Configuring LAN Ports for Layer 2 Switching

This chapter describes how to use the command-line interface (CLI) to configure Ethernet, Fast Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet LAN ports for Layer 2 switching on the Cisco 7600 series routers. The configuration tasks in this chapter apply to LAN ports on LAN switching modules and to the LAN ports on the supervisor engine.

Note

- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco’ 7600 Series Routers Command References at this URL: http://www.cisco.com/en/US/products/hw/routers/ps368/prod_command_reference_list.html
- To configure Layer 3 interfaces, see Chapter 22, “Configuring Layer 3 Interfaces.”

This chapter consists of these sections:
- Understanding How Layer 2 Switching Works, page 10-1
- Default Layer 2 LAN Interface Configuration, page 10-5
- Layer 2 LAN Interface Configuration Guidelines and Restrictions, page 10-5
- Configuring LAN Interfaces for Layer 2 Switching, page 10-6

Understanding How Layer 2 Switching Works

These sections describe how Layer 2 switching works on the Cisco 7600 series routers:
- Understanding Layer 2 Ethernet Switching, page 10-1
- Understanding VLAN Trunks, page 10-2
- Layer 2 LAN Port Modes, page 10-4

Understanding Layer 2 Ethernet Switching

These sections describe Layer 2 Ethernet switching:
- Layer 2 Ethernet Switching Overview, page 10-2
- Switching Frames Between Segments, page 10-2
- Building the Address Table, page 10-2
Layer 2 Ethernet Switching Overview

Cisco 7600 series routers support simultaneous, parallel connections between Layer 2 Ethernet segments. Switched connections between Ethernet segments last only for the duration of the packet. New connections can be made between different segments for the next packet.

Cisco 7600 series routers solve congestion problems caused by high-bandwidth devices and by a large number of users by assigning each device (for example, a server) to its own 10-, 100-, or 1000-Mbps collision domain. Because each LAN port connects to a separate Ethernet collision domain, servers in a properly configured switched environment achieve full access to the bandwidth.

Because collisions cause significant congestion in Ethernet networks, an effective solution is full-duplex communication. Normally, Ethernet operates in half-duplex mode, which means that stations can either receive or transmit. In full-duplex mode, two stations can transmit and receive at the same time. When packets can flow in both directions simultaneously, the effective Ethernet bandwidth doubles.

Switching Frames Between Segments

Each LAN port on a Cisco 7600 series router can connect to a single workstation or server, or to a hub through which workstations or servers connect to the network.

On a typical Ethernet hub, all ports connect to a common backplane within the hub, and the bandwidth of the network is shared by all devices attached to the hub. If two stations establish a session that uses a significant level of bandwidth, the network performance of all other stations attached to the hub is degraded.

To reduce degradation, the router considers each LAN port to be an individual segment. When stations connected to different LAN ports need to communicate, the router forwards frames from one LAN port to the other at wire speed to ensure that each session receives full bandwidth.

To switch frames between LAN ports efficiently, the router maintains an address table. When a frame enters the router, it associates the MAC address of the sending network device with the LAN port on which it was received.

Building the Address Table

Cisco 7600 series routers build the address table by using the source address of the frames received. When the router receives a frame for a destination address not listed in its address table, it floods the frame to all LAN ports of the same VLAN except the port that received the frame. When the destination station replies, the router adds its relevant source address and port ID to the address table. The router then forwards subsequent frames to a single LAN port without flooding to all LAN ports.

The address table can store at least 32,000 address entries without flooding any entries. The router uses an aging mechanism, defined by a configurable aging timer, so if an address remains inactive for a specified number of seconds, it is removed from the address table.

Understanding VLAN Trunks

These sections describe VLAN trunks on the Cisco 7600 series routers:

- Trunking Overview, page 10-3
- Encapsulation Types, page 10-3
Trunking Overview

For information about VLANs, see Chapter 14, “Configuring VLANs.”

A trunk is a point-to-point link between the router and another networking device. Trunks carry the traffic of multiple VLANs over a single link and allow you to extend VLANs across an entire network. Two trunking encapsulations are available on all Ethernet ports:

- Inter-Switch Link (ISL)—ISL is a Cisco-proprietary trunking encapsulation.

 Note

 The following switching modules do not support ISL encapsulation:

 - WS-X6502-10GE
 - WS-X6548-GE-TX, WS-X6548V-GE-TX, WS-X6548-GE-45AF
 - WS-X6148-GE-TX, WS-X6148V-GE-TX, WS-X6148-GE-45AF

- 802.1Q—802.1Q is an industry-standard trunking encapsulation.

You can configure a trunk on a single Ethernet port or on an EtherChannel. For more information about EtherChannel, see Chapter 12, “Configuring EtherChannels.”

Ethernet trunk ports support several trunking modes (see Table 10-2 on page 10-4). You can specify whether the trunk uses ISL or 802.1Q encapsulation, and if the encapsulation type is autonegotiated.

Note

You can configure LAN ports to negotiate the encapsulation type. You cannot configure WAN interfaces to negotiate the encapsulation type.

The Dynamic Trunking Protocol (DTP) manages trunk autonegotiation on LAN ports. DTP supports autonegotiation of both ISL and 802.1Q trunks.

To autonegotiate trunking, the LAN ports must be in the same VTP domain. Use the trunk or nonegotiate keywords to force LAN ports in different domains to trunk. For more information on VTP domains, see Chapter 13, “Configuring VTP.”

Encapsulation Types

Table 10-1 lists the Ethernet trunk encapsulation types.

Table 10-1 Ethernet Trunk Encapsulation Types

<table>
<thead>
<tr>
<th>Encapsulation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport trunk encapsulation isl</td>
<td>Specifies ISL encapsulation on the trunk link.</td>
</tr>
</tbody>
</table>

Note

Some modules do not support ISL encapsulation (see the “Trunking Overview” section on page 10-3).
Table 10-2 Layer 2 LAN Port Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport mode access</td>
<td>Puts the LAN port into permanent nontrunking mode and negotiates to convert the link into a nontrunk link. The LAN port becomes a nontrunk port even if the neighboring LAN port does not agree to the change.</td>
</tr>
<tr>
<td>switchport mode dynamic desirable</td>
<td>Makes the LAN port actively attempt to convert the link to a trunk link. The LAN port becomes a trunk port if the neighboring LAN port is set to trunk, desirable, or auto mode. This is the default mode for all LAN ports.</td>
</tr>
<tr>
<td>switchport mode dynamic auto</td>
<td>Makes the LAN port willing to convert the link to a trunk link. The LAN port becomes a trunk port if the neighboring LAN port is set to trunk or desirable mode.</td>
</tr>
<tr>
<td>switchport mode trunk</td>
<td>Puts the LAN port into permanent trunking mode and negotiates to convert the link into a trunk link. The LAN port becomes a trunk port even if the neighboring port does not agree to the change.</td>
</tr>
<tr>
<td>switchport nonegotiate</td>
<td>Puts the LAN port into permanent trunking mode but prevents the port from generating DTP frames. You must configure the neighboring port manually as a trunk port to establish a trunk link.</td>
</tr>
</tbody>
</table>

Note: DTP is a point-to-point protocol. However, some internetworking devices might forward DTP frames improperly. To avoid this problem, ensure that LAN ports connected to devices that do not support DTP are configured with the access keyword if you do not intend to trunk across those links. To enable trunking to a device that does not support DTP, use the nonegotiate keyword to cause the LAN port to become a trunk but not generate DTP frames.
Default Layer 2 LAN Interface Configuration

Table 10-3 shows the Layer 2 LAN port default configuration.

Table 10-3 Layer 2 LAN Interface Default Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface mode:</td>
<td></td>
</tr>
<tr>
<td>• Before entering the switchport command</td>
<td>Layer 3 (unconfigured)</td>
</tr>
<tr>
<td>• After entering the switchport command</td>
<td>switchport mode dynamic desirable</td>
</tr>
<tr>
<td>Trunk encapsulation</td>
<td>switchport trunk encapsulation negotiate</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 to 4094, except reserved VLANs (see Table 14-1 on page 14-2)</td>
</tr>
<tr>
<td>VLAN range eligible for pruning</td>
<td>VLANs 2 to 1001</td>
</tr>
<tr>
<td>Default access VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Native VLAN (for 802.1Q trunks)</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Spanning Tree Protocol (STP)</td>
<td>Enabled for all VLANs</td>
</tr>
<tr>
<td>STP port priority</td>
<td>128</td>
</tr>
<tr>
<td>STP port cost</td>
<td>• 100 for 10-Mbps Ethernet LAN ports</td>
</tr>
<tr>
<td></td>
<td>• 19 for 10/100-Mbps Fast Ethernet LAN ports</td>
</tr>
<tr>
<td></td>
<td>• 19 for 100-Mbps Fast Ethernet LAN ports</td>
</tr>
<tr>
<td></td>
<td>• 4 for 1,000-Mbps Gigabit Ethernet LAN ports</td>
</tr>
<tr>
<td></td>
<td>• 2 for 10,000-Mbps 10-Gigabit Ethernet LAN ports</td>
</tr>
</tbody>
</table>

Layer 2 LAN Interface Configuration Guidelines and Restrictions

When configuring Layer 2 LAN ports, follow these guidelines and restrictions:

• The following switching modules do not support ISL encapsulation:
 - WS-X6502-10GE
 - WS-X6548-GE-TX, WS-X6548V-GE-TX, WS-X6548-GE-45AF
 - WS-X6148-GE-TX, WS-X6148V-GE-TX, WS-X6148-GE-45AF

• The following configuration guidelines and restrictions apply when using 802.1Q trunks and impose some limitations on the trunking strategy for a network. Note these restrictions when using 802.1Q trunks:
 - When connecting Cisco switches through an 802.1q trunk, make sure the native VLAN for an 802.1Q trunk is the same on both ends of the trunk link. If the native VLAN on one end of the trunk is different from the native VLAN on the other end, spanning tree loops might result.
Configuring LAN Interfaces for Layer 2 Switching

These sections describe how to configure Layer 2 switching on the Cisco 7600 series routers:

- Configuring a LAN Port for Layer 2 Switching, page 10-7
- Configuring a Layer 2 Switching Port as a Trunk, page 10-7
- Configuring a LAN Interface as a Layer 2 Access Port, page 10-13
- Configuring a Custom IEEE 802.1Q EtherType Field Value, page 10-15

Note

Use the `default interface {ethernet | fastethernet | gigabitethernet | tengigabitethernet} slot/port` command to revert an interface to its default configuration.

- Disabling spanning tree on the native VLAN of an 802.1Q trunk without disabling spanning tree on every VLAN in the network can cause spanning tree loops. We recommend that you leave spanning tree enabled on the native VLAN of an 802.1Q trunk. If this is not possible, disable spanning tree on every VLAN in the network. Make sure your network is free of physical loops before disabling spanning tree.

- When you connect two Cisco switches through 802.1Q trunks, the switches exchange spanning tree BPDUs on each VLAN allowed on the trunks. The BPDUs on the native VLAN of the trunk are sent untagged to the reserved IEEE 802.1d spanning tree multicast MAC address (01-80-C2-00-00-00). The BPDUs on all other VLANs on the trunk are sent tagged to the reserved Cisco Shared Spanning Tree (SSTP) multicast MAC address (01-00-0c-cc-cc-cd).

- Non-Cisco 802.1Q switches maintain only a single instance of spanning tree (the Mono Spanning Tree, or MST) that defines the spanning tree topology for all VLANs. When you connect a Cisco router to a non-Cisco router through an 802.1Q trunk, the MST of the non-Cisco router and the native VLAN spanning tree of the Cisco router combine to form a single spanning tree topology known as the Common Spanning Tree (CST).

- Because Cisco switches transmit BPDUs to the SSTP multicast MAC address on VLANs other than the native VLAN of the trunk, non-Cisco switches do not recognize these frames as BPDUs and flood them on all ports in the corresponding VLAN. Other Cisco switches connected to the non-Cisco 802.1Q cloud receive these flooded BPDUs. This allows Cisco switches to maintain a per-VLAN spanning tree topology across a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud separating the Cisco switches is treated as a single broadcast segment between all switches connected to the non-Cisco 802.1Q cloud through 802.1Q trunks.

- Make certain that the native VLAN is the same on all of the 802.1Q trunks connecting the Cisco switches to the non-Cisco 802.1Q cloud.

- If you are connecting multiple Cisco switches to a non-Cisco 802.1Q cloud, all of the connections must be through 802.1Q trunks. You cannot connect Cisco switches to a non-Cisco 802.1Q cloud through ISL trunks or through access ports. Doing so causes the router to place the ISL trunk port or access port into the spanning tree “port inconsistent” state and no traffic will pass through the port.
Configuring a LAN Port for Layer 2 Switching

To configure a LAN port for Layer 2 switching, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# shutdown</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# switchport</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# no shutdown</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router# show running-config interface [type slot/port]</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router# show interfaces [type slot/port] switchport</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router# show interfaces [type slot/port] trunk</td>
</tr>
</tbody>
</table>

1. **type** = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

After you enter the `switchport` command, the default mode is `switchport mode dynamic desirable`. If the neighboring port supports trunking and is configured to allow trunking, the link becomes a Layer 2 trunk when you enter the `switchport` command. By default, LAN trunk ports negotiate encapsulation. If the neighboring port supports ISL and 802.1Q encapsulation and both ports are set to negotiate the encapsulation type, the trunk uses ISL encapsulation (10-Gigabit Ethernet ports do not support ISL encapsulation).

Configuring a Layer 2 Switching Port as a Trunk

These section describe configuring a Layer 2 switching port as a trunk:

- Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk, page 10-8
- Configuring the Layer 2 Trunk to Use DTP, page 10-8
- Configuring the Layer 2 Trunk Not to Use DTP, page 10-9
- Configuring the Access VLAN, page 10-10
- Configuring the 802.1Q Native VLAN, page 10-10
- Configuring the List of VLANs Allowed on a Trunk, page 10-11
- Configuring the List of Prune-Eligible VLANs, page 10-11
- Completing Trunk Configuration, page 10-12
Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk

Note

- Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.
- When you enter the `switchport` command with no other keywords (Step 3 in the previous section), the default mode is `switchport mode dynamic desirable` and `switchport trunk encapsulation negotiate`.

To configure the Layer 2 switching port as an ISL or 802.1Q trunk, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>no switchport trunk encapsulation</code></td>
<td>(Optional) Configures the encapsulation, which configures the Layer 2 switching port as either an ISL or 802.1Q trunk.</td>
</tr>
<tr>
<td>`switchport trunk encapsulation {isl</td>
<td>dot1q</td>
</tr>
</tbody>
</table>

When configuring the Layer 2 switching port as an ISL or 802.1Q trunk, note the following information:

- The `switchport mode trunk` command (see the “Configuring the Layer 2 Trunk Not to Use DTP” section on page 10-9) is not compatible with the `switchport trunk encapsulation negotiate` command.
- To support the `switchport mode trunk` command, you must configure the encapsulation as either ISL or 802.1Q.
- The following switching modules do not support ISL encapsulation:
 - WS-X6502-10GE
 - WS-X6548-GE-TX, WS-X6548V-GE-TX, WS-X6548-GE-45AF
 - WS-X6148-GE-TX, WS-X6148V-GE-TX, WS-X6148-GE-45AF

Note

Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Configuring the Layer 2 Trunk to Use DTP

Note

Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.
To configure the Layer 2 trunk to use DTP, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# switchport mode dynamic {auto</td>
<td>desirable}</td>
</tr>
<tr>
<td>Router(config-if)# no switchport mode</td>
<td>Reverts to the default trunk trunking mode (switchport mode dynamic desirable).</td>
</tr>
</tbody>
</table>

When configuring the Layer 2 trunk to use DTP, note the following information:

- Required only if the interface is a Layer 2 access port or to specify the trunking mode.
- See Table 10-2 on page 10-4 for information about trunking modes.

Note Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Configuring the Layer 2 Trunk Not to Use DTP

Note Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.

To configure the Layer 2 trunk not to use DTP, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config-if)# switchport mode trunk</td>
<td>(Optional) Configures the port to trunk unconditionally.</td>
</tr>
<tr>
<td>Step 1 Router(config-if)# no switchport mode</td>
<td>Reverts to the default trunk trunking mode (switchport mode dynamic desirable).</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# switchport nonegotiate</td>
<td>(Optional) Configures the trunk not to use DTP.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# no switchport nonegotiate</td>
<td>Enables DTP on the port.</td>
</tr>
</tbody>
</table>

When configuring the Layer 2 trunk not to use DTP, note the following information:

- Before entering the switchport mode trunk command, you must configure the encapsulation (see the “Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk” section on page 10-8).
- To support the switchport nonegotiate command, you must enter the switchport mode trunk command.
- Enter the switchport mode dynamic trunk command. See Table 10-2 on page 10-4 for information about trunking modes.
- Before entering the switchport nonegotiate command, you must configure the encapsulation (see the “Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk” section on page 10-8) and configure the port to trunk unconditionally with the switchport mode trunk command (see the “Configuring the Layer 2 Trunk to Use DTP” section on page 10-8).
Configuring LAN Interfaces for Layer 2 Switching

Configuring the Access VLAN

Note Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

To configure the access VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# switchport access vlan vlan_ID</code></td>
<td>(Optional) Configures the access VLAN, which is used if the interface stops trunking. The <code>vlan_ID</code> value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).</td>
</tr>
<tr>
<td><code>Router(config-if)# no switchport access vlan</code></td>
<td>Reverts to the default value (VLAN 1).</td>
</tr>
</tbody>
</table>

Configuring the 802.1Q Native VLAN

Note Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

To configure the 802.1Q native VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-if)# switchport trunk native vlan vlan_ID</code></td>
<td>(Optional) Configures the 802.1Q native VLAN.</td>
</tr>
<tr>
<td><code>Router(config-if)# no switchport trunk native vlan</code></td>
<td>Reverts to the default value (VLAN 1).</td>
</tr>
</tbody>
</table>

When configuring the native VLAN, note the following information:

- The `vlan_ID` value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).
- The access VLAN is not automatically used as the native VLAN.
Chapter 10 Configuring LAN Ports for Layer 2 Switching

Configuring the List of VLANs Allowed on a Trunk

Note Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.

To configure the list of VLANs allowed on a trunk, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# switchport trunk allowed vlan {add</td>
<td>except</td>
</tr>
<tr>
<td>Router(config-if)# no switchport trunk allowed vlan</td>
<td>Reverts to the default value (all VLANs allowed).</td>
</tr>
</tbody>
</table>

When configuring the list of VLANs allowed on a trunk, note the following information:

- The vlan parameter is either a single VLAN number from 1 through 4094, or a range of VLANs described by two VLAN numbers, the lesser one first, separated by a dash. Do not enter any spaces between comma-separated vlan parameters or in dash-specified ranges.
- All VLANs are allowed by default.
- You can remove VLAN 1. If you remove VLAN 1 from a trunk, the trunk interface continues to send and receive management traffic, for example, Cisco Discovery Protocol (CDP), VLAN Trunking Protocol (VTP), Port Aggregation Protocol (PAgP), and DTP in VLAN 1.

Note Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Configuring the List of Prune-Eligible VLANs

Note Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.

To configure the list of prune-eligible VLANs on the Layer 2 trunk, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# switchport trunk pruning vlan {add</td>
<td>except</td>
</tr>
<tr>
<td>Router(config-if)# no switchport trunk pruning vlan</td>
<td>Reverts to the default value (all VLANs prune-eligible).</td>
</tr>
</tbody>
</table>

When configuring the list of prune-eligible VLANs on a trunk, note the following information:

- The vlan parameter is either a single VLAN number from 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2), or a range of VLANs described by two VLAN numbers, the lesser one first, separated by a dash. Do not enter any spaces between comma-separated vlan parameters or in dash-specified ranges.
• The default list of VLANs allowed to be pruned contains all VLANs.
• Network devices in VTP transparent mode do not send VTP Join messages. On Cisco 7600 series routers with trunk connections to network devices in VTP transparent mode, configure the VLANs used by the transparent-mode network devices or that need to be carried across the transparent-mode network devices as pruning ineligible.

Note
Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Completing Trunk Configuration
To complete Layer 2 trunk configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# no shutdown Activates the interface. (Required only if you shut down the interface.)</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# end Exits configuration mode.</td>
</tr>
</tbody>
</table>

Verifying Layer 2 Trunk Configuration
To verify Layer 2 trunk configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# show running-config interface type\ slot/port Displays the running configuration of the interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# show interfaces [type\ slot/port] switchport Displays the switch port configuration of the interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show interfaces [type\ slot/port] trunk Displays the trunk configuration of the interface.</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

Configuration and Verification Examples
This example shows how to configure the Fast Ethernet port 5/8 as an 802.1Q trunk. This example assumes that the neighbor port is configured to support 802.1Q trunking:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/8
Router(config-if)# shutdown
Router(config-if)# switchport
Router(config-if)# switchport mode dynamic desirable
Router(config-if)# switchport trunk encapsulation dot1q
Router(config-if)# no shutdown
Router(config-if)# end
Router# exit
```

This example shows how to verify the configuration:

```
Router# show running-config interface fastethernet 5/8
Building configuration...
Current configuration:
!
interface FastEthernet5/8
no ip address
switchport
switchport trunk encapsulation dot1q
end

Router# show interfaces fastethernet 5/8 switchport
Name: Fa5/8
Switchport: Enabled
Administrative Mode: dynamic desirable
Operational Mode: trunk
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: Enabled
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Trunking VLANS Enabled: ALL
Pruning VLANS Enabled: ALL

Router# show interfaces fastethernet 5/8 trunk
<table>
<thead>
<tr>
<th>Port</th>
<th>Mode</th>
<th>Encapsulation</th>
<th>Status</th>
<th>Native vlan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa5/8</td>
<td>desirable</td>
<td>n-802.1q</td>
<td>trunking</td>
<td>1</td>
</tr>
</tbody>
</table>

Router#

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlans allowed on trunk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa5/8</td>
<td>1-1005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlans allowed and active in management domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa5/8</td>
<td>1-6,10,20,50,100,152,200,300,303-305,349-351,400,500,521,524,570,801-802,850,917,999,1002-1005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Port</th>
<th>Vlans in spanning tree forwarding state and not pruned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa5/8</td>
<td>1-6,10,20,50,100,152,200,300,303-305,349-351,400,500,521,524,570,801-802,850,917,999,1002-1005</td>
</tr>
</tbody>
</table>

Router#

### Configuring a LAN Interface as a Layer 2 Access Port

**Note**

If you assign a LAN port to a VLAN that does not exist, the port is shut down until you create the VLAN in the VLAN database (see the “Creating or Modifying an Ethernet VLAN” section on page 14-11).

To configure a LAN port as a Layer 2 access port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router(config)# interface type1 slot/port</td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config-if)# shutdown</td>
<td>(Optional) Shuts down the interface to prevent traffic flow until configuration is complete.</td>
</tr>
</tbody>
</table>
This example shows how to configure the Fast Ethernet port 5/6 as an access port in VLAN 200:

```
Router# configure terminal
Enter configuration commands, one per line. End withCTRL/Z.
Router(config)# interface fastethernet 5/6
Router(config)# shutdown
Router(config-if)# switchport
Router(config-if)# switchport mode access
Router(config-if)# switchport access vlan 200
Router(config-if)# no shutdown
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show running-config interface fastethernet 5/6
Building configuration...
!
Current configuration:
interface FastEthernet5/6
 no ip address
 switchport access vlan 200
 switchport mode access
end

Router# show interfaces fastethernet 5/6 switchport
Name: Fa5/6
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
```
Configuring a Custom IEEE 802.1Q EtherType Field Value

You can configure a custom EtherType field value on a port to support network devices that do not use the standard 0x8100 EtherType field value on 802.1Q-tagged or 802.1p-tagged frames.

To configure a custom value for the EtherType field, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# switchport dot1q ethertype value</td>
<td>Configures the 802.1Q EtherType field value for the port.</td>
</tr>
<tr>
<td>Router(config-if)# no switchport dot1q ethertype</td>
<td>Reverts to the default 802.1Q EtherType field value (0x8100).</td>
</tr>
</tbody>
</table>

When configuring a custom EtherType field value, note the following information:

- To use a custom EtherType field value, all network devices in the traffic path across the network must support the custom EtherType field value.
- You can configure a custom EtherType field value on trunk ports, access ports, and tunnel ports.
- You can configure a custom EtherType field value on the member ports of an EtherChannel.
- You cannot configure a custom EtherType field value on a port-channel interface.
- Each port supports only one EtherType field value. A port that is configured with a custom EtherType field value does not recognize frames that have any other EtherType field value as tagged frames. For example, a trunk port that is configured with a custom EtherType field value does not recognize the standard 0x8100 EtherType field value on 802.1Q-tagged frames and cannot put the frames into the VLAN to which they belong.
- See the Release Notes for Cisco IOS Release 12.2SX on the Supervisor Engine 720, Supervisor Engine 32, and Supervisor Engine 2 for a list of the modules that support custom IEEE 802.1Q EtherType field values.

Caution

A port that is configured with a custom EtherType field value considers frames that have any other EtherType field value to be untagged frames. A trunk port with a custom EtherType field value places frames with any other EtherType field value into the native VLAN. An access port or tunnel port with a custom EtherType field value places frames that are tagged with any other EtherType field value into the access VLAN. If you misconfigure a custom EtherType field value, frames might be placed into the wrong VLAN.

This example shows how to configure the EtherType field value to 0x1234:

Router (config-if)# switchport dot1q ethertype 1234
Router (config-if)#