

Packet Trace

First Published: August 03, 2016

The Packet-Trace feature provides a detailed understanding of how data packets are processed by the Cisco IOS XE platform, and thus helps customers to diagnose issues and troubleshoot them more efficiently. This module provides information about how to use the Packet-Trace feature.

- Information About Packet Trace, on page 1
- Usage Guidelines for Configuring Packet Trace, on page 2
- Configuring Packet Trace, on page 2
- Displaying Packet-Trace Information, on page 7
- Removing Packet-Trace Data, on page 7
- Configuration Examples for Packet Trace, on page 8
- Additional References, on page 20
- Feature Information for Packet Trace, on page 21

Information About Packet Trace

The Packet-Trace feature provides three levels of inspection for packets: accounting, summary, and path data. Each level provides a detailed view of packet processing at the cost of some packet processing capability. However, Packet Trace limits inspection to packets that match the debug platform condition statements, and is a viable option even under heavy-traffic situations in customer environments.

The following table explains the three levels of inspection provided by packet trace.

Table 1: Packet-Trace Level

Packet-Trace Level	Description
Accounting	Packet-Trace accounting provides a count of packets that enter and leave the network processor. Packet-Trace accounting is a lightweight performance activity, and runs continuously until it is disabled.
Summary	At the summary level of packet trace, data is collected for a finite number of packets. Packet-Trace summary tracks the input and output interfaces, the final packet state, and punt, drop, or inject packets, if any. Collecting summary data adds to additional performance compared to normal packet processing, and can help to isolate a troublesome interface.

Packet-Trace Level	Description
Path data	The packet-trace path data level provides the greatest level of detail in packet trace. Data is collected for a finite number of packets. Packet-Trace path data captures data, including a conditional debugging ID that is useful to correlate with feature debugs, a timestamp, and also feature-specific path-trace data.
	Path data also has two optional capabilities: packet copy and Feature Invocation Array (FIA) trace. The packet-copy option enables you to copy input and output packets at various layers of the packet (layer 2, layer 3 or layer 4). The FIA- trace option tracks every feature entry invoked during packet processing and helps you to know what is happening during packet processing.
	Note Collecting path data consumes more packet-processing resources, and the optional capabilities incrementally affect packet performance. Therefore, path-data level should be used in limited capacity or in situations where packet performance change is acceptable.

Usage Guidelines for Configuring Packet Trace

Consider the following best practices while configuring the Packet-Trace feature:

- Use of ingress conditions when using the Packet-Trace feature is recommended for a more comprehensive view of packets.
- Packet-trace configuration requires data-plane memory. On systems where data-plane memory is constrained, carefully consider how you will select the packet-trace values. A close approximation of the amount of memory consumed by packet trace is provided by the following equation:

memory required = (statistics overhead) + number of packets * (summary size + data size + packet copy size).

When the Packet-Trace feature is enabled, a small, fixed amount of memory is allocated for statistics. Similarly, when per-packet data is captured, a small, fixed amount of memory is required for each packet for summary data. However, as shown by the equation, you can significantly influence the amount of memory consumed by the number of packets you select to trace, and whether you collect path data and copies of packets.

Configuring Packet Trace

Perform the following steps to configure the Packet-Trace feature.

Note

The amount of memory consumed by the Packet-Trace feature is affected by the packet-trace configuration. You should carefully select the size of per-packet path data and copy buffers and the number of packets to be traced in order to avoid interrupting normal services. You can check the current data-plane DRAM memory consumption by using the **show platform hardware qfp active infrastructure exmem statistics** command.

SUMMARY STEPS

- 1. enable
- 2. debug platform packet-trace packet pkt-num [fia-trace | summary-only] [circular] [data-size data-size]
- 3. debug platform packet-trace {punt |inject|copy|drop|packet|statistics}
- **4. debug platform condition [ipv4 | ipv6] [interface** *interface*][**access-list** *access-list -name* | *ipv4-address* | *subnet-mask* | *ipv6-address* | *subnet-mask*] [**ingress** | **egress** | **both**]
- 5. debug platform condition start
- 6. debug platform condition stop
- 7. show platform packet-trace {configuration | statistics | summary | packet {all | pkt-num}}
- 8. clear platform condition all
- 9. exit

DETAILED STEPS

Procedure

	Command or Action	Purpose	
Step 1	enable Example:	Enables the privileged EXEC mode. Enter your password if prompted.	
	Router> enable		
Step 2	debug platform packet-trace packet pkt-num [fia-trace summary-only] [circular] [data-size data-size] Example: Router# debug platform packet-trace packets 2048	Collects summary data for a specified number of packets. Captures feature path data by default, and optionally performs FIA trace. pkt-num—Specifies the maximum number of packets maintained at a given time.	
	summary-only	fia-trace —Provides detailed level of data capture, including summary data, feature-specific data. Also displays each feature entry visited during packet processing.	
		summary-only —Enables the capture of summary data with minimal details.	
		circular —Saves the data of the most recently traced packets.	
		data-size—Specifies the size of data buffers for storing feature and FIA trace data for each packet in bytes. When very heavy packet processing is performed on packets, users can increase the size of the data buffers if necessary. The default value is 2048.	
Step 3	debug platform packet-trace {punt inject copy drop packet statistics}	Enables tracing of punted packets from data to control plane.	
	Example:		
	Router# debug platform packet-trace punt		

	Command or Action	Purpose	
Step 4	debug platform condition [ipv4 ipv6] [interface interface][access-list access-list -name ipv4-address subnet-mask ipv6-address subnet-mask] [ingress egress both]	Specifies the matching criteria for tracing packets. Provides the ability to filter by protocol, IP address and subnet mask, access control list (ACL), interface, and direction.	
	Example:		
	Router# debug platform condition interface g0/0/0 ingress		
Step 5	debug platform condition start	Enables the specified matching criteria and starts packet	
	Example:	tracing.	
	Router# debug platform condition start		
Step 6	debug platform condition stop	Deactivates the condition and stops packet tracing.	
	Example:		
	Router# debug platform condition start		
Step 7	show platform packet-trace {configuration statistics	Displays packet-trace data according to the specified option. See {start cross reference} Table 21-1 {end cross reference}	
	summary packet {all pkt-num}}	for detailed information about the show command options.	
	Example:		
	Router# show platform packet-trace 14		
Step 8	clear platform condition all	Removes the configurations provided by the debug	
	Example:	platform condition and debug platform packet-trace commands.	
	Router(config)# clear platform condition all		
Step 9	exit	Exits the privileged EXEC mode.	
	Example:		
	Router# exit		
	I	I	

Configuring Packet Tracer with UDF Offset

Perform the following steps to configure the Packet-Trace UDF with offset:

SUMMARY STEPS

- 1. enable
- 2. configure terminal
- 3. udf udf name header {inner | outer} {13|14} offset offset-in-bytes length length-in-bytes
- **4. udf** udf name {**header** | **packet-start**} offset-base offset length
- $\textbf{5.} \quad \textbf{ip access-list extended} \ \{acl\textit{-name} \ | acl\textit{-num}\}$

- 6. ip access-list extended { deny | permit } udf udf-name value mask
- 7. **debug platform condition [ipv4 | ipv6] [interface** *interface*] [access-list *access-list -name* | *ipv4-address* | *subnet-mask* | *ipv6-address* | *subnet-mask*] [**ingress** | **egress** | **both**]
- 8. debug platform condition start
- **9. debug platform packet-trace packet** *pkt-num* [**fia-trace** | **summary-only**] [**circular**] [**data-size** *data-size*]
- 10. debug platform packet-trace {punt | inject|copy | drop |packet | statistics}
- 11. debug platform condition stop
- **12**. exit

DETAILED STEPS

Procedure

	Command or Action	Purpose
Step 1	enable	Enables privileged EXEC mode.
	Example:	Enter your password if prompted.
	Device> enable	
Step 2	configure terminal	Enters global configuration mode.
	Example:	
	Device# configure terminal	
Step 3	udf udf name header {inner outer} {13 14} offset offset-in-bytes length length-in-bytes	Configures individual UDF definitions. You can specify the name of the UDF, the networking header from which
	Example:	offset, and the length of data to be extracted.
	Router(config) # udf TEST_UDF_NAME_1 header inner 13 64 1	The inner or outer keywords indicate the start of the offse from the unencapsulated Layer 3 or Layer 4 headers, or i there is an encapsulated packet, they indicate the start of offset from the inner L3/L4.
	Router(config) # udf TEST_UDF_NAME_2 header inner 14 77 2	The length keyword specifies, in bytes, the length from the offset. The range is from 1 to 2.
	Router(config) # udf TEST_UDF_NAME_3 header outer 13 65 1	
	Router(config) # udf TEST_UDF_NAME_4 header outer 14 67 1	
Step 4	udf udf name {header packet-start} offset-base offset length	• header—Specifies the offset base configuration.
	Example: Router(config) # udf TEST_UDF_NAME_5 packet-start 120 1	• packet-start—Specifies the offset base from packet-start. packet-start" can vary depending on if packet-trace is for an inbound packet or outbound packet. If the packet-trace is for an inbound packet then the packet-start will be layer2. For outbound, he packet-start will be layer3.

	Command or Action	Purpose
		• offset—Specifies the number of bytes offset from the offset base. To match the first byte from the offset base (Layer 3/Layer 4 header), configure the offset as 0.
		• length—Specifies the number of bytes from the offset. Only 1 or 2 bytes are supported. To match additional bytes, you must define multiple UDFs.
Step 5	ip access-list extended {acl-name acl-num} Example:	Enables extended ACL configuration mode. The CLI enters the extended ACL configuration mode in which all subsequent commands apply to the current extended access
	Router(config)# ip access-list extended acl2	list. Extended ACLs control traffic by the comparison of the source and destination addresses of the IP packets to the addresses configured in the ACL.
Step 6	ip access-list extended { deny permit } udf udf-name value mask	Configures the ACL to match on UDFs along with the current access control entries (ACEs). The bytes defined in ACL is 0xD3. Masks are used with IP addresses in IP
	Example:	ACLs to specify what should be permitted and denied.
	Router(config-acl)# permit ip any any udf TEST_UDF_NAME_5 0xD3 0xFF	
Step 7	debug platform condition [ipv4 ipv6] [interface interface] [access-list access-list -name ipv4-address / subnet-mask ipv6-address / subnet-mask] [ingress egress both]	Specifies the matching criteria for tracing packets. Provides the ability to filter by protocol, IP address and subnet mask, access control list (ACL), interface, and direction.
	Example:	
	Router# debug platform condition interface gi0/0/0 ipv4 access-list acl2 both	
Step 8	debug platform condition start	Enables the specified matching criteria and starts packet
	Example:	tracing.
	Router# debug platform condition start	
Step 9	debug platform packet-trace packet pkt-num [fia-trace summary-only] [circular] [data-size data-size]	Collects summary data for a specified number of packets. Captures feature path data by default, and optionally performs FIA trace.
	Example:	pkt-num—Specifies the maximum number of packets
	Router# debug platform packet-trace packet 1024	maintained at a given time.
	fia-trace data-size 2048	fia-trace —Provides detailed level of data capture, including summary data, feature-specific data. Also displays each feature entry visited during packet processing.
		summary-only —Enables the capture of summary data with minimal details.

	Command or Action	Purpose
		circular —Saves the data of the most recently traced packets.
		data-size—Specifies the size of data buffers for storing feature and FIA trace data for each packet in bytes. When very heavy packet processing is performed on packets, users can increase the size of the data buffers if necessary. The default value is 2048.
Step 10	debug platform packet-trace {punt inject copy drop packet statistics}	Enables tracing of punted packets from data to control plane.
	Example:	
	Router# debug platform packet-trace punt	
Step 11	debug platform condition stop	Deactivates the condition and stops packet tracing.
	Example:	
	Router# debug platform condition start	
Step 12	exit	Exits the privileged EXEC mode.
	Example:	
	Router# exit	

Displaying Packet-Trace Information

Use these **show** commands to display packet-trace information.

Table 2: show Commands

Command	Description
show platform packet-trace configuration	Displays packet trace configuration, including any defaults.
show platform packet-trace statistics	Displays accounting data for all the traced packets.
show platform packet-trace summary	Displays summary data for the number of packets specified.
show platform packet-trace {all pkt-num} [decode]	Displays the path data for all the packets or the packet specified. The decode option attempts to decode the binary packet into a more human-readable form.

Removing Packet-Trace Data

Use these commands to clear packet-trace data.

Table 3: clear Commands

Command	Description	
clear platform packet-trace statistics	Clears the collected packet-trace data and statistics.	
clear platform packet-trace configuration	Clears the packet-trace configuration and the statistics.	

Configuration Examples for Packet Trace

This section provides the following configuration examples:

Example: Configuring Packet Trace

This example describes how to configure packet trace and display the results. In this example, incoming packets to Gigabit Ethernet interface 0/0/1 are traced, and FIA-trace data is captured for the first 128 packets. Also, the input packets are copied. The **show platform packet-trace packet 0** command displays the summary data and each feature entry visited during packet processing for packet 0.

```
Router>
enable
Router# debug platform packet-trace packet 128 fia-trace
Router# debug platform packet-trace punt
Router# debug platform condition interface g0/0/1 ingress
Router# debug platform condition start
Router#! ping to UUT
Router# debug platform condition stop
Router# show platform packet-trace packet 0
                   CBUG ID: 9
Summary
          : GigabitEthernet0/0/1
 Input.
         : GigabitEthernet0/0/0
: FWD
 Output
 State
   Start : 1819281992118 ns (05/17/2014 06:42:01.207240 UTC)
          : 1819282095121 ns (05/17/2014 06:42:01.207343 UTC)
   Stop
Path Trace
  Feature: IPV4
   Source : 192.0.2.1
   Destination: 192.0.2.2
   Protocol : 1 (ICMP)
 Feature: FIA TRACE
   Entry : 0x8059dbe8 - DEBUG COND INPUT PKT
   Timestamp: 3685243309297
  Feature: FIA TRACE
   Entry : 0x82011a00 - IPV4 INPUT DST LOOKUP CONSUME
   Timestamp: 3685243311450
  Feature: FIA TRACE
   Entry : 0x82000170 - IPV4 INPUT FOR US MARTIAN
   Timestamp: 3685243312427
  Feature: FIA TRACE
   Entry : 0x82004b68 - IPV4 OUTPUT LOOKUP PROCESS
   Timestamp: 3685243313230
  Feature: FIA TRACE
   Entry : 0x8034f210 - IPV4 INPUT IPOPTIONS PROCESS
   Timestamp: 3685243315033
```

```
Feature: FIA TRACE
   Entry : 0x82013200 - IPV4_OUTPUT_GOTO_OUTPUT_FEATURE
   Timestamp: 3685243315787
 Feature: FIA TRACE
   Entry : 0x80321450 - IPV4 VFR REFRAG
   Timestamp: 3685243316980
  Feature: FIA TRACE
   Entry : 0x82014700 - IPV6 INPUT L2 REWRITE
   Timestamp: 3685243317713
  Feature: FIA_TRACE
          : 0x82000080 - IPV4 OUTPUT FRAG
   Entry
   Timestamp: 3685243319223
  Feature: FIA TRACE
   Entry : 0x8200e500 - IPV4 OUTPUT DROP POLICY
   Timestamp: 3685243319950
 Feature: FIA TRACE
   Entry
          : 0x8059aff4 - PACTRAC OUTPUT STATS
   Timestamp: 3685243323603
  Feature: FIA_TRACE
          : 0x82016100 - MARMOT SPA D TRANSMIT PKT
   Timestamp: 3685243326183
Router# clear platform condition all
Router# exit
```

Linux Forwarding Transport Service (LFTS) is a transport mechanism to forward packets punted from the CPP into applications other than IOSd. This example displays the LFTS-based intercepted packet destined for binos application.

```
Router# show platform packet-trace packet 10
Packet: 10
              CBUG ID: 52
Summary
 Input : GigabitEthernet0/0/0
  Output : internal0/0/rp:1
  State : PUNT 55 (For-us control)
 Timestamp
   Start: 597718358383 ns (06/06/2016 09:00:13.643341 UTC)
   Stop: 597718409650 ns (06/06/2016 09:00:13.643392 UTC)
Path Trace
  Feature: IPV4
   Input : GigabitEthernet0/0/0
   Output : <unknown>
   Source : 10.64.68.2
   Destination : 10.0.0.102
   Protocol: 17 (UDP)
     SrcPort: 1985
     DstPort : 1985
  Feature: FIA TRACE
    Input : GigabitEthernet0/0/0
   Output : <unknown>
   Entry: 0x8a0177bc - DEBUG COND INPUT PKT
   Lapsed time : 426 ns
  Feature: FIA TRACE
   Input : GigabitEthernet0/0/0
   Output : <unknown>
   Entry : 0x8a017788 - IPV4 INPUT DST LOOKUP CONSUME
   Lapsed time : 386 ns
  Feature: FIA TRACE
    Input : GigabitEthernet0/0/0
    Output : <unknown>
   Entry : 0x8a01778c - IPV4 INPUT FOR US MARTIAN
   Lapsed time : 13653 ns
  Feature: FIA TRACE
   Input : GigabitEthernet0/0/0
```

```
Output : internal 0/0/rp:1
 Entry : 0x8a017730 - IPV4_INPUT_LOOKUP_PROCESS_EXT
 Lapsed time : 2360 ns
Feature: FIA TRACE
 Input : GigabitEthernet0/0/0
  Output : internal 0/0/rp:1
 Entry : 0x8a017be0 - IPV4 INPUT IPOPTIONS PROCESS EXT
 Lapsed time : 66 ns
Feature: FIA TRACE
 Input : GigabitEthernet0/0/0
 Output : internal 0/0/rp:1
 Entry : 0x8a017bfc - IPV4 INPUT GOTO OUTPUT FEATURE EXT
 Lapsed time : 680 ns
Feature: FIA TRACE
 Input : GigabitEthernet0/0/0
 Output : internal 0/0/rp:1
 Entry : 0x8a017d60 - IPV4 INTERNAL ARL SANITY EXT
 Lapsed time : 320 ns
Feature: FIA TRACE
 Input : GigabitEthernet0/0/0
 Output : internalO/0/rp:1
 Entry : 0x8a017a40 - IPV4 VFR REFRAG EXT
 Lapsed time : 106 ns
Feature: FIA TRACE
 Input : GigabitEthernet0/0/0
 Output : internal 0/0/rp:1
 Entry : 0x8a017d2c - IPV4 OUTPUT DROP POLICY EXT
 Lapsed time : 1173 ns
Feature: FIA TRACE
 Input : GigabitEthernet0/0/0
 Output : internal0/0/rp:1
 Entry : 0x8a017940 - INTERNAL TRANSMIT PKT EXT
 Lapsed time : 20173 ns
LFTS Path Flow: Packet: 10
                            CBUG ID: 52
 Feature: LFTS
 Pkt Direction: IN
 Punt Cause : 55
      subCause : 0
```

Example: Using Packet Trace

This example provides a scenario in which packet trace is used to troubleshoot packet drops for a NAT configuration on a Cisco device. This example shows how you can effectively utilize the level of detail provided by the Packet-Trace feature to gather information about an issue, isolate the issue, and then find a solution.

In this scenario, you can detect that there are issues, but are not sure where to start troubleshooting. You should, therefore, consider accessing the Packet-Trace summary for a number of incoming packets.

```
Router# debug platform condition ingress
Router# debug platform packet-trace packet 2048 summary-only
Router# debug platform condition start
Router# debug platform condition stop
Router# show platform packet-trace summary
    Input
                       Output
                                         State Reason
Ω
     Gi0/0/0
                       Gi0/0/0
                                         DROP 402 (NoStatsUpdate)
1
      internal0/0/rp:0 internal0/0/rp:0 PUNT
                                                21 (RP<->QFP keepalive)
      internal0/0/recycle:0 Gi0/0/0
                                         FWD
```

The output shows that packets are dropped due to NAT configuration on Gigabit Ethernet interface 0/0/0, which enables you to understand that an issue is occurring on a specific interface. Using this information, you

can limit which packets to trace, reduce the number of packets for data capture, and increase the level of inspection.

```
Router# debug platform packet-trace packet 256
Router# debug platform packet-trace punt
Router# debug platform condition interface Gi0/0/0
Router# debug platform condition start
Router# debug platform condition stop
Router# show platform packet-trace summary
Router# show platform packet-trace 15
Packet: 15
                   CBUG ID: 238
Summary
           : GigabitEthernet0/0/0
 Input
          : internal0/0/rp:1
 Output
           : PUNT 55 (For-us control)
 State
 Timestamp
   Start : 1166288346725 ns (06/06/2016 09:09:42.202734 UTC)
   Stop : 1166288383210 ns (06/06/2016 09:09:42.202770 UTC)
Path Trace
  Feature: IPV4
               : GigabitEthernet0/0/0
   Input
           : <unknown>
: 10.64.68.3
   Output
   Source
   Destination : 10.0.0.102
   Protocol : 17 (UDP)
SrcPort : 1985
     DstPort : 1985
IOSd Path Flow: Packet: 15
                           CBUG ID: 238
  Feature: INFRA
   Pkt Direction: IN
    Packet Rcvd From CPP
  Feature: TP
   Pkt Direction: IN
   Source
             : 10.64.68.122
   Destination : 10.64.68.255
  Feature: IP
    Pkt Direction: IN
   Packet Enqueued in IP layer
    Source : 10.64.68.122
   Destination : 10.64.68.255
   Interface
              : GigabitEthernet0/0/0
  Feature: UDP
   Pkt Direction: IN
   src
            : 10.64.68.122(1053)
   dst
               : 10.64.68.255(1947)
   length
              : 48
Router#show platform packet-trace packet 10
Packet: 10
                   CBUG ID: 10
Summary
  Input
           : GigabitEthernet0/0/0
  Output : internal0/0/rp:0
           : PUNT 55 (For-us control)
  Timestamp
   Start : 274777907351 ns (01/10/2020 10:56:47.918494 UTC)
           : 274777922664 ns (01/10/2020 10:56:47.918509 UTC)
Path Trace
  Feature: IPV4(Input)
            : GigabitEthernet0/0/0
    Input
               : <unknown>
   Output
             : 10.78.106.2
   Source
   Destination : 10.0.0.102
   Protocol: 17 (UDP)
```

```
SrcPort : 1985
     DstPort : 1985
IOSd Path Flow: Packet: 10
                           CBUG ID: 10
  Feature: INFRA
   Pkt Direction: IN
Packet Rcvd From DATAPLANE
Feature: IP
   Pkt Direction: IN
   Packet Enqueued in IP layer
   Source : 10.78.106.2
    Destination : 10.0.0.102
   Interface : GigabitEthernet0/0/0
  Feature: UDP
   Pkt Direction: IN DROP
    Pkt : DROPPED
   UDP: Discarding silently
        : 881 10.78.106.2(1985)
   src
   dst
              : 10.0.0.102(1985)
   length
              : 60
Router#show platform packet-trace packet 12
Packet: 12
                  CBUG ID: 767
Summary
 Input
          : GigabitEthernet3
  Output : internal0/0/rp:0
           : PUNT 11 (For-us data)
  State
  Timestamp
   Start : 16120990774814 ns (01/20/2020 12:38:02.816435 UTC)
   Stop
           : 16120990801840 ns (01/20/2020 12:38:02.816462 UTC)
Path Trace
  Feature: IPV4(Input)
           : GigabitEthernet3
   Input
              : <unknown>
   Output
   Source
              : 10.1.1.1
   Destination: 10.1.1.2
   Protocol : 6 (TCP)
SrcPort : 46593
DstPort : 23
IOSd Path Flow: Packet: 12
                            CBUG ID: 767
  Feature: INFRA
   Pkt Direction: IN
   Packet Rcvd From DATAPLANE
  Feature: IP
   Pkt Direction: IN
   Packet Enqueued in IP layer
   Source : 10.1.1.1
   Destination: 10.1.1.2
   Interface
              : GigabitEthernet3
  Feature: IP
   Pkt Direction: IN
    FORWARDEDTo transport layer
    Source
                : 10.1.1.1
   Destination : 10.1.1.2
   Interface
                 : GigabitEthernet3
  Feature: TCP
    Pkt Direction: IN
    tcp0: I NoTCB 10.1.1.1:46593 10.1.1.2:23 seq 1925377975 OPTS 4 SYN WIN 4128
Router# show platform packet-trace summary
Pkt Input
                                                         State Reason
                               Output
```

0	INJ.2	Gi1	FWD		
1	Gi1	internal0/0/rp:0	PUNT	11	(For-us data)
2	INJ.2	Gi1	FWD		
3	Gi1	internal0/0/rp:0	PUNT	11	(For-us data)
4	INJ.2	Gi1	FWD		
5	INJ.2	Gi1	FWD		
6	Gi1	internal0/0/rp:0	PUNT	11	(For-us data)
7	Gi1	internal0/0/rp:0	PUNT	11	(For-us data)
8	Gi1	internal0/0/rp:0	PUNT	11	(For-us data)
9	Gi1	internal0/0/rp:0	PUNT	11	(For-us data)
10	INJ.2	Gi1	FWD		
11	INJ.2	Gi1	FWD		
12	INJ.2	Gi1	FWD		
13	Gi1	internal0/0/rp:0	PUNT	11	(For-us data)
14	Gi1	internal0/0/rp:0	PUNT	11	(For-us data)
15	Gi1	internal0/0/rp:0	PUNT	11	(For-us data)
16	INJ.2	Gi1	FWD		

The following example displays the packet trace data statistics.

```
Router#show platform packet-trace statistics
Packets Summary
 Matched 3
 Traced 3
Packets Received
 Ingress 0
 Inject 0
Packets Processed
 Forward 0
 Punt 3
   Count
              Code Cause
   3
              56 RP injected for-us control
         0
 Drop
 Consume 0
         PKT DIR IN
            Dropped
                         Consumed
                                       Forwarded
INFRA
                             0
                                          0
               Ω
TCP
                0
                             0
                                          0
UDP
               0
                             0
                                          0
ΤP
               0
                             0
                                          0
IPV6
               0
                             0
                                          0
                             0
ARP
               Ω
                                          Ω
```

	PKT_DIR_OUT		
	Dropped	Consumed	Forwarded
INFRA	0	0	0
TCP	0	0	0
UDP	0	0	0
IP	0	0	0
IPV6	0	0	0
ARP	0	0	0

The following example displays packets that are injected and punted to the forwarding processor from the control plane.

```
Router#debug platform condition ipv4 10.118.74.53/32 both
Router#Router#debug platform condition start
Router#debug platform packet-trace packet 200
Packet count rounded up from 200 to 256

Router#show platform packet-tracer packet 0
show plat pack pa 0
Packet: 0 CBUG ID: 674
Summary
```

```
: GigabitEthernet1
 Output : internal0/0/rp:0
 State
          : PUNT 11 (For-us data)
 Timestamp
   Start : 17756544435656 ns (06/29/2020 18:19:17.326313 UTC)
           : 17756544469451 ns (06/29/2020 18:19:17.326346 UTC)
Path Trace
 Feature: IPV4(Input)
              : GigabitEthernet1
   Input
              : <unknown>
   Output
   Source
              : 10.118.74.53
   Destination: 172.18.124.38
   Protocol : 17 (UDP)
     SrcPort : 2640
     DstPort : 500
                           CBUG ID: 674
IOSd Path Flow: Packet: 0
 Feature: INFRA
 Pkt Direction: IN
   Packet Rcvd From DATAPLANE
 Feature: IP
  Pkt Direction: IN
   Packet Enqueued in IP layer
   Source : 10.118.74.53
   Destination: 172.18.124.38
   Interface : GigabitEthernet1
 Feature: IP
 Pkt Direction: IN
  FORWARDED To transport layer
   Source : 10.118.74.53
   Destination : 172.18.124.38
   Interface
                : GigabitEthernet1
 Feature: UDP
 Pkt Direction: IN
 DROPPED
 UDP: Checksum error: dropping
        : 10.118.74.53(2640)
Source
Destination: 172.18.124.38(500)
Router#show platform packet-tracer packet 2
Packet: 2
                 CBUG ID: 2
IOSd Path Flow:
 Feature: TCP
 Pkt Direction: OUTtcp0: O SYNRCVD 172.18.124.38:22 172.18.124.55:52774 seq 3052140910
OPTS 4 ACK 2346709419 SYN WIN 4128
 Feature: TCP
 Pkt Direction: OUT
 FORWARDED
TCP: Connection is in SYNRCVD state
          : 2346709419
ACK
 SEQ
            : 3052140910
           : 172.18.124.38(22)
 Source
Destination: 172.18.124.55(52774)
 Feature: IP
  Pkt Direction: OUTRoute out the generated packet.srcaddr: 172.18.124.38, dstaddr:
172.18.124.55
```

```
Pkt Direction: OUTInject and forward successful srcaddr: 172.18.124.38, dstaddr:
172.18.124.55
  Feature: TCP
  Pkt Direction: OUTtcp0: O SYNRCVD 172.18.124.38:22 172.18.124.55:52774 seq 3052140910
OPTS 4 ACK 2346709419 SYN WIN 4128
Summary
           : INJ.2
          : GigabitEthernet1
  Output
  State
           : FWD
  Timestamp
   Start : 490928006866 ns (06/29/2020 13:31:30.807879 UTC)
   Stop
           : 490928038567 ns (06/29/2020 13:31:30.807911 UTC)
Path Trace
  Feature: IPV4 (Input)
    Input
              : internal0/0/rp:0
    Output
               : <unknown>
               : 172.18.124.38
   Source
   Destination: 172.18.124.55
   Protocol : 6 (TCP)
     SrcPort
               : 22
     DstPort
               : 52774
  Feature: IPSec
   Result : IPSEC RESULT DENY
   Action : SEND CLEAR
    SA Handle : 0
    Peer Addr : 10.124.18.172
    Local Addr: 10.124.18.172
```

Router#

Example: Using Packet Trace

This example provides a scenario in which packet trace is used to troubleshoot packet drops for a NAT configuration on a Cisco ASR 1006 Router. This example shows how you can effectively utilize the level of detail provided by the Packet-Trace feature to gather information about an issue, isolate the issue, and then find a solution.

In this scenario, you can detect that there are issues, but are not sure where to start troubleshooting. You should, therefore, consider accessing the Packet-Trace summary for a number of incoming packets.

```
Router# debug platform condition ingress
Router# debug platform packet-trace packet 2048 summary-only
Router# debug platform condition start
Router# debug platform condition stop
Router# show platform packet-trace summary
                                         State Reason
    Input
                       Output
                                         DROP 402 (NoStatsUpdate)
Ω
     Gi0/0/0
                       Gi0/0/0
      internal0/0/rp:0 internal0/0/rp:0 PUNT
                                                21 (RP<->QFP keepalive)
      internal0/0/recycle:0 Gi0/0/0
                                         FWD
```

The output shows that packets are dropped due to NAT configuration on Gigabit Ethernet interface 0/0/0, which enables you to understand that an issue is occurring on a specific interface. Using this information, you can limit which packets to trace, reduce the number of packets for data capture, and increase the level of inspection.

```
Router# debug platform packet-trace packet 256
Router# debug platform packet-trace punt
```

```
Router# debug platform condition interface Gi0/0/0
Router# debug platform condition start
Router# debug platform condition stop
Router# show platform packet-trace summary
Router# show platform packet-trace 15
                  CBUG ID: 238
Packet: 15
Summary
 Input
           : GigabitEthernet0/0/0
         : internal0/0/rp:1
  Output
          : PUNT 55 (For-us control)
  State
  Timestamp
   Start : 1166288346725 ns (06/06/2016 09:09:42.202734 UTC)
           : 1166288383210 ns (06/06/2016 09:09:42.202770 UTC)
   Stop
Path Trace
  Feature: IPV4
           : GigabitEthernet0/0/0
   Input
              : <unknown>
   Output
   Source
               : 10.64.68.3
    Destination : 224.0.0.102
   Protocol : 17 (UDP)
     SrcPort : 1985
     DstPort : 1985
IOSd Path Flow: Packet: 15 CBUG ID: 238
  Feature: INFRA
   Pkt Direction: IN
   Packet Rcvd From CPP
  Feature: IP
   Pkt Direction: IN
           : 10.64.68.122
   Source
   Destination : 10.64.68.255
  Feature: IP
   Pkt Direction: IN
   Packet Enqueued in IP layer
   Source : 10.64.68.122
   Destination: 10.64.68.255
   Interface : GigabitEthernet0/0/0
  Feature: UDP
   Pkt Direction: IN
              : 10.64.68.122(1053)
    src
               : 10.64.68.255(1947)
    dst
    length
               : 48
Router#show platform packet-trace packet 10
Packet: 10
                  CBUG ID: 10
Summary
           : GigabitEthernet0/0/0
  Input
          : internal0/0/rp:0
: PUNT 55 (For-us control)
  Output
  State
  Timestamp
   Start : 274777907351 ns (01/10/2020 10:56:47.918494 UTC)
           : 274777922664 ns (01/10/2020 10:56:47.918509 UTC)
   Stop
Path Trace
  Feature: IPV4(Input)
           : GigabitEthernet0/0/0
   Input
              : <unknown>
    Output
              : 10.78.106.2
   Source
   Destination : 224.0.0.102
     rotocol : 17 (UDP)
SrcPort : 1985
    Protocol
     DstPort : 1985
IOSd Path Flow: Packet: 10 CBUG ID: 10
  Feature: INFRA
   Pkt Direction: IN
```

```
Packet Rcvd From DATAPLANE
 Feature: TP
   Pkt Direction: IN
   Packet Enqueued in IP layer
   Source : 10.78.106.2
    Destination : 224.0.0.102
   Interface : GigabitEthernet0/0/0
  Feature: UDP
   Pkt Direction: IN DROP
   Pkt : DROPPED
   UDP: Discarding silently
             : 881 10.78.106.2(1985)
   src
              : 224.0.0.102(1985)
   dst
   length
              : 60
Router#show platform packet-trace packet 12
Packet: 12
                 CBUG ID: 767
Summary
          : GigabitEthernet3
 Input
 Output : internal0/0/rp:0
 State
          : PUNT 11 (For-us data)
 Timestamp
   Start : 16120990774814 ns (01/20/2020 12:38:02.816435 UTC)
   Stop : 16120990801840 ns (01/20/2020 12:38:02.816462 UTC)
Path Trace
 Feature: IPV4(Input)
            : GigabitEthernet3
   Input
   Output
               : <unknown>
               : 12.1.1.1
   Source
   Destination: 12.1.1.2
   Protocol : 6 (TCP)
               : 46593
     SrcPort
     DstPort
               : 23
IOSd Path Flow: Packet: 12 CBUG ID: 767
 Feature: INFRA
   Pkt Direction: IN
   Packet Rcvd From DATAPLANE
  Feature: IP
   Pkt Direction: IN
   Packet Enqueued in IP layer
   Source : 12.1.1.1
   Destination: 12.1.1.2
   Interface : GigabitEthernet3
 Feature: IP
   Pkt Direction: IN
   FORWARDEDTo transport layer
   Source
               : 12.1.1.1
   Destination : 12.1.1.2
   Interface
                 : GigabitEthernet3
 Feature: TCP
    Pkt Direction: IN
    tcp0: I NoTCB 12.1.1.1:46593 12.1.1.2:23 seq 1925377975 OPTS 4 SYN WIN 4128
Router# show platform packet-trace summary
Pkt Input
                               Output
                                                        State Reason
0
     INJ.2
                               Gi1
                                                        FWD
1
     Gi1
                               internal0/0/rp:0
                                                        PUNT
                                                               11 (For-us data)
2
     INJ.2
                              Gi1
                                                        FWD
3
     Gi1
                               internal0/0/rp:0
                                                        PUNT
                                                               11 (For-us data)
4
     INJ.2
                               Gi1
                                                        FWD
     INJ.2
                                                        FWD
5
                               Gi1
```

```
6
     Gi1
                               internal0/0/rp:0
                                                        PUNT
                                                               11 (For-us data)
7
                                                             11 (For-us data)
     Gi1
                               internal0/0/rp:0
                                                        PUNT
8
     Gi1
                               internal0/0/rp:0
                                                        PUNT
                                                             11 (For-us data)
                                                        PUNT
9
     Gi1
                               internal0/0/rp:0
                                                               11 (For-us data)
10
     INJ.2
                               Gi1
                                                        FWD
11
     INJ.2
                               Gi1
                                                        FWD
12
                               Gi1
     INJ.2
                                                        FWD
13
     Gi1
                               internal0/0/rp:0
                                                        PUNT
                                                               11 (For-us data)
14
     Gi1
                               internal0/0/rp:0
                                                        PUNT
                                                              11 (For-us data)
15
     Gi1
                               internal0/0/rp:0
                                                        PUNT
                                                               11 (For-us data)
16
                                                        FWD
     INJ.2
                               Gi1
```

The following example displays the packet trace data statistics.

```
Router#show platform packet-trace statistics
Packets Summary
 Matched 3
 Traced
          3
Packets Received
 Ingress 0
 Inject 0
Packets Processed
 Forward 0
 Punt
          3
   Count
              Code Cause
   3
              56 RP injected for-us control
         Ω
 Drop
 Consume 0
```

	PKT DIR IN		
	Dropped	Consumed	Forwarded
INFRA	0	0	0
TCP	0	0	0
UDP	0	0	0
IP	0	0	0
IPV6	0	0	0
ARP	0	0	0

	PKT_DIR_OUT		
	Dropped	Consumed	Forwarded
INFRA	0	0	0
TCP	0	0	0
UDP	0	0	0
IP	0	0	0
IPV6	0	0	0
ARP	0	0	0

The following example displays packets that are injected and punted to the forwarding processor from the control plane.

```
Router#debug platform condition ipv4 10.118.74.53/32 both
Router#Router#debug platform condition start
Router#debug platform packet-trace packet 200
Packet count rounded up from 200 to 256
Router#show platform packet-tracer packet 0
show plat pack pa 0
Packet: 0
                   CBUG ID: 674
Summary
         : GigabitEthernet1
  Input
  Output
           : internal0/0/rp:0
          : PUNT 11 (For-us data)
 State
  Timestamp
   Start : 17756544435656 ns (06/29/2020 18:19:17.326313 UTC)
   Stop : 17756544469451 ns (06/29/2020 18:19:17.326346 UTC)
```

```
Path Trace
 Feature: IPV4(Input)
   Input
             : GigabitEthernet1
   Output
              : <unknown>
               : 10.118.74.53
   Source
    Destination: 198.51.100.38
   Protocol : 17 (UDP)
     SrcPort : 2640
     DstPort : 500
IOSd Path Flow: Packet: 0
                          CBUG ID: 674
  Feature: INFRA
 Pkt Direction: IN
   Packet Rcvd From DATAPLANE
  Feature: IP
  Pkt Direction: IN
   Packet Enqueued in IP layer
   Source : 10.118.74.53
   Destination: 198.51.100.38
   Interface : GigabitEthernet1
 Feature: IP
 Pkt Direction: IN
  FORWARDED To transport layer
   Source
                : 10.118.74.53
   Destination : 198.51.100.38
   Interface
                 : GigabitEthernet1
 Feature: UDP
 Pkt Direction: IN
 DROPPED
UDP: Checksum error: dropping
 Source : 10.118.74.53(2640)
Destination: 198.51.100.38(500)
Router#show platform packet-tracer packet 2
                  CBUG ID: 2
Packet: 2
IOSd Path Flow:
 Feature: TCP
 Pkt Direction: OUTtcp0: O SYNRCVD 198.51.100.38:22 198.51.100.55:52774 seq 3052140910
OPTS 4 ACK 2346709419 SYN WIN 4128
 Feature: TCP
 Pkt Direction: OUT
 FORWARDED
TCP: Connection is in SYNRCVD state
ACK : 2346709419
            : 3052140910
 SEQ
 Source
            : 198.51.100.38(22)
 Destination: 198.51.100.55(52774)
 Feature: IP
  Pkt Direction: OUTRoute out the generated packet.srcaddr: 198.51.100.38, dstaddr:
198.51.100.55
 Feature: IP
 Pkt Direction: OUTInject and forward successful srcaddr: 198.51.100.38, dstaddr:
198.51.100.55
 Feature: TCP
  Pkt Direction: OUTtcp0: O SYNRCVD 198.51.100.38:22 198.51.100.55:52774 seq 3052140910
```

```
OPTS 4 ACK 2346709419 SYN WIN 4128
Summary
  Input
             : INJ.2
  Output : GigabitEthernet1
State : FWD
  Timestamp
    Start : 490928006866 ns (06/29/2020 13:31:30.807879 UTC)
Stop : 490928038567 ns (06/29/2020 13:31:30.807911 UTC)
Path Trace
  Feature: IPV4(Input)
               : internal0/0/rp:0 : <unknown>
    Input
     Output
               : 172.18.124.38
    Source
    Destination: 172.18.124.55
    Protocol : 6 (TCP)
      SrcPort : 22
       DstPort
                  : 52774
  Feature: IPSec
    Result : IPSEC_RESULT_DENY
Action : SEND_CLEAR
    SA Handle : 0
    Peer Addr : 55.124.18.172
Local Addr: 38.124.18.172
```

Router#

Additional References

Standards

Standard	Title
None	_

MIBs

MIB	MIBs Link
None	To locate and download MIBs for selected platforms, Cisco IOS releases, and feature sets, use Cisco MIB Locator found at this URL:
	{start hypertext} http://www.cisco.com/go/mibs{end hypertext}

RFCs

RFC	Title
None	_

Technical Assistance

Description	Link
The Cisco Support and Documentation website provides online resources to download documentation, software, and tools. Use these resources to install and configure the software and to troubleshoot and resolve technical issues with Cisco products and technologies. Access to most tools on the Cisco Support and Documentation website requires a Cisco.com user ID and password.	hypertext}http://www.cisco.com/cisco/web/support/index.html {end

Feature Information for Packet Trace

{start cross reference} Table 21-4{end cross reference} lists the features in this module and provides links to specific configuration information.

Use Cisco Feature Navigator to find information about platform support and software image support. Cisco Feature Navigator enables you to determine which software images support a specific software release, feature set, or platform. To access Cisco Feature Navigator, go to {start hypertext} http://www.cisco.com/go/cfn{end hypertext}. An account on Cisco.com is not required.

Note

{start cross reference} Table 21-4{end cross reference} lists only the software releases that support a given feature in a given software release train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Table 4: Feature Information for Packet Trace

Feature Name	Releases	Feature Information
Packet Trace	Cisco IOS XE 3.10S	The Packet Trace feature provides information about how data packets are processed by the Cisco IOS XE software.
		In Cisco IOS XE Release 3.10S, this feature was introduced.
		The following commands were introduced or modified:
		 debug platform packet-trace packet pkt-num [fia-trace summary-only] [data-size data-size] [circular] debug platform packet-trace copy packet {input output both} [size num-bytes] [L2 L3 L4] show platform packet-trace {configuration statistics summary packet {all pkt-num}}}
	Cisco IOS XE 3.11S	In Cisco IOS XE Release 3.11S, this feature was enhanced to include the following features: • Matched versus traced statistics. • Trace stop timestamp in addition to trace start timestamp. The following commands were introduced or modified: • debug platform packet-trace drop [code drop-num] • show platform packet-trace packet {all pkt-num} [decode]
	Cisco IOS XE Denali 16.3.1	In Cisco IOS XE Denali 16.3.1, this feature was enhanced to include Layer3 packet tracing along with IOSd. The following commands were introduced or modified: debug platform packet-trace punt .
	Cisco IOS XE Amsterdam 17.3.1	The output of the show platform packet-trace command now includes additional trace information for packets either originated from IOSd or destined to IOSd or other BinOS processes.