The Cisco Secure Router 520 Series routers support the creation of virtual private networks (VPNs). Cisco routers and other broadband devices provide high-performance connections to the Internet, but many applications also require the security of VPN connections which perform a high level of authentication and which encrypt the data between two particular endpoints.

Two types of VPNs are supported—site-to-site and remote access. Site-to-site VPNs are used to connect branch offices to corporate offices, for example. Remote access VPNs are used by remote clients to log in to a corporate network.

The example in this chapter illustrates the configuration of a site-to-site VPN that uses IPsec and the generic routing encapsulation (GRE) protocol to secure the connection between the branch office and the corporate network. Figure 7-1 shows a typical deployment scenario.

Figure 7-1 Site-to-Site VPN Using an IPsec Tunnel and GRE

1. Branch office containing multiple LANs and VLANs
2. Fast Ethernet LAN interface—With address 192.168.0.0/16 (also the inside interface for NAT)
3. VPN client—Cisco Secure Router 520 Series routers
4. Fast Ethernet or ATM interface—With address 200.1.1.1 (also the outside interface for NAT)
5. LAN interface—Connects to the Internet; with outside interface address of 210.110.101.1
6. VPN client—Another router, which controls access to the corporate network
7. LAN interface—Connects to the corporate network, with inside interface address of 10.1.1.1
8. Corporate office network
9. IPsec tunnel with GRE
Chapter 7 Configuring VPNs Using an IPsec Tunnel and Generic Routing Encapsulation

GRE Tunnels
GRE tunnels are typically used to establish a VPN between the Cisco router and a remote device that controls access to a private network, such as a corporate network. Traffic forwarded through the GRE tunnel is encapsulated and routed out onto the physical interface of the router. When a GRE interface is used, the Cisco router and the router that controls access to the corporate network can support dynamic IP routing protocols to exchange routing updates over the tunnel, and to enable IP multicast traffic. Supported IP routing protocols include Routing Information Protocol (RIP) and Intermediate System-to-Intermediate System (IS-IS).

Note
When IP Security (IPsec) is used with GRE, the access list for encrypting traffic does not list the desired end network and applications, but instead refers to the permitted source and destination of the GRE tunnel in the outbound direction. All packets forwarded to the GRE tunnel are encrypted if no further access control lists (ACLs) are applied to the tunnel interface.

VPNs
VPN configuration information must be configured on both endpoints; for example, on your Cisco router and at the remote user, or on your Cisco router and on another router. You must specify parameters, such as internal IP addresses, internal subnet masks, DHCP server addresses, and Network Address Translation (NAT).

Configuration Tasks
Perform the following tasks to configure this network scenario:

- Configure a VPN
- Configure a GRE Tunnel

A configuration example showing the results of these configuration tasks is provided in the “Configuration Example” section on page 7-9.

Note
The procedures in this chapter assume that you have already configured basic router features as well as PPPoE or PPPoA with NAT, DHCP, and VLANs. If you have not performed these configurations tasks, see Chapter 1, “Basic Router Configuration,” Chapter 3, “Configuring PPP over Ethernet with NAT,” Chapter 4, “Configuring PPP over ATM with NAT,” and Chapter 5, “Configuring a LAN with DHCP and VLANs,” as appropriate for your router.

Configure a VPN

Perform the following tasks to configure a VPN over an IPsec tunnel:

- Configure the IKE Policy
- Configure Group Policy Information
- Enable Policy Lookup
- Configure IPsec Transforms and Protocols
- Configure the IPsec Crypto Method and Parameters
- Apply the Crypto Map to the Physical Interface
Configure the IKE Policy

Perform these steps to configure the Internet Key Exchange (IKE) policy, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1
<code>crypto isakmp policy priority</code>
Example:
<code>Router(config)# crypto isakmp policy 1</code>
<code>Router(config-isakmp)#</code></td>
<td>Creates an IKE policy that is used during IKE negotiation. The priority is a number from 1 to 10000, with 1 being the highest. Also enters Internet Security Association and Key Management Protocol (ISAKMP) policy configuration mode.</td>
</tr>
<tr>
<td>Step 2
`encryption {des</td>
<td>3des</td>
</tr>
<tr>
<td>Step 3
`hash {md5</td>
<td>sha}<code>
Example:
</code>Router(config-isakmp)# hash md5<code>
</code>Router(config-isakmp)#`</td>
</tr>
<tr>
<td>Step 4
`authentication {rsa-sig</td>
<td>rsa-encr</td>
</tr>
<tr>
<td>Step 5
`group {1</td>
<td>2</td>
</tr>
<tr>
<td>Step 6
<code>lifetime seconds</code>
Example:
<code>Router(config-isakmp)# lifetime 480</code>
<code>Router(config-isakmp)#</code></td>
<td>Specifies the lifetime, 60–86400 seconds, for an IKE security association (SA).</td>
</tr>
<tr>
<td>Step 7
<code>exit</code>
Example:
<code>Router(config-isakmp)# exit</code>
<code>Router(config)#</code></td>
<td>Exits IKE policy configuration mode, and enters global configuration mode.</td>
</tr>
</tbody>
</table>
Configure Group Policy Information

Perform these steps to configure the group policy, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>crypto isakmp client configuration group (group-name</td>
<td>Creates an IKE policy group that contains attributes to be downloaded to the remote client. Also enters Internet Security Association Key Management Protocol (ISAKMP) policy configuration mode.</td>
</tr>
<tr>
<td></td>
<td>default)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# crypto isakmp client configuration group rtr-remote</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-isakmp-group)#</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>key name</td>
<td>Specifies the IKE pre-shared key for the group policy.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-isakmp-group)# key secret-password</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-isakmp-group)#</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>dns primary-server</td>
<td>Specifies the primary Domain Name Service (DNS) server for the group.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-isakmp-group)# dns 10.50.10.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-isakmp-group)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note You may also want to specify Windows Internet Naming Service (WINS) servers for the group by using the wins command.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>domain name</td>
<td>Specifies group domain membership.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-isakmp-group)# domain company.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-isakmp-group)#</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>exit</td>
<td>Exits IKE group policy configuration mode, and enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-isakmp-group)# exit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>ip local pool {default</td>
<td>poolname} [low-ip-address [high-ip-address]]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ip local pool dynpool 30.30.30.20 30.30.30.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>
Enable Policy Lookup

Perform these steps to enable policy lookup through AAA, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>aaa new-model</td>
<td>Enables the AAA access control model.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aaa new-model</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>aaa authentication login {default</td>
<td>list-name} method1 [method2...]</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aaa authentication login rtr-remote local</td>
<td>This example uses a local authentication database. You could also use a RADIUS server for this. See the Cisco IOS Security Configuration Guide and the Cisco IOS Security Command Reference for details.</td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>aaa authorization {network</td>
<td>exec</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aaa authorization network rtr-remote local</td>
<td>This example uses a local authorization database. You could also use a RADIUS server for this. See the Cisco IOS Security Configuration Guide and the Cisco IOS Security Command Reference for details.</td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>username name {nopassword</td>
<td>password password</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)#</td>
<td></td>
</tr>
<tr>
<td></td>
<td>username cisco password 0 cisco</td>
<td>This example implements a username of cisco with an encrypted password of cisco.</td>
</tr>
</tbody>
</table>

Configure IPsec Transforms and Protocols

A transform set represents a certain combination of security protocols and algorithms. During IKE negotiation, the peers agree to use a particular transform set for protecting data flow.

During IKE negotiations, the peers search in multiple transform sets for a transform that is the same at both peers. When such a transform set is found, it is selected and applied to the protected traffic as a part of both peers’ configurations.
Perform these steps to specify the IPsec transform set and protocols, beginning in global configuration mode:

Configure the IPsec Crypto Method and Parameters

A dynamic crypto map policy processes negotiation requests for new security associations from remote IPsec peers, even if the router does not know all the crypto map parameters (for example, IP address).

Perform these steps to configure the IPsec crypto method, beginning in global configuration mode:

Command or Action

Step 1

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>crypto dynamic-map dynamic-map-name dynamic-seq-num</code></td>
<td>Creates a dynamic crypto map entry, and enters crypto map configuration mode. See the Cisco IOS Security Command Reference for more detail about this command.</td>
</tr>
</tbody>
</table>

Example:

Router(config)# `crypto dynamic-map dynmap 1`
Router(config-crypto-map)#

Step 2

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set transform-set transform-set-name [transform-set-name2...transform-set-name6]</code></td>
<td>Specifies which transform sets can be used with the crypto map entry.</td>
</tr>
</tbody>
</table>

Example:

Router(config-crypto-map)# `set transform-set vpn1`
Router(config-crypto-map)#
Chapter 7 Configuring VPNs Using an IPsec Tunnel and Generic Routing Encapsulation

Configure a VPN

Step 3

Command or Action

reverse-route

Example:

```plaintext
Router(config-crypto-map)# reverse-route
```

Purpose

Creates source proxy information for the crypto map entry. See the *Cisco IOS Security Command Reference* for details.

Step 4

Command or Action

exit

Example:

```plaintext
Router(config-crypto-map)# exit
```

Purpose

Enters global configuration mode.

Step 5

Command or Action

crypto map map-name seq-num [ipsec-isakmp] [dynamic dynamic-map-name] [discover] [profile profile-name]

Example:

```plaintext
Router(config)# crypto map static-map 1 ipsec-isakmp dynamic dynmap
```

Purpose

Creates a crypto map profile.

Apply the Crypto Map to the Physical Interface

The crypto maps must be applied to each interface through which IPsec traffic flows. Applying the crypto map to the physical interface instructs the router to evaluate all the traffic against the security associations database. With the default configurations, the router provides secure connectivity by encrypting the traffic sent between remote sites. However, the public interface still allows the rest of the traffic to pass and provides connectivity to the Internet.

Perform these steps to apply a crypto map to an interface, beginning in global configuration mode:

Step 1

Command or Action

interface type number

Example:

```plaintext
Router(config)# interface fastethernet 4
```

Purpose

Enters interface configuration mode for the interface to which you want to apply the crypto map.
Configure a GRE Tunnel

Perform these steps to configure a GRE tunnel, beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 interface type number | Creates a tunnel interface and enters interface configuration mode. |
 Example:
 Router(config)# interface tunnel 1
 Router(config-if)# |
| **Step 2**
 ip address ip-address subnet mask | Assigns an address to the tunnel. |
 Example:
 Router(config-if)# ip address 10.62.1.193 255.255.255.255
 Router(config-if)# |
| **Step 3**
 tunnel source interface-type number | Specifies the source endpoint of the router for the GRE tunnel. |
 Example:
 Router(config-if)# tunnel source fastethernet 0
 Router(config-if)# |
| **Step 4**
 tunnel destination default-gateway-ip-address | Specifies the destination endpoint of the router for the GRE tunnel. |
 Example:
 Router(config-if)# tunnel destination 192.168.101.1
 Router(config-if)# |
The following configuration example shows a portion of the configuration file for a VPN using a GRE tunnel scenario described in the preceding sections.

```plaintext
! 
aaa new-model 
!
aaa authentication login rtr-remote local 
aaa authorization network rtr-remote local 
aaa session-id common 
!
username cisco password 0 cisco 
!
interface tunnel 1 
   ip address 10.62.1.193 255.255.255.252
```

Configuration Example

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5 <code>crypto map map-name</code></td>
<td>Assigns a crypto map to the tunnel.</td>
</tr>
<tr>
<td>Example:
Router(config-if)# <code>crypto map static-map</code>
Router(config-if)#</td>
<td></td>
</tr>
<tr>
<td>Step 6 <code>exit</code></td>
<td>Exits interface configuration mode, and returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:
Router(config-if)# <code>exit</code>
Router(config)#</td>
<td></td>
</tr>
<tr>
<td>Step 7 `ip access-list {standard</td>
<td>extended} access-list-name`</td>
</tr>
<tr>
<td>Example:
Router(config)# <code>ip access-list extended vpnstatic1</code>
Router(config-ext-nacl)#</td>
<td></td>
</tr>
<tr>
<td>Step 8 <code>permit protocol source source-wildcard destination destination-wildcard</code></td>
<td>Specifies that only GRE traffic is permitted on the outbound interface.</td>
</tr>
<tr>
<td>Example:
Router(config-ext-nacl)# <code>permit gre host 192.168.100.1 host 192.168.101.1</code>
Router(config-ext-nacl)#</td>
<td></td>
</tr>
<tr>
<td>Step 9 <code>exit</code></td>
<td>Returns to global configuration mode.</td>
</tr>
<tr>
<td>Example:
Router(config-ext-nacl)# <code>exit</code>
Router(config)#</td>
<td></td>
</tr>
</tbody>
</table>

Note Dynamic routing or static routes to the tunnel interface must be configured to establish connectivity between the sites. See the *Cisco IOS Security Configuration Guide* for details.
Configuration Example

Chapter 7 Configuring VPNS Using an IPsec Tunnel and Generic Routing Encapsulation

tunnel source fastethernet 0

tunnel destination interface 192.168.101.1

ip route 20.20.20.0 255.255.255.0 tunnel 1

crypto isakmp policy 1
 encryption 3des
 authentication pre-share
 group 2
!
crypto isakmp client configuration group rtr-remote
 key secret-password
 dns 10.50.10.1 10.60.10.1
 domain company.com
 pool dynpool
!
crypto ipsec transform-set vpn1 esp-3des esp-sha-hmac
!
crypto ipsec security-association lifetime seconds 86400
!
crypto dynamic-map dynmap 1
 set transform-set vpn1
 reverse-route
!
crypto map static-map dynmap 1 ipsec-isakmp dynamic dynmap

crypto map dynmap isakmp authorization list rtr-remote

crypto map dynmap client configuration address respond
!
! Defines the key association and authentication for IPsec tunnel.
crypto isakmp policy 1
hash md5
authentication pre-share

crypto isakmp key cisco123 address 200.1.1.1
!
!
! Defines encryption and transform set for the IPsec tunnel.
crypto ipsec transform-set set1 esp-3des esp-md5-hmac
!
! Associates all crypto values and peering address for the IPsec tunnel.
crypto map to_corporate 1 ipsec-isakmp
 set peer 200.1.1.1
 set transform-set set1
 match address 105
!
!
! VLAN 1 is the internal interface.
interface vlan 1
 ip address 10.1.1.1 255.255.255.0
 ip nat inside
 ip inspect firewall in ! Inspection examines outbound traffic.
 crypto map static-map
 no cdp enable
!
! FE4 is the outside or Internet-exposed interface
interface fastethernet 4
 ip address 210.110.101.21 255.255.255.0
 ! acl 103 permits IPsec traffic from the corp. router as well as
 ! denies Internet-initiated traffic inbound.
 ip access-group 103 in
 ip nat outside
 no cdp enable

crypto map to_corporate ! Applies the IPsec tunnel to the outside interface.
! Utilize NAT overload in order to make best use of the
! single address provided by the ISP.
ip nat inside source list 102 interface Ethernet1 overload
ip classless
ip route 0.0.0.0 0.0.0.0 210.110.101.1
no ip http server
!
!
! acl 102 associated addresses used for NAT.
access-list 102 permit ip 10.1.1.0 0.0.0.255 any
! acl 103 defines traffic allowed from the peer for the IPsec tunnel.
access-list 103 permit udp host 200.1.1.1 any eq isakmp
access-list 103 permit udp host 200.1.1.1 eq isakmp any
access-list 103 permit esp host 200.1.1.1 any
! Allow ICMP for debugging but should be disabled because of security implications.
access-list 103 permit icmp any any
access-list 103 deny ip any any ! Prevents Internet-initiated traffic inbound.
! acl 105 matches addresses for the IPsec tunnel to or from the corporate network.
access-list 105 permit ip 10.1.1.0 0.0.0.255 192.168.0.0 0.0.255.255
no cdp run