<table>
<thead>
<tr>
<th>Time and Date</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding Command Modes</td>
<td>11</td>
</tr>
<tr>
<td>Understanding Diagnostic Mode</td>
<td>13</td>
</tr>
<tr>
<td>Getting Help</td>
<td>14</td>
</tr>
<tr>
<td>Using the no and default Forms of Commands</td>
<td>18</td>
</tr>
<tr>
<td>Saving Configuration Changes</td>
<td>18</td>
</tr>
<tr>
<td>Managing Configuration Files</td>
<td>18</td>
</tr>
<tr>
<td>Filtering Output from the show and more Commands</td>
<td>19</td>
</tr>
<tr>
<td>Powering Off a Router</td>
<td>19</td>
</tr>
<tr>
<td>Finding Support Information for Platforms and Cisco Software Images</td>
<td>20</td>
</tr>
<tr>
<td>Using Cisco Feature Navigator</td>
<td>20</td>
</tr>
<tr>
<td>Using Software Advisor</td>
<td>20</td>
</tr>
<tr>
<td>Using Software Release Notes</td>
<td>20</td>
</tr>
<tr>
<td>CLI Session Management</td>
<td>20</td>
</tr>
<tr>
<td>Information About CLI Session Management</td>
<td>20</td>
</tr>
<tr>
<td>Changing the CLI Session Timeout</td>
<td>21</td>
</tr>
<tr>
<td>Locking a CLI Session</td>
<td>21</td>
</tr>
<tr>
<td>Smart Licensing</td>
<td>23</td>
</tr>
<tr>
<td>Smart Licensing Client</td>
<td>23</td>
</tr>
<tr>
<td>Prerequisites for Cisco Smart Licensing Client</td>
<td>23</td>
</tr>
<tr>
<td>Restrictions for Cisco Smart Licensing Client</td>
<td>23</td>
</tr>
<tr>
<td>Information About Cisco Smart Licensing Client</td>
<td>23</td>
</tr>
<tr>
<td>Cisco Smart Licensing - An Overview</td>
<td>23</td>
</tr>
<tr>
<td>Transitioning from CSL to Smart Licensing</td>
<td>24</td>
</tr>
<tr>
<td>Cisco ONE Suites</td>
<td>24</td>
</tr>
<tr>
<td>How to Activate Cisco Smart Licensing Client</td>
<td>24</td>
</tr>
<tr>
<td>Enable Smart Licensing</td>
<td>24</td>
</tr>
<tr>
<td>Smart License Disable</td>
<td>25</td>
</tr>
<tr>
<td>Device Registration</td>
<td>27</td>
</tr>
<tr>
<td>Troubleshooting for Cisco Smart Licensing Client</td>
<td>27</td>
</tr>
<tr>
<td>Configuration Examples for Cisco Smart Licensing Client</td>
<td>28</td>
</tr>
<tr>
<td>Example: Displays summary information about all licenses</td>
<td>28</td>
</tr>
<tr>
<td>Example: Enabling Smart Licensing</td>
<td>29</td>
</tr>
</tbody>
</table>
CHAPTER 5
Managing the Device Using Web User Interface 31
Setting Up Factory Default Device Using WebUI 31
Using Basic or Advanced Mode Setup Wizard 32
Configure LAN Settings 33
Configure Primary WAN Settings 33
Configure Secondary WAN Settings 34
Configure Security Settings 34
Using Web User Interface for Day One Setup 35

CHAPTER 6
Console Port, Telnet, and SSH Handling 37
Notes and Restrictions for Console Port, Telnet, and SSH 37
Console Port Overview 37
Console Port Handling Overview 38
Telnet and SSH Overview 38
Persistent Telnet and Persistent SSH Overview 38
Configuring a Console Port Transport Map 39
Configuring Persistent Telnet 41
Configuring Persistent SSH 43
Viewing Console Port, SSH, and Telnet Handling Configurations 46
Configuring Auxiliary Port for Modem Connection 51

CHAPTER 7
Installing the Software 53
Overview 53
ROMMON Images 53
Provisioning Files 54
File Systems 54
Autogenerated File Directories and Files 55
Flash Storage 56
Configuring the Configuration Register for Autoboot 56
Licensing 57
Cisco Software Licensing 57
Consolidated Packages 57
Technology Packages 58
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Configuring Routing Information Protocol</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>Configuring Enhanced Interior Gateway Routing Protocol</td>
<td>111</td>
</tr>
<tr>
<td>CHAPTER 9</td>
<td>Slot and Subslot Configuration</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Configuring the Interfaces</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Configuring Gigabit Ethernet Interfaces</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Configuring the Interfaces: Example</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Viewing a List of All Interfaces: Example</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Viewing Information About an Interface: Example</td>
<td>115</td>
</tr>
<tr>
<td>CHAPTER 10</td>
<td>Process Health Monitoring</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Monitoring Control Plane Resources</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Avoiding Problems Through Regular Monitoring</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS Process Resources</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Overall Control Plane Resources</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Monitoring Hardware Using Alarms</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Router Design and Monitoring Hardware</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>BootFlash Disk Monitoring</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Approaches for Monitoring Hardware Alarms</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Onsite Network Administrator Responds to Audible or Visual Alarms</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>Viewing the Console or Syslog for Alarm Messages</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP</td>
<td>124</td>
</tr>
<tr>
<td>CHAPTER 11</td>
<td>System Messages</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Information About Process Management</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>How to Find Error Message Details</td>
<td>127</td>
</tr>
<tr>
<td>CHAPTER 12</td>
<td>Trace Management</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Tracing Overview</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>How Tracing Works</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Tracing Levels</td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>Viewing a Tracing Level</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Setting a Tracing Level</td>
<td>137</td>
</tr>
</tbody>
</table>
CHAPTER 13

Environmental Monitoring and PoE Management 139
Environmental Monitoring 139
Environmental Monitoring and Reporting Functions 140
Environmental Monitoring Functions 140
Environmental Reporting Functions 142
Configuring Power Supply Mode 154
Configuring the Router Power Supply Mode 155
Configuring the External PoE Service Module Power Supply Mode 155
Examples for Configuring Power Supply Mode 155
Available PoE Power 157
Managing PoE 159
PoE Support for FPGE Ports 159
Monitoring Your Power Supply 159
Enabling Cisco Discovery Protocol 161
Configuring PoE for FPGE Ports 162
Additional References 164
Technical Assistance 165

CHAPTER 14

Configuring High Availability 167
About Cisco High Availability 167
Interchassis High Availability 167
IPsec Failover 168
Bidirectional Forwarding Detection 168
Bidirectional Forwarding Detection Offload 169
Configuring Cisco High Availability 169
Configuring Interchassis High Availability 169
Configuring Bidirectional Forwarding 170
Configuring BFD Offload 170
Verifying Interchassis High Availability 170
Verifying BFD Offload 177
Additional References 180
CHAPTER 15

Configuring Call Home 183
Finding Feature Information 183
Prerequisites for Call Home 183
Information About Call Home 184
Benefits of Using Call Home 184
Obtaining Smart Call Home Services 185
Anonymous Reporting 185
How to Configure Call Home 186
Configuring Smart Call Home (Single Command) 186
Configuring and Enabling Smart Call Home 187
Enabling and Disabling Call Home 188
Configuring Contact Information 188
Configuring Destination Profiles 190
Creating a New Destination Profile 191
Copying a Destination Profile 192
Setting Profiles to Anonymous Mode 193
Subscribing to Alert Groups 193
Periodic Notification 196
Message Severity Threshold 197
Configuring a Snapshot Command List 197
Configuring General E-Mail Options 198
Specifying Rate Limit for Sending Call Home Messages 200
Specifying HTTP Proxy Server 201
Enabling AAA Authorization to Run IOS Commands for Call Home Messages 202
Configuring Syslog Throttling 202
Configuring Call Home Data Privacy 203
Sending Call Home Communications Manually 204
Sending a Call Home Test Message Manually 204
Sending Call Home Alert Group Messages Manually 204
Submitting Call Home Analysis and Report Requests 205
Manually Sending Command Output Message for One Command or a Command List 207
Configuring Diagnostic Signatures 208
Information About Diagnostic Signatures 209
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Signatures Overview</td>
<td>209</td>
</tr>
<tr>
<td>Prerequisites for Diagnostic Signatures</td>
<td>210</td>
</tr>
<tr>
<td>Downloading Diagnostic Signatures</td>
<td>210</td>
</tr>
<tr>
<td>Diagnostic Signature Workflow</td>
<td>210</td>
</tr>
<tr>
<td>Diagnostic Signature Events and Actions</td>
<td>211</td>
</tr>
<tr>
<td>Diagnostic Signature Event Detection</td>
<td>211</td>
</tr>
<tr>
<td>Diagnostic Signature Actions</td>
<td>211</td>
</tr>
<tr>
<td>Diagnostic Signature Variables</td>
<td>212</td>
</tr>
<tr>
<td>How to Configure Diagnostic Signatures</td>
<td>212</td>
</tr>
<tr>
<td>Configuring the Call Home Service for Diagnostic Signatures</td>
<td>212</td>
</tr>
<tr>
<td>Configuring Diagnostic Signatures</td>
<td>214</td>
</tr>
<tr>
<td>Displaying Call Home Configuration Information</td>
<td>216</td>
</tr>
<tr>
<td>Default Call Home Settings</td>
<td>222</td>
</tr>
<tr>
<td>Alert Group Trigger Events and Commands</td>
<td>222</td>
</tr>
<tr>
<td>Message Contents</td>
<td>229</td>
</tr>
<tr>
<td>Sample Syslog Alert Notification in Long-Text Format</td>
<td>233</td>
</tr>
<tr>
<td>Sample Syslog Alert Notification in XML Format</td>
<td>235</td>
</tr>
<tr>
<td>Additional References</td>
<td>237</td>
</tr>
</tbody>
</table>

CHAPTER 16

Managing Cisco Enhanced Services and Network Interface Modules
Information About Cisco Enhanced Services and Network Interface Modules 239

Modules Supported 240

Network Interface Modules 240

- Cisco Fourth-Generation LTE Network Interface Module 240
- Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch Network Interface Module 240
- Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module 240
- Cisco SSD/HDD Carrier Card NIM 241
- Cisco 1-, 2-, and 4-Port Serial NIM 241
- Upgrading the SSD or HDD Firmware 241
- Error Monitoring 242

Enhanced Service Modules 242

- Cisco SM-1 T3/E3 Service Module 242
- Cisco UCS E-Series Server 242
- Cisco SM-X Layer 2/3 EtherSwitch Service Module 243
Cisco 6-Port GE SFP Service Module 243
Cisco 4-port GE SFP and 1-port 10 GE SFP Service Module 243
Cisco 1GE-CU-SFP and 2GE-CU-SFP Network Interface Modules 243
Implementing SMs and NIMs on Your Router 244
 Downloading the Module Firmware 244
 Installing SMs and NIMs 244
 Accessing Your Module Through a Console Connection or Telnet 244
 Online Insertion and Removal 245
 Preparing for Online Removal of a Module 245
 Deactivating a Module 245
 Deactivating Modules and Interfaces in Different Command Modes 246
 Deactivating and Reactivating an SSD/HDD Carrier Card NIM 247
 Reactivating a Module 248
 Verifying the Deactivation and Activation of a Module 248
Managing Modules and Interfaces 251
 Managing Module Interfaces 252
 Managing Modules and Interfaces Using Backplane Switch 252
 Backplane Ethernet Switch 252
 Viewing Module and Interface Card Status on a Router 252
 Viewing Backplane Switch Statistics 253
 Viewing Backplane Switch Port Statistics 253
 Viewing Slot Assignments 254
Managing and Troubleshooting Modules and Interfaces 255
 Configuration Examples 262

CHAPTER 17 SFP Auto-Detect and Auto-Failover 263
 Enabling Auto-Detect 263
 Configuring Auto-Detect 263
 Configuring the Primary and Secondary Media 264

CHAPTER 18 Cellular IPv6 Address 267
 Cellular IPv6 Address 267
 IPv6 Unicast Routing 267
 Link-Lock Address 268
Chapter 19

Configuring Voice Functionality 273

- Call Waiting 273
- Call Transfers 273
- E1 R2 Signaling Configuration 273
- Feature Group D Configuration 279
- Media and Signaling Authentication and Encryption 281
- Multicast Music-on-Hold 281
- TLS 1.2 support on SCCP Gateways 282

Chapter 20

Configuration Examples 287

- Copying the Consolidated Package from the TFTP Server to the Router 287
- Configuring the Router to Boot Using the Consolidated Package Stored on the Router 288
- Extracting the Subpackages from a Consolidated Package into the Same File System 290
- Extracting the Subpackages from a Consolidated Package into a Different File System 292
- Configuring the Router to Boot Using Subpackages 293
- Backing Up Configuration Files 299
 - Copying a Startup Configuration File to BootFlash 299
 - Copying a Startup Configuration File to a USB Flash Drive 300
 - Copying a Startup Configuration File to a TFTP Server 300
- Displaying Digitally Signed Cisco Software Signature Information 300
- Obtaining the Description of a Module or Consolidated Package 304

Appendix A

Unsupported Commands 305

Cisco 4000 Series ISRs Software Configuration Guide
Preface

This section briefly describes the objectives of this document and provides links to additional information on related products and services:

- Objectives, on page xiii
- Important Information on Features and Commands, on page xiii
- Related Documentation, on page xiii
- Document Conventions, on page xiv
- Obtaining Documentation and Submitting a Service Request, on page xvi

Objectives

This guide provides an overview of the Cisco 4000 Series Integrated Services Routers (ISRs) and explains how to configure the various features on these routers.

The structure of this document is explained in Overview, on page 3.

Important Information on Features and Commands

For more information about Cisco IOS XE software, including features available on the router (described in configuration guides), see the Cisco IOS XE 3S Software Documentation set. In addition to the features described in the Cisco IOS XE 3S Configuration Guides, there also separate configuration guides for features such as No Service Password Recovery, Multilink PPP Support, and Network Synchronization. See the Configuration Guides for the Cisco ISR 4400 Series.

To verify support for specific features, use Cisco Feature Navigator. For more information about this, see Using Cisco Feature Navigator, on page 20.

To find reference information for a specific Cisco IOS XE command, see the Cisco IOS Master Command List, All Releases.

Related Documentation

- Documentation Roadmap for the Cisco 4000 Series Integrated Services Routers
- Release Notes for the Cisco 4000 Series Integrated Services Routers
Commands
Cisco IOS XE commands are identical in look, feel, and usage to Cisco IOS commands on most platforms. To find reference information for a specific Cisco IOS XE command, see the Cisco IOS Master Command List, All Releases document.

Features
The router runs Cisco IOS XE software which is used on multiple platforms. For more information on the available software features, see the configuration guides on the Cisco IOS XE 3S Software Documentation page.

In addition to the features in the Cisco IOS XE 3S Configuration Guides, there are also separate configuration guides for the features listed in the following table.

<table>
<thead>
<tr>
<th>Feature</th>
<th>URL</th>
</tr>
</thead>
</table>

To verify support for specific features, use the Cisco Feature Navigator tool. For more information, see Using Cisco Feature Navigator, on page 20.

Document Conventions

This documentation uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^ or Ctrl</td>
<td>The ^ and Ctrl symbols represent the Control key. For example, the key combination ^D or Ctrl-D means hold down the Control key while you press the D key. Keys are indicated in capital letters but are not case sensitive.</td>
</tr>
<tr>
<td>string</td>
<td>A string is a nonquoted set of characters shown in italics. For example, when setting an SNMP community string to public, do not use quotation marks around the string or the string will include the quotation marks.</td>
</tr>
</tbody>
</table>

Command syntax descriptions use the following conventions:
Convention

<table>
<thead>
<tr>
<th>bold</th>
<th>Bold text indicates commands and keywords that you enter exactly as shown.</th>
</tr>
</thead>
<tbody>
<tr>
<td>italics</td>
<td>Italic text indicates arguments for which you supply values.</td>
</tr>
<tr>
<td>[x]</td>
<td>Square brackets enclose an optional element (keyword or argument).</td>
</tr>
<tr>
<td></td>
<td>A vertical line indicates a choice within an optional or required set of keywords or arguments.</td>
</tr>
<tr>
<td>[x</td>
<td>y]</td>
</tr>
<tr>
<td>{x</td>
<td>y}</td>
</tr>
</tbody>
</table>

Nested sets of square brackets or braces indicate optional or required choices within optional or required elements. For example:

| **[x {y | z}]** | Braces and a vertical line within square brackets indicate a required choice within an optional element. |

Examples use the following conventions:

<table>
<thead>
<tr>
<th>screen</th>
<th>Examples of information displayed on the screen are set in Courier font.</th>
</tr>
</thead>
<tbody>
<tr>
<td>bold screen</td>
<td>Examples of text that you must enter are set in Courier bold font.</td>
</tr>
<tr>
<td><></td>
<td>Angle brackets enclose text that is not printed to the screen, such as passwords.</td>
</tr>
<tr>
<td>!</td>
<td>An exclamation point at the beginning of a line indicates a comment line. (Exclamation points are also displayed by the Cisco IOS XE software for certain processes.)</td>
</tr>
<tr>
<td>[]</td>
<td>Square brackets enclose default responses to system prompts.</td>
</tr>
</tbody>
</table>

⚠️ **Caution**

Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.
Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation at: http://www.cisco.com/c/en/us/td/docs/general/whatsnew/whatsnew.html.
Read Me First

Important Information about Cisco IOS XE 16

Feature Information
Use Cisco Feature Navigator to find information about feature support, platform support, and Cisco software image support. An account on Cisco.com is not required.

Related References
- Cisco IOS Command References, All Releases
Overview

This document is a summary of software functionality that is specific to the Cisco 4000 Series Integrated Services Routers (ISRs).

The following table lists the router models that belong to the Cisco 4000 Series ISRs.

Table 1: Cisco 4000 Series Router Models

<table>
<thead>
<tr>
<th>Cisco 4000 Series ISRs</th>
<th>Cisco 4300 Series ISRs</th>
<th>Cisco 4200 Series ISRs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cisco 4431 ISR</td>
<td>• Cisco 4321 ISR</td>
<td>Cisco 4221 ISR</td>
</tr>
<tr>
<td>• Cisco 4451 ISR</td>
<td>• Cisco 4331 ISR</td>
<td></td>
</tr>
<tr>
<td>• Cisco 4461 ISR</td>
<td>• Cisco 4351 ISR</td>
<td></td>
</tr>
</tbody>
</table>

Unless otherwise specified, the information in this document is applicable to both Cisco 4400 Series, Cisco 4300 Series and Cisco 4200 Series routers.

The following sections are included in this chapter:

- Introduction, on page 3
- Sections in this Document, on page 4
- Processes, on page 5

Introduction

The Cisco 4000 Series ISRs are modular routers with LAN and WAN connections that can be configured by means of interface modules, including Cisco Enhanced Service Modules (SM-Xs), and Network Interface Modules (NIMs). NIM slots also support removable storage for hosted applications.

The following features are provided for enterprise and service provider applications:

- Enterprise Applications
 - High-end branch gateway
 - Regional site aggregation
- Key server or PfR master controller
- Device consolidation or "Rack in a Box"

- Service Provider Applications
 - High-end managed services in Customer-Premises Equipment (CPE)
 - Services consolidation platform
 - Route reflector or shadow router
 - Flexible customer edge router

The router runs Cisco IOS XE software, and uses software components in many separate processes. This modular architecture increases network resiliency, compared to standard Cisco IOS software.

Sections in this Document

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview, on page 3</td>
<td>Provides a high-level description of the router and describes the main internal processes of the router.</td>
</tr>
<tr>
<td>Using Cisco IOS XE Software, on page 7</td>
<td>Describes the basics of using Cisco IOS XE software with the router.</td>
</tr>
<tr>
<td>Managing the Device Using Web User Interface, on page 31</td>
<td>Describes the uses of a Gigabit Ethernet management interface and a web user interface.</td>
</tr>
<tr>
<td>Console Port, Telnet, and SSH Handling, on page 37</td>
<td>Describes software features that are common across Cisco IOS XE platforms.</td>
</tr>
<tr>
<td>Installing the Software, on page 53</td>
<td>Contains important information about filesystems, packages, licensing, and installing software.</td>
</tr>
<tr>
<td>Basic Router Configuration, on page 99</td>
<td>Describes the basic tasks required to configure a router.</td>
</tr>
<tr>
<td>Slot and Subslot Configuration, on page 113</td>
<td>Provides information about the chassis slot numbers and subslots where the service modules are installed.</td>
</tr>
<tr>
<td>Process Health Monitoring, on page 117</td>
<td>Provides information about managing and monitoring the health of various components of the router.</td>
</tr>
<tr>
<td>System Messages, on page 127</td>
<td>Provides information about syslog messages.</td>
</tr>
<tr>
<td>Trace Management, on page 133</td>
<td>Describes the tracing function where logs of internal events on a router are recorded.</td>
</tr>
<tr>
<td>Environmental Monitoring and PoE Management, on page 139</td>
<td>Describes the environmental monitoring features on a router.</td>
</tr>
</tbody>
</table>
Processes

The list of background processes in the following table may be useful for checking router state and troubleshooting. However, you do not need to understand these processes to understand most router operations.

Table 3: Individual Processes

<table>
<thead>
<tr>
<th>Process</th>
<th>Purpose</th>
<th>Affected FRUs</th>
<th>Sub Package Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis Manager</td>
<td>Controls chassis management functions, including management of the High Availability (HA) state, environmental monitoring, and FRU state control.</td>
<td>RP, SIP, ESP</td>
<td>RPControl, SIPBase, ESPBase</td>
</tr>
<tr>
<td>Host Manager</td>
<td>Provides an interface between the IOS process and many of the information gathering functions of the underlying platform kernel and operating system.</td>
<td>RP, SIP, ESP</td>
<td>RPControl, SIPBase, ESPBase</td>
</tr>
<tr>
<td>Logger</td>
<td>Provides IOS logging services to processes running on each FRU.</td>
<td>RP, SIP, ESP</td>
<td>RPControl, SIPBase, ESPBase</td>
</tr>
<tr>
<td>IOS</td>
<td>Implements all forwarding and routing features for the router.</td>
<td>RP</td>
<td>RPIOS</td>
</tr>
</tbody>
</table>

Description

Section

Configuring High Availability, on page 167

Provides information about high availability features on a router to ensure network-wide protection.

Configuration Examples, on page 287

Lists examples that include software installation and packaging.

Managing Cisco Enhanced Services and Network Interface Modules, on page 239

Includes information about modules that can be attached to the router and provides related links to further documentation. For further details on configuring the modules (NIMs and SMs), also see the Documentation Roadmap.
<table>
<thead>
<tr>
<th>Process</th>
<th>Purpose</th>
<th>Affected FRUs</th>
<th>Sub Package Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forwarding Manager</td>
<td>Manages downloading of configuration details to the ESP and the communication of forwarding plane information, such as statistics, to the IOS process.</td>
<td>RP, ESP</td>
<td>RPControl, ESPBase</td>
</tr>
<tr>
<td>Pluggable Services</td>
<td>Provide integration between platform policy applications, such as authentication and the IOS process.</td>
<td>RP</td>
<td>RPControl</td>
</tr>
<tr>
<td>Shell Manager</td>
<td>Provides user interface (UI) features relating to non-IOS components of the consolidated package. These features are also available for use in diagnostic mode when the IOS process fails.</td>
<td>RP</td>
<td>RPControl</td>
</tr>
<tr>
<td>IO Module process</td>
<td>Exchanges configuration and other control messages with a NIM, or Enhanced Service Module (SM-X).</td>
<td>IO Module</td>
<td>SIPSPA</td>
</tr>
<tr>
<td>CPP driver process</td>
<td>Manages CPP hardware forwarding engine on the ESP.</td>
<td>ESP</td>
<td>ESPBase</td>
</tr>
<tr>
<td>CPP HA process</td>
<td>Manages HA state for the CPP hardware forwarding engine.</td>
<td>ESP</td>
<td>ESPBase</td>
</tr>
<tr>
<td>CPP SP process</td>
<td>Performs high-latency tasks for the CPP-facing functionality in the ESP instance of the Forwarding Manager process.</td>
<td>ESP</td>
<td>ESPBase</td>
</tr>
</tbody>
</table>

For further details of router capabilities and models, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.
CHAPTER 3

Using Cisco IOS XE Software

This chapter describes the basics of using the Cisco IOS XE software and includes the following section:

- Accessing the CLI Using a Router Console, on page 7

Accessing the CLI Using a Router Console

Before you begin

There are two serial ports: a console (CON) port and an auxiliary (AUX) port. Use the CON port to access the command-line interface (CLI) directly or when using Telnet.

The following sections describe the main methods of accessing the router:

- Accessing the CLI Using a Directly-Connected Console, on page 7
- Using SSH to Access Console, on page 8
- Accessing the CLI from a Remote Console Using Telnet, on page 9
- Accessing the CLI from a USB Serial Console Port, on page 10

Accessing the CLI Using a Directly-Connected Console

The CON port is an EIA/TIA-232 asynchronous, serial connection with no-flow control and an RJ-45 connector. The CON port is located on the front panel of the chassis.

The following sections describe the procedure to access the control interface:

- Connecting to the Console Port, on page 7
- Using the Console Interface, on page 8

Connecting to the Console Port

Step 1 Configure your terminal emulation software with the following settings:

- 9600 bits per second (bps)
• 8 data bits
• No parity
• No flow control

Step 2 Connect to the CON port using the RJ-45-to-RJ-45 cable and the RJ-45-to-DB-25 DTE adapter or the RJ-45-to-DB-9 DTE adapter (labeled Terminal).

Using the Console Interface

Step 1 Enter the following command:

Router> enable

Step 2 (Go to Step 3 if the enable password has not been configured.) At the password prompt, enter your system password:

Password: enablepass

When your password is accepted, the privileged EXEC mode prompt is displayed.

Router#

You now have access to the CLI in privileged EXEC mode and you can enter the necessary commands to complete your desired tasks.

Step 3 If you enter the setup command, see “Using Cisco Setup Command Facility” in the “Initial Configuration” section of the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

Step 4 To exit the console session, enter the quit command:

Router# quit

Using SSH to Access Console

Secure Shell (SSH) is a protocol which provides a secure remote access connection to network devices. To enable SSH support on the device:

Step 1 Configure the hostname:

Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#hostname xxx_lab

Here, host name is the router hostname or IP address.

Step 2 Configure the DNS domain of the router:

xxx_lab(config)# xxx.cisco.com

Step 3 Generate an SSH key to be used with SSH:

xxx_lab(config)# crypto key generate rsa
The name for the keys will be: xxx_lab.xxx.cisco.com Choose the size of the key modulus in the range
of 360 to 4096 for your General Purpose Keys. Choosing a key modulus greater than 512 may take a few minutes.

How many bits in the modulus [512]: 1024 % Generating 1024 bit RSA keys, keys will be non-exportable...

[OK] (elapsed time was 0 seconds)

xxx_lab(config)#

Step 4 By default, the vty? transport is Telnet. In this case, Telnet is disabled and only SSH is supported:

```
xxx_lab(config)#line vty 0 4
xxx_lab(config-line)#transport input SSH
```

Step 5 Create a username for SSH authentication and enable login authentication:

```
xxx_lab(config)# username jsmith privilege 15 secret 0 p@ss3456
xxx_lab(config)#line vty 0 4
xxx_lab(config-line)# login local
```

Step 6 Verify remote connection to the device using SSH.

Accessing the CLI from a Remote Console Using Telnet

The following topics describe the procedure to access the CLI from a remote console using Telnet:

- Preparing to Connect to the Router Console Using Telnet, on page 9
- Using Telnet to Access a Console Interface, on page 10

Preparing to Connect to the Router Console Using Telnet

To access the router remotely using Telnet from a TCP/IP network, configure the router to support virtual terminal lines using the `line vty` global configuration command. Configure the virtual terminal lines to require users to log in and specify a password.

See the Cisco IOS Terminal Services Command Reference document for more information about the `line vty` global configuration command.

To prevent disabling login on a line, specify a password with the `password` command when you configure the `login` command.

If you are using authentication, authorization, and accounting (AAA), configure the `login authentication` command. To prevent disabling login on a line for AAA authentication when you configure a list with the login authentication command, you must also configure that list using the `aaa authentication login` global configuration command.

For more information about AAA services, see the Cisco IOS XE Security Configuration Guide: Secure Connectivity and the Cisco IOS Security Command Reference documents. For more information about the `login line-configuration` command, see the Cisco IOS Terminal Services Command Reference document.

In addition, before you make a Telnet connection to the router, you must have a valid hostname for the router or have an IP address configured on the router. For more information about the requirements for connecting to the router using Telnet, information about customizing your Telnet services, and using Telnet key sequences, see the Cisco IOS Configuration Fundamentals Configuration Guide.
Using Telnet to Access a Console Interface

Step 1
From your terminal or PC, enter one of the following commands:

- `connect host [port] [keyword]`
- `telnet host [port] [keyword]`

Here, `host` is the router hostname or IP address, `port` is a decimal port number (23 is the default), and `keyword` is a supported keyword. For more information about these commands, see the Cisco IOS Terminal Services Command Reference document.

Note: If you are using an access server, specify a valid port number, such as `telnet 172.20.52.40 2004`, in addition to the hostname or IP address.

The following example shows how to use the `telnet` command to connect to a router named `router`:

```
unix_host% telnet router
Trying 172.20.52.40...
Connected to 172.20.52.40.
Escape character is '^]'.
unix_host% connect
```

Step 2
Enter your login password:

```
User Access Verification
Password: mypassword
```

Note: If no password has been configured, press Return.

Step 3
From user EXEC mode, enter the `enable` command:

```
Router> enable
```

Step 4
At the password prompt, enter your system password:

```
Password: enablepass
```

Step 5
When the `enable` password is accepted, the privileged EXEC mode prompt is displayed:

```
Router#
```

Step 6
You now have access to the CLI in privileged EXEC mode and you can enter the necessary commands to complete your desired tasks.

Step 7
To exit the Telnet session, use the `exit` or `logout` command.

```
Router# logout
```

Accessing the CLI from a USB Serial Console Port

The router provides an additional mechanism for configuring the system: a type B miniport USB serial console that supports remote administration of the router using a type B USB-compliant cable. See the “Connecting to a Console Terminal or Modem” section in the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.
Using Keyboard Shortcuts

Commands are not case sensitive. You can abbreviate commands and parameters if the abbreviations contain enough letters to be different from any other currently available commands or parameters.

The following table lists the keyboard shortcuts for entering and editing commands.

Table 4: Keyboard Shortcuts

<table>
<thead>
<tr>
<th>Key Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-B or the Left Arrow key</td>
<td>Move the cursor back one character.</td>
</tr>
<tr>
<td>Ctrl-F or the Right Arrow key</td>
<td>Move the cursor forward one character.</td>
</tr>
<tr>
<td>Ctrl-A</td>
<td>Move the cursor to the beginning of the command line.</td>
</tr>
<tr>
<td>Ctrl-E</td>
<td>Move the cursor to the end of the command line.</td>
</tr>
<tr>
<td>Esc B</td>
<td>Move the cursor back one word.</td>
</tr>
<tr>
<td>Esc F</td>
<td>Move the cursor forward one word.</td>
</tr>
</tbody>
</table>

Using the History Buffer to Recall Commands

The history buffer stores the last 20 commands you entered. History substitution allows you to access these commands without retyping them, by using special abbreviated commands.

The following table lists the history substitution commands.

Table 5: History Substitution Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ctrl-P or the Up Arrow key</td>
<td>Recalls commands in the history buffer, beginning with the most recent command. Repeat the key sequence to recall successively older commands.</td>
</tr>
<tr>
<td>Ctrl-N or the Down Arrow key</td>
<td>Returns to more recent commands in the history buffer after recalling commands with Ctrl-P or the Up Arrow key.</td>
</tr>
<tr>
<td>Router# show history</td>
<td>While in EXEC mode, lists the last few commands you entered.</td>
</tr>
</tbody>
</table>

1 The arrow keys function only on ANSI-compatible terminals such as VT100s.

Understanding Command Modes

The command modes available in Cisco IOS XE are the same as those available in traditional Cisco IOS. Use the CLI to access Cisco IOS XE software. Because the CLI is divided into many different modes, the commands...
available to you at any given time depend on the mode that you are currently in. Entering a question mark (?) at the CLI prompt allows you to obtain a list of commands available for each command mode.

When you log in to the CLI, you are in user EXEC mode. User EXEC mode contains only a limited subset of commands. To have access to all commands, you must enter privileged EXEC mode, normally by using a password. From privileged EXEC mode, you can issue any EXEC command—user or privileged mode—or you can enter global configuration mode. Most EXEC commands are one-time commands. For example, `show` commands show important status information, and `clear` commands clear counters or interfaces. The EXEC commands are not saved when the software reboots.

Configuration modes allow you to make changes to the running configuration. If you later save the running configuration to the startup configuration, these changed commands are stored when the software is rebooted. To enter specific configuration modes, you must start at global configuration mode. From global configuration mode, you can enter interface configuration mode and a variety of other modes, such as protocol-specific modes.

ROM monitor mode is a separate mode used when the Cisco IOS XE software cannot load properly. If a valid software image is not found when the software boots or if the configuration file is corrupted at startup, the software might enter ROM monitor mode.

The following table describes how to access and exit various common command modes of the Cisco IOS XE software. It also shows examples of the prompts displayed for each mode.

Table 6: Accessing and Exiting Command Modes

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>User EXEC</td>
<td>Log in.</td>
<td>Router></td>
<td>Use the <code>logout</code> command.</td>
</tr>
<tr>
<td>Privileged EXEC</td>
<td>From user EXEC mode, use the <code>enable</code> command.</td>
<td>Router#</td>
<td>To return to user EXEC mode, use the <code>disable</code> command.</td>
</tr>
<tr>
<td>Global configuration</td>
<td>From privileged EXEC mode, use the <code>configure terminal</code> command.</td>
<td>Router(config)#</td>
<td>To return to privileged EXEC mode from global configuration mode, use the <code>exit</code> or <code>end</code> command.</td>
</tr>
<tr>
<td>Interface configuration</td>
<td>From global configuration mode, specify an interface using an <code>interface</code> command.</td>
<td>Router(config-if)#</td>
<td>To return to global configuration mode, use the <code>exit</code> command. To return to privileged EXEC mode, use the <code>end</code> command.</td>
</tr>
</tbody>
</table>
Understanding Diagnostic Mode

The router boots up or accesses diagnostic mode in the following scenarios:

- The IOS process or processes fail, in some scenarios. In other scenarios, the system resets when the IOS process or processes fail.

- A user-configured access policy was configured using the `transport-map` command that directs the user into the diagnostic mode.

- A send break signal (Ctrl-C or Ctrl-Shift-6) was entered while accessing the router, and the router was configured to enter diagnostic mode when a break signal was sent.

Table: Command Mode, Access Method, Prompt, Exit Method

<table>
<thead>
<tr>
<th>Command Mode</th>
<th>Access Method</th>
<th>Prompt</th>
<th>Exit Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic</td>
<td>The router boots up or accesses diagnostic mode in the following scenarios:</td>
<td><code>Router(diag)#</code></td>
<td>If failure of the Cisco IOS process is the reason for entering diagnostic mode, the Cisco IOS problem must be resolved and the router rebooted to get out of diagnostic mode. If the router is in diagnostic mode because of a transport-map configuration, access the router through another port or by using a method that is configured to connect to the Cisco IOS CLI.</td>
</tr>
<tr>
<td>ROM monitor</td>
<td>From privileged EXEC mode, use the <code>reload</code> EXEC command. Press the Break key during the first 60 seconds while the system is booting.</td>
<td><code>rommon#></code></td>
<td>To exit ROM monitor mode, manually boot a valid image or perform a reset with autoboot set so that a valid image is loaded.</td>
</tr>
</tbody>
</table>
In the diagnostic mode, a subset of the commands that are available in user EXEC mode are made available to the users. Among other things, these commands can be used to:

- Inspect various states on the router, including the IOS state.
- Replace or roll back the configuration.
- Provide methods of restarting the IOS or other processes.
- Reboot hardware, such as the entire router, a module, or possibly other hardware components.
- Transfer files into or off of the router using remote access methods such as FTP, TFTP, and SCP.

The diagnostic mode provides a more comprehensive user interface for troubleshooting than previous routers, which relied on limited access methods during failures, such as ROMMON, to diagnose and troubleshoot Cisco IOS problems. The diagnostic mode commands can work when the Cisco IOS process is not working properly. These commands are also available in privileged EXEC mode on the router when the router is working normally.

Getting Help

Entering a question mark (?) at the CLI prompt displays a list of commands available for each command mode. You can also get a list of keywords and arguments associated with any command by using the context-sensitive help feature.

To get help that is specific to a command mode, a command, a keyword, or an argument, use one of the following commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>help</td>
<td>Provides a brief description of the help system in any command mode.</td>
</tr>
</tbody>
</table>
| abbreviated-command-entry? | Provides a list of commands that begin with a particular character string.
Note There is no space between the command and the question mark. |
| abbreviated-command-entry<Tab> | Completes a partial command name. |
| ? | Lists all the commands that are available for a particular command mode. |
| command ? | Lists the keywords or arguments that you must enter next on the command line.
Note There is a space between the command and the question mark. |

Finding Command Options: Example

This section provides information about how to display the syntax for a command. The syntax can consist of optional or required keywords and arguments. To display keywords and arguments for a command, enter a question mark (?) at the configuration prompt or after entering a part of a command followed by a space. The
Cisco IOS XE software displays a list and brief descriptions of the available keywords and arguments. For example, if you are in global configuration mode and want to see all the keywords and arguments for the `arp` command, you should type `arp ?`.

The `<cr>` symbol in command help output stands for carriage return. On older keyboards, the carriage return key is the `Return` key. On most modern keyboards, the carriage return key is the `Enter` key. The `<cr>` symbol at the end of command help output indicates that you have the option to press `Enter` to complete the command and that the arguments and keywords in the list preceding the `<cr>` symbol are optional. The `<cr>` symbol by itself indicates that no more arguments or keywords are available, and that you must press `Enter` to complete the command.

The following table shows examples of using the question mark (`?`) to assist you in entering commands.

Table 7: Finding Command Options

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Router> `enable`
Password: `<password>`
Router# | Enter the `enable` command and password to access privileged EXEC commands. You are in privileged EXEC mode when the prompt changes to a “#” from the “>”, for example, Router> to Router# |
| Router# `configure terminal`
Enter configuration commands, one per line. End with CNTRL/Z.
Router(config)# | Enter the `configure terminal` privileged EXEC command to enter global configuration mode. You are in global configuration mode when the prompt changes to Router (config)# |
| Router(config)# `interface GigabitEthernet` ?
<0-0> GigabitEthernet interface number
<0-2> GigabitEthernet interface number | Enter interface configuration mode by specifying the interface that you want to configure, using the `interface GigabitEthernet` global configuration command. |
| Router(config)# `interface GigabitEthernet 1/?`
<0-4> Port Adapter number | Enter ? to display what you must enter next on the command line. |
| Router(config)# `interface GigabitEthernet 1/3/?`
<0-15> GigabitEthernet interface number | When the `<cr>` symbol is displayed, you can press `Enter` to complete the command. |
| Router (config)# `interface GigabitEthernet 1/3/8`
. <0-3>
Router (config)# `interface GigabitEthernet 1/3/8.0` | You are in interface configuration mode when the prompt changes to Router(config-if)# |
| Router(config-if)# | |
Enter `?` to display a list of all the interface configuration commands available for the interface. This example shows only some of the available interface configuration commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ?</td>
<td>Interface configuration commands:</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>ip</td>
<td>Interface Internet Protocol config commands</td>
</tr>
<tr>
<td>keepalive</td>
<td>Enable keepalive</td>
</tr>
<tr>
<td>lan-name</td>
<td>LAN Name command</td>
</tr>
<tr>
<td>llc2</td>
<td>LLC2 Interface Subcommands</td>
</tr>
<tr>
<td>load-interval</td>
<td>Specify interval for load calculation for an interface</td>
</tr>
<tr>
<td>locaddr-priority</td>
<td>Assign a priority group</td>
</tr>
<tr>
<td>logging</td>
<td>Configure logging for interface</td>
</tr>
<tr>
<td>loopback</td>
<td>Configure internal loopback on an interface</td>
</tr>
<tr>
<td>mac-address</td>
<td>Manually set interface MAC address</td>
</tr>
<tr>
<td>MPOA interface</td>
<td>MPOA configuration commands</td>
</tr>
<tr>
<td>mtu</td>
<td>Set the interface Maximum Transmission Unit (MTU)</td>
</tr>
<tr>
<td>netbios</td>
<td>Use a defined NETBIOS access list or enable name-caching</td>
</tr>
<tr>
<td>no</td>
<td>Negate a command or set its defaults</td>
</tr>
<tr>
<td>nrzi-encoding</td>
<td>Enable use of NRZI encoding</td>
</tr>
<tr>
<td>ntp</td>
<td>Configure NTP</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Router(config-if)#</td>
<td></td>
</tr>
</tbody>
</table>
Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# ip ?</code></td>
<td>Enter the command that you want to configure for the interface. This example uses the <code>ip</code> command. Enter <code>?</code> to display what you must enter next on the command line. This example shows only some of the available interface IP configuration commands.</td>
</tr>
<tr>
<td><code>Router(config-if)# ip address ?</code></td>
<td>Enter the command that you want to configure for the interface. This example uses the <code>ip address</code> command. Enter <code>?</code> to display what you must enter next on the command line. In this example, you must enter an IP address or the <code>negotiated</code> keyword. A carriage return (<code><cr></code>) is not displayed. Therefore, you must enter additional keywords or arguments to complete the command.</td>
</tr>
<tr>
<td><code>Router(config-if)# ip address 172.16.0.1 ?</code></td>
<td>Enter the keyword or argument that you want to use. This example uses the <code>172.16.0.1</code> IP address. Enter <code>?</code> to display what you must enter next on the command line. In this example, you must enter an IP subnet mask. <code><cr></code> is not displayed. Therefore, you must enter additional keywords or arguments to complete the command.</td>
</tr>
</tbody>
</table>
Using the no and default Forms of Commands

Almost every configuration command has a no form. In general, use the no form to disable a function. Use the command without the no keyword to re-enable a disabled function or to enable a function that is disabled by default. For example, IP routing is enabled by default. To disable IP routing, use the no ip routing command; to re-enable IP routing, use the ip routing command. The Cisco IOS software command reference publications provide the complete syntax for the configuration commands and describe what the no form of a command does.

Many CLI commands also have a default form. By issuing the <command> default command-name, you can configure the command to its default setting. The Cisco IOS software command reference publications describe the function from a default form of the command when the default form performs a different function than the plain and no forms of the command. To see what default commands are available on your system, enter default ? in the appropriate command mode.

Saving Configuration Changes

Use the copy running-config startup-config command to save your configuration changes to the startup configuration so that the changes will not be lost if the software reloaded or a power outage occurs. For example:

Router# copy running-config startup-config
Building configuration...

It may take a few minutes to save the configuration. After the configuration has been saved, the following output is displayed:

[OK]
Router#

This task saves the configuration to the NVRAM.

Managing Configuration Files

The startup configuration file is stored in the nvram: file system and the running configuration files are stored in the system: file system. This configuration file storage setup is also used on several other Cisco router platforms.
As a matter of routine maintenance on any Cisco router, users should back up the startup configuration file by copying the startup configuration file from NVRAM to one of the router’s other file systems and, additionally, to a network server. Backing up the startup configuration file provides an easy method of recovering the startup configuration file if the startup configuration file in NVRAM becomes unusable for any reason.

The copy command can be used to back up startup configuration files.

Examples of backing up the startup configuration file in NVRAM are shown in Backing Up Configuration Files, on page 299.

For more detailed information on managing configuration files, see the “Managing Configuration Files” section in the Cisco IOS XE Configuration Fundamentals Configuration Guide.

Filtering Output from the show and more Commands

You can search and filter the output of show and more commands. This functionality is useful if you need to sort through large amounts of output or if you want to exclude output that you need not see.

To use this functionality, enter a show or more command followed by the “pipe” character (|); one of the keywords begin, include, or exclude; and a regular expression on which you want to search or filter (the expression is case sensitive):

```
show command | {append | begin | exclude | include | redirect | section | tee} regular-expression
```

The output matches certain lines of information in the configuration file.

Example

In this example, a modifier of the show interface command (include protocol) is used to provide only the output lines in which the expression protocol is displayed:

```
Router# show interface | include protocol
GigabitEthernet0/0/0 is administratively down, line protocol is down
   0 unknown protocol drops
GigabitEthernet0/0/1 is administratively down, line protocol is down
   0 unknown protocol drops
GigabitEthernet0/0/2 is administratively down, line protocol is down
   0 unknown protocol drops
GigabitEthernet0/0/3 is administratively down, line protocol is down
   0 unknown protocol drops
GigabitEthernet0 is up, line protocol is up
   0 unknown protocol drops
Loopback0 is up, line protocol is up
   0 unknown protocol drops
```

Powering Off a Router

The router can be safely turned off at any time by moving the router’s power supply switch to the Off position. However, any changes to the running config since the last WRITE of the config to the NVRAM is lost.

Ensure that any configuration needed after startup is saved before powering off the router. The copy running-config startup-config command saves the configuration in NVRAM and after the router is powered up, the router initializes with the saved configuration.
Finding Support Information for Platforms and Cisco Software Images

The Cisco IOS XE software is packaged in feature sets consisting of software images that support specific platforms. The group of feature sets that are available for a specific platform depends on which Cisco software images are included in a release. To identify the set of software images available in a specific release or to find out if a feature is available in a given Cisco IOS XE software image, you can use Cisco Feature Navigator or see the Release Notes for Cisco IOS XE.

Using Cisco Feature Navigator

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator is a tool that enables you to determine which Cisco IOS XE software images support a specific software release, feature set, or platform. To use the navigator tool, an account on Cisco.com is not required.

Using Software Advisor

Cisco maintains the Software Advisor tool. See Tools and Resources. Use the Software Advisor tool to see if a feature is supported in a Cisco IOS XE release, to locate the software document for that feature, or to check the minimum software requirements of Cisco IOS XE software with the hardware installed on your router. You must be a registered user on Cisco.com to access this tool.

Using Software Release Notes

See the Release Notes document for the Cisco 4000 Series ISRs for information about the following:

- Memory recommendations
- Open and resolved severity 1 and 2 caveats

Release notes are intended to be release-specific for the most current release, and the information provided in these documents may not be cumulative in providing information about features that first appeared in previous releases. For cumulative feature information, refer to the Cisco Feature Navigator at: http://www.cisco.com/go/cfh/.

CLI Session Management

An inactivity timeout is configurable and can be enforced. Session locking provides protection from two users overwriting changes that the other has made. To prevent an internal process from using all the available capacity, some spare capacity is reserved for CLI session access. For example, this allows a user to remotely access a router.

- Changing the CLI Session Timeout, on page 21
- Locking a CLI Session, on page 21

Information About CLI Session Management

An inactivity timeout is configurable and can be enforced. Session locking provides protection from two users overwriting changes that each other has made. To prevent an internal process from using all the available capacity, some spare capacity is reserved for CLI session access. For example, this allows a user to remotely access the router.
Changing the CLI Session Timeout

Step 1
```configure terminal```
Enters global configuration mode

**Step 2**  
```line console 0```
Step 3
```session-timeout minutes```
The value of `minutes` sets the amount of time that the CLI waits before timing out. Setting the CLI session timeout increases the security of a CLI session. Specify a value of 0 for `minutes` to disable session timeout.

**Step 4**  
```show line console 0```
Verifies the value to which the session timeout has been set, which is shown as the value for "Idle Session".

Locking a CLI Session

Before you begin
To configure a temporary password on a CLI session, use the `lock` command in EXEC mode. Before you can use the `lock` command, you need to configure the line using the `lockable` command. In this example the line is configured as `lockable`, and then the `lock` command is used and a temporary password is assigned.

Step 1
```Router# configure terminal```
Enters global configuration mode.

**Step 2**  
Enter the line upon which you want to be able to use the `lock` command.
```Router(config)# line console 0```

Step 3
```Router(config)# lockable```
Enables the line to be locked.

**Step 4**  
```Router(config)# exit```

Step 5
```Router# lock```
The system prompts you for a password, which you must enter twice.
```Password: <password>```
```Again: <password>```
```Locked```
Smart Licensing

This chapter provides an overview of the Cisco Smart Licensing Client feature and describes the several tools and processes required to complete the products registration and authorization.

This chapter includes this section:

• Smart Licensing Client, on page 23

Smart Licensing Client

Smart Licensing Client feature is a standardized licensing platform that simplifies the Cisco software experience and helps you to understand how Cisco software is used across your network. Smart Licensing is the next generation licensing platform for all Cisco software products.

Prerequisites for Cisco Smart Licensing Client

• Ensure that Call Home is enabled before using the Smart Licensing Client feature.

• Ensure that the device is running the Cisco IOS XE Everest 16.6.1 version that supports the Smart Licensing mode.

Restrictions for Cisco Smart Licensing Client

• Cisco 4000 Series ISR platforms support Cisco One Suites License, Technology Package License, Throughput License, and HSECK9 license in Cisco Smart Licensing from Cisco IOS XE Release 16.6.1.

Information About Cisco Smart Licensing Client

Cisco Smart Licensing - An Overview

A licensing model, based on a single technology, Smart Licensing has been designed for Cisco, which is intended to provide Enterprise-level Agreements for all Cisco products. Smart Licensing provides a software inventory management system that provides Customers, Cisco, and selected Partners with information about Software Ownership and Software Utilization.
Smart Licensing is software based end-to-end license platform that comprises several tools and processes that authorizes customers to use and to report Cisco products. Smart licensing has the capability to capture a customer's order and to communicate with Cisco Cloud License Service through the Smart Call Home Transport Gateway. Additionally, the Smart Call Home Transport Gateway helps to complete product registration and authorization based on the desired performance and technology levels of Cisco products. To know more about Call Home, refer to Call Home.

Benefits of Smart Licensing are the following:

- The Smart Licensing feature is aimed at giving users an experience of a single, standardized licensing solution for all Cisco products. Adding support for Cisco ONE suites in the Cisco IOS Software License (CISL) and Smart Licensing mode, including the Foundation Suite and Active Directory Users and Computers (ADUC) Suite.
- Smart Licensing feature provides the ability to switch between traditional licensing (CSL) and Smart Licensing mode
- The Smart Licensing feature supports four software universal images NPE, NO-LI, NPE-NO-LI, and Non-NPE images.

Transitioning from CSL to Smart Licensing

In the Smart Licensing Model, customers can activate licensed objects without the use of a special software key or upgrade license file. Customers simply activate the new functionality using the appropriate product commands and configurations and the functionality is activated. A software reboot may or may not be required depending on the product capabilities and requirements.

Similarly, downgrading or removing an advanced feature, performance, or functionality would require removal of the configuration or command.

After either of the above actions has been taken, the change in license state is noted by the Smart Software Manager upon next synchronization and an appropriate action is taken.

Cisco ONE Suites

Cisco ONE Suites is a new way for customers to purchase infrastructure software. Cisco ONE offers a simplified purchasing model, centered on common customer scenarios in the data center, wide area network, and local access networks.

Smart Licensing supports Smart License Cisco ONE suite level licenses and image licenses, such as ipbase, Advanced IP Services (AIS), Advanced Enterprise Services (AES) and feature license and throughput performance, crypto throughput and port licensing on ASR 1000 Aggregation Series Routers.

To know more about Cisco One Suites, please refer to Cisco ONE Suites.

How to Activate Cisco Smart Licensing Client

Enable Smart Licensing

SUMMARY STEPS

1. enable
2. configure terminal
3. `license smart enable`
4. `exit`
5. `write memory`
6. `show license all`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 1. | `enable` | Enables privileged EXEC mode.
Example:
`Device> enable` |
| 2. | `configure terminal` | Enters global configuration mode.
Example:
`Device# configure terminal` |
| 3. | `license smart enable` | Activates Smart Licensing on the device.
Note When you enable Smart Licensing, the Cisco Software License (CSL) and all licensing calls pass through the Smart Agent.
For the ‘no’ case, if Smart Licensing is already registered, the Smart Agent performs the "license smart deregister" operation that deactivates Smart Licensing. Reload the device to activate the CSL on the device.
Example:
`Device# license smart enable` |
| 4. | `exit` | Exits the global configuration mode.
Example:
`Device# exit` |
| 5. | `write memory` | Saves the running configuration to NVRAM.
Example:
`Device# write memory` |
| 6. | `show license all` | (Optional) Displays summary information about all licenses.
Example:
`Device# show license all` |

SMART LICENSE DISABLE

SUMMARY STEPS

1. `enable`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 no license smart enable</td>
<td>Deactivates Smart Licensing on the device.</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
<tr>
<td>When you enable Smart Licensing, the Cisco Software License (CSL) and all licensing calls pass through the Smart Agent. For the ‘no’ case, if Smart Licensing is already registered, the Smart Agent performs the "license smart deregister" operation that deactivates Smart Licensing. Reload the device to activate the CSL on the device.</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# no license smart enable</td>
<td></td>
</tr>
<tr>
<td>Step 4 exit</td>
<td>Exits the global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device(config)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 5 write memory</td>
<td>Saves the running configuration to NVRAM.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# write memory</td>
<td></td>
</tr>
<tr>
<td>Step 6 reload</td>
<td>(Optional) Restarts the device to enable the new feature set.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Device# reload</td>
<td></td>
</tr>
<tr>
<td>Step 7 show license all</td>
<td>(Optional) Displays summary information about all licenses.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Device Registration

SUMMARY STEPS

1. `enable`
2. `license smart register idtoken idtoken [force]`
3. `license smart deregister`
4. `license smart renew [ID | auth]`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | `enable` | Enables privileged EXEC mode. *
- Enter your password if prompted. |
| **Example:** | `Device> enable` | |
| **Step 2** | `license smart register idtoken idtoken [force]` | Registers the device with the back-end server. Token id can be obtained from your virtual a/c in the Smart Licensing server. *
- `force`: To forcefully register your device irrespective of either the device is registered or not. |
| **Example:** | `Device# license smart register idtoken 123` | | |
| **Note** | The device supplies the token ID to the Cisco server, which sends back a “Device Certificate” that is valid for 365 days. |
| **Step 3** | `license smart deregister` | Deregisters the device from the backend server. |
| **Example:** | `Device# license smart deregister` | |
| **Step 4** | `license smart renew [ID | auth]` | (Optional) Manually renews the ID certification or authorization. |
| **Example:** | `Device# license smart renew ID` | |

Troubleshooting for Cisco Smart Licensing Client

You can troubleshoot Smart Licensing enabling issues using the following commands on the device:

- `show version`
- `show running-config`
• show license summary
• show license all
• show license tech support
• debug smart_lic error
• debug smart_lic trace

Configuration Examples for Cisco Smart Licensing Client

Example: Displays summary information about all licenses

The following example shows how to use the `show license all` command to display summary information about all licenses.

```
Device#show license all
Smart Licensing Status

Smart Licensing is ENABLED

Registration:
Status: REGISTERED
Smart Account: BU Production Test
Virtual Account: ISR4K
Export-Controlled Functionality: Allowed
Initial Registration: SUCCEEDED on Sep 04 15:40:03 2015 PDT
Last Renewal Attempt: None
Next Renewal Attempt: Mar 02 15:40:02 2016 PDT
Registration Expires: Sep 03 15:34:53 2016 PDT

License Authorization:
Status: AUTHORIZED on Sep 04 15:40:09 2015 PDT
Last Communication Attempt: SUCCEEDED on Sep 04 15:40:09 2015 PDT
Next Communication Attempt: Oct 04 15:40:08 2015 PDT
Communication Deadline: Dec 03 15:35:01 2015 PDT

License Usage

ISR_4400/FoundationSuite (ISR_4400/FoundationSuite):
Description: Cisco ONE Foundation Perpetual License ISR 4400
Count: 1
Version: 1.0
Status: AUTHORIZED

ISR_4400/AdvancedUCSuite (ISR_4400/AdvancedUCSuite):
Description: Cisco ONE Advanced UC Perpetual License ISR 4400
Count: 1
Version: 1.0
Status: AUTHORIZED

ISR_4451_2G/Performance (ISR_4451_2G/Performance):
Description: Performance on Demand License for 4450 Series
Count: 1
Version: 1.0
Status: AUTHORIZED
```
Example: Enabling Smart Licensing

The following example shows how to use the `license smart enable` command to confirm if the Cisco ONE Suite is enabled.

Note

The warning message that is displayed in the following example applies only for Cisco ISR G2 platform. For Cisco 4000 Series ISR platform, it does not display warning message when you enable the smart license.

```
Device# license smart enable
Currently only Cisco ONE license suites are supported by Smart Licensing. Please make sure your Cisco ONE suites are enabled before turning on Smart Licensing. Any other licenses outside of Cisco ONE suites would be disabled and made unusable in Smart Licensing. If you have any questions, please get in touch with your Cisco representative before using this mmode. Please confirm Cisco ONE suites are enabled? [yes/no]: yes
```
Example: Enabling Smart Licensing
CHAPTER 5

Managing the Device Using Web User Interface

The Web User Interface (Web UI) is an embedded GUI-based device-management tool that provides the ability to provision the device, to simplify device deployment and manageability, and to enhance the user experience. It comes with the default image, so there is no need to enable anything or install any license on the device. You can use WebUI to build configurations, and to monitor and troubleshoot the device without having CLI expertise. This chapter includes the these sections:

- Setting Up Factory Default Device Using WebUI, on page 31
- Using Web User Interface for Day One Setup, on page 35

Setting Up Factory Default Device Using WebUI

Quick Setup Wizard allows you to perform the basic router configuration. To configure the router:

![Note](image)

Before you access the WebUI, you need to have the basic configuration on the device.

1. Connect the RJ-45 end of a serial cable to the RJ-45 console port on the router.
2. After the device initial configuration wizard appears, enter No to get into the device prompt when the following system message appears on the router.

 Would you like to enter the initial configuration dialog? [yes/no]: no

3. From the configuration mode, enter the following configuration parameters.

   ```
   !
   ip dhcp pool WEBUIPool
   network 192.168.1.0 255.255.255.0
   default-router 192.168.1.1
   username webui privilege 15 password cisco
   !
   interface gig 0/0/1
   ip address 192.168.1.1 255.255.255.0
   !
   ```

4. Connect the PC to the router using an Ethernet cable to the gig 0/0/1 interface.
5. Set up your PC as a DHCP client to obtain the IP address of the router automatically.
Step 6 Launch the browser and enter the device IP address in your browser’s address line. For a secure connection, type https://192.168.1.1/#/dayZeroRouting. For a less secure connection, enter http://192.168.1.1/#/dayZeroRouting.

Step 7 Enter the default username (webui) and default password (cisco).

Using Basic or Advanced Mode Setup Wizard

To configure the router using the basic or advanced mode setup:

Step 1 Choose the Basic Mode or Advanced Mode and click Go To Account Creation Page.

Step 2 Enter the username and password. Reenter the password to confirm.

Step 3 Click Create and Launch Wizard.

Step 4 Enter the device name and domain name.

Step 5 Select the appropriate time zone from the Time Zone drop-down list.

Step 6 Select the appropriate date and time mode from the Date and Time drop-down list.

Step 7 Click LAN Settings.
Configure LAN Settings

Step 1
Choose the Web DHCP Pool/DHCP Pool name or the Create and Associate Access VLAN option.

a) If you choose the Web DHCP Pool, specify the following:
 - **Pool Name**—Enter the DHCP Pool Name.
 - **Network**—Enter network address and the subnet mask.

b) If you choose the Create and Associate Access VLAN option, specify the following:
 - **Access VLAN**—Enter the Access VLAN identification number. The range is from 1 to 4094.
 - **Network**—Enter the IP address of the VLAN.
 - **Management Interfaces**—Select the interface and move to the selected list box using the right and left arrows. You can also double click or drag and drop to move the interface to the selected list box.

Step 2
Click Primary WAN Settings.

Configure Primary WAN Settings

Step 1
Select the primary WAN type. You can configure Serial, 3G/4G, Ethernet, or Broadband (xDSL) as primary WAN depending on the WAN types supported by the router.

Step 2
Select the interface from the drop-down list.

Step 3
Check the **Get DNS Server info directly from ISP** check box to get the DNS server information directly from the service provider. You can also manually enter the Primary DNS and Secondary DNS.

Step 4
Check the **Get IP automatically from ISP** check box to get the IP address information directly from the service provider. You can also manually enter the IP address and subnet mask.

Step 5
Check the **Enable NAT** check box to enable NAT. It is recommended to enable NAT.

Step 6
Check the **Enable PPPoE** check box to enable PPPoE. If you have enabled PPPoE, select the required authentication mode. The options are: **PAP** and **CHAP**.
Configure Secondary WAN Settings

For advanced configuration, you should configure the secondary WAN connection.

Step 1
Select the secondary WAN type. You can configure Serial, 3G/4G, Ethernet, or Broadband (xDSL) as a secondary WAN depending on the WAN types supported by the router.

Step 2
Select the interface from the drop-down list.

Step 3
Check the **Get DNS Server info directly from ISP** check box to get the DNS server information directly from the service provider. You can also manually enter the Primary DNS and Secondary DNS.

Step 4
Check the **Get IP automatically from ISP** check box to get the IP address information directly from the service provider. You can also manually enter the IP address and subnet mask.

Step 5
Check the **Enable NAT** check box to enable NAT. It is recommended to enable NAT.

Step 6
Check the **Enable PPPOE** check box to enable PPPoE. If you have enabled PPPoE, select the required authentication mode. The options are PAP and CHAP.

Step 7
Enter the user name and password provided by the service provider.

Step 8
Click Security / APP Visibility WAN Settings.

Configure Security Settings

Step 1
Check the **Enable Cisco Recommended Security Settings** check box to ensure that all passwords are not shown in plain text. The passwords are encrypted.

Step 2
Click **Day 0 Config Summary**.

Step 3
To preview the configuration, click **CLI Preview** to preview the configuration.

Step 4
Click **Finish** to complete the Day Zero setup.
Using Web User Interface for Day One Setup

To configure the Web user interface:

Step 1
Configure the HTTP server. By default, the HTTP server configuration should be present on the device. Ensure the configuration by checking if the `ip http server` and `ip http secure-server` commands are present in the running configuration.

```
Device #configure terminal
Device (config)#ip http server
Device (config)#ip http secure-server
```

Step 2
Set up the authentication options to log into Web UI. You can use one of these methods to authenticate:

a) You can authenticate using local database. To use a local database for Web UI authentication, ensure to have the `ip http authentication local` command in the running configuration. This command is preconfigured on the device. If the command is not present, configure the device as shown in this example:

```
Device #configure terminal
Device (config)#ip http authentication local
```

Note
You need a user with privilege 15 to access the configuration screens on Web UI. If the privilege is less than 15, you can access only the Dashboard and Monitoring screens on Web UI.

To create a user account, use the `username <username> privilege <privilege> password 0 <passwordtext>`

```
Device #configure terminal
Device (config)#username <username> privilege <privilege> password 0 <passwordtext>
```

b) Authenticate using AAA options. To use AAA authentication for Web UI, ensure to configure ‘ip http authentication aaa’ on the device. Also, ensure that the required AAA server configuration is present on the device.

```
Device #configure terminal
Device (config)#ip http authentication local
```
Step 3 Launch the browser. In the address bar, type the IP address of the device. For a secure connection, type https://ip-address.

Step 4 Enter the default username (webui) and default password (cisco).

Step 5 Click **Log In**.
CHAPTER 6

Console Port, Telnet, and SSH Handling

This chapter includes the following sections:

• Notes and Restrictions for Console Port, Telnet, and SSH, on page 37
• Console Port Overview, on page 37
• Console Port Handling Overview, on page 38
• Telnet and SSH Overview, on page 38
• Persistent Telnet and Persistent SSH Overview, on page 38
• Configuring a Console Port Transport Map, on page 39
• Configuring Persistent Telnet, on page 41
• Configuring Persistent SSH, on page 43
• Viewing Console Port, SSH, and Telnet Handling Configurations, on page 46
• Configuring Auxiliary Port for Modem Connection, on page 51

Notes and Restrictions for Console Port, Telnet, and SSH

• Telnet and Secure Shell (SSH) settings configured in the transport map override any other Telnet or SSH settings when the transport map is applied to the Ethernet management interface.

• Only local usernames and passwords can be used to authenticate users entering a Ethernet management interface. AAA authentication is not available for users accessing the router through a Ethernet management interface using persistent Telnet or persistent SSH.

• Applying a transport map to a Ethernet management interface with active Telnet or SSH sessions can disconnect the active sessions. Removing a transport map from an interface, however, does not disconnect any active Telnet or SSH session.

• Configuring the diagnostic and wait banners is optional, but recommended. The banners are especially useful as indicators to users about the status of their Telnet or SSH attempts.

Console Port Overview

The console port on the router is an EIA/TIA-232 asynchronous, serial connection with no flow control and an RJ-45 connector. The console port is used to access the router and is located on the front panel of the Route Processor.
For information on accessing the router using the console port, see Using Cisco IOS XE Software, on page 7.

Console Port Handling Overview

If you are using the console port to access the router, you are automatically directed to the Cisco IOS command-line interface (CLI).

If you are trying to access the router through the console port and send a break signal (by entering Ctrl-C or Ctrl-Shift-6, or by entering the `send break` command at the Telnet prompt) before connecting to the CLI, you are directed to a diagnostic mode if the non-RPIOS subpackages are accessible. These settings can be changed by configuring a transport map for the console port and applying that transport map to the console interface.

Telnet and SSH Overview

Telnet and SSH on the router can be configured and handled like Telnet and SSH on other Cisco platforms. For information on traditional Telnet, see the `line` command in the Cisco IOS Terminal Services Command Reference, Release 12.2 document. For more information on AAA authentiction methods, see the `line` command in the Authentication Commands chapter.

For information on configuring traditional SSH, see the “Configuring Secure Shell” chapter in the Cisco IOS Terminal Services Command Reference, Release 12.2 document.

On the router, persistent Telnet and persistent SSH allow network administrators to more clearly define the treatment of incoming traffic when users access the router through the management ethernet port using Telnet or SSH. Notably, persistent Telnet and persistent SSH provide more robust network access by allowing the router to be configured to be accessible through the Ethernet management port using Telnet or SSH even when the Cisco IOS process has failed.

Persistent Telnet and Persistent SSH Overview

In traditional Cisco routers, accessing the router using Telnet or SSH is not possible if the Cisco IOS software fails. When Cisco IOS fails on a traditional Cisco router, the only method of accessing the router is through the console port. Similarly, if all the active Cisco IOS processes have failed on a router that is not using persistent Telnet or persistent SSH, the only method of accessing the router is through the console port.

However, with persistent Telnet and persistent SSH, you can configure a transport map that defines the treatment of incoming Telnet or SSH traffic on the Ethernet management interface. Among the many configuration options, a transport map can be configured to direct all traffic to the Cisco IOS CLI, diagnostic mode, or to wait for a Cisco IOS VTY line to become available and then direct users to diagnostic mode when a user sends a break signal while waiting for the IOS VTY line to become available. If a user uses Telnet or SSH to access diagnostic mode, that Telnet or SSH connection will be usable even in scenarios when no Cisco IOS process is active. Therefore, persistent Telnet and persistent SSH introduce the ability to access the router via diagnostic mode when the Cisco IOS process is not active. For information on diagnostic mode, see Using Cisco IOS XE Software. For information on the options that are can be configured using persistent Telnet or persistent SSH transport maps, see Configuring Persistent Telnet, on page 41 and Configuring Persistent SSH, on page 43.
Configuring a Console Port Transport Map

This task describes how to configure a transport map for a console port interface on the router.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `transport-map type console transport-map-name`
4. `connection wait [allow [interruptible] | none [disconnect]]`
5. (Optional) `banner [diagnostic | wait] banner-message`
6. `exit`
7. `transport type console console-line-number input transport-map-name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example: <code>Router> enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>transport-map type console transport-map-name</code></td>
<td>Creates and names a transport map for handling console connections, and enters transport map configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# transport-map type console consolehandler</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 `connection wait [allow [interruptible]</td>
<td>none [disconnect]]`</td>
</tr>
<tr>
<td>Example: <code>Router(config-tmap)# connection wait none</code></td>
<td></td>
</tr>
</tbody>
</table>

- **allow interruptible**—The console connection waits for a Cisco IOS VTY line to become available, and also allows users to enter diagnostic mode by interrupting a console connection that is waiting for a Cisco IOS VTY line to become available. This is the default setting.

 Note Users can interrupt a waiting connection by entering `Ctrl-C` or `Ctrl-Shift-6`.

- **none**—The console connection immediately enters diagnostic mode.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>(Optional) Creates a banner message that will be seen by users entering diagnostic mode or waiting for the Cisco IOS VTY line because of the console transport map configuration.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example: (Optional) Creates a banner message that will be seen by users entering diagnostic mode or waiting for the Cisco IOS VTY line because of the console transport map configuration.</td>
</tr>
<tr>
<td>Router(config-tmap)# banner diagnostic X Enter TEXT message. End with the character 'X'. --Welcome to Diagnostic Mode-- X Router(config-tmap)#</td>
<td>Note Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Exits transport map configuration mode to re-enter global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Example: Exits transport map configuration mode to re-enter global configuration mode.</td>
</tr>
<tr>
<td>Router(config-tmap)# exit</td>
<td>Step 7</td>
</tr>
<tr>
<td>Example:</td>
<td>Applies the settings defined in the transport map to the console interface.</td>
</tr>
<tr>
<td>Router(config)# transport type console 0 input consolehandler</td>
<td>Examples</td>
</tr>
<tr>
<td>Examples</td>
<td>The following example shows how to create a transport map to set console port access policies and attach to console port 0:</td>
</tr>
</tbody>
</table>
Configuring Persistent Telnet

For a persistent Telnet connection to access an Cisco IOS vty line on the router, local login authentication must be configured for the vty line (the `login` command in line configuration mode). If local login authentication is not configured, users will not be able to access Cisco IOS using a Telnet connection into the management Ethernet interface with an applied transport map. Diagnostic mode will still be accessible in this scenario.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `transport-map type persistent telnet transport-map-name`
4. `connection wait [allow [interruptible] | none [disconnect]]`
5. (Optional) `banner [diagnostic | wait] banner-message`
6. `transport interface gigabitethernet 0`
7. `exit`
8. `transport type persistent telnetinput transport-map-name`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 | enable |
 | **Example:** |
 | Router> enable |
 | Enables privileged EXEC mode. |
 | • Enter your password if prompted. |
| **Step 2**
 | configure terminal |
 | **Example:** |
 | Router# configure terminal |
 | Enters global configuration mode. |
| **Step 3**
 | transport-map type persistent telnet transport-map-name |
 | **Example:** |
 | Router(config)# transport-map type persistent telnet telnethandler |
 | Creates and names a transport map for handling persistent Telnet connections, and enters transport map configuration mode. |
| **Step 4**
 | connection wait [allow [interruptible] | none [disconnect]] |
 | **Example:** |
 | Router(config-tmap)# connection wait none |
 | Specifies how a persistent Telnet connection will be handled using this transport map: |
 | • allow—The Telnet connection waits for a Cisco IOS vty line to become available, and exits the router if interrupted. |
 | • allow interruptible—The Telnet connection waits for the Cisco IOS vty line to become available, and also allows user to enter diagnostic mode by interrupting
Configuring Persistent Telnet

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a Telnet connection waiting for the Cisco IOS vty line to become available. This is the default setting.</td>
</tr>
<tr>
<td></td>
<td>Note Users can interrupt a waiting connection by entering Ctrl-C or Ctrl-Shift-6.</td>
</tr>
<tr>
<td></td>
<td>• none—The Telnet connection immediately enters diagnostic mode.</td>
</tr>
<tr>
<td></td>
<td>• none disconnect—The Telnet connection does not wait for the Cisco IOS vty line and does not enter diagnostic mode, so all Telnet connections are rejected if no vty line is immediately available in the Cisco IOS software.</td>
</tr>
</tbody>
</table>

Step 5

(Optional) `banner [diagnostic | wait] banner-message`

Example:

Router(config-tmap)# banner diagnostic X
Enter TEXT message. End with the character 'X'.
```
--Welcome to Diagnostic Mode--  
X
```

Router(config-tmap)#

(Optional) Creates a banner message that will be seen by users entering diagnostic mode or waiting for the Cisco IOS vty line because of the persistent Telnet configuration.

- • *diagnostic*—Creates a banner message seen by users directed into diagnostic mode because of the persistent Telnet configuration.

- • *wait*—Creates a banner message seen by users waiting for the vty line to become available.

- • *banner-message*—The banner message, which begins and ends with the same delimiting character.

Step 6

`transport interface gigabitethernet 0`

Example:

Router(config-tmap)# transport interface gigabitethernet 0

Applies the transport map settings to the management Ethernet interface (interface gigabitethernet 0).

Persistent Telnet can be applied only to the management Ethernet interface on the router. This step must be taken before applying the transport map to the management Ethernet interface.

Step 7

`exit`

Example:

Router(config-tmap)# exit

Exits transport map configuration mode to re-enter global configuration mode.

Step 8

`transport type persistent telnetinput transport-map-name`

Example:

Router(config)# transport type persistent telnetinput telnethandler

Applies the settings defined in the transport map to the management Ethernet interface.

The `transport-map-name` for this command must match the `transport-map-type persistent telnet` command.
Examples
In the following example, a transport map that will make all Telnet connections wait for a Cisco IOS XE vty line to become available before connecting to the router, while also allowing the user to interrupt the process and enter diagnostic mode, is configured and applied to the management Ethernet interface (interface gigabitethernet 0).

A diagnostic and a wait banner are also configured.

The transport map is then applied to the interface when the transport type persistent telnet input command is entered to enable persistent Telnet.

Router(config)# transport-map type persistent telnet telnethandler
Router(config-tmap)# connection wait allow interruptible
Router(config-tmap)# banner diagnostic X
Enter TEXT message. End with the character 'X'.
--Welcome to diagnostic mode--
X
Router(config-tmap)# banner wait X
Enter TEXT message. End with the character 'X'.
Waiting for IOS IOS Process--
X
Router(config-tmap)# transport interface gigabitethernet 0
Router(config-tmap)# exit
Router(config)# transport type persistent telnet input telnethandler

Configuring Persistent SSH

This task describes how to configure persistent SSH on the router.

SUMMARY STEPS

1. enable
2. configure terminal
3. transport-map type persistent ssh transport-map-name
4. connection wait [allow [interruptible] | none [disconnect]]
5. rsa keypair-name rsa-keypair-name
6. (Optional) authentication-retries number-of-retries
7. (Optional) banner [diagnostic | wait] banner-message
8. (Optional) time-out timeout-interval
9. transport interface gigabitethernet 0
10. exit
11. transport type persistent ssh input transport-map-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 transport-map type persistent ssh transport-map-name</td>
<td>Creates and names a transport map for handling persistent SSH connections, and enters transport map configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# transport-map type persistent telnet telnethandler</td>
<td></td>
</tr>
<tr>
<td>Step 4 connection wait [allow [interruptible]</td>
<td>none [disconnect]]</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# connection wait interruptible</td>
<td></td>
</tr>
<tr>
<td>Step 5 rsa keypair-name rsa-keypair-name</td>
<td>Names the RSA keypair to be used for persistent SSH connections.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# rsa keypair-name sshkeys</td>
<td></td>
</tr>
</tbody>
</table>

For persistent SSH connections, the RSA keypair name must be defined using this command in transport map configuration mode. The RSA keypair definitions defined elsewhere on the router, such as through the use of the **ip ssh rsa keypair-name** command, do not apply to persistent SSH connections.

No rsa-keypair-name is defined by default.
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6 (Optional) authentication-retries number-of-retries</td>
<td>(Optional) Specifies the number of authentication retries before dropping the connection. The default number-of-retries is 3.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# authentication-retries 4</td>
<td></td>
</tr>
<tr>
<td>Step 7 (Optional) banner [diagnostic</td>
<td>wait] banner-message</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# banner diagnostic X</td>
<td></td>
</tr>
<tr>
<td>Enter TEXT message. End with the character 'X'.</td>
<td></td>
</tr>
<tr>
<td>--Welcome to Diagnostic Mode--</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)#</td>
<td></td>
</tr>
<tr>
<td>Step 8 (Optional) time-out timeout-interval</td>
<td>(Optional) Specifies the SSH time-out interval, in seconds. The default timeout-interval is 120 seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# time-out 30</td>
<td></td>
</tr>
<tr>
<td>Step 9 transport interface gigabitethernet 0</td>
<td>Applies the transport map settings to the Ethernet management interface (interface gigabitethernet 0). Persistent SSH can be applied only to the Ethernet management interface on the router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# transport interface</td>
<td></td>
</tr>
<tr>
<td>gigabitethernet 0</td>
<td></td>
</tr>
<tr>
<td>Step 10 exit</td>
<td>Exits transport map configuration mode to re-enter global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-tmap)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 11 transport type persistent ssh input transport-map-name</td>
<td>Applies the settings defined in the transport map to the Ethernet management interface. The transport-map-name for this command must match the transport-map-name defined in the transport-map type persistent ssh command.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# transport type persistent ssh</td>
<td></td>
</tr>
<tr>
<td>input sshhandler</td>
<td></td>
</tr>
</tbody>
</table>

Examples

The following example shows a transport map that will make all SSH connections wait for the VTY line to become active before connecting to the router being configured and applied to the Ethernet management interface (interface gigabitethernet 0). The RSA keypair is named sshkeys.

This example only uses the commands required to configure persistent SSH.
In the following example, a transport map is configured and will apply the following settings to users attempting to access the Ethernet management port via SSH:

- SSH users will wait for the VTY line to become active, but will enter diagnostic mode if the attempt to access the Cisco IOS software through the VTY line is interrupted.
- The RSA keypair name is sshkeys.
- The connection allows one authentication retry.
- The banner "Welcome to Diagnostic Mode" will appear if diagnostic mode is entered as a result of SSH handling through this transport map.
- The banner "Waiting for vty line" will appear if the connection is waiting for the VTY line to become active.
- The transport map is then applied to the interface when the `transport type persistent telnet input telnethandler` command is entered to enable persistent SSH:

Use the following commands to view console port, SSH, and Telnet handling configurations:

- `show transport-map`
- `show platform software configuration access policy`
Use the `show transport-map` command to view transport map configurations.

```
show transport-map [all | name transport-map-name | type [console | persistent [ssh | telnet]]]
```

This command can be used either in user EXEC mode or privileged EXEC mode.

Example

The following example shows transport maps that are configured on the router: a console port (consolehandler), persistent SSH (sshhandler), and persistent Telnet transport (telnethandler):

```
Router# show transport-map all
Transport Map:
Name: consolehandler
Type: Console Transport

Connection:
Wait option: Wait Allow Interruptable
Wait banner:
Waiting for the IOS CLI

bshell banner:
Welcome to Diagnostic Mode

Transport Map:
Name: sshhandler
Type: Persistent SSH Transport

Interface:
GigabitEthernet0

Connection:
Wait option: Wait Allow Interruptable
Wait banner:
Waiting for IOS prompt

Bshell banner:
Welcome to Diagnostic Mode

SSH:
Timeout: 120
Authentication retries: 5
RSA keypair: sshkeys

Transport Map:
Name: telnethandler
Type: Persistent Telnet Transport

Interface:
GigabitEthernet0

Connection:
Wait option: Wait Allow Interruptable
Wait banner:
Waiting for IOS process

Bshell banner:
```
Welcome to Diagnostic Mode

Transport Map:
Name: telnethandling1
Type: Persistent Telnet Transport

Connection:
Wait option: Wait Allow

Router# show transport-map type console
Transport Map:
Name: consolehandler
Type: Console Transport

Connection:
Wait option: Wait Allow Interruptable
Wait banner:
Waiting for the IOS CLI
Bshell banner:
Welcome to Diagnostic Mode

Router# show transport-map type persistent ssh
Transport Map:
Name: sshhandler
Type: Persistent SSH Transport

Interface:
GigabitEthernet0

Connection:
Wait option: Wait Allow Interruptable
Wait banner:
Waiting for IOS prompt
Bshell banner:
Welcome to Diagnostic Mode

SSH:
Timeout: 120
Authentication retries: 5
RSA keypair: sshkeys

Router# show transport-map type persistent telnet
Transport Map:
Name: telnethandler
Type: Persistent Telnet Transport

Interface:
GigabitEthernet0

Connection:
Wait option: Wait Allow Interruptable
Wait banner:
Waiting for IOS process
Bshell banner:
Welcome to Diagnostic Mode

Transport Map:
Name: telnethandling1
Type: Persistent Telnet Transport

Connection:
Wait option: Wait Allow

Router# show transport-map name telnethandler
Transport Map:
Name: telnethandler
Type: Persistent Telnet Transport

Interface:
GigabitEthernet0

Connection:
Wait option: Wait Allow Interruptable
Wait banner:
Waiting for IOS process

Bshell banner:
Welcome to Diagnostic Mode

Router# show transport-map name consolehandler
Transport Map:
Name: consolehandler
Type: Console Transport

Connection:
Wait option: Wait Allow Interruptable
Wait banner:
Waiting for the IOS CLI

Bshell banner:
Welcome to Diagnostic Mode

Router# show transport-map name sshhandler
Transport Map:
Name: sshhandler
Type: Persistent SSH Transport

Interface:
GigabitEthernet0

Connection:
Wait option: Wait Allow Interruptable
Wait banner:
Waiting for IOS prompt

Bshell banner:
Welcome to Diagnostic Mode

SSH:
Timeout: 120
Authentication retries: 5
RSA keypair: sshkeys

Router#

Use the `show platform software configuration access policy` command to view the current configurations for handling the incoming console port, SSH, and Telnet connections. The output of this command provides the current wait policy for each type of connection (Telnet, SSH, and console), as well as information on the currently configured banners.

Unlike the `show transport-map` command, the `show platform software configuration access policy` command is available in diagnostic mode so that it can be entered in scenarios where you need transport map configuration information, but cannot access the Cisco IOS CLI.

Example

`Router# show platform software configuration access policy`

The current access-policies

Method : telnet
Rule : wait
Shell banner:
Wait banner :

Method : ssh
Rule : wait
Shell banner:
Wait banner :

Method : console
Rule : wait with interrupt
Shell banner:
Wait banner :

Example

The following example shows the `show platform software configuration access policy` command being issued both before and after a new transport map for SSH are configured. During the configuration, the connection policy and banners are set for a persistent SSH transport map, and the transport map for SSH is enabled.

`Router# show platform software configuration access policy`

The current access-policies

Method : telnet
Rule : wait with interrupt
Shell banner:
Welcome to Diagnostic Mode

Wait banner :
Waiting for IOS Process
Method : ssh
Rule : wait
Shell banner:
Wait banner :

Method : console
Rule : wait with interrupt
Shell banner:
Wait banner :

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# transport-map type persistent ssh sshhandler
Router(config-tmap)# connection wait allow interruptible
Router(config-tmap)# banner diagnostic X
Enter TEXT message. End with the character 'X'.
Welcome to Diag Mode
X
Router(config-tmap)# banner wait X
Enter TEXT message. End with the character 'X'.
Waiting for IOS
X
Router(config-tmap)# rsa keypair-name sshkeys
Router(config-tmap)# transport interface gigabitethernet 0
Router(config-tmap)# exit
Router(config)# transport type persistent ssh input sshhandler
Router(config)# exit

Router# show platform software configuration access policy
The current access-policies

Method : telnet
Rule : wait with interrupt
Shell banner:
Welcome to Diagnostic Mode
Wait banner :
Waiting for IOS process

Method : ssh
Rule : wait with interrupt
Shell banner:
Welcome to Diag Mode
Wait banner :
Waiting for IOS

Method : console
Rule : wait with interrupt
Shell banner:
Wait banner :

Configuring Auxiliary Port for Modem Connection

Cisco 4000 Series ISR supports connecting a modem to the router auxiliary port for EXEC dial in connectivity. When a modem is connected to the auxiliary port, a remote user can dial in to the router and configure it. To configure a modem on the auxiliary port, perform these steps:
Step 1
Connect the RJ-45 end of the adapter cable to the black AUX port on the router.

Step 2
Use the `show line` command to determine the async interface of the AUX port:

```
Router# show line

<table>
<thead>
<tr>
<th>Tty</th>
<th>Typ</th>
<th>Tx/Rx</th>
<th>A Modem</th>
<th>Roty</th>
<th>AccO</th>
<th>AccI</th>
<th>Uses</th>
<th>Noise</th>
<th>Overruns</th>
<th>Int</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>CTY</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>AUX</td>
<td>9600/9600</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>VTY</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0/0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>VTY</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0/0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>VTY</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0/0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>VTY</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0/0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>VTY</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0/0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
```

Step 3
Use the following commands to configure the router AUX line:

```
Router(config)# line 1
Router(config-line)# modem inOut
Router(config-line)# modem autoconfigure type usr_sportster
Router(config-line)# speed 115200 [Speed to be set according to the modem manual]
Router(config-line)# stopbits 1 [Stopbits to be set according to the modem manual]
Router(config-line)# transport input all
Router(config-line)# flowcontrol hardware [flowcontrol to be set according to the modem manual]
Router(config-line)# password cisco
Router(config-line)# login
Router(config-line)# end
Router(config)# enable password lab
```

Step 4
Use the reverse telnet method on the modem to verify the modem connectivity and configuration string:

```
Router(config)# int loopback 0
Router(config-if)# ip add 1.1.1.1 255.255.255.0
Router(config-if)# end
Router# telnet 1.1.1.1 2001
Trying 1.1.1.1, 2001 ... Open

User Access Verification

Password: <enter the password given under line configuration>

at <<<=== Modem command
OK <<<=== This OK indicates that the modem is connected successfully to the AUX port.
```

Step 5
Use an analog phone to verify that the phone line is active and functions properly. Then, connect the analog phone line to the modem.

Step 6
Initialize an EXEC modem call to the router from another device (PC) to test the modem connection.

Step 7
When the connection is established, the dial in client is prompted for a password. Enter the correct password.

Note: This password should match the one that is configured on the auxiliary port line.
CHAPTER 7

Installing the Software

This chapter includes the following sections:

- Overview, on page 53
- ROMMON Images, on page 53
- Provisioning Files, on page 54
- File Systems, on page 54
- Autogenerated File Directories and Files, on page 55
- Flash Storage, on page 56
- Configuring the Configuration Register for Autoboot, on page 56
- Licensing, on page 57

Overview

Installing software on the router involves installing a consolidated package (bootable image). This consists of a bundle of subpackages (modular software units), with each subpackage controlling a different set of functions.

These are the two main methods to install the software:

- Managing and Configuring a Router to Run Using a Consolidated Package, on page 66—This method allows for individual upgrade of subpackages and generally has reduced boot times compared to the method below. Use this method if you want to individually upgrade a module's software.

- Managing and Configuring a Router to Run Using Individual Packages, on page 71—This a simple method that is similar to a typical Cisco router image installation and management that is supported across Cisco routers.

It is better to upgrade software in a planned period of maintenance when an interruption in service is acceptable. The router needs to be rebooted for a software upgrade to take effect.

ROMMON Images

A ROMMON image is a software package used by ROM Monitor (ROMMON) software on a router. The software package is separate from the consolidated package normally used to boot the router. For more information on ROMMON, see the "ROM Monitor Overview and Basic Procedures" section in the Upgrading Field-Programmable Hardware Devices for Cisco 4000 Series ISRs guide.
An independent ROMMON image (software package) may occasionally be released and the router can be upgraded with the new ROMMON software. For detailed instructions, see the documentation that accompanies the ROMMON image.

Note

A new version of the ROMMON image is not necessarily released at the same time as a consolidated package for a router.

Provisioning Files

This section provides background information about the files and processes used in Managing and Configuring a Router to Run Using Individual Packages, on page 71.

The consolidated package on a router consists of a collection of subpackages and a provisioning file titled `packages.conf`. To run the software, the usual method used is to boot the consolidated package, which is copied into memory, expanded, mounted, and run within memory. The provisioning file's name can be renamed but subpackage file's names cannot be renamed. The provisioning file and subpackage files must be kept in the same directory. The provisioning file does not work properly if any individual subpackage file is contained within a different directory.

Note

An exception to this is that if a new or upgraded module firmware package is subsequently installed, it need not be in the same directory as the provisioning file.

Configuring a router to boot, using the provisioning file `packages.conf`, is beneficial because no changes have to be made to the boot statement after the Cisco IOS XE software is upgraded.

Alternatively, for an example of booting using subpackages, see Configuring the Router to Boot Using Subpackages, on page 293.

File Systems

The following table provides a list of file systems that can be seen on the Cisco 4000 series routers.

<table>
<thead>
<tr>
<th>File System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootflash:</td>
<td>Boot flash memory file system.</td>
</tr>
<tr>
<td>flash:</td>
<td>Alias to the boot flash memory file system above.</td>
</tr>
<tr>
<td>harddisk:</td>
<td>Hard disk file system (if NIM-SSD, NIM-HDD, or internal mSATA flash device is present in the router).</td>
</tr>
</tbody>
</table>

Note The internal mSATA flash device is supported only on Cisco ISR4300 Series routers.
<table>
<thead>
<tr>
<th>File System</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cns:</td>
<td>Cisco Networking Services file directory.</td>
</tr>
<tr>
<td>nvram:</td>
<td>Router NVRAM. You can copy the startup configuration to NVRAM or from NVRAM.</td>
</tr>
<tr>
<td>obfl:</td>
<td>File system for Onboard Failure Logging (OBFL) files.</td>
</tr>
<tr>
<td>system:</td>
<td>System memory file system, which includes the running configuration.</td>
</tr>
<tr>
<td>tar:</td>
<td>Archive file system.</td>
</tr>
<tr>
<td>tmpsys:</td>
<td>Temporary system files file system.</td>
</tr>
<tr>
<td>usb0:</td>
<td>The Universal Serial Bus (USB) flash drive file systems.</td>
</tr>
<tr>
<td>usb1:</td>
<td>Note: The USB flash drive file system is visible only if a USB drive is installed in usb0: or usb1: ports.</td>
</tr>
</tbody>
</table>

Use the `?` help option, or use the `copy` command in command reference guides, if you find a file system that is not listed in the table above.

Autogenerated File Directories and Files

This section discusses the autogenerated files and directories that can be created, and how the files in these directories can be managed.

Table 9: Autogenerated Files

<table>
<thead>
<tr>
<th>File or Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>crashinfo files</td>
<td>Crashinfo files may appear in the bootflash: file system.</td>
</tr>
<tr>
<td></td>
<td>These files provide descriptive information of a crash and may be useful for</td>
</tr>
<tr>
<td></td>
<td>tuning or troubleshooting purposes. However, the files are not part of router</td>
</tr>
<tr>
<td></td>
<td>operations, and can be erased without impacting the functioning of the router.</td>
</tr>
<tr>
<td>core directory</td>
<td>The storage area for .core files.</td>
</tr>
<tr>
<td></td>
<td>If this directory is erased, it will automatically regenerate itself at bootup.</td>
</tr>
<tr>
<td></td>
<td>The .core files in this directory can be erased without impacting any router</td>
</tr>
<tr>
<td></td>
<td>functionality, but the directory itself should not be erased.</td>
</tr>
<tr>
<td>lost+found directory</td>
<td>This directory is created on bootup if a system check is performed. Its</td>
</tr>
<tr>
<td></td>
<td>appearance is completely normal and does not indicate any issues with the router.</td>
</tr>
</tbody>
</table>
File or Directory | Description
--- | ---
tracelogs directory | The storage area for trace files. Trace files are useful for troubleshooting. If the Cisco IOS process fails, for instance, users or troubleshooting personnel can access trace files using diagnostic mode to gather information related to the Cisco IOS failure. Trace files, however, are not a part of router operations, and can be erased without impacting the router's performance.

Important Notes About Autogenerated Directories

Important information about autogenerated directories include:

- Autogenerated files on the bootflash: directory should not be deleted, renamed, moved, or altered in any way unless directed by Cisco customer support.

Note

- Crashinfo, core, and trace files can be deleted.

Flash Storage

Subpackages are installed to local media storage, such as flash. For flash storage, use the `dir bootflash:` command to list the file names.

Note

- Flash storage is required for successful operation of a router.

Configuring the Configuration Register for Autoboot

The configuration register can be used to change router behavior. This includes controlling how the router boots. Set the configuration register to 0x0 to boot into ROM, by using one of the following commands:

- In Cisco IOS configuration mode, use the `config-reg` 0x0 command.
- From the ROMMON prompt, use the `confreg` 0x0 command.

For more information about the configuration register, see Use of the Configuration Register on All Cisco Routers and Configuring a Router to Boot the Consolidated Package via TFTP Using the boot Command: Example, on page 68.
Setting the configuration register to 0x2102 will set the router to autoboott the Cisco IOS XE software.

Note

The console baud rate is set to 9600 after changing the confreg to 0x2102 or 0x0. If you cannot establish a console session after setting confreg, or garbage output appears, change the setting on your terminal emulation software to 9600.

Licensing

- Cisco Software Licensing, on page 57
- Consolidated Packages, on page 57
- Technology Packages, on page 58
- Feature Licenses, on page 59
- Unlicensed Feature: Example, on page 65

Cisco Software Licensing

Cisco software licensing consists of processes and components to activate Cisco IOS software feature sets by obtaining and validating Cisco software licenses.

You can enable licensed features and store license files in the bootflash of your router. Licenses pertain to consolidated packages, technology packages, or individual features.

An evaluation license is automatically converted to a Right to Use model after 60 days and this license is valid permanently. The conversion to a permanent license applies only to evaluation licenses. For other features supported on your router, you must purchase a permanent license.

See the "Configuring the Cisco IOS Software Activation Feature" chapter of the Software Activation Configuration Guide, Cisco IOS XE Release 3S.

Consolidated Packages

One of the following two consolidated packages (images) is preinstalled on the router:

- universalk9—Contains the ipbasek9 base package and the securityk9, uck9, and appxk9 technology packages.

- universalk9_npe—Contains the ipbasek9 base package and the securityk9_npe, uck9, and appxk9 technology packages. This image has limited crypto functionality.

Note

The term npe stands for No Payload Encryption.
The terms super package and image also refer to a consolidated package.

To obtain software images for the router, go to http://software.cisco.com/download/navigator.html. An image-based license is used to help bring up all the subsystems that correspond to a license. This license is enforced only at boot time.

Apart from the universalk9 and universalk9_npe images, a Boot ROMMON image is available. For more information, see ROMMON Images section.

For more information about identifying digitally signed Cisco software and how to show the digital signature information of an image file, see the "Digitally Signed Cisco Software" section in the Loading and Managing System Images Configuration Guide, Cisco IOS XE Release 3S.

The following examples show how to obtain software authenticity information and internal details of a package:

- Displaying Digitally Signed Cisco Software Signature Information section
- Obtaining the Description of a Module or Consolidated Package section

Many features within the consolidated package are contained in the ipbasek9 base package. The license key for the ipbasek9 package is activated by default.

Technology Packages

Technology packages contain software features within a consolidated package. To use different sets of features, enable the licenses of selected technology packages. You can enable the licenses for any combination of technology packages.

Each technology package has an evaluation license that converts to a Right to Use (RTU) license after 60 days and is then valid permanently.

The following is a list of technology packages:

- securityk9, on page 58
- uck9, on page 59
- appxk9, on page 59

In Cisco 4000 Series ISR, although L2TPv2 sessions come up without appxk9, you need the appxk9 license for the traffic to go through the sessions. You also need the appxk9 license to apply the QoS policies to the L2TPv2 sessions.

securityk9

The securityk9 technology package includes all crypto features, including IPsec, SSL/SSH, Firewall, and Secure VPN.

The securityk9_npe package (npe = No Payload Encryption) includes all the features in the securityk9 technology package without the payload-encryption functionality. This is to fulfill export restriction
requirements. The **securityk9_npe** package is available only in the **universalk9_npe** image. The difference in features between the **securityk9** package and the **securityk9_npe** package is therefore the set of payload-encryption-enabling features such as IPsec and Secure VPN.

uck9

The **ucketk9** technology package includes the following Cisco Unified Communications features:

- CUBE
- CMESRST
- SBC

appxk9

There are many features in the **appxk9** package, including MPLS, PfR, L2/L3 VPN, Broadband, and AVC.

Feature Licenses

To use each of the following features, enable a corresponding feature license, as explained in the following sections:

HSECK9

The **HSECK9** license is required for a feature to have full crypto functionality. Without the **HSECK9** license, only 225 secure tunnels and 85 Mbps of crypto bandwidth would be available. The **HSECK9** license allows features in the **securityk9** technology package to use the maximum number of secure tunnels and crypto bandwidth. To enable the **HSECK9** license, purchase the FL-44-HSEC-K9 license from Cisco.com and install it using the `license install license-files` command. For further information on obtaining and installing feature licenses, see Configuring the Cisco IOS Software Activation Feature.

Note

The **HSECK9** feature does not have an evaluation license that converts to an RTU license after 60 days; a feature license must be obtained.

To enable the license for the **HSECK9** feature, the **securityk9** technology package is also required. For more information about the **securityk9** technology package, see **securityk9**, on page 58.

Performance

The performance feature, which allows for increased throughput, is enabled by the performance license. This feature is part of the **ipbasek9** technology package. To enable the feature, order the performance license (part number FL-44-PERF-K9). The license is displayed as the throughput license.

You can upgrade the throughput of the ESP from 2.5 Gbps to 5 Gbps by activating the right-to-use license and then reloading the router. For more information on the right-to-use license activation, see Configuring
Cisco Right-To-Use License Configuration Guide. If you want to determine the current throughput level of the ESP, run the show platform hardware throughput level command. The following example shows the output of this command before the performance upgrade license is applied:

To configure the throughput level, perform the following steps and to upgrade the throughput level use the `platform hardware throughput level {2500000 | 5000000}` command.

1. In the user EXEC configuration mode, enter the `enable` command.
2. Enter `configure terminal` command to enter the global configuration mode.
3. To upgrade the throughput level, enter the `platform hardware throughput level {2500000 | 5000000}` command.
4. To exit global configuration mode, enter exit.
5. To save the configuration, enter the `copy running-config startup-config` command.
6. To reload the router enter `reload`. A reload is required to activate the throughput level.

```
show platform hardware throughput level
The current throughput level is 2500000 kb/s
```

To configure the throughput level, perform the following steps and to upgrade the throughput level use the `platform hardware throughput level {2500000 | 5000000}` command.

1. In the user EXEC configuration mode, enter the `enable` command.
2. Enter `configure terminal` command to enter the global configuration mode.
3. To upgrade the throughput level, enter the `platform hardware throughput level {2500000 | 5000000}` command.
4. To exit global configuration mode, enter exit.
5. To save the configuration, enter the `copy running-config startup-config` command.
6. To reload the router enter `reload`. A reload is required to activate the throughput level.

```
show platform hardware throughput level
The current throughput level is 2500000 kb/s
```

Boost Performance Licenses

Cisco Boost performance license allows you to increase the throughput bandwidth. You can enable Boost performance license in the following modes:

```
Router>enable
Router#configure terminal
Router(config)#platform hardware throughput level 5000000
% The config will take effect on next reboot
Router(config)#exit
Router#copy running-config startup-config
Router#reload
```
Activating Boost Performance License in CSL Mode

To activate the Boost performance license in Cisco Software License (CSL) mode, perform the following steps:

1. Configure the device with the `license install bootflash:xxx` command as shown in this example.

 Device#license install bootflash:FDO203520HU_201804090203446350.lic
 Installing licenses from "bootflash:FDO203520HU_201804090203446350.lic"
 Installing...Feature:booster_performance...Successful:Supported
 1/1 licenses were successfully installed
 0/1 licenses were existing licenses
 0/1 licenses were failed to install
 Building configuration...
 [OK]
 % Throughput boost is configured, it will take effect after reload

2. The following message will be displayed in the logs.

 *Apr 9 07:40:11.674: %LICENSE-6-INSTALL: Feature booster_performance 1.0 was installed
 in this device.
 UDI=ISR4331/K9:FDO203520HU; StoreIndex=2:Primary License Storage

3. Use the `show license feature` command to verify if the boost performance license is activated. The "booster_performance" will appear in the output of "show license feature". Note that it is not enabled until the reload.

 Device#show license feature

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Enforcement</th>
<th>Evaluation</th>
<th>Subscription</th>
<th>Enabled</th>
<th>RightToUse</th>
</tr>
</thead>
<tbody>
<tr>
<td>appxk9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>uck9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>securityk9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>ipbasek9</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>FoundationSuiteK9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>AdvUCSuiteK9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>cme-srst</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>hseck9</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>throughput</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>internal_service</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>booster_performance</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

 Device#show license

 <output omitted>

 Index 11 Feature: booster_performance
 Period left: Life time
4. The **platform hardware throughput level boost** is automatically added to the configuration.

```
Device# show running-config | include throughput
platform hardware throughput level boost
```

5. Save the configuration and reload the device to enable Boost performance license. After the reload, the Boost Performance is activated as shown in this example.

```
Device# show platform hardware throughput level
The current throughput level is unthrottled
Device# show license feature

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Enforcement</th>
<th>Evaluation</th>
<th>Subscription</th>
<th>Enabled</th>
<th>RightToUse</th>
</tr>
</thead>
<tbody>
<tr>
<td>appxk9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>uck9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>securityk9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>ipbasek9</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>FoundationSuiteK9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>AdvUCSuiteK9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>cme-srst</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>haeck9</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>throughput</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>internal_service</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>booster_performance</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Device# show license

<output omitted>

```
Index 11 Feature: booster_performance
Period left: Life time
License Type: Permanent
License State: Active, In Use
License Count: Non-Counted
License Priority: Medium
```

6. To exit global configuration mode, enter `exit`.

7. To save the configuration, enter the `copy running-config startup-config` command.

---

**Boost Performance License in Smart License Mode**

This section describes the processes to activate and deactivate the Boost performance license from the device with two use-cases.

**Enable the boost performance license:**

- Boot the device in Smart License mode. The boost performance command is not visible without registering in the Smart Portal.
- After successfully registering to the Smart Portal, check the availability of the boost performance licenses in the smart account.
• Use the **platform hardware throughput level boost** command to enable the feature. You need to save the configuration. If a valid license is still available in the smart account, the Boost Performance feature is enabled after the device is reloaded.

• To check for the platform hardware throughput level, use the **show platform hardware throughput level boost** command. If there are not enough licenses, it shows an Out of Compliance (OOC) message, and the throughput level change does not take effect even after the device is reloaded.

**Return of license:**

• The device is in the smart license mode with **boost performance** command configured.

• Use **show running-config** and the **show license summary** commands to display the boost performance information from the smart account.

• Use the **no platform hardware throughput level boost** command to disable the functionality.

---

**Note**

The command is removed from the configuration, but the license is released only after the device is reloaded. The throughput level does not take effect until the device is reloaded. The license visibility is available till the device is reloaded.

One count of boost performance license is reduced from the usage pool, and one license is returned to its original pool.

**Cisco Software License to Smart Licensing**

This section describe a use-case when the device is moving from Cisco Software License(CSL) to Smart License when **boost performance license** is on CSL. The boost performance behavior is determined by the availability of the license in its Smart Account with Boost Performance activated in CSL:

To configure the throughput level, perform the following steps and to upgrade the throughput level use the

1. Configure the device with the **platform hardware throughput level boost** command and then use **show running-config** to check if the boost performance license is activated.

2. Use **show license** to verify if boost performance is in use and in a permanent license mode.

3. Enable smart license by **license smart enable** command. After registration in success, the license request is sent to the smart portal for validation. Boost performance is valid if successful, no reload is required. Otherwise the **platform hardware throughput level boost** is unattached from configuration. Boost performance functionality is disabled after reload.

4. During the transition but before the registration, we have to maintain the Evaluation mode for the license if the is existing to avoid an extra reload later.

5. To exit global configuration mode, enter exit.

6. To save the configuration, enter the **copy running-config startup-config** command.

7. To reload the router enter reload. A reload is required to activate the throughput level.
Smart Licensing to Cisco Software Licensing

This section includes these two use-cases that describe what happens during the transition from Smart License to Cisco Software License.

When boost performance is in use:

- Device # platform hardware throughput level boost
- Device# show license to ensure that Smart License and Boost performance licenses are enabled.
- Check the Smart License Account if the boost performance license is consumed from the corresponding device.
- Remove Smart License
- Device# no license smart enable
- Check the availability of the boost performance license, you may decide to retain the boost command.
- No extra reload is required.

When boost performance is not in use:

- Use no platform hardware throughput level boost in the show running-configuration.
- Device # show license to check if smart license is enabled, but boost performance license is not in the list.
- Check the Smart License Account, the boost performance license is not used from the corresponding device.
- To remove Smart License, use no license smart enable
- Check the availability of the boost permanent license to add the boost keyword.
- Boost Performance is activated and is in-use after reload

---

**Note**

If there is no permanent license available, then no boost performance command and functionality is likely to change.

---

CME-SRST

The CME-SRST feature requires the uck9 technology package. To activate the CME-SRST feature license, see Activating the CME-SRST Feature License, on page 64.

Activating the CME-SRST Feature License

**Before you begin**

Ensure the following:

- License for uck9 technology package is available.
- The CME-SRST feature is configured.
SUMMARY STEPS

1. show license detail cme-srst
2. configure terminal
3. license accept end user agreement
4. exit
5. show license detail cme-srst
6. write memory

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> show license detail cme-srst</td>
<td>Displays the available CME-SRST license. Note: The EULA should be in NOT ACCEPTED state.</td>
</tr>
<tr>
<td>Example: Router# show license detail cme-srst</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> license accept end user agreement</td>
<td>Configures a one-time acceptance of the EULA for the CME-SRST license. Accept the EULA by typing YES.</td>
</tr>
<tr>
<td>Example: Router# license accept end user agreement</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> exit</td>
<td>Exits global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# exit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> show license detail cme-srst</td>
<td>Displays the available CME-SRST license. Note: The EULA should be in ACCEPTED state.</td>
</tr>
<tr>
<td>Example: Router# show license detail cme-srst</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> write memory</td>
<td>Saves configuration.</td>
</tr>
<tr>
<td>Example: Router# write memory</td>
<td></td>
</tr>
</tbody>
</table>

Unlicensed Feature: Example

If you try to use a feature that is part of a package that is not enabled, an error message is displayed.

In the following example, the crypto map command is called during configuration and an error message is displayed. This is because, the feature associated with crypto map is part of the securityk9 package and the securityk9 package is not enabled.

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# crypto map
Use the `show license feature` command to view the license features that are enabled. In the following example, the `securityk9` and the `uck9` packages are not enabled.

**Note**

<table>
<thead>
<tr>
<th>Feature name</th>
<th>Enforcement</th>
<th>Evaluation</th>
<th>Subscription</th>
<th>Enabled</th>
<th>RightToUse</th>
</tr>
</thead>
<tbody>
<tr>
<td>appxk9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>uck9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>securityk9</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>ipbasek9</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

**LED Indicators**

For information on LEDs on the router, see "LED Indicators" in the "Overview" section of the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

For information on LEDs on the SSD Carrier Card NIM, see "Overview of the SSD Carrier Card NIM (NIM-SSD)" in the "Installing and Upgrading Internal Modules and FRUs" section of the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

**Related Documentation**

For further information on software licenses, see Software Activation on Cisco Integrated Services Routers and Cisco Integrated Service Routers G2.

For further information on obtaining and installing feature licenses, see Configuring the Cisco IOS Software Activation Feature.

**How to Install and Upgrade the Software**

To install or upgrade the software, use one of the following methods to use the software from a consolidated package or an individual package. Also see the overview section.

- Managing and Configuring a Router to Run Using a Consolidated Package, on page 66
- Managing and Configuring a Router to Run Using Individual Packages, on page 71

**Managing and Configuring a Router to Run Using a Consolidated Package**

**Note**

Do not use these procedures if you also need to install any optional subpackages or plan to upgrade individual subpackages. See Managing and Configuring a Router to Run Using Individual Packages, on page 71.

- Managing and Configuring a Consolidated Package Using copy and boot Commands, on page 67
• Configuring a Router to Boot the Consolidated Package via TFTP Using the boot Command: Example, on page 68

Managing and Configuring a Consolidated Package Using copy and boot Commands

To upgrade a consolidated package, copy the consolidated package to the bootflash: directory on the router using the copy command. After making this copy of the consolidated package, configure the router to boot using the consolidated package file.

The following example shows the consolidated package file being copied to the bootflash: file system via TFTP. The config register is then set to boot using boot system commands, and the boot system commands instruct the router to boot using the consolidated package stored in the bootflash: file system. The new configuration is then saved using the copy running-config startup-config command, and the system is then reloaded to complete the process.

Router# dir bootflash:
Directory of bootflash:
11 drwx 16384 Dec 4 2007 04:32:46 -08:00 lost+found
86401 drwx 4096 Dec 4 2007 06:06:24 -08:00 .ssh
14401 drwx 4096 Dec 4 2007 06:06:36 -08:00 .rollback_timer
28801 drwx 4096 Mar 18 2008 17:31:17 -07:00 .prst_sync
43201 drwx 4096 Dec 4 2007 04:34:45 -08:00 .installer
928862208 bytes total (712273920 bytes free)

Router# copy tftp: bootflash:
Address or name of remote host [?] 172.17.16.81
Source filename [?] /auto/tftp-users/user/isr4400-universalk9.03.10.00.S.153-3.S-ext.SPA.bin
Destination filename [isr4400-universalk9.03.10.00.S.153-3.S-ext.SPA.bin]? Accessing
tftp://172.17.16.81/auto/tftp-users/user/isr4400-universalk9.03.10.00.S.153-3-S-ext.SPA.bin
... Loading /auto/tftp-users/user/isr4400-universalk9.03.10.00.S.153-3-S-ext.SPA.bin from
172.17.16.81 (via GigabitEthernet0):
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[OK - 208904396 bytes]
208904396 bytes copied in 330.453 secs (632176 bytes/sec)

Router# dir bootflash:
Directory of bootflash:
11 drwx 16384 Dec 4 2007 04:32:46 -08:00 lost+found
86401 drwx 4096 Dec 4 2007 06:06:24 -08:00 .ssh
14401 drwx 4096 Dec 4 2007 06:06:36 -08:00 .rollback_timer
28801 drwx 4096 Mar 18 2008 17:31:17 -07:00 .prst_sync
43201 drwx 4096 Dec 4 2007 04:34:45 -08:00 .installer
12 -rw- 208904396 May 28 2008 16:17:34 -07:00 isr4400-universalk9.03.10.00.S.153-3-S-ext.SPA.bin
928862208 bytes total (503156736 bytes free)

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# boot system flash bootflash:isr4400-universalk9.03.10.00.S.153-3-S-ext.SPA.bin
Router(config)# config-reg 0x2102
Router(config)# exit
Router# show run | include boot
boot-start-marker
boot system flash bootflash:isr4400-universalk9.03.10.00.S.153-3-S-ext.SPA.bin
boot-end-marker
Router# copy run start
Destination filename [startup-config]?
Configuring a Router to Boot the Consolidated Package via TFTP Using the boot Command: Example

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# boot system tftp://10.81.116.4/rtp_isr4400-54/isr4400.bin
Router(config)# config-register 0x2102
Router(config)# exit
Router# show run | include boot
boot-start-marker
boot system tftp://10.81.116.4/rtp_isr4400-54/isr4400.bin
boot-end-marker
license boot level adventerprise
Router# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
Router# reload
Proceed with reload? [confirm]
Sep 13 17:42:54.445 R0/0: %PMAN-5-EXITACTION: Process manager is exiting: process exit with
reload chassis code

Initializing Hardware ...

System integrity status: c0000600
Failures detected:
Boot FPGA corrupt

Key Sectors: (Primary,GOOD), (Backup,GOOD), (Revocation,GOOD)
Size of Primary = 2288 Backup = 2288 Revocation = 300

ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec

System Bootstrap, Version 12.2(20120618:163328) [username=ESGROM_20120618_GAMMA 101],
DEVELOPMENT SOFTWARE
Copyright (c) 1994-2014 by cisco Systems, Inc.
Compiled Mon 05/27/2014 12:39:32.05 by username

Current image running: Boot ROM0
Last reset cause: LocalSoft

Cisco ISR 4400 platform with 4194304 Kbytes of main memory

IP_ADDRESS: 172.18.42.119
IP_SUBNET_MASK: 255.255.255.0
DEFAULT_GATEWAY: 172.18.42.1
TFTP_SERVER: 10.81.116.4
TFTP_FILE: rtp_isr4400-54/isr4400.bin
TFTP_MACADDR: a4:4c:11:9d:ad:97
TFTP_VERBOSE: Progress
TFTP_RETRY_COUNT: 18
TFTP_TIMEOUT: 7200
TFTP_CHECKSUM: Yes
ETHER_PORT: 0
ETHER_SPEED_MODE: Auto Detect
link up...
Receiving rtp-isr4400-54/isr4400.bin from 10.81.116.4
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
File reception completed.
Boot image size = 424317088 (0x194a90a0) bytes

ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec

Package header rev 1 structure detected
Calculating SHA-1 hash...done
validate_package: SHA-1 hash:
calculated 7294dffc:892a6c35:a7a133df:18c032fc:0670b303
expected 7294dffc:892a6c35:a7a133df:18c032fc:0670b303
Signed Header Version Based Image Detected

Using FLASH based Keys of type = PRIMARY KEY STORAGE
Using FLASH based Keys of type = ROLLOVER KEY STORAGE
RSA Signed DEVELOPMENT Image Signature Verification Successful.
Package Load Test Latency : 5116 msec
Image validated

%IOSXEBOOT-4-BOOT_ACTIVITY_LONG_TIME: (local/local): load_modules took: 2 seconds,
expected max time 2 seconds

Restricted Rights Legend

Use, duplication, or disclosure by the Government is
subject to restrictions as set forth in subparagraph
(c) of the Commercial Computer Software - Restricted
Rights clause at FAR sec. 52.227-19 and subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS sec. 252.227-7013.

cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706
States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Warning: the compile-time code checksum does not appear to be present.
Cisco ISR4451/K9 (2RU) processor with 1133585K/6147K bytes of memory.
Processor board ID FGL1619100P
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
4194304K bytes of physical memory.
7393215K bytes of Compact flash at bootflash:
7816688K bytes of USB flash at usb0:

Press RETURN to get started!

Router>
Router> Router> enable
Router> show version
Cisco IOS XE Software, Version BLD_V154_3_S_XE313_THROTTLE_LATEST_20140527_070027-ext
Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.4(20140527:095327)
v154_3_s_xe313_throttle-BLD-BLD_V154_3_S_XE313_THROTTLE_LATEST_20140527_070027-ios 156]

IOS XE Version: BLD_V154_3_S_XE313_THROTTLE_LATEST

Cisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON

Router uptime is 0 minutes
Uptime for this control processor is 3 minutes
System returned to ROM by reload
System image file is "tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin"
Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption.
Managing and Configuring a Router to Run Using Individual Packages

To choose between running individual packages or a consolidated package, see Installing the Software - Overview section.

The following topics are included in this section:

• Installing Subpackages from a Consolidated Package, on page 71
• Installing a Firmware Subpackage, on page 83
• Installing Subpackages from a Consolidated Package on a Flash Drive, on page 77

Installing Subpackages from a Consolidated Package

Perform the following procedure to obtain the consolidated package from a TFTP server.

Another variation of this procedure obtains the consolidated package from a USB flash drive. This is described in Installing Subpackages from a Consolidated Package on a Flash Drive.

Before you begin

Copy the consolidated package to the TFTP server.

SUMMARY STEPS

1. show version
2. dir bootflash:
3. show platform
4. mkdir bootflash: URL-to-directory-name
5. request platform software package expand file URL-to-consolidated-package to URL-to-directory-name
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> show version</td>
<td>Shows the version of software running on the router. This can later be compared with the version of software to be installed.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show version</td>
</tr>
<tr>
<td></td>
<td>Cisco IOS Software, IOS-XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.3(20120627:221639) [build_151722 111] Copyright (c) 1986-2012 by Cisco Systems, Inc. Compiled Thu 28-Jun-12 15:17 by mcpre</td>
</tr>
<tr>
<td><strong>Step 2</strong> dir bootflash:</td>
<td>Displays the previous version of software and that a package is present.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# dir bootflash:</td>
</tr>
<tr>
<td><strong>Step 3</strong> show platform</td>
<td>Displays the inventory.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# show platform</td>
</tr>
<tr>
<td></td>
<td>Chassis type: ISR4451/K9</td>
</tr>
<tr>
<td><strong>Step 4</strong> mkdir bootflash: URL-to-directory-name</td>
<td>Creates a directory to save the expanded software image. You can use the same name as the image to name the directory.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# mkdir bootflash:mydir</td>
</tr>
<tr>
<td><strong>Step 5</strong> request platform software package expand file</td>
<td>Expands the software image from the TFTP server (URL-to-consolidated-package) into the directory used to save the image (URL-to-directory-name), which was created in Step 4.</td>
</tr>
<tr>
<td>URL-to-consolidated-package to URL-to-directory-name</td>
<td>Router# request platform software package expand file bootflash:isr4400-universalk9-NIM.bin to bootflash:mydir</td>
</tr>
<tr>
<td><strong>Step 6</strong> reload</td>
<td>Enables ROMMON mode, which allows the software in the consolidated file to be activated.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# reload rommon &gt;</td>
</tr>
<tr>
<td><strong>Step 7</strong> boot URL-to-directory-name/packages.conf</td>
<td>Boots the consolidated package, by specifying the path and name of the provisioning file: packages.conf.</td>
</tr>
<tr>
<td>Example:</td>
<td>rommon 1 &gt; boot bootflash:mydir/packages.conf</td>
</tr>
</tbody>
</table>
Installing Subpackages from a Consolidated Package

<table>
<thead>
<tr>
<th>Step 8</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show version installed</td>
<td>Displays the version of the newly installed software.</td>
</tr>
</tbody>
</table>

**Example:**

```
Router# show version installed
Package: Provisioning File, version: n/a, status: active
```

**Examples**

The initial part of the example shows the consolidated package, `isr4400-universalk9.164422SSA.bin`, being copied to the TFTP server. This is a prerequisite step. The remaining part of the example shows the consolidated file, `packages.conf`, being booted.

```
Router# copy tftp:/isr4400/isr4400-universalk9.164422SSA.bin bootflash:
Address or name of remote host []? 1.1.1.1
Destination filename [isr4400-universalk9.164422SSA.bin]? ...
Accessing tftp://1.1.1.1/isr4400/universalk9.164422SSA.bin...
Loading isr4400/universalk9.164422SSA.bin from 1.1.1.1 (via GigabitEthernet0):

Router# show version
Cisco IOS Software, IOS-XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.3(20120627:221639) [build_151722 111]
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Thu 28-Jun-12 15:17 by mcpre
IOS XE Version: 2012-06-28_15.31_mcpre
Cisco IOS-XE software, Copyright (c) 2005-2012 by cisco Systems, Inc.
All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON
```

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable...
to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at:

If you require further assistance please contact us by sending email to export@cisco.com.

License Level: adventerprise
License Type: EvalRightToUse
Next reload license Level: adventerprise
cisco ISR4451/K9 (2RU) processor with 113676K/6147K bytes of memory.
Processor board ID FGL161611AB
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
4194304K bytes of physical memory.
7393215K bytes of Compact flash at bootflash:

Configuration register is 0x8000

Router# dir bootflash:
Directory of bootflash:

11 drwx 16384 May 3 2012 19:58:37 +00:00 lost+found
178465 drwx 4096 Jun 6 2012 15:20:20 +00:00 core
584065 drwx 4096 Jul 13 2012 19:19:00 +00:00 .prst_sync
405601 drwx 4096 May 3 2012 19:59:30 +00:00 .rollback_timer
113569 drwx 4096 Jul 13 2012 19:19:32 +00:00 tracelogs
64897 drwx 4096 May 3 2012 19:59:42 +00:00 .installer
13 -rw- 1305 May 7 2012 17:43:42 +00:00 startup-config
14 -rw- 1305 May 7 2012 17:43:55 +00:00 running-config
15 -r-- 1541 Jun 4 2012 18:32:41 +00:00 debug.conf
16 -rw- 1252 May 22 2012 19:58:39 +00:00 running-config-20120522
519169 drwx 4096 Jun 4 2012 15:29:01 +00:00 vman_fdb

7451738112 bytes total (7067635712 bytes free)

Router# show platform
Chassis type: ISR4451/K9

Slot Type State Insert time (ago)
--------- ------------------- --------------------- -----------------
0 ISR4451/K9 ok 15:57:33
0/0 ISR4451-6X1GE ok 15:55:24
1 ISR4451/K9 ok 15:57:33
1/0 SM-1T3/E3 ok 15:55:24
2 ISR4451/K9 ok 15:57:33
2/0 SM-1T3/E3 ok 15:55:24
R0 ISR4451/K9 ok, active 15:57:33
F0 ISR4451-FP ok, active 15:57:33
P0 Unknown ps, fail never
P1 XXX-XXXX-XX ok 15:56:58
P2 ACS-4450-FANASSY ok 15:56:58

Slot CPLD Version Firmware Version
--------- ------------------- ---------------------------------------
0 12090323 15.3(01r)S [ciscouser-ISRRO...
Router# mkdir bootflash:isr4400-universalk9.dir1
Create directory filename [isr4400-universalk9.dir1]?
Created dir bootflash:/isr4400-universalk9.dir1
Router# request platform software package expand file bootflash:isr4400-universalk9.NIM.bin
to bootflash:isr4400-universalk9.dir1
Verifying parameters
Validating package type
Copying package files
SUCCESS: Finished expanding all-in-one software package.

Router# reload
Proceed with reload? [confirm]


rommon 1 > boot bootflash:isr4400-universalk9.dir1/packages.conf

File size is 0x00002836
Located isr4400-universalk9.dir1/packages.conf
Image size 10294 inode num 324484, bks cnt 3 blk size 8*512
#
File is comprised of 1 fragments (33%)

is_valid_sha1hash: SHA-1 hash:
calculated 62f6235a:fc98eb3a:85ce183e:834f1cb3:8af71d1
expected 62f6235a:fc98eb3a:85ce183e:834f1cb3:8af71d1
File size is 0x04b3dc00
Located isr4400-universalk9.dir1/isr4400-mono-universalk9-build_164422SSA.pkg
Image size 78896128 inode num 324491, bks cnt 19262 blk size 8*512

File is comprised of 21 fragments (0%)

Router# show version installed
Package: Provisioning File, version: n/a, status: active
File: bootflash:isr4400-universalk9.dir1/packages.conf, on: RP0
Built: n/a, by: n/a
File SHA1 checksum: ad09affd3f8820f4844f27acc1add502e0b8f459

Package: rpbase, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/lsr4400-mono-universalk9-build_164422SSA.pkg, on: RP0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 5e95c9cb4eaf5a4a5a1ac846ee2d0f41d1d026b

Package: firmware_attributes, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_attributes_164422SSA.pkg, on: RP0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 71614f2d9c9d679f96d3c6e99b67d514bd108ce6c99

Package: firmware_dsp_sp2700, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_dsp_164422SSA.pkg, on: RP0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 8334565ed7843fe245883b1d5c6ed933d96d79e

Package: firmware_fpge, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_fpge_164422SSA.pkg, on: RP0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: eb72900ab32c1c50652888ff486cf370ac901dd7

Cisco 4000 Series ISRs Software Configuration Guide
Installing Subpackages from a Consolidated Package

Package: firmware_sm_1t3e3, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:/isr4400-universalk9.dir1/isr4400-firmware_sm_1t3e3_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 80305f15d8ea71ab088647e2766727ac2269871

Package: rpcontrol, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:/isr4400-universalk9.dir1/isr4400-mono-universalk9_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 980fd58fe581e9346c44417b451dc09ebb640ac2

Package: rpcontrol, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:/isr4400-universalk9.dir1/isr4400-rpcontrol-BLD-BLD_MCP_DEV_LATEST_20120710_164422SSA.pkg, on: RP0/1
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 980fd58fe581e9346c44417b451dc09ebb640ac2

Package: firmware_attributes, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:/isr4400-universalk9.dir1/isr4400-firmware_attributes_164422SSA.pkg, on: RP0/1
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 71614f2d9cbe0f96d36e99b67d514bd08c699

Package: firmware_fpge, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:/isr4400-universalk9.dir1/isr4400-firmware_fpge-BLD-BLD_MCP_DEV_LATEST_20120710_164422SSA.pkg, on: RP0/1
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: eb72900ab32c15c50652b88f486cf370ac901dd7

Package: firmware_sm_1t3e3, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:/isr4400-universalk9.dir1/isr4400-firmware_sm_1t3e3-BLD-BLD_MCP_DEV_LATEST_20120710_164422SSA.pkg, on: RP0/1
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 80305f15d8ea71ab088647e2766727ac2269871

Package: rpcontrol, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:/isr4400-universalk9.dir1/isr4400-rpcontrol-BLD-BLD_MCP_DEV_LATEST_20120710_164422SSA.pkg, on: RP0/1
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 980fd58fe581e9346c44417b451dc09ebb640ac2

Package: rpcontrol, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:/isr4400-universalk9.dir1/isr4400-rpcontrol-BLD-BLD_MCP_DEV_LATEST_20120710_164422SSA.pkg, on: RP1
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 980fd58fe581e9346c44417b451dc09ebb640ac2
Installing Subpackages from a Consolidated Package on a Flash Drive

The steps for installing subpackages from a consolidated package on a USB flash drive are similar to those described in Installing Subpackages from a Consolidated Package section.

Step 1  show version
Step 2  dir usb:
Step 3  show platform
Step 4  mkdir bootflash:<URL-to-directory-name>
Step 5  request platform software package expand fileusb: <package-name> to <URL-to-directory-name>
Step 6  reload
Step 7  boot <URL-to-directory-name>/packages.conf
Step 8  show version installed

How to Install and Upgrade the Software for Cisco IOS XE Denali Release 16.3

To install or upgrade the software, use one of the following methods to use the software from a consolidated package or an individual package. Also see Overview section.

• Managing and Configuring a Router to Run Using a Consolidated Package section
• Managing and Configuring a Router to Run Using Individual Packages section
• Configuring a Router to Boot the Consolidated Package via TFTP Using the boot Command: Example section
• Upgrading to Cisco IOS XE Denali Release 16.3 section

Upgrading to Cisco IOS XE Denali Release 16.3

Upgrading the device to Cisco IOS XE Denali Release 16.3 for the first time uses the same procedures as specified in the earlier section. In addition, Cisco IOS XE Denali Release 16.3 requires a minimum ROMMON version. When the device boots up with Cisco IOS XE Denali image for the first time, the device checks the installed version of the ROMMON, and upgrades if the system is running an older version. During the upgrade,
do not power cycle the device. The system automatically power cycles the device after the new ROMMON is installed. After the installation, the system will boot up with the Cisco IOS XE image as normal.

**Note**

When the device boots up for first time and if the device requires an upgrade, the entire boot process may take several minutes. This process will be longer than a normal boot due to the ROMMON upgrade.

The following example illustrates the boot process of a consolidated package:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#boot system tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin
Router(config)#config-register 0x2102
Router(config)#exit
Router# show run | include boot
boot-start-marker
boot system tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin
boot-end-marker
license boot level adventerprise
Router# copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
Router# reload
Proceed with reload? [confirm]
Sep 13 17:42:54.445 R0/0: %PMAN-5-EXITACTION: Process manager is exiting: process exit with reload chassis code

Initializing Hardware ...

System integrity status: c0000600

Key Sectors: (Primary,GOOD), (Backup,GOOD), (Revocation,GOOD)
Size of Primary = 2288 Backup = 2288 Revocation = 300

ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec

System Bootstrap, Version 12.2(20120618:163328) [username-ESGROM_20120618_GAMMA 101], DEVELOPMENT SOFTWARE
Copyright (c) 1994-2014 by cisco Systems, Inc.
Compiled Mon 05/27/2014 12:39:32.05 by username

Current image running: Boot ROM0
Last reset cause: LocalSoft
Cisco ISR 4400 platform with 4194304 Kbytes of main memory

IP_ADDRESS: 172.18.42.119
IP_SUBNET_MASK: 255.255.255.0
DEFAULT_GATEWAY: 172.18.42.1
TFTP_SERVER: 10.81.116.4
TFTP_FILE: rtp-isr4400-54/isr4400.bin
TFTP_MACADDR: a4:4c:11:9d:ad:97
TFTP_VERBOSE: Progress
TFTP_RETRY_COUNT: 18
TFTP_TIMEOUT: 7200
TFTP_CHECKSUM: Yes
ETHER_PORT: 0
ETHER_SPEED_MODE: Auto Detect
link up...
Receiving rtp-isr4400-54/isr4400.bin from 10.81.116.4
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
File reception completed.
Boot image size = 504063931 (0x1e0b67bb) bytes

ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec

Package header rev 1 structure detected
Calculating SHA-1 hash...done
validate_package: SHA-1 hash:
calculated 7294dffc:892a6c35:a7a133df:18c032fc:0670b303
expected 7294dffc:892a6c35:a7a133df:18c032fc:0670b303
Signed Header Version Based Image Detected

Using FLASH based Keys of type = PRIMARY KEY STORAGE
Using FLASH based Keys of type = ROLLOVER KEY STORAGE
RSA Signed DEVELOPMENT Image Signature Verification Successful.

Package Load Test Latency : 5116 msec
Image validated

Detected old ROMMON version 12.2(20150910:184432), upgrade required
Upgrading to newer ROMMON version required by this version of IOS-XE, do not power cycle
the system. A reboot will automatically occur for the new ROMMON to take effect.
selected : 1
Booted : 1
Reset Reason: 1

Info: Upgrading entire flash from the rommon package
Switching to ROM 0
Upgrade image MD5 signature is b702a0a59a46a20a4924f9b17b8f0887
 Upgrade image MD5 signature verification is b702a0a59a46a20a4924f9b17b8f0887
Switching back to ROM 1
ROMMON upgrade complete.

To make the new ROMMON permanent, you must restart the RP.
ROMMON upgrade successful. Rebooting for upgrade to take effect.

Initializing Hardware ...

System integrity status: 00300610
Key Sectors:(Primary,GOOD), (Backup,GOOD), (Revocation,GOOD)
Size of Primary = 2288 Backup = 2288 Revocation = 300

ROM:RSA Self Test Passed

Expected hash:
ddaf35a193617abacc417349ae204131
126f4a89a97ea20a9e66e64b55d39a
2192992a274fc1a36ba3c23a3f3e6bbd
454d4423643ce8e2a9ac94fa54c49f

Obtained hash:
ddaf35a193617abacc417349ae204131
System Bootstrap, Version 12.2(20120618:163328) [username-ESGROM_20120618_GAMMA 101], DEVELOPMENT SOFTWARE
Copyright (c) 1994-2014 by cisco Systems, Inc.
Compiled Mon 05/27/2014 12:39:32.05 by username

CPLD Version: 33 (MM/DD/YY): 06/23/14 Cisco ISR4351/K9 Slot:0

Current image running: Boot ROM1

Last reset cause: ResetRequest
Reading confreg 0x2102

Reading monitor variables from NVRAM
Enabling interrupts... done

Checking for PCIe device presence... done
Cisco ISR4351/K9 platform with 16777216 Kbytes of main memory

autoboot entry: NVRAM VALUES: bootconf: 0x0, autobootstate: 0
autobootcount: 0, autobootsptr: 0x0
Rommon upgrade requested
Flash upgrade reset 0 in progress

Initializing Hardware ...

Checking for PCIe device presence... done
Reading confreg 2102

System integrity status: 0x300610
Key Sectors: (Primary, GOOD), (Backup, GOOD), (Revocation, GOOD)
Size of Primary = 2288, Backup = 2288, Revocation = 288
RSA Self Test Passed

Expected hash:
DDAF35A193617ABACC417349AE204131
12E6FA4E89A97EEA20A9EEE64B55D39A
2192992A274FC1A836BA3C23A3FEEBBB
454D4423643CE80E2A9AC94FA54CA49F

Obtained hash:
DDAF35A193617ABACC417349AE204131
12E6FA4E89A97EEA20A9EEE64B55D39A
2192992A274FC1A836BA3C23A3FEEBBB
454D4423643CE80E2A9AC94FA54CA49F
Sha512 Self Test Passed
Rom image verified correctly

System Bootstrap, Version 16.2(1r), RELEASE SOFTWARE
Copyright (c) 1994-2016 by cisco Systems, Inc.

Current image running: *Upgrade in progress* Boot ROM0

Last reset cause: BootRomUpgrade
ISR4351/K9 platform with 16777216 Kbytes of main memory
Cisco ISR 4400 platform with 4194304 Kbytes of main memory

IP_ADDRESS: 172.18.42.119
IP_SUBNET_MASK: 255.255.255.0
DEFAULT_GATEWAY: 172.18.42.1
TFTP_SERVER: 10.81.116.4
TFTP_FILE: rtp-isr4400-54/isr4400.bin
TFTP_MACADDR: a4:4c:11:9d:ad:97
TFTP_VERBOSE: Progress
TFTP_RETRY_COUNT: 18
TFTP_TIMEOUT: 7200
TFTP_CHECKSUM: Yes
ETHER_PORT: 0
ETHER_SPEED_MODE: Auto Detect

link up...
Receiving rtp-isr4400-54/isr4400.bin from 10.81.116.4
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
File reception completed.
Boot image size = 504063931 (0x1e0b67bb) bytes
Image Base is: 0x56834018
Image Size is: 0x1E089706
Package header rev 1 structure detected
Package type:30000, flags:0x0
IsoSize = 503874534
Parsing package TLV info:
000: 000000090000001D4B45595F544C565F - KEY_TLV_
010: 504143441474455F434F4D0415444942 - PACKAGE_COMPATIB
020: 494C9559000000000000000000000000 - ILITY
030: 4652555F5250555F545950455000000009 - FRU_RP_TYPE
040: 00000018B45595F544C565F5041434B - KEY_TLV_PACK
050: 4147455F424F544152445F434F4D504154 - AGE_BOOTARCH
060: 0000000E41525443485F693638365F5459 - ARCH_i686_TYPE
070: 50455500000000000144B45595F - PE KEY
080: 544C565F424F4524454F434F4D50445145 - TLV_BOARD_COMPAT
090: 000000090000000012424F152445F6973 - BOARD_is
0AO: 72343303055F54595045500000000009 - r4300_TYPE
0BO: 00000018B45595F544C565F543525950 - KEY_TLV_CRYPT
0CO: 544F5F4B45595535452494E7000000009 - TO_KEYSTRING

TLV: T=9, L=29, V=KEY_TLV_PACKAGE_COMPATIBILITY
TLV: T=9, L=11, V=FRU_RP_TYPE
TLV: T=9, L=24, V=KEY_TLV_PACKAGE_BOOTARCH
TLV: T=9, L=14, V=ARCH_i686_TYPE
TLV: T=9, L=20, V=KEY_TLV_BOARD_COMPAT
TLV: T=9, L=18, V=BOARD_isr4300_TYPE
TLV: T=9, L=24, V=KEY_TLV_CRYPTO_KEYSTRING
TLV: T=9, L=10, V=EnCrYplTion
TLV: T=9, L=11, V=CW_BEGIN=##
TLV: T=9, L=19, V=CW_FAMILY=Isr4300S
TLV: T=9, L=53, V=CW_IMAGE=Isr4300-universalk9.2016-06-29_23.31_paj.SSA.bin
TLV: T=9, L=19, V=CW_VERSION=$16.3.1$
TLV: T=9, L=52, V=CW_DESCRIPTION=Cisco IOS Software, IOS-XE Software
TLV: T=9, L=9, V=CW_END=##
Found DIGISIGN TLV type 12 length = 392
RSA Self Test Passed

Expected hash:
DDAE35A193617ABACC417349AE204131
12E6FA4E89A97EA209E6EE4655D39A
2192992A274FC1A836BA3C23A3FEEBBD
Installing the Software

Upgrading to Cisco IOS XE Denali Release 16.3

Obtained hash:
DDAF35A193617ABACC417349AE204131
12B6FAAE89A97EA20A9E0EEE46855D89A
2192992A74FC1A836BA3C23A3FEEBBB
454D4423643CE80E2A9C94FA54CA49F
Sha512 Self Test Passed
Found package arch type ARCH_i686_TYPE
Found package FRU type FRU_RP_TYPE
Calculating SHA-1 hash...Validate package: SHA-1 hash:
calculated 8B082C48:35C23C9E:8A091441:D6FACEE6:B5111533
expected 8B082C48:35C23C9E:8A091441:D6FACEE6:B5111533

Image validated

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706

Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 16.3(20160527:095327)
[v163_throttle]
Copyright (c) 1986-2016 by Cisco Systems, Inc.
Compiled Tue 27-May-16 21:28 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2016 by cisco Systems, Inc.
All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrq.html

If you require further assistance please contact us by sending email to export@cisco.com.
Warning: the compile-time code checksum does not appear to be present.
cisco ISR4451/K9 (2RU) processor with 1133585K/6147K bytes of memory.
Processor board ID FGL1619100P
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
4194304K bytes of physical memory.
7393215K bytes of Compact flash at bootflash:.
7816688K bytes of USB flash at usb0:.

Press RETURN to get started!

Installing a Firmware Subpackage

Before you begin

Obtain a consolidated package that contains your required firmware package and expand the package. (See Managing and Configuring a Router to Run Using Individual Packages, on page 71.) Make a note of the location and name of the firmware package and use this information in the steps below for URL-to-package-name.

You can install a firmware subpackage if the router has been configured using, for example, Managing and Configuring a Router to Run Using Individual Packages, on page 71.

Firmware subpackages are not released individually. You can select a firmware package from within a consolidated package after expanding the consolidated package. The firmware package can then be installed as shown in the procedure below.

Read the Release Notes document pertaining to the consolidated package to verify that the firmware within the consolidated package is compatible with the version of Cisco IOS XE software that is currently installed on a router.

SUMMARY STEPS

1. show version
2. dir bootflash:
3. show platform
4. mkdir bootflash: URL-to-directory-name
5. request platform software package expand file URL-to-consolidated-package to URL-to-directory-name
6. reload
7. boot URL-to-directory-name /packages.conf
8. show version installed
### Detailed Steps

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>show version</strong></td>
<td>Shows the version of software running on the router. This can later be compared with the version of software to be installed.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show version</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>dir bootflash:</strong></td>
<td>Displays the previous version of software and that a package is present.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# dir bootflash:</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>show platform</strong></td>
<td>Checks the inventory. Also see the example in Installing Subpackages from a Consolidated Package section.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show platform</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chassis type: ISR4451/K9</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>mkdir bootflash:</strong></td>
<td>Creates a directory to save the expanded software image. You can use the same name as the image to name the directory.</td>
</tr>
<tr>
<td></td>
<td><strong>URL-to-directory-name</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# mkdir bootflash:mydir</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>request platform software package expand file</strong></td>
<td>Expands the software image from the TFTP server (URL-to-consolidated-package) into the directory used to save the image (URL-to-directory-name), which was created in the Step 4.</td>
</tr>
<tr>
<td></td>
<td><strong>URL-to-consolidated-package to URL-to-directory-name</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# request platform software package expand file bootflash:isr4400-universalk9-NIM.bin to bootflash:mydir</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>reload</strong></td>
<td>Enables ROMMON mode, which allows the software in the consolidated file to be activated.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# reload rommon &gt;</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>boot</strong></td>
<td>Boots the consolidated package by specifying the path and name of the provisioning file: packages.conf.</td>
</tr>
<tr>
<td></td>
<td><strong>URL-to-directory-name /packages.conf</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>rommon 1 &gt; boot bootflash:mydir/packages.conf</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>show version installed</strong></td>
<td>Displays the version of the newly installed software.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# show version installed</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Package: Provisioning File, version: n/a, status: active</td>
<td></td>
</tr>
</tbody>
</table>
Examples

The initial part of the following example shows the consolidated package, isr4400-universalk9.164422SSA.bin, being copied to the TFTP server. This is a prerequisite step. The remaining part of the example shows the consolidated file, packages.conf, being booted.

Router# tftp:isr4400/isr4400-universalk9.164422SSA.bin bootflash:
Address or name of remote host []? 1.1.1.1
Destination filename [isr4400-universalk9.164422SSA.bin]?
Accessing tftp://1.1.1.1/isr4400/isr4400-universalk9.164422SSA.bin...
Loading isr4400/universalk9.164422SSA.bin from 1.1.1.1 (via GigabitEthernet0):

!!!!!!!!!
[OK - 410506248 bytes]

410506248 bytes copied in 338.556 secs (1212521 bytes/sec)

Router# show version
Cisco IOS Software, IOS-XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.3(20120627:221639) [build_151722 111]
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Thu 28-Jun-12 15:17 by mcpre
IOS XE Version: 2012-06-28_15.31_mcpre
Cisco IOS-XE software, Copyright (c) 2005-2012 by cisco Systems, Inc.
All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON
Router uptime is 0 minutes
Uptime for this control processor is 3 minutes
System returned to ROM by reload
System image file is "tftp:isr4400/isr4400.bin"
Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrq.html

If you require further assistance please contact us by sending email to export@cisco.com.

License Level: adventerprise
License Type: EvalRightToUse
Next reload license Level: adventerprise
Cisco ISR4451/K9 (2RU) processor with 1136676K/6147K bytes of memory.
Processor board ID FGL161611AB
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
4194304K bytes of physical memory.
7393215K bytes of Compact flash at bootflash:

Configuration register is 0x8000

Router# dir bootflash:
Directory of bootflash:/

11 drwx 16384 May 3 2012 19:58:37 +00:00 lost+found
178465 drwx 4096 Jun 6 2012 15:20:20 +00:00 core
584065 drwx 4096 Jul 13 2012 19:19:00 +00:00 .prst_sync
405601 drwx 4096 May 3 2012 19:59:30 +00:00 .rollback_timer
113569 drwx 4096 Jul 13 2012 19:19:32 +00:00 tracelogs
64897 drwx 4096 May 3 2012 19:59:42 +00:00 .installer
13 -rw- 1305 May 7 2012 17:43:42 +00:00 startup-config
14 -rw- 1305 May 7 2012 17:43:55 +00:00 running-config
15 -r-- 1541 Jun 4 2012 18:32:41 +00:00 debug.conf
16 -rw- 1252 May 22 2012 19:58:39 +00:00 running-config-20120522
519169 drwx 4096 Jun 4 2012 15:29:01 +00:00 vman_fdb

7451738112 bytes total (7067635712 bytes free)

Router# show platform
Chassis type: ISR4451/K9

Slot Type State Insert time (ago)
--------- ------------------- --------------------- -----------------
0 ISR4451/K9 ok 15:57:33
0/0 ISR4451-6X1GE ok 15:55:24
1 ISR4451/K9 ok 15:57:33
1/0 SM-1T3/E3 ok 15:55:24
2 ISR4451/K9 ok 15:57:33
2/0 SM-1T3/E3 ok 15:55:24
R0 ISR4451/K9 ok, active 15:57:33
F0 ISR4451-FP ok, active 15:57:33
P0 Unknown ps, fail never
P1 XXX-XXXX-XX ok 15:56:58
P2 ACS-4450-FANASSY ok 15:56:58

Slot CPLD Version Firmware Version
--------- ------------------- ---------------------------------------
0 12090323 15.3(01r)S [ciscouser-ISRRO...
1 12090323 15.3(01r)S [ciscouser-ISRRO...
2 12090323 15.3(01r)S [ciscouser-ISRRO...
R0 12090323 15.3(01r)S [ciscouser-ISRRO...
F0 12090323 15.3(01r)S [ciscouser-ISRRO...

Router# mkdir bootflash:isr4400-universalk9.dir1
Create directory filename [isr4400-universalk9.dir1]? 
Created dir bootflash:/isr4400-universalk9.dir1
Router# request platform software package expand file bootflash:isr4400-universalk9.NIM.bin
to
bootflash:isr4400-universalk9.dir1
Verifying parameters
Validating package type
Copying package files
SUCCESS: Finished expanding all-in-one software package.
Router# **reload**
Proceed with reload? [confirm]


rommon 1 > **boot bootflash:isr4400-universalk9.dir1/packages.conf**

File size is 0x00002836
Located isr4400-universalk9.dir1/packages.conf
Image size 10294 inode num 324484, bks cnt 3 blk size 8*512
# File is comprised of 1 fragments (33%)

is_valid_sha1hash: SHA-1 hash:
calculated 62f6235a:fc98eb3a:85ce183e:834f1cb3:8af171d1
epected 62f6235a:fc98eb3a:85ce183e:834f1cb3:8af171d1
File size is 0x04b3dc00
Located isr4400-universalk9.dir1/isr4400-mono-universalk9-build_164422SSA.pkg
Image size 78896128 inode num 324491, bks cnt 19262 blk size 8*512
# File is comprised of 21 fragments (0%)
....

Router# **show version installed**
Package: Provisioning File, version: n/a, status: active
File: bootflash:isr4400-universalk9.dir1/packages.conf, on: RP0
Built: n/a, by: n/a
File SHA1 checksum: ad09affd3f8820f4844f27accladd502e0b8f459

Package: rpbase, version: 2012-07-10_16.22_mcpre, status: active
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 5e95c9cb5c4af5a4a5a1a846ee2d0f41da08b

Package: firmware_attributes, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_attributes_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 71614f2d9cbe7f96d3c6e99b67d514bd108c6c99

Package: firmware_dsp_sp2700, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_dsp_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 83345a5ed78473fe246783bd5c6ed9393d9d79e

Package: firmware_fpge, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_fpge_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: eb72900a9d2c1050652888ff486cf370ac901dd7

Package: firmware_sm_1t3e3, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_sm_1t3e3_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 803005f15d8e71ab088647e2766727ac2269871

Package: rpcontrol, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 980f8b5e581e9346c44417b451d1c09ebb640c2
Installing the Software

Installing a Firmware Subpackage

Package: rpios-universalk9, version: dir1, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.23, by: mcpre
File SHA1 checksum: 27084f7e30aad69d45a33e05d1b00345040799fb

Package: rpaccess, version: 2012-07-10_16.22_mcpre, status: active
File: bootflash:isr4400-universalk9.dir1/isr4400-mono-universalk9_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 0119802deda2da91c38473c47a998fb3ed423448

Package: firmware_attributes, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_attributes_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 71614f2d9cbe7f96d3c6e99b67d514bd108c6c99

Package: firmware_fpge, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_fpge-BLD-BLD_MCP_DEV_LATEST_20120710_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: eb72900ab32c1c50652888ff486cf370ac901dd7

Package: firmware_sm_1t3e3, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-firmware_sm_1t3e3-BLD-BLD_MCP_DEV_LATEST_20120710_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 8334565edf7843fe246783b1d5c6ed933d96d79e

Package: rpcontrol, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpcontrol-BLD-BLD_MCP_DEV_LATEST_20120710_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 980f58fe586e9346c44417b45d4c09ebb640c2

Package: rpios-universalk9, version: 2012-07-10_16.23_mcpre, status: n/a
Built: 2012-07-10_16.23, by: mcpre
File SHA1 checksum: 27084f7e30aad69d45a33e05d1b00345040799fb

Package: rpaccess, version: 2012-07-10_16.22_mcpre, status: n/a
File: bootflash:isr4400-universalk9.dir1/isr4400-rpaccess-BLD-BLD_MCP_DEV_LATEST_20120710_164422SSA.pkg, on: RP0/0
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 0119802deda2da91c38473c47a998fb3ed423448

Package: rpbase, version: 2012-07-10_16.22_mcpre, status: n/a
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 3e95c9cb4ef5a4a51a9ac846ee2d0f41d1a026b

Package: firmware_attributes, version: 2012-07-10_16.22_mcpre, status: n/a
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 71614f2d9cbe7f96d3c6e99b67d514bd108c6c99

Package: firmware_dsp_sp2700, version: 2012-07-10_16.22_mcpre, status: n/a
Built: 2012-07-10_16.22, by: mcpre
File SHA1 checksum: 803005f15d8ea71ab088647e2766727ac2269871
Upgrading the Firmware on xDSL NIMs

To upgrade the firmware on a xDSL Network Interface Module (NIM), perform these steps:

**Before you begin**

When you boot the router in packages.conf mode with the Cisco IOS XE image (super package) during the installation period, you can upgrade or downgrade the firmware without reloading the router. You need to follow the steps described in Installing a Firmware Subpackage section before proceeding with the firmware upgrade.

If you do not boot the router in packages.conf mode with the Cisco IOS XE image, you need to follow the below prerequisites before proceeding with the firmware upgrade:

- Copy the firmware subpackage (NIM firmware) into bootflash:/mydir.
- Send a request to the platform software package expand file `boot flash:/mydir/<IOS-XE image>` to expand the super package.
- Reload the hardware module subslot to boot the module with the new firmware.
- Verify that the module is booted up with the new firmware using the `show platform software subslot x/y module firmware` command.

**SUMMARY STEPS**

1. copy Cisco IOS XE image into bootflash: `mydir`.
2. request platform software package expand file `bootflash:/mydir/<IOS-XE image>` to expand super package.
3. reload.
4. boot `bootflash:/mydir/ /packages.conf`.
5. copy NIM firmware subpackage to the folder `bootflash:/mydir/`.
6. request platform software package install `rp 0 file bootflash:/mydir/<firmware subpackage>`.
7. hw-module subslot `x/y` reload to boot the module with the new firmware.
8. show platform software subslot `0/2 module firmware` to verify that the module is booted up with the new firmware.

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>copy Cisco IOS XE image into bootflash: <code>mydir</code>.&lt;br&gt;<strong>Example:</strong>&lt;br&gt;<code>Router# mkdir bootflash:/mydir</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>request platform software package expand file <code>bootflash:/mydir/&lt;IOS-XE image&gt;</code> to expand super package.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>reload.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>boot <code>bootflash:/mydir/ /packages.conf</code></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>copy NIM firmware subpackage to the folder <code>bootflash:/mydir/</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>request platform software package install <code>rp 0 file bootflash:/mydir/&lt;firmware subpackage&gt;</code></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>hw-module subslot <code>x/y</code> reload to boot the module with the new firmware.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>show platform software subslot <code>0/2 module firmware</code> to verify that the module is booted up with the new firmware.</td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td>2</td>
<td>request platform software package expand file bootflash:/mydir/&lt;IOS-XE image to expand super package.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router# request platform software package expand file bootflash:/mydir/isr4400-universalk9.03.14.00.S.155-1.S-std.SPA.bin</td>
</tr>
<tr>
<td>3</td>
<td>reload.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router# reload rommon &gt;</td>
</tr>
<tr>
<td>4</td>
<td>boot bootflash:mydir//packages.conf.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> rommon 1 &gt; boot bootflash:mydir/packages.conf</td>
</tr>
<tr>
<td>5</td>
<td>copy NIM firmware subpackage to the folder bootflash:mydir/.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router#copy bootflash:/isr4400-firmware_nim_xdsl_2014-11-17_11.05_39n.SSA.pkg bootflash:mydir/</td>
</tr>
<tr>
<td>6</td>
<td>request platform software package install rp 0 file bootflash:/mydir/&lt;firmware subpackage&gt;.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router#request platform software package install rp 0 file bootflash:/isr4400-firmware_nim_xdsl_2014-11-17_11.05_39n.SSA.pkg</td>
</tr>
<tr>
<td>7</td>
<td>hw-module subslot x/y reload to boot the module with the new firmware.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router#hw-module subslot 0/2 reload</td>
</tr>
<tr>
<td>8</td>
<td>show platform software subslot 0/2 module firmware to verify that the module is booted up with the new firmware.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong> Router# show platform software subslot 0/2 module firmware</td>
</tr>
</tbody>
</table>
Examples

The following example shows how to perform firmware upgrade in a router module:

Router#mkdir bootflash:mydir
Create directory filename [mydir]?
Created dir bootflash:/mydir

Copy in progress...
425288648 bytes copied in 44.826 secs (9487544 bytes/sec)

Router#dir bootflash:mydir
Directory of bootflash:/mydir/
632738 -rw- 425288648 Dec 12 2014 09:16:42 +00:00
isr4400-universalk9.03.14.00.S.155-1.S-std.SPA.bin
7451738112 bytes total (474025984 bytes free)

Router#

Router#request platform software package
expand file bootflash:/mydir/isr4400-universalk9.03.14.00.S.155-1.S-std.SPA.bin
Verifying parameters
Validating package type
Copying package files
SUCCESS: Finished expanding all-in-one software package.

Router#reload
Proceed with reload? [confirm]

*Dec 12 09:26:09.874: %SYS-5-RELOAD: Reload requested by console. Reload Reason:
Reload Command.Dec 12 09:26:25.156 RO/0: %PMAN-5-EXITACTION: Process manager is exiting:
process exit with reload chassis code

Initializing Hardware ...

System integrity status: 00000610
Rom image verified correctly
System Bootstrap, Version 15.3(3r)S1, RELEASE SOFTWARE
Copyright (c) 1994-2013 by cisco Systems, Inc.

Current image running: Boot ROM0

Last reset cause: LocalSoft
Cisco ISR4451-X/K9 platform with 4194304 Kbytes of main memory

rommon 1 boot bootflash:mydir/packages.conf

File size is 0x000028f1
Located mydir/packages.conf
Image size
10481 inode num 632741, bks cnt 3 blk size 8*512
#
File size is 0x150ae3cc
Located mydir/iar4000-mono-universalk9.03.14.00.S.155-1.8-std.SPA.pkg
Image size 353035212 ino num 356929, bks cnt 86191 blk size 8*512
Boot image size = 353035212 (0x150ae3cc) bytes

Package header rev 1 structure detected
Calculating SHA-1 hash...done
validate_package: SHA-1 hash:
calculated 8e966678:8afb08f4:8a88bb8f:fe591121:8bddd4b3
expected 8e966678:8afb08f4:8a88bb8f:fe591121:8bddd4b3

RSA Signed RELEASE Image Signature Verification Successful.
Package Load Test Latency : 3799 msec
Image validated

Dec 12 09:28:50.338 R0/0: %FLASH_CHECK-3-DISK_QUOTA: Flash disk quota exceeded
[free space is 61864 kB] - Please clean up files on bootflash.

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706

Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 15.5(1)S,
RELEASE SOFTWARE (fc5)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2014 by Cisco Systems, Inc.
Compiled Thu 20-Nov-14 18:28 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at:

If you require further assistance please contact us by sending email to export@cisco.com.

cisco ISR4451-X/K9 (2RU) processor with 1681388K/6147K bytes of memory.
Processor board ID FTX1736AJUT
2 Ethernet interfaces
4 Gigabit Ethernet interfaces
2 ATM interfaces
32768K bytes of non-volatile configuration memory.
4194304K bytes of physical memory.
7393215K bytes of flash memory at bootflash:

Press RETURN to get started!

*Dec 12 09:28:58.922:
%IOS_LICENSE_IMAGE_APPLICATION-6-LICENSE_LEVEL:
Module name = esg Next reboot level = appxk9 and License = appxk9
*Dec 12 09:28:58.943:
%IOS_LICENSE_IMAGE_APPLICATION-6-LICENSE_LEVEL:
Module name = esg Next reboot level = ipbasek9 and License = ipbasek9
*Dec 12 09:28:58.981:
%ISR_THROUGHPUT-6-LEVEL: Throughput level has been set to 1000000 kbps
*Dec 12 09:29:13.302: %SPAN_TREE-5-EXTENDED_SYSID: Extended SysId enabled for type vlan
*Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface Lsmpi0, changed state to up
*Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface EOBC0, changed state to up
*Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface GigabitEthernet0, changed state to down
*Dec 12 09:29:14.142: %LINK-3-UPDOWN: Interface LIIN0, changed state to up
*Dec 12 09:28:51.438: %CMRP-3-PFU_MISSING:cmnd: The platform does not detect a power supply in slot 1
*Dec 12 09:29:01.256: %CMMPB-6-THROUGHPUT_VALUE:cmnd: Throughput license found, throughput set to 1000000 kbps
*Dec 12 09:29:03.238: %CPPHA-7-START:cpp_ha: CPP 0 preparing ucode
*Dec 12 09:29:11.335: %CPPHA-7-START:cpp_ha: CPP 0 startup init
*Dec 12 09:29:11.645: %CPPHA-7-READY:cpp_ha: CPP 0 loading and initialization complete
*Dec 12 09:29:11.711: %IOSXE-6-PLATFORM:cpp_cp: Process CPP_PPADDR_FILTER__API_CALL__REGISTER
*Dec 12 09:29:16.280: %IOSXE_MGMT-VRF-6-CREATE_SUCCESS_INFO: Management vrf Mgmt-intf created with ID 1, ipv4 table-id 0x1, ipv6 table-id 0x1E000001
*Dec 12 09:29:16.330: %LINEPROTO-5-UPDOWN: Line protocol on Interface Lsmpi0, changed state to up
*Dec 12 09:29:16.330: %LINEPROTO-5-UPDOWN: Line protocol on Interface EOBC0, changed state to up
*Dec 12 09:29:16.330: %LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0, changed state to down
*Dec 12 09:29:16.330: %LINEPROTO-5-UPDOWN: Line protocol on Interface LIIN0, changed state to up
*Dec 12 09:29:16.870: %IOSXE_OIR-6-REMSPF: SPA removed from subslot 0/0, interfaces disabled
*Dec 12 09:29:18.870: %IOSXE_OIR-6-REMSPF: SPA removed from subslot 0/1, interfaces disabled
*Dec 12 09:29:18.871: %IOSXE_OIR-6-REMSPF: SPA removed from subslot 0/2, interfaces disabled
*Dec 12 09:29:18.873: %SPA_OIR-6-OFFLINECARD: SPA (ISR4451-X-4x1GE) offline in subslot 0/0
*Dec 12 09:29:18.874: %SPA_OIR-6-OFFLINECARD: SPA (NIM-VA-B) offline in subslot 0/1
*Dec 12 09:29:18.874: %SPA_OIR-6-OFFLINECARD: SPA (NIM-VA-B) offline in subslot 0/2
*Dec 12 09:29:18.876: %IOSXE_OIR-6-INSF: Card (fp) inserted in slot F0
*Dec 12 09:29:18.876: %IOSXE_OIR-6-OFFLINECARD: Card (fp) online in slot F0
*Dec 12 09:29:18.882: %IOSXE_OIR-6-INSSPA: SPA inserted in subslot 0/0
*Dec 12 09:29:18.884: %IOSXE_OIR-6-INSSPA: SPA inserted in subslot 0/1
*Dec 12 09:29:18.884: %IOSXE_OIR-6-INSSPA: SPA inserted in subslot 0/2
*Dec 12 09:29:18.935: %SYS-5-RESTART: System restarted --
Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 15.5(1)S,
RELEASE SOFTWARE (fc5)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2014 by Cisco Systems, Inc.
Compiled Thu 20-Nov-14 18:28 by mcpre
*Dec 12 09:29:19.895: %SPA-3-ENVMON_NOT_MONITORED:iomd: Environmental monitoring
is not enabled for ISR4451-X-4x1GE[0/0]
*Dec 12 09:29:19.878: %LINK-5-CHANGED: Interface GigabitEthernet0,
changed state to administratively down
*Dec 12 09:29:22.419: %SPA_OIR-6-ONLINECARD: SPA (ISR4451-X-4x1GE) online in subslot 0/0
changed state to down
*Dec 12 09:29:24.354: %LINK-3-UPDOWN: Interface GigabitEthernet0,0/0, changed state to up
*Dec 12 09:29:30.919: %LINK-3-UPDOWN: Interface GigabitEthernet0/0, changed state to up
*Dec 12 09:30:29.152: %SPA_OIR-6-ONLINECARD: SPA (NIM-VA-B) online in subslot 0/1
*Dec 12 09:30:31.152: %LINK-3-UPDOWN: Interface Ethernet0/1/0, changed state to down
*Dec 12 09:31:03.074: %CONTROLLER-5-UPDOWN: Controller VDSL 0/2/0, changed state to up
*Dec 12 09:31:20.188: %LINK-3-UPDOWN: Interface ATM0/1/0, changed state to up
Router>
Router>en
Password:
Router#show controller vdsl 0/2/0
Controller VDSL 0/2/0 is UP
Daemon Status:  UP
XTU-R (DS) XTU-C (US)
Chip Vendor ID: 'BDCM' 'BDCM'
Chip Vendor Specific: 0x0000 0xA41B
Chip Vendor Country: 0xB500 0xB500
Modem Vendor ID: 'CSCO' 0x4602 0x0000
Modem Vendor Specific: 0x4602 0x0000
Modem Vendor Country: 0xB500 0x0000  
Serial Number Near: FOC18426DQ8 4451-X/K15.5(1)S  
Serial Number Far:  
Modem Version Near: 15.5(1)S  
Modem Version Far: 0xa41b  

Modem Status(L1): TC Sync (Showtime!)  
DSL Config Mode: VDSL2  
Trained Mode(L1): G.993.2 (VDSL2) Profile 30a  

TC Mode: PTM  
Selftest Result: 0x00  
DELT configuration: disabled  
DELT state: not running  

Failed full inits: 0  
Short inits: 0  
Failed short inits: 0  

Modem FW Version: 4.14L.04  
Modem PHY Version: A2pv6F039h.d24o_rc1  

Line 1:  
XTU-R (DS) XTU-C (US)  
Trellis: ON ON  
SRA: disabled disabled  
SRA count: 0 0  
Bit swap: enabled enabled  
Bit swap count: 9 0  
Profile 30a: enabled  
Line Attenuation: 3.5 dB 0.0 dB  
Signal Attenuation: 0.0 dB 0.0 dB  
Noise Margin: 30.9 dB 12.4 dB  

Attainable Rate: 200000 kbits/s 121186 kbits/s  
Actual Power: 13.3 dBm 7.2 dBm  

Per Band Status:  
<table>
<thead>
<tr>
<th>Line Attenuation(db)</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>U0</th>
<th>U1</th>
<th>U2</th>
<th>U3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line Attenuation(db)</td>
<td>0.9</td>
<td>1.5</td>
<td>5.5</td>
<td>N/A</td>
<td>0.1</td>
<td>0.9</td>
<td>3.8</td>
</tr>
<tr>
<td>Signal Attenuation(db)</td>
<td>0.8</td>
<td>1.5</td>
<td>5.5</td>
<td>N/A</td>
<td>0.0</td>
<td>0.2</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Noise Margin(db):  
<table>
<thead>
<tr>
<th>Noise Margin(db)</th>
<th>31.1</th>
<th>31.0</th>
<th>30.9</th>
<th>N/A</th>
<th>12.3</th>
<th>12.4</th>
<th>12.5</th>
</tr>
</thead>
</table>

Total FECC: 0 0  
Total ES: 0 0  
Total SES: 0 0  
Total LOSS: 0 0  
Total UAS: 51 51  
Total LPRS: 0 0  
Total LOFS: 0 0  
Total LOLS: 0 0  

DS Channel1  DS Channel0  US Channel1  US Channel0  
Speed (kbps): NA 100014 NA 100014  
SRA Previous Speed: NA 0 NA 0  
Previous Speed: NA 0 NA 0  
Reed-Solomon EC: NA 0 NA 0  
CRC Errors: NA 0 NA 0  
Header Errors: NA 0 NA 0  
Interleave (ms): NA 9.00 NA 0.00  
Actual IIF: NA 4.00 NA 0.00  

Training Log: Stopped  
Training Log Filename: flash:vdsllog.bin  

Router#
Router# copy bootflash:isr4400-firmware_nim_xdsl.2014-11-17_11.05_39n.SSA.pkg bootflash:mydir/
Destination filename [mydir/isr4400-firmware_nim_xdsl.2014-11-17_11.05_39n.SSA.pkg]?
Copy in progress...CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Installing the Software

Finished analysis of software changes

--- Starting update running software ---
Blocking peer synchronization of operating information
Creating the command set placeholder directory
Finding latest command set
Finding latest command shortlist lookup file
Finding latest command shortlist file
Assembling CLI output libraries
Assembling CLI input libraries
Skipping soft links for firmware upgrade
Skipping soft links for firmware upgrade
Assembling Dynamic configuration files
Applying interim IPC and database definitions
rsync: getaddrinfo: cc2-0 873: Name or service not known rsync error:
error in socket IO (code 10) at /auto/mcpbuilds19/release/03.14.00.S/BLD-V03_14_00_S_FC5/contrib/rsync/clientserver.c(104) [sender=2.6.9]
rsync: getaddrinfo: cc2-0 873: Name or service not known rsync error:
error in socket IO (code 10) at /auto/mcpbuilds19/release/03.14.00.S/BLD-V03_14_00_S_FC5/contrib/rsync/clientserver.c(104) [sender=2.6.9]
rsync: getaddrinfo: cc2-0 873: Name or service not known rsync error:
error in socket IO (code 10) at /auto/mcpbuilds19/release/03.14.00.S/BLD-V03_14_00_S_FC5/contrib/rsync/clientserver.c(104) [sender=2.6.9]
Replacing running software
Replacing CLI software
Replacing running software
Replacing CLI software
Reapplying final IPC and database definitions
rsync: getaddrinfo: cc2-0 873: Name or service not known rsync error:
error in socket IO (code 10) at /auto/mcpbuilds19/release/03.14.00.S/BLD-V03_14_00_S_FC5/contrib/rsync/clientserver.c(104) [sender=2.6.9]
Generating software version information
Notifying running software of updates
Unblocking peer synchronization of operating information
Unmounting old packages
Cleaning temporary installation files
Finished update running software

SUCCESS: Finished installing software.

Router#
Router#show platform software subslot 0/2 module firmware
Avg Load info
-------------------------------------------
1.83 1.78 1.44 3/45 607
Kernel distribution info
-------------------------------------------
Linux version 3.4.11-rt19 (sapanwar@blr-atg-001) (gcc version 4.6.2
(Buildroot 2011.11) ) #3 SMP PREEMPT Fri Nov 7 09:26:19 IST 2014
Module firmware versions
-------------------------------------------
Modem Fw Version: 4.14L.04
Modem Phy Version: A2pv6F039h.D24o_rc1
Boot Loader: Secondary
-------------------------------------------
Version: 1.1
Modem Up time
-------------------------------------------
0D 0H 25M 38S
Router#
Router#hw-module subslot 0/2 reload
Proceed with reload of module? [confirm]
Router#
*Dec 12 09:55:59.645: %IOSXE_OIR-6-SOFT_RELOADSPA: SPA(NIM-VAB-A)
reloaded on subslot 0/2
*Dec 12 09:55:59.646: %SPA_OIR-6-OFFLINECARD: SPA (NIM-VAB-A) offline in subslot 0/2
*Dec 12 09:55:59.647: %CONTROLLER-5-UPDOWN: Controller VDSL 0/2/0, changed state to down
*Dec 12 09:57:22.514: new extended attributes received from iomd(slot 0 bay 2 board 0)
*Dec 12 09:57:22.514: %IOSXE_OIR-6-SOFT_RELOADSPA: SPA(NIM-VAB-A)
reloaded on subslot 0/2
*Dec 12 09:57:22.515: %SPA_OIR-6-OFFLINECARD: SPA (NIM-VAB-A) offline in subslot 0/2
Router#
*Dec 12 09:58:35.471: %SPA_OIR-6-ONLINECARD: SPA (NIM-VAB-A) online in subslot 0/2
*Dec 12 09:58:37.470: %LINK-3-UPDOWN: Interface Ethernet0/2/0, changed state to down
*Dec 12 09:58:37.470: %LINK-3-UPDOWN: Interface ATM0/2/0, changed state to down
Router#

Router#show platform software subslot 0/2 module firmware
Avg Load info
-------------------------------------------
0.84 0.23 0.08 1/45 598
Kernel distribution info
-------------------------------------------
Linux version 3.4.11-rt19 (sapanwar@blr-atg-001) (gcc version 4.6.2 (Buildroot 2011.11) )
#6 SMP PREEMPT Mon Nov 17 10:51:41 IST 2014
Module firmware versions
-------------------------------------------
Modem Fw Version: 4.14L.04
Modem Phy Version: A2pv6F039n.d24o_rc1
Boot Loader: Secondary
-------------------------------------------
Version: 1.1
Modem Up time
-------------------------------------------
0D 0H 0M 42S
Router#
Basic Router Configuration

This section includes information about some basic router configuration, and contains the following sections:

- Default Configuration, on page 99
- Configuring Global Parameters, on page 101
- Configuring Gigabit Ethernet Interfaces, on page 101
- Configuring a Loopback Interface, on page 102
- Configuring Module Interfaces, on page 104
- Enabling Cisco Discovery Protocol, on page 104
- Configuring Command-Line Access, on page 104
- Configuring Static Routes, on page 106
- Configuring Dynamic Routes, on page 108

Default Configuration

When you boot up the router, the router looks for a default file name—the PID of the router. For example, the Cisco 4000 Series Integrated Services Routers look for a file named isr4451.cfg. The Cisco 4000 Series ISR looks for this file before finding the standard files-router-config or the ciscortr.cfg.

The Cisco 4000 ISR looks for the isr4451.cfg file in the bootflash. If the file is not found in the bootflash, the router then looks for the standard files-router-config and ciscortr.cfg. If none of the files are found, the router then checks for any inserted USB that may have stored these files in the same particular order.

Note

If there is a configuration file with the PID as its name in an inserted USB, but one of the standard files are in bootflash, the system finds the standard file for use.

Use the `show running-config` command to view the initial configuration, as shown in the following example:

```
Router# show running-config
Building configuration...
Current configuration : 977 bytes
!
version 15.3
service timestamps debug datetime msec
service timestamps log datetime msec
no platform punt-keepalive disable-kernel-core
!
hostname Router
```
! boot-start-marker
boot-end-marker

! vrf definition Mgmt-intf
! address-family ipv4
exit-address-family
! address-family ipv6
exit-address-family
!
no aaa new-model
!
ipv6 multicast rpf use-bgp
!
! multilink bundle-name authenticated
!
redundancy
mode none
!
interface GigabitEthernet0/0/0
no ip address
negotiation auto
!
interface GigabitEthernet0/0/1
no ip address
negotiation auto
!
interface GigabitEthernet0/0/2
no ip address
negotiation auto
!
interface GigabitEthernet0/0/3
no ip address
negotiation auto
!
interface GigabitEthernet0
vrf forwarding Mgmt-intf
no ip address
negotiation auto
!
ip forward-protocol nd
!
no ip http server
no ip http secure-server
!
!
control-plane
!
!
line con 0
stopbits 1
line vty 0 4
login
!

Configuring Global Parameters

To configure the global parameters for your router, follow these steps.

**SUMMARY STEPS**

1. `configure terminal`
2. `hostname name`
3. `enable secret password`
4. `no ip domain-lookup`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>Router&gt; enable</code>&lt;br&gt;<code>Router# configure terminal</code>&lt;br&gt;<code>Router(config)#</code></td>
<td>Enters global configuration mode when using the console port. Use the following to connect to the router with a remote terminal:&lt;br&gt;<code>telnet router-name or address</code>&lt;br&gt;<code>Login: login-id</code>&lt;br&gt;<code>Password: *********</code>&lt;br&gt;<code>Router&gt; enable</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>hostname name</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>Router(config)# hostname Router</code></td>
<td>Specifies the name for the router.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>enable secret password</code>&lt;br&gt;<code>Example:</code>&lt;br&gt;<code>Router(config)# enable secret cr1ny5ho</code></td>
<td>Specifies an encrypted password to prevent unauthorized access to the router.</td>
</tr>
</tbody>
</table>

Configuring Gigabit Ethernet Interfaces

To manually define onboard Gigabit Ethernet interfaces, follow these steps, beginning from global configuration mode.
SUMMARY STEPS

1. interface gigabitethernet slot/bay/port
2. ip address ip-address mask
3. ipv6 address ipv6-address/prefix
4. no shutdown
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters the configuration mode for a Gigabit Ethernet interface on the router.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Step 1</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Sets the IP address and subnet mask for the specified Gigabit Ethernet interface. Use this Step if you are configuring an IPv4 address.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Step 2</strong></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Sets the IPv6 address and prefix for the specified Gigabit Ethernet interface. Use this step instead of Step 2, if you are configuring an IPv6 address.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Step 3</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Enables the Gigabit Ethernet interface and changes its state from administratively down to administratively up.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Step 4</strong></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Exits configuration mode for the Gigabit Ethernet interface and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><strong>Step 5</strong></td>
</tr>
</tbody>
</table>

Configuring a Loopback Interface

**Before you begin**

The loopback interface acts as a placeholder for the static IP address and provides default routing information. To configure a loopback interface, follow these steps.
SUMMARY STEPS

1. interface type number
2. (Option 1) ip address ip-address mask
3. (Option 2) ipv6 address ipv6-address/prefix
4. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters configuration mode on the loopback interface.</td>
</tr>
<tr>
<td>interface type number</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config)# interface Loopback 0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Sets the IP address and subnet mask on the loopback interface. (If you are configuring an IPv6 address, use the ipv6 address ipv6-address/prefix command described below.</td>
</tr>
<tr>
<td>(Option 1) ip address ip-address mask</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# ip address 10.108.1.1 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Sets the IPv6 address and prefix on the loopback interface.</td>
</tr>
<tr>
<td>(Option 2) ipv6 address ipv6-address/prefix</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# 2001:db8::ffff:1/128</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Exits configuration mode for the loopback interface and returns to global configuration mode.</td>
</tr>
<tr>
<td>exit</td>
<td></td>
</tr>
<tr>
<td>Example: Router(config-if)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Example

Verifying Loopback Interface Configuration

The loopback interface in this sample configuration is used to support Network Address Translation (NAT) on the virtual-template interface. This configuration example shows the loopback interface configured on the Gigabit Ethernet interface with an IP address of 192.0.2.0/24, which acts as a static IP address. The loopback interface points back to virtual-template1, which has a negotiated IP address.

```shell
! interface loopback 0
ip address 192.0.2.0 255.255.255.0 (static IP address)
ip nat outside
! interface Virtual-Template1
ip unnumbered loopback0
no ip directed-broadcast
ip nat outside
```
Enter the `show interface loopback` command. You should see an output similar to the following example:

```console
Router# show interface loopback 0
Loopback0 is up, line protocol is up
Hardware is Loopback
Internet address is 200.200.100.1/24
MTU 1514 bytes, BW 8000000 Kbit, DLY 5000 usec,
 reliability 255/255, txload 1/255, rxload 1/255
Encapsulation LOOPBACK, loopback not set
Last input never, output never, output hang never
Last clearing of "show interface" counters never
Queueing strategy: fifo
Output queue 0/0, 0 drops; input queue 0/75, 0 drops
5 minute input rate 0 bits/sec, 0 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
 0 packets input, 0 bytes, 0 no buffer
 Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort
 0 packets output, 0 bytes, 0 underruns
 0 output errors, 0 collisions, 0 interface resets
 0 output buffer failures, 0 output buffers swapped out
```

Alternatively, use the `ping` command to verify the loopback interface, as shown in the following example:

```console
Router# ping 192.0.2.0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 192.0.2.0, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms
```

## Configuring Module Interfaces

For detailed information about configuring service modules, see "Service Modules" in the "Service Module Management" section of the Cisco SM-1T3/E3 Service Module Configuration Guide.

## Enabling Cisco Discovery Protocol

Cisco Discovery Protocol (CDP) is enabled by default on the router.

**Note**

CDP is not enabled by default on Cisco Aggregation Services Routers or on the Cisco CSR 1000v.

For more information on using CDP, see Cisco Discovery Protocol Configuration Guide, Cisco IOS XE Release 3S.

## Configuring Command-Line Access

To configure parameters to control access to the router, follow these steps.
### SUMMARY STEPS

1. `line [aux | console | tty | vty] line-number`
2. `password password`
3. `login`
4. `exec-timeout minutes [seconds]`
5. `exit`
6. `line [aux | console | tty | vty] line-number`
7. `password password`
8. `login`
9. `end`

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>`line [aux</td>
<td>console</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# line console 0</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>password password</code></td>
<td>Specifies a unique password for the console terminal line.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-line)# password 5dr4Hepw3</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>login</code></td>
<td>Enables password checking at terminal session login.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-line)# login</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>exec-timeout minutes [seconds]</code></td>
<td>Sets the interval during which the EXEC command interpreter waits until user input is detected. The default is 10 minutes. Optionally, adds seconds to the interval value. The example provided here shows a timeout of 5 minutes and 30 seconds. Entering a timeout of <code>0 0</code> specifies never to time out.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-line)# exec-timeout 5 30</td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>exit</code></td>
<td>Exits line configuration mode to re-enter global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-line)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>`line [aux</td>
<td>console</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# line vty 0 4</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Static Routes

Static routes provide fixed routing paths through the network. They are manually configured on the router. If the network topology changes, the static route must be updated with a new route. Static routes are private routes unless they are redistributed by a routing protocol.

To configure static routes, follow these steps.

**SUMMARY STEPS**

1. (Option 1) `ip route prefix mask {ip-address | interface-type interface-number [ip-address]}
2. (Option 2) `ipv6 route prefix/mask {ipv6-address | interface-type interface-number [ipv6-address]}
3. `end

---

### Configuring Line Access Commands

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7 password <code>password</code> Example: <code>Router(config-line)# password aldf2ad1</code></td>
<td>Specifies a unique password for the virtual terminal line.</td>
</tr>
<tr>
<td>Step 8 login Example: <code>Router(config-line)# login</code></td>
<td>Enables password checking at the virtual terminal session login.</td>
</tr>
<tr>
<td>Step 9 end Example: <code>Router(config-line)# end</code></td>
<td>Exits line configuration mode, and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

**Example**

The following configuration shows the command-line access commands.

You do not have to input the commands marked **default**. These commands appear automatically in the configuration file that is generated when you use the `show running-config` command.

```
! line console 0
exec-timeout 10 0
password 4youreyesonly
login
transport input none (default)
stopbits 1 (default)
line vty 0 4
password secret
login
!```

Cisco 4000 Series ISRs Software Configuration Guide

Basic Router Configuration

OL-25328-03
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 (Option 1) ip route prefix mask {ip-address</td>
<td>interface-type interface-number [ip-address]}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip route 192.168.1.0 255.255.0.0 10.10.10.2</td>
<td></td>
</tr>
<tr>
<td>Step 2 (Option 2) ipv6 route prefix/mask {ipv6-address</td>
<td>interface-type interface-number [ipv6-address]}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ipv6 route 2001:db8:2::/64</td>
<td></td>
</tr>
<tr>
<td>Step 3 end</td>
<td>Exits global configuration mode and enters privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td></td>
</tr>
</tbody>
</table>

Example

Verifying Configuration

In the following configuration example, the static route sends out all IP packets with a destination IP address of 192.168.1.0 and a subnet mask of 255.255.255.0 on the Gigabit Ethernet interface to another device with an IP address of 10.10.10.2. Specifically, the packets are sent to the configured PVC.

You do not have to enter the command marked **default**. This command appears automatically in the configuration file generated when you use the **running-config** command.

```
! 
ip classless \(default\)
ip route 192.168.1.0 255.255.255.0
```

To verify that you have configured static routing correctly, enter the **show ip route** command (or **show ipv6 route** command) and look for static routes marked with the letter S.

When you use an IPv4 address, you should see verification output similar to the following:

```
Router# **show ip route**
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2
      i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
      IA - IS-IS inter area, * - candidate default, U - per-user static route
      o - ODR, P - periodic downloaded static route

Gateway of last resort is not set
```
When you use an IPv6 address, you should see verification output similar to the following:

```
Router# show ipv6 route
IPv6 Routing Table - default - 5 entries
Codes: C - Connected, L - Local, S - Static, U - Per-user Static route
B - BGP, R - RIP, N - NHRP, I1 - ISIS L1
I2 - ISIS L2, IA - ISIS interarea, IS - ISIS summary, D - EIGRP
EX - EIGRP external, ND - ND Default, NDp - ND Prefix, DCE -
Destination
  C 2001:DB8:3::/64 [0/0]
    via GigabitEthernet0/0/2, directly connected
  S 2001:DB8:2::/64 [1/0]
    via 2001:DB8:3::1
```

Configuring Dynamic Routes

In dynamic routing, the network protocol adjusts the path automatically, based on network traffic or topology. Changes in dynamic routes are shared with other routers in the network.

A router can use IP routing protocols, such as Routing Information Protocol (RIP) or Enhanced Interior Gateway Routing Protocol (EIGRP), to learn about routes dynamically.

- Configuring Routing Information Protocol, on page 108
- Configuring Enhanced Interior Gateway Routing Protocol, on page 111

Configuring Routing Information Protocol

To configure the RIP on a router, follow these steps.

SUMMARY STEPS

1. `router rip`
2. `version {1 | 2}`
3. `network ip-address`
4. `no auto-summary`
5. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>router rip</td>
<td>Enters router configuration mode, and enables RIP on the router.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Router(config)# router rip</td>
<td>Specifies use of RIP version 1 or 2.</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 version \{1 | 2\}

Example:

```plaintext
Router(config-router)# version 2
```

Step 3 network ip-address

Example:

```plaintext
Router(config-router)# network 192.168.1.1
Router(config-router)# network 10.10.7.1
```

Step 4 no auto-summary

Example:

```plaintext
Router(config-router)# no auto-summary
```

Step 5 end

Example:

```plaintext
Router(config-router)# end
```

Example

Verifying Configuration

The following configuration example shows RIP Version 2 enabled in IP networks 10.0.0.0 and 192.168.1.0. To see this configuration, use the `show running-config` command from privileged EXEC mode.

```plaintext
! Router# show running-config
Building configuration...

Current configuration : 1616 bytes
!
! Last configuration change at 03:17:14 EST Thu Sep 6 2012
!
version 15.3
! service timestamps debug datetime msec
service timestamps log datetime msec
no platform punt-keepalive disable-kernel-core
!
hostname Router
!
boot-start-marker
boot-end-marker
!
!
! vrf definition Mgmt-intf
```

! address-family ipv4
exit-address-family
!
address-family ipv6
exit-address-family
!
enable password cisco
!
no aaa new-model
!
transport-map type console consolehandler

banner wait ^C
Waiting for IOS vty line
^C
banner diagnostic ^C
Welcome to diag mode
^C
!
clock timezone EST -4 0
!

ip domain name cisco.com
ip name-server vrf Mgmt-intf 203.0.113.1
ip name-server vrf Mgmt-intf 203.0.113.129
!
ipv6 multicast rpf use-bgp
!
multilink bundle-name authenticated
!
redundancy
mode none
!
ip ftp source-interface GigabitEthernet0
ip tftp source-interface GigabitEthernet0
!
interface GigabitEthernet0/0/0
no ip address
negotiation auto
!
interface GigabitEthernet0/0/1
no ip address
negotiation auto
!
interface GigabitEthernet0/0/2
no ip address
negotiation auto
!
interface GigabitEthernet0/0/3
no ip address
negotiation auto
!
interface GigabitEthernet0
vrf forwarding Mgmt-intf
ip address 172.18.77.212 255.255.255.240
negotiation auto
!
ip forward-protocol nd
!
no ip http server
no ip http secure-server
ip route vrf Mgmt-intf 0.0.0.0 0.0.0.0 172.18.77.209
!
control-plane
!
!
line con 0
stopbits 1
line aux 0
stopbits 1
line vty 0 4
password cisco
login
!
transport type console 0 input consolehandler
!
ntp server vrf Mgmt-intf 10.81.254.131
!
end

To verify that you have configured RIP correctly, enter the `show ip route` command and look for RIP routes marked with the letter R. You should see an output similar to the one shown in the following example:

```
Router# show ip route
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2
       i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
       ia - IS-IS inter area, * - candidate default, U - per-user static route
       o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 1 subnets
C    10.108.1.0 is directly connected, Loopback0
R    3.0.0.0/8 [120/1] via 2.2.2.1, 00:00:02, Ethernet0/0/0
```

Configuring Enhanced Interior Gateway Routing Protocol

To configure Enhanced Interior Gateway Routing Protocol (EIGRP), follow these steps.

SUMMARY STEPS

1. `router eigrp as-number`
2. `network ip-address`
3. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>router eigrp as-number</code></td>
<td>Enters router configuration mode, and enables EIGRP on the router. The autonomous-system number identifies the route to other EIGRP routers and is used to tag the EIGRP information.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# router eigrp 109</code></td>
<td></td>
</tr>
</tbody>
</table>
Purpose

Command or Action

Step 2
network ip-address
Example:
Router(config)# network 192.168.1.0
Router(config)# network 10.10.12.115

Step 3
end
Example:
Router(config-router)# end

Example

Verifying the Configuration

The following configuration example shows the EIGRP routing protocol enabled in IP networks 192.168.1.0 and 10.10.12.115. The EIGRP autonomous system number is 109. To see this configuration, use the `show running-config` command.

Router# show running-config

```
router eigrp 109
    network 192.168.1.0
    network 10.10.12.115
```

To verify that you have configured IP EIGRP correctly, enter the `show ip route` command, and look for EIGRP routes marked by the letter D. You should see verification output similar to the following:

Router# show ip route

```
Codes: C - connected, S - static, R - RIP, M - mobile, B - BGP  
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2  
E1 - OSPF external type 1, E2 - OSPF external type 2  
i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2  
l1 - IS-IS level-1 link, l2 - IS-IS level-2 link, * - candidate default, U - per-user static route  
o - ODR, P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 1 subnets
C    10.108.1.0 is directly connected, Loopback0
D    3.0.0.0/8 [90/409600] via 2.2.2.1, 00:00:02, Ethernet0/0
```
Slot and Subslot Configuration

This chapter contains information on slots and subslots. Slots specify the chassis slot number in your router and subslots specify the slot where the service modules are installed.

For further information on the slots and subslots, see the “About Slots and Interfaces” section in the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

The following section is included in this chapter:
 • Configuring the Interfaces, on page 113

Configuring the Interfaces

The following sections describe how to configure Gigabit interfaces and also provide examples of configuring the router interfaces:
 • Configuring Gigabit Ethernet Interfaces, on page 113
 • Configuring the Interfaces: Example, on page 115
 • Viewing a List of All Interfaces: Example, on page 115
 • Viewing Information About an Interface: Example, on page 115

Configuring Gigabit Ethernet Interfaces

SUMMARY STEPS

1. enable
2. configure terminal
3. interface GigabitEthernet slot/subslot/port
4. ip address ip-address mask [secondary] dhcp pool
5. negotiation auto
6. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface GigabitEthernet slot/subslot/port</td>
<td>Configures a GigabitEthernet interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface GigabitEthernet 0/0/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 ip address ip-address mask [secondary] dhcp pool</td>
<td>Assigns an IP address to the GigabitEthernet</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip address 10.0.0.1 255.255.255.0 dhcp pool</td>
<td></td>
</tr>
<tr>
<td>Step 5 negotiation auto</td>
<td>Selects the negotiation mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# negotiation auto</td>
<td></td>
</tr>
<tr>
<td>Step 6 end</td>
<td>Ends the current configuration session and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Configuring the Interfaces: Example

The following example shows the `interface gigabitEthernet` command being used to add the interface and set the IP address. 0/0/0 is the slot/subslot/port. The ports are numbered 0 to 3.

```
Router# show running-config interface gigabitEthernet 0/0/0
Building configuration...
Current configuration : 71 bytes
!
interface gigabitEthernet0/0/0
no ip address
negotiation auto
end
```

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitEthernet 0/0/0
```

Viewing a List of All Interfaces: Example

In this example, the `show platform software interface summary` and `show interfaces summary` commands are used to display all the interfaces:

```
Router# show platform software interface summary
<table>
<thead>
<tr>
<th>Interface</th>
<th>IHQ</th>
<th>IQD</th>
<th>OHQ</th>
<th>OQD</th>
<th>RXBS</th>
<th>RXPS</th>
<th>TXBS</th>
<th>TXPS</th>
<th>TRTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>* GigabitEthernet0/0/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>* GigabitEthernet0/0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>* GigabitEthernet0/0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>* GigabitEthernet0/0/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>* GigabitEthernet0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

```
Router# show interfaces summary
*: interface is up
IHQ: pkts in input hold queue   IQD: pkts dropped from input queue
OHQ: pkts in output hold queue  OQD: pkts dropped from output queue
RXBS: tx rate (bits/sec)        RXPS: tx rate (pkts/sec)
TXBS: tx rate (bits/sec)        TXPS: tx rate (pkts/sec)
TRTL: throttle count

<table>
<thead>
<tr>
<th>Interface</th>
<th>IHQ</th>
<th>IQD</th>
<th>OHQ</th>
<th>OQD</th>
<th>RXBS</th>
<th>RXPS</th>
<th>TXBS</th>
<th>TXPS</th>
<th>TRTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>* GigabitEthernet0/0/0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>* GigabitEthernet0/0/1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>* GigabitEthernet0/0/2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>* GigabitEthernet0/0/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>* GigabitEthernet0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Viewing Information About an Interface: Example

The following example shows how to display a brief summary of an interface's IP information and status, including the virtual interface bundle information, by using the `show ip interface brief` command:

```
Router# show ip interface brief
<table>
<thead>
<tr>
<th>Interface</th>
<th>IP-Address</th>
<th>OK?</th>
<th>Method</th>
<th>Status</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet0/0</td>
<td>10.0.0.1</td>
<td>YES</td>
<td>manual</td>
<td>down</td>
<td>down</td>
</tr>
<tr>
<td>GigabitEthernet0/0</td>
<td>unassigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Viewing Information About an Interface: Example

<table>
<thead>
<tr>
<th>Interface</th>
<th>IP Address</th>
<th>Status</th>
<th>Location</th>
<th>Uptime</th>
</tr>
</thead>
<tbody>
<tr>
<td>GigabitEthernet0/0/2</td>
<td>10.10.10.1</td>
<td>YES</td>
<td>NVRAM</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet0/0/3</td>
<td>8.8.8.1</td>
<td>YES</td>
<td>NVRAM</td>
<td>up</td>
</tr>
<tr>
<td>GigabitEthernet0</td>
<td>172.18.42.33</td>
<td>YES</td>
<td>NVRAM</td>
<td>up</td>
</tr>
</tbody>
</table>
CHAPTER 10

Process Health Monitoring

This chapter describes how to manage and monitor the health of various components of your router. It contains the following sections:

- Monitoring Control Plane Resources, on page 117
- Monitoring Hardware Using Alarms, on page 120

Monitoring Control Plane Resources

The following sections explain the of memory and CPU monitoring from the perspective of the Cisco IOS process and the overall control plane:

- Avoiding Problems Through Regular Monitoring, on page 117
- Cisco IOS Process Resources, on page 118
- Overall Control Plane Resources, on page 118

Avoiding Problems Through Regular Monitoring

Processes should provide monitoring and notification of their status/health to ensure correct operation. When a process fails, a syslog error message is displayed and either the process is restarted or the router is rebooted. A syslog error message is displayed when a monitor detects that a process is stuck or has crashed. If the process can be restarted, it is restarted; else, the router is restarted.

Monitoring system resources enables you to detect potential problems before they occur, thus avoiding outages. The following are the advantages of regular monitoring:

- Lack of memory on line cards that are in operation for a few years can lead to major outages. Monitoring memory usage helps to identify memory issues in the line cards and enables you to prevent an outage.
- Regular monitoring establishes a baseline for a normal system load. You can use this information as a basis for comparison when you upgrade hardware or software—to see if the upgrade has affected resource usage.
Cisco IOS Process Resources

You can view CPU utilization statistics on active processes and see the amount of memory being used in these processes using the `show memory` command and the `show process cpu` command. These commands provide a representation of memory and CPU utilization from the perspective of only the Cisco IOS process; they do not include information for resources on the entire platform. For example, when the `show memory` command is used in a system with 8 GB RAM running a single Cisco IOS process, the following memory usage is displayed:

```
Router# show memory

Head Total(b) Used(b) Free(b) Lowest(b) Largest(b)
Processor 2ABEA316010 4489061884 314474916 4174586968 3580216380 3512323496
lsmpi_io 2ABFFFAF71A8 6295128 6294212 916 916 916
Critical 2ABEB7C72EB0 1024004 92 1023912 1023912 1023912
```

The `show process cpu` command displays Cisco IOS CPU utilization average:

```
Router# show process cpu

CPU utilization for five seconds: 0%/0%; one minute: 0%; five minutes: 0%

<table>
<thead>
<tr>
<th>PID</th>
<th>Runtime(ms)</th>
<th>Invoked</th>
<th>uSecs</th>
<th>5Sec</th>
<th>1Min</th>
<th>5Min</th>
<th>TTY</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>583</td>
<td>48054</td>
<td>12</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>Chunk Manager</td>
</tr>
<tr>
<td>2</td>
<td>991</td>
<td>176805</td>
<td>5</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>Load Meter</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>IFCOM Msg Hdr</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>Retransmission o</td>
</tr>
<tr>
<td>5</td>
<td>230385</td>
<td>119697</td>
<td>1924</td>
<td>0.00%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0</td>
<td>Check heaps</td>
</tr>
<tr>
<td>6</td>
<td>49</td>
<td>28</td>
<td>1750</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>Pool Manager</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>Timers</td>
</tr>
<tr>
<td>9</td>
<td>17268</td>
<td>644656</td>
<td>26</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>ARP Input</td>
</tr>
<tr>
<td>10</td>
<td>197</td>
<td>922201</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>ARP Background</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>ATM Idle Timer</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>ATM ASYNC PROC</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>AAA_SERVER_DEADT</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>Policy Manager</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>DDR Timers</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>15</td>
<td>66</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>Entity MIB API</td>
</tr>
<tr>
<td>17</td>
<td>13</td>
<td>1195</td>
<td>10</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>EEM ED Syslog</td>
</tr>
<tr>
<td>18</td>
<td>93</td>
<td>46</td>
<td>2021</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>PrstVbl</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0</td>
<td>RO Notify Timers</td>
</tr>
</tbody>
</table>
```

Overall Control Plane Resources

Control plane memory and CPU utilization on each control processor allows you to keep a tab on the overall control plane resources. You can use the `show platform software status control-processor brief` command (summary view) or the `show platform software status control-processor` command (detailed view) to view control plane memory and CPU utilization information.

All control processors should show status, Healthy. Other possible status values are Warning and Critical. Warning indicates that the router is operational, but that the operating level should be reviewed. Critical implies that the router is nearing failure.

If you see a Warning or Critical status, take the following actions:

- Reduce the static and dynamic loads on the system by reducing the number of elements in the configuration or by limiting the capacity for dynamic services.
- Reduce the number of routes and adjacencies, limit the number of ACLs and other rules, reduce the number of VLANs, and so on.
The following sections describe the fields in the `show platform software status control-processor` command output.

Load Average

Load average represents the process queue or process contention for CPU resources. For example, on a single-core processor, an instantaneous load of 7 would mean that seven processes are ready to run, one of which is currently running. On a dual-core processor, a load of 7 would mean that seven processes are ready to run, two of which are currently running.

Memory Utilization

Memory utilization is represented by the following fields:

- **Total**—Total line card memory
- **Used**—Consumed memory
- **Free**—Available memory
- **Committed**—Virtual memory committed to processes

CPU Utilization

CPU utilization is an indication of the percentage of time the CPU is busy, and is represented by the following fields:

- **CPU**—Allocated processor
- **User**—Non-Linux kernel processes
- **System**—Linux kernel process
- **Nice**—Low-priority processes
- **Idle**—Percentage of time the CPU was inactive
- **IRQ**—Interrupts
- **SIRQ**—System Interrupts
- **IOwait**—Percentage of time CPU was waiting for I/O

Example: show platform software status control-processor Command

The following are some examples of using the `show platform software status control-processor` command:

```
Router# show platform software status control-processor
RP0: online, statistics updated 5 seconds ago
Load Average: healthy
  1-Min: 0.07, status: healthy, under 5.00
  5-Min: 0.11, status: healthy, under 5.00
  15-Min: 0.09, status: healthy, under 5.00
Memory (kb): healthy
  Total: 3971216
  Used: 3415976 (86%)
  Free: 555240 (14%)
```
Committed: 2594412 (65%), status: healthy, under 90%

Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
 User: 1.40, System: 1.20, Nice: 0.00, Idle: 97.39
 IRQ: 0.00, SIRO: 0.00, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
 User: 0.89, System: 0.79, Nice: 0.00, Idle: 98.30
 IRQ: 0.00, SIRO: 0.00, IOWait: 0.00
CPU2: CPU Utilization (percentage of time spent)
 User: 0.80, System: 2.50, Nice: 0.00, Idle: 96.70
 IRQ: 0.00, SIRO: 0.00, IOWait: 0.00
CPU3: CPU Utilization (percentage of time spent)
 User: 3.09, System: 6.19, Nice: 0.00, Idle: 90.60
 IRQ: 0.00, SIRO: 0.09, IOWait: 0.00
CPU4: CPU Utilization (percentage of time spent)
 User: 0.10, System: 0.30, Nice: 0.00, Idle: 99.60
 IRQ: 0.00, SIRO: 0.00, IOWait: 0.00
CPU5: CPU Utilization (percentage of time spent)
 User: 0.89, System: 1.59, Nice: 0.00, Idle: 97.50
 IRQ: 0.00, SIRO: 0.00, IOWait: 0.00
CPU6: CPU Utilization (percentage of time spent)
 User: 0.80, System: 1.10, Nice: 0.00, Idle: 98.10
 IRQ: 0.00, SIRO: 0.00, IOWait: 0.00
CPU7: CPU Utilization (percentage of time spent)
 User: 0.20, System: 3.40, Nice: 0.00, Idle: 96.40
 IRQ: 0.00, SIRO: 0.00, IOWait: 0.00

Router# show platform software status control-processor brief
Load Average
Slot Status 1-Min 5-Min 15-Min
RP0 Healthy 0.09 0.10 0.09

Memory (kB)
Slot Status Total Used (Pct) Free (Pct) Committed (Pct)
RP0 Healthy 3971216 3426452 (86%) 544764 (14%) 2595212 (65%)

CPU Utilization
Slot CPU User System Nice Idle IRQ SIRQ IOWait
RP0 0 1.60 0.90 0.00 97.30 0.10 0.10 0.00
 1 0.09 1.29 0.00 98.60 0.00 0.00 0.00
 2 0.10 0.10 0.00 99.79 0.00 0.00 0.00
 3 0.00 0.00 0.00 100.00 0.00 0.00 0.00
 4 0.60 4.90 0.00 94.50 0.00 0.00 0.00
 5 0.70 1.30 0.00 98.00 0.00 0.00 0.00
 6 0.10 0.00 0.00 99.90 0.00 0.00 0.00
 7 1.39 0.49 0.00 98.10 0.00 0.00 0.00

Monitoring Hardware Using Alarms

- Router Design and Monitoring Hardware, on page 121
- BootFlash Disk Monitoring, on page 121
- Approaches for Monitoring Hardware Alarms, on page 121
Router Design and Monitoring Hardware

The router sends alarm notifications when problems are detected, allowing you to monitor the network remotely. You do not need to use `show` commands to poll devices on a routine basis; however, you can perform onsite monitoring if you choose.

Bootflash Disk Monitoring

The bootflash disk must have enough free space to store two core dumps. This condition is monitored, and if the bootflash disk is too small to store two core dumps, a syslog alarm is generated, as shown in the following example:

Aug 22 13:40:41.038 R0/0: %FLASH_CHECK-3-DISK_QUOTA: Flash disk quota exceeded
[free space is 7084440 kB] - Please clean up files on bootflash.

The size of the bootflash disk must be at least of the same size as that of the physical memory installed on the router. If this condition is not met, a syslog alarm is generated as shown in the following example:

%IOSXEBOOT-2-FLASH_SIZE_CHECK: (rp/0): Flash capacity (8 GB) is insufficient for fault analysis based on installed memory of RP (16 GB)
%IOSXEBOOT-2-FLASH_SIZE_CHECK: (rp/0): Please increase the size of installed flash to at least 16 GB (same as physical memory size)

Approaches for Monitoring Hardware Alarms

• Onsite Network Administrator Responds to Audible or Visual Alarms, on page 121
• Viewing the Console or Syslog for Alarm Messages, on page 122
• Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP, on page 124

Onsite Network Administrator Responds to Audible or Visual Alarms

• About Audible and Visual Alarms, on page 121
• Clearing an Audible Alarm, on page 121
• Clearing a Visual Alarm, on page 122

About Audible and Visual Alarms

An external element can be connected to a power supply using the DB-25 alarm connector on the power supply. The external element is a DC light bulb for a visual alarm and a bell for an audible alarm.

If an alarm illuminates the CRIT, MIN, or MAJ LED on the faceplate of the router, and a visual or audible alarm is wired, the alarm also activates an alarm relay in the power supply DB-25 connector, and either the bell rings or the light bulb flashes.

Clearing an Audible Alarm

To clear an audible alarm, perform one of the following tasks:
• Press the Audible Cut Off button on the faceplate.
• Enter the clear facility-alarm command.

Clearing a Visual Alarm

To clear a visual alarm, you must resolve the alarm condition. The clear facility-alarm command does not clear an alarm LED on the faceplate or turn off the DC light bulb. For example, if a critical alarm LED is illuminated because an active module was removed without a graceful deactivation, the only way to resolve that alarm is to replace the module.

Viewing the Console or Syslog for Alarm Messages

The network administrator can monitor alarm messages by reviewing alarm messages sent to the system console or to a system message log (syslog).

• Enabling the logging alarm Command, on page 122
• Examples of Alarm Messages, on page 122
• Reviewing and Analyzing Alarm Messages, on page 124

Enabling the logging alarm Command

The logging alarm command must be enabled for the system to send alarm messages to a logging device, such as the console or a syslog. This command is not enabled by default.

You can specify the severity level of the alarms to be logged. All the alarms at and above the specified threshold generate alarm messages. For example, the following command sends only critical alarm messages to logging devices:

```
Router(config)# logging alarm critical
```

If alarm severity is not specified, alarm messages for all severity levels are sent to logging devices.

Examples of Alarm Messages

The following are examples of alarm messages that are sent to the console when a module is removed before performing a graceful deactivation. The alarm is cleared when the module is reinserted.

Module Removed

*Aug 22 13:27:33.774: %ISR4451-X_OIR-6-REMSPA: Module removed from subslot 1/1, interfaces disabled
*Aug 22 13:27:33.775: %SPA_OIR-6-OFFLINECARD: Module (SPA-4XT-SERIAL) offline in subslot 1/1

Module Reinserted

*Aug 22 13:32:29.447: %ISR4451-X_OIR-6-INSSPA: Module inserted in subslot 1/1
*Aug 22 13:32:34.916: %SPA_OIR-6-ONLINECARD: Module (SPA-4XT-SERIAL) online in subslot 1/1
*Aug 22 13:32:35.523: %LINK-3-UPDOWN: SIP1/1: Interface EOBC1/1, changed state to up

Alarms

To view alarms, use the show facility-alarm status command. The following example shows a critical alarm for the power supply:
Router# `show facility-alarm status`

System Totals

Critical: 5
Major: 0
Minor: 0

<table>
<thead>
<tr>
<th>Source</th>
<th>Severity</th>
<th>Description</th>
<th>[Index]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Bay 0</td>
<td>CRITICAL</td>
<td>Power Supply/FAN Module Missing</td>
<td>[0]</td>
</tr>
<tr>
<td>GigabitEthernet0/0/0</td>
<td>INFO</td>
<td>Physical Port Link Down</td>
<td>[1]</td>
</tr>
<tr>
<td>GigabitEthernet0/0/1</td>
<td>INFO</td>
<td>Physical Port Link Down</td>
<td>[1]</td>
</tr>
<tr>
<td>GigabitEthernet0/0/2</td>
<td>INFO</td>
<td>Physical Port Link Down</td>
<td>[1]</td>
</tr>
<tr>
<td>GigabitEthernet0/0/3</td>
<td>INFO</td>
<td>Physical Port Link Down</td>
<td>[1]</td>
</tr>
<tr>
<td>xcvr container 0/0/0</td>
<td>INFO</td>
<td>Transceiver Missing</td>
<td>[0]</td>
</tr>
<tr>
<td>xcvr container 0/0/1</td>
<td>INFO</td>
<td>Transceiver Missing</td>
<td>[0]</td>
</tr>
<tr>
<td>xcvr container 0/0/2</td>
<td>INFO</td>
<td>Transceiver Missing</td>
<td>[0]</td>
</tr>
<tr>
<td>xcvr container 0/0/3</td>
<td>INFO</td>
<td>Transceiver Missing</td>
<td>[0]</td>
</tr>
</tbody>
</table>

To view critical alarms, use the `show facility-alarm status critical` command, as shown in the following example:

Router# `show facility-alarm status critical`

System Totals

Critical: 5
Major: 0
Minor: 0

<table>
<thead>
<tr>
<th>Source</th>
<th>Severity</th>
<th>Description</th>
<th>[Index]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Bay 0</td>
<td>CRITICAL</td>
<td>Power Supply/FAN Module Missing</td>
<td>[0]</td>
</tr>
<tr>
<td>GigabitEthernet0/0/0</td>
<td>INFO</td>
<td>Physical Port Link Down</td>
<td>[1]</td>
</tr>
<tr>
<td>GigabitEthernet0/0/1</td>
<td>INFO</td>
<td>Physical Port Link Down</td>
<td>[1]</td>
</tr>
<tr>
<td>GigabitEthernet0/0/2</td>
<td>INFO</td>
<td>Physical Port Link Down</td>
<td>[1]</td>
</tr>
<tr>
<td>GigabitEthernet0/0/3</td>
<td>INFO</td>
<td>Physical Port Link Down</td>
<td>[1]</td>
</tr>
</tbody>
</table>

To view the operational state of the major hardware components on the router, use the `show platform diag` command. This example shows that power supply P0 has failed:

Router# `show platform diag`

Chassis type: ISR4451/K9

Slot: 0, ISR4451-NGSM
- Running state: ok
- Internal state: online
- Internal operational state: ok
- Physical insert detect time: 00:01:09 (1w0d ago)
- Software declared up time: 00:01:42 (1w0d ago)
- CPLD version: 12061320
- Firmware version: 12.2(20120618:163328)[ciscouser-ESGROM_20120618_GAMMA 101]

Sub-slot: 0/0, ISR4451-4X1GE
- Operational status: ok
- Internal state: inserted
- Physical insert detect time: 00:02:48 (1w0d ago)
- Logical insert detect time: 00:02:48 (1w0d ago)

Slot: 1, ISR4451-NGSM
- Running state: ok
- Internal state: online
- Internal operational state: ok
- Physical insert detect time: 00:01:09 (1w0d ago)
- Software declared up time: 00:01:43 (1w0d ago)
- CPLD version: 12061320
- Firmware version: 12.2(20120618:163328)[ciscouser-ESGROM_20120618_GAMMA 101]

Slot: 2, ISR4451-NGSM
- Running state: ok
- Internal state: online
- Internal operational state: ok
Reviewing and Analyzing Alarm Messages

To facilitate the review of alarm messages, you can write scripts to analyze alarm messages sent to the console or syslog. Scripts can provide reports on events such as alarms, security alerts, and interface status.

Syslog messages can also be accessed through Simple Network Management Protocol (SNMP) using the history table defined in the CISCO-SYSLOG-MIB.

Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP

The SNMP is an application-layer protocol that provides a standardized framework and a common language used for monitoring and managing devices in a network. Of all the approaches to monitor alarms, SNMP is the best approach to monitor more than one router in an enterprise and service provider setup.

SNMP provides notification of faults, alarms, and conditions that might affect services. It allows a network administrator to access router information through a network management system (NMS) instead of reviewing logs, polling devices, or reviewing log reports.

To use SNMP to get alarm notification, use the following MIBs:

- ENTITY-MIB, RFC 4133 (required for the CISCO-ENTITY-ALARM-MIB and CISCO-ENTITY-SENSOR-MIB to work)
• CISCO-ENTITY-ALARM-MIB
• CISCO-ENTITY-SENSOR-MIB (for transceiver environmental alarm information, which is not provided through the CISCO-ENTITY-ALARM-MIB)
Network Management System Alerts a Network Administrator when an Alarm is Reported Through SNMP
System Messages

System messages are saved in a log file or directed to other devices from the software running on a router. These messages are also known as syslog messages. System messages provide you with logging information for monitoring and troubleshooting purposes.

The following sections are included in this chapter:

- Information About Process Management, on page 127
- How to Find Error Message Details, on page 127

Information About Process Management

You can access system messages by logging in to the console through Telnet protocol and monitoring your system components remotely from any workstation that supports the Telnet protocol.

Starting and monitoring software is referred to as process management. The process management infrastructure for a router is platform independent, and error messages are consistent across platforms running on Cisco IOS XE. You do not have to be directly involved in process management, but we recommend that you read the system messages that refer to process failures and other issues.

How to Find Error Message Details

To show further details about a process management or a syslog error message, enter the error message into the Error Message Decoder tool at: https://www.cisco.com/cgi-bin/Support/Errordecoder/index.cgi.

For example, enter the message %PMAN-0-PROCESS_NOTIFICATION into the tool to view an explanation of the error message and the recommended action to be taken.

The following are examples of the description and the recommended action displayed by the Error Message Decoder tool for some of the error messages.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>%PMAN-0-PROCESS_NOTIFICATION</td>
<td>The process lifecycle notification component failed because [chars]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cisco 4000 Series ISRs Software Configuration Guide

OL-29328-03

127
The process lifecycle notification component failed, preventing proper detection of a process start and stop. This problem is likely the result of a software defect in the software subpackage.

Note the time of the message and investigate the kernel error message logs to learn more about the problem and see if it is correctable. If the problem cannot be corrected or the logs are not helpful, copy the error message exactly as it appears on the console along with the output of the `show tech-support` command and provide the gathered information to a Cisco technical support representative.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>%PMAN-0-PROCFAILCRIT A critical process [chars] has failed (rc [dec])</td>
<td>Note the time of the message and investigate the error message logs to learn more about the problem. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the <code>show logging</code> and <code>show tech-support</code> commands and your pertinent troubleshooting logs.</td>
</tr>
</tbody>
</table>

A process important to the functioning of the router has failed.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>%PMAN-3-PROCFAILOPT An optional process [chars] has failed (rc [dec])</td>
<td>Note the time of the message and investigate the error message logs to learn more about the problem. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the <code>show logging</code> and <code>show tech-support</code> commands and your pertinent troubleshooting logs.</td>
</tr>
</tbody>
</table>
A process that does not affect the forwarding of traffic has failed.

<table>
<thead>
<tr>
<th>Error Message</th>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>%PMAN-3-PROCFAIL The process [chars] has failed (rc [dec])</td>
<td>The process has failed as the result of an error.</td>
<td>This message will appear with other messages related to the process. Check the other messages to determine the reason for the failures and see if corrective action can be taken. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the show logging and show tech-support commands and your pertinent troubleshooting logs.</td>
</tr>
</tbody>
</table>
Error Message: %PMAN-3-PROCFAIL_IGNORE [chars] process exits and failures are being ignored due to debug settings. Normal router functionality will be affected. Critical router functions like RP switchover, router reload, FRU resets, etc. may not function properly.

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A process failure is being ignored due to the user-configured debug settings.</td>
<td>If this behavior is desired and the debug settings are set according to a user's preference, no action is needed. If the appearance of this message is viewed as a problem, change the debug settings. The router is not expected to behave normally with this debug setting. Functionalities such as SSO switchover, router reloads, FRU resets, and so on will be affected. This setting should only be used in a debug scenario. It is not normal to run the router with this setting.</td>
</tr>
</tbody>
</table>

Error Message: %PMAN-3-PROCHOLDDOWN The process [chars] has been held down (rc [dec])

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The process was restarted too many times with repeated failures and has been placed in the hold-down state.</td>
<td>This message will appear with other messages related to the process. Check the other messages to determine the reason for the failures and see if corrective action can be taken. If the problem persists, copy the message exactly as it appears on the console or in the system log. Research and attempt to resolve the issue using the tools and utilities provided at: http://www.cisco.com/tac. With some messages, these tools and utilities will supply clarifying information. Search for resolved software issues using the Bug Search Tool at: http://www.cisco.com/cisco/psn/bssprt/bss. If you still require assistance, open a case with the Technical Assistance Center at: http://tools.cisco.com/ServiceRequestTool/create/, or contact your Cisco technical support representative and provide the representative with the information you have gathered. Attach the following information to your case in nonzipped, plain-text (.txt) format: the output of the <code>show logging</code> and <code>show tech-support</code> commands and your pertinent troubleshooting logs.</td>
</tr>
</tbody>
</table>

Error Message: %PMAN-3-RELOAD_RP_SB_NOT_READY : Reloading: [chars]

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The route processor is being reloaded because there is no ready standby instance.</td>
<td>Ensure that the reload is not due to an error condition.</td>
</tr>
</tbody>
</table>

Error Message: %PMAN-3-RELOAD_RP : Reloading: [chars]
The RP is being reloaded. Ensure that the reload is not due to an error condition. If it is due to an error condition, collect information requested by the other log messages.

Error Message: `%PMAN-3-RELOAD_SYSTEM : Reloading: [chars]`

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The system is being reloaded.</td>
<td>Ensure that the reload is not due to an error condition. If it is due to an error condition, collect information requested by the other log messages.</td>
</tr>
</tbody>
</table>

Error Message: `%PMAN-3-PROC_BAD_EXECUTABLE : Bad executable or permission problem with process [chars]`

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The executable file used for the process is bad or has permission problem.</td>
<td>Ensure that the named executable is replaced with the correct executable.</td>
</tr>
</tbody>
</table>

Error Message: `%PMAN-3-PROC_BAD_COMMAND : Non-existent executable or bad library used for process <process name>`

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The executable file used for the process is missing, or a dependent library is bad.</td>
<td>Ensure that the named executable is present and the dependent libraries are good.</td>
</tr>
</tbody>
</table>

Error Message: `%PMAN-3-PROC.EMPTY_EXEC_FILE : Empty executable used for process [chars]`

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The executable file used for the process is empty.</td>
<td>Ensure that the named executable is non-zero in size.</td>
</tr>
</tbody>
</table>

Error Message: `%PMAN-5-EXITACTION : Process manager is exiting: [chars]`

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The process manager is exiting.</td>
<td>Ensure that the process manager is not exiting due to an error condition. If it is due to an error condition, collect information requested by the other log messages.</td>
</tr>
</tbody>
</table>

Error Message: `%PMAN-6-PROC.SHUT : The process [chars] has shutdown`

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The process has gracefully shut down.</td>
<td>No user action is necessary. This message is provided for informational purposes only.</td>
</tr>
</tbody>
</table>

Error Message: `%PMAN-6-PROC.START : The process [chars] has started`

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The process has launched and is operating properly. No user action is necessary. This message is provided for informational purposes only.

Error Message: %PMAN-6-PROCSTATELESS : The process [chars] is restarting stateless

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Recommended Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>The process has requested a stateless restart.</td>
<td>No user action is necessary. This message is provided for informational purposes only.</td>
</tr>
</tbody>
</table>
Trace Management

The following sections are included in this chapter:

- Tracing Overview, on page 133
- How Tracing Works, on page 133
- Tracing Levels, on page 134
- Viewing a Tracing Level, on page 135
- Setting a Tracing Level, on page 137
- Viewing the Content of the Trace Buffer, on page 137

Tracing Overview

Tracing is a function that logs internal events. Trace files containing trace messages are automatically created and saved to the tracelogs directory on the hard disk: file system on the router, which stores tracing files in bootflash.

The contents of trace files are useful for the following purposes:

- Troubleshooting—Helps to locate and solve an issue with a router. The trace files can be accessed in diagnostic mode even if other system issues are occurring simultaneously.

- Debugging—Helps to obtain a detailed view of system actions and operations.

How Tracing Works

Tracing logs the contents of internal events on a router. Trace files containing all the trace output pertaining to a module are periodically created and updated and stored in the tracelog directory. Trace files can be erased from this directory to recover space on the file system without impacting system performance. The files can be copied to other destinations using file transfer functions (such as FTP and TFTP) and opened using a plain text editor.

Note

Tracing cannot be disabled on a router.

Use the following commands to view trace information and set tracing levels:
• **show platform software trace message**—Shows the most recent trace information for a specific module. This command can be used in privileged EXEC and diagnostic modes. When used in diagnostic mode, this command can gather trace log information during a Cisco IOS XE failure.

• **set platform software trace**—Sets a tracing level that determines the types of messages that are stored in the output. For more information on tracing levels, see *Tracing Levels, on page 134*.

Tracing Levels

Tracing levels determine how much information should be stored about a module in the trace buffer or file. The following table shows all the tracing levels that are available and provides descriptions of what types of messages are displayed with each tracing level.

Table 10: Tracing Levels and Descriptions

<table>
<thead>
<tr>
<th>Tracing Level</th>
<th>Level Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>0</td>
<td>The message is regarding an issue that makes the system unusable.</td>
</tr>
<tr>
<td>Alert</td>
<td>1</td>
<td>The message is regarding an action that must be taken immediately.</td>
</tr>
<tr>
<td>Critical</td>
<td>2</td>
<td>The message is regarding a critical condition. This is the default setting for every module on the router.</td>
</tr>
<tr>
<td>Error</td>
<td>3</td>
<td>The message is regarding a system error.</td>
</tr>
<tr>
<td>Warning</td>
<td>4</td>
<td>The message is regarding a system warning.</td>
</tr>
<tr>
<td>Notice</td>
<td>5</td>
<td>The message is regarding a significant issue, but the router is still working normally.</td>
</tr>
<tr>
<td>Informational</td>
<td>6</td>
<td>The message is useful for informational purposes only.</td>
</tr>
<tr>
<td>Debug</td>
<td>7</td>
<td>The message provides debug-level output.</td>
</tr>
<tr>
<td>Verbose</td>
<td>8</td>
<td>All possible tracing messages are sent.</td>
</tr>
</tbody>
</table>
If a tracing level is set, messages are collected from both lower tracing levels and from its own level.

For example, setting the tracing level to 3 (error) means that the trace file will contain output messages for levels: 0 (emergencies), 1 (alerts), 2 (critical), and 3 (error).

If you set the trace level to 4 (warning), it results in output messages for levels: 0 (emergencies), 1 (alerts), 2 (critical), 3 (error), and 4 (warning).

The default tracing level for every module on the router is 5 (notice).

A tracing level is not set in a configuration mode, which results in tracing-level settings being returned to default values after the router reloads.

Caution

Setting the tracing level of a module to debug level or higher can have a negative impact on the performance.

Caution

Setting high tracing levels on a large number of modules can severely degrade performance. If a high tracing level is required in a specific context, it is almost always preferable to set the tracing level of a single module to a higher level rather than setting multiple modules to high levels.

Viewing a Tracing Level

By default, all the modules on a router are set to 5 (notice). This setting is maintained unless changed by a user.

To see the tracing level for a module on a router, enter the `show platform software trace level` command in privileged EXEC mode or diagnostic mode.

The following example shows how the `show platform software trace level` command is used to view the tracing levels of the forwarding manager processes on an active RP:

```
Router# show platform software trace level forwarding-manager rp active
Module Name     Trace Level
-----------------    ---------
  acl              Notice
  binos            Notice
  binos/brand      Notice
  bipc             Notice
```
<table>
<thead>
<tr>
<th>Trace Component</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>bsignal</td>
<td>Notice</td>
</tr>
<tr>
<td>btrace</td>
<td>Notice</td>
</tr>
<tr>
<td>cce</td>
<td>Notice</td>
</tr>
<tr>
<td>cdllib</td>
<td>Notice</td>
</tr>
<tr>
<td>cef</td>
<td>Notice</td>
</tr>
<tr>
<td>chasfs</td>
<td>Notice</td>
</tr>
<tr>
<td>chasutil</td>
<td>Notice</td>
</tr>
<tr>
<td>erspan</td>
<td>Notice</td>
</tr>
<tr>
<td>ess</td>
<td>Notice</td>
</tr>
<tr>
<td>ether-channel</td>
<td>Notice</td>
</tr>
<tr>
<td>evlib</td>
<td>Notice</td>
</tr>
<tr>
<td>evutil</td>
<td>Notice</td>
</tr>
<tr>
<td>file_alloc</td>
<td>Notice</td>
</tr>
<tr>
<td>fman_rp</td>
<td>Notice</td>
</tr>
<tr>
<td>fpm</td>
<td>Notice</td>
</tr>
<tr>
<td>fw</td>
<td>Notice</td>
</tr>
<tr>
<td>icmp</td>
<td>Notice</td>
</tr>
<tr>
<td>interfaces</td>
<td>Notice</td>
</tr>
<tr>
<td>iosd</td>
<td>Notice</td>
</tr>
<tr>
<td>ipc</td>
<td>Notice</td>
</tr>
<tr>
<td>ipclog</td>
<td>Notice</td>
</tr>
<tr>
<td>ihc</td>
<td>Notice</td>
</tr>
<tr>
<td>IPsec</td>
<td>Notice</td>
</tr>
<tr>
<td>mgmt-acl</td>
<td>Notice</td>
</tr>
<tr>
<td>mlp</td>
<td>Notice</td>
</tr>
<tr>
<td>mqipc</td>
<td>Notice</td>
</tr>
<tr>
<td>nat</td>
<td>Notice</td>
</tr>
<tr>
<td>nbar</td>
<td>Notice</td>
</tr>
<tr>
<td>netflow</td>
<td>Notice</td>
</tr>
<tr>
<td>om</td>
<td>Notice</td>
</tr>
<tr>
<td>peer</td>
<td>Notice</td>
</tr>
<tr>
<td>qos</td>
<td>Notice</td>
</tr>
<tr>
<td>route-map</td>
<td>Notice</td>
</tr>
<tr>
<td>sbc</td>
<td>Notice</td>
</tr>
<tr>
<td>services</td>
<td>Notice</td>
</tr>
<tr>
<td>sw_wdog</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_acl_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_acl_db_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_cdlcore_message</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_cef_config_common_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_cef_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_dpidb_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_fman_rp_comm_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_fman_rp_message</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_fw_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_hapi_tdl_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_icmp_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_ip_options_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_ipc_ack_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_IPsec_db_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_mcp_comm_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_mlp_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_mlp_db_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_om_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_ui_message</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_ui_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdl_urpf_config_type</td>
<td>Notice</td>
</tr>
<tr>
<td>tdllib</td>
<td>Notice</td>
</tr>
<tr>
<td>trans_avl</td>
<td>Notice</td>
</tr>
<tr>
<td>uihandler</td>
<td>Notice</td>
</tr>
<tr>
<td>uipeer</td>
<td>Notice</td>
</tr>
<tr>
<td>uistatus</td>
<td>Notice</td>
</tr>
<tr>
<td>urpf</td>
<td>Notice</td>
</tr>
<tr>
<td>vista</td>
<td>Notice</td>
</tr>
</tbody>
</table>
Setting a Tracing Level

To set a tracing level for a module on a router, or for all the modules within a process on a router, enter the `set platform software trace` command in the privileged EXEC mode or diagnostic mode.

The following example shows the tracing level for the ACL module in the Forwarding Manager of the ESP processor in slot 0 set to `info`:

```
set platform software trace forwarding-manager F0 acl info
```

Viewing the Content of the Trace Buffer

To view the trace messages in the trace buffer or file, enter the `show platform software trace message` command in privileged EXEC or diagnostic mode. In the following example, the trace messages for the Host Manager process in Route Processor slot 0 are viewed using the `show platform software trace message` command:

```
Router# show platform software trace message host-manager R0
08/23 12:09:14.408 [uipeer]: (info): Looking for a ui_req msg
08/23 12:09:14.408 [uipeer]: (info): Start of request handling for con 0x100a61c8
08/23 12:09:14.399 [uipeer]: (info): Accepted connection for 14 as 0x100a61c8
08/23 12:09:14.399 [uipeer]: (info): Received new connection 0x100a61c8 on descriptor 14
08/23 12:09:14.398 [uipeer]: (info): Accepting command connection on listen fd 7
08/23 11:53:57.440 [uipeer]: (info): Going to send a status update to the shell manager in slot 0
08/23 11:53:47.417 [uipeer]: (info): Going to send a status update to the shell manager in slot 0
```
Environmental Monitoring and PoE Management

The Cisco 4000 series Integrated Services routers have hardware and software features that periodically monitor the router's environment. For more information, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

This chapter provides information on the environmental monitoring features on your router that allow you to monitor critical events and generate statistical reports on the status of various router components and, includes the following sections:

- Environmental Monitoring, on page 139
- Environmental Monitoring and Reporting Functions, on page 140
- Configuring Power Supply Mode, on page 154
- Managing PoE, on page 159
- Additional References, on page 164

Environmental Monitoring

The router provides a robust environment-monitoring system with several sensors that monitor the system temperatures. Microprocessors generate interrupts to the HOST CPU for critical events and generate a periodic status and statistics report. The following are some of the key functions of the environmental monitoring system:

- Monitoring temperature of CPUs, motherboard, and midplane
- Monitoring fan speed
- Recording abnormal events and generating notifications
- Monitoring Simple Network Management Protocol (SNMP) traps
- Generating and collecting Onboard Failure Logging (OBFL) data
- Sending call home event notifications
- Logging system error messages
- Displaying present settings and status
Environmental Monitoring and Reporting Functions

Monitoring and reporting functions allow you to maintain normal system operation by identifying and resolving adverse conditions prior to loss of operation.

- Environmental Monitoring Functions, on page 140
- Environmental Reporting Functions, on page 142

Environmental Monitoring Functions

Environmental monitoring functions use sensors to monitor the temperature of the cooling air as it moves through the chassis.

The local power supplies provide the ability to monitor:
- Input and output current
- Output voltage
- Input and output power
- Temperature
- Fan speed

The router is expected to meet the following environmental operating conditions:
- Operating Temperature Nominal—32°F to 104°F (0°C to 40°C)
- Operating Humidity Nominal—10% to 85% RH noncondensing
- Operating Humidity Short Term—10% to 85% RH noncondensing
- Operating Altitude—Sea level 0 ft to 10,000 ft (0 to 3000 m)
- AC Input Range—85 to 264 VAC

In addition, each power supply monitors its internal temperature and voltage. A power supply is either within tolerance (normal) or out of tolerance (critical). If an internal power supply’s temperature or voltage reaches a critical level, the power supply shuts down without any interaction with the system processor.

The following table displays the levels of status conditions used by the environmental monitoring system.

<table>
<thead>
<tr>
<th>Status Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>All monitored parameters are within normal tolerance.</td>
</tr>
<tr>
<td>Warning</td>
<td>The system has exceeded a specified threshold. The system continues to operate, but operator action is recommended to bring the system back to a normal state.</td>
</tr>
</tbody>
</table>
An out-of-tolerance temperature or voltage condition exists.

An out-of-tolerance temperature or voltage condition exists. Although the system continues to operate, it is approaching shutdown. Immediate operator action is required.

<table>
<thead>
<tr>
<th>Status Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td>An out-of-tolerance temperature or voltage condition exists. Although the system continues to operate, it is approaching shutdown. Immediate operator action is required.</td>
</tr>
</tbody>
</table>

The environmental monitoring system sends system messages to the console, for example, when the conditions described here are met:

Fan Failure

When the system power is on, all the fans should be operational. Although the system continues to operate if a fan fails, the system displays the following message:

%IOSXE_PEM-3-FANFAIL: The fan in slot 2/0 is encountering a failure condition

Sensors Out of Range

When sensors are out of range, the system displays the following message:

%ENVIRONMENTAL-1-ALERT: V: 1.0v PCH, Location: R0, State: Warning, Reading: 1102 mV

%ENVIRONMENTAL-1-ALERT: V: PEM Out, Location: P1, State: Warning, Reading: 0 mV

%ENVIRONMENTAL-1-ALERT: Temp: Temp 3, Location R0, State: Warning, Reading: 90C

Fan Tray (Slot P2) Removed

When the fan tray for slot P2 is removed, the system displays the following message:

%IOSXE_PEM-6-REMPEM_FM: PEM/FM slot P2 removed

Fan Tray (Slot P2) Reinserted

When the fan tray for slot P2 is reinserted, the system displays the following message:

%IOSXE_PEM-6-INSPEM_FM: PEM/FM slot P2 inserted

Fan Tray (Slot 2) is Working Properly

When the fan tray for slot 2 is functioning properly, the system displays the following message:

%IOSXE_PEM-6-PEMOK: The PEM in slot P2 is functioning properly

Fan 0 in Slot 2 (Fan Tray) is Not Working

When Fan 0 in the fan tray of slot 2 is not functioning properly, the system displays the following message:

%IOSXE_PEM-3-FANFAIL: The fan in slot 2/0 is encountering a failure condition

Fan 0 in Slot 2 (Fan Tray) is Working Properly

When Fan 0 in the fan tray of slot 2 is functioning properly, the system displays the following message:

%IOSXE_PEM-6-FANOK: The fan in slot 2/0 is functioning properly

Main Power Supply in Slot 1 is Powered Off

When the main power supply in slot 1 is powered off, the system displays the following message:
%IOSXE_PEM-3-PEMFAIL: The PEM in slot 1 is switched off or encountering a failure condition.

Main Power Supply is Inserted in Slot 1

When the main power supply is inserted in slot 1, the system displays the following messages:

%IOSXE_PEM-6-INSPEM_FM: PEM/FM slot P1 inserted
%IOSXE_PEM-6-PEMOK: The PEM in slot 1 is functioning properly

Temperature and Voltage Exceed Max/Min Thresholds

The following example shows the warning messages indicating the maximum and minimum thresholds of the temperature or voltage:

Warnings:

For all the temperature sensors (name starting with "Temp:"), above,
the critical warning threshold is 100C (100C and higher)
the warning threshold is 80C (range from 80C to 99C)
the low warning threshold is 1C (range from -inf to 1C).

For all voltage sensors (names starting with "V:"),
the high warning threshold starts at that voltage +10%. (voltage + 10% is warning)
the low warning threshold starts at the voltage -10%. (voltage - 10% is warning)

Environmental Reporting Functions

You can retrieve and display environmental status reports using the following commands:

- debug environment
- debug platform software cman env monitor polling
- debug ilpower
- debug power [inline | main]
- show diag all eeprom
- show diag slot R0 eeprom detail
- show environment
- show environment all
- show inventory
- show platform all
- show platform diag
- show platform software status control-processor
- show version
- show power
- show power inline

These commands show the current values of parameters such as temperature and voltage.
The environmental monitoring system updates the values of these parameters every 60 seconds. Brief examples of these commands are shown below:

deploy environment: Example

Router# debug environment location P0
Environmental sensor Temp: Temp 1 P0 debugging is on
Environmental sensor Temp: Temp 2 P0 debugging is on
Environmental sensor Temp: Temp 3 P0 debugging is on
Environmental sensor V: PEM Out P0 debugging is on
Environmental sensor I: PEM In P0 debugging is on
Environmental sensor I: PEM Out P0 debugging is on
Environmental sensor W: In pwr P0 debugging is on
Environmental sensor W: Out pwr P0 debugging is on
Environmental sensor RPM: fan0 P0 debugging is on

*Sep 12 00:45:13.956: Sensor: Temp: Temp 1 P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=29
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: Temp: Temp 1 P0 State=Normal Reading=29
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: Temp: Temp 2 P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=33
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: Temp: Temp 2 P0 State=Normal Reading=34
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: Temp: Temp 3 P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=35
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: Temp: Temp 3 P0 State=Normal Reading=35
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: V: PEM Out P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=12709
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: V: PEM Out P0 State=Normal Reading=12724
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: I: PEM In P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=1
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: I: PEM In P0 State=Normal Reading=1
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: I: PEM Out P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=4
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: I: PEM Out P0 State=Normal Reading=4
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: W: In pwr P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=92
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: W: In pwr P0 State=Normal Reading=92
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
*Sep 12 00:45:13.956: Rotation count=60 Displacement=0
*Sep 12 00:45:13.956: Sensor: W: Out pwr P0, In queue 1
*Sep 12 00:45:13.956: State=Normal Reading=46
*Sep 12 00:45:13.956: Rotation count=0 Poll period=60000
*Sep 12 00:45:13.956: Sensor: W: Out pwr P0 State=Normal Reading=46
*Sep 12 00:45:13.956: Inserting into queue 1 on spoke 173.
Environmental Monitoring and PoE Management

Environmental Reporting Functions

debug platform software cman env monitor polling: Example

```
Router# debug platform software cman env monitor polling
platform software cman env monitor polling debugging is on
Router#

*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 1, P0, 29
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 2, P0, 34
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Inlet: R0, 25
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Outlet: R0, 30
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 1, P1, 33
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 2, P1, 32
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 1, P1, 36
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 2, P1, 32
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 1, P1, 36
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 2, P1, 32
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 1, P1, 36
*Sep 12 00:46:13.962: IOS-RP-ENVMON: sensor READ callback Temp: Temp 2, P1, 32
```

Cisco 4000 Series ISRs Software Configuration Guide

OL-25328-03
debug ilpower: Example

Router# debug ilpower ?
cdp ILPOWER CDP messages
controller ILPOWER controller
event ILPOWER event
ha ILPOWER High-Availability
port ILPOWER port management
powerman ILPOWER powerman
registries ILPOWER registries
scp ILPOWER SCP messages

debug power [inline|main]: Example

In this example, there is one 1000W power supply and one 450W power supply. Inline and main power output is shown.

Router# debug power ?
inline ILPM inline power related
main Main power related
<cr>
Router# debug power
POWER all debug debugging is on

Router# show debugging | include POWER
POWER:
POWER main debugging is on
POWER inline debugging is on

Router# show diag all eeprom: Example

Router# show diag all eeprom
MIDPLANE EEPROM data:

Product Identifier (PID) : ISR4451/K9
Version Identifier (VID) : V01
PCB Serial Number : FOC15507S9K
Hardware Revision : 1.0
Asset ID : P1B-R2C-CP1.0
CLEI Code : TDBTDBTDBT
Power/Fan Module P0 EEPROM data:

Product Identifier (PID) : XXX-XXXX-XX
Version Identifier (VID) : XXX
PCB Serial Number : DCA1547X047
CLEI Code : 0000000000

Power/Fan Module P1 EEPROM data:

Product Identifier (PID) : XXX-XXXX-XX
Version Identifier (VID) : XXX
PCB Serial Number : DCA1533X022
CLEI Code : 0000000000

Power/Fan Module P2 EEPROM data is not initialized

Internal PoE is not present

Slot R0 EEPROM data:

Product Identifier (PID) : ISR4451/K9
Version Identifier (VID) : V01
PCB Serial Number : FOC15507S9K
Hardware Revision : 1.0
CLEI Code : TDBTDBTDBT

Slot F0 EEPROM data:

Product Identifier (PID) : ISR4451-FP
Version Identifier (VID) : V00
PCB Serial Number : FP123456789
Hardware Revision : 4.1

Slot 0 EEPROM data:

Product Identifier (PID) : ISR4451/K9
Version Identifier (VID) : V01
PCB Serial Number : FOC15507S9K
Hardware Revision : 1.0
CLEI Code : TDBTDBTDBT

Slot 1 EEPROM data:

Product Identifier (PID) : ISR4451/K9
Version Identifier (VID) : V01
PCB Serial Number : FOC15507S9K
Hardware Revision : 1.0
CLEI Code : TDBTDBTDBT

Slot 2 EEPROM data:

Product Identifier (PID) : ISR4451/K9
Version Identifier (VID) : V01
PCB Serial Number : FOC15507S9K
Hardware Revision : 1.0
CLEI Code : TDBTDBTDBT

SPA EEPROM data for subslot 0/0:

Product Identifier (PID) : ISR441-4X1GE
Version Identifier (VID) : V01
PCB Serial Number : JAB092709EL
Top Assy. Part Number : 68-2236-01
Top Assy. Revision : A0
Hardware Revision : 2.2
CLEI Code : CNUIAHSAAA

SPA EEPROM data for subslot 0/1 is not available

SPA EEPROM data for subslot 0/2 is not available

SPA EEPROM data for subslot 0/3 is not available
SPA EEPROM data for subslot 0/4 is not available
SPA EEPROM data for subslot 1/0 is not available
SPA EEPROM data for subslot 1/1 is not available
SPA EEPROM data for subslot 1/2 is not available
SPA EEPROM data for subslot 1/3 is not available
SPA EEPROM data for subslot 1/4 is not available
SPA EEPROM data for subslot 2/0 is not available
SPA EEPROM data for subslot 2/1 is not available
SPA EEPROM data for subslot 2/2 is not available
SPA EEPROM data for subslot 2/3 is not available
SPA EEPROM data for subslot 2/4 is not available

show environment: Example

In this example, note the output for the slots POE0 and POE1. Cisco IOS XE 3.10 and higher supports an external PoE module.

```
Router# show environment

Number of Critical alarms: 0
Number of Major alarms: 0
Number of Minor alarms: 0

Slot Sensor Current State Reading
 licked  ------ ------------- -------
P0 Temp: Temp 1 Normal 28 Celsius
P0 Temp: Temp 2 Normal 43 Celsius
P0 Temp: Temp 3 Normal 44 Celsius
P0 V: PEM Out Normal 12404 mV
P0 I: PEM In Normal 1 A
P0 I: PEM Out Normal 7 A
P0 P: In pwr Normal 106 Watts
P0 P: Out pwr Normal 87 Watts
P0 RPM: fan0 Normal 2952 RPM
P2 RPM: fan0 Normal 4211 RPM
P2 RPM: fan1 Normal 4394 RPM
P2 RPM: fan2 Normal 4433 RPM
P2 RPM: fan3 Normal 4410 RPM
P2 P: pwr Normal 6 Watts
POE0 Temp: Temp 1 Normal 44 Celsius
POE0 I: 12v In Normal 2 A
POE0 V: 12v In Normal 12473 mV
POE0 P: In pwr Normal 25 Watts
POE1 Temp: Temp 1 Normal 40 Celsius
POE1 I: 12v In Normal 2 mA
POE1 V: 12v In Normal 12473 mV
POE1 P: In pwr Normal 20 Watts
R0 Temp: Inlet 1 Normal 24 Celsius
R0 Temp: Inlet 2 Normal 26 Celsius
R0 Temp: Outlet 1 Normal 33 Celsius
R0 Temp: Outlet 2 Normal 32 Celsius
R0 Temp: core-B Normal 43 Celsius
```
show environment all: Example

Router# show environment all
Sensor List: Environmental Monitoring
Sensor Location State Reading
Temp: Temp 1 P0 Normal 29 Celsius
Temp: Temp 2 P0 Normal 43 Celsius
Temp: Temp 3 P0 Normal 44 Celsius
V: PEM Out P0 Normal 12404 mV
I: PEM In P0 Normal 1 A
I: PEM Out P0 Normal 8 A
P: In pwr P0 Normal 111 Watts
P: Out pwr P0 Normal 91 Watts
RPM: fan0 P0 Normal 2940 RPM
RPM: fan0 P2 Normal 4419 RPM
RPM: fan1 P2 Normal 4395 RPM
RPM: fan2 P2 Normal 4426 RPM
RPM: fan3 P2 Normal 4412 RPM
P: pwr P2 Normal 6 Watts
Temp: Temp 1 POE0 Normal 44 Celsius
I: 12v In POE0 Normal 2 A
V: 12v In POE0 Normal 12473 mV
P: In pwr POE0 Normal 25 Watts
Temp: Temp 1 POE1 Normal 40 Celsius
I: 12v In POE1 Normal 2 mA
V: 12v In POE1 Normal 12473 mV
Environmental Monitoring and PoE Management

Environmental Reporting Functions

P: In pwr POE1 Normal 20 Watts
Temp: Inlet 1 R0 Normal 24 Celsius
Temp: Inlet 2 R0 Normal 27 Celsius
Temp: Outlet 1 R0 Normal 33 Celsius
Temp: Outlet 2 R0 Normal 32 Celsius
Temp: core-B R0 Normal 49 Celsius
Temp: core-C R0 Normal 37 Celsius
V: 12v R0 Normal 12355 mV
V: 5v R0 Normal 5084 mV
V: 3.3v R0 Normal 3331 mV
V: 3.0v R0 Normal 2998 mV
V: 2.5v R0 Normal 2433 mV
V: 1.05v R0 Normal 1798 mV
V: 1.8v R0 Normal 1798 mV
V: 1.2v R0 Normal 1226 mV
V: Vcore-C R0 Normal 1155 mV
V: 1.1v R0 Normal 1104 mV
V: 1.0v R0 Normal 1015 mV
V: 1.8v-A R0 Normal 1782 mV
V: 1.5v-A R0 Normal 1508 mV
V: 1.5v-C1 R0 Normal 1513 mV
V: 1.5v-B R0 Normal 1516 mV
V: Vcore-A R0 Normal 1099 mV
V: 1.5v-C2 R0 Normal 1492 mV
V: Vcore-B1 R0 Normal 1031 mV
V: Vcore-B2 R0 Normal 901 mV
V: 0.75v-B R0 Normal 754 mV
V: 0.75v-C R0 Normal 754 mV
I: 12v R0 Normal 8 A
P: pwr R0 Normal 97 Watts
P: pwr 0/1 Normal 5 Watts
Temp: Temp 1 P1 Normal 30 Celsius
Temp: Temp 2 P1 Normal 39 Celsius
Temp: Temp 3 P1 Normal 39 Celsius
V: PEM Out P1 Normal 12404 mV
I: PEM In P1 Normal 1 A
I: PEM Out P1 Normal 6 A
P: In pwr P1 Normal 87 Watts
P: Out pwr P1 Normal 66 Watts
RPM: fan0 P1 Normal 2940 RPM

show inventory: Example

Router# show inventory
NAME: "Chassis", DESCR: "Cisco ISR4451 Chassis"
PID: ISR4451/K9 , VID: V01, SN: FGL16011QZ

NAME: "Power Supply Module 0", DESCR: "450W AC Power Supply for Cisco ISR4450"
PID: XXX-XXXX-XX , VID: XXX, SN: DCA1547X047

NAME: "Power Supply Module 1", DESCR: "450W AC Power Supply for Cisco ISR4450"
PID: XXX-XXXX-XX , VID: XXX, SN: DCA1614Y022

NAME: "Fan Tray", DESCR: "Cisco ISR4450 Fan Assembly"
PID: ACS-4450-FANASSY , VID: , SN:

NAME: "POE Module 0", DESCR: "Single POE for Cisco ISR4451"
PID: PWR-POE-4400 , VID: , SN: FHH1638F00E

NAME: "POE Module 1", DESCR: "Single POE for Cisco ISR4451"
PID: PWR-POE-4400 , VID: , SN: FHH1638F00G
NAME: "GE-POE Module", DESCR: "$POE Module for On Board GE for Cisco ISR4400"
PID: 800G2-POE-2 , VID: V01, SN: FOC15184GW9

NAME: "module 0", DESCR: "Cisco ISR4451 Built-In NIM controller"
PID: ISR4451/K9 , VID: , SN:
NAME: "NIM subslot 0/2", DESCR: "NIM-4MFT-T1/E1 - T1/E1 Serial Module"
PID: NIM-4MFT-T1/E1 , VID: V01, SN: FOC16254E6W

NAME: "NIM subslot 0/3", DESCR: "NIM SSD Module"
PID: NIM-SSD , VID: V01, SN: FHH16510032

NAME: "NIM subslot 0/0", DESCR: "Front Panel 4 ports Gigabitethernet Module"
PID: ISR4451-X-4x1GE , VID: V01, SN: JAB092709EL

NAME: "module 1", DESCR: "Cisco ISR4451 Built-In SM controller"
PID: ISR4451/K9 , VID: , SN:

NAME: "SM subslot 1/0", DESCR: "SM-X-1T3/E3 - Clear T3/E3 Serial Module"
PID: SM-X-1T3/E3 , VID: V01, SN: FOC164750RG

NAME: "module 2", DESCR: "Cisco ISR4451 Built-In SM controller"
PID: ISR4451/K9 , VID: , SN:

NAME: "SM subslot 2/0", DESCR: "SM-ES3X-24-P: EtherSwitch SM L3 + PoEPlus + MACSec + 24 10/100/1000"
PID: SM-ES3X-24-P , VID: V01, SN: FHH1629007C

NAME: "module R0", DESCR: "Cisco ISR4451 Route Processor"
PID: ISR4451/K9 , VID: V01, SN: FOC1550759S

NAME: "module F0", DESCR: "Cisco ISR4451 Forwarding Processor"
PID: ISR4451/K9 , VID: , SN:

show platform: Example

Router# show platform
Chassis type: ISR4451/K9

Slot Type State Insert time (ago)
--------- ------------------ --------------------- ------------------
0 ISR4451/K9 ok 3d11h
0/0 ISR4451-X-4x1GE ok 3d11h
0/2 NIM-4MFT-T1/E1 ok 3d11h
0/3 NIM-SSD ok 3d11h
1 ISR4451/K9 ok 3d11h
1/0 SM-X-1T3/E3 ok 3d11h
2 ISR4451/K9 ok 3d11h
2/0 SM-ES3X-24-P ok 3d11h
R0 ISR4451/K9 ok, active 3d11h
F0 ISR4451/K9 ok, active 3d11h
P0 XXX-XXXX-XX ok 3d11h
P1 XXX-XXXX-XX ok 3d11h
P2 ACS-4450-FANASSY ok 3d11h
POE0 PWR-POE-4400 ok 3d11h
POE1 PWR-POE-4400 ok 3d11h
GE-POE 800G2-POE-2 ok 3d11h
show platform diag: Example

Router# show platform diag
Chassis type: ISR4451/K9
Slot: 0, ISR4451/K9
Running state : ok
Internal state : online
Internal operational state : ok
Physical insert detect time : 00:01:04 (3d10h ago)
Software declared up time : 00:01:43 (3d10h ago)
CPLD version : 12121625
Firmware version : 15.3(1r)S
Sub-slot: 0/0, ISR4451-X-4x1GE
Operational status : ok
Internal state : inserted
Physical insert detect time : 00:03:03 (3d10h ago)
Logical insert detect time : 00:03:03 (3d10h ago)
Sub-slot: 0/2, NIM-4MFT-T1/E1
Operational status : ok
Internal state : inserted
Physical insert detect time : 00:03:03 (3d10h ago)
Logical insert detect time : 00:03:03 (3d10h ago)
Sub-slot: 0/3, NIM-SSD
Operational status : ok
Internal state : inserted
Physical insert detect time : 00:03:03 (3d10h ago)
Logical insert detect time : 00:03:03 (3d10h ago)
Slot: 1, ISR4451/K9
Running state : ok
Internal state : online
Internal operational state : ok
Physical insert detect time : 00:01:04 (3d10h ago)
Software declared up time : 00:01:44 (3d10h ago)
CPLD version : 12121625
Firmware version : 15.3(1r)S
Sub-slot: 1/0, SM-X-1T3/E3
Operational status : ok
Internal state : inserted
Physical insert detect time : 00:03:03 (3d10h ago)
Logical insert detect time : 00:03:03 (3d10h ago)
Slot: 2, ISR4451/K9
Running state : ok
Internal state : online
Internal operational state : ok
Physical insert detect time : 00:01:04 (3d10h ago)
Software declared up time : 00:01:45 (3d10h ago)
CPLD version : 12121625
Firmware version : 15.3(1r)S
Sub-slot: 2/0, SM-ES3X-24-P
Operational status : ok
Internal state : inserted
Physical insert detect time : 00:03:03 (3d10h ago)
Logical insert detect time : 00:03:03 (3d10h ago)
Slot: R0, ISR4451/K9

Cisco 4000 Series ISRs Software Configuration Guide

OL-29328-03
Running state : ok, active
Internal state : online
Internal operational state : ok
Physical insert detect time : 00:01:04 (3d10h ago)
Software declared up time : 00:01:04 (3d10h ago)
CPLD version : 12121625
Firmware version : 15.3(1r)S

Slot: F0, ISR4451/K9
Running state : ok, active
Internal state : online
Internal operational state : ok
Physical insert detect time : 00:01:04 (3d10h ago)
Software declared up time : 00:02:39 (3d10h ago)
Packet ready signal time : 00:02:48 (3d10h ago)
CPLD version : 12121625
Firmware version : 15.3(1r)S

Slot: F0, XXX-XXXX-XX
State : ok
Physical insert detect time : 00:01:29 (3d10h ago)

Slot: F1, XXX-XXXX-XX
State : ok
Physical insert detect time : 00:01:29 (3d10h ago)

Slot: P0, ACS-4450-FANASSY
State : ok
Physical insert detect time : 00:01:29 (3d10h ago)

Slot: POE0, PWR-POE-4451
State : ok
Physical insert detect time : 00:01:29 (3d10h ago)

Slot: POE1, PWR-POE-4451
State : ok
Physical insert detect time : 00:01:29 (3d10h ago)

Slot: GE-POE, 800G2-POE-2
State : ok
Physical insert detect time : 00:01:29 (3d10h ago)

show platform software status control-processor: Example

Router# show platform software status control-processor
RP0: online, statistics updated 2 seconds ago
Load Average: health unknown
1-Min: 0.13, status: health unknown, under
5-Min: 0.07, status: health unknown, under
15-Min: 0.06, status: health unknown, under
Memory (kb): healthy
Total: 3971244
Used: 2965856 (75%)
Free: 1005388 (25%)
Committed: 2460492 (62%), status: health unknown, under 0%
Per-core Statistics
CPU0: CPU Utilization (percentage of time spent)
User: 1.00, System: 2.90, Nice: 0.00, Idle: 96.00
IRQ: 0.10, SIRQ: 0.00, IOWait: 0.00
CPU1: CPU Utilization (percentage of time spent)
User: 10.71, System: 29.22, Nice: 0.00, Idle: 60.06
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU2: CPU Utilization (percentage of time spent)
User: 0.80, System: 1.30, Nice: 0.00, Idle: 97.90
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU3: CPU Utilization (percentage of time spent)
User: 10.61, System: 34.03, Nice: 0.00, Idle: 55.25
IRQ: 0.00, SIRQ: 0.10, IOwait: 0.00
CPU4: CPU Utilization (percentage of time spent)
User: 0.60, System: 1.20, Nice: 0.00, Idle: 98.20
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU5: CPU Utilization (percentage of time spent)
User: 13.18, System: 35.46, Nice: 0.00, Idle: 51.24
IRQ: 0.00, SIRQ: 0.09, IOwait: 0.00
CPU6: CPU Utilization (percentage of time spent)
User: 0.80, System: 2.40, Nice: 0.00, Idle: 96.80
IRQ: 0.00, SIRQ: 0.00, IOwait: 0.00
CPU7: CPU Utilization (percentage of time spent)
User: 10.41, System: 33.63, Nice: 0.00, Idle: 55.85
IRQ: 0.00, SIRQ: 0.10, IOwait: 0.00

show diag slot R0 eeprom detail: Example
Router# show diag slot R0 eeprom detail
Slot R0 EEPROM data:

EEPROM version : 4
Compatible Type : 0xFF
PCB Serial Number : FHH153900AU
Controller Type : 1902
Hardware Revision : 0.0
PCB Part Number : 73-13854-01
Top Assy. Part Number : 800-36894-01
Board Revision : 01
Deviations Number : 122081
Fab Version : 01
Product Identifier (PID) : CISCO------
Version Identifier (VID) : V01
Chassis Serial Number : FHH1539P00Q
Chassis MAC Address : 0000.0000.0000
MAC Address block size : 96
Asset ID : REV1B
Asset ID :

show version: Example
Router# show version
Cisco IOS XE Software, Version 03.13.00.0 - Standard Support Release
Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Version 15.4(3)S, RELEASE
SOFTWARE (fc2)
Technical Support: http://www.cisco.com/techsupport
Copyright (c) 1986-2014 by Cisco Systems, Inc.
Compiled Tue 27-May-14 05:36 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc.
All rights reserved. Certain components of Cisco IOS-XE software are
licensed under the GNU General Public License ("GPL") Version 2.0. The
software code licensed under GPL Version 2.0 is free software that comes
with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such
GPL code under the terms of GPL Version 2.0. For more details, see the
documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON

Router uptime is 2 hours, 19 minutes
Uptime for this control processor is 2 hours, 22 minutes
System returned to ROM by reload
System image file is "tftp: isr4400-universalk9.03.13.00.S.154-3.S-std.SPA.bin"
Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Technology Package License Information:

<table>
<thead>
<tr>
<th>Technology</th>
<th>Technology-package</th>
<th>Current</th>
<th>Type</th>
<th>Next reboot</th>
</tr>
</thead>
<tbody>
<tr>
<td>appx</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>uc</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>security</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>ipbase</td>
<td>ipbasek9</td>
<td>Permanent</td>
<td>ipbasek9</td>
<td></td>
</tr>
</tbody>
</table>

cisco 4451 ISR processor with 1213154K/6147K bytes of memory.
Processor board ID FHH1539P00Q
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
4194304K bytes of physical memory.
3391455K bytes of Compact flash at bootflash:

Configuration register is 0x0"

Configuring Power Supply Mode

You can configure the power supplies of both the router and a connected Power over Ethernet (PoE) module.

- Configuring the Router Power Supply Mode, on page 155
- Configuring the External PoE Service Module Power Supply Mode, on page 155
- Examples for Configuring Power Supply Mode, on page 155
Configuring the Router Power Supply Mode

Configure the main power supply on the router using the `power main redundant` command:

- `power main redundant`—Sets the main power supply in redundant mode.
- `no power main redundant`—Sets the main power supply in boost mode.

Note

The default mode for the router power supply is redundant mode.

Configuring the External PoE Service Module Power Supply Mode

Configure the power supply of an external PoE service module using the `power inline redundant` command:

- `power inline redundant`—Sets the external PoE service module power supply in redundant mode.
- `no power inline redundant`—Sets the external PoE service module power supply in boost mode.

Note

The default mode for the external PoE service module power supply is redundant mode.

The `show power` command shows whether boost or redundant mode is configured and whether this mode is currently running on the system.

Examples for Configuring Power Supply Mode

Example—Configured Mode of Boost for Main PSU and PoE Module

In this example, the `show power` command shows the configured mode as `Boost`, which is also the current runtime state. The `Main PSU` shows information about the main power supply. The `POE Module` shows information about the inline/PoE power. In this example, the current run-time state for the main power supply is the same as the configured state (`Boost` mode).

```
Router# show power
Main PSU :
 Configured Mode : Boost
 Current runtime state same : Yes
 Total power available : 2000 Watts

POE Module :
 Configured Mode : Boost
 Current runtime state same : Yes
 Total power available : 1000 Watts
Router#
```
Example—Configured Mode of Boost for Main PSU and PoE Module

In this example, the show power command shows the power supplies that are present in the device. The Main PSU and PoE Module are configured to the Boost mode, which differs from the current runtime state. The current runtime state is the Redundant mode. A likely explanation for this is that there is only one main power supply present in the router. See mode example 4 in the table titled "Modes of Operation" in Available PoE Power, on page 157.

You can enter the show platform command to show the power supplies that are present in the device.

```
Router# show power
Main PSU :
  Configured Mode : Boost
  Current runtime state same : No
  Total power available : 1000 Watts
POE Module :
  Configured Mode : Boost
  Current runtime state same : No
  Total power available : 500 Watts
Router#
```

Example—Configured Mode of Redundant for Main PSU and PoE Module

In this example, the show power command shows the configured mode is Redundant for both the main and inline power. The system has one 450 W and one 100 W power supply.

```
Router# show power
Main PSU :
  Configured Mode : Redundant
  Current runtime state same : Yes
  Total power available : 450 Watts
POE Module :
  Configured Mode : Redundant
  Current runtime state same : No
  Total power available : 0 Watts
Router#
```

Example—Configured Mode of Boost for Main Power

In this example, the main power is configured to be in boost mode by using the no form of the power main redundant command. This sets the main power to boost mode with 1450 W and inline power to redundant mode with 500 W.

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# no power main redundant
Router(config)#
*Jan 31 03:35:22.284: %PLATFORM_POWER-6-MODEMATCH: Inline power is in Redundant mode
Router(config)#
*Jan 31 03:36:13.111: %SYS-5-CONFIG_I: Configured from console by console
Router# show power
Main PSU :
  Configured Mode : Boost
  Current runtime state same : Yes
  Total power available : 1450 Watts
POE Module :
```
Example—Configured Mode of Boost for PoE Power

In this example, an attempt is made to configure the inline power in boost mode by using the **no** form of the `power inline redundant` command. The inline power mode is **not** changed to boost mode because that would require a total power available in redundant mode of 1000 W. The inline power mode is redundant and is shown by the following values for the PoE Module:

- Configured Mode : Boost
- Current runtime state same : No

Router# **configure terminal**
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# **no power inline redundant**
Router(config)# *Jan 31 03:42:40.947: %PLATFORM_POWER-6-MODEMISMATCH: Inline power not in Boost mode*
Router(config)#
Router(config)# **exit**
Router#
Jan 31 03:36:13.111: %SYS-5-CONFIG_I: Configured from console by console
Router# **show power**
Main PSU :
Configured Mode : Boost
Current runtime state same : Yes
Total power available : 1450 Watts
POE Module :
Configured Mode : Boost
Current runtime state same : No
Total power available : 500 Watts
Router#

Available PoE Power

For the PoE feature to be available on the external PoE module, the total power from the power supplies must be 500 W or higher.

To ensure the PoE feature is functional on the external PoE module, verify the availability of PoE power on your router using the **show platform** and **show power** commands.

To determine there is enough PoE power for use by an external PoE service module, use the **show platform** and **show power** commands to calculate the available PoE power based on the wattage values of the main power supplies and PoE inverters.

Take the values of your main P0 and P1 power supplies to give the Total Power (for main power supplies.) Then take the values of your PoE1 and PoE2 power inverters to calculate the Total PoE Power.

The following table shows example modes of operation, which may be similar to your configuration.
The Total PoE Power value, in the final column of the table needs to be 500 W or higher for the PoE feature to be functional on a connected PoE service module.

Note

Add power inverters to the router before inserting an external PoE module. Otherwise, even if the Total PoE Power is sufficient, the PoE power will not be used by the external PoE module and the module will need to be re-booted for the PoE feature to be functional.

Configuring a power mode of boost or redundant on the main power supplies, or PoE inverters, may affect the value for Total PoE Power.

The following table shows all power values in Watts. The wattage ratings of the main power supplies are shown in columns Main P0 and Main P1. The wattage ratings of the PoE inverters are shown in columns PoE0 and PoE1.

<table>
<thead>
<tr>
<th>Table 12: Modes of Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode Example</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
</tbody>
</table>

Note

In the table above, for 500 W or higher Total PoE Power to be available, the "Total Power" (of the main power supplies) must be 1000 W or higher.

For 1000 W Total PoE Power (see Mode Example 8 above), there must be two 1000 W main power supplies (in Boost mode) and two PoE inverters (also in Boost mode).
Caution

Care should be taken while removing the power supplies and power inverters (especially in Boost mode of operation). If the total power consumption is higher than can be supported by one power supply alone and in this condition a power supply is removed, the hardware can be damaged. This may then result in the system being unstable or unusable.

Similarly, in the case where there is only one PoE inverter providing PoE power to a service module, and in this condition the PoE inverter is removed, the hardware may be damaged, and may result in the system being unstable or unusable.

Managing PoE

The Power over Ethernet (PoE) feature allows you to manage power on the FPGE ports. By using PoE, you do not need to supply connected PoE-enabled devices with wall power. This eliminates the cost for additional electrical cabling that would otherwise be necessary for connected devices. The router supports PoE (802.3af) and PoE+ (802.3at). PoE provides up to 15.4 W of power, and PoE+ provides up to 30 W of power.

- PoE Support for FPGE Ports, on page 159
- Monitoring Your Power Supply, on page 159
- Enabling Cisco Discovery Protocol, on page 104
- Configuring PoE for FPGE Ports, on page 162

PoE Support for FPGE Ports

A PoE module supports PoE on the front panel gigabit ethernet ports (FPGE) such as gig0/0/0 and gig0/0/1. You can configure the PoE service module for the FPGE using the power inline command, which allows you to turn on or turn off the power to a connected device such as an IEEE phone or device. For more information, see Configuring PoE for FPGE Ports, on page 162.

Monitoring Your Power Supply

You can monitor the total available power budget on your router using the show power inline [GigabitEthernet detail] command in privileged EXEC mode.

This command allows you to check the availability of sufficient power for the powered device type before it is connected to the router.

Example—Inline power where there is no PoE module

In this example, there is no module present that supports PoE. Power is being supplied to an IP phone and a switch.

Router# show power inline
Available:31.0(w) Used:30.3(w) Remaining:0.7(w)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>Power</th>
<th>Device</th>
<th>Class</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>-----</td>
</tr>
</tbody>
</table>

Environmental Monitoring and PoE Management

Managing PoE

Cisco 4000 Series ISRs Software Configuration Guide

OL-29328-03

159
In this example, the command includes the following information:
Available:31.0(w)—Available PoE power
Used:30.3(w)—PoE power used by all the router's ports
Oper—PoE power state of each connected powered device (on/off)
Power—PoE power used by each connected powered device
Class—PoE power classification

Example—Inline power for one PoE module
In this example, one module that supports PoE is present. Cisco IOS XE 3.10 and higher supports an external PoE module.

Router# show power inline
Available:31.0(w) Used:30.3(w) Remaining:0.7(w)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>Power (Watts)</th>
<th>Device</th>
<th>Class</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/0/0</td>
<td>auto</td>
<td>on</td>
<td>14.9</td>
<td>IP Phone 7971</td>
<td>3</td>
<td>30.0</td>
</tr>
<tr>
<td>Gi0/0/1</td>
<td>auto</td>
<td>on</td>
<td>15.4</td>
<td>WS-C2960CPD-8PT-L</td>
<td>4</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Available:500.0(w) Used:11.7(w) Remaining:488.3(w)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>Power (Watts)</th>
<th>Device</th>
<th>Class</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Et2/0/0</td>
<td>auto</td>
<td>off</td>
<td>11.7</td>
<td>n/a</td>
<td>n/a</td>
<td>750.0</td>
</tr>
</tbody>
</table>

Router#

Example—Inline power to connected IP phones

Router# show power inline
Available:31.0(w) Used:30.8(w) Remaining:0.2(w)

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>Power (Watts)</th>
<th>Device</th>
<th>Class</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/0/0</td>
<td>auto</td>
<td>on</td>
<td>15.4</td>
<td>Ieee PD</td>
<td>4</td>
<td>30.0</td>
</tr>
<tr>
<td>Gi0/0/1</td>
<td>auto</td>
<td>on</td>
<td>15.4</td>
<td>Ieee PD</td>
<td>4</td>
<td>30.0</td>
</tr>
</tbody>
</table>

Example—Inline power to one Gigabit Ethernet port

Router# show power inline gigabitEthernet 0/0/0

<table>
<thead>
<tr>
<th>Interface</th>
<th>Admin</th>
<th>Oper</th>
<th>Power (Watts)</th>
<th>Device</th>
<th>Class</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi0/0/0</td>
<td>auto</td>
<td>on</td>
<td>15.4</td>
<td>Ieee PD</td>
<td>4</td>
<td>30.0</td>
</tr>
</tbody>
</table>
Example—Inline power to one Gigabit Ethernet port-detail

Router# show power inline gigabitEthernet 0/0/0 detail
Interface: Gi0/0/0
Inline Power Mode: auto
Operational status: on
Device Detected: yes
Device Type: Ieee PD
IEEE Class: 4
Discovery mechanism used/configured: Ieee
Police: off

Power Allocated
Admin Value: 30.0
Power drawn from the source: 15.4
Power available to the device: 15.4

Absent Counter: 0
Over Current Counter: 0
Short Current Counter: 0
Invalid Signature Counter: 0
Power Denied Counter: 0

Example—Inline power to an external PoE service module

In this example, after the output lines for Gi0/0/0, and Gi0/0/1, there are output lines for the external PoE service module. Cisco IOS XE 3.10 and higher supports an external PoE module. Et1/0/0 indicates the internal port (slot 1/0) for the first PoE service module. Et2/0/0 indicates the internal port (slot 2/0) in a second PoE service module.

Although both slots are capable of drawing 750 W of PoE power, in this device only 500 W of PoE power is available. Slot 2/0 (Et2/0/0) has been allocated 369.6 W of PoE power.

Router# show power inline
Available:31.0(w) Used:15.4(w) Remaining:15.6(w)
Interface Admin Oper Power Device Class Max
--------- ---- -------- ----- ----------------- --- ---
Gi0/0/0 auto on 15.4 Ieee PD 4 30.0
Gi0/0/1 auto off 0.0 n/a n/a 30.0

Available:500.0(w) Used:369.6(w) Remaining:500.0(w)
Interface Admin Oper Power Device Class Max
--------- ---- -------- ----- ----------------- --- ---
Et1/0/0 auto off 0.0 n/a n/a 750.
Et2/0/0 auto off 369.6 n/a n/a 750.

Enabling Cisco Discovery Protocol

Cisco Discovery Protocol (CDP) is enabled by default on the router.

Note

CDP is not enabled by default on Cisco Aggregation Services Routers or on the Cisco CSR 1000v.
For more information on using CDP, see Cisco Discovery Protocol Configuration Guide, Cisco IOS XE Release 3S.

Configuring PoE for FPGE Ports

SUMMARY STEPS

1. enable
2. configure terminal
3. cdp run
4. interface gigabitethernet *slot/subslot/port*
5. cdp enable
6. power inline {auto | auto [max milli-watts] | never}
7. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 cdp run</td>
<td>Enables Cisco Discovery Protocol (CDP) on your router.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# cdp run</td>
</tr>
<tr>
<td>Step 4 interface gigabitethernet slot/subslot/port</td>
<td>Allows to configure PoE on ports 0 and 1.</td>
</tr>
<tr>
<td>Example:</td>
<td>• PoE can be configured on ports 0 and 1.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# interface gigabitEthernet 0/0/0</td>
</tr>
<tr>
<td>Step 5 cdp enable</td>
<td>Enables CDP in the interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# cdp enable</td>
</tr>
<tr>
<td>Step 6 power inline {auto</td>
<td>auto [max milli-watts]</td>
</tr>
<tr>
<td>Example:</td>
<td>• auto—The auto keyword automatically detects the power inline devices and supplies power to such devices.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# power inline auto</td>
</tr>
</tbody>
</table>
Purpose

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>• <code>max milli-watts</code>—The <code>max</code> keyword sets the maximum power allowed on the interface.</td>
<td></td>
</tr>
<tr>
<td>• <code>never</code>—The <code>never</code> keyword disables the detection and ceases the application of inline power.</td>
<td></td>
</tr>
</tbody>
</table>

Step 7

exit

Example:

```
Router(config-if)# exit
```

Verifying if PoE Is Enabled on FPGE Port

show platform: Example

show diag chassis eeprom: Example

You can verify whether the PoE is enabled on the FPGE port by looking at the external LED for this port. The external LED for the FPGE port is labelled as GE POE. The GE POE emits a green light when the internal PoE module is plugged in and functioning properly. The GE POE LED is yellow when the internal PoE is plugged in but not functioning properly. The GE POE LED is off when there are no PoE modules plugged in. For more information on LEDs, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

You can also detect PoE using the `show platform` and `show diag` commands.

For more information, see the following examples.

```
Router# show platform
Chassis type: ISR4451/K9

<table>
<thead>
<tr>
<th>Slot</th>
<th>Type</th>
<th>State</th>
<th>Insert time (ago)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ISR4451/K9</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>0/0</td>
<td>ISR4451-X-4x1GE</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>0/2</td>
<td>NIM-4MPT-T1/E1</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>0/3</td>
<td>NIM-SSD</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>1</td>
<td>ISR4451/K9</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>1/0</td>
<td>SM-X-1T3/E3</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>2</td>
<td>ISR4451/K9</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>2/0</td>
<td>SM-ES3X-24-P</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>R0</td>
<td>ISR4451/K9</td>
<td>ok, active</td>
<td>3d11h</td>
</tr>
<tr>
<td>F0</td>
<td>ISR4451/K9</td>
<td>ok, active</td>
<td>3d11h</td>
</tr>
<tr>
<td>P0</td>
<td>XXX-XXXX-XX</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>P1</td>
<td>XXX-XXXX-XX</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>P2</td>
<td>ACS-4451-FANTRAY</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>FOE0</td>
<td>PWR-POE-4451-X</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>FOE1</td>
<td>PWR-POE-4451-X</td>
<td>ok</td>
<td>3d11h</td>
</tr>
<tr>
<td>GE-POE</td>
<td>800G2-POE-2</td>
<td>ok</td>
<td>3d11h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slot</th>
<th>CPLD Version</th>
<th>Firmware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12090323</td>
<td>15.3 (01r)S</td>
</tr>
</tbody>
</table>
```

Cisco 4000 Series ISRs Software Configuration Guide
Router# show diag chassis eeprom

MIDPLANE EEPROM data:

Product Identifier (PID) : ISR-4451/K9
Version Identifier (VID) : V01
PCB Serial Number : FOC16145VL8
Hardware Revision : 1.0
Asset ID : PiC-R03-CP1.0-UMT-RVC
CLEI Code : TBD

Power/Fan Module P0 EEPROM data:

Product Identifier (PID) : PWR-4450-AC
Version Identifier (VID) : V01
PCB Serial Number : DCA1547X02U
CLEI Code : 0000000000

Power/Fan Module P1 EEPROM data is not initialized

Power/Fan Module P2 EEPROM data is not initialized

Internal PoE EEPROM data:

Product Identifier (PID) : PWR-GE-POE-4400
Version Identifier (VID) : V01
PCB Serial Number : FOC151849VD
Hardware Revision : 1.0
CLEI Code : 0000000000

Additional References

The following sections provide references related to the power efficiency management feature.

MIBs

<table>
<thead>
<tr>
<th>MIBs</th>
<th>MIBs Link</th>
</tr>
</thead>
</table>
Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies. To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds. Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td>http://www.cisco.com/cisco/web/support/index.html</td>
</tr>
</tbody>
</table>
Configuring High Availability

The Cisco High Availability (HA) technology enable network-wide protection by providing quick recovery from disruptions that may occur in any part of a network. A network's hardware and software work together with Cisco High Availability technology, which besides enabling quick recovery from disruptions, ensures fault transparency to users and network applications.

The following sections describe how to configure Cisco High Availability features on your router:

- About Cisco High Availability, on page 167
- Interchassis High Availability, on page 167
- Bidirectional Forwarding Detection, on page 168
- Configuring Cisco High Availability, on page 169
- Additional References, on page 180

About Cisco High Availability

The unique hardware and software architecture of your router is designed to maximize router uptime during any network event, and thereby provide maximum uptime and resilience within any network scenario.

This section covers some aspects of Cisco High Availability that may be used on the Cisco 4000 series routers:

- Interchassis High Availability, on page 167
- Bidirectional Forwarding Detection, on page 168

Interchassis High Availability

The Interchassis High Availability feature is also known as the box-to-box redundancy feature. Interchassis High Availability enables the configuration of pairs of routers to act as backup for each other. This feature can be configured to determine the active router based on several failover conditions. When a failover occurs, the standby router seamlessly takes over and starts processing call signaling and performing media forwarding tasks.

Groups of redundant interfaces are known as redundancy groups. The following figure depicts the active-standby device scenario. It shows how the redundancy group is configured for a pair of routers that have a single outgoing interface.
The routers are joined by a configurable control link and data synchronization link. The control link is used to communicate the status of the routers. The data synchronization link is used to transfer stateful information to synchronize the stateful database for the calls and media flows. Each pair of redundant interfaces are configured with the same unique ID number, also known as the RII. For information on configuring Interchassis HA on your router, see Configuring Interchassis High Availability, on page 169.

IPsec Failover

The IPsec Failover feature increases the total uptime (or availability) of your IPsec network. Traditionally, the increased availability of your IPsec network is accomplished by employing a redundant (standby) router in addition to the original (active) router. When the active router becomes unavailable for a reason, the standby router takes over the processing of IKE and IPsec. IPsec failover falls into two categories: stateless failover and stateful failover.

On the router, only the stateless form of IPsec failover is supported. This stateless failover uses protocols such as the Hot Standby Router Protocol (HSRP) to provide primary to secondary cutover and also allows the active and standby VPN gateways to share a common virtual IP address.

Bidirectional Forwarding Detection

Bidirectional Forwarding Detection (BFD) is a detection protocol designed to provide fast-forwarding path-failure detection times for all media types, encapsulations, topologies, and routing protocols. In addition to fast-forwarding path-failure detection, BFD provides a consistent failure detection method for network administrators. Because a network administrator can use BFD to detect forwarding path failures at a uniform rate rather than variable rates for different routing protocol hello mechanisms, network profiling and planning is easier, and reconvergence time is consistent and predictable.

For more information on BFD, see the “Bidirectional Forwarding Detection” section in the IP Routing BFD Configuration Guide, Cisco IOS XE Release 3S.
Bidirectional Forwarding Detection Offload

The Bidirectional Forwarding Detection Offload feature allows the offload of BFD session management to the forwarding engine for improved failure detection times. BFD offload reduces the overall network convergence time by sending rapid failure detection packets (messages) to the routing protocols for recalculating the routing table. See Configuring BFD Offload, on page 170.

Configuring Cisco High Availability

- Configuring Interchassis High Availability, on page 169
- Configuring Bidirectional Forwarding, on page 170
- Verifying Interchassis High Availability, on page 170
- Verifying BFD Offload, on page 177

Configuring Interchassis High Availability

Prerequisites

- The active device and the standby device must run on the identical version of the Cisco IOS XE software.
- The active device and the standby device must be connected through an L2 connection for the control path.
- The Embedded Service Processor (ESP) must be the same on both the active and standby devices. Route processors must also match and have a similar physical configuration.
- Either the Network Time Protocol (NTP) must be configured or the clock must be set identical on both devices to allow timestamps and call timers to match.
- Virtual router forwarding (VRF) must be defined in the same order on both active and standby routers for an accurate synchronization of data.
- The latency times must be minimal on all control and data links to prevent timeouts.
- Physically redundant links, such as Gigabit EtherChannel, must be used for the control and data paths.

Restrictions

- The failover time for a box-to-box application is higher for a non-box-to-box application.
- LAN and MESH scenarios are not supported.
- VRFs are not supported and cannot be configured under ZBFW High Availability data and control interfaces.
- The maximum number of virtual MACs supported by the Front Panel Gigabit Ethernet (FPGE) interfaces depends on the platform. For information about the FPGE interfaces, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.
• When the configuration is replicated to the standby router, it is not committed to the startup configuration; it is in the running configuration. A user must run the **write memory** command to commit the changes that have been synchronized from the active router, on the standby router.

How to Configure Interchassis High Availability

For more information on configuring Interchassis High Availability on the router, see the *IP Addressing: NAT Configuration Guide, Cisco IOS XE Release 3S.*

Configuring Bidirectional Forwarding

For information on configuring BFD on your router, see the *IP Routing BFD Configuration Guide.*

For BFD commands, see the *Cisco IOS IP Routing: Protocol-Independent Command Reference* document.

Configuring BFD Offload

Restrictions

• Only BFD version 1 is supported.
• When configured, only offloaded BFD sessions are supported; BFD session on RP are not supported.
• Only Asynchronous mode or no echo mode of BFD is supported.
• 511 asynchronous BFD sessions are supported.
• BFD hardware offload is supported for IPv4 sessions with non-echo mode only.
• BFD offload is supported only on port-channel interfaces.
• BFD offload is supported only for the Ethernet interface.
• BFD offload is not supported for IPv6 BFD sessions.
• BFD offload is not supported for BFD with TE/FRR.

How to Configure BFD Offload

BFD offload functionality is enabled by default. You can configure BFD hardware offload on the route processor. For more information, see Configuring BFD and the *IP Routing BFD Configuration Guide.*

Verifying Interchassis High Availability

Use the following **show** commands to verify the Interchassis High Availability.

```
Note
Prerequisites and links to additional documentation configuring Interchassis High Availability are listed in *Configuring Interchassis High Availability, on page 169.*

• show redundancy application group [group-id | all]
```
• show redundancy application transport {client | group [group-id]}
• show redundancy application control-interface group [group-id]
• show redundancy application faults group [group-id]
• show redundancy application protocol {protocol-id | group [group-id]}
• show redundancy application if-mgr group [group-id]
• show redundancy application data-interface group [group-id]

The following examples show the redundancy application groups configured on the router:

Router# show redundancy application group

<table>
<thead>
<tr>
<th>Group ID</th>
<th>Group Name</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>Generic-Redundancy-1</td>
<td>STANDBY</td>
</tr>
<tr>
<td>2</td>
<td>Generic-Redundancy2</td>
<td>ACTIVE</td>
</tr>
</tbody>
</table>

The following example shows the details of redundancy application group 1:

Router# show redundancy application group 1

Group ID: 1
Group Name: Generic-Redundancy-1

Administrative State: No Shutdown
Aggregate operational state: Up
My Role: STANDBY
Peer Role: ACTIVE
Peer Presence: Yes
Peer Comm: Yes
Peer Progression Started: Yes

RF Domain: btob-one
RF state: STANDBY HOT
Peer RF state: ACTIVE

The following example shows the details of redundancy application group 2:

Router# show redundancy application group 2

Group ID: 2
Group Name: Generic-Redundancy2

Administrative State: No Shutdown
Aggregate operational state: Up
My Role: ACTIVE
Peer Role: STANDBY
Peer Presence: Yes
Peer Comm: Yes
Peer Progression Started: Yes

RF Domain: btob-two
RF state: ACTIVE
Peer RF state: STANDBY HOT

The following example shows details of the redundancy application transport client:

Router# show redundancy application transport client

<table>
<thead>
<tr>
<th>Client</th>
<th>Conn#</th>
<th>Priority</th>
<th>Interface</th>
<th>L3</th>
<th>L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)RF</td>
<td>0</td>
<td>1</td>
<td>CTRL</td>
<td>IPV4</td>
<td>SCTP</td>
</tr>
<tr>
<td>(1)MCP_HA</td>
<td>1</td>
<td>1</td>
<td>DATA</td>
<td>IPV4</td>
<td>UDP_REL</td>
</tr>
<tr>
<td>(4)AR</td>
<td>0</td>
<td>1</td>
<td>ASYM</td>
<td>IPV4</td>
<td>UDP</td>
</tr>
</tbody>
</table>
The following example shows configuration details for the redundancy application transport group:

```
Router# show redundancy application transport group
Transport Information for RG (1)
Client = RF
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
0 0 1.1.1.1 59000 1.1.1.2 59000 CTRL IPV4 SCTP
Client = MCP_HA
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
1 1 9.9.9.2 53000 9.9.9.1 53000 DATA IPV4 UDP_REL
Client = AR
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
2 0 0.0.0.0 0 0.0.0.0 0 NONE_IN NONE_L3 NONE_L4
Client = CF
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
3 0 9.9.9.2 59001 9.9.9.1 59001 DATA IPV4 SCTP
Transport Information for RG (2)
Client = RF
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
8 0 1.1.1.1 59004 1.1.1.2 59004 CTRL IPV4 SCTP
Client = MCP_HA
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
9 1 9.9.9.2 53002 9.9.9.1 53002 DATA IPV4 UDP_REL
Client = AR
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
10 0 0.0.0.0 0 0.0.0.0 0 NONE_IN NONE_L3 NONE_L4
Client = CF
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
11 0 9.9.9.2 59005 9.9.9.1 59005 DATA IPV4 SCTP
```

The following example shows the configuration details of redundancy application transport group 1:

```
Router# show redundancy application transport group 1
Transport Information for RG (1)
Client = RF
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
0 0 1.1.1.1 59000 1.1.1.2 59000 CTRL IPV4 SCTP
Client = MCP_HA
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
1 1 9.9.9.2 53000 9.9.9.1 53000 DATA IPV4 UDP_REL
Client = AR
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
2 0 0.0.0.0 0 0.0.0.0 0 NONE_IN NONE_L3 NONE_L4
Client = CF
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
3 0 9.9.9.2 59001 9.9.9.1 59001 DATA IPV4 SCTP
```

The following example shows configuration details of redundancy application transport group 2:

```
Router# show redundancy application transport group 2
Transport Information for RG (2)
Client = RF
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
8 0 1.1.1.1 59004 1.1.1.2 59004 CTRL IPV4 SCTP
Client = MCP_HA
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
9 1 9.9.9.2 53002 9.9.9.1 53002 DATA IPV4 UDP_REL
Client = AR
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
10 0 0.0.0.0 0 0.0.0.0 0 NONE_IN NONE_L3 NONE_L4
Client = CF
TI conn_id my_ip my_port peer_ip peer_port intf L3 L4
11 0 9.9.9.2 59005 9.9.9.1 59005 DATA IPV4 SCTP
```

The following example shows configuration details of the redundancy application control-interface group:

```
Router# show redundancy application control-interface group
The control interface for rg[1] is GigabitEthernet0/0/0
Interface is Control interface associated with the following protocols: 2 1
BFD Enabled
Interface Neighbors:
Peer: 1.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0

The control interface for rg[2] is GigabitEthernet0/0/0
Interface is Control interface associated with the following protocols: 2 1
BFD Enabled
Interface Neighbors:
Peer: 1.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0
```

The following example shows configuration details of the redundancy application control-interface group 1:

```
Router# show redundancy application control-interface group 1
The control interface for rg[1] is GigabitEthernet0/0/0
Interface is Control interface associated with the following protocols: 2 1
BFD Enabled
Interface Neighbors:
Peer: 1.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0

The control interface for rg[2] is GigabitEthernet0/0/0
Interface is Control interface associated with the following protocols: 2 1
BFD Enabled
Interface Neighbors:
Peer: 1.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0
```

The following example shows configuration details of the redundancy application control-interface group 2:

```
Router# show redundancy application control-interface group 2
The control interface for rg[1] is GigabitEthernet0/0/0
Interface is Control interface associated with the following protocols: 2 1
BFD Enabled
Interface Neighbors:
Peer: 1.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0

The control interface for rg[2] is GigabitEthernet0/0/0
Interface is Control interface associated with the following protocols: 2 1
BFD Enabled
Interface Neighbors:
Peer: 1.1.1.2 Active RGs: 1 Standby RGs: 2 BFD handle: 0
```

The following examples show configuration details of the redundancy application faults group:

```
Router# show redundancy application faults group
Faults states Group 1 info:
Runtime priority: [50]
RG Faults RG State: Up.
Total # of switchovers due to faults: 0
Total # of down/up state changes due to faults: 2
Faults states Group 2 info:
Runtime priority: [135]
RG Faults RG State: Up.
Total # of switchovers due to faults: 0
Total # of down/up state changes due to faults: 2

The following example shows configuration details specific to redundancy application faults group 1:

```
Router# show redundancy application faults group 1
Faults states Group 1 info:
Runtime priority: [50]
RG Faults RG State: Up.
Total # of switchovers due to faults: 0
Total # of down/up state changes due to faults: 2

The following example shows configuration details specific to redundancy application faults group 2:

```
Router# show redundancy application faults group 2
Faults states Group 2 info:
Runtime priority: [135]
RG Faults RG State: Up.
Total # of switchovers due to faults: 0
Total # of down/up state changes due to faults: 2
```

The following example shows configuration details for the redundancy application protocol group:
Router# show redundancy application protocol group
RG Protocol RG 1

Role: Standby
Negotiation: Enabled
Priority: 50
Protocol state: Standby-hot
Ctrl Intf(s) state: Up
Active Peer: address 1.1.1.2, priority 150, intf Gi0/0/0
Standby Peer: Local
Log counters:
role change to active: 0
role change to standby: 1
disable events: rg down state 1, rg shut 0
ctrl intf events: up 2, down 1, admin_down 1
reload events: local request 0, peer Request 0

RG Media Context for RG 1

Ctx State: Standby
Protocol ID: 1
Media type: Default
Control Interface: GigabitEthernet0/0/0
Current Hello timer: 3000
Configured Hello timer: 3000, Hold timer: 10000
Peer Hello timer: 3000, Peer Hold timer: 10000
Stats:
Pkt 117, Bytes 7254, HA Seq 0, Seq Number 117, Pkt Loss 0
Authentication not configured
Authentication Failure: 0
Reload Peer: TX 0, RX 0
Resign: TX 0, RX 0
Active Peer: Present. Hold Timer: 10000
Pkts 115, Bytes 3910, HA Seq 0, Seq Number 1453975, Pkt Loss 0

RG Protocol RG 2

Role: Active
Negotiation: Enabled
Priority: 135
Protocol state: Active
Ctrl Intf(s) state: Up
Active Peer: Local
Standby Peer: address 1.1.1.2, priority 130, intf Gi0/0/0
Log counters:
role change to active: 1
role change to standby: 1
disable events: rg down state 1, rg shut 0
ctrl intf events: up 2, down 1, admin_down 1
reload events: local request 0, peer Request 0

RG Media Context for RG 2

Ctx State: Active
Protocol ID: 2
Media type: Default
Control Interface: GigabitEthernet0/0/0
Current Hello timer: 3000
Configured Hello timer: 3000, Hold timer: 10000
Peer Hello timer: 3000, Peer Hold timer: 10000
Stats:
Pkt 118, Bytes 7316, HA Seq 0, Seq Number 118, Pkt Loss 0

Verifying Interchassis High Availability

Cisco 4000 Series ISRs Software Configuration Guide
OL-25328-03
The following example shows configuration details for the redundancy application protocol group 1:

Router# show redundancy application protocol group 1
RG Protocol RG 1

Role: Standby
Negotiation: Enabled
Priority: 50
Protocol state: Standby-hot
Ctrl Intf(s) state: Up
Active Peer: address 1.1.1.2, priority 150, intf Gi0/0/0
Standby Peer: Local
Log counters:
role change to active: 0
role change to standby: 1
disable events: rg down state 1, rg shut 0
ctrl intf events: up 2, down 1, admin_down 1
reload events: local request 0, peer request 0

RG Media Context for RG 1

Ctx State: Standby
Protocol ID: 1
Media type: Default
Control Interface: GigabitEthernet0/0/0
Current Hello timer: 3000
Configured Hello timer: 3000, Hold timer: 10000
Peer Hello timer: 3000, Peer Hold timer: 10000
Stats:
Pkts 120, Bytes 7440, HA Seq 0, Seq Number 120, Pkt Loss 0
Authentication not configured
Authentication Failure: 0
Reload Peer: TX 0, RX 0
Resign: TX 0, RX 0
Active Peer: Present. Hold Timer: 10000
Pkts 118, Bytes 4012, HA Seq 0, Seq Number 1453978, Pkt Loss 0

The following example shows configuration details for the redundancy application protocol group 2:

Router# show redundancy application protocol group 2
RG Protocol RG 2

Role: Active
Negotiation: Enabled
Priority: 135
Protocol state: Active
Ctrl Intf(s) state: Up
Active Peer: Local
Standby Peer: address 1.1.1.2, priority 130, intf Gi0/0/0
Log counters:
role change to active: 1
role change to standby: 1
disable events: rg down state 1, rg shut 0
ctrl intf events: up 2, down 1, admin_down 1
reload events: local request 0, peer request 0

RG Media Context for RG 2

Ctx State: Active
Protocol ID: 2
Media type: Default
Control Interface: GigabitEthernet0/0/0
Current Hello timer: 3000
Configured Hello timer: 3000, Hold timer: 10000
Peer Hello timer: 3000, Peer Hold timer: 10000
Stats:
Pkts 123, Bytes 7626, HA Seq 0, Seq Number 123, Pkt Loss 0
Authentication not configured
Authentication Failure: 0
Reload Peer: TX 0, RX 0
Resign: TX 0, RX 1
Standby Peer: Present. Hold Timer: 10000
Pkts 107, Bytes 3638, HA Seq 0, Seq Number 1453982, Pkt Loss 0

The following example shows configuration details for the redundancy application protocol 1:

Router# show redundancy application protocol 1
Protocol id: 1, name: rg-protocol-1
BFD: ENABLE
Hello timer in msecs: 3000
Hold timer in msecs: 10000

The following example shows configuration details for redundancy application interface manager group:

Router# show redundancy application if-mgr group
RG ID: 1

interface GigabitEthernet0/0/3.152

VMAC 0007.b421.4e21
VIP 55.1.1.255
Shut shut
Decrement 10
interface GigabitEthernet0/0/2.152

VMAC 0007.b421.5209
VIP 45.1.1.255
Shut shut
Decrement 10

RG ID: 2

interface GigabitEthernet0/0/3.166

VMAC 0007.b422.14d6
VIP 4.1.255.254
Shut no shut
Decrement 10
interface GigabitEthernet0/0/2.166

VMAC 0007.b422.0d06
VIP 3.1.255.254

Cisco 4000 Series ISRs Software Configuration Guide
The following examples show configuration details for redundancy application interface manager group 1 and group 2:

Router# show redundancy application if-mgr group 1

RG ID: 1

```
interface GigabitEthernet0/0/3.152
---------------------------------------
VMAC 0007.b421.4e21
VIP 55.1.1.255
Shut shut
Decrement 10
```

```
interface GigabitEthernet0/0/2.152
---------------------------------------
VMAC 0007.b421.5209
VIP 45.1.1.255
Shut shut
Decrement 10
```

Router# show redundancy application if-mgr group 2

RG ID: 2

```
interface GigabitEthernet0/0/3.166
---------------------------------------
VMAC 0007.b422.14d6
VIP 4.1.255.254
Shut no shut
Decrement 10
```

```
interface GigabitEthernet0/0/2.166
---------------------------------------
VMAC 0007.b422.0d06
VIP 3.1.255.254
Shut no shut
Decrement 10
```

The following example shows configuration details for redundancy application data-interface group:

Router# show redundancy application data-interface group

The data interface for rg[1] is GigabitEthernet0/0/1

The data interface for rg[2] is GigabitEthernet0/0/1

The following examples show configuration details specific to redundancy application data-interface group 1 and group 2:

Router# show redundancy application data-interface group 1

The data interface for rg[1] is GigabitEthernet0/0/1

Router # show redundancy application data-interface group 2

The data interface for rg[2] is GigabitEthernet0/0/1

Verifying BFD Offload

Use the following commands to verify and monitor BFD offload feature on your router.
Configuration of BFD Offload is described in Configuring Bidirectional Forwarding, on page 170.

- `show bfd neighbors [details]`
- `debug bfd [packet | event]`
- `debug bfd event`

The `show bfd neighbors` command displays the BFD adjacency database:

```
Router# show bfd neighbor
IPv4 Sessions
NeighAddr  LD/RD   RH/RS  State  Int
192.10.1.1 362/1277 Up     Up     Gi0/0/1.2
192.10.2.1 445/1278 Up     Up     Gi0/0/1.3
192.10.3.1 1093/961 Up     Up     Gi0/0/1.4
192.10.4.1 1244/946 Up     Up     Gi0/0/1.5
192.10.5.1 1094/937 Up     Up     Gi0/0/1.6
192.10.6.1 1097/1260 Up     Up     Gi0/0/1.7
192.10.7.1 1098/929 Up     Up     Gi0/0/1.8
192.10.8.1 1111/928 Up     Up     Gi0/0/1.9
192.10.9.1 1100/1254 Up     Up     Gi0/0/1.10
```

The `debug bfd neighbor detail` command displays the debugging information related to BFD packets:

```
Router# show bfd neighbor detail
IPv4 Sessions
NeighAddr  LD/RD   RH/RS  State  Int
192.10.1.1 362/1277 Up     Up     Gi0/0/1.2
Session state is UP and not using echo function.
Session Host: Hardware
OurAddr: 192.10.1.2
Handle: 33
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 50000, MinRxInt: 50000, Multiplier: 3
Received MinRxInt: 50000, Received Multiplier: 3
Holddown (hits): 0(0), Hello (hits): 50(0)
Rx Count: 3465, Rx Interval (ms) min/max/avg: 42/51/46
Tx Count: 3466, Tx Interval (ms) min/max/avg: 39/52/46
Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: CEF EIGRP
Uptime: 00:02:50
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
C bit: 1 - Length: 24
Multiplier: 3 - My Discr.: 1277
Min tx interval: 50000 - Your Discr.: 362
Min rx interval: 50000
```

The `show bfd summary` command displays the BFD summary:

```
Router# show bfd summary
Session  Up  Down
Total    400  400  0
```
The `show bfd drops` command displays the number of packets dropped in BFD:

```
Router# show bfd drops
BFD Drop Statistics
   IPV4   IPV6   IPV4-M   IPV6-M   MPLS_PW   MPLS_TP_LSP
Invalid TTL  0     0      0       0       0       0
BFD Not Configured  0     0      0       0       0       0
No BFD Adjacency  33    0      0       0       0       0
Invalid Header Bits  0     0      0       0       0       0
Invalid Discriminator  1    0      0       0       0       0
Session AdminDown  94    0      0       0       0       0
Authen invalid BFD ver  0     0      0       0       0       0
Authen invalid len  0     0      0       0       0       0
Authen invalid seq  0     0      0       0       0       0
Authen failed  0     0      0       0       0       0
```

The `debug bfd packet` command displays debugging information about BFD control packets:

```
Router# debug bfd packet
*Nov 12 23:08:27.982: BFD-DEBUG Packet: Tx IP:192.11.22.1 ld/rd:983/1491 diag:3 (Neighbor Signaled Session Down) Init C cnt:44 (0)
*Nov 12 23:08:28.007: BFD-DEBUG Packet: Rx IP:192.11.22.1 ld/rd:983/1491 diag:0 (No Diagnostic) Up F C cnt:0 (0)
*Nov 12 23:08:28.007: BFD-DEBUG Packet: Tx IP:192.11.22.1 ld/rd:983/1491 diag:0 (No Diagnostic) Up C cnt:0 (0)
*Nov 12 23:08:28.311: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:3 (Neighbor Signaled Session Down) Init C cnt:3 ttl:254 (0)
*Nov 12 23:08:28.311: BFD-DEBUG Packet: Tx IP:192.11.90.1 ld/rd:993/1907 diag:3 (Neighbor Signaled Session Down) Init C cnt:3 ttl:254 (0)
*Nov 12 23:08:28.311: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Down C cnt:3 ttl:254 (0)
*Nov 12 23:08:28.311: BFD-DEBUG Packet: Tx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Up C cnt:0 (0)
*Nov 12 23:08:28.311: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Up C cnt:0 (0)
*Nov 12 23:08:28.311: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Up F C cnt:0 (0)
*Nov 12 23:08:28.626: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Up C cnt:0 (0)
*Nov 12 23:08:28.626: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Up C cnt:0 (0)
*Nov 12 23:08:28.626: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Up F C cnt:0 (0)
*Nov 12 23:08:28.645: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Up C cnt:0 ttl:254 (0)
*Nov 12 23:08:28.670: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Up F C cnt:0 (0)
*Nov 12 23:08:28.670: BFD-DEBUG Packet: Rx IP:192.11.90.1 ld/rd:993/1907 diag:0 (No Diagnostic) Up C cnt:0 (0)
```

The `debug bfd event` displays debugging information about BFD state transitions:

```
Router# debug bfd event
event:DOWN adminDown, (0)

*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(EIGRP) IP:192.10.36.1, ld:1402, handle:95, event:DOWN adminDown, (0)
*Nov 12 23:11:29.503: BFD-DEBUG Event: notify client(CEF) IP:192.10.36.1, ld:1402, handle:95, event:DOWN adminDown, (0)
*Nov 12 23:11:30.639: BFD-HW-API: Handle 1404: Timers: Tx timer 1000000 Detect timer 0
*Nov 12 23:11:30.639: BFD-HW-API: Handle 1404: Flags: Poll 0 Final 0
*Nov 12 23:11:30.639: BFD-HW-API: Handle 1404: Buffer: 0x23480318 0x0000057C 0x00000000 0x000F4240 0x000F4240 0x00000000 size 24
*Nov 12 23:11:30.641: BFD-HW-API: Handle 1405: Timers: Tx timer 1000000 Detect timer 0
*Nov 12 23:11:30.641: BFD-HW-API: Handle 1405: Flags: Poll 0 Final 0
*Nov 12 23:11:30.641: BFD-HW-API: Handle 1405: Buffer: 0x23480318 0x0000057D 0x00000000 0x000F4240 0x00000000 size 24
*Nov 12 23:11:30.650: BFD-DEBUG Event: resetting timestamps ld:1404 handle:207 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: notify client(EIGRP) IP:192.10.33.1, ld:1404/0 diag:3(Neighbor Signaled Session Down) Down C cnt:0 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: resetting timestamps ld:1405 handle:209 (0)
*Nov 12 23:11:30.650: BFD-DEBUG Event: notify client(EIGRP) IP:192.10.85.1, ld:1405/0 diag:3(Neighbor Signaled Session Down) Down C cnt:0 (0)

**Additional References**

The following documents provide information related to the BFD feature.

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related Topic</td>
<td>Document Title</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>


CHAPTER 15

Configuring Call Home

The Call Home feature provides e-mail-based and web-based notification of critical system events. A versatile range of message formats are available for optimal compatibility with pager services, standard e-mail, or XML-based automated parsing applications. Common uses of this feature may include direct paging of a network support engineer, e-mail notification to a Network Operations Center, XML delivery to a support website, and use of Cisco Smart Call Home services for direct case generation with the Cisco Systems Technical Assistance Center (TAC).

This chapter describes how to configure the Call Home feature in Cisco IOS Release 15.4(3)S and later releases for the Cisco ISR 4400 Series and Cisco ISR 4300 Series Routers.

This chapter includes the following sections:

• Finding Feature Information, on page 183
• Prerequisites for Call Home, on page 183
• Information About Call Home, on page 184
• How to Configure Call Home, on page 186
• Configuring Diagnostic Signatures, on page 208
• Displaying Call Home Configuration Information, on page 216
• Default Call Home Settings, on page 222
• Alert Group Trigger Events and Commands, on page 222
• Message Contents, on page 229
• Additional References, on page 237

Finding Feature Information

Your software release may not support all of the features documented in this module. For the latest feature information and caveats, see the release notes for your platform and software release.

Use the Cisco Feature Navigator to find information about platform support and Cisco IOS and Catalyst OS software image support. To access Cisco Feature Navigator, see http://tools.cisco.com/ITDIT/CFN/. A Cisco account is not required to access the Cisco Feature Navigator.

Prerequisites for Call Home

The following are the prerequisites before you configure Call Home:
Information About Call Home

The Call Home feature can deliver alert messages containing information on configuration, environmental conditions, inventory, syslog, snapshot, and crash events. It provides these alert messages as either e-mail-based or web-based messages. Multiple message formats are available, allowing for compatibility with pager services, standard e-mail, or XML-based automated parsing applications. This feature can deliver alerts to multiple recipients, referred to as Call Home destination profiles, each with configurable message formats and content categories. A predefined destination profile is provided for sending alerts to the Cisco TAC (callhome@cisco.com). You can also define your own destination profiles.

Flexible message delivery and format options make it easy to integrate specific support requirements.

This section contains the following subsections:

- **Benefits of Using Call Home**
- ** Obtaining Smart Call Home Services**

Benefits of Using Call Home

The Call Home feature offers the following benefits:

- Multiple message-format options, which include:
  - Short Text—Suitable for pagers or printed reports.
  - Plain Text—Full formatted message information suitable for human reading.
  - XML—Machine-readable format using XML and Adaptive Markup Language (AML) document type definitions (DTDs). The XML format enables communication with the Cisco TAC.

- Multiple concurrent message destinations.
- Multiple message categories including configuration, environmental conditions, inventory, syslog, snapshot, and crash events.
- Filtering of messages by severity and pattern matching.
• Scheduling of periodic message sending.

**Obtaining Smart Call Home Services**

If you have a service contract directly with Cisco, you can register for the Smart Call Home service. Smart Call Home analyzes Smart Call Home messages and provides background information and recommendations. For known issues, particularly online diagnostics failures, Automatic Service Requests are generated with the Cisco TAC.

Smart Call Home offers the following features:

• Continuous device health monitoring and real-time diagnostic alerts.

• Analysis of Smart Call Home messages and, if needed, Automatic Service Request generation routed to the correct TAC team, including detailed diagnostic information to speed problem resolution.

• Secure message transport directly from your device or through an HTTP proxy server or a downloadable Transport Gateway (TG). You can use a TG aggregation point to support multiple devices or in cases where security dictates that your devices may not be connected directly to the Internet.

• Web-based access to Smart Call Home messages and recommendations, inventory, and configuration information for all Smart Call Home devices provides access to associated field notices, security advisories, and end-of-life information.

You need the following items to register for Smart Call Home:

• SMARTnet contract number for your router

• Your e-mail address

• Your Cisco.com username

For more information about Smart Call Home, see [https://supportforums.cisco.com/community/4816/smart-call-home](https://supportforums.cisco.com/community/4816/smart-call-home).

**Anonymous Reporting**

Smart Call Home is a service capability included with many Cisco service contracts and is designed to assist customers resolve problems more quickly. In addition, the information gained from crash messages helps Cisco understand equipment and issues occurring in the field. If you decide not to use Smart Call Home, you can still enable Anonymous Reporting to allow Cisco to securely receive minimal error and health information from the device. If you enable Anonymous Reporting, your customer identity will remain anonymous, and no identifying information will be sent.

---

**Note**

When you enable Anonymous Reporting, you acknowledge your consent to transfer the specified data to Cisco or to vendors operating on behalf of Cisco (including countries outside the United States). Cisco maintains the privacy of all customers. For information about how Cisco treats personal information, see the Cisco Privacy Statement at [http://www.cisco.com/web/siteassets/legal/privacy.html](http://www.cisco.com/web/siteassets/legal/privacy.html).

When Call Home is configured in an anonymous way, only crash, inventory, and test messages are sent to Cisco. No customer identifying information is sent.
For more information about what is sent in these messages, see Alert Group Trigger Events and Commands, on page 222.

How to Configure Call Home

The following sections show how to configure Call Home using a single command:

- Configuring Smart Call Home (Single Command), on page 186
- Configuring and Enabling Smart Call Home, on page 187

The following sections show detailed or optional configurations:

- Enabling and Disabling Call Home, on page 188
- Configuring Contact Information, on page 188
- Configuring Destination Profiles, on page 190
- Subscribing to Alert Groups, on page 193
- Configuring General E-Mail Options, on page 198
- Specifying Rate Limit for Sending Call Home Messages, on page 200
- Specifying HTTP Proxy Server, on page 201
- Enabling AAA Authorization to Run IOS Commands for Call Home Messages, on page 202
- Configuring Syslog Throttling, on page 202
- Configuring Call Home Data Privacy, on page 203
- Sending Call Home Communications Manually, on page 204

Configuring Smart Call Home (Single Command)

To enable all Call Home basic configurations using a single command, perform the following steps:

SUMMARY STEPS

1. configure terminal
2. call-home reporting {anonymous | contact-email-addr email-address} [http-proxy {ipv4-address | ipv6-address | name} port port-number]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Enables the basic configurations for Call Home using a single command.</td>
</tr>
<tr>
<td>`call-home reporting {anonymous</td>
<td>contact-email-addr email-address} {http-proxy {ipv4-address</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# call-home reporting contact-email-addr <a href="mailto:email@company.com">email@company.com</a></td>
</tr>
</tbody>
</table>

**Note**
- The HTTP proxy option allows you to make use of your own proxy server to buffer and secure Internet connections from your devices.
- After successfully enabling Call Home either in anonymous or full registration mode using the `call-home reporting` command, an inventory message is sent out. If Call Home is enabled in full registration mode, a Full Inventory message for full registration mode is sent out. If Call Home is enabled in anonymous mode, an anonymous inventory message is sent out. For more information about what is sent in these messages, see Alert Group Trigger Events and Commands, on page 222.

### Configuring and Enabling Smart Call Home

For application and configuration information about the Cisco Smart Call Home service, see the “Getting Started” section of the Smart Call Home User Guide at [https://supportforums.cisco.com/community/4816/smart-call-home](https://supportforums.cisco.com/community/4816/smart-call-home). This document includes configuration examples for sending Smart Call Home messages directly from your device or through a transport gateway (TG) aggregation point.

**Note**
For security reasons, we recommend that you use the HTTPS transport options, due to the additional payload encryption that HTTPS offers. The Transport Gateway software is downloadable from Cisco.com and is available if you require an aggregation point or a proxy for connection to the Internet.
Enabling and Disabling Call Home

To enable or disable the Call Home feature, perform the following steps:

**SUMMARY STEPS**

1. configure terminal
2. service call-home
3. no service call-home

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> service call-home</td>
<td>Enables the Call Home feature.</td>
</tr>
<tr>
<td>Example: Router(config)# service call-home</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> no service call-home</td>
<td>Disables the Call Home feature.</td>
</tr>
<tr>
<td>Example: Router(config)# no service call-home</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Contact Information

Each router must include a contact e-mail address (except if Call Home is enabled in anonymous mode). You can optionally include a phone number, street address, contract ID, customer ID, and site ID.

To assign the contact information, perform the following steps:

**SUMMARY STEPS**

1. configure terminal
2. call-home
3. contact-email-addr email-address
4. phone-number +phone-number
5. street-address street-address
6. customer-id text
7. site-id text
8. contract-id text
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>call-home</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(config)# call-home</td>
<td>Enters the Call Home configuration submode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>contact-email-addr email-address</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(cfg-call-home)# contact-email-addr <a href="mailto:username@example.com">username@example.com</a></td>
<td>Designates your e-mail address. Enter up to 200 characters in e-mail address format with no spaces.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>phone-number +phone-number</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(cfg-call-home)# phone-number +1-800-555-4567</td>
<td>(Optional) Assigns your phone number. <strong>Note</strong> The number must begin with a plus (+) prefix and may contain only dashes (-) and numbers. Enter up to 17 characters. If you include spaces, you must enclose your entry in quotes (&quot;&quot;).</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>street-address street-address</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(cfg-call-home)# street-address &quot;1234 Picaboo Street, Any city, Any state, 12345&quot;</td>
<td>(Optional) Assigns your street address where RMA equipment can be shipped. Enter up to 200 characters. If you include spaces, you must enclose your entry in quotes (&quot;&quot;).</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>customer-id text</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(cfg-call-home)# customer-id Customer1234</td>
<td>(Optional) Identifies customer ID. Enter up to 64 characters. If you include spaces, you must enclose your entry in quotes (&quot;&quot;).</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>site-id text</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(cfg-call-home)# site-id Site1ManhattanNY</td>
<td>(Optional) Identifies customer site ID. Enter up to 200 characters. If you include spaces, you must enclose your entry in quotes (&quot;&quot;).</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>contract-id text</code>&lt;br&gt;<strong>Example:</strong>&lt;br&gt;Router(cfg-call-home)# contract-id Company1234</td>
<td>(Optional) Identifies your contract ID for the router. Enter up to 64 characters. If you include spaces, you must enclose your entry in quotes (&quot;&quot;).</td>
</tr>
</tbody>
</table>

### Example

The following example shows how to configure contact information:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# call-home
Router(config-call-home)# contact-email-addr username@example.com
```
Configuring Destination Profiles

A destination profile contains the required delivery information for an alert notification. At least one destination profile is required. You can configure multiple destination profiles of one or more types.

You can create and define a new destination profile or copy and use the predefined destination profile. If you define a new destination profile, you must assign a profile name.

Note
If you use the Cisco Smart Call Home service, the destination profile must use the XML message format.

You can configure the following attributes for a destination profile:

- Profile name—String that uniquely identifies each user-defined destination profile. The profile name is limited to 31 characters and is not case-sensitive.

  Note You cannot use `all` as a profile name.

- Transport method—Transport mechanism, either e-mail or HTTP (including HTTPS), for delivery of alerts.
  - For user-defined destination profiles, e-mail is the default, and you can enable either or both transport mechanisms. If you disable both methods, e-mail is enabled.
  - For the predefined Cisco TAC profile, you can enable either transport mechanism, but not both.

- Destination address—The actual address related to the transport method to which the alert should be sent.

- Message formatting—The message format used for sending the alert. The format options for a user-defined destination profile are long-text, short-text, or XML. The default is XML. For the predefined Cisco TAC profile, only XML is allowed.

- Message size—The maximum destination message size. The valid range is 50 to 3,145,728 Bytes. The default is 3,145,728 Bytes.

  Anonymous reporting—You can choose for your customer identity to remain anonymous, and no identifying information is sent.

  Subscribing to interesting alert-groups—You can choose to subscribe to alert-groups highlighting your interests.

This section contains the following subsections:

- Creating a New Destination Profile, on page 191
Creating a New Destination Profile

To create and configure a new destination profile, perform the following steps:

**SUMMARY STEPS**

1. configure terminal
2. call-home
3. profile name
4. [no] destination transport-method {email | http}
5. destination address {email email-address | http url}
6. destination preferred-msg-format {long-text | short-text | xml}
7. destination message-size-limit bytes
8. active
9. end
10. show call-home profile {name | all}

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> call-home</td>
<td>Enters the Call Home configuration submode.</td>
</tr>
<tr>
<td>Example: Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> profile name</td>
<td>Enters the Call Home destination profile configuration submode for the specified destination profile. If the specified destination profile does not exist, it is created.</td>
</tr>
<tr>
<td>Example: Router(config-call-home)# profile profile1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> [no] destination transport-method {email</td>
<td>http}</td>
</tr>
<tr>
<td>Example: Router(cfg-call-home-profile)# destination transport-method email</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> destination address {email email-address</td>
<td>http url}</td>
</tr>
<tr>
<td>Example: Router(cfg-call-home-profile)# destination address email <a href="mailto:myaddress@example.com">myaddress@example.com</a></td>
<td>Note: When entering a destination URL, include either http:// or https://, depending on whether the server is a secure server.</td>
</tr>
<tr>
<td>Command or Action</td>
<td>Purpose</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Purpose</td>
</tr>
<tr>
<td>destination preferred-msg-format {long-text</td>
<td>short-text</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(cfg-call-home-profile)# destination preferred-msg-format xml</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Purpose</td>
</tr>
<tr>
<td>destination message-size-limit bytes</td>
<td>(Optional) Configures a maximum destination message size for the destination profile.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(cfg-call-home-profile)# destination message-size-limit 3145728</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Purpose</td>
</tr>
<tr>
<td>active</td>
<td>Enables the destination profile. By default, the profile is enabled when it is created.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(cfg-call-home-profile)# active</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Purpose</td>
</tr>
<tr>
<td>end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(cfg-call-home-profile)# end</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>Purpose</td>
</tr>
<tr>
<td>show call-home profile {name</td>
<td>all}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show call-home profile profile1</td>
<td></td>
</tr>
</tbody>
</table>

**Copying a Destination Profile**

To create a new destination profile by copying an existing profile, perform the following steps:

**SUMMARY STEPS**

1. configure terminal
2. call-home
3. copy profile source-profile target-profile

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Purpose</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Purpose</td>
</tr>
<tr>
<td>call-home</td>
<td>Enters the Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# call-home</td>
<td></td>
</tr>
</tbody>
</table>
Setting Profiles to Anonymous Mode

To set an anonymous profile, perform the following steps:

**SUMMARY STEPS**

1. configure terminal
2. call-home
3. profile name
4. anonymous-reporting-only

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>call-home</td>
<td>Enters the Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>profile name</td>
<td>Enables the profile configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(cfg-call-home) profile Profile-1</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>anonymous-reporting-only</td>
<td>Sets the profile to anonymous mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(cfg-call-home-profile)# anonymous-reporting-only</td>
<td></td>
</tr>
</tbody>
</table>

**Note**

By default, Call Home sends a full report of all types of events subscribed in the profile. When `anonymous-reporting-only` is set, only crash, inventory, and test messages will be sent.

Subscribing to Alert Groups

An alert group is a predefined subset of Call Home alerts supported in all routers. Different types of Call Home alerts are grouped into different alert groups depending on their type. The following alert groups are available:

- Crash
Subscribing to Alert Groups

- Configuration
- Environment
- Inventory
- Snapshot
- Syslog

This section contains the following subsections:
- Periodic Notification, on page 196
- Message Severity Threshold, on page 197
- Configuring a Snapshot Command List, on page 197

The triggering events for each alert group are listed in Alert Group Trigger Events and Commands, on page 222, and the contents of the alert group messages are listed in Message Contents, on page 229.

You can select one or more alert groups to be received by a destination profile.

Note

A Call Home alert is only sent to destination profiles that have subscribed to the alert group containing that Call Home alert. In addition, the alert group must be enabled.

To subscribe a destination profile to one or more alert groups, perform the following steps:

**SUMMARY STEPS**

1. configure terminal
2. call-home
3. alert-group {all | configuration | environment | inventory | syslog | crash | snapshot}
4. profile name
5. subscribe-to-alert-group all
6. subscribe-to-alert-group configuration [periodic {daily hh:mm | monthly date hh:mm | weekly day hh:mm}]
7. subscribe-to-alert-group environment [severity {catastrophic | disaster | fatal | critical | major | minor | warning | notification | normal | debugging}]
8. subscribe-to-alert-group inventory [periodic {daily hh:mm | monthly date hh:mm | weekly day hh:mm}]
9. subscribe-to-alert-group syslog [severity {catastrophic | disaster | fatal | critical | major | minor | warning | notification | normal | debugging}]
10. subscribe-to-alert-group crash
11. subscribe-to-alert-group snapshot periodic {daily hh:mm | hourly mm | interval mm | monthly date hh:mm | weekly day hh:mm}
12. exit
## Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** configure terminal  
**Example:**
Router# configure terminal | Enters configuration mode. |
| **Step 2** call-home  
**Example:**
Router(config)# call-home | Enters Call Home configuration submode. |
| **Step 3** alert-group {all | configuration | environment | inventory | syslog | crash | snapshot}  
**Example:**
Router(cfg-call-home)# alert-group all | Enables the specified alert group. Use the keyword all to enable all alert groups. By default, all alert groups are enabled. |
| **Step 4** profile name  
**Example:**
Router(cfg-call-home)# profile profile1 | Enters the Call Home destination profile configuration submode for the specified destination profile. |
| **Step 5** subscribe-to-alert-group all  
**Example:**
Router(cfg-call-home-profile)# subscribe-to-alert-group all | Subscribes to all available alert groups using the lowest severity.  
You can subscribe to alert groups individually by specific type, as described in Step 6 through Step 11.  
**Note** This command subscribes to the syslog debug default severity. This causes a large number of syslog messages to generate. You should subscribe to alert groups individually, using appropriate severity levels and patterns when possible. |
| **Step 6** subscribe-to-alert-group configuration [periodic {daily hh:mm | monthly date hh:mm | weekly day hh:mm}]  
**Example:**
Router(cfg-call-home-profile)# subscribe-to-alert-group configuration periodic daily 12:00 | Subscribes this destination profile to the Configuration alert group. The Configuration alert group can be configured for periodic notification, as described in Periodic Notification, on page 196. |
| **Step 7** subscribe-to-alert-group environment [severity {catastrophic | disaster | fatal | critical | major | minor | warning | notification | normal | debugging}]  
**Example:**
Router(cfg-call-home-profile)# subscribe-to-alert-group environment severity major | Subscribes this destination profile to the Environment alert group. The Environment alert group can be configured to filter messages based on severity, as described in Message Severity Threshold, on page 197. |
### Command or Action

**Step 8**  
subscribe-to-alert-group inventory [periodic \{daily hh:mm | monthly date hh:mm | weekly day hh:mm\}]

**Example:**  
Router(cfg-call-home-profile)#  
subscribe-to-alert-group inventory periodic  
monthly 1 12:00

**Purpose**  
Subscribes this destination profile to the Inventory alert group. The Inventory alert group can be configured for periodic notification, as described in Periodic Notification, on page 196.

**Step 9**  
subscribe-to-alert-group syslog [severity \{catastrophic | disaster | fatal | critical | major | minor | warning | notification | normal | debugging\}]

**Example:**  
Router(cfg-call-home-profile)#  
subscribe-to-alert-group environment severity major

**Purpose**  
Subscribes this destination profile to the Syslog alert group. The Syslog alert group can be configured to filter messages based on severity, as described in Message Severity Threshold, on page 197.

You can specify a text pattern to be matched within each syslog message. If you configure a pattern, a Syslog alert group message is sent only if it contains the specified pattern and meets the severity threshold. If the pattern contains spaces, you must enclose it in quotes (""). You can specify up to five patterns for each destination profile.

**Step 10**  
subscribe-to-alert-group crash

**Example:**  
Router(cfg-call-home-profile)# [no | default]  
subscribe-to-alert-group crash

**Purpose**  
Subscribes to the Crash alert group in user profile. By default, TAC profile subscribes to the Crash alert group and cannot be unsubscribed.

**Step 11**  
subscribe-to-alert-group snapshot periodic \{daily hh:mm | hourly mm | interval mm | monthly date hh:mm | weekly day hh:mm\}

**Example:**  
Router(cfg-call-home-profile)#  
subscribe-to-alert-group snapshot periodic daily 12:00

**Purpose**  
Subscribes this destination profile to the Snapshot alert group. The Snapshot alert group can be configured for periodic notification, as described in Periodic Notification, on page 196.

By default, the Snapshot alert group has no command to run. You can add commands into the alert group, as described in Configuring a Snapshot Command List, on page 197. In doing so, the output of the commands added in the Snapshot alert group will be included in the snapshot message.

**Step 12**  
exit

**Example:**  
Router(cfg-call-home-profile)# exit

**Purpose**  
Exits the Call Home destination profile configuration submode.

### Periodic Notification

When you subscribe a destination profile to the Configuration, Inventory, or Snapshot alert group, you can choose to receive the alert group messages asynchronously or periodically at a specified time. The sending period can be one of the following:

- **Daily**—Specifies the time of day to send, using an hour:minute format \(hh:mm\), with a 24-hour clock (for example, 14:30).
• Weekly—Specifies the day of the week and time of day in the format \textit{day hh:mm}, where the day of the week is spelled out (for example, Monday).

• Monthly—Specifies the numeric date, from 1 to 31, and the time of day, in the format \textit{date hh:mm}.

• Interval—Specifies the interval at which the periodic message is sent, from 1 to 60 minutes.

• Hourly—Specifies the minute of the hour at which the periodic message is sent, from 0 to 59 minutes.

\textbf{Note}

Hourly and by interval periodic notifications are available for the Snapshot alert group only.

\textbf{Message Severity Threshold}

When you subscribe a destination profile to the Environment or Syslog alert group, you can set a threshold for the sending of alert group messages based on the level of severity of the message. Any message with a value lower than the destination profile specified threshold is not sent to the destination.

The severity threshold is configured using the keywords listed in the following table. The severity threshold ranges from catastrophic (level 9, highest level of urgency) to debugging (level 0, lowest level of urgency). If no severity threshold is configured for the Syslog or Environment alert groups, the default is debugging (level 0). The Configuration and Inventory alert groups do not allow severity configuration; severity is always set as normal.

\textbf{Note}

Call Home severity levels are not the same as system message logging severity levels.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|p{10cm}|}
\hline
\textbf{Level} & \textbf{Keyword} & \textbf{Syslog Level} & \textbf{Description} \\
\hline
9 & catastrophic & — & Network-wide catastrophic failure. \\
8 & disaster & — & Significant network impact. \\
7 & fatal & Emergency (0) & System is unusable. \\
6 & critical & Alert (1) & Critical conditions, immediate attention needed. \\
5 & major & Critical (2) & Major conditions. \\
4 & minor & Error (3) & Minor conditions. \\
3 & warning & Warning (4) & Warning conditions. \\
2 & notification & Notice (5) & Basic notification and informational messages. Possibly independently insignificant. \\
1 & normal & Information (6) & Normal event signifying return to normal state. \\
0 & debugging & Debug (7) & Debugging messages. \\
\hline
\end{tabular}
\caption{Severity and Syslog Level Mapping}
\end{table}

\textbf{Configuring a Snapshot Command List}

To configure a snapshot command list, perform the following steps:
SUMMARY STEPS

1. configure terminal
2. call-home
3. [no | default] alert-group-config snapshot
4. [no | default] add-command command string
5. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>call-home</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Router(config)# call-home</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>[no</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Router(cfg-call-home)# alert-group-config snapshot</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>[no</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Router(cfg-call-home-snapshot)# add-command “show version”</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>exit</td>
</tr>
<tr>
<td><em>Example:</em></td>
<td>Router(cfg-call-home-snapshot)# exit</td>
</tr>
</tbody>
</table>

Configuring General E-Mail Options

To use the e-mail message transport, you must configure at least one Simple Mail Transfer Protocol (SMTP) e-mail server address. You can configure the from and reply-to e-mail addresses, and you can specify up to four backup e-mail servers.

Note the following guidelines when configuring general e-mail options:

- Backup e-mail servers can be defined by repeating the mail-server command using different priority numbers.

- The mail-server priority number parameter can be configured from 1 to 100. The server with the highest priority (lowest priority number) is tried first.

To configure general e-mail options, perform the following steps:
SUMMARY STEPS

1. configure terminal
2. call-home
3. mail-server [{ipv4-address | ipv6-address} | name] priority number
4. sender from email-address
5. sender reply-to email-address
6. source-interface interface-name
7. vrf vrf-name

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example: configure terminal</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2 call-home</td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td>Example: call-home</td>
<td>Router(config)# call-home</td>
</tr>
</tbody>
</table>
| Step 3 mail-server [{ipv4-address | ipv6-address} | name] priority number | Assigns an e-mail server address and its relative priority among configured e-mail servers. Provide either of these:
  • The e-mail server’s IP address.
  • The e-mail server’s fully qualified domain name (FQDN) of 64 characters or less.
Assign a priority number between 1 (highest priority) and 100 (lowest priority). |
| Example: mail-server stmp.example.com priority 1 | Router(cfg-call-home)# mail-server stmp.example.com priority 1 |
| Step 4 sender from email-address | (Optional) Assigns the e-mail address that appears in the from field in Call Home e-mail messages. If no address is specified, the contact e-mail address is used. |
| Example: sender from username@example.com | Router(cfg-call-home)# sender from username@example.com |
| Step 5 sender reply-to email-address | (Optional) Assigns the e-mail address that appears in the reply-to field in Call Home e-mail messages. |
| Example: sender reply-to username@example.com | Router(cfg-call-home)# sender reply-to username@example.com |
| Step 6 source-interface interface-name | Assigns the source interface name to send call-home messages. |
| Example: source-interface loopback1 | Router(cfg-call-home)# source-interface loopback1 |
### Specifying Rate Limit for Sending Call Home Messages

To specify the rate limit for sending Call Home messages, perform the following steps:

**SUMMARY STEPS**

1. `configure terminal`
2. `call-home`
3. `rate-limit number`

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vrf vrf-name</code></td>
<td>(Optional) Specifies the VRF instance to send call-home e-mail messages. If no vrf is specified, the global routing table is used.</td>
</tr>
</tbody>
</table>

**Note** For HTTP messages, if the source interface is associated with a VRF, use the `ip http client source-interface interface-name` command in global configuration mode to specify the VRF instance that will be used for all HTTP clients on the device.

---

**Example**

The following example shows the configuration of general e-mail parameters, including a primary and secondary e-mail server:

```plaintext
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# call-home
Router(cfg-call-home)# mail-server smtp.example.com priority 1
Router(cfg-call-home)# mail-server 192.168.0.1 priority 2
Router(cfg-call-home)# sender from username@example.com
Router(cfg-call-home)# sender reply-to username@example.com
Router(cfg-call-home)# source-interface loopback1
Router(cfg-call-home)# vrf vpn1
Router(cfg-call-home)# exit
Router(config)#
```

---

**Specifying Rate Limit for Sending Call Home Messages**

To specify the rate limit for sending Call Home messages, perform the following steps:

**SUMMARY STEPS**

1. `configure terminal`
2. `call-home`
3. `rate-limit number`
### Specifying HTTP Proxy Server

To specify an HTTP proxy server for sending Call Home HTTP(S) messages to a destination, perform the following steps:

**SUMMARY STEPS**

1. configure terminal
2. call-home
3. http-proxy \{ipv4-address | ipv6-address | name\} port port-number

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> call-home</td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> rate-limit number</td>
<td>Specifies a limit on the number of messages sent per minute.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(cfg-call-home)# rate-limit 40</td>
<td>• number—Range is 1 to 60. The default is 20.</td>
</tr>
<tr>
<td><strong>Step 3</strong> http-proxy {ipv4-address</td>
<td>ipv6-address</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(cfg-call-home)# http-proxy 1.1.1.1 port 1</td>
<td></td>
</tr>
</tbody>
</table>
Enabling AAA Authorization to Run IOS Commands for Call Home Messages

To specify an HTTP proxy server for sending Call Home HTTP(S) messages to a destination, perform the following steps:

**SUMMARY STEPS**

1. configure terminal
2. call-home
3. aaa-authorization
4. aaa-authorization [username username]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> call-home</td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> aaa-authorization</td>
<td>Enables AAA authorization.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(cfg-call-home)# aaa-authorization</td>
<td><strong>Note</strong> By default, AAA authorization is disabled for Call Home.</td>
</tr>
<tr>
<td><strong>Step 4</strong> aaa-authorization [username username]</td>
<td>Specifies the username for authorization.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(cfg-call-home)# aaa-authorization username user</td>
<td>• username username—Default username is callhome. Maximum length is 64.</td>
</tr>
</tbody>
</table>

Configuring Syslog Throttling

To specify an HTTP proxy server for sending Call Home HTTP(S) messages to a destination, perform the following steps:

**SUMMARY STEPS**

1. configure terminal
2. call-home
3. [no] syslog-throttling
**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> call-home</td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> [no] syslog-throttling</td>
<td>Enables or disables call-home syslog message throttling and avoids sending repetitive call-home syslog messages.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(cfg-call-home)# syslog-throttling</td>
<td></td>
</tr>
</tbody>
</table>

**Configuring Call Home Data Privacy**

The data-privacy command scrubs data, such as IP addresses, from running configuration files to protect the privacy of customers. Enabling the data-privacy command can affect CPU utilization when scrubbing a large amount of data. Currently, the `show` command output is not being scrubbed except for configuration messages in the outputs for the `show running-config all` and the `show startup-config data` commands.

**SUMMARY STEPS**

1. configure terminal
2. call-home
3. data-privacy {level {normal | high} | hostname}

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> call-home</td>
<td>Enters Call Home configuration submode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# call-home</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> data-privacy {level {normal</td>
<td>high}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(cfg-call-home)# data-privacy level high</td>
<td></td>
</tr>
</tbody>
</table>

*normal*—Scrubs all normal-level commands.

**Note** Enabling the data-privacy command can affect CPU utilization when scrubbing a large amount of data.
Sending Call Home Communications Manually

You can manually send several types of Call Home communications. To send Call Home communications, perform the tasks in this section. This section contains the following subsections:

- Sending a Call Home Test Message Manually, on page 204
- Sending Call Home Alert Group Messages Manually, on page 204
- Submitting Call Home Analysis and Report Requests, on page 205
- Manually Sending Command Output Message for One Command or a Command List, on page 207

Sending a Call Home Test Message Manually

You can use the `call-home test` command to send a user-defined Call Home test message.

To manually send a Call Home test message, perform the following step:

**SUMMARY STEPS**

1. `call-home test ["test-message"] profile name`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>call-home test [&quot;test-message&quot;] profile name</code></td>
<td>Sends a test message to the specified destination profile. The user-defined test message text is optional but must be enclosed in quotes (&quot;&quot;&quot;) if it contains spaces. If no user-defined message is configured, a default message is sent.</td>
</tr>
</tbody>
</table>

Sending Call Home Alert Group Messages Manually

You can use the `call-home send` command to manually send a specific alert group message.

Note the following guidelines when manually sending a Call Home alert group message:

- Only the crash, snapshot, configuration, and inventory alert groups can be sent manually.
• When you manually trigger a crash, snapshot, configuration, or inventory alert group message and you specify a destination profile name, a message is sent to the destination profile regardless of the profile’s active status, subscription status, or severity setting.

• When you manually trigger a crash, snapshot, configuration, or inventory alert group message and do not specify a destination profile name, a message is sent to all active profiles that have either a normal or periodic subscription to the specified alert group.

To manually trigger Call Home alert group messages, perform the following steps:

**SUMMARY STEPS**

1. `call-home send alert-group snapshot [profile name]`
2. `call-home send alert-group crash [profile name]`
3. `call-home send alert-group configuration [profile name]`
4. `call-home send alert-group inventory [profile name]`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>call-home send alert-group snapshot [profile name]</code></td>
<td>Sends a snapshot alert group message to one destination profile if specified, or to all subscribed destination profiles.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# <code>call-home send alert-group snapshot profile1</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>call-home send alert-group crash [profile name]</code></td>
<td>Sends a crash alert group message to one destination profile if specified, or to all subscribed destination profiles.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# <code>call-home send alert-group crash profile1</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>call-home send alert-group configuration [profile name]</code></td>
<td>Sends a configuration alert group message to one destination profile if specified, or to all subscribed destination profiles.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# <code>call-home send alert-group configuration profile1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>call-home send alert-group inventory [profile name]</code></td>
<td>Sends an inventory alert group message to one destination profile if specified, or to all subscribed destination profiles.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router# <code>call-home send alert-group inventory profile1</code></td>
<td></td>
</tr>
</tbody>
</table>

**Submitting Call Home Analysis and Report Requests**

You can use the `call-home request` command to submit information about your system to Cisco to receive helpful analysis and report information specific to your system. You can request a variety of reports, including security alerts, known bugs, best practices, and command references.

Note the following guidelines when manually sending Call Home analysis and report requests:
• If a profile name is specified, the request is sent to the profile. If no profile is specified, the request is sent to the Cisco TAC profile. The recipient profile does not need to be enabled for the call-home request. The profile should specify the e-mail address where the transport gateway is configured so that the request message can be forwarded to the Cisco TAC and the user can receive the reply from the Smart Call Home service.

• The ccoid user-id is the registered identifier of the Smart Call Home user. If the user-id is specified, the response is sent to the e-mail address of the registered user. If no user-id is specified, the response is sent to the contact e-mail address of the device.

• Based on the keyword specifying the type of report requested, the following information is returned:
  • config-sanity—Information on best practices as related to the current running configuration.
  • bugs-list—Known bugs in the running version and in the currently applied features.
  • command-reference—Reference links to all commands in the running configuration.
  • product-advisory—Product Security Incident Response Team (PSIRT) notices, End of Life (EOL) or End of Sales (EOS) notices, or field notices (FN) that may affect the devices in your network.

To submit a request for analysis and report information from the Cisco Output Interpreter tool, perform the following steps:

SUMMARY STEPS

1. call-home request output-analysis “show-command” [profile name] [ccoid user-id]
2. call-home request {config-sanity | bugs-list | command-reference | product-advisory} [profile name] [ccoid user-id]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Sends the output of the specified show command for analysis. The show command must be contained in quotes (“”).</td>
</tr>
<tr>
<td>call-home request output-analysis “show-command” [profile name] [ccoid user-id]</td>
<td></td>
</tr>
<tr>
<td>Example: Router# call-home request output-analysis “show diag” profile TG</td>
<td></td>
</tr>
</tbody>
</table>

Step 2	Sends the output of a predetermined set of commands such as the show running-config all, show version or show module commands, for analysis. In addition, the call home request product-advisory sub-command includes all inventory alert group commands. The keyword specified after request specifies the type of report requested.			
call-home request {config-sanity	bugs-list	command-reference	product-advisory} [profile name] [ccoid user-id]	
Example: Router# call-home request config-sanity profile TG				

Example

The following example shows a request for analysis of a user-specified show command:

Router# call-home request output-analysis “show diag” profile TG
Manually Sending Command Output Message for One Command or a Command List

You can use the `call-home send` command to execute an IOS command or a list of IOS commands and send the command output through HTTP or e-mail protocol.

Note the following guidelines when sending the output of a command:

- The specified IOS command or list of IOS commands can be any run command, including commands for all modules. The command must be contained in quotes ("").

- If the e-mail option is selected using the “email” keyword and an e-mail address is specified, the command output is sent to that address. If neither the e-mail nor the HTTP option is specified, the output is sent in long-text format with the specified service request number to the Cisco TAC (attach@cisco.com).

- If neither the “email” nor the “http” keyword is specified, the service request number is required for both long-text and XML message formats and is provided in the subject line of the e-mail.

- If the HTTP option is specified, the CiscoTac-1 profile destination HTTP or HTTPS URL is used as the destination. The destination e-mail address can be specified so that Smart Call Home can forward the message to the e-mail address. The user must specify either the destination e-mail address or an SR number but they can also specify both.

To execute a command and send the command output, perform the following step:

**SUMMARY STEPS**

1. `call-home send {cli command | cli list} [email email msg-format {long-text | xml} | http {destination-email-address email}] [tac-service-request SR#]`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>`call-home send {cli command</td>
<td>cli list} [email email msg-format {long-text</td>
</tr>
</tbody>
</table>

- `{cli command | cli list}`—Specifies the IOS command or list of IOS commands (separated by ';'). It can be any run command, including commands for all modules. The commands must be contained in quotes (""").

- `email email msg-format {long-text | xml}`—If the `email` option is selected, the command output will be sent to the specified e-mail address in long-text or XML format with the service request number in the subject. The e-mail address, the service request number, or both must be specified. The service request number is required if the e-mail address is not specified (default is attach@cisco.com for long-text format and callhome@cisco.com for XML format).

- `http {destination-email-address email}`—If the `http` option is selected, the command output will be sent to
Configuring Call Home

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Call Home backend server (URL specified in TAC profile) in XML format. destination-email-address email can be specified so that the backend server can forward the message to the e-mail address. The e-mail address, the service request number, or both must be specified. • tac-service-request SR#—Specifies the service request number. The service request number is required if the e-mail address is not specified.</td>
<td></td>
</tr>
</tbody>
</table>

Example

The following example shows how to send the output of a command to a user-specified e-mail address:

Router# call-home send "show diag" email support@example.com

The following example shows the command output sent in long-text format to attach@cisco.com, with the SR number specified:

Router# call-home send "show version; show run" tac-service-request 123456

The following example shows the command output sent in XML message format to callhome@cisco.com:

Router# call-home send "show version; show run" email callhome@cisco.com msg-format xml

The following example shows the command output sent in XML message format to the Cisco TAC backend server, with the SR number specified:

Router# call-home send "show version; show run" http tac-service-request 123456

The following example shows the command output sent to the Cisco TAC backend server through the HTTP protocol and forwarded to a user-specified email address:

Router# call-home send "show version; show run" http destination-email-address user@company.com

Configuring Diagnostic Signatures

The Diagnostic Signatures feature downloads digitally signed signatures to devices. Diagnostic Signatures (DS) files are formatted files that collate knowledge of diagnostic events and provide methods to troubleshoot them without a need to upgrade the Cisco software. The aim of DS is to deliver flexible intelligence that can detect and collect troubleshooting information that can be used to resolve known problems in customers networks.
Information About Diagnostic Signatures

- Diagnostic Signatures Overview, on page 209
- Prerequisites for Diagnostic Signatures, on page 210
- Downloading Diagnostic Signatures, on page 210
- Diagnostic Signature Workflow, on page 210
- Diagnostic Signature Events and Actions, on page 211
- Diagnostic Signature Event Detection, on page 211
- Diagnostic Signature Actions, on page 211
- Diagnostic Signature Variables, on page 212

Diagnostic Signatures Overview

Diagnostic signatures (DS) for the Call Home system provides a flexible framework that allows the defining of new events and corresponding CLIs that can analyze these events without upgrading the Cisco software.

DSs provide the ability to define more types of events and trigger types than the standard Call Home feature supports. The DS subsystem downloads and processes files on a device as well as handles callbacks for diagnostic signature events.

The Diagnostic Signature feature downloads digitally signed signatures that are in the form of files to devices. DS files are formatted files that collate the knowledge of diagnostic events and provide methods to troubleshoot these events.

DS files contain XML data to specify the event description, and these files include CLI commands or scripts to perform required actions. These files are digitally signed by Cisco or a third party to certify their integrity, reliability, and security.

The structure of a DS file can be one of the following formats:

- Metadata-based simple signature that specifies the event type and contains other information that can be used to match the event and perform actions such as collecting information by using the CLI. The signature can also change configurations on the device as a workaround for certain bugs.
- Embedded Event Manager (EEM) Tool Command Language (Tcl) script-based signature that specifies new events in the event register line and additional action in the Tcl script.
- Combination of both the formats above.

The following basic information is contained in a DS file:

- **ID (unique number)**—Unique key that represents a DS file that can be used to search a DS.
- **Name (ShortDescription)**—Unique description of the DS file that can be used in lists for selection.
- **Description**—Long description about the signature.
- **Revision**—Version number, which increments when the DS content is updated.
- **Event & Action**—Defines the event to be detected and the action to be performed after the event happens.
Prerequisites for Diagnostic Signatures

Before you download and configure diagnostic signatures (DSs) on a device, you must ensure that the following conditions are met:

- You must assign one or more DSs to the device. For more information on how to assign DSs to devices, see Downloading Diagnostic Signatures, on page 210.
- HTTP/Secure HTTP (HTTPS) transport is required for downloading DS files. You must install the certification authority (CA) certificate to enable the authentication of the destination HTTPS server.

**Note**

If you configure the trustpool feature, the CA certificate is not required.

Downloading Diagnostic Signatures

To download the diagnostic signature (DS) file, you require the secure HTTP (HTTPS) protocol. If you have already configured an email transport method to download files on your device, you must change your assigned profile transport method to HTTPS to download and use DS.

Cisco software uses a PKI Trustpool Management feature, which is enabled by default on devices, to create a scheme to provision, store, and manage a pool of certificates from known certification authorities (CAs). The trustpool feature installs the CA certificate automatically. The CA certificate is required for the authentication of the destination HTTPS servers.

There are two types of DS update requests to download DS files: regular and forced-download. Regular download requests DS files that were recently updated. You can trigger a regular download request either by using a periodic configuration or by initiating an on-demand CLI. The regular download update happens only when the version of the requested DS is different from the version of the DS on the device. Periodic download is only started after there is any DS assigned to the device from DS web portal. After the assignment happens, the response to the periodic inventory message from the same device will include a field to notify device to start its periodic DS download/update. In a DS update request message, the status and revision number of the DS is included such that only a DS with the latest revision number is downloaded.

Forced-download downloads a specific DS or a set of DSes. You can trigger the forced-download update request only by initiating an on-demand CLI. In a force-download update request, the latest version of the DS file is downloaded irrespective of the current DS file version on the device.

The DS file is digitally signed, and signature verification is performed on every downloaded DS file to make sure it is from a trusted source.

Diagnostic Signature Workflow

The diagnostic signature feature is enabled by default in Cisco software. The following is the workflow for using diagnostic signatures:

- Find the DS(es) you want to download and assign them to the device. This step is mandatory for regular periodic download, but not required for forced download.
- The device downloads all assigned DS(es) or a specific DS by regular periodic download or by on-demand forced download.
• The device verifies the digital signature of every single DS. If verification passes, the device stores the DS file into a non-removable disk, such as bootflash or hard disk, so that DS files can be read after the device is reloaded. On the router, the DS file is stored in the bootflash:/callhome directory.

• The device continues sending periodic regular DS download requests to get the latest revision of DS and replace the older one in device.

• The device monitors the event and executes the actions defined in the DS when the event happens.

Diagnostic Signature Events and Actions

The events and actions sections are the key areas used in diagnostic signatures. The event section defines all event attributes that are used for event detection. The action section lists all actions which should be performed after the event happens, such as collecting show command outputs and sending them to Smart Call Home to parse.

Diagnostic Signature Event Detection

Event detection in a DS is defined in two ways: single event detection and multiple event detection.

Single Event Detection

In single event detection, only one event detector is defined within a DS. The event specification format is one of the following two types:

• DS event specification type: syslog, periodic, configuration, Online Insertion Removal (OIR) immediate, and call home are the supported event types, where “immediate” indicates that this type of DS does not detect any events, its actions are performed once it is downloaded, and the call-home type modifies the current CLI commands defined for existing alert-group.

• The Embedded Event Manager (EEM) specification type: supports any new EEM event detector without having to modify the Cisco software.

Other than using EEM to detect events, a DS is triggered when a Tool Command Language (Tcl) script is used to specify event detection types.

Multiple Event Detection

Multiple event detection involves defining two or more event detectors, two or more corresponding tracked object states, and a time period for the events to occur. The specification format for multiple event detection can include complex event correlation for tracked event detectors. For example, three event detectors (syslog, OIR, and IP SLA) are defined during the creation of a DS file. The correlation that is specified for these event detectors is that the DS will execute its action if both syslog and OIR events are triggered simultaneously, or if IP SLA is triggered alone.

Diagnostic Signature Actions

The diagnostic signature (DS) file consists of various actions that must be initiated when an event occurs. The action type indicates the kind of action that will be initiated in response to a certain event.

Variables are elements within a DS that are used to customize the files.

DS actions are categorized into the following four types:

• call-home
DS action types call-home and emailto collect event data and send a message to call-home servers or to the defined email addresses. The message uses “diagnostic-signature” as its message type and DS ID as the message sub-type.

The commands defined for the DS action type initiate CLI commands that can change configuration of the device, collect show command outputs, or run any EXEC command on the device. The DS action type script executes Tcl scripts.

**Diagnostic Signature Variables**

Variables are referenced within a DS and are used to customize the DS file. All DS variable names have the prefix ds_ to separate them from other variables. The following are the supported DS variable types:

- System variable: variables assigned automatically by the device without any configuration changes. The Diagnostic Signatures feature supports two system variables: ds_hostname and ds_signature_id.

- Environment variable: values assigned manually by using the `environment variable-name variable-value` command in call-home diagnostic-signature configuration mode. Use the `show call-home diagnostic-signature` command to display the name and value of all DS environment variables. If the DS file contains unresolved environment variables, this DS will stay in pending status until the variable gets resolved.

- Prompt variable: values assigned manually by using the `call-home diagnostic-signature install ds-id` command in privileged EXEC mode. If you do not set this value, the status of the DS indicates pending.

- Regular expression variable: values assigned from a regular expression pattern match with predefined CLI command outputs. The value is assigned during the DS run.

- Syslog event variable: values assigned during a syslog event detection in the DS file. This variable is valid only for syslog event detection.

**How to Configure Diagnostic Signatures**

- Configuring the Call Home Service for Diagnostic Signatures, on page 212
- Configuring Diagnostic Signatures, on page 214

**Configuring the Call Home Service for Diagnostic Signatures**

Configure the Call Home Service feature to set attributes such as the contact email address where notifications related with diagnostic signatures (DS) are sent and destination HTTP/secure HTTP (HTTPS) URL to download the DS files from.

You can also create a new user profile, configure correct attributes and assign it as the DS profile. For periodic downloads, the request is sent out just following full inventory message. By changing the inventory periodic configuration, the DS periodic download also gets rescheduled.
The predefined CiscoTAC-1 profile is enabled as a DS profile by default and we recommend that you use it. If used, you only need to change the destination transport-method to the http setting.

### SUMMARY STEPS

1. configure terminal
2. service call-home
3. call-home
4. contact-email-addr email-address
5. mail-server {ipv4-addr | name} priority number
6. profile profile-name
7. destination transport-method {email | http}
8. destination address {email address | http url}
9. subscribe-to-alert-group inventory [periodic {daily hh:mm | monthly day hh:mm | weekly day hh:mm}]
10. exit

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>service call-home</td>
</tr>
<tr>
<td></td>
<td>Enables Call Home service on a device.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# service call-home</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>call-home</td>
</tr>
<tr>
<td></td>
<td>Enters call-home configuration mode for the configuration of Call Home settings.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(config)# call-home</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>contact-email-addr email-address</td>
</tr>
<tr>
<td></td>
<td>(Optional) Assigns an email address to be used for Call Home customer contact.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home)# contact-email-addr <a href="mailto:userid@example.com">userid@example.com</a></td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>mail-server {ipv4-addr</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configures a Simple Mail Transfer Protocol (SMTP) email server address for Call Home. This command is only used when sending email is part of the actions defined in any DS.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home)# mail-server 10.1.1.1 priority 4</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>profile profile-name</td>
</tr>
<tr>
<td></td>
<td>Configures a destination profile for Call Home and enters call-home profile configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
</tbody>
</table>
### Configuring Diagnostic Signatures

**Purpose**

- Router(cfg-call-home)# profile user1

**Step 7**

- **transport-method**
  - *email* | *http*

  **Example:**

  Router(cfg-call-home-profile)# destination transport-method http

  Specifies a transport method for a destination profile in the Call Home.

  **Note** To configure diagnostic signatures, you must use the **http** option.

**Step 8**

- **address**
  - *email address* | *http url*

  **Example:**

  Router(cfg-call-home-profile)# destination address http

  https://tools.cisco.com/its/service/ddces/services/DDCEService

  Configures the address type and location to which call-home messages are sent.

  **Note** To configure diagnostic signatures, you must use the **http** option.

**Step 9**

- **subscribe-to-alert-group**
  - *inventory* [periodic {daily *hh:mm* | monthly *day hh:mm* | weekly *day hh:mm*}]

  **Example:**

  Router(cfg-call-home-profile)# subscribe-to-alert-group inventory periodic daily 14:30

  Configures a destination profile to send messages for the Inventory alert group for Call Home.

  - This command is used only for the periodic downloading of DS files.

**Step 10**

- **exit**

  **Example:**

  Router(cfg-call-home-profile)# exit

  Exits call-home profile configuration mode and returns to call-home configuration mode.

**What to do next**

Set the profile configured in the previous procedure as the DS profile and configure other DS parameters.

### Configuring Diagnostic Signatures

**Before you begin**

Configure the Call Home feature to set attributes for the Call Home profile. You can either use the default CiscoTAC-1 profile or use the newly-created user profile.

### SUMMARY STEPS

1. **call-home**
2. **diagnostic-signature**
3. **profile** `ds-profile-name`
4. **environment** `ds_env-var-name ds-env-var-value`
5. **end**
6. **call-home diagnostic-signature** `[deinstall | download] {ds-id | all} | install ds-id]
7. **show call-home diagnostic-signature** `[ds-id {actions | events | prerequisite | prompt | variables | failure | statistics | download}]`
### DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | **call-home**  
**Example:**  
Router(config)# call-home | Enters call-home configuration mode for the configuration of Call Home settings. |
| Step 2 | **diagnostic-signature**  
**Example:**  
Router(cfg-call-home)# diagnostic-signature | Enters call-home diagnostic signature mode. |
| Step 3 | **profile**  
*ds-profile-name*  
**Example:**  
Router(cfg-call-home-diag-sign)# profile user1 | Specifies the destination profile on a device that DS uses. |
| Step 4 | **environment**  
*ds_env-var-name*  
*ds-env-var-value*  
**Example:**  
Router(cfg-call-home-diag-sign)# environment ds_env1 envval | Sets the environment variable value for DS on a device. |
| Step 5 | **end**  
**Example:**  
Router(cfg-call-home-diag-sign)# end | Exits call-home diagnostic signature mode and returns to privileged EXEC mode. |
| Step 6 | **call-home diagnostic-signature**  
({deinstall | download} | *ds-id* | all) | *install* | *ds-id* |  
**Example:**  
Router# call-home diagnostic-signature download 6030 | Downloads, installs, and uninstalls diagnostic signature files on a device. |
| Step 7 | **show call-home diagnostic-signature**  
(*ds-id* | *actions* | *events* | *prerequisite* | *prompt* | *variables* | *failure* | *statistics* | *download*) | Displays the call-home diagnostic signature information. |

**Configuration Examples for Diagnostic Signatures**

The following example shows how to enable the periodic downloading request for diagnostic signature (DS) files. This configuration will send download requests to the service call-home server daily at 2:30 p.m. to check for updated DS files. The transport method is set to HTTP.

```
Router> enable
Router# configure terminal
Router(config)# service call-home
Router(config)# call-home
Router(cfg-call-home)# contact-email-addr userid@example.com
Router(cfg-call-home)# mail-server 10.1.1.1 priority 4
Router(cfg-call-home)# profile user-1
```
Router(cfg-call-home-profile)# destination transport-method http
Router(cfg-call-home-profile)# destination address http
https://tools.cisco.com/its/service/oddce/services/DDCEService
Router(cfg-call-home-profile)# subscribe-to-alert-group inventory periodic daily 14:30
Router(cfg-call-home-profile)# exit
Router(cfg-call-home)# diagnostic-signature
Router(cfg-call-home-diag-sign)# profile user1
Router(cfg-call-home-diag-sign)# environment ds_env1 envvarval
Router(cfg-call-home-diag-sign)# end

The following is sample output from the `show call-home diagnostic-signature` command for the configuration displayed above:

outer# show call-home diagnostic-signature

Current diagnostic-signature settings:
Diagnostic-signature: enabled
Profile: user1 (status: ACTIVE)
Environment variable:
ds_env1: abc
Downloaded DSes:

<table>
<thead>
<tr>
<th>DS ID</th>
<th>DS Name</th>
<th>Revision</th>
<th>Status</th>
<th>Last Update (GMT+00:00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6015</td>
<td>CronInterval</td>
<td>1.0</td>
<td>registered</td>
<td>2013-01-16 04:49:52</td>
</tr>
<tr>
<td>6030</td>
<td>ActCH</td>
<td>1.0</td>
<td>registered</td>
<td>2013-01-16 06:10:22</td>
</tr>
<tr>
<td>6032</td>
<td>MultiEvents</td>
<td>1.0</td>
<td>registered</td>
<td>2013-01-16 06:10:37</td>
</tr>
<tr>
<td>6033</td>
<td>PureTCL</td>
<td>1.0</td>
<td>registered</td>
<td>2013-01-16 06:11:48</td>
</tr>
</tbody>
</table>

Displaying Call Home Configuration Information

You can use variations of the `show call-home` command to display Call Home configuration information.

To display the configured Call Home information, perform the following:

**SUMMARY STEPS**

1. show call-home
2. show call-home detail
3. show call-home alert-group
4. show call-home mail-server status
5. show call-home profile {all | name}
6. show call-home statistics [detail | profile profile_name]

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>show call-home</td>
<td>Displays the Call Home configuration in summary.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# show call-home</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>show call-home detail</td>
<td>Displays the Call Home configuration in detail.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>show call-home detail</td>
<td></td>
</tr>
</tbody>
</table>
### Displaying Call Home Configuration Information

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show call-home detail</td>
<td>Displays the available alert groups and their status.</td>
</tr>
</tbody>
</table>

**Step 3**

**show call-home alert-group**

**Example:**

Router# show call-home alert-group

**Step 4**

**show call-home mail-server status**

**Example:**

Router# show call-home mail-server status

**Step 5**

**show call-home profile {all | name}**

**Example:**

Router# show call-home profile all

**Step 6**

**show call-home statistics {detail | profile profile_name}**

**Example:**

Router# show call-home statistics

---

**Examples**

**Call Home Information in Summary**

**Call Home Information in Detail**

**Available Call Home Alert Groups**

**E-Mail Server Status Information**

**Information for All Destination Profiles**

**Information for a User-Defined Destination Profile**

**Call Home Statistics**

The following examples show the sample output when using different options of the `show call-home` command.

Router# **show call-home**

Current call home settings:

- call home feature : enable
- call home message's from address: router@example.com
- call home message's reply-to address: support@example.com
- vrf for call-home messages: Not yet set up
- contact person's email address: technical@example.com
contact person's phone number: +1-408-555-1234
street address: 1234 Picaboo Street, Any city, Any state, 12345
customer ID: ExampleCorp
contract ID: X123456789
site ID: SantaClara

source ip address: Not yet set up
source interface: GigabitEthernet0/0
Mail-server[1]: Address: 192.168.2.1 Priority: 1
Mail-server[2]: Address: 223.255.254.254 Priority: 2
http proxy: 192.168.1.1:80

aaa-authorization: disable
aaa-authorization username: callhome (default)
data-privacy: normal
syslog throttling: enable

Rate-limit: 20 message(s) per minute

Snapshot command[0]: show version
Snapshot command[1]: show clock

Available alert groups:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration</td>
<td>Enable</td>
<td>configuration info</td>
</tr>
<tr>
<td>crash</td>
<td>Enable</td>
<td>crash and traceback info</td>
</tr>
<tr>
<td>environment</td>
<td>Enable</td>
<td>environmental info</td>
</tr>
<tr>
<td>inventory</td>
<td>Enable</td>
<td>inventory info</td>
</tr>
<tr>
<td>snapshot</td>
<td>Enable</td>
<td>snapshot info</td>
</tr>
<tr>
<td>syslog</td>
<td>Enable</td>
<td>syslog info</td>
</tr>
</tbody>
</table>

Profiles:
- Profile Name: campus-noc
- Profile Name: CiscoTAC-1

Router#

Router# show call-home detail

Current call home settings:
call home feature : enable
call home message's from address: router@example.com
call home message's reply-to address: support@example.com

vrf for call-home messages: Not yet set up

contact person's email address: technical@example.com

contact person's phone number: +1-408-555-1234
street address: 1234 Picaboo Street, Any city, Any state, 12345
customer ID: ExampleCorp
contract ID: X123456789
site ID: SantaClara

source ip address: Not yet set up
source interface: GigabitEthernet0/0
Mail-server[1]: Address: 192.168.2.1 Priority: 1
Mail-server[2]: Address: 223.255.254.254 Priority: 2
http proxy: 192.168.1.1:80

aaa-authorization: disable
aaa-authorization username: callhome (default)
data-privacy: normal
syslog throttling: enable

Rate-limit: 20 message(s) per minute
Snapshot command[0]: show version
Snapshot command[1]: show clock

Available alert groups:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration</td>
<td>Enable</td>
<td>configuration info</td>
</tr>
<tr>
<td>crash</td>
<td>Enable</td>
<td>crash and traceback info</td>
</tr>
<tr>
<td>environment</td>
<td>Enable</td>
<td>environmental info</td>
</tr>
<tr>
<td>inventory</td>
<td>Enable</td>
<td>inventory info</td>
</tr>
<tr>
<td>snapshot</td>
<td>Enable</td>
<td>snapshot info</td>
</tr>
<tr>
<td>syslog</td>
<td>Enable</td>
<td>syslog info</td>
</tr>
</tbody>
</table>

Profiles:

Profile Name: campus-noc
Profile status: ACTIVE
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): noc@example.com
HTTP address(es): Not yet set up

Alert-group Severity
------------------------ ------------
configuration normal
crash normal
environment debug
inventory normal

Syslog-Pattern Severity
------------------------ ------------
."CALL_LOOP.*" debug

Profile Name: CiscoTAC-1
Profile status: INACTIVE
Profile mode: Full Reporting
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): callhome@cisco.com
HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService

Periodic configuration info message is scheduled every 14 day of the month at 11:12
Periodic inventory info message is scheduled every 14 day of the month at 10:57

Alert-group Severity
------------------------ ------------
crash normal
environment minor

Syslog-Pattern Severity
------------------------ ------------
."CALL_LOOP.*" debug

Router# show call-home alert-group
Available alert groups:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration</td>
<td>Enable</td>
<td>configuration info</td>
</tr>
<tr>
<td>crash</td>
<td>Enable</td>
<td>crash and traceback info</td>
</tr>
<tr>
<td>environment</td>
<td>Enable</td>
<td>environmental info</td>
</tr>
</tbody>
</table>

Router#
Router# show call-home mail-server status
Please wait. Checking for mail server status ...

  Mail-server[1]: Address: 192.168.2.1 Priority: 1 [Not Available]
  Mail-server[2]: Address: 223.255.254.254 Priority: 2 [Available]

Router#

Router# show call-home profile all

Profile Name: campus-noc
  Profile status: ACTIVE
  Preferred Message Format: xml
  Message Size Limit: 3145728 Bytes
  Transport Method: email
  Email address(es): noc@example.com
  HTTP address(es): Not yet set up
  Alert-group Severity
  ------------------------ ------------
  configuration  normal
  crash  normal
  environment  debug
  inventory  normal

  Syslog-Pattern Severity
  ------------------------ ------------
  .*CALL_LOOP.*  debug

Profile Name: CiscoTAC-1
  Profile status: INACTIVE
  Profile mode: Full Reporting
  Preferred Message Format: xml
  Message Size Limit: 3145728 Bytes
  Transport Method: email
  Email address(es): callhome@cisco.com
  HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService

  Periodic configuration info message is scheduled every 14 day of the month at 11:12
  Periodic inventory info message is scheduled every 14 day of the month at 10:57

  Alert-group Severity
  ------------------------ ------------
  configuration  normal
  crash  normal
  environment  minor

  Syslog-Pattern Severity
  ------------------------ ------------
  .*CALL_LOOP.*  debug

Router#

Router# show call-home profile campus-noc

Profile Name: campus-noc
  Profile status: ACTIVE
  Preferred Message Format: xml
  Message Size Limit: 3145728 Bytes
  Transport Method: email
  Email address(es): noc@example.com
  HTTP address(es): Not yet set up
Alert-group Severity
------------------------ ------------
configuration normal
  crash normal
environment debug
inventory normal

Syslog-Pattern Severity
------------------------ ------------
.*CALL_LOOP.* debug

Router#

Router# show call-home statistics

<table>
<thead>
<tr>
<th>Message Types</th>
<th>Total</th>
<th>Email</th>
<th>HTTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Success</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Config</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Crash</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Environment</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inventory</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Snapshot</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SysLog</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Test</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Request</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Send-CLI</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total In-Queue	0	0	0
Config	0	0	0
Crash	0	0	0
Environment	0	0	0
Inventory	0	0	0
Snapshot	0	0	0
SysLog	0	0	0
Test	0	0	0
Request	0	0	0
Send-CLI	0	0	0

Total Failed	0	0	0
Config	0	0	0
Crash	0	0	0
Environment	0	0	0
Inventory	0	0	0
Snapshot	0	0	0
SysLog	0	0	0
Test	0	0	0
Request	0	0	0
Send-CLI	0	0	0

Total Rate limit	-dropped	0	0	0
Config	0	0	0	0
Crash	0	0	0	0
Environment	0	0	0	0
Inventory	0	0	0	0
Snapshot	0	0	0	0
SysLog	0	0	0	0
Test	0	0	0	0
Request	0	0	0	0
Send-CLI	0	0	0	0

Last call-home message sent time: 2011-09-26 23:26:50 GMT-08:00

Router#
Default Call Home Settings

The following table lists the default Call Home settings.

Table 14: Default Call Home Settings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Home feature status</td>
<td>Disabled</td>
</tr>
<tr>
<td>User-defined profile status</td>
<td>Active</td>
</tr>
<tr>
<td>Predefined Cisco TAC profile status</td>
<td>Inactive</td>
</tr>
<tr>
<td>Transport method</td>
<td>E-mail</td>
</tr>
<tr>
<td>Message format type</td>
<td>XML</td>
</tr>
<tr>
<td>Destination message size for a message sent in long text, short text, or XML format</td>
<td>3,145,728</td>
</tr>
<tr>
<td>Alert group status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Call Home message severity threshold</td>
<td>Debug</td>
</tr>
<tr>
<td>Message rate limit for messages per minute</td>
<td>20</td>
</tr>
<tr>
<td>AAA Authorization</td>
<td>Disabled</td>
</tr>
<tr>
<td>Call Home syslog message throttling</td>
<td>Enabled</td>
</tr>
<tr>
<td>Data privacy level</td>
<td>Normal</td>
</tr>
</tbody>
</table>

Alert Group Trigger Events and Commands

Call Home trigger events are grouped into alert groups, with each alert group assigned commands to execute when an event occurs. The command output is included in the transmitted message. The following table lists the trigger events included in each alert group, including the severity level of each event and the executed commands for the alert group.
### Table 15: Call Home Alert Groups, Events, and Actions

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash</td>
<td>SYSTEM_CRASH</td>
<td>–</td>
<td>–</td>
<td>Events related to software crash.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The following commands are executed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show logging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show stack</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>crashinfo file (this command shows</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the contents of the crashinfo file)</td>
</tr>
<tr>
<td>──</td>
<td>TRACEBACK</td>
<td>–</td>
<td>–</td>
<td>Detects software traceback events.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The following commands are executed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show logging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show stack</td>
</tr>
<tr>
<td>Alert Group</td>
<td>Call Home Trigger Event</td>
<td>Syslog Event</td>
<td>Severity</td>
<td>Description and Commands Executed</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
<td></td>
<td></td>
<td>User-generated request for configuration or configuration change event.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The following commands are executed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show platform</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show running-config all</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show startup-config</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show version</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td>Events related to power, fan, and environment sensing elements such as temperature alarms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The following commands are executed:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show inventory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show platform</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show logging</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>SHUT</td>
<td>0</td>
<td>Environmental Monitor initiated shutdown.</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>ENVCRIT</td>
<td>2</td>
<td>Temperature or voltage measurement exceeded critical threshold.</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>BLOWER</td>
<td>3</td>
<td>Required number of fan trays is not present.</td>
</tr>
</tbody>
</table>
### Alert Group Trigger Events and Commands

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>–</td>
<td>–</td>
<td>ENVWARN</td>
<td>4</td>
<td>Temperature or voltage measurement exceeded warning threshold.</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>RPSFAIL</td>
<td>4</td>
<td>Power supply may have a failed channel.</td>
</tr>
<tr>
<td>–</td>
<td>ENVM</td>
<td>PSCHANGE</td>
<td>6</td>
<td>Power supply name change.</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>PSLEV</td>
<td>6</td>
<td>Power supply state change.</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>PSOK</td>
<td>6</td>
<td>Power supply now appears to be working correctly.</td>
</tr>
<tr>
<td>Alert Group</td>
<td>Call Home Trigger Event</td>
<td>Syslog Event</td>
<td>Severity</td>
<td>Description and Commands Executed</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Inventory</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Alert Group</td>
<td>Call Home Trigger Event</td>
<td>Syslog Event</td>
<td>Severity</td>
<td>Description and Commands Executed</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Inventory status should be provided whenever a unit is cold-booted or when FRUs are inserted or removed. This is considered a noncritical event, and the information is used for status and entitlement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commands executed for all Inventory messages sent in anonymous mode and for Delta Inventory message sent in full registration mode:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show diag all eeprom detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show inventory oid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show platform</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Commands executed for Full Inventory message sent in full registration mode:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show platform</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show diag all eeprom detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show inventory oid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show bootflash: all</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show data-corruption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show interfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show file systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show memory statistics</td>
</tr>
</tbody>
</table>
### Alert Group Trigger Events and Commands

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show process memory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show process cpu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show process cpu history</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show license udi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show license detail</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>show buffers</td>
</tr>
<tr>
<td>Card removed</td>
<td>HARDWARE_REMOVAL</td>
<td>REMCARD</td>
<td>6</td>
<td>Card removed from slot %d, interfaces disabled.</td>
</tr>
<tr>
<td>from slot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>slot %d,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disabled.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Card inserted</td>
<td>HARDWARE_INSERTION</td>
<td>INSCARD</td>
<td>6</td>
<td>Card inserted in slot %d, interfaces administratively shut down.</td>
</tr>
<tr>
<td>in slot %d,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>administratively</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>shut down.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event logged</td>
<td>SYSLOG</td>
<td>LOG_EMERG</td>
<td>0</td>
<td>Event logged to syslog.</td>
</tr>
<tr>
<td>to syslog.</td>
<td></td>
<td></td>
<td></td>
<td>The following commands are executed:</td>
</tr>
<tr>
<td>The following</td>
<td></td>
<td></td>
<td></td>
<td>show inventory</td>
</tr>
<tr>
<td>commands are</td>
<td></td>
<td></td>
<td></td>
<td>show logging</td>
</tr>
<tr>
<td>executed:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System is</td>
<td>SYSLOG</td>
<td>LOG_ALERT</td>
<td>1</td>
<td>Action must be taken immediately.</td>
</tr>
<tr>
<td>unusable.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical</td>
<td>SYSLOG</td>
<td>LOG_CRIT</td>
<td>2</td>
<td>Critical conditions.</td>
</tr>
<tr>
<td>conditions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>SYSLOG</td>
<td>LOG_ERR</td>
<td>3</td>
<td>Error conditions.</td>
</tr>
<tr>
<td>conditions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning</td>
<td>SYSLOG</td>
<td>LOG_WARNING</td>
<td>4</td>
<td>Warning conditions.</td>
</tr>
<tr>
<td>conditions.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal but</td>
<td>SYSLOG</td>
<td>LOG_NOTICE</td>
<td>5</td>
<td>Normal but signification condition.</td>
</tr>
<tr>
<td>signification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>condition.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Informational.</td>
<td>SYSLOG</td>
<td>LOG_INFO</td>
<td>6</td>
<td>Informational.</td>
</tr>
<tr>
<td>Debug-level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>messages.</td>
<td>SYSLOG</td>
<td>LOG_DEBUG</td>
<td>7</td>
<td>Debug-level messages.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Message Contents

This section consists of tables which list the content formats of alert group messages. This section also includes the following subsections that provide sample messages:

- Sample Syslog Alert Notification in Long-Text Format, on page 233
- Sample Syslog Alert Notification in XML Format, on page 235

The following table lists the content fields of a short text message.

Table 16: Format for a Short Text Message

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device identification</td>
<td>Configured device name</td>
</tr>
<tr>
<td>Date/time stamp</td>
<td>Time stamp of the triggering event</td>
</tr>
<tr>
<td>Error isolation message</td>
<td>Plain English description of triggering event</td>
</tr>
<tr>
<td>Alarm urgency level</td>
<td>Error level such as that applied to a system message</td>
</tr>
</tbody>
</table>

The following table shows the content fields that are common to all long text and XML messages. The fields specific to a particular alert group message are inserted at a point between the common fields. The insertion point is identified in the table.

Table 17: Common Fields for All Long Text and XML Messages

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>Call-Home Message Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time stamp</td>
<td>Date and time stamp of event in ISO time notation: \textit{YYYY-MM-DD HH:MM:SS GMT}+HH:MM.</td>
<td>CallHome/EventTime</td>
</tr>
<tr>
<td>Data Item (Plain Text and XML)</td>
<td>Description (Plain Text and XML)</td>
<td>Call-Home Message Tag (XML Only)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Message name</td>
<td>Name of message. Specific event names are listed in the Alert Group Trigger Events and Commands, on page 222.</td>
<td>For short text message only</td>
</tr>
<tr>
<td>Message type</td>
<td>Specifically “Call Home”.</td>
<td>CallHome/Event/Type</td>
</tr>
<tr>
<td>Message subtype</td>
<td>Specific type of message: full, delta, test</td>
<td>CallHome/Event/SubType</td>
</tr>
<tr>
<td>Message group</td>
<td>Specifically “reactive”. Optional because default is “reactive”.</td>
<td>For long-text message only</td>
</tr>
<tr>
<td>Severity level</td>
<td>Severity level of message (see Message Severity Threshold, on page 197).</td>
<td>Body/Block/Severity</td>
</tr>
<tr>
<td>Source ID</td>
<td>Product type for routing through the workflow engine. This is typically the product family name.</td>
<td>For long-text message only</td>
</tr>
</tbody>
</table>
| Device ID                     | Unique device identifier (UDI) for end device generating message. This field should be empty if the message is nonspecific to a fabric switch. The format is type@Sid@serial.  
   - *type* is the product model number from backplane IDPROM.  
   - *@* is a separator character.  
   - *Sid* is C, identifying the serial ID as a chassis serial number.  
   - *serial* is the number identified by the Sid field.  
   Example: CISCO3845@C@12345678 | CallHome/CustomerData/ContractData/DeviceId |
<p>| Customer ID                   | Optional user-configurable field used for contract information or other ID by any support service. | CallHome/CustomerData/ContractData/CustomerId |
| Contract ID                   | Optional user-configurable field used for contract information or other ID by any support service. | CallHome/CustomerData/ContractData/CustomerId |</p>
<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>Call-Home Message Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site ID</td>
<td>Optional user-configurable field used for Cisco-supplied site ID or other data meaningful to alternate support service.</td>
<td>CallHome/CustomerData/ContractData/CustomerId</td>
</tr>
</tbody>
</table>
| Server ID                      | If the message is generated from the fabric switch, this is the unique device identifier (UDI) of the switch.  
   - *type* is the product model number from backplane IDPROM.  
   - @ is a separator character.  
   - Sid is C, identifying the serial ID as a chassis serial number.  
   - serial is the number identified by the Sid field.  
   Example: CISCO3845@C@12345678 | For long text message only. |

<table>
<thead>
<tr>
<th>Message description</th>
<th>Short text describing the error.</th>
<th>CallHome/MessageDescription</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device name</td>
<td>Node that experienced the event. This is the host name of the device.</td>
<td>CallHome/CustomerData/SystemInfo/NameName</td>
</tr>
<tr>
<td>Contact name</td>
<td>Name of person to contact for issues associated with the node experiencing the event.</td>
<td>CallHome/CustomerData/SystemInfo/Contact</td>
</tr>
<tr>
<td>Contact e-mail</td>
<td>E-mail address of person identified as contact for this unit.</td>
<td>CallHome/CustomerData/SystemInfo/ContactEmail</td>
</tr>
<tr>
<td>Contact phone number</td>
<td>Phone number of the person identified as the contact for this unit.</td>
<td>CallHome/CustomerData/SystemInfo/ContactPhoneNumber</td>
</tr>
<tr>
<td>Street address</td>
<td>Optional field containing street address for RMA part shipments associated with this unit.</td>
<td>CallHome/CustomerData/SystemInfo/StreetAddress</td>
</tr>
<tr>
<td>Model name</td>
<td>Model name of the router. This is the *specific model as part of a product family name.</td>
<td>CallHome/Device/Cisco_Chassis/Model</td>
</tr>
<tr>
<td>Serial number</td>
<td>Chassis serial number of the unit.</td>
<td>CallHome/Device/Cisco_Chassis/SerialNumber</td>
</tr>
</tbody>
</table>
The following table shows the inserted fields specific to a particular alert group message.

**Table 18: Inserted Fields Specific to a Particular Alert Group Message**

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>Call-Home Message Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis part number</td>
<td>Top assembly number of the chassis.</td>
<td>CallHome/Device/Cisco_Chassis/AdditionalInformation/AD@name=&quot;PartNumber&quot;</td>
</tr>
<tr>
<td>System object ID</td>
<td>System Object ID that uniquely identifies the system.</td>
<td>CallHome/Device/Cisco_Chassis/AdditionalInformation/AD@name=&quot;sysObjectID&quot;</td>
</tr>
<tr>
<td>System description</td>
<td>System description for the managed element.</td>
<td>CallHome/Device/Cisco_Chassis/AdditionalInformation/AD@name=&quot;sysDescr&quot;</td>
</tr>
</tbody>
</table>

The following fields may be repeated if multiple commands are executed for this alert group.

The following table shows the inserted content fields for reactive messages (system failures that require a TAC case) and proactive messages (issues that might result in degraded system performance).

**Table 19: Inserted Fields for a Reactive or Proactive Event Message**

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>Call-Home Message Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command output name</td>
<td>Exact name of the issued command.</td>
<td>/aml/Attachments/Attachment/NameExactnameoftheissuedcommand.Commandoutputname</td>
</tr>
<tr>
<td>Attachment type</td>
<td>Attachment type. Usually “inline”.</td>
<td>/aml/Attachments/Attachment/@type</td>
</tr>
<tr>
<td>MIME type</td>
<td>Normally “text” or “plain” or encoding type.</td>
<td>/aml/Attachments/Attachment/Data@encoding</td>
</tr>
<tr>
<td>Command output text</td>
<td>Output of command automatically executed (see Alert Group Trigger Events and Commands, on page 222).</td>
<td>/ml/attachments/attachment/atdata</td>
</tr>
</tbody>
</table>

The following table shows the inserted content fields for reactive messages (system failures that require a TAC case) and proactive messages (issues that might result in degraded system performance).
The following table shows the inserted content fields for an inventory message.

**Table 20: Inserted Fields for an Inventory Event Message**

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>Call-Home Message Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affected FRU part number</td>
<td>Part number of affected FRU</td>
<td>CallHome/Device/Cisco_Chassis/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco_Card/PartNumber</td>
</tr>
<tr>
<td>FRU slot</td>
<td>Slot number of FRU generating the event message</td>
<td>CallHome/Device/Cisco_Chassis/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco_Card/LocationWithinContainer</td>
</tr>
<tr>
<td>FRU hardware version</td>
<td>Hardware version of affected FRU</td>
<td>CallHome/Device/Cisco_Chassis/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco_Card/HardwareVersion</td>
</tr>
<tr>
<td>FRU software version</td>
<td>Software version(s) running on affected FRU</td>
<td>CallHome/Device/Cisco_Chassis/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cisco_Card/SoftwareIdentity/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VersionString</td>
</tr>
</tbody>
</table>

Sample Syslog Alert Notification in Long-Text Format

The following example shows a Syslog alert notification in long-text format:

```
TimeStamp : 2014-08-13 21:41 GMT+00:00
Message Name : syslog
Message Type : Call Home
Message Group : reactive
Severity Level : 2
Source ID : ISR 4400
```
Device ID : ISR4451-X/K9@FTX1830AKF9
Customer ID :
Contract ID :
Site ID :
Server ID : ISR4451-X/K9@FTX1830AKF9
Event Description : *Aug 13 21:41:35.835: %CLEAR-5-COUNTERS: Clear counter on all interfaces by console
System Name : Router
Contact Email : admin@yourdomain.com
Contact Phone :
Street Address :
Affected Chassis : ISR4451-X/K9
Affected Chassis Serial Number : FTX1830AKF9
Affected Chassis Part No : 800-36894-03
Affected Chassis Hardware Version : 1.0
Supervisor Software Version : 15.4(20140812:034256)
Command Output Name : show logging
Attachment Type : command output
MIME Type : text/plain
Command Output Text : show logging
Syslog logging: enabled (0 messages dropped, 4 messages rate-limited, 0 flushes, 0 overruns, xml disabled, filtering disabled)

No Active Message Discriminator.

No Inactive Message Discriminator.

Console logging: level debugging, 71 messages logged, xml disabled, filtering disabled
Monitor logging: level debugging, 0 messages logged, xml disabled, filtering disabled
Buffer logging: level debugging, 73 messages logged, xml disabled, filtering disabled
Exception Logging: size (4096 bytes)
Count and timestamp logging messages: disabled
Persistent logging: disabled

No active filter modules.

Trap logging: level informational, 70 message lines logged
Logging Source-Interface: VRF Name:
Log Buffer (4096 bytes):

*Aug 13 21:38:04.994: %CLEAR-5-COUNTERS: Clear counter on all interfaces by console
*Aug 13 21:40:55.706: %CLEAR-5-COUNTERS: Clear counter on all interfaces by console
*Aug 13 21:41:27.042: %SYS-5-CONFIG_I: Configured from console by console
Router#
Command Output Name : show inventory
Attachment Type : command output
MIME Type : text/plain
Command Output Text : show inventory
NAME: "Chassis", DESCRI: "Cisco ISR4451 Chassis"
PID: ISR4451-X/K9 , VID: V03, SN: FTX1830AKF9
NAME: "Power Supply Module 0", DESCRI: "450W AC Power Supply for Cisco ISR4450, ISR4350"
PID: PWR-4450-AC , VID: V01, SN: DCA1822X0G4
NAME: "Fan Tray", DESCRI: "Cisco ISR4450, ISR4350 Fan Assembly"
PID: ACS-4450-FANASSY , VID: , SN:
Sample Syslog Alert Notification in XML Format

The following example shows a Syslog alert notification in XML format:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope">
 <soap-env:Header>
 <aml-session:To>http://tools.cisco.com/neddce/services/DDCEService</aml-session:To>
 <aml-session:Path>
 <aml-session:Via>http://www.cisco.com/appliance/uri</aml-session:Via>
 </aml-session:Path>
 <aml-session:MessageId>M4:FTX1830AKF9:53EBDBDA</aml-session:MessageId>
 </aml-session:Session>
 </soap-env:Header>
 <soap-env:Body>
 <aml-block:Header>
 <aml-block:Type>http://www.cisco.com/2005/05/callhome/syslog</aml-block:Type>
 <aml-block:CreationDate>2014-08-13 21:42:50 GMT+00:00</aml-block:CreationDate>
 <aml-block:Builder>
 <aml-block:Name>ISR 4400</aml-block:Name>
 <aml-block:Version>2.0</aml-block:Version>
 </aml-block:Builder>
 <aml-block:GroupId>G5:FTX1830AKF9:53EBDBDA</aml-block:GroupId>
 <aml-block:Number>0</aml-block:Number>
 <aml-block:IsLast>true</aml-block:IsLast>
 <aml-block:IsPrimary>true</aml-block:IsPrimary>
 <aml-block:WaitForPrimary>false</aml-block:WaitForPrimary>
 <aml-block:BlockGroup>
 <aml-block:Severity>2</aml-block:Severity>
 </aml-block:BlockGroup>
 </aml-block:Header>
 <aml-block:Content>
 <ch:CallHome xmlns:ch="http://www.cisco.com/2005/05/callhome" version="1.0">
 <ch:EventTime>2014-08-13 21:42:49 GMT+00:00</ch:EventTime>
 <ch:Event>
 </ch:Event>
 </ch:CallHome>
 </aml-block:Content>
 </aml-block:Block>
 </soap-env:Body>
</soap-env:Envelope>
```
Sample Syslog Alert Notification in XML Format

Configuring Call Home

Sample Syslog Alert Notification in XML Format

```xml
<ch:Type>syslog</ch:Type>
<ch:SubType></ch:SubType>
<ch:Brand>Cisco Systems</ch:Brand>
<ch:Series>ISR XE Series Routers</ch:Series>
</ch:Event>
<ch:CustomerData>
<ch:UserData>
<ch:Email>admin@yourdomain.com</ch:Email>
</ch:UserData>
<ch:ContractData>
<ch:CustomerId></ch:CustomerId>
<ch:SiteId></ch:SiteId>
<ch:ContractId></ch:ContractId>
<ch:DeviceId>ISR4451-X/K9@FTX1830AKF9</ch:DeviceId>
</ch:ContractData>
<ch:SystemInfo>
<ch:Name>Router</ch:Name>
<ch:Contact></ch:Contact>
<ch:ContactEmail>admin@yourdomain.com</ch:ContactEmail>
<ch:ContactPhoneNumber></ch:ContactPhoneNumber>
<ch:StreetAddress></ch:StreetAddress>
</ch:SystemInfo>
<ch:CCOID></ch:CCOID>
</ch:CustomerData>
<ch:Device>
<rme:Chassis xmlns:rme="http://www.cisco.com/rme/4.0">
 <rme:Model>ISR4451-X/K9</rme:Model>
 <rme:HardwareVersion>1.0</rme:HardwareVersion>
 <rme:SerialNumber>FTX1830AKF9</rme:SerialNumber>
 <rme:AdditionalInformation>
 <rme:AD name="PartNumber" value="800-36894-03" />
 <rme:AD name="SoftwareVersion" value="15.4(20140812:034256)" />
 <rme:AD name="SystemObjectId" value="1.3.6.1.4.1.9.1.1707" />
 <rme:AD name="SystemDescription" value="Cisco IOS Software, ISR Software
(X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.4(20140812:034256)
(v154_3_s_xe313_throttle-BLD-BLD_V154_3_S_XE313_THROTTLE_LATEST_20140812_020034-ios 150"
Copyright (c) 1986-2014 by Cisco Systems, Inc.
Compiled Tue 12-Aug-14 00:13 by mcpre" />
 <rme:AD name="ServiceNumber" value="" />
 <rme:AD name="ForwardAddress" value="" />
 </rme:AdditionalInformation>
</rme:Chassis>
</ch:Device>
</aml-block:Content>
<aml-block:Attachments>
<aml-block:Attachment type="inline">
<aml-block:Name>show logging</aml-block:Name>
<aml-block:Data encoding="plain">
<![CDATA[show logging
Syslog logging: enabled (0 messages dropped, 4 messages rate-limited, 0 flushes, 0 overruns, xml disabled, filtering disabled)

No Active Message Discriminator.

No Inactive Message Discriminator.

Console logging: level debugging, 75 messages logged, xml disabled, filtering disabled
Monitor logging: level debugging, 0 messages logged, xml disabled, filtering disabled
Buffer logging: level debugging, 77 messages logged, xml disabled, filtering disabled
Exception Logging: size (4096 bytes)]]>
```
Count and timestamp logging messages: disabled
Persistent logging: disabled

No active filter modules.

Trap logging: level informational, 74 message lines logged
Log Buffer (4096 bytes):

*Aug 13 21:42:23.364: %SYS-5-CONFIG_I: Configured from console by console

<aml-block:Attachment type="inline">
<aml-block:Name>show inventory</aml-block:Name>
<aml-block:Data encoding="plain">
<![CDATA[show inventory
NAME: "Chassis", DESCR: "Cisco ISR4451 Chassis"
PID: ISR4451-X/K9 , VID: V03, SN: FTX1830AKF9
NAME: "Power Supply Module 0", DESCR: "450W AC Power Supply for Cisco ISR4450, ISR4350"
PID: PWR-4450-AC , VID: V01, SN: DCA1822X0G4
NAME: "Fan Tray", DESCR: "Cisco ISR4450, ISR4350 Fan Assembly"
PID: ACS-4450-FANASSY , VID: , SN:
NAME: "module 0", DESCR: "Cisco ISR4451 Built-In NIM controller"
PID: ISR4451-X/K9 , VID: , SN:
NAME: "NIM subslot 0/0", DESCR: "Front Panel 4 ports Gigabitethernet Module"
PID: ISR4451-X-4x1GE , VID: V01, SN: JAB092709EL
NAME: "module 1", DESCR: "Cisco ISR4451 Built-In SM controller"
PID: ISR4451-X/K9 , VID: , SN:
NAME: "module 2", DESCR: "Cisco ISR4451 Built-In SM controller"
PID: ISR4451-X/K9 , VID: , SN:
NAME: "module R0", DESCR: "Cisco ISR4451 Route Processor"
PID: ISR4451-X/K9 , VID: V03, SN: FOC18271QLX
NAME: "module F0", DESCR: "Cisco ISR4451 Forwarding Processor"
PID: ISR4451-X/K9 , VID: , SN:

Router#]]>
</aml-block:Data>
</aml-block:Attachment>
</aml-block:Attachments>
</aml-block:Block>
</soap-env:Body>
</soap-env:Envelope>

Additional References

The following sections provide references related to the Call Home feature.
Related Documents

<table>
<thead>
<tr>
<th>Document Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smart Call Home User Guide</td>
<td>Explains how the Smart Call Home service offers web-based access to important information on select Cisco devices and offers higher network availability, and increased operational efficiency by providing proactive diagnostics and real-time alerts.</td>
</tr>
</tbody>
</table>

Technical Assistance

<table>
<thead>
<tr>
<th>Description</th>
<th>Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Cisco Support website provides extensive online resources, including documentation and tools for troubleshooting and resolving technical issues with Cisco products and technologies.</td>
<td><a href="http://www.cisco.com/techsupport">http://www.cisco.com/techsupport</a></td>
</tr>
<tr>
<td>To receive security and technical information about your products, you can subscribe to various services, such as the Product Alert Tool (accessed from Field Notices), the Cisco Technical Services Newsletter, and Really Simple Syndication (RSS) Feeds.</td>
<td></td>
</tr>
<tr>
<td>Access to most tools on the Cisco Support website requires a Cisco.com user ID and password.</td>
<td></td>
</tr>
</tbody>
</table>

Command Reference

Managing Cisco Enhanced Services and Network Interface Modules

The router supports Cisco Enhanced Services Modules (SMs) and Cisco Network Interface Modules (NIMs). The modules are inserted into the router using an adapter, or carrier card, into various slots. For more information, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

The following sections are included in this chapter:

- Information About Cisco Enhanced Services and Network Interface Modules, on page 239
- Modules Supported, on page 240
- Network Interface Modules, on page 240
- Enhanced Service Modules, on page 242
- Implementing SMs and NIMs on Your Router, on page 244
- Managing Modules and Interfaces, on page 251
- Monitoring and Troubleshooting Modules and Interfaces, on page 255
- Configuration Examples, on page 262

Information About Cisco Enhanced Services and Network Interface Modules

The router configures, manages, and controls the supported Cisco Enhanced Services Modules (SMs) and Network Interface Modules (NIMs) using the module management facility built in its architecture. This new centralized module management facility provides a common way to control and monitor all the modules in the system regardless of their type and application. All Cisco Enhanced Service and Network Interface Modules supported on your router use standard IP protocols to interact with the host router. Cisco IOS software uses alien data path integration to switch between the modules.

- Modules Supported, on page 240
- Network Interface Modules, on page 240
- Enhanced Service Modules, on page 242
Modules Supported


Network Interface Modules

The following Network Interface Modules are supported:

- Cisco Fourth-Generation LTE Network Interface Module, on page 240
- Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch Network Interface Module, on page 240
- Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module, on page 240
- Cisco SSD/HDD Carrier Card NIM, on page 241
- Upgrading the SSD or HDD Firmware, on page 241
- Error Monitoring, on page 242

Cisco Fourth-Generation LTE Network Interface Module

Cisco 4G LTE NIM addresses the modular 4G LTE cellular connectivity on the Cisco 4000 Series ISRs. This is the first wireless NIM, though it is not the first wireless module in the ISR product line. The closest modular card to Cisco 4G LTE NIM is the Cisco EHWIC 4G LTE, which accepts a single LTE modem. Cisco 4G LTE NIM is feature-compatible with Cisco EHWIC 4G LTE. For more information, see the Cisco Fourth-Generation LTE Network Interface Module Software Configuration Guide.

Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch Network Interface Module

The Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch Network Interface Module (NIM) integrates the Layer 2 features and provides a 1-Gbps connection to the multigigabit fabric (MGF) for intermodule communication. For more information on configuring the Cisco 4-Port and 8-Port Layer 2 Gigabit EtherSwitch NIM, see http://www.cisco.com/c/en/us/td/docs/routers/access/interfaces/NIM/software/configuration/guide/4_8PortGENIM.html.

Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module

The Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module (NIM) is inserted into the NIM slot of the router and provides data and voice support on T1/E1 trunks. To support voice-related and other DSP features, the Cisco PVDM4 (Cisco Packet Voice Digital Signal Processor Module) is also required. See the following documents for more information:

- Installing the Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module
- Configuring the Cisco Fourth-Generation T1/E1 Voice and WAN Network Interface Module
• Installing the Cisco PVDM4

Cisco SSD/HDD Carrier Card NIM

The router supports a single Cisco SSD and HDD Carrier Card NIM, which must be placed in slot 0 and subslot 1, 2, or 3.

A Cisco SSD/HDD Carrier Card NIM can be one of the following:

• Cisco SSD Carrier Card NIM—Supports one or two Solid-State Drives (SSDs).
• Cisco HDD Carrier Card NIM—Supports one Hard Disk Drive (HDD).

For more information on the hardware characteristics of the SSD/HDD Carrier Card NIM, see the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

For more information on deactivating or reactivating a SSD/HDD Carrier Card NIM, see Deactivating and Reactivating an SSD/HDD Carrier Card NIM, on page 247.

Cisco 1-, 2-, and 4-Port Serial NIM

The Cisco 1-, 2-, and 4-port Serial NIMs are multi-protocol synchronous serial network interface modules (NIMs) supported on the Cisco 4400 Series ISRs. The Cisco 1-, 2-, and 4-port Serial NIMs expand the capabilities of the router to provide connectivity for synchronous interfaces in a wide range of applications including up to 8Mbps data rate for high speed high-level data link control (HDLC). These capabilities can be utilized as Point-to-Point Cisco HDLC WAN interface or frame relay interface. The Cisco 1-, 2-, and 4-port Serial NIMs have their own serial communication controllers (SCC) and they do not rely on the host router for SCCs. For further information on configuring this NIM, see the Configuring the Cisco 1-, 2-, and 4-port Serial Network Interface Modules for the Cisco 4400 Series ISRs document.

Upgrading the SSD or HDD Firmware

You can upgrade the firmware for the SSD or HDD using the `upgrade hw-programmable module filename bootflash:filename slot/sub-slot` command.

A typical `filename` has the form: `nim_ssd_manufacturer_firmware-version-number.bin`

The firmware file can also be available in other locations other than `bootflash:`

For example, you can provide any one of the following locations in place of `bootflash:filename`:

• `flash:filename`
• `harddisk:filename`
• `usb1:filename`

Note

For a Cisco SSD carrier card NIM or Cisco HDD carrier card NIM, only slot 0 and one of the subslots 1, 2, or 3 must be used.
The following example shows how to upgrade a Micron P400m disk to firmware revision 200 using the upgrade hw-programmable module filename bootflash command:

```
Router# upgrade hw-programmable module filename bootflash:nim_ssd_MicronP400m_E200.bin
Info: Trying to upgrade Module in 0/3 with nim_ssd_MicronP400m_E200.bin
Info: Current NIM-SSD disk config.
Info: Disk1: rev: 0200 model: MicronP400m-MTFDDAK200MAN
Info: Disk2: rev: 0200 model: MicronP400m-MTFDDAK200MAN
/dev/sde:
fwdownload: xfer_mode=3 min=1 max=255 size=512
..
Done.
/dev/sdf:
fwdownload: xfer_mode=3 min=1 max=255 size=512
..
Done.
Info: Performing post upgrade check
Info: Upgrade to Firmware version E200 on disk1 successful.
Info: Upgrade to Firmware version E200 on disk2 successful.
Info: Current NIM-SSD disk config.
Info: Disk1: rev: E200 model: MicronP400m
```

**Error Monitoring**

The drives in the Cisco SDD/HDD Carrier Card NIM are monitored for SMART errors. If a SMART error occurs, a Cisco IOS error message is displayed, as shown in the following example:

```
%IOSXE-5-PLATFORM:logger: INFO:/dev/sde:SMART error present:please do 'more bootflash:/tracelogs/smart_errors.log'.
```

You can find additional information in the error log at: bootflash:/tracelogs/smart_errors.log

**Enhanced Service Modules**

The following service modules are supported on the router:

- Cisco SM-1 T3/E3 Service Module, on page 242
- Cisco UCS E-Series Server, on page 242
- Cisco SM-X Layer 2/3 EtherSwitch Service Module, on page 243
- Cisco 6-Port GE SFP Service Module, on page 243

**Cisco SM-1 T3/E3 Service Module**

For more information, see the Cisco SM-1T3/E3 Enhanced Service Module Configuration Guide.

**Cisco UCS E-Series Server**

For more information, see the documentation listed in the Cisco UCS E-Series Server Roadmap.
Cisco SM-X Layer 2/3 EtherSwitch Service Module

This module provides the following features:

- Integration of Layer 2 and Layer 3 switching features and the ability of the router to use the Cisco SM-X Layer 2/3 ESM (16-port and 24-port) as an independent Layer 3 switch.
- 1 Gbps connection to the multigigabit fabric (MGF) for intermodule communication without burdening the CPU of the router.
- Up to 30 watts of power per port with the robust Power over Ethernet Plus (PoE+) feature along with IEEE 802.3AE Media Access Control Security (MACSec) port-based, hop-to-hop, encryption, and Cisco TrustSec.

For more information, see the following documents:
- Cisco SM-X Layer 2/3 EtherSwitch Service Module Configuration Guide for Cisco 4451-X ISR
- Connecting Cisco SM-X Layer 2/3 EtherSwitch Service Module to the Network

Cisco 6-Port GE SFP Service Module

The Cisco 6-port GE SFP service module is a Gigabit Ethernet module that can be inserted into the router's SM slot to provide Gigabit Ethernet features on routable external interfaces. For more information about configuring this service module, see the Software Configuration Guide for the Cisco 6-port GE SFP Service Module.

Cisco 4-port GE SFP and 1-port 10 GE SFP Service Module

The Cisco 4-port GE SFP and 1-port 10 GE SFP Service Module (SM-X-4x1GE-1x10GE) is software-configurable high-speed connectivity routing port service module for the Cisco ISR 4400 Series routers. This service module provides increased density of Ethernet interfaces on the Cisco ISR 4400 Series routers. For further information on configuring this service module, see: the Software Configuration Guide for the Cisco 6-port GE SFP Service Module and Cisco 4-port GE SFP and 1-port 10 GE SFP Service Module

Cisco 1GE-CU-SFP and 2GE-CU-SFP Network Interface Modules

The Cisco 1GE-CU-SFP and 2GE-CU-SFP Network Interface Modules (NIMs) are software-configurable high-speed connectivity routing port network interface modules for the Cisco 4000 and Cisco ISR 4300 Series Integrated Services Routers (ISR). These network interface modules provide increased density of Ethernet interfaces on the Cisco 4000 ISR. For further information on configuring this NIM, see the Configuring the Cisco 1GE-CU-SFP and 2GE-CU-SFP Network Interface Modules in Cisco 4000 Series Integrated Services Routers.

Note

Cisco 4221 ISR does not support 2GE-CU-SFP Network Interface Module.
Implementing SMs and NIMs on Your Router

- Downloading the Module Firmware, on page 244
- Installing SMs and NIMs, on page 244
- Accessing Your Module Through a Console Connection or Telnet, on page 244
- Online Insertion and Removal, on page 245

Downloading the Module Firmware

Module firmware must be loaded to the router to be able to use a service module. For more information, see Installing a Firmware Subpackage, on page 83.

The modules connect to the RP via the internal eth0 interface to download the firmware. Initially, the module gets an IP address for itself via BOOTP. The BOOTP also provides the address of the TFTP server used to download the image. After the image is loaded and the module is booted, the module provides an IP address for the running image via DHCP.

Installing SMs and NIMs

For more information, see "Installing and Removing NIMs and SMs" in the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

Accessing Your Module Through a Console Connection or Telnet

Before you can access the modules, you must connect to the host router through the router console or through Telnet. After you are connected to the router, you must configure an IP address on the Gigabit Ethernet interface connected to your module. Open a session to your module using the `hw-module session` command in privileged EXEC mode on the router.

To establish a connection to the module, connect to the router console using Telnet or Secure Shell (SSH) and open a session to the switch using the `hw-module session slot/subslot` command in privileged EXEC mode on the router.

Use the following configuration examples to establish a connection:

- The following example shows how to open a session from the router using the `hw-module session` command:
  ```
 Router# hw-module session slot/card
 Router# hw-module session 0/1 endpoint 0

 Establishing session connect to subslot 0/1
  ```

- The following example shows how to exit a session from the router, by pressing Ctrl-A followed by Ctrl-Q on your keyboard:
  ```
 type `a`q
 picocom v1.4

 port is : /dev/ttyDASH2
 flowcontrol : none
  ```
baudrate is : 9600
parity is : none
databits are : 8
escape is : C-a
noinit is : no
noreset is : no
nolock is : yes
send_cmd is : ascii_xfr -s -v -l10
receive_cmd is : rz -vv

Online Insertion and Removal

The router supports online insertion and removal (OIR) of Cisco Enhanced Services Modules and Cisco Network Interface Modules. You can perform the following tasks using the OIR function:

• Preparing for Online Removal of a Module, on page 245
• Deactivating a Module, on page 245
• Deactivating Modules and Interfaces in Different Command Modes, on page 246
• Deactivating and Reactivating an SSD/HDD Carrier Card NIM, on page 247
• Reactivating a Module, on page 248
• Verifying the Deactivation and Activation of a Module, on page 248

Preparing for Online Removal of a Module

The router supports the OIR of a module, independent of removing another module installed in your router. This means that an active module can remain installed in your router, while you remove another module from one of the subslots. If you are not planning to immediately replace a module, ensure that you install a blank filler plate in the subslot.

Deactivating a Module

A module can be removed from the router without first being deactivated. However, we recommend that you perform a graceful deactivation (or graceful power down) of the module before removing it. To perform a graceful deactivation, use the `hw-module subslot slot/subslot stop` command in EXEC mode.

Note

When you are preparing for an OIR of a module, it is not necessary to independently shut down each of the interfaces before deactivating the module. The `hw-module subslot slot/subslot stop` command in EXEC mode automatically stops traffic on the interfaces and deactivates them along with the module in preparation for OIR. Similarly, you do not have to independently restart any of the interfaces on a module after OIR.

The following example shows how to use the `show facility-alarm status` command to verify if any critical alarm is generated when a module is removed from the system:

```bash
Router# show facility-alarm status
System Totals Critical: 5 Major: 1 Minor: 0

Source Severity Description [Index]
------- -------- -------------------
Power Supply Bay 1 CRITICAL Power Supply/FAN Module Missing [0]
```
Deactivating Modules and Interfaces in Different Command Modes

You can deactivate a module and its interfaces using the `hw-module subslot` command in one of the following modes:

- If you choose to deactivate your module and its interfaces by executing the `hw-module subslot slot/subslot shutdown unpowered` command in global configuration mode, you are able to change the configuration in such a way that no matter how many times the router is rebooted, the module does not boot. This command is useful when you need to shut down a module located in a remote location and ensure that it does not boot automatically when the router is rebooted.

- If you choose to use the `hw-module subslot slot/subslot stop` command in EXEC mode, you cause the module to gracefully shut down. The module is rebooted when the `hw-module subslot slot/subslot start` command is executed.

To deactivate a module and all of its interfaces before removing the module, use one of the following commands in global configuration mode.

**Procedure**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>hw-module subslot slot/subslot shutdown unpowered</code></td>
<td>Deactivates the module located in the specified slot and subslot of the router, where:</td>
</tr>
</tbody>
</table>

- `slot`—Specifies the chassis slot number where the module is installed.
- `subslot`—Specifies the subslot number of the chassis where the module is installed.
- `shutdown`—Shuts down the specified module.
- `unpowered`—Removes all interfaces on the module from the running configuration and the module is powered off.

**Example:**

```
Router# hw-module subslot 0/2 shutdown unpowered
```

| Step 2 | `hw-module subslot slot/subslot [reload | stop | start]` | Deactivates the module in the specified slot and subslot, where: |
|--------|-----------------------------|-----------------------------|

**Example:**

```
```
### Deactivating and Reactivating an SSD/HDD Carrier Card NIM

The following restrictions apply:

- **Deactivating or reactivating an SSD/HDD Carrier Card NIM without an SSD or HDD disk is not supported.**
- **Only a single (SSD or HDD) Carrier Card NIM can be plugged into a bay. If you plug an additional (SSD or HDD) Carrier Card NIM into another bay, the module powers down and kernel, log, or error messages are displayed on the Cisco IOS console. In rare cases, the file system may get corrupted on the additional drive.**

**Caution**

Deactivation of an SSD/HDD Carrier Card NIM may cause loss of data.

To deactivate an SSD/HDD Carrier Card NIM, perform the following steps:

**Procedure**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><strong>virtual-service name</strong></td>
<td>Identifies the kWAAS service (by name), supported on your router, in preparation for the router to be shut down by the <strong>no activate</strong> command. We recommend that you use this command before reseating or replacing an SSD or HDD.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config)# virtual-service my-kwaas-instance</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><strong>no activate</strong></td>
<td>Shuts down the kWAAS instance on your router. kWAAS services remain installed. The service will have to be reactivated after the HDD/SSD NIM (module) is restarted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-virt-serv)# no activate</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>**hw-module subslot slot/subslot [reload</td>
<td>stop</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router# hw-module subslot 0/2 stop</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Proceed with stop of module? [confirm]</code></td>
<td></td>
</tr>
</tbody>
</table>
### Reactivating a Module

If, after deactivating a module using the `hw-module subslot slot/subslot stop` command, you want to reactivate it without performing an OIR, use one of the following commands (in privileged EXEC mode):

- `hw-module subslot slot/subslot start`
- `hw-module subslot slot/subslot reload`

### Verifying the Deactivation and Activation of a Module

When you deactivate a module, the corresponding interfaces are also deactivated. This means that these interfaces will no longer appear in the output of the `show interface` command.

1. To verify the deactivation of a module, enter the `show hw-module subslot all oir` command in privileged EXEC configuration mode.

   Observe the "Operational Status" field associated with the module that you want to verify. In the following example, the module located in subslot 1 of the router is administratively down.

   ```
 Router# show hw-module subslot all oir
 Module Model Operational Status
 ----------------- ------------------ -------------------------
 subslot 0/0 ISR4451-4X1GE ok
 subslot 1/0 SM-X-T1/E1 ok
   ```

2. To verify activation and proper operation of a module, enter the `show hw-module subslot all oir` command and observe "ok" in the Operational Status field as shown in the following example:

   ```
 Router# show hw-module subslot all oir
 Module Model Operational Status
 ----------------- ------------------ -------------------------
 subslot 0/1 NIM-8MFT-T1/E1 ok
   ```
```
subslot 1/0 SM-X T1/E1 ok

Router# show platform hardware backplaneswitch-manager R0 status

<table>
<thead>
<tr>
<th>slot</th>
<th>bay</th>
<th>port</th>
<th>enable</th>
<th>link status</th>
<th>speed(Mbps)</th>
<th>duplex</th>
<th>autoneg</th>
<th>pause_tx</th>
<th>mtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>True</td>
<td>Up</td>
<td>1000</td>
<td>Full</td>
<td>ENABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>GE1</td>
<td>True</td>
<td>Up</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>GE0</td>
<td>True</td>
<td>Up</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>GE1</td>
<td>True</td>
<td>Down</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>GE0</td>
<td>True</td>
<td>Down</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>GE1</td>
<td>True</td>
<td>Down</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>GE0</td>
<td>True</td>
<td>Down</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>GE1</td>
<td>True</td>
<td>Down</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>GE0</td>
<td>True</td>
<td>Down</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>GE1</td>
<td>True</td>
<td>Down</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>GE0</td>
<td>True</td>
<td>Down</td>
<td>1000</td>
<td>Full</td>
<td>DISABLED</td>
<td>ENABLED</td>
<td>10240</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>True</td>
<td>Up</td>
<td>10000</td>
<td>Full</td>
<td>ENABLED</td>
<td>DISABLED</td>
<td></td>
</tr>
</tbody>
</table>

slot bay port mac vid modid flags - Layer 2

<table>
<thead>
<tr>
<th>slot</th>
<th>bay</th>
<th>port</th>
<th>mac</th>
<th>vid</th>
<th>modid</th>
<th>flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>2c54.2dd2.661b</td>
<td>2351</td>
<td>1</td>
<td>0x20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>2c54.2dd2.661b</td>
<td>2352</td>
<td>1</td>
<td>0x20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>2c54.2dd2.661e</td>
<td>2351</td>
<td>0</td>
<td>0xc60</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>2c54.2dd2.661e</td>
<td>2352</td>
<td>0</td>
<td>0x20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>GE0</td>
<td>58bf.ea3a.00f6</td>
<td>2350</td>
<td>0</td>
<td>0x460</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>2c54.2dd2.661b</td>
<td>2350</td>
<td>1</td>
<td>0x20</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>GE0</td>
<td>58bf.ea3a.00f6</td>
<td>2352</td>
<td>0</td>
<td>0x20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>2c54.2dd2.661e</td>
<td>2350</td>
<td>0</td>
<td>0x20</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>GE0</td>
<td>58bf.ea3a.00f6</td>
<td>2351</td>
<td>0</td>
<td>0x460</td>
</tr>
</tbody>
</table>

Port block masks: rows=from port, columns=to port, u=unknown unicast, m=unknown multicast, b=broadcast, A=all

<table>
<thead>
<tr>
<th>GP</th>
<th>FFP</th>
<th>1/0/1</th>
<th>1/0/0</th>
<th>2/0/1</th>
<th>2/0/0</th>
<th>0/1/1</th>
<th>0/1/0</th>
<th>0/2/1</th>
<th>0/2/0</th>
<th>0/3/1</th>
<th>0/3/0</th>
<th>0/4/1</th>
<th>0/4/0</th>
<th>drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
<tr>
<td>um</td>
</tr>
</tbody>
</table>

Cisco 4000 Series ISRs Software Configuration Guide

Verifying the Deactivation and Activation of a Module
```
show platform hardware backplaneswitch-manager rp active ffp statistics: Example

Router# show platform hardware backplaneswitch-manager rp active ffp statistics

<table>
<thead>
<tr>
<th>Broadcom 10G port (e.g: FFP) status:</th>
<th>Rx pkts</th>
<th>Rx Bytes</th>
<th>Tx Pkts</th>
<th>Tx Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>~64</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>65-127</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>128-255</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>256-511</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>512-1023</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1024-1518</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1519-2047</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2048-4095</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4096-9216</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9217-16383</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Max</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Good</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CoS 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CoS 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CoS 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CoS 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CoS 4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CoS 5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CoS 6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CoS 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unicast</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Managing Modules and Interfaces

The router supports various modules. For a list of supported modules, see Modules Supported, on page 240. The module management process involves bringing up the modules so that their resources can be utilized. This process consists of tasks such as module detection, authentication, configuration by clients, status reporting, and recovery. For detailed information about module configuration, see the module documentation referred to in the Documentation Roadmap for the Cisco 4000 Series Integrated Services Routers.

For a list of small-form-factor pluggable (SFP) modules supported on your router, see the "Installing and Upgrading Internal Modules and FRUs" section in the Hardware Installation Guide for the Cisco 4000 Series Integrated Services Routers.

The following sections provide additional information on managing the modules and interfaces:

- Managing Module Interfaces, on page 252
- Managing Modules and Interfaces Using Backplane Switch, on page 252
Managing Module Interfaces

After a module is in service, you can control and monitor its module interface. Interface management includes configuring clients with `shut` or `no shut` commands and reporting on the state of the interface and the interface-level statistics.

Monitor the module status and other statistical information using the `show` commands listed in Monitoring and Troubleshooting Modules and Interfaces, on page 255.

Managing Modules and Interfaces Using Backplane Switch

- Backplane Ethernet Switch, on page 252
- Viewing Module and Interface Card Status on a Router, on page 252
- Viewing Backplane Switch Statistics, on page 253
- Viewing Backplane Switch Port Statistics, on page 253
- Viewing Slot Assignments, on page 254

Backplane Ethernet Switch

The backplane Ethernet switch on your router provides connectivity to Enhanced Service Modules and Network Interface Modules (NIMs). The backplane Ethernet switch facilitates all packet transfers between the host router and its pluggable modules.

The backplane Ethernet switch act as a manager for the host router and controls the module and exchanges logical flow-control information with the module to ensure accurate feedback to the router features. See Managing Modules and Interfaces, on page 251 for more information. The backplane Ethernet switch also facilitates control plane traffic flow from the host router to the modules. The backplane switch manages modules and interface cards and is used to communicate with the modules. Module drivers integrate with the backplane switch to configure packet flow and control traffic buffering.

You are not required to perform any configuration tasks on the backplane switch; all the configurations are performed from the module, which may or may not lead to changes on the backplane switch. For more information on installing an adapter, see the Hardware Installation Guide for the Cisco ISR 4000 Series Integrated Services Routers.

Note
Layer 2 protocols, such as the IEEE 802.1D Spanning Tree Protocol (STP), are not supported in the backplane Ethernet switch.

Viewing Module and Interface Card Status on a Router

You can view the module and interface card details using the `show platform` command in privileged EXEC mode.

The following example shows the sample output for the `show platform` command:

```
Router# show platform
Chassis type: ISR4451/K9

Slot Type State Insert time (ago)
----- -------- --------- ------------------
```

Cisco 4000 Series ISRs Software Configuration Guide

252
### Viewing Backplane Switch Statistics

Statistics reports for each slot show incoming and outgoing packets or bytes. You can use the information to check traffic flow on the various ports of the backplane switch. The following example shows a sample output for the `show platform hardware backplaneswitch-manager rp active summary` command:

```
Router# show platform hardware backplaneswitch-manager rp active summary
<table>
<thead>
<tr>
<th>slot</th>
<th>bay</th>
<th>port</th>
<th>InBytes</th>
<th>InPkts</th>
<th>OutBytes</th>
<th>OutPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>6242</td>
<td>9361008</td>
<td>6241</td>
<td>403209</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>GE0</td>
<td>6306</td>
<td>407477</td>
<td>6241</td>
<td>9360934</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

### Viewing Backplane Switch Port Statistics

You can view statistical information related to the port connected to the backplane switch using the `show platform hardware backplaneswitch-manager rp active subslot GEO statistics` command. The following example displays statistical information related to the backplane switch and ports connected to it:

```
Router# show platform hardware backplaneswitch-manager rp active subslot 1/0 GEO statistics
Broadcom 1G port(e.g: NIM, ESM, CP) status:
<table>
<thead>
<tr>
<th>Rx pkts</th>
<th>Rx Bytes</th>
<th>Tx Pkts</th>
<th>Tx Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>6306</td>
<td>407477</td>
<td>6241</td>
</tr>
<tr>
<td>64</td>
<td>6237</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>65-127</td>
<td>66</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Viewing Slot Assignments

Use the show inventory command in privileged EXEC mode to view the slot assignments, as shown in the following example:

Router# show inventory
NAME: "Chassis", DESCR: "Cisco ISR4451 Chassis"
PID: ISR4451/K9 , VID: V01, SN: FGL163910CM

NAME: "Power Supply Module 1", DESCR: "Cisco 4451-X ISR 450W AC Power Supply"
PID: XXX-XXXX-XX , VID: XXX, SN: DCA1623X05N

NAME: "Fan Tray", DESCR: "Cisco 4451-X ISR Fan tray"
PID: ACS-4450-FANASSY , VID: , SN:

NAME: "module 0", DESCR: "Cisco ISR4451 Built-In NIM controller"
PID: ISR4451/K9 , VID: , SN:
Monitoring and Troubleshooting Modules and Interfaces

Use the following commands in global configuration mode to monitor and troubleshoot the modules and interfaces:

- \textbullet\ show platform
- \textbullet\ show platform software backplaneswitch-manager RP [active [detail]]
- \textbullet\ show platform hardware backplaneswitch-manager RPActive CP statistics
- \textbullet\ show platform hardware backplaneswitch-manager RP active summary
- \textbullet\ show platform hardware backplaneswitch-manager [R0 [status] | RP]
- \textbullet\ show diag all eeprom details

\textbf{show platform}

```
Router# show platform
Chassis type: ISR4451/K9

+----------+-----------------------+-------------------------+-----------------------+
| Slot | Type | State | Insert time (ago) |
+----------+-----------------------+-------------------------+-----------------------+
| 0 | ISR4451/K9 | ok | 15:57:33 |
| 0/0 | ISR4451-4x1GE | ok | 15:57:33 |
| 1 | ISR4451/K9 | ok | 15:57:33 |
| 1/0 | SM-1T3/E3 | ok | 15:55:24 |
| 2 | ISR4451/K9 | ok | 15:57:33 |
| 2/0 | SM-1T3/E3 | ok | 15:55:24 |
| R0 | ISR4451/K9 | ok, active | 15:57:33 |
| F0 | ISR4451-FP | ok, active | 15:57:33 |
| P0 | Unknown | ps, fail | never |
| P1 | XXX-XXXX-XX | ok | 15:56:58 |
| P2 | ACS-4450-FANASSY | ok | 15:56:58 |
+----------+-----------------------+-------------------------+-----------------------+
```
<table>
<thead>
<tr>
<th>Slot</th>
<th>CPLD Version</th>
<th>Firmware Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12090323</td>
<td>15.3(01r)S</td>
</tr>
<tr>
<td>1</td>
<td>12090323</td>
<td>15.3(01r)S</td>
</tr>
<tr>
<td>2</td>
<td>12090323</td>
<td>15.3(01r)S</td>
</tr>
<tr>
<td>R0</td>
<td>12090323</td>
<td>15.3(01r)S</td>
</tr>
<tr>
<td>F0</td>
<td>12090323</td>
<td>15.3(01r)S</td>
</tr>
</tbody>
</table>

Table 21: show platform Field Descriptions

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot</td>
<td>Slot number</td>
</tr>
<tr>
<td>Type</td>
<td>Type of module</td>
</tr>
<tr>
<td>State</td>
<td>Status of module</td>
</tr>
<tr>
<td>Insert Time</td>
<td>Time since the module has been up and running</td>
</tr>
</tbody>
</table>

show platform software backplaneswitch-manager RP [active [detail]]

Router# show platform software backplaneswitch-manager RP active detail

BSM Software Display

<table>
<thead>
<tr>
<th>module port</th>
<th>port type</th>
<th>alien type</th>
<th>traf type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1/0</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>0/1/1</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>0/2/0</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>0/2/1</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>0/3/0</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>0/3/1</td>
<td>ALIEN</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>0/4/0</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>0/4/1</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>1/0/0</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>1/0/1</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>2/0/0</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
<tr>
<td>2/0/1</td>
<td>NGIO</td>
<td>TRUNK</td>
<td>NGIO</td>
</tr>
</tbody>
</table>

show platform hardware backplaneswitch-manager RP active CP statistics

Router# show platform hardware backplaneswitch-manager RP active CP statistics

Broadcom 1G port(e.g: NIM, NGSIM, CP) status:

<table>
<thead>
<tr>
<th>All</th>
<th>Rx pkts</th>
<th>Rx Bytes</th>
<th>Tx Pkts</th>
<th>Tx Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6242</td>
<td>9361008</td>
<td>6241</td>
<td>403209</td>
</tr>
<tr>
<td>=64</td>
<td>72</td>
<td>6178</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-127</td>
<td>4</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128-255</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>256-511</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>512-1023</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024-1518</td>
<td>6163</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1519-2047</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2048-4095</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4096-9216</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good</td>
<td>6242</td>
<td>6241</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoS 0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoS 1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoS 2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
show platform hardware backplaneswitch-manager RP active summary

Router# show platform hardware backplaneswitch-manager RP active summary

<table>
<thead>
<tr>
<th>slot</th>
<th>bay</th>
<th>port</th>
<th>InBytes</th>
<th>InPkts</th>
<th>OutBytes</th>
<th>OutPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>242</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>GE1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>GE0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

show platform hardware backplaneswitch-manager [R0 [status] | RP]

Router# show platform hardware backplaneswitch-manager [R0 [status] | RP]

<table>
<thead>
<tr>
<th>slot</th>
<th>bay</th>
<th>port</th>
<th>enable</th>
<th>link status</th>
<th>speed(Mbps)</th>
<th>duplex</th>
<th>autoneg</th>
<th>pause_tx</th>
<th>pause_rx</th>
<th>mtu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>True</td>
<td>Up</td>
<td>1000</td>
<td>Full</td>
<td>ENABLED</td>
<td>ENABLED</td>
<td>10240</td>
<td></td>
</tr>
</tbody>
</table>

Cisco 4000 Series ISRs Software Configuration Guide
### Monitoring and Troubleshooting Modules and Interfaces

<table>
<thead>
<tr>
<th>slot</th>
<th>bay</th>
<th>port</th>
<th>mac</th>
<th>vid</th>
<th>modid</th>
<th>flags - Layer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>2c54.2dd2.661b</td>
<td>2351</td>
<td>1</td>
<td>0x20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>2c54.2dd2.661b</td>
<td>2352</td>
<td>1</td>
<td>0x20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>2c54.2dd2.661e</td>
<td>2351</td>
<td>0</td>
<td>0xc60</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>2c54.2dd2.661e</td>
<td>2352</td>
<td>0</td>
<td>0xc60</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>GE0</td>
<td>58bf.ea3a.00f6</td>
<td>2350</td>
<td>0</td>
<td>0x460</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>FFP</td>
<td>2c54.2dd2.661b</td>
<td>2350</td>
<td>1</td>
<td>0x20</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>GE0</td>
<td>58bf.ea3a.00f6</td>
<td>2352</td>
<td>0</td>
<td>0x20</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CP</td>
<td>2c54.2dd2.661e</td>
<td>2350</td>
<td>0</td>
<td>0x20</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>GE0</td>
<td>58bf.ea3a.00f6</td>
<td>2351</td>
<td>0</td>
<td>0x460</td>
</tr>
</tbody>
</table>

Port block masks: rows=from port, columns=to port, u=unknown unicast, m=unknown multicast, b=broadcast, A=all
Port VLAN membership: [untagged vlan] U=untagged T=tagged <VLAN range begin>-<VLAN range end>

<table>
<thead>
<tr>
<th>Port</th>
<th>VLAN Membership</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFP</td>
<td>T:0001-4095</td>
</tr>
<tr>
<td>1/0/1</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>1/0/0</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>2/0/1</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>2/0/0</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>0/1/1</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>0/1/0</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>0/2/1</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>0/2/0</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>0/3/1</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>0/3/0</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>0/4/1</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
<tr>
<td>0/4/0</td>
<td>T:0002-2351 U:2352-2352 T:2353-4095</td>
</tr>
</tbody>
</table>

show diag all eeprom details

Router# show diag all eeprom details

MIDPLANE EEPROM data:

- EEPROM version: 4
- Compatible Type: 0xFF
- PCB Serial Number: FOC15520B7L
- Controller Type: 1902
- Hardware Revision: 1.0
- PCB Part Number: 73=13854-02
- Top Assy. Part Number: 800-3694-01
- Board Revision: 05
- Deviation Number: 123968
- Fab Version: 02
- Product Identifier (PID): ISR4451/K9
- Version Identifier (VID): V01
- CLEI Code: TDBHDBTHBT
- Processor type: D0
- Chassis Serial Number: FGL1601129D
- Chassis MAC Address: 30f7.0d53.c7e0
- MAC Address block size: 144
- Manufacturing Test Data: 00 00 00 00 00 00 00 00
- Asset ID: P1B-R2C

Power/Fan Module P0 EEPROM data:

- EEPROM version: 4
- Compatible Type: 0xFF
- Controller Type: 1509
- Unknown Field (type 00DF): 1.85.1.236.1
- Deviation Number: 0
- PCB Serial Number: DCA1547X037
- RMA Test History: 00
- RMA Number: 0-0-0-0
- RMA History: 00
- Version Identifier (VID): XXX
- Product Identifier (PID): XXX-XXXX-XX
- CLEI Code: 0000000000
Environment Monitor Data: 41 01 C2 42 00 05 F8 00
50 01 F4 1B 58 03 E8 1F
4A 05 DC 21 34 07 D0 21
FC 09 C4 22 60 0B B8 22
92 0D AC 22 D8 0F A0 22
F8 11 94 22 F6 13 88 23
3C 15 7C 23 28 17 70 23
00 19 64 22 D8 1B 58 22
C4 1D 4C 22 BA 1F 40 22
A6 21 34 22 9C 23 28 22
92 25 1C 22 88 27 10 22
60

Board Revision: P0
Power/Fan Module P1 EEPROM data is not initialized
Power/Fan Module P2 EEPROM data is not initialized

Slot R0 EEPROM data:

EEPROM version: 4
Compatible Type: 0xFF
PCB Serial Number: FGC15520B7L
Controller Type: 1902
Hardware Revision: 1.0
PCB Part Number: 73-13864-02
Top Assy. Part Number: 800-36894-01
Board Revision: 05
Deviation Number: 123968
Fab Version: 02
Product Identifier (PID): ISR4451/K9
Version Identifier (VID): V01
CLEI Code: TDBTDBTDBT
Processor type: D0
Chassis Serial Number: FGL1601129D
Chassis MAC Address: 30f7.0d53.c7e0
MAC Address block size: 144
Manufacturing Test Data: 00 00 00 00 00 00 00 00
Asset ID: P1B-R2C
Asset ID:

Slot F0 EEPROM data:

EEPROM version: 4
Compatible Type: 0xFF
Controller Type: 3567
Hardware Revision: 4.1
PCB Part Number: 73-12387-01
MAC Address block size: 15
Chassis MAC Address: aabb.ccdd.eeff
Product Identifier (PID): ISR4451-FP
Version Identifier (VID): V00
PCB Serial Number: FP123456789
Asset ID:

Slot 0 EEPROM data:

EEPROM version: 4
Compatible Type: 0xFF
Controller Type: 1612
Hardware Revision: 4.1
PCB Part Number: 73-12387-01
MAC Address block size: 15
Chassis MAC Address: aabb.ccdd.eeff
Product Identifier (PID): ISR4451-NGSM
Version Identifier (VID): V00
PCB Serial Number: NGSM1234567
Asset ID:

Slot 1 EEPROM data:

- EEPROM version: 4
- Compatible Type: 0xFF
- Controller Type: 1612
- Hardware Revision: 4.1
- PCB Part Number: 73-12387-01
- MAC Address block size: 15
- Chassis MAC Address: aabb.ccdd.eeff
- Product Identifier (PID): ISR4451-NGSM
- Version Identifier (VID): V00
- PCB Serial Number: NGSM1234567

Asset ID:

Slot 2 EEPROM data:

- EEPROM version: 4
- Compatible Type: 0xFF
- Controller Type: 1612
- Hardware Revision: 4.1
- PCB Part Number: 73-12387-01
- MAC Address block size: 15
- Chassis MAC Address: aabb.ccdd.eeff
- Product Identifier (PID): ISR4451-NGSM
- Version Identifier (VID): V00
- PCB Serial Number: NGSM1234567

SPA EEPROM data for subslot 0/0:

- EEPROM version: 5
- Compatible Type: 0xFF
- Controller Type: 1902
- Hardware Revision: 2.2
- Boot Timeout: 400 msecs
- PCB Serial Number: JAB092709EL
- PCB Part Number: 73-8700-01
- PCB Revision: A0
- Fab Version: 01
- RMA Test History: 00
- RMA Number: 0-0-0-0
- RMA History: 00
- Deviation Number: 78409
- Product Identifier (PID): ISR4451-4X1GE
- Version Identifier (VID): V01
- Top Assy. Part Number: 68-2236-01
- Top Assy. Revision: A0
- IDPROM Format Revision: 36
- System Clock Frequency: 00 00 00 00 00 00 00 00
- 00 00 00 00 00 00 00 00
- 00 00 00 00 00 00 00 00
- 00 00 00 00 00 00 00 00
- CLEI Code: CNUIAHSAAA
- Base MAC Address: 00 00 00 00 00 00 00 00
- MAC Address block size: 0
- Manufacturing Test Data: 00 00 00 00 00 00 00 00
- Field Diagnostics Data: 00 00 00 00 00 00 00 00
- Calibration Data: Minimum: 0 dBmV, Maximum: 0 dBmV
- Calibration values:
- Power Consumption: 13100 mWatts (Maximum)
- Environment Monitor Data: 03 30 OC E4 46 32 09 C4
- 46 32 05 DC 46 32 05 DC
- 46 32 00 00 00 00 00 00
- 00 00 00 00 00 00 00 00
- 00 00 00 00 00 00 00 00
- 00 00 00 00 00 00 00 00
- Cisco 4000 Series ISRs Software Configuration Guide
Configuration Examples

This section provides examples of deactivating and activating modules.

**Deactivating a Module Configuration: Example**

You can deactivate a module to perform OIR of that module. The following example shows how to deactivate a module (and its interfaces) and remove power to the module. In this example, the module is installed in subslot 0 of the router.

```
Router(config)# hw-module slot 1 subslot 1/0 shutdown unpowered
```

**Activating a Module Configuration: Example**

You can activate a module if you have previously deactivated it. If you have not deactivated a module and its interfaces during OIR, then the module is automatically reactivated upon reactivation of the router.

The following example shows how to activate a module. In this example, the module is installed in subslot 0, located in slot 1 of the router:

```
Router(config)# hw-module slot 1 subslot 1/0 start
```
CHAPTER 17

SFP Auto-Detect and Auto-Failover

Cisco 4000 Series Integrated Services Routers (ISRs) provide a Front Panel Gigabit Ethernet (FPGE) port that supports copper and fiber concurrent connections. Media can be configured for failover redundancy when the network goes down. This feature is supported only on Cisco ISR platforms.

This chapter includes this section:

- Enabling Auto-Detect, on page 263

Enabling Auto-Detect

When the media-type is not configured, the Auto-Detect feature is enabled by default. The Auto-Detect feature automatically detects the media that is connected and links up. If both the media are connected, whichever media comes up first is linked. By default, the media-type on FPGE ports is set to auto-select. User can overwrite the media-type configuration to either RJ-45 or SFP using the `media-type rj45/sfp` command under the FPGE interface. The media type configuration also falls back to “Auto-select” mode when the `no media-type` command is configured. You can use the `no media-type` command in interface configuration mode to enable the Auto-Detect feature.

Configuring Auto-Detect

The Auto-Detect feature is enabled by default on the Front Panel Gige Ports. It is enabled by either configuring "media-type auto-select" or "no media-type". To configure the Auto-Detect, perform these steps:

**SUMMARY STEPS**

1. configure terminal
2. interface gigabitethernet {slot | bay | port}
3. media-type auto-select
4. End

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
### Configuring the Primary and Secondary Media

When the router receives an indication that the primary media is down, the secondary failover media is enabled. After the switchover, the media does not switch back to primary media when the primary media is restored. You need to use either `shut` or `no shut` command or reload the module to switch the media-type back to primary(preferred) media.

To assign the primary or secondary failover media on the GE-SFP port, perform these steps:

**SUMMARY STEPS**

1. `configure terminal`
2. `interface gigabitethernet {slot | port}`
3. `media-type rj45 autofailover`
4. `End`
## DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>`interface gigabitethernet {slot</td>
<td>port}`</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface gigabitethernet slot/port</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td></td>
</tr>
<tr>
<td><code>media-type rj45 autofailover</code></td>
<td>Configures the port with rj45 as the primary media for automatic failover.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# media-type rj45 autofailover</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td></td>
</tr>
<tr>
<td><code>End</code></td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#end</td>
<td></td>
</tr>
</tbody>
</table>

### Examples

The following example shows the primary configuration.

```
Router(config)# show running interface gigabitethernet 0/0/0
Building configuration...

Current configuration : 102 bytes

! interface GigabitEthernet0/0/0
 no ip address
 media-type rj45 auto-failover
 negotiation auto
 end
```
Cellular IPv6 Address

This chapter provides an overview of the IPv6 addresses and describes how to configure Cellular IPv6 address on Cisco 4000 series ISRs.

This chapter includes this section:

• Cellular IPv6 Address, on page 267

Cellular IPv6 Address

IPv6 addresses are represented as a series of 16-bit hexadecimal fields separated by colons (:). Following are two examples of IPv6 addresses:

• 2001:CDBA:0000:0000:0000:0000:3257:9652
• 2001:CDBA::3257:9652 (zeros can be omitted)

IPv6 addresses commonly contain successive hexadecimal fields of zeros. Two colons (::) may be used to compress successive hexadecimal fields of zeros at the beginning, middle, or end of an IPv6 address (the colons represent successive hexadecimal fields of zeros). The table below lists compressed IPv6 address formats.

An IPv6 address prefix, in the format ipv6-prefix/prefix-length, can be used to represent bit-wise contiguous blocks of the entire address space. The ipv6-prefix must be in the form documented in RFC 2373 where the address is specified in hexadecimal using 16-bit values between colons. The prefix length is a decimal value that indicates how many of the high-order contiguous bits of the address comprise the prefix (the network portion of the address). For example, 2001:cdba::3257:9652 /64 is a valid IPv6 prefix.

IPv6 Unicast Routing

An IPv6 unicast address is an identifier for a single interface, on a single node. A packet that is sent to a unicast address is delivered to the interface identified by that address.

Cisco 4000 Series ISR supports the following address types:

• Link-Lock Address, on page 268
• Global Address, on page 268
Link-Lock Address

A link-local address is an IPv6 unicast address that can be automatically configured on any interface using the link-local prefix FE80::/10 (1111111010) and the interface identifier in the modified EUI-64 format. A link-local address is automatically configured on the cellular interface when an IPv6 address is enabled.

After the data call is established, the link-local address on the cellular interface is updated with the host generated link-local address that consists of the link-local prefix FF80::/10 (1111111010) and the auto-generated interface identifier from the USB hardware address. The figure below shows the structure of a link-local address.

Global Address

A global IPv6 unicast address is defined by a global routing prefix, a subnet ID, and an interface ID. The routing prefix is obtained from the PGW. The Interface Identifier is automatically generated from the USB hardware address using the interface identifier in the modified EUI-64 format. The USB hardware address changes after the router reloads.

Configuring Cellular IPv6 Address

To configure the cellular IPv6 address, perform these steps:

**SUMMARY STEPS**

1. configure terminal
2. interface Cellular {type | number}
3. ip address negotiated
4. encapsulation slip
5. load-interval seconds
6. dialer in-band
7. dialer idle-timeout seconds
8. dialer string string
9. dialer-group group-number
10. no peer default ip address
11. ipv6 address autoconfig
12. async mode interactive
13. routing dynamic
14. dialer-listdialer-groupprotocolprotocol-name {permit |deny|list |access-list-number | access-group }
15. ipv6 route ipv6-prefix/prefix-length 128
16. End

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Command or Action</td>
</tr>
<tr>
<td>-------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| 2     | `interface Cellular {type|number}` | Specifies the cellular interface.  
**Example:**  
`Router(config)# interface cellular 0/1/0` |
| 3     | `ip address negotiated` | Specifies that the IP address for a particular interface is dynamically obtained.  
**Example:**  
`Router(config-if)# ipv6 address negotiated` |
| 4     | `encapsulation slip` | Specifies Serial Line Internet Protocol (SLIP) encapsulation for an interface configured for dial-on-demand routing (DDR).  
**Example:**  
`Router(config-if)# encapsulation slip` |
| 5     | `load-interval seconds` | Specifies the length of time for which data is used to compute load statistics.  
**Example:**  
`Router(config-if)# load-interval 30` |
| 6     | `dialer in-band` | Enables DDR and configures the specified serial interface to use in-band dialing.  
**Example:**  
`Router(config-if)# dialer in-band` |
| 7     | `dialer idle-timeout seconds` | Specifies the dialer idle timeout period.  
**Example:**  
`Router(config-if)# dialer idle-timeout 0` |
| 8     | `dialer string string` | Specifies the number or string to dial.  
**Example:**  
`Router(config-if)# dialer string lte` |
| 9     | `dialer-group group-number` | Specifies the number of the dialer access group to which the specific interface belongs.  
**Example:**  
`Router(config-if)# dialer-group 1` |
| 10    | `no peer default ip address` | Removes the default address from your configuration.  
**Example:**  
`Router(config-if)# no peer default ip address` |
| 11    | `ipv6 address autoconfig` | Enables automatic configuration of IPv6 addresses using stateless autoconfiguration on an interface and enables IPv6 processing on the interface.  
**Example:**  
`Router(config-if)# ipv6 address autoconfig` |
| 12    | `async mode interactive` | Please provide the inputs?  
**Example:**  
`Router(config-if)# async mode interactive` |
<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 13</strong> routing dynamic</td>
<td>Enables the router to pass routing updates to other routers through an interface.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#routing dynamic</td>
<td></td>
</tr>
<tr>
<td><strong>Step 14</strong> dialer-list protocol-dialer-group-name  protocol-name {permit</td>
<td>deny</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)#dialer-list 1 protocol ipv6 permit</td>
<td></td>
</tr>
<tr>
<td><strong>Step 15</strong> ipv6 route ipv6-prefix/prefix-length 128</td>
<td></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)#ipv6 route 2001:1234:1234::3/128 Cellular0/1/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 16</strong> End</td>
<td>Exits to global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config-if)#end</td>
<td></td>
</tr>
</tbody>
</table>

**Examples**

The following example shows the Cellular IPv6 configuration.

```
Router(config)# interface Cellular0/0/0
ip address negotiated
encapsulation slip
load-interval 30
dialer in-band
dialer idle-timeout 0
dialer string lte
dialer-group 1
no peer default ip address
ipv6 address autoconfig
async mode interactive
routing dynamic
interface Cellular0/1/0
ip address negotiated
encapsulation slip
load-interval 30
dialer in-band
dialer idle-timeout 0
dialer string lte
dialer-group 1
no peer default ip address
ipv6 address autoconfig
async mode interactive
routing dynamic
dialer-list 1 protocol ipv6 permit
ipv6 route 2001:1234:1234::/64 Cellular0/1/0
ipv6 route 2001:4321:4321::5/128 Cellular0/1/1
```
CHAPTER 19

Configuring Voice Functionality

This chapter provides information about configuring voice functionality on the Cisco 4000 Series Integrated Services Routers (ISRs).

This chapter includes these sections:

- Call Waiting, on page 273
- E1 R2 Signaling Configuration, on page 273
- Feature Group D Configuration, on page 279
- Media and Signaling Authentication and Encryption, on page 281
- Multicast Music-on-Hold, on page 281
- TLS 1.2 support on SCCP Gateways, on page 282

Call Waiting

With the Call Waiting feature, you can receive a second call while you are on the phone with another call. When you receive a second call, you hear a call-waiting tone (a tone with a 300 ms duration). Caller ID appears on phones that support caller ID. You can use hookflash to answer a waiting call and place the previously active call on hold. By using hookflash, you can toggle between the active and a call that is on hold. If the Call Waiting feature is disabled, and you hang up the current call, the second call will hear a busy tone. For more information on Call Waiting, see the http://www.cisco.com/c/en/us/td/docs/ios/voice/sip/configuration/guide/15_0/sip_15_0_book/sip_cg-hookflash.html#wp999028

Call Transfers

Call transfers are when active calls are put on hold while a second call is established between two users. After you establish the second call and terminate the active call, the call on hold will hear a ringback. The Call Transfer feature supports all three types of call transfers—blind, semi-attended, and attended. For more information on Call Transfers, see the http://www.cisco.com/c/en/us/td/docs/ios/voice/sip/configuration/guide/15_0/sip_15_0_book/sip_cg-hookflash.html#wp999084

E1 R2 Signaling Configuration

To configure the E1 R2, perform these steps:
**Before you begin**

Before you attempt this configuration, ensure that you meet these prerequisites:

- R2 signaling applies only to E1 controllers.
- In order to run R2 signaling on Cisco 4000 Series ISRs, this hardware is required:
  - NIM-MFT-1T1/E1 or NIM-2MFT-T1/E1 or NIM-4MFT-T1/E1 or NIM-8MFT-T1/E1 or NIM-1CE1T1-PRI or NIM-2CE1T1-PRI or NIM-8CE1T1-PRI
- Define the command ds0-group on the E1 controllers of Cisco 4000 Series ISRs.
- Cisco IOS XE software release 15.5 (2)

**SUMMARY STEPS**

1. Set up the controller E1 that connects to the private automatic branch exchange (PBX) or switch.
2. For E1 framing, choose either **CRC** or **non-CRC**
3. For E1 linecoding, choose either **HDB3** or **AMI**.
4. For the E1 clock source, choose either internal or line. Note that different PBXs have different requirements on the clock source.
5. Configure line signaling.
6. Configure interregister signaling.
7. Customize the configuration with the cas-custom command.

**DETAILED STEPS**

**Step 1**

Set up the controller E1 that connects to the private automatic branch exchange (PBX) or switch.

Ensure that the framing and linecoding of the E1 are properly set.

**Step 2**

For E1 framing, choose either **CRC** or **non-CRC**

**Step 3**

For E1 linecoding, choose either **HDB3** or **AMI**.

**Step 4**

For the E1 clock source, choose either internal or line. Note that different PBXs have different requirements on the clock source.

**Step 5**

Configure line signaling.

```
(config)# controller E1 0/2/0
```

```
(config-controller)# ds0-group 1 timeslots 1 type ?
...
 r2-analog R2 ITU Q411
 r2-digital R2 ITU Q421
 r2-pulse R2 ITU Supplement 7
...
```

**Step 6**

Configure interregister signaling.

```
(config)# controller E1 0/2/0
```

```
eefje(config)# controller E1 0/2/0
eefje(config-controller)# ds0-group 1 timeslots 1 type r2-digital ?
dtmf DTMF tone signaling
r2-compelled R2 Compelled Register Signaling
```
The Cisco implementation of R2 signaling has Dialed Number Identification Service (DNIS) support enabled by default. If you enable the Automatic Number Identification (ANI) option, the collection of DNIS information is still performed. Specification of the ANI option does not disable DNIS collection. DNIS is the number that is called and ANI is the number of the caller. For example, if you configure a router called A to call a router called B, then the DNIS number is assigned to router B and the ANI number is assigned to router A. ANI is similar to caller ID.

Step 7 Customize the configuration with the cas-custom command.

```
(config)# controller E1 0/2/0

(config-controller)# ds0-group 1 timeslots 1 type r2-digital r2-compelled ani
cas-custom 1
 country brazil
 metering
 answer-signal group-b 1

voice-port 0/2/0:1
!
dial-peer voice 200 pots
destination-pattern 43200
direct-inward-dial
port 0/2/0:1
!
dial-peer voice 3925 voip
destination-pattern 39...
session target ipv4:1.5.25.41
```
E1 R2 Signaling Configuration

Configuring Voice Functionality

```plaintext
cptone
.
!
dial-peer voice 123 pots
destination-pattern 123
direct-inward-dial
port 0:1
prefix 123
!
dial-peer voice 567 voip
destination-pattern 567
session target ipv4:2.0.0.2

Configured for R2 Digital Semi-Compelled
hostname eefje
!
controller E1 0
clock source line primary
ds0-group 1 timeslots 1-15 type r2-digital r2-semi-compelled
cas-custom 1

!--- For more information on these commands
!--- refer to
ds0-group
and
cas-custom
.
!
voice-port 0:1
cptone BE

!--- The cptone command is country specific. For more
!--- information on this command, refer to
cptone
.
dial-peer voice 123 pots
destination-pattern 123
direct-inward-dial
port 0:1
prefix 123
!
dial-peer voice 567 voip
destination-pattern 567
session target ipv4:2.0.0.2

Configured for R2 Digital Compelled ANI
hostname eefje
!
controller E1 0 clock source line primary ds0-group
1 timeslots 1-15 type r2-digital r2-compelled ani cas-custom 1

!--- For more information on these commands
!--- refer to
ds0-group
and
cas-custom
.

voice-port 0:1 cptone BE

!--- The cptone command is country specific. For more
!--- information on this command, refer to
```

Cisco 4000 Series ISRs Software Configuration Guide

OL-25328-03
Sample Debug Command Output

This example shows the output for the `debug vpm sig` command.

```
(config-controller)#debug vpm sig
Syslog logging: enabled
(0 messages dropped, 9 messages rate-limited, 1 flushes, 0 overruns,
xml disabled, filtering disabled)No Active Message Discriminator.
No Inactive Message Discriminator.
Console logging: disabled
Monitor logging: level debugging, 0 messages logged, xml disabled, filtering disabled
Buffer logging: level debugging, 163274 messages logged, xml disabled,filtering disabled

Exception Logging: size (4096 bytes) Count and timestamp logging messages: disabled
Persistent logging: disabledNo active filter modules.
Trap logging: level informational, 172 message lines logged

Logging Source-Interface:
VRF Name:Log Buffer (4096 bytes):0): DSX (E1 0/2/0:0): STATE: R2_IN_COLLECT_DNIS
R2 Got Event R2_TONE_OFF
*Jan 29 21:32:22.258: r2_reg_generate_digits(0/2/0:1(1)): Tx digit '1'
*Jan 29 21:32:22.369: htpsp_digit_ready(0/2/0:1(1)): Rx digit="#"
*Jan 29 21:32:22.369: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0):STATE: R2_IN_COLLECT_DNIS
R2 Got Event R2_TONE_TIMER
*Jan 29 21:32:22.569: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0):STATE: R2_IN_CATEGORY
R2 Got Event R2_TONE_TIMER
*Jan 29 21:32:22.569: htpsp_dialing_done(0/2/0:1(1))
*Jan 29 21:32:25.258: r2_reg_generate_digits(0/2/0:1(1)): Tx digit '3#'
*Jan 29 21:32:25.520: htpsp_digit_ready_up(0/2/0:1(1)): Rx digit='1'
*Jan 29 21:32:25.520: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0): STATE: R2_IN_CATEGORY
R2 Got Event 1
*Jan 29 21:32:25.520: Enter r2_comp_category
*Jan 29 21:32:25.520: R2 Event : 1
*Jan 29 21:32:25.520: ####### collect_call_enable = 0
*Jan 29 21:32:25.520: Not Sending B7 #
*Jan 29 21:32:25.520: r2_reg_event_proc(0/2/0:0): ADDR_INFO_COLLECTED (DNIS=39001, ANI=39700)
*Jan 29 21:32:25.520: r2_reg_process_event: [0/2/0:1, R2_REG_COLLECTING, E_R2_REG_ADDR_COLLECTED(89)]
*Jan 29 21:32:25.520: R2 REG_ADDR_COLLECTED(89)hlsap_switch_ind
*Jan 29 21:32:25.521: htpsp_process_event: [0/2/0:1, R2_Q421_IC_WAIT_ANSWER, E_HTSP_SETUP_ACK]
*Jan 29 21:32:25.521: r2_q421_ic_setup_ack(0/2/0:1(1))E_HTSP_SETUP_ACK
*Jan 29 21:32:25.521: r2_reg_process_event: [0/2/0:1, R2_REG_WAIT_FOR_SWITCH, E_R2_REG_SWITCH(96)]
*Jan 29 21:32:25.521: r2_reg_process_event(0/2/0:1(1))
*Jan 29 21:32:25.522: htpsp_process_event: [0/2/0:1, R2_Q421_IC_WAIT_ANSWER, E_HTSP_PROCEEDING]
*Jan 29 21:32:25.530: htpsp_call_bridged invoked
*Jan 29 21:32:25.530: r2_reg_process_event(0/2/0:1(1)) ALERTING RECEIVED
*Jan 29 21:32:25.530: R2 Incoming Voice(0/0): DSX (E1 0/2/0:0): STATE: R2_IN_WAIT_REMOTE_ALERT
R2 Got Event R2_ALERTING
*Jan 29 21:32:25.530: r2_REG_ALARM_RECEIVED
*Jan 29 21:32:25.530: r2_reg_generate_digits(0/2/0:1(1)): Tx digit '1'htsp_alert_notify
```

Cptone.

dial-peer voice 123 pots destination-pattern 123 direct-inward-dial port
0:1 prefix 123
! dial-peer voice 567 voip destination-pattern 567 session
target ipv4:2.0.0.2
This example shows the output for the `debug vtsp all` command.

```
(config-controller)#debug vtsp all
Log Buffer (4096 bytes): S_R2_DIALING_COMP, event=E_VTSP_DIGIT_END
*Jan 29 21:56:33.901: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp_process_event:
 [state:S_R2_DIALING_COMP, event=E_VTSP_DSM_DIALING_COMPLETE]
*Jan 29 21:56:33.901: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/dc_dialing_done:
*Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp_timer_stop:
 Timer Stop Time=80497275
*Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp_dsm_peer_event_cb:
 Event=E_DSM_CC_CAPS_ACK
*Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp_dsm_peer_event_cb:
 Event=E_DSM_CC_PEER_DISCONNECT
*Jan 29 21:56:34.691: //213/85E8EDFC81D1/VTSP:(0/2/0:1):0:1:1/vtsp_dsm_peer_event_cb:
 Event=E_DSM_CC_PEER_EVENT
```

Cisco 4000 Series ISRs Software Configuration Guide

OL-29328-03

278
Feature Group D Configuration

To configure the Feature Group D signaling, perform these steps:

Before you begin

The Feature Group D signaling is supported on Cisco 4000 Series Integrated Services Routers from IOS XE release 15.5 (2). Feature Group D service is a trunk side connection that enables telephone customers to choose their long distance network and use the same number of digits irrespective of carrier they use. Routers interface with interexchange carriers using Feature Group D to support voice traffic in the carrier environment.

Before you attempt this configuration, ensure that you meet these prerequisites:

- The platform must be using Digital T1/E1 Packet Voice Trunk Network Modules.
• The Digital T1/E1 Packet Voice Trunk Network Module can have one or two slots for voice/WAN Interface Network Modules (NIMs); NIM supports one to eight ports. Only the dual-mode (voice/WAN) multiple trunk cards are supported in the digital E1 packet voice trunk network module, not older VICs.

• Drop-and-Insert capability is supported only between two ports on the same multiple card.

SUMMARY STEPS

1. configure terminal {ip-address | interface-type interface-number [ip-address]}
2. voice-card slot/subslot
3. controller T1/E1 slot/subslot/port
4. framing {sf | esf}
5. linecode {b8zs | ami}
6. ds0-group ds0-group-notimeslots timeslot-list type {e&m-fgd | fgd-eana}
7. no shutdown
8. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>configure terminal {ip-address</td>
<td>interface-type interface-number [ip-address]}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

**Step 2**	Enters voice card interface configuration mode and specify the slot location by using a value from 0 to 5, depending upon your router.
voice-card slot/subslot	
Example:	
Router(config)# voice-card slot/subslot	

**Step 3**	Enters controller configuration mode for the T1 controller at the specified slot/port location. Valid values for slot and port are 0 and 1.
controller T1/E1 slot/subslot/port	
Example:	
Router(config)# controller T1 slot/subslot/port	

**Step 4**	Sets the framing according to your service provider's instructions. Choose Extended Superframe (ESF) format or Superframe (SF) format.	
framing {sf	esf}	
Example:		
Router(config)# framing {sf	esf}	

| **Step 5**        | Sets the line encoding according to your service provider's instructions. Bipolar-8 zero substitution (B8ZS) encodes a sequence of eight zeros in a unique binary sequence to detect line coding violations. Alternate mark inversion (AMI) represents zeros using a 01 during each bit cell, and ones are represented by 11 or 00, alternately, during each bit cell. AMI requires that the sending device maintain ones density. |
| linecode {b8zs | ami} | |
### Media and Signaling Authentication and Encryption


### Multicast Music-on-Hold

The Music-on-Hold (MOH) feature enables you to subscribe to a music streaming service when you are using a Cisco IOS MGCP voice gateway. Music streams from an MOH server to the voice interfaces of on-net and off-net callers that have been placed on hold. Cisco Communications Manager supports the capability to place callers on hold with music supplied from a streaming multicast MOH server.

By means of a preconfigured multicast address on the Cisco Unified Communications Manager or gateway, the gateway can "listen" for Real-Time Transport Protocol (RTP) packets that are broadcast from a default router in the network and can relay the packets to designated voice interfaces in the network. You can initiate the call on hold. However, you cannot initiate music on hold on a MGCP controlled analog phone. Whenever

---

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 6</strong></td>
<td>define the T1 channels for use by compressed voice calls as well as the signaling method the router uses to connect to the PBX or CO. ds0-group-no is a value from 0 to 23 that identifies the DS0 group. Note: The ds0-group command automatically creates a logical voice port that is numbered as follows: slot/port:ds0-group-no. Although only one voice port is created, applicable calls are routed to any channel in the group. timeslot-list is a single number, numbers separated by commas, or a pair of numbers separated by a hyphen to indicate a range of timeslots. For T1, allowable values are from 1 to 24. To map individual DS0 timeslots, define additional groups. The system maps additional voice ports for each defined group. The signaling method selection for type depends on the connection that you are making. The e&amp;m-fgd setting allows E&amp;M interface connections for PBX trunk lines (tie lines) and telephone equipment to use feature group D switched-access service. The fgd-eana setting supports the exchange access North American (EANA) signaling.</td>
</tr>
</tbody>
</table>

| Step 7 | no shutdown | Activates the controller. |

| Step 8 | exit | Exits controller configuration mode. Skip the next step if you are not setting up Drop and Insert. |
a called party places a calling party on hold, Cisco Communications Manager requests the MOH server to stream RTP packets to the "on-hold" interface through the preconfigured multicast address. In this way, RTP packets are relayed to appropriately configured voice interfaces that have been placed on hold. When you configure a multicast address on a gateway, the gateway sends an Internet Gateway Management Protocol (IGMP) "join" message to the default router, indicating to the default router that the gateway is ready to receive RTP multicast packets.

Multiple MOH servers can be present in the same network, but each server must have a different Class D IP address, and the address must be configured in Cisco Communications Manager and the MGCP voice gateways. For more information on configuring MOH, see the [http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cminterop/configuration/15-0m/vc-15-0m-book/vc-ucm-mgcp-gw.html#GUID-A3461142-2F05-4420-AEE6-032FCA3B7952](http://www.cisco.com/c/en/us/td/docs/ios-xml/ios/voice/cminterop/configuration/15-0m/vc-15-0m-book/vc-ucm-mgcp-gw.html#GUID-A3461142-2F05-4420-AEE6-032FCA3B7952)

### TLS 1.2 support on SCCP Gateways

The TLS 1.2 support on SCCP Gateways feature details the configuration of TLS 1.2 on SCCP protocol for digital signal processor (DSP) farm including Unicast conference bridge (CFB), Media Termination Point (MTP), and SCCP telephony control (STC) application (STCAPP).

DSP on gateways can be used as media resources for transcoding. Each media resource uses Secure Skinny Client Control Protocol (SCCP) to communicate with Cisco Unified Communications Manager. Currently SSL 3.1, which is equivalent to TLS 1.0, is used for sending secure signals. This feature enhances the support to TLS 1.2.

#### SCCP TLS connection

CiscoSSL is based on OpenSSL. SCCP uses CiscoSSL to secure the communication signals.

If a resource is configured in the secure mode, the SCCP application initiates a process to complete Transport Layer Security (TLS) handshaking. During the handshake, the server sends information to CiscoSSL about the TLS version and cipher suites supported. Previously, only SSL3.1 was supported for SCCP secure signalling. SSL3.1 is equivalent to TLS 1.0. The TLS 1.2 Support feature introduces TLS1.2 support to SCCP secure signalling.

After TLS handshaking is complete, SCCP is notified and SCCP kills the process.

If the handshaking is completed successfully, a REGISTER message is sent to Cisco Unified Communications Manager through the secure tunnel. If handshaking fails and a retry is needed, a new process is initiated.

---

**Note**

For SCCP-based signalling, only TLS_RSA_WITH_AES_128_CBC_SHA cipher suite is supported.

**Supported Platforms**

The TLS 1.2 support on SCCP Gateways feature is supported on the following platforms:

- Cisco 4321 Integrated Services Router
- Cisco 4331 Integrated Services Router
- Cisco 4351 Integrated Services Router
- Cisco 4431 Integrated Services Router
- Cisco 4451-X Integrated Services Router
- The Cisco VG310, VG320, VG350, VG204XM, and VG202XM Analog Voice Gateways
- All Cisco Integrated Services Router Generation 2 (ISR G2) platforms

**Configuring TLS version for STC application**

Perform the following task to configure a TLS version for the STC application:

```
enable
configure terminal
stcapp security tls-version v1.2
exit
```

*Note*

The stcapp security tls command sets the TLS version to v1.0, v1.1, or v1.2 only. If not configured explicitly, TLS v1.0 is selected by default.

**Configuring TLS version in Secure Mode for DSP Farm Profile**

Perform the following task to configure the TLS version in secure mode for DSP farm profile:

```
enable
configure terminal
dspfarm profile 7 conference security
tls-version v1.2
exit
```

*Note*

The tls command can be configured only in security mode.

**Verifying TLS version**

Perform the following task to verify the TLS version:

```
Device# show dspfarm profile 4
Dspfarm Profile Configuration

Profile ID = 4, Service = MTP, Resource ID = 5
Profile Service Mode : secure
Trustpoint : cucm_12_s_mtp
TLS Version : v1.2
Profile Admin State : DOWN
Profile Operation State : DOWN
Application : SCCP Status : NOT ASSOCIATED
Resource Provider : FLEX_DSPRM Status : DOWN
Total Number of Resources Configured : 1
Total Number of Resources Available : 0
Total Number of Resources Out of Service : 1
Total Number of Resources Active : 0
Hardware Configured Resources : 1
Hardware Resources Out of Service: 1
Software Configured Resources : 0

Number of Hardware Resources Active : 0
Number of Software Resources Active : 0
```
Codec Configuration: num_of_codecs:1
Codec: g711ulaw, Maximum Packetization Period: 30

Device# show dspfarm profile 5
Dspfarm Profile Configuration
Profile ID = 5, Service = CONFERENCING, Resource ID = 3
Profile Service Mode: secure
Trustpoint: cucm_12_s_conf

TLS Version: v1.0
Profile Admin State: DOWN
Profile Operation State: DOWN
Application: SCCP Status: NOT ASSOCIATED
Resource Provider: FLEX_DSPRM Status: DOWN
Total Number of Resources Configured: 1
Total Number of Resources Available: 0
Total Number of Resources Out of Service: 1
Total Number of Resources Active: 0
Maximum conference participants: 8
Codec Configuration: num_of_codecs:6
Codec: g711ulaw, Maximum Packetization Period: 30, Transcoder: Not Required
Codec: g711alaw, Maximum Packetization Period: 30, Transcoder: Not Required
Codec: g729ar8, Maximum Packetization Period: 60, Transcoder: Not Required
Codec: g729abr8, Maximum Packetization Period: 60, Transcoder: Not Required
Codec: g729r8, Maximum Packetization Period: 60, Transcoder: Not Required
Codec: g729br8, Maximum Packetization Period: 60, Transcoder: Not Required

Device# show dspfarm profile 6
Dspfarm Profile Configuration
Profile ID = 6, Service = TRANSCODING, Resource ID = 1
Profile Service Mode: secure
Trustpoint: cucm_12_s_xcode

TLS Version: v1.0
Profile Admin State: DOWN
Profile Operation State: DOWN
Application: SCCP Status: NOT ASSOCIATED
Resource Provider: FLEX_DSPRM Status: DOWN
Total Number of Resources Configured: 1
Total Number of Resources Available: 0
Total Number of Resources Out of Service: 1
Total Number of Resources Active: 0
Codec Configuration: num_of_codecs:4
Codec: g711ulaw, Maximum Packetization Period: 30
Codec: g711alaw, Maximum Packetization Period: 30
Codec: g729ar8, Maximum Packetization Period: 60
Codec: g729abr8, Maximum Packetization Period: 60
TLS: ENABLED

Verifying STC app TLS version
Perform the following task to verify TLS version of the STC application:

Device# show call application voice stcapp
App Status: Active
CCM Status: UP
CCM Group: 120
Registration Mode: CCM
Total Devices: 0
Total Calls in Progress: 0
Total Call Legs in Use: 0
ROH Timeout: 45
TLS Version: v1.0
### Additional References

**Table 22: Additional References for TLS 1.2 support on SCCP Gateways**

<table>
<thead>
<tr>
<th>Related Topic</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cisco IOS commands</td>
<td>Cisco IOS Master Command List, All Releases</td>
</tr>
<tr>
<td>Cisco IOS Voice Gateways Configuration Guide</td>
<td>Supplementary Services Features for FXS Ports on Cisco IOS Voice Gateways Configuration Guide</td>
</tr>
</tbody>
</table>

### Feature Information for TLS 1.2 support on SCCP Gateways

**Table 23: Feature Information for TLS 1.2 support on SCCP Gateways**

<table>
<thead>
<tr>
<th>Feature Name</th>
<th>Releases</th>
<th>Feature Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS 1.2 support on SCCP Gateways</td>
<td>Cisco IOS XE Fuji 16.7.1</td>
<td>The TLS 1.2 support on SCCP Gateways feature details the configuration of TLS 1.2 on SCCP protocol for DSP farm including CFB, MTP, and STCAPP. The following commands were introduced: <strong>stcapp security tls-version, tls-version</strong>.</td>
</tr>
</tbody>
</table>
TLS 1.2 support on SCCP Gateways

Configuring Voice Functionality
CHAPTER 20
Configuration Examples

This chapter provides examples of configuring common networking tasks on the router. The examples in this chapter are provided for illustrative purposes only; little or no context is given with these examples. For more information, see Installing the Software, on page 53.

When reading this section, also be aware that networking configurations are complex and can be configured in many ways. The examples in this section show one method of accomplishing a configuration.

This chapter contains the following examples:

- Copying the Consolidated Package from the TFTP Server to the Router, on page 287
- Configuring the Router to Boot Using the Consolidated Package Stored on the Router, on page 288
- Extracting the Subpackages from a Consolidated Package into the Same File System, on page 290
- Extracting the Subpackages from a Consolidated Package into a Different File System, on page 292
- Configuring the Router to Boot Using Subpackages, on page 293
- Backing Up Configuration Files, on page 299
- Displaying Digitally Signed Cisco Software Signature Information, on page 300
- Obtaining the Description of a Module or Consolidated Package, on page 304

Copying the Consolidated Package from the TFTP Server to the Router

The following example shows how to copy the consolidated package from the TFTP server to the router:

```
Router# dir bootflash:
Directory of bootflash:/
 11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 17:48:41 +00:00 .prst_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 17:49:14 +00:00 tracelogs
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
7451738112 bytes total (7015186432 bytes free)
Router# copy tftp bootflash:
Address or name of remote host []? 10.81.116.4
Source filename []? rtp_isr4400-54/isr4400.bin
```
Configuring the Router to Boot Using the Consolidated Package Stored on the Router

The following example shows how to configure the router to boot using the consolidated package stored on the router:

Router# dir bootflash:
Directory of bootflash:

11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 17:48:41 +00:00 .prst_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 18:05:07 +00:00 tracelogs
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
13 -rw- 424317088 Sep 13 2012 18:01:41 +00:00 isr4400.bin

7451738112 bytes total (6590910464 bytes free)
Router# reload
Proceed with reload? [confirm]
Sep 13 18:08:36.311 R0/0: %PMAN-5-EXITACTION: Process manager is exiting: process exit with reload chassis code

Initializing Hardware ...

System integrity status: c0000600
Failures detected:
Boot FPGA corrupt

Key Sectors: (Primary,GOOD),(Backup,GOOD),(Revocation,GOOD)
Size of Primary = 2288 Backup = 2288 Revocation = 300

ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec

System Bootstrap, Version 12.2(20120618:163328) [username-ESGROM_20120618_GAMMA 101],
DEVELOPMENT SOFTWARE
Copyright (c) 1994-2012 by cisco Systems, Inc.
Compiled Mon 06/18/2012 12:39:32.05 by username

Current image running: Boot ROM0
Last reset cause: LocalSoft
Cisco ISR 4400 platform with 4194304 Kbytes of main memory

File size is 0x194a90a0
Located isr4400.bin
Image size 424317088 inode num 13, bks cnt 103594 blk size 8*512
******************************************************************************
Boot image size = 424317088 (0x194a90a0) bytes

ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec

Package header rev 1 structure detected
Calculating SHA-1 hash...done
validate_package: SHA-1 hash:
calculated 7294dffc:892a6c35:a7a133df:18c032fc:0670b303
expected 7294dffc:892a6c35:a7a133df:18c032fc:0670b303
Signed Header Version Based Image Detected

Using FLASH based Keys of type = PRIMARY KEY STORAGE
Using FLASH based Keys of type = ROLLOVER KEY STORAGE
RSA Signed DEVELOPMENT Image Signature Verification Successful.
Package Load Test Latency : 5133 msec
Image validated
%IOSXEBOOT-4-BOOT_ACTIVITY_LONG_TIME: (local/local): load_modules took: 2 seconds, expected max time 2 seconds

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Extracting the Subpackages from a Consolidated Package into the Same File System

The following example shows how to extract the subpackages from a consolidated package into the same file system.

After entering the `request platform software package expand file bootflash:isr4400.bin` command (note that the `to` option is not used) the subpackages are extracted from the consolidated package into `bootflash:`.
Router> enable
Router# dir bootflash:
Directory of bootflash:/
  11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 18:12:58 +00:00 .prst_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 18:13:31 +00:00 tracelogs
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
13 -rw- 424317088 Sep 13 2012 18:01:19 +00:00 isr4400.bin
13 -rw- 7451738112 bytes total (6590029824 bytes free)
Router# request platform software package expand file bootflash:isr4400.bin
Verifying parameters
Validating package type
Copying package files
SUCCESS: Finished expanding all-in-one software package.
Router# dir bootflash:
Directory of bootflash:/
  11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 18:12:58 +00:00 .prst_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 18:13:31 +00:00 tracelogs
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
13 -rw- 424317088 Sep 13 2012 18:01:41 +00:00 isr4400.bin
778756 -rw- 112911096 Sep 13 2012 18:15:49 +00:00 isr4400-esphbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778757 -rw- 2202784 Sep 13 2012 18:15:49 +00:00 isr4400-firmware_dp2700.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778758 -rw- 371440 Sep 13 2012 18:15:49 +00:00 isr4400-firmware_fpge.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778759 -rw- 8080112 Sep 13 2012 18:15:49 +00:00 isr4400-firmware_nim_tle1.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778760 -rw- 9331440 Sep 13 2012 18:15:49 +00:00 isr4400-firmware_sm_1t3e3.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778761 -rw- 379632 Sep 13 2012 18:15:49 +00:00 isr4400-firmware_ucse.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
--More--
778754 -rw- 10540 Sep 13 2012 18:15:48 +00:00 isr4400-packages-universalk9.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778762 -rw- 27218680 Sep 13 2012 18:15:50 +00:00 isr4400-rpaccess.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778763 -rw- 78938264 Sep 13 2012 18:15:50 +00:00 isr4400-rpbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778764 -rw- 4577592 Sep 13 2012 18:15:50 +00:00 isr4400-rpcontrol.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778765 -rw- 114662144 Sep 13 2012 18:16:01 +00:00 isr4400-rios-universalk9.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778766 -rw- 26360568 Sep 13 2012 18:16:03 +00:00 isr4400-sipbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778767 -rw- 13091576 Sep 13 2012 18:16:06 +00:00 isr4400-sipspa.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
778755 -rw- 11349 Sep 13 2012 18:16:06 +00:00 packages.conf
7451738112 bytes total (6150725632 bytes free)
Extracting the Subpackages from a Consolidated Package into a Different File System

The following example shows how to extract the subpackages from a consolidated package into a different file system.

The initial `dir usb0:` command shows that there are no subpackages in the `bootflash:` directory.

After the `request platform software package expand file usb0:isr4400.bin to bootflash:` command is entered, the subpackages are displayed in the `bootflash:` directory. The `isr4400.bin` consolidated package file is in the `usb0:` directory.

Router# `dir usb0:`
Directory of usb0:
121 -rwx 424317088 Sep 13 2012 18:27:50 +00:00  isr4400.bin

798666368 bytes total (7564341248 bytes free)

Router# `dir bootflash:`
Directory of bootflash:
11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 18:12:58 +00:00 .prst_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 18:41:51 +00:00 tracelogs
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb

745178112 bytes total (6590418944 bytes free)

Router# `request platform software package expand file usb0:isr4400.bin to bootflash:`
Verifying parameters
Validating package type
Copying package files
SUCCESS: Finished expanding all-in-one software package.

Router# `dir bootflash:`
Directory of bootflash:
11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 18:12:58 +00:00 .prst_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 18:41:51 +00:00 tracelogs
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
454276 -rw- 112911096 Sep 13 2012 18:46:05 +00:00
isr4400-espbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454277 -rw- 2220784 Sep 13 2012 18:46:05 +00:00
isr4400-firmware_dsp_sp2700.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454278 -rw- 371440 Sep 13 2012 18:46:05 +00:00
isr4400-firmware_fpge.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454279 -rw- 8080112 Sep 13 2012 18:46:05 +00:00
isr4400-firmware_nim_t1e1.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454280 -rw- 9331440 Sep 13 2012 18:46:06 +00:00
isr4400-firmware_sm_1t3e3.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454281 -rw- 379632 Sep 13 2012 18:46:06 +00:00

Cisco 4000 Series ISRs Software Configuration Guide
Configuring the Router to Boot Using Subpackages

After placing the provisioning file and subpackage files in a directory and booting the router, we recommend that you do not rename, delete, or alter any of these files. Renaming, deleting, or altering the files can lead to unpredictable router problems and behaviors. Each version of a consolidated package contains subpackages that are similar to those shown in the following table. However, each version of a consolidated package may contain different versions of each subpackage.

Table 24: Subpackages

<table>
<thead>
<tr>
<th>Subpackage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPBase</td>
<td>Provides the operating system software for the Route Processor. This is the only bootable package.</td>
</tr>
<tr>
<td>RPControl</td>
<td>Controls the control plane processes that act as the interface between the Cisco IOS process and the rest of the platform.</td>
</tr>
<tr>
<td>RPAccess</td>
<td>Exports processing of restricted components, such as Secure Socket Layer (SSL), Secure Shell (SSH), and other security features.</td>
</tr>
<tr>
<td>RPIOS</td>
<td>Provides the Cisco IOS kernel, where Cisco IOS XE features are stored and run. Each consolidated package has a different version of RPIOS.</td>
</tr>
<tr>
<td>ESPBase</td>
<td>Provides the Embedded Services Processor (ESP) operating system and control processes, and ESP software.</td>
</tr>
<tr>
<td>SIPBase</td>
<td>Provides control processes.</td>
</tr>
<tr>
<td>SIPSPA</td>
<td>Provides Input/Output (I/O) drivers.</td>
</tr>
<tr>
<td>Firmware</td>
<td>Firmware subpackage. The name of the subpackage includes the module type, which either refers to a Network Information Module (NIM) or Cisco Enhanced Service Module.</td>
</tr>
</tbody>
</table>

The following example shows how to configure the router to boot using subpackages:
The `dir bootflash:` command confirms that all subpackages and the provisioning file are in the same file system, as shown in the following example:

Router# dir bootflash:
Directory of bootflash:/

```
11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 18:12:58 +00:00 .prst_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 18:46:52 +00:00 tracelogs
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
12 -rw- 112911096 Sep 13 2012 18:46:05 +00:00 ISR4400-espbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454277 -rw- 32047294 Sep 13 2012 18:46:05 +00:00 ISR4400-firmware_dap_sp700.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454278 -rw- 371440 Sep 13 2012 18:46:05 +00:00 ISR4400-firmware_fpge.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454279 -rw- 8080112 Sep 13 2012 18:46:05 +00:00 ISR4400-firmware_nim_t1e1.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454280 -rw- 9331440 Sep 13 2012 18:46:06 +00:00 ISR4400-firmware_sm_1t3e3.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454281 -rw- 379632 Sep 13 2012 18:46:06 +00:00 ISR4400-firmware_ucase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454274 -rw- 10540 Sep 13 2012 18:46:05 +00:00 ISR4400-packages-universalk9.BLD_MCP_DEV_LATEST_20120910_000023.conf
454282 -rw- 2220784 Sep 13 2012 18:46:05 +00:00 ISR4400-rpaccess.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454283 -rw- 7893824 Sep 13 2012 18:46:06 +00:00 ISR4400-rpbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454284 -rw- 45177592 Sep 13 2012 18:46:06 +00:00 ISR4400-rpcontrol.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454285 -rw- 114662144 Sep 13 2012 18:46:16 +00:00 ISR4400-rpios-universalk9.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454286 -rw- 26360568 Sep 13 2012 18:46:19 +00:00 ISR4400-sipbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454287 -rw- 13091576 Sep 13 2012 18:46:21 +00:00 ISR4400-sipspa.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
454275 -rw- 11349 Sep 13 2012 18:46:21 +00:00 ISR4400-sipspa.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
```

```
7451738112 bytes total (6575869952 bytes free)
```

Router# show running | include boot
boot-start-marker
boot-end-marker
license boot level adventerprise
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# boot system bootflash:packages.conf
Router(config)# config-register 0x2102
Router(config)# exit
Router# show running | include boot
boot-start-marker
boot-end-marker
license boot level adventerprise
Router# copy run start
Destination filename [startup-config]?
Building configuration...
[OK]
Router# reload
Proceed with reload? [confirm]
Sep 13 18:49:39.720 R0/0: %PMAN-5-EXITACTION: Process manager is exiting: process exit with reload chassis code

Initializing Hardware ...

System integrity status: c0000600
Failures detected:
  Boot FPGA corrupt

Key Sectors: (Primary,GOOD), (Backup,GOOD), (Revocation,GOOD)
Size of Primary = 2288 Backup = 2288 Revocation = 300

ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec

System Bootstrap, Version 12.2(20120618:163328) [username=ESGR-ROM_20120618_GAMMA 101], DEVELOPMENT SOFTWARE
Copyright (c) 1994-2012 by cisco Systems, Inc.
Compiled Mon 06/18/2012 12:39:32.05 by username

Current image running: Boot ROM0
Last reset cause: LocalSoft

Cisco ISR 4400 platform with 4194304 Kbytes of main memory

File size is 0x000002c55
Located packages.conf
  Image size 11349 inode num 454275, bks cnt 3 blk size 8*512
#
File size is 0x04b48098
Located isr4400-rpbase.BLD_MCP_DEV_LATEST_20120910_000023.SSA.pkg
  Image size 78938264 inode num 454283, bks cnt 19273 blk size 8*512

Boot image size = 78938264 (0x4b48098) bytes

ROM:RSA Self Test Passed
ROM:Sha512 Self Test Passed
Self Tests Latency: 58 msec

Package header rev 1 structure detected
Calculating SHA-1 hash...done
validate_package: SHA-1 hash:
  calculated dbe960a6:d239245c:76d93622:d6c31a41:40e9e420
  expected dbe960a6:d239245c:76d93622:d6c31a41:40e9e420
Signed Header Version Based Image Detected

Using FLASH based Keys of type = PRIMARY KEY STORAGE
Using FLASH based Keys of type = ROLLOVER KEY STORAGE
RSA Signed DEVELOPMENT Image Signature Verification Successful.
Package Load Test Latency : 1159 msec
Image validated

Restricted Rights Legend

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR sec. 52.227-19 and subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS sec. 252.227-7013.

Cisco Systems, Inc.
170 West Tasman Drive
San Jose, California 95134-1706

Cisco IOS Software, IOS-XE Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.3(20120910:013018) [mcp_dev-BLD-BLD_MCP_DEV_LATEST_20120910_000023-ios 153]
Copyright (c) 1986-2012 by Cisco Systems, Inc.
Compiled Sun 09-Sep-12 21:28 by mcpre

Cisco IOS-XE software, Copyright (c) 2005-2012 by cisco Systems, Inc.
All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

Warning: the compile-time code checksum does not appear to be present.
cisco ISR4451/K9 (2RU) processor with 1133589K/6147K bytes of memory.
Processor board ID FGL1619100P
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
4194304K bytes of physical memory.
7393215K bytes of Compact flash at bootflash:
7816688K bytes of USB flash at usb0:

Press RETURN to get started!

Router>
Router> en
Router# show version
Cisco IOS XE Software, Version BLD_V154_3_S_XE313_THROTTLE_LATEST_20140527_070027-ext
Cisco IOS Software, ISR Software (X86_64_LINUX_IOSD-UNIVERSALK9-M), Experimental Version 15.4(20140527:095327)
[v154_3_s_xe313_throttle-BLD-BLD_V154_3_S_XE313_THROTTLE_LATEST_20140527_070027-ios 156]

IOS XE Version: BLD_V154_3_S_XE313_THROTTLE_LATEST
Cisco IOS-XE software, Copyright (c) 2005-2014 by cisco Systems, Inc. All rights reserved. Certain components of Cisco IOS-XE software are licensed under the GNU General Public License ("GPL") Version 2.0. The software code licensed under GPL Version 2.0 is free software that comes with ABSOLUTELY NO WARRANTY. You can redistribute and/or modify such GPL code under the terms of GPL Version 2.0. For more details, see the documentation or "License Notice" file accompanying the IOS-XE software, or the applicable URL provided on the flyer accompanying the IOS-XE software.

ROM: IOS-XE ROMMON

Router uptime is 1 minute
Uptime for this control processor is 4 minutes
--More-- System returned to ROM by reload
System image file is "bootflash:packages.conf"
Last reload reason: Reload Command

This product contains cryptographic features and is subject to United States and local country laws governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors and users are responsible for compliance with U.S. and local country laws. By using this product you agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at: http://www.cisco.com/wl/export/crypto/tool/stqrg.html

If you require further assistance please contact us by sending email to export@cisco.com.

License Level: adventerprise
License Type: EvalRightToUse
--More-- Next reload license Level: adventerprise

cisco ISR4451/K9 (2RU) processor with 1133589K/6147K bytes of memory.
Processor board ID FGL1619100P
4 Gigabit Ethernet interfaces
32768K bytes of non-volatile configuration memory.
4194304K bytes of physical memory.
7393215K bytes of Compact flash at bootflash:
7816688K bytes of USB flash at usb0:

Configuration register is 0x2102

Router# dir bootflash:
Directory of bootflash:

11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 18:53:29 +00:00 .prat_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 18:54:03 +00:00 tracesrc
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ash
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
454276 -rw- 112911096 Sep 13 2012 18:46:05 +00:00
isr4400-espbase.BLD_MCP_DEV_LATEST_20120918_000023.SSA.pkg
454277 -rw- 2220784 Sep 13 2012 18:46:05 +00:00

Cisco 4000 Series ISRs Software Configuration Guide
OL-29328-03
Cisco IOS-XE Software Configuration Guide
Router# del isr4400*
Delete filename [isr4400*]?
  [confirm]

Router# dir bootflash:
Directory of bootflash:

  11 drwx  16384 Jul 2 2012 15:25:23 +00:00 lost+found
  16225 drwx  4096 Jul 31 2012 19:30:48 +00:00 core
  178465 drwx  4096 Sep 13 2012 18:53:29 +00:00 .prst_sync
  324481 drwx  4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
  12 -rw-  0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
  373153 drwx 114688 Sep 13 2012 18:54:03 +00:00 tracelogs
  32449 drwx  4096 Jul 2 2012 15:27:08 +00:00 .installer
  681409 drwx  4096 Jul 31 2012 19:15:39 +00:00 .ssh
  697633 drwx  4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
  454275 -rw- 11349 Sep 13 2012 18:46:21 +00:00 packages.conf

Router# del packages.conf
Delete filename [packages.conf]?
Delete bootflash:/packages.conf? [confirm]
Router# copy tftp bootflash:
Address or name of remote host [?]: 10.81.116.4
Source filename [?]: rtp-isr4400-54/isr4400.bin
Destination filename [isr4400.bin]? 14 -rw- 1367 Sep 13 2012 19:03:57 +00:00 startup-config
Accessing tftp://10.81.116.4/rtp-isr4400-54/isr4400.bin...
Loading rtp-isr4400-54/isr4400.bin from 10.81.116.4 (via GigabitEthernet0):
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
[OK - 424317088 bytes]
424317088 bytes copied in 351.758 secs (1206276 bytes/sec)

Backing Up Configuration Files

This section provides the following examples:

- Copying a Startup Configuration File to BootFlash, on page 299
- Copying a Startup Configuration File to a USB Flash Drive, on page 300
- Copying a Startup Configuration File to a TFTP Server, on page 300

Copying a Startup Configuration File to BootFlash

Router# dir bootflash:
Directory of bootflash:

11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 18:53:29 +00:00 .prst_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 19:03:19 +00:00 tracelogs
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
13 -rw- 424317088 Sep 13 2012 19:02:50 +00:00 isr4400.bin
7451738112 bytes total (6150721536 bytes free)
Router# copy nvram:startup-config bootflash:
Destination filename [startup-config]? 14 -rw- 1367 Sep 13 2012 19:03:57 +00:00 startup-config
Router# dir bootflash:
Directory of bootflash:

11 drwx 16384 Jul 2 2012 15:25:23 +00:00 lost+found
16225 drwx 4096 Jul 31 2012 19:30:48 +00:00 core
178465 drwx 4096 Sep 13 2012 18:53:29 +00:00 .prst_sync
324481 drwx 4096 Jul 2 2012 15:26:54 +00:00 .rollback_timer
12 -rw- 0 Jul 2 2012 15:27:06 +00:00 tracelogs.696
373153 drwx 114688 Sep 13 2012 19:03:19 +00:00 tracelogs
32449 drwx 4096 Jul 2 2012 15:27:08 +00:00 .installer
681409 drwx 4096 Jul 31 2012 19:15:39 +00:00 .ssh
697633 drwx 4096 Jul 2 2012 15:27:08 +00:00 vman_fdb
13 -rw- 424317088 Sep 13 2012 19:02:50 +00:00 isr4400.bin
14 -rw- 1367 Sep 13 2012 19:03:57 +00:00 startup-config
Copying a Startup Configuration File to a USB Flash Drive

Router# `dir usb0:
Directory of usb0:/

No files in directory

4094840832 bytes total (4094836736 bytes free)
Router# `copy nvram:startup-config usb0:
Destination filename [startup-config]?
1644 bytes copied in 0.248 secs (6629 bytes/sec)
Router# `dir usb0:
Directory of usb0:/

3097__-rwx________1644__ Oct 3 2012 14:53:50 +00:00__startup-config

4094840832 bytes total (4094832640 bytes free)
Router#

Copying a Startup Configuration File to a TFTP Server

Router# `copy nvram:startup-config tftp:
Address or name of remote host []? 172.18.40.4
Destination filename [router-config]?
!!
3274 bytes copied in 0.039 secs (83949 bytes/sec)
Router#

Displaying Digitally Signed Cisco Software Signature Information

In this example, authenticity details for a consolidated package are displayed on the screen:

router# `show software authenticity running
PACKAGE isr4400-rpbase.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg

Image type : Special
Signer Information
  Common Name : CiscoSystems
  Organization Unit : IOS-XE
  Organization Name : CiscoSystems
  Certificate Serial Number : 50F48E17
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isl4400-rpcontrol.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg

Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48DA3
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isl4400-rpcontrol.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg

Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48E98
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isl4400-rpcontrol.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg

Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48DB4
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isl4400-rpcontrol.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg

Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48DBF
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isl4400-rpcontrol.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg

Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48DBE
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isl4400-rpcontrol.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg

Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48DBE
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isl4400-rpcontrol.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isr4400-firmware_sm_1t3e3.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
-----------------------------------------------------------------------------
Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48DC7
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isr4400-firmware_nim_t1e1.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
-----------------------------------------------------------------------------
Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48D74
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isr4400-espbase.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
-----------------------------------------------------------------------------
Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48D64
Hash Algorithm : SHA512
Signature Algorithm : 2048-bit RSA
Key Version : A

Verifier Information
Verifier Name : rp_base
Verifier Version : BLD_MCP_DEV_LATEST_20130114_162711

PACKAGE isr4400-sipbase.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
-----------------------------------------------------------------------------
Image type : Special
Signer Information
Common Name : CiscoSystems
Organization Unit : IOS-XE
Organization Name : CiscoSystems
Certificate Serial Number : 50F48D94
Displaying Digitally Signed Cisco Software Signature Information

- **PACKAGE**: `isr4400-sipspa.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg`

---

**Image type**: Special
**Signer Information**
- **Common Name**: CiscoSystems
- **Organization Unit**: IOS-XE
- **Organization Name**: CiscoSystems
- **Certificate Serial Number**: 50F48D7F
- **Hash Algorithm**: SHA512
- **Signature Algorithm**: 2048-bit RSA
- **Key Version**: A

**Verifier Information**
- **Verifier Name**: rp_base
- **Verifier Version**: BLD_MCP_DEV_LATEST_20130114_162711

---

**SYSTEM IMAGE**

---

**Image type**: Special
**Signer Information**
- **Common Name**: CiscoSystems
- **Organization Unit**: IOS-XE
- **Organization Name**: CiscoSystems
- **Certificate Serial Number**: 50F48F33
- **Hash Algorithm**: SHA512
- **Signature Algorithm**: 2048-bit RSA
- **Key Version**: A

**Verifier Information**
- **Verifier Name**: rp_base
- **Verifier Version**: BLD_MCP_DEV_LATEST_20130114_162711

---

**ROMMON**

---

**Image type**: Special
**Signer Information**
- **Common Name**: CiscoSystems
- **Organization Unit**: IOS-XE
- **Organization Name**: CiscoSystems
- **Certificate Serial Number**: 50801108
- **Hash Algorithm**: SHA512
- **Signature Algorithm**: 2048-bit RSA
- **Key Version**: A

**Verifier Information**
- **Verifier Name**: ROMMON
- **Verifier Version**: System Bootstrap, Version 12.2(20121015:145923

---

**Microloader**

---

**Image type**: Release
**Signer Information**
- **Common Name**: CiscoSystems
- **Organization Name**: bace997bdd9882f8569e5b59328a448
- **Certificate Serial Number**: bace997bdd9882f8569e5b59328a448
- **Hash Algorithm**: HMAC-SHA256
- **Verifier Information**
  - **Verifier Name**: Hardware Anchor
  - **Verifier Version**: System Bootstrap, Version 12.2(20121015:145923
Obtaining the Description of a Module or Consolidated Package

In this example, internal details of the consolidated package are displayed on the screen:

```plaintext
router# request platform software package describe file
bootflash:isr4400-rpbase.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
Package: isr4400-rpbase.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg
Size: 79755832
Timestamp: 2013-01-15 15:46:59 UTC
Canonical path: /bootflash/isr4400-rpbase.BLD_MCP_DEV_LATEST_20130114_162711.SSA.pkg

Raw disk-file SHA1sum:
 5cd5916a216b147e3d9e33c0dc5afb18d86bda94

Digital Signature Verified
Computed SHA1sum:
 de80d5920819d224113b81a1d64b17449859952e
Contained SHA1sum:
 de80d5920819d224113b81a1d64b17449859952e
Hashes match. Package is valid.

Header size: 760 bytes
Package type: 30001
Package flags: 0
Header version: 1

Internal package information:
 Name: rp_base
 BuildTime: 2013-01-14_14.55
 ReleaseDate: Mon-14-Jan-13-16:27
 BootArchitecture: i686
 RouteProcessor: overlord
 Platform: ISR
 User: mcpre
 PackageName: rpbase
 Build: BLD_MCP_DEV_LATEST_20130114_162711
 CardTypes:

Package is bootable on RP when specified by packages provisioning file.
```
Unsupported Commands

The Cisco 4000 Series routers contain a series of commands with the `logging` or `platform` keywords that either produce no output or produce output that is not useful for customer purposes. Such commands that are not useful for customer purposes are considered as unsupported commands. You will not find any further Cisco documentation for the unsupported commands.

The following is a list of unsupported commands for the Cisco 4000 Series routers:

- clear logging onboard slot f0 dram
- clear logging onboard slot f0 voltage
- clear logging onboard slot f0 temperature
- show logging onboard slot f0 dram
- show logging onboard slot f0 serdes
- show logging onboard slot f0 status
- show logging onboard slot f0 temperature
- show logging onboard slot f0 uptime
- show logging onboard slot f0 uptime latest
- show logging onboard slot f0 voltage
- show logging onboard slot 0 dram
- show logging onboard slot 0 serdes
- show logging onboard slot 0 status
- show logging onboard slot 0 temperature
- show logging onboard slot 0 uptime
- show logging onboard slot 0 uptime latest
- show logging onboard slot 0 voltage
- show platform software adjacency r0 special
- show platform software adjacency rp active special
Unsupported Commands

- show platform software ethernet rp active l2cp
- show platform software ethernet rp active l2cp interface GigabitEthernet0
- show platform software ethernet rp active loopback
- show platform software ethernet rp active vfi
- show platform software ethernet r0 vfi
- show platform software ethernet r0 vfi id 0
- show platform software ethernet r0 vfi name GigabitEthernet0
- show platform software ethernet r0 l2cp
- show platform software ethernet r0 l2cp interface GigabitEthernet0
- show platform software ethernet r0 bridge-domain statistics
- show platform software flow r0 exporter name GigabitEthernet0
- show platform software flow r0 exporter statistics
- show platform software flow r0 global
- show platform software flow r0 flow-def
- show platform software flow r0 interface
- show platform software flow r0 ios
- show platform software flow r0 monitor
- show platform software flow r0 sampler
- show platform hardware qfp active classification feature-manager label GigabitEthernet 0 0
- show platform software interface f0 del-track
- show platform software interface fp active del-track
- show platform software rg r0 services
- show platform software rg r0 services rg-id 0
- show platform software rg r0 services rg-id 0 verbose
- show platform software rg r0 services verbose
- show platform software rg r0 statistics
- show platform software rg rp active services
- show platform software rg rp active services rg-id 0
- show platform software rg rp active services rg-id 0 verbose
- show platform software rg rp active statistics
- show platform hardware slot 0 dram statistics
- show platform hardware slot f0 dram statistics
• show platform hardware slot 0 eobc interface primary rmon
• show platform hardware slot 0 eobc interface primary status
• show platform hardware slot 0 eobc interface standby rmon
• show platform hardware slot 0 eobc interface standby status
• show platform hardware slot f0 eobc interface primary rmon
• show platform hardware slot f0 eobc interface primary status
• show platform hardware slot f0 eobc interface standby rmon
• show platform hardware slot f0 eobc interface standby status
• show platform hardware slot f0 sensor consumer
• show platform hardware slot f0 sensor producer