maximum SIM switchovers
primary Controller's primary SIM

Router(config-controller)# lte sim fast-switchover
enable Enable fast sim switchover

Router# sh run |sec cont
cellular 0
lte sim fast-switchover enable

Router(config-controller)# no lte sim fast-switchover
enable Enable fast sim switchover

The following examples show the running configuration:

Sim Fast Switchover Enabled
Router#sh cont cel 0 | inc Sim
SIM fastswitchover is ON

Sim Fast Switchover Disabled
Router#sh cont cel 0 | inc Sim
SIM fastswitchover is OFF

Cisco Configuration Professional Express

After you connect the cables and power up the router, we recommend that you use the Cisco CP Express web-based application to configure the initial router settings.

For instructions on how to use Cisco CP Express to configure the router see the Cisco CP Express User’s Guide.