THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency energy. If it is not installed in accordance with Cisco’s installation instructions, it may cause interference with radio and television reception. This equipment has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules. These specifications are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation.

Modifying the equipment without Cisco’s written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices. In that event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference to radio or television communications at your own expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment or one of its peripheral devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of the following measures:

- Turn the television or radio antenna until the interference stops.
- Move the equipment to one side or the other of the television or radio.
- Move the equipment farther away from the television or radio.
- Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio are on circuits controlled by different circuit breakers or fuses.)

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company.

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S
© 2010-2014, Cisco Systems, Inc. All rights reserved.
CONTENTS

Preface xlix
 Audience xlix
 Document Revision History xlix
 Organization lvii
 Related Documentation lx
 Conventions lxii
 Obtaining Documentation, Obtaining Support, and Security Guidelines lxiii

CHAPTER 1 Product Overview 1-1
 Supported Hardware and Software 1-1
 User Interfaces 1-1
 Configuring Embedded CiscoView Support 1-2
 Understanding Embedded CiscoView 1-2
 Installing and Configuring Embedded CiscoView 1-2
 Displaying Embedded CiscoView Information 1-3
 Software Features Supported in Hardware by the PFC and DFC 1-3
 Software Features Supported in Hardware by the PFC3, DFC3, and DFC 1-3
 Software Features Supported in Hardware by the PFC3 and DFC3 1-4

CHAPTER 2 Configuring the Router for the First Time 2-1
 Default Configuration 2-1
 Configuring the Router 2-2
 Using the Setup Facility or the setup Command 2-2
 Using Configuration Mode 2-3
 Checking the Running Configuration Before Saving 2-4
 Saving the Running Configuration Settings 2-5
 Reviewing the Configuration 2-5
 Configuring a Static Route 2-5
 Configuring a BOOTP Server 2-6
 Route Health Injection on Cisco 7600 2-7
 Protecting Access to Privileged EXEC Commands 2-8
 Setting or Changing a Static Enable Password 2-8
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the enable password and enable secret Commands</td>
<td>2-9</td>
</tr>
<tr>
<td>Setting or Changing a Line Password</td>
<td>2-9</td>
</tr>
<tr>
<td>Setting TACACS+ Password Protection for Privileged EXEC Mode</td>
<td>2-10</td>
</tr>
<tr>
<td>Encrypting Passwords</td>
<td>2-10</td>
</tr>
<tr>
<td>Configuring Multiple Privilege Levels</td>
<td>2-11</td>
</tr>
<tr>
<td>Setting the Privilege Level for a Command</td>
<td>2-11</td>
</tr>
<tr>
<td>Changing the Default Privilege Level for Lines</td>
<td>2-12</td>
</tr>
<tr>
<td>Logging In to a Privilege Level</td>
<td>2-12</td>
</tr>
<tr>
<td>Exiting a Privilege Level</td>
<td>2-12</td>
</tr>
<tr>
<td>Displaying the Password, Access Level, and Privilege Level Configuration</td>
<td>2-12</td>
</tr>
<tr>
<td>Recovering a Lost Enable Password</td>
<td>2-13</td>
</tr>
<tr>
<td>Modifying the Supervisor Engine Startup Configuration</td>
<td>2-13</td>
</tr>
<tr>
<td>Understanding the Supervisor Engine Boot Configuration</td>
<td>2-13</td>
</tr>
<tr>
<td>Understanding the Supervisor Engine Boot Process</td>
<td>2-13</td>
</tr>
<tr>
<td>Understanding the ROM Monitor</td>
<td>2-14</td>
</tr>
<tr>
<td>Configuring the Software Configuration Register</td>
<td>2-14</td>
</tr>
<tr>
<td>Modifying the Boot Field and Using the boot Command</td>
<td>2-15</td>
</tr>
<tr>
<td>Modifying the Boot Field</td>
<td>2-16</td>
</tr>
<tr>
<td>Verifying the Configuration Register Setting</td>
<td>2-17</td>
</tr>
<tr>
<td>Specifying the Startup System Image</td>
<td>2-17</td>
</tr>
<tr>
<td>Understanding Flash Memory</td>
<td>2-18</td>
</tr>
<tr>
<td>Flash Memory Features</td>
<td>2-18</td>
</tr>
<tr>
<td>Security Features</td>
<td>2-18</td>
</tr>
<tr>
<td>Flash Memory Configuration Process</td>
<td>2-18</td>
</tr>
<tr>
<td>CONFIG_FILE Environment Variable</td>
<td>2-19</td>
</tr>
<tr>
<td>Controlling Environment Variables</td>
<td>2-19</td>
</tr>
</tbody>
</table>

CHAPTER 3 Configuring a Supervisor Engine 720
3-1

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the Bootflash or Bootdisk on a Supervisor Engine 720</td>
<td>3-1</td>
</tr>
<tr>
<td>Using the Slots on a Supervisor Engine 720</td>
<td>3-2</td>
</tr>
<tr>
<td>Configuring Supervisor Engine 720 Ports</td>
<td>3-2</td>
</tr>
<tr>
<td>Configuring and Monitoring the Switch Fabric Functionality</td>
<td>3-2</td>
</tr>
<tr>
<td>Understanding How the Switch Fabric Functionality Works</td>
<td>3-2</td>
</tr>
<tr>
<td>Switch Fabric Functionality Overview</td>
<td>3-3</td>
</tr>
<tr>
<td>Forwarding Decisions for Layer 3-Switched Traffic</td>
<td>3-3</td>
</tr>
<tr>
<td>Switching Modes</td>
<td>3-3</td>
</tr>
<tr>
<td>Configuring the Switch Fabric Functionality</td>
<td>3-4</td>
</tr>
<tr>
<td>Monitoring the Switch Fabric Functionality</td>
<td>3-4</td>
</tr>
<tr>
<td>Displaying the Switch Fabric Redundancy Status</td>
<td>3-5</td>
</tr>
</tbody>
</table>
CHAPTER 4 Configuring a Route Switch Processor 720 4-1

- RSP720 PFC Compatibility Matrix 4-1
- RSP720 Features 4-2
- Accessing Flash Memory on the RSP720 4-6
- Configuring route switch processor 720 Ports 4-6
- Configuring and Monitoring the Switch Fabric Functionality 4-6
 - Understanding How the Switch Fabric Functionality Works 4-7
 - Switch Fabric Functionality Overview 4-7
 - Forwarding Decisions for Layer 3-Switched Traffic 4-7
 - Switching Modes 4-7
 - Configuring the Switch Fabric Functionality 4-8
- Monitoring the Switch Fabric Functionality 4-9
 - Displaying the Switch Fabric Redundancy Status 4-9
 - Displaying Fabric Channel Switching Modes 4-9
 - Displaying the Fabric Status 4-10
- Displaying the Fabric Utilization 4-10
- Displaying Fabric Errors 4-10

CHAPTER 5 Configuring NSF with SSO Supervisor Engine Redundancy 5-1

- Understanding NSF with SSO Supervisor Engine Redundancy 5-1
- NSF with SSO Supervisor Engine Redundancy Overview 5-2
- SSO Operation 5-2
- NSF Operation 5-2
- Cisco Express Forwarding 5-3
- Multicast MLS NSF with SSO 5-3
- Routing Protocols 5-4
 - BGP Operation 5-4
 - OSPF Operation 5-5
 - IS-IS Operation 5-5
 - EIGRP Operation 5-7
- NSF Benefits and Restrictions 5-8
- SSO-aware Virtual Router Redundancy Protocol 5-8
- Supervisor Engine Configuration Synchronization 5-9
- Supervisor Engine Redundancy Guidelines and Restrictions 5-9
Contents

Redundancy Configuration Guidelines and Restrictions 5-9
Hardware Configuration Guidelines and Restrictions 5-10
Configuration Mode Restrictions 5-10

NSF Configuration Tasks 5-11
 Configuring SSO 5-11
 Configuring Multicast MLS NSF with SSO 5-12
 Verifying Multicast NSF with SSO 5-12
 Configuring CEF NSF 5-13
 Verifying CEF NSF 5-13
 Configuring BGP NSF 5-13
 Verifying BGP NSF 5-14
 Configuring OSPF NSF 5-14
 Verifying OSPF NSF 5-15
 Configuring IS-IS NSF 5-15
 Verifying IS-IS NSF 5-16
 Configuring EIGRP NSF 5-18
 Verifying EIGRP NSF 5-18
 Synchronizing the Supervisor Engine Configurations 5-19
Copy Files to the Redundant Supervisor Engine 5-19

CHAPTER 6 ISSU and eFSU on Cisco 7600 Series Routers 6-1

ISSU and eFSU Overview 6-1
 ISSU Overview 6-2
 eFSU Overview 6-2
 Outage Time and Support Considerations 6-3
 Reserving Line Card Memory 6-3
 eFSU Operation 6-4
 Error Handling for Line Card Software Preload 6-4
Cisco 7600 ISSU and eFSU Support 6-4
 ISSU Support 6-5
 eFSU Support 6-6
Cisco 7600 ISSU and eFSU Guidelines and Limitations 6-7
Performing an In Service Software Upgrade 6-8
 Software Upgrade Process Summary 6-8
 Preparing for the Upgrade 6-10
 Disabling the Compatibility Matrix Check 6-10
 Verifying the Boot Image Version and Boot Variable 6-10
 Verifying Redundancy Mode 6-10
 Verifying ISSU State 6-11
Copying the New Software Image 6-11
Loading the New Software onto the Standby RP 6-12
Displaying Maximum Outage Time for Installed Line Cards (Optional) 6-14
Forcing a Switchover from Active to Standby 6-14
Accepting the New Software Version and Stopping the Rollback Process (Optional) 6-17
Committing the New Software to the Standby 6-17
Verifying the Software Installation 6-18
Aborting the Upgrade Process 6-19
Upgrading a Non-eFSU Image to an eFSU Image 6-20
Command Reference 6-20

CHAPTER 7 Configuring RPR and RPR+ Supervisor Engine Redundancy 7-1
Understanding RPR and RPR+ 7-1
Supervisor Engine Redundancy Overview 7-2
RPR Operation 7-2
RPR+ Operation 7-3
Supervisor Engine Configuration Synchronization 7-3
RPR Supervisor Engine Configuration Synchronization 7-3
RPR+ Supervisor Engine Configuration Synchronization 7-4
Supervisor Engine Redundancy Guidelines and Restrictions 7-4
Redundancy Guidelines and Restrictions 7-4
RPR+ Guidelines and Restrictions 7-5
Hardware Configuration Guidelines and Restrictions 7-5
Configuration Mode Restrictions 7-6
Configuring Supervisor Engine Redundancy 7-6
Configuring Redundancy 7-6
Synchronizing the Supervisor Engine Configurations 7-7
Displaying the Redundancy States 7-7
Performing a Fast Software Upgrade 7-8
Copying Files to the Redundant Supervisor Engine 7-9

CHAPTER 8 Configuring Interfaces 8-1
Understanding Interface Configuration 8-1
Using the Interface Command 8-2
Configuring a Range of Interfaces 8-3
Defining and Using Interface-Range Macros 8-4
Configuring Optional Interface Features 8-5
Configuring Ethernet Interface Speed and Duplex Mode 8-5
Speed and Duplex Mode Configuration Guidelines 8-5
Configuring the Ethernet Interface Speed 8-6
Setting the Interface Duplex Mode 8-6
Configuring Link Negotiation on Gigabit Ethernet Ports 8-7
Displaying the Speed and Duplex Mode Configuration 8-8
Configuring Jumbo Frame Support 8-8
 Understanding Jumbo Frame Support 8-9
Configuring MTU Sizes 8-10
Configuring IEEE 802.3X Flow Control 8-12
Configuring the Port Debounce Timer 8-13
Adding a Description for an Interface 8-14
Understanding Online Insertion and Removal 8-14
Monitoring and Maintaining Interfaces 8-14
Checking the Cable Status Using the TDR 8-16

Chapter 9 Configuring a Supervisor Engine 32 9-1
 Flash Memory on a Supervisor Engine 32 9-1
 Supervisor Engine 32 Ports 9-2

Chapter 10 Configuring LAN Ports for Layer 2 Switching 10-1
 Understanding How Layer 2 Switching Works 10-1
 Understanding Layer 2 Ethernet Switching 10-1
 Layer 2 Ethernet Switching Overview 10-2
 Switching Frames Between Segments 10-2
 Building the Address Table 10-2
 Understanding VLAN Trunks 10-2
 Trunking Overview 10-3
 Encapsulation Types 10-3
 Layer 2 LAN Port Modes 10-4
 Default Layer 2 LAN Interface Configuration 10-5
 Layer 2 LAN Interface Configuration Guidelines and Restrictions 10-5
 Configuring LAN Interfaces for Layer 2 Switching 10-6
 Configuring a LAN Port for Layer 2 Switching 10-7
 Configuring a Layer 2 Switching Port as a Trunk 10-7
 Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk 10-8
 Configuring the Layer 2 Trunk to Use DTP 10-8
 Configuring the Layer 2 Trunk Not to Use DTP 10-9
 Configuring the Access VLAN 10-10
Configuring Flex Links

11-1

- Understanding Flex Links 11-1
- Configuring Flex Links 11-2
 - Flex Links Default Configuration 11-2
 - Flex Links Configuration Guidelines and Restrictions 11-2
- Configuring Flex Links 11-3
- Monitoring Flex Links 11-3

Configuring EtherChannels

12-1

- Understanding How EtherChannels Work 12-1
 - EtherChannel Feature Overview 12-1
- Understanding How EtherChannels Are Configured 12-2
 - EtherChannel Configuration Overview 12-2
 - Understanding Manual EtherChannel Configuration 12-3
 - Understanding PAgP EtherChannel Configuration 12-3
 - Understanding IEEE 802.3ad LACP EtherChannel Configuration 12-3
- Understanding LACP 1:1 Redundancy 12-5
- Understanding Port-Channel Interfaces 12-5
- Understanding Load Balancing 12-5
- EtherChannel Feature Configuration Guidelines and Restrictions 12-5
- Configuring EtherChannels 12-7
 - Configuring Port-Channel Logical Interfaces for Layer 3 EtherChannels 12-7
 - Configuring Channel Groups 12-8
- Configuring the LACP System Priority and System ID 12-10
- Configuring EtherChannel Load Balancing 12-11
- Configuring the EtherChannel Min-Links Feature 12-12
- Configuring LACP 1:1 Redundancy with Fast-Switchover 12-12

Configuring VTP

13-1

- Understanding How VTP Works 13-1
Understanding the VTP Domain 13-2
Understanding VTP Modes 13-2
Understanding VTP Advertisements 13-3
Understanding VTP Versions 13-3
VTP Version 2 13-3
VTP Version 3 13-4
Understanding VTP Pruning 13-5
VTP Default Configuration 13-6
VTP Configuration Guidelines and Restrictions 13-6
Configuring VTP 13-8
Configuring VTP Global Parameters 13-8
 Configuring a VTP Password 13-8
 Enabling VTP Pruning 13-9
 Enabling the VTP Version Number 13-10
Configuring the VTP Mode 13-11
Starting a Takeover 13-13
Displaying VTP Statistics 13-13
Displaying VTP Devices in a Domain 13-14

CHAPTER 14 Configuring VLANs 14-1
Understanding How VLANs Work 14-1
 VLAN Overview 14-1
 VLAN Ranges 14-2
Configurable VLAN Parameters 14-2
Understanding Token Ring VLANs 14-3
 Token Ring TrBRF VLANs 14-3
 Token Ring TrCRF VLANs 14-4
VLAN Default Configuration 14-6
 VLAN Interaction with Bridged Routed Encapsulation within an Automatic Protection Switching Group 14-8
 Supported Line Cards 14-8
 Requirements and Restrictions 14-8
 Warning Messages 14-9
VLAN Configuration Guidelines and Restrictions 14-9
Configuring VLANs 14-10
 VLAN Configuration Background Information 14-10
 Creating or Modifying an Ethernet VLAN 14-11
 Assigning a Layer 2 LAN Interface to a VLAN 14-13
 Configuring the Internal VLAN Allocation Policy 14-13
Configuring VLAN Translation 14-14
 VLAN Translation Guidelines and Restrictions 14-14
 Configuring VLAN Translation on a Trunk Port 14-16
 Enabling VLAN Translation on Other Ports in a Port Group 14-16
Mapping 802.1Q VLANs to ISL VLANs 14-17

CHAPTER 15 Configuring Private VLANs 15-1
 Understanding How Private VLANs Work 15-1
 Private VLAN Domains 15-2
 Private VLAN Ports 15-3
 Primary, Isolated, and Community VLANs 15-3
 Private VLAN Port Isolation 15-4
 IP Addressing Scheme with Private VLANs 15-4
 Private VLANs Across Multiple Routers 15-5
 Private VLAN Interaction with Other Features 15-5
 Private VLANs and Unicast, Broadcast, and Multicast Traffic 15-6
 Private VLANs and SVIs 15-6
 Private VLAN Configuration Guidelines and Restrictions 15-6
 Secondary and Primary VLAN Configuration 15-7
 Private VLAN Port Configuration 15-9
 Limitations with Other Features 15-9
 Configuring Private VLANs 15-11
 Configuring a VLAN as a Private VLAN 15-11
 Associating Secondary VLANs with a Primary VLAN 15-12
 Mapping Secondary VLANs to the Layer 3 VLAN Interface of a Primary VLAN 15-13
 Configuring a Layer 2 Interface as a Private VLAN Host Port 15-14
 Configuring a Layer 2 Interface as a Private VLAN Promiscuous Port 15-15
 Monitoring Private VLANs 15-16

CHAPTER 16 Configuring Cisco IP Phone Support 16-1
 Understanding Cisco IP Phone Support 16-1
 Cisco IP Phone Connections 16-1
 Cisco IP Phone Voice Traffic 16-2
 Cisco IP Phone Data Traffic 16-3
 Cisco IP Phone Power Configurations 16-3
 Locally Powered Cisco IP Phones 16-3
 Inline-Powered Cisco IP Phones 16-3
 Default Cisco IP Phone Support Configuration 16-4
 Cisco IP Phone Support Configuration Guidelines and Restrictions 16-4
Contents

Chapter 16 Configuring Cisco IP Phone Support
- Configuring Voice Traffic Support 16-5
- Configuring Data Traffic Support 16-7
- Configuring Inline Power Support 16-8

Chapter 17 Configuring IEEE 802.1Q Tunneling
- Understanding How 802.1Q Tunneling Works 17-1
- 802.1Q Tunneling Configuration Guidelines and Restrictions 17-3
- Configuring 802.1Q Tunneling 17-6
 - Configuring 802.1Q Tunnel Ports 17-6
 - Configuring the Router to Tag Native VLAN Traffic 17-6
- IEEE 802.1ab LLDP 17-7
 - Understanding LLDP 17-7
 - Restrictions 17-8
 - Default LLDP Configuration 17-9
- Configuring LLDP on the Cisco 7600 series router 17-9
 - Configuring LLDP 17-9
 - Monitoring and Maintaining LLDP 17-12
 - Verifying the Configuration 17-13
 - Troubleshooting Tips 17-16

Chapter 18 Configuring Layer 2 Protocol Tunneling
- Understanding How Layer 2 Protocol Tunneling Works 18-1
- Configuring Support for Layer 2 Protocol Tunneling 18-2
- Layer 2 Protocol Tunneling on EVC 18-4
 - Restrictions for Layer 2 Protocol Tunneling on EVC 18-4
 - Configuring Layer 2 Protocol Tunneling on EVC 18-5
 - Configuration Examples 18-7
 - Verification 18-7
 - Troubleshooting Tips 18-8

Chapter 19 Configuring L2TPv3
- Understanding L2TPv3 19-1
 - Restrictions for L2TPv3 19-2
 - Configuring L2TPv3 19-2

Chapter 20 Configuring STP and MST
- Understanding How STP Works 20-1
STP Overview

20-2

Understanding the Bridge ID 20-2

Bridge Priority Value 20-2

Extended System ID 20-3

STP MAC Address Allocation 20-3

Understanding Bridge Protocol Data Units 20-3

Election of the Root Bridge 20-4

STP Protocol Timers 20-4

Creating the Spanning Tree Topology 20-4

STP Port States 20-5

STP Port State Overview 20-5

Blocking State 20-7

Listening State 20-7

Learning State 20-8

Forwarding State 20-9

Disabled State 20-10

STP and IEEE 802.1Q Trunks 20-11

Understanding How IEEE 802.1w RSTP Works 20-12

Port Roles and the Active Topology 20-12

Rapid Convergence 20-13

Synchronization of Port Roles 20-14

Bridge Protocol Data Unit Format and Processing 20-15

BPDU Format and Processing Overview 20-15

Processing Superior BPDU Information 20-16

Processing Inferior BPDU Information 20-16

Topology Changes 20-17

Rapid-PVST 20-17

Understanding MST 20-17

MST Overview 20-18

MST Regions 20-18

IST, CIST, and CST 20-19

IST, CIST, and CST Overview 20-19

Spanning Tree Operation Within an MST Region 20-20

Spanning Tree Operations Between MST Regions 20-20

IEEE 802.1s Terminology 20-21

Hop Count 20-22

Boundary Ports 20-22

Standard-Compliant MST Implementation 20-23

Changes in Port-Role Naming 20-23
Spanning Tree Interoperation Between Legacy and Standard-Compliant Routers 20-24
Detecting Unidirectional Link Failure 20-24
Interoperability with IEEE 802.1D-1998 STP 20-25

Configuring STP 20-25
Default STP Configuration 20-26
Enabling STP 20-26
Enabling the Extended System ID 20-28
Configuring the Root Bridge 20-28
Configuring a Secondary Root Bridge 20-29
Configuring STP Port Priority 20-30
Configuring STP Port Cost 20-32
Configuring the Bridge Priority of a VLAN 20-33
Configuring the Hello Time 20-34
Configuring the Forward-Delay Time for a VLAN 20-35
Configuring the Maximum Aging Time for a VLAN 20-35
Enabling Rapid-PVST 20-36
 Specifying the Link Type 20-36
 Restarting Protocol Migration 20-36

Configuring MST 20-36
Default MST Configuration 20-37
MST Configuration Guidelines and Restrictions 20-37
Specifying the MST Region Configuration and Enabling MST 20-38
Configuring the Root Bridge 20-40
Configuring a Secondary Root Bridge 20-41
Configuring Port Priority 20-42
Configuring Path Cost 20-43
Configuring the Switch Priority 20-44
Configuring the Hello Time 20-45
Configuring the Forwarding-Delay Time 20-46
Configuring the Transmit Hold Count 20-46
Configuring the Maximum-Aging Time 20-47
Configuring the Maximum-Hop Count 20-47
Specifying the Link Type to Ensure Rapid Transitions 20-47
Designating the Neighbor Type 20-48
Restarting the Protocol Migration Process 20-49
Displaying the MST Configuration and Status 20-49
Contents

Chapter 21 Configuring Optional STP Features

- Understanding How PortFast Works 21-2
- Understanding How BPDU Guard Works 21-2
- Understanding How PortFast BPDU Filtering Works 21-2
- Understanding How UplinkFast Works 21-3
- Understanding How BackboneFast Works 21-4
- Understanding How EtherChannel Guard Works 21-6
- Understanding How Root Guard Works 21-6
- Understanding How Loop Guard Works 21-6
- Enabling PortFast 21-8
- Enabling PortFast BPDU Filtering 21-10
- Enabling BPDU Guard 21-11
- Enabling UplinkFast 21-12
- Enabling BackboneFast 21-13
- Enabling EtherChannel Guard 21-13
- Enabling Root Guard 21-14
- Enabling Loop Guard 21-14

Chapter 22 Configuring Layer 3 Interfaces

- Layer 3 Interface Configuration Guidelines and Restrictions 22-1
- Configuring Subinterfaces on Layer 3 Interfaces 22-2
- Configuring IPv4 Routing and Addresses 22-3
- Configuring IPX Routing and Network Numbers 22-7
- Configuring AppleTalk Routing, Cable Ranges, and Zones 22-8
- Configuring Other Protocols Routing on Layer 3 Interfaces 22-9

Chapter 23 Configuring GTP-SLB IPv6 Support

- GTP-SLB Support for IPv6 23-1
- GTP-SLB Architecture Overview 23-2
 - Create PDP Call Flow 23-2
 - GTP Echo Request Call Flow 23-3
 - GTP Notification Messages 23-3
- Restrictions and Usage Guidelines 23-4
- Configuring GTP-SLB IPv6 Support 23-4
 - Configuring a Serverfarm 23-4
 - Configuring a Virtual Server 23-7
IP Subscriber Awareness over Ethernet 24-1

Overview 24-1

Benefits 24-2

IP Subscriber Interfaces 24-3

IP Subscriber Session 24-3

IP Subscriber Session Features 24-4

IP Address Assignment 24-5

IP Subnet (IP Range) Sessions 24-5

IP Interface Sessions 24-6

PPPoE and IPoE Session Support on Port Channel (1:1 Redundancy) 24-6

PPPoE and IPoE Session Support on QinQ Subinterfaces with IEEE 802.1AH Customer Ethertype 24-6

Restrictions and Usage Guidelines 24-7

Verification 24-7

QoS Recommendations 24-20

Bandwidth-Remaining Ratio Recommendations 24-21

BRR Configuration Guidelines 24-21

BRR Configuration Instructions 24-22

Priority-Rate Propagation Recommendations 24-25

Unsupported IP Subscriber Session Features 24-26

IP Subscriber Awareness over Ethernet Configuration Guidelines 24-27

Interaction with Other Features 24-27

Configuring IP Subscriber Awareness over Ethernet 24-28

Configuration Summary 24-28

Configuration Examples 24-30

Command Reference 24-32

Configuring UDE and UDLR 25-1

Understanding UDE and UDLR 25-1

UDE and UDLR Overview 25-1

Supported Hardware 25-2

Understanding UDE 25-2

UDE Overview 25-2

Understanding Hardware-Based UDE 25-2

Understanding Software-Based UDE 25-3
Understanding UDLR 25-3
Configuring UDE and UDLR 25-3
 Configuring UDE 25-3
 UDE Configuration Guidelines 25-4
 Configuring Hardware-Based UDE 25-5
 Configuring Software-Based UDE 25-5
 Configuring UDLR 25-6
 UDLR Back-Channel Tunnel Configuration Guidelines 25-6
 Configuring a Receive-Only Tunnel Interface for a UDE Send-Only Port 25-7
 Configuring a Send-Only Tunnel Interface for a UDE Receive-Only Port 25-7

CHAPTER 26 Configuring Multiprotocol Label Switching on the PFC 26-1
 PFC MPLS Label Switching 26-1
 Understanding MPLS 26-2
 Understanding MPLS Label Switching 26-2
 IP to MPLS 26-3
 MPLS to MPLS 26-3
 MPLS to IP 26-4
 MPLS VPN Forwarding 26-4
 Recirculation 26-4
 Supported Hardware Features 26-4
 Supported Cisco IOS Features 26-5
 MPLS Guidelines and Restrictions 26-7
 MPLS Supported Commands 26-7
 Configuring MPLS 26-8
 MPLS Per-Label Load Balancing 26-8
 Basic MPLS Load Balancing 26-8
 MPLS Layer 2 VPN Load Balancing 26-8
 MPLS Layer 3 VPN Load Balancing 26-8
 MPLS Configuration Examples 26-8
 Multicast Adjacency Allocation 26-10
 Restrictions for the Multicast Adjacency Allocation 26-10
 Configuring Multicast Adjacency Allocation 26-10
 Configuration Examples 26-11
 Verifying the Configuration 26-11
 VPN Switching on the PFC 26-14
 VPN Switching Operation on the PFC 26-14
 MPLS VPN Guidelines and Restrictions 26-15
 MPLS VPN Supported Commands 26-16
Configuring MPLS VPN

MPLS VPN Sample Configuration

Any Transport over MPLS

AToM Load Balancing

Understanding EoMPLS

EoMPLS Guidelines and Restrictions

Scalable EoMPLS and Port-mode EoMPLS

HSPW Support for Ethernet ACs

Sample Configuration for SwEoMPLS and VPLS

Managing Spanning Tree Protocol to allow Bridge Protocol Data Units

Configuring EoMPLS

Prerequisites

Configuring PFC-Mode VLAN-Based EoMPLS

Configuring Port-Based EoMPLS on the PFC

Configuring 7600-MUX-UNI Support on LAN Cards

Configuring Multicast VPN Support

Understanding How MVPN Works

MVPN Overview

Multicast Routing and Forwarding and Multicast Domains

Multicast Distribution Trees

Multicast Tunnel Interfaces

PE Router Routing Table Support for MVPN

Multicast Distributed Switching Support

Hardware-Assisted IPv4 Multicast

MVPN Configuration Guidelines and Restrictions

Configuring MVPN

Configuring Egress and Ingress Multicast Replication Mode

Configuring a Multicast VPN Routing and Forwarding Instance

Configuring a VRF Entry

Configuring the Route Distinguisher

Configuring the Route-Target Extended Community

Configuring the Default MDT

Configuring Data MDTs (Optional)

Enabling Data MDT Logging

Sample Configuration

Displaying VRF Information

Configuring Multicast VRF Routing

Enabling IPv4 Multicast Routing Globally
Enabling IPv4 Multicast VRF Routing 27-17
Configuring a PIM VRF Register Message Source Address 27-17
Specifying the PIM VRF Rendezvous Point (RP) Address 27-17
Configuring a Multicast Source Discovery Protocol (MSDP) Peer 27-18
Enabling IPv4 Multicast Header Storage 27-18
Configuring the Maximum Number of Multicast Routes 27-19
Configuring IPv4 Multicast Route Filtering 27-19
Sample Configuration 27-19
Displaying IPv4 Multicast VRF Routing Information 27-20
Configuring Interfaces for Multicast Routing to Support MVPN 27-20
Multicast Routing Configuration Overview 27-20
Configuring PIM on an Interface 27-21
Configuring an Interface for IPv4 VRF Forwarding 27-22
Sample Configuration 27-22
Sample Configurations for MVPN 27-22
MVPN Configuration with Default MDTs Only 27-23
MVPN Configuration with Default and Data MDTs 27-24
IPv6 Multicast Virtual Private Network (MVPNv6) 27-29
Restrictions for the MVPNv6 Feature 27-29
Configuring MPVPNv6 27-29
Configuring Multicast VRF Instances on PE Routers 27-30
Configuring Multicast Routing 27-32
Configuring Multicast VRF Interfaces on PE Routers 27-33
Configuring Routing Protocols Between the PE and CE Routers 27-35
Configuration Examples 27-36
Verifying MVPNv6 Configuration 27-37

CHAPTER 28 Configuring Multicast VPN Extranet Support 28-1
Overview 28-1
Extranet MVPN Architecture 28-1
Configuring MVPN Extranet 28-2
Restrictions and Usage guidelines 28-3

CHAPTER 29 Configuring IP Unicast Layer 3 Switching 29-1
Understanding How Layer 3 Switching Works 29-1
Understanding Hardware Layer 3 Switching 29-2
Understanding Layer 3-Switched Packet Rewrite 29-2
Hardware Layer 3 Switching Examples 29-3
Default Hardware Layer 3 Switching Configuration 29-4
| Contents |
|---------------------------------|---|
| Configuration Guidelines and Restrictions | 29-4 |
| Configuring Hardware Layer 3 Switching | 29-4 |
| Displaying Hardware Layer 3 Switching Statistics | 29-5 |

CHAPTER 30 Configuring IPv6 Multicast PFC3 and DFC3 Layer 3 Switching 30-1

- Features that Support IPv6 Multicast 30-1
- IPv6 Multicast Guidelines and Restrictions 30-2
- Configuring IPv6 Multicast Layer 3 Switching 30-3
- Using show Commands to Verify IPv6 Multicast Layer 3 Switching 30-3
 - Verifying MFIB Clients 30-3
 - Displaying the Switching Capability 30-4
 - Verifying the (S,G) Forwarding Capability 30-4
 - Verifying the (*,G) Forwarding Capability 30-4
 - Verifying the Subnet Entry Support Status 30-4
 - Displaying the Replication Mode Capabilities 30-4
 - Displaying Subnet Entries 30-5
 - Displaying the IPv6 Multicast Summary 30-5
 - Displaying the NetFlow Hardware Forwarding Count 30-5
 - Displaying the FIB Hardware Bridging and Drop Counts 30-6
 - Displaying the Shared and Well-Known Hardware Adjacency Counters 30-6

CHAPTER 31 Configuring IPv4 Multicast Layer 3 Switching 31-1

- Understanding How IPv4 Multicast Layer 3 Switching Works 31-1
 - IPv4 Multicast Layer 3 Switching Overview 31-2
 - Multicast Layer 3 Switching Cache 31-2
 - Layer 3-Switched Multicast Packet Rewrite 31-3
 - Partially and Completely Switched Flows 31-3
 - Partially Switched Flows 31-4
 - Completely Switched Flows 31-4
 - Non-RPF Traffic Processing 31-5
 - Non-RPF Traffic Overview 31-5
 - Filtering of RPF Failures for Stub Networks 31-6
 - Rate Limiting of RPF Failure Traffic 31-6
 - Understanding How IPv4 Bidirectional PIM Works 31-6
 - Default IPv4 Multicast Layer 3 Switching Configuration 31-7
 - IPv4 Multicast Layer 3 Switching Configuration Guidelines and Restrictions 31-7
 - Restrictions 31-7
 - Unsupported Features 31-8
Configuring IPv4 Multicast Layer 3 Switching

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source-Specific Multicast with IGMPv3, IGMP v3lite, and URD</td>
<td>31-9</td>
</tr>
<tr>
<td>Enabling IPv4 Multicast Routing Globally</td>
<td>31-9</td>
</tr>
<tr>
<td>Enabling IPv4 PIM on Layer 3 Interfaces</td>
<td>31-10</td>
</tr>
<tr>
<td>Enabling IP Multicast Layer 3 Switching Globally</td>
<td>31-10</td>
</tr>
<tr>
<td>Enabling IP Multicast Layer 3 Switching on Layer 3 Interfaces</td>
<td>31-11</td>
</tr>
<tr>
<td>Configuring the Replication Mode</td>
<td>31-11</td>
</tr>
<tr>
<td>Enabling Local Egress Replication</td>
<td>31-13</td>
</tr>
<tr>
<td>Configuring the Layer 3 Switching Global Threshold</td>
<td>31-14</td>
</tr>
<tr>
<td>Enabling Installation of Directly Connected Subnets</td>
<td>31-15</td>
</tr>
<tr>
<td>Specifying the Flow Statistics Message Interval</td>
<td>31-15</td>
</tr>
<tr>
<td>Configuring ACL-Based Filtering of RPF Failures</td>
<td>31-15</td>
</tr>
<tr>
<td>Validating the Rate-Limiter Status</td>
<td>31-16</td>
</tr>
<tr>
<td>Displaying IPv4 Multicast Layer 3 Hardware Switching Summary</td>
<td>31-17</td>
</tr>
<tr>
<td>Displaying the IPv4 Multicast Routing Table</td>
<td>31-20</td>
</tr>
<tr>
<td>Displaying IPv4 Multicast Layer 3 Switching Statistics</td>
<td>31-21</td>
</tr>
</tbody>
</table>

Configuring IPv4 Bidirectional PIM

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabling IPv4 Bidirectional PIM Globally</td>
<td>31-22</td>
</tr>
<tr>
<td>Configuring the Rendezvous Point for IPv4 Bidirectional PIM Groups</td>
<td>31-23</td>
</tr>
<tr>
<td>Setting the IPv4 Bidirectional PIM Scan Interval</td>
<td>31-23</td>
</tr>
<tr>
<td>Displaying IPv4 Bidirectional PIM Information</td>
<td>31-24</td>
</tr>
<tr>
<td>Using IPv4 Debug Commands</td>
<td>31-25</td>
</tr>
</tbody>
</table>

Chapter 32 Configuring MLDv2 Snooping for IPv6 Multicast Traffic

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding How MLDv2 Snooping Works</td>
<td>32-1</td>
</tr>
<tr>
<td>MLDv2 Snooping Overview</td>
<td>32-2</td>
</tr>
<tr>
<td>MLDv2 Messages</td>
<td>32-2</td>
</tr>
<tr>
<td>Source-Based Filtering</td>
<td>32-3</td>
</tr>
<tr>
<td>Explicit Host Tracking</td>
<td>32-3</td>
</tr>
<tr>
<td>MLDv2 Snooping Proxy Reporting</td>
<td>32-3</td>
</tr>
<tr>
<td>Joining an IPv6 Multicast Group</td>
<td>32-4</td>
</tr>
<tr>
<td>Leaving a Multicast Group</td>
<td>32-6</td>
</tr>
<tr>
<td>Normal Leave Processing</td>
<td>32-6</td>
</tr>
<tr>
<td>Fast-Leave Processing</td>
<td>32-6</td>
</tr>
<tr>
<td>Understanding the MLDv2 Snooping Querier</td>
<td>32-7</td>
</tr>
<tr>
<td>Default MLDv2 Snooping Configuration</td>
<td>32-7</td>
</tr>
<tr>
<td>MLDv2 Snooping Configuration Guidelines and Restrictions</td>
<td>32-7</td>
</tr>
<tr>
<td>MLDv2 Snooping Querier Configuration Guidelines and Restrictions</td>
<td>32-8</td>
</tr>
</tbody>
</table>
Enabling the MLDv2 Snooping Querier 32-8
Configuring MLDv2 Snooping 32-9
 Enabling MLDv2 Snooping 32-9
 Configuring a Static Connection to a Multicast Receiver 32-10
 Configuring a Multicast Router Port Statically 32-11
 Configuring the MLD Snooping Query Interval 32-11
 Enabling Fast-Leave Processing 32-12
 Enabling SSM Safe Reporting 32-12
 Configuring Explicit Host Tracking 32-12
 Configuring Report Suppression 32-13
 Displaying MLDv6 Snooping Information 32-13
 Displaying Multicast Router Interfaces 32-14
 Displaying MAC Address Multicast Entries 32-14
 Displaying MLDv2 Snooping Information for a VLAN Interface 32-15

Configuring IGMP Snooping for IPv4 Multicast Traffic 33-1
Understanding How IGMP Snooping Works 33-1
 IGMP Snooping Overview 33-2
 Joining a Multicast Group 33-2
 Leaving a Multicast Group 33-4
 Normal Leave Processing 33-4
 Fast-Leave Processing 33-5
 Understanding the IGMP Snooping Querier 33-5
 Understanding IGMP Version 3 Support 33-5
 IGMP Version 3 Support Overview 33-6
 IGMPv3 Fast-Leave Processing 33-6
 Proxy Reporting 33-6
 Explicit Host Tracking 33-7
 Default IGMP Snooping Configuration 33-7
 IGMP Snooping Configuration Guidelines and Restrictions 33-8
 IGMP Snooping Querier Configuration Guidelines and Restrictions 33-8
 Enabling the IGMP Snooping Querier 33-9
 Configuring IGMP Snooping 33-9
 Enabling IGMP Snooping 33-10
 Configuring a Static Connection to a Multicast Receiver 33-11
 Configuring a Multicast Router Port Statically 33-11
 Configuring the IGMP Snooping Query Interval 33-11
 Enabling IGMP Fast-Leave Processing 33-12
 Configuring Source Specific Multicast (SSM) Mapping 33-12
Enabling SSM Safe Reporting 33-13
Configuring IGMPv3 Explicit Host Tracking 33-13
Displaying IGMP Snooping Information 33-14
 Displaying Multicast Router Interfaces 33-14
 Displaying MAC Address Multicast Entries 33-14
 Displaying IGMP Snooping Information for a VLAN Interface 33-15
 Displaying IGMP Snooping Statistics 33-15

Understanding MVR 33-16
 Using MVR in a Multicast Television Application 33-17

Configuring MVR 33-18
 Default MVR Configuration 33-18
 Restrictions for MVR Configuration 33-19
 Configuring MVR Global Parameters 33-19
 Configuring MVR Interfaces 33-21
 Displaying MVR Information 33-22
 Clearing MVR Counters 33-23
 Troubleshooting 33-24

CHAPTER 34 Configuring PIM Snooping 34-1

Understanding How PIM Snooping Works 34-1
Default PIM Snooping Configuration 34-3
PIM Snooping Configuration Guidelines and Restrictions 34-4
Configuring PIM Snooping 34-4
 Enabling PIM Snooping Globally 34-4
 Enabling PIM Snooping in a VLAN 34-5
 Disabling PIM Snooping Designated-Router Flooding 34-5

CHAPTER 35 Configuring Network Security 35-1

Configuring MAC Address-Based Traffic Blocking 35-1
Configuring TCP Intercept 35-2
Configuring Unicast Reverse Path Forwarding Check 35-2
 Understanding PFC3 Unicast RPF Check Support 35-2
 Unicast RPF Check Guidelines and Restrictions 35-3
Configuring Unicast RPF Check 35-3
 Configuring the Unicast RPF Check Mode 35-3
 Configuring the Multiple-Path Unicast RPF Check Mode on a PFC3 35-5
 Configuring Multiple-Path Interface Groups on a PFC3 35-5
 Enabling Self-Pinging 35-6
CHAPTER 36

Understanding Cisco IOS ACL Support 36-1
Cisco IOS ACL Configuration Guidelines and Restrictions 36-1
Hardware and Software ACL Support 36-2
Optimized ACL Logging with a PFC3 36-3
Understanding OAL 36-3
OAL Guidelines and Restrictions 36-3
Configuring OAL 36-3
Configuring OAL Global Parameters 36-4
Configuring OAL on an Interface 36-5
Displaying OAL Information 36-5
Clearing Cached OAL Entries 36-5
Guidelines and Restrictions for Using Layer 4 Operators in ACLs 36-5
Determining Layer 4 Operation Unit Usage 36-5
Determining Logical Operation Unit Usage 36-6

CHAPTER 37

Configuring VRF aware 6RD Tunnels 37-1
Understanding VRF aware 6RD Tunnels 37-1
Restriction for VRF aware 6RD Tunnels 37-2
Configuring VRF aware 6RD Tunnels 37-2

CHAPTER 38

Configuring VLAN ACLs 38-1
Understanding VACLs 38-1
VACL Overview 38-1
Bridged Packets 38-2
Routed Packets 38-2
Multicast Packets 38-3
Configuring VACLs 38-4
VACL Configuration Overview 38-4
Defining a VLAN Access Map 38-5
Configuring a Match Clause in a VLAN Access Map Sequence 38-6
Sample Configuration for Match Clause 38-6
Configuring an Action Clause in a VLAN Access Map Sequence 38-7
Applying a VLAN Access Map 38-7
Verifying VLAN Access Map Configuration 38-8
VLAN Access Map Configuration and Verification Examples 38-8
Configuring a Capture Port 38-9
Configuring VACL Logging 38-10
Displaying IPv6 VACL Logging 38-11
CHAPTER 39 Private Hosts (Using PACLs) 39-1

Overview 39-1
 Isolating Hosts in a VLAN 39-2
 Restricting Traffic Flow (Using Private Hosts Port Mode and PACLs) 39-3
 Port ACLs 39-4

Configuration Guidelines and Limitations 39-5
 Interaction with Other Features 39-8
 Spoofing Protection 39-9
 Multicast Operation 39-9

Configuring Private Hosts 39-9
 Configuration Summary 39-9
 Detailed Configuration Steps 39-10
 Configuration Examples 39-12

Command Reference 39-13

CHAPTER 40 Configuring IPv6 PACL 40-1

Understanding IPv6 PACL 40-1
 Restrictions for IPv6 PACL feature 40-2
 Configuring IPv6 PACL 40-2
 Creating Access List 40-2
 Configuring PACL mode and Applying IPv6 PACL 40-4
 Verifying IPv6 PACL 40-6

Troubleshooting Tips 40-8

CHAPTER 41 IPv6 First-Hop Security Features 41-1

Understanding IPv6 First-Hop Security features 41-1
 IPv6 Snooping 41-1
 IPv6 Router Advertisement Guard 41-2
 IPv6 - Destination Guard 41-2
 Binding Table Recovery 41-2
 DHCPv6 Guard 41-2
 IPv6 Source Guard 41-2
 IPv6 Prefix Guard 41-3
 PG in Service Provider Deployment 41-4
 PG in Enterprise Deployment 41-4
 Data Gleaning 41-4

Restrictions for IPv6 FHS features 41-4
Restrictions for IPv6 Source and Prefix Guards 41-5
Configuring IPv6 FHS Features 41-6
Verifying IPv6 FHS Configuration 41-6
Troubleshooting Tips 41-9

CHAPTER 42 Configuring Online Diagnostics 42-1
Understanding How Online Diagnostics Work 42-1
Configuring Online Diagnostics 42-2
Setting Bootup Online Diagnostics Level 42-2
Configuring On-Demand Online Diagnostics 42-3
Scheduling Online Diagnostics 42-4
Configuring Health-Monitoring Diagnostics 42-5
Running Online Diagnostic Tests 42-6
Starting and Stopping Online Diagnostic Tests 42-6
Displaying Online Diagnostic Tests and Test Results 42-6
Schedule Switchover 42-10
Performing Memory Tests 42-10
Diagnostic Sanity Check 42-11

CHAPTER 43 Configuring Denial of Service Protection 43-1
Understanding Control Plane Protection 43-1
Implementing Control Plane Protection in Cisco 7600 43-2
Path of a Control Packet 43-2
Linecard Support for Control Plane Protection 43-3
Path of the Punted Packet Through Earl on PFC or DFC 43-5
Policing Control Plane Traffic on the PFC or DFC 43-5
Path of the Punted Packet After PFC or DFC 43-7
Path of the Punted Packet on IOS 43-9
43-10
Control Plane Protection Best Practices 43-10
Understanding How DoS Protection Works 43-10
DoS Protection with a PFC3 43-10
Security ACLs and VACLs 43-11
QoS Rate Limiting 43-12
uRPF Check 43-12
Traffic Storm Control 43-13
Network Under SYN Attack 43-13
MLS Protocol Policing 43-14
Hardware-based Rate Limiters on the PFC 43-14
Shared Rate-Limiters 43-15
Recommended Rate-Limiter Configuration 43-15
Contents

MLS Rate-limiter Default Configuration 43-22
DoS Protection Configuration Guidelines and Restrictions 43-23
 PFC3 43-23
 Monitoring Packet Drop Statistics 43-24
 Displaying Rate-Limiter Information 43-26
 MLS Rate Limiter Configuration Example 43-27
Understanding How Control Plane Policing Works 43-29
CoPP Default Configuration 43-29
CoPP Configuration Guidelines and Restrictions 43-29
Configuring CoPP 43-31
Monitoring CoPP 43-33
Personalizing a CoPP Policy 43-34
Developing a CoPP Policy 43-34
Defining Traffic Classification 43-38
 Traffic Classification Overview 43-38
 Traffic Classification Guidelines 43-39
 Sample Basic ACLs for CoPP Traffic Classification 43-39
Configuring Sticky ARP 43-41

CHAPTER 44 Configuring DHCP Snooping 44-1
Understanding DHCP Snooping 44-1
 Overview of DHCP Snooping 44-2
 Trusted and Untrusted Sources 44-2
 DHCP Snooping Binding Database 44-2
 Packet Validation 44-3
 DHCP Snooping Option-82 Data Insertion 44-3
 Overview of the DHCP Snooping Database Agent 44-5
Default Configuration for DHCP Snooping 44-6
DHCP Snooping Configuration Restrictions and Guidelines 44-7
 DHCP Snooping Configuration Restrictions 44-7
 DHCP Snooping Configuration Guidelines 44-7
 Minimum DHCP Snooping Configuration 44-8
Configuring DHCP Snooping 44-8
 Enabling DHCP Snooping Globally 44-9
 Enabling DHCP Option-82 Data Insertion 44-9
 Enabling the DHCP Option-82 on Untrusted Port Feature 44-10
 Enabling DHCP Snooping MAC Address Verification 44-11
Enabling DHCP Snooping on VLANs 44-11

Configuring the DHCP Trust State on Layer 2 LAN Interfaces 44-13

Configuring DHCP Snooping Rate Limiting on Layer 2 LAN Interfaces 44-13

Configuring the DHCP Snooping Database Agent 44-14

Configuration Examples for the Database Agent 44-15

- Example 1: Enabling the Database Agent 44-15
- Example 2: Reading Binding Entries from a TFTP File 44-16
- Example 3: Adding Information to the DHCP Snooping Database 44-17

Displaying a Binding Table 44-18

Chapter 45 Configuring Dynamic ARP Inspection 45-1

Understanding DAI 45-1

- Understanding ARP 45-1
- Understanding ARP Spoofing Attacks 45-2
- Understanding DAI and ARP Spoofing Attacks 45-2
- Interface Trust States and Network Security 45-3
- Rate Limiting of ARP Packets 45-4
- Relative Priority of ARP ACLs and DHCP Snooping Entries 45-4
- Logging of Dropped Packets 45-4

Default DAI Configuration 45-5

DAI Configuration Guidelines and Restrictions 45-5

Configuring DAI 45-6

Enabling DAI on VLANs 45-7

Configuring the DAI Interface Trust State 45-8

Applying ARP ACLs for DAI Filtering 45-8

Configuring ARP Packet Rate Limiting 45-9

Enabling DAI Error-Disabled Recovery 45-11

Enabling Additional Validation 45-11

Configuring DAI Logging 45-13

- DAI Logging Overview 45-13
- Configuring the DAI Logging Buffer Size 45-13
- Configuring the DAI Logging System Messages 45-14
- Configuring DAI Log Filtering 45-14

Displaying DAI Information 45-15

DAI Configuration Samples 45-16

Sample One: Two Switches Support DAI 45-16

- Configuring Router A 45-17
- Configuring Router B 45-19

Sample Two: One Switch Supports DAI 45-21
CHAPTER 46 Configuring Traffic Storm Control 46-1

1. Understanding Traffic Storm Control 46-1
2. Detecting and Controlling Traffic Storms 46-2
3. Default Traffic Storm Control Configuration 46-3
4. Configuration Guidelines and Restrictions 46-3
5. Enabling Traffic Storm Control 46-4
6. Displaying Traffic Storm Control Settings 46-6

CHAPTER 47 Unknown Unicast Flood Blocking 47-1

1. Understanding UUFB 47-1
2. Configuring UUFB 47-1

CHAPTER 48 Configuring PFC QoS 48-1

1. Understanding How PFC QoS Works 48-2
2. Port Types Supported by PFC QoS 48-2
3. Overview 48-2
4. Component Overview 48-5
5. Ingress LAN Port PFC QoS Features 48-5
6. PFC and DFC QoS Features 48-7
7. Egress Port QoS Features 48-10
8. Understanding Classification and Marking 48-13
9. Classification and Marking at Trusted and Untrusted Ingress Ports 48-14
10. Classification and Marking at Ingress OSM Ports 48-15
12. Classification and Marking on the MSFC 48-17
13. Policers 48-17
 - Overview of Policers 48-17
 - Aggregate Policers 48-18
 - Microflow Policers 48-19
14. Understanding Port-Based Queue Types 48-20
 - Ingress and Egress Buffers and Layer 2 CoS-Based Queues 48-20
 - Ingress Queue Types 48-22
 - Egress Queue Types 48-23
 - Module to Queue Type Mappings 48-23
15. PFC QoS Default Configuration 48-26
 - PFC QoS Global Settings 48-27
 - Default Values With PFC QoS Enabled 48-28
 - Receive-queue Size Percentages 48-28
Transmit-Queue Size Percentages 48-28
Bandwidth Allocation Ratios 48-29
Default Drop-Threshold Percentages and CoS Value Mappings 48-29
Default Values With PFC QoS Disabled 48-39
PFC QoS Configuration Guidelines and Restrictions 48-40
General Guidelines 48-40
PFC Guidelines 48-42
Class Map Command Restrictions 48-42
Policy Map Command Restrictions 48-43
Policy Map Class Command Restrictions 48-43
Supported Granularity for CIR and PIR Rate Values 48-43
Supported Granularity for CIR and PIR Token Bucket Sizes 48-44
IP Precedence and DSCP Values 48-45
Configuring PFC QoS 48-45
Enabling PFC QoS Globally 48-46
Configuring DSCP Transparency 48-47
Configuring Trust State 48-47
Enabling Queueing-Only Mode 48-48
Enabling Microflow Policing of Bridged Traffic 48-48
Enabling VLAN-Based PFC QoS on Layer 2 LAN Ports 48-49
Enabling Egress ACL Support for Remarked DSCP 48-50
Creating Named Aggregate Policers 48-51
Configuring a PFC QoS Policy 48-53
PFC QoS Policy Configuration Overview 48-53
Configuring MAC ACLs 48-55
Configuring ARP ACLs for QoS Filtering 48-58
Configuring a Class Map 48-59
Verifying Class Map Configuration 48-61
Configuring a Policy Map 48-61
Verifying Policy Map Configuration 48-68
Attaching a Policy Map to an Interface 48-68
Configuring Egress DSCP Mutation on a PFC 48-70
Configuring Named DSCP Mutation Maps 48-70
Attaching an Egress DSCP Mutation Map to an Interface 48-71
Configuring Ingress CoS Mutation on IEEE 802.1Q Tunnel Ports 48-71
Ingress CoS Mutation Configuration Guidelines and Restrictions 48-72
Configuring Ingress CoS Mutation Maps 48-73
Applying Ingress CoS Mutation Maps to IEEE 802.1Q Tunnel Ports 48-73
Configuring DSCP Value Maps 48-74
Mapping Received CoS Values to Internal DSCP Values 48-74
Mapping Received IP Precedence Values to Internal DSCP Values 48-75
Configuring DSCP Markdown Values 48-75
Mapping Internal DSCP Values to Egress CoS Values 48-77
Configuring the Trust State of Ethernet LAN and OSM Ingress Ports 48-77
Configuring the Ingress LAN Port CoS Value 48-79
Configuring Standard-Queue Drop Threshold Percentages 48-79
Configuring a Tail-Drop Receive Queue 48-80
Configuring a WRED-Drop Transmit Queue 48-81
Configuring a WRED-Drop and Tail-Drop Receive Queue 48-82
Configuring a WRED-Drop and Tail-Drop Transmit Queue 48-82
Configuring 1q4t/2q2t Tail-Drop Threshold Percentages 48-84
Mapping QoS Labels to Queues and Drop Thresholds 48-85
Queue and Drop Threshold Mapping Guidelines and Restrictions 48-85
Configuring DSCP-Based Queue Mapping 48-86
Configuring CoS-Based Queue Mapping 48-90
Allocating Bandwidth Between Standard Transmit Queues 48-94
Setting the Receive-Queue Size Ratio on 1p1q0t and 1p1q8t Ports 48-95
Setting the LAN-Port Transmit-Queue Size Ratio 48-96
Common QoS Scenarios 48-97
Sample Network Design Overview 48-98
Classifying Traffic from PCs and IP Phones in the Access Layer 48-99
Accepting the Traffic Priority Value on Interswitch Links 48-101
Prioritizing Traffic on Interswitch Links 48-102
Using Policers to Limit the Amount of Traffic from a PC 48-105
PFC QoS Glossary 48-107

CHAPTER 49 Configuring PFC QoS Statistics Data Export 49-1
Understanding PFC QoS Statistics Data Export 49-1
PFC QoS Statistics Data Export Default Configuration 49-2
Configuring PFC QoS Statistics Data Export 49-2
 Enabling PFC QoS Statistics Data Export Globally 49-2
 Enabling PFC QoS Statistics Data Export for a Port 49-3
 Enabling PFC QoS Statistics Data Export for a Named Aggregate Policer 49-4
 Enabling PFC QoS Statistics Data Export for a Class Map 49-5
 Setting the PFC QoS Statistics Data Export Time Interval 49-6
 Configuring PFC QoS Statistics Data Export Destination Host and UDP Port 49-7
 Setting the PFC QoS Statistics Data Export Field Delimiter 49-9
CHAPTER 50 Configuring MPLS QoS on the PFC

Terminology 50-2

PFC-Mode MPLS QoS Features 50-3
MPLS Experimental Field 50-3
Trust 50-3
Classification 50-3
Policing and Marking 50-4
Preserving IP ToS 50-4
EXP Mutation 50-4
MPLS DiffServ Tunneling Modes 50-4

PFC-Mode MPLS QoS Overview 50-4
Specifying the QoS in the IP Precedence Field 50-5

PFC-Mode MPLS QoS 50-5
LERs at the Input Edge of an MPLS Network 50-6
LSRs in the Core of an MPLS Network 50-6
LERs at the Output Edge of an MPLS Network 50-7

Understanding PFC-Mode MPLS QoS 50-7
LERs at the EoMPLS Edge 50-8
Ethernet to MPLS 50-8
MPLS to Ethernet 50-9
LERs at the IP Edge (MPLS, MPLS VPN) 50-9
IP to MPLS 50-9
MPLS to IP 50-10
MPLS VPN 50-12
LSRs at the MPLS Core 50-13
MPLS to MPLS 50-13

PFC MPLS QoS Default Configuration 50-15

MPLS QoS Commands 50-16

PFC-Mode MPLS QoS Restrictions and Guidelines 50-17

Configuring MPLS QoS on the PFC 50-17
Enabling QoS Globally 50-18
Enabling Queueing-Only Mode 50-19
Restrictions and Usage Guidelines 50-19
Configuring a Class Map to Classify MPLS Packets 50-20
Restrictions and Usage Guidelines 50-22
Configuring the MPLS Packet Trust State on Ingress Ports 50-22
Restrictions and Usage Guidelines 50-22
Configuring a Policy Map 50-23
Configuring a Policy Map to Set the EXP Value on All Imposed Labels 50-23
Configuring a Policy Map Using the Police Command 50-25
Displaying a Policy Map 50-27
 Displaying a PFC-Mode MPLS QoS Policy Map Class Summary 50-27
 Displaying the Configuration of All Classes 50-28
Configuring PFC-Mode MPLS QoS Egress EXP Mutation 50-28
 Configuring Named EXP Mutation Maps 50-29
 Attaching an Egress EXP Mutation Map to an Interface 50-29
Configuring EXP Value Maps 50-30
 Configuring an Ingress-EXP to Internal-DSCP Map 50-30
 Configuring a Named Egress-DSCP to Egress-EXP Map 50-30

MPLS DiffServ Tunneling Modes 50-31
 Short Pipe Mode 50-31
 Short Pipe Mode Restrictions and Guidelines 50-32
 Uniform Mode 50-32
 Uniform Mode Restrictions and Guidelines 50-34
 MPLS DiffServ Tunneling Restrictions and Usage Guidelines 50-34
Configuring Short Pipe Mode 50-34
 Ingress PE Router—Customer Facing Interface 50-34
 Configuring Ingress PE Router—P Facing Interface 50-35
 Configuration Example 50-36
 Configuring the P Router—Output Interface 50-37
 Configuration Example 50-37
 Configuring the Egress PE Router—Customer Facing Interface 50-38
 Configuration Example 50-38
Configuring Uniform Mode 50-39
 Configuring the Ingress PE Router—Customer Facing Interface 50-39
 Configuration Example 50-40
 Configuring the Ingress PE Router—P Facing Interface 50-40
 Configuring the Egress PE Router—Customer Facing Interface 50-41

CHAPTER 51 Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based
Multicast VPN (MVPN) Support 51-1
 Configuring MLDP MVPN 51-1
 Packet Flow in MLDP-based MVPN Network 51-2
 Restrictions and Usage Guidelines 51-2
 Configuring Label Switched Multicast on 7600 51-3
 Configuring MLDP MVPN (Intranet) 51-3
 Verification 51-7
Information About IEEE 802.1ad 53-2
How Provider Bridges Work 53-2
S-Bridge Component 53-3
C-Bridge Component 53-3
MAC Addresses for Layer 2 Protocols 53-4
Guidelines for Handling BPDU 53-5
UNI-C Ports 53-5
UNI-S Ports 53-6
NNI Ports 53-8
7600 Action Table 53-8
Interoperability of QinQ and Dot1ad 53-9
How to Configure IEEE 802.1ad 53-10
Configuring a Switchport 53-10
UNI-C Port 53-11
UNI-S Port 53-13
NNI Port 53-14
Examples 53-15
Configuring a Layer 2 Protocol Forward 53-16
Examples 53-17
Configuring a Switchport for Translating QinQ to 802.1ad 53-17
Examples 53-19
Configuring a Switchport (L2PT) 53-19
Examples 53-21
Configuring a Customer-Facing UNI-C Port with EVC 53-22
Examples 53-25
Configuring a Customer-Facing UNI-C Port and Switchport on NNI with EVC 53-25
Examples 53-28
Configuring a Customer-Facing UNI-S Port with EVC 53-28
Examples 53-30
Configuring a Layer 3 Termination 53-31
Examples 53-32
Displaying a Dot1ad Configuration 53-32
Troubleshooting Dot1ad 53-33

CHAPTER 54 Configuring Port Security 54-1
Understanding Port Security 54-1
Port Security with Dynamically Learned and Static MAC Addresses 54-1
Port Security with Sticky MAC Addresses 54-2
Default Port Security Configuration 54-3
Port Security Guidelines and Restrictions

Configuring Port Security
- Enabling Port Security
 - Enabling Port Security on a Trunk
 - Enabling Port Security on an Access Port
- Configuring the Port Security Violation Mode on a Port
- Configuring the Maximum Number of Secure MAC Addresses on a Port
- Enabling Port Security with Sticky MAC Addresses on a Port
- Configuring a Static Secure MAC Address on a Port
- Configuring Secure MAC Address Aging on a Port
 - Configuring Secure MAC Address Aging Type on a Port
 - Configuring Secure MAC Address Aging Time on a Port
- Displaying Port Security Settings

Chapter 55 Configuring UDLD

Understanding How UDLD Works
- UDLD Overview
- UDLD Aggressive Mode
- Default UDLD Configuration
- Restrictions for Configuring UDLD
- Configuring UDLD
 - Enabling UDLD Globally
 - Enabling UDLD on Individual LAN Interfaces
 - Disabling UDLD on Fiber-Optic LAN Interfaces
 - Configuring the UDLD Probe Message Interval
 - Resetting Disabled LAN Interfaces

Chapter 56 Configuring NetFlow and NDE

Understanding How NetFlow and NDE Work
- NetFlow and NDE Overview
- NetFlow and NDE on the MSFC
- NetFlow and NDE on the PFC
 - Flow Masks
 - NDE Versions
 - MLS Cache Entries
 - NetFlow Sampling
 - NetFlow Aggregation
- Per-Interface NetFlow and NDE
 - Per-Interface NetFlow and NDE Usage Guidelines and Limitations
Configuring Per-Interface NetFlow and NDE 56-12
Verifying Per-Interface NetFlow and NDE 56-12
NetFlow v9 for IPv6 56-13
NDE on VRF Interfaces 56-13
Default NetFlow and NDE Configuration 56-14
NetFlow and NDE Configuration Guidelines and Restrictions 56-14
Configuring NetFlow and NDE 56-15
 Configuring NetFlow and NDE for Flows on the PFC 56-16
 Configuring NetFlow for Flows on the PFC 56-16
 Enabling NDE 56-21
 Configuring NetFlow and NDE for Flows on the MSFC 56-22
 Enabling NetFlow for Flows on the MSFC 56-22
 Configuring NetFlow Aggregation for Flows on the MSFC 56-23
 Configuring the MSFC NDE Source Layer 3 Interface 56-23
 Configuring the NDE Destination 56-24
 Enabling NetFlow and NDE for Ingress Bridged IP Traffic 56-24
 Enabling NetFlow for Ingress Bridged IP Traffic in VLANs 56-25
 Enabling NDE for Ingress Bridged IP Traffic in VLANs 56-25
 Displaying the NDE Address and Port Configuration 56-26
 Configuring NDE Flow Filters 56-27
 NDE Flow Filter Overview 56-27
 Configuring a Port Flow Filter 56-27
 Configuring a Host and Port Filter 56-27
 Configuring a Host Flow Filter 56-28
 Configuring a Protocol Flow Filter 56-28
 Usage Guidelines to Configure Protocol Flow Filter 56-28
 Displaying the NDE Configuration 56-29
NetFlow Support on GRE Tunnels 56-30
 Configuration 56-30
 Accounting of Flows 56-31
 Impact on Memory and Performance 56-32
 Limitations 56-32

CHAPTER 57 Configuring Local SPAN, RSPAN, and ERSPAN 57-1
Understanding How Local SPAN, RSPAN, and ERSPAN Work 57-1
Local SPAN, RSPAN, and ERSPAN Overview 57-1
 Local SPAN Overview 57-2
 RSPAN Overview 57-2
 ERSPAN Overview 57-3
Understanding the Traffic Monitored at SPAN Sources 57-4
Local SPAN, RSPAN, and ERSPAN Sources 57-5
Source Ports and EtherChannels 57-5
Source VLANs 57-5
Local SPAN, RSPAN, and ERSPAN Destinations 57-6
Local SPAN, RSPAN, and ERSPAN Configuration Guidelines and Restrictions 57-6
Feature Incompatibilities 57-6
Local SPAN, RSPAN, and ERSPAN Session Limits 57-7
Local SPAN, RSPAN, and ERSPAN Guidelines and Restrictions 57-8
VSPAN Guidelines and Restrictions 57-9
RSPAN Guidelines and Restrictions 57-9
ERSPAN Guidelines and Restrictions 57-10
Configuring Local SPAN, RSPAN, and ERSPAN 57-11
Configuring a Destination as an Unconditional Trunk (Optional) 57-12
Configuring Destination Trunk VLAN Filtering (Optional) 57-12
Configuring Destination Port Permit Lists (Optional) 57-14
Configuring Local SPAN 57-14
 Configuring Local SPAN (SPAN Configuration Mode) 57-15
 Configuring Local SPAN (Global Configuration Mode) 57-17
Configuring RSPAN 57-19
 Configuring RSPAN VLANs 57-19
 Configuring RSPAN Sessions (SPAN Configuration Mode) 57-19
 Configuring RSPAN Sessions (Global Configuration Mode) 57-22
Configuring ERSPAN 57-25
 Configuring ERSPAN Source Sessions 57-25
 Configuring ERSPAN Destination Sessions 57-27
Information About ERSPAN on EVC 57-29
 Restrictions for ERSPAN on EVC Configuration 57-30
Configuring the Source Session for ERSPAN on EVC 57-30
 Configuration Examples for ERSPAN on EVC Source Session 57-31
Configuring the Destination Session for ERSPAN on EVC 57-32
 ERSPAN on EVC: Destination Session Configuration Example 57-33
 Verification of ERSPAN on EVC Configuration 57-33
 Verification Example for ERSPAN on EVC 57-33
 Configuring Source VLAN Filtering for Local SPAN and RSPAN 57-34
 Verifying the Configuration 57-34
 Configuration Examples 57-35
Configuring SPAN on EVC 57-36
 Restrictions and Usage Guidelines 57-36
Configuring SPAN on EVC 57-37
Sample Configuration 57-38
Verifying SPAN on EVC 57-38
Troubleshooting 57-39

Distributed Egress SPAN 57-39
Restrictions for the DES Feature 57-39
Configuring Distributed Egress SPAN 57-39
Configuration Examples 57-40
Verifying the Configuration 57-40
Troubleshooting 57-42

CHAPTER 58 Configuring SNMP IfIndex Persistence 58-1

Understanding SNMP IfIndex Persistence 58-1
Configuring SNMP IfIndex Persistence 58-2
 Enabling SNMP IfIndex Persistence Globally 58-2
 Disabling SNMP IfIndex Persistence Globally 58-2
 Enabling and Disabling SNMP IfIndex Persistence on Specific Interfaces 58-2
 Clearing SNMP IfIndex Persistence Configuration from a Specific Interface 58-3

CHAPTER 59 Power Management and Environmental Monitoring 59-1

Understanding How Power Management Works 59-1
 Enabling or Disabling Power Redundancy 59-2
 Powering Modules Off and On 59-3
 Viewing System Power Status 59-4
 Power Cycling Modules 59-5
 Power Cycling Power Supplies 59-5
 Determining System Power Requirements 59-5
 Determining System Hardware Capacity 59-5
 Determining Sensor Temperature Threshold 59-9

Understanding How Environmental Monitoring Works 59-10
 Monitoring System Environmental Status 59-10
 Understanding LED Environmental Indications 59-12

CHAPTER 60 Configuring Web Cache Services Using WCCP 60-1

Understanding WCCP 60-2
 WCCP Overview 60-2
 Hardware Acceleration 60-2
 Understanding WCCPv1 Configuration 60-3
 Understanding WCCPv2 Configuration 60-4
WCCPv2 Features
- Support for Non-HTTP Services 60-5
- Support for Multiple Routers 60-6
- MD5 Security 60-6
- Web Cache Packet Return 60-6
- Load Distribution 60-6

Restrictions for WCCPv2 60-7

Configuring WCCP 60-7
- Specifying a Version of WCCP 60-7
- Configuring a Service Group Using WCCPv2 60-8
- Specifying a Web Cache Service 60-9
- Excluding Traffic on a Specific Interface from Redirection 60-9
- Registering a Router to a Multicast Address 60-10
- Using Access Lists for a WCCP Service Group 60-10
- Setting a Password for a Router and Cache Engines 60-11

Verifying and Monitoring WCCP Configuration Settings 60-11

WCCP Configuration Examples 60-11
- Changing the Version of WCCP on a Router Example 60-12
- Performing a General WCCPv2 Configuration Example 60-12
- Running a Web Cache Service Example 60-12
- Running a Reverse Proxy Service Example 60-13
- Registering a Router to a Multicast Address Example 60-13
- Using Access Lists Example 60-13
- Setting a Password for a Router and Cache Engines Example 60-14
- Verifying WCCP Settings Example 60-14

VRF Support on WCCP 60-15
- Configuring VRF Support on WCCP 60-15
 - Summary Steps 60-16
 - Detailed Steps 60-16
- Examples 60-18
- Verification 60-18
- Troubleshooting Tips 60-19

WCCPv2 IPv6 Support on the Cisco 7600 Series Router 60-20
- Restrictions and Usage Guidelines 60-20
- Configuring WCCPv2 IPv6 Support 60-20
 - Summary Steps 60-20
 - Detailed Steps 60-21
- Examples 60-22
- Verification 60-22
Troubleshooting Tips 60-23

CHAPTER 61 Using the Top N Utility 61-1
- Understanding the Top N Utility 61-1
- Top N Utility Overview 61-1
- Understanding Top N Utility Operation 61-2
- Using the Top N Utility 61-2
- Enabling Top N Utility Report Creation 61-2
- Displaying the Top N Utility Reports 61-3
- Clearing Top N Utility Reports 61-4

CHAPTER 62 Using the Layer 2 Traceroute Utility 62-1
- Understanding the Layer 2 Traceroute Utility 62-1
- Usage Guidelines 62-1
- Using the Layer 2 Traceroute Utility 62-2

CHAPTER 63 Configuring Bidirectional Forwarding and Detection over Switched Virtual Interface 63-1
- Understanding BFD over SVI 63-1
- Restrictions and Usage Guidelines 63-1
- Sample Network with BFD over SVI 63-2
- Node Failure 63-2
- Link Failure 63-3
- Configuring BFD over SVI 63-4

CHAPTER 64 Configuring Call Home 64-1
- Understanding Call Home 64-1
- Obtaining Smart Call Home 64-2
- Configuring Call Home 64-2
- Configuring Contact Information 64-3
- Configuring Destination Profiles 64-4
- Copying a Destination Profile 64-6
- Subscribing to Alert Groups 64-6
- Configuring Periodic Notification 64-8
- Configuring Message Severity Threshold 64-8
- Configuring Syslog Pattern Matching 64-9
- Configuring General E-Mail Options 64-9
- Enabling Call Home 64-10
- Testing Call Home Communications 64-10
Contents

Sending a Call Home Test Message Manually 64-11
Sending a Call Home Alert Group Message Manually 64-11
Sending a Request for an Analysis and Report 64-12
Information About Crash Dump Reporting 64-12
Prerequisites for Crash Dump Reporting 64-13
Configuring and Enabling Smart Call Home 64-13
Displaying Call Home Configuration Information 64-14
Default Settings 64-18
Alert Group Trigger Events and Commands 64-18
Message Contents 64-24
Sample Syslog Alert Notification in Long-Text Format 64-28
Sample Syslog Alert Notification in XML Format 64-29

CHAPTER 65 Configuring IPv6 Policy Based Routing 65-1
Understanding IPv6 Policy Based Routing 65-1
Policy Based Routing 65-2
Packet Matching 65-2
Packet Forwarding Using Set Statements 65-2
Restrictions for IPv6 PBR 65-3
Configuring IPv6 PBR 65-4
Verification 65-5
Troubleshooting Tips 65-10

CHAPTER 66 Using the Mini Protocol Analyzer 66-1
Understanding How the Mini Protocol Analyzer Works 66-1
Configuring the Mini Protocol Analyzer 66-2
Filtering the Packets to be Captured 66-3
Starting and Stopping a Capture 66-4
Displaying and Exporting the Capture Buffer 66-6
Mini Protocol Analyzer Configuration, Operation, and Display Examples 66-7
General Configuration Examples 66-7
Filtering Configuration Examples 66-8
Operation Examples 66-9
Display Examples 66-9
Displaying the Configuration 66-9
Displaying the Capture Session Status 66-11
Displaying the Capture Buffer Contents 66-11
CHAPTER 67 Configuring Resilient Ethernet Protocol

Understanding Resilient Ethernet Protocol 67-1
REP Edge No-Neighbor 67-2
Configuring Resilient Ethernet Protocol 67-2

CHAPTER 68 Configuring Synchronous Ethernet and 1588v2

Implementing Frequency Synchronization over Ethernet 68-1
Understanding Synchronous Ethernet 68-2
Squelching 68-2
SSM and ESMC 68-3
Synchronization Status Message 68-3
Ethernet Synchronization Messaging Channel 68-3
Restrictions and Usage Guidelines 68-4
Configuring Clock Recovery on the Cisco 7600 Router 68-4
Configuring the Clock Recovery from SyncE 68-5
Configuring the Clock Recovery from BITS Port 68-7
Configuring the System to External 68-9
Configuring the Line to External 68-10
Managing Synchronization on ES+ Card 68-12
Verification 68-14
Troubleshooting the Synchronous Ethernet configuration 68-17
Troubleshooting 68-19
Understanding 1588v2 68-22
Components of a PTP Enabled Network 68-22
Timing over Packet Interface 68-22
Basic Operation of 1588v2 68-22
1588v2 Supported Models 68-23
Supported Transport Modes 68-24
Time of Day (TOD) 68-24
Time of Day on the 1588v2 Master 68-25
Time of Day on the 1588v2 Slave 68-25
Restrictions 68-25
Configuring ToD on 1588v2 Master 68-26
Verifying ToD Configuration on the 1588v2 Master 68-26
Configuring ToD on 1588v2 Slave 68-27
Verifying ToD Configuration on the 1588v2 Slave 68-27
Network Clocking 68-28
How to Configure Network Clocking 68-29
Configuring BITS Clock Support 68-29
Usage Guidelines 68-30
Example 68-31
Configuring 10GE Interface as Clock Source 68-31
Usage Guidelines 68-31
Example 68-33
Verifying the Clock Source 68-33
Clock Source Recovery 68-34

CHAPTER 69 Configuring Link State Tracking 69-1
Understanding How Link State Tracking Works 69-1
Restrictions and Usage Guidelines 69-2
Configuring Link State Tracking 69-2
Troubleshooting the Link State Tracking 69-3

CHAPTER 70 Configuring BGP PIC Edge and Core for IP and MPLS 70-1
BGP PIC Edge and Core for IP and MPLS 70-1
Prerequisites for BGP PIC 70-1
Restrictions 70-2
Configuring the BGP PIC for IP and MPLS 70-2

CHAPTER 71 Configuring VRF aware IPv6 Tunnels over IPv4 Transport 71-1
Understanding VRF aware IPv6 Tunnels 71-1
Restrictions for VRF aware IPv6 tunnels 71-2
Tunnel SSO 71-3
Supported Tunnel Types 71-3
Restrictions 71-3
Configuring VRF aware IPv6 tunnel 71-4
Understanding IPv6 over IPv4-GRE Tunnels 71-4
Restrictions for IPv6 over IPv4-GRE tunnel 71-5
Configuring IPv6 over IPv4-GRE tunnel 71-6

CHAPTER 72 ISIS IPv4 Loop Free Alternate Fast Reroute (LFA FRR) 72-1
Restrictions for ISISI LFA FRR 72-1
Configuring IOS IPFRR Support on the Cisco 7600 Series Routers 72-2
Verification 72-2

CHAPTER 73 Multicast Service Reflection 73-1
Multicast Service Reflection Working Architecture 73-1
Restrictions for Multicast Service Reflection 73-2
Configuring Multicast Service Reflection 73-3

CHAPTER 74

Y.1731 Performance Monitoring 74-1
Understanding Y.1731 Performance Monitoring 74-1
 Connectivity 74-2
 Frame Delay and Frame Delay Variation 74-2
 Frame Loss Ratio and Availability 74-3
 Supported Interfaces - LMM over Port-Channel 74-4
 Supported Interfaces - SLM over Port-Channel 74-4
Restrictions and Usage Guidelines 74-5
 Guidelines and Restrictions for LMM over Port-Channel 74-6
 Guidelines and Restrictions for SLM over Port-Channel 74-6
Configuring Y.1731 PM 74-6

APPENDIX A

Online Diagnostic Tests A-1
 Global Health-Monitoring Tests A-1
 TestSPRPInbandPing A-2
 Test ScratchRegister A-2
 TestMacNotification A-2
 Per-Port Tests A-3
 TestNonDisruptiveLoopback A-3
 TestLoopback A-4
 TestActiveToStandbyLoopback A-4
 TestTransceiverIntegrity A-5
 TestNetflowInlineRewrite A-5
 PFC Layer 2 Forwarding Engine Tests A-5
 TestNewIndexLearn A-6
 TestDontConditionalLearn A-6
 TestBadBpduTrap A-6
 TestMatchCapture A-7
 TestStaticEntry A-7
 DFC Layer 2 Forwarding Engine Tests A-8
 TestDontLearn A-8
 TestNewLearn A-9
 TestIndexLearn A-9
 TestConditionalLearn A-10
 TestTrap A-10
 TestBadBpdu A-11
TestProtocolMatchChannel A-11
TestCapture A-12
TestStaticEntry A-12

PFC Layer 3 Forwarding Engine Tests A-13
TestFibDevices A-13
TestIPv4FibShortcut A-13
TestIPv6FibShortcut A-14
TestMPLSFibShortcut A-14
TestNATFibShortcut A-15
TestL3Capture2 A-15
TestAclPermit A-16
TestAclDeny A-16
TestNetflowShortcut A-17
TestQoS A-17

DFC Layer 3 Forwarding Engine Tests A-17
TestFibDevices A-18
TestIPv4FibShortcut A-18
TestIPv6FibShortcut A-19
TestMPLSFibShortcut A-19
TestNATFibShortcut A-20
TestL3Capture2 A-20
TestAclPermit A-20
TestAclDeny A-21
TestQoS A-21
TestNetflowShortcut A-22

Replication Engine Tests A-22
TestL3VlanMet A-22
TestIngressSpan A-23
TestEgressSpan A-23

Fabric Tests A-24
TestFabricSnakeForward A-24
TestFabricSnakeBackward A-24
TestSynchedFabChannel A-25
TestFabricCh0Health A-25
TestFabricCh1Health A-26

Exhaustive Memory Tests A-26
TestFibTcamSSRAM A-27
TestAsicMemory A-27
TestAclQosTcam A-28
Preface

This preface describes who should read the Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15S, how it is organized, and its document conventions.

Audience

This guide is for experienced network administrators who are responsible for configuring and maintaining Cisco 7600 series routers.

Document Revision History

The Document Revision History records technical changes to this document. The table shows the Cisco IOS software release number and document revision number for the change, the date of the change, and a brief summary of the change.

<table>
<thead>
<tr>
<th>Release No</th>
<th>Revision</th>
<th>Date</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4(3)S</td>
<td>OL-10113-34</td>
<td>July 2014</td>
<td>Added support for PVST enablement over 802.1ad:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• NNI Ports, page 8</td>
</tr>
<tr>
<td>15.4(2)S</td>
<td>OL-10113-33</td>
<td>March 2014</td>
<td>Added support for SLM over Port-Channel:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Supported Interfaces - SLM over Port-Channel, page 4</td>
</tr>
</tbody>
</table>

This image is available only on request. To download the image, contact your Cisco Account Team.
<table>
<thead>
<tr>
<th>Release No</th>
<th>Revision</th>
<th>Date</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4(1)S</td>
<td>OL-10113-32</td>
<td>Nov 2013</td>
<td>Updated Chapter 38, “Configuring VLAN ACLs”</td>
</tr>
<tr>
<td>15.3(3)S</td>
<td>OL-10113-31</td>
<td>July 2013</td>
<td>Added support for Call Home 2:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Information About Crash Dump Reporting, page 12</td>
</tr>
<tr>
<td>15.3(2)S</td>
<td>OL-10113-30</td>
<td>March 2013</td>
<td>Added support for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ERSPAN on EVC in Chapter 57, “Information About ERSPAN on EVC”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• VRF aware 6rd tunnels in Chapter 37, “Configuring VRF aware 6RD Tunnels”</td>
</tr>
<tr>
<td>12.2(33)SRE8</td>
<td>OL-10113-29</td>
<td>March 2013</td>
<td>• Updated “Defining a VLAN Access Map” section on page 5</td>
</tr>
<tr>
<td>15.3(1)S1</td>
<td>OL-10113-28</td>
<td>February 2013</td>
<td>• Updated “TestFabricCh0Health” and “TestFabricCh1Health” section on page A-26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Updated Layer 2 Protocol Tunneling on EVC in Chapter 18, “Layer 2 Protocol Tunneling on EVC”</td>
</tr>
<tr>
<td>Release No</td>
<td>Revision</td>
<td>Date</td>
<td>Change Summary</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>15.3(1)S</td>
<td>OL-10113-27</td>
<td>November 2012</td>
<td>Added support for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Layer 2 Protocol Tunneling on EVC in Chapter 18, “Layer 2 Protocol Tunneling on EVC”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Updated the Y.1731 PM Synthetic Loss Measurement in Chapter 74, “Y.1731 Performance Monitoring”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• WCCPv2 IPv6 in Chapter 60, “Configuring Web Cache Services Using WCCP”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IPv6 Source Guard in Chapter 41, “Understanding IPv6 First-Hop Security features”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IPv6 Prefix Guard in Chapter 41, “Understanding IPv6 First-Hop Security features”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Data Gleaning in Chapter 41, “Understanding IPv6 First-Hop Security features”</td>
</tr>
<tr>
<td>15.2(4) S1</td>
<td>OL-10113-26</td>
<td>October 2012</td>
<td>Updated “Configuration Guidelines and Limitations” section on page 39-5.</td>
</tr>
<tr>
<td>15.2(4)S</td>
<td>OL-10113-25</td>
<td>July 2012</td>
<td>Added support for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IP Tunnel—SSO in Chapter 71, “Configuring VRF aware IPv6 Tunnels over IPv4 Transport”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IPv6 PACL in Chapter 40, “Configuring IPv6 PACL”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IPv6 Mutlicast VPN in Chapter 27, “Configuring Multicast VPN Support”</td>
</tr>
<tr>
<td>15.0(1)S6</td>
<td>OL-10113-24</td>
<td>June 2012</td>
<td>Updated “Configuring IPv4 Routing and Addresses” section on page 22-3 with reference to platform ipv4 pbr optimize tcam command.</td>
</tr>
<tr>
<td>15.1(3)S3</td>
<td>OL-10113-23</td>
<td>April 2012</td>
<td>Updated “Configuring IPv4 Routing and Addresses” section on page 22-3 with reference to platform ipv4 pbr optimize tcam command.</td>
</tr>
<tr>
<td>Release No</td>
<td>Revision</td>
<td>Date</td>
<td>Change Summary</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>15.2(2)S</td>
<td>OL-10113-22</td>
<td>March 2012</td>
<td>Added support for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• VRF aware IPv6 Tunnels over IPv4 Transport in Chapter 71, “Configuring VRF aware IPv6 Tunnels over IPv4 Transport”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Distributed Egress SPAN in Chapter 57, “Distributed Egress SPAN”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Multicast Adjacency Scale Chapter 26, “Multicast Adjacency Allocation”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Multicast Service Reflection Chapter 73, “Multicast Service Reflection”</td>
</tr>
<tr>
<td>12.2(33)SRE6</td>
<td>OL-10113-21</td>
<td>March 2012</td>
<td>Updated “Configuring IPv4 Routing and Addresses” section on page 22-3 with reference to platform ipv4 pbr optimize tcam command.</td>
</tr>
<tr>
<td>15.2(1)S1</td>
<td>OL-10113-20</td>
<td>February 2012</td>
<td>Updated “Configuring IPv4 Routing and Addresses” section on page 22-3 with reference to platform ipv4 pbr optimize tcam command.</td>
</tr>
<tr>
<td>15.2(1)S</td>
<td>OL-10113-18</td>
<td>November 2011</td>
<td>Added support for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IPv6 Policy Based Routing in Chapter 65, “Configuring IPv6 Policy Based Routing”</td>
</tr>
<tr>
<td>15.1(3)S1</td>
<td>OL-10113-17</td>
<td>October 2011</td>
<td>Updated support for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Chapter 70, “Configuring BGP PIC Edge and Core for IP and MPLS”</td>
</tr>
<tr>
<td>Release No</td>
<td>Revision</td>
<td>Date</td>
<td>Change Summary</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>15.1(3)S</td>
<td>OL-10113-16</td>
<td>July 2011</td>
<td>Added support for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IPv6 Route Health Injection in Chapter 2, “Configuring the Router for the First Time”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Multicast VLAN Registration in Chapter 33, “Configuring IGMP Snooping for IPv4 Multicast Traffic”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Layer 2 Tunneling Protocol version 3 in Chapter 19, “Configuring L2TPv3”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• VRF support on WCCP in Chapter 60, “Configuring Web Cache Services Using WCCP”</td>
</tr>
<tr>
<td>15.0(1)S3a</td>
<td>OL-10113-15</td>
<td>April 2011</td>
<td>Support extended for the updates to the section Recommended Rate-Limiter Configuration with the restrictions.</td>
</tr>
<tr>
<td>15.1(2)S</td>
<td>OL-10113-14</td>
<td>March 2011</td>
<td>Added support for:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• SPAN on EVC Service Instance in Chapter 57, “Configuring Local SPAN, RSPAN, and ERSPAN”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• BGP IPv6 PIC Edge and Core for IP/MPLS in Chapter 70, “Configuring BGP PIC Edge and Core for IP and MPLS”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ISIS IPv4 Loop Free Alternate Fast Reroute (LFA FRR) in Chapter 72, “ISIS IPv4 Loop Free Alternate Fast Reroute (LFA FRR)”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Y.1731 Performance Monitoring in Chapter 74, “Y.1731 Performance Monitoring”</td>
</tr>
<tr>
<td>15.1(1)S1</td>
<td>OL-10113-13</td>
<td>February 2011</td>
<td>Updated the section Recommended Rate-Limiter Configuration with the restrictions.</td>
</tr>
<tr>
<td>Release No</td>
<td>Revision</td>
<td>Date</td>
<td>Change Summary</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 15.1(1)S | OL-10113-11 | November 2010 | Added support for:
 - Configuring BFD over SVI in Chapter 63, “Configuring Bidirectional Forwarding and Detection over Switched Virtual Interface”.
 - Configuring LST in Configuring Link State Tracking.
 - REP No-Neighbor functionality in Configuring Resilient Ethernet Protocol.
 - Hot Standby Pseudowire. Support in Configuring Multiprotocol Label Switching on the PFC. |
<table>
<thead>
<tr>
<th>Release No</th>
<th>Revision</th>
<th>Date</th>
<th>Change Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.0(1)S</td>
<td>OL-10113-10</td>
<td>July 2010</td>
<td>Support for the following features were introduced:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Configuring Multicast VPN Extranet Support in Chapter 28, “Configuring Multicast VPN Extranet Support.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Configuring Synchronous Ethernet in Chapter 68, “Configuring Synchronous Ethernet and 1588v2.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Updated Chapter 46, “Configuring Traffic Storm Control.” Updated configuration guidelines and restrictions.</td>
</tr>
<tr>
<td>12.2(33)SRE1</td>
<td>OL-10113-09</td>
<td>May 2010</td>
<td>- Updated the section Configuring LACP 1:1 Redundancy with Fast-Switchover in chapter 12 and updated the table under Configuring VLANs in chapter 14.</td>
</tr>
<tr>
<td>12.2(33)SRE1</td>
<td>OL-10113-09</td>
<td>April 2010</td>
<td>- Extended support for Private Host for VPLS in Chapter 39, “Configuring Private Hosts,” and Bridged Routing Encapsulation on Automatic Protection Service Group in in Chapter 14, “Configuring VLANs.”</td>
</tr>
<tr>
<td>Release No</td>
<td>Revision</td>
<td>Date</td>
<td>Change Summary</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>12.2(33)SRD4</td>
<td>OL-10113-08</td>
<td>February 2010</td>
<td>Support for the following features were introduced:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Private Host for VPLS in Chapter 39, “Configuring Private Hosts.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bridged Routing Encapsulation on Automatic Protection Service Group in Chapter 14, “Configuring VLANs”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Restrictions on UDLD configurations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Updated a new command <code>mls qos recirc untrust</code></td>
</tr>
<tr>
<td>12.2(33)SRE</td>
<td>OL-10113-07</td>
<td>February 2010</td>
<td>Added a new section on Scalable EoMPLS and Port-mode EoMPLS and corresponding sample configurations in Chapter 26, “Configuring Multiprotocol Label Switching on the PFC”.</td>
</tr>
<tr>
<td>12.2(33)SRE</td>
<td>OL-10113-07</td>
<td>January 2010</td>
<td>Updated the NSF Benefits and Restrictions section in the chapter Configuring NSF with SSO Supervisor Engine Redundancy.</td>
</tr>
<tr>
<td>12.2(33)SRE</td>
<td>OL-10113-07</td>
<td>December 2009</td>
<td>Updated the priority-queue queue-limit interface command under Configuring PFC QoS chapter.</td>
</tr>
<tr>
<td>12.2(33)SRE</td>
<td>OL-10113-07</td>
<td>November 2009</td>
<td>Support for the following features were introduced:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• IPv4 Multicast Support on Multicast Forwarding Information Base (MFIB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Multicast MFIB Bi-Dir, MVPN and P2P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ISSU - IPv4 Multicast</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• ISSU for IP Multicast</td>
</tr>
<tr>
<td>12.2(33)SRD2</td>
<td>OL-10113-06</td>
<td>May 2009</td>
<td>Added support for ARP Scale to 512k.</td>
</tr>
</tbody>
</table>
Organization

This guide is organized as follows:

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Product Overview</td>
<td>Presents an overview of the Cisco 7600 series routers.</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Configuring the Router for the First Time</td>
<td>Describes how to configure the router for the first time.</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>Configuring a Supervisor Engine 720</td>
<td>Describes how to configure a Supervisor Engine 720.</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Configuring a Route Switch Processor 720</td>
<td>Describes how to configure the Route Switch Processor 720 (RSP720).</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Configuring NSF with SSO Supervisor Engine Redundancy</td>
<td>Describes how to configure NSF with SSO supervisor engine redundancy.</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>ISSU and eFSU on Cisco 7600 Series Routers</td>
<td>Describes the In Service Software Upgrade (ISSU) and enhanced Fast Software Upgrade (eFSU) processes, which enable you to upgrade Cisco IOS software while the router is running.</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Configuring RPR and RPR+ Supervisor Engine Redundancy</td>
<td>Describes how to configure RPR and RPR+ supervisor engine redundancy.</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>Configuring Interfaces</td>
<td>Describes how to configure non-layer-specific features on LAN interfaces.</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Configuring a Supervisor Engine 32</td>
<td>Describes how to configure Supervisor Engine 32.</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Configuring LAN Ports for Layer 2 Switching</td>
<td>Describes how to configure LAN interfaces to support Layer 2 features, including VLAN trunks.</td>
</tr>
<tr>
<td>Chapter 11</td>
<td>Configuring Flex Links</td>
<td>Describes how to configure Flex Links.</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Configuring EtherChannels</td>
<td>Describes how to configure Layer 2 and Layer 3 EtherChannel port bundles.</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Configuring VTP</td>
<td>Describes how to configure the VLAN Trunking Protocol (VTP).</td>
</tr>
<tr>
<td>Chapter 14</td>
<td>Configuring VLANs</td>
<td>Describes how to configure VLANs.</td>
</tr>
<tr>
<td>Chapter 15</td>
<td>Configuring Private VLANs</td>
<td>Describes how to configure private VLANs.</td>
</tr>
<tr>
<td>Chapter 16</td>
<td>Configuring Cisco IP Phone Support</td>
<td>Describes how to configure Cisco IP Phone support.</td>
</tr>
<tr>
<td>Chapter 17</td>
<td>Configuring IEEE 802.1Q Tunneling</td>
<td>Describes how to configure IEEE 802.1Q tunneling.</td>
</tr>
<tr>
<td>Chapter 18</td>
<td>Configuring Layer 2 Protocol Tunneling</td>
<td>Describes how to configure Layer 2 protocol tunneling.</td>
</tr>
<tr>
<td>Chapter 19</td>
<td>Configuring L2TPv3</td>
<td>Describes how to configure L2TPv3.</td>
</tr>
<tr>
<td>Chapter 20</td>
<td>Configuring STP and MST</td>
<td>Describes how to configure the Spanning Tree Protocol (STP) and Prestandard IEEE 802.1s Multiple Spanning Tree (MST).</td>
</tr>
<tr>
<td>Chapter 21</td>
<td>Configuring Optional STP Features</td>
<td>Describes how to configure optional STP features.</td>
</tr>
<tr>
<td>Chapter 22</td>
<td>Configuring Layer 3 Interfaces</td>
<td>Describes how to configure LAN interfaces to support Layer 3 features.</td>
</tr>
<tr>
<td>Chapter 23</td>
<td>Configuring GTP-SLB IPv6 Support</td>
<td>Describes how to configure GPRS Tunneling Protocol - Server Load Balancing (GTP-SLB) IPv6 Support on Cisco 7600 series routers</td>
</tr>
<tr>
<td>Chapter 24</td>
<td>IP Subscriber Awareness over Ethernet</td>
<td>Describes how to configure the IP Subscriber Awareness over Ethernet feature, which provides IP session termination and aggregation on the router.</td>
</tr>
<tr>
<td>Chapter 25</td>
<td>Configuring UDE and UDLR</td>
<td>Describes how to configure unidirectional Ethernet (UDE) and unidirectional link routing (UDLR).</td>
</tr>
<tr>
<td>Chapter 26</td>
<td>Configuring Multiprotocol Label Switching on the PFC</td>
<td>Describes how to configure Multiprotocol Label Switching (MPLS) on the PFC.</td>
</tr>
<tr>
<td>Chapter 27</td>
<td>Configuring Multicast VPN Support</td>
<td>Describes how to configure IPv4 Multicast Virtual Private Network (MVPN).</td>
</tr>
<tr>
<td>Chapter 28</td>
<td>Configuring Multicast VPN Extranet Support</td>
<td>Describes how to configure Multicast Virtual Private Network (MVPN) Extranet support on Cisco 7600 series routers</td>
</tr>
<tr>
<td>Chapter 29</td>
<td>Configuring IP Unicast Layer 3 Switching</td>
<td>Describes how to configure IP unicast Layer 3 switching.</td>
</tr>
<tr>
<td>Chapter 30</td>
<td>Configuring IPv6 Multicast PFC3 and DFC3 Layer 3 Switching</td>
<td>Describes how to configure IPv6 Multicast Multilayer Switching (MMLS).</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>Chapter 31</td>
<td>Configuring IPv4 Multicast Layer 3 Switching</td>
<td>Describes how to configure IPv4 Multicast Multilayer Switching (MMLS).</td>
</tr>
<tr>
<td>Chapter 32</td>
<td>Configuring MLDv2 Snooping for IPv6 Multicast Traffic</td>
<td>Describes how to configure Multicast Listener Discovery version 2 (MLDv2) snooping.</td>
</tr>
<tr>
<td>Chapter 33</td>
<td>Configuring IGMP Snooping for IPv4 Multicast Traffic</td>
<td>Describes how to configure Internet Group Management Protocol (IGMP) snooping.</td>
</tr>
<tr>
<td>Chapter 34</td>
<td>Configuring PIM Snooping</td>
<td>Describes how to configure protocol independent multicast (PIM) snooping.</td>
</tr>
<tr>
<td>Chapter 35</td>
<td>Configuring Network Security</td>
<td>Describes how to configure network security features that are unique to the Cisco 7600 series routers.</td>
</tr>
<tr>
<td>Chapter 36</td>
<td>Understanding Cisco IOS ACL Support</td>
<td>Describes how Cisco 7600 series routers support Cisco IOS ACLs.</td>
</tr>
<tr>
<td>Chapter 37</td>
<td>Configuring VRF aware 6RD Tunnels</td>
<td>Describes how to configure VRF aware 6RD tunnels on Cisco 7600 series routers.</td>
</tr>
<tr>
<td>Chapter 38</td>
<td>Configuring VLAN ACLs</td>
<td>Describes how to configure VLAN ACLs.</td>
</tr>
<tr>
<td>Chapter 39</td>
<td>Private Hosts (Using PACLs)</td>
<td>Describes how to use port-based ACLs to configure the Private Hosts feature, which provides Layer 2 isolation between hosts on the same VLAN.</td>
</tr>
<tr>
<td>Chapter 40</td>
<td>Configuring IPv6 PACL</td>
<td>Describes how to configure the IPv6 Port based Access Control List.</td>
</tr>
<tr>
<td>Chapter 41</td>
<td>IPv6 First-Hop Security Features</td>
<td>Describes how to configure the IPv6 First-Hop Security (FHS).</td>
</tr>
<tr>
<td>Chapter 42</td>
<td>Configuring Online Diagnostics</td>
<td>Describes how to configure online diagnostics and run diagnostic tests.</td>
</tr>
<tr>
<td>Chapter 43</td>
<td>Configuring Denial of Service Protection</td>
<td>Describes how to configure denial of service protection.</td>
</tr>
<tr>
<td>Chapter 44</td>
<td>Configuring DHCP Snooping</td>
<td>Describes how to configure DHCP snooping.</td>
</tr>
<tr>
<td>Chapter 45</td>
<td>Configuring Dynamic ARP Inspection</td>
<td>Describes how to configure dynamic ARP inspection.</td>
</tr>
<tr>
<td>Chapter 46</td>
<td>Configuring Traffic Storm Control</td>
<td>Describes how to configure traffic storm control.</td>
</tr>
<tr>
<td>Chapter 47</td>
<td>Unknown Unicast Flood Blocking</td>
<td>Describes how to configure unknown unicast flood blocking.</td>
</tr>
<tr>
<td>Chapter 48</td>
<td>Configuring PFC QoS</td>
<td>Describes how to configure quality of service (QoS).</td>
</tr>
<tr>
<td>Chapter 49</td>
<td>Configuring PFC QoS Statistics Data Export</td>
<td>Describes how to configure PFC QoS statistics data export.</td>
</tr>
<tr>
<td>Chapter 50</td>
<td>Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast VPN (MVPN) Support</td>
<td>Extends the existing IPv4 MPLS backbone network for IPv4 multicast services.</td>
</tr>
<tr>
<td>Chapter 51</td>
<td>Configuring MPLS QoS on the PFC</td>
<td>Describes how to configure MPLS QoS.</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Chapter 52</td>
<td>Configuring IEEE 802.1X Port-Based Authentication</td>
<td>Describes how to configure IEEE 802.1X port-based authentication.</td>
</tr>
<tr>
<td>Chapter 54</td>
<td>Configuring Port Security</td>
<td>Describes how to configure port security.</td>
</tr>
<tr>
<td>Chapter 55</td>
<td>Configuring UDLD</td>
<td>Describes how to configure the UniDirectional Link Detection (UDLD) protocol.</td>
</tr>
<tr>
<td>Chapter 56</td>
<td>Configuring NetFlow and NDE</td>
<td>Describes how to configure NetFlow statistics collection and NetFlow Data Export (NDE).</td>
</tr>
<tr>
<td>Chapter 57</td>
<td>Configuring Local SPAN, RSPAN, and ERSPAN</td>
<td>Describes how to configure the Switch Port Analyzer (SPAN).</td>
</tr>
<tr>
<td>Chapter 58</td>
<td>Configuring SNMP IfIndex Persistence</td>
<td>Describes how to configure SNMP ifIndex persistence.</td>
</tr>
<tr>
<td>Chapter 59</td>
<td>Power Management and Environmental Monitoring</td>
<td>Describes how to configure power management and environmental monitoring features.</td>
</tr>
<tr>
<td>Chapter 60</td>
<td>Configuring Web Cache Services Using WCCP</td>
<td>Describes how to configure the Web Cache Communication Protocol (WCCP).</td>
</tr>
<tr>
<td>Chapter 61</td>
<td>Using the Top N Utility</td>
<td>Describes how to use the Top N utility.</td>
</tr>
<tr>
<td>Chapter 62</td>
<td>Using the Layer 2 Traceroute Utility</td>
<td>Describes how to use the Layer 2 traceroute utility.</td>
</tr>
<tr>
<td>Chapter 64</td>
<td>Configuring Call Home</td>
<td>Describes how to configure the Call Home feature.</td>
</tr>
<tr>
<td>Chapter 65</td>
<td>Configuring IPv6 Policy Based Routing</td>
<td>Describes how to configure the IPv6 policy-based routing (PBR).</td>
</tr>
<tr>
<td>Chapter 66</td>
<td>Using the Mini Protocol Analyzer</td>
<td>Describes how to configure the Mini Protocol Analyzer.</td>
</tr>
<tr>
<td>Chapter 67</td>
<td>Configuring Resilient Ethernet Protocol</td>
<td>Describes how to configure the Resilient Ethernet Protocol on the Cisco 7600 series router.</td>
</tr>
<tr>
<td>Chapter 68</td>
<td>Configuring Synchronous Ethernet and 1588v2</td>
<td>Describes how to configure the Synchronous Ethernet on the Cisco 7600 series router.</td>
</tr>
<tr>
<td>Chapter 69</td>
<td>Configuring Link State Tracking</td>
<td>Describes how to configure the Link State Tracking on the Cisco 7600 series router.</td>
</tr>
<tr>
<td>Chapter 70</td>
<td>Configuring BGP PIC Edge and Core for IP and MPLS</td>
<td>Describes how to configure the Border Gateway Protocol(BGP) PIC edge and core for IP and MPLS on the Cisco 7600 series router.</td>
</tr>
<tr>
<td>Chapter 71</td>
<td>Configuring VRF aware IPv6 Tunnels over IPv4 Transport</td>
<td>Describes how to configure the VRF aware IPv6 Tunnels over IPv4 Transport.</td>
</tr>
<tr>
<td>Chapter 72</td>
<td>ISIS IPv4 Loop Free Alternate Fast Reroute (LFA FRR)</td>
<td>Describes how to configure the ISIS IPv4 Loop Free Alternate Fast Reroute (LFA FRR) on the Cisco 7600 series router.</td>
</tr>
<tr>
<td>Chapter 74</td>
<td>Y.1731 Performance Monitoring</td>
<td>Describes how to configure the Y.1731 Performance Monitoring on the Cisco 7600 series router.</td>
</tr>
<tr>
<td>Chapter 73</td>
<td>Multicast Service Reflection</td>
<td>Describes multicast service reflection feature and how to configure the feature.</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Online Diagnostic Tests</td>
<td>Provides recommendations for how to use the online diagnostic tests.</td>
</tr>
</tbody>
</table>
Related Documentation

The following publications are available for the Cisco 7600 series routers:

- **Cisco 7600 Series Router Installation Guide**
- **Cisco 7600 Series Router Module Installation Guide**
- **Cisco 7600 Series Router Cisco IOS Command Reference**
- **Cisco 7600 Series Router Cisco IOS System Message Guide**
- **Cisco IOS Configuration Guides and Command References**—Use these publications to help you configure Cisco IOS software features not described in the Cisco 7600 series router publications:
 - Configuration Fundamentals Configuration Guide
 - Configuration Fundamentals Command Reference
 - Bridging and IBM Networking Configuration Guide
 - Bridging and IBM Networking Command Reference
 - Interface Configuration Guide
 - Interface Command Reference
 - Network Protocols Configuration Guide, Part 1, 2, and 3
 - Network Protocols Command Reference, Part 1, 2, and 3
 - Security Configuration Guide
 - Security Command Reference
 - Switching Services Configuration Guide
 - Switching Services Command Reference
 - Voice, Video, and Home Applications Configuration Guide
 - Voice, Video, and Home Applications Command Reference
 - Software Command Summary
 - Software System Error Messages
 - Debug Command Reference
 - Internetwork Design Guide
 - Internetwork Troubleshooting Guide
 - Configuration Builder Getting Started Guide

The Cisco IOS Configuration Guides and Command References are located at this URL:
• For information about MIBs, go to this URL:

Conventions

This document uses the following conventions:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface font</td>
<td>Commands, command options, and keywords are in boldface.</td>
</tr>
<tr>
<td>italic font</td>
<td>Arguments for which you supply values are in italics.</td>
</tr>
<tr>
<td>[]</td>
<td>Elements in square brackets are optional.</td>
</tr>
<tr>
<td>{ x</td>
<td>y</td>
</tr>
<tr>
<td>[x</td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>vertical bars.</td>
</tr>
<tr>
<td>string</td>
<td>A nonquoted set of characters. Do not use quotation marks around the string</td>
</tr>
<tr>
<td></td>
<td>or the string will include the quotation marks.</td>
</tr>
<tr>
<td>screen font</td>
<td>Terminal sessions and information the system displays are in screen font</td>
</tr>
<tr>
<td>boldface screen font</td>
<td>Information you must enter is in boldface screen font.</td>
</tr>
<tr>
<td>italic screen font</td>
<td>Arguments for which you supply values are in italic screen font.</td>
</tr>
<tr>
<td>^</td>
<td>This pointer highlights an important line of text in an example.</td>
</tr>
<tr>
<td>< ></td>
<td>Nonprinting characters, such as passwords are in angle brackets.</td>
</tr>
</tbody>
</table>

Notes use the following conventions:

Note

Means *reader take note*. Notes contain helpful suggestions or references to material not covered in the publication.

Cautions use the following conventions:

Caution

Means *reader be careful*. In this situation, you might do something that could result in equipment damage or loss of data.
Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

Product Overview

This chapter contains these sections:

- Supported Hardware and Software, page 1-1
- User Interfaces, page 1-1
- Configuring Embedded CiscoView Support, page 1-2
- Software Features Supported in Hardware by the PFC and DFC, page 1-3

Supported Hardware and Software

For complete information about the chassis, modules, and software features supported by Cisco 7600 series routers, refer to the *Release Notes for Cisco IOS Release 12.2SX on the Supervisor Engine 720, Supervisor Engine 32, and Supervisor Engine 2*.

See Appendix C, “Cisco IOS Release 15.5 Software Images,” for information about the Cisco IOS software images available for this release.

Note

In Cisco IOS Release 12.2SR and later releases, the Supervisor Engine 2, policy feature card 2 (PFC2), and FlexWAN module are no longer supported on Cisco 7600 series routers.

User Interfaces

Release 12.2SR supports configuration using the following interfaces:

- CLI—Refer to “Using the Command-Line Interface” in the Release 12.2 Cisco IOS Configuration Fundamentals Configuration Guide at this URL:

- SNMP—Refer to the Release 12.2 Cisco IOS Configuration Fundamentals Configuration Guide and Command Reference documents at this URL:

- Cisco IOS web browser interface—Refer to “Using the Cisco Web Browser” in the Cisco IOS Configuration Fundamentals Configuration Guide at this URL:

- Embedded CiscoView—See the “Configuring Embedded CiscoView Support” section on page 1-2.

Configuring Embedded CiscoView Support

These sections describe configuring Embedded CiscoView support:

- Understanding Embedded CiscoView, page 1-2
- Installing and Configuring Embedded CiscoView, page 1-2
- Displaying Embedded CiscoView Information, page 1-3

Understanding Embedded CiscoView

The Embedded CiscoView network management system is a web-based interface that uses HTTP and SNMP to provide a graphical representation of the router and to provide a GUI-based management and configuration interface. You can download the Java Archive (JAR) files for Embedded CiscoView at:

http://www.cisco.com/cisco/software/navigator.html

Installing and Configuring Embedded CiscoView

To install and configure Embedded CiscoView, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# dir device_name</td>
<td>Displays the contents of the device.</td>
</tr>
<tr>
<td></td>
<td>If you are installing Embedded CiscoView for the first time, or if the CiscoView directory is empty, skip to Step 4.</td>
</tr>
<tr>
<td>Step 2 Router# delete device_name:cv/*</td>
<td>Removes existing files from the CiscoView directory.</td>
</tr>
<tr>
<td>Step 3 Router# squeeze device_name:</td>
<td>Recovers the space in the file system.</td>
</tr>
<tr>
<td>Step 4 Router# archive tar /xtract tftp://ip_address_of_tftp_server/ciscoview.tar device_name:cv</td>
<td>Extracts the CiscoView files from the tar file on the TFTP server to the CiscoView directory.</td>
</tr>
<tr>
<td>Step 5 Router# dir device_name:</td>
<td>Displays the contents of the device. In a redundant configuration, repeat Step 1 through Step 5 for the file system on the redundant supervisor engine.</td>
</tr>
<tr>
<td>Step 6 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 7 Router(config)# ip http server</td>
<td>Enables the HTTP web server.</td>
</tr>
<tr>
<td>Step 8 Router(config)# snmp-server community string ro</td>
<td>Configures the SNMP password for read-only operation.</td>
</tr>
<tr>
<td>Step 9 Router(config)# snmp-server community string rw</td>
<td>Configures the SNMP password for read/write operation.</td>
</tr>
</tbody>
</table>
Chapter 1 Product Overview

Software Features Supported in Hardware by the PFC and DFC

Note

The default password for accessing the router web page is the enable-level password of the router.

For more information about web access to the router, refer to “Using the Cisco Web Browser” in the Cisco IOS Configuration Fundamentals Configuration Guide at this URL:

Displaying Embedded CiscoView Information

To display the Embedded CiscoView information, enter the following EXEC commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ciscoview package</td>
<td>Displays information about the Embedded CiscoView files.</td>
</tr>
<tr>
<td>Router# show ciscoview version</td>
<td>Displays the Embedded CiscoView version.</td>
</tr>
</tbody>
</table>

Software Features Supported in Hardware by the PFC and DFC

These sections describe the hardware support provided by Policy Feature Card 3 (PFC3), Distributed Forwarding Card 3 (DFC3), and Distributed Forwarding Card (DFC):

- Software Features Supported in Hardware by the PFC3, DFC3, and DFC, page 1-3
- Software Features Supported in Hardware by the PFC3 and DFC3, page 1-4

Software Features Supported in Hardware by the PFC3, DFC3, and DFC

The PFC3, DFC3, and DFC provide hardware support for these Cisco IOS software features:

- Access Control Lists (ACLs) for Layer 3 ports and VLAN interfaces
 - Permit and deny actions of input and output standard and extended ACLs

 Note
 Flows that require ACL logging are processed in software on the MSFC.

 - Except on MPLS interfaces, reflexive ACL flows after the first packet in a session is processed in software on the MSFC
 - Dynamic ACL flows

 Note
 Idle timeout is processed in software on the MSFC.

For more information about PFC and DFC support for ACLs, see Chapter 36, “Understanding Cisco IOS ACL Support.” For complete information about configuring ACLs, refer to the Cisco IOS Security Configuration Guide, Release 12.2, “Traffic Filtering and Firewalls,” at this URL:

• VLAN ACLs (VACLs)—To configure VACLs, see Chapter 38, “Configuring VLAN ACLs.”

• Policy-based routing (PBR) for route-map sequences that use the match ip address, set ip next-hop, and ip default next-hop PBR keywords.

To configure PBR, refer to the Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2, “Classification” and “Configuring Policy-Based Routing,” at this URL:

Note
If the MSFC3 or MSFC4 address falls within the range of a PBR ACL, traffic addressed to the MSFC is policy routed in hardware instead of being forwarded to the MSFC. To prevent policy routing of traffic addressed to a MSFC3 or MSFC4, configure PBR ACLs to deny traffic addressed to the MSFC.

• Except on MPLS interfaces, TCP intercept—To configure TCP intercept, see the “Configuring TCP Intercept” section on page 35-2.

• Hardware-assisted NetFlow Aggregation—Refer to this URL:

Software Features Supported in Hardware by the PFC3 and DFC3

The PFC3 and DFC3 provide hardware support for these Cisco IOS software features:

• IPv4 Multicast over Point-to-Point generic route encapsulation (GRE) Tunnels—Refer to the publication at this URL:

• Bidirectional Protocol Independent Multicast (PIM) in hardware—See the “Understanding How IPv4 Bidirectional PIM Works” section on page 31-6.

• Multiple-path Unicast Reverse Path Forwarding (RPF) Check—To configure Unicast RPF Check, see the “Configuring Unicast Reverse Path Forwarding Check” section on page 35-2.

• Except on MPLS interfaces, Network Address Translation (NAT) for IPv4 unicast and multicast traffic.

Note the following information about hardware-assisted NAT:

– NAT of UDP traffic is not supported in PFC3A mode.
– The PFC3 does not support NAT of multicast traffic.
– The PFC3 does not support NAT configured with a route-map that specifies length.
– When you configure NAT and NDE on an interface, the PFC3 sends all traffic in fragmented packets to the MSFC3 or MSFC4 to be processed in software. (CSCdz51590)

To configure NAT, see the Cisco IOS IP Configuration Guide, Release 12.2, “IP Addressing and Services,” “Configuring IP Addressing,” and “Configuring Network Address Translation,” at this URL:

To prevent a significant volume of NAT traffic from being sent to the MSFC3, due to either a DoS attack or a misconfiguration, enter the mls rate-limit unicast acl {ingress | egress} command described at this URL:
Chapter 1 Product Overview

Software Features Supported in Hardware by the PFC and DFC

- The PFC3 and DFC3 support IPv4 multicast over point-to-point GRE tunnels in hardware.
- GRE Tunneling and IP in IP Tunneling—The PFC3 and DFC3 support the following tunnel commands:
 - tunnel destination
 - tunnel mode gre
 - tunnel mode ipip
 - tunnel source
 - tunnel ttl
 - tunnel tos

The MSFC3 and MSFC4 support tunneling configured with any other tunnel commands. The tunnel ttl command (default 255) sets the TTL of encapsulated packets.

The tunnel tos command sets the ToS byte of a packet when it is encapsulated. If the tunnel tos command is not present and QoS is not enabled, the ToS byte of a packet sets the ToS byte of the packet when it is encapsulated. If the tunnel tos command is not present and QoS is enabled, the ToS byte of a packet as modified by PFC QoS sets the ToS byte of the packet when it is encapsulated.

To configure GRE Tunneling and IP in IP Tunneling, refer to these publications:

To configure the tunnel tos and tunnel ttl commands, refer to this publication:

Note the following information about tunnels:
- Each hardware-assisted tunnel must have a unique source. Hardware-assisted tunnels cannot share a source even if the destinations are different. Use secondary addresses on loopback interfaces or create multiple loopback interfaces. Failure to use unique source addresses may result in control plane failures during software path congestion.
- Each tunnel interface uses one internal VLAN.
- Each tunnel interface uses one additional router MAC address entry per router MAC address.
- The PFC3A does not support any PFC QoS features on tunnel interfaces. All other PFCs do.
- The MSFC3 and MSFC4 support tunnels configured with egress features on the tunnel interface. Examples of egress features are output Cisco IOS ACLs, NAT (for inside to outside translation), TCP intercept, CBAC, and encryption.
Configuring the Router for the First Time

This chapter contains information about how to initially configure the Cisco 7600 series router. The information in this chapter supplements the administration information and procedures in these publications:

- *Cisco IOS Configuration Fundamentals Configuration Guide*, Release 12.2, at this URL:

- *Cisco IOS Configuration Fundamentals Configuration Command Reference*, Release 12.2, at this URL:

Note

For complete syntax and usage information for the commands used in this chapter, refer to these publications:

- The *Cisco 7600 Series Router Cisco IOS Command Reference* at this URL:

This chapter consists of these sections:

- Default Configuration, page 2-1
- Configuring the Router, page 2-2
- Protecting Access to Privileged EXEC Commands, page 2-8
- Recovering a Lost Enable Password, page 2-13
- Modifying the Supervisor Engine Startup Configuration, page 2-13

Default Configuration

Table 2-1 shows the default configuration.
Chapter 2 Configuring the Router for the First Time

Configuring the Router

These sections describe how to configure the router:

- Using the Setup Facility or the setup Command, page 2-2
- Using Configuration Mode, page 2-3
- Checking the Running Configuration Before Saving, page 2-4
- Saving the Running Configuration Settings, page 2-5
- Reviewing the Configuration, page 2-5
- Configuring a Static Route, page 2-5
- Configuring a Static Route, page 2-5
- Configuring a BOOTP Server, page 2-6

Using the Setup Facility or the setup Command

At initial startup, the router automatically defaults to the setup facility. You can also invoke the setup facility by entering the setup command at the enable prompt (#).

The setup facility provides a System Configuration Dialog, which is an interactive CLI mode that guides you through first-time configuration of the router. The dialog prompts you for the information needed to start your router functioning in the network.

The System Configuration Dialog first prompts you to configure global parameters, which are used to control system-wide settings. The dialog then prompts for information to configure interfaces. You must progress through the System Configuration Dialog until you reach an item you want to change.

As you move through the dialog, square brackets beside each prompt show the default setting for that item or the last configured value. To accept the default value for an item, press Return or Enter. To change the value for that item, enter the desired value.

To display help for a prompt, press the question mark (?) key at the prompt.

Table 2-1 Default Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative connection</td>
<td>Normal mode</td>
</tr>
<tr>
<td>Global information</td>
<td>No value for the following:</td>
</tr>
<tr>
<td></td>
<td>• System name</td>
</tr>
<tr>
<td></td>
<td>• System contact</td>
</tr>
<tr>
<td></td>
<td>• Location</td>
</tr>
<tr>
<td>System clock</td>
<td>No value for system clock time</td>
</tr>
<tr>
<td>Passwords</td>
<td>No passwords configured for normal mode or enable mode (press the Return key)</td>
</tr>
<tr>
<td>Prompt</td>
<td>Router></td>
</tr>
</tbody>
</table>
When you complete your changes, the system automatically displays the configuration file that was created during the setup session. The dialog asks if you want to use this configuration. If you answer Yes, the configuration is saved to NVRAM as the startup configuration file. If you answer No, the configuration is not saved and the process begins again.

To exit setup and return to privileged EXEC mode without making changes and without progressing through the entire dialog, press **Ctrl-C**.

When you complete the configuration process, your interfaces are now available for limited use. If you want to modify the currently saved configuration parameters after the initial configuration, enter the **setup** command. To perform more complex configurations, enter configuration mode and use the **configure** command.

Note

You can use the **show version** command to check the current state of the router.

For detailed interface configuration information, refer to the *Cisco IOS Interface Configuration Guide* at this URL:

Using Configuration Mode

If you prefer not to use the setup facility, you can configure the router from configuration mode as follows:

Step 1 Connect a console terminal to the console interface of your supervisor engine.

Step 2 When you are asked if you want to enter the initial dialog, answer **no** to enter the normal operating mode as follows:

```
Would you like to enter the initial dialog? [yes]: no
```

Step 3 After a few seconds you will see the user EXEC prompt (**Router>**). Type **enable** to enter enable mode:

```
Router> enable
```

Note Configuration changes can only be made in enable mode.

The prompt will change to the privileged EXEC prompt (**#**) as follows:

```
Router#
```

Step 4 At the prompt (**#**), enter the **configure terminal** command to enter configuration mode as follows:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#
```

At the prompt, enter the **interface type slot/interface** command to enter interface configuration mode as follows:

```
Router(config)# interface fastethernet 5/1
Router(config-if)#
```

In either of these configuration modes, you can enter any changes to the configuration. Enter the **end** command to exit configuration mode.
Configuring the Router for the First Time

Step 5 Save your settings. (See the “Saving the Running Configuration Settings” section on page 2-5.)

Your router is now minimally configured and can boot with the configuration you entered. To see a list of the configuration commands, enter ? at the prompt or press the help key in configuration mode.

Checking the Running Configuration Before Saving

You can check the configuration settings you entered or changes you made by entering the show running-config command at the privileged EXEC prompt (#) as follows:

Router# show running-config
Building configuration...

Current configuration:
Current configuration : 3441 bytes
!
version 12.1
service timestamps debug datetime localtime
service timestamps log datetime localtime
no service password-encryption
!
hostname Router
!
boot buffersize 522200
boot system flash disk0:c6sup22-jsv-mz.121-5c.EX.bin
enable password lab
!
redundancy
 main-cpu
 auto-sync standard
ip subnet-zero
no ip finger
!
cns event-service server
!
interface FastEthernet3/3
 ip address 172.20.52.19 255.255.255.224
!
end
Router#
Saving the Running Configuration Settings

To store the configuration or changes to your startup configuration in NVRAM, enter the `copy running-config startup-config` command at the privileged EXEC prompt (#) as follows:

```
Router# copy running-config startup-config
```

This command saves the configuration settings that you created in configuration mode. If you fail to do this step, your configuration will be lost the next time you reload the system.

Reviewing the Configuration

To display information stored in NVRAM, enter the `show startup-config` EXEC command. The display should be similar to the display from the `show running-config` EXEC command.

Configuring a Static Route

If your Telnet station or SNMP network management workstation is on a different network from your router and a routing protocol has not been configured, you might need to add a static routing table entry for the network where your end station is located.

To configure a static route, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip route dest_IP_address mask [forwarding_IP</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# show running-config</td>
</tr>
</tbody>
</table>

This example shows how to use the `ip route` command to configure a static route to a workstation at IP address 171.10.5.10 on the router with a subnet mask and IP address 172.20.3.35 of the forwarding router:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip route 171.10.5.10 255.255.255.255 172.20.3.35
Router(config)# end
```

This example shows how to use the `show running-config` command to confirm the configuration of the previously configured static route:

```
Router# show running-config
Building configuration...
.<...output truncated...>
 ip default-gateway 172.20.52.35
 ip classless
 ip route 171.10.5.10 255.255.255.255 172.20.3.35
 no ip http server
 !
 line con 0
   transport input none
 line vty 0 4
```
Configuring the Router

```
exec-timeout 0 0
password lab
login
transport input lat pad dsipcon mop telnet rlogin udptn nasi
!
end
```

Router#

This example shows how to use the `ip route` command to configure a static route to a workstation at IP address 171.20.5.3 on the router with subnet mask and connected over VLAN 1:

```
Router# configure terminal
Router(config)# ip route 171.20.5.3 255.255.255.255 vlan 1
Router(config)# end
```

This example shows how to use the `show running-config` command to confirm the configuration of the previously configured static route:

```
Router# show running-config
Building configuration...
.
<...output truncated...>
.
ip default-gateway 172.20.52.35
ip classless
ip route 171.20.52.3 255.255.255.255 Vlan1
no ip http server
!
!
x25 host z
!
line con 0
transport input none
line vty 0 4
exec-timeout 0 0
password lab
login
transport input lat pad dsipcon mop telnet rlogin udptn nasi
!
end
```

Router#

Configuring a BOOTP Server

The Bootstrap Protocol (BOOTP) automatically assigns an IP address by adding the MAC and IP addresses of the interface to the BOOTP server configuration file. When the router boots, it automatically retrieves the IP address from the BOOTP server.

The router performs a BOOTP request only if the current IP address is set to 0.0.0.0. (This address is the default address for a new router or a router that has had its startup-config file cleared using the `erase` command.)

To allow your router to retrieve its IP address from a BOOTP server, you must first determine the MAC address of the router and add that MAC address to the BOOTP configuration file on the BOOTP server. To create a BOOTP server configuration file, follow these steps:

1. **Install the BOOTP server code on the workstation, if it is not already installed.**
Step 2 Determine the MAC address from the label on the chassis.

Step 3 Add an entry in the BOOTP configuration file (usually /usr/etc/bootptab) for each router. Press Return after each entry to create a blank line between each entry. See the example BOOTP configuration file that follows in Step 4.

Step 4 Enter the reload command to reboot and automatically request the IP address from the BOOTP server.

This example BOOTP configuration file shows the added entry:

```
# /etc/bootptab: database for bootp server (/etc/bootpd)
#
# Blank lines and lines beginning with '#' are ignored.
#
# Legend:
#
#   first field -- hostname
# (may be full domain name and probably should be)
#
#   hd -- home directory
#   bf -- bootfile
#   cs -- cookie servers
#   ds -- domain name servers
#   gw -- gateways
#   ha -- hardware address
#   ht -- hardware type
#   im -- impress servers
#   ip -- host IP address
#   lg -- log servers
#   lp -- LPR servers
#   ns -- IEN-116 name servers
#   rl -- resource location protocol servers
#   sm -- subnet mask
#   tc -- template host (points to similar host entry)
#   to -- time offset (seconds)
#   ts -- time servers
#
# <information deleted>
#
# ########################################################################
# Start of individual host entries
# ########################################################################
Router:   tc=netcisco0:   ha=0000.0ca7.ce00:      ip=172.31.7.97:
dross:   tc=netcisco0:   ha=00000c000139:        ip=172.31.7.26:
<information deleted>
```

Route Health Injection on Cisco 7600

Route Health Injection (RHI) allows the Cisco Application Control Engine (ACE) to advertise the availability of a virtual IP (VIP) address throughout the intranet as a host route. The ACE sends the RHI information to the Multilayer Switch Feature Card (MSFC) in the Cisco 7600 series router, which periodically propagates the VIP availability according to the RHI information it receives. RHI is normally restricted to intranets because the MSFC does not broadcast host-route availability to the Internet.

When a VIP becomes unavailable, the ACE withdraws the RHI information. The MSFC adds an entry in its routing table for each VIP address it receives from the ACE. The routing protocol running on the MSFC sends routing-table updates, including availability and hop-count routing information for each
instance of a VIP address to other routers. The client router uses the routing information to choose a route based on the best available path to that VIP address, and also where the Cisco application switch is logically closer to the client system.

By default, the ACE advertises the VLAN of the VIP interface for RHI. To advertise a VLAN for route health injection (RHI) that is different from the VIP interface VLAN, use the `ip route inject vlan` command in interface configuration mode. By default, the ACE advertises the VLAN of the VIP interface for RHI.

Effective with Cisco IOS Release 15.1(3)S, Cisco 7600 routers support IPv6 static route injection.

For the detailed configuration and examples, see the following guides:

Routing and Bridging Guide vA2(1.0), Cisco ACE Application Control Engine Module at

Getting Started Guide, Cisco ACE Application Control Engine Module at
http://www.cisco.com/en/US/docs/interfaces_modules/services_modules/ace/vA5_1_0/configuration/g etting/started/guide/ace_module_gsg.html

Protecting Access to Privileged EXEC Commands

The following tasks provide a way to control access to the system configuration file and privileged EXEC commands:

- Setting or Changing a Static Enable Password, page 2-8
- Using the enable password and enable secret Commands, page 2-9
- Setting or Changing a Line Password, page 2-9
- Setting TACACS+ Password Protection for Privileged EXEC Mode, page 2-10
- Encrypting Passwords, page 2-10
- Configuring Multiple Privilege Levels, page 2-11

Setting or Changing a Static Enable Password

To set or change a static password that controls access to the privileged EXEC mode, perform this task:

```
Command                Purpose
---------------------- ------------------------------------------
Router(config)# enable password password      Sets a new password or changes an existing password for the privileged EXEC mode.
```

This example shows how to configure an enable password as “lab” at the privileged EXEC mode:

```
Router# configure terminal
Router(config)# enable password lab
Router(config)#
```

To display the password or access level configuration, see the “Displaying the Password, Access Level, and Privilege Level Configuration” section on page 2-12.
Using the enable password and enable secret Commands

To provide an additional layer of security, particularly for passwords that cross the network or that are stored on a TFTP server, you can use either the `enable password` or `enable secret` commands. Both commands configure an encrypted password that you must enter to access enable mode (the default) or to access a specified privilege level. We recommend that you use the `enable secret` command.

If you configure the `enable secret` command, it takes precedence over the `enable password` command; the two commands cannot be in effect simultaneously.

To configure the router to require an enable password, perform either of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# enable password [level level] {password</td>
<td>encryption-type encrypted-password}</td>
</tr>
<tr>
<td>Router(config)# enable secret [level level] {password</td>
<td>encryption-type encrypted-password}</td>
</tr>
</tbody>
</table>

Use either of these commands with the `level` option to define a password for a specific privilege level. After you specify the level and set a password, give the password only to users who need to have access at this level. Use the `privilege level` configuration command to specify commands accessible at various levels.

If you enable the `service password-encryption` command, the password you enter is encrypted. When you display it with the `more system:running-config` command, it displays in encrypted form.

If you specify an encryption type, you must provide an encrypted password that you copy from another Cisco 7600 series router configuration.

Note: You cannot recover a lost encrypted password. You must clear NVRAM and set a new password. See the “Recovering a Lost Enable Password” section on page 2-13 if you lose or forget your password.

To display the password or access level configuration, see the “Displaying the Password, Access Level, and Privilege Level Configuration” section on page 2-12.

Setting or Changing a Line Password

To set or change a password on a line, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-line)# password password</td>
<td>Sets a new password or change an existing password for the privileged level.</td>
</tr>
</tbody>
</table>

To display the password or access level configuration, see the “Displaying the Password, Access Level, and Privilege Level Configuration” section on page 2-12.
Setting TACACS+ Password Protection for Privileged EXEC Mode

For complete information about TACACS+, refer to these publications:

- *Cisco IOS Security Command Reference*, Release 12.2, at this URL:

To set the TACACS+ protocol to determine whether or not a user can access privileged EXEC mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# enable use-tacacs</td>
<td>Sets the TACACS-style user ID and password-checking mechanism for the privileged EXEC mode.</td>
</tr>
</tbody>
</table>

When you set TACACS password protection at the privileged EXEC mode, the `enable` EXEC command prompts for both a new username and a password. This information is then sent to the TACACS+ server for authentication. If you are using the extended TACACS+, it also sends any existing UNIX user identification code to the TACACS+ server.

Caution

If you enter the `enable use-tacacs` command, you must also enter `tacacs-server authenticate enable`, or you are locked out of the privileged EXEC mode.

Note

When used without extended TACACS, the `enable use-tacacs` command allows anyone with a valid username and password to access the privileged EXEC mode, creating a potential security problem. This problem occurs because the router cannot tell the difference between a query resulting from entering the `enable` command and an attempt to log in without extended TACACS.

Note

Do not use the standby supervisor port to connect to the AAA-server or for any traffic and authentication related functionalities. The router may become inaccessible for 5 minutes after reload if the standby supervisor port is used.

Encrypting Passwords

Because protocol analyzers can examine packets (and read passwords), you can increase access security by configuring the Cisco IOS software to encrypt passwords. Encryption prevents the password from being readable in the configuration file.

To configure the Cisco IOS software to encrypt passwords, perform this task:
Encrypting occurs when the current configuration is written or when a password is configured. Password encryption is applied to all passwords, including authentication key passwords, the privileged command password, console and virtual terminal line access passwords, and Border Gateway Protocol (BGP) neighbor passwords. The `service password-encryption` command keeps unauthorized individuals from viewing your password in your configuration file.

Caution

The `service password-encryption` command does not provide a high level of network security. If you use this command, you should also take additional network security measures.

Although you cannot recover a lost encrypted password (that is, you cannot get the original password back), you can regain control of the router after you lose or forget the encrypted password. See the “Recovering a Lost Enable Password” section on page 2-13 if you lose or forget your password.

To display the password or access level configuration, see the “Displaying the Password, Access Level, and Privilege Level Configuration” section on page 2-12.

Configuring Multiple Privilege Levels

By default, the Cisco IOS software has two modes of password security: user EXEC mode and privileged EXEC mode. You can configure up to 16 hierarchical levels of commands for each mode. By configuring multiple passwords, you can allow different sets of users to have access to specified commands.

For example, if you want many users to have access to the `clear line` command, you can assign it level 2 security and distribute the level 2 password widely. If you want more restricted access to the `configure` command, you can assign it level 3 security and distribute that password to more restricted users.

These tasks describe how to configure additional levels of security:

- Setting the Privilege Level for a Command, page 2-11
- Changing the Default Privilege Level for Lines, page 2-12
- Logging In to a Privilege Level, page 2-12
- Exiting a Privilege Level, page 2-12
- Displaying the Password, Access Level, and Privilege Level Configuration, page 2-12

Setting the Privilege Level for a Command

To set the privilege level for a command, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# privilege mode level level</code></td>
<td>Sets the privilege level for a command.</td>
</tr>
<tr>
<td><code>Router(config)# enable password level level [encryption-type] password</code></td>
<td>Specifies the enable password for a privilege level.</td>
</tr>
</tbody>
</table>

Table:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# service password-encryption</code></td>
<td>Encrypts a password.</td>
</tr>
</tbody>
</table>
To display the password or access level configuration, see the “Displaying the Password, Access Level, and Privilege Level Configuration” section on page 2-12.

Changing the Default Privilege Level for Lines

To change the default privilege level for a given line or a group of lines, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-line)# privilege level level</code></td>
<td>Changes the default privilege level for the line.</td>
</tr>
</tbody>
</table>

To display the password or access level configuration, see the “Displaying the Password, Access Level, and Privilege Level Configuration” section on page 2-12.

Logging In to a Privilege Level

To log in at a specified privilege level, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# enable level</code></td>
<td>Logs into a specified privilege level.</td>
</tr>
</tbody>
</table>

Exiting a Privilege Level

To exit to a specified privilege level, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# disable level</code></td>
<td>Exits to a specified privilege level.</td>
</tr>
</tbody>
</table>

Displaying the Password, Access Level, and Privilege Level Configuration

To display the password, access level, and privilege level configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>Router# show running-config</code></td>
<td>Displays the password and the access level configuration.</td>
</tr>
<tr>
<td>Step 2 <code>Router# show privilege</code></td>
<td>Shows the privilege level configuration.</td>
</tr>
</tbody>
</table>

This example shows how to display the password and access level configuration:

```
Router# show running-config
<...output truncated...>
enable password lab
<...output truncated...>
```

This example shows how to display the privilege level configuration:

```
Router# show privilege
Current privilege level is 15
```

Router#
Recovering a Lost Enable Password

To recover a lost enable password, follow these steps:

Step 1 Connect to the console interface.
Step 2 Configure the router to boot up without reading the configuration memory (NVRAM).
Step 3 Reboot the system.
Step 4 Access enable mode (which can be done without a password when one is not configured).
Step 5 View or change the password, or erase the configuration.
Step 6 Reconfigure the router to boot up and read the NVRAM as it normally does.
Step 7 Reboot the system.

Note Password recovery requires the Break signal. You must be familiar with how your terminal or PC terminal emulator issues this signal. For example, in ProComm, the Alt-B keys generate the Break signal. In a Windows terminal session, you press the Break or Ctrl and Break keys simultaneously.

Modifying the Supervisor Engine Startup Configuration

These sections describe how the startup configuration on the supervisor engine works and how to modify the configuration register and BOOT variable:

- Understanding the Supervisor Engine Boot Configuration, page 2-13
- Configuring the Software Configuration Register, page 2-14
- Specifying the Startup System Image, page 2-17
- Understanding Flash Memory, page 2-18
- CONFIG_FILE Environment Variable, page 2-19
- Controlling Environment Variables, page 2-19

Understanding the Supervisor Engine Boot Configuration

These next sections describe how the boot configuration works on the supervisor engine.

Understanding the Supervisor Engine Boot Process

The supervisor engine boot process involves two software images: ROM monitor and supervisor engine software. When the router is powered up or reset, the ROM-monitor code is executed. Depending on the NVRAM configuration, the supervisor engine either stays in ROM-monitor mode or loads the supervisor engine software.
Modifying the Supervisor Engine Startup Configuration

Two user-configurable parameters determine how the router boots: the configuration register and the BOOT environment variable. The configuration register is described in the “Modifying the Boot Field and Using the boot Command” section on page 2-15. The BOOT environment variable is described in the “Specifying the Startup System Image” section on page 2-17.

Understanding the ROM Monitor

The ROM monitor executes upon power-up, reset, or when a fatal exception occurs. The router enters ROM-monitor mode if the router does not find a valid software image, if the NVRAM configuration is corrupted, or if the configuration register is set to enter ROM-monitor mode. From ROM-monitor mode, you can manually load a software image from bootflash or a Flash PC card.

Note

For complete syntax and usage information for the ROM monitor commands, refer to the Cisco 7600 Series Router Cisco IOS Command Reference publication.

You can also enter ROM-monitor mode by restarting and then pressing the Break key during the first 60 seconds of startup. If you are connected through a terminal server, you can escape to the Telnet prompt and enter the send break command to enter ROM-monitor mode.

Note

The Break key is always enabled for 60 seconds after rebooting, regardless of whether the configuration-register setting has the Break key disabled.

The ROM monitor has these features:

- Power-on confidence test
- Hardware initialization
- Boot capability (manual boot and autoboot)
- Debug utility and crash analysis
- Monitor call interface (EMT calls—the ROM monitor provides information and some functionality to the running software images through EMT calls)
- File system (the ROM monitor knows the simple file system and supports the newly developed file system through the dynamic linked file system library [MONLIB])
- Exception handling

Configuring the Software Configuration Register

The router uses a 16-bit software configuration register, which allows you to set specific system parameters. Settings for the software configuration register are written into NVRAM. Following are some reasons for changing the software configuration register settings:

- To select a boot source and default boot filename.
- To enable or disable the Break function.
- To control broadcast addresses.
- To set the console terminal baud rate.
- To load operating software from flash memory.
- To recover a lost password.
• To allow you to manually boot the system using the `boot` command at the bootstrap program prompt.
• To force an automatic boot from the system bootstrap software (boot image) or from a default system image in onboard flash memory, and read any `boot system` commands that are stored in the configuration file in NVRAM.

Table 2-2 lists the meaning of each of the software configuration memory bits, and Table 2-3 defines the boot field.

Caution

The recommended configuration register setting is 0x2102 (this is the factory default value). If you configure a setting that leaves break enabled and you send a break sequence over a console connection, the router drops into ROMMON.

Table 2-2 Software Configuration Register Bit Meaning

<table>
<thead>
<tr>
<th>Bit Number</th>
<th>Hexadecimal</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 to 03</td>
<td>0x0000 to 0x000F</td>
<td>Boot field (see Table 2-3)</td>
</tr>
<tr>
<td>06</td>
<td>0x0040</td>
<td>Causes system software to ignore NVRAM contents</td>
</tr>
<tr>
<td>07</td>
<td>0x0080</td>
<td>OEM(^1) bit enabled</td>
</tr>
<tr>
<td>08</td>
<td>0x0100</td>
<td>Break disabled</td>
</tr>
<tr>
<td>09</td>
<td>0x0200</td>
<td>Use secondary bootstrap</td>
</tr>
<tr>
<td>10</td>
<td>0x0400</td>
<td>Internet Protocol (IP) broadcast with all zeros</td>
</tr>
<tr>
<td>11 to 12</td>
<td>0x0800 to 0x1000</td>
<td>Console line speed (default is 9600 baud)</td>
</tr>
<tr>
<td>13</td>
<td>0x2000</td>
<td>Boot default flash software if network boot fails</td>
</tr>
<tr>
<td>14</td>
<td>0x4000</td>
<td>IP broadcasts do not have network numbers</td>
</tr>
<tr>
<td>15</td>
<td>0x8000</td>
<td>Enable diagnostic messages and ignore NVRAM contents</td>
</tr>
</tbody>
</table>

\(^1\) OEM = original equipment manufacturer.

Table 2-3 Explanation of Boot Field (Configuration Register Bits 00 to 03)

<table>
<thead>
<tr>
<th>Boot Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Stays at the system bootstrap prompt</td>
</tr>
<tr>
<td>01</td>
<td>Boots the first system image in onboard flash memory</td>
</tr>
<tr>
<td>02 to 0F</td>
<td>Specifies a default filename for booting over the network; enables boot system commands that override the default filename</td>
</tr>
</tbody>
</table>

Modifying the Boot Field and Using the boot Command

The configuration register boot field determines whether or not the router loads an operating system image, and if so, where it obtains this system image. The following sections describe using and setting the configuration register boot field, and the tasks you must perform to modify the configuration register boot field.

Bits 0 through 3 of the software configuration register form the boot field.
Chapter 2 Configuring the Router for the First Time

Modifying the Supervisor Engine Startup Configuration

Note

The factory default configuration register setting for systems and spares is 0x2102.

When the boot field is set to either 0 or 1 (0-0-0-0 or 0-0-0-1), the system ignores any boot instructions in the system configuration file and the following occurs:

- When the boot field is set to 0, you must boot the operating system manually by entering the `boot` command to the system bootstrap program or ROM monitor.
- When the boot field is set to 1, the system boots the first image in the onboard bootflash single in-line memory module (SIMM).
- When the entire boot field equals a value between 0-0-1-0 and 1-1-1-1, the router loads the system image specified by `boot system` commands in the startup configuration file.

You can enter the `boot` command only, or enter the command and include additional boot instructions, such as the name of a file stored in flash memory, or a file that you specify for booting from a network server. If you use the `boot` command without specifying a file or any other boot instructions, the system boots from the default flash image (the first image in onboard flash memory). Otherwise, you can instruct the system to boot from a specific flash image (using the `boot system flash filename` command).

You can also use the `boot` command to boot images stored in the Flash PC cards located in Flash PC card slot 0 or slot 1 on the supervisor engine. If you set the boot field to any bit pattern other than 0 or 1, the system uses the resulting number to form a filename for booting over the network.

You must set the boot field for the boot functions you require.

Modifying the Boot Field

You modify the boot field from the software configuration register. To modify the software configuration register boot field, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# show version</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# config-register value</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# reload</td>
</tr>
</tbody>
</table>

To modify the configuration register while the router is running Cisco IOS software, follow these steps:

Step 1 Enter the `enable` command and your password to enter privileged level as follows:

```
Router> enable
Password:
Router#
```

Step 2 Enter the `configure terminal` command at the EXEC mode prompt (#) as follows:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
```
Step 3 Configure the configuration register to 0x2102 as follows:

```
Router(config)# config-register 0x2102
```

Set the contents of the configuration register by entering the `config-register value` configuration command, where `value` is a hexadecimal number preceded by 0x (see Table 2-2 on page 2-15).

Step 4 Enter the `end` command to exit configuration mode. The new value settings are saved to memory; however, the new settings do not take effect until the system software is reloaded by rebooting the system.

Step 5 Enter the `show version` EXEC command to display the configuration register value currently in effect and that will be used at the next reload. The value is displayed on the last line of the screen display, as in this example:

```
Configuration register is 0x141 (will be 0x2102 at next reload)
```

Step 6 Save your settings.

See the “Saving the Running Configuration Settings” section on page 2-5. However, note that configuration register changes take effect only after the system relo ds, such as when you enter a `reload` command from the console.

Step 7 Reboot the system.

The new configuration register value takes effect with the next system boot.

Verifying the Configuration Register Setting

Enter the `show version` EXEC command to verify the current configuration register setting. In ROM-monitor mode, enter the `o` command to verify the value of the configuration register boot field.

To verify the configuration register setting, perform this task:

```
Router# show version | include Configuration register
```

Displays the configuration register setting.

In this example, the `show version` command indicates that the current configuration register is set so that the router does not automatically load an operating system image. Instead, it enters ROM-monitor mode and waits for user-entered ROM monitor commands. The new setting instructs the router to load a system image from commands in the startup configuration file or from a default system image stored on a network server.

```
Router1# show version | include Configuration register
Configuration register is 0x2102
Router#
```

Specifying the Startup System Image

You can enter multiple boot commands in the startup configuration file or in the BOOT environment variable to provide backup methods for loading a system image.
Modifying the Supervisor Engine Startup Configuration

Chapter 2 Configuring the Router for the First Time

Note

- Store the system software image in the sup-bootflash:, disk0:, or disk1: device (only the Route Switch Processor 720 and Supervisor Engine 720 have disk1:).
- Do not store the system software image in the bootflash: device, which is on the MSFC and is not accessible at boot time.

The BOOT environment variable is also described in the “Specifying the Startup System Image in the Configuration File” section in the “Loading and Maintaining System Images” chapter of the Cisco IOS Configuration Fundamentals Configuration Guide.

Understanding Flash Memory

The following sections describe flash memory:

- Flash Memory Features, page 2-18
- Security Features, page 2-18
- Flash Memory Configuration Process, page 2-18

Note

The descriptions in the following sections applies to both the bootflash device and to removable flash memory cards.

Flash Memory Features

The flash memory components allow you to do the following:

- Copy the system image to flash memory using TFTP.
- Copy the system image to flash memory using rcp.
- Boot the system from flash memory either automatically or manually.
- Copy the flash memory image to a network server using TFTP or rcp.
- Boot manually or automatically from a system software image stored in flash memory.

Security Features

The flash memory components support the following security features:

- Flash memory cards contain a write-protect switch that you can use to protect data. You must set the switch to unprotected to write data to the Flash PC card.
- The system image stored in flash memory can be changed only from privileged EXEC level on the console terminal.

Flash Memory Configuration Process

To configure your router to boot from flash memory, follow these steps:
Step 1 Copy a system image to flash memory using TFTP or rcp (refer to the Cisco IOS Configuration Fundamentals Configuration Guide, Release 12.2, “Cisco IOS File Management,” “Loading and Maintaining System Images,” at this URL:

Step 2 Configure the system to boot automatically from the file in flash memory. You might need to change the configuration register value. See the “Modifying the Boot Field and Using the boot Command” section on page 2-15, for more information on modifying the configuration register.

Step 3 Save your configurations.

Step 4 Power cycle and reboot your system to ensure that all is working as expected.

CONFIG_FILE Environment Variable

For class A flash file systems, the CONFIG_FILE environment variable specifies the file system and filename of the configuration file to use for initialization (startup). Valid file systems can include `nvram:`, `disk0:`, and `sup-bootflash:`.

For detailed file management configuration information, refer to the Cisco IOS Configuration Fundamentals Configuration Guide at this URL:

After you save the CONFIG_FILE environment variable to your startup configuration, the router checks the variable upon startup to determine the location and filename of the configuration file to use for initialization.

The router uses the NVRAM configuration during initialization when the CONFIG_FILE environment variable does not exist or when it is null (such as at first-time startup). If the router detects a problem with NVRAM or a checksum error, the router enters setup mode. See the “Using the Setup Facility or the setup Command” section on page 2-2 for more information on the setup command facility.

Controlling Environment Variables

Although the ROM monitor controls environment variables, you can create, modify, or view them with certain commands. To create or modify the BOOST and CONFIG_FILE environment variables, use the `boot system` and `boot config` global configuration commands.

Refer to the “Specifying the Startup System Image in the Configuration File” section in the “Loading and Maintaining System Images” chapter of the Configuration Fundamentals Configuration Guide for details on setting the BOOT environment variable. Refer to the “Specifying the CONFIG_FILE Environment Variable on Class A Flash File Systems” section in the “Managing Configuration Files” chapter of the Configuration Fundamentals Configuration Guide for details on setting the CONFIG_FILE variable.

Note When you use the `boot system` and `boot config` global configuration commands, you affect only the running configuration. You must save the environment variable settings to your startup configuration to place the information under ROM monitor control and for the environment variables to function as expected. Enter the `copy system:running-config nvram:startup-config` command to save the environment variables from your running configuration to your startup configuration.
You can view the contents of the BOOT and CONFIG_FILE environment variables using the `show bootvar` command. This command displays the settings for these variables as they exist in the startup configuration as well as in the running configuration if a running configuration setting differs from a startup configuration setting.

This example shows how to check the BOOT and CONFIG_FILE environment variables:

```
Router# show bootvar
BOOT variable = disk0:c6sup22-jsv-mz.121-5c.EX.bin,1;
CONFIG_FILE variable does not exist
Configuration register is 0x2
Router#
```

To display the contents of the configuration file pointed to by the CONFIG_FILE environment variable, enter the `more nvram:startup-config` command.
Configuring a Supervisor Engine 720

This chapter describes how to configure a Supervisor Engine 720 in a Cisco 7600 series router. This chapter contains these sections:

- Using the Bootflash or Bootdisk on a Supervisor Engine 720, page 3-1
- Using the Slots on a Supervisor Engine 720, page 3-2
- Configuring Supervisor Engine 720 Ports, page 3-2
- Configuring and Monitoring the Switch Fabric Functionality, page 3-2

Note

- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
- With a 3-slot chassis, install the Supervisor Engine 720 in either slot 1 or 2.
- With a 6-slot or a 9-slot chassis, install the Supervisor Engine 720 in either slot 5 or 6.
- With a 13-slot chassis, install the Supervisor Engine 720 in either slot 7 or 8.

Using the Bootflash or Bootdisk on a Supervisor Engine 720

Release 12.2SR supports the Supervisor Engine 720 64-MB bootflash device (**sup-bootflash**:). For information about using WS-CF-UPG=, which is available with Release 12.2(18)SXE5 and rebuilds and Release 12.2(18)SXF, see this publication:

http://www.cisco.com/univercd/cc/td/doc/product/lan/cat6000/cfgnotes/78_17277.htm

Note

- All Sup720 modules require a minimum of 128-MB bootflash to run Release 12.2SRB and later releases. A CompactFlash (CF) adapter with 512-MB bootflash is available for Sup720 modules in Release 12.2(18)SXF and later releases. Use the Cisco part number CF-ADAPTER= for ordering.
Using the Slots on a Supervisor Engine 720

The Supervisor Engine 720 has two CompactFlash Type II slots. The CompactFlash Type II slots support CompactFlash Type II Flash PC cards sold by Cisco Systems, Inc. The keywords for the slots on the active Supervisor Engine 720 are `disk0:` and `disk1:`. The keywords for the slots on a redundant Supervisor Engine 720 are `slavedisk0:` and `slavedisk1:`.

Configuring Supervisor Engine 720 Ports

Supervisor Engine 720 port 1 has a small form-factor pluggable (SFP) connector and has no unique configuration options.

Supervisor Engine 720 port 2 has an RJ-45 connector and an SFP connector (default). To use the RJ-45 connector, you must change the configuration.

To configure port 2 on a Supervisor Engine 720 to use either the RJ-45 connector or the SFP connector, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface gigabitethernet slot/2</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# media-type {rj45</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no media-type</td>
</tr>
</tbody>
</table>

This example shows how to configure port 2 on a Supervisor Engine 720 in slot 5 to use the RJ-45 connector:

```
Router(config)# interface gigabitethernet 5/2
Router(config-if)# media-type rj45
```

Configuring and Monitoring the Switch Fabric Functionality

These sections describe how to configure the switching mode and monitor the switch fabric functionality that is included on a Supervisor Engine 720:

- Understanding How the Switch Fabric Functionality Works, page 3-2
- Configuring the Switch Fabric Functionality, page 3-4
- Monitoring the Switch Fabric Functionality, page 3-4

Understanding How the Switch Fabric Functionality Works

These sections describe how the switch fabric functionality works:

- Switch Fabric Functionality Overview, page 3-3
- Forwarding Decisions for Layer 3-Switched Traffic, page 3-3
- Switching Modes, page 3-3
Switch Fabric Functionality Overview

The switch fabric functionality is built into the Supervisor Engine 720 and creates a dedicated connection between fabric-enabled modules and provides uninterrupted transmission of frames between these modules. In addition to the direct connection between fabric-enabled modules provided by the switch fabric functionality, fabric-enabled modules also have a direct connection to the 32-Gbps forwarding bus.

Forwarding Decisions for Layer 3-Switched Traffic

Either a PFC3 or a Distributed Feature Card 3 (DFC3) makes the forwarding decision for Layer 3-switched traffic, as follows:

- A PFC3 makes all forwarding decisions for each packet that enters the router through a module without a DFC3.
- A DFC3 makes all forwarding decisions for each packet that enters the router on a DFC3-enabled module in these situations:
 - If the egress port is on the same module as the ingress port, the DFC3 forwards the packet locally (the packet never leaves the module).
 - If the egress port is on a different fabric-enabled module, the DFC3 sends the packet to the egress module, which sends it out the egress port.
 - If the egress port is on a different nonfabric-enabled module, the DFC3 sends the packet to the Supervisor Engine 720. The Supervisor Engine 720 fabric interface transfers the packet to the 32-Gbps switching bus where it is received by the egress module and is sent out the egress port.

Switching Modes

With a Supervisor Engine 720, traffic is forwarded to and from modules in one of the following modes:

- Compact mode—The router uses this mode for all traffic when only fabric-enabled modules are installed. In this mode, a compact version of the DBus header is forwarded over the switch fabric channel, which provides the best possible performance.
- Truncated mode—The router uses this mode for traffic between fabric-enabled modules when there are both fabric-enabled and nonfabric-enabled modules installed. In this mode, the router sends a truncated version of the traffic (the first 64 bytes of the frame) over the switch fabric channel.
- Bus mode—The router uses this mode for traffic between nonfabric-enabled modules and for traffic between a nonfabric-enabled module and a fabric-enabled module. In this mode, all traffic passes between the local bus and the supervisor engine bus.

Table 3-1 shows the switching modes used with fabric-enabled and nonfabric-enabled modules installed.

<table>
<thead>
<tr>
<th>Modules</th>
<th>Switching Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between fabric-enabled modules (when no nonfabric-enabled modules are installed)</td>
<td>Compact¹</td>
</tr>
<tr>
<td>Between fabric-enabled modules (when nonfabric-enabled modules are also installed)</td>
<td>Truncated²</td>
</tr>
</tbody>
</table>
Configuring the Switch Fabric Functionality

To configure the switching mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# [no] fabric switching-mode allow {bus-mode</td>
<td>{truncated [[threshold [number]]]}</td>
</tr>
</tbody>
</table>

When configuring the switching mode, note the following information:

- To allow the use of nonfabric-enabled modules or to allow fabric-enabled modules to use bus mode, enter the `fabric switching-mode allow bus-mode` command.
- To prevent the use of nonfabric-enabled modules or to prevent fabric-enabled modules from using bus mode, enter the `no fabric switching-mode allow bus-mode` command.

Caution

When you enter the `no fabric switching-mode allow bus-mode` command, power is removed from any nonfabric-enabled modules installed in the router.

- To allow fabric-enabled modules to use truncated mode, enter the `fabric switching-mode allow truncated` command.
- To prevent fabric-enabled modules from using truncated mode, enter the `no fabric switching-mode allow truncated` command.
- To configure how many fabric-enabled modules must be installed before they use truncated mode instead of bus mode, enter the `fabric switching-mode allow truncated threshold number` command.
- To return to the default truncated-mode threshold, enter the `no fabric switching-mode allow truncated threshold` command.

Monitoring the Switch Fabric Functionality

The switch fabric functionality supports a number of `show` commands for monitoring purposes. A fully automated startup sequence brings the module online and runs the connectivity diagnostics on the ports.

These sections describe how to monitor the switch fabric functionality:

- Displaying the Switch Fabric Redundancy Status, page 3-5
- Displaying Fabric Channel Switching Modes, page 3-5
• Displaying the Fabric Status, page 3-5
• Displaying the Fabric Utilization, page 3-6
• Displaying Fabric Errors, page 3-6

Displaying the Switch Fabric Redundancy Status

To display the switch fabric redundancy status, perform this task:

Command	Purpose
Router# `show fabric active` | Displays switch fabric redundancy status.

Router# `show fabric active`
Active fabric card in slot 5
No backup fabric card in the system
Router#

Displaying Fabric Channel Switching Modes

To display the fabric channel switching mode of one or all modules, perform this task:

Command	Purpose
Router# `show fabric switching-mode [module [slot_number | all]` | Displays fabric channel switching mode of one or all modules.

This example shows how to display the fabric channel switching mode of all modules:

Router# `show fabric switching-mode all`
%Truncated mode is allowed
%System is allowed to operate in legacy mode

<table>
<thead>
<tr>
<th>Module</th>
<th>Slot</th>
<th>Switching Mode</th>
<th>Bus Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DCEF</td>
<td>Compact</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Crossbar</td>
<td>Compact</td>
<td></td>
</tr>
</tbody>
</table>

Router#

Displaying the Fabric Status

To display the fabric status of one or all switching modules, perform this task:

Command	Purpose

This example shows how to display the fabric status of all modules:

Router# `show fabric status`

<table>
<thead>
<tr>
<th>slot</th>
<th>channel</th>
<th>speed</th>
<th>module</th>
<th>fabric status</th>
<th>fabric status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>8G</td>
<td>OK</td>
<td>OK</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>8G</td>
<td>OK</td>
<td>Up- Timeout</td>
<td></td>
</tr>
</tbody>
</table>
Configuring and Monitoring the Switch Fabric Functionality

Displaying the Fabric Utilization

To display the fabric utilization of one or all modules, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>

This example shows how to display the fabric utilization of all modules:

```
Router# show fabric utilization all
Lo% Percentage of Low-priority traffic.
Hi% Percentage of High-priority traffic.

<table>
<thead>
<tr>
<th>slot</th>
<th>channel</th>
<th>speed</th>
<th>Ingress Lo%</th>
<th>Egress Lo%</th>
<th>Ingress Hi%</th>
<th>Egress Hi%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>20G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>8G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Router#
```

Displaying Fabric Errors

To display fabric errors of one or all modules, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>

This example shows how to display fabric errors on all modules:

```
Router# show fabric errors

Module errors:

<table>
<thead>
<tr>
<th>slot</th>
<th>channel</th>
<th>crc</th>
<th>hbeat</th>
<th>sync</th>
<th>DDR sync</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fabric errors:

<table>
<thead>
<tr>
<th>slot</th>
<th>channel</th>
<th>sync</th>
<th>buffer</th>
<th>timeout</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Router#
```
Configuring a Route Switch Processor 720

This chapter describes how to configure a route switch processor 720 (RSP720). The RSP720 is the newest type of supervisor engine available for Cisco 7600 series routers. The RSP720 consists of a full-size board and two integrated daughter cards: the MSFC4 and a PFC3C or PFC3CXL. The RSP720 has an integrated switch fabric that interconnects all of the line cards in the Cisco 7600 router with point-to-point 20-Gbps full-duplex serial channels.

See Appendix C, “Cisco IOS Release 15.5 Software Images,” for information about the Cisco IOS software images available for the RSP720, Sup720, and Sup32.

This chapter contains these sections:
- RSP720 PFC Compatibility Matrix, page 4-1
- RSP720 Features, page 4-2
- Accessing Flash Memory on the RSP720, page 4-6
- Configuring route switch processor 720 Ports, page 4-6
- Configuring and Monitoring the Switch Fabric Functionality, page 4-6

For complete syntax and usage information for the commands in this chapter, see the Cisco 7600 series routers command references at this URL:

Note
- The RSP720 is supported in all Cisco 7600 chassis except the Cisco 7603 and Cisco OSR-7609.
- With a 4-slot chassis, install the RSP720 in slot 1 or 2.
- With a 6-slot or a 9-slot chassis (including enhanced [-S] chassis), install the RSP720 in slot 5 or 6.
- With a 13-slot chassis, install the RSP720 in slot 7 or 8.

RSP720 PFC Compatibility Matrix

The route switch processor 720 (RSP720) is configured with one of two types of Policy Feature Card: a PFC3C or a PFC3CXL. The PFC on the RSP720 can interoperate with cards that have a lower version number, such as a Distributed Forwarding Card (DFC) at version 3B (a DFC3B). A card’s version number indicates its operating mode: 3B, 3BXL, 3C, or 3CXL.
For the RSP720 to interoperate with lower-version cards, the system determines the lowest operating mode of all installed cards (3B, 3BXL, 3C, or 3CXL) and applies this mode to all of the cards. The cards provide the features supported in the selected operating mode (even if a card has a higher version number). For example, a PFC3C operating in 3B mode offers only those features supported by a PFC3B.

Here are some examples of mode setting among different version cards:

- A system with an RSP720-3CXL, a DFC3BXL, and an Ethernet Services Module (ES20-3C) operates in 3BXL mode (which is the lowest operating mode among all cards).
- A system with an RSP720-3CXL and an ES20-3C operates in 3C mode.
- A system with an RSP720-3C and a DFC3B operates in 3B mode.
- A system with an RSP720-3CXL and an ES20-3CXL operates in 3CXL mode.

Note
Use the `show platform hardware pfc mode` command to display the PFC operating mode.

RSP720 Features

The RSP720 is the newest version of supervisor engine for the Cisco 7600 series router. Along with its two new integrated daughter cards (a PFC3C or PFC3CXL and an MSFC4), the RSP720 provides many enhancements and new features over previous supervisor engines. These enhancements and features are described in the sections that follow.

Note
The RSP720 supports all of the features as the Supervisor Engine 720 (with PFC3B or PFC3BXL). Unless otherwise noted, the configuration and operation of the features described in later chapters of this document is the same for both types of processors (RSP720 and Sup720).

Hardware

- Two new integrated daughter cards: a PFC3C or PFC3CXL and an MSFC4
- Faster CPUs and more default memory on the route processor (RP) and switch processor (SP)
 - RSP720-3C-GE: 1-GB DRAM on RP and SP
 - RSP720-3CXL-GE: 2-GB DRAM (RP) and 1-GB DRAM (SP)
- Additional memory provides a larger MAC address table
- Layer 2 and Layer 3 functions have been integrated on a single ASIC
- ASIC (hardware) forwarding of IP and MPLS traffic

For information about hardware support for the RSP720, see the “Route Switch Processor 720” section in Chapter 2 of the *Cisco 7600 Series Router Supervisor Engine and Route Switch Processor Guide*.

Performance

- Faster software bootup
- Faster protocol convergence (BGP, OSPF) and ARP learning
- Improved IGMP snooping times
- Faster speeds for establishing DHCP servers, Label Distribution Protocol (LDP) sessions, IP sessions, and Traffic Engineering (TE)
RSP720 Features

- Faster processing for Bidirectional Forwarding Detection (BFD), Resource Reservation Setup Protocol (RSVP), and other control-plane functions
- Improved speeds for accessing and copying local files

Scalability
- 30 million packets-per-second (Mpps) forwarding rates for Layer 2 and Layer 3 traffic. The RSP720 uses hardware-based Cisco Express Forwarding (CEF). Forwarding rates are:
 - IP forwarding rates—30 Mpps
 - MPLS forwarding rates—20 Mpps
- Support for larger customer configurations and more interfaces:
 - 32000 IP subscriber sessions
 - 1 million routes
 - 96000 MAC addresses maximum (80000 in real life), up from 64000
 - 32000 VLANs
 - 128000 Address Resolution Protocol (ARP) entries
- Support for 802.1ad for VLAN scalability

High-Availability Features
- Online insertion and removal (OIR)
- Route processor redundancy (RPR and RPR+)
- Nonstop forwarding with stateful switchover (NSF/SSO)
- Fast-fabric switchover
- In Service Software Upgrade (ISSU) and enhanced Fast Software Upgrade (eFSU) (Cisco IOS Release 12.2SRB1 and later)

IPv6 ACL Enhancements (Security)
Support for 2K access control list (ACL) labels and 16K access control entries (ACEs), up from 1K masks and 8K ACEs

Rate-Limiting of Unknown Unicast Packets
Allows you to limit the number of unknown unicast packets that the router processes and thus keep the packets from flooding the network. If the number of unknown packets received by the router exceeds the specified rate, excess packets are not forwarded. See the next section ("Configuration Guidelines for Unknown Unicast Packet Rate-Limiting") for configuration guidelines.

The following new commands are provided to configure and verify this feature:
- Use the following command to configure rate-limiting, where \textit{pps} is the maximum number of unknown unicast packets to allow per second (from 10 to 1000000) and \textit{packets-in-burst} is an optional packet burst rate (from 1 to 255, with a default value of 10). The \textbf{no} form of the command turns off rate-limiting for unknown packets.

 \begin{verbatim}
 Router(config)# mls rate-limit layer2 unknown pps [packets-in-burst]
 Router(config)# no mls rate-limit layer2 unknown
 \end{verbatim}
Note If any physical ports on the router are configured for routing, issue the `mac-address-table learning interface interface` command (in global configuration mode) on each of those ports. Otherwise, the rate-limiting counts might not be accurate.

- Use the `show mls rate-limit` command to verify that rate-limiting of unknown unicast packets is enabled. If rate-limiting for unknown unicast packets is enabled, the output will include the following rate-limiter type:

  ```
  Router(config)# show mls rate-limit
  Sharing Codes: S - static, D - dynamic
  Codes dynamic sharing: H - owner (head) of the group, g - guest of the group
  
  Rate Limiter Type | Status | Packets/s | Burst | Sharing
  ------------------|--------|-----------|-------|--------
  UCAST IP TINY FRAG| On     | 100000    | 100   | Not sharing
  ```

Configuration Guidelines for Unknown Unicast Packet Rate-Limiting

Observe these guidelines when configuring unknown unicast packet rate-limiting:

- This feature is available only with the PFC3C and PFC3CXL (RSP720). It is not available with the PFC3B or PFC3BXL.

- If you run the Remote Switched Port Analyzer (RSPAN) with unknown unicast rate-limiting configured, be aware that traffic amounts might differ between RSPAN source and destination ports. This difference occurs if the traffic being monitored contains unknown unicast packets. In this case, the unknown unicast traffic is rate-limited before being sent to the RSPAN destination port, resulting in a mismatch between the amount of traffic at the RSPAN source and destination ports.

Packet Fragmentation over GRE Tunnels

Support for packet fragmentation over Generic Routed Encapsulation (GRE) tunnels. With the PFC3C and PFC3CXL, you can use the `[no] mls cef tunnelfragment` command to set the don’t fragment (DF) bit to zero, which allows the PFC3C or PFC3CXL to reassemble fragmented GRE traffic. The `no` form of the command turns off tunnel fragmentation and causes fragmented GRE traffic to be dropped.

Note To use this feature, the router at the other end of the tunnel must support tunnel fragmentation.

Improved Load Balancing on GE Bundles

Load balancing improvements on Gigabit Ethernet (GE) bundles configured as 802.1q trunks:

- The VLAN ID is now included in the bundle hash for multicast traffic.

- Multicast receivers that handle multicast traffic for multiple VLANs can load balance the traffic across the member links in the bundle.

- The router provides more efficient load balancing of fragmented traffic.

QoS Enhancements

- On the PFC3C and PFC3CXL you can configure ingress and egress policers to operate independently of each other (in `serial mode`). Normally, ingress and egress policers operate in parallel mode, where action by one policer causes a corresponding action in the other. For example, if the egress policer drops a packet, the ingress policer does not count the packet either. Note that this change does not affect marking using policers.
To enable serial mode for ingress and egress policers on the PFC3C or PFC3CXL, use the following new command in global configuration mode. The no form of the command disables serial mode and resets the policing mode to parallel.

```
[no] mls qos police serial
```

- Marking packets after recirculation. Rather than using the trust of the original input interface, the PFC3C and PFC3CXL treat recirculated packets as untrusted. This enhancement allows recirculated packets to be marked by an ingress policy.

- Ingress IP DSCP and MPLS EXP marking at the IP-to-MPLS edge. This PFC3C and PFC3CXL enhancement allows you to mark both the IP DSCP bits (set ip dscp) and the MPLS EXP bits (set mpls exp) during MPLS label imposition. Note that if you do not issue the set mpls exp command, the router copies the IP DSCP bits to EXP.

- Ingress EXP marking does not affect locally routed IP-to-IP traffic. With the PFC3C and PFC3CXL, you can use the no mls qos rewrite ip dscp command to turn off the egress QoS rewrite of PFC QoS logic, which keeps locally routed IP-to-IP traffic from being affected by EXP marking.

- Concurrent CoS and DSCP transparency for Layer 2 VPNs. This PFC3C and PFC3CXL enhancement enables customers to deploy a combination of Layer 2 VPNs and Layer 3 VPNs for use in a triple-play network (video, Voice over IP [VoIP], and data access [Internet]). It also supports Quality of Service (QoS) guarantees for traffic. The feature results in the following enhancements:
 - You can preserve the CoS and DSCP settings for VPLS and SVI-based EoMPLS, by using the platform vfi dot1q-transparency command in conjunction with the no mls qos rewrite ip dscp command.
 - The no mls qos rewrite ip dscp command can now be used with MPLS. Note that the router must be in PFC3C or PFC3CXL mode, which means that the router cannot contain any Cisco 7600 SIP-600 or WS-X6xxxx cards (with a DFC3B or DFC3BXL).
 - Because the no mls qos rewrite ip dscp command is now compatible with MPLS, Layer 3 VPNs can now be terminated on the same provider edge (PE).

- A new cli command mls qos recirc untrust is used to prevent QoS data from getting reset during the second pass lookup over internal vlans for the mvpn case.

Note

For complete syntax and usage information for the command mls qos recirc untrust, refer to the Cisco 7600 Series Routers Command References at this URL:

Other Enhancements

- Support for Ethernet over MPLS (EoMPLS) control word
- ACL counters have been enhanced to include counts of packets coming from the route processor (RP)
- IPv6 packet fragments handled in the hardware

Unsupported Features

The following Sup720 features are not supported on the RSP720:

- Server load balancing (SLB)
Accessing Flash Memory on the RSP720

Table 4-1 lists the names of the flash memory devices on the RSP720. To access the appropriate flash memory (internal or external), use these keywords when you issue software commands through the command line interface (CLI):

<table>
<thead>
<tr>
<th>CLI Keyword</th>
<th>Used to access...</th>
</tr>
</thead>
<tbody>
<tr>
<td>bootdisk:</td>
<td>Internal flash memory on the active route processor (RP)</td>
</tr>
<tr>
<td>sup-bootdisk:</td>
<td>Internal flash memory on the active switch processor (SP)</td>
</tr>
<tr>
<td>slavebootdisk:</td>
<td>Internal flash memory on the redundant route processor (RP)</td>
</tr>
<tr>
<td>slavesup-bootdisk:</td>
<td>Internal flash memory on the redundant switch processor (SP)</td>
</tr>
<tr>
<td>disk0:</td>
<td>External flash memory on active RSP (Disk 0 on front panel)</td>
</tr>
<tr>
<td>disk1:</td>
<td>External flash memory on active RSP (Disk 1 on front panel)</td>
</tr>
<tr>
<td>slavedisk0:</td>
<td>External flash memory on redundant RSP (Disk 0 on front panel)</td>
</tr>
<tr>
<td>slavedisk1:</td>
<td>External flash memory on redundant RSP (Disk 1 on front panel)</td>
</tr>
</tbody>
</table>

Configuring route switch processor 720 Ports

route switch processor 720 port 1 has a small form-factor pluggable (SFP) connector and has no unique configuration options.

route switch processor 720 port 2 has an RJ-45 connector and an SFP connector (default). To use the RJ-45 connector, you must change the configuration.

To configure port 2 on a route switch processor 720 to use either the RJ-45 connector or the SFP connector, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface gigabitethernet slot/2</td>
<td>Selects the Ethernet port to be configured.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# media-type {rj45</td>
<td>sfp} or</td>
</tr>
<tr>
<td>Router(config-if)# no media-type</td>
<td>Reverts to the default configuration (SFP module).</td>
</tr>
</tbody>
</table>

This example shows how to configure port 2 of an RSP720 in slot 5 to use the RJ-45 connector:

```
Router(config)# interface gigabitethernet 5/2
Router(config-if)# media-type rj45
```

Configuring and Monitoring the Switch Fabric Functionality

These sections describe how to configure the switching mode and monitor the switch fabric functionality that is included on a route switch processor 720:
Understanding How the Switch Fabric Functionality Works

These sections describe how the switch fabric functionality works:

- Switch Fabric Functionality Overview, page 4-7
- Forwarding Decisions for Layer 3-Switched Traffic, page 4-7
- Switching Modes, page 4-7

Switch Fabric Functionality Overview

The switch fabric functionality is built into the route switch processor 720 and creates a dedicated connection between fabric-enabled modules and provides uninterrupted transmission of frames between these modules. In addition to the direct connection between fabric-enabled modules provided by the switch fabric functionality, fabric-enabled modules also have a direct connection to the 32-Gbps forwarding bus.

Forwarding Decisions for Layer 3-Switched Traffic

Either a PFC3 or a Distributed Forwarding Card 3 (DFC3) makes the forwarding decision for Layer 3-switched traffic, as follows:

- A PFC3 makes all forwarding decisions for each packet that enters the router through a module without a DFC3.
- A DFC3 makes all forwarding decisions for each packet that enters the router on a DFC3-enabled module in these situations:
 - If the egress port is on the same module as the ingress port, the DFC3 forwards the packet locally (the packet never leaves the module).
 - If the egress port is on a different fabric-enabled module, the DFC3 sends the packet to the egress module, which sends it out the egress port.
 - If the egress port is on a different nonfabric-enabled module, the DFC3 sends the packet to the route switch processor 720. The route switch processor 720 fabric interface transfers the packet to the 32-Gbps switching bus, where it is received by the egress module and is sent out the egress port.

Switching Modes

With a route switch processor 720, traffic is forwarded to and from modules in one of the following modes:

- Compact mode—The router uses this mode for all traffic when only fabric-enabled modules are installed. In this mode, a compact version of the DBus header (32 bytes) is forwarded over the switch fabric channel, which provides the best possible performance.
• Truncated mode—The router uses this mode for traffic between fabric-enabled modules when there are both fabric-enabled and nonfabric-enabled modules installed. In this mode, the router sends a truncated version of the traffic (the first 64 bytes of the frame) over the switch fabric channel.

• Bus mode—The router uses this mode for traffic between nonfabric-enabled modules and for traffic between a nonfabric-enabled module and a fabric-enabled module. In this mode, all traffic passes between the local bus and the supervisor engine or RSP bus.

Table 4-2 shows the switching modes used with fabric-enabled and nonfabric-enabled modules installed.

Table 4-2 Switch Fabric Functionality Switching Modes

<table>
<thead>
<tr>
<th>Modules</th>
<th>Switching Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between fabric-enabled modules (when no nonfabric-enabled modules are installed)</td>
<td>Compact¹</td>
</tr>
<tr>
<td>Between fabric-enabled modules (when nonfabric-enabled modules are also installed)</td>
<td>Truncated²</td>
</tr>
<tr>
<td>Between fabric-enabled and nonfabric-enabled modules</td>
<td>Bus</td>
</tr>
<tr>
<td>Between nonfabric-enabled modules</td>
<td>Bus</td>
</tr>
</tbody>
</table>

1. In show commands, displayed as dcef mode for fabric-enabled modules with DFC3 installed; displayed as fabric mode for other fabric-enabled modules.

2. Displayed as fabric mode in show commands.

Configuring the Switch Fabric Functionality

To configure the switching mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# [no] fabric switching-mode allow {bus-mode</td>
<td>{truncated [{threshold [number]]}]})</td>
</tr>
</tbody>
</table>

When configuring the switching mode, note the following information:

• To allow the use of nonfabric-enabled modules or to allow fabric-enabled modules to use bus mode, enter the fabric switching-mode allow bus-mode command.

• To prevent the use of nonfabric-enabled modules or to prevent fabric-enabled modules from using bus mode, enter the no fabric switching-mode allow bus-mode command.

Caution

When you enter the no fabric switching-mode allow bus-mode command, power is removed from any nonfabric-enabled modules installed in the router.

• To allow fabric-enabled modules to use truncated mode, enter the fabric switching-mode allow truncated command.

• To prevent fabric-enabled modules from using truncated mode, enter the no fabric switching-mode allow truncated command.

• To configure how many fabric-enabled modules must be installed before they use truncated mode instead of bus mode, enter the fabric switching-mode allow truncated threshold number command.
• To return to the default truncated-mode threshold, enter the **no fabric switching-mode allow truncated threshold** command.

Monitoring the Switch Fabric Functionality

The switch fabric functionality supports a number of **show** commands for monitoring purposes. A fully automated startup sequence brings the module online and runs the connectivity diagnostics on the ports. These sections describe how to monitor the switch fabric functionality:

- Displaying the Switch Fabric Redundancy Status, page 4-9
- Displaying Fabric Channel Switching Modes, page 4-9
- Displaying the Fabric Status, page 4-10
- Displaying the Fabric Utilization, page 4-10
- Displaying Fabric Errors, page 4-10

Displaying the Switch Fabric Redundancy Status

To display the switch fabric redundancy status, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show fabric active</td>
<td>Displays switch fabric redundancy status.</td>
</tr>
</tbody>
</table>

This example shows how to display the redundancy status of the switch fabric:

```
Router# show fabric active
Active fabric card in slot 5
No backup fabric card in the system
Router#
```

Displaying Fabric Channel Switching Modes

To display the fabric channel switching mode of one or all modules, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# **show fabric switching-mode [module slot_number</td>
<td>Displays fabric channel switching mode of one or all modules.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Slot</th>
<th>Switching Mode</th>
<th>Bus Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>DCEF</td>
<td>Compact</td>
</tr>
<tr>
<td>9</td>
<td>Crossbar</td>
<td>Compact</td>
</tr>
</tbody>
</table>
Displaying the Fabric Status

To display the fabric status of one or all switching modules, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>

This example shows how to display the fabric status of all modules:

```
Router# show fabric status all
```

<table>
<thead>
<tr>
<th>slot</th>
<th>channel</th>
<th>speed</th>
<th>module status</th>
<th>fabric status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>8G</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>8G</td>
<td>OK</td>
<td>Up- Timeout</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>20G</td>
<td>OK</td>
<td>Up- BufError</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>8G</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8G</td>
<td>OK</td>
<td>OK</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>8G</td>
<td>Down- DDRsync</td>
<td>OK</td>
</tr>
</tbody>
</table>

Displaying the Fabric Utilization

To display the fabric utilization of one or all modules, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>

This example shows how to display the fabric utilization of all modules:

```
Router# show fabric utilization all
```

Lo% Percentage of Low-priority traffic.
Hi% Percentage of High-priority traffic.

<table>
<thead>
<tr>
<th>slot</th>
<th>channel</th>
<th>speed</th>
<th>Ingress Lo%</th>
<th>Egress Lo%</th>
<th>Ingress Hi%</th>
<th>Egress Hi%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>20G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>8G</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Displaying Fabric Errors

To display fabric errors of one or all modules, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>

This example shows how to display fabric errors on all modules:

```
Router# show fabric errors all
```

<table>
<thead>
<tr>
<th>Module errors:</th>
<th>slot</th>
<th>channel</th>
<th>crc</th>
<th>hbeat</th>
<th>sync</th>
<th>DDR sync</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>slot</td>
<td>channel</td>
<td>sync</td>
<td>buffer</td>
<td>timeout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Configuring NSF with SSO
Supervisor Engine Redundancy

This chapter describes how to configure supervisor engine redundancy using Cisco nonstop forwarding (NSF) with stateful switchover (SSO).

Note
- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
- NSF with SSO does not support IPv6 multicast traffic. However, for information about how to configure supervisor engine redundancy using route processor redundancy (RPR) and RPR+ (which does support IPv6 multicast traffic), see Chapter 7, “Configuring RPR and RPR+ Supervisor Engine Redundancy.”
- Release 12.2SR does not support single router mode (SRM) with SSO.

This chapter contains these sections:
- Understanding NSF with SSO Supervisor Engine Redundancy, page 5-1
- Supervisor Engine Configuration Synchronization, page 5-9
- NSF Configuration Tasks, page 5-11
- Copying Files to the Redundant Supervisor Engine, page 5-19

Understanding NSF with SSO Supervisor Engine Redundancy

These sections describe supervisor engine redundancy using NSF with SSO:
- NSF with SSO Supervisor Engine Redundancy Overview, page 5-2
- SSO Operation, page 5-2
- NSF Operation, page 5-3
- Cisco Express Forwarding, page 5-3
- Multicast MLS NSF with SSO, page 5-4
NSF with SSO Supervisor Engine Redundancy Overview

With a Supervisor Engine 720, if all of the installed switching modules have DFCs, enter the `fabric switching-mode allow dcef-only` command to disable the Ethernet ports on both supervisor engines, which ensures that all modules are operating in dCEF mode and simplifies switchover to the redundant supervisor engine. (CSCec05612)

Post SRE release, the uplink ports are also enabled in dcef mode for RSP720-10G supervisor engine. The other supervisor engines continue to have the uplink ports disabled.

Cisco 7600 series routers support fault resistance by allowing a redundant supervisor engine to take over if the primary supervisor engine fails. Cisco NSF works with SSO to minimize the amount of time a network is unavailable to its users following a switchover while continuing to forward IP packets. Cisco 7600 series routers also support route processor redundancy (RPR), route processor redundancy plus (RPR+). For information about these redundancy modes, see Chapter 7, “Configuring RPR and RPR+ Supervisor Engine Redundancy.”

The following events cause a switchover:

- A hardware failure on the active supervisor engine
- Clock synchronization failure between supervisor engines
- A manual switchover

SSO Operation

SSO establishes one of the supervisor engines as active while the other supervisor engine is designated as standby, and then SSO synchronizes information between them. A switchover from the active to the redundant supervisor engine occurs when the active supervisor engine fails, or is removed from the router, or is manually shut down for maintenance. This type of switchover ensures that Layer 2 traffic is not interrupted.

In networking devices running SSO, both supervisor engines must be running the same configuration so that the redundant supervisor engine is always ready to assume control following a fault on the active supervisor engine. SSO switchover also preserves FIB and adjacency entries and can forward Layer 3 traffic after a switchover. Configuration information and data structures are synchronized from the active to the redundant supervisor engine at startup and whenever changes to the active supervisor engine configuration occur. Following an initial synchronization between the two supervisor engines, SSO maintains state information between them, including forwarding information.

During switchover, system control and routing protocol execution is transferred from the active supervisor engine to the redundant supervisor engine. The switch requires between 0 and 3 seconds to switchover from the active to the redundant supervisor engine.
NSF Operation

Cisco NSF always runs with SSO and provides redundancy for Layer 3 traffic. NSF works with SSO to minimize the amount of time that a network is unavailable to its users following a switchover. The main purpose of NSF is to continue forwarding IP packets following a supervisor engine switchover.

Cisco NSF is supported by the BGP, OSPF, and IS-IS protocols for routing and is supported by Cisco Express Forwarding (CEF) for forwarding. The routing protocols have been enhanced with NSF-capability and awareness, which means that routers running these protocols can detect a switchover and take the necessary actions to continue forwarding network traffic and to recover route information from the peer devices. The IS-IS protocol can be configured to use state information that has been synchronized between the active and the redundant supervisor engine to recover route information following a switchover instead of information received from peer devices.

A networking device is NSF-aware if it is running NSF-compatible software. A device is NSF-capable if it has been configured to support NSF; it will rebuild routing information from NSF-aware or NSF-capable neighbors.

Each protocol depends on CEF to continue forwarding packets during switchover while the routing protocols rebuild the Routing Information Base (RIB) tables. After the routing protocols have converged, CEF updates the FIB table and removes stale route entries. CEF then updates the line cards with the new FIB information.

Cisco Express Forwarding

A key element of NSF is packet forwarding. In a Cisco networking device, packet forwarding is provided by Cisco Express Forwarding (CEF). CEF maintains the FIB, and uses the FIB information that was current at the time of the switchover to continue forwarding packets during a switchover. This feature reduces traffic interruption during the switchover.

During normal NSF operation, CEF on the active supervisor engine synchronizes its current FIB and adjacency databases with the FIB and adjacency databases on the redundant supervisor engine. Upon switchover of the active supervisor engine, the redundant supervisor engine initially has FIB and adjacency databases that are mirror images of those that were current on the active supervisor engine. For platforms with intelligent line cards, the line cards will maintain the current forwarding information over a switchover. For platforms with forwarding engines, CEF will keep the forwarding engine on the redundant supervisor engine current with changes that are sent to it by CEF on the active supervisor engine. The line cards or forwarding engines will be able to continue forwarding after a switchover as soon as the interfaces and a data path are available.

As the routing protocols start to repopulate the RIB on a prefix-by-prefix basis, the updates will cause prefix-by-prefix updates to CEF, which it uses to update the FIB and adjacency databases. Existing and new entries will receive the new version (“epoch”) number, indicating that they have been refreshed. The forwarding information is updated on the line cards or forwarding engine during convergence. The supervisor engine signals when the RIB has converged. The software removes all FIB and adjacency entries that have an epoch older than the current switchover epoch. The FIB now represents the newest routing protocol forwarding information.
Multicast MLS NSF with SSO

Note

NSF with SSO does not support IPv6 multicast traffic. If you configure support for IPv6 multicast traffic, configure RPR or RPR+ redundancy.

Multicast multilayer switching (MMLS) NSF with SSO is required so that Layer 3 multicast traffic that is switched by the router is not dropped during switchover. Without MMLS NSF with SSO, the Layer 3 multicast traffic is dropped until the multicast protocols converge.

During the switchover process, traffic is forwarded using the old database (from the previously active supervisor engine). After multicast routing protocol convergence has taken place, the shortcuts downloaded by the newly active MSFC will be merged with the existing flows and marked as new shortcuts. Stale entries will slowly be purged from the database allowing NSF to function during the switchover while ensuring a smooth transition to the new cache.

Because multicast routing protocols such as Protocol Independent Multicast (PIM) sparse mode and PIM dense mode are data driven, multicast packets are leaked to the router during switchover so that the protocols can converge.

Because the traffic does not need to be forwarded by software for control-driven protocols such as bidirectional PIM, the router will continue to leak packets using the old cache for these protocols. The router builds the mroute cache and installs the shortcuts in hardware. After the new routes are learned, a timer is triggered to go through the database and purge the old flows.

Note

Multicast MLS NSF with SSO requires NSF support in the unicast protocols.

Routing Protocols

The routing protocols run only on the MSFC of the active supervisor engine, and they receive routing updates from their neighbor routers. Routing protocols do not run on the MSFC of the redundant supervisor engine. Following a switchover, the routing protocols request that the NSF-aware neighbor devices send state information to help rebuild the routing tables. Alternately, the IS-IS protocol can be configured to synchronize state information from the active to the redundant supervisor engine to help rebuild the routing table on the NSF-capable device in environments where neighbor devices are not NSF-aware. Cisco NSF supports the BGP, OSPF, IS-IS, and EIGRP protocols.

Note

For NSF operation, the routing protocols depend on CEF to continue forwarding packets while the routing protocols rebuild the routing information.

BGP Operation

When an NSF-capable router begins a BGP session with a BGP peer, it sends an OPEN message to the peer. Included in the message is a statement that the NSF-capable device has “graceful” restart capability. Graceful restart is the mechanism by which BGP routing peers avoid a routing flap following a switchover. If the BGP peer has received this capability, it is aware that the device sending the message is NSF-capable. Both the NSF-capable router and its BGP peers need to exchange the graceful restart capability in their OPEN messages at the time of session establishment. If both the peers do not exchange the graceful restart capability, the session will not be graceful restart capable.
If the BGP session is lost during the supervisor engine switchover, the NSF-aware BGP peer marks all the routes associated with the NSF-capable router as stale; however, it continues to use these routes to make forwarding decisions for a set period of time. This functionality prevents packets from being lost while the newly active supervisor engine is waiting for convergence of the routing information with the BGP peers.

After a supervisor engine switchover occurs, the NSF-capable router reestablishes the session with the BGP peer. In establishing the new session, it sends a new graceful restart message that identifies the NSF-capable router as having restarted.

At this point, the routing information is exchanged between the two BGP peers. After this exchange is complete, the NSF-capable device uses the routing information to update the RIB and the FIB with the new forwarding information. The NSF-aware device uses the network information to remove stale routes from its BGP table; the BGP protocol then is fully converged.

If a BGP peer does not support the graceful restart capability, it will ignore the graceful restart capability in an OPEN message but will establish a BGP session with the NSF-capable device. This function will allow interoperability with non-NSF-aware BGP peers (and without NSF functionality), but the BGP session with non-NSF-aware BGP peers will not be graceful restart capable.

Note

BGP support in NSF requires that neighbor networking devices be NSF-aware; that is, the devices must have the graceful restart capability and advertise that capability in their OPEN message during session establishment. If an NSF-capable router discovers that a particular BGP neighbor does not have graceful restart capability, it will not establish an NSF-capable session with that neighbor. All other neighbors that have graceful restart capability will continue to have NSF-capable sessions with this NSF-capable networking device.

OSPF Operation

When an OSPF NSF-capable router performs a supervisor engine switchover, it must perform the following tasks in order to resynchronize its link state database with its OSPF neighbors:

- Relearn the available OSPF neighbors on the network without causing a reset of the neighbor relationship
- Reacquire the contents of the link state database for the network

As quickly as possible after a supervisor engine switchover, the NSF-capable router sends an OSPF NSF signal to neighboring NSF-aware devices. Neighbor networking devices recognize this signal as an indicator that the neighbor relationship with this router should not be reset. As the NSF-capable router receives signals from other routers on the network, it can begin to rebuild its neighbor list.

After neighbor relationships are reestablished, the NSF-capable router begins to resynchronize its database with all of its NSF-aware neighbors. At this point, the routing information is exchanged between the OSPF neighbors. Once this exchange is complete, the NSF-capable device uses the routing information to remove stale routes, update the RIB, and update the FIB with the new forwarding information. The OSPF protocols are then fully converged.

Note

OSPF NSF requires that all neighbor networking devices be NSF-aware. If an NSF-capable router discovers that it has non-NSF-aware neighbors on a particular network segment, it will disable NSF capabilities for that segment. Other network segments composed entirely of NSF-capable or NSF-aware routers will continue to provide NSF capabilities.
IS-IS Operation

When an IS-IS NSF-capable router performs a supervisor engine switchover, it must perform the following tasks in order to resynchronize its link state database with its IS-IS neighbors:

- Relearn the available IS-IS neighbors on the network without causing a reset of the neighbor relationship
- Reacquire the contents of the link state database for the network

The IS-IS NSF feature offers two options when you configure NSF:

- Internet Engineering Task Force (IETF) IS-IS
- Cisco IS-IS

If neighbor routers on a network segment are running a software version that supports the IETF Internet draft for router restartability, they will assist an IETF NSF router that is restarting. With IETF, neighbor routers provide adjacency and link-state information to help rebuild the routing information following a switchover. A benefit of IETF IS-IS configuration is operation between peer devices based on a proposed standard.

Note

If you configure IETF on the networking device, but neighbor routers are not IETF-compatible, NSF will abort following a switchover.

If the neighbor routers on a network segment are not NSF-aware, you must use the Cisco configuration option. The Cisco IS-IS configuration transfers both protocol adjacency and link-state information from the active to the redundant supervisor engine. An advantage of Cisco configuration is that it does not rely on NSF-aware neighbors.

IETF IS-IS Configuration

As quickly as possible after a supervisor engine switchover, the NSF-capable router sends IS-IS NSF restart requests to neighboring NSF-aware devices using the IETF IS-IS configuration. Neighbor networking devices recognize this restart request as an indicator that the neighbor relationship with this router should not be reset, but that they should initiate database resynchronization with the restarting router. As the restarting router receives restart request responses from routers on the network, it can begin to rebuild its neighbor list.

After this exchange is complete, the NSF-capable device uses the link-state information to remove stale routes, update the RIB, and update the FIB with the new forwarding information; IS-IS is then fully converged.

The switchover from one supervisor engine to the other happens within seconds. IS-IS reestablishes its routing table and resynchronizes with the network within a few additional seconds. At this point, IS-IS waits for a specified interval before it will attempt a second NSF restart. During this time, the new redundant supervisor engine will boot up and synchronize its configuration with the active supervisor engine. The IS-IS NSF operation waits for a specified interval to ensure that connections are stable before attempting another restart of IS-IS NSF. This functionality prevents IS-IS from attempting back-to-back NSF restarts with stale information.

Cisco IS-IS Configuration

Using the Cisco configuration option, full adjacency and LSP information is saved, or checkpointed, to the redundant supervisor engine. Following a switchover, the newly active supervisor engine maintains its adjacencies using the check-pointed data, and can quickly rebuild its routing tables.
Understanding NSF with SSO Supervisor Engine Redundancy

Note
Following a switchover, Cisco IS-IS NSF has complete neighbor adjacency and LSP information; however, it must wait for all interfaces to come on line that had adjacencies prior to the switchover. If an interface does not come on line within the allocated interface wait time, the routes learned from these neighbor devices are not considered in routing table recalculation. IS-IS NSF provides a command to extend the wait time for interfaces that, for whatever reason, do not come on line in a timely fashion.

The switchover from one supervisor engine to the other happens within seconds. IS-IS reestablishes its routing table and resynchronizes with the network within a few additional seconds. At this point, IS-IS waits for a specified interval before it will attempt a second NSF restart. During this time, the new redundant supervisor engine will boot up and synchronize its configuration with the active supervisor engine. After this synchronization is completed, IS-IS adjacency and LSP data is check-pointed to the redundant supervisor engine; however, a new NSF restart will not be attempted by IS-IS until the interval time expires. This functionality prevents IS-IS from attempting back-to-back NSF restarts.

Note
Effective with Cisco IOS Release 15.2(4)S, Cisco 7600 series routers support RFC 6213. If you configure IS-IS to use BFD on an interface, the BFD session must come up before the IS-IS adjacency comes up. If the BFD session is down, then the ISIS adjacency will not come up.

EIGRP Operation

When an EIGRP NSF-capable router initially comes back up from an NSF restart, it has no neighbor and its topology table is empty. The router is notified by the redundant (now active) supervisor engine when it needs to bring up the interfaces, reacquire neighbors, and rebuild the topology and routing tables. The restarting router and its peers must accomplish these tasks without interrupting the data traffic directed toward the restarting router. EIGRP peer routers maintain the routes learned from the restarting router and continue forwarding traffic through the NSF restart process.

To prevent an adjacency reset by the neighbors, the restarting router will use a new Restart (RS) bit in the EIGRP packet header to indicate a restart. The RS bit will be set in the hello packets and in the initial INIT update packets during the NSF restart period. The RS bit in the hello packets allows the neighbors to be quickly notified of the NSF restart. Without seeing the RS bit, the neighbor can only detect an adjacency reset by receiving an INIT update or by the expiration of the hello hold timer. Without the RS bit, a neighbor does not know if the adjacency reset should be handled using NSF or the normal startup method.

When the neighbor receives the restart indication, either by receiving the hello packet or the INIT packet, it will recognize the restarting peer in its peer list and will maintain the adjacency with the restarting router. The neighbor then sends it topology table to the restarting router with the RS bit set in the first update packet indicating that it is NSF-aware and is helping out the restarting router. The neighbor does not set the RS bit in their hello packets, unless it is also a NSF restarting neighbor.

Note
A router may be NSF-aware but may not be participating in helping out the NSF restarting neighbor because it is coming up from a cold start.

If at least one of the peer routers is NSF-aware, the restarting router would then receive updates and rebuild its database. The restarting router must then find out if it had converged so that it can notify the routing information base (RIB). Each NSF-aware router is required to send an end of table (EOT) marker in the last update packet to indicate the end of the table content. The restarting router knows it has converged when it receives the EOT marker. The restarting router can then begin sending updates.
An NSF-aware peer would know when the restarting router had converged when it receives an EOT indication from the restarting router. The peer then scans its topology table to search for the routes with the restarted neighbor as the source. The peer compares the route timestamp with the restart event timestamp to determine if the route is still available. The peer then goes active to find alternate paths for the routes that are no longer available through the restarted router.

When the restarting router has received all EOT indications from its neighbors or when the NSF converge timer expires, EIGRP will notify the RIB of convergence. EIGRP waits for the RIB convergence signal and then floods its topology table to all awaiting NSF-aware peers.

NSF Benefits and Restrictions

Cisco NSF provides these benefits:

- **Improved network availability**
 NSF continues forwarding network traffic and application state information so that user session information is maintained after a switchover.
- **Overall network stability**
 Network stability may be improved with the reduction in the number of route flaps that had been created when routers in the network failed and lost their routing tables.
- **Neighboring routers do not detect a link flap**
 Because the interfaces remain up throughout a switchover, neighboring routers do not detect a link flap (the link does not go down and come back up).
- **Prevents routing flaps**
 Because SSO continues forwarding network traffic in the event of a switchover, routing flaps are avoided.
- **No loss of user sessions**
 User sessions established before the switchover are maintained.

Cisco NSF with SSO has these restrictions:

- For NSF operation, you must have SSO configured on the device.
- NSF with SSO supports IP Version 4 traffic and protocols only.
- Enhanced Object Tracking is not SSO-aware and cannot be used with Hot Standby Routing Protocol (HSRP), Virtual Router Redundancy Protocol (VRRP), or Gateway Load Balancing Protocol (GLBP) in SSO mode.
- All neighboring devices participating in BGP NSF must be NSF-capable and configured for BGP graceful restart.
- OSPF NSF for virtual links is not supported.
- All OSPF networking devices on the same network segment must be NSF-aware (running an NSF software image).
- For IETF IS-IS, all neighboring devices must be running an NSF-aware software image.
- IPv4 Multicast NSF with SSO is supported by the PFC3 only.
- The underlying unicast protocols must be NSF-aware in order to use multicast NSF with SSO.
- Starting from Release 12.2(33)SRE, bidirectional forwarding detection (BFD) is SSO-aware and is supported by NSF with SSO.
SSO-aware Virtual Router Redundancy Protocol

The Stateful Switchover (SSO) - aware Virtual Router Redundancy Protocol (VRRP) feature enables the Cisco IOS VRRP subsystem software detect the following:

- Installation of a standby Route Processor (RP)
- Configuration of the system in the SSO redundancy mode

In the event of an active RP failure, the VRRP group itself remains unchanged, and traffic continues to be forwarded through the current active gateway router. The SSO-aware VRRP feature preserves the forwarding path for traffic destined to VRRP virtual IP through an RP switchover. Configuring SSO on the edge router enables the traffic on the Ethernet links to continue during an RP failover: Ethernet traffic requires no switchover to another VRRP router. During a switchover, the synchronization of VRRP SSO information to the standby RP allows the continuous forwarding of the traffic that is sent with the VRRP virtual IP address without loss of data or path change.

Note: The addition of SSO to the VRRP redundancy scheme provides high availability of gateway.

Supervisor Engine Configuration Synchronization

These sections describe supervisor engine configuration synchronization:

- Supervisor Engine Redundancy Guidelines and Restrictions, page 5-9
- Redundancy Configuration Guidelines and Restrictions, page 5-9

Note: Configuration changes made through SNMP are not synchronized to the redundant supervisor engine. After you configure the router through SNMP, copy the running-config file to the startup-config file on the active supervisor engine to trigger synchronization of the startup-config file on the redundant supervisor engine.

Supervisor Engine Redundancy Guidelines and Restrictions

These sections describe supervisor engine redundancy guidelines and restrictions:

- Redundancy Configuration Guidelines and Restrictions, page 5-9
- Hardware Configuration Guidelines and Restrictions, page 5-10
- Configuration Mode Restrictions, page 5-10

Redundancy Configuration Guidelines and Restrictions

These guidelines and restrictions apply to all redundancy modes:

- With a Supervisor Engine 720, if all the installed switching modules have DFCs, enter the `fabric switching-mode allow dcef-only` command to disable the Ethernet ports on both supervisor engines, which ensures that all modules are operating in dCEF mode and simplifies switchover to the redundant supervisor engine.
Post SRE release, the uplink ports are also enabled in dcef mode for RSP720-10G supervisor engine. The other supervisor engines continue to have the uplink ports disabled.

- Supervisor engine redundancy does not provide supervisor engine mirroring or supervisor engine load balancing. Only one supervisor engine is active.
- Configuration changes made through SNMP are not synchronized to the redundant supervisor engine. After you configure the router through SNMP, copy the running-config file to the startup-config file on the active supervisor engine to trigger synchronization of the startup-config file on the redundant supervisor engine.
- Supervisor engine switchover takes place after the failed supervisor engine completes a core dump. A core dump can take up to 15 minutes. To get faster switchover time, disable core dump on the supervisor engines.
- With a Supervisor Engine 720, if a fabric synchronization error occurs, the default behavior is to switchover to the redundant supervisor engine. In some cases, a switchover to the redundant supervisor engine is more disruptive than powering down the module that caused the fabric synchronization error. Enter the `no fabric error-recovery fabric-switchover` command to disable the switchover and power down the module with the fabric synchronization error.

Hardware Configuration Guidelines and Restrictions

For redundant operation, the following guidelines and restrictions must be met:

- Cisco IOS software running on the supervisor engine and the MSFC supports redundant configurations when the supervisor engines and MSFC routers are identical. If they are not identical, one will boot first and become active and hold the other supervisor engine and MSFC in a reset condition.
- Each supervisor engine must have the resources to run the router on its own, which means all supervisor engine resources are duplicated, including all Flash devices.
- Make separate console connections to each supervisor engine. Do not connect a Y cable to the console ports.
- Both supervisor engines must have the same system image (see the “Copying Files to the Redundant Supervisor Engine” section on page 5-19).

Note

If a newly installed redundant supervisor engine has the Catalyst operating system installed, remove the active supervisor engine and boot the router with only the redundant supervisor engine installed. Follow the procedures in the current release notes to convert the redundant supervisor engine from the Catalyst operating system.

- The configuration register in the startup-config must be set to autoboot.

Note

There is no support for booting from the network.

Configuration Mode Restrictions

The following configuration restrictions apply during the startup synchronization process:
• You cannot perform configuration changes during the startup (bulk) synchronization. If you attempt to make configuration changes during this process, the following message is generated:

 Config mode locked out till standby initializes

• If configuration changes occur at the same time as a supervisor engine switchover, these configuration changes are lost.

NSF Configuration Tasks

The following sections describe the configuration tasks for the NSF feature:

- Configuring SSO, page 5-11
- Configuring Multicast MLS NSF with SSO, page 5-12
- Verifying Multicast NSF with SSO, page 5-12
- Configuring CEF NSF, page 5-13
- Verifying CEF NSF, page 5-13
- Configuring BGP NSF, page 5-13
- Verifying BGP NSF, page 5-14
- Configuring OSPF NSF, page 5-15
- Verifying OSPF NSF, page 5-15
- Configuring IS-IS NSF, page 5-16
- Verifying IS-IS NSF, page 5-16

Configuring SSO

You must configure SSO in order to use NSF with any supported protocol. To configure SSO, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# redundancy</td>
</tr>
<tr>
<td></td>
<td>Enters redundancy configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-red)# mode sso</td>
</tr>
<tr>
<td></td>
<td>Configures SSO. When this command is entered, the redundant supervisor engine is reloaded and begins to work in SSO mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show running-config</td>
</tr>
<tr>
<td></td>
<td>Verifies that SSO is enabled.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show redundancy states</td>
</tr>
<tr>
<td></td>
<td>Displays the operating redundancy mode.</td>
</tr>
</tbody>
</table>

This example shows how to configure the system for SSO and display the redundancy state:

 Router> enable
 Router> configure terminal
 Enter configuration commands, one per line. End with CNTL/Z.
 Router(config)# redundancy
 Router(config-red)# mode sso
 Router(config-red)# end
 Router# show redundancy states
 my state = 13 -ACTIVE
peer state = 8 -STANDBY HOT
 Mode = Duplex
 Unit = Primary
 Unit ID = 5

Redundancy Mode (Operational) = sso
Redundancy Mode (Configured) = sso
Split Mode = Disabled
Manual Swact = Enabled
Communications = Up

 client count = 29
 client_notification_TMR = 30000 milliseconds
 keep_alive_TMR = 9000 milliseconds
 keep_alive_count = 1
 keep_alive_threshold = 18
 RF debug mask = 0x0

Router#

Configuring Multicast MLS NSF with SSO

Note
The commands in this section are optional and can be used to customize your configuration. For most users, the default settings are adequate.

Multicast MLS NSF with SSO is on by default when SSO is selected as the redundancy mode. To configure multicast NSF with SSO parameters, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# mls ip multicast sso convergence-time time</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# mls ip multicast sso leak interval</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# mls ip multicast sso leak percentage</td>
</tr>
</tbody>
</table>

Verifying Multicast NSF with SSO

To verify the multicast NSF with SSO settings, enter the show mls ip multicast sso command:

router# show mls ip multicast sso
Multicast SSO is enabled
Multicast HA Parameters

protocol convergence timeout	120 secs
flow leak percent	10
flow leak interval	60 secs

Configuring CEF NSF

The CEF NSF feature operates by default while the networking device is running in SSO mode. No configuration is necessary.

Verifying CEF NSF

To verify that CEF is NSF-capable, enter the `show cef state` command:

```
router# show cef state

CEF Status [RP]
CEF enabled/running
dCEF enabled/running
CEF switching enabled/running
CEF default capabilities:
Always FIB switching: yes
Default CEF switching: yes
Default dCEF switching: yes
Update HWIDB counters: no
Drop multicast packets: no
.
.
CEF NSF capable: yes
IPC delayed func on SSO: no
RRP state:
I am standby RRP: no
My logical slot: 0
RF PeerComm: no
```

Configuring BGP NSF

Note

You must configure BGP graceful restart on all peer devices participating in BGP NSF.

To configure BGP for NSF, perform this task on each of the BGP NSF peer devices:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
NSF Configuration Tasks

Chapter 5 Configuring NSF with SSO Supervisor Engine Redundancy

NSF Configuration Tasks

NSF Configuration Tasks

Verifying BGP NSF

To verify BGP NSF, you must check that the graceful restart function is configured on the SSO-enabled networking device and on the neighbor devices. To verify, follow these steps:

Step 1
Verify that “bgp graceful-restart” appears in the BGP configuration of the SSO-enabled router by entering the `show running-config` command:

```
Router# show running-config

router bgp 120

gbgp graceful-restart
neighbor 10.2.2.2 remote-as 300
```

Step 2
Repeat step 1 on each of the BGP neighbors.

Step 3
On the SSO device and the neighbor device, verify that the graceful restart function is shown as both advertised and received, and confirm the address families that have the graceful restart capability. If no address families are listed, then BGP NSF also will not occur:

```
router# show ip bgp neighbors x.x.x.x

BGP neighbor is 192.168.2.2,  remote AS YY, external link
BGP version 4, remote router ID 192.168.2.2
BGP state = Established, up for 00:01:18
Last read 00:00:17, hold time is 180, keepalive interval is 60 seconds
Neighbor capabilities:
  Route refresh:advertised and received(new)
  Address family IPv4 Unicast:advertised and received
  Address family IPv4 Multicast:advertised and received
  Graceful Restart Capability:advertised and received
  Remote Restart timer is 120 seconds
  Address families preserved by peer:
    IPv4 Unicast, IPv4 Multicast
Received 1539 messages, 0 notifications, 0 in queue
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 Router(config)# <code>router bgp as-number</code></td>
<td>Enables a BGP routing process, which places the router in router configuration mode.</td>
</tr>
<tr>
<td>Step 3 Router(config-router)# <code>bgp graceful-restart</code></td>
<td>Enables the BGP graceful restart capability, starting BGP NSF. If you enter this command after the BGP session has been established, you must restart the session for the capability to be exchanged with the BGP neighbor. Use this command on the restarting router and all of its peers.</td>
</tr>
</tbody>
</table>

Command Purpose

- **Step 2**
 - `router bgp as-number`: Enables a BGP routing process, which places the router in router configuration mode.
- **Step 3**
 - `bgp graceful-restart`: Enables the BGP graceful restart capability, starting BGP NSF. If you enter this command after the BGP session has been established, you must restart the session for the capability to be exchanged with the BGP neighbor. Use this command on the restarting router and all of its peers.
Configuring OSPF NSF

Note: All peer devices participating in OSPF NSF must be made OSPF NSF-aware, which happens automatically once you install an NSF software image on the device.

To configure OSPF NSF, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enjoys global configuration mode.</td>
</tr>
<tr>
<td>Router# configure</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables an OSPF routing process, which places the router in router configuration mode.</td>
</tr>
<tr>
<td>Router(config)# router</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables NSF operations for OSPF.</td>
</tr>
<tr>
<td>Router(config-router)#</td>
<td></td>
</tr>
</tbody>
</table>

Verifying OSPF NSF

To verify OSPF NSF, you must check that the NSF function is configured on the SSO-enabled networking device. To verify OSPF NSF, follow these steps:

Step 1: Verify that 'nsf' appears in the OSPF configuration of the SSO-enabled device by entering the show running-config command:

```
Router# show running-config
```

```
router ospf 120
log-adjacency-changes
nsf
network 192.168.20.0 0.0.0.255 area 0
network 192.168.30.0 0.0.0.255 area 1
network 192.168.40.0 0.0.0.255 area 2
```

Step 2: Enter the show ip ospf command to verify that NSF is enabled on the device:

```
router> show ip ospf
```

```
Routing Process "ospf 1" with ID 192.168.2.1 and Domain ID 0.0.0.1
Supports only single TOS(TOS0) routes
Supports opaque LSA
SPF schedule delay 5 secs, Hold time between two SPFIs 10 secs
Minimum LSA interval 5 secs. Minimum LSA arrival 1 secs
Number of external LSA 0. Checksum Sum 0x0
Number of opaque AS LSA 0. Checksum Sum 0x0
Number of DCbitless external and opaque AS LSA 0
Number of DoNotAge external and opaque AS LSA 0
Number of areas in this router is 1. 1 normal 0 stub 0 nssa
```
Configuring IS-IS NSF

To configure IS-IS NSF, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# router isis [tag]</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-router)# nsf [cisco</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-router)# nsf interval [minutes]</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-router)# nsf t3 [manual [seconds]</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-router)# nsf interface wait seconds</td>
</tr>
</tbody>
</table>

Verifying IS-IS NSF

To verify IS-IS NSF, you must check that the NSF function is configured on the SSO-enabled networking device. To verify IS-IS NSF, follow these steps:

Step 1 Verify that “nsf” appears in the IS-IS configuration of the SSO-enabled device by entering the `show running-config` command. The display will show either the Cisco IS-IS or the IETF IS-IS configuration. The following display indicates that the device uses the Cisco implementation of IS-IS NSF:
Chapter 5 Configuring NSF with SSO Supervisor Engine Redundancy

NSF Configuration Tasks

Step 2 If the NSF configuration is set to **cisco**, enter the `show isis nsf` command to verify that NSF is enabled on the device. Using the Cisco configuration, the display output will be different on the active and redundant RPs. The following display shows sample output for the Cisco configuration on the active RP. In this example, note the presence of “NSF restart enabled”:

```
router# show isis nsf

NSF is ENABLED, mode 'cisco'

RP is ACTIVE, standby ready, bulk sync complete
NSF interval timer expired (NSF restart enabled)
Checkpointing enabled, no errors
Local state:ACTIVE, Peer state:STANDBY HOT, Mode:SSO
```

The following display shows sample output for the Cisco configuration on the standby RP. In this example, note the presence of “NSF restart enabled”:

```
router# show isis nsf

NSF enabled, mode 'cisco'
RP is STANDBY, chkpt msg receive count:ADJ 2, LSP 7
NSF interval timer notification received (NSF restart enabled)
Checkpointing enabled, no errors
Local state:STANDBY HOT, Peer state:ACTIVE, Mode:SSO
```

Step 3 If the NSF configuration is set to **ietf**, enter the `show isis nsf` command to verify that NSF is enabled on the device. The following display shows sample output for the IETF IS-IS configuration on the networking device:

```
router# show isis nsf

NSF is ENABLED, mode IETF
NSF pdb state:Inactive
NSF L1 active interfaces:0
NSF L1 active LSPs:0
NSF interfaces awaiting L1 CSNP:0
Awaiting L1 LSPs:
NSF L2 active interfaces:0
NSF L2 active LSPs:0
NSF interfaces awaiting L2 CSNP:0
Awaiting L2 LSPs:
Interface:Serial3/0/2
  NSF L1 Restart state:Running
  NSF p2p Restart retransmissions:0
  Maximum L1 NSF Restart retransmissions:3
  L1 NSF ACK requested:FALSE
  L1 NSF CSNP requested:FALSE
  NSF L2 Restart state:Running
  NSF p2p Restart retransmissions:0
  Maximum L2 NSF Restart retransmissions:3
  L2 NSF ACK requested:FALSE
Interface:GigabitEthernet2/0/0
  NSF L1 Restart state:Running
  NSF L1 Restart retransmissions:0
  Maximum L1 NSF Restart retransmissions:3
  L1 NSF ACK requested:FALSE
  L1 NSF CSNP requested:FALSE
```
Configuring EIGRP NSF

To configure EIGRP NSF, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables an EIGRP routing process, which places the router in router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Enables EIGRP NSF. Use this command on the restarting router and all of its peers.</td>
</tr>
</tbody>
</table>

Command Purpose

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Router# configure terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# router eigrp as-number</td>
</tr>
<tr>
<td></td>
<td>Enables an EIGRP routing process, which places the router in router configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-router)# nsf</td>
</tr>
<tr>
<td></td>
<td>Enables EIGRP NSF. Use this command on the restarting router and all of its peers.</td>
</tr>
</tbody>
</table>

Verifying EIGRP NSF

To verify EIGRP NSF, you must check that the NSF function is configured on the SSO-enabled networking device. To verify EIGRP NSF, follow these steps:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Verify that “nsf” appears in the EIGRP configuration of the SSO-enabled device by entering the show running-config command:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router# show running-config</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>router eigrp 100</td>
</tr>
<tr>
<td></td>
<td>auto-summary</td>
</tr>
<tr>
<td></td>
<td>nsf</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Enter the show ip protocols command to verify that NSF is enabled on the device:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router# show ip protocols</td>
</tr>
<tr>
<td></td>
<td>*** IP Routing is NSF aware ***</td>
</tr>
<tr>
<td></td>
<td>Routing Protocol is "eigrp 100"</td>
</tr>
</tbody>
</table>
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
Default networks flagged in outgoing updates
Default networks accepted from incoming updates
EIGRP metric weight K1=1, K2=0, K3=1, K4=0, K5=0
EIGRP maximum hopcount 100
EIGRP maximum metric variance 1
Redistributing: eigrp 100
EIGRP NSF-aware route hold timer is 240s
EIGRP NSF enabled
 NSF signal timer is 20s
 NSF converge timer is 120s
Automatic network summarization is in effect
Maximum path: 4
Routing for Networks:
Routing Information Sources:
 Gateway Distance Last Update
Distance: internal 90 external 170

Synchronizing the Supervisor Engine Configurations

During normal operation, the startup-config and config-registers configurations are synchronized by default between the two supervisor engines. In a switchover, the new active supervisor engine uses the current configuration.

Copying Files to the Redundant Supervisor Engine

Enter this command to copy a file to the disk0: device on a redundant supervisor engine:

Router# copy source_device:source_filename slavedisk0:target_filename

Enter this command to copy a file to the bootflash: device on a redundant supervisor engine:

Router# copy source_device:source_filename slavesup-bootflash:target_filename

Enter this command to copy a file to the bootflash: device on a redundant MSFC:

Router# copy source_device:source_filename slavebootflash:target_filename
Copying Files to the Redundant Supervisor Engine
ISSU and eFSU on Cisco 7600 Series Routers

This chapter provides information about how to perform a software upgrade on a Cisco 7600 series router using the In Service Software Upgrade feature.

This chapter contains the following sections:
- ISSU and eFSU Overview, page 6-1
- Cisco 7600 ISSU and eFSU Support, page 6-4
- Cisco 7600 ISSU and eFSU Guidelines and Limitations, page 6-7
- Performing an In Service Software Upgrade, page 6-8
- Upgrading a Non-eFSU Image to an eFSU Image, page 6-20
- Command Reference, page 6-20

ISSU and eFSU Overview

In most networks, software upgrades require system downtime. With the In Service Software Upgrade (ISSU) feature, however, you can upgrade the router software while the router continues to forward traffic. Thus, ISSU increases network availability and reduces the downtime caused by software upgrades.

The Cisco 7600 series router supports the following types of upgrade procedures. The same ISSU commands and upgrade procedure are used for both types of upgrades.

- ISSU—Provides software upgrades with minimal system downtime. This feature is available for software upgrades between Cisco IOS software releases that have the same line card software. (Available in Cisco IOS Release 12.2SRB1 and later releases.)
- enhanced Fast Software Upgrade (eFSU)—A subset of ISSU, eFSU helps to minimize outage time during a software upgrade by preloading new line card software images onto supported line cards. This feature is available for upgrades between releases that have different line card software. (Available in Cisco IOS Release 12.2SRB and later releases.)

ISSU uses the existing features of NonStop Forwarding (NSF) with Stateful SwitchOver (SSO) to perform the software upgrade. In a redundant system with two supervisor engines or route switch processors (RSPs), one of the processors is active while the other operates in standby mode, ready to take over processing if the active processor goes down.
ISSU and eFSU Overview

During an in service software upgrade (ISSU or eFSU), new software is loaded onto the standby processor while the active processor continues to operate using the old software. As part of the upgrade, a switchover occurs between the active and standby processors, and the standby processor becomes active and begins running the new software. You can continue with the upgrade to load the new software onto the other processor, or you can abort the upgrade and resume operation with the old software.

If the new software release contains new line card software and the line cards in the router support eFSU, the upgrade process preloads the new line card software onto the line cards. When the switchover occurs (between the active and standby processors), the line cards are restarted with the new software image. By preloading the new software image onto the line cards, eFSU helps to minimize outage time during the software upgrade.

For detailed information about ISSU, see the Cisco IOS In Service Software Upgrade Process document at:

ISSU Overview

Cisco IOS Releases 12.2SRB1 and later support ISSU on Cisco 7600 series routers. During an ISSU upgrade, the router continues to route and forward traffic, which allows you to upgrade from one software release to another with minimal system downtime (between 0 and 3 seconds).

ISSU is available for NSF/SSO compliant protocols and software features on the router. See the “ISSU Support” section on page 6-5 for a list of Cisco 7600 protocols and features that support ISSU.

Note To perform an ISSU upgrade, the old and new Cisco IOS software releases must have the same line card software. If the releases have different line card software, the router performs an eFSU upgrade.

eFSU Overview

eFSU helps to minimize outage time during an in service software upgrade by preloading a new software image onto line cards that support the feature. During the software upgrade process, a switchover occurs between the active and standby supervisor engines or RSPs. When the switchover occurs, the line cards are restarted. Line cards that support eFSU are restarted with the new, preloaded software image.

The following Cisco 7600 line cards support eFSU:

- SIP-400 and SIP-600
- ESM-2x10GE and ESM-20x1GE-3C
- 67.xx line cards

All other Cisco 7600 line cards undergo a hard reset at switchover, and the software image is loaded after the line card is restarted.

Note To support eFSU, a line card must have 512 MB of memory, with enough memory available to hold the new software image. If enough memory is not available, the software preload fails and the line card undergoes a reset during the switchover.
Outage Time and Support Considerations

During an eFSU upgrade, line cards are restarted or reset after the switchover that occurs between processors. Because the line cards are restarted or reset, any links attached to the line cards flap and traffic processing is disrupted until protocols and software features are brought back online. The length of time that line card processing is disrupted (outage time) depends on whether the eFSU process was able to preload a new software image onto the line card.

- For line cards that support eFSU, the outage time is similar to that in RPR+ mode.
- For line cards that do not support eFSU, the outage time is similar to that in RPR mode.

Once the new software is downloaded (`issu loadversion`), you can use the `show issu outage slot all` command to display the maximum outage time for installed line cards. See the “Displaying Maximum Outage Time for Installed Line Cards (Optional)” section on page 6-14 for a command example.

If you attempt to load an earlier version of software onto the router and the new (earlier) version does not support a currently installed line card, one of two things happens:

- If you use the `force` option in the `issu loadversion` command, the router is placed in RPR mode.
- If you omit the `force` option, the eFSU process is aborted and error messages are displayed to indicate that there is a problem with the line card.

Reserving Line Card Memory

On line cards that support eFSU, the router automatically reserves memory on the line card to store the new software image (decompressed format). The amount of memory needed varies according to line card type.

Although we do not recommend it, you can issue the following command to keep the router from reserving memory for the software preload (where `slot-num` specifies which slot the line card is installed in):

```
no mdr download reserve memory image slot slot-num
```

Note

If a line card does not have enough memory available to hold the new software image, software preload fails and the card undergoes a reset during the switchover. Outage time is similar to that with RPR (because the new line card image must be loaded after the line card is restarted).

To determine how much memory will be reserved on the line card, use the `show mdr download image` command, as shown in the following example (for a Cisco 7600 SIP-600):

```
SIP-600# show mdr download image
Pre-download information
Slot CPU In-Progress Complete LC Mem Resv (bytes)
 1 0 N N 0
 1 1 N N 0
 2 0 N N 0
 2 1 N N 0
 3 0 N N 0
 3 1 N N 0
 4 0 N N 0
 4 1 N N 0
 5 0 N N 0
 5 1 N N 0
 6 0 N Y 36175872
 6 1 N N 0
 7 0 N N 0
 7 1 N N 0
```
eFSU Operation

During a software upgrade, the router performs the following steps on line cards that support eFSU. These steps occur automatically during the upgrade process, and no user intervention is required.

- Reserves the necessary memory for the new Cisco IOS software image on each installed line card (if the line card supports software preload).
- Preloads a new software image onto supported line cards as part of the `issu loadversion` command.
- Restarts line cards with the new software image when switchover occurs (`issu runversion`).
- If a rollback or abort occurs, the router restores the line card software to its original version. To provide as little disruption as possible, the router preloads the original software version back onto the line card. Once the rollback or abort is completed, the line card is restarted with the original software version.

Error Handling for Line Card Software Preload

If problems occur during line card software preload, the router takes the following actions:

- Line card crash during load version—The line card is reset when switchover occurs.
- Line card not active when eFSU started—No power is provided to the line card during the software upgrade, and the line card is reset when the process ends. The same action is applied to a line card that is inserted into the router after the software upgrade process has begun.
- Line card crash during run version or during rollback—The line card boots with the software image version that corresponds to the software image that is present on the active supervisor engine or RSP.

Cisco 7600 ISSU and eFSU Support

During an ISSU upgrade, NSF/SSO compliant protocols and software features continue to operate and minimal system downtime occurs. Routing protocols and software features that are not NSF/SSO compliant are restarted during the upgrade, which means that they stop operating for awhile after the restart until they are brought back online.

To perform an ISSU upgrade, the old and new Cisco IOS software releases must have the same line card software. If the releases have different line card software, the router performs an eFSU upgrade.
ISSU Support

ISSU is supported on the following Cisco 7600 hardware and software:

Availability
- Cisco IOS Release 12.2SRB1 and later

Hardware
- All supported Cisco 7600 chassis (including enhanced [-S] chassis)
- RSP720-3C, RSP720-3CXL, Sup720-3B, Sup720-3BXL, Sup32
- All Cisco 7600 line cards, DFCs, and other modules

Software
- 802.1q
- 802.1x
- ARP
- ATM
- BGP
- Etherchannel (PagP and LACP)
- GLBP
- HDLC
- HSRP
- IPv4
- L2 multicast
- MLP (Multilink PPP)
- NetFlow
- PPP
- QoS
- RIB (routing information base)
- SNMP
- SPAN and Remote SPAN
- STP
- VRF (Virtual Routing and Forwarding)
ISSU Compatibility Matrix for Cisco IOS Software Releases

The following table lists the compatibility matrix for ISSU between various Cisco IOS releases for C7600. If the ISSU is supported between two releases the column is marked as yes and if ISSU is not supported between two releases the corresponding column is marked as no.

<table>
<thead>
<tr>
<th>Cisco IOS Release</th>
<th>12.2 (33) SRB</th>
<th>12.2 (33) SRC</th>
<th>12.2 (33) SRD</th>
<th>12.2 (33) SRE</th>
<th>15.0 (1) S and later releases</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2 (33) SRB</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>12.2 (33) SRC</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>12.2 (33) SRD</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>12.2 (33) SRE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>15.0(1) S and later releases</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

eFSU Support

eFSU is supported on the following Cisco 7600 hardware and software:

Availability
- Cisco IOS Release 12.2SRB and later
- RSP720 and Sup32 support introduced in Release 12.2(33)SRB1

Hardware
- All Cisco 7600 chassis (except the 3-slot chassis, CISCO7603)
- RSP720-3C, RSP720-3CXL, Sup720-3B, Sup720-3BXL, Sup32
- DFC3B, DFC3BXL, DFC3C, DFC3CXL
- ESM-2x10GE, ESM-20x1GE-3C
- SIP-400, SIP-600, 67xx line cards

Unsupported Hardware
- Enhanced FlexWAN, OSM-GE-WAN
- 68xx, 65xx, 64xx, 63xx, and 61xx line cards

Software Support
During an eFSU, Cisco 7600 line cards are restarted, and software features and routing protocols are not available during the restart. Outage time depends on whether the line cards support eFSU (see the “eFSU Overview” section on page 6-2).
Cisco 7600 ISSU and eFSU Guidelines and Limitations

Following is a list of guidelines and limitations for performing an in service software upgrade on Cisco 7600 series routers. Unless otherwise noted, the guidelines apply to both ISSU and eFSU.

- Unsupported Cisco 7600 hardware and software can co-exist with ISSU or eFSU (that is, both can be present in the router). In addition, the router gracefully restarts any unsupported protocols to prevent “black hole” situations.

- To perform an in service software upgrade, a router requires two route processors (RPs): an active RP and a standby RP. On the Cisco 7600 router, two supervisor engines or route switch processors (RSPs) are required because they contain the route processors for the router.

- Both the active and standby supervisor engines or RSPs must have at least 256 MB of flash memory in which to store both the old and new software images prior to the upgrade process.

- The same ISSU commands and upgrade procedure are used for both ISSU and eFSU. The only difference is that during an ISSU upgrade, the line cards are not restarted as they are during an eFSU.

- The router examines the old and new software images and automatically performs the appropriate process (ISSU or eFSU) to upgrade the software image:
 - If the line card software is the same in both the old and new software images, the router performs an ISSU to upgrade the software. System downtime is from 0 to 3 seconds.
 - If the line card software in both images is different, line cards are restarted or reset during the upgrade process. System downtime depends on whether the line cards support eFSU (see the “Outage Time and Support Considerations” section on page 6-3 for more information).

- The ISSU upgrade feature is supported for all software features that support NSF/SSO. Software features that do not support NSF/SSO stop operating for awhile, until they are brought back online after the switchover that occurs during the software upgrade.

- All line cards that support eFSU must have at least 512 MB of memory for software preload to succeed. Otherwise, the preload fails for those line cards.

- Line cards that support eFSU must have enough memory available to hold the new software image. If enough memory is not available, the software preload fails and the cards undergo a reset during the switchover (that occurs between the active and standby supervisor engines or RSPs).

- ISSU and eFSU are supported only in SSO mode. They are not supported in RPR and RPR+ mode.

- Online insertion and replacement (OIR) is not supported during an in service software upgrade. If you attempt to insert a new line card in the router while the upgrade is active, the router does not provide power for the card. When the upgrade ends, the router resets the newly inserted line card.

- Do not perform a manual switchover between supervisor engines or RSPs during the upgrade. Although the router allows it, we strongly discourage this.

- ISSU commands (which are also used for eFSU) are available in the command-line interface (CLI) only if a supported processor is installed in the router. The commands are not available if another type of supervisor engine or RSP is installed.
 - In Release 12.2SRB1 or later, the commands are available with the RSP720, Sup720, or Sup32.
 - In Release 12.2SRB, the commands are available only if a Sup720 is installed.

- Make sure that the configuration register is set to allow autoboot (the lowest byte of the register should be set to 2).

- Before you issue the `issu abortversion` command (to abort a software upgrade), make sure that the standby supervisor engine or RSP is Up (STANDBY HOT [in SSO] or COLD [in RPR]).
Performing an In Service Software Upgrade

The following sections describe the process for performing an in service software upgrade (ISSU or eFSU) on the Cisco 7600 router. The following steps are discussed:

- Software Upgrade Process Summary, page 6-8
- Preparing for the Upgrade, page 6-10
- Copying the New Software Image, page 6-11
- Loading the New Software onto the Standby RP, page 6-12
- Forcing a Switchover from Active to Standby, page 6-14
- Accepting the New Software Version and Stopping the Rollback Process (Optional), page 6-17
- Committing the New Software to the Standby, page 6-17
- Verifying the Software Installation, page 6-18
- Aborting the Upgrade Process, page 6-19

Each section briefly describes a particular step in the upgrade process and provides command examples. In the command examples, important fields in the command output are shown in boldface. Check these fields to verify the status of the command.

For detailed information about any of the commands, see the *Cisco IOS In Service Software Upgrade Process* document (feature guide) on the 12.2SRB new feature documentation site at the following URL:

Software Upgrade Process Summary

Here is a summary of the tasks required to upgrade (or downgrade) a software image on the Cisco 7600 router. The following sections provide examples of the software upgrade process on the router.

The same set of ISSU commands and upgrade procedure are used for both ISSU and eFSU.

Note

The ISSU upgrade process is available only for Cisco IOS releases that share the same line card software. If the line card software in the releases is different, the router performs an eFSU upgrade.
Command or Action

<table>
<thead>
<tr>
<th>Step</th>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | **Router> enable** | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| Step 2 | **Router# copy tftp disk_name** | Uses TFTP to copy the new software image to flash memory on the active and standby RPs (disk0: and slavedisk0:). Answer the prompts to identify the name and location of the new software image. |
| Step 3 | **Router# configure terminal** | Enters global configuration mode. |
| Step 4 | **Router(config)# no service image-version efsu**
Router(config)# end | Disables the compatibility matrix check, which is necessary to perform a software upgrade on the Cisco 7600 router. The **end** command returns you to privileged EXEC mode. |
| Step 5 | **Router# show version | in image**
Router# show bootvar
Router# show redundancy
Router# show issu state [detail] | These **show** commands verify that the router is ready to run ISSU or eFSU. The **show version** and **show bootvar** commands verify the boot image settings.
The **show redundancy** and **show issu state** commands verify that redundancy mode is enabled and that SSO and NSF are configured. |
| Note | Use **show redundancy** and **show issu state** throughout the upgrade (as shown in the following examples) to verify the status of the upgrade. |
| Step 6 | **Router# issu loadversion active-slot active-image standby-slot standby-image [force]** | Starts the upgrade process and loads the new software image onto the standby RP. It may take several seconds for the new image to load and for the standby RP to transition to SSO mode. |
| Step 7 | **Router# remote command switch show issu outage slot all** | (Optional) Displays the maximum outage time for installed line cards. Issue the command on the switch processor (SP) of the supervisor engine or RSP.
Note | The command **show issu outage slot all** is supported on SP only. |
| Step 8 | **Router# issu runversion slot image** | Forces a switchover, causing the standby supervisor engine or RSP to become active and begin running the new software. The previously active processor becomes standby and boots with the old image. | |
| Step 9 | **Router# issu acceptversion {active slot-number | active slot-name slot-name}** | (Optional) Halts the rollback timer to ensure that the new software image is not automatically aborted during the upgrade process. |
| Step 10 | **Router# issu commitversion slot active-image** | Loads the new software image onto the standby supervisor engine or RSP in the specified slot. |
| Step 11 | **Router# show redundancy**
Router# show issu state [detail] | Verifies the status of the upgrade process. If the upgrade was successful, both the active and standby supervisor engines or RSPs are running the new software version. |
Preparing for the Upgrade

Before attempting to perform a software upgrade, be sure to review the “Cisco 7600 ISSU and eFSU Guidelines and Limitations” section on page 6-7.

To prepare for ISSU or eFSU, perform the tasks in the following sections:

• Disabling the Compatibility Matrix Check, page 6-10
• Verifying the Boot Image Version and Boot Variable, page 6-10
• Verifying Redundancy Mode, page 6-10
• Verifying ISSU State, page 6-11

Disabling the Compatibility Matrix Check

To perform a software upgrade on the Cisco 7600 router, you must first disable the compatibility matrix check by issuing the following command in global configuration mode:

Router(config)# no service image-version efsu

Verifying the Boot Image Version and Boot Variable

Before starting, it is a good idea to issue the show version and show bootvar commands to verify the boot image version and BOOT environment variable for the router, as shown in the following examples:

Router# show version | in image
System image file is "disk0:oct22"

Router# show bootvar
BOOT variable = disk0:oct22,1;
CONFIG_FILE variable =
BOOTLDR variable =
Configuration register is 0x2102

Standby BOOT variable = disk0:oct22,1;
Standby CONFIG_FILE variable =
Standby BOOTLDR variable =
Standby Configuration register is 0x2102

Verifying Redundancy Mode

It is also a good idea to verify that redundancy mode is enabled and that NSF and SSO are configured. The following command example shows how to verify redundancy:

Router# show redundancy

Redundant System Information :

Available system uptime = 9 minutes
Switchovers system experienced = 0
Standby failures = 0
Last switchover reason = none

Hardware Mode = Duplex
Configured Redundancy Mode = sso
Operating Redundancy Mode = sso
Maintenance Mode = Disabled
Communications = Up
Current Processor Information:
--
Active Location = slot 5
Current Software state = ACTIVE
Uptime in current state = 8 minutes
Image Version = Cisco IOS Software, s72033_rp Software
 (s72033_rp-ADVENTERPRISEK9_WAN_DBG-M), Version 12.2
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Mon 23-Oct-06 02:43 by
 BOOT = disk0:oct22,1;
 CONFIG_FILE =
 BOOTLDR =
 Configuration register = 0x2102

Peer Processor Information:

Standby Location = slot 6
Current Software state = STANDBY HOT
Uptime in current state = 8 minutes
Image Version = Cisco IOS Software, s72033_rp Software
 (s72033_rp-ADVENTERPRISEK9_WAN_DBG-M), Version 12.2
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Mon 23-Oct-06 02:43 by
 BOOT = disk0:oct22,1;
 CONFIG_FILE =
 BOOTLDR =
 Configuration register = 0x2102

Verifying ISSU State
You should also verify the ISSU state, as shown here:

Router# show issu state

Slot = 5
 RP State = Active
 ISSU State = Init
 Boot Variable = disk0:oct22,1;

Slot = 6
 RP State = Standby
 ISSU State = Init
 Boot Variable = disk0:oct22,1;

Copying the New Software Image
Before starting the ISSU or eFSU process, you must copy the new software image to flash memory
(disk0: and slavedisk0:) on the active and standby route processors, which are located on the Cisco 7600
supervisor engine or route switch processor.

Router# copy tftp disk0:
Address or name of remote host []? sys1
Source filename []? /auto/tftpboot/image/c7600s72033-adventerprisek9_wan-mz
Destination filename [c7600s72033-adventerprisek9_wan-mz]? c7600s72033
Accessing tftp://sys1/auto/tftpboot/image/c7600s72033-adventerprisek9_wan-mz
Loading /auto/tftpboot/image/c7600s72033-adventerprisek9_wan-mz from 192.0.2.245 (via
GigabitEthernet5/1):
!!!
Performing an In Service Software Upgrade

Chapter 6 ISSU and eFSU on Cisco 7600 Series Routers

Performing an In Service Software Upgrade

(!) (command output omitted)

[OK - 124978660 bytes]

124978660 bytes copied in 259.868 secs (480931 bytes/sec)

Router# copy disk0:c7600s72033 slavedisk0:

Destination filename [c7600s72033]?

Copy in progress...CC

(command output omitted)

124978660 bytes copied in 308.488 secs (405133 bytes/sec)

Loading the New Software onto the Standby RP

Issue the issu loadversion command to start the upgrade process. This step reboots the standby supervisor engine or RSP and loads the new software image onto the standby’s route processor. When the download is complete, you are prompted to issue the runversion command.

Router# issu loadversion 5 disk0:c7600s72033 6 slavedisk0:c7600s72033

(The above line shows that the standby supervisor engine in slot 6 is rebooting. When the reboot is complete, the router loads the new image onto the standby.)

*Oct 27 21:26:20.119: %OIR-SP-3-PWRCYCLE: Card in module 6, is being power-cycled (RF request)

*Oct 27 21:26:20.775: %PFREDUN-SP-6-ACTIVE: Standby processor removed or reloaded, changing to Simplex mode

*Oct 27 21:29:46.123: SP: pf_redun_check_img_compatibility: MATRIX result is compatible!!! Of course...

*Oct 27 21:29:47.135: %PFREDUN-SP-6-ACTIVE: Standby initializing for SSO mode

*Oct 27 21:29:47.431: %SYS-SP-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console debugging output.

*Oct 27 21:29:50.647: %PFINIT-SP-5-CONFIG_SYNC: Sync'ing the startup configuration to the standby Router.

*Oct 27 21:30:29.783: %FABRIC-SP-5-FABRIC_MODULE_BACKUP: The Switch Fabric Module in slot 6 became standby

*Oct 27 21:30:30.523: %DIAG-SP-6-RUN_MINIMUM: Module 6: Running Minimal Diagnostics...

*Oct 27 21:30:32.459: %DIAG-SP-6-DIAG_OK: Module 6: Passed Online Diagnostics

*Oct 27 21:30:32.675: %OIR-SP-6-INS CARD: Card inserted in slot 6, interfaces are now online

*Oct 27 21:29:46.071: %SYS-SP-STDBY-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console debugging output.

*Oct 27 21:30:14.539: %SYS-SP-STDBY: SP: Currently running ROMMON from S (Gold) region

*Oct 27 21:30:17.067: %DIAG-SP-STDBY-6-RUN_MINIMUM: Module 6: Running Minimal Diagnostics...

*Oct 27 21:30:28.331: %DIAG-SP-STDBY-6-DIAG_OK: Module 6: Passed Online Diagnostics

Cisco IOS Software (c7600s72033-ADVENTERPRISEK9_WAN_MZ), Version 12.2
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Thu 26-Oct-06 03:49 by
Performing an In Service Software Upgrade

*Oct 27 21:33:14.231: %ISSU_PROCESS-SP-7-DEBUG: Peer state is [STANDBY HOT]; Please issue the runversion command
*Oct 27 21:33:13.471: %PFREDUN-SP-STDBY-6-STANDBY: Ready for SSO mode
*Oct 27 21:33:14.239: %RF-SP-5-RF_TERMINAL_STATE: Terminal state reached for (SSO)
*Oct 27 21:33:13.655: %SYS-SP-STDBY-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console debugging output.

Note
At this point, it is a good idea to check the status of the upgrade using the *show redundancy* and *show issu state detail* commands (see the following examples). When *issu loadversion* has finished, the standby RP should be loaded with the new software image and the RP should be in SSO mode. It might take several seconds for *issu loadversion* to complete; therefore, if you enter the *show* commands too soon you might not see the information you need.

Router# show redundancy

Redundant System Information :

Available system uptime = 38 minutes
Switchovers system experienced = 0
 Standby failures = 1
 Last switchover reason = none

 Hardware Mode = Duplex
 Configured Redundancy Mode = sso
 Operating Redundancy Mode = sso
 Maintenance Mode = Disabled
 Communications = Up

Current Processor Information :

Active Location = slot 5
Current Software state = ACTIVE
 Uptime in current state = 37 minutes
 Image Version = Cisco IOS Software (c7600s72033-ADVENTERPRISEK9_WAN_MZ), Version 12.2
 Copyright (c) 1986-2006 by Cisco Systems, Inc.
 Compiled Mon 23-Oct-06 02:43 by
 BOOT = disk0:oct22,12
 CONFIG_FILE =
 BOOTLDR =
 Configuration register = 0x2102

Peer Processor Information :

Standby Location = slot 6
Current Software state = STANDBY HOT
 Uptime in current state = 13 minutes
 Image Version = Cisco IOS Software (c7600s72033-ADVENTERPRISEK9_WAN_MZ), Version 12.2
 Copyright (c) 1986-2006 by Cisco Systems, Inc.
 Compiled Thu 26-Oct-06 03:21 by
 BOOT = disk0:c7600s72033,12;disk0:oct22,12
 CONFIG_FILE =
 BOOTLDR =
 Configuration register = 0x2102

Router# show issu state detail

Slot = 5
 RP State = Active
Performing an In Service Software Upgrade

Chapter 6 ISSU and eFSU on Cisco 7600 Series Routers

ISSU State = Load Version
Boot Variable = disk0:oct22,12
Operating Mode = sso
Primary Version = disk0:oct22
Secondary Version = disk0:c7600s72033
Current Version = disk0:oct22
Variable Store = PrstVbl
ROMMON CV = [disk0:oct22]

Slot = 6
RP State = Standby
ISSU State = Load Version
Boot Variable = disk0:c7600s72033,12;disk0:oct22,12
Operating Mode = sso
Primary Version = disk0:oct22
Secondary Version = disk0:c7600s72033
Current Version = disk0:c7600s72033

Displaying Maximum Outage Time for Installed Line Cards (Optional)

Once the new software is downloaded, you can issue the show issu outage slot all command on the switch processor (SP) to display the maximum outage time for installed line cards:

Router# remote command switch show issu outage slot all

<table>
<thead>
<tr>
<th>Slot #</th>
<th>Card Type</th>
<th>MDR Mode</th>
<th>Max Outage Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CEF720 24 port 1000mb SFP</td>
<td>WARM_RELOAD</td>
<td>300 secs</td>
</tr>
<tr>
<td>2</td>
<td>1-subslot SPA Interface Processor-600</td>
<td>WARM_RELOAD</td>
<td>300 secs</td>
</tr>
<tr>
<td>3</td>
<td>4-subslot SPA Interface Processor-400</td>
<td>WARM_RELOAD</td>
<td>300 secs</td>
</tr>
<tr>
<td>4</td>
<td>2+4 port GE-WAN</td>
<td>RELOAD</td>
<td>360 secs</td>
</tr>
</tbody>
</table>

Router#

Note: For an ISSU upgrade, the command output displays NSF_RELOAD for MDR Mode, which indicates that the line cards will not be restarted or reloaded and maximum outage time will be 0 to 3 seconds.

Forcing a Switchover from Active to Standby

Issue the issu runversion command to force a switchover between the active and standby supervisor engines or RSPs. The standby supervisor engine or RSP, which has the new software image loaded, becomes active. The previously active supervisor engine or RSP becomes the standby and boots with the old software image (in case the software upgrade needs to be aborted and the old image restored).

Router# issu runversion 6

This command will reload the Active unit. Proceed? [confirm]

*Oct 27 21:43:18.901: %OIR-SP-6-CONSOLE: Changing console ownership to switch processor

(Switchover between supervisors occurs now. The previous standby becomes active and is running the new software version [c7600s72033]. The previous active, now standby, boots with the old software [oct22].)
Performing an In Service Software Upgrade

*Oct 27 21:43:19.305: %SYS-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console debugging output.

*** --- SHUTDOWN NOW ---

*Oct 27 21:43:22.067: %SYS-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console debugging output.

System Bootstrap, Version 8.1(3)
Copyright (c) 1994-2004 by cisco Systems, Inc.
Cat6k-Sup720/SP processor with 1048576 Kbytes of main memory

Autoboot executing command: "boot disk0:oct22"
Loading image, please wait ...

Initializing ATA monitor library...

(command output omitted, new active log)

Press RETURN to get started!

*Oct 27 21:30:06.611: %STDBY-5-CTMM: Currently running ROMMON from S (Gold) region
*Oct 27 21:31:07.923: %SPANTREE-5-EXTENDED_SYSID: Extended SysId enabled for type vlan
Cisco IOS Software (c7600s72033-ADVENTERPRISEK9_WAN_MZ), Version 12.2
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Thu 26-Oct-06 03:21 by *

*Oct 27 21:31:30.307: %SYS-6-LOGGINGHOST_STARTSTOP: Logging to host 172.19.126.3
Port 514 started - CLI initiated
*Oct 27 21:43:22.715: %SYS-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console debugging output.

*Oct 27 21:43:24.163: %ISSU_PROCESS-7-DEBUG: rollback timer process has been started
*Oct 27 21:43:24.650: %OIR-3-RESET: Module 1 is being soft reset as a part of swichover error recovery
*Oct 27 21:43:24.674: %LINK-3-UPDOWN: Interface TenGigabitEthernet2/1, changed state to down
*Oct 27 21:43:24.754: %OIR-3-RESET: Module 2 is being soft reset as a part of swichover error recovery
*Oct 27 21:43:24.854: %OIR-3-RESET: Module 3 is being soft reset as a part of swichover error recovery
*Oct 27 21:43:24.906: %OIR-3-RESET: Module 4 is being soft reset as a part of swichover error recovery
*Oct 27 21:43:24.962: %OIR-3-RESET: Module 7 is being soft reset as a part of swichover error recovery

(command output omitted)
Performing an In Service Software Upgrade

*Oct 27 21:48:34.787: %SYS-SP-STDBY-6-BOOTTIME: Time taken to reboot after reload = 314 seconds
*Oct 27 21:50:31.059: %ISSU_PROCESS-SP-7-DEBUG: Peer state is [STANDBY HOT]; Please issue the acceptversion command
*Oct 27 21:50:31.067: %PREDUN-SP-STDBY-6-STANDBY: Ready for SSO mode
*Oct 27 21:50:31.067: %RF-SP-5-RF_TERMINAL_STATE: Terminal state reached for (SSO)
*Oct 27 21:50:31.251: %SYS-SP-STDBY-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console debugging output.

Router# enable

Note

At this point, the new active supervisor engine or RSP is running the new software image and the standby is running the old software image. You should verify the state of the active and standby supervisor engines or RSPs as shown in the following examples (**show redundancy** and **show issu state detail**).

Router# show redundancy

Redundant System Information :

Available system uptime = 57 minutes
Switchovers system experienced = 1
Standby failures = 0
Last switchover reason = user initiated

Hardware Mode = Duplex
Configured Redundancy Mode = sso
Operating Redundancy Mode = sso
Maintenance Mode = Disabled
Communications = Up

Current Processor Information :

Active Location = slot 6
Current Software state = ACTIVE
Uptime in current state = 17 minutes
Image Version = Cisco IOS Software (c7600s72033-ADVENTERPRISEK9_WAN_MZ), Version 12.2
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Thu 26-Oct-06 03:21 by
BOOT = disk0:c7600s72033,12;disk0:oct22,12
CONFIG_FILE =
BOOTLDR =
Configuration register = 0x2102

Peer Processor Information :

Standby Location = slot 5
Current Software state = STANDBY HOT
Uptime in current state = 15 minutes
Image Version = Cisco IOS Software (c7600s72033-ADVENTERPRISEK9_WAN_MZ), Version 12.2
Copyright (c) 1986-2006 by Cisco Systems, Inc.
Compiled Mon 23-Oct-06 02:43 by
BOOT = disk0:oct22,12
CONFIG_FILE =
BOOTLDR =
Configuration register = 0x2102

type# show issu state detail

Slot = 6
RP State = Active
Performing an In Service Software Upgrade

ISSU State = Run Version
Boot Variable = disk0:c7600s72033,12;disk0:oct22,12
Operating Mode = sso
Primary Version = disk0:c7600s72033
Secondary Version = disk0:oct22
Current Version = disk0:c7600s72033
Variable Store = PrstVbl
ROMMON CV = [disk0:c7600s72033]

Slot = 5
RP State = Standby
ISSU State = Run Version
Boot Variable = disk0:oct22,12
Operating Mode = sso
Primary Version = disk0:c7600s72033
Secondary Version = disk0:oct22
Current Version = disk0:oct22

Note To complete the upgrade process, issue the **issu acceptversion** (optional) and **issu commitversion** commands (as described in the following sections).

Accepting the New Software Version and Stopping the Rollback Process (Optional)

You must either accept or commit the new software image, or the rollback timer will expire and stop the upgrade process. If that occurs, the software image reverts to the previous software version. The rollback timer is a safeguard to ensure that the upgrade process does not leave the router nonoperational.

The following command sequence shows how **issu acceptversion** stops the rollback timer to enable you to examine the functionality of the new software image. When you are satisfied that the new image is acceptable, issue the **issu commitversion** command to end the upgrade process.

Router# `show issu rollback-timer`
Rollback Process State = In progress
Configured Rollback Time = 45:00
Automatic Rollback Time = 27:08

Router# `issu acceptversion 6`
% Rollback timer stopped. Please issue the commitversion command.

Now view the rollback timer to see that the rollback process has been stopped:

Router# `show issu rollback-timer`
Rollback Process State = Not in progress
Configured Rollback Time = 45:00

Committing the New Software to the Standby

Issue the **issu commitversion** command to load the new software image onto the standby supervisor engine or RSP and complete the software upgrade process. In the following example, the new image (c7600s72033) is loaded onto the standby supervisor engine in slot 5:

Router# `issu commitversion 5`
Building configuration...
Performing an In Service Software Upgrade

Chapter 6 ISSU and eFSU on Cisco 7600 Series Routers

Performing an In Service Software Upgrade

*Oct 27 22:09:57.239: %PFINIT-SP-5-CONFIG_SYNC: Sync'ing the startup configuration to the standby Router. [OK]

feeder#

*Oct 27 22:10:15.613: %OIR-SP-3-FWRCYCLE: Card in module 5, is being power-cycled (RF request)

(The standby supervisor engine in slot 5 begins rebooting. It then loads the new image.)

*Oct 27 22:10:15.639: %PFREDUN-SP-6-ACTIVE: Standby processor removed or reloaded, changing to Simplex mode
*Oct 27 22:13:40.723: SP: pf_redun_check_img_compatibility: MATRIX result is compatible!!! Of course...
*Oct 27 22:13:42.027: %SYS-SP-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console debugging output.

*Oct 27 22:13:44.999: %PFINIT-SP-5-CONFIG_SYNC: Sync'ing the startup configuration to the standby Router.

(command output omitted)

*Oct 27 22:15:44.751: %PFREDUN-SP-STDBY-6-STANDBY: Ready for SSO mode
*Oct 27 22:15:45.135: %RF-SP-5-RF_TERMINAL_STATE: Terminal state reached for (SSO)
*Oct 27 22:15:44.935: %SYS-SP-STDBY-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console debugging output.

Note

The software upgrade process is now complete. Both the active and standby supervisor engines or RSPs are running the new software version.

Verifying the Software Installation

You should verify the status of the software upgrade. If the upgrade was successful, both the active and standby supervisor engines or RSPs are running the new software version.

Router# show redundancy

Redundant System Information :

Available system uptime = 1 hour, 13 minutes
Switchovers system experienced = 1
 Standby failures = 1
 Last switchover reason = user initiated

 Hardware Mode = Duplex
 Configured Redundancy Mode = sso
 Operating Redundancy Mode = sso
 Maintenance Mode = Disabled
 Communications = Up

Current Processor Information :

 Active Location = slot 6
Aborting the Upgrade Process

You can manually abort the software upgrade at any stage by issuing the `issu abortversion` command. The upgrade process also aborts on its own if the software detects a failure.

If you abort the process after you issue the `issu loadversion` command, the standby supervisor engine or RSP is reset and reloaded with the original software.

The following is an example of the `issu abortversion slot image` command that shows how to abort the software upgrade process:

```
Router# issu abortversion 6 c7600s72033
```
Upgrading a Non-eFSU Image to an eFSU Image

If the new Cisco IOS software image does not support eFSU, you must manually upgrade the software image. To do so, you must upgrade the software image on the standby supervisor engine or RSP and then perform a manual switchover so that the standby takes over processing with the new image. You can then upgrade the software image on the previously active, and now standby, supervisor engine or RSP. For instructions, see the “Performing a Fast Software Upgrade” section on page 7-8.

Command Reference

All of the standard ISSU commands are supported on Cisco 7600 series routers. For information about these commands, see the Cisco IOS In Service Software Upgrade Process document at:

Configuring RPR and RPR+
Supervisor Engine Redundancy

This chapter describes how to configure supervisor engine redundancy using route processor redundancy (RPR) and RPR+.

Note
- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
- RPR and RPR+ support IPv6 multicast traffic.
- Release 12.2SR does not support single router mode (SRM) with stateful switchover (SSO).

This chapter contains these sections:
- Understanding RPR and RPR+, page 7-1
- Supervisor Engine Redundancy Guidelines and Restrictions, page 7-4
- Configuring Supervisor Engine Redundancy, page 7-6
- Performing a Fast Software Upgrade, page 7-8
- Copying Files to the Redundant Supervisor Engine, page 7-9

Understanding RPR and RPR+

These sections describe supervisor engine redundancy using RPR and RPR+:
- Supervisor Engine Redundancy Overview, page 7-2
- RPR Operation, page 7-2
- RPR+ Operation, page 7-3
- Supervisor Engine Configuration Synchronization, page 7-3
Supervisor Engine Redundancy Overview

Note See the “Supervisor Engine Redundancy Guidelines and Restrictions” section on page 7-4 for important information about supervisor engine redundancy.

Cisco 7600 series routers support fault resistance by allowing a redundant supervisor engine to take over if the primary supervisor engine fails. Cisco 7600 series routers support these redundancy modes:

- RPR—Supports a switchover time of 2 or more minutes.
- Route processor redundancy plus (RPR+)—Supports a switchover time of 30 or more seconds.

The following events cause a switchover:

- A hardware failure on the active supervisor engine
- Clock synchronization failure between supervisor engines
- A manual switchover

RPR Operation

RPR supports the following features:

- Auto-startup and bootvar synchronization between active and redundant supervisor engines
- Hardware signals that detect and decide the active or redundant status of supervisor engines
- Clock synchronization every 60 seconds from the active to the redundant supervisor engine
- A redundant supervisor engine that is booted but not all subsystems are up: if the active supervisor engine fails, the redundant supervisor engine become fully operational
- An operational supervisor engine present in place of the failed unit becomes the redundant supervisor engine
- Support for fast software upgrade (FSU) (See the “Performing a Fast Software Upgrade” section on page 7-8.)

When the router is powered on, RPR runs between the two supervisor engines. The supervisor engine that boots first becomes the RPR active supervisor engine. The Multilayer Switch Feature Card and Policy Feature Card become fully operational. The MSFC and PFC on the redundant supervisor engine come out of reset but are not operational.

In a switchover, the redundant supervisor engine become fully operational and the following occurs:

- All switching modules power up again
- Remaining subsystems on the MSFC (including Layer 2 and Layer 3 protocols) are brought up
- Access control lists (ACLs) are reprogrammed into supervisor engine hardware

Note In a switchover, there is a disruption of traffic because some address states are lost and then restored after they are dynamically redetermined.
RPR+ Operation

When RPR+ mode is used, the redundant supervisor engine is fully initialized and configured, which shortens the switchover time. The active supervisor engine checks the image version of the redundant supervisor engine when the redundant supervisor engine comes online. If the image on the redundant supervisor engine does not match the image on the active supervisor engine, RPR redundancy mode is used.

With RPR+, the redundant supervisor engine is fully initialized and configured, which shortens the switchover time if the active supervisor engine fails or if a manual switchover is performed.

When the router is powered on, RPR+ runs between the two supervisor engines. The supervisor engine that boots first becomes the active supervisor engine. The Multilayer Switch Feature Card and Policy Feature Card become fully operational. The MSFC and PFC on the redundant supervisor engine come out of reset but are not operational.

RPR+ enhances RPR by providing the following additional benefits:

- Reduced switchover time
 Depending on the configuration, the switchover time is 30 or more seconds.
- Installed modules are not reloaded
 Because both the startup configuration and the running configuration are continually synchronized from the active to the redundant supervisor engine, installed modules are not reloaded during a switchover.
- Online insertion and removal (OIR) of the redundant supervisor engine
 RPR+ allows OIR of the redundant supervisor engine for maintenance. When the redundant supervisor engine is inserted, the active supervisor engine detects its presence and begins to transition the redundant supervisor engine to fully initialized state.
- Synchronization of OIR events
- Manual user-initiated switchover using the redundancy force-switchover command

Supervisor Engine Configuration Synchronization

These sections describe supervisor engine configuration synchronization:

- RPR Supervisor Engine Configuration Synchronization, page 7-3
- RPR+ Supervisor Engine Configuration Synchronization, page 7-4

Note
Configuration changes made through SNMP are not synchronized to the redundant supervisor engine. After you configure the router through SNMP, copy the running-config file to the startup-config file on the active supervisor engine to trigger synchronization of the startup-config file on the redundant supervisor engine and with RPR+, reload the redundant supervisor engine and MSFC.

RPR Supervisor Engine Configuration Synchronization

During RPR mode operation, the startup-config files and the config-register configurations are synchronized by default between the two supervisor engines. In a switchover, the new active supervisor engine uses the current configuration.
RPR+ Supervisor Engine Configuration Synchronization

With RPR+ mode, the following operations trigger configuration synchronization:

- When a redundant supervisor engine first comes on line, the startup-config file is copied from the active supervisor engine to the redundant supervisor engine. This synchronization overwrites any existing startup configuration file on the redundant supervisor engine.
- When configuration changes occur during normal operation, redundancy performs an incremental synchronization from the active supervisor engine to the redundant supervisor engine. Redundancy synchronizes user-entered CLI commands incrementally line-by-line from the active supervisor engine to the redundant supervisor engine.

Even though the redundant supervisor engine is fully initialized, it only interacts with the active supervisor engine to receive incremental changes to the configuration files as they occur. You cannot enter CLI commands on the redundant supervisor engine.

Supervisor Engine Redundancy Guidelines and Restrictions

These sections describe supervisor engine redundancy guidelines and restrictions:

- Redundancy Guidelines and Restrictions, page 7-4
- RPR+ Guidelines and Restrictions, page 7-5
- Hardware Configuration Guidelines and Restrictions, page 7-5
- Configuration Mode Restrictions, page 7-6

Redundancy Guidelines and Restrictions

These guidelines and restrictions apply to RPR and RPR+ redundancy modes:

- With a Supervisor Engine 720, if all the installed switching modules have DFCs, enter the fabric switching-mode allow dcef-only command to disable the Ethernet ports on both supervisor engines, which ensures that all modules are operating in dCEF mode and simplifies switchover to the redundant supervisor engine. (CSCec05612)

 Post SRE release, the uplink ports are also enabled in dcef mode for RSP720-10G supervisor engine. The other supervisor engines continue to have the uplink ports disabled.

- Supervisor engine redundancy does not provide supervisor engine mirroring or supervisor engine load balancing. Only one supervisor engine is active at any one time.

- Configuration changes made through SNMP are not synchronized to the redundant supervisor engine. After you configure the router through SNMP, copy the running-config file to the startup-config file on the active supervisor engine to trigger synchronization of the startup-config file on the redundant supervisor engine and with RPR+, reload the redundant supervisor engine and MSFC.

- Supervisor engine switchover takes place after the failed supervisor engine completes a core dump. A core dump can take up to 15 minutes. To get faster switchover time, disable core dump on the supervisor engines.
RPR+ Guidelines and Restrictions

These guidelines and restrictions apply to RPR+:

- Network services are disrupted until the redundant supervisor engine takes over and the router recovers.
- The Forwarding Information Base (FIB) tables are cleared on a switchover. As a result, routed traffic is interrupted until route tables reconverge.
- Static IP routes are maintained across a switchover because they are configured from entries in the configuration file.
- Information about dynamic states maintained on the active supervisor engine is not synchronized to the redundant supervisor engine and is lost on switchover.

These are examples of dynamic state information that is lost at switchover:
- Frame Relay Switched Virtual Circuits (SVCs)

Note Frame Relay-switched DLCI information is maintained across a switchover because Frame Relay-switched DLCI configuration is in the configuration file.

- All terminated PPP sessions
- All ATM SVC information
- All terminated TCP and other connection-oriented Layer 3 and Layer 4 sessions
- BGP sessions
- All Automatic Protection System (APS) state information

- Both supervisor engines must run the same version of Cisco IOS software. If the supervisor engines are not running the same version of Cisco IOS software, the redundant supervisor engine comes online in RPR mode.
- Supervisor engine redundancy does not support nondefault VLAN data file names or locations. Do not enter the `vtp file file_name` command on a router that has a redundant supervisor engine.
- Before installing a redundant supervisor engine, enter the `no vtp file` command to return to the default configuration.
- Supervisor engine redundancy does not support configuration entered in VLAN database mode. Use global configuration mode with RPR+ redundancy (see Chapter 14, “Configuring VLANs”).

Hardware Configuration Guidelines and Restrictions

For redundant operation, the following guidelines and restrictions must be met:

- Cisco IOS software running on the supervisor engine and the MSFC supports redundant configurations where the supervisor engines and MSFC routers are identical. If they are not identical, one will boot first and become active and hold the other supervisor engine and MSFC in a reset condition.
- Each supervisor engine must have the resources to run the router on its own, which means all supervisor engine resources are duplicated, including all Flash devices.
- Make separate console connections to each supervisor engine. Do not connect a Y cable to the console ports.
Chapter 7 Configuring RPR and RPR+ Supervisor Engine Redundancy

Configuring Supervisor Engine Redundancy

- Both supervisor engines must have the same system image (see the “Copying Files to the Redundant Supervisor Engine” section on page 7-9).

Note

- If a newly installed redundant supervisor engine has the Catalyst operating system installed, remove the active supervisor engine and boot the router with only the redundant supervisor engine installed. Follow the procedures in the current release notes to convert the redundant supervisor engine from the Catalyst operating system.

- The configuration register in the startup-config must be set to autoboot (see the Cisco IOS Configuration Fundamentals Configuration Guide for more information).

Note

There is no support for booting from the network.

Configuration Mode Restrictions

The following configuration restrictions apply during the startup synchronization process:

- You cannot perform configuration changes during the startup (bulk) synchronization. If you attempt to make configuration changes during this process, the following message is generated:
 Config mode locked out till standby initializes

- If configuration changes occur at the same time as a supervisor engine switchover, these configuration changes are lost.

Configuring Supervisor Engine Redundancy

These sections describe how to configure supervisor engine redundancy:

- Configuring Redundancy, page 7-6
- Synchronizing the Supervisor Engine Configurations, page 7-7
- Displaying the Redundancy States, page 7-7

Configuring Redundancy

To configure redundancy, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# redundancy</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-red)# mode { rpr</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show running-config</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show redundancy states</td>
</tr>
</tbody>
</table>
This example shows how to configure the system for RPR+ and display the redundancy state:

```plaintext
Router> enable
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# redundancy
Router(config-red)# mode rpr-plus
Router(config-red)# end
Router#
```

```plaintext
Router# show redundancy states
  my state = 13 -ACTIVE
  peer state = 1  -DISABLED
  Mode = Simplex
  Unit = Primary
  Unit ID = 1

Redundancy Mode (Operational) = Route Processor Redundancy Plus
Redundancy Mode (Configured) = Route Processor Redundancy Plus
  Split Mode = Disabled
  Manual Swact = Disabled  Reason: Simplex mode
  Communications = Down      Reason: Simplex mode
  client count = 11
  client_notification_TMR = 30000 milliseconds
  keep_alive TMR = 4000 milliseconds
  keep_alive count = 0
  keep_alive threshold = 7
  RF debug mask = 0x0
```

Router#

Synchronizing the Supervisor Engine Configurations

During normal operation, the startup-config and config-registers configuration are synchronized by default between the two supervisor engines. In a switchover, the new active supervisor engine uses the current configuration.

Note

Do not change the default auto-sync configuration.

Displaying the Redundancy States

To display the redundancy states, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show redundancy states</td>
<td>Displays the redundancy states.</td>
</tr>
</tbody>
</table>

This example shows how to display the redundancy states:

```plaintext
Router# show redundancy states
  my state = 13 -ACTIVE
  peer state = 8  -STANDBY HOT
  Mode = Duplex
  Unit = Primary
  Unit ID = 1
```
Performing a Fast Software Upgrade

The fast software upgrade (FSU) procedure supported by RPR allows you to upgrade the Cisco IOS software image on the supervisor engines without reloading the system.

Note
If you are performing a first-time upgrade to RPR from EHSA, you must reload both supervisor engines. FSU from EHSA is not supported.

To perform an FSU, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router# `copy source_device:source_filename {disk0</td>
<td>disk1}:target_filename`</td>
</tr>
<tr>
<td>Or:</td>
<td></td>
</tr>
<tr>
<td>Router# <code>copy source_device:source_filename sup-bootflash:target_filename</code></td>
<td></td>
</tr>
<tr>
<td>Or:</td>
<td></td>
</tr>
<tr>
<td>Router# <code>copy source_device:source_filename slavedisk0:target_filename</code></td>
<td></td>
</tr>
<tr>
<td>Or:</td>
<td></td>
</tr>
<tr>
<td>Router# <code>copy source_device:source_filename slavesup-bootflash:target_filename</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
</tbody>
</table>
| Router# `config terminal`
Router(config)# `config-register 0x2102`
Router(config)# `boot system flash device:file_name` | Configures the supervisor engines to boot the new image. |
| **Step 3** | | |
| Router# `copy running-config start-config` | Saves the configuration. |
Command

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>hw-module {module num} reset</code></td>
<td>Reloads the redundant supervisor engine and brings it back online (running the new version of the Cisco IOS software). Note Before reloading the redundant supervisor engine, make sure you wait long enough to ensure that all configuration synchronization changes have completed.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 5</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>redundancy force-switchover</code></td>
<td>Conducts a manual switchover to the redundant supervisor engine. The redundant supervisor engine becomes the new active supervisor engine running the new Cisco IOS image. The modules are reloaded and the module software is downloaded from the new active supervisor engine. The old active supervisor engine reboots with the new image and becomes the redundant supervisor engine. Note To perform an EHSA to RPR FSU, use the <code>reload</code> command in Step 5.</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to perform an FSU:

```
Router# config terminal
Router(config)# config-register 0x2102
Router(config)# boot system flash disk0:image_name
Router# copy running-config start-config
Router# hw-module reset
Router# redundancy force-switchover
Router#
```

Copying Files to the Redundant Supervisor Engine

Use the following command to copy a file to the `disk0:` device on a redundant supervisor engine:

```
Router# copy source_device:source_filename slavedisk0:target_filename
```

Use the following command to copy a file to the `bootflash:` device on a redundant supervisor engine:

```
Router# copy source_device:source_filename slavesup-bootflash:target_filename
```

Use the following command to copy a file to the `bootflash:` device on a redundant MSFC:

```
Router# copy source_device:source_filename slavebootflash:target_filename
```
Copying Files to the Redundant Supervisor Engine
Configuring Interfaces

This chapter describes how to configure interfaces on the Cisco 7600 series routers. It contains these sections:

- Understanding Interface Configuration, page 8-1
- Using the Interface Command, page 8-2
- Configuring a Range of Interfaces, page 8-3
- Defining and Using Interface-Range Macros, page 8-4
- Configuring Optional Interface Features, page 8-5
- Understanding Online Insertion and Removal, page 8-14
- Monitoring and Maintaining Interfaces, page 8-15
- Checking the Cable Status Using the TDR, page 8-16

Note • For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

Understanding Interface Configuration

Many features in the software are enabled on a per-interface basis. Each interface corresponds to a port on a module installed in a particular slot on the router:

- Slot number—The slot in which the module is installed. On the Cisco 7600 series router, slots are numbered starting with 1, from top to bottom or right to left.
- Port number—The physical port number on the module. On the Cisco 7600 series router, the port numbers always begin with 1. When facing the rear of the router, ports are numbered from the left to the right or top to bottom.

You can identify ports from the physical location. You also can use show commands to display information about a specific port, or all the ports.

Several LAN and WAN protocols (such as ATM and Frame Relay) support subinterfaces. Subinterfaces are virtual interfaces that are associated with a physical hardware interface. Each subinterface can be configured to support a different network. Thus, subinterfaces enable a single physical interface to support several networks.
For additional information on configuring interfaces on Cisco routers, see the *Cisco IOS Interface Configuration Guide* at this URL:

Using the Interface Command

Note: You use the commands described in this section to configure both physical ports and logical interfaces.

These procedures apply to all interface configuration processes. Begin the interface configuration process in global configuration mode. To use the `interface` command, follow these steps:

Step 1 Enter the `configure terminal` command at the privileged EXEC prompt to enter global configuration mode:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#
```

Step 2 Enter the `interface` command. Specify interface type, along with the slot number/port number to identify the interface to configure. For example, to configure the interface for port 5 on the Fast Ethernet card installed in slot 5 (that is, FastEthernet port 5/5), enter:

```
Router(config)# interface fastethernet 5/5
Router(config-if)#
```

Note: You do not need to add a space between the interface type and interface number. For example, in the preceding line you can specify either `fastethernet 5/5` or `fastethernet5/5`.

Step 3 After each `interface` command, enter the appropriate interface configuration commands to configure the interface. These interface configuration commands define the protocols and applications that will run on the interface. The commands are collected and applied to the `interface` command until you enter another `interface` command or press `Ctrl-Z` to exit interface configuration mode.

Note: You can use `show interfaces` EXEC command to see a list of the interfaces on the router.

You can use the `show hardware` EXEC command to see a list of system software and hardware.

Step 4 After you configure an interface, you can check its status by using the EXEC `show` commands listed in “Monitoring and Maintaining Interfaces” section on page 8-15.
Configuring a Range of Interfaces

The interface-range configuration mode allows you to configure multiple interfaces with the same configuration parameters. After you enter the interface-range configuration mode, all command parameters you enter are attributed to all interfaces within that range until you exit out of the interface-range configuration mode.

To configure a range of interfaces with the same configuration, perform this task:

When configuring a range of interfaces, note the following:

- For information about macros, see the “Defining and Using Interface-Range Macros” section on page 8-4.
- You can enter up to five comma-separated ranges.
- You need not enter spaces before or after the comma.
- You need not add a space between the interface numbers and the dash when using the interface range command.
- The no interface range command supports VLAN interfaces.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router(config)# [no] interface range \{(vlan vlan_ID - vlan_ID [, vlan vlan_ID - vlan_ID]\}] | Selects the range of interfaces to be configured.
| \{type\ slot/port - port [, type\ slot/port - port]\}] | |
| \{macro_name [, macro_name]\}] | |

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

The link state messages (LINK-3-UPDOWN and LINEPROTO-5-UPDOWN) are disabled by default. Enter the logging event link status command on each interface where you want the messages enabled.

This example shows how to reenable all Fast Ethernet ports 5/1 to 5/5:

```
Router(config)# interface range fastethernet 5/1 - 5
Router(config-if)# no shutdown
```

```
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet5/1, changed state to up
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet5/2, changed state to up
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet5/3, changed state to up
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet5/4, changed state to up
*Oct 6 08:24:35: %LINK-3-UPDOWN: Interface FastEthernet5/5, changed state to up
*Oct 6 08:24:36: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet5/5, changed state to up
```

This example shows how to use a comma to add different interface type strings to the range to reenable all Fast Ethernet ports in the range 5/1 to 5/5 and both Gigabit Ethernet ports (1/1 and 1/2):

```
Router(config-if)# interface range fastethernet 5/1 - 5, gigabitethernet 1/1 - 2
Router(config-if)# no shutdown
```

```
*Oct 6 08:29:28: %LINK-3-UPDOWN: Interface FastEthernet5/1, changed state to up
```
If you enter multiple configuration commands while you are in interface-range configuration mode, each command is executed as it is entered (they are not batched together and executed after you exit interface-range configuration mode).

If you exit interface-range configuration mode while the commands are being executed, some commands may not be executed on all interfaces in the range. Wait until the command prompt reappears before exiting interface-range configuration mode.

Defining and Using Interface-Range Macros

You can define an interface-range macro to automatically select a range of interfaces for configuration. Before you can use the `macro` keyword in the `interface range macro` command string, you must define the macro.

To define an interface-range macro, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>define interface-range macro_name</code></td>
<td>Defines the interface-range macro and save it in NVRAM.</td>
</tr>
<tr>
<td><code>no define interface-range macro_name</code></td>
<td>Deletes a macro.</td>
</tr>
</tbody>
</table>

1. `type` = `ethernet`, `fastethernet`, `gigabitethernet`, or `tengigabitethernet`

This example shows how to define an interface-range macro named `enet_list` to select Fast Ethernet ports 5/1 through 5/4:

```
Router(config)# define interface-range enet_list fastethernet 5/1 - 4
```

To show the defined interface-range macro configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show running-config</code></td>
<td>Shows the defined interface-range macro configuration.</td>
</tr>
</tbody>
</table>

This example shows how to display the defined interface-range macro named `enet_list`:

```
Router# show running-config | include define
define interface-range enet_list FastEthernet5/1 - 4
```
To use an interface-range macro in the `interface range` command, perform this task:

```
Router(config)# interface range macro macro_name
```

This example shows how to change to the interface-range configuration mode using the interface-range macro enet_list:

```
Router(config)# interface range macro enet_list
Router(config-if)#
```

Configuring Optional Interface Features

These sections describe optional interface features:

- Configuring Ethernet Interface Speed and Duplex Mode, page 8-5
- Configuring Jumbo Frame Support, page 8-8
- Configuring IEEE 802.3X Flow Control, page 8-12
- Configuring the Port Debounce Timer, page 8-13
- Adding a Description for an Interface, page 8-14

Configuring Ethernet Interface Speed and Duplex Mode

These sections describe how to configure Ethernet port speed and duplex mode:

- Speed and Duplex Mode Configuration Guidelines, page 8-5
- Configuring the Ethernet Interface Speed, page 8-6
- Setting the Interface Duplex Mode, page 8-6
- Configuring Link Negotiation on Gigabit Ethernet Ports, page 8-7
- Displaying the Speed and Duplex Mode Configuration, page 8-8

Speed and Duplex Mode Configuration Guidelines

You usually configure Ethernet port speed and duplex mode parameters to auto and allow the Cisco 7600 series router to negotiate the speed and duplex mode between ports. If you decide to configure the port speed and duplex modes manually, consider the following information:

- If you set the Ethernet port speed to auto, the router automatically sets the duplex mode to auto.
- If you enter the `no speed` command, the router automatically configures both speed and duplex to auto.
- If you configure an Ethernet port speed to a value other than auto (for example, 10, 100, or 1000 Mbps), configure the connecting port to match. Do not configure the connecting port to negotiate the speed.
• If you manually configure the Ethernet port speed to either 10 Mbps or 100 Mbps, the router prompts you to also configure the duplex mode on the port.

Note
Cisco 7600 series routers cannot automatically negotiate Ethernet port speed and duplex mode if the connecting port is configured to a value other than auto.

Caution
Changing the Ethernet port speed and duplex mode configuration might shut down and reenable the interface during the reconfiguration.

Configuring the Ethernet Interface Speed

Note
If you configure the Ethernet port speed to **auto** on a 10/100-Mbps or 10/100/1000-Mbps Ethernet port, both speed and duplex are autonegotiated.

To configure the port speed for a 10/100 or a 10/100/1000-Mbps Ethernet port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
 Router(config)# interface fastethernet slot/port | Selects the Ethernet port to be configured. |
| **Step 2**
 Router(config-if)# speed {10 | 100 | 1000 | auto [10 100 [1000]]} | Configures the speed of the Ethernet interface. |
 Router(config-if)# no speed | Reverts to the default configuration (speed auto). |

When configuring the port speed for a 10/100/1000-Mbps Ethernet port, note the following:
• Enter the **auto 10 100** keywords to restrict the negotiated speed to 10-Mbps or 100-Mbps.
• The **auto 10 100 1000** keywords have the same effect as the **auto** keyword by itself.

This example shows how to configure the speed to 100 Mbps on the Fast Ethernet port 5/4:

```
Router(config)# interface fastethernet 5/4
Router(config-if)# speed 100
```

Setting the Interface Duplex Mode

Note
• 10-Gigabit Ethernet and Gigabit Ethernet are full duplex only. You cannot change the duplex mode on 10-Gigabit Ethernet or Gigabit Ethernet ports or on a 10/100/1000-Mbps port configured for Gigabit Ethernet.
• If you set the port speed to auto on a 10/100-Mbps or a 10/100/1000-Mbps Ethernet port, both speed and duplex are autonegotiated. You cannot change the duplex mode of autonegotiation ports.

To set the duplex mode of an Ethernet or Fast Ethernet port, perform this task:
Chapter 8 Configuring Interfaces

Configuring Optional Interface Features

This example shows how to set the duplex mode to full on Fast Ethernet port 5/4:

Router(config)# interface fastethernet 5/4
Router(config-if)# duplex full

Configuring Link Negotiation on Gigabit Ethernet Ports

Note Link negotiation does not negotiate port speed.

On Gigabit Ethernet ports, link negotiation exchanges flow-control parameters, remote fault information, and duplex information. Link negotiation is enabled by default.

The ports on both ends of a link must have the same setting. The link will not come up if the ports at each end of the link are set inconsistently (link negotiation enabled on one port and disabled on the other port).

Table 8-1 shows the four possible link negotiation configurations and the resulting link status for each configuration.

<table>
<thead>
<tr>
<th>Link Negotiation State</th>
<th>Link Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Port</td>
<td>Remote Port</td>
</tr>
<tr>
<td>Off</td>
<td>Off</td>
</tr>
<tr>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Off</td>
<td>On</td>
</tr>
<tr>
<td>On</td>
<td>Off</td>
</tr>
</tbody>
</table>

To configure link negotiation on a port, perform this task:

Step 1
Router(config)# interface gigabitethernet slot/port

Purpose
Selects the port to be configured.

Step 2
Router(config-if)# speed nonegotiate
Router(config-if)# no speed nonegotiate

Purpose
Disables link negotiation.
Reverts to the default configuration (link negotiation enabled).

This example shows how to enable link negotiation on Gigabit Ethernet port 5/4:

Router(config)# interface gigabitethernet 5/4
Router(config-if)# no speed nonegotiate
Displaying the Speed and Duplex Mode Configuration

To display the speed and duplex mode configuration for a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show interfaces type</code> slot/port</td>
<td>Displays the speed and duplex mode configuration.</td>
</tr>
</tbody>
</table>

1. `type` = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to display the speed and duplex mode of Fast Ethernet port 5/4:

```
Router# show interfaces fastethernet 5/4
FastEthernet5/4 is up, line protocol is up
   Hardware is Cat6K 100Mb Ethernet, address is 0050.f0ac.3058 (bia 0050.f0ac.3058)
   MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
       reliability 255/255, txload 1/255, rxload 1/255
   Encapsulation ARPA, loopback not set
   Keepalive set (10 sec)
   Full-duplex, 100Mb/s
   ARP type: ARPA, ARP Timeout 04:00:00
   Last input 00:00:33, output never, output hang never
   Last clearing of "show interface" counters never
   Queueing strategy: fifo
   Output queue 0/40, 0 drops; input queue 0/75, 0 drops
   5 minute input rate 0 bits/sec, 0 packets/sec
   5 minute output rate 0 bits/sec, 0 packets/sec
   1238 packets input, 273598 bytes, 0 no buffer
   Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
   0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
   0 input packets with dribble condition detected
   1380 packets output, 514382 bytes, 0 underruns
   0 output errors, 0 collisions, 2 interface resets
   0 babbles, 0 late collision, 0 deferred
   0 lost carrier, 0 no carrier
   0 output buffer failures, 0 output buffers swapped out
```

Configuring Jumbo Frame Support

These sections describe jumbo frame support:

- Understanding Jumbo Frame Support, page 8-9
- Configuring MTU Sizes, page 8-10

⚠️ Caution

The following switching modules support a maximum ingress frame size of 8092 bytes:

- WS-X6516-GE-TX when operating at 100 Mbps
- WS-X6248-RJ-45 and WS-X6248-TEL

When jumbo frame support is configured, these modules drop ingress frames larger than 8092 bytes.
Chapter 8 Configuring Interfaces

Configuring Optional Interface Features

Understanding Jumbo Frame Support

These sections describe jumbo frame support:
- Jumbo Frame Support Overview, page 8-9
- Ethernet Ports, page 8-10
- VLAN Interfaces, page 8-10

Jumbo Frame Support Overview

A jumbo frame is a frame larger than the default Ethernet size. You enable jumbo frame support by configuring a larger-than-default maximum transmission unit (MTU) size on a port or VLAN interface and configuring the global LAN port MTU size.

Note
- Jumbo frame support fragments routed traffic in software on the MSFC.
- Jumbo frame support does not fragment bridged traffic.

Bridged and Routed Traffic Size Check at Ingress 10, 10/100, and 100 Mbps Ethernet and 10-Gigabit Ethernet Ports

Jumbo frame support compares ingress traffic size with the global LAN port MTU size at ingress 10, 10/100, and 100 Mbps Ethernet and 10-Gigabit Ethernet LAN ports that have a nondefault MTU size configured. The port drops traffic that is oversized. You can configure the global LAN port MTU size (see the “Configuring the Global Egress LAN Port MTU Size” section on page 8-11).

Bridged and Routed Traffic Size Check at Ingress Gigabit Ethernet Ports

Gigabit Ethernet LAN ports configured with a nondefault MTU size accept frames containing packets of any size larger than 64 bytes. With a nondefault MTU size configured, Gigabit Ethernet LAN ports do not check for oversize ingress frames.

Routed Traffic Size Check on the PFC

For traffic that needs to be routed, Jumbo frame support on the PFC compares traffic sizes to the configured MTU sizes and provides Layer 3 switching for jumbo traffic between interfaces configured with MTU sizes large enough to accommodate the traffic. Between interfaces that are not configured with large enough MTU sizes, if the “do not fragment bit” is not set, the PFC sends the traffic to the MSFC to be fragmented and routed in software. If the “do not fragment bit” is set, the PFC drops the traffic.

Bridged and Routed Traffic Size Check at Egress 10, 10/100, and 100 Mbps Ethernet Ports

10, 10/100, and 100 Mbps Ethernet LAN ports configured with a nondefault MTU size transmit frames containing packets of any size larger than 64 bytes. With a nondefault MTU size configured, 10, 10/100, and 100 Mbps Ethernet LAN ports do not check for oversize egress frames.
Bridged and Routed Traffic Size Check at Egress Gigabit Ethernet and 10-Gigabit Ethernet Ports

Jumbo frame support compares egress traffic size with the global egress LAN port MTU size at egress Gigabit Ethernet and 10-Gigabit Ethernet LAN ports that have a nondefault MTU size configured. The port drops traffic that is oversized. You can configure the global LAN port MTU size (see the “Configuring the Global Egress LAN Port MTU Size” section on page 8-11).

Ethernet Ports

These sections describe configuring nondefault MTU sizes on Ethernet ports:
- Ethernet Port Overview, page 8-10
- Layer 3 Ethernet Ports, page 8-10
- Layer 2 Ethernet Ports, page 8-10

Ethernet Port Overview

Configuring a nondefault MTU size on a 10, 10/100, or 100 Mbps Ethernet port limits ingress packets to the global LAN port MTU size and permits egress traffic of any size larger than 64 bytes.

Configuring a nondefault MTU size on a Gigabit Ethernet port permits ingress packets of any size larger than 64 bytes and limits egress traffic to the global LAN port MTU size.

Configuring a nondefault MTU size on a 10-Gigabit Ethernet port limits ingress and egress packets to the global LAN port MTU size.

Configuring a nondefault MTU size on an Ethernet port limits routed traffic to the configured MTU size. You can configure the MTU size on any Ethernet port.

Layer 3 Ethernet Ports

On a Layer 3 port, you can configure an MTU size on each Layer 3 Ethernet port that is different than the global LAN port MTU size.

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic through a Layer 3 Ethernet LAN port that is configured with a nondefault MTU size is also subject to the global LAN port MTU size (see the “Configuring the Global Egress LAN Port MTU Size” section on page 8-11).</td>
</tr>
</tbody>
</table>

Layer 2 Ethernet Ports

On a Layer 2 port, you can only configure an MTU size that matches the global LAN port MTU size (see the “Configuring the Global Egress LAN Port MTU Size” section on page 8-11).

VLAN Interfaces

You can configure a different MTU size on each Layer 3 VLAN interface. Configuring a nondefault MTU size on a VLAN interface limits traffic to the nondefault MTU size. You can configure the MTU size on VLAN interfaces to support jumbo frames.

Configuring MTU Sizes

These sections describe how to configure MTU sizes:
- Configuring MTU Sizes, page 8-10
- Configuring the Global Egress LAN Port MTU Size, page 8-11
Chapter 8 Configuring Interfaces

Configuring Optional Interface Features

Configuring the MTU Size

To configure the MTU size, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{vlan vlan_ID}</td>
</tr>
<tr>
<td></td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mtu mtu_size</td>
</tr>
<tr>
<td></td>
<td>Configures the MTU size.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mtu</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default MTU size (1500 bytes).</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show running-config interface {{gigabitethernet</td>
</tr>
<tr>
<td></td>
<td>Displays the running configuration.</td>
</tr>
</tbody>
</table>

When configuring the MTU size, note the following information:

- For VLAN interfaces and Layer 3 Ethernet ports, supported MTU values are from 64 to 9216 bytes.
- For Layer 2 Ethernet ports, you can configure only the global egress LAN port MTU size (see the “Configuring the Global Egress LAN Port MTU Size” section on page 8-11).

This example shows how to configure the MTU size on Gigabit Ethernet port 1/2:

```
Router# configure terminal
Router(config)# interface gigabitethernet 1/2
Router(config-if)# mtu 9216
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show interface gigabitethernet 1/2
GigabitEthernet1/2 is administratively down, line protocol is down
    Hardware is C6k 1000Mb 802.3, address is 0030.9629.9f88 (bia 0030.9629.9f88)
    MTU 9216 bytes, BW 1000000 Kbit, DLY 10 usec,
<...Output Truncated...>
```

Configuring the Global Egress LAN Port MTU Size

To configure the global egress LAN port MTU size, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# system jumbomtu mtu_size</td>
</tr>
<tr>
<td></td>
<td>Configures the global egress LAN port MTU size.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no system jumbomtu</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default global egress LAN port MTU size (9216 bytes).</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
</tbody>
</table>
Configuring IEEE 802.3X Flow Control

Gigabit Ethernet and 10-Gigabit Ethernet ports on the Cisco 7600 series routers use flow control to stop the transmission of frames to the port for a specified time; other Ethernet ports use flow control to respond to flow-control requests.

If a Gigabit Ethernet or 10-Gigabit Ethernet port receive buffer becomes full, the port transmits an IEEE 802.3X pause frame that requests remote ports to delay sending frames for a specified time. All Ethernet ports (10 Gbps, 1 Gbps, 100 Mbps, and 10 Mbps) can receive and respond to IEEE 802.3X pause frames from other devices.

To configure flow control on an Ethernet port, perform this task:

1. **Select the port to configure.**
   ```
   Router(config)# interface type1 slot/port
   ```

2. **Configure a port to send or respond to pause frames.**
   ```
   Router(config-if)# flowcontrol {receive | send} {desired | off | on}
   ```

3. **Revert to the default flow control settings.**
   ```
   Router(config-if)# no flowcontrol {receive | send}
   ```

4. **Display the flow-control configuration for all ports.**
   ```
   Router# show interfaces [type1 slot/port] flowcontrol
   ```

 1. `type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet`

 When configuring flow control, note the following information:
 - 10-Gigabit Ethernet ports are permanently configured to respond to pause frames.
 - When the configuration of the remote ports is unknown, use the `receive desired` keywords to configure a Gigabit Ethernet port to respond to received pause frames.
 - Use the `receive on` keywords to configure a Gigabit Ethernet port to respond to received pause frames.
 - Use the `receive off` keywords to configure a Gigabit Ethernet port to ignore received pause frames.
 - When configuring transmission of pause frames, note the following information:
 - When the configuration of the remote ports is unknown, use the `send desired` keywords to configure a port to send pause frames.
 - Use the `send on` keywords to configure a port to send pause frames.
 - Use the `send off` keywords to configure a port not to send pause frames.

 This example shows how to turn on receive flow control and how to verify the flow-control configuration:

   ```
   Router# configure terminal
   Router(config)# interface gigabitethernet 1/2
   Router(config-if)# flowcontrol receive on
   Router(config-if)# end
   Router# show interfaces flowcontrol
   ```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Send</th>
<th>Receive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/1</td>
<td>Desired</td>
<td>OFF</td>
</tr>
<tr>
<td>Gi1/2</td>
<td>Desired</td>
<td>ON</td>
</tr>
<tr>
<td>Fa5/1</td>
<td>Not capable</td>
<td>OFF</td>
</tr>
</tbody>
</table>

 <output truncated>
Configuring the Port Debounce Timer

The port debounce timer delays notification of a link change, which can decrease traffic loss due to network reconfiguration. You can configure the port debounce timer separately on each LAN port.

⚠️ Caution
Enabling the port debounce timer causes link up and link down detections to be delayed, resulting in loss of traffic during the debouncing period. This situation might affect the convergence and reconvergence of some Layer 2 and Layer 3 protocols.

To configure the debounce timer on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Selects the port to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# link debounce [time debounce_time]</td>
</tr>
<tr>
<td></td>
<td>Configures the debounce timer.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no link debounce</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default setting.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show interfaces debounce</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

When configuring the debounce timer on a port, note the following information:

- The **time** keyword is supported only on fiber Gigabit Ethernet ports.
- You can increase the port debounce timer value in increments of 100 milliseconds up to 5000 milliseconds on ports operating at 1000 Mbps over copper media.
- WS-X6502-10GE is not supported.
- Both fiber and copper media are supported for 10 Gbps ports.
- Media-only changes are detected.

Table 8-2 lists the time delay that occurs before notification of a link change.

<table>
<thead>
<tr>
<th>Port Type</th>
<th>Debounce Timer Disabled</th>
<th>Debounce Timer Enabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports operating at 10 Mbps or 100 Mbps</td>
<td>300 milliseconds</td>
<td>3100 milliseconds</td>
</tr>
<tr>
<td>Ports operating at 1000 Mbps or 10 Gbps over copper media</td>
<td>300 milliseconds</td>
<td>3100 milliseconds</td>
</tr>
<tr>
<td>Ports operating at 1000 Mbps or 10 Gbps over fiber media except WS-X6502-10GE</td>
<td>10 milliseconds</td>
<td>100 milliseconds</td>
</tr>
<tr>
<td>WS-X6502-10GE 10-Gigabit ports</td>
<td>1000 milliseconds</td>
<td>3100 milliseconds</td>
</tr>
</tbody>
</table>

This example shows how to enable the port debounce timer on Fast Ethernet port 5/12:

```
Router(config)# interface fastethernet 5/12
Router(config-if)# link debounce
Router(config-if)# end
```

This example shows how to display the port debounce timer settings:
Chapter 8 Configuring Interfaces

Understanding Online Insertion and Removal

Router# show interfaces debounce | include enable
Fa5/12 enable 3100

Adding a Description for an Interface

You can add a description about an interface to help you remember its function. The description appears in the output of the following commands: show configuration, show running-config, and show interfaces.

To add a description for an interface, perform this task:

This example shows how to add a description on Fast Ethernet port 5/5:

Router(config)# interface fastethernet 5/5
Router(config-if)# description Channel-group to “Marketing”

Understanding Online Insertion and Removal

The online insertion and removal (OIR) feature supported on the Cisco 7600 series routers allows you to remove and replace modules while the system is online. You can shut down the modules before removal and restart it after insertion without causing other software or interfaces to shut down.

Note

Do not remove or install more than one module at a time. After you remove or install a module, check the LEDs before continuing. For module LED descriptions, refer to the Cisco 7600 Series Router Installation Guide.

When a module has been removed or installed, the Cisco 7600 series router stops processing traffic for the module and scans the system for a configuration change. Each interface type is verified against the system configuration, and then the system runs diagnostics on the new module. There is no disruption to normal operation during module insertion or removal.

The router can bring only an identical replacement module online. To support OIR of an identical module, the module configuration is not removed from the running-config file when you remove a module.

If the replacement module is different from the removed module, you must configure it before the router can bring it online.

Layer 2 MAC addresses are stored in an EEPROM, which allows modules to be replaced online without requiring the system to update switching tables and data structures. Regardless of the types of modules installed, the Layer 2 MAC addresses do not change unless you replace the supervisor engine. If you do replace the supervisor engine, the Layer 2 MAC addresses of all ports change to those specified in the address allocator on the new supervisor engine.
Monitoring and Maintaining Interfaces

Following is a list of several of the commands that you can use to monitor and maintain interfaces on the Cisco 7600 series router.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ibc</td>
<td>Displays current internal status information.</td>
</tr>
<tr>
<td>Router# show eobc</td>
<td>Displays current internal out-of-band information.</td>
</tr>
<tr>
<td>Router# show interfaces [type slot/port]</td>
<td>Displays the status and configuration of all or a specific interface.</td>
</tr>
<tr>
<td>Router# show running-config</td>
<td>Displays the currently running configuration.</td>
</tr>
<tr>
<td>Router# show rif</td>
<td>Displays the current contents of the routing information field (RIF) cache.</td>
</tr>
<tr>
<td>Router# show protocols [type slot/port]</td>
<td>Displays the global (system-wide) and interface-specific status of any configured protocol.</td>
</tr>
<tr>
<td>Router# show version</td>
<td>Displays the hardware configuration, software version, the names and sources of configuration files, and the boot images.</td>
</tr>
<tr>
<td>Router(config)# interface type slot/port</td>
<td>Shuts down the specified interface, which disables all functions on the interface and shows the interface as unavailable. In addition, the interface is not included in any routing updates.</td>
</tr>
<tr>
<td>Router(config-if)# shutdown</td>
<td>Enables an interface that is shut down.</td>
</tr>
<tr>
<td>Router(config)# interface type slot/port</td>
<td>Clears interface counters. If you do not specify an optional interface type, the command clears all current counters for the specified interface.</td>
</tr>
<tr>
<td>Router(config-if)# no shutdown</td>
<td>Clears interface counters. If you do not specify an optional interface type, the command clears all current counters for the specified interface.</td>
</tr>
<tr>
<td>Router# clear counters [{type slot/port}</td>
<td>Clears interface counters. If you do not specify an optional interface type, the command clears all current counters for the specified interface.</td>
</tr>
<tr>
<td>{vlan vlan_ID}</td>
<td>Note This command clears counters displayed with the EXEC show interfaces command, not counters retrieved using SNMP.</td>
</tr>
<tr>
<td>{port-channel channel_ID}]</td>
<td></td>
</tr>
<tr>
<td>Router# clear interface type1 slot/port</td>
<td>Resets an interface.</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

Note

- For detailed command syntax and usage information, see the *Cisco 7600 Series Cisco IOS Command Reference* at this URL:
- For additional information on monitoring and maintaining interfaces on Cisco routers, see the Release 12.2 *Cisco IOS Interface Configuration Guide* at this URL:
Checking the Cable Status Using the TDR

You can check the status of copper cables using the time domain reflectometer (TDR). The TDR detects a cable fault by sending a signal through the cable and reading the signal that is reflected back to it. All or part of the signal can be reflected back by any number of cable defects or by the end of the cable itself.

Use the TDR to determine if the cabling is at fault if you cannot establish a link. This test is especially important when replacing an existing router, upgrading to Gigabit Ethernet, or installing new cables.

The port must be up before running the TDR test. If the port is down, you cannot enter the `test cable-diagnostics tdr` command successfully, and the following message is displayed:

```
Router# test cable-diagnostics tdr interface gigabitethernet2/12
% Interface Gi2/12 is administratively down
% Use 'no shutdown' to enable interface before TDR test start.
```

Note

- TDR can test cables up to a maximum length of 115 meters.
- See the Release Notes for Cisco IOS Release 12.2SX on the Supervisor Engine 720, Supervisor Engine 32, and Supervisor Engine 2 for information about which modules support the TDR.

To start or stop the TDR test, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>test cable-diagnostics tdr interface [interface-number]</code></td>
<td>Starts or stops the TDR test.</td>
</tr>
</tbody>
</table>

This example shows how to run the TDR-cable diagnostics:

```
Router # test cable-diagnostics tdr interface gigabitethernet2/1
TDR test started on interface Gi2/1
A TDR test can take a few seconds to run on an interface
Use 'show cable-diagnostics tdr' to read the TDR results.
Router #
```
CHAPTER 9

Configuring a Supervisor Engine 32

This chapter describes how to configure a Supervisor Engine 32 in a Cisco 7600 series router. This chapter contains these sections:

- Flash Memory on a Supervisor Engine 32, page 9-1
- Supervisor Engine 32 Ports, page 9-2

Note

- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
- With Cisco IOS software, this is the minimum required Supervisor Engine 32 memory:
 - 512 MB DRAM on the Supervisor Engine 32
 - 512 MB DRAM on the MSFC2A
- The Supervisor Engine 32 is supported in the WS-6503 and WS-6503-E (3-slot) chassis, but not the Cisco 7603 chassis.
- With a 4-slot chassis, install the Supervisor Engine 32 in either slot 1 or 2.
- With a 6-slot or a 9-slot chassis, install the Supervisor Engine 32 in either slot 5 or 6.
- With a 13-slot chassis, install the Supervisor Engine 32 in either slot 7 or 8.
- The Supervisor Engine 32 has a PFC3B and operates in PFC3B mode.
- The Supervisor Engine 32 does not support switch fabric connectivity.
- For information about the hardware and software features supported by the Supervisor Engine 32, see the Release Notes for Cisco IOS Release 12.2SX on the Supervisor Engine 720, Supervisor Engine 32, and Supervisor Engine 2 at this URL:

Flash Memory on a Supervisor Engine 32

The Supervisor Engine 32 has:

- **disk0:**—One external CompactFlash Type II slot (supports CompactFlash Type II Flash PC cards)
- **sup-bootdisk:**—256 MB internal CompactFlash Flash memory (from ROMMON, it is **bootdisk:**)
Both Sup32 modules require a minimum of 128-MB bootflash to run Release 12.2SRB and later releases. A CompactFlash (CF) adapter with 512-MB bootflash is available for Sup32 modules in Release 12.2(18)SXF and later releases. Use the Cisco part number CF-ADAPTER= for ordering.

Supervisor Engine 32 Ports

The console port for the Supervisor Engine 32 port is an EIA/TIA-232 (RS-232) port. The Supervisor Engine 32 also has two Universal Serial Bus (USB) 2.0 ports that are not currently enabled.

WS-SUP32-GE-3B ports 1 through 8 have small form-factor pluggable (SFP) connectors and port 9 is a 10/100/1000 Mbps RJ-45 port.

WS-SUP32-10GE ports 1 and 2 are 10 Gigabit Ethernet ports that accept XENPAKs and port 3 is a 10/100/1000 Mbps RJ-45 port.
Configuring LAN Ports for Layer 2 Switching

This chapter describes how to use the command-line interface (CLI) to configure Ethernet, Fast Ethernet, Gigabit Ethernet, and 10-Gigabit Ethernet LAN ports for Layer 2 switching on the Cisco 7600 series routers. The configuration tasks in this chapter apply to LAN ports on LAN switching modules and to the LAN ports on the supervisor engine.

Note

- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
- To configure Layer 3 interfaces, see Chapter 22, “Configuring Layer 3 Interfaces.”

This chapter consists of these sections:

- Understanding How Layer 2 Switching Works, page 10-1
- Default Layer 2 LAN Interface Configuration, page 10-5
- Layer 2 LAN Interface Configuration Guidelines and Restrictions, page 10-5
- Configuring LAN Interfaces for Layer 2 Switching, page 10-6

Understanding How Layer 2 Switching Works

These sections describe how Layer 2 switching works on the Cisco 7600 series routers:

- Understanding Layer 2 Ethernet Switching, page 10-1
- Understanding VLAN Trunks, page 10-2
- Layer 2 LAN Port Modes, page 10-4

Understanding Layer 2 Ethernet Switching

These sections describe Layer 2 Ethernet switching:

- Layer 2 Ethernet Switching Overview, page 10-2
- Switching Frames Between Segments, page 10-2
- Building the Address Table, page 10-2
Understanding How Layer 2 Switching Works

Layer 2 Ethernet Switching Overview

Cisco 7600 series routers support simultaneous, parallel connections between Layer 2 Ethernet segments. Switched connections between Ethernet segments last only for the duration of the packet. New connections can be made between different segments for the next packet.

Cisco 7600 series routers solve congestion problems caused by high-bandwidth devices and by a large number of users by assigning each device (for example, a server) to its own 10-, 100-, or 1000-Mbps collision domain. Because each LAN port connects to a separate Ethernet collision domain, servers in a properly configured switched environment achieve full access to the bandwidth.

Because collisions cause significant congestion in Ethernet networks, an effective solution is full-duplex communication. Normally, Ethernet operates in half-duplex mode, which means that stations can either receive or transmit. In full-duplex mode, two stations can transmit and receive at the same time. When packets can flow in both directions simultaneously, the effective Ethernet bandwidth doubles.

Switching Frames Between Segments

Each LAN port on a Cisco 7600 series router can connect to a single workstation or server, or to a hub through which workstations or servers connect to the network.

On a typical Ethernet hub, all ports connect to a common backplane within the hub, and the bandwidth of the network is shared by all devices attached to the hub. If two stations establish a session that uses a significant level of bandwidth, the network performance of all other stations attached to the hub is degraded.

To reduce degradation, the router considers each LAN port to be an individual segment. When stations connected to different LAN ports need to communicate, the router forwards frames from one LAN port to the other at wire speed to ensure that each session receives full bandwidth.

To switch frames between LAN ports efficiently, the router maintains an address table. When a frame enters the router, it associates the MAC address of the sending network device with the LAN port on which it was received.

Building the Address Table

Cisco 7600 series routers build the address table by using the source address of the frames received. When the router receives a frame for a destination address not listed in its address table, it floods the frame to all LAN ports of the same VLAN except the port that received the frame. When the destination station replies, the router adds its relevant source address and port ID to the address table. The router then forwards subsequent frames to a single LAN port without flooding to all LAN ports.

The address table can store at least 32,000 address entries without flooding any entries. The router uses an aging mechanism, defined by a configurable aging timer, so if an address remains inactive for a specified number of seconds, it is removed from the address table.

Understanding VLAN Trunks

These sections describe VLAN trunks on the Cisco 7600 series routers:

- Trunking Overview, page 10-3
- Encapsulation Types, page 10-3
Chapter 10 Configuring LAN Ports for Layer 2 Switching

Understanding How Layer 2 Switching Works

Trunking Overview

Note: For information about VLANs, see Chapter 14, “Configuring VLANs.”

A trunk is a point-to-point link between the router and another networking device. Trunks carry the traffic of multiple VLANs over a single link and allow you to extend VLANs across an entire network.

Two trunking encapsulations are available on all Ethernet ports:

- Inter-Switch Link (ISL)—ISL is a Cisco-proprietary trunking encapsulation.

Note: The following switching modules do not support ISL encapsulation:

- WS-X6502-10GE
- WS-X6548-GE-TX, WS-X654V-GE-TX, WS-X6548-GE-45AF
- WS-X6148-GE-TX, WS-X6148V-GE-TX, WS-X6148-GE-45AF

- 802.1Q—802.1Q is an industry-standard trunking encapsulation.

You can configure a trunk on a single Ethernet port or on an EtherChannel. For more information about EtherChannel, see Chapter 12, “Configuring EtherChannels.”

Ethernet trunk ports support several trunking modes (see Table 10-2 on page 10-4). You can specify whether the trunk uses ISL or 802.1Q encapsulation, and if the encapsulation type is autonegotiated.

Note: You can configure LAN ports to negotiate the encapsulation type. You cannot configure WAN interfaces to negotiate the encapsulation type.

The Dynamic Trunking Protocol (DTP) manages trunk autonegotiation on LAN ports. DTP supports autonegotiation of both ISL and 802.1Q trunks.

To autonegotiate trunking, the LAN ports must be in the same VTP domain. Use the `trunk` or `nonegotiate` keywords to force LAN ports in different domains to trunk. For more information on VTP domains, see Chapter 13, “Configuring VTP.”

Encapsulation Types

Table 10-1 lists the Ethernet trunk encapsulation types.

<table>
<thead>
<tr>
<th>Encapsulation</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport trunk encapsulation isl</td>
<td>Specifies ISL encapsulation on the trunk link.</td>
</tr>
</tbody>
</table>

Note: Some modules do not support ISL encapsulation (see the “Trunking Overview” section on page 10-3).
Chapter 10 Configuring LAN Ports for Layer 2 Switching

Understanding How Layer 2 Switching Works

The trunking mode, the trunk encapsulation type, and the hardware capabilities of the two connected LAN ports determine whether a link becomes an ISL or 802.1Q trunk.

Layer 2 LAN Port Modes

Table 10-2 lists the Layer 2 LAN port modes and describes how they function on LAN ports.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>switchport mode access</td>
<td>Puts the LAN port into permanent nontrunking mode and negotiates to convert the link into a nontrunk link. The LAN port becomes a nontrunk port even if the neighboring LAN port does not agree to the change.</td>
</tr>
<tr>
<td>switchport mode dynamic desirable</td>
<td>Makes the LAN port actively attempt to convert the link to a trunk link. The LAN port becomes a trunk port if the neighboring LAN port is set to trunk, desirable, or auto mode. This is the default mode for all LAN ports.</td>
</tr>
<tr>
<td>switchport mode dynamic auto</td>
<td>Makes the LAN port willing to convert the link to a trunk link. The LAN port becomes a trunk port if the neighboring LAN port is set to trunk or desirable mode.</td>
</tr>
<tr>
<td>switchport mode trunk</td>
<td>Puts the LAN port into permanent trunking mode and negotiates to convert the link into a trunk link. The LAN port becomes a trunk port even if the neighboring port does not agree to the change.</td>
</tr>
<tr>
<td>switchport nonegotiate</td>
<td>Puts the LAN port into permanent trunking mode but prevents the port from generating DTP frames. You must configure the neighboring port manually as a trunk port to establish a trunk link.</td>
</tr>
</tbody>
</table>

Note

DTP is a point-to-point protocol. However, some internetworking devices might forward DTP frames improperly. To avoid this problem, ensure that LAN ports connected to devices that do not support DTP are configured with the access keyword if you do not intend to trunk across those links. To enable trunking to a device that does not support DTP, use the nonegotiate keyword to cause the LAN port to become a trunk but not generate DTP frames.
Default Layer 2 LAN Interface Configuration

Table 10-3 shows the Layer 2 LAN port default configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface mode:</td>
<td></td>
</tr>
<tr>
<td>• Before entering the switchport command</td>
<td>Layer 3 (unconfigured)</td>
</tr>
<tr>
<td>• After entering the switchport command</td>
<td>switchport mode dynamic desirable</td>
</tr>
<tr>
<td>Trunk encapsulation</td>
<td>switchport trunk encapsulation negotiate</td>
</tr>
<tr>
<td>Allowed VLAN range</td>
<td>VLANs 1 to 4094, except reserved VLANs (see Table 14-1 on page 14-2)</td>
</tr>
<tr>
<td>VLAN range eligible for pruning</td>
<td>VLANs 2 to 1001</td>
</tr>
<tr>
<td>Default access VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Native VLAN (for 802.1Q trunks)</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Spanning Tree Protocol (STP)</td>
<td>Enabled for all VLANs</td>
</tr>
<tr>
<td>STP port priority</td>
<td>128</td>
</tr>
<tr>
<td>STP port cost</td>
<td>• 100 for 10-Mbps Ethernet LAN ports</td>
</tr>
<tr>
<td></td>
<td>• 19 for 10/100-Mbps Fast Ethernet LAN ports</td>
</tr>
<tr>
<td></td>
<td>• 19 for 100-Mbps Fast Ethernet LAN ports</td>
</tr>
<tr>
<td></td>
<td>• 4 for 1,000-Mbps Gigabit Ethernet LAN ports</td>
</tr>
<tr>
<td></td>
<td>• 2 for 10,000-Mbps 10-Gigabit Ethernet LAN ports</td>
</tr>
</tbody>
</table>

Layer 2 LAN Interface Configuration Guidelines and Restrictions

When configuring Layer 2 LAN ports, follow these guidelines and restrictions:

• The following switching modules do not support ISL encapsulation:
 – WS-X6502-10GE
 – WS-X6548-GE-TX, WS-X6548V-GE-TX, WS-X6548-GE-45AF
 – WS-X6148-GE-TX, WS-X6148V-GE-TX, WS-X6148-GE-45AF

• The following configuration guidelines and restrictions apply when using 802.1Q trunks and impose some limitations on the trunking strategy for a network. Note these restrictions when using 802.1Q trunks:
 – When connecting Cisco switches through an 802.1q trunk, make sure the native VLAN for an 802.1Q trunk is the same on both ends of the trunk link. If the native VLAN on one end of the trunk is different from the native VLAN on the other end, spanning tree loops might result.
Disabling spanning tree on the native VLAN of an 802.1Q trunk without disabling spanning tree on every VLAN in the network can cause spanning tree loops. We recommend that you leave spanning tree enabled on the native VLAN of an 802.1Q trunk. If this is not possible, disable spanning tree on every VLAN in the network. Make sure your network is free of physical loops before disabling spanning tree.

When you connect two Cisco switches through 802.1Q trunks, the switches exchange spanning tree BPDUs on each VLAN allowed on the trunks. The BPDUs on the native VLAN of the trunk are sent untagged to the reserved IEEE 802.1d spanning tree multicast MAC address (01-80-C2-00-00-00). The BPDUs on all other VLANs on the trunk are sent tagged to the reserved Cisco Shared Spanning Tree (SSTP) multicast MAC address (01-00-0c-cc-cc-cd).

Non-Cisco 802.1Q switches maintain only a single instance of spanning tree (the Mono Spanning Tree, or MST) that defines the spanning tree topology for all VLANs. When you connect a Cisco router to a non-Cisco router through an 802.1Q trunk, the MST of the non-Cisco router and the native VLAN spanning tree of the Cisco router combine to form a single spanning tree topology known as the Common Spanning Tree (CST).

Because Cisco switches transmit BPDUs to the SSTP multicast MAC address on VLANs other than the native VLAN of the trunk, non-Cisco switches do not recognize these frames as BPDUs and flood them on all ports in the corresponding VLAN. Other Cisco switches connected to the non-Cisco 802.1Q cloud receive these flooded BPDUs. This allows Cisco switches to maintain a per-VLAN spanning tree topology across a cloud of non-Cisco 802.1Q switches. The non-Cisco 802.1Q cloud separating the Cisco switches is treated as a single broadcast segment between all switches connected to the non-Cisco 802.1Q cloud through 802.1Q trunks.

Make certain that the native VLAN is the same on all of the 802.1Q trunks connecting the Cisco switches to the non-Cisco 802.1Q cloud.

If you are connecting multiple Cisco switches to a non-Cisco 802.1Q cloud, all of the connections must be through 802.1Q trunks. You cannot connect Cisco switches to a non-Cisco 802.1Q cloud through ISL trunks or through access ports. Doing so causes the router to place the ISL trunk port or access port into the spanning tree “port inconsistent” state and no traffic will pass through the port.

Configuring LAN Interfaces for Layer 2 Switching

These sections describe how to configure Layer 2 switching on the Cisco 7600 series routers:

- Configuring a LAN Port for Layer 2 Switching, page 10-7
- Configuring a Layer 2 Switching Port as a Trunk, page 10-7
- Configuring a LAN Interface as a Layer 2 Access Port, page 10-13
- Configuring a Custom IEEE 802.1Q EtherType Field Value, page 10-15

Note

Use the `default interface {ethernet | fastethernet | gigabitethernet | tengigabitethernet} slot/port` command to revert an interface to its default configuration.
Configuring a LAN Port for Layer 2 Switching

To configure a LAN port for Layer 2 switching, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type^{1} slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# shutdown</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# switchport</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# no shutdown</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router# show running-config interface [type^{1} slot/port]</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router# show interfaces [type^{1} slot/port] switchport</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router# show interfaces [type^{1} slot/port] trunk</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

After you enter the switchport command, the default mode is switchport mode dynamic desirable. If the neighboring port supports trunking and is configured to allow trunking, the link becomes a Layer 2 trunk when you enter the switchport command. By default, LAN trunk ports negotiate encapsulation. If the neighboring port supports ISL and 802.1Q encapsulation and both ports are set to negotiate the encapsulation type, the trunk uses ISL encapsulation (10-Gigabit Ethernet ports do not support ISL encapsulation).

Configuring a Layer 2 Switching Port as a Trunk

These section describe configuring a Layer 2 switching port as a trunk:

- Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk, page 10-8
- Configuring the Layer 2 Trunk to Use DTP, page 10-8
- Configuring the Layer 2 Trunk Not to Use DTP, page 10-9
- Configuring the Access VLAN, page 10-10
- Configuring the 802.1Q Native VLAN, page 10-10
- Configuring the List of VLANs Allowed on a Trunk, page 10-11
- Configuring the List of Prune-Eligible VLANs, page 10-11
- Completing Trunk Configuration, page 10-12
Chapter 10 Configuring LAN Ports for Layer 2 Switching

- Verifying Layer 2 Trunk Configuration, page 10-12
- Configuration and Verification Examples, page 10-12

Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk

Note
- Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.
- When you enter the `switchport` command with no other keywords (Step 3 in the previous section), the default mode is `switchport mode dynamic desirable` and `switchport trunk encapsulation negotiate`.

To configure the Layer 2 switching port as an ISL or 802.1Q trunk, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# `switchport trunk encapsulation {isl</td>
<td>dot1q</td>
</tr>
<tr>
<td>Router(config-if)# <code>no switchport trunk encapsulation</code></td>
<td>Reverts to the default trunk encapsulation mode (<code>negotiate</code>).</td>
</tr>
</tbody>
</table>

When configuring the Layer 2 switching port as an ISL or 802.1Q trunk, note the following information:
- The `switchport mode trunk` command (see the “Configuring the Layer 2 Trunk Not to Use DTP” section on page 10-9) is not compatible with the `switchport trunk encapsulation negotiate` command.
- To support the `switchport mode trunk` command, you must configure the encapsulation as either ISL or 802.1Q.
- The following switching modules do not support ISL encapsulation:
 - WS-X6502-10GE
 - WS-X6548-GE-TX, WS-X6548V-GE-TX, WS-X6548-GE-45AF
 - WS-X6148-GE-TX, WS-X6148V-GE-TX, WS-X6148-GE-45AF

Note
Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Configuring the Layer 2 Trunk to Use DTP

Note
Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.
To configure the Layer 2 trunk to use DTP, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# switchport mode dynamic {auto</td>
<td>desirable}</td>
</tr>
<tr>
<td>Router(config-if)# no switchport mode</td>
<td>Reverts to the default trunk trunking mode (switchport mode dynamic desirable).</td>
</tr>
</tbody>
</table>

When configuring the Layer 2 trunk to use DTP, note the following information:
- Required only if the interface is a Layer 2 access port or to specify the trunking mode.
- See Table 10-2 on page 10-4 for information about trunking modes.

Note
Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Configuring the Layer 2 Trunk Not to Use DTP

Note
Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.

To configure the Layer 2 trunk not to use DTP, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# switchport mode trunk</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport mode</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# switchport nonegotiate</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport nonegotiate</td>
</tr>
</tbody>
</table>

When configuring the Layer 2 trunk not to use DTP, note the following information:
- Before entering the switchport mode trunk command, you must configure the encapsulation (see the “Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk” section on page 10-8).
- To support the switchport nonegotiate command, you must enter the switchport mode trunk command.
- Enter the switchport mode dynamic trunk command. See Table 10-2 on page 10-4 for information about trunking modes.
- Before entering the switchport nonegotiate command, you must configure the encapsulation (see the “Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk” section on page 10-8) and configure the port to trunk unconditionally with the switchport mode trunk command (see the “Configuring the Layer 2 Trunk to Use DTP” section on page 10-8).
Configuring LAN Interfaces for Layer 2 Switching

Note Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Configuring the Access VLAN

Note Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.

To configure the access VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchport access vlan vlan_ID</code></td>
<td>(Optional) Configures the access VLAN, which is used if the interface stops trunking. The <code>vlan_ID</code> value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).</td>
</tr>
<tr>
<td><code>no switchport access vlan</code></td>
<td>Reverts to the default value (VLAN 1).</td>
</tr>
</tbody>
</table>

Note Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Configuring the 802.1Q Native VLAN

Note Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.

To configure the 802.1Q native VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>switchport trunk native vlan vlan_ID</code></td>
<td>(Optional) Configures the 802.1Q native VLAN.</td>
</tr>
<tr>
<td><code>no switchport trunk native vlan</code></td>
<td>Reverts to the default value (VLAN 1).</td>
</tr>
</tbody>
</table>

When configuring the native VLAN, note the following information:

- The `vlan_ID` value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).
- The access VLAN is not automatically used as the native VLAN.
Chapter 10 Configuring LAN Ports for Layer 2 Switching

Configuring the List of VLANs Allowed on a Trunk

Note Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.

To configure the list of VLANs allowed on a trunk, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config-if)# switchport trunk allowed vlan {add</td>
<td>except</td>
</tr>
<tr>
<td><code>Router(config-if)# no switchport trunk allowed vlan</code></td>
<td>Reverts to the default value (all VLANs allowed).</td>
</tr>
</tbody>
</table>

When configuring the list of VLANs allowed on a trunk, note the following information:

- The `vlan` parameter is either a single VLAN number from 1 through 4094, or a range of VLANs described by two VLAN numbers, the lesser one first, separated by a dash. Do not enter any spaces between comma-separated `vlan` parameters or in dash-specified ranges.
- All VLANs are allowed by default.
- You can remove VLAN 1. If you remove VLAN 1 from a trunk, the trunk interface continues to send and receive management traffic, for example, Cisco Discovery Protocol (CDP), VLAN Trunking Protocol (VTP), Port Aggregation Protocol (PAgP), and DTP in VLAN 1.

Note Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Configuring the List of Prune-Eligible VLANs

Note Complete the steps in the “Configuring a LAN Port for Layer 2 Switching” section on page 10-7 before performing the tasks in this section.

To configure the list of prune-eligible VLANs on the Layer 2 trunk, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config-if)# switchport trunk pruning vlan {none</td>
<td>{add</td>
</tr>
<tr>
<td><code>Router(config-if)# no switchport trunk pruning vlan</code></td>
<td>Reverts to the default value (all VLANs prune-eligible).</td>
</tr>
</tbody>
</table>

When configuring the list of prune-eligible VLANs on a trunk, note the following information:

- The `vlan` parameter is either a single VLAN number from 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2), or a range of VLANs described by two VLAN numbers, the lesser one first, separated by a dash. Do not enter any spaces between comma-separated `vlan` parameters or in dash-specified ranges.
Chapter 10 Configuring LAN Ports for Layer 2 Switching

- The default list of VLANs allowed to be pruned contains all VLANs.
- Network devices in VTP transparent mode do not send VTP Join messages. On Cisco 7600 series routers with trunk connections to network devices in VTP transparent mode, configure the VLANs used by the transparent-mode network devices or that need to be carried across the transparent-mode network devices as pruning ineligible.

Note Complete the steps in the “Completing Trunk Configuration” section on page 10-12 after performing the tasks in this section.

Completing Trunk Configuration

To complete Layer 2 trunk configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# no shutdown</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# end</td>
</tr>
</tbody>
</table>

Verifying Layer 2 Trunk Configuration

To verify Layer 2 trunk configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# show running-config interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# show interfaces [type slot/port] switchport</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show interfaces [type slot/port] trunk</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

Configuration and Verification Examples

This example shows how to configure the Fast Ethernet port 5/8 as an 802.1Q trunk. This example assumes that the neighbor port is configured to support 802.1Q trunking:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/8
Router(config-if)# shutdown
Router(config-if)# switchport
Router(config-if)# switchport mode dynamic desirable
Router(config-if)# switchport trunk encapsulation dot1q
Router(config-if)# no shutdown
Router(config-if)# end
Router# exit
```

This example shows how to verify the configuration:

```
Router# show running-config interface fastethernet 5/8
Building configuration...
```
Current configuration:
!
interface FastEthernet5/8
no ip address
switchport
switchport trunk encapsulation dot1q
end

Router# show interfaces fastethernet 5/8 switchport
Name: Fa5/8
Switchport: Enabled
Administrative Mode: dynamic desirable
Operational Mode: trunk
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: Enabled
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: ALL

Router# show interfaces fastethernet 5/8 trunk

Port Mode Encapsulation Status Native vlan
Fa5/8 desirable n-802.1q trunking 1

Port Vlans allowed on trunk
Fa5/8 1-1005

Port Vlans allowed and active in management domain
Fa5/8 1-6,10,20,50,100,152,200,300,303-305,349-351,400,500,521,524,570,801-802,850,917,999,1002-1005

Port Vlans in spanning tree forwarding state and not pruned
Fa5/8 1-6,10,20,50,100,152,200,300,303-305,349-351,400,500,521,524,570,801-802,850,917,999,1002-1005

Router#

Configuring a LAN Interface as a Layer 2 Access Port

Note
If you assign a LAN port to a VLAN that does not exist, the port is shut down until you create the VLAN in the VLAN database (see the “Creating or Modifying an Ethernet VLAN” section on page 14-11).

To configure a LAN port as a Layer 2 access port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type slot/port</td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# shutdown</td>
<td>(Optional) shuts down the interface to prevent traffic flow until configuration is complete.</td>
</tr>
</tbody>
</table>
Chapter 10 Configuring LAN Ports for Layer 2 Switching

This example shows how to configure the Fast Ethernet port 5/6 as an access port in VLAN 200:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/6
Router(config-if)# shutdown
Router(config-if)# switchport
Router(config-if)# switchport mode access
Router(config-if)# switchport access vlan 200
Router(config-if)# no shutdown
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show running-config interface fastethernet 5/6
Building configuration...
Current configuration:
! Interface FastEthernet5/6
 no ip address
 switchport access vlan 200
 switchport mode access
end
```

```
Router# show interfaces fastethernet 5/6 switchport
Name: Fa5/6
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
```

Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Configures the LAN port for Layer 2 switching. Note You must enter the <code>switchport</code> command once without any keywords to configure the LAN port as a Layer 2 port before you can enter additional <code>switchport</code> commands with keywords.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Clears Layer 2 LAN port configuration.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Configures the LAN port as a Layer 2 access port. Reverts to the default switchport mode (switchport mode dynamic desirable).</td>
</tr>
<tr>
<td>Step 6</td>
<td>Places the LAN port in a VLAN. The <code>vlan_ID</code> value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2). Reverts to the default access VLAN (VLAN 1).</td>
</tr>
<tr>
<td>Step 7</td>
<td>Activates the interface. (Required only if you shut down the interface.)</td>
</tr>
<tr>
<td>Step 8</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Displays the running configuration of the interface.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Displays the switch port configuration of the interface.</td>
</tr>
</tbody>
</table>

1. `type` = ethernet, fastethernet, gigabitethernet, or tengigabitethernet
Configuring a Custom IEEE 802.1Q EtherType Field Value

You can configure a custom EtherType field value on a port to support network devices that do not use the standard 0x8100 EtherType field value on 802.1Q-tagged or 802.1p-tagged frames.

To configure a custom value for the EtherType field, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# switchport dot1q ethertype value</td>
<td>Configures the 802.1Q EtherType field value for the port.</td>
</tr>
<tr>
<td>Router(config-if)# no switchport dot1q ethertype</td>
<td>Reverts to the default 802.1Q EtherType field value (0x8100).</td>
</tr>
</tbody>
</table>

When configuring a custom EtherType field value, note the following information:

- To use a custom EtherType field value, all network devices in the traffic path across the network must support the custom EtherType field value.
- You can configure a custom EtherType field value on trunk ports, access ports, and tunnel ports.
- You can configure a custom EtherType field value on the member ports of an EtherChannel.
- You cannot configure a custom EtherType field value on a port-channel interface.
- Each port supports only one EtherType field value. A port that is configured with a custom EtherType field value does not recognize frames that have any other EtherType field value as tagged frames. For example, a trunk port that is configured with a custom EtherType field value does not recognize the standard 0x8100 EtherType field value on 802.1Q-tagged frames and cannot put the frames into the VLAN to which they belong.
- See the Release Notes for Cisco IOS Release 12.2SX on the Supervisor Engine 720, Supervisor Engine 32, and Supervisor Engine 2 for a list of the modules that support custom IEEE 802.1Q EtherType field values.

⚠️ Caution ⚠️

A port that is configured with a custom EtherType field value considers frames that have any other EtherType field value to be untagged frames. A trunk port with a custom EtherType field value places frames with any other EtherType field value into the native VLAN. An access port or tunnel port with a custom EtherType field value places frames that are tagged with any other EtherType field value into the access VLAN. If you misconfigure a custom EtherType field value, frames might be placed into the wrong VLAN.

This example shows how to configure the EtherType field value to 0x1234:

Router (config-if)# switchport dot1q ethertype 1234
Router (config-if)#
Configuring Flex Links

This chapter describes how to configure Flex Links on the Cisco 7600 series router.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

The chapter consists of these sections:

• Understanding Flex Links, page 11-1
• Configuring Flex Links, page 11-2
• Monitoring Flex Links, page 11-3

Understanding Flex Links

Flex Links are a pair of a Layer 2 interfaces (switchports or port channels), where one interface is configured to act as a backup to the other. Flex Links are typically configured in service-provider or enterprise networks where customers do not want to run STP. Flex Links provide link-level redundancy that is an alternative to Spanning Tree Protocol (STP). STP is automatically disabled on Flex Links interfaces.

To configure the Flex Links feature, you configure one Layer 2 interface as the standby link for the link that you want to be primary. With Flex Links configured for a pair of interfaces, only one of the interfaces is in the linkup state and is forwarding traffic. If the primary link shuts down, the standby link starts forwarding traffic. When the inactive link comes back up, it goes into standby mode.

In Figure 11-1, ports 1 and 2 on router A are connected to uplink routers B and C. Because they are configured as Flex Links, only one of the interfaces is forwarding traffic and the other one is in standby mode. If port 1 is the active link, it begins forwarding traffic between port 1 and router B; the link between port 2 (the backup link) and router C is not forwarding traffic. If port 1 goes down, port 2 comes up and starts forwarding traffic to router C. When port 1 comes back up, it goes into standby mode and does not forward traffic; port 2 continues to forward traffic.
Configuring Flex Links

Figure 11-1 Flex Links Configuration Example

If a primary (forwarding) link goes down, a trap notifies the network management stations. If the standby link goes down, a trap notifies the users.

Flex Links are supported only on Layer 2 ports and port channels, not on VLANs or on Layer 3 ports.

Configuring Flex Links

These sections contain this configuration information:

- Flex Links Default Configuration, page 11-2
- Flex Links Configuration Guidelines and Restrictions, page 11-2
- Configuring Flex Links, page 11-3

Flex Links Default Configuration

There is no default Flex Links configuration.

Flex Links Configuration Guidelines and Restrictions

When configuring Flex Links, follow these guidelines and restrictions:

- You can configure only one Flex Links backup link for any active link, and it must be a different interface from the active interface.
- An interface can belong to only one Flex Links pair. An interface can be a backup link for only one active link. An active link cannot belong to another Flex Links pair.
- Neither of the links can be a port that belongs to an EtherChannel. However, you can configure two port channels (EtherChannel logical interfaces) as Flex Links, and you can configure a port channel and a physical interface as Flex Links, with either the port channel or the physical interface as the active link.
- A backup link does not have to be the same type as the active link (Fast Ethernet, Gigabit Ethernet, or port channel). However, you should configure both Flex Links with similar characteristics so that there are no loops or changes in operation if the standby link becomes active.
- STP is disabled on Flex Links ports. If STP is disabled on the router, be sure that there are no Layer 2 loops in the network topology.
• Do not configure any STP features (for example, PortFast, BPDU Guard, and so forth) on Flex Links ports or the ports to which the links connect.

Configuring Flex Links

To configure Flex Links, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(conf)# interface {{type</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(conf-if)# switchport backup interface {{type</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(conf-if)# exit Exits configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# show interface {{type</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router# copy running-config startup config (Optional) Saves your entries in the router startup configuration file.</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

Note
If you configure the switchport interface using the **switchport backup interface** command, and then pass traffic to the backup interface, then the ingress counters will increment on the backup interface although the actual traffic does not pass through it.

This example shows how to configure an interface with a backup interface and how to verify the configuration:

```
Router# configure terminal
Router(conf)# interface fastethernet1/1
Router(conf-if)# switchport backup interface fastethernet1/2
Router(conf-if)# exit
Router# show interface switchport backup
```

Active Interface **Backup Interface** **State**

<table>
<thead>
<tr>
<th>Active Interface</th>
<th>Backup Interface</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastEthernet1/1</td>
<td>FastEthernet1/2</td>
<td>Active Up/Backup Standby</td>
</tr>
<tr>
<td>FastEthernet1/3</td>
<td>FastEthernet2/4</td>
<td>Active Up/Backup Standby</td>
</tr>
<tr>
<td>Port-channel1</td>
<td>GigabitEthernet7/1</td>
<td>Active Up/Backup Standby</td>
</tr>
</tbody>
</table>

Monitoring Flex Links

Table 11-1 shows the privileged EXEC command for monitoring the Flex Links configuration.
Table 11-1
Flex Links Monitoring Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show interface [{type slot/port}</td>
<td>{port-channel number}] switchport backup`</td>
</tr>
</tbody>
</table>

1. `type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet`
Configuring EtherChannels

This chapter describes how to configure EtherChannels on the Cisco 7600 series router Layer 2 or Layer 3 LAN ports.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

- Understanding How EtherChannels Work, page 12-1
- EtherChannel Feature Configuration Guidelines and Restrictions, page 12-5
- Configuring EtherChannels, page 12-7

Understanding How EtherChannels Work

These sections describe how EtherChannels work:

- EtherChannel Feature Overview, page 12-1
- Understanding How EtherChannels Are Configured, page 12-2
- Understanding LACP 1:1 Redundancy, page 12-5
- Understanding Port-Channel Interfaces, page 12-5
- Understanding Load Balancing, page 12-5

EtherChannel Feature Overview

An EtherChannel bundles individual Ethernet links into a single logical link that provides the aggregate bandwidth of up to eight physical links.

The Cisco 7600 series router supports a maximum of 128 EtherChannels.

You can form an EtherChannel with up to eight compatibly configured LAN ports on any module in a Cisco 7600 series router. All LAN ports in each EtherChannel must be the same speed and must all be configured as either Layer 2 or Layer 3 LAN ports.
Note: The network device to which a Cisco 7600 series router is connected may impose its own limits on the number of ports in an EtherChannel.

If a segment within an EtherChannel fails, traffic previously carried over the failed link switches to the remaining segments within the EtherChannel. When a failure occurs, the EtherChannel feature sends a trap that identifies the router, the EtherChannel, and the failed link. Inbound broadcast and multicast packets on one segment in an EtherChannel are blocked from returning on any other segment of the EtherChannel.

Understanding How EtherChannels Are Configured

These sections describe how EtherChannels are configured:

- EtherChannel Configuration Overview, page 12-2
- Understanding Manual EtherChannel Configuration, page 12-3
- Understanding PAgP EtherChannel Configuration, page 12-3
- Understanding IEEE 802.3ad LACP EtherChannel Configuration, page 12-3

EtherChannel Configuration Overview

You can configure EtherChannels manually or you can use the Port Aggregation Control Protocol (PAgP) or the Link Aggregation Control Protocol (LACP) to form EtherChannels. The EtherChannel protocols allow ports with similar characteristics to form an EtherChannel through dynamic negotiation with connected network devices. PAgP is a Cisco-proprietary protocol and LACP is defined in IEEE 802.3ad.

PAgP and LACP do not interoperate with each other. Ports configured to use PAgP cannot form EtherChannels with ports configured to use LACP. Ports configured to use LACP cannot form EtherChannels with ports configured to use PAgP.

Table 12-1 lists the user-configurable EtherChannel modes.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td>Mode that forces the LAN port to channel unconditionally. In the on mode, a usable EtherChannel exists only when a LAN port group in the on mode is connected to another LAN port group in the on mode. Because ports configured in the on mode do not negotiate, there is no negotiation traffic between the ports. You cannot configure the on mode with an EtherChannel protocol.</td>
</tr>
<tr>
<td>auto</td>
<td>(Default for PAgP) PAgP mode that places a LAN port into a passive negotiating state, in which the port responds to PAgP packets it receives but does not initiate PAgP negotiation.</td>
</tr>
<tr>
<td>desirable</td>
<td>PAgP mode that places a LAN port into an active negotiating state, in which the port initiates negotiations with other LAN ports by sending PAgP packets.</td>
</tr>
<tr>
<td>passive</td>
<td>(Default for LACP) LACP mode that places a port into a passive negotiating state, in which the port responds to LACP packets it receives but does not initiate LACP negotiation.</td>
</tr>
<tr>
<td>active</td>
<td>LACP mode that places a port into an active negotiating state, in which the port initiates negotiations with other ports by sending LACP packets.</td>
</tr>
</tbody>
</table>
Understanding Manual EtherChannel Configuration

Manually configured EtherChannel ports do not exchange EtherChannel protocol packets. A manually configured EtherChannel forms only when you enter configure all ports in the EtherChannel compatibly.

Understanding PAgP EtherChannel Configuration

PAgP supports the automatic creation of EtherChannels by exchanging PAgP packets between LAN ports. PAgP packets are exchanged only between ports in auto and desirable modes.

The protocol learns the capabilities of LAN port groups dynamically and informs the other LAN ports. Once PAgP identifies correctly matched Ethernet links, it facilitates grouping the links into an EtherChannel. The EtherChannel is then added to the spanning tree as a single bridge port.

Both the auto and desirable modes allow PAgP to negotiate between LAN ports to determine if they can form an EtherChannel, based on criteria such as port speed and trunking state. Layer 2 EtherChannels also use VLAN numbers.

LAN ports can form an EtherChannel when they are in different PAgP modes if the modes are compatible. For example:

- A LAN port in desirable mode can form an EtherChannel successfully with another LAN port that is in desirable mode.
- A LAN port in desirable mode can form an EtherChannel with another LAN port in auto mode.
- A LAN port in auto mode cannot form an EtherChannel with another LAN port that is also in auto mode, because neither port will initiate negotiation.

Table 12-2 provides a summary of these combinations.

<table>
<thead>
<tr>
<th>Router A</th>
<th>Router B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto mode</td>
<td>auto mode</td>
<td>No EtherChannel group is created.</td>
</tr>
<tr>
<td>auto mode</td>
<td>desirable mode</td>
<td>EtherChannel group is created.</td>
</tr>
<tr>
<td>desirable mode</td>
<td>auto mode</td>
<td>EtherChannel group is created.</td>
</tr>
<tr>
<td>desirable mode</td>
<td>desirable mode</td>
<td>EtherChannel group is created.</td>
</tr>
</tbody>
</table>

Understanding IEEE 802.3ad LACP EtherChannel Configuration

LACP supports the automatic creation of EtherChannels by exchanging LACP packets between LAN ports. LACP packets are exchanged only between ports in passive and active modes.

The protocol learns the capabilities of LAN port groups dynamically and informs the other LAN ports. Once LACP identifies correctly matched Ethernet links, it facilitates grouping the links into an EtherChannel. The EtherChannel is then added to the spanning tree as a single bridge port.

Both the passive and active modes allow LACP to negotiate between LAN ports to determine if they can form an EtherChannel, based on criteria such as port speed and trunking state. Layer 2 EtherChannels also use VLAN numbers.

LAN ports can form an EtherChannel when they are in different LACP modes as long as the modes are compatible. For example:

- A LAN port in active mode can form an EtherChannel successfully with another LAN port that is in active mode.
Understanding How EtherChannels Work

- A LAN port in **active** mode can form an EtherChannel with another LAN port in **passive** mode.
- A LAN port in **passive** mode cannot form an EtherChannel with another LAN port that is also in **passive** mode, because neither port will initiate negotiation.

Table 12-3 provides a summary of these combinations.

Table 12-3 LACP EtherChannel Modes

<table>
<thead>
<tr>
<th>Router A</th>
<th>Router B</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>passive mode</td>
<td>passive mode</td>
<td>No EtherChannel group is created.</td>
</tr>
<tr>
<td>passive mode</td>
<td>active mode</td>
<td>EtherChannel group is created.</td>
</tr>
<tr>
<td>active mode</td>
<td>passive mode</td>
<td>EtherChannel group is created.</td>
</tr>
<tr>
<td>active mode</td>
<td>active mode</td>
<td>EtherChannel group is created.</td>
</tr>
</tbody>
</table>

LACP uses the following parameters:

- **LACP system priority**—You must configure an LACP system priority on each router running LACP. The system priority can be configured automatically or through the command line interface (CLI) (see the “Configuring the LACP System Priority and System ID” section on page 12-10). LACP uses the system priority with the router MAC address to form the system ID and also during negotiation with other systems.

 Note The LACP system ID is the combination of the LACP system priority value and the MAC address of the router.

- **LACP port priority**—You must configure an LACP port priority on each port configured to use LACP. The port priority can be configured automatically or through the CLI (see the “Configuring Channel Groups” section on page 12-8). LACP uses the port priority with the port number to form the port identifier. LACP uses the port priority to decide which ports should be put in standby mode when there is a hardware limitation that prevents all compatible ports from aggregating.

 Note Port priority is only effective when it is configured on a device with an LACP system priority higher than the peer.

- **LACP administrative key**—LACP automatically configures an administrative key value equal to the channel group identification number on each port configured to use LACP. The administrative key defines the ability of a port to aggregate with other ports. A port’s ability to aggregate with other ports is determined by these factors:
 - Port physical characteristics, such as data rate, duplex capability, and point-to-point or shared medium
 - Configuration restrictions that you establish

On ports configured to use LACP, LACP tries to configure the maximum number of compatible ports in an EtherChannel, up to the maximum allowed by the hardware (eight ports). If LACP cannot aggregate all the ports that are compatible (for example, the remote system might have more restrictive hardware limitations), then all the ports that cannot be actively included in the channel are put in hot standby state and are used only if one of the channeled ports fails. You can configure an additional 8 standby ports (total of 16 ports associated with the EtherChannel).
Understanding LACP 1:1 Redundancy

With Release 12.2(33)SRC and later, the LACP 1:1 redundancy feature provides an EtherChannel configuration with one active link and fast switchover to a hot standby link.

To use LACP 1:1 redundancy, you configure an LACP EtherChannel with two ports (one active and one standby). If the active link goes down, the EtherChannel stays up and the system performs fast switchover to the hot standby link. When the failed link becomes operational again, the EtherChannel performs another fast switchover to revert to the original active link.

For the LACP 1:1 redundancy feature to work correctly (especially the fast switchover capability) the feature needs to be enabled at both ends of the link.

Understanding Port-Channel Interfaces

Each EtherChannel has a numbered port-channel interface. The configuration that you apply to the port-channel interface affects all LAN ports assigned to the port-channel interface.

After you configure an EtherChannel, the configuration that you apply to the port-channel interface affects the EtherChannel; the configuration that you apply to the LAN ports affects only the LAN port to which you apply the configuration. To change the parameters of all ports in an EtherChannel, apply the configuration commands to the port-channel interface, for example, Spanning Tree Protocol (STP) commands or commands to configure a Layer 2 EtherChannel as a trunk.

Understanding Load Balancing

An EtherChannel balances the traffic load across the links in an EtherChannel by reducing part of the binary pattern formed from the addresses in the frame to a numerical value that selects one of the links in the channel.

EtherChannel load balancing can use MAC addresses or IP addresses. EtherChannel load balancing can also use Layer 4 port numbers. EtherChannel load balancing can use either source or destination or both source and destination addresses or ports. The selected mode applies to all EtherChannels configured on the router. EtherChannel load balancing can use MPLS Layer 2 information.

Use the option that provides the balance criteria with the greatest variety in your configuration. For example, if the traffic on an EtherChannel is going only to a single MAC address and you use the destination MAC address as the basis of EtherChannel load balancing, the EtherChannel always chooses the same link in the EtherChannel; using source addresses or IP addresses might result in better load balancing.

EtherChannel Feature Configuration Guidelines and Restrictions

When EtherChannel interfaces are configured improperly, they are disabled automatically to avoid network loops and other problems. To avoid configuration problems, observe these guidelines and restrictions:

- The commands in this chapter can be used on all LAN ports in Cisco 7600 series routers, including the ports on the supervisor engine and a redundant supervisor engine.
• The WS-X6548-GE-TX and WS-X6548V-GE-TX switching modules support more than 1 Gbps of traffic per EtherChannel.

• The WS-X6148-GE-TX and WS-X6148V-GE-TX switching modules do not support more than 1 Gbps of traffic per EtherChannel.

• When you add a member port that does not support Inter-Switch Link Protocol (ISL) trunking to an EtherChannel, Cisco IOS software automatically adds a `switchport trunk encapsulation dot1q` command to the port-channel interface to prevent configuration of the EtherChannel as an ISL trunk. The `switchport trunk encapsulation dot1q` command is inactive when the EtherChannel is not a trunk.

• All Ethernet LAN ports on all modules, including those on a redundant supervisor engine, support EtherChannels (maximum of eight LAN ports) with no requirement that the LAN ports be physically contiguous or on the same module.

• Configure all LAN ports in an EtherChannel to use the same EtherChannel protocol; you cannot run two EtherChannel protocols in one EtherChannel.

• Configure all LAN ports in an EtherChannel to operate at the same speed and in the same duplex mode.

• LACP does not support half-duplex. Half-duplex ports in an LACP EtherChannel are put in the suspended state.

• Enable all LAN ports in an EtherChannel. If you shut down a LAN port in an EtherChannel, it is treated as a link failure and its traffic is transferred to one of the remaining ports in the EtherChannel.

• An EtherChannel will not form if one of the LAN ports is a Switched Port Analyzer (SPAN) destination port.

• For Layer 3 EtherChannels, assign Layer 3 addresses to the port channel logical interface, not to the LAN ports in the channel.

• For Layer 2 EtherChannels:
 – Assign all LAN ports in the EtherChannel to the same VLAN or configure them as trunks.
 – If you configure an EtherChannel from trunking LAN ports, verify that the trunking mode is the same on all the trunks. LAN ports in an EtherChannel with different trunk modes can operate unpredictably.
 – An EtherChannel supports the same allowed range of VLANs on all the LAN ports in a trunking Layer 2 EtherChannel. If the allowed range of VLANs is not the same, the LAN ports do not form an EtherChannel.
 – LAN ports with different STP port path costs can form an EtherChannel as long they are compatibly configured with each other. If you set different STP port path costs, the LAN ports are still compatible for the formation of an EtherChannel.
 – An EtherChannel will not form if protocol filtering is set differently on the LAN ports.

• You can configure a maximum of 256 port-channel interfaces, numbered from 1 to 256.

• After you configure an EtherChannel, the configuration that you apply to the port-channel interface affects the EtherChannel. The configuration that you apply to the LAN ports affects only those LAN ports to which you apply the configuration.

• When quality of service (QoS) is enabled, enter the `no mls qos channel-consistency` port-channel interface command to support EtherChannels that have ports with and without strict-priority queues.
Chapter 12 Configuring EtherChannels

Configuring EtherChannels

These sections describe how to configure EtherChannels:

- Configuring Port-Channel Logical Interfaces for Layer 3 EtherChannels, page 12-7
- Configuring Channel Groups, page 12-8
- Configuring the LACP System Priority and System ID, page 12-10
- Configuring EtherChannel Load Balancing, page 12-11
- Configuring the EtherChannel Min-Links Feature, page 12-12
- Configuring LACP 1:1 Redundancy with Fast-Switchover, page 12-12

Note: Make sure that the LAN ports are configured correctly (see the “EtherChannel Feature Configuration Guidelines and Restrictions” section on page 12-5).

Configuring Port-Channel Logical Interfaces for Layer 3 EtherChannels

Note: When configuring Layer 2 EtherChannels, you cannot put Layer 2 LAN ports into manually created port-channel logical interfaces. If you are configuring a Layer 2 EtherChannel, do not perform the procedures in this section (see the “Configuring Channel Groups” section on page 12-8).

- When configuring Layer 3 EtherChannels, you must manually create the port-channel logical interface as described in this section, and then put the Layer 3 LAN ports into the channel group (see the “Configuring Channel Groups” section on page 12-8).
- To move an IP address from a Layer 3 LAN port to an EtherChannel, you must delete the IP address from the Layer 3 LAN port before configuring it on the port-channel logical interface.

Note: Configure the ports from the card that belong to different family when mls qos channel-consistency command is disabled. This condition works only when the QoS is not applied on any of the targets configured on the port-channel and on the member-links of the port-channel.

- ES20 and ES+ cross-bundling is not supported and any LAN card and ES20/ES+ cross-bundling is also not supported.
- EtherChannel is not supported on:
 - Cisco 7600 SIP-400
 - FastEthernet SPA on Cisco 7600 SIP-200.
To create a port-channel interface for a Layer 3 EtherChannel, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface port-channel number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip address ip_address mask</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show running-config interface port-channel group_number</td>
</tr>
</tbody>
</table>

This example shows how to create port-channel interface 1:

```
Router# configure terminal
Router(config)# interface port-channel 1
Router(config-if)# ip address 172.32.52.10 255.255.255.0
Router(config-if)# end
```

This example shows how to verify the configuration of port-channel interface 1:

```
Router# show running-config interface port-channel 1
Building configuration...
```

Current configuration:
```
!
interface Port-channel1
  ip address 172.32.52.10 255.255.255.0
  no ip directed-broadcast
end
```

Configuring Channel Groups

- When configuring Layer 3 EtherChannels, you must manually create the port-channel logical interface first (see the “Configuring Port-Channel Logical Interfaces for Layer 3 EtherChannels” section on page 12-7), and then put the Layer 3 LAN ports into the channel group as described in this section.

- When configuring Layer 2 EtherChannels, configure the LAN ports with the `channel-group` command as described in this section, which automatically creates the port-channel logical interface. You cannot put Layer 2 LAN ports into a manually created port-channel interface.

- For Cisco IOS to create port-channel interfaces for Layer 2 EtherChannels, the Layer 2 LAN ports must be connected and functioning.
To configure channel groups, perform this task for each LAN port in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# no ip address</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# channel-protocol {lacp</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# channel-group number mode {active</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# lacp port-priority priority_value</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router# show running-config interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Router# show interfaces type slot/port etherchannel</td>
</tr>
</tbody>
</table>

This example shows how to configure Fast Ethernet ports 5/6 and 5/7 into port channel 2 with PAgP mode desirable:

```
Router# configure terminal
Router(config)# interface range fastethernet 5/6 -7
Router(config-if)# channel-group 2 mode desirable
Router(config-if)# end
```

Note See the “Configuring a Range of Interfaces” section on page 8-3 for information about the range keyword.

This example shows how to verify the configuration of port-channel interface 2:

```
Router# show running-config interface port-channel 2
Building configuration...

Current configuration:
!
interface Port-channel2
  no ip address
  switchport
  switchport access vlan 10
  switchport mode access
end
Router#
```

This example shows how to verify the configuration of Fast Ethernet port 5/6:

```
Router# show running-config interface fastethernet 5/6
Building configuration...

Current configuration:
!
interface FastEthernet5/6
```
no ip address
switchport
switchport access vlan 10
switchport mode access
channel-group 2 mode desirable
end
Router# show interfaces fastethernet 5/6 etherchannel
Port state = Down Not-in-Bndl
Channel group = 12 Mode = Desirable-Sl Gcchange = 0
Port-channel = null GC = 0x00000000 Pseudo port-channel = Po1 2
Port index = 0 Load = 0x00 Protocol = PAgP
Flags: S - Device is sending Slow hello. C - Device is in Consistent state. A - Device is in Auto mode. P - Device learns on physical port. d - PAgP is down.
Timers: H - Hello timer is running. Q - Quit timer is running. S - Switching timer is running. I - Interface timer is running.
Local information:
Port Flags State Timers Interval Count Priority Method Ifindex Interface
Fa5/2 d U1/S1 1s 0 128 Any 0 5/2
Age of the port in the current state: 04d:18h:57m:19s

This example shows how to verify the configuration of port-channel interface 2 after the LAN ports have been configured:

Router# show etherchannel 12 port-channel
Port-channels in the group:

Port-channel: Po12

Age of the Port-channel = 04d:18h:58m:50s Logical slot/port = 14/1 Number of ports = 0 GC = 0x00000000 HotStandBy port = null Port state = Port-channel Ag-Not-Inuse Protocol = PAgP
Router#

Configuring the LACP System Priority and System ID

The LACP system ID is the combination of the LACP system priority value and the MAC address of the router.

To configure the LACP system priority and system ID, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# lacp system-priority priority_value</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show lacp sys-id</td>
</tr>
</tbody>
</table>
This example shows how to configure the LACP system priority:

Router# configure terminal
Router(config)# lacp system-priority 23456
Router(config)# end
Router(config)#

This example shows how to verify the configuration:

Router# show lacp sys-id
23456,0050.3e8d.6400
Router#

The system priority is displayed first, followed by the MAC address of the router.

Configuring EtherChannel Load Balancing

To configure EtherChannel load balancing, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# port-channel load-balance src-mac</td>
<td>Configures EtherChannel load balancing. The load-balancing keywords indicate the following information:</td>
</tr>
<tr>
<td>dst-mac</td>
<td>src-dst-mac</td>
</tr>
<tr>
<td>Step 2 Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3 Router# show etherchannel load-balance</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure EtherChannel to use source and destination IP addresses:

Router# configure terminal
Router(config)# port-channel load-balance src-dst-ip
Router(config)# end
Router(config)#

This example shows how to verify the configuration:

Router# show etherchannel load-balance
Source XOR Destination IP address
Router#
Configuring the EtherChannel Min-Links Feature

The EtherChannel Min-Links feature is supported on LACP EtherChannels. This feature allows you to configure the minimum number of member ports that must be in the link-up state and bundled in the EtherChannel for the port channel interface to transition to the link-up state. You can use the EtherChannel Min-Links feature to prevent low-bandwidth LACP EtherChannels from becoming active. This feature also causes LACP EtherChannels to become inactive if they have too few active member ports to supply your required minimum bandwidth.

To configure the EtherChannel Min-Links feature, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config)# interface port-channel number</code> Selects an LACP port channel interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router(config-if)# port-channel min-links number</code> Configures the minimum number of member ports that must be in the link-up state and bundled in the EtherChannel for the port channel interface to transition to the link-up state. Default is one.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-if)# end</code> Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>Router# show running-config interface type slot/port</code> Verifies the configuration.</td>
</tr>
<tr>
<td></td>
<td><code>Router# show interfaces type slot/port etherchannel</code> type—<code>ethernet, fastethernet, gigabitethernet, tengigabitethernet</code>.</td>
</tr>
</tbody>
</table>

Note

Although the EtherChannel Min-Links feature works correctly when configured only on one end of an EtherChannel, for best results, configure the same number of minimum links on both ends of the EtherChannel.

This example shows how to configure port-channel interface 1 to be inactive if fewer than 2 member ports are active in the EtherChannel:

```
Router# configure terminal
Router(config)# interface port-channel 1
Router(config-if)# port-channel min-links 2
Router(config-if)# end
```

Configuring LACP 1:1 Redundancy with Fast-Switchover

For the LACP 1:1 redundancy feature, the LACP EtherChannel must contain exactly two links, of which only one is active. The link with the lower port priority number (and therefore a higher priority) will be the active link, and the other link will be in a hot standby state. The LACP max-bundle must be set to 1.

To configure the LACP 1:1 redundancy feature, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config)# interface port-channel group_number</code> Selects an LACP port channel interface.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router(config-if)# lacp fast-switchover</code> Enables the fast switchover feature for this EtherChannel.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-if)# lacp max-bundle 1</code> Sets the maximum number of active member ports to 1.</td>
</tr>
</tbody>
</table>
Chapter 12 Configuring EtherChannels

Configuring EtherChannels

Note

For the LACP 1:1 redundancy feature to work correctly, especially the fast switchover capability, the feature needs to be enabled at both ends of the EtherChannel.

This example shows how to configure an LACP EtherChannel with 1:1 redundancy. Because Fast Ethernet port 5/6 is configured with a higher port priority number (and therefore a lower priority) than the default of 32768, it will be the standby port.

Router# configure terminal
Router(config)# lACP system-priority 33000
Router(config)# interface range fastethernet 5/6 -7
Router(config-if)# channel-protocol lACP
Router(config-if)# channel-group 1 mode active
Router(config-if)# interface fastethernet 5/6
Router(config-if)# lACP port-priority 33000
Router(config-if)# interface port-channel 1
Router(config-if)# lACP fast-switchover
Router(config-if)# lACP max-bundle 1
Router(config-if)# end

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 4**
Router(config-if)# end | Exits configuration mode. |
| **Step 5**
Router# show running-config interface port-channel group_number
Router# show interfaces type slot/port etherchannel | Verifies the configuration. type—ethernet, fastethernet, gigabitethernet, tengigabitethernet. |
CHAPTER 13

Configuring VTP

This chapter describes how to configure the VLAN Trunking Protocol (VTP) on the Cisco 7600 series routers.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

- Understanding How VTP Works, page 13-1
- VTP Default Configuration, page 13-6
- VTP Configuration Guidelines and Restrictions, page 13-6
- Configuring VTP, page 13-8

Understanding How VTP Works

VTP is a Layer 2 messaging protocol that maintains VLAN configuration consistency by managing the addition, deletion, and renaming of VLANs within a VTP domain. A VTP domain (also called a VLAN management domain) is made up of one or more network devices that share the same VTP domain name and that are interconnected with trunks. VTP minimizes misconfigurations and configuration inconsistencies that can result in a number of problems, such as duplicate VLAN names, incorrect VLAN-type specifications, and security violations. Before you create VLANs, you must decide whether to use VTP in your network. With VTP, you can make configuration changes centrally on one or more network devices and have those changes automatically communicated to all the other network devices in the network.

Note

For complete information on configuring VLANs, see Chapter 14, “Configuring VLANs.”

These sections describe how VTP works:

- Understanding the VTP Domain, page 13-2
- Understanding VTP Modes, page 13-2
- Understanding VTP Advertisements, page 13-3
Understanding the VTP Domain

A VTP domain (also called a VLAN management domain) is made up of one or more interconnected network devices that share the same VTP domain name. A network device can be configured to be in one and only one VTP domain. You make global VLAN configuration changes for the domain using either the command-line interface (CLI) or Simple Network Management Protocol (SNMP).

By default, the Cisco 7600 series router is in VTP server mode and is in the no-management domain state until the router receives an advertisement for a domain over a trunk link or you configure a management domain.

If the router receives a VTP advertisement over a trunk link, it inherits the management domain name and the VTP configuration revision number. The router ignores advertisements with a different management domain name or an earlier configuration revision number.

If you configure the router as VTP transparent, you can create and modify VLANs but the changes affect only the individual router.

When you make a change to the VLAN configuration on a VTP server, the change is propagated to all network devices in the VTP domain. VTP advertisements are transmitted out all trunk connections.

VTP maps VLANs dynamically across multiple LAN types with unique names and internal index associations. Mapping eliminates excessive device administration required from network administrators.

Understanding VTP Modes

You can configure a Cisco 7600 series router to operate in any one of these VTP modes:

- **Server**—In VTP server mode, you can create, modify, and delete VLANs and specify other configuration parameters (such as VTP version and VTP pruning) for the entire VTP domain. VTP servers advertise their VLAN configuration to other network devices in the same VTP domain and synchronize their VLAN configuration with other network devices based on advertisements received over trunk links. VTP server is the default mode.

 - **Note** In VTP version 3, manipulation of VLANs can be done only to primary servers.

- **Client**—VTP clients behave the same way as VTP servers, but you cannot create, change, or delete VLANs on a VTP client.

- **Transparent**—In VTP version 1, VTP transparent network devices do not participate in VTP. A VTP transparent network device does not advertise its VLAN configuration and does not synchronize its VLAN configuration based on received advertisements. However, in VTP version 2 and VTP version 3, transparent network devices do forward VTP advertisements that they receive out their trunking LAN ports.

- **Off**—In VTP off mode, a network device functions in the same manner as a VTP transparent device except that it does not forward VTP advertisements.
Understanding How VTP Works

Note
Cisco 7600 series routers automatically change from VTP server mode to VTP client mode if the router detects a failure while writing configuration to nonvolatile random-access memory (NVRAM). If this happens, the router cannot be returned to VTP server mode until the NVRAM is functioning.

Understanding VTP Advertisements

Each network device in the VTP domain sends periodic advertisements out each trunking LAN port to a reserved multicast address. VTP advertisements are received by neighboring network devices, which update their VTP and VLAN configurations as necessary.

The following global configuration information is distributed in VTP advertisements:

• VLAN IDs (Inter-Switch Link [ISL] and IEEE 802.1Q)
• Emulated LAN names (for ATM LAN Emulation Services [LANE])
• IEEE 802.10 Security Association Identifier (SAID) values (FDDI)
• VTP domain name
• VTP configuration revision number
• VLAN configuration, including maximum transmission unit (MTU) size for each VLAN
• Frame format

Understanding VTP Versions

If you use VTP in your network, you must decide whether to use VTP version 1, version 2, or version 3.

Note
If you are using VTP in a Token Ring environment, you must use version 2 or version 3.

VTP Version 2

VTP version 2 supports the following features not supported in version 1:

• Token Ring support—VTP version 2 supports Token Ring LAN switching and VLANs (Token Ring Bridge Relay Function [TrBRF] and Token Ring Concentrator Relay Function [TrCRF]). For more information about Token Ring VLANs, see the “Understanding How VLANs Work” section on page 14-1.
• Unrecognized Type-Length-Value (TLV) Support—A VTP server or client propagates configuration changes to its other trunks, even for TLVs it is not able to parse. The unrecognized TLV is saved in NVRAM.
• Version-Dependent Transparent Mode—In VTP version 1, a VTP transparent network device inspects VTP messages for the domain name and version, and forwards a message only if the version and domain name match. Because only one domain is supported in the supervisor engine software, VTP version 2 forwards VTP messages in transparent mode without checking the version.
• Consistency Checks—In VTP version 2, VLAN consistency checks (such as VLAN names and values) are performed only when you enter new information through the CLI or SNMP. Consistency checks are not performed when new information is obtained from a VTP message, or when information is read from NVRAM. If the digest on a received VTP message is correct, its information is accepted without consistency checks.

VTP Version 3

VTP version 3 supports the following features not supported in version 1 or version 2:

• Hidden Password Support—VTP version 3 supports the option of configuring the password as hidden or secret.

 When the hidden keyword is specified, that password must be reentered if a takeover command is issued in the domain. The secret key generated from the password string is saved in the const_nvram:_vlan.dat file. When configured with this option, the password does not appear in plain text in the configuration. Instead, the secret key associated with the password is saved in hexadecimal format in the running configuration. If the hidden keyword is not specified, the password is saved in clear text in the const_nvram:_vlan.dat file as in VTP version 1 and VTP version 2.

 When the secret keyword is specified, the password secret key can be directly configured.

• Support for extended VLAN Database Propagation—In VTP version 2, VLAN configuration information is propagated only for VLANs numbered 1 to 1000. In VTP version 3, information also is propagated for extended-range VLANs (VLANs numbered 1006 to 4094).

• On Cisco 7600 series routers running VTP version 1, VTP version 2, or VTP version 3, default VLANs 1 and 1002 to 1005 cannot be modified.

Note VTP pruning continues to apply only to VLANs numbered 1 to 1000.

• Propagation of Any Database in a Domain—In addition to propagating VLAN database information, VTP can propagate Multiple Spanning Tree (MST) protocol database information.

• Disabling VTP—When VTP is disabled on a trunking port, it applies to all VTP instances on that port. When VTP is disabled globally, the setting applies to all the trunking ports in the system.

• In VTP version 1 and VTP version 2, the role of a VTP server is to back up the database to NVRAM and to allow the administrator to change database information. VTP version 3 introduces the roles of VTP Primary Server and VTP Secondary Server. A VTP Primary Server is used to update the database information. The updates sent out are honored by all the devices in the system. A VTP Secondary Server can only back up to its NVRAM the VTP configuration received via updates from the VTP Primary Server.

 The status of primary and secondary servers is a runtime status and is not a configurable option. By default, all devices are initiated as secondary servers. Primary server status is needed only when database updates are needed, and is obtained when the administrator issues a takeover message in the domain. (See the “Starting a Takeover” section on page 13-13.)

 Primary server status is lost upon reload of the device, or when switchover or domain parameters change. Secondary servers back up the configuration and continue to propagate it. Because of that, it is possible to have a working VTP domain without any primary servers.
Understanding VTP Pruning

VTP pruning enhances network bandwidth use by reducing unnecessary flooded traffic, such as broadcast, multicast, unknown, and flooded unicast packets. VTP pruning increases available bandwidth by restricting flooded traffic to those trunk links that the traffic must use to access the appropriate network devices. By default, VTP pruning is disabled.

For VTP pruning to be effective, all devices in the management domain must support VTP pruning. On devices that do not support VTP pruning, you must manually configure the VLANs allowed on trunks.

Figure 13-1 shows a switched network without VTP pruning enabled. Interface 1 on network Switch 1 and port 2 on Switch 4 are assigned to the Red VLAN. A broadcast is sent from the host connected to Switch 1. Switch 1 floods the broadcast, and every network device in the network receives it, even though Switches 3, 5, and 6 have no ports in the Red VLAN.

You enable pruning globally on the Cisco 7600 series router (see the “Enabling VTP Pruning” section on page 13-9). You configure pruning on Layer 2 trunking LAN ports (see the “Configuring LAN Interfaces for Layer 2 Switching” section on page 10-6).

Figure 13-2 shows the same switched network with VTP pruning enabled. The broadcast traffic from Switch 1 is not forwarded to Switches 3, 5, and 6 because traffic for the Red VLAN has been pruned on the links indicated (port 5 on Switch 2 and port 4 on Switch 4).
Enabling VTP pruning on a VTP server enables pruning for the entire management domain. VTP pruning takes effect several seconds after you enable it. By default, VLANs 2 through 1000 are pruning eligible. VTP pruning does not prune traffic from pruning-ineligible VLANs. VLAN 1 is always pruning ineligible; traffic from VLAN 1 cannot be pruned.

To configure VTP pruning on a trunking LAN port, use the `switchport trunk pruning vlan` command (see the “Configuring LAN Interfaces for Layer 2 Switching” section on page 10-6). VTP pruning operates when a LAN port is trunking. You can set VLAN pruning eligibility whether VTP pruning is enabled or disabled for the VTP domain, whether any given VLAN exists or not, and whether the LAN port is currently trunking or not.

VTP Default Configuration

Table 13-1 shows the default VTP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTP domain name</td>
<td>Null</td>
</tr>
<tr>
<td>VTP mode</td>
<td>Server</td>
</tr>
<tr>
<td>VTP version</td>
<td>Version 1</td>
</tr>
<tr>
<td>VTP password</td>
<td>None</td>
</tr>
<tr>
<td>VTP pruning</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

VTP Configuration Guidelines and Restrictions

When implementing VTP in your network, follow these guidelines and restrictions:

- Supervisor engine redundancy does not support nondefault VLAN data file names or locations. Do not enter the `vtp file file_name` command on a router that has a redundant supervisor engine.
Chapter 13 Configuring VTP

VTP Configuration Guidelines and Restrictions

- Before installing a redundant supervisor engine, enter the `no vtp file` command to return to the default configuration.
- All network devices in a VTP domain must run the same VTP version.
- You must configure a password on each network device in the management domain when in secure mode.

Caution

If you configure VTP in secure mode, the management domain will not function properly if you do not assign a management domain password to each network device in the domain.

- A VTP version-2-capable network device can operate in the same VTP domain as a network device running VTP version 1 provided VTP version 2 is disabled on the VTP version-2-capable network device (VTP version 2 is disabled by default).
- Do not enable VTP version 2 on a network device unless all of the network devices in the same VTP domain are version 2 capable. When you enable VTP version 2 on a network device, all of the version-2-capable network devices in the domain enable VTP version 2.
- When a VTP version 3 device on a trunk port receives messages from a VTP version 2 device, it will send a scaled-down version of the VLAN database on that particular trunk in a VTP version 2 format. A VTP version 3 device will not send out VTP version 2 formatted packets on a trunk port unless it first receives VTP version 2 packets on that trunk.
- Even when a VTP version 3 device detects a VTP version 2 device on a trunk port, it will continue to send VTP version 3 packets in addition to VTP version 3 packets, to allow co-existence of two kinds of neighbors off the trunk.
- A VTP version 3 device will not accept configuration information from a VTP version 2 or version 1 device.
- Unlike in VTP version 2, when VTP is configured to be version 3, this will not configure all the version-3-capable devices in the domain to start behaving as VTP version 3 systems.
- When a VTP version 1 device, capable of version 2 or version 3, receives a VTP version 3 packet, the device is configured as a VTP version 2 device provided a VTP version 2 conflict does not exist.
- Devices that are only VTP version 1 capable cannot interoperate with VTP version 3 devices.
- In a Token Ring environment, you must enable VTP version 2 or version 3 for Token Ring VLAN switching to function properly.
- Two VTP version 3 regions can only communicate in transparent mode over a VTP version 1 or VTP version 2 region.
- When you enable or disable VTP pruning on a VTP server, VTP pruning for the entire management domain is enabled or disabled.
- The pruning-eligibility configuration applies globally to all trunks on the router. You cannot configure pruning-eligibility separately for each trunk.
- When you configure VLANs as pruning eligible or pruning ineligible, pruning eligibility for those VLANs is affected on that router only, not on all network devices in the VTP domain.
- In VTP version 1 and version 2, VTP does not propagate configuration information for extended-range VLANs (VLAN numbers 1006 to 4094). You must configure extended-range VLANs manually on each network device.
- If there is insufficient DRAM available for use by VTP, the VTP mode changes to transparent.
Network devices in VTP transparent mode do not send VTP Join messages. On Cisco 7600 series routers with trunk connections to network devices in VTP transparent mode, configure the VLANs that are used by the transparent-mode network devices or that need to be carried across trunks as pruning ineligible. For information about configuring prune eligibility, see the “Configuring the List of Prune-Eligible VLANs” section on page 10-11.

The VLAN database is saved in the NVRAM file in a format compliant with the VTP version running on the system. Since older images supporting only VTP version 2 do not recognize the VTP version 3 file format, the NVRAM VLAN database information is lost if the system is downgraded from a new image supporting VTP to one that does not.

Configuring VTP

These sections describe how to configure VTP:

- Configuring VTP Global Parameters, page 13-8
- Configuring the VTP Mode, page 13-11
- Starting a Takeover, page 13-13
- Displaying VTP Statistics, page 13-13
- Displaying VTP Devices in a Domain, page 13-14

Configuring VTP Global Parameters

These sections describe configuring the VTP global parameters:

- Configuring a VTP Password, page 13-8
- Enabling VTP Pruning, page 13-9
- Enabling the VTP Version Number, page 13-10

Note You can enter the VTP global parameters in either global configuration mode or in EXEC mode.

Configuring a VTP Password

To configure the VTP global parameters, use these commands:
Chapter 13 Configuring VTP

Configuring VTP

This example shows one way to configure a VTP password in global configuration mode:

```
Router# configure terminal
Router(config)# vtp password WATER
Setting device VLAN database password to WATER.
Router#
```

This example shows how to configure a VTP password in EXEC mode:

```
Router# vtp password WATER
Setting device VLAN database password to WATER.
Router#
```

Note
The password is not stored in the running-config file.

This example shows how to configure a hidden password:

```
Router# configure terminal
Router(config)# vtp password WATER hidden
Generating the secret associated to the password.
Router(config)#
```

This example shows how the password WATER is displayed when it is configured with the hidden keyword.

```
Router# show vtp password
VTP Password: 89914640C8D90868B6A0D8103847A733
Router#
```

Enabling VTP Pruning

To enable VTP pruning in the management domain, perform this task in global configuration mode:

```
Command | Purpose
--- | ---
Step 1  | Enables VTP pruning in the management domain.
Router(config)# vtp pruning
Step 2  | (Optional) Verifies the configuration.
Router# show vtp status | include pruning
```

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S

OL-10113-33
This example shows one way to enable VTP pruning in the management domain:

```
Router# configure terminal
Router(config)# vtp pruning
Pruning switched ON
```

This example shows how to enable VTP pruning in the management domain with any release:

```
Router# vtp pruning
Pruning switched ON
```

This example shows how to verify the configuration:

```
Router# show vtp status | include Pruning
VTP Pruning Mode: Enabled
Router#
```

For information about configuring prune eligibility, see the “Configuring the List of Prune-Eligible VLANs” section on page 10-11.

Enabling the VTP Version Number

VTP version 2 is disabled by default on VTP version-2-capable network devices. When you enable VTP version 2 on a network device, every VTP version-2-capable network device in the VTP domain enables version 2.

Caution

VTP version 1 and VTP version 2 are not interoperable on network devices in the same VTP domain. Every network device in the VTP domain must use the same VTP version. Do not enable VTP version 2 unless every network device in the VTP domain supports version 2.

Note

In a Token Ring environment, you must enable VTP version 2 or VTP version 3 for Token Ring VLAN switching to function properly on devices that support Token Ring interfaces.

To enable the VTP version, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# vtp version {1</td>
<td>2</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router# show vtp status</td>
<td>include (v1</td>
</tr>
</tbody>
</table>

This example shows one way to enable VTP version 2:

```
Router# configure terminal
Router(config)# vtp version 2
V2 mode enabled.
Router(config)#
```

This example shows how to enable VTP version 2 with any release:

```
Router# vtp version 2
V2 mode enabled.
Router#
```

This example shows how to verify the configuration:

```
Router# show vtp status | include V2
```
Chapter 13 Configuring VTP

Configuring VTP

VTP V2 Mode: Enabled
Router#

Configuring the VTP Mode

To configure the VTP mode, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# vtp mode {client</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# vtp domain domain_name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show vtp status</td>
</tr>
</tbody>
</table>

Note When VTP is disabled, you can enter VLAN configuration commands in configuration mode instead of the VLAN database mode and the VLAN configuration is stored in the startup configuration file.

This example shows how to configure the router as a VTP server:

Router# configure terminal
Router(config)# vtp mode server
Setting device to VTP SERVER mode.
Router(config)# vtp domain Lab_Network
Setting VTP domain name to Lab_Network
Router(config)# end
Router#

This example shows how to configure the router as a VTP client:

Router# configure terminal
Router(config)# vtp mode client
Setting device to VTP CLIENT mode.
Router(config)# end
Router#

This example shows how to disable VTP on the router:

Router# configure terminal
Router(config)# vtp mode transparent
Setting device to VTP TRANSPARENT mode.
Router(config)# end
Router#

This example shows how to disable VTP on the router and to disable VTP advertisement forwarding:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# vtp mode off
Setting device to VTP OFF mode.
Router(config)# end
Router#

This example shows an example of the VTP configuration parameters when the device is running VTP version 1:

```
Router# show vtp status
VTP Version capable : 1 to 3
VTP version running : 1
VTP Domain Name : Lab_Network
VTP Pruning Mode : Enabled
VTP Traps Generation : Disabled
Device ID : 0016.9c6d.5300
Configuration last modified by 127.0.0.12 at 10-18-07 10:12:42
Local updater ID is 127.0.0.12 at 10-18-07 10:2:42

Feature VLAN:
--------------
VTP Operating Mode : Server
Maximum number of existing VLANs : 5
Configuration Revision : 1
MD5 digest : 0x92 0xF1 0xE8 0x52 0x2E ox5C 0x36 0x10 0x70 0x61 0xB8 0x24 0xB6 0x93 0x21 0x09
```

Router#

This example shows an example of the VTP configuration parameters when the device is running VTP version 2:

```
Router# show vtp status
VTP Version capable : 1 to 3
VTP version running : 2
VTP Domain Name : Lab_Network
VTP Pruning Mode : Disabled
VTP Traps Generation : Disabled
Device ID : 0012.44dc.b800
Configuration last modified by 127.0.0.12 at 10-18-07 10:38:45
Local updater ID is 127.0.0.12 on interface EO 0/0 (first interface found)

Feature VLAN:
--------------
VTP Operating Mode : Server
Maximum VLANs supported locally: 1005
Number of existing VLANs : 1005
Configuration Revision : 1
MD5 digest : 0x2E 0x6B 0x99 0x58 0xA2 0x4F 0xD5 0x150x70 0x61 0xB8 0x24 0xB6 0x93 0x21 0x09
```

Router#

This example shows an example of the VTP configuration parameters when the device is running VTP version 3:

```
Router# show vtp status
VTP Version capable : 1 to 3
VTP version running : 3
VTP Domain Name : Lab_Network
VTP Pruning Mode : Disabled
VTP Traps Generation : Disabled
Device ID : 0012.44dc.b800

Feature VLAN:
--------------
VTP Operating Mode : Server
Number of existing VLANs : 1005
Number of existing extended VLANs: 3074
```
Starting a Takeover

This process applies to VTP version 3 only. To start a takeover, perform this task:

Command: `vtp primary-server [vlan | mst] [force]

Purpose: Changes the operational state of a router from a secondary to a primary server and advertises the configuration to the whole domain. (If the password for this device is configured with the hidden keyword, the user is prompted to re-enter it.)

Note: Using the force keyword overwrites the configuration of any conflicting servers. If not using the force keyword, you will be prompted for confirmation prior to proceeding with the takeover.

Specify where to direct the takeover by selecting the appropriate feature (vlan or mst). If no feature is selected, the takeover is directed to the VLAN database.

Displaying VTP Statistics

To display VTP statistics, including VTP advertisements sent and received and VTP errors, perform this task:

Command: `show vtp counters

Purpose: Displays VTP statistics.

This example shows how to display VTP statistics:
Request advertisements received : 0
Summary advertisements transmitted : 997
Subset advertisements transmitted : 13
Request advertisements transmitted : 3
Number of config revision errors : 0
Number of config digest errors : 0
Number of V1 summary errors : 0

VTP pruning statistics:
Trunk Join Transmitted Join Received Summary advts received from non-pruning-capable device
--------------------- ---------------- ---------------- ---------------------------
Fa5/0 43071 42766 5

Displaying VTP Devices in a Domain

To display information for all the VTP devices in a domain, perform this task in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show vtp devices [conflicts]</td>
<td>Gathers and displays information for all the VTP devices in the domain.</td>
</tr>
</tbody>
</table>

Note No information is gathered or displayed from routers set to `vtp modes off` or to `transparent` for a particular feature.

The `conflicts` keyword (optional) displays the information of devices that have conflicting primary servers.

This example shows how to display information for VTP devices in a domain:

Router# **show vtp devices**
Retrieving information from the VTP domain, please wait for 5 seconds.
VTP Feature Conf Revision Primary Server Device ID Device Description
--------------------- ------ ------------------------------- ------------------
VLAN No 18 0016.9c6d.5300 0012.011a.0d00 R2
VLAN No 18 0016.9c6d.5300 0012.4371.9ec0 R1
MST Yes 4 0012.4371.9ec0=0012.4371.9ec0 R1

Router#
CHAPTER 14

Configuring VLANs

This chapter describes how to configure VLANs on the Cisco 7600 series routers.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter contains these sections:

• Understanding How VLANs Work, page 14-1
• VLAN Default Configuration, page 14-6
• VLAN Interaction with Bridged Routed Encapsulation within an Automatic Protection Switching Group, page 14-8
• Configuring VLANs, page 14-10

Understanding How VLANs Work

The following sections describe how VLANs work:

• VLAN Overview, page 14-1
• VLAN Ranges, page 14-2
• Configurable VLAN Parameters, page 14-2
• Understanding Token Ring VLANs, page 14-3

VLAN Overview

A VLAN is a group of end stations with a common set of requirements, independent of physical location. VLANs have the same attributes as a physical LAN but allow you to group end stations even if they are not located physically on the same LAN segment.

VLANs are usually associated with IP subnetworks. For example, all the end stations in a particular IP subnet belong to the same VLAN. Traffic between VLANs must be routed. LAN port VLAN membership is assigned manually on an port-by-port basis.
VLAN Ranges

Note
You must enable the extended system ID to use 4096 VLANs (see the “Understanding the Bridge ID” section on page 20-2).

Cisco 7600 series routers support 4096 VLANs in accordance with the IEEE 802.1Q standard. These VLANs are organized into several ranges; you use each range slightly differently. Some of these VLANs are propagated to other switches in the network when you use the VLAN Trunking Protocol (VTP). The extended-range VLANs are not propagated, so you must configure extended-range VLANs manually on each network device.

Table 14-1 describes the VLAN ranges.

<table>
<thead>
<tr>
<th>VLANs</th>
<th>Range</th>
<th>Usage</th>
<th>Propagated by VTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 4095</td>
<td>Reserved</td>
<td>For system use only. You cannot see or use these VLANs.</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>Normal</td>
<td>Cisco default. You can use this VLAN but you cannot delete it.</td>
<td>Yes</td>
</tr>
<tr>
<td>2–1001</td>
<td>Normal</td>
<td>For Ethernet VLANs; you can create, use, and delete these VLANs.</td>
<td>Yes</td>
</tr>
<tr>
<td>1002–1005</td>
<td>Normal</td>
<td>Cisco defaults for FDDI and Token Ring. You cannot delete VLANs 1002–1005.</td>
<td>Yes</td>
</tr>
<tr>
<td>1006–4094</td>
<td>Extended</td>
<td>For Ethernet VLANs only.</td>
<td>No</td>
</tr>
</tbody>
</table>

The following information applies to VLAN ranges:

- Layer 3 LAN ports, WAN interfaces and subinterfaces, and some software features use internal VLANs in the extended range. You cannot use an extended range VLAN that has been allocated for internal use.
- To display the VLANs used internally, enter the `show vlan internal usage` command.
- You can configure ascending internal VLAN allocation (from 1006 and up) or descending internal VLAN allocation (from 4094 and down).
- Switches running the Catalyst operating system do not support configuration of VLANs 1006–1024. If you configure VLANs 1006–1024, ensure that the VLANs do not extend to any switches running Catalyst software.
- You must enable the extended system ID to use extended range VLANs (see the “Understanding the Bridge ID” section on page 20-2).

Configurable VLAN Parameters

Note
- Ethernet VLAN 1 uses only default values.
- Except for the VLAN name, Ethernet VLANs 1006 through 4094 use only default values.
• You can configure the VLAN name for Ethernet VLANs 1006 through 4094.

You can configure the following parameters for VLANs 2 through 1001:
• VLAN name
• VLAN type (Ethernet, FDDI, FDDI network entity title [NET], TrBRF, or TrCRF)
• VLAN state (active or suspended)
• Security Association Identifier (SAID)
• Bridge identification number for TrBRF VLANs
• Ring number for FDDI and TrCRF VLANs
• Parent VLAN number for TrCRF VLANs
• Spanning Tree Protocol (STP) type for TrCRF VLANs

Understanding Token Ring VLANs

The following section describes the two Token Ring VLAN types supported on network devices running VTP version 2:
• Token Ring TrBRF VLANs, page 14-3
• Token Ring TrCRF VLANs, page 14-4

Note Cisco 7600 series routers do not support Inter-Switch Link (ISL)-encapsulated Token Ring frames. When a Cisco 7600 series router is configured as a VTP server, you can configure Token Ring VLANs from the router.

Token Ring TrBRF VLANs

Token Ring Bridge Relay Function (TrBRF) VLANs interconnect multiple Token Ring Concentrator Relay Function (TrCRF) VLANs in a switched Token Ring network (see Figure 14-1). The TrBRF can be extended across a network devices interconnected via trunk links. The connection between the TrCRF and the TrBRF is referred to as a logical port.
Understanding How VLANs Work

For source routing, the Cisco 7600 series router appears as a single bridge between the logical rings. The TrBRF can function as a source-route bridge (SRB) or a source-route transparent (SRT) bridge running either the IBM or IEEE STP. If an SRB is used, you can define duplicate MAC addresses on different logical rings.

The Token Ring software runs an instance of STP for each TrBRF VLAN and each TrCRF VLAN. For TrCRF VLANs, STP removes loops in the logical ring. For TrBRF VLANs, STP interacts with external bridges to remove loops from the bridge topology, similar to STP operation on Ethernet VLANs.

Caution

Certain parent TrBRF STP and TrCRF bridge mode configurations can place the logical ports (the connection between the TrBRF and the TrCRF) of the TrBRF in a blocked state. For more information, see the “VLAN Interaction with Bridged Routed Encapsulation within an Automatic Protection Switching Group” section on page 14-8.

To accommodate IBM System Network Architecture (SNA) traffic, you can use a combination of SRT and SRB modes. In a mixed mode, the TrBRF determines that some ports (logical ports connected to TrCRFs) operate in SRB mode while other ports operate in SRT mode.

Token Ring TrCRF VLANs

Token Ring Concentrator Relay Function (TrCRF) VLANs define port groups with the same logical ring number. You can configure two types of TrCRFs in your network: undistributed and backup.

TrCRFs typically are undistributed, which means each TrCRF is limited to the ports on a single network device. Multiple undistributed TrCRFs on the same or separate network devices can be associated with a single parent TrBRF (see Figure 14-2). The parent TrBRF acts as a multiport bridge, forwarding traffic between the undistributed TrCRFs.

Note

To pass data between rings located on separate network devices, you can associate the rings to the same TrBRF and configure the TrBRF for an SRB.
Understanding How VLANs Work

By default, Token Ring ports are associated with the default TrCRF (VLAN 1003, trcrf-default), which has the default TrBRF (VLAN 1005, trbrf-default) as its parent. In this configuration, a distributed TrCRF is possible (see Figure 14-3), and traffic is passed between the default TrCRFs located on separate network devices if the network devices are connected through an ISL trunk.

Within a TrCRF, source-route switching forwards frames based on either MAC addresses or route descriptors. The entire VLAN can operate as a single ring, with frames switched between ports within a single TrCRF.

You can specify the maximum hop count for All-Routes and Spanning Tree Explorer frames for each TrCRF. When you specify the maximum hop count, you limit the maximum number of hops an explorer is allowed to traverse. If a port determines that the explorer frame it is receiving has traversed more than the number of hops specified, it does not forward the frame. The TrCRF determines the number of hops an explorer has traversed by the number of bridge hops in the route information field.

If the ISL connection between network devices fails, you can use a backup TrCRF to configure an alternate route for traffic between undistributed TrCRFs. Only one backup TrCRF for a TrBRF is allowed, and only one port per network device can belong to a backup TrCRF.

If the ISL connection between the network devices fails, the port in the backup TrCRF on each affected network device automatically becomes active, rerouting traffic between the undistributed TrCRFs through the backup TrCRF. When the ISL connection is reestablished, all but one port in the backup TrCRF is disabled. Figure 14-4 illustrates the backup TrCRF.
VLAN Default Configuration

Tables 14-2 through 14-6 show the default configurations for the different VLAN media types.

Table 14-2 Ethernet VLAN Defaults and Ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1</td>
<td>1–4094</td>
</tr>
</tbody>
</table>
| VLAN name | “default” for VLAN 1
 “VLAN_vlan_ID” for other Ethernet VLANs | — |
| 802.10 SAID | 10vlan_ID | 100001–104094 |
| MTU size | 1500 | 1500–18190 |
| Translational bridge 1 | 0 | 0–1005 |
| Translational bridge 2 | 0 | 0–1005 |
| VLAN state | active | active, suspend |
| Pruning eligibility | VLANs 2–1001 are pruning eligible; VLANs 1006–4094 are not pruning eligible. | — |

Table 14-3 FDDI VLAN Defaults and Ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1002</td>
<td>1–1005</td>
</tr>
<tr>
<td>VLAN name</td>
<td>“fddi-default”</td>
<td>—</td>
</tr>
<tr>
<td>802.10 SAID</td>
<td>101002</td>
<td>1–4294967294</td>
</tr>
<tr>
<td>MTU size</td>
<td>1500</td>
<td>1500–18190</td>
</tr>
<tr>
<td>Ring number</td>
<td>0</td>
<td>1–4095</td>
</tr>
<tr>
<td>Parent VLAN</td>
<td>0</td>
<td>0–1005</td>
</tr>
<tr>
<td>Translational bridge 1</td>
<td>0</td>
<td>0–1005</td>
</tr>
</tbody>
</table>
Table 14-3 FDDI VLAN Defaults and Ranges (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translational bridge 2</td>
<td>0</td>
<td>0–1005</td>
</tr>
<tr>
<td>VLAN state</td>
<td>active</td>
<td>active, suspend</td>
</tr>
</tbody>
</table>

Table 14-4 Token Ring (TrCRF) VLAN Defaults and Ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1003</td>
<td>1–1005</td>
</tr>
<tr>
<td>VLAN name</td>
<td>“token-ring-default”</td>
<td>—</td>
</tr>
<tr>
<td>802.10 SAID</td>
<td>101003</td>
<td>1–4294967294</td>
</tr>
<tr>
<td>Ring Number</td>
<td>0</td>
<td>1–4095</td>
</tr>
<tr>
<td>MTU size</td>
<td>VTPv1 default 1500</td>
<td>1500–18190</td>
</tr>
<tr>
<td>Translational bridge 1</td>
<td>0</td>
<td>0–1005</td>
</tr>
<tr>
<td>Translational bridge 2</td>
<td>0</td>
<td>0–1005</td>
</tr>
<tr>
<td>VLAN state</td>
<td>active</td>
<td>active, suspend</td>
</tr>
<tr>
<td>Bridge mode</td>
<td>srb</td>
<td>srb, srt</td>
</tr>
<tr>
<td>ARE max hops</td>
<td>7</td>
<td>0–13</td>
</tr>
<tr>
<td>STE max hops</td>
<td>7</td>
<td>0–13</td>
</tr>
<tr>
<td>Backup CRF</td>
<td>disabled</td>
<td>disable; enable</td>
</tr>
</tbody>
</table>

Table 14-5 FDDI-Net VLAN Defaults and Ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1004</td>
<td>1–1005</td>
</tr>
<tr>
<td>VLAN name</td>
<td>“fddinet-default”</td>
<td>—</td>
</tr>
<tr>
<td>802.10 SAID</td>
<td>101004</td>
<td>1–4294967294</td>
</tr>
<tr>
<td>MTU size</td>
<td>1500</td>
<td>1500–18190</td>
</tr>
<tr>
<td>Bridge number</td>
<td>1</td>
<td>0–15</td>
</tr>
<tr>
<td>STP type</td>
<td>ieee</td>
<td>auto, ibm, ieee</td>
</tr>
<tr>
<td>VLAN state</td>
<td>active</td>
<td>active, suspend</td>
</tr>
</tbody>
</table>

Table 14-6 Token Ring (TrBRF) VLAN Defaults and Ranges

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN ID</td>
<td>1005</td>
<td>1–1005</td>
</tr>
<tr>
<td>VLAN name</td>
<td>“trnet-default”</td>
<td>—</td>
</tr>
<tr>
<td>802.10 SAID</td>
<td>101005</td>
<td>1–4294967294</td>
</tr>
</tbody>
</table>
Chapter 14 Configuring VLANs

VLAN Default Configuration

VLAN Interaction with Bridged Routed Encapsulation within an Automatic Protection Switching Group

In a Bridged Routed Encapsulation (BRE) scenario, an IP routed AAL5SNAP packet is bridged over the Ethernet side, adding a MAC header with a fake SRC MAC and configured distributed storage (DST). The ATM PVC traffic is relayed over an IP and not Ethernet. However, you cannot configure more than one virtual connection (VC) on the same VLAN. To configure more than one VC, customers configure two different VLANS on the protect and working interface of the Automatic Protection Switching (APS) group. This workaround is not a viable long-term solution because it results in high convergence time and an inefficient use of the VLANS. To resolve these limitations, you can use the BRE+APS feature to configure two VCs for the same VLAN, provided their parent interfaces too belong to the same Automatic Protection Switching (APS) group.

For information on configuring an APS group, see Cisco 7600 Series Router SIP, SSC, and SPA Software Configuration Guide at http://www.cisco.com/en/US/docs/interfaces_modules/shared_port_adapters/configuration/7600series/76cfgatm.html

Supported Line Cards

This feature is supported on the SIP-200 and SIP-400 line cards. For more information on the SIP implementation, see Cisco 7600 Series Router SIP, SSC, and SPA Software Configuration Guide at http://www.cisco.com/en/US/docs/interfaces_modules/shared_port_adapters/configuration/7600series/sipspasw.html.

Requirements and Restrictions

Follow these requirements and restrictions when you configure the BRE+APS feature:

- You can configure BRE-Connect VLANS for two different VCs if the new VC:
 - belongs to the same APS group to which the first VC belongs.
 - does not belong to the same ATM interface as the first VC.
- Before you change the APS parameters of an interface (changing the APS group or removing the APS configurations), first ensure that the BRE configurations on the interface are removed.
- When you configure BRE on an ATM interface, you cannot configure a L2 IP address at the BRE end, but you can configure an IP address at the L3 non BRE end.

Table 14-6 Token Ring (TrBRF) VLAN Defaults and Ranges (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTU size</td>
<td>VTPv1 1500; VTPv2 4472</td>
<td>1500–18190</td>
</tr>
<tr>
<td>Bridge number</td>
<td>1</td>
<td>0–15</td>
</tr>
<tr>
<td>STP type</td>
<td>ibm</td>
<td>auto, ibm, ieee</td>
</tr>
<tr>
<td>VLAN state</td>
<td>active</td>
<td>active, suspend</td>
</tr>
</tbody>
</table>

MTU size VTPv1 1500; VTPv2 4472 1500–18190
Bridge number 1 0–15
STP type ibm auto, ibm, ieee
VLAN state active active, suspend
Table 14-7 Show command for ATM VLAN BRE

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# show atm vlan bre</td>
<td>Verifies the configuration and displays the status of the PVC. An Active VC is displayed as UP and an inactive VC as DN (down).</td>
</tr>
</tbody>
</table>

This example shows how to verify the configuration of BRE ATM VLAN:

```
Router# show atm vlan bre
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Bre VCD</th>
<th>VPI/VCI</th>
<th>Vlan Learned MAC</th>
<th>Virtual MAC</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM3/0/0.1</td>
<td>1</td>
<td>0/11</td>
<td>100 0000.0000.0000 0000.0300.0001</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>ATM3/0/0.2</td>
<td>2</td>
<td>1/13</td>
<td>200 0000.0000.0000 0000.0300.0002</td>
<td>UP</td>
<td></td>
</tr>
<tr>
<td>ATM4/0/0.2</td>
<td>2</td>
<td>1/13</td>
<td>300 0000.0000.0000 0000.0400.0002</td>
<td>DN</td>
<td></td>
</tr>
</tbody>
</table>

Warning Messages

Consider instances where you have configured APS on the main interface, and have configured BRE within a main interface and subinterface. The warning message “%ATM2/0/0 - Remove BRE configs on this interface before changing APS configs" appears when you attempt to modify the APS configurations in the main interface, without removing the BRE configurations first.

VLAN Configuration Guidelines and Restrictions

When creating and modifying VLANs in your network, follow these guidelines and restrictions:

- Supervisor engine redundancy does not support nondefault VLAN data file names or locations. Do not enter the vtp file file_name command on a router that has a redundant supervisor engine.
- Before installing a redundant supervisor engine, enter the no vtp file command to return to the default configuration.
- VLAN database mode, which was available in Release 12.2(18)SXD and earlier releases, is no longer supported. In addition, RPR+ redundancy does not support configurations entered in VLAN database mode. Use global configuration mode with RPR+ redundancy.
- Before you can create a VLAN, the Cisco 7600 series router must be in VTP server mode or VTP transparent mode. For information on configuring VTP, see Chapter 13, “Configuring VTP.”
- The VLAN configuration is stored in the vlan.dat file, which is stored in nonvolatile memory. You can cause inconsistency in the VLAN database if you manually delete the vlan.dat file. If you want to modify the VLAN configuration or VTP, use the commands described in this guide and in the Cisco 7600 Series Router Cisco IOS Command Reference publication.
- To do a complete backup of your configuration, include the vlan.dat file in the backup.
- Cisco 7600 series routers do not support Token Ring or FDDI media. The router does not forward FDDI, FDDI-Net, TrCRF, or TrBRF traffic, but it can propagate the VLAN configuration through VTP.
- When a Cisco 7600 series router is configured as a VTP server, you can configure FDDI and Token Ring VLANs from the router.
- You must configure a TrBRF before you configure the TrCRF (the parent TrBRF VLAN you specify must exist).
In a Token Ring environment, the logical interfaces (the connection between the TrBRF and the TrCRF) of the TrBRF are placed in a blocked state if either of these conditions exists:

- The TrBRF is running the IBM STP, and the TrCRF is in SRT mode.
- The TrBRF is running the IEEE STP, and the TrCRF is in SRB mode.

Configuring VLANs

These sections describe how to configure VLANs:

- VLAN Configuration Background Information, page 14-10
- Creating or Modifying an Ethernet VLAN, page 14-11
- Assigning a Layer 2 LAN Interface to a VLAN, page 14-13
- Configuring the Internal VLAN Allocation Policy, page 14-13
- Configuring VLAN Translation, page 14-14
- Mapping 802.1Q VLANs to ISL VLANs, page 14-17

Note

VLANs support a number of parameters that are not discussed in detail in this section. For complete information, refer to the *Cisco 7600 Series Router Cisco IOS Command Reference* publication.

VLAN Configuration Background Information

If the router is in VTP server or transparent mode (see the “Configuring VTP” section on page 13-8), you can configure VLANs in global and config-vlan configuration modes. When you configure VLANs in global and config-vlan configuration modes, the VLAN configuration is saved in the vlan.dat files. To display the VLAN configuration, enter the `show vlan` command.

If the router is in VLAN transparent mode, use the copy `running-config startup-config` command to save the VLAN configuration to the startup-config file. After you save the running configuration as the startup configuration, use the `show running-config` and `show startup-config` commands to display the VLAN configuration.

Note

- When the router boots, if the VTP domain name and VTP mode in the startup-config and vlan.dat files do not match, the router uses the configuration in the vlan.dat file.
- VLAN database mode, which was available in Release 12.2(18)SXD and earlier releases, is no longer supported.
- RPR+ redundancy does not support configurations entered in VLAN database mode. Use global configuration mode with RPR+ redundancy.
Creating or Modifying an Ethernet VLAN

User-configured VLANs have unique IDs from 1 to 4094, except for reserved VLANs (see Table 14-1 on page 14-2). Enter the `vlan` command with an unused ID to create a VLAN. Enter the `vlan` command for an existing VLAN to modify the VLAN (you cannot modify an existing VLAN that is being used by a Layer 3 port or a software feature).

See the “VLAN Default Configuration” section on page 14-6 for the list of default parameters that are assigned when you create a VLAN. If you do not specify the VLAN type with the `media` keyword, the VLAN is an Ethernet VLAN.

To create or modify a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters VLAN configuration mode.</td>
</tr>
<tr>
<td>Router# configure terminal or Router# vlan database</td>
<td>Creates or modifies an Ethernet VLAN, a range of Ethernet VLANs, or several Ethernet VLANs specified in a comma-separated list (do not enter space characters). Deletes a VLAN.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Updates the VLAN database and returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Router(config)# vlan vlan_ID([-vlan_ID]</td>
<td>or</td>
</tr>
<tr>
<td>Router(config-vlan)#</td>
<td>[vlan_ID])</td>
</tr>
<tr>
<td>Router(vlan)# vlan vlan_ID</td>
<td>Router(config)# no vlan vlan_ID</td>
</tr>
<tr>
<td>Router(config-vlan)#</td>
<td>or</td>
</tr>
<tr>
<td>Router(vlan)# no vlan vlan_ID</td>
<td>Step 4 Router# show vlan [id</td>
</tr>
</tbody>
</table>

When you create or modify an Ethernet VLAN, note the following information:

- RPR+ redundancy does not support a configuration entered in VLAN database mode. Use global configuration mode with RPR+ redundancy.
- Because Layer 3 ports and some software features require internal VLANs allocated from 1006 and up, configure extended-range VLANs starting with 4094.
- Layer 3 ports and some software features use extended-range VLANs. If the VLAN you are trying to create or modify is being used by a Layer 3 port or a software feature, the router displays a message and does not modify the VLAN configuration.

When deleting VLANs, note the following information:

- You cannot delete the default VLANs for the different media types: Ethernet VLAN 1 and FDDI or Token Ring VLANs 1002 to 1005.
- When you delete a VLAN, any LAN ports configured as access ports assigned to that VLAN become inactive. The ports remain associated with the VLAN (and inactive) until you assign them to a new VLAN.

This example shows how to create an Ethernet VLAN and verify the configuration:
Router# **configure terminal**
Router(config)# **vlan 3**
Router(config-vlan)# **end**
Router# **show vlan id 3**

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>VLAN0003</td>
<td>active</td>
</tr>
</tbody>
</table>

VLAN Type | SAID | MTU | Parent | RingNo | BridgeNo | Stp | BrdgMode | Trans1 | Trans2 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>enet</td>
<td>100003</td>
<td>1500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Primary Secondary Type	Interfaces

This example shows how to verify the configuration:

Router# **show vlan name VLAN0003**

<table>
<thead>
<tr>
<th>VLAN Name</th>
<th>Status</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>VLAN0003</td>
<td>active</td>
</tr>
</tbody>
</table>

VLAN Type | SAID | MTU | Parent | RingNo | BridgeNo | Stp | BrdgMode | Trans1 | Trans2 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>enet</td>
<td>100003</td>
<td>1500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

You can also use the **sh vlan free** and **sh vlan free summary** command to To list and view the total number of free vlans and display the vlan usage summary information in the system.

Router#**show vlan free ?**

Summary Total number of free vlans in the system
<cr>

Router#**show vlan free**

Free VLANS

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Router#**show vlan free ?**

Summary Total number of free vlans in the system
<cr>

Router#**show vlan free summ**
Chapter 14 Configuring VLANs

Assigning a Layer 2 LAN Interface to a VLAN

A VLAN created in a management domain remains unused until you assign one or more LAN ports to the VLAN.

Note: Make sure you assign LAN ports to a VLAN of the appropriate type. Assign Ethernet ports to Ethernet-type VLANs.

To assign one or more LAN ports to a VLAN, complete the procedures in the “Configuring LAN Interfaces for Layer 2 Switching” section on page 10-6.

Configuring the Internal VLAN Allocation Policy

For more information about VLAN allocation, see the “VLAN Ranges” section on page 14-2.

Note: The internal VLAN allocation policy is applied only following a reload.

To configure the internal VLAN allocation policy, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Router(config)# vlan internal allocation policy *(ascending | descending)*
 | Router(config)# no vlan internal allocation policy | Configures the internal VLAN allocation policy.
 | Router(config)# end | Returns to the default (ascending). | |
| Step 2 | Router# reload | Exits configuration mode. |
| Step 3 | | Applies the new internal VLAN allocation policy. |

Caution: You need not enter the `reload` command immediately. Enter the `reload` command during a planned maintenance window.

When you configure the internal VLAN allocation policy, note the following information:
• Enter the **ascending** keyword to allocate internal VLANs from 1006 and up.
• Enter the **descending** keyword to allocate internal VLAN from 4094 and down.

This example shows how to configure descending as the internal VLAN allocation policy:

Router# configure terminal
Router(config)# vlan internal allocation policy descending

Configuring VLAN Translation

On trunk ports, you can translate one VLAN number to another VLAN number, which transfers all traffic received in one VLAN to the other VLAN.

These sections describe VLAN translation:

- **VLAN Translation Guidelines and Restrictions, page 14-14**
- **Configuring VLAN Translation on a Trunk Port, page 14-16**
- **Enabling VLAN Translation on Other Ports in a Port Group, page 14-16**

Note: To avoid spanning tree loops, be careful not to misconfigure the VLAN translation feature.

VLAN Translation Guidelines and Restrictions

When translating VLANs, follow these guidelines and restrictions:

- A VLAN translation configuration is inactive if it is applied to ports that are not Layer 2 trunks.
- Do not configure translation of ingress native VLAN traffic on an 802.1Q trunk. Because 802.1Q native VLAN traffic is untagged, it cannot be recognized for translation. You can translate traffic from other VLANs to the native VLAN of an 802.1Q trunk.
- If you enable a vlan translation within an interface, the interface is reset.
- Do not remove the VLAN to which you are translating from the trunk.
- The VLAN translation configuration applies to all ports in a port group. VLAN translation is disabled by default on all ports in a port group. Enable VLAN translation on ports as needed.
- The following table lists:
 - The modules that support VLAN translation
 - The port groups to which VLAN translation configuration applies
 - The number of VLAN translations supported by the port groups
 - The trunk types supported by the modules

Note: LAN ports on OSMs support VLAN translation. LAN ports on OSMs are in a single port group.
Configuring VLANs

Note

For a WS-X6748-GE-TX card, the ports are grouped in an odd and even fashion per ASIC and number of VLAN mappings per port group is 128. Since the VLAN mapping configuration is applicable to all ports in a port group, the total number of VLAN mappings done are 22.

<table>
<thead>
<tr>
<th>Product Number</th>
<th>Number of Ports</th>
<th>Number of Port Groups</th>
<th>Port Ranges per Port Group</th>
<th>Translation s per Port Group</th>
<th>VLAN Translation Trunk-Type Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS-SUP720-3BXL</td>
<td>2</td>
<td>1</td>
<td>1–2</td>
<td>32</td>
<td>802.1Q</td>
</tr>
<tr>
<td>WS-SUP720-3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>802.1Q</td>
</tr>
<tr>
<td>WS-SUP720</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>802.1Q</td>
</tr>
<tr>
<td>WS-SUP32-10GE</td>
<td>3</td>
<td>2</td>
<td>1, 2–3</td>
<td>16</td>
<td>ISL 802.1Q</td>
</tr>
<tr>
<td>WS-SUP32-GE</td>
<td>9</td>
<td>1</td>
<td>1–9</td>
<td>16</td>
<td>ISL 802.1Q</td>
</tr>
<tr>
<td>WS-X6704-10GE</td>
<td>4</td>
<td>4</td>
<td>1 port in each group</td>
<td>128</td>
<td>ISL 802.1Q</td>
</tr>
<tr>
<td>WS-X6708-10GE</td>
<td>8</td>
<td>8</td>
<td>1 port in each group</td>
<td>16</td>
<td>ISL 802.1Q</td>
</tr>
<tr>
<td>WS-X6502-10GE</td>
<td>1</td>
<td>1</td>
<td>1 port in 1 group</td>
<td>32</td>
<td>802.1Q</td>
</tr>
<tr>
<td>WS-X6724-SFP</td>
<td>24</td>
<td>2</td>
<td>1–12, 13–24</td>
<td>128</td>
<td>ISL 802.1Q</td>
</tr>
<tr>
<td>WS-X6816-GBIC</td>
<td>16</td>
<td>2</td>
<td>1–8, 9–16</td>
<td>32</td>
<td>802.1Q</td>
</tr>
<tr>
<td>WS-X6516A-GBIC</td>
<td>16</td>
<td>2</td>
<td>1–8, 9–16</td>
<td>32</td>
<td>802.1Q</td>
</tr>
<tr>
<td>WS-X6516-GBIC</td>
<td>16</td>
<td>2</td>
<td>1–8, 9–16</td>
<td>32</td>
<td>802.1Q</td>
</tr>
<tr>
<td>WS-X6748-GE-TX</td>
<td>48</td>
<td>4</td>
<td>1-23 odd, 25-47 odd, 2-24 even, 26-48 even</td>
<td>128</td>
<td>ISL 802.1Q</td>
</tr>
<tr>
<td>WS-X6516-GE-TX</td>
<td>16</td>
<td>2</td>
<td>1–8, 9–16</td>
<td>32</td>
<td>802.1Q</td>
</tr>
<tr>
<td>WS-X6524-100FX-MM</td>
<td>24</td>
<td>1</td>
<td>1–24</td>
<td>32</td>
<td>ISL 802.1Q</td>
</tr>
<tr>
<td>WS-X6548-RJ-45</td>
<td>48</td>
<td>1</td>
<td>1–48</td>
<td>32</td>
<td>ISL 802.1Q</td>
</tr>
<tr>
<td>WS-X6548-RJ-21</td>
<td>48</td>
<td>1</td>
<td>1–48</td>
<td>32</td>
<td>ISL 802.1Q</td>
</tr>
</tbody>
</table>
Chapter 14 Configuring VLANs

Configuring VLAN Translation on a Trunk Port

To translate VLANs on a trunk port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Selects the Layer 2 trunk port to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables VLAN translation.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Translates a VLAN to another VLAN. The valid range is 1 to 4094.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Verifies the VLAN mapping.</td>
</tr>
</tbody>
</table>

1. *type* = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to map VLAN 1649 to VLAN 755 Gigabit Ethernet port 5/2:

```
Router# configure terminal
Router(config)# interface gigabitethernet 5/2
Router(config-if)# switchport vlan mapping 1649 755
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show interface gigabitethernet 5/2 vlan mapping
State: enabled
Original VLAN Translated VLAN
----------------- -------------------
1649       755
```

Enabling VLAN Translation on Other Ports in a Port Group

To enable VLAN translation on other ports in a port group, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Enables VLAN translation.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Disables VLAN translation.</td>
</tr>
</tbody>
</table>

Note: To configure a port as a trunk, see the “Configuring a Layer 2 Switching Port as a Trunk” section on page 10-7.
Configuring VLANs

This example shows how to enable VLAN translation on a port:

```
Router# configure terminal
Router(config)# interface gigabitethernet 5/2
Router(config-if)# switchport vlan mapping enable
Router(config-if)# end
```

Mapping 802.1Q VLANs to ISL VLANs

The valid range of user-configurable ISL VLANs is 1 through 1001 and 1006 through 4094. The valid range of VLANs specified in the IEEE 802.1Q standard is 1 to 4094. You can map 802.1Q VLAN numbers to ISL VLAN numbers.

802.1Q VLANs in the range 1 through 1001 and 1006 through 4094 are automatically mapped to the corresponding ISL VLAN. 802.1Q VLAN numbers corresponding to reserved VLAN numbers must be mapped to an ISL VLAN in order to be recognized and forwarded by Cisco network devices.

These restrictions apply when mapping 802.1Q VLANs to ISL VLANs:

- You can configure up to eight 802.1Q-to-ISL VLAN mappings on the Cisco 7600 series router.
- You can only map 802.1Q VLANs to Ethernet-type ISL VLANs.
- Do not enter the native VLAN of any 802.1Q trunk in the mapping table.
- When you map an 802.1Q VLAN to an ISL VLAN, traffic on the 802.1Q VLAN corresponding to the mapped ISL VLAN is blocked. For example, if you map 802.1Q VLAN 1007 to ISL VLAN 200, traffic on 802.1Q VLAN 200 is blocked.
- VLAN mappings are local to each Cisco 7600 series router. Make sure you configure the same VLAN mappings on all appropriate network devices.

To map an 802.1Q VLAN to an ISL VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# vlan mapping dot1q dot1q_vlan_ID isl isl_vlan_ID</td>
</tr>
<tr>
<td></td>
<td>Maps an 802.1Q VLAN to an ISL Ethernet VLAN. The valid range for <code>dot1q_vlan_ID</code> is 1001 to 4094. The valid range for <code>isl_vlan_ID</code> is the same.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no vlan mapping dot1q {all</td>
</tr>
<tr>
<td></td>
<td>Deletes the mapping.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show vlan</td>
</tr>
<tr>
<td></td>
<td>Verifies the VLAN mapping.</td>
</tr>
</tbody>
</table>
This example shows how to map 802.1Q VLAN 1003 to ISL VLAN 200:

Router# configure terminal
Router(config)# vlan mapping dot1q 1003 isl 200
Router(config)# end
Router#

This example shows how to verify the configuration:

Router# show vlan
<...output truncated...>
802.1Q Trunk Remapped VLANs:
802.1Q VLAN ISL VLAN
------------ ----------
1003 200
Configuring Private VLANs

This chapter describes how to configure private VLANs on the Cisco 7600 series routers.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:
- Understanding How Private VLANs Work, page 15-1
- Private VLAN Configuration Guidelines and Restrictions, page 15-6
- Configuring Private VLANs, page 15-11
- Monitoring Private VLANs, page 15-17

Understanding How Private VLANs Work

These sections describe how private VLANs work:
- Private VLAN Domains, page 15-2
- Private VLAN Ports, page 15-3
- Primary, Isolated, and Community VLANs, page 15-3
- Private VLAN Port Isolation, page 15-4
- IP Addressing Scheme with Private VLANs, page 15-4
- Private VLANs Across Multiple Routers, page 15-5
- Private VLAN Interaction with Other Features, page 15-5
Private VLAN Domains

The private VLAN feature addresses two problems that service providers encounter when using VLANs:

- The router supports up to 4096 VLANs. If a service provider assigns one VLAN per customer, the number of customers that service provider can support is limited.
- To enable IP routing, each VLAN is assigned a subnet address space or a block of addresses, which can result in wasting the unused IP addresses and creating IP address management problems.

Using private VLANs solves the scalability problem and provides IP address management benefits for service providers and Layer 2 security for customers.

The private VLAN feature partitions the Layer 2 broadcast domain of a VLAN into subdomains. A subdomain is represented by a pair of private VLANs: a primary VLAN and a secondary VLAN. A private VLAN domain can have multiple private VLAN pairs, one pair for each subdomain. All VLAN pairs in a private VLAN domain share the same primary VLAN. The secondary VLAN ID differentiates one subdomain from another (see Figure 15-1).

![Private VLAN Domain Diagram](image)

A private VLAN domain has only one primary VLAN. Every port in a private VLAN domain is a member of the primary VLAN. In other words, the primary VLAN is the entire private VLAN domain.

Secondary VLANs provide Layer 2 isolation between ports within the same private VLAN domain. There are two types of secondary VLANs:

- Isolated VLANs—Ports within an isolated VLAN cannot communicate with each other at the Layer 2 level.
- Community VLANs—Ports within a community VLAN can communicate with each other but cannot communicate with ports in other communities at the Layer 2 level.
Private VLAN Ports

There are three types of private VLAN ports:

- **Promiscuous**—A promiscuous port belongs to the primary VLAN and can communicate with all interfaces, including the community and isolated host ports that belong to the secondary VLANs that are associated with the primary VLAN.
- **Isolated**—An isolated port is a host port that belongs to an isolated secondary VLAN. This port has complete Layer 2 isolation from other ports within the same private VLAN domain, except for the promiscuous ports. Private VLANs block all traffic to isolated ports except traffic from promiscuous ports. Traffic received from an isolated port is forwarded only to promiscuous ports.
- **Community**—A community port is a host port that belongs to a community secondary VLAN. Community ports communicate with other ports in the same community VLAN and with promiscuous ports. These interfaces are isolated at Layer 2 from all other interfaces in other communities and from isolated ports within their private VLAN domain.

Note Because trunks can support the VLANs carrying traffic between isolated, community, and promiscuous ports, isolated and community port traffic might enter or leave the router through a trunk interface.

Primary, Isolated, and Community VLANs

Primary VLANs and the two types of secondary VLANs, isolated VLANs and community VLANs have these characteristics:

- **Primary VLAN**—The primary VLAN carries unidirectional traffic downstream from the promiscuous ports to the (isolated and community) host ports and to other promiscuous ports.
- **Isolated VLAN**—A private VLAN domain has only one isolated VLAN. An isolated VLAN is a secondary VLAN that carries unidirectional traffic upstream from the hosts toward the promiscuous ports and the gateway.
- **Community VLAN**—A community VLAN is a secondary VLAN that carries upstream traffic from the community ports to the promiscuous port gateways and to other host ports in the same community. You can configure multiple community VLANs in a private VLAN domain.

A promiscuous port can serve only one primary VLAN, one isolated VLAN, and multiple community VLANs. Layer 3 gateways are connected typically to the router through a promiscuous port. With a promiscuous port, you can connect a wide range of devices as access points to a private VLAN. For example, you can use a promiscuous port to monitor or back up all the private VLAN servers from an administration workstation.

In a switched environment, you can assign an individual private VLAN and associated IP subnet to each individual or common group of end stations. The end stations need to communicate only with a default gateway to communicate outside the private VLAN.
Private VLAN Port Isolation

You can use private VLANs to control access to end stations in these ways:

• Configure selected interfaces connected to end stations as isolated ports to prevent any communication at Layer 2. For example, if the end stations are servers, this configuration prevents Layer 2 communication between the servers.

• Configure interfaces connected to default gateways and selected end stations (for example, backup servers) as promiscuous ports to allow all end stations access to a default gateway.

You can extend private VLANs across multiple devices by trunking the primary, isolated, and community VLANs to other devices that support private VLANs. To maintain the security of your private VLAN configuration and to avoid other use of the VLANs configured as private VLANs, configure private VLANs on all intermediate devices, including devices that have no private VLAN ports.

IP Addressing Scheme with Private VLANs

When you assign a separate VLAN to each customer, an inefficient IP addressing scheme is created as follows:

• Assigning a block of addresses to a customer VLAN can result in unused IP addresses.

• If the number of devices in the VLAN increases, the number of assigned addresses might not be large enough to accommodate them.

These problems are reduced by using private VLANs, where all members in the private VLAN share a common address space, which is allocated to the primary VLAN. Hosts are connected to secondary VLANs, and the DHCP server assigns them IP addresses from the block of addresses allocated to the primary VLAN. Subsequent IP addresses can be assigned to customer devices in different secondary VLANs, but in the same primary VLAN. When new devices are added, the DHCP server assigns them the next available address from a large pool of subnet addresses.
Private VLANs Across Multiple Routers

As with regular VLANs, private VLANs can span multiple routers. A trunk port carries the primary VLAN and secondary VLANs to a neighboring router. The trunk port deals with the private VLAN as any other VLAN. A feature of private VLANs across multiple routers is that traffic from an isolated port in router A does not reach an isolated port on Router B. (See Figure 15-2.)

![Figure 15-2 Private VLANs Across Routers](image)

VLAN 100 = Primary VLAN
VLAN 201 = Secondary isolated VLAN
VLAN 202 = Secondary community VLAN

Because VTP does not support private VLANs, you must manually configure private VLANs on all routers in the Layer 2 network. If you do not configure the primary and secondary VLAN association in some routers in the network, the Layer 2 databases in these routers are not merged. This situation can result in unnecessary flooding of private VLAN traffic on those routers.

Private VLAN Interaction with Other Features

These sections describe how private VLANs interact with some other features:

- Private VLANs and Unicast, Broadcast, and Multicast Traffic, page 15-6
- Private VLANs and SVIs, page 15-6

See also the “Private VLAN Configuration Guidelines and Restrictions” section on page 15-6.
Private VLANs and Unicast, Broadcast, and Multicast Traffic

In regular VLANs, devices in the same VLAN can communicate with each other at the Layer 2 level, but devices connected to interfaces in different VLANs must communicate at the Layer 3 level. In private VLANs, the promiscuous ports are members of the primary VLAN, while the host ports belong to secondary VLANs. Because the secondary VLAN is associated to the primary VLAN, members of these VLANs can communicate with each other at the Layer 2 level.

In a regular VLAN, broadcasts are forwarded to all ports in that VLAN. Private VLAN broadcast forwarding depends on the port sending the broadcast:

- An isolated port sends a broadcast only to the promiscuous ports or trunk ports.
- A community port sends a broadcast to all promiscuous ports, trunk ports, and ports in the same community VLAN.
- A promiscuous port sends a broadcast to all ports in the private VLAN (other promiscuous ports, trunk ports, isolated ports, and community ports).

Multicast traffic is routed or bridged across private VLAN boundaries and within a single community VLAN. Multicast traffic is not forwarded between ports in the same isolated VLAN or between ports in different secondary VLANs.

Private VLANs and SVIs

A router virtual interface (SVI) is the Layer 3 interface of a Layer 2 VLAN. Layer 3 devices communicate with a private VLAN only through the primary VLAN and not through secondary VLANs. Configure Layer 3 VLAN SVIs only for primary VLANs. Do not configure Layer 3 VLAN interfaces for secondary VLANs. SVIs for secondary VLANs are inactive while the VLAN is configured as a secondary VLAN.

- If you try to configure a VLAN with an active SVI as a secondary VLAN, the configuration is not allowed until you disable the SVI.
- If you try to create an SVI on a VLAN that is configured as a secondary VLAN, and the secondary VLAN is already mapped at Layer 3, the SVI is not created, and an error is returned. If the SVI is not mapped at Layer 3, the SVI is created, but it is automatically shut down.

When the primary VLAN is associated with and mapped to the secondary VLAN, any configuration on the primary VLAN is propagated to the secondary VLAN SVIs. For example, if you assign an IP subnet to the primary VLAN SVI, this subnet is the IP subnet address of the entire private VLAN.

Private VLAN Configuration Guidelines and Restrictions

The guidelines for configuring private VLANs are described in the following sections:

- Secondary and Primary VLAN Configuration, page 15-7
- Private VLAN Port Configuration, page 15-9
- Limitations with Other Features, page 15-9
Secondary and Primary VLAN Configuration

When configuring private VLANs consider these guidelines:

- After you configure a private VLAN and set VTP to transport mode, you cannot change the VTP mode to client or server. For information about VTP, see Chapter 13, “Configuring VTP.”
- You must use VLAN configuration (config-vlan) mode to configure private VLANs. You cannot configure private VLANs in VLAN database configuration mode. For more information about VLAN configuration, see Chapter 14, “Configuring VLANs.”
- After you have configured private VLANs, use the `copy running-config startup config` privileged EXEC command to save the VTP transparent mode configuration and private VLAN configuration in the startup-config file. If the router resets it must default to VTP transparent mode to support private VLANs.
- VTP does not propagate a private VLAN configuration. You must configure private VLANs on each device where you want private VLAN ports.
- You cannot configure VLAN 1 or VLANs 1002 to 1005 as primary or secondary VLANs. Extended VLANs (VLAN IDs 1006 to 4094) can belong to private VLANs.
- Only Ethernet VLANs can be private VLANs.
- A primary VLAN can have one isolated VLAN and multiple community VLANs associated with it. An isolated or community VLAN can have only one primary VLAN associated with it.
- When a secondary VLAN is associated with the primary VLAN, the STP parameters of the primary VLAN, such as bridge priorities, are propagated to the secondary VLAN. However, STP parameters do not necessarily propagate to other devices. You should manually check the STP configuration to ensure that the primary, isolated, and community VLANs’ spanning tree topologies match so that the VLANs can properly share the same forwarding database.
- If you enable MAC address reduction on the router, we recommend that you enable MAC address reduction on all the devices in your network to ensure that the STP topologies of the private VLANs match.
- In a network where private VLANs are configured, if you enable MAC address reduction on some devices and disable it on others (mixed environment), use the default bridge priorities to make sure that the root bridge is common to the primary VLAN and to all its associated isolated and community VLANs. Be consistent with the ranges employed by the MAC address reduction feature regardless of whether it is enabled on the system. MAC address reduction allows only discrete levels and uses all intermediate values internally as a range. You should disable a root bridge with private VLANs and MAC address reduction, and configure the root bridge with any priority higher than the highest priority range used by any nonroot bridge.
- You cannot apply VACLs to secondary VLANs. (See Chapter 38, “Configuring VLAN ACLs”.)
- You can enable DHCP snooping on private VLANs. When you enable DHCP snooping on the primary VLAN, it is propagated to the secondary VLANs. If you configure DHCP on a secondary VLAN, the configuration does not take effect if the primary VLAN is already configured.
- We recommend that you prune the private VLANs from the trunks on devices that carry no traffic in the private VLANs.
- You can apply different quality of service (QoS) configurations to primary, isolated, and community VLANs. (See Chapter 48, “Configuring PFC QoS”.)
Chapter 15 Configuring Private VLANs

Private VLAN Configuration Guidelines and Restrictions

• When you configure private VLANs, sticky Address Resolution Protocol (ARP) is enabled by default, and ARP entries learned on Layer 3 private VLAN interfaces are sticky ARP entries. For security reasons, private VLAN port sticky ARP entries do not age out. For information about configuring sticky ARP, see the “Configuring Sticky ARP” section on page 43-41.

• We recommend that you display and verify private VLAN interface ARP entries.

• Sticky ARP prevents MAC address spoofing by ensuring that ARP entries (IP address, MAC address, and source VLAN) do not age out. You can configure sticky ARP on a per-interface basis. For information about configuring sticky ARP, see the “Configuring Sticky ARP” section on page 43-41. The following guidelines and restrictions apply to private VLAN sticky ARP:
 – ARP entries learned on Layer 3 private VLAN interfaces are sticky ARP entries.
 – Connecting a device with a different MAC address but with the same IP address generates a message and the ARP entry is not created.
 – Because the private VLAN port sticky ARP entries do not age out, you must manually remove private VLAN port ARP entries if a MAC address changes. You can add or remove private VLAN ARP entries manually as follows:

 Router(config)# no arp 11.1.3.30
 IP ARP:Deleting Sticky ARP entry 11.1.3.30

 Router(config)# arp 11.1.3.30 0000.5403.2356 arpa
 IP ARP:Overwriting Sticky ARP entry 11.1.3.30, hw:00d0.bb09.266e by hw:0000.5403.2356

• You can configure VLAN maps on primary and secondary VLANs. (See the “Applying a VLAN Access Map” section on page 38-7.) However, we recommend that you configure the same VLAN maps on private VLAN primary and secondary VLANs.

• When a frame is Layer 2 forwarded within a private VLAN, the same VLAN map is applied at the ingress side and at the egress side. When a frame is routed from inside a private VLAN to an external port, the private VLAN map is applied at the ingress side.
 – For frames going upstream from a host port to a promiscuous port, the VLAN map configured on the secondary VLAN is applied.
 – For frames going downstream from a promiscuous port to a host port, the VLAN map configured on the primary VLAN is applied.

To filter out specific IP traffic for a private VLAN, you should apply the VLAN map to both the primary and secondary VLANs.

• To apply Cisco IOS output ACLs to all outgoing private VLAN traffic, configure them on the Layer 3 VLAN interface of the primary VLAN. (See Chapter 35, “Configuring Network Security”.)

• Cisco IOS ACLs applied to the Layer 3 VLAN interface of a primary VLAN automatically apply to the associated isolated and community VLANs.

• Do not apply Cisco IOS ACLs to isolated or community VLANs. Cisco IOS ACL configuration applied to isolated and community VLANs is inactive while the VLANs are part of the private VLAN configuration.

• Although private VLANs provide host isolation at Layer 2, hosts can communicate with each other at Layer 3.

• Private VLANs support these Switched Port Analyzer (SPAN) features:
 – You can configure a private VLAN port as a SPAN source port.
 – You can use VLAN-based SPAN (VSPAN) on primary, isolated, and community VLANs or use SPAN on only one VLAN to separately monitor egress or ingress traffic.
Private VLAN Port Configuration

When configuring private VLAN ports follow these guidelines:

- Use only the private VLAN configuration commands to assign ports to primary, isolated, or community VLANs. Layer 2 access ports assigned to the VLANs that you configure as primary, isolated, or community VLANs are inactive while the VLAN is part of the private VLAN configuration. Layer 2 trunk interfaces remain in the STP forwarding state.
- Do not configure ports that belong to a PAgP or LACP EtherChannel as private VLAN ports. While a port is part of the private VLAN configuration, any EtherChannel configuration for it is inactive.
- Enable PortFast and BPDU guard on isolated and community host ports to prevent STP loops due to misconfigurations and to speed up STP convergence. (See Chapter 21, “Configuring Optional STP Features”.) When enabled, STP applies the BPDU guard feature to all PortFast-configured Layer 2 LAN ports. Do not enable PortFast and BPDU guard on promiscuous ports.
- If you delete a VLAN used in the private VLAN configuration, the private VLAN ports associated with the VLAN become inactive.
- Private VLAN ports can be on different network devices if the devices are trunk-connected and the primary and secondary VLANs have not been removed from the trunk.
- All primary, isolated, and community VLANs associated within a private VLAN must maintain the same topology across trunks. You are highly recommended to configure the same STP bridge parameters and trunk port parameters on all associated VLANs in order to maintain the same topology.

Limitations with Other Features

When configuring private VLANs, consider these configuration limitations with other features:

<table>
<thead>
<tr>
<th>Note</th>
<th>In some cases, the configuration is accepted with no error messages, but the commands have no effect.</th>
</tr>
</thead>
</table>
- Do not configure fallback bridging on routers with private VLANs.
- A port is only affected by the private VLAN feature if it is currently in private VLAN mode and its private VLAN configuration indicates that it is a primary, isolated, or community port. If a port is in any other mode, such as Dynamic Trunking Protocol (DTP), it does not function as a private port.
- Do not configure private VLAN ports on interfaces configured for these other features:
 - Port Aggregation Protocol (PAgP)
 - Link Aggregation Control Protocol (LACP)
 - Voice VLAN
- You can configure IEEE 802.1x port-based authentication on a private VLAN port, but do not configure 802.1x with port security, voice VLAN, or per-user ACL on private VLAN ports.
- IEEE 802.1q mapping works normally. Traffic is remapped to or from dot1Q ports as configured, as if received from the ISL VLANs.
Private VLAN Configuration Guidelines and Restrictions

- Do not configure a remote SPAN (RSPAN) VLAN as a private VLAN primary or secondary VLAN. For more information about SPAN, see Chapter 57, “Configuring Local SPAN, RSPAN, and ERSSPAN.”

- A private VLAN host or promiscuous port cannot be a SPAN destination port. If you configure a SPAN destination port as a private VLAN port, the port becomes inactive.

- A destination SPAN port should not be an isolated port. (However, a source SPAN port can be an isolated port.) VSPAN could be configured to span both primary and secondary VLANs or, alternatively, to span either one if the user is interested only in ingress or egress traffic.

- If using the shortcuts between different VLANs (if any of these VLANs is private) consider both primary and isolated and community VLANs. The primary VLAN should be used both as the destination and as the virtual source, because the secondary VLAN (the real source) is always remapped to the primary VLAN in the Layer 2 FID table.

- If you configure a static MAC address on a promiscuous port in the primary VLAN, you must add the same static address to all associated secondary VLANs. If you configure a static MAC address on a host port in a secondary VLAN, you must add the same static MAC address to the associated primary VLAN. When you delete a static MAC address from a private VLAN port, you must remove all instances of the configured MAC address from the private VLAN.

Note: Dynamic MAC addresses learned in one VLAN of a private VLAN are replicated in the associated VLANs. For example, a MAC address learned in a secondary VLAN is replicated in the primary VLAN. When the original dynamic MAC address is deleted or aged out, the replicated addresses are removed from the MAC address table.

- Do not configure private VLAN ports as EtherChannels. A port can be part of the private VLAN configuration, but any EtherChannel configuration for the port is inactive.

- Here are some restrictions for configuring groups of 12 ports as secondary ports:
 - The 12-port restriction does not apply to these Ethernet switching modules: WS-X6548-RJ-45, WS-X6548-RJ-21, WS-X6524-100FX-MM (CSCea67876).

Within groups of 12 ports (1–12, 13–24, 25–36, and 37–48), do not configure ports as isolated ports or community VLAN ports when one port within the group of 12 ports is any of these:
 - A trunk port
 - A SPAN destination port
 - A promiscuous private VLAN port
 - A port that has been configured with the `switchport mode dynamic auto` or `switchport mode dynamic desirable` command

If one port within the group of 12 ports is one of these ports listed and has the above properties, any isolated or community VLAN configuration for other ports within the 12 ports is inactive. To reactivate the ports, remove the isolated or community VLAN port configuration and enter the `shutdown` and `no shutdown` commands.
Here are some restrictions for configuring groups of 24 ports as secondary ports:

In all releases, this 24-port restriction applies to the WS-X6548-GE-TX and WS-X6148-GE-TX 10/100/1000 Mb Ethernet switching modules.

Within groups of 24 ports (1–24, 25–48), do not configure ports as isolated ports or community VLAN ports when one port within the group of 24 ports is any of these:

- A trunk port
- A SPAN destination port
- A promiscuous private VLAN port
- A port that has been configured with the `switchport mode dynamic auto` or `switchport mode dynamic desirable` command

If one port within the group of 24 ports is one of these ports listed and has the above properties, any isolated or community VLAN configuration for other ports within the 24 ports is inactive. To reactivate the ports, remove the isolated or community VLAN port configuration and enter the `shutdown` and `no shutdown` commands.

Configuring Private VLANs

These sections contain configuration information:

- Configuring a VLAN as a Private VLAN, page 15-11
- Associating Secondary VLANs with a Primary VLAN, page 15-12
- Mapping Secondary VLANs to the Layer 3 VLAN Interface of a Primary VLAN, page 15-13
- Configuring a Layer 2 Interface as a Private VLAN Host Port, page 15-14
- Configuring a Layer 2 Interface as a Private VLAN Promiscuous Port, page 15-15

Note

If the VLAN is not defined already, the private VLAN configuration process defines it.

Configuring a VLAN as a Private VLAN

To configure a VLAN as a private VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# vlan vlan_ID</td>
</tr>
<tr>
<td></td>
<td>Enters VLAN configuration submode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-vlan)# private-vlan {community</td>
</tr>
<tr>
<td></td>
<td>Configures a VLAN as a private VLAN.</td>
</tr>
<tr>
<td></td>
<td>Router(config-vlan)# no private-vlan {community</td>
</tr>
<tr>
<td></td>
<td>Clears the private VLAN configuration.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-vlan)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show vlan private-vlan [type]</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure VLAN 202 as a primary VLAN and verify the configuration:
Configuring Private VLANs

Router# configure terminal
Router(config)# vlan 202
Router(config-vlan)# private-vlan primary
Router(config-vlan)# end
Router# show vlan private-vlan

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td></td>
<td>primary</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to configure VLAN 303 as a community VLAN and verify the configuration:

Router# configure terminal
Router(config)# vlan 303
Router(config-vlan)# private-vlan community
Router(config-vlan)# end
Router# show vlan private-vlan

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>303</td>
<td>community</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to configure VLAN 440 as an isolated VLAN and verify the configuration:

Router# configure terminal
Router(config)# vlan 440
Router(config-vlan)# private-vlan isolated
Router(config-vlan)# end
Router# show vlan private-vlan

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>303</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>isolated</td>
<td></td>
</tr>
</tbody>
</table>

Associating Secondary VLANs with a Primary VLAN

To associate secondary VLANs with a primary VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# vlan primary_vlan_ID</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-vlan)# private-vlan association {secondary_vlan_list</td>
</tr>
<tr>
<td></td>
<td>Router(config-vlan)# no private-vlan association</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-vlan)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show vlan private-vlan [type]</td>
</tr>
</tbody>
</table>

When you associate secondary VLANs with a primary VLAN, note the following information:

- The `secondary_vlan_list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private VLAN ID or a hyphenated range of private VLAN IDs.
- The `secondary_vlan_list` parameter can contain multiple community VLAN IDs.

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S

OL-10113-33
The `secondary_vlan_list` parameter can contain only one isolated VLAN ID.

Enter a `secondary_vlan_list` or use the `add` keyword with a `secondary_vlan_list` to associate secondary VLANs with a primary VLAN.

Use the `remove` keyword with a `secondary_vlan_list` to clear the association between secondary VLANs and a primary VLAN.

The command does not take effect until you exit VLAN configuration submode.

This example shows how to associate community VLANs 303 through 307 and 309 and isolated VLAN 440 with primary VLAN 202 and verify the configuration:

```
Router# configure terminal
Router(config)# vlan 202
Router(config-vlan)# private-vlan association 303-307,309,440
Router(config-vlan)# end
Router# show vlan private-vlan

<table>
<thead>
<tr>
<th>Primary</th>
<th>Secondary</th>
<th>Type</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>202</td>
<td>303</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>304</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>305</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>306</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>307</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>309</td>
<td>community</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>440</td>
<td>isolated</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td></td>
<td>community</td>
<td></td>
</tr>
</tbody>
</table>
```

Mapping Secondary VLANs to the Layer 3 VLAN Interface of a Primary VLAN

Note

Isolated and community VLANs are both called secondary VLANs.

To map secondary VLANs to the Layer 3 VLAN interface of a primary VLAN to allow Layer 3 switching of private VLAN ingress traffic, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# <code>interface vlan primary_vlan_ID</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# `private-vlan mapping {secondary_vlan_list</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# <code>[no] private-vlan mapping</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# <code>end</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# <code>show interface private-vlan mapping</code></td>
</tr>
</tbody>
</table>

When you map secondary VLANs to the Layer 3 VLAN interface of a primary VLAN, note the following information:
Configuring Private VLANs

- The **private-vlan mapping** interface configuration command only affects private VLAN ingress traffic that is Layer 3-switched.
- The **secondary_vlan_list** parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private VLAN ID or a hyphenated range of private VLAN IDs.
- Enter a **secondary_vlan_list** parameter or use the **add** keyword with a **secondary_vlan_list** parameter to map the secondary VLANs to the primary VLAN.
- Use the **remove** keyword with a **secondary_vlan_list** parameter to clear the mapping between secondary VLANs and the primary VLAN.

This example shows how to permit routing of secondary VLAN ingress traffic from private VLANs 303 through 307, 309, and 440 and verify the configuration:

```
Router# configure terminal
Router(config)# interface vlan 202
Router(config-if)# private-vlan mapping add 303-307,309,440
Router(config-if)# end
Router# show interfaces private-vlan mapping
Interface Secondary VLAN Type
--------- -------------- -----------------
vlan202   303            community
vlan202   304            community
vlan202   305            community
vlan202   306            community
vlan202   307            community
vlan202   309            community
vlan202   440            isolated
```

Configure a Layer 2 Interface as a Private VLAN Host Port

To configure a Layer 2 interface as a private VLAN host port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type slot/port</td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# switchport</td>
<td>Configures the LAN port for Layer 2 switching:</td>
</tr>
<tr>
<td></td>
<td>• You must enter the switchport command once without any keywords to configure the LAN port as a Layer 2 interface before you can enter additional switchport commands with keywords.</td>
</tr>
<tr>
<td></td>
<td>• Required only if you have not entered the switchport command already for the interface.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# switchport mode private-vlan host</td>
<td>Configures the Layer 2 port as a private VLAN host port.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# switchport private-vlan</td>
<td>Clears private VLAN port configuration.</td>
</tr>
<tr>
<td>host-association primary_vlan_ID secondary_vlan_ID</td>
<td>Associates the Layer 2 port with a private VLAN.</td>
</tr>
<tr>
<td>Router(config-if)# no switchport mode private-vlan host-association</td>
<td>Clears the association.</td>
</tr>
</tbody>
</table>
Chapter 15 Configuring Private VLANs

Configuring Private VLANs

This example shows how to configure interface FastEthernet 5/1 as a private VLAN host port and verify the configuration:

Router# configure terminal
Router(config)# interface fastethernet 5/1
Router(config-if)# switchport mode private-vlan host
Router(config-if)# switchport private-vlan host-association 202 303
Router(config-if)# end
Router# show interfaces fastethernet 5/1 switchport
Name: Fa5/1
Switchport: Enabled
Administrative Mode: private-vlan host
Operational Mode: down
Administrative Trunking Encapsulation: negotiate
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative private-vlan host-association: 202 (VLAN0202) 303 (VLAN0303)
Administrative private-vlan mapping: none
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled

Configuring a Layer 2 Interface as a Private VLAN Promiscuous Port

To configure a Layer 2 interface as a private VLAN promiscuous port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type{ slot/port}</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# switchport</td>
</tr>
<tr>
<td></td>
<td>• You must enter the switchport command once without any keywords to configure the LAN interface as a Layer 2 interface before you can enter additional switchport commands with keywords.</td>
</tr>
<tr>
<td></td>
<td>• Required only if you have not entered the switchport command already for the interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# switchport mode private-vlan host</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# switchport mode private-vlan promiscuous</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport mode private-vlan</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet
Configuring Private VLANs

When you configure a Layer 2 interface as a private VLAN promiscuous port, note the following information:

- The `secondary_vlan_list` parameter cannot contain spaces. It can contain multiple comma-separated items. Each item can be a single private VLAN ID or a hyphenated range of private VLAN IDs.
- Enter a `secondary_vlan_list` value or use the `add` keyword with a `secondary_vlan_list` value to map the secondary VLANs to the private VLAN promiscuous port.
- Use the `remove` keyword with a `secondary_vlan_list` value to clear the mapping between secondary VLANs and the private VLAN promiscuous port.

This example shows how to configure interface FastEthernet 5/2 as a private VLAN promiscuous port and map it to a private VLAN:

```
Router# configure terminal
Router(config)# interface fastethernet 5/2
Router(config-if)# switchport mode private-vlan promiscuous
Router(config-if)# switchport private-vlan mapping 202 303,440
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show interfaces fastethernet 5/2 switchport
Name: Fa5/2
Switchport: Enabled
  Administrative Mode: private-vlan promiscuous
  Operational Mode: down
  Administrative Trunking Encapsulation: negotiate
  Negotiation of Trunking: On
  Access Mode VLAN: 1 (default)
  Trunking Native Mode VLAN: 1 (default)
  Administrative private-vlan host-association: none ((Inactive))
  Administrative private-vlan mapping: 202 (VLAN0202) 303 (VLAN0303) 440 (VLAN0440)
  Operational private-vlan: none
  Trunking VLANs Enabled: ALL
  Pruning VLANs Enabled: 2-1001
  Capture Mode Disabled
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 4</td>
<td>Router(config-if)# switchport private-vlan mapping primary_vlan_ID [secondary_vlan_list</td>
</tr>
<tr>
<td></td>
<td>add secondary_vlan_list</td>
</tr>
<tr>
<td></td>
<td>remove secondary_vlan_list]</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport private-vlan mapping</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router# show interfaces [type* slot/port] switchport</td>
</tr>
</tbody>
</table>

1. `type` = `ethernet`, `fastethernet`, `gigabitethernet`, or `tengigabitethernet`
Monitoring Private VLANs

Table 15-1 shows the privileged EXEC commands for monitoring private VLAN activity.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>show interfaces status</td>
<td>Displays the status of interfaces, including the VLANs to which they belong.</td>
</tr>
<tr>
<td>show vlan private-vlan [type]</td>
<td>Displays the private VLAN information for the router.</td>
</tr>
<tr>
<td>show interface switchport</td>
<td>Displays private VLAN configuration on interfaces.</td>
</tr>
<tr>
<td>show interface private-vlan mapping</td>
<td>Displays information about the private VLAN mapping for VLAN SVIs.</td>
</tr>
</tbody>
</table>

This is an example of the output from the `show vlan private-vlan` command:

```
Switch(config)# show vlan private-vlan
Primary Secondary Type          Ports
--- ---------------------------- ------------------------------------------
10    501  isolated            Fa2/0/1, Gi3/0/1, Gi3/0/2
10    502  community          Fa2/0/11, Gi3/0/1, Gi3/0/4
10    503  non-operational    
```
Configuring Cisco IP Phone Support

This chapter describes how to configure support for Cisco IP phones on the Cisco 7600 series routers.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:
- Understanding Cisco IP Phone Support, page 16-1
- Default Cisco IP Phone Support Configuration, page 16-4
- Cisco IP Phone Support Configuration Guidelines and Restrictions, page 16-4
- Configuring Cisco IP Phone Support, page 16-5

Understanding Cisco IP Phone Support

These sections describe Cisco IP phone support:
- Cisco IP Phone Connections, page 16-1
- Cisco IP Phone Voice Traffic, page 16-2
- Cisco IP Phone Data Traffic, page 16-3
- Cisco IP Phone Power Configurations, page 16-3

Cisco IP Phone Connections

The Cisco IP phone contains an integrated 3-port 10/100 switch. The ports are dedicated connections to these devices:
- Port 1 connects to the router.
- Port 2 is an internal 10/100 interface that carries the Cisco IP phone traffic.
- Port 3 connects to a PC or other device.

Figure 16-1 shows a Cisco IP phone connected between a router and a PC.
Cisco IP Phone Voice Traffic

The Cisco IP phone transmits voice traffic with Layer 3 IP precedence and Layer 2 CoS values, which are both set to 5 by default. The sound quality of a Cisco IP phone call can deteriorate if the voice traffic is transmitted unevenly. To provide more predictable voice traffic flow, you can configure QoS to trust the Layer 3 IP precedence or Layer 2 CoS value in the voice traffic (refer to Chapter 48, “Configuring PFC QoS”).

Note
You can configure the ports on WS-X6548-RJ-45 and WS-X6548-RJ-21 switching modules to trust received Layer 2 CoS values (QoS port architecture 1p1q0t/1p3q1t). The WS-X6548-RJ-45 and WS-X6548-RJ-21 switching modules cannot supply power to Cisco IP phones. Configure QoS policies that use the Layer 3 IP precedence value on other switching modules.

You can configure a Layer 2 access port with an attached Cisco IP phone to use one VLAN for voice traffic and another VLAN for data traffic from a device attached to the Cisco IP phone.

You can configure Layer 2 access ports on the router to send Cisco Discovery Protocol (CDP) packets that instruct an attached Cisco IP phone to transmit voice traffic to the router in any of the following ways:

• In the voice VLAN, tagged with a Layer 2 CoS priority value
• In the access VLAN, tagged with a Layer 2 CoS priority value
• In the access VLAN, untagged (no Layer 2 CoS priority value)

Note
In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5 for voice traffic and 3 for voice control traffic).

You cannot use Cisco IOS software commands to configure the frame type used by data traffic sent from a device attached to the access port on the Cisco IP phone.
Cisco IP Phone Data Traffic

Note Untagged traffic from the device attached to the Cisco IP phone passes through the Cisco IP phone unchanged, regardless of the trust state of the access port on the Cisco IP phone.

To process tagged data traffic (traffic in 802.1Q or 802.1p frame types) from the device attached to the access port on the Cisco IP phone (see Figure 16-1), you can configure Layer 2 access ports on the router to send CDP packets that instruct an attached Cisco IP phone to configure the access port on the Cisco IP phone to either of these two modes:

- Trusted mode—All traffic received through the access port on the Cisco IP phone passes through the Cisco IP phone unchanged.
- Untrusted mode—All traffic in 802.1Q or 802.1p frames received through the access port on the Cisco IP phone is marked with a configured Layer 2 CoS value. The default Layer 2 CoS value is 0. Untrusted mode is the default.

Cisco IP Phone Power Configurations

These sections describe Cisco IP phone power configurations:

- Locally Powered Cisco IP Phones, page 16-3
- Inline-Powered Cisco IP Phones, page 16-3

Locally Powered Cisco IP Phones

There are two varieties of local power:

- From a power supply connected to the Cisco IP phone
- From a power supply through a patch panel over the twisted-pair Ethernet cable to the Cisco IP phone

When a locally powered Cisco IP phone is present on a switching module port, the switching module cannot detect its presence. The supervisor engine discovers the Cisco IP phone through CDP messaging with the Cisco IP phone.

If a locally powered Cisco IP phone loses local power and the mode is set to **auto**, the switching module discovers the Cisco IP phone and informs the supervisor engine, which then supplies inline power to the Cisco IP phone.

Inline-Powered Cisco IP Phones

Inline power is from switching modules that support an inline power daughtercard. Inline power is sent over the twisted-pair Ethernet cable to the Cisco IP phone.

When a switching module port detects an unpowered Cisco IP phone, the switching module reports to the supervisor engine that an unpowered Cisco IP phone is present and on which module and port. If the port is configured in auto mode, the supervisor engine determines if there is enough system power available to power up the Cisco IP phone. If there is sufficient power available, the supervisor engine removes the default-allocated power required by a Cisco IP phone from the total available system power and sends a message to the switching module instructing it to provide power to the port. If there is not enough available power for the Cisco IP phone, the supervisor engine sends a message to the switching module indicating that power is denied to the port.

Cisco IP phones may have different power requirements. The supervisor engine initially allocates the configured default of 7 W (167 mA at 42 V) to the Cisco IP phone. When the correct amount of power is determined from the CDP messaging with the Cisco IP phone, the supervisor engine reduces or increases the allocated power.

For example, the default allocated power is 7 W. A Cisco IP phone requiring 6.3 W is plugged into a port. The supervisor engine allocates 7 W for the Cisco IP phone and powers it up. Once the Cisco IP phone is operational, it sends a CDP message with the actual power requirement to the supervisor engine. The supervisor engine then decreases the allocated power to the required amount.

When you power off the Cisco IP phone through the CLI or SNMP or remove it, the supervisor engine sends a message to the switching module to turn off the power on the port. That power is then returned to the available system power.

Caution

When a Cisco IP phone cable is plugged into a port and the power is turned on, the supervisor engine has a 4-second timeout waiting for the link to go up on the line. During those 4 seconds, if the Cisco IP phone cable is unplugged and a network device is plugged in, the network device could be damaged. We recommend that you wait at least 10 seconds between unplugging a network device and plugging in another network device.

Default Cisco IP Phone Support Configuration

Cisco IP phone support is disabled by default.

When the voice VLAN feature is enabled, all untagged traffic is sent with the default CoS priority of the port.

The CoS is not trusted for 802.1P or 802.1Q tagged traffic.

Cisco IP Phone Support Configuration Guidelines and Restrictions

The following guidelines and restrictions apply when configuring Cisco IP phone support:

- You must enable the Cisco Discovery Protocol (CDP) on the Cisco 7600 series router port connected to the Cisco IP phone to send configuration information to the Cisco IP phone.
- You can configure a voice VLAN only on a Layer 2 LAN port.
- You can configure the ports on WS-X6548-RJ-45 and WS-X6548-RJ-21 switching modules to trust received Layer 2 CoS values (QoS port architecture 1p1q0/1p3q1t). The WS-X6548-RJ-45 and WS-X6548-RJ-21 switching modules cannot supply power to Cisco IP phones.
• You cannot configure 10/100 Mbps ports with QoS port architecture 1p4t/2q2t to trust received Layer 2 CoS values. Configure policies to trust the Layer 3 IP precedence value on switching modules with QoS port architecture 1p4t/2q2t.

• The following conditions indicate that the Cisco IP phone and a device attached to the Cisco IP phone are in the same VLAN and must be in the same IP subnet:
 – If they both use 802.1p or untagged frames
 – If the Cisco IP phone uses 802.1p frames and the device uses untagged frames
 – If the Cisco IP phone uses untagged frames and the device uses 802.1p frames
 – If the Cisco IP phone uses 802.1Q frames and the voice VLAN is the same as the access VLAN

• The Cisco IP phone and a device attached to the Cisco IP phone cannot communicate if they are in the same VLAN and subnet but use different frame types, because traffic between devices in the same subnet is not routed (routing would eliminate the frame type difference).

• You cannot use Cisco IOS software commands to configure the frame type used by traffic sent from a device attached to the access port on the Cisco IP phone.

• If you enable port security on a port configured with a voice VLAN and if there is a PC connected to the Cisco IP phone, set the maximum allowed secure addresses on the port to at least 3.

• You cannot configure static secure MAC addresses in the voice VLAN.

• Ports configured with a voice VLAN can be secure ports (see Chapter 54, “Configuring Port Security”).

• In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5 for voice traffic and 3 for voice control traffic).

Configuring Cisco IP Phone Support

These sections describe how to configure Cisco IP phone support:

- Configuring Voice Traffic Support, page 16-5
- Configuring Data Traffic Support, page 16-7
- Configuring Inline Power Support, page 16-8

Configuring Voice Traffic Support

To configure the way in which the Cisco IP phone transmits voice traffic, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface fastethernet slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# switchport voice vlan {voice_vlan_ID</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport voice vlan</td>
</tr>
</tbody>
</table>
When configuring the way in which the Cisco IP phone transmits voice traffic, note the following information:

- Enter a voice VLAN ID to send CDP packets that configure the Cisco IP phone to transmit voice traffic in 802.1Q frames, tagged with the voice VLAN ID and a Layer 2 CoS value (the default is 5). Valid VLAN IDs are from 1 to 4094. The router puts the 802.1Q voice traffic into the voice VLAN.

- Enter the `dot1p` keyword to send CDP packets that configure the Cisco IP phone to transmit voice traffic in 802.1p frames, tagged with VLAN ID 0 and a Layer 2 CoS value (the default is 5 for voice traffic and 3 for voice control traffic). The router puts the 802.1p voice traffic into the access VLAN.

- Enter the `untagged` keyword to send CDP packets that configure the Cisco IP phone to transmit untagged voice traffic. The router puts the untagged voice traffic into the access VLAN.

- Enter the `none` keyword to allow the Cisco IP phone to use its own configuration and transmit untagged voice traffic. The router puts the untagged voice traffic into the access VLAN.

- In all configurations, the voice traffic carries a Layer 3 IP precedence value (the default is 5).

- Refer to Chapter 48, “Configuring PFC QoS,” for information about how to configure QoS.

- Refer to the “Configuring a LAN Interface as a Layer 2 Access Port” section on page 10-13 for information about how to configure the port as a Layer 2 access port and configure the access VLAN.

This example shows how to configure Fast Ethernet port 5/1 to send CDP packets that tell the Cisco IP phone to use VLAN 101 as the voice VLAN:

```
Router# configure terminal
Router(config)# interface fastethernet 5/1
Router(config-if)# switchport voice vlan 101
Router(config-if)# exit
```

This example shows how to verify the configuration of Fast Ethernet port 5/1:

```
Router# show interfaces fastethernet 5/1 switchport
Name: Fa5/1
Switchport: Enabled
Administrative Mode: access
Operational Mode: access
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: off
Access Mode VLAN: 100
Voice VLAN: 101
Trunking Native Mode VLAN: 1 (default)
Administrative private-vlan host-association: none
Administrative private-vlan mapping: 900 ((Inactive)) 901 ((Inactive))
Operational private-vlan: none
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
_capture_mode: Disabled
Capture VLANs Allowed: ALL
```
Configuring Data Traffic Support

To configure the way in which the Cisco IP phone transmits data traffic, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface fastethernet slot/port Selects the port to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mls qos trust extend Configures the way in which the Cisco IP phone transmits data traffic.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls qos trust extend Clears the configuration.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# end Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show interfaces fastethernet slot/port switchport Verifies the configuration.</td>
</tr>
<tr>
<td></td>
<td>Router# show running-config interface fastethernet slot/port</td>
</tr>
</tbody>
</table>

When configuring the way in which the Cisco IP phone transmits data traffic, note the following information:

- To send CDP packets that configure the Cisco IP phone to trust tagged traffic received from a device connected to the access port on the Cisco IP phone, do not enter the cos keyword and CoS value.
- To send CDP packets that configure the Cisco IP phone to mark tagged ingress traffic received from a device connected to the access port on the Cisco IP phone, enter the cos keyword and CoS value (valid values are 0 through 7).
- You cannot use Cisco IOS software commands to configure whether or not traffic sent from a device attached to the access port on the Cisco IP phone is tagged.

This example shows how to configure Fast Ethernet port 5/1 to send CDP packets that tell the Cisco IP phone to configure its access port as untrusted and to mark all tagged traffic received from a device connected to the access port on the Cisco IP phone with CoS 3:

```
Router# configure terminal
Router(config)# interface fastethernet 5/1
Router(config-if)# mls qos trust extend cos 3
```

This example shows how to configure Fast Ethernet port 5/1 to send CDP packets that tell the Cisco IP phone to configure its access port as trusted:

```
Router# configure terminal
Router(config)# interface fastethernet 5/1
Router(config-if)# mls qos trust extend
```

This example shows how to verify the configuration on Fast Ethernet port 5/1:

```
Router# show queueing interface fastethernet 5/1 | include Extend
Extend trust state: trusted
```
Configuring Inline Power Support

To configure inline power support, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface fastethernet slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# power inline {auto</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no power inline</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show power inline [fastethernet slot/port]</td>
</tr>
</tbody>
</table>

When configuring inline power support, note the following information:

- To configure auto-detection of a Cisco IP phone, enter the auto keyword.
- To disable auto-detection of a Cisco IP phone, enter the never keyword.

This example shows how to disable inline power on Fast Ethernet port 5/1:

Router# configure terminal
Router(config)# interface fastethernet 5/1
Router(config-if)# power inline never

This example shows how to enable inline power on Fast Ethernet port 5/1:

Router# configure terminal
Router(config)# interface fastethernet 5/1
Router(config-if)# power inline auto

This example shows how to verify the inline power configuration on Fast Ethernet port 5/1:

```
Router# show power inline fastethernet 5/1
Interface Admin Oper Power Device
--- ----- ------ --------
Fa5/1 auto on 6.3 cisco phone device
```
CHAPTER 17

Configuring IEEE 802.1Q Tunneling

This chapter describes how to configure IEEE 802.1Q tunneling on the Cisco 7600 series routers.

Note

- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter contains these sections:

- Understanding How 802.1Q Tunneling Works, page 17-1
- 802.1Q Tunneling Configuration Guidelines and Restrictions, page 17-4
- Configuring 802.1Q Tunneling, page 17-6
- IEEE 802.1ab LLDP, page 17-7

Understanding How 802.1Q Tunneling Works

802.1Q tunneling enables service providers to use a single VLAN to support customers who have multiple VLANs, while preserving customer VLAN IDs and keeping traffic in different customer VLANs segregated.

A port configured to support 802.1Q tunneling is called a tunnel port. When you configure tunneling, you assign a tunnel port to a VLAN that you dedicate to tunneling, which then becomes a tunnel VLAN. To keep customer traffic segregated, each customer requires a separate tunnel VLAN, but that one tunnel VLAN supports all of the customer’s VLANs.

802.1Q tunneling is not restricted to point-to-point tunnel configurations. Any tunnel port in a tunnel VLAN is a tunnel entry and exit point. An 802.1Q tunnel can have as many tunnel ports as are needed to connect customer routers.

The customer routers are trunk connected, but with 802.1Q tunneling, the service provider routers only use one service provider VLAN to carry all the customer VLANs, instead of directly carrying all the customer VLANs.
With 802.1Q tunneling, tagged customer traffic comes from an 802.1Q trunk port on a customer device and enters the service-provider edge router through a tunnel port. The link between the 802.1Q trunk port on a customer device and the tunnel port is called an asymmetrical link because one end is configured as an 802.1Q trunk port and the other end is configured as a tunnel port. You assign the tunnel port to an access VLAN ID unique to each customer. See Figure 17-1 on page 17-2 and Figure 17-2 on page 17-3.

Figure 17-1 IEEE 802.1Q Tunnel Ports in a Service-Provider Network
When a tunnel port receives tagged customer traffic from an 802.1Q trunk port, it does not strip the received 802.1Q tag from the frame header; instead, the tunnel port leaves the 802.1Q tag intact, adds a 2-byte Ethertype field (0x8100) followed by a 2-byte field containing the priority (CoS) and the VLAN. The received customer traffic is then put into the VLAN to which the tunnel port is assigned. This Ethertype 0x8100 traffic, with the received 802.1Q tag intact, is called tunnel traffic.

A VLAN carrying tunnel traffic is an 802.1Q tunnel. The tunnel ports in the VLAN are the tunnel’s ingress and egress points.

The tunnel ports do not have to be on the same network device. The tunnel can cross other network links and other network devices before reaching the egress tunnel port. A tunnel can have as many tunnel ports as required to support the customer devices that need to communicate through the tunnel.

An egress tunnel port strips the 2-byte Ethertype field (0x8100) and the 2-byte length field and transmits the traffic with the 802.1Q tag still intact to an 802.1Q trunk port on a customer device. The 802.1Q trunk port on the customer device strips the 802.1Q tag and puts the traffic into the appropriate customer VLAN.

Note

Tunnel traffic carries a second 802.1Q tag only when it is on a trunk link between service-provider network devices, with the outer tag containing the service-provider-assigned VLAN ID and the inner tag containing the customer-assigned VLAN IDs.
802.1Q Tunneling Configuration Guidelines and Restrictions

When configuring 802.1Q tunneling in your network, follow these guidelines and restrictions:

- Use asymmetrical links to put traffic into a tunnel or to remove traffic from a tunnel.
- Configure tunnel ports only to form an asymmetrical link.
- Dedicate one VLAN for each tunnel.
- Assign only tunnel ports to VLANs used for tunneling.
- Trunks require no special configuration to carry tunnel VLANs.
- Tunnel ports are not trunks. Any commands to configure trunking are inactive while the port is configured as a tunnel port.
- Tunnel ports learn customer MAC addresses.
- We recommend that you use ISL trunks to carry tunnel traffic between devices that do not have tunnel ports. Because of the 802.1Q native VLAN feature, using 802.1Q trunks requires that you be very careful when you configure tunneling: a mistake might direct tunnel traffic to a non-tunnel port.
- Ensure that the native VLAN of the 802.1Q trunk port in an asymmetrical link carries no traffic. Because traffic in the native VLAN is untagged, it cannot be tunneled correctly. Alternatively, you can enter the global \texttt{vlan dot1q tag native} command to tag native VLAN egress traffic and drop untagged native VLAN ingress traffic.
- Configure jumbo frame support on tunnel ports:
 - See the “Configuring Jumbo Frame Support” section on page 8-8.
 - Take note of the modules listed in the “Configuring Jumbo Frame Support” section that do not support jumbo frames.
- Jumbo frames can be tunneled as long as the jumbo frame length combined with the 802.1Q tag does not exceed the maximum frame size.
- Because tunnel traffic has the added ethertype and length field and retains the 802.1Q tag within the router, the following restrictions exist:
 - The Layer 3 packet within the Layer 2 frame cannot be identified in tunnel traffic.
 - Layer 3 and higher parameters cannot be identified in tunnel traffic (for example, Layer 3 destination and source addresses).
 - Because the Layer 3 addresses cannot be identified within the packet, tunnel traffic cannot be routed.
 - The router can provide only MAC-layer filtering for tunnel traffic (VLAN IDs and source and destination MAC addresses).
 - The router can provide only MAC-layer access control and QoS for tunnel traffic.
 - QoS cannot detect the received CoS value in the 802.1Q 2-byte Tag Control Information field.
- On an asymmetrical link, the Cisco Discovery Protocol (CDP) reports a native VLAN mismatch if the VLAN of the tunnel port does not match the native VLAN of the 802.1Q trunk. The 802.1Q tunnel feature does not require that the VLANs match. Ignore the messages if your configuration requires nonmatching VLANs.
- Asymmetrical links do not support the Dynamic Trunking Protocol (DTP) because only one port on the link is a trunk. Configure the 802.1Q trunk port on an asymmetrical link to trunk unconditionally.
• The 802.1Q tunneling feature cannot be configured on ports configured to support private VLANs.
• The following Layer 2 protocols work between devices connected by an asymmetrical link:
 – CDP
 – UniDirectional Link Detection (UDLD)
 – Port Aggregation Protocol (PAgP)
 – Link Aggregation Control Protocol (LACP)
• PortFast BPDU filtering is enabled automatically on tunnel ports.
• CDP is automatically disabled on tunnel ports.
• VLAN Trunk Protocol (VTP) does not work between the following devices:
 – Devices connected by an asymmetrical link
 – Devices communicating through a tunnel

Note VTP works between tunneled devices if Layer 2 protocol tunneling is enabled. See Chapter 18, “Configuring Layer 2 Protocol Tunneling,” for configuration details.

• To configure an EtherChannel as an asymmetrical link, all ports in the EtherChannel must have the same tunneling configuration. Because the Layer 3 packet within the Layer 2 frame cannot be identified, you must configure the EtherChannel to use MAC-address-based frame distribution.

The following configuration guidelines are **required** for your Layer 2 protocol tunneling configuration:

• On all the service provider edge routers, PortFast BPDU filtering must be enabled on the 802.1Q tunnel ports as follows:

  ```
  Router(config-if)# spanning-tree bpdufilter enable
  Router(config-if)# spanning-tree portfast
  ```

Note PortFast BPDU filtering is enabled automatically on tunnel ports.

• At least one VLAN must be available for Native VLAN tagging (**vlan dot1q tag native** option). If you use all the available VLANs and then try to enable the **vlan dot1q tag native** option, the option will not be enabled.

• On all the service provider core routers, tag native VLAN egress traffic and drop untagged native VLAN ingress traffic by entering the following command:

  ```
  Router(config)# vlan dot1q tag native
  ```

• On all the customer routers, **either** enable or disable the global **vlan dot1q tag native** option.

Note If this option is enabled on one router and disabled on another router, all traffic is dropped; all customer routers must have this option configured the same on each router.

The following configuration guidelines are **optional** for your Layer 2 protocol tunneling configuration:

• Because all the BPDUs are being dropped, spanning tree PortFast can be enabled on Layer 2 protocol tunnel ports as follows:

  ```
  Router(config-if)# spanning-tree portfast trunk
  ```
If the service provider does not want the customer to see its routers, CDP should be disabled on the 802.1Q tunnel port as follows:

Router(config-if)# no cdp enable

Configuring 802.1Q Tunneling

These sections describe 802.1Q tunneling configuration:

- Configuring 802.1Q Tunnel Ports, page 17-6
- Configuring the Router to Tag Native VLAN Traffic, page 17-7

⚠️ **Caution**

Ensure that only the appropriate tunnel ports are in any VLAN used for tunneling and that one VLAN is used for each tunnel. Incorrect assignment of tunnel ports to VLANs can forward traffic inappropriately.

Configuring 802.1Q Tunnel Ports

To configure 802.1Q tunneling on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type^ slot/port</td>
</tr>
</tbody>
</table>
| Step 2 | Router(config-if)# switchport | Configures the LAN port for Layer 2 switching:
• You must enter the `switchport` command once without any keywords to configure the LAN port as a Layer 2 interface before you can enter additional `switchport` commands with keywords.
• Required only if you have not entered the `switchport` command already for the interface. |
| Step 3 | Router(config-if)# switchport mode dot1q-tunnel
Router(config-if)# no switchport mode dot1q-tunnel | Configures the Layer 2 port as a tunnel port.
Clears the tunnel port configuration. |
| Step 4 | Router(config-if)# end | Exits configuration mode. |
| Step 5 | Router# show dot1q-tunnel [{interface type interface-number}] | Verifies the configuration. |

1. `type` = `ethernet`, `fastethernet`, `gigabitethernet`, or `tengigabitethernet`

This example shows how to configure tunneling on port 4/1 and verify the configuration:

```
Router# configure terminal
Router(config)# interface fastethernet 4/1
Router(config-if)# switchport mode dot1q-tunnel
Router(config-if)# end
Router# show dot1q-tunnel interface
```
Configuring the Router to Tag Native VLAN Traffic

The `vlan dot1q tag native` command is a global command that configures the router to tag native VLAN traffic, and admit only 802.1Q tagged frames on 802.1Q trunks, dropping any untagged traffic, including untagged traffic in the native VLAN.

Note

Starting from Release 15.1(2)S, if the native VLAN tagging is enabled globally using the `vlan dot1q tag native` command, or locally on the port using the `switchport trunk native vlan` command, then the UDLD packets are sent with VLAN 1 from L2 ports.

To configure the router to tag traffic in the native VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# <code>vlan dot1q tag native</code> Configures the router to tag native VLAN traffic.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# <code>no vlan dot1q tag native</code> Clears the configuration.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# <code>end</code> Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# <code>show vlan dot1q tag native</code> Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the router to tag native VLAN traffic and verify the configuration:

```
Router# configure terminal
Router(config)# `vlan dot1q tag native`
Router(config)# `end`
Router# `show vlan dot1q tag native`
```

IEEE 802.1ab LLDP

The following sections describe the IEEE 802.1ab Link Layer Discovery Protocol (LLDP) function.

- Understanding LLDP, page 17-7
- Restrictions, page 17-9
- Default LLDP Configuration, page 17-9
- Configuring LLDP on the Cisco 7600 series router, page 17-9
- Troubleshooting Tips, page 17-16

Understanding LLDP

The Cisco Discovery Protocol (CDP) is a layer 2 device discovery protocol (the data link layer) on all Cisco-manufactured devices (routers, bridges, access servers, and switches). CDP allows network management applications to automatically discover other Cisco devices connected to the network.

For more information on CDP commands, see the Cisco IOS Configuration Fundamentals Command Reference Guide at the following location:

CDP is mostly used for topology discovery. A non-Cisco device cannot interact with a Cisco device using CDP. To support non-Cisco devices and to allow interoperability between other devices, the IEEE 802.1AB LLDP is used.

These are some LLDP features:

- The protocol allows two systems (running different network layer protocols) to learn about each other.
- LLDP is an optional element of a protocol stack in the 802 LAN station.
- LLDP uses the logical link control (LLC) services to transmit and receive information to and from other LLDP agents. LLC provides a Link Service Access Point (LSAP) for access to LLDP. Each LLDP frame is transmitted as a single MAC Service request. Each incoming LLDP frame is received at the MAC Service Access Point (MSAP) by the LLC entity as a MAC service indication.

Figure 17-3 shows a high-level view of LLDP operating in a network.

Figure 17-3 LLDP Block Diagram

The LLDP protocol operates through the LLDP Agent. The tasks of the LLDP agent are to:

- Collect information from the LLDP local system MIB and transmit it periodically.
- Receive LLDP frames from neighbors and populate LLDP remote devices MIB and other optional MIBs.

LLDP supports a set of attributes used to find the neighbor devices. These attributes are type, length, and value descriptions of devices, and are referred to as Type Length Value (TLV). LLDP supported devices use TLVs to receive and send information to their neighbors. Details such as configuration information, device capabilities, and device identity are also advertised using this protocol.

The mandatory LLDP TLVs are:

- Port description
- System name
- System description
- System capabilities
- Management address
Restrictions

The following restrictions apply to LLDP:

- The memory available on a given end network device dictates the number of neighbor entries recorded. However, under most operating conditions, end devices such as printers, IP phones, workstations and so on, are typically operated in the receive mode only.

- If objects from the Entity MIB are used for LLDP broadcast, such as to create a sender ID, these MIBs should be available before LLDP can function correctly.

Default LLDP Configuration

Table 17-1 shows the default LLDP configuration.

Table 17-1 Default LLDP Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLDP global state</td>
<td>Disabled</td>
</tr>
<tr>
<td>LLDP holdtime (before discarding)</td>
<td>120 seconds</td>
</tr>
<tr>
<td>LLDP timer (packet update frequency)</td>
<td>30 seconds</td>
</tr>
<tr>
<td>LLDP reinitialization delay</td>
<td>2 seconds</td>
</tr>
<tr>
<td>LLDP tlv-select</td>
<td>Enabled to send and receive all TLVs.</td>
</tr>
<tr>
<td>LLDP interface state</td>
<td>Enabled</td>
</tr>
<tr>
<td>LLDP receive</td>
<td>Enabled</td>
</tr>
<tr>
<td>LLDP transmit</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

Configuring LLDP on the Cisco 7600 series router

The following sections describe how to configure LLDP on the c7600 platform:

- Configuring LLDP, page 17-9
- Monitoring and Maintaining LLDP, page 17-12
- Verifying the Configuration, page 17-13

Configuring LLDP

Complete the following steps to configure LLDP.

SUMMARY STEPS

Step 1 enable
Step 2 configure terminal
Step 3 lldp { run | holdtime seconds | reinit | timer rate | tlv-select }
Step 4 end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 17 Configuring IEEE 802.1Q Tunneling

IEEE 802.1ab LLDP

Configuration Examples

Step 3

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>lldp run</td>
<td>Enables LLDP globally on all the interfaces on the router.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# lldp run</code></td>
<td>Specifies the hold time. The value ranges from 0 to 65535 seconds. The default value is 120 seconds.</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>lldp holdtime seconds</td>
<td>Specifies the delay time in seconds for LLDP to initialize on any interface. The value ranges from 2 to 5 seconds. The default value is 2 seconds.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# lldp holdtime 100</code></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>lldp reinit</td>
<td>Specifies the rate at which LLDP packets are sent. The value ranges from 5 to 65534 seconds. The default value is 30 seconds.</td>
</tr>
<tr>
<td>Step 4</td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# lldp reinit 2</code></td>
<td></td>
</tr>
</tbody>
</table>

Step 4

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Command or Action
Enables LLDP globally on all the interfaces on the router.
Example:
`Router(config)# lldp run`
Purpose:
Specifies the hold time. The value ranges from 0 to 65535 seconds. The default value is 120 seconds.
Example:
`Router(config)# lldp holdtime 100`
Purpose:
Specifies the delay time in seconds for LLDP to initialize on any interface. The value ranges from 2 to 5 seconds. The default value is 2 seconds.
Example:
`Router(config)# lldp reinit 2`
Purpose:
Specifies the rate at which LLDP packets are sent. The value ranges from 5 to 65534 seconds. The default value is 30 seconds.
Example:
`Router(config-if)# lldp reinit 2`
Purpose:
Returns the CLI to privileged EXEC mode.
Example:
`Router(config-if)# end`
Purpose:
Enables a specific LLDP TLV on a supported interface,
- **management-address:** Specifies the management address TLV
- **port-description:** Specifies the port description TLV
- **system-capabilities:** Specifies the system capabilities TLV
- **system-description:** Specifies the system description TLV
- **system-name:** Specifies the system name TLV

Configuration Examples

This is an example to enable LLDP globally.
```
Router> enable
Router# configure terminal
Router(config)# lldp run
Router(config)# end
```

This is an example to define a hold time for an LLDP-enabled device.
```
Router> enable
Router# configure terminal
```
IEEE 802.1ab LLDP

Router(config)# lldp holdtime 100
Router(config)# end

This is an example to specify the delay time in seconds for LLDP to initialize:
Router> enable
Router# configure terminal
Router(config)# lldp reinit 2
Router(config)# end

This is an example to specify an interval at which the Cisco IOS software sends LLDP updates to the neighboring devices.
Router> enable
Router# configure terminal
Router(config)# lldp timer 75
Router(config)# end

This is an example to enable an LLDP TLV on a supported interface:
Router> enable
Router# configure terminal
Router(config)# interface ethernet 0/1
Router(config-if)# lldp tlv-select system-description
Router(config-if)# end

Monitoring and Maintaining LLDP

Complete the following steps to monitor and maintain LLDP.

SUMMARY STEPS

Step 1 enable
Step 2 show lldp [entry [* | word] | errors | interface [ethernet number] | neighbors [ethernet number | detail] | traffic]
Step 3 clear lldp [counters | table]
Step 4 end
Chapter 17 Configuring IEEE 802.1Q Tunneling

IEEE 802.1ab LLDP

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
</tbody>
</table>

Example:
Router> enable

<table>
<thead>
<tr>
<th>Step 2 show lldp [entry {*}</th>
<th>errors</th>
<th>interface [ethernet number]</th>
<th>neighbors [ethernet number]</th>
<th>detail]</th>
<th>traffic]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays LLDP information.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• entry: Specifies the information for specific neighbor entry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• errors: Specifies the LLDP computational errors and overflows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• interface: Specifies the LLDP interface status and configuration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• neighbors: Specifies the LLDP neighbor entries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• traffic: Specifies the LLDP statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>l: Specifies the output modifiers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note When you use the `show lldp neighbors` command, and if the device ID has more than 20 characters, the ID is truncated to 20 characters in command output because of display constraints.

<table>
<thead>
<tr>
<th>Step 3 clear lldp {counters</th>
<th>table}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resets LLDP traffic counters and tables to zero.</td>
<td></td>
</tr>
</tbody>
</table>

Example:
Router# clear lldp counters

<table>
<thead>
<tr>
<th>Step 4 end</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns the CLI to user EXEC mode.</td>
</tr>
</tbody>
</table>

Example:
Router# end

Configuration Examples

This is an example to monitor and maintain LLDP:

Router> enable
Router# show lldp entry *
Router# clear lldp counters
Router# end

Verifying the Configuration

This section provides the commands to verify the configuration of LLDP on the Cisco 7600 series router:

Router# show lldp ?
entry Information for specific neighbor entry
errors LLDP computational errors and overflows
interface LLDP interface status and configuration
neighbors LLDP neighbor entries
traffic LLDP statistics
| Output modifiers
Router# `show lldp entry *`

Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other

--
Chassis id: 001b.0de4.9040
Port id: Te5/4
Port Description: TenGigabitEthernet5/4
System Name: RSP

System Description:
Cisco IOS Software, rsp72043_rp Software (rsp72043_rp-ADVENTERPRISEK9_DBG-M),
Experimental Version 15.1(20101020:182513) [mcp_dev-kalnaray-lldp-mcp-lds 202]
Copyright (c) 1986-2010 by Cisco Systems, Inc.
Compiled Sun 24-Oct-10 23:59 by kalnaray

Time remaining: 113 seconds
System Capabilities: B,R
Enabled Capabilities: R
Management Addresses:
 IP: 182.0.0.1
Auto Negotiation - not supported
Physical media capabilities - not advertised
Media Attachment Unit type - not advertised
Vlan ID: - not advertised
Total entries displayed: 1

Router# `show lldp errors`

LLDP errors/overflows:
 Total memory allocation failures: 0
 Total encapsulation failures: 0
 Total input queue overflows: 0
 Total table overflows: 0

Router# `show lldp interface`

TenGigabitEthernet1/1:
 Tx: enabled
 Rx: enabled
 Tx state: IDLE
 Rx state: WAIT FOR FRAME

TenGigabitEthernet1/2:
 Tx: enabled
 Rx: enabled
 Tx state: INIT
 Rx state: WAIT PORT OPER

TenGigabitEthernet1/3:
 Tx: enabled
 Rx: enabled
 Tx state: INIT
 Rx state: WAIT PORT OPER

TenGigabitEthernet1/4:
 Tx: enabled
 Rx: enabled
 Tx state: INIT
 Rx state: WAIT PORT OPER
GigabitEthernet5/1:
 Tx: enabled
 Rx: enabled
 Tx state: INIT
 Rx state: WAIT PORT OPER

GigabitEthernet5/2:
 Tx: enabled
 Rx: enabled
 Tx state: INIT
 Rx state: WAIT PORT OPER

Control Plane:
 Tx: enabled
 Rx: enabled
 Tx state: INIT
 Rx state: WAIT PORT OPER

Router# show lldp neighbors
Capability codes:
 (R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device
 (W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other

<table>
<thead>
<tr>
<th>Device ID</th>
<th>Local Intf</th>
<th>Hold-time</th>
<th>Capability</th>
<th>Port ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSP</td>
<td>Te1/1</td>
<td>120</td>
<td>R</td>
<td>Te5/4</td>
</tr>
</tbody>
</table>

Total entries displayed: 1

Router# show lldp traffic
LLDP traffic statistics:
 Total frames out: 8
 Total entries aged: 0
 Total frames in: 4
 Total frames received in error: 0
 Total frames discarded: 0
 Total TLVs discarded: 0
 Total TLVs unrecognized: 0

Router# clear lldp?
counters Clear LLDP counters
table Clear lldp table

Router# show lldp
Global LLDP Information:
 Status: ACTIVE
 LLDP advertisements are sent every 30 seconds
 LLDP hold time advertised is 120 seconds
 LLDP interface reinitialisation delay is 2 seconds
Troubleshooting Tips

<table>
<thead>
<tr>
<th>Scenarios/Problems</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>How do I collect debugging information on LLDP errors?</td>
<td>Use the <code>debug lldp errors</code> command. This is a sample output:</td>
</tr>
<tr>
<td></td>
<td><code>Router# debug lldp errors</code></td>
</tr>
<tr>
<td></td>
<td>LLDP errors debugging is on</td>
</tr>
<tr>
<td>How do I collect details on all events occurring on</td>
<td>Use the <code>debug lldp events</code> command. This is a sample output:</td>
</tr>
<tr>
<td>LLDP?</td>
<td><code>Router# debug lldp events</code></td>
</tr>
<tr>
<td></td>
<td>LLDP events debugging is on</td>
</tr>
<tr>
<td>How do I collect packet-related debugging information</td>
<td>Use the <code>debug lldp packet</code> command. This is a sample output:</td>
</tr>
<tr>
<td>on an LLDP?</td>
<td><code>Router# debug lldp packet</code></td>
</tr>
<tr>
<td></td>
<td>LLDP packet info debugging is on</td>
</tr>
<tr>
<td>How do I collect debugging information on state change,</td>
<td>Use the <code>debug lldp state</code> command. This is a sample output:</td>
</tr>
<tr>
<td>when there is a switchover?</td>
<td><code>Router# debug lldp state</code></td>
</tr>
<tr>
<td></td>
<td>LLDP state debugging is on</td>
</tr>
<tr>
<td>How do I verify the debug commands for LLDP configuration?</td>
<td>Use the <code>show debugging</code> command. This is a sample output:</td>
</tr>
<tr>
<td></td>
<td><code>Router# show debugging</code></td>
</tr>
<tr>
<td></td>
<td>LLDP:</td>
</tr>
<tr>
<td></td>
<td>LLDP packet info debugging is on</td>
</tr>
<tr>
<td></td>
<td>LLDP events debugging is on</td>
</tr>
<tr>
<td></td>
<td>LLDP errors debugging is on</td>
</tr>
<tr>
<td></td>
<td>LLDP states debugging is on</td>
</tr>
</tbody>
</table>
Configuring Layer 2 Protocol Tunneling

This chapter describes how to configure Layer 2 protocol tunneling on the Cisco 7600 series routers.

Understanding How Layer 2 Protocol Tunneling Works

Layer 2 protocol tunneling allows Layer 2 protocol data units (PDUs) (CDP, STP, and VTP) to be tunneled through a network. This section uses the following terminology:

- **Edge router**—The router connected to the customer router and placed on the boundary of the service provider network (see Figure 18-1).
- **Layer 2 protocol tunnel port**—A port on the edge router on which a specific tunneled protocol can be encapsulated or deencapsulated. The Layer 2 protocol tunnel port is configured through CLI commands.
- **Tunneled PDU**—A CDP, STP, or VTP PDU.

Without Layer 2 protocol tunneling, tunnel ports drop STP and VTP packets and process CDP packets. This handling of the PDUs creates different spanning tree domains (different spanning tree roots) for the customer switches. For example, STP for a VLAN on router 1 (see Figure 18-1) builds a spanning tree topology on switches 1, 2, and 3 without considering convergence parameters based on switches 4 and 5. To provide a single spanning tree domain for the customer, a generic scheme to tunnel BPDUs was created for control protocol PDUs (CDP, STP, and VTP). This process is referred to as Generic Bridge PDU Tunneling (GBPT).
GBPT provides a scalable approach to PDU tunneling by software encapsulating the PDUs in the ingress edge switches and then multicasting them in hardware. All switches inside the service provider network treat these encapsulated frames as data packets and forward them to the other end. The egress edge router listens for these special encapsulated frames and deencapsulates them; they are then forwarded out of the tunnel.

The encapsulation involves rewriting the destination media access control (MAC) address in the PDU. An ingress edge router rewrites the destination MAC address of the PDUs received on a Layer 2 tunnel port with the Cisco proprietary multicast address (01-00-0c-cd-cd-d0). The PDU is then flooded to the native VLAN of the Layer 2 tunnel port. If you enable Layer 2 protocol tunneling on a port, PDUs of an enabled protocol are not sent out. If you disable Layer 2 protocol tunneling on a port, the disabled protocols function the same way they were functioning before Layer 2 protocol tunneling was disabled on the port.

Configuring Support for Layer 2 Protocol Tunneling

Note

- Encapsulated PDUs received by an 802.1Q tunnel port are transmitted from other tunnel ports in the same VLAN on the router.
- Configure jumbo frame support on Layer 2 protocol tunneling ports:
 - See the “Configuring Jumbo Frame Support” section on page 8-8.
 - Take note of the modules listed in the “Configuring Jumbo Frame Support” section that do not support jumbo frames.
To configure Layer 2 protocol tunneling on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# switchport</td>
</tr>
<tr>
<td></td>
<td>Configures the LAN port for Layer 2 switching:</td>
</tr>
<tr>
<td></td>
<td>• You must enter the switchport command once without any keywords to configure the LAN port as a Layer 2 interface before you can enter additional switchport commands with keywords.</td>
</tr>
<tr>
<td></td>
<td>• Required only if you have not entered the switchport command already for the interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# l2protocol-tunnel [cdp</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no l2protocol-tunnel [cdp</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# show l2protocol-tunnel [interface type slot/port[summary]</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

When you configure a Layer 2 port as a Layer 2 protocol tunnel port, note the following information:

• Optionally, you may specify a drop threshold for the port. The drop threshold value, from 1 to 4096, determines the number of packets to be processed for that protocol on that interface in one second. When the drop threshold is exceeded, PDUs for the specified protocol are dropped for the remainder of the 1-second period. If a shutdown threshold is not specified, the value is 0 (shutdown threshold disabled).

• Optionally, you may specify a shutdown threshold for the port. The shutdown threshold value, from 1 to 4096, determines the number of packets to be processed for that protocol on that interface in one second. When the shutdown threshold is exceeded, the port is put in errdisable state. If a shutdown threshold is not specified, the value is 0 (shutdown threshold disabled).

Refer to the Cisco 7600 Series Router Cisco IOS Command Reference for more information about the l2ptguard keyword for the following commands:

• errdisable detect cause

• errdisable recovery cause

This example shows how to configure Layer 2 protocol tunneling and shutdown thresholds on port 5/1 for CDP, STP, and VTP, and verify the configuration:

Router# configure terminal
Router(config)# interface fastethernet 5/1
Router(config-if)# switchport
Router(config-if)# l2protocol-tunnel shutdown-threshold cdp 10
Router(config-if)# l2protocol-tunnel shutdown-threshold stp 10
Router(config-if)# l2protocol-tunnel shutdown-threshold vtp 10
Router(config-if)# end
Router# show l2protocol-tunnel summary
Layer 2 Protocol Tunneling on EVC

Effective with Cisco IOS Release 15.3(1)S, the layer 2 protocol tunneling is supported on EVC. L2PT on EVC allows layer 2 PDUs (CDP, STP, and VTP) to be tunneled through an EVC. An ingress edge router rewrites the destination MAC address of the PDUs received on a layer 2 tunnel EVC with the Cisco proprietary multicast address (01-00-0c-cd-cd-d0). The PDU is then flooded to the bridge-domain VLAN of the layer 2 tunnel EVC port.

Restrictions for Layer 2 Protocol Tunneling on EVC

Following restrictions apply:

- Cisco IOS Release 15.3(1)S supports EVC on physical interfaces. Support on port-channel EVC will be introduced in the release 15.1(3)S1.
- Supports only CDP, VTP, MST (STP). Tagged protocols such as PVST and RPVST are not supported.
- Supported only on ES+ line cards.
- Only one customer per port is supported. This is because CDP, STP, and VTP are untagged, and it is not possible to distinguish packets from different customers.
- You can tunnel 1000 BPDUs per second without severely impacting the router performance.
• Configuration is allowed only on bridge domain.
• Configuration is allowed only on encapsulation default or encapsulation untagged.
• When `l2protocol tunnel` or `l2protocol tunnel stp` is configured, all the variants of STP BPDUs that ingress on the interface which has this service instance configured will be tunneled. Therefore, any features that rely on these BPDUs ingressing on this interface will not function. For instance, MST will not function for the service instances on this interface.
• You can specify (optional) a drop threshold globally using the `l2protocol-tunnel global drop-threshold pps` command. The drop threshold value (100-20000) determines the number of packets that should be processed for all the protocols configured on the switch. When the drop threshold exceeds, the PDUs for the protocols are dropped. This command impacts all the L2PT configurations on switch ports and EVC ports.

Note
When the Layer 2 protocol tunneling EVC receives an encapsulated packet, it goes to error-disabled state and remains in that state. You should either manually enable the EVC or configure automatic recovery to bring the EVC status up. You can configure the automatic recovery timer using `errdisable recovery cause l2proto-tunnel time_value` command to automatically bring the EVC service instance status to up once the timer expires.

Configuring Layer 2 Protocol Tunneling on EVC

Complete these steps to configure L2PT on EVC:

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface gigabitethernet slot/port` or `interface tengigabitethernet slot/port`
4. `no ip address`
5. `service instance id {ethernet [service-name]}`
6. `encapsulation default`
 or `encapsulation untagged`
7. `l2protocol tunnel [cdp | stp | vtp]`
8. `bridge-domain bridge-id`
9. `exit`
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.
 • Enter your password if prompted. |
| **Example:**
 Router# enable | |
| **Step 2** configure terminal | Enters global configuration mode. |
| **Example:**
 Router# configure terminal | |
| **Step 3** interface gigabitethernet *slot*/*port* or interface tengigabitethernet *slot*/*port* | Specifies the Gigabit Ethernet or the Ten Gigabit Ethernet interface to configure, where:
 slot/*port*—Specifies the location of the interface. |
| **Example:**
 Router(config)# interface gigabitethernet 6/1 | |
| **Step 4** no ip address | Disables IP processing on the interface. |
| **Example:**
 Router(config-if)# no ip address | |
| **Step 5** service instance *id* {ethernet [service-name]} | Creates a service instance (an instantiation of an EVC) on an interface and sets the device into the service instance submode. |
| **Example:**
 Router(config-if)# service instance 100 ethernet | |
| **Step 6** encapsulation default
 or encapsulation untagged | Configures the default service instance, or maps the untagged ingress ethernet frames on an interface. |
| **Example:**
 Router(config-if-srv)# encapsulation default | |
| **Step 7** l2protocol tunnel [cdp|stp|vtp] | Configures the EVC port as a Layer 2 protocol tunnel port for the protocols specified. |
| **Example:**
 Router(config-if-srv)# l2protocol tunnel stp | |
Chapter 18 Configuring Layer 2 Protocol Tunneling

Layer 2 Protocol Tunneling on EVC

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8 bridge-domain bridge-id</td>
<td>Binds the service instance to a bridge domain instance where bridge-id is the identifier for the bridge domain instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)#bridge-domain 200</td>
<td></td>
</tr>
<tr>
<td>Step 9 exit</td>
<td>Exits the global service instance configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if-srv)# exit</td>
<td></td>
</tr>
</tbody>
</table>

Configuration Examples

This example shows the configuration on Switch A. See Figure 18-1:

```
Router# enable
Router# configure terminal
Router(config)# interface gigabitethernet 11/16
Router(config-if) no ip address
outer(config-if)# service instance 10 ethernet
Router(config-if-srv)# encapsulation default
Router(config-if-srv)# l2protocol tunnel cdp
Router(config-if-srv)# bridge-domain 100
```

This example shows the configuration on Switch B. See Figure 18-1:

```
Router# enable
Router# configure terminal
Router(config)# interface gigabitethernet 8/8
Router(config-if) no ip address
Router(config-if)# service instance 10 ethernet
Router(config-if-srv)# encapsulation default
Router(config-if-srv)# l2protocol tunnel cdp
Router(config-if-srv)# bridge-domain 100
```

Verification

This example shows how to verify the configuration:

```
router#show ethernet service instance id 10 interface gigabitEthernet 8/8 detail
Service Instance ID: 10
Service Instance Type: static
Associated Interface: GigabitEthernet8/8
Associated EVC:
L2protocol tunnel cdp
CE-Vlans:
Encapsulation: default
Interface Dot1q Tunnel Ethertype: 0x8100
State: Up
EFP Statistics:
  Pkts In  Bytes In  Pkts Out  Bytes Out
  169996   33999200   166967   33392595
EFP Microblocks:
****************
Microblock type: Bridge-domain
Bridge-domain: 100
```
This example shows the output on a line card:

```
router-dfc8# show ethernet service instance id 10 interface gigabitEthernet 11/16 detail
EFP ID: 100
Associated Interface: GigabitEthernet11/16
State: Up (redundancy state Up)
   Forwarding Service: Bridge Domain
L2protocol tunnel cdp
Encapsulation: default
Interface Dot1q Tunnel Ethertype: 0x8100

EFP Microblocks:
****************
Microblock type: Bridge-domain
Bridge-domain: 100
MAC security: Disabled
```

Troubleshooting Tips

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>How do I debug L2PT?</td>
<td>You can enable debugging from the Switch Processor (SP).</td>
</tr>
<tr>
<td></td>
<td>Use these commands for debugging:</td>
</tr>
<tr>
<td></td>
<td>debug l2pt error: Enables L2PT error debugs.</td>
</tr>
<tr>
<td></td>
<td>debug l2pt event: Enables L2PT event debugs.</td>
</tr>
<tr>
<td></td>
<td>debug l2pt packet : Enables L2PT packet information debugs.</td>
</tr>
</tbody>
</table>
Configuring L2TPv3

This chapter describes how to configure the L2TPv3 in Cisco IOS Software Release 15.1(3)S.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco 7600 Series Router Cisco IOS Command Reference at this URL:

This chapter includes the following sections:
- Understanding L2TPv3, page 19-1
- Configuring L2TPv3, page 19-2

Understanding L2TPv3

The Layer 2 Tunneling Protocol version 3 (L2TPv3) feature employs L2TPv3 and pseudowire (PW) technology to provide tunneling service to Ethernet traffic. The feature is developed for SUP720-3B/3BXL and RSP720 routers, which function as Provider Edge (PE) routers in the network topologies recommended by RFC3985 Pseudowire Emulation Edge-to-Edge (PWE3) architecture. L2TPv3 also supports inter-operability between the Cisco 7600 router and any standard compliant Cisco or non-Cisco device.

A L2TPv3 tunnel is a control connection between two PE routers. One L2TPv3 tunnel can have multiple data connections, and each data connection is termed as an L2TPv3 session. The control connection is used to establish, maintain, and release sessions. Each session is identified by a session ID which is unique across the entire router.
Figure 19-1 Network Topology for L2TPv3

In Figure 19-1, the attachment Virtual Circuit (VC) represents a physical or a logical port that connects a Customer Edge (CE) device to a Provider Edge (PE) device. A pseudowire is defined as a VC connecting two attachment VCs, and it consists of two L2TPv3 tunnel paths, one in each direction.

Restrictions for L2TPv3

Following restrictions apply to L2TPv3:

- Layer 2 facing line card must be an L2TPv3 supporting line card.
- There must be at least one distinct L2TPv3 tunnel per Layer 2 facing linecard.
- The L2TPv3 feature on a Cisco 7600 router is supported on ES+ and SIP 400 line cards.
- The Cisco 7600 router supports only IPv4 tunnelling for the Layer 2 frames.
- The L2TPv3 feature does not support configurations such as EoL2TPv3oMPLS on the encapsulating PE.
- The L2TPv3 feature supports a maximum of 16,000 pseudowires.
- L2TPv3 is not supported in conjunction with EVC features. L2TPv3 coexists with EVC on the same port. That is, while one sub-interface is used to tunnel dot1q tagged traffic over L2TP, another sub-interface is used to perform EVC features.
- Effective with Cisco IOS release 15.1(3)S, 4000 IP tunnels are supported on ES+ line cards.
- The L2TPv3 feature does not support SSO. You must enable cookies for L2TPv3 session on HA setups.

Configuring L2TPv3

Configuring STP and MST

This chapter describes how to configure the Spanning Tree Protocol (STP) and Multiple Spanning Tree (MST) protocol on Cisco 7600 series routers.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter contains these sections:

- Understanding How STP Works, page 20-1
- Understanding How IEEE 802.1w RSTP Works, page 20-12
- Understanding MST, page 20-17
- Configuring STP, page 20-25
- Configuring MST, page 20-36
- Displaying the MST Configuration and Status, page 20-49

For information on configuring the PortFast, UplinkFast, and BackboneFast STP enhancements, see Chapter 21, “Configuring Optional STP Features.”

Understanding How STP Works

These sections describe how STP works:

- STP Overview, page 20-2
- Understanding the Bridge ID, page 20-2
- Understanding Bridge Protocol Data Units, page 20-3
- Election of the Root Bridge, page 20-4
- STP Protocol Timers, page 20-4
- Creating the Spanning Tree Topology, page 20-4
- STP Port States, page 20-5
Understanding How STP Works

- STP and IEEE 802.1Q Trunks, page 20-11

STP Overview

STP is a Layer 2 link-management protocol that provides path redundancy while preventing undesirable loops in the network. For a Layer 2 Ethernet network to function properly, only one active path can exist between any two stations. STP operation is transparent to end stations, which cannot detect whether they are connected to a single LAN segment or a switched LAN of multiple segments.

Cisco 7600 series routers use STP (the IEEE 802.1D bridge protocol) on all VLANs. By default, a single instance of STP runs on each configured VLAN (provided you do not manually disable STP). You can enable and disable STP on a per-VLAN basis.

When you create fault-tolerant internetworks, you must have a loop-free path between all nodes in a network. The STP algorithm calculates the best loop-free path throughout a switched Layer 2 network. Layer 2 LAN ports send and receive STP frames at regular intervals. Network devices do not forward these frames, but use the frames to construct a loop-free path.

Multiple active paths between end stations cause loops in the network. If a loop exists in the network, end stations might receive duplicate messages and network devices might learn end station MAC addresses on multiple Layer 2 LAN ports. These conditions result in an unstable network.

STP defines a tree with a root bridge and a loop-free path from the root to all network devices in the Layer 2 network. STP forces redundant data paths into a standby (blocked) state. If a network segment in the spanning tree fails and a redundant path exists, the STP algorithm recalculates the spanning tree topology and activates the standby path.

When two Layer 2 LAN ports on a network device are part of a loop, the STP port priority and port path cost setting determine which port is put in the forwarding state and which port is put in the blocking state. The STP port priority value represents the location of a port in the network topology and how efficiently that location allows the port to pass traffic. The STP port path cost value represents media speed.

Understanding the Bridge ID

Each VLAN on each network device has a unique 64-bit bridge ID consisting of a bridge priority value, an extended system ID, and an STP MAC address allocation.

This section contains these topics:
- Bridge Priority Value, page 20-2
- Extended System ID, page 20-3
- STP MAC Address Allocation, page 20-3

Bridge Priority Value

Note In Cisco 7600 series routers, the extended system ID is always enabled.

The bridge priority is a 4-bit value when the extended system ID is enabled (see Table 20-1 on page 20-3 and the “Configuring the Bridge Priority of a VLAN” section on page 20-33).
Extended System ID

A 12-bit extended system ID field is part of the bridge ID (see Table 20-1 on page 20-3). Cisco 7600 series routers have 64 MAC addresses and always use the 12-bit extended system ID.

Table 20-1 Bridge Priority Value and Extended System ID with the Extended System ID Enabled

<table>
<thead>
<tr>
<th>Bridge Priority Value</th>
<th>Extended System ID (Set Equal to the VLAN ID)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 16</td>
<td>Bit 15</td>
</tr>
<tr>
<td>32768</td>
<td>16384</td>
</tr>
</tbody>
</table>

STP MAC Address Allocation

Cisco 7600 series routers have 64 addresses available to support software features such as STP. To view the MAC address range, enter the `show catalyst6000 chassis-mac-address` command.

STP uses the extended system ID plus a MAC address to make the bridge ID unique for each VLAN.

With MAC address reduction enabled on any device, you should also enable MAC address reduction on all other Layer 2 connected network devices to avoid undesirable root bridge election and spanning tree topology issues.

When MAC address reduction is enabled, the root bridge priority becomes a multiple of 4096 plus the VLAN ID. With MAC address reduction enabled, a router bridge ID (used by the spanning tree algorithm to determine the identity of the root bridge, the lowest being preferred) can only be specified as a multiple of 4096. Only the following values are possible: 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440.

If another bridge in the same spanning tree domain does not run the MAC address reduction feature, it could win root bridge ownership because of the finer granularity in the selection of its bridge ID.

Understanding Bridge Protocol Data Units

Bridge protocol data units (BPDUs) are transmitted in one direction from the root bridge. Each network device sends configuration BPDUs to communicate and compute the spanning tree topology. Each configuration BPDU contains the following minimal information:

- The unique bridge ID of the network device that the transmitting network device believes to be the root bridge
- The STP path cost to the root
- The bridge ID of the transmitting bridge
- Message age
- The identifier of the transmitting port
- Values for the hello, forward delay, and max-age protocol timers

When a network device transmits a BPDU frame, all network devices connected to the LAN on which the frame is transmitted receive the BPDU. When a network device receives a BPDU, it does not forward the frame but instead uses the information in the frame to calculate a BPDU, and, if the topology changes, initiate a BPDU transmission.

A BPDU exchange results in the following:

- One network device is elected as the root bridge.
Understanding How STP Works

- The shortest distance to the root bridge is calculated for each network device based on the path cost.
- A designated bridge for each LAN segment is selected. This is the network device closest to the root bridge through which frames are forwarded to the root.
- A root port is selected. This is the port providing the best path from the bridge to the root bridge.
- Ports included in the spanning tree are selected.

Election of the Root Bridge

For each VLAN, the network device with the highest bridge ID (the lowest numerical ID value) is elected as the root bridge. If all network devices are configured with the default priority (32768), the network device with the lowest MAC address in the VLAN becomes the root bridge. The bridge priority value occupies the most significant bits of the bridge ID.

When you change the bridge priority value, you change the probability that the router will be elected as the root bridge. Configuring a higher value increases the probability; a lower value decreases the probability.

The STP root bridge is the logical center of the spanning tree topology in a Layer 2 network. All paths that are not needed to reach the root bridge from anywhere in the Layer 2 network are placed in STP blocking mode.

BPDUs contain information about the transmitting bridge and its ports, including bridge and MAC addresses, bridge priority, port priority, and path cost. STP uses this information to elect the root bridge for the Layer 2 network, to elect the root port leading to the root bridge, and to determine the designated port for each Layer 2 segment.

STP Protocol Timers

Table 20-2 describes the STP protocol timers that affect STP performance.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hello timer</td>
<td>Determines how often the network device broadcasts hello messages to other network devices.</td>
</tr>
<tr>
<td>Forward delay timer</td>
<td>Determines how long each of the listening and learning states last before the port begins forwarding.</td>
</tr>
<tr>
<td>Maximum age timer</td>
<td>Determines the amount of time protocol information received on an port is stored by the network device.</td>
</tr>
</tbody>
</table>

Creating the Spanning Tree Topology

In Figure 20-1, Switch A is elected as the root bridge because the bridge priority of all the network devices is set to the default (32768) and Switch A has the lowest MAC address. However, due to traffic patterns, number of forwarding ports, or link types, Switch A might not be the ideal root bridge. By increasing the priority (lowering the numerical value) of the ideal network device so that it becomes the root bridge, you force an STP recalculation to form a new spanning tree topology with the ideal network device as the root.
Understanding How STP Works

When the spanning tree topology is calculated based on default parameters, the path between source and destination end stations in a switched network might not be ideal. For instance, connecting higher-speed links to a port that has a higher number than the current root port can cause a root-port change. The goal is to make the fastest link the root port.

For example, assume that one port on Switch B is a fiber-optic link, and another port on Switch B (an unshielded twisted-pair [UTP] link) is the root port. Network traffic might be more efficient over the high-speed fiber-optic link. By changing the STP port priority on the fiber-optic port to a higher priority (lower numerical value) than the root port, the fiber-optic port becomes the new root port.

STP Port States

These sections describe the STP port states:

- **STP Port State Overview, page 20-5**
- **Blocking State, page 20-7**
- **Listening State, page 20-7**
- **Learning State, page 20-8**
- **Forwarding State, page 20-9**
- **Disabled State, page 20-10**

STP Port State Overview

Propagation delays can occur when protocol information passes through a switched LAN. As a result, topology changes can take place at different times and at different places in a switched network. When a Layer 2 LAN port transitions directly from nonparticipation in the spanning tree topology to the forwarding state, it can create temporary data loops. Ports must wait for new topology information to propagate through the switched LAN before starting to forward frames. They must allow the frame lifetime to expire for frames that have been forwarded using the old topology.

Each Layer 2 LAN port on a Cisco 7600 series router using STP exists in one of the following five states:

- **Blocking**—The Layer 2 LAN port does not participate in frame forwarding.
- **Listening**—First transitional state after the blocking state when STP determines that the Layer 2 LAN port should participate in frame forwarding.
- **Learning**—The Layer 2 LAN port prepares to participate in frame forwarding.
Understanding How STP Works

- Forwarding—The Layer 2 LAN port forwards frames.
- Disabled—The Layer 2 LAN port does not participate in STP and is not forwarding frames.

A Layer 2 LAN port moves through these five states as follows:

- From initialization to blocking
- From blocking to listening or to disabled
- From listening to learning or to disabled
- From learning to forwarding or to disabled
- From forwarding to disabled

Figure 20-2 illustrates how a Layer 2 LAN port moves through the five states.

Figure 20-2 STP Layer 2 LAN Interface States

When you enable STP, every port in the Cisco 7600 series router, VLAN, and network goes through the blocking state and the transitory states of listening and learning at power up. If properly configured, each Layer 2 LAN port stabilizes to the forwarding or blocking state.

When the STP algorithm places a Layer 2 LAN port in the forwarding state, the following process occurs:

1. The Layer 2 LAN port is put into the listening state while it waits for protocol information that suggests it should go to the blocking state.
2. The Layer 2 LAN port waits for the forward delay timer to expire, moves the Layer 2 LAN port to the learning state, and resets the forward delay timer.
3. In the learning state, the Layer 2 LAN port continues to block frame forwarding as it learns end station location information for the forwarding database.
4. The Layer 2 LAN port waits for the forward delay timer to expire and then moves the Layer 2 LAN port to the forwarding state, where both learning and frame forwarding are enabled.
Blocking State

A Layer 2 LAN port in the blocking state does not participate in frame forwarding, as shown in Figure 20-3. After initialization, a BPDU is sent out to each Layer 2 LAN port. A network device initially assumes it is the root until it exchanges BPDUs with other network devices. This exchange establishes which network device in the network is the root or root bridge. If only one network device is in the network, no exchange occurs, the forward delay timer expires, and the ports move to the listening state. A port always enters the blocking state following initialization.

Figure 20-3 Interface 2 in Blocking State

A Layer 2 LAN port in the blocking state performs as follows:

- Discards frames received from the attached segment.
- Discards frames switched from another port for forwarding.
- Does not incorporate end station location into its address database. (There is no learning on a blocking Layer 2 LAN port, so there is no address database update.)
- Receives BPDUs and directs them to the system module.
- Does not transmit BPDUs received from the system module.
- Receives and responds to network management messages.

Listening State

The listening state is the first transitional state a Layer 2 LAN port enters after the blocking state. The Layer 2 LAN port enters this state when STP determines that the Layer 2 LAN port should participate in frame forwarding. Figure 20-4 shows a Layer 2 LAN port in the listening state.
Understanding How STP Works

Figure 20-4 Interface 2 in Listening State

A Layer 2 LAN port in the listening state performs as follows:
- Discards frames received from the attached segment.
- Discards frames switched from another LAN port for forwarding.
- Does not incorporate end station location into its address database. (There is no learning at this point, so there is no address database update.)
- Receives BPDUs and directs them to the system module.
- Receives, processes, and transmits BPDUs received from the system module.
- Receives and responds to network management messages.

Learning State

A Layer 2 LAN port in the learning state prepares to participate in frame forwarding. The Layer 2 LAN port enters the learning state from the listening state. Figure 20-5 shows a Layer 2 LAN port in the learning state.
A Layer 2 LAN port in the learning state performs as follows:

- Discards frames received from the attached segment.
- Discards frames switched from another port for forwarding.
- Incorporates end station location into its address database.
- Receives BPDUs and directs them to the system module.
- Receives, processes, and transmits BPDUs received from the system module.
- Receives and responds to network management messages.

Forwarding State

A Layer 2 LAN port in the forwarding state forwards frames, as shown in Figure 20-6. The Layer 2 LAN port enters the forwarding state from the learning state.
Understanding How STP Works

Figure 20-6 Interface 2 in Forwarding State

A Layer 2 LAN port in the forwarding state performs as follows:

- Forwards frames received from the attached segment.
- Forwards frames switched from another port for forwarding.
- Incorporates end station location information into its address database.
- Receives BPDUs and directs them to the system module.
- Processes BPDUs received from the system module.
- Receives and responds to network management messages.

Disabled State

A Layer 2 LAN port in the disabled state does not participate in frame forwarding or STP, as shown in Figure 20-7. A Layer 2 LAN port in the disabled state is virtually nonoperational.
A disabled Layer 2 LAN port performs as follows:

- Discards frames received from the attached segment.
- Discards frames switched from another port for forwarding.
- Does not incorporate end station location into its address database. (There is no learning, so there is no address database update.)
- Does not receive BPDUs.
- Does not receive BPDUs for transmission from the system module.

STP and IEEE 802.1Q Trunks

802.1Q trunks impose some limitations on the STP strategy for a network. In a network of Cisco network devices connected through 802.1Q trunks, the network devices maintain one instance of STP for each VLAN allowed on the trunks. However, non-Cisco 802.1Q network devices maintain only one instance of STP for all VLANs allowed on the trunks.

When you connect a Cisco network device to a non-Cisco device through an 802.1Q trunk, the Cisco network device combines the STP instance of the 802.1Q VLAN of the trunk with the STP instance of the non-Cisco 802.1Q network device. However, all per-VLAN STP information is maintained by Cisco network devices separated by a cloud of non-Cisco 802.1Q network devices. The non-Cisco 802.1Q cloud separating the Cisco network devices is treated as a single trunk link between the network devices.

For more information on 802.1Q trunks, see Chapter 10, “Configuring LAN Ports for Layer 2 Switching.”
Understanding How IEEE 802.1w RSTP Works

RSTP takes advantage of point-to-point wiring and provides rapid convergence of the spanning tree. Reconfiguration of the spanning tree can occur in less than 1 second (in contrast to 50 seconds with the default settings in the 802.1D spanning tree).

These section describes how the RSTP works:

- Port Roles and the Active Topology, page 20-12
- Rapid Convergence, page 20-13
- Synchronization of Port Roles, page 20-14
- Bridge Protocol Data Unit Format and Processing, page 20-15
- Topology Changes, page 20-17
- Rapid-PVST, page 20-17

Port Roles and the Active Topology

The RSTP provides rapid convergence of the spanning tree by assigning port roles and by learning the active topology. The RSTP builds upon the 802.1D STP to select the router with the highest switch priority (lowest numerical priority value) as the root bridge as described in the “Election of the Root Bridge” section on page 20-4. The RSTP then assigns one of these port roles to individual ports:

- Root port—Provides the best path (lowest cost) when the router forwards packets to the root bridge.
- Designated port—Connects to the designated router, which incurs the lowest path cost when forwarding packets from that LAN to the root bridge. The port through which the designated router is attached to the LAN is called the designated port.
- Alternate port—Offers an alternate path toward the root bridge to that provided by the current root port.
- Backup port—Acts as a backup for the path provided by a designated port toward the leaves of the spanning tree. A backup port can exist only when two ports are connected in a loopback by a point-to-point link or when a router has two or more connections to a shared LAN segment.
- Disabled port—Has no role within the operation of the spanning tree.

A port with the root or a designated port role is included in the active topology. A port with the alternate or backup port role is excluded from the active topology.

In a stable topology with consistent port roles throughout the network, the RSTP ensures that every root port and designated port immediately transition to the forwarding state while all alternate and backup ports are always in the discarding state (equivalent to blocking in 802.1D). The port state controls the operation of the forwarding and learning processes. Table 20-3 provides a comparison of 802.1D and RSTP port states.

Table 20-3 Port State Comparison

<table>
<thead>
<tr>
<th>Operational Status</th>
<th>STP Port State (IEEE 802.1D)</th>
<th>RSTP Port State</th>
<th>Is Port Included in the Active Topology?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enabled</td>
<td>Blocking</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Listening</td>
<td>Discarding</td>
<td>No</td>
</tr>
<tr>
<td>Enabled</td>
<td>Learning</td>
<td>Learning</td>
<td>Yes</td>
</tr>
</tbody>
</table>
To be consistent with Cisco STP implementations, this guide defines the port state as *blocking* instead of *discarding*. Designated ports start in the listening state.

Rapid Convergence

The RSTP provides for rapid recovery of connectivity following the failure of a router, a router port, or a LAN. It provides rapid convergence for edge ports, new root ports, and ports connected through point-to-point links as follows:

- **Edge ports**—If you configure a port as an edge port on an RSTP router by using the `spanning-tree portfast` interface configuration command, the edge port immediately transitions to the forwarding state. An edge port is the same as a Port Fast-enabled port, and you should enable it only on ports that connect to a single end station.

- **Root ports**—If the RSTP selects a new root port, it blocks the old root port and immediately transitions the new root port to the forwarding state.

- **Point-to-point links**—If you connect a port to another port through a point-to-point link and the local port becomes a designated port, it negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology.

As shown in Figure 20-8, router A is connected to router B through a point-to-point link, and all of the ports are in the blocking state. Assume that the priority of router A is a smaller numerical value than the priority of router B. Router A sends a proposal message (a configuration BPDU with the proposal flag set) to router B, proposing itself as the designated router.

After receiving the proposal message, router B selects as its new root port the port from which the proposal message was received, forces all nonedge ports to the blocking state, and sends an agreement message (a BPDU with the agreement flag set) through its new root port.

After receiving router B’s agreement message, router A also immediately transitions its designated port to the forwarding state. No loops in the network are formed because router B blocked all of its nonedge ports and because there is a point-to-point link between routers A and B.

When router C is connected to router B, a similar set of handshaking messages are exchanged. Router C selects the port connected to router B as its root port, and both ends immediately transition to the forwarding state. With each iteration of this handshaking process, one more router joins the active topology. As the network converges, this proposal-agreement handshaking progresses from the root toward the leaves of the spanning tree.

The router learns the link type from the port duplex mode: a full-duplex port is considered to have a point-to-point connection and a half-duplex port is considered to have a shared connection. You can override the default setting that is controlled by the duplex setting by using the `spanning-tree link-type` interface configuration command.
Synchronization of Port Roles

When the router receives a proposal message on one of its ports and that port is selected as the new root port, the RSTP forces all other ports to synchronize with the new root information.

The router is synchronized with superior root information received on the root port if all other ports are synchronized. An individual port on the router is synchronized if:

- That port is in the blocking state.
- It is an edge port (a port configured to be at the edge of the network).

If a designated port is in the forwarding state and is not configured as an edge port, it transitions to the blocking state when the RSTP forces it to synchronize with new root information. In general, when the RSTP forces a port to synchronize with root information and the port does not satisfy any of the above conditions, its port state is set to blocking.

After ensuring that all of the ports are synchronized, the router sends an agreement message to the designated router corresponding to its root port. When the routers connected by a point-to-point link are in agreement about their port roles, the RSTP immediately transitions the port states to forwarding. The sequence of events is shown in Figure 20-9.
Bridge Protocol Data Unit Format and Processing

These sections describe bridge protocol data unit (BPDU) format and processing:

- BPDU Format and Processing Overview, page 20-15
- Processing Superior BPDU Information, page 20-16
- Processing Inferior BPDU Information, page 20-16

BPDU Format and Processing Overview

The RSTP BPDU format is the same as the 802.1D BPDU format except that the protocol version is set to 2. A new 1-byte Version 1 Length field is set to zero, which means that no Version 1 protocol information is present. Table 20-4 describes the RSTP flag fields.

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Topology change (TC)</td>
</tr>
<tr>
<td>1</td>
<td>Proposal</td>
</tr>
</tbody>
</table>

Table 20-4 RSTP BPDU Flags
Understanding How IEEE 802.1w RSTP Works

The sending router sets the proposal flag in the RSTP BPDU to propose itself as the designated router on that LAN. The port role in the proposal message is always set to the designated port.

The sending router sets the agreement flag in the RSTP BPDU to accept the previous proposal. The port role in the agreement message is always set to the root port.

The RSTP does not have a separate TCN BPDU. It uses the topology change (TC) flag to show the topology changes. However, for interoperability with 802.1D routers, the RSTP router processes and generates TCN BPDUs.

The learning and forwarding flags are set according to the state of the sending port.

Processing Superior BPDU Information

A superior BPDU is a BPDU with root information (such as lower switch ID or lower path cost) that is superior to what is currently stored for the port.

If a port receives a superior BPDU, the RSTP triggers a reconfiguration. If the port is proposed and is selected as the new root port, RSTP forces all the other ports to synchronize.

If the BPDU received is an RSTP BPDU with the proposal flag set, the router sends an agreement message after all of the other ports are synchronized. If the BPDU is an 802.1D BPDU, the router does not set the proposal flag and starts the forward-delay timer for the port. The new root port requires twice the forward-delay time to transition to the forwarding state.

If the superior information received on the port causes the port to become a backup port or an alternate port, RSTP sets the port to the blocking state and sends an agreement message. The designated port continues sending BPDUs with the proposal flag set until the forward-delay timer expires, at which time the port transitions to the forwarding state.

Processing Inferior BPDU Information

An inferior BPDU is a BPDU with root information (such as higher switch ID or higher path cost) that is inferior to what is currently stored for the port.

If a designated port receives an inferior BPDU, it immediately replies with its own information.

Table 20-4 RSTP BPDU Flags (continued)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>2–3:</td>
<td>Port role:</td>
</tr>
<tr>
<td>00</td>
<td>Unknown</td>
</tr>
<tr>
<td>01</td>
<td>Alternate port or backup port</td>
</tr>
<tr>
<td>10</td>
<td>Root port</td>
</tr>
<tr>
<td>11</td>
<td>Designated port</td>
</tr>
<tr>
<td>4</td>
<td>Learning</td>
</tr>
<tr>
<td>5</td>
<td>Forwarding</td>
</tr>
<tr>
<td>6</td>
<td>Agreement</td>
</tr>
<tr>
<td>7</td>
<td>Topology change acknowledgement (TCA)</td>
</tr>
</tbody>
</table>
Topology Changes

These are the differences between the RSTP and the 802.1D in handling spanning tree topology changes:

- Detection—Unlike 802.1D in which any transition between the blocking and the forwarding state causes a topology change, only transitions from the blocking to the forwarding state cause a topology change with RSTP (only an increase in connectivity is considered a topology change). State changes on an edge port do not cause a topology change. When an RSTP router detects a topology change, it deletes the learned information on all of its nonedge ports except on those from which it received the TC notification.

- Notification—The RSTP does not use TCN BPDUs, unlike 802.1D. However, for 802.1D interoperability, an RSTP router processes and generates TCN BPDUs.

- Acknowledgement—When an RSTP router receives a TCN message on a designated port from an 802.1D router, it replies with an 802.1D configuration BPDU with the TCA bit set. However, if the TC-while timer (the same as the TC timer in 802.1D) is active on a root port connected to an 802.1D router and a configuration BPDU with the TCA set is received, the TC-while timer is reset. This method of operation is only required to support 802.1D routers. The RSTP BPDUs never have the TCA bit set.

- Propagation—When an RSTP router receives a TC message from another router through a designated or root port, it propagates the change to all of its nonedge, designated ports and to the root port (excluding the port on which it is received). The router starts the TC-while timer for all such ports and flushes the information learned on them.

- Protocol migration—For backward compatibility with 802.1D routers, RSTP selectively sends 802.1D configuration BPDUs and TCN BPDUs on a per-port basis.

When a port is initialized, the migrate-delay timer is started (specifies the minimum time during which RSTP BPDUs are sent), and RSTP BPDUs are sent. While this timer is active, the router processes all BPDUs received on that port and ignores the protocol type. If the router receives an 802.1D BPDU after the port migration-delay timer has expired, it assumes that it is connected to an 802.1D router and starts using only 802.1D BPDUs. However, if the RSTP router is using 802.1D BPDUs on a port and receives an RSTP BPDU after the timer has expired, it restarts the timer and starts using RSTP BPDUs on that port.

Rapid-PVST

Rapid-PVST uses the existing configuration for PVST+; however, Rapid-PVST uses RSTP to provide faster convergence. Independent VLANs run their own RSTP instance. Dynamic entries are flushed immediately on a per-port basis upon receiving a topology change. UplinkFast and BackboneFast configurations are ignored in Rapid-PVST mode; both features are included in RSTP.

Understanding MST

These sections describe MST:

- MST Overview, page 20-18
- MST Regions, page 20-18
MST Overview

MST maps multiple VLANs into a spanning tree instance, with each instance having a spanning tree topology independent of other spanning tree instances. This architecture provides multiple forwarding paths for data traffic, enables load balancing, and reduces the number of spanning tree instances required to support a large number of VLANs. MST improves the fault tolerance of the network because a failure in one instance (forwarding path) does not affect other instances (forwarding paths).

The most common initial deployment of MST is in the backbone and distribution layers of a Layer 2 switched network. This deployment provides the kind of highly available network that is required in a service-provider environment.

MST provides rapid spanning tree convergence through explicit handshaking, which eliminates the 802.1D forwarding delay and quickly transitions root bridge ports and designated ports to the forwarding state.

MST improves spanning tree operation and maintains backward compatibility with these STP versions:

- Original 802.1D spanning tree
- Existing Cisco-proprietary Multiple Instance STP (MISTP)
- Existing Cisco per-VLAN spanning tree plus (PVST+)
- Rapid per-VLAN spanning tree plus (rapid PVST+)

For information about other spanning tree features such as Port Fast, UplinkFast, root guard, and so forth, see Chapter 21, “Configuring Optional STP Features.”

MST Regions

For routers to participate in MST instances, you must consistently configure the routers with the same MST configuration information. A collection of interconnected routers that have the same MST configuration comprises an MST region as shown in Figure 20-10 on page 20-21.

The MST configuration controls to which MST region each router belongs. The configuration includes the name of the region, the revision number, and the MST VLAN-to-instance assignment map.

Note

- IEEE 802.1w defined the Rapid Spanning Tree Protocol (RSTP) and was incorporated into IEEE 802.1D.
- IEEE 802.1s defined MST and was incorporated into IEEE 802.1Q.
A region can have one or multiple members with the same MST configuration; each member must be capable of processing RSTP bridge protocol data units (BPDUs). There is no limit to the number of MST regions in a network, but each region can support up to 65 spanning tree instances. Instances can be identified by any number in the range from 0 to 4094. You can assign a VLAN to only one spanning tree instance at a time.

IST, CIST, and CST

These sections describe internal spanning tree (IST), common and internal spanning tree (CIST), and common spanning tree (CST):

- IST, CIST, and CST Overview, page 20-19
- Spanning Tree Operation Within an MST Region, page 20-20
- Spanning Tree Operations Between MST Regions, page 20-20
- IEEE 802.1s Terminology, page 20-21

IST, CIST, and CST Overview

Unlike other spanning tree protocols, in which all the spanning tree instances are independent, MST establishes and maintains IST, CIST, and CST spanning trees:

- An IST is the spanning tree that runs in an MST region.

 Within each MST region, MST maintains multiple spanning tree instances. Instance 0 is a special instance for a region, known as the IST. All other MST instances are numbered from 1 to 4094. The IST is the only spanning tree instance that sends and receives BPDUs. All of the other spanning tree instance information is contained in MSTP records (M-records), which are encapsulated within MST BPDUs. Because the MST BPDU carries information for all instances, the number of BPDUs that need to be processed to support multiple spanning tree instances is significantly reduced.

 All MST instances within the same region share the same protocol timers, but each MST instance has its own topology parameters, such as root bridge ID, root path cost, and so forth. By default, all VLANs are assigned to the IST.

 An MST instance is local to the region; for example, MST instance 1 in region A is independent of MST instance 1 in region B, even if regions A and B are interconnected.

- A CIST is a collection of the ISTs in each MST region.

- The CST interconnects the MST regions and single spanning trees.

 The spanning tree computed in a region appears as a subtree in the CST that encompasses the entire switched domain. The CIST is formed by the spanning tree algorithm running among routers that support the 802.1w, 802.1s, and 802.1D standards. The CIST inside an MST region is the same as the CST outside a region.

 For more information, see the “Spanning Tree Operation Within an MST Region” section on page 20-20 and the “Spanning Tree Operations Between MST Regions” section on page 20-20.
Understanding MST

Spanning Tree Operation Within an MST Region

The IST connects all the MST routers in a region. When the IST converges, the root of the IST becomes the CIST regional root (called the IST master before the implementation of the 802.1s standard) as shown in Figure 20-10 on page 20-21. The CIST regional root is also the CIST root if there is only one region in the network. If the CIST root is outside the region, one of the MST routers at the boundary of the region is selected as the CIST regional root.

When an MST router initializes, it sends BPDUs that identify itself as the root of the CIST and the CIST regional root, with both of the path costs to the CIST root and to the CIST regional root set to zero. The router also initializes all of its MST instances and claims to be the root for all of them. If the router receives superior MST root information (lower switch ID, lower path cost, and so forth) than currently stored for the port, it relinquishes its claim as the CIST regional root.

During initialization, a region might have many subregions, each with its own CIST regional root. As routers receive superior IST information from a neighbor in the same region, they leave their old subregions and join the new subregion that contains the true CIST regional root, which causes all subregions to shrink except for the one that contains the true CIST regional root.

For correct operation, all routers in the MST region must agree on the same CIST regional root. Therefore, any two routers in the region only synchronize their port roles for an MST instance if they converge to a common CIST regional root.

Spanning Tree Operations Between MST Regions

If there are multiple regions or 802.1D routers within the network, MST establishes and maintains the CST, which includes all MST regions and all 802.1D STP routers in the network. The MST instances combine with the IST at the boundary of the region to become the CST.

The IST connects all the MST routers in the region and appears as a subtree in the CIST that encompasses the entire switched domain. The root of the subtree is the CIST regional root. The MST region appears as a virtual router to adjacent STP routers and MST regions.

Figure 20-10 shows a network with three MST regions and an 802.1D router (D). The CIST regional root for region 1 (A) is also the CIST root. The CIST regional root for region 2 (B) and the CIST regional root for region 3 (C) are the roots for their respective subtrees within the CIST.
Figure 20-10 MST Regions, CIST Regional Roots, and CST Root

Only the CST instance sends and receives BPDUs, and MST instances add their spanning tree information into the BPDUs to interact with neighboring routers and compute the final spanning tree topology. Because of this, the spanning tree parameters related to BPDU transmission (for example, hello time, forward time, max-age, and max-hops) are configured only on the CST instance but affect all MST instances. Parameters related to the spanning tree topology (for example, switch priority, port VLAN cost, and port VLAN priority) can be configured on both the CST instance and the MST instance.

MST routers use Version 3 BPDUs or 802.1D STP BPDUs to communicate with 802.1D routers. MST routers use MST BPDUs to communicate with MST routers.

IEEE 802.1s Terminology

Some MST naming conventions used in the prestandard implementation have been changed to include identification of some internal and regional parameters. These parameters are used only within an MST region, compared to external parameters that are used throughout the whole network. Because the CIST is the only spanning tree instance that spans the whole network, only the CIST parameters require the external qualifiers and not the internal or regional qualifiers.

- The CIST root is the root bridge for the the CIST, which is the unique instance that spans the whole network.
- The CIST external root path cost is the cost to the CIST root. This cost is left unchanged within an MST region. Remember that an MST region looks like a single router to the CIST. The CIST external root path cost is the root path cost calculated between these virtual routers and routers that do not belong to any region.
• The CIST regional root was called the IST master in the prestandard implementation. If the CIST root is in the region, the CIST regional root is the CIST root. Otherwise, the CIST regional root is the closest router to the CIST root in the region. The CIST regional root acts as a root bridge for the IST.

• The CIST internal root path cost is the cost to the CIST regional root in a region. This cost is only relevant to the IST, instance 0.

Table 20-5 compares the IEEE standard and the Cisco prestandard terminology.

<table>
<thead>
<tr>
<th>IEEE Standard Definition</th>
<th>Cisco Prestandard Implementation</th>
<th>Cisco Standard Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIST regional root</td>
<td>IST master</td>
<td>CIST regional root</td>
</tr>
<tr>
<td>CIST internal root path cost</td>
<td>IST master path cost</td>
<td>CIST internal path cost</td>
</tr>
<tr>
<td>CIST external root path cost</td>
<td>Root path cost</td>
<td>Root path cost</td>
</tr>
<tr>
<td>MSTI regional root</td>
<td>Instance root</td>
<td>Instance root</td>
</tr>
<tr>
<td>MSTI internal root path cost</td>
<td>Root path cost</td>
<td>Root path cost</td>
</tr>
</tbody>
</table>

Hop Count

MST does not use the message-age and maximum-age information in the configuration BPDU to compute the spanning tree topology. Instead, they use the path cost to the root and a hop-count mechanism similar to the IP time-to-live (TTL) mechanism.

By using the `spanning-tree mst max-hops` global configuration command, you can configure the maximum hops inside the region and apply it to the IST and all MST instances in that region. The hop count achieves the same result as the message-age information (triggers a reconfiguration). The root bridge of the instance always sends a BPDU (or M-record) with a cost of 0 and the hop count set to the maximum value. When a router receives this BPDU, it decrements the received remaining hop count by one and propagates this value as the remaining hop count in the BPDUs it generates. When the count reaches zero, the router discards the BPDU and ages the information held for the port.

The message-age and maximum-age information in the RSTP portion of the BPDU remain the same throughout the region, and the same values are propagated by the region-designated ports at the boundary.

Boundary Ports

In the Cisco prestandard implementation, a boundary port connects an MST region to one of these STP regions:

• A single spanning tree region running RSTP
• A single spanning tree region running PVST+ or rapid PVST+
• Another MST region with a different MST configuration

A boundary port also connects to a LAN, the designated router of which is either a single spanning tree router or a router with a different MST configuration.
Understanding MST

There is no definition of a boundary port in the 802.1s standard. The 802.1Q-2002 standard identifies two kinds of messages that a port can receive: internal (coming from the same region) and external. When a message is external, it is received only by the CIST. If the CIST role is root or alternate, or if the external BPDU is a topology change, it could have an impact on the MST instances. When a message is internal, the CIST part is received by the CIST, and each MST instance receives its respective M-record. The Cisco prestandard implementation treats a port that receives an external message as a boundary port, which means a port cannot receive a mix of internal and external messages.

An MST region includes both routers and LANs. A segment belongs to the region of its designated port. Therefore, a port in a different region from the designated port for a segment is a boundary port. This definition allows two ports internal to a region to share a segment with a port belonging to a different region, creating the possibility of receiving both internal and external messages on a port.

The primary change from the Cisco prestandard implementation is that a designated port is not defined as boundary unless it is running in an STP-compatible mode.

Note

If there is an 802.1D STP router on the segment, messages are always considered external.

The other change from the prestandard implementation is that the CIST regional root bridge ID field is now inserted where an RSTP or legacy 802.1s router has the sender switch ID. The whole region performs like a single virtual router by sending a consistent sender switch ID to neighboring routers. In this example, router C would receive a BPDU with the same consistent sender switch ID of root, whether or not A or B is designated for the segment.

Standard-Compliant MST Implementation

The standard-compliant MST implementation includes features required to meet the standard, as well as some of the desirable prestandard functionality that is not yet incorporated into the published standard. These sections describe the standard-compliant MST implementation:

- Changes in Port-Role Naming, page 20-23
- Spanning Tree Interoperation Between Legacy and Standard-Compliant Routers, page 20-24
- Detecting Unidirectional Link Failure, page 20-24

Changes in Port-Role Naming

The boundary role was deleted from the final MST standard, but this boundary concept is maintained in the standard-compliant implementation. However, an MST instance (MSTI) port at a boundary of the region might not follow the state of the corresponding CIST port. The following two situations currently exist:

- The boundary port is the root port of the CIST regional root—When the CIST instance port is proposed and is synchronized, it can send back an agreement and move to the forwarding state only after all the corresponding MSTI ports are synchronized (and thus forwarding). The MSTI ports now have a special master role.
- The boundary port is not the root port of the CIST regional root—The MSTI ports follow the state and role of the CIST port. The standard provides less information, and it might be difficult to understand why an MSTI port can be alternately blocking when it receives no BPDPUs (M-records). In this situation, although the boundary role no longer exists, when you enter the show commands, they identify a port as boundary in the type column of the output.
Spanning Tree Interoperation Between Legacy and Standard-Compliant Routers

Because automatic detection of prestandard routers can fail, you can use an interface configuration command to identify prestandard ports. A region cannot be formed between a standard and a prestandard router, but they can interoporate before using the CIST. Only the capability of load balancing over different instances is lost in this specific situation. The CLI displays different flags depending on the port configuration when the port receives prestandard BPDUs. A syslog message also appears the first time a router receives a prestandard BPDU on a port that has not been configured for prestandard BPDU transmission.

Figure 20-11 illustrates a standard-compliant router connected to a prestandard router. Assume that A is the standard-compliant router and B is a prestandard router, both configured to be in the same region. A is the root bridge for the CIST, and so B has a root port (BX) on segment X and an alternate port (BY) on segment Y. If segment Y flaps, and the port on BY becomes the alternate before sending out a single prestandard BPDU, AY cannot detect that a prestandard router is connected to Y and continues to send standard BPDUs. The port BY is fixed in a boundary, and no load balancing is possible between A and B. The same problem exists on segment X, but B might transmit topology changes.

Figure 20-11 Standard-Compliant and Prestandard Router Interoperation

Note: We recommend that you minimize the interaction between standard and prestandard MST implementations.

Detecting Unidirectional Link Failure

This feature is not yet present in the IEEE MST standard, but it is included in the standard-compliant implementation. The software checks the consistency of the port role and state in the received BPDUs to detect unidirectional link failures that could cause bridging loops.

When a designated port detects a conflict, it keeps its role, but reverts to a discarding state because disrupting connectivity in case of inconsistency is preferable to opening a bridging loop.

Figure 20-12 illustrates a unidirectional link failure that typically creates a bridging loop. Router A is the root bridge, and its BPDUs are lost on the link leading to router B. RSTP and MST BPDUs include the role and state of the sending port. With this information, router A can detect that router B does not react to the superior BPDUs it sends and that router B is the designated, not root bridge. As a result, router A blocks (or keeps blocking) its port, thus preventing the bridging loop.
Interoperability with IEEE 802.1D-1998 STP

A router running MST supports a built-in protocol migration feature that enables it to interoperate with 802.1D routers. If this router receives an 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. An MST router also can detect that a port is at the boundary of a region when it receives an 802.1D BPDU, an MST BPDU (Version 3) associated with a different region, or an RSTP BPDU (Version 2).

However, the router does not automatically revert to the MST mode if it no longer receives 802.1D BPDUs because it cannot detect whether the 802.1D router has been removed from the link unless the 802.1D router is the designated router. A router might also continue to assign a boundary role to a port when the router to which this router is connected has joined the region. To restart the protocol migration process (force the renegotiation with neighboring routers), use the `clear spanning-tree detected-protocols` privileged EXEC command.

If all the 802.1D routers on the link are RSTP routers, they can process MST BPDUs as if they are RSTP BPDUs. Therefore, MST routers send either a Version 0 configuration and topology change notification (TCN) BPDUs or Version 3 MST BPDUs on a boundary port. A boundary port connects to a LAN, the designated router of which is either a single spanning tree router or a router with a different MST configuration.

Configuring STP

These sections describe how to configure STP on VLANs:

- Default STP Configuration, page 20-26
- Enabling STP, page 20-26
- Enabling the Extended System ID, page 20-28
- Configuring the Root Bridge, page 20-28
- Configuring a Secondary Root Bridge, page 20-29
- Configuring STP Port Priority, page 20-30
- Configuring STP Port Cost, page 20-32
- Configuring the Bridge Priority of a VLAN, page 20-33
- Configuring the Hello Time, page 20-34
- Configuring the Forward-Delay Time for a VLAN, page 20-35
- Configuring the Maximum Aging Time for a VLAN, page 20-35
- Enabling Rapid-PVST, page 20-36
The STP commands described in this chapter can be configured on any LAN port, but they are in effect only on LAN ports configured with the `switchport` keyword.

We do not recommend disabling spanning tree, even in a topology that is free of physical loops. Spanning tree serves as a safeguard against misconfigurations and cabling errors. Do not disable spanning tree in a VLAN without ensuring that there are no physical loops present in the VLAN.

Default STP Configuration

Table 20-6 shows the default STP configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable state</td>
<td>STP enabled for all VLANs</td>
</tr>
<tr>
<td>Bridge priority</td>
<td>32768</td>
</tr>
<tr>
<td>STP port priority (configurable on a per-port basis—used on LAN ports configured as Layer 2 access ports)</td>
<td>128</td>
</tr>
</tbody>
</table>
| STP port cost (configurable on a per-port basis—used on LAN ports configured as Layer 2 access ports) | • Gigabit Ethernet: 4
• Fast Ethernet: 19
• Ethernet: 100 |
| STP VLAN port priority (configurable on a per-VLAN basis—used on LAN ports configured as Layer 2 trunk ports) | 128 |
| STP VLAN port cost (configurable on a per-VLAN basis—used on LAN ports configured as Layer 2 trunk ports) | • Gigabit Ethernet: 4
• Fast Ethernet: 19
• Ethernet: 100 |
| Hello time | 2 seconds |
| Forward delay time | 15 seconds |
| Maximum aging time | 20 seconds |
| Mode | PVST |

Enabling STP

Note
STP is enabled by default on VLAN 1 and on all newly created VLANs.

You can enable STP on a per-VLAN basis. The Cisco 7600 series router maintains a separate instance of STP for each VLAN (except on VLANs on which you disable STP).

To enable STP on a per-VLAN basis, perform this task:
Chapter 20 Configuring STP and MST

Configuring STP

Caution
Do not disable spanning tree on a VLAN unless all switches and bridges in the VLAN have spanning tree disabled. You cannot disable spanning tree on some switches and bridges in a VLAN and leave it enabled on other switches and bridges in the VLAN. This action can have unexpected results because switches and bridges with spanning tree enabled will have incomplete information regarding the physical topology of the network.

Caution
We do not recommend disabling spanning tree, even in a topology that is free of physical loops. Spanning tree serves as a safeguard against misconfigurations and cabling errors. Do not disable spanning tree in a VLAN without ensuring that there are no physical loops present in the VLAN.

This example shows how to enable STP on VLAN 200:

Router# configure terminal
Router(config)# spanning-tree vlan 200
Router(config)# end

Step 1
Router(config)# spanning-tree vlan vlan_ID

Step 2
Router(config)# end

Step 3
Router# show spanning-tree vlan vlan_ID

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables STP on a per-VLAN basis. The vlan_ID value can be 1 through 4094, except reserved VLANs (see Table 20-6 on page 20-26).</td>
</tr>
<tr>
<td>Router(config)# default spanning-tree vlan vlan_ID</td>
<td>Reverts all STP parameters to default values for the specified VLAN.</td>
</tr>
<tr>
<td>Router(config)# no spanning-tree vlan vlan_ID</td>
<td>Disables STP on the specified VLAN; see the following Cautions for information regarding this command.</td>
</tr>
</tbody>
</table>

Note
Because STP is enabled by default, entering a show running command to view the resulting configuration does not display the command you entered to enable STP.

This example shows how to verify the configuration:

Router# show spanning-tree vlan 200

Command Purpose
Step 1 Router(config)# spanning-tree vlan vlan_ID Enables STP on a per-VLAN basis. The vlan_ID value can be 1 through 4094, except reserved VLANs (see Table 20-6 on page 20-26).
Router(config)# default spanning-tree vlan vlan_ID Reverts all STP parameters to default values for the specified VLAN.
Router(config)# no spanning-tree vlan vlan_ID Disables STP on the specified VLAN; see the following Cautions for information regarding this command.
Step 2 Router(config)# end Exits configuration mode.
Step 3 Router# show spanning-tree vlan vlan_ID Verifies that STP is enabled.

Caution
Do not disable spanning tree on a VLAN unless all switches and bridges in the VLAN have spanning tree disabled. You cannot disable spanning tree on some switches and bridges in a VLAN and leave it enabled on other switches and bridges in the VLAN. This action can have unexpected results because switches and bridges with spanning tree enabled will have incomplete information regarding the physical topology of the network.

Caution
We do not recommend disabling spanning tree, even in a topology that is free of physical loops. Spanning tree serves as a safeguard against misconfigurations and cabling errors. Do not disable spanning tree in a VLAN without ensuring that there are no physical loops present in the VLAN.

This example shows how to enable STP on VLAN 200:

Router# configure terminal
Router(config)# spanning-tree vlan 200
Router(config)# end
Router#

Note
Because STP is enabled by default, entering a show running command to view the resulting configuration does not display the command you entered to enable STP.

This example shows how to verify the configuration:

Router# show spanning-tree vlan 200

VLAN0200
Spanning tree enabled protocol ieee
Root ID Priority 32768
Address 00d0.00b8.14c8
This bridge is the root
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Bridge ID Priority 32768
Address 00d0.00b8.14c8
Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Aging Time 300

Interface Role Sts Cost Prio.Nbr Status
------------------- ---- --- --------- -------- --------------------------------
G1/4 Desg FWD 200000 128.196 P2p
Configuring STP

Gi1/5 Back BLK 200000 128.197 P2p

Router#

Note You must have at least one interface that is active in VLAN 200 to create a VLAN 200 spanning tree. In this example, two interfaces are active in VLAN 200.

Enabling the Extended System ID

The extended system ID is enabled permanently on Cisco 7600 series routers. This example shows how to verify the configuration:

Router# show spanning-tree summary | include Extended
Extended system ID is enabled.

Configuring the Root Bridge

Cisco 7600 series routers maintain a separate instance of STP for each active VLAN. A bridge ID, consisting of the bridge priority and the bridge MAC address, is associated with each instance. For each VLAN, the network device with the lowest bridge ID becomes the root bridge for that VLAN.

To configure a VLAN instance to become the root bridge, enter the `spanning-tree vlan vlan_ID root` command to modify the bridge priority from the default value (32768) to a significantly lower value.

When you enter the `spanning-tree vlan vlan_ID root` command, the router checks the bridge priority of the current root bridges for each VLAN. With the extended system ID enabled, the router sets the bridge priority for the specified VLANs to 24576 if this value will cause the router to become the root for the specified VLANs.

With the extended system ID enabled, if any root bridge for the specified VLANs has a bridge priority lower than 24576, the router sets the bridge priority for the specified VLANs to 4096 less than the lowest bridge priority. (4096 is the value of the least significant bit of a 4-bit bridge priority value; see Table 20-1 on page 20-3.)

Note The `spanning-tree vlan vlan_ID root` command fails if the value required to be the root bridge is less than 1.

With the extended system ID enabled, if all network devices in, for example, VLAN 20 have the default priority of 32768, entering the `spanning-tree vlan 20 root primary` command on the router sets the bridge priority to 24576, which causes the router to become the root bridge for VLAN 20.

Caution The root bridge for each instance of STP should be a backbone or distribution router. Do not configure an access router as the STP primary root.

Use the `diameter` keyword to specify the Layer 2 network diameter (that is, the maximum number of bridge hops between any two end stations in the Layer 2 network). When you specify the network diameter, the Cisco 7600 series router automatically selects an optimal hello time, forward delay time, and maximum age time for a network of that diameter, which can significantly reduce the STP convergence time. You can use the `hello` keyword to override the automatically calculated hello time.
To preserve a stable STP topology, we recommend that you avoid configuring the hello time, forward delay time, and maximum age time manually after configuring the Cisco 7600 series router as the root bridge.

To configure a Cisco 7600 series router as the root bridge, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# spanning-tree vlan vlan_ID root primary [diameter hops [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td>Configures a Cisco 7600 series router as the root bridge. The vlan_ID value can be 1 through 4094, except reserved VLANs (see Table 20-6 on page 20-26).</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no spanning-tree vlan vlan_ID root</td>
</tr>
<tr>
<td></td>
<td>Clears the root bridge configuration.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
</tbody>
</table>

This example shows how to configure the Cisco 7600 series router as the root bridge for VLAN 10, with a network diameter of 4:

Router# configure terminal
Router(config)# spanning-tree vlan 10 root primary diameter 4
Router(config)# end
Router#

Configuring a Secondary Root Bridge

When you configure a Cisco 7600 series router as the secondary root, the STP bridge priority is modified from the default value (32768) so that the router is likely to become the root bridge for the specified VLANs if the primary root bridge fails (assuming the other network devices in the network use the default bridge priority of 32768).

With the extended system ID is enabled, STP sets the bridge priority to 28672.

You can run this command on more than one router to configure multiple backup root bridges. Use the same network diameter and hello time values as you used when configuring the primary root bridge.

To configure a Cisco 7600 series router as the secondary root bridge, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# [no] spanning-tree vlan vlan_ID root secondary [diameter hops [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td>Configures a Cisco 7600 series router as the secondary root bridge. The vlan_ID value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no spanning-tree vlan vlan_ID root</td>
</tr>
<tr>
<td></td>
<td>Clears the root bridge configuring.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
</tbody>
</table>

This example shows how to configure the Cisco 7600 series router as the secondary root bridge for VLAN 10, with a network diameter of 4:

Router# configure terminal
Router(config)# spanning-tree vlan 10 root secondary diameter 4
Router(config)# end
Configuring STP Port Priority

If a loop occurs, STP considers port priority when selecting a LAN port to put into the forwarding state. You can assign higher priority values to LAN ports that you want STP to select first and lower priority values to LAN ports that you want STP to select last. If all LAN ports have the same priority value, STP puts the LAN port with the lowest LAN port number in the forwarding state and blocks other LAN ports. The possible priority range is 0 through 240 (default 128), configurable in increments of 16.

Cisco IOS uses the port priority value when the LAN port is configured as an access port and uses VLAN port priority values when the LAN port is configured as a trunk port.

To configure the STP port priority of a Layer 2 LAN interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{(gigabitethernet 1/port)</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# spanning-tree port-priority port_priority</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no spanning-tree port-priority</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# spanning-tree vlan vlan_ID port-priority port_priority</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# [no] spanning-tree vlan vlan_ID port-priority</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# end</td>
</tr>
</tbody>
</table>
Command | Purpose
--- | ---
Step 5
Router# show spanning-tree interface {gigabitethernet 1/port} | {port-channel port_channel_number}
Router# show spanning-tree vlan vlan_ID | Verifies the configuration.

This example shows how to configure the STP port priority of Gigabit Ethernet port 1/4:

```
Router# configure terminal
Router(config)# interface gigabitethernet 1/4
Router(config-if)# spanning-tree port-priority 160
Router(config-if)# end

This example shows how to verify the configuration of Gigabit Ethernet port 1/4:

```
Router# show spanning-tree interface gigabitethernet 1/4
Vlan	Role	Sts	Cost	Prio.Nbr	Status
VLAN0001 | Back | BLK | 200000 | 160.196 | P2p
VLAN0006 | Back | BLK | 200000 | 160.196 | P2p
...
VLAN0198 | Back | BLK | 200000 | 160.196 | P2p
VLAN0199 | Back | BLK | 200000 | 160.196 | P2p
VLAN0200 | Back | BLK | 200000 | 160.196 | P2p

Gigabit Ethernet port 1/4 is a trunk. Several VLANs are configured and active as shown in the example. The port priority configuration applies to all VLANs on this interface.

Note
The `show spanning-tree interface` command only displays information if the port is connected and operating. If this condition is not met, enter a `show running-config interface` command to verify the configuration.

This example shows how to configure the VLAN port priority of Gigabit Ethernet port 1/4:

```
Router# configure terminal
Router(config)# interface gigabitethernet 1/4
Router(config-if)# spanning-tree vlan 200 port-priority 64
Router(config-if)# end

The configuration entered in the example only applies to VLAN 200. All VLANs other than 200 still have a port priority of 160.

This example shows how to verify the configuration:

```
Router# show spanning-tree interface gigabitethernet 1/4
Vlan	Role	Sts	Cost	Prio.Nbr	Status
VLAN0001 | Back | BLK | 200000 | 160.196 | P2p
VLAN0006 | Back | BLK | 200000 | 160.196 | P2p
...
VLAN0199 | Back | BLK | 200000 | 160.196 | P2p
VLAN0200 | Desg | FWD | 200000 | 64.196 | P2p

You also can display spanning tree information for VLAN 200 using the following command:
Configuring STP Port Cost

The STP port path cost default value is determined from the media speed of a LAN interface. If a loop occurs, STP considers port cost when selecting a LAN interface to put into the forwarding state. You can assign lower cost values to LAN interfaces that you want STP to select first and higher cost values to LAN interfaces that you want STP to select last. If all LAN interfaces have the same cost value, STP puts the LAN interface with the lowest LAN interface number in the forwarding state and blocks other LAN interfaces. The possible cost range is 0 through 200000000 (the default is media specific).

STP uses the port cost value when the LAN interface is configured as an access port and uses VLAN port cost values when the LAN interface is configured as a trunk port.

To configure the STP port cost of a Layer 2 LAN interface, perform this task:

Step 1
- **Command:** `Router(config)# interface {{(gigabitethernet 1/port) | (port-channel port_channel_number)}}`
 - **Purpose:** Selects an interface to configure.

Step 2
- **Command:** `Router(config-if)# spanning-tree cost port_cost`
 - **Purpose:** Configures the port cost for the LAN interface. The `port_cost` value can be from 1 to 200000000.
- **Command:** `Router(config-if)# no spanning-tree cost`
 - **Purpose:** Reverts to the default port cost.

Step 3
- **Command:** `Router(config-if)# spanning-tree vlan vlan_ID cost port_cost`
 - **Purpose:** Configures the VLAN port cost for the LAN interface. The `port_cost` value can be from 1 to 200000000. The `vlan_ID` value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).
- **Command:** `Router(config-if)# no spanning-tree vlan vlan_ID cost`
 - **Purpose:** Reverts to the default VLAN port cost.

Step 4
- **Command:** `Router(config-if)# end`
 - **Purpose:** Exits configuration mode.

Step 5
- **Command:** `Router# show spanning-tree interface {{(gigabitethernet 1/port) | (port-channel port_channel_number)}} show spanning-tree vlan vlan_ID`
 - **Purpose:** Verifies the configuration.

This example shows how to change the STP port cost of Gigabit Ethernet port 1/4:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 1/4
Router(config-if)# spanning-tree cost 1000
Router(config-if)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show spanning-tree interface gigabitethernet 1/4
vlan  Role  Sts  Cost  Prio.Nbr  Status
----------------  --------- ------ ------- ---------------
VLAN0001  Back BLK 1000  160.196  P2p
VLAN0006  Back BLK 1000  160.196  P2p
VLAN0007  Back BLK 1000  160.196  P2p
```
This example shows how to configure the port priority at an individual port VLAN cost for VLAN 200:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 1/4
Router(config-if)# spanning-tree vlan 200 cost 2000
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show spanning-tree vlan 200 interface gigabitethernet 1/4
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>Sts</th>
<th>Cost</th>
<th>Prio.Nbr</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/4</td>
<td>Desg</td>
<td>FWD</td>
<td>2000</td>
<td>64.196</td>
<td>P2p</td>
</tr>
</tbody>
</table>

Note
In the following output other VLANs (VLAN 1 for example) have not been affected by this configuration.

```
Router# show spanning-tree vlan 1 interface gigabitethernet 1/4
```

<table>
<thead>
<tr>
<th>Interface</th>
<th>Role</th>
<th>Sts</th>
<th>Cost</th>
<th>Prio.Nbr</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/4</td>
<td>Back</td>
<td>BLK</td>
<td>1000</td>
<td>160.196</td>
<td>P2p</td>
</tr>
</tbody>
</table>

Note
The `show spanning-tree` command only displays information for ports that are in link-up operative state and are appropriately configured for DTP. If these conditions are not met, you can enter a `show running-config` command to confirm the configuration.

Configuring the Bridge Priority of a VLAN

Note
Be careful when using this command. For most situations, we recommend that you enter the `spanning-tree vlan vlan_ID root primary` and the `spanning-tree vlan vlan_ID root secondary` commands to modify the bridge priority.

To configure the STP bridge priority of a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>`Router(config)# spanning-tree vlan vlan_ID</td>
<td></td>
</tr>
<tr>
<td>priority {0</td>
<td>4096</td>
</tr>
<tr>
<td></td>
<td>24576</td>
</tr>
<tr>
<td></td>
<td>49152</td>
</tr>
<tr>
<td><code>Router(config)# no spanning-tree vlan vlan_ID</code></td>
<td>Configures the bridge priority of a VLAN when the extended system ID is enabled. The <code>vlan_ID</code> value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).</td>
</tr>
<tr>
<td><code>Router(config)# no spanning-tree vlan vlan_ID</code></td>
<td>Reverts to the default bridge priority value.</td>
</tr>
</tbody>
</table>
Configuring STP

Configuring STP

This example shows how to configure the bridge priority of VLAN 200 to 33792 when the extended system ID is disabled:

```plaintext
Router# configure terminal
Router(config)# spanning-tree vlan 200 priority 32768
Router(config)# end
```

This example shows how to verify the configuration:

```plaintext
Router# show spanning-tree vlan 200 bridge
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3 Router# show spanning-tree vlan vlan_ID bridge [detail]</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the hello time of VLAN 200 to 7 seconds:

```plaintext
Router# configure terminal
Router(config)# spanning-tree vlan 200 hello-time 7
Router(config)# end
```

This example shows how to verify the configuration:

```plaintext
Router# show spanning-tree vlan 200 bridge
```

Configuring the Hello Time

Note

Be careful when using this command. For most situations, we recommend that you use the `spanning-tree vlan vlan_ID root primary` and `spanning-tree vlan vlan_ID root secondary` commands to modify the hello time.

To configure the STP hello time of a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# spanning-tree vlan vlan_ID hello-time hello_time</td>
<td>Configures the hello time of a VLAN. The <code>hello_time</code> value can be from 1 to 10 seconds. The <code>vlan_ID</code> value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).</td>
</tr>
<tr>
<td>Router(config)# no spanning-tree vlan vlan_ID hello-time</td>
<td>Reverts to the default hello time.</td>
</tr>
<tr>
<td>Step 2 Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3 Router# show spanning-tree vlan vlan_ID bridge [detail]</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the hello time for VLAN 200 to 7 seconds:

```plaintext
Router# configure terminal
Router(config)# spanning-tree vlan 200 hello-time 7
Router(config)# end
```

This example shows how to verify the configuration:

```plaintext
Router# show spanning-tree vlan 200 bridge
```
Chapter 20 Configuring STP and MST

Configuring STP

Vlan Bridge ID Time Age Delay Protocol
------- ----------------- ---- ---- ----- --------
VLAN200 49152 0050.3e8d.64c8 7 20 15 ieee

Router#

Configuring the Forward-Delay Time for a VLAN

To configure the STP forward delay time for a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# spanning-tree vlan 200 forward-time 21 Configures the forward time of a VLAN. The forward_time value can be from 4 to 30 seconds. The vlan_ID value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show spanning-tree vlan 200 bridge [detail] Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the forward delay time for VLAN 200 to 21 seconds:

Router# configure terminal
Router(config)# spanning-tree vlan 200 forward-time 21
Router(config)# end
Router#

This example shows how to verify the configuration:

Router# show spanning-tree vlan 200 bridge

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Bridge ID</th>
<th>Hello Max</th>
<th>Fwd</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLAN200</td>
<td>49152 0050.3e8d.64c8</td>
<td>2</td>
<td>20</td>
</tr>
</tbody>
</table>

Configuring the Maximum Aging Time for a VLAN

To configure the STP maximum aging time for a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# spanning-tree vlan 200 max-age 21 Configures the maximum aging time of a VLAN. The max_age value can be from 6 to 40 seconds. The vlan_ID value can be 1 through 4094, except reserved VLANs (see Table 14-1 on page 14-2).</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show spanning-tree vlan 200 bridge [detail] Verifies the configuration.</td>
</tr>
</tbody>
</table>
Enabling Rapid-PVST

Rapid-PVST uses the existing PVST+ framework for configuration and interaction with other features. It also supports some of the PVST+ extensions.

To enable Rapid-PVST mode on the router, enter the `spanning-tree mode rapid-pvst` command in privileged mode. To configure the router in Rapid-PVST mode, see the “Configuring STP” section on page 20-25.

Specifying the Link Type

Rapid connectivity is established only on point-to-point links. Spanning tree views a point-to-point link as a segment connecting only two switches running the spanning tree algorithm. Because the router assumes that all full-duplex links are point-to-point links and that half-duplex links are shared links, you can avoid explicitly configuring the link type. To configure a specific link type, enter the `spanning-tree linktype` command.

Restarting Protocol Migration

A router running both MSTP and RSTP supports a built-in protocol migration process that enables the router to interoperate with legacy 802.1D switches. If this router receives a legacy 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. An MSTP router can also detect that a port is at the boundary of a region when it receives a legacy BPDU, or an MST BPDU (version 3) associated with a different region, or an RST BPDU (version 2).

However, the router does not automatically revert to the MSTP mode if it no longer receives 802.1D BPDUs because it cannot determine whether the legacy router has been removed from the link unless the legacy router is the designated router. A router also might continue to assign a boundary role to a port when the router to which it is connected has joined the region.

To restart the protocol migration process (force the renegotiation with neighboring switches) on the entire router, you can use the `clear spanning-tree detected-protocols` privileged EXEC command. To restart the protocol migration process on a specific interface, enter the `clear spanning-tree detected-protocols interface interface-id` privileged EXEC command.

Configuring MST

These sections describe how to configure MST:
Default MST Configuration

Table 20-7 shows the default MST configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>spanning tree mode</td>
<td>PVST+ (Rapid PVST+ and MST are disabled)</td>
</tr>
<tr>
<td>Switch priority (configurable on a per-CIST port basis)</td>
<td>32768</td>
</tr>
<tr>
<td>spanning tree port priority (configurable on a per-CIST port basis)</td>
<td>128</td>
</tr>
<tr>
<td>spanning tree port cost (configurable on a per-CIST port basis)</td>
<td>1000 Mbps: 4
100 Mbps: 19
10 Mbps: 100</td>
</tr>
<tr>
<td>Hello time</td>
<td>2 seconds</td>
</tr>
<tr>
<td>Forward-delay time</td>
<td>15 seconds</td>
</tr>
<tr>
<td>Maximum-aging time</td>
<td>20 seconds</td>
</tr>
<tr>
<td>Maximum hop count</td>
<td>20 hops</td>
</tr>
</tbody>
</table>

MST Configuration Guidelines and Restrictions

When configuring MST, follow these guidelines and restrictions:

- The 802.1s MST standard allows up to 65 MST instances. You can map an unlimited number of VLANs to an MST instance.
- PVST+, rapid PVST+, and MST are supported, but only one version can be active at any time.
• VTP does not propagate the MST configuration. You must manually configure the MST configuration (region name, revision number, and VLAN-to-instance mapping) on each router within the MST region through the command-line interface (CLI) or SNMP.

• For load balancing across redundant paths in the network to work, all VLAN-to-instance mapping assignments must match; otherwise, all traffic flows on a single link.

• All MST boundary ports must be forwarding for load balancing between a PVST+ and an MST cloud or between a rapid-PVST+ and an MST cloud. For this to occur, the CIST regional root of the MST cloud must be the root of the CST. If the MST cloud consists of multiple MST regions, one of the MST regions must contain the CST root, and all of the other MST regions must have a better path to the root contained within the MST cloud than a path through the PVST+ or rapid-PVST+ cloud.

• Partitioning the network into a large number of regions is not recommended. However, if this situation is unavoidable, we recommend that you partition the switched LAN into smaller LANs interconnected by non-Layer 2 devices.

• When using MST region, identical port identifier is created across switches in the MST region. Identical port identifier cause issues when a switch running RSTP is added to the MST region, as RSTP expects different port identifiers on all ports. To enable interoperability with third party switches running RSTP, change the port priority to generate unique port identifier for individual ports in the MST region.

Specifying the MST Region Configuration and Enabling MST

For two or more routers to be in the same MST region, they must have the same VLAN-to-instance mapping, the same configuration revision number, and the same MST name.

A region can have one member or multiple members with the same MST configuration; each member must be capable of processing RSTP BPDUs. There is no limit to the number of MST regions in a network, but each region can only support up to 65 spanning tree instances. You can assign a VLAN to only one spanning tree instance at a time.

To specify the MST region configuration and enable MST, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config)# spanning-tree mst configuration</td>
<td>Enters MST configuration mode.</td>
</tr>
</tbody>
</table>
Configuring MST

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 3** | Router(config-mst)# instance instance_id vlan vlan_range | Maps VLANs to an MST instance.
- For **instance_id**, the range is 0 to 4094.
- For **vlan vlan_range**, the range is 1 to 4094.
When you map VLANs to an MST instance, the mapping is incremental, and the VLANs specified in the command are added to or removed from the VLANs that were previously mapped.
To specify a VLAN range, use a hyphen; for example, **instance 1 vlan 1-63** maps VLANs 1 through 63 to MST instance 1.
To specify a VLAN series, use a comma; for example, **instance 1 vlan 10, 20, 30** maps VLANs 10, 20, and 30 to MST instance 1. |
| **Step 4** | Router(config-mst)# name instance_name | Specifies the instance name. The name string has a maximum length of 32 characters and is case sensitive. |
| **Step 5** | Router(config-mst)# revision version | Specifies the configuration revision number. The range is 0 to 65535. |
| **Step 6** | Router(config-mst)# show pending | Verifies your configuration by displaying the pending configuration. |
| **Step 7** | Router(config)# exit | Applies all changes, and return to global configuration mode. |
| **Step 8** | Router(config)# spanning-tree mode mst | Enables MST and RSTP.
Caution Changing the spanning tree mode can disrupt traffic because all spanning tree instances are stopped for the previous mode and restarted in the new mode.
You cannot run both MST and PVST+ or both MST and rapid PVST+ at the same time. |
| **Step 9** | Router(config)# end | Returns to privileged EXEC mode. |
| **Step 10** | Router# show running-config | Verifies your entries. |
| **Step 11** | Router# copy running-config startup-config | (Optional) Saves your entries in the configuration file. |

To return to defaults, do the following:
- To return to the default MST region configuration, use the **no spanning-tree mst configuration** global configuration command.
- To return to the default VLAN-to-instance map, use the **no instance instance_id [vlan vlan_range]** MST configuration command.
- To return to the default name, use the **no name** MST configuration command.
- To return to the default revision number, use the **no revision** MST configuration command.
- To reenable PVST+, use the **no spanning-tree mode** or the **spanning-tree mode pvst** global configuration command.
This example shows how to enter MST configuration mode, map VLANs 10 to 20 to MST instance 1, name the region \textit{region1}, set the configuration revision to 1, display the pending configuration, apply the changes, and return to global configuration mode:

```
Router(config)# spanning-tree mst configuration
Router(config-mst)# instance 1 vlan 10-20
Router(config-mst)# name region1
Router(config-mst)# revision 1
Router(config-mst)# show pending
Pending MST configuration
Name   [region1]
Revision 1
Instances configured 2
Instance Vlans Mapped
-------- ---------------------
0       1-9,21-4094
1       10-20
-------------------------------
```

```
Router(config-mst)# exit
Router(config)#
```

Configuring the Root Bridge

The router maintains a spanning tree instance for the group of VLANs mapped to it. A switch ID, consisting of the switch priority and the router MAC address, is associated with each instance. For a group of VLANs, the router with the lowest switch ID becomes the root bridge.

To configure a router to become the root bridge, use the `spanning-tree mst instance_id root` global configuration command to modify the switch priority from the default value (32768) to a significantly lower value so that the router becomes the root bridge for the specified spanning tree instance. When you enter this command, the router checks the switch priorities of the root bridges. Because of extended system ID support, the router sets its own priority for the specified instance to 24576 if this value will cause this router to become the root bridge for the specified spanning tree instance.

If any root bridge for the specified instance has a switch priority lower than 24576, the router sets its own priority to 4096 less than the lowest switch priority. (4096 is the value of the least-significant bit of a 4-bit switch priority value as shown in Table 20-1 on page 20-3.)

If your network consists of routers that both do and do not support the extended system ID, it is unlikely that the router with the extended system ID support will become the root bridge. The extended system ID increases the switch priority value every time the VLAN number is greater than the priority of the connected routers running older software.

The root bridge for each spanning tree instance should be a backbone or distribution router. Do not configure an access router as the spanning tree primary root bridge.

Use the `diameter` keyword, which is available only for MST instance 0, to specify the Layer 2 network diameter (that is, the maximum number of Layer 2 hops between any two end stations in the Layer 2 network). When you specify the network diameter, the router automatically sets an optimal hello time, forward-delay time, and maximum-age time for a network of that diameter, which can significantly reduce the convergence time. You can use the `hello` keyword to override the automatically calculated hello time.

\textbf{Note} With the router configured as the root bridge, do not manually configure the hello time, forward-delay time, and maximum-age time with the `spanning-tree mst hello-time`, `spanning-tree mst forward-time`, and `spanning-tree mst max-age` global configuration commands.
To configure a router as the root bridge, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# configure terminal Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-config)# spanning-tree mst instance_id root primary [diameter net_diameter [hello-time seconds]] (Optional) Configures a router as the root bridge.</td>
</tr>
<tr>
<td></td>
<td>• For instance_id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For diameter net_diameter, specify the maximum number of Layer 2 hops between any two end stations. The range is 2 to 7. This keyword is available only for MST instance 0.</td>
</tr>
<tr>
<td></td>
<td>• (Optional) For hello-time seconds, specify the interval in seconds between the generation of configuration messages by the root bridge. The range is 1 to 10 seconds; the default is 2 seconds.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-config)# end Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show spanning-tree mst instance_id Verifies your entries.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# copy running-config startup-config (Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the router to its default setting, use the no spanning-tree mst instance_id root global configuration command.

Configuring a Secondary Root Bridge

When you configure a router with the extended system ID support as the secondary root, the switch priority is modified from the default value (32768) to 28672. The router is then likely to become the root bridge for the specified instance if the primary root bridge fails. This is assuming that the other network routers use the default switch priority of 32768 and therefore are unlikely to become the root bridge.

You can execute this command on more than one router to configure multiple backup root bridges. Use the same network diameter and hello-time values that you used when you configured the primary root bridge with the spanning-tree mst instance_id root primary global configuration command.
To configure a router as the secondary root bridge, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# spanning-tree mst instance_id root secondary [diameter net_diameter [hello-time seconds]]</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show spanning-tree mst instance_id</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the router to its default setting, use the **no spanning-tree mst instance_id root** global configuration command.

Configuring Port Priority

If a loop occurs, MST uses the port priority when selecting an interface to put into the forwarding state. You can assign higher priority values (lower numerical values) to interfaces that you want selected first and lower priority values (higher numerical values) that you want selected last. If all interfaces have the same priority value, MST puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

To configure the MST port priority of an interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface {{gigabitethernet 1/port}</td>
</tr>
</tbody>
</table>
Configuring MST

Note

The **show spanning-tree mst interface** privileged EXEC command displays information only if the port is in a link-up operative state. Otherwise, you can use the **show running-config interface** privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the **no spanning-tree mst instance_id port-priority** interface configuration command.

Configuring Path Cost

The MST path cost default value is derived from the media speed of an interface. If a loop occurs, MST uses cost when selecting an interface to put in the forwarding state. You can assign lower cost values to interfaces that you want selected first and higher cost values that you want selected last. If all interfaces have the same cost value, MST puts the interface with the lowest interface number in the forwarding state and blocks the other interfaces.

To configure the MST cost of an interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Configures the port priority.</td>
</tr>
</tbody>
</table>
| Router(config-if)# spanning-tree mst instance_id | - For *instance_id*, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.
 - For *priority*, the range is 0 to 240 in increments of 16. The default is 128. The lower the number, the higher the priority.
 The priority values are 0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, and 240. All other values are rejected. |
| **Step 4** | Returns to privileged EXEC mode. |
| Router(config-if)# end | |
| **Step 5** | Verifies your entries. |
| Router# show spanning-tree mst interface | |
| interface_id | |
| or | |
| Router# show spanning-tree mst instance_id | |
| **Step 6** | (Optional) Saves your entries in the configuration file. |
| Router# copy running-config startup-config | |
Configuring MST

Configuring MST

Configuring the Switch Priority

You can configure the switch priority so that it is more likely that a router is chosen as the root bridge.

Note

Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree mst instance_id root primary` and the `spanning-tree mst instance_id root secondary` global configuration commands to modify the switch priority.

Command

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 3 | `Router(config-if)# spanning-tree mst instance_id cost cost` | Configures the cost. If a loop occurs, MST uses the path cost when selecting an interface to place into the forwarding state. A lower path cost represents higher-speed transmission.
 - For `instance_id`, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.
 - For `cost`, the range is 1 to 200000000; the default value is derived from the media speed of the interface. |
| 4 | `Router(config-if)# end` | Returns to privileged EXEC mode. |
| 5 | `Router# show spanning-tree mst interface interface_id` or `Router# show spanning-tree mst instance_id` | Verifies your entries. |
| 6 | `Router# copy running-config startup-config` | (Optional) Saves your entries in the configuration file. |

Note

The `show spanning-tree mst interface interface_id` privileged EXEC command displays information only for ports that are in a link-up operative state. Otherwise, you can use the `show running-config` privileged EXEC command to confirm the configuration.

To return the interface to its default setting, use the `no spanning-tree mst instance_id cost` interface configuration command.
To configure the switch priority, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# spanning-tree mst instance_id priority priority</td>
</tr>
<tr>
<td></td>
<td>• For instance_id, you can specify a single instance, a range of instances separated by a hyphen, or a series of instances separated by a comma. The range is 0 to 4094.</td>
</tr>
<tr>
<td></td>
<td>• For priority, the range is 0 to 61440 in increments of 4096; the default is 32768. The lower the number, the more likely the router will be chosen as the root bridge.</td>
</tr>
<tr>
<td></td>
<td>Priority values are 0, 4096, 8192, 12288, 16384, 20480, 24576, 28672, 32768, 36864, 40960, 45056, 49152, 53248, 57344, and 61440. All other values are rejected.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show spanning-tree mst instance_id</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the router to its default setting, use the `no spanning-tree mst instance_id priority` global configuration command.

Configuring the Hello Time

You can configure the interval between the generation of configuration messages by the root bridge by changing the hello time.

Note Exercise care when using this command. For most situations, we recommend that you use the `spanning-tree mst instance_id root primary` and the `spanning-tree mst instance_id root secondary` global configuration commands to modify the hello time.

To configure the hello time for all MST instances, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# spanning-tree mst hello-time seconds</td>
</tr>
<tr>
<td></td>
<td>For seconds, the range is 1 to 10; the default is 2.</td>
</tr>
<tr>
<td>Step 3</td>
<td>end</td>
</tr>
</tbody>
</table>
To return the router to its default setting, use the `no spanning-tree mst hello-time` global configuration command.

Configuring the Forwarding-Delay Time

To configure the forwarding-delay time for all MST instances, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# spanning-tree mst forward-time seconds</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show spanning-tree mst</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the router to its default setting, use the `no spanning-tree mst forward-time` global configuration command.

Configuring the Transmit Hold Count

To configure the transmit hold count for all MST instances, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# spanning-tree transmit hold-count hold_count_value</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show spanning-tree mst</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# copy running-config startup-config</td>
</tr>
</tbody>
</table>

To return the router to its default setting, use the `no spanning-tree transmit hold-count` global configuration command.
Configuring the Maximum-Aging Time

To configure the maximum-aging time for all MST instances, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config)# spanning-tree mst max-age seconds</td>
<td>(Optional) Configures the maximum-aging time for all MST instances. The maximum-aging time is the number of seconds a router waits without receiving spanning-tree configuration messages before attempting a reconfiguration. For seconds, the range is 6 to 40; the default is 20.</td>
</tr>
<tr>
<td>Step 3 Router(config)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 Router# show spanning-tree mst</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Step 5 Router# copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the router to its default setting, use the no spanning-tree mst max-age global configuration command.

Configuring the Maximum-Hop Count

To configure the maximum-hop count for all MST instances, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config)# spanning-tree mst max-hops hop_count</td>
<td>(Optional) Specifies the number of hops in a region before the BPU is discarded, and the information held for a port is aged. For hop_count, the range is 1 to 255; the default is 20.</td>
</tr>
<tr>
<td>Step 3 Router(config)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 Router# show spanning-tree mst</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>Step 5 Router# copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the router to its default setting, use the no spanning-tree mst max-hops global configuration command.

Specifying the Link Type to Ensure Rapid Transitions

If you connect a port to another port through a point-to-point link and the local port becomes a designated port, the RSTP negotiates a rapid transition with the other port by using the proposal-agreement handshake to ensure a loop-free topology as described in the “Rapid Convergence” section on page 20-13.
By default, the link type is controlled from the duplex mode of the interface: a full-duplex port is considered to have a point-to-point connection; a half-duplex port is considered to have a shared connection. If you have a half-duplex link physically connected point-to-point to a single port on a remote router running MST, you can override the default setting of the link type and enable rapid transitions to the forwarding state.

To override the default link-type setting, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config)# interface</td>
<td>(Optional) Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>{gigabitethernet 1/port }</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 Router(config)# spanning-tree link-type</td>
<td>Specifies that the link type of a port is point-to-point.</td>
</tr>
<tr>
<td>point-to-point</td>
<td></td>
</tr>
<tr>
<td>Step 4 Router(config)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 Router# show spanning-tree mst interface</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>interface_id</td>
<td></td>
</tr>
<tr>
<td>Step 6 Router# copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the port to its default setting, use the **no spanning-tree link-type** interface configuration command.

Designating the Neighbor Type

A topology could contain both prestandard and 802.1s standard compliant devices. By default, ports can automatically detect prestandard devices, but they can still receive both standard and prestandard BPDUs. When there is a mismatch between a device and its neighbor, only the CIST runs on the interface.

You can choose to set a port to send only prestandard BPDUs. The prestandard flag appears in all the **show** commands, even if the port is in STP compatibility mode.

To override the default link-type setting, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config)# interface</td>
<td>(Optional) Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>{gigabitethernet 1/port }</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3 Router(config)# spanning-tree mst pre-standard</td>
<td>Specifies that the port can send only prestandard BPDUs.</td>
</tr>
<tr>
<td>Step 4 Router(config)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 5 Router# show spanning-tree mst interface</td>
<td>Verifies your entries.</td>
</tr>
<tr>
<td>interface_id</td>
<td></td>
</tr>
<tr>
<td>Step 6 Router# copy running-config startup-config</td>
<td>(Optional) Saves your entries in the configuration file.</td>
</tr>
</tbody>
</table>

To return the port to its default setting, use the **no spanning-tree mst prestandard** interface configuration command.
Restarting the Protocol Migration Process

A router running MST supports a built-in protocol migration feature that enables it to interoperate with 802.1D routers. If this router receives an 802.1D configuration BPDU (a BPDU with the protocol version set to 0), it sends only 802.1D BPDUs on that port. An MST router also can detect that a port is at the boundary of a region when it receives an 802.1D BPDU, an MST BPDU (Version 3) associated with a different region, or an RST BPDU (Version 2).

However, the router does not automatically revert to the MST mode if it no longer receives 802.1D BPDUs because it cannot detect whether the 802.1D router has been removed from the link unless the 802.1D router is the designated router. A router also might continue to assign a boundary role to a port when the router to which it is connected has joined the region.

To restart the protocol migration process (force the renegotiation with neighboring routers) on the router, use the `clear spanning-tree detected-protocols` privileged EXEC command.

To restart the protocol migration process on a specific interface, use the `clear spanning-tree detected-protocols interface interface_id` privileged EXEC command.

Displaying the MST Configuration and Status

To display the spanning-tree status, use one or more of the privileged EXEC commands that are described in Table 20-8.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show spanning-tree mst configuration</code></td>
<td>Displays the MST region configuration.</td>
</tr>
<tr>
<td><code>show spanning-tree mst configuration digest</code></td>
<td>Displays the MD5 digest included in the current MSTCI.</td>
</tr>
<tr>
<td><code>show spanning-tree mst instance_id</code></td>
<td>Displays MST information for the specified instance.</td>
</tr>
<tr>
<td><code>show spanning-tree mst interface interface_id</code></td>
<td>Displays MST information for the specified interface.</td>
</tr>
</tbody>
</table>
Displaying the MST Configuration and Status
Configuring Optional STP Features

This chapter describes how to configure optional STP features.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

- Understanding How PortFast Works, page 21-2
- Understanding How BPDU Guard Works, page 21-2
- Understanding How PortFast BPDU Filtering Works, page 21-2
- Understanding How UplinkFast Works, page 21-3
- Understanding How BackboneFast Works, page 21-4
- Understanding How EtherChannel Guard Works, page 21-6
- Understanding How Root Guard Works, page 21-6
- Understanding How Loop Guard Works, page 21-6
- Enabling PortFast, page 21-8
- Enabling PortFast BPDU Filtering, page 21-10
- Enabling BPDU Guard, page 21-11
- Enabling UplinkFast, page 21-12
- Enabling BackboneFast, page 21-13
- Enabling EtherChannel Guard, page 21-13
- Enabling Root Guard, page 21-14
- Enabling Loop Guard, page 21-14

Note
For information on configuring the spanning tree protocol (STP), see Chapter 20, “Configuring STP and MST.”
Understanding How PortFast Works

STP PortFast causes a Layer 2 LAN port configured as an access port to enter the forwarding state immediately, bypassing the listening and learning states. You can use PortFast on Layer 2 access ports connected to a single workstation or server to allow those devices to connect to the network immediately, instead of waiting for STP to converge. Interfaces connected to a single workstation or server should not receive bridge protocol data units (BPDUs). When configured for PortFast, a port is still running the spanning tree protocol. A PortFast enabled port can immediately transition to the blocking state if necessary (this could happen on receipt of a superior BPDU). PortFast can be enabled on trunk ports. PortFast can have an operational value that is different from the configured value.

Caution

Because the purpose of PortFast is to minimize the time that access ports must wait for STP to converge, it should only be used on access ports. If you enable PortFast on a port connected to a router, you might create a temporary bridging loop.

Understanding How BPDU Guard Works

When enabled on a port, BPDU Guard shuts down a port that receives a BPDU. When configured globally, BPDU Guard is only effective on ports in the operational PortFast state. In a valid configuration, PortFast Layer 2 LAN interfaces do not receive BPDUs. Reception of a BPDU by a PortFast Layer 2 LAN interface signals an invalid configuration, such as connection of an unauthorized device. BPDU Guard provides a secure response to invalid configurations, because the administrator must manually put the Layer 2 LAN interface back in service. BPDU Guard can be configured at the interface level. When configured at the interface level, BPDU Guard shuts the port down as soon as the port receives a BPDU, regardless of the PortFast configuration.

Note

When enabled globally, BPDU Guard applies to all interfaces that are in an operational PortFast state.

Understanding How PortFast BPDU Filtering Works

PortFast BPDU filtering allows the administrator to prevent the system from sending or even receiving BPDUs on specified ports.

When configured globally, PortFast BPDU filtering applies to all operational PortFast ports. Ports in an operational PortFast state are supposed to be connected to hosts, that typically drop BPDUs. If an operational PortFast port receives a BPDU, it immediately loses its operational PortFast status. In that case, PortFast BPDU filtering is disabled on this port and STP resumes sending BPDUs on this port. PortFast BPDU filtering can also be configured on a per-port basis. When PortFast BPDU filtering is explicitly configured on a port, it does not send any BPDUs and drops all BPDUs it receives.

Caution

Explicate configuring PortFast BPDU filtering on a port that is not connected to a host can result in bridging loops as the port will ignore any BPDU it receives and go to forwarding.

When you enable PortFast BPDU filtering globally and set the port configuration as the default for PortFast BPDU filtering (see the “Enabling PortFast BPDU Filtering” section on page 21-10), then PortFast enables or disables PortFast BPDU filtering.
If the port configuration is not set to default, then the PortFast configuration will not affect PortFast BPDU filtering. Table 21-1 lists all the possible PortFast BPDU filtering combinations. PortFast BPDU filtering allows access ports to move directly to the forwarding state as soon as the end hosts are connected.

<table>
<thead>
<tr>
<th>Per-Port Configuration</th>
<th>Global Configuration</th>
<th>PortFast State</th>
<th>PortFast BPDU Filtering State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable<sup>1</sup></td>
</tr>
<tr>
<td>Default</td>
<td>Enable</td>
<td>Disable</td>
<td>Disable</td>
</tr>
<tr>
<td>Default</td>
<td>Disable</td>
<td>Not applicable</td>
<td>Disable</td>
</tr>
<tr>
<td>Disable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Disable</td>
</tr>
<tr>
<td>Enable</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Enable</td>
</tr>
</tbody>
</table>

¹ The port transmits at least 10 BPDUs. If this port receives any BPDUs, then PortFast and PortFast BPDU filtering are disabled.

Understanding How UplinkFast Works

UplinkFast provides fast convergence after a direct link failure and achieves load balancing between redundant Layer 2 links using uplink groups. An uplink group is a set of Layer 2 LAN interfaces (for each VLAN), only one of which is forwarding at any given time. Specifically, an uplink group consists of the root port (which is forwarding) and a set of blocked ports, except for self-looping ports. The uplink group provides an alternate path in case the currently forwarding link fails.

Note

UplinkFast is most useful in wiring-closet switches. This feature may not be useful for other types of applications.

Figure 21-1 shows an example topology with no link failures. Switch A, the root bridge, is connected directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 LAN interface on Switch C that is connected directly to Switch B is in the blocking state.

Figure 21-1
UplinkFast Example Before Direct Link Failure
Understanding How BackboneFast Works

If Switch C detects a link failure on the currently active link L2 on the root port (a direct link failure), UplinkFast unblocks the blocked port on Switch C and transitions it to the forwarding state without going through the listening and learning states, as shown in Figure 21-2. This switchover takes approximately one to five seconds.

Figure 21-2 UplinkFast Example After Direct Link Failure

Understanding How BackboneFast Works

BackboneFast is initiated when a root port or blocked port on a network device receives inferior BPDUs from its designated bridge. An inferior BPDU identifies one network device as both the root bridge and the designated bridge. When a network device receives an inferior BPDU, it indicates that a link to which the network device is not directly connected (an indirect link) has failed (that is, the designated bridge has lost its connection to the root bridge). Under normal STP rules, the network device ignores inferior BPDUs for the configured maximum aging time, as specified by the STP max-age command.

The network device tries to determine if it has an alternate path to the root bridge. If the inferior BPDU arrives on a blocked port, the root port and other blocked ports on the network device become alternate paths to the root bridge. (Self-looped ports are not considered alternate paths to the root bridge.) If the inferior BPDU arrives on the root port, all blocked ports become alternate paths to the root bridge. If the inferior BPDU arrives on the root port and there are no blocked ports, the network device assumes that it has lost connectivity to the root bridge, causes the maximum aging time on the root to expire, and becomes the root bridge according to normal STP rules.

If the network device has alternate paths to the root bridge, it uses these alternate paths to transmit a new kind of Protocol Data Unit (PDU) called the Root Link Query PDU. The network device sends the Root Link Query PDU out all alternate paths to the root bridge. If the network device determines that it still has an alternate path to the root, it causes the maximum aging time to expire on the ports on which it received the inferior BPDU. If all the alternate paths to the root bridge indicate that the network device has lost connectivity to the root bridge, the network device causes the maximum aging times on the ports on which it received an inferior BPDU to expire. If one or more alternate paths can still connect to the root bridge, the network device makes all ports on which it received an inferior BPDU its designated ports and moves them out of the blocking state (if they were in the blocking state), through the listening and learning states, and into the forwarding state.

Figure 21-3 shows an example topology with no link failures. Switch A, the root bridge, connects directly to Switch B over link L1 and to Switch C over link L2. The Layer 2 LAN interface on Switch C that connects directly to Switch B is in the blocking state.
Understanding How BackboneFast Works

If link L1 fails, Switch C cannot detect this failure because it is not connected directly to link L1. However, because Switch B is directly connected to the root bridge over L1, it detects the failure and elects itself the root and begins sending BPDUs to Switch C indicating itself as the root. When Switch C receives the inferior BPDUs from Switch B, Switch C infers that an indirect failure has occurred. At that point, BackboneFast allows the blocked port on Switch C to move immediately to the listening state without waiting for the maximum aging time for the port to expire. BackboneFast then transitions the Layer 2 LAN interface on Switch C to the forwarding state, providing a path from Switch B to Switch A. This switchover takes approximately 30 seconds, twice the Forward Delay time if the default Forward Delay time of 15 seconds is set. Figure 21-4 shows how BackboneFast reconfigures the topology to account for the failure of link L1.

If a new network device is introduced into a shared-medium topology as shown in Figure 21-5, BackboneFast is not activated because the inferior BPDUs did not come from the recognized designated bridge (Switch B). The new network device begins sending inferior BPDUs that indicate that it is the root bridge. However, the other network devices ignore these inferior BPDUs and the new network device learns that Switch B is the designated bridge to Switch A, the root bridge.
Understanding How EtherChannel Guard Works

EtherChannel guard detects a misconfigured EtherChannel where interfaces on the Cisco 7600 series router are configured as an EtherChannel while interfaces on the other device are not or not all the interfaces on the other device are in the same EtherChannel.

In response to misconfiguration detected on the other device, EtherChannel guard puts interfaces on the Cisco 7600 series router into the errdisabled state.

Understanding How Root Guard Works

The STP root guard feature prevents a port from becoming root port or blocked port. If a port configured for root guard receives a superior BPDU, the port immediately goes to the root-inconsistent (blocked) state.

Understanding How Loop Guard Works

Loop guard helps prevent bridging loops that could occur because of a uni-directional link failure on a point-to-point link. When enabled globally, the loop guard applies to all point-to-point ports on the system. Loop guard detects root ports and blocked ports and ensures that they keep receiving BPDUs from their designated port on the segment. If a loop guard enabled root or blocked port stop a receiving BPDUs from its designated port, it transitions to the loop-inconsistent blocking state, assuming there is a physical link error on this port. The port recovers from this loop-inconsistent state as soon as it receives a BPDU.

You can enable loop guard on a per-port basis. When you enable loop guard, it is automatically applied to all of the active instances or VLANs to which that port belongs. When you disable loop guard, it is disabled for the specified ports. Disabling loop guard moves all loop-inconsistent ports to the listening state.
If you enable loop guard on a channel and the first link becomes unidirectional, loop guard blocks the entire channel until the affected port is removed from the channel. Figure 21-6 shows loop guard in a triangle router configuration.

Figure 21-6 Triangle Switch Configuration with Loop Guard

Figure 21-6 illustrates the following configuration:

• Switches A and B are distribution switches.
• Switch C is an access router.
• Loop guard is enabled on ports 3/1 and 3/2 on Switches A, B, and C.

Enabling loop guard on a root router has no effect but provides protection when a root router becomes a nonroot router.

When using loop guard, follow these guidelines:

• You cannot enable loop guard on PortFast-enabled ports.
• You cannot enable loop guard if root guard is enabled.

Loop guard interacts with other features as follows:

• Loop guard does not affect the functionality of UplinkFast or BackboneFast.
• Enabling loop guard on ports that are not connected to a point-to-point link will not work.
• Root guard forces a port to be always designated as the root port. Loop guard is effective only if the port is a root port or an alternate port. You cannot enable loop guard and root guard on a port at the same time.
• Loop guard uses the ports known to spanning tree. Loop guard can take advantage of logical ports provided by the Port Aggregation Protocol (PAgP). However, to form a channel, all the physical ports grouped in the channel must have compatible configurations. PAgP enforces uniform configurations of root guard or loop guard on all the physical ports to form a channel.

These caveats apply to loop guard:

– Spanning tree always chooses the first operational port in the channel to send the BPDUs. If that link becomes unidirectional, loop guard blocks the channel, even if other links in the channel are functioning properly.
Enabling PortFast

Caution Use PortFast only when connecting a single end station to a Layer 2 access port. Otherwise, you might create a network loop.

To enable PortFast on a Layer 2 access port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface {type1 slot/port}</td>
<td>Selects a port to configure.</td>
</tr>
<tr>
<td></td>
<td>{port-channel port_channel_number}</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# spanning-tree portfast</td>
<td>Enables PortFast on a Layer 2 access port connected to a single workstation or server.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# spanning-tree portfast default</td>
<td>Enables PortFast.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 5 Router# show running interface {type1 slot/port}</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td></td>
<td>{port-channel port_channel_number}</td>
</tr>
</tbody>
</table>

This example shows how to enable PortFast on Fast Ethernet interface 5/8:

Router# configure terminal
Router(config)# interface fastethernet 5/8
Router(config-if)# spanning-tree portfast
Router(config-if)# end
Router#

This example shows how to verify the configuration:

Router# show running-config interface fastethernet 5/8
Building configuration...

Current configuration:
!
interface FastEthernet5/8
no ip address
switchport

- If a set of ports that are already blocked by loop guard are grouped together to form a channel, spanning tree loses all the state information for those ports and the new channel port may obtain the forwarding state with a designated role.

- If a channel is blocked by loop guard and the channel breaks, spanning tree loses all the state information. The individual physical ports may obtain the forwarding state with the designated role, even if one or more of the links that formed the channel are unidirectional.

Note You can enable UniDirectional Link Detection (UDLD) to help isolate the link failure. A loop may occur until UDLD detects the failure, but loop guard will not be able to detect it.

- Loop guard has no effect on a disabled spanning tree instance or a VLAN.
Enabling PortFast

To enable the default PortFast configuration, perform this task:

```
switchport access vlan 200
switchport mode access
spanning-tree portfast
end
```

Router#

This example shows how to enable the default PortFast configuration:

```
Router# configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
Router(config)# spanning-tree portfast default
```

```
Root bridge for:VLAN0010
EtherChannel misconfiguration guard is enabled
Extended system ID   is disabled
Portfast             is enabled by default
PortFast BPDU Guard  is disabled by default
Portfast BPDU Filter is disabled by default
Loopguard            is disabled by default
UplinkFast           is disabled
BackboneFast         is disabled
Pathcost method used is long

Name                   Blocking Listening Learning Forwarding STP Active
---------------------- -------- --------- -------- ---------- ----------
VLAN0001                  0        0         0        1          1
VLAN0010                  0        0         0        2          2
---------------------- -------- --------- -------- ---------- ----------
2 vlans                   0        0         0       3           3
```

```
Router# show spanning-tree interface fastEthernet 4/4 detail
Port 196 (FastEthernet4/4) of VLAN0010 is forwarding
Port path cost 1000, Port priority 160, Port Identifier 160.196.
Designated root has priority 32768, address 00d0.00b8.140a
Designated bridge has priority 32768, address 00d0.00b8.140a
Designated port id is 160.196, designated path cost 0
Timers:message age 0, forward delay 0, hold 0
Number of transitions to forwarding state:1
The port is in the portfast mode by default
Link type is point-to-point by default
BPDU:sent 10, received 0
```

```
Router(config-if)# spanning-tree portfast trunk
%Warning:portfast should only be enabled on ports connected to a single host. Connecting hubs, concentrators, switches, bridges, etc... to this interface when portfast is enabled, can cause temporary bridging loops.
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# spanning-tree portfast default</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# show spanning-tree summary totals</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# show spanning-tree interface x detail</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# spanning-tree portfast trunk</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router# show spanning-tree interface fastEthernet x detail</td>
</tr>
</tbody>
</table>
Enabling PortFast BPDU Filtering

These sections describe how to configure PortFast BPDU filtering.

To enable PortFast BPDU filtering globally, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# spanning-tree portfast bpdufilter default</td>
</tr>
<tr>
<td>Enables BPDU filtering globally on the router.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# show spanning-tree summary totals</td>
</tr>
<tr>
<td>Verifies the configuration.</td>
<td></td>
</tr>
</tbody>
</table>

BPDU filtering is set to default on each port. This example shows how to enable PortFast BPDU filtering on the port and verify the configuration in PVST+ mode:

```
Router(config)# spanning-tree portfast bpdufilter default
```

```
Router# show spanning-tree summary totals
Root bridge for:VLAN0010
EtherChannel misconfiguration guard is enabled
Extended system ID is disabled
Portfast is enabled by default
PortFast BPDU Guard is disabled by default
PortFast BPDU Filter is enabled by default
Loopguard is disabled by default
UplinkFast is disabled
BackboneFast is disabled
Pathcost method used is long

<table>
<thead>
<tr>
<th>Name</th>
<th>Blocking</th>
<th>Listening</th>
<th>Learning</th>
<th>Forwarding</th>
<th>STP Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 vlans</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
```

For PVST+ information, see Chapter 20, “Configuring STP and MST.”
To enable PortFast BPDU filtering on a nontrunking port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface fastEthernet 4/4</td>
</tr>
<tr>
<td></td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# spanning-tree bpdufilter enable</td>
</tr>
<tr>
<td></td>
<td>Enables BPDU filtering.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show spanning-tree interface fastEthernet 4/4</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to enable PortFast BPDU filtering on a nontrunking port:

```bash
Router(config)# interface fastEthernet 4/4
Router(config-if)# spanning-tree bpdufilter enable
Router(config-if)# ^Z
```

```bash
Router# show spanning-tree interface fastEthernet 4/4
Vlan             Role Sts Cost      Prio.Nbr Status
---------------- ---- --- --------- -------- --------------------------------
VLAN0010         Desg FWD 1000      160.196  Edge P2p
Router# show spanning-tree interface fastEthernet 4/4 detail
Router# show spanning-tree interface fastEthernet 4/4 detail
Port 196 (FastEthernet4/4) of VLAN0010 is forwarding
Port path cost 1000, Port priority 160, Port Identifier 160.196.
Designated root has priority 32768, address 00d0.00b8.140a
Designated bridge has priority 32768, address 00d0.00b8.140a
Designated port id is 160.196, designated path cost 0
Timers:message age 0, forward delay 0, hold 0
Number of transitions to forwarding state:1
The port is in the portfast mode by portfast trunk configuration
Link type ia point-to-point by default
BPDU filter is enabled
BPDU:sent 0, received 0
Router#
```

Enabling BPDU Guard

To enable BPDU Guard globally, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# spanning-tree portfast bpduguard default</td>
</tr>
<tr>
<td></td>
<td>Enables BPDU Guard globally.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no spanning-tree portfast bpduguard default</td>
</tr>
<tr>
<td></td>
<td>Disables BPDU Guard globally.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show spanning-tree summary totals</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to enable BPDU Guard:

```bash
Router# configure terminal
Router(config)# spanning-tree portfast bpduguard
Router(config)# end
Router#
```

This example shows how to verify the configuration:
Enabling UplinkFast

UplinkFast increases the bridge priority to 49152 and adds 3000 to the STP port cost of all Layer 2 LAN interfaces on the Cisco 7600 series router, decreasing the probability that the router will become the root bridge. The max_update_rate value represents the number of multicast packets transmitted per second (the default is 150 packets per second). UplinkFast cannot be enabled on VLANs that have been configured for bridge priority. To enable UplinkFast on a VLAN with bridge priority configured, restore the bridge priority on the VLAN to the default value by entering a no spanning-tree vlan vlan_ID priority command in global configuration mode.

Note

When you enable UplinkFast, it affects all VLANs on the Cisco 7600 series router. You cannot configure UplinkFast on an individual VLAN.

To enable UplinkFast, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# spanning-tree uplinkfast [max-update-rate max_update_rate] Enables UplinkFast.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no spanning-tree uplinkfast max-update-rate Reverts to the default rate.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no spanning-tree uplinkfast Disables UplinkFast.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show spanning-tree vlan vlan_ID Verifies that UplinkFast is enabled.</td>
</tr>
</tbody>
</table>

This example shows how to enable UplinkFast with an update rate of 400 packets per second:

```
Router# configure terminal
Router(config)# spanning-tree uplinkfast max-update-rate 400
Router(config)# exit
Router#
```

This example shows how to verify that UplinkFast is enabled:

```
Router# show spanning-tree uplinkfast
UplinkFast is enabled
Router#
```
Enabling BackboneFast

Note: BackboneFast operates correctly only when enabled on all network devices in the network. BackboneFast is not supported on Token Ring VLANs. This feature is supported for use with third-party network devices.

To enable BackboneFast, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# spanning-tree backbonefast Enables BackboneFast.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no spanning-tree backbonefast Disables BackboneFast.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show spanning-tree vlan vlan_ID Verifies that UplinkFast is enabled.</td>
</tr>
</tbody>
</table>

This example shows how to enable BackboneFast:

Router# configure terminal
Router(config)# spanning-tree backbonefast
Router(config)# end
Router#

This example shows how to verify that BackboneFast is enabled:

Router# show spanning-tree backbonefast
BackboneFast is enabled

BackboneFast statistics

Number of transition via backboneFast (all VLANs) : 0
Number of inferior BPDU's received (all VLANs) : 0
Number of RLQ request PDUs received (all VLANs) : 0
Number of RLQ response PDUs received (all VLANs) : 0
Number of RLQ request PDUs sent (all VLANs) : 0
Number of RLQ response PDUs sent (all VLANs) : 0
Router#

Enabling EtherChannel Guard

To enable EtherChannel guard, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# spanning-tree etherchannel guard misconfig Enables EtherChannel guard.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no spanning-tree etherchannel guard misconfig Disables EtherChannel guard.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show spanning-tree summary</td>
</tr>
</tbody>
</table>
Enabling Root Guard

To enable root guard, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface {type1 slot/port}</td>
<td>Selects a port to configure.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# spanning-tree guard root</td>
<td>Enables root guard.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# no spanning-tree guard root</td>
<td>Disables root guard.</td>
</tr>
<tr>
<td>Step 4 Router# show spanning-tree</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td>Router# show running interface {type1 slot/port}</td>
<td>Verifies the configuration impact on a port.</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

To display ports that are in the root-inconsistent state, enter the `show spanning-tree inconsistentports` command.

Enabling Loop Guard

To enable loop guard globally on the router, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# spanning-tree loopguard default</td>
<td>Enables loop guard globally on the router.</td>
</tr>
<tr>
<td>Step 2 Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3 Router# show spanning-tree interface 4/4 detail</td>
<td>Verifies the configuration impact on a port.</td>
</tr>
</tbody>
</table>

This example shows how to enable loop guard globally:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Router(config)# spanning-tree loopguard default

Router(config)#

Router# show spanning-tree interface fastEthernet 4/4 detail
Port 196 (FastEthernet4/4) of VLAN0010 is forwarding
 Port path cost 1000, Port priority 160, Port Identifier 160.196.
 Designated root has priority 32768, address 00d0.00b8.140a
 Designated bridge has priority 32768, address 00d0.00b8.140a
 Designated port id is 160.196, designated path cost 0
 Timers:message age 0, forward delay 0, hold 0
 Number of transitions to forwarding state:1
 The port is in the portfast mode by portfast trunk configuration
 Link type is point-to-point by default
 Bpdu filter is enabled
 Loop guard is enabled by default on the port
 BPDU: sent 0, received 0

To enable loop guard on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface {type: slot/port</td>
<td>Selects a port to configure.</td>
</tr>
<tr>
<td>}</td>
<td></td>
</tr>
<tr>
<td>{port-channel port_channel_number}</td>
<td></td>
</tr>
<tr>
<td>Step 2 Router(config-if)# spanning-tree guard loop</td>
<td>Configures loop guard.</td>
</tr>
<tr>
<td>Step 3 Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4 Router# show spanning-tree interface 4/4 detail</td>
<td>Verifies the configuration impact on that port.</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to enable loop guard:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastEthernet 4/4
Router(config-if)# spanning-tree guard loop
Router(config-if)#

This example shows how to verify the configuration:

Router# show spanning-tree interface fastEthernet 4/4 detail
Port 196 (FastEthernet4/4) of VLAN0010 is forwarding
 Port path cost 1000, Port priority 160, Port Identifier 160.196.
 Designated root has priority 32768, address 00d0.00b8.140a
 Designated bridge has priority 32768, address 00d0.00b8.140a
 Designated port id is 160.196, designated path cost 0
 Timers:message age 0, forward delay 0, hold 0
 Number of transitions to forwarding state:1
 The port is in the portfast mode by portfast trunk configuration
 Link type is point-to-point by default
 Bpdu filter is enabled
 Loop guard is enabled on the port
 BPDU: sent 0, received 0
Router#
Enabling Loop Guard
Configuring Layer 3 Interfaces

This chapter contains information about how to configure Layer 3 interfaces on the Cisco 7600 series routers.

Note
For complete syntax and usage information for the commands used in this chapter, see these publications:

- The Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

- Layer 3 Interface Configuration Guidelines and Restrictions, page 22-1
- Configuring Subinterfaces on Layer 3 Interfaces, page 22-2
- Configuring IPv4 Routing and Addresses, page 22-3
- Configuring IPX Routing and Network Numbers, page 22-7
- Configuring AppleTalk Routing, Cable Ranges, and Zones, page 22-8
- Configuring Other Protocols on Layer 3 Interfaces, page 22-9

Layer 3 Interface Configuration Guidelines and Restrictions

When configuring Layer 3 interfaces, follow these guidelines and restrictions:

- We recommend that you configure no more than 2,000 Layer 3 VLAN interfaces.
- The ip unnumbered command is supported on Layer 3 VLAN interfaces.
- The [no] ip dhcp route [connected | static] command is supported.
- To support VLAN interfaces, create and configure VLANs and assign VLAN membership to Layer 2 LAN ports. For more information, see Chapter 14, “Configuring VLANs” and Chapter 13, “Configuring VTP.”
- Cisco 7600 series routers do not support:
 - Integrated routing and bridging (IRB)
 - Concurrent routing and bridging (CRB)
 - Remote source-route bridging (RSRB)
• Use bridge groups on VLAN interfaces, sometimes called fall-back bridging, to bridge nonrouted protocols. Bridge groups on VLAN interfaces are supported in software on the MSFC.
• Cisco 7600 series routers do not support the IEEE bridging protocol for bridge groups. Configure bridge groups to use the VLAN-bridge or the DEC spanning-tree protocol.
• Do not configure an IP address on the physical interface if there is a subinterface configured with dot1q native encapsulation on the same physical interface.
• IPV6 support for TCP Adjust MSS is available on 7600 series routers from Release 15.4(01)S onwards.

Configuring Subinterfaces on Layer 3 Interfaces

When configuring Layer 3 subinterfaces, follow these guidelines and restrictions:
• The following features are supported on LAN port subinterfaces:
 – IPv4 unicast forwarding, including MPLS VPN
 – IPv4 multicast forwarding, including MPLS VPN
 – 6PE
 – EoMPLS
 – IPv4 unnumbered
 – Counters for subinterfaces in MIBS and with the show vlans command
 – iBGP and eBGP
 – OSPF
 – EIGRP
 – RIPv1/v2
 – RIPv2
 – ISIS
 – Static routing
 – Unidirectional link routing (UDLR)
 – IGMPv1, IGMPv2, IGMPv3
 – PIMv1, PIMv2
 – SSM IGMPv3lite and URD
 – Stub IP multicast routing
 – IGMP join
 – IGMP static group
 – Multicast routing monitor (MRM)
 – Multicast source discovery protocol (MSDP)
 – SSM
 – IPv4 Ping
 – IPv6 Ping
• Always use the **native** keyword when the VLAN ID is the ID of the IEEE 802.1Q native VLAN. Do not configure encapsulation on the native VLAN of an IEEE 802.1Q trunk without the **native** keyword.

• Because VLAN IDs are global to the router, you can use a VLAN internally, on a subinterface, or with a Layer 3 VLAN interface.
 – You cannot configure an internal VLAN on a subinterface or a Layer 3 VLAN interface.
 – You cannot configure a subinterface VLAN on a Layer 3 VLAN interface.
 – You cannot configure a VLAN used with a Layer 3 VLAN interface on a subinterface.

 Note You cannot configure a VLAN used on one interface or subinterface on another interface or subinterface.

• You can configure subinterfaces with any normal range or extended range VLAN ID in VTP transparent mode. Because VLAN IDs 1 to 1005 are global in the VTP domain and can be defined on other network devices in the VTP domain, you can use only extended range VLANs with subinterfaces in VTP client or server mode. In VTP client or server mode, normal range VLANs are excluded from subinterfaces.

 Note If you configure normal range VLANs on subinterfaces, you cannot change the VTP mode from transparent.

To configure a subinterface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
Router> enable | Enters privileged EXEC mode. |
| **Step 2**
Router# configure terminal | Enters global configuration mode. |
| **Step 3**
Router(config)# interface {{type slot/port/subinterface} | {port-channel port_channel_number.subinterface}} | Selects an interface and enters subinterface configuration mode. |
| **Step 4**
Router(config-subif)# encapsulation dot1q vlan_ID [native] | Configures 802.1Q encapsulation for the subinterface. |
| **Step 5**
Router(config-if)# exit | Returns to global configuration mode. |

1. type = ethernet, fastethernet, gigabitethernet, tengigabitethernet, or ge-wan

Configuring IPv4 Routing and Addresses

For complete information and procedures, refer to these publications:

- *Cisco IOS IP and IP Routing Configuration Guide*, Release 12.2, at this URL:
When configuring IPv4 routing and addresses, follow these guidelines and restrictions:

- For information about the **maximum paths** command, refer to the *Cisco 7600 Series Router Cisco IOS Command Reference* publication.

- The Policy Feature Card (PFC) and any Distributed Feature Cards (DFCs) provide hardware support for policy-based routing (PBR) for route-map sequences that use the **match ip address**, **set ip next-hop**, and **ip default next-hop** PBR keywords.

When configuring PBR, follow these guidelines and restrictions:

- The PFC provides hardware support for PBR configured on a tunnel interface.

- The PFC does not provide hardware support for PBR configured with the **set ip next-hop** keywords if the next hop is a tunnel interface.

- If the MSFC address falls within the range of a PBR ACL, traffic addressed to the MSFC is policy routed in hardware instead of being forwarded to the MSFC. To prevent policy routing of traffic addressed to the MSFC, configure PBR ACLs to deny traffic addressed to the MSFC.

- Any options in Cisco IOS ACLs that provide filtering in a PBR route-map that would cause flows to be sent to the MSFC to be switched in software are ignored. For example, logging is not supported in ACEs in Cisco IOS ACLs that provide filtering in PBR route-maps.

- PBR traffic through switching module ports where PBR is configured is routed in software if the switching module resets. (CSCee92191)

- In Cisco IOS Release 15.2(1)S1 and later releases, for efficient use of hardware resources, enter the **platform ipv4 pbr optimize tcam** command in global configuration mode when configuring multiple PBR sequences (or a single PBR sequence with multiple ACLs) in which more than one PBR ACL contains DENY entries. Starting from Cisco IOS Release 15.2(4)S4, the same global CLI optimizes the use of masks in the ACL TCAM when PBR is applied on MPLS interfaces and VPN-CAM is enabled.

- PBR is not supported with next-hop as MPLS labeled interface. If MPLS is not label imposing, then PBR works fine on hardware. It is not supported on both hardware and software. PBR does not do label imposition. So you cannot use PBR to forward VPN traffic to a remote PE. This applies to both IP PBR and IPv6 PBR.

- When PBR is configured on an interface where MPLS is enabled, and if that interface receives MPLS packets, PBR will not work on those MPLS packets. This restriction applies to both IPv4 and IPv6 PBR.

To configure PBR, refer to the *Cisco IOS Quality of Service Solutions Configuration Guide*, Release 12.2, “Classification,” “Configuring Policy-Based Routing,” at this URL:

To configure IPv4 routing and an IPv4 address on a Layer 3 interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip routing</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# router ip_routing_protocol</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-router)# ip_routing_protocol_commands</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-router)# exit</td>
</tr>
</tbody>
</table>
This example shows how to enable IPv4 Routing Information Protocol (RIP) routing:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTRL/Z.
Router(config)# ip routing
Router(config)# router rip
Router(config-router)# network 10.0.0.0
Router(config-router)# end
Router#
```

This example shows how to configure an IPv4 address on Fast Ethernet port 5/4:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTRL/Z.
Router(config)# interface fastethernet 5/4
Router(config-if)# ip address 172.20.52.106 255.255.255.248
Router(config-if)# no shutdown
Router(config-if)# end
Router#
```

This example uses the `show interfaces` command to display the interface IPv4 address configuration and status of Fast Ethernet port 5/4:

```
Router# show interfaces fastethernet 5/4
FastEthernet5/4 is up, line protocol is up
  Hardware is Cat6K 100Mb Ethernet, address is 0050.f0ac.3058 (bia 0050.f0ac.3058)
  Internet address is 172.20.52.106/29
  MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,
  reliability 255/255, txload 1/255, rxload 1/255
  Encapsulation ARPA, loopback not set
  Keepalive set (10 sec)
  Full-duplex, 100Mb/s
  ARP type: ARPA, ARP Timeout 04:00:00
  Last input 00:00:01, output never, output hang never
  Last clearing of "show interface" counters never
  Queueing strategy: fifo
  Output queue 0/40, 0 drops; input queue 0/75, 0 drops
  5 minute input rate 0 bits/sec, 0 packets/sec
  5 minute output rate 0 bits/sec, 0 packets/sec
  7 packets input, 871 bytes, 0 no buffer
  Received 0 broadcasts, 0 runts, 0 giants, 0 throttles
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>`interface {vlan vlan_ID</td>
</tr>
<tr>
<td></td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>ip address ip_address subnet_mask</code></td>
</tr>
<tr>
<td></td>
<td>Configures the IPv4 address and IPv4 subnet.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>no shutdown</code></td>
</tr>
<tr>
<td></td>
<td>Enables the interface.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>end</code></td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>`show interfaces {{vlan vlan_ID</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

1. `type` = ethernet, fastethernet, gigabitethernet, tengigabitethernet, or ge-wan
Chapter 22 Configuring Layer 3 Interfaces

Configuring IPv4 Routing and Addresses

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 input packets with dribble condition detected
8 packets output, 1658 bytes, 0 underruns
0 output errors, 0 collisions, 4 interface resets
0 babbles, 0 late collision, 0 deferred
0 lost carrier, 0 no carrier
0 output buffer failures, 0 output buffers swapped out

Router#

This example uses the `show ip interface` command to display the detailed configuration and status of Fast Ethernet port 5/4:

Router# show ip interface fastethernet 5/4
FastEthernet5/4 is up, line protocol is up
Internet address is 172.20.52.106/29
Broadcast address is 255.255.255.255
Address determined by setup command
MTU is 1500 bytes
Helper address is not set
Directed broadcast forwarding is disabled
Multicast reserved groups joined: 224.0.0.10
Outgoing access list is not set
Inbound access list is not set
Proxy ARP is enabled
Security level is default
Split horizon is enabled
ICMP redirects are always sent
ICMP unreachables are always sent
ICMP mask replies are never sent
IP fast switching is enabled
IP fast switching on the same interface is disabled
IP Flow switching is disabled
IP Fast switching turbo vector
IP Normal CEF switching turbo vector
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTP/IP header compression is disabled
Probe proxy name replies are disabled
Policy routing is disabled
Network address translation is disabled
WCCP Redirect outbound is disabled
WCCP Redirect excludc is disabled
BGP Policy Mapping is disabled
IP multicast multilayer switching is disabled
IP mls switching is enabled

Router#

This example uses the `show running-config` command to display the interface IPv4 address configuration of Fast Ethernet port 5/4:

Router# show running-config interfaces fastethernet 5/4
Building configuration...

Current configuration:
!
interface FastEthernet5/4
description "Router port"
ip address 172.20.52.106 255.255.255.248
no ip directed-broadcast

Router#
Configuring IPX Routing and Network Numbers

Note
The MSFC supports Internetwork Packet Exchange (IPX) with fast switching.

For complete information and procedures, refer to these publications:

• Cisco IOS AppleTalk and Novell IPX Configuration Guide, Release 12.2, at this URL:

• Cisco IOS AppleTalk and Novell IPX Command Reference, Release 12.2, at this URL:

To configure routing for IPX and to configure IPX on a Layer 3 interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# ipx routing</td>
<td>Enables IPX routing.</td>
</tr>
<tr>
<td>Step 2 Router(config)# router ipx_routing_protocol</td>
<td>Specifies an IP routing protocol. This step might include other commands, such as specifying the networks to route with the network command.</td>
</tr>
<tr>
<td>Step 3 Router(config)# interface {vlan vlan_ID}</td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td>Step 4 Router(config-if)# ipx network [network</td>
<td>Configures the IPX network number. This enables IPX routing on the interface. When you enable IPX routing on the interface, you can also specify an encapsulation type.</td>
</tr>
<tr>
<td>Step 5 Router(config-if)# no shutdown</td>
<td>Enables the interface.</td>
</tr>
<tr>
<td>Step 6 Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 7 Router# show interfaces [{vlan vlan_ID}</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>
| 1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet, or ge-wan

This example shows how to enable IPX routing and assign an IPX network address to interface VLAN 100:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ipx routing
Router(config)# ipx router rip
Router(config-ipx-router)# network all
Router(config-ipx-router)# interface vlan 100
Router(config-if)# ipx network 100 encapsulation snap
Router(config-if)# no shutdown
Configuring AppleTalk Routing, Cable Ranges, and Zones

For complete information and procedures, refer to these publications:

- *Cisco IOS AppleTalk and Novell IPX Configuration Guide*, Release 12.2, at this URL:
- *Cisco IOS AppleTalk and Novell IPX Command Reference*, Release 12.2, at this URL:

To configure routing for AppleTalk, perform this task beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# <code>appletalk routing</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# <code>interface</code> <code>vlan</code> <code>vlan_ID</code></td>
</tr>
<tr>
<td></td>
<td>`</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# <code>appletalk cable-range</code></td>
</tr>
<tr>
<td></td>
<td><code>cable_range</code></td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# <code>appletalk zone</code> <code>zone_name</code></td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# <code>no shutdown</code></td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if)# <code>end</code></td>
</tr>
<tr>
<td>Step 7</td>
<td>Router# <code>show interfaces</code> `</td>
</tr>
<tr>
<td></td>
<td>Router# <code>show appletalk interfaces</code> `</td>
</tr>
<tr>
<td></td>
<td>Router# <code>show running-config interfaces</code> `</td>
</tr>
</tbody>
</table>

1. `type` = `ethernet`, `fastethernet`, `gigabitethernet`, or `tengigabitethernet`, or `ge-wan`

This example shows how to enable AppleTalk routing and assign an AppleTalk cable-range and zone name to interface VLAN 100:

```sh
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# appletalk routing
Router(config)# interface vlan 100
Router(config-if)# appletalk cable-range 100-100
Router(config-if)# appletalk zone Engineering
Router(config-if)# no shutdown
Router(config-if)# end
Router# copy running-config startup-config
```
Configuring Other Protocols on Layer 3 Interfaces

Refer to these publications for information about configuring other protocols on Layer 3 interfaces:

- *Cisco IOS Apollo Domain, VINES, DECnet, ISO CLNS, and XNS Configuration Guide*, Release 12.2, at this URL:

- *Cisco IOS Apollo Domain, VINES, DECnet, ISO CLNS, and XNS Command Reference*, Release 12.2, at this URL:

Configuring GTP-SLB IPv6 Support

This chapter describes how to configure GPRS Tunneling Protocol - Server Load Balancing (GTP-SLB) IPv6 Support on Cisco 7600 series routers.

This chapter contains these sections:
- GTP-SLB Support for IPv6, page 23-1
- GTP-SLB Architecture Overview, page 23-2
- Restrictions and Usage Guidelines, page 23-4
- Configuring GTP-SLB IPv6 Support, page 23-4

GTP-SLB Support for IPv6

The GTP-SLB feature provides the functionality to distribute the Packet Datagram Protocol (PDP) context between Public Data Network (PDN) Gateways (P-GW) and Gateway GPRS Support Nodes (GGSN). A PDP contains subscriber session information and is initiated by:
- A create session request (CSR) in GTPv2.
- A create PDP request in GTPv1 and GTPv0.

The server load balancing module resides in the Supervisor engine of the 7600 chassis and distributes the new calls to various cards based on individual load taking into account various factors such as CPU, memory, and session count. From Release 15.0(01)S, the GTP-SLB feature is extended to support IPv6 traffic in addition to IPv4 traffic.

SLB uses the IPv6 address stored in the real(server or gateway) object and performs IPv6 Forwarding Information Base (FIB) lookup and forwards the IPv6 packet from a Serving GPRS Support Node / Mobility Management Entity (SGSN/MME) to the corresponding GTP-SLB virtual IP address. A group of real servers (know as serverfarm) servicing IPv4 and IPv6 traffic is defined and associated to dual-stack virtual server (containing table mapping for both IPv4 and IPv6 addresses). An IPv4 capable real server is selected for a CSR destined to IPv4 Virtual IP (VIP) address and an IPv6 capable real server is selected for a CSR destined to IPv6 VIP address.

Note: The DFP weight reporting mechanism by the GGSN/PGW uses the IPv4 transport.

Note: Probe messages uses IPv4 as transport.
GTP-SLB Architecture Overview

Figure 23-1 describes GTP-SLB architecture. The three main components (SGSN/MME, GTP-SLB VIP, and GGSN/PGW) of GTP-SLB implementation communicate for:

- Creating PDP session (Create PDP Call Flow).
- Checking the status of Gateway (GTP Echo Call Flow).
- Exchanging notification messages between a SLB and Gateway (GTP Notification Messages).

Create PDP Call Flow

The SGSN/MME initiates the create PDP request with destination address as IPv6 GTP-SLB VIP. The SLB forwards this request to an active IPv6 real (GGSN/PGW) server. The GGSN creates the PDP session and sends the create response directly to SGSN. Figure 23-2 shows the call flow for create PDP session request:
GTP Echo Request Call Flow

To check the status of gateway, SGSN sends an echo to SLB. The SLB responds to the echo with an IPv6 echo response if the virtual server is active and operational. Figure 23-3 shows the GTP echo request call flow:

GTP Notification Messages

This section lists the notification messages exchanged between SLB and gateway:
Restrictions and Usage Guidelines

When configuring GTP-SLB support for IPv6, follow these restrictions and usage guidelines:

- All the IPv4 and IPv6 server farms associated to the same vserver should have the same NAT configuration.
- Hot Standby Router Protocol (HSRP) instances (IPv4 and IPv6) for a client facing interface should have the same HSRP state.
- Long Term Evolution (LTE) gateway should be configured with a dual stack.
- PGW/GGSN gateway should always be configured with a IPv4 and IPv6 VIP address of virtual server. This address is used by gateway for notifications.
- The client commands in SLB virtual server configuration mode are not supported for IPv6 addresses.
- The interface between the IOS SLB and gateway must be configured with both IPv6 and IPv4 addresses (dual stack).

Configuring GTP-SLB IPv6 Support

When configuring IPv6 support for GTP load balancing, you need to:

- Specify the IPv6 address for a real server using the `real` command in SLB server farm configuration mode.
- Specify the IPv6 address and the optional IPv6 prefix for a virtual server using the `virtual` command in SLB virtual server configuration mode.
- Specify the primary IPv6 server farm and the optional backup IPv6 server farm using the `serverfarm` command in SLB virtual server configuration mode.

This process of configuring IPv6 support for GTP-SLB comprises these steps:

- Configuring a Serverfarm
- Configuring a Virtual Server

Configuring a Serverfarm

This section describes how to configure a serverfarm.
SUMMARY STEPS

1. enable
2. configure terminal
3. `ip slb serverfarm server-farm`
4. access interface
5. nat {client pool | server}
6. predictor [roundrobin | leastconns | route-map mapname]
7. probe probe
8. real ipv4-address [ipv6 ipv6-address] [port]
9. faildetect numconns number-of-conns [numclients number-of-clients]
10. maxclients number-of-conns
11. maxconns number-of-conns [sticky-override]
12. reassign threshold
13. retry retry-value
14. weight setting
15. inservice

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# enable</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td><code>ip slb serverfarm server-farm</code></td>
<td>Adds a server farm definition to the IOS SLB configuration and enters server farm configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config)# ip slb serverfarm PUBLIC</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td><code>access interface</code></td>
<td>(Optional) Configures an access interface or subinterface for a server farm.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-slb-sfarm)# access GigabitEthernet 0/1.1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>nat {client pool</td>
<td>server}</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-slb-sfarm)# nat server</td>
<td></td>
</tr>
</tbody>
</table>
Configuring GTP-SLB IPv6 Support

Step 6

predictor [roundrobin | leastconns | route-map mapname]

Example:
```
Router(config-slb-sfarm)# predictor leastconns
```

(Optional) Specifies the algorithm to be used to determine how a real server is selected.

In GPRS load balancing without GTP cause code inspection enabled, you must accept the default setting (the weighted round robin algorithm).

The Home Agent Director functions only with the default setting (the weighted round robin algorithm).

When you use the `predictor route-map` command in SLB server farm configuration mode, no further commands in SLB server farm configuration mode or real server configuration mode are allowed.

Step 7

probe probe

Example:
```
Router(config-slb-sfarm)# probe PROBE1
```

(Optional) Associates a probe with the real server.

Step 8

real ipv4-address [ipv6 ipv6-address] [port]

Example:
```
Router(config-slb-sfarm)# real 10.1.1.1 ipv6 100::10:10:10:1
```

Identifies a real server by IPv4 and IPv6 address and optional port number as a member of a server farm and enters real server configuration mode.

Note In GPRS load balancing, specify the IP addresses (virtual template addresses, for Cisco GGSN) of the real servers performing the GGSN function.

Step 9

faildetect numconns number-of-conns [numclients number-of-clients]

Example:
```
Router(config-slb-real)# faildetect numconns 10 numclients 3
```

(Optional) Specifies the number of consecutive connection failures and, optionally, the number of unique client connection failures, that constitute failure of the real server.

In GPRS load balancing, if a single SGSN is configured in the environment, specify the numclients keyword with a value of 1.

In RADIUS load balancing, for automatic session-based failure detection, specify the numclients keyword with a value of 1.

Step 10

maxclients number-of-conns

Example:
```
Router(config-slb-real)# maxclients 10
```

(Optional) Specifies the maximum number of IOS SLB RADIUS and GTP sticky subscribers that can be assigned to an individual virtual server.

Step 11

maxconns number-of-conns [sticky-override]

Example:
```
Router(config-slb-real)# maxconns 1000
```

(Optional) Specifies the maximum number of active connections allowed on the real server at an instance.
Chapter 23 Configuring GTP-SLB IPv6 Support

Configuring GTP-SLB IPv6 Support

Configuring a Virtual Server

This section describes how to configure a virtual server.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `ip slb vserver virtual-server`
4. `virtual ip-address [netmask [group]] {esp | gre | protocol} or virtual ip-address [netmask [group]] [tcp | udp] [port | any] [service service] or virtual ip-address [netmask [group]] [ipv6 ipv6-address [prefix ipv6-prefix]] [tcp | udp] [port | any] [service service]
5. `serverfarm primary-farm [backup backup-farm [sticky] | [map map-id priority priority]] or serverfarm [primary-farm [backup backup-farm]] [[ipv6-primary ipv6-primary-farm [ipv6-backup ipv6-backup-farm]]] [map map-id priority priority]
6. `access interface [route framed-ip]
7. `advertise [active]
8. `client {ip-address netmask [exclude] | gtp carrier-code [code]}
9. `delay {duration | radius framed-ip duration}

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 12 <code>reassign threshold</code></td>
<td>(Optional) Specifies the threshold of consecutive unacknowledged synchronize sequence numbers (SYNs) or Create PDP requests that, if exceeded, result in an attempt to connect to a different real server.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-slb-real)# reassign 2</td>
</tr>
<tr>
<td>Note</td>
<td>In GPRS load balancing, you must specify a reassign threshold less than the N3-REQUESTS counter value of SGSN.</td>
</tr>
<tr>
<td>Step 13 <code>retry retry-value</code></td>
<td>(Optional) Specifies the time interval (in seconds) to wait between the detection of a server failure and the next attempt to connect to the failed server.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-slb-real)# retry 120</td>
</tr>
<tr>
<td>Step 14 <code>weight setting</code></td>
<td>(Optional) Specifies the real server workload capacity relative to other servers in the server farm. If Dynamic Feedback Protocol (DFP) is used, the static weights defined using the weight command in server farm configuration mode are overridden by the weights calculated by DFP. If DFP is removed from the network, IOS SLB reverts to the static weights.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-slb-real)# weight 24</td>
</tr>
<tr>
<td>Step 15 <code>inservice</code></td>
<td>Enables the real server for use by IOS SLB.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-slb-real)# inservice</td>
</tr>
</tbody>
</table>
10. gtp notification cac [reassign-count]
11. gtp session
12. hand-off radius duration
13. idle [asn request duration | asn msid msid | gtp imsi duration [query [max-queries]]] | gtp request duration | ipmobile request duration | radius {request | framed-ip} duration
14. replicate casa listen-ip remote-ip port [interval] [password [encrypt] secret-string timeout]
15. replicate interval interval
16. replicate slave
17. sticky {duration [group group-id] [netmask netmask] | asn msid [group group-id] | gtp imsi [group group-id] | radius calling-station-id | radius framed-ip [group group-id] | radius username [msid-cisco] [group group-id]}
18. synguard syn-count interval
19. inservice [standby group-name] [active]

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>ip slb vserver virtual-server</td>
<td>Identifies a virtual server and enters virtual server configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip slb vserver PUBLIC_HTTP</td>
<td></td>
</tr>
</tbody>
</table>
Command Purpose

| Step 4 | virtual ipv4-address [ipv4-netmask <group>] [ipv6 [ipv6-address [ipv6-prefix ipv6-prefix]]] [tcp | udp] [port | any] [service service] |
|--------|---|
| **Example:** | Router(config-slb-vserver)# virtual 10.0.0.1 ipv6 100::100:1 udp 0 service gtp |
| **Purpose:** | Specifies the following:
- Virtual server IP address
- IPv6 address (including the type of connection)
- Optional TCP or User Datagram Protocol (UDP) port number,
- Internet Key Exchange (IKE) or Wireless Session Protocol (WSP) setting
- Service coupling.
For GPRS load balancing:
- Specify a virtual GGSN IP address as the virtual server, and specify the udp keyword option.
- To load-balance GTP v1 and GTP v2 sessions, specify port number 2123, if the GGSNs and SGSNs are in compliance with the ETSI standard, or specify port number 0 or any to configure an all-port virtual server (In this case, the virtual server accepts flows destined for all ports).
- To load-balance GTP v0 sessions, specify port number 3386, if the GGSNs and SGSNs are in compliance with the ETSI standard, or specify port number 0 or any to configure an all-port virtual server. |

<table>
<thead>
<tr>
<th>Step 5</th>
<th>serverfarm [primary-farm [backup backup-farm]] [[ipv6-primary ipv6-primary-farm [ipv6-backup ipv6-backup-farm]]] [map map-id priority priority]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-slb-vserver)# serverfarm SF backup BACKUPSF ipv6-primary V6SF ipv6-backup BACKUPV6SF map 1 priority 1</td>
</tr>
</tbody>
</table>
| **Purpose:** | Associates a real server farm with a virtual server, and optionally configures a backup server farm.
For GPRS load balancing, if the same real server is defined in two or more server farms, each server farm must be associated with a different virtual server.
You can associate more than one server farm to a GTP virtual server by configuring more than one serverfarm command, each with a unique map ID and a unique priority. |

<table>
<thead>
<tr>
<th>Step 6</th>
<th>access interface [route framed-ip]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-slb-vserver)# access Vlan20 route framed-ip</td>
</tr>
<tr>
<td>Purpose:</td>
<td>(Optional) Enables framed-IP routing to inspect the ingress interface.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 7</th>
<th>advertise [active]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>Router(config-slb-vserver)# advertise</td>
</tr>
<tr>
<td>Purpose:</td>
<td>(Optional) Controls the installation of a static route to the Null or zero interface for a virtual server address.</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8
client {ip-address netmask [exclude]</td>
<td>gtp carrier-code [code]}</td>
</tr>
<tr>
<td>Example:
Router(config-slb-vserver)# client 10.4.4.0 255.255.255.0</td>
<td></td>
</tr>
<tr>
<td>Step 9
delay {duration</td>
<td>radius framed-ip duration}</td>
</tr>
<tr>
<td>Example:
Router(config-slb-vserver)# delay 30</td>
<td></td>
</tr>
<tr>
<td>Step 10
gtp notification cac [reassign-count]</td>
<td>(Optional) Limits the number of times IOS SLB can reassign a session to a new real server for GGSN-IOS SLB messaging.</td>
</tr>
<tr>
<td>Example:
Router(config-slb-vserver)# gtp notification cac 5</td>
<td></td>
</tr>
<tr>
<td>Step 11
gtp session</td>
<td>(Optional) Enables IOS SLB to create GTP load-balancing sessions. This is the default setting.
To enable sticky-only load balancing for GTP, use the no form of this command.
If you enable sticky-only load balancing, you must also enable sticky connections for the virtual server using the sticky (virtual server) command.</td>
</tr>
<tr>
<td>Example:
Router(config-slb-vserver)# no gtp session</td>
<td></td>
</tr>
<tr>
<td>Step 12
hand-off radius duration</td>
<td>(Optional) Changes the duration of time IOS SLB waits for an ACCT-START message from a new Mobile IP foreign agent in the event of a foreign agent hand-off.</td>
</tr>
<tr>
<td>Example:
Router(config-slb-vserver)# hand-off radius 30</td>
<td></td>
</tr>
<tr>
<td>Step 13
idle [asn request duration</td>
<td>asn msid msid</td>
</tr>
<tr>
<td>Example:
Router(config-slb-vserver)# idle 120</td>
<td>Note: For GPRS load balancing without GTP cause code inspection enabled, specify an idle timer greater than the longest possible interval between PDP context requests on the SGSN.</td>
</tr>
</tbody>
</table>
Configuring GTP-SLB IPv6 Support

Command

Step 14

```
replicate casa listen-ip remote-ip port
[interval]
[password [encrypt] secret-string
timeout]
```

Example:

Router(config-slb-vserver)# replicate
casa
10.10.10.11 10.10.11.12 4231

- **Purpose**: (Optional) Configures a stateful backup of IOS SLB decision tables to a backup switch.
- **Note**: The Home Agent Director does not support this command.

If you specify the service `gtp` keyword on the virtual command, and you do not specify the `sticky` command with the `gtp imsi` keyword, the `replicate casa` command is not supported because sessions are not persistent, and there is nothing to replicate.

Step 15

```
replicate interval interval
```

Example:

Router(config-slb-vserver)# replicate interval 20

- **Purpose**: (Optional) Sets the replication delivery interval for an IOS SLB virtual server.
- **Note**: The Home Agent Director does not support this command.

If you specify the service `gtp` keyword on the virtual command, and you do not specify the `sticky` command with the `gtp imsi` keyword, the `replicate casa` command is not supported because sessions are not persistent, and there is nothing to replicate.

Step 16

```
replicate slave
```

Example:

Router(config-slb-vserver)# replicate slave

- **Purpose**: (Optional) Enables stateful backup of redundant route processors for an IOS SLB virtual server.
- **Note**: The Home Agent Director does not support this command.

If you specify the service `gtp` keyword on the virtual command, and you do not specify the `sticky` command with the `gtp imsi` keyword, the `replicate casa` command is not supported because sessions are not persistent, and there is nothing to replicate.

Step 17

```
sticky {duration [group group-id] 
[netmask netmask] | asn msid [group
 group-id] | gtp imsi [group group-id] | 
radius calling-station-id | radius 
framed-ip [group group-id] | radius 
username [msid-cisco] [group group-id]}
```

Example:

Router(config-slb-vserver)# sticky 60

- **Purpose**: (Optional) Specifies that the connections from the same client use the same real server, until the interval between client connections does not exceed the specified duration.

In VPN server load balancing, specify a duration of at least 15 seconds.

GPRS load balancing and the Home Agent Director do not support this command.
Examples

This example configures the serverfarm to accept only IPv6 addresses:

```bash
mwtcL05-SLB1(config)#ip slb map 1 gtp
mwtcL05-SLB1(config-slb-map-gtp)#apn abc.com
mwtcL05-SLB1(config-slb-map-gtp)#apn 456.com
mwtcL05-SLB1(config-slb-map-gtp)#apn gprs.cisco.com
mwtcL05-SLB1(config-slb-map-gtp)#ip slb map 2 gtp
mwtcL05-SLB1(config-slb-map-gtp)#apn 123.com
mwtcL05-SLB1(config-slb-map-gtp)#apn xyz.com
mwtcL05-SLB1(config-slb-map-gtp)#apn gprs_intdhcp.cisco.com
mwtcL05-SLB1(config-slb-map-gtp)#end
mwtcL05-SLB1(config)#ip slb serverfarm GGSN_FARM1
mwtcL05-SLB1(config-slb-real)#weight 1
mwtcL05-SLB1(config-slb-real)#reassign 0
mwtcL05-SLB1(config-slb-real)#inservice
mwtcL05-SLB1(config-slb-real)#real 22.22.22.1 ipv6 2022::22:22:22:1
mwtcL05-SLB1(config-slb-real)#weight 1
mwtcL05-SLB1(config-slb-real)#reassign 0
mwtcL05-SLB1(config-slb-real)#inservice
mwtcL05-SLB1(config-slb-real)#end
mwtcL05-SLB1(config)#conf t
mwtcL05-SLB1(config)#ip slb vserver GGSN_SERVER1
mwtcL05-SLB1(config-slb-vserver)#virtual 20.20.20.1 ipv6 2020::20:20:20:1 udp 2123 service gtp
mwtcL05-SLB1(config-slb-vserver)#serverfarm ipv6-primary GGSN_FARM1 map 1 priority 1
mwtcL05-SLB1(config-slb-vserver)#sticky gtp imsi group 1
mwtcL05-SLB1(config-slb-vserver)#gtp notification cac 2
mwtcL05-SLB1(config-slb-vserver)#idle 180
mwtcL05-SLB1(config-slb-vserver)#inservice
mwtcL05-SLB1(config-slb-vserver)#end
```

This example configures the serverfarm to accept IPv4 and IPv6 addresses:

```bash
mwtcL05-SLB1(config)#ip slb map 1 gtp
mwtcL05-SLB1(config-slb-map-gtp)#apn abc.com
mwtcL05-SLB1(config-slb-map-gtp)#apn 456.com
mwtcL05-SLB1(config-slb-map-gtp)#apn gprs.cisco.com
mwtcL05-SLB1(config-slb-map-gtp)#ip slb map 2 gtp
mwtcL05-SLB1(config-slb-map-gtp)#apn 123.com
mwtcL05-SLB1(config-slb-map-gtp)#apn xyz.com
mwtcL05-SLB1(config-slb-map-gtp)#apn gprs_intdhcp.cisco.com
```
mwtcL05-SLB1(config-slb-map-gtp)#end
mwtcL05-SLB1(config)#ip slb serverfarm GGSN_FARM1
mwtcL05-SLB1(config-slb-sfarm)#real 21.21.21.1
mwtcL05-SLB1(config-slb-real)#weight 1
mwtcL05-SLB1(config-slb-real)#reassign 0
mwtcL05-SLB1(config-slb-real)#inservice
mwtcL05-SLB1(config-slb-real)#real 22.22.22.1
mwtcL05-SLB1(config-slb-real)#weight 1
mwtcL05-SLB1(config-slb-real)#reassign 0
mwtcL05-SLB1(config-slb-real)#inservice
mwtcL05-SLB1(config-slb-real)#end
mwtcL05-SLB1(config)#ip slb serverfarm GGSN_FARM2
mwtcL05-SLB1(config-slb-real)#weight 1
mwtcL05-SLB1(config-slb-real)#reassign 0
mwtcL05-SLB1(config-slb-real)#inservice
mwtcL05-SLB1(config-slb-real)#real 22.22.22.1 ipv6 2022::22:22:22:1
mwtcL05-SLB1(config-slb-real)#weight 1
mwtcL05-SLB1(config-slb-real)#reassign 0
mwtcL05-SLB1(config-slb-real)#inservice
mwtcL05-SLB1(config-slb-real)#end

mwtcL05-SLB1(config)#conf t
mwtcL05-SLB1(config)#ip slb vserver GGSN_SERVER1
mwtcL05-SLB1(config-slb-vserver)#virtual 20.20.20.1 ipv6 2020::20:20:20:1 udp 2123 service gtp
mwtcL05-SLB1(config-slb-vserver)#serverfarm GGSN_FARM1 ipv6-primary GGSN_FARM2 map 1
priority 1
mwtcL05-SLB1(config-slb-vserver)#sticky gtp imsi group 1
mwtcL05-SLB1(config-slb-vserver)#gtp notification cac 2
mwtcL05-SLB1(config-slb-vserver)#idle 180
mwtcL05-SLB1(config-slb-vserver)#inservice
mwtcL05-SLB1(config-slb-vserver)#end

Verification

Run these commands to verify GTP-SLB IPv6 configuration:

- show ip slb real detail command to view information about real:

 mwtcL05-SLB1#show ip slb real detail

 21.21.21.1, GGSN_FARM1, state = OPERATIONAL, type = server
 ipv6 = 2021::21:21:21:1
 conns = 0, dummy_conns = 0, maxconns = 4294967295
 weight = 1, weight(admin) = 1, metric = 0, remainder = 0
 reassign = 3, retry = 60
 failconn threshold = 8, failconn count = 0
 failclient threshold = 2, failclient count = 0
 total conns established = 0, total conn failures = 0
 server failures = 0

 22.22.22.1, GGSN_FARM1, state = OPERATIONAL, type = server
 ipv6 = 2022::22:22:22:1
 conns = 0, dummy_conns = 0, maxconns = 4294967295
 weight = 1, weight(admin) = 1, metric = 0, remainder = 0
 reassign = 3, retry = 60
 failconn threshold = 8, failconn count = 0
 failclient threshold = 2, failclient count = 0
 total conns established = 0, total conn failures = 0
 server failures = 0

- show ip slb sticky gtp imsi ipv6 command to view brief GTP-SLB IPv6 configuration:
Configuring GTP-SLB IPv6 Support

Command Output

```plaintext
mwtcL05-SLB1# show ip slb sticky gtp imsi ipv6
IMSI             Real             Ver  Group Id vs_index refcount NSAPIs
--------------------------------------------------------------------------
12345678901234F6 21.21.21.1       1    1        7        1        0
2021::21:21:21:1
12345678901234F5 22.22.22.1       1    1        7        1        0
2022::22:22:22:1

mwtcL05-SLB1# show ip slb stats
Pkts via normal switching:     0
Pkts via special switching:    2
Pkts via slb routing:          0
Pkts Dropped:                  0
Pkts DMA punted:               0
Connections Created:           2
Connections Established:       2
Connections Destroyed:         0
Connections Reassigned:        0
Zombie Count:                  0
Connections Reused:            0
Connection Flowcache Purges:   0
Failed Connection Allocs:      0
Failed Real Assignments:       0
RADIUS framed-ip Sticky Count: 0
RADIUS username Sticky Count:  0
RADIUS cstn-id Sticky Count:   0
GTP imsi Sticky Count:         2
ASN msid sticky count:         0
ASN NAI count:                 0
Failed Correlation Injects:    0
Pkt fragments drops in ssv:    0
```

- **show ip slb session gtp ipv6** command to view session information:

  ```plaintext
  mwtcL05-SLB1# show ip slb session gtp ipv6
  vserver = GGSN_SERVER1, key = 111222334444100
  client = 2002::77:77:77:3
  real = 3003::21:21:21:1
  state = SLB_IPV6_GTP_ESTAB

  vserver = GGSN_SERVER1, key = 111222334444200
  client = 2002::77:77:77:3
  real = 3003::22:22:22:1
  state = SLB_IPV6_GTP_ESTAB

  vserver = GGSN_SERVER1, key = 111222334444300
  client = 2002::77:77:77:3
  real = 3003::23:23:23:1
  state = SLB_IPV6_GTP_ESTAB

  vserver = GGSN_SERVER1, key = 111222334444400
  client = 2002::77:77:77:3
  real = 3003::24:24:24:1
  state = SLB_IPV6_GTP_ESTAB

  vserver = GGSN_SERVER1, key = 111222334444500
  client = 2002::77:77:77:3
  real = 3003::21:21:21:1
  state = SLB_IPV6_GTP_ESTAB
  ```

- **show ip slb stats** command to view SLB statistics:

  ```plaintext
  mwtcL05-SLB1# show ip slb stats
  ```
Configuring GTP-SLB IPv6 Support

Pktks via normal switching: 0
Pkts via special switching: 2
Pkts via slb routing: 0
Pkts Dropped: 0
Pktks DMA punted: 0
Connections Created: 2
Connections Established: 2
Connections Destroyed: 0
Connections Reassigned: 0
Zombie Count: 0
Connections Reused: 0
Connection Flowcache Purges: 0
Failed Connection Allocs: 0
Failed Real Assignments: 0
RADIUS framed-ip Sticky Count: 0
RADIUS username Sticky Count: 0
RADIUS csn-id Sticky Count: 0
GTP imsi Sticky Count: 2
ASN msid sticky count: 0
ASN NAI count: 0
Failed Correlation Injects: 0
Pktk fragments drops in ssv: 0

• show ip slb vservers name GGSN_SERVER2 command to view brief virtual server configuration:

mwtcL05-SLB1# show ip slb vservers name GGSN_SERVER2

<table>
<thead>
<tr>
<th>slb vserver</th>
<th>prot</th>
<th>virtual</th>
<th>state</th>
<th>conns</th>
<th>interface(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGSN_SERVER2</td>
<td>UDP</td>
<td>20.20.20.1/32:2123</td>
<td>INSERVICE</td>
<td>0</td>
<td>any</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2020::20:20:1/128</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• show ip slb vservers name GGSN_SERVER2 detail command to detailed virtual server configuration:

mwtcL05-SLB1# show ip slb vservers name GGSN_SERVER2 detail

GGSN_SERVER2, state = OPERATIONAL, v_index = 10, interface(s) = <any>
virtual = 3.3.3.3/32:2123, UDP, service = GTP, advertise = TRUE
ipv6 = 3:3:3:3:3:3:3:3/128
serverfarm maps:
map 1: priority = 1, serverfarm = SF, backup serverfarm= SF1
ipv6 serverfarm = SF2 ipv6 backup serverfarm = SF3
serverfarm = SF, backup serverfarm = SF1
ipv6 serverfarm = SF2, ipv6 backup serverfarm = SF3
backup_serverfarm_hits = 0
delay = 10, idle = 3600
gtp: request idle = 30
slb notification retry = 2
gtp sticky query: <disabled>
max retries: 0
sticky: <none>
group id = 0
synguard counter = 0, synguard period = 0
conns = 0, total conns = 0, syns = 0, syn drops = 0
standby group = None

Troubleshooting GTP-SLB IPv6 Support Configuration

This section describes how to troubleshoot GTP-SLB IPv6 support configuration. These are some troubleshooting scenarios:

• Unable to configure least connections attribute(Leastconns) on GTP-SLB.
Leastconns is not supported on GTP-SLB as the loadbalancer does not track the number of open PDP sessions in a real server. SLB only load balances the create PDP requests and maintains a session object for each PDP request to ensure request retransmissions are delivered to the assigned real server.

- The IOS SLB sticky connections are not functioning as expected.

 Complete these steps to verify a valid sticky connection:
 - Reconfigure all the sticky connections.
 - Start a client connection.
 - Run the `show ip slb realss detail` and `show ip slb conns` commands.
 - Check the real server connection counts. Note that the new client connection is assigned to the real server with increased counts.
 - Run the `show ip slb sticky` command to display the sticky relationships stored by IOS SLB.
 - Terminate the connection.
 - Check if the real server connection decreased by a single count.
 - Restart the connection within the sticky timeout value.
 - Run the `show ip slb conns` command.
 - Check the real server connection count again and verify that the sticky connection is assigned to the same real server.

- Server failures are not detected correctly.

 Complete these steps to check the servers:
 - Check if the number of clients is very less, reduce the numclients value on the faildetect numconns (real server) to an optimum value.
 - Run the `show ip slb realss detail` command to view the status of the real servers.
 - Check the status and connection counts of the real servers. A failed server shows one of the following statuses: FAILED, TESTING, or READY_TO_TEST.

Note

When a real server fails, connections that are assigned but not established (no SYN or ACK is received) are reassigned to another real server on the first inbound SYN after the reassign threshold. However, connections already established to a real server are forwarded to the same real server.

Note

For weighted least connections, a new real server starts slowly so that it is not overloaded with new connections. (See the Slow Start section for more information.) The connection count also show dummy connections on the new real server, which IOS SLB uses to artificially inflate the connection counts for the real server during the slow start period.

- There is no improvement in failure detection when both faildetect inband and Internet Control Message Protocol (ICMP) probes are configured on a real server.

 When a real server is configured with both the ICMP probes and faildetect inband, the faildetect takes precedence. The ICMP probes are health probes, the state of the ICMP probes remain OPERATIONAL as long as the physical interfaces of a real server are accessible. The
faildetectinband detects the failure of an application serving a client request on a real server. The ICMP probes transit states when a physical interface failure occurs. It is recommended to have either an ICMP probe or faildetect enabled for real server failure detection.

- The **no inservice** command does not disable a resource immediately
 The **no inservice** command allows the connection to complete the process before disabling the resource. To stop all the existing connections for an entire firewall farm or virtual server immediately, use the **clear ip slb connections** command.

- The vserver status, active or standby chassis, configured with GTPLB and HSRP is shown for both the chassis. At an instance both the chassis are shown as active or standby.

 Check the configuration for these issues:
 - HSRP interface should be configured with a unique group number if more than one HSRP instances are configured.
 - HSRP group name is casesensitive and should be unique.

- You can load-balance a packet through layer 3 and non-layer 2 adjacent connections in the Nat server serverfarm configuration.

- Dispatched mode does not function in the GGSN(PGW).
 Verify that the GGSN is configured with the VIP address as the loopback.

- Notification messages do not reach the SLB in directed mode
 Verify that the virtual server address with next hop IP address is configured on the gateway.

- Unable to allocate the MS address, though the address pool is configured in GGSN.
 The address specified while creating the PDP request from SGPRS might not match the address in the pool defined.
CHAPTER 24

IP Subscriber Awareness over Ethernet

This chapter provides information about how various Cisco 7600 features are being scaled to support the IP Subscriber Awareness over Ethernet feature (sometimes referred to as IP subscriber aggregation), which was introduced for the Cisco 7600 series router in Cisco IOS Release 12.2SRB. From Cisco IOS Release 12.2(33)SRE onwards, the ISG functionality in distributed IP and PPPoE sessions on Cisco 7600 series routers is supported on Ethernet Services Plus (ES+) access-facing line cards. From Cisco IOS Release 12.2(33)SRE8 onwards, Intelligent Services Gateway (ISG) will be disabled for ES+ Low Queue cards.

This chapter contains the following sections:

- **Overview**, page 24-1
- **IP Subscriber Session Features**, page 24-4
- **IP Subscriber Awareness over Ethernet Configuration Guidelines**, page 24-27
- **Configuring IP Subscriber Awareness over Ethernet**, page 24-28
- **Command Reference**, page 24-32

Note: Effective with Cisco IOS Release 15.2(4)S, the Broadband (IP and PPPoE sessions) support is deprecated in Cisco 7600 routers.

Overview

IP Subscriber Awareness over Ethernet is designed for use in an architecture in which the Cisco 7600 router is used as a DSLAM Gigabit Ethernet (GE) aggregator. In this scenario, the DSLAM is connected to the router through a physical port that can carry data for multiple VLANs.

The IP Subscriber Awareness over Ethernet feature supports two models of carrying services between the subscriber and the DSLAM:

- **Per-service VLAN model**—One or more ATM VCs is used to carry each type of service (video, voice, and data) between the subscriber and the VLAN.
- **Per-subscriber VLAN model**—A single ATM VC is used to carry all traffic (video, voice, and data) between the subscriber and the DSLAM.

Figure 24-1 shows an example of a wireline Ethernet architecture where IP Subscriber Awareness over Ethernet might be used.
Overview

Figure 24-1 Wireline Ethernet Architecture

The following sections provide more details about the IP Subscriber Awareness over Ethernet feature:

- Benefits, page 24-2
- IP Subscriber Interfaces, page 24-3
- IP Subscriber Session, page 24-3
- IP Subscriber Session Features, page 24-4

Benefits

The IP Subscriber Awareness over Ethernet feature provides the following benefits:

- IP session termination and IP session aggregation on the Cisco 7600 router.
- Support for up to 32000 IP subscribers on a router (with a maximum of 8000 subscribers on a single Cisco 7600 SIP-400).
- Interface scalability to support up to 32000 interfaces on the router.
 - Support for up to 1000 subinterfaces on each physical port.
 - Support for up to 8000 subinterfaces on each Cisco 7600 SIP-400.
- DHCP and Radius accounting for IP subscribers. Support for 256 DHCP pools, and DHCP can handle up to 150 calls per second for IP subscriber sessions.
- QoS support for individual IP subscribers (up to 32000 subscribers), including: classification (IP prec and DSCP), policing, shaping, marking, priority queues, and weighted random early detection (WRED).
- Per-subscriber statistics and accounting information.
Overview

- Support for up to 96000 ARP entries.
- RPR, RPR+, stateful switchover (SSO), and non-stop forwarding (NSF) are provided for the IP subscribers.
- Control plane protection (CoPP) protects against denial of service (DOS) and other attacks.

IP Subscriber Interfaces

Cisco IOS Release 12.2SRB introduces a new type of interface to represent IP subscribers:

- **Access**—A subinterface that represents an individual IP subscriber. The access subinterface can be configured for .1Q or Q-in-Q encapsulation.

 You apply traffic shaping and policing policies (including HQoS) to the access interface to define the amount of bandwidth to allocate for different types of subscriber traffic (for example, voice and data).

 Note You configure the access interface as a subinterface of the physical interface that the IP subscriber is connected to.

Example

The following example shows an access subinterface on the interface:

```
interface GigabitEthernet 1/0/0.100 access
   ip vrf forwarding vrf0
   encapsulation dot1q 100
```

- On a ES+ line card, this feature is supported on the access interfaces and non-access interfaces (limited to 500 subinterfaces).

IP Subscriber Session

An IP subscriber session exists while an IP subscriber is using its shared VLAN to access the network. To begin an IP subscriber session, the router must assign an IP address to the subscriber’s access subinterface. You can either assign a static IP address to the subinterface, or you can allow DHCP to assign an address. Following are some notes about both methods of assigning an IP address:

- **Static IP address**—If you assign a static IP address to the access subinterface, the IP subscriber session is considered to always be Up. We recommend that you do not configure many IP subscribers with static IP addresses.

- **DHCP-assigned IP address**—You can allow DHCP to assign an IP address for the subscriber session. An IP subscriber session begins when the router receives a DHCP discover packet for the subscriber and an IP address is assigned for the subscriber. The session is terminated when the subscriber receives a DHCP release message and its IP address is released. If the subscriber session is VRF aware (that is, if the subscriber belongs to a VRF), the VRF-aware DHCP pool must be used.

 Note The router can be operating as a DHCP server or DHCP relay device.

 To configure an IP subscriber as part of a VRF (that is, to make the subscriber session VRF aware), configure the VRF under the access subinterface.
This feature supports the following sessions in a ES+ line card:

- IP sessions (routed and L2-connected)
- DHCP integration with IP sessions
- Static IP subnet sessions
- Source IP address and MAC address sessions (IP sessions)
- PPPoE supported in the PPP Termination and Aggregation (PTA) mode
- PPPoEoVLAN supported in the PTA mode
- PPPoEoQinQ supported in the PTA mode
- PPPoEoDot1Q supported in the PTA mode

IP Subscriber Session Features

The following features are provided for IP subscriber sessions:

- **Per-subscriber control plane policing and protection (CoPP)**—Provides protection against denial of service (DOS) and other attacks for individual subscribers. When an attack occurs, the router notifies the network administrator and begins policing the malicious traffic. This feature allows policing of ARP, DHCP, and ICMP traffic. For information about how CoPP operates on the Cisco 7600 SIP-400, see: http://www.cisco.com/en/US/products/hw/routers/ps368/module_installation_and_configuration_guides_chapter09186a0080440138.html#wp1351662

- **Per-subscriber security ACL**—Allows you to apply security access control lists (ACLs) to individual subscribers. For information about how this feature works on the Cisco 7600 SIP-400, see: http://www.cisco.com/en/US/products/hw/routers/ps368/module_installation_and_configuration_guides_chapter09186a0080440138.html#wp1351562

- **Per-subscriber Radius accounting**—Enables system administrators to track IP session activity for individual subscribers, and to extract subscriber accounting records periodically. Per-subscriber Radius accounting works with DHCP IP address assignment, and improves the authentication, authorization, and accounting (AAA) of broadband service delivery. For information about this feature, see its feature description at: http://www.cisco.com/univercd/cc/td/doc/product/software/ios122sr/newft/122srb33/ipradacc.htm

- **Lawful intercept**—Enables a Law Enforcement Agency (LEA) to perform electronic surveillance on a subscriber as authorized by a court order. To assist in the surveillance, the service provider intercepts the subscriber’s traffic as it passes through one of their routers, and sends a copy of the intercepted traffic to the LEA without the subscriber’s knowledge. For information about this feature, see the documents at the following URLs: http://www.cisco.com/univercd/cc/td/doc/product/core/cis7600/76licfg/index.htm http://www.cisco.com/en/US/products/hw/routers/ps368/module_installation_and_configuration_guides_chapter09186a0080440138.html#wp1351508

- **Quality of Service**—Standard QoS features are supported for individual subscribers (access subinterfaces), including classification, marking, policing, shaping, priority queuing, and weighted random early detection (WRED). For information about recommended QoS settings for IP Subscriber Awareness over Ethernet, see the following section (“QoS Recommendations”). For information about QoS features on the Cisco 7600 SIP-400, see the information about QoS features in the “Cisco 7600 SIP-400 Features” section of the document at this URL:
In addition to standard QoS features, the following new Cisco 7600 SIP-400 QoS features are being introduced to support the deployment of broadband services:

- Dual-priority queues—Provide two priority queues for voice and video traffic for 4000 to 8000 subscribers. You can assign a different priority level to each traffic class to configure the router to treat both types of traffic as priority traffic but to handle them differently (for example, by giving voice traffic precedence over video traffic).

- Bandwidth-remaining ratio (BRR)—Allows service providers to prioritize subscriber traffic during periods of congestion. You can use the Distribution of Remaining Bandwidth Using Ratio feature to specify the relative weight of a subinterface or class queue with respect to other subinterfaces or queues. For information about this feature, see the “Bandwidth-Remaining Ratio Recommendations” section on page 24-21.

- Priority-rate propagation—Takes the priority level and traffic rate assigned to priority traffic in a low-level queue and applies that level and rate to priority traffic at all higher-level queues in the queue hierarchy, even if those queues are not specifically configured for minimum rates or priority. For more information, see the “Priority-Rate Propagation Recommendations” section on page 24-25.

IP Address Assignment

- **DHCP Based IP address assignment:** If DHCP is being used to assign IP addresses, and the IP address that is assigned by DHCP is correct for the service domain, ISG does not have to be involved in the assignment of an IP address for the subscriber. If the IP address that is assigned by DHCP is not correct for the service domain, or if the domain changes because of a VRF transfer, ISG can be configured to influence the DHCP IP address assignment.

- **Static IP address assignment:** If a subscriber’s static IP address is configured correctly for the service domain, ISG is not involved in the assignment of an IP address for the subscriber.

- **IP subnet:** For IP subnet sessions, the IP subnet is specified in the user profile.

IP Subnet (IP Range) Sessions

A client subnet identifies a IP Subnet session and applies uniform edge processing to packets associated with a particular IP subnet. IP Subnet sessions are hosted for clients directly connected or over multiple hops. The following functionalities are not supported on IP Subnet Sessions, but are supported on IP Sessions:

- **DHCP session initiation not supported**
- **No Source MAC address session support**
- **No Dynamic VPN selection support**
IP Interface Sessions

In an IP Interface session, all the traffic received on a particular physical or logical interface is collated. However, dynamic VRF transfer is not supported in an IP interface session and, VRF transfer can only be used with static VRF configuration. Irrespective of the subscriber logged in, a session is created by default.

PPPoE and IPoE Session Support on Port Channel (1:1 Redundancy)

The 1:1 redundancy on a port channel coupled with Link Aggregation Control Protocol (LACP) dynamically handles the member links in a port channel bundle. A port channel has two members, of which one member is active and the other is in standby or redundant mode. The member ports can be across line cards, but must originate from Ethernet Services Plus (ES+) line card. At any given point of time, one link is on the physical mode.

The following sessions support 1:1 redundancy in a ES+ line card:

- IP Subnet sessions
- IP Interface sessions
- PPPoEoX sessions.

PPPoE and IPoE Session Support on QinQ Subinterfaces with IEEE 802.1AH Customer Ethertype

This feature enables you to implement PPPoE and IPoE session (ISG functions) on QinQ subinterfaces that are configured with custom ethertype. The custom ethertype implemented on the main interface is inherited by all the subinterfaces. To implement this feature, use `dot1q tunnel ethertype` command on main interface for the respective QinQ subinterfaces.

If the outer VLAN tag on a PPPoE or IPoE session packet matches the custom ethertype VLAN settings on the QinQ subinterface, the packets are accepted otherwise the packets are dropped. You can set the outer VLAN tag to the following values:

- 0x9100
- 0x9200
- 0x8100
- 0x88a8

The PPPoE or IPoE session will not come up if there is mismatch in the ether type between ISG and the client. For example, if the outer VLAN tag on a packet is set to 0x9100 and the interface is configured using custom ethertype to accept only packets with 0x88a8 VLAN tag, the packet will be dropped in the QinQ subinterface. Figure x-x shows an ethernet frame format for QinQ (need the figure).

You can create a QinQ subinterface using the access keyword while defining an interface. The following code shows how to define an interface with access keyword, create a VLAN QinQ subinterface, and enable PPPoE session:

```plaintext
Router> enable
Router# configure terminal
Router(config)# interface gigabitethernet 1/0/0
Router(config-if)# dot1q tunneling ethertype 0x9100
Router(config-if)# interface gigabitethernet 1/0/0.100 access
Router(config-if-subif)# encapsulation dot1q 100 second-dot1q 200
```
Restrictions and Usage Guidelines

Follow these restrictions and usage guidelines when you configure an IP or a PPPoE sessions on an ES+ linecard:

- IP Sessions are not supported on ambiguous VLANs.
- Radius proxy is not supported for the IP Sessions.
- IP and MAC address spoof Prevention is not supported on subinterfaces on a ES+ linecard unlike on a SIP400 line card.
- IP sessions are supported on Link Aggregation (Ether-Channel) interfaces. LAG etherchannel interfaces are supported for links on the same and across line cards.
- PPPoE sessions are supported on ambiguous VLAN interfaces and VLAN ranges.
- There are no drop counters to identify the number of packets dropped due to custom ethertype mismatch.
- VLANs, Source MAC Address, and Ports are matched against session ids to extend security for PPPoE sessions.

Follow these restrictions and usage guidelines when you configure 1:1 redundancy on a ES+ linecard:

- Subscriber redundancy is available only on a 1:1 access standby model.
- Supports access interfaces in port channels to scale the number of port channel subinterfaces to greater than 4k.
- Link Aggregation Control Protocol (LACP) allows dynamic handling of member links in a GEC bundle.
- Supports a maximum of 64 GEC bundles with 8 links.
- Member links in a single GEC bundle reside across NPs or the linecard.
- LAG is supported with members across linecards.
- Supports LAG across linecards and membership of the LAG does not change after new sessions are initiated.
- Feature supports 32000 access subinterfaces and 8K access interfaces.
- Supports per session load balancing across member links where all the traffic for a session is relayed over a single port.
- To reduce the downtime during member link addition or deletion, QOS queues are allocated for all member links belonging to the port channel. Though the ingress and egress traffic could be on different member links, the peer relays all the traffic for a session through a single member link.
- LAG supports sessions on non access subinterfaces to support coexistence of multicast streams.

Verification

This section lists the commands to display configuration information.

- Use the following commands to configure the PPPoE:

```
Router-DJ4-dfc9#sh debug
```
Chapter 24 IP Subscriber Awareness over Ethernet

24-8

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S

IP Subscriber Session Features

CWAN iEdge LC:
 CWAN iEdge LC session event debug debugging is on
X40G XLIF Client:
 XLIF NP events debugging is on

Router-DJ4-dfc9# sh log
Syslog logging: enabled (0 messages dropped, 4 messages rate-limited, 0 flushes, 0 overruns, xml disabled, filtering disabled)

No Active Message Discriminator.
No Inactive Message Discriminator.

Console logging: disabled
Monitor logging: level debugging, 0 messages logged, xml disabled, filtering disabled
Buffer logging: level debugging, 308 messages logged, xml disabled, filtering disabled
Exception Logging: size (4096 bytes)
Count and timestamp logging messages: disabled
Persistent logging: disabled

Log Buffer (1000000 bytes):

Nov 19 16:08:48.247 IST: DFC9: provision_pppoe_routed_ac: switch_info 2CD93474 seghandle 2CD93474 uid 40 if_number 80
Nov 19 16:08:48.247 IST: DFC9: type 1 2 opaque handle = 0x186DAB48
Nov 19 16:08:48.247 IST: DFC9: cwan_iedge_session_pending_timer started
Nov 19 16:08:48.247 IST: DFC9: no dbus vlan session pending on int 105
Nov 19 16:08:50.247 IST: DFC9: cwan_iedge_common_session_notify: cfg_type 2 va_if_num 105 phy_if_num 80 uid 0 action 0
Nov 19 16:08:50.247 IST: DFC9: cwan_iedge_get_session_config: sess_type 2 if_num 105 pid 0
Nov 19 16:08:50.247 IST: DFC9: cwan_iedge_get_pppoe_config: if_num 80 va_if_num 105 vlan 1020 sess-id 40 cond_debug off

Router-DJ4#sh debug
PPP:

PPP protocol negotiation debugging is on

PPPoE:

PPPoE protocol events debugging is on

PPPoE control packets debugging is on

Router-DJ4#sh log
Syslog logging: enabled (3340 messages dropped, 2 messages rate-limited, 0 flushes, 0 overruns, xml disabled, filtering disabled)

No Active Message Discriminator.

No Inactive Message Discriminator.

Console logging: disabled
Monitor logging: level debugging, 0 messages logged, xml disabled, filtering disabled
Buffer logging: level debugging, 5280 messages logged, xml disabled, filtering disabled
Exception Logging: size (4096 bytes)
Count and timestamp logging messages: disabled
Persistent logging: disabled

No active filter modules.

Trap logging: level informational, 203 message lines logged

Log Buffer (1000000 bytes):

Nov 19 16:08:48.231 IST: PPPoE 0: I PADI R:bb00.1912.0001 L:ffff.ffff.ffff 2 Gi9/5.1 contiguous pak, size 60
FF FF FF FF FF FF BB 00 19 12 00 01 81 00 00 02
8B 63 11 09 00 00 00 04 01 01 00 00 00 0A 03 06
86 00 00 01 00 00 00 01 00 00 00 00 00 00 00 00
00 00 00 00 00 06 00 00 00 00 00 00 00 00 00 00
Service tag: NULL Tag
Nov 19 16:08:48.231 IST: PPPoE 0: O PADO, R:a110.0050.0006 L:bb00.1912.0001 1019 Gi9/5.1
contiguous pak, size 100
06 02 00 10 03 FB 28 00 03 80 00 00 44 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 02 04 00 00
BB 00 19 12 00 01 A1 10 00 50 00 06 81 00 00 02
88 63 11 07 00 00 00 24 01 01 00 00 01 02 00 08
52 69 61 7A 2D 44 4A 34 ...
Nov 19 16:08:48.231 IST: [40]PPPoE 40: Service request sent to SSS
Nov 19 16:08:48.231 IST: [40]PPPoE 40: Created, Service: None R:000c.31c9.7000
L:bb00.1912.0001 2 G19/5.1
Nov 19 16:08:48.231 IST: [40]PPPoE 40: State NAS_PORT_POLICY_INQUIRY Event SSS MORE KEYS

Nov 19 16:08:48.231 IST: ppp40 PPP: Phase is ESTABLISHING
Nov 19 16:08:48.231 IST: [40]PPPoE 40: data path set to PPP
Nov 19 16:08:48.231 IST: [40]PPPoE 40: Segment (SSS class): PROVISION
Nov 19 16:08:48.231 IST: [40]PPPoE 40: State PROVISION_FPP Event SSM PROVISIONED

contiguous pak, size 100
00 02 00 10 01 FB 28 00 03 80 00 00 44 00 00 00 00 00 00 00 00 00 00 02 04 BB 00 19 12 00 01 A1 10 00 50 00 06 81 00 00 02 E2 DB 75 8D E5 9C 95 C1 ...

Nov 19 16:08:48.231 IST: ppp40 PPP: Phase is AUTHENTICATING, by this end
Nov 19 16:08:48.231 IST: ppp40 CHAP: O SUCCESS id 1 len 4
Nov 19 16:08:48.231 IST: ppp40 IPCP: CP stalled on event[Authorize CP]

Nov 19 16:08:48.243 IST: [40]PPPoE 40: State LCP_NEGOTIATION Event SSS CONNECT LOCAL
Nov 19 16:08:48.247 IST: [40]PPPoE 40: Phase is FORWARDING, Attempting Forward
Nov 19 16:08:48.247 IST: [40]PPPoE 40: State LCP_NEGOTIATION Event SSM CONNECT LOCAL
Nov 19 16:08:48.247 IST: [40]PPPoE 40: Segment (SSS class): UPDATED
Nov 19 16:08:48.247 IST: [40]PPPoE 40: Segment (SSS class): BOUND
Nov 19 16:08:48.247 IST: [40]PPPoE 40: data path set to Virtual Access
Nov 19 16:08:48.247 IST: [40]PPPoE 40: State LCP_NEGOTIATION Event SSM UPDATED
Nov 19 16:08:48.247 IST: V12.1 PPP: Phase is AUTHENTICATING, Authenticated User
Nov 19 16:08:48.247 IST: V12.1 CHAP: O SUCCESS id 1 len 4
Nov 19 16:08:48.247 IST: V12.1 IPCP: CP stalled on event[Authorize CP]
IP Subscriber Session Features

Nov 19 16:08:48.247 IST: Vi2.1 IPCP: I CONFREQ [REQsent] id 0 len 10
Nov 19 16:08:48.247 IST: Vi2.1 IPCP: Address 0.0.0.0 (0x030600000000)
Nov 19 16:08:48.247 IST: Vi2.1 IPCP AUTHOR: Start. Her address 0.0.0.0, we want 0.0.0.0
Nov 19 16:08:48.247 IST: Vi2.1 IPCP AUTHOR: Done. Her address 0.0.0.0, we want 0.0.0.0
Nov 19 16:08:48.247 IST: Vi2.1 IPCP: Pool returned 182.0.0.1
Nov 19 16:08:48.247 IST: Vi2.1 IPCP: O CONFNAK [REQsent] id 0 len 10
Nov 19 16:08:48.247 IST: Vi2.1 IPCP: Address 182.0.0.1 (0x0306B6000001)
Nov 19 16:08:48.247 IST: Vi2.1 IPCP: Event[Receive ConfReq-] State[REQsent to REQsent]
Nov 19 16:08:48.247 IST: Vi2.1 IPCP: I CONFACK [REQsent] id 1 len 10
Nov 19 16:08:48.247 IST: Vi2.1 IPCP: Address 100.0.0.1 (0x030664000001)
Nov 19 16:08:48.247 IST: Vi2.1 IPCP: [40]PPPoE 40: State PTA_BINDING Event STATIC BIND RESPONSE
Nov 19 16:08:48.251 IST: [40]PPPoE 40: Connected PTA
Nov 19 16:08:48.251 IST: Vi2.1 IPCP: I CONFREQ [ACKrcvd] id 1 len 10
Nov 19 16:08:48.251 IST: Vi2.1 IPCP: Address 182.0.0.1 (0x0306B6000001)
Nov 19 16:08:48.251 IST: Vi2.1 IPCP: O CONFACK [ACKrcvd] id 1 len 10
Nov 19 16:08:48.251 IST: Vi2.1 IPCP: Event[Receive ConfReq+] State[ACKrcvd to Open]
Nov 19 16:08:48.255 IST: Vi2.1 IPCP: Address 100.0.0.1 (0x030664000001)
Nov 19 16:08:48.275 IST: Vi2.1 IPCP: State is Open (Indicates that the PPPoE session is up)
Nov 19 16:08:48.275 IST: Vi2.1 Added to neighbor route AVL tree: topoid 0, address 182.0.0.1
Nov 19 16:08:48.275 IST: Vi2.1 IPCP: Install route to 182.0.0.1

Router-DJ4#

interface GigabitEthernet9/17.1
encapsulation dot1Q 2000
ip address 180.0.0.1 255.255.255.0

interface GigabitEthernet9/5.1
encapsulation dot1Q 2
ip address 192.0.0.1 255.255.255.0
pppoe enable group dj4_bba_group1

aaa new-model
aaa authentication login default group radius local
aaa authentication ppp default local
aaa authorization network default local
aaa authorization subscriber-service default group radius
aaa session-id common

bba-group pppoe dj4_bba_group1
virtual-template 1
IP Subscriber Session Features

sessions per-vc limit 16000
sessions per-mac limit 16000
sessions per-vlan limit 8000

interface Loopback1
ip address 100.0.0.1 255.255.255.255

interface Virtual-Templatel
ip unnumbered Loopback1
no logging event link-status
peer default ip address pool PPPPool_1
no snmp trap link-status
keepalive 300
ppp authentication chap

Use the following commands to verify the PPPoE session:

Router-DJ4#sh pppoe summary
PTA : Locally terminated sessions
FWDED: Forwarded sessions
TRANS: All other sessions (in transient state)

<table>
<thead>
<tr>
<th>TOTAL</th>
<th>PTA</th>
<th>FWDED</th>
<th>TRANS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>GigabitEthernet9/5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Router-DJ4#sh pppoe ses
Router-DJ4#sh pppoe session
1 session in LOCALLY_TERMINATED (PTA) State
1 session total

Uniq ID PPPoE RemMAC Port VT VA State
SID LocMAC VA-st Type
42 42 bb00.1912.0001 Gi9/5.1 1 Vi2.1 PTA
000c.31c9.7000 VLAN: 2 UP

Router-DJ4#sh sss session uid 42 detailed
Unique Session ID: 42
Identifier: PPP_USER
SIP subscriber access type(s): PPPoE/PPP
Current SIP options: Req Fwding/Req Fwded
Session Up-time: 00:19:04, Last Changed: 00:19:04
Interface: Virtual-Access2.1

Policy information:
Context 137426FC: Handle 2400002A
AAA id 00000038: Flow_handle
Authentication status: authen
Downloaded User profile, excluding services:
Framed-Protocol 1 [PPP]
username "PPP_USER"
Downloaded User profile, including services:
Framed-Protocol 1 [PPP]
username "PPP_USER"
Config history for session (recent to oldest):
Access-type: PPP Client: SM
Policy event: Process Config Connecting
Profile name: apply-config-only, 2 references
Framed-Protocol 1 [PPP]
username "PPP_USER"
Rules, actions and conditions executed:
subscriber rule-map PPPoE-SUB
condition always event session-start
1 service local

Configuration sources associated with this session:
Chapter 24 IP Subscriber Awareness over Ethernet

IP Subscriber Session Features

Interface: Virtual-Template1, Active Time = 00:19:04

Router-DJ4# sh pppoe session packets
Total PPoE sessions 1

<table>
<thead>
<tr>
<th>SID</th>
<th>Pkts-In</th>
<th>Pkts-Out</th>
<th>Bytes-In</th>
<th>Bytes-Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>12</td>
<td>13</td>
<td>184</td>
<td>190</td>
</tr>
</tbody>
</table>

Router-DJ4#

Router-DJ4# sh cef int gig 9/5.1
GigabitEthernet9/5.1 is up (if_number 80)
 Corresponding hwidb fast_if_number 80
 Corresponding hwidb firstsw->if_number 25
 Internet address is 192.0.0.1/24
 ICMP redirects are always sent
 IP unicast RPF check is disabled
 Output features: MFIB Adjacency, HW Shortcut Installation
 IP policy routing is disabled
 BGP based policy accounting on input is disabled
 BGP based policy accounting on output is disabled
 Hardware idb is GigabitEthernet9/5
 Fast switching type 28, interface type 146
 IP CEF switching enabled
 IP CEF switching turbo vector
 IP Null turbo vector
 IP prefix lookup IPv4 mtrie generic
 Input fast flags 0x40000000, Output fast flags 0x0
 ifindex 24(24)
 Slot 9/0 (9) Slot unit 5 VC -1
 IP MTU 1500

- Use the following commands to configure IP session:

 aaa new-model
 !
 aaa session-id common
 !
 interface GigabitEthernet2/9
 no ip address
 load-interval 30
 !
 interface GigabitEthernet2/9.1 access
 encapsulation dot1Q 2 second-dot1q 2
 ip address 182.0.0.1 255.255.255.0
 ip subscriber routed
 initiator unclassified ip-address
 !
 interface GigabitEthernet2/10
 no ip address
 load-interval 30
 !
 interface GigabitEthernet2/10.1
 encapsulation dot1Q 2000 second-dot1q 2001
 ip address 180.0.0.1 255.255.255.0
 !
 no ip http server
 no ip http secure-server
 !
 arp 182.0.0.2 aa00.0000.0001 ARPA
 arp 180.0.0.2 0000.0000.0001 ARPA
 !

Use the following commands to debug IP session:
ISG_NMB#sh deb
CWAN iEdge RP:
 CWAN iEdge RP debug debugging is on

IP Subscriber:
all IP subscriber debugs debugging is on
ISG_NMB#
Nov 19 16:02:46.087 IST: IPSUB_DP: [uid:0] Insert new entry for mac 0000.1500.0001
Nov 19 16:02:46.087 IST: IPSUB_DP: [uid:0] Processing new in-band session request
Nov 19 16:02:46.087 IST: IPSUB_DP: [uid:0] Delete mac entry 0000.1500.0001
Nov 19 16:02:46.087 IST: IPSUB_DP: [uid:0] In-band session request event for session
Nov 19 16:02:46.087 IST: IPSUB_DP: [uid:0] Added upstream entry into the classifier
Nov 19 16:02:46.087 IST: IPSUB_DP: [uid:0] VRF = DFL, IP = 21.0.0.1, MASK = 255.255.255.255
Nov 19 16:02:46.087 IST: IPSUB: Try to create a new session
Nov 19 16:02:46.087 IST: IPSUB: IPSUB: Check IP DHCP session recovery: 21.0.0.1
GI/2/9.1 mac aa00.0000.0001
Nov 19 16:02:46.087 IST: IPSUB: IPSUB: No DHCP binding found
Nov 19 16:02:46.087 IST: IPSUB: IPSUB: Proceed to create the IP inband session
Nov 19 16:02:46.087 IST: IPSUB: IPSUB: Request to create a new session
Nov 19 16:02:46.087 IST: IPSUB: IPSUB: Session start event for session
Nov 19 16:02:46.087 IST: IPSUB: IPSUB: Event session start, state changed from idle to requesting
Nov 19 16:02:46.087 IST: IPSUB: HA[uid:32]: Session init-notification on Active
Nov 19 16:02:46.087 IST: IPSUB: HA[uid:32]: Allocated SHDB handle (0xF0000020)
Nov 19 16:02:46.087 IST: IPSUB: HA[uid:32]: Successfully initialized for HA
Nov 19 16:02:46.087 IST: IPSUB: [uid:32] AAA unique ID allocated
Nov 19 16:02:46.087 IST: IPSUB: [uid:32] Added session 21.0.0.1 to L3 session table
Nov 19 16:02:46.087 IST: IPSUB: [uid:32] Added session to session table with access session keys
Nov 19 16:02:46.087 IST: IPSUB: [uid:32] IP session(0x63000020) to be associated to GI/2/9.1
Nov 19 16:02:46.087 IST: IPSUB: [uid:32] Inserted IP session(0x63000020) to sessions-per-interface db with interface GI/2/9.1
Nov 19 16:02:46.087 IST: IPSUB_DP: [uid:0] Sent message to control plane for in-band session creation
Nov 19 16:02:46.087 IST: IPSUB_DP: [uid:0] Event inband-session, state changed from idle to initiated
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Received Message = connect local
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Connect Local event for session
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Event connect local, state changed from requesting to waiting
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Inside processing IPSIP info
Nov 19 16:02:46.091 IST: IPSUB-ROUTE: [uid:32] Checking whether routes to be inserted/removed
Nov 19 16:02:46.091 IST: IPSUB-ROUTE: [uid:32] Context not present, creating context
Nov 19 16:02:46.091 IST: IPSUB-ROUTE: [uid:32] Entered the sg subrte context alloc
Nov 19 16:02:46.091 IST: IPSUB-ROUTE: [uid:32] Returning the sg subrte context 0x1348DD20
Nov 19 16:02:46.091 IST: IPSUB-ROUTE: [uid:32] Both IP addresses and VRF are same, no need to add route
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Keys not changed, seg needn't be updated
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Key list to be created to update SM
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Created key list to update SM
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Session Keys Available event for session
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Event session keys available, state changed from waiting to provisioning
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Access and service keys same, no need to add session with service keys
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Data plane prov successful event for session
Nov 19 16:02:46.091 IST: IPSUB: [uid:32] Event dataplane prov successful, state changed from provisioning to connected
Nov 19 16:02:46.091 IST: IPSUB: HA[uid:32]: Session up notification
Nov 19 16:02:46.091 IST: IPSUB: HA[uid:32]: Session ready to sync data (0xF1000020)
Nov 19 16:02:46.091 IST: IPSUB_DP: [uid:0] Setup event for session (session hdl 3858759691)
Nov 19 16:02:46.091 IST: IPSUB_DP: [uid:32] Added downstream entry into the classifier
Nov 19 16:02:46.091 IST: IPSUB_DP: [uid:32] Session setup successful
Nov 19 16:02:46.091 IST: IPSUB_DP: [uid:32] Event setup-session, state changed from initiated to established
Nov 19 16:02:46.091 IST: IPSUB_DP: [uid:32] Event activate-session, state changed from established to connected

Use the following commands to verify IP session:

ISG_NMB#sh ip sub
Displaying subscribers in the default service vrf:

<table>
<thead>
<tr>
<th>Type</th>
<th>Subscriber Identifier</th>
<th>Display UID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>routed</td>
<td>21.0.0.1/32</td>
<td>[32]</td>
<td>up</td>
</tr>
</tbody>
</table>

ISG_NMB# sh sss sess
Current Subscriber Information: Total sessions 1

<table>
<thead>
<tr>
<th>Uniq ID</th>
<th>Interface</th>
<th>State</th>
<th>Service</th>
<th>Identifier</th>
<th>Up-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>IP</td>
<td>unauthen</td>
<td>Local Term</td>
<td>21.0.0.1</td>
<td>00:02:40</td>
</tr>
</tbody>
</table>

ISG_NMB# sh sss sess uid 32
Unique Session ID: 32
Identifier: 21.0.0.1
SIP subscriber access type(s): IP
Current SIP options: Req Fwding/Req Fwded
Session Up-time: 00:02:46, Last Changed: 00:02:46

Policy information:
Authentication status: unauthen
Configuration sources associated with this session:
Interface: GigabitEthernet2/9.1, Active Time = 00:02:46

ISG_NMB# sh sss sess uid 32 de
ISG_NMB# sh sss sess uid 32 detailed
Unique Session ID: 32
Identifier: 21.0.0.1
SIP subscriber access type(s): IP
Current SIP options: Req Fwding/Req Fwded
Session Up-time: 00:02:49, Last Changed: 00:02:49

Policy information:
Context 133B22FC: Handle DF000020
AAA_id 00000030: Flow_handle 0
Authentication status: unauthen

Configuration sources associated with this session:
Interface: GigabitEthernet2/9.1, Active Time = 00:02:49
Following details is for a L2-connected DHCP session on Dot1Q interface:-
===

Use the following commands to configure L2-connected DHCP session:

```
aaa new-model
!
!
aaa session-id common
!
!
! 
clock timezone IST 5
ip source-route

ip dhcp excluded-address 182.0.0.11 182.0.0.15
no ip dhcp ping packets

ip dhcp pool pool_global1
   network 182.0.0.0 255.255.255.240
   lease 0 0 3
   update arp

!
!
interface Loopback10
   ip address 182.0.0.11 255.255.255.255
!
!
interface GigabitEthernet2/9
   no ip address
   load-interval 30
!
interface GigabitEthernet2/9.1 access
   encapsulation dot1Q 2
   ip unnumbered Loopback10
   ip subscriber l2-connected
      initiator dhcp class-aware
!
interface GigabitEthernet2/10
   no ip address
   load-interval 30
!
interface GigabitEthernet2/10.1
   encapsulation dot1Q 2000
   ip address 180.0.0.1 255.255.255.0
!
!
no ip http server
no ip http secure-server
ip route 7.0.0.0 255.0.0.0 7.38.0.1
ip route 202.153.0.0 255.255.0.0 7.38.0.1
!
!
```

Use the following commands to debug L2-connected DHCP session:

```
ISG_NMB#sh deb
DHCP server packet debugging is on.
DHCP server event debugging is on.

IP Subscriber:
   IP subscriber events debugging is on
```
IP subscriber errors debugging is on
IP subscriber packets debugging is on

ISO NMB#
Nov 19 15:40:33.595 IST: DHCPD: tableid for 182.0.0.11 on GigabitEthernet2/9.1 is 0
Nov 19 15:40:33.595 IST: DHCPD: client's VPN is
Nov 19 15:40:33.595 IST: DHCPD: Sending notification of DISCOVER:
Nov 19 15:40:33.595 IST: DHCPD: htype 1 chaddr aa00.1314.0001
Nov 19 15:40:33.595 IST: DHCPD: remote id 020a0000b60000bb21010002
Nov 19 15:40:33.595 IST: DHCPD: class id 49786961
Nov 19 15:40:33.595 IST: IPSUB: Create session keys from SSS key list
Nov 19 15:40:33.595 IST: IPSUB: Mac_addr = aa00.1314.0001, Recvd Macaddr = aa00.1314.0001
Nov 19 15:40:33.599 IST: IPSUB: Session input interface(0x13348754) = GigabitEthernet2/9.1
Nov 19 15:40:33.599 IST: IPSUB: SHDB Handle = 5A00000B
Nov 19 15:40:33.599 IST: IPSUB: Remote_id = 020a0000b600000bb21010002
Nov 19 15:40:33.599 IST: IPSUB: Vendor_Class_id = Ixia
Nov 19 15:40:33.599 IST: DHCPD: Sending notification of DISCOVER:
Nov 19 15:40:33.599 IST: DHCPD: htype 1 chaddr aa00.1314.0001
Nov 19 15:40:33.599 IST: DHCPD: remote id 020a0000b600000bb21010002
Nov 19 15:40:33.599 IST: DHCPD: class id 49786961
Nov 19 15:40:33.599 IST: DHCPD: Saving workspace (ID=0x8900000B)
Nov 19 15:40:33.599 IST: DHCPD: New packet workspace 0x1333D0D8 (ID=0x2700000C)
Nov 19 15:40:33.599 IST: IPSUB: Try to create a new session
Nov 19 15:40:33.599 IST: IPSUB: [uid:0] Request to create a new session
Nov 19 15:40:33.599 IST: IPSUB: [uid:0] Session start event for session
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] Added session aa00.1314.0001 to L2 session table
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] Added session to session table with access session keys
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] IP session(0xC500000B) to be associated to Gi2/9.1
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] Inserted IP session(0xC500000B) to sessions-per-interface db with interface Gi2/9.1
Nov 19 15:40:33.599 IST: DHCPD: Callback for workspace (ID=0x8900000B)
Nov 19 15:40:33.599 IST: DHCPD: No authentication required. Continue
Nov 19 15:40:33.599 IST: DHCPD: Callback: class ' ' now specified for client 01aa.0013.1400.01
Nov 19 15:40:33.599 IST: DHCPD: Reprocessing saved workspace (ID=0x8900000B)
Nov 19 15:40:33.599 IST: DHCPD: tableid for 182.0.0.11 on GigabitEthernet2/9.1 is 0
Nov 19 15:40:33.599 IST: DHCPD: client's VPN is
Nov 19 15:40:33.599 IST: DHCPD: Sending notification of DISCOVER:
Nov 19 15:40:33.599 IST: DHCPD: htype 1 chaddr aa00.1314.0001
Nov 19 15:40:33.599 IST: DHCPD: remote id 020a0000b600000bb21010002
Nov 19 15:40:33.599 IST: DHCPD: class id 49786961
Nov 19 15:40:33.599 IST: DHCPD: Adding binding to radix tree (182.0.0.1)
Nov 19 15:40:33.599 IST: DHCPD: Adding binding to hash tree
Nov 19 15:40:33.599 IST: DHCPD: assigned IP address 182.0.0.1 to client
01aa.0013.1400.01. (13 1)
Nov 19 15:40:33.599 IST: DHCPD: DHCPOFFER notify setup address 182.0.0.1 mask
255.255.255.240
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] IP session context 0x133D28C8 available to
authorize
Nov 19 15:40:33.599 IST: IPSUB-VRFSET: [uid:11] Allocated sg vrfset info 0x13488EE0
Nov 19 15:40:33.599 IST: IPSUB-VRFSET: [uid:11] Freeing the sg vrfset info 0x13488EE0
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] Got IP address- IP:-182.0.0.1
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] Set IP address- IP:-182.0.0.1
Nov 19 15:40:33.599 IST: IPSUB-ROUTE: [uid:11] Checking whether routes to be
inserted/removed
0x1348DD04
Nov 19 15:40:33.599 IST: IPSUB-ROUTE: [uid:11] Installed ARP entry [DFL]: 182.0.0.1
182.0.0.1/255.255.255.255
hosts with IP unnumbered config on: GigabitEthernet2/9.1
Nov 19 15:40:33.599 IST: IPSUB-ROUTE: [uid:11] Both IP addresses and VRF are same, no
need to add route
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] Found that seg to be updated with new session
keys
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] Key list to be created to update SM
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] Created key list to update SM
Nov 19 15:40:33.599 IST: IPSUB: [uid:11] Found address change to be notified
Nov 19 15:40:33.603 IST: IPSUB: [uid:11] Added session 182.0.0.1 to L3 session table
Nov 19 15:40:33.603 IST: IPSUB: [uid:11] Added session to session table with service
session keys
Nov 19 15:40:33.603 IST: IPSUB: [uid:11] Received Message = update SIP config
Nov 19 15:40:33.603 IST: IPSUB-ROUTE: [uid:11] Checking whether routes to be
inserted/removed
to be done
Nov 19 15:40:33.603 IST: IPSUB-ROUTE: [uid:11] Both IP addresses and VRF are same, no
need to add route
Nov 19 15:40:33.603 IST: IPSUB: [uid:11] Key list to be created to update SM
Nov 19 15:40:33.603 IST: IPSUB: [uid:11] Created key list to update SM
Nov 19 15:40:33.603 IST: IPSUB: [uid:11] Notifying about address change: 182.0.0.1
Nov 19 15:40:33.603 IST: DHCPD: Callback for workspace (ID=0x89000000)
Nov 19 15:40:33.603 IST: DHCPD: Callback: switching path now setup for client
01aa.0013.1400.01
Nov 19 15:40:33.603 IST: DHCPD: Reprocessing saved workspace (ID=0x89000000)
Nov 19 15:40:33.603 IST: DHCPD: Sending notification of DISCOVER:
Nov 19 15:40:33.603 IST: DHCPD: htype 1 chaddr aa00.1314.0001
Nov 19 15:40:33.603 IST: DHCPD: remote id 020a0000b600000b21010002
Nov 19 15:40:33.603 IST: DHCPD: class id 49786961
Nov 19 15:40:33.603 IST: DHCPD: DHCPDISCOVER received from client 01aa.0013.1400.01 on interface GigabitEthernet2/9.1.
Nov 19 15:40:33.603 IST: DHCPD: Found previous server binding
Nov 19 15:40:33.603 IST: DHCPD: Sending DHCP OFFER to client 01aa.0013.1400.01 (182.0.0.1).
Nov 19 15:40:33.603 IST: DHCPD: ARP entry exists (182.0.0.1, aa00.1314.0001).
Nov 19 15:40:33.603 IST: DHCPD: unicasting BOOTREPLY to client aa00.1314.0001 (182.0.0.1).
Nov 19 15:40:33.603 IST: DHCPD: removing ARP entry (182.0.0.1 vrf default).
Nov 19 15:40:33.603 IST: DHCPD: freeing saved workspace (ID=0x8900000B)
Nov 19 15:40:33.603 IST: IPSUB_DP: [uid:0] Setup event for session (session hdl 0)
Nov 19 15:40:33.603 IST: IPSUB_DP: [uid:0] Insert new entry for mac aa00.1314.0001
Nov 19 15:40:33.603 IST: DHCPD: input i/f override GigabitEthernet2/9.1 for client
Nov 19 15:40:33.603 IST: DHCPD: tableid for 182.0.0.1 on GigabitEthernet2/9.1 is 0
Nov 19 15:40:33.603 IST: DHCPD: client's VPN is DFL
Nov 19 15:40:33.603 IST: DHCPD: DHCPREQUEST received from client 01aa.0013.1400.01.
Nov 19 15:40:33.603 IST: DHCPD: Sending notification of ASSIGNMENT:
Nov 19 15:40:33.603 IST: DHCPD: address 182.0.0.1 mask 255.255.255.240
Nov 19 15:40:33.603 IST: DHCPD: htype 1 chaddr aa00.1314.001
Nov 19 15:40:33.603 IST: DHCPD: lease time remaining (secs) = 180
Nov 19 15:40:33.603 IST: DHCPD: Sending DHCPACK to client 01aa.0013.1400.01 (182.0.0.1).
Nov 19 15:40:33.603 IST: DHCPD: lease time = 180
Nov 19 15:40:33.603 IST: dhcpd_lookup_route: host = 182.0.0.1
Nov 19 15:40:33.603 IST: dhcpd_lookup_route: index = 183
Nov 19 15:40:33.603 IST: dhcpd_lookup_route: protocol = 182.0.0.1
Nov 19 15:40:33.603 IST: dhcpd_lookup_route: route_index = 183
Nov 19 15:40:33.603 IST: dhcpd_add_host: host = 182.0.0.1
Nov 19 15:40:33.603 IST: dhcpd_add_route: lease = 180
Nov 19 15:40:33.603 IST: DHCPD: ARP entry exists (182.0.0.1, aa00.1314.0001).
Nov 19 15:40:33.603 IST: DHCPD: Changing arp entry 182.0.0.1 to secure arp entry
Nov 19 15:40:33.603 IST: DHCPD: Failed to secure arp entry 182.0.0.1
Nov 19 15:40:33.603 IST: DHCPD: unicasting BOOTREPLY to client aa00.1314.0001 (182.0.0.1).

Use the following commands to verify L2-connected DHCP session:
IP Subscriber Session Features

QoS Recommendations

When you configure QoS features on the Cisco 7600 SIP-400 for use with the IP Subscriber Awareness over Ethernet feature, note the following configuration guidelines and recommendations:

- The Cisco 7600 SIP-400 is capable of throughput of 5.1 to 5.6 gigabits per second (Gbps). We recommend that you do not oversubscribe the card beyond 8 Gbps. Beyond this limit, the card’s behavior is unpredictable. [CSCsg67629]

- Oversubscription is supported only on the 5-Port Gigabit Ethernet SPA (SPA-5X1GE-V2).

Egress Oversubscription

- High-priority traffic (typically voice and video) must have an IP precedence value of 5, 6, or 7.
- IP precedence values of 0, 1, 2, 3, or 4 will result in drops if oversubscription occurs, even if the traffic is classified as priority traffic in a QoS policy. [CSCsg67721]
Note We strongly recommend that the IP precedence value and VLAN user priority values of packets match. If ingress oversubscription occurs, priority traffic with non-matching IP precedence and VLAN user priority values might be dropped at the SPA level. [CSCsg97434]

Ingress Oversubscription
- High-priority traffic (typically voice) must have VLAN user priority values of 5, 6, or 7. Priority values of 0, 1, 2, 3, or 4 will result in drops if oversubscription occurs, even if the traffic is classified as priority traffic by a QoS policy. [CSCsg97434, CSCsg67721]

QoS Counter Updates
- To obtain statistics for an individual IP subscriber session, issue the `show policy-map interface` command two or three times. This is necessary because the counters retain their existing values the first time you issue the command.
- If you issue the `show policy-map interface` command and do not specify an interface, the router must update all of the session counters. With 32000 subscribers, this can take up to 30 minutes.

Bandwidth-Remaining Ratio Recommendations

The Bandwidth-Remaining Ratio (BRR) feature (also called Distribution of Remaining Bandwidth Using Ratio) allows service providers to prioritize subscriber traffic during periods of congestion. You can use the feature to specify the relative weight of a subinterface or class queue with respect to other subinterfaces or queues. During congestion, the router uses the bandwidth-remaining ratio to optimize the scheduling of uncommitted bandwidth on subinterfaces and class queues. Without BRR, the unassigned bandwidth on a physical interface is equally distributed among all queues. For an overview of this feature, see its feature description at:

This section provides recommendations and guidelines for configuring BRR on the Cisco 7600 SIP-400 to support IP Subscriber Awareness over Ethernet. It contains the following sections:

- BRR Configuration Guidelines
- BRR Configuration Instructions

BRR Configuration Guidelines

Observe the following Cisco 7600 specific guidelines and considerations as you configure this feature:
- Supported only on the Cisco 7600 SIP-400 with 2-port and 5-port Gigabit Ethernet (GE) SPAs.
- Available only on GE interfaces (because the feature is only supported on GE SPAs).
- Requires RSP720, Sup720, or Sup32.
- If two subinterfaces have bandwidth remaining ratios that vary greatly (for example, 1000 to 1), you must configure a low queue limit (between 2 and 50) for the child default class of the subinterface with the lower ratio. Without a low queue limit, the packets that are buffered due to the default queue-limit value are allowed to pass after traffic is stopped, which affects bandwidth remaining ratios significantly. Configuring a low queue limit ensures that the ratios are maintained even after the traffic is stopped.
Chapter 24 IP Subscriber Awareness over Ethernet

IP Subscriber Session Features

Note

We recommend that you use BRR with priority-rate propagation. See the “Priority-Rate Propagation Recommendations” section on page 24-25 for more information.

BRR Configuration Instructions

Following is a summary of the steps required to configure a QoS policy that defines BRR for a subscriber (access) interface on the Cisco 7600 SIP-400. The following table provides detailed instructions.

Note

The command lines include only those arguments and keywords required to configure BRR.

1. enable
2. configure terminal
3. qos scheduler priority-rate-propagation platform sip-400 (optional but recommended)
4. policy-map child-policy-name
5. class class-map-name
6. priority level level (optional but recommended)
7. police bps
8. exit
9. exit
10. policy-map parent-policy-name
11. class class-default
12. bandwidth remaining ratio ratio
13. shape average cir [bc] [be]
14. service-policy child-policy-name
15. exit
16. exit
17. interface type slot/module/port.subinterface access
18. service-policy output parent-policy-name
Chapter 24 IP Subscriber Awareness over Ethernet

IP Subscriber Session Features

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **enable**
Enables privileged EXEC mode.
| | • Enter your password if prompted. |
| **Example:** | `Router> enable` |
| **Step 2** | **configure terminal**
Enters global configuration mode. |
| **Example:** | `Router# configure terminal` |
| **Step 3** | **qos scheduler priority-rate-propagation platform sip-400**
Enables the priority-rate propagation feature on the Cisco 7600 SIP-400. This feature applies a priority level and traffic rate for priority traffic to all higher-level queues in the queue hierarchy, even if the queues are not specifically configured for minimum rates or priority.
| | **Note**
| | This step is optional; however, if you are using BRR, we recommend that you perform this step. |
| **Example:** | `Router(config)# qos scheduler priority-rate-propagation platform sip-400` |
| **Step 4** | **policy-map child-policy-name**
Creates or modifies a child policy map and enters policy-map configuration mode.
| | • `child-policy-name` is the name of the child policy map. |
| **Example:** | `Router(config)# policy-map child` |
| **Step 5** | **class class-map-name**
Configures the class map that you specify. Enters policy-map class configuration mode.
| | • `class-map-name` is the name of a previously created class map. |
| **Example:** | `Router(config-pmap)# class precedence_0` |
| **Step 6** | **priority level level**
Assigns a priority level to this traffic class.
| | • `level` is the priority level to assign. Valid values are: 1 (high) and 2 (low).
| | **Note**
| | Do not specify the same priority level for two different classes in the same policy map. |
| **Example:** | `Router(config-pmap-c)# priority level 1` |
| **Step 7** | **police bps**
(Optional) Specifies the rate at which to police traffic belonging to this traffic class.
| | • `bps` specifies the average rate in bits per second (bps). Valid values are from 8,000 to 2,488,320,000 bps. |
| **Example:** | `Router(config-pmap-c)# police 200000000` |
| **Step 8** | **exit**
Exits policy-map class configuration mode. |
| **Step 9** | **exit**
Exits policy-map configuration mode. |
| **Step 10** | **policy-map parent-policy-name**
Creates or modifies a parent policy map. Enters policy-map configuration mode.
| | • `parent-policy-name` is the name of the parent policy map. |
| **Example:** | `Router(config)# policy-map Parent` |
Command or Action | Purpose |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 11 class class-default</td>
<td>Configures the class-default class. Enters policy-map class configuration mode.</td>
</tr>
<tr>
<td>Example: Router(config-pmap)# class class-default</td>
<td></td>
</tr>
<tr>
<td>Step 12 bandwidth remaining ratio ratio</td>
<td>Specifies the bandwidth-remaining ratio for the subinterface. The scheduler allocates the excess bandwidth relative to other subinterfaces.</td>
</tr>
<tr>
<td>Example: Router(config-pmap-c)# bandwidth remaining ratio 10</td>
<td></td>
</tr>
<tr>
<td>Step 13 shape average cir [bc] [be]</td>
<td>(Optional) Shapes the average rate to the rate you specify.</td>
</tr>
<tr>
<td>Example: Router(config-pmap-c)# shape average 100000000</td>
<td></td>
</tr>
<tr>
<td>Step 14 service-policy child-policy-name</td>
<td>Applies the specified child policy map to the default traffic class of the parent policy. The router applies the QoS actions specified in the child policy to the traffic class.</td>
</tr>
<tr>
<td>Example: Router(config-pmap-c)# service-policy child</td>
<td></td>
</tr>
<tr>
<td>Step 15 exit</td>
<td>Exits policy-map class configuration mode.</td>
</tr>
<tr>
<td>Step 16 exit</td>
<td>Exits policy-map configuration mode.</td>
</tr>
</tbody>
</table>
Priority-Rate Propagation Recommendations

Priority-rate propagation applies (propagates) a priority level and traffic rate from a lower-level queue to all of the upper-layer queues in the queue hierarchy, even if the upper-layer queues are not specifically configured for minimum rates or priority. For example, if you configure a priority level and traffic rate for a traffic class (such as video) in a child policy, you can use priority-rate propagation to apply that rate to video traffic at all queue levels (parent queue, subinterface queue, and interface queue).

Dual-priority queues enable you to define two classes of high-priority traffic in a single policy map. You can also use the `priority level` command to assign a priority (high or low) to each priority queue. The `priority level` command specifies that a class of traffic has latency requirements with respect to other classes. Currently, the router supports two priority levels: level 1 (high) and level 2 (low). The router places traffic with a high priority level on the outbound link ahead of traffic with a low priority level. High priority packets, therefore, are not delayed behind low priority packets.

The router associates a single priority queue with each priority level and services the high level priority queues until empty before servicing the next level priority queues and non-priority queues. While the router services a queue, the service rate is as fast as possible and is constrained only by the rate of the underlying link or parent node in a hierarchy. If a rate is configured and the router determines that a traffic stream has exceeded the configured rate, the router drops the exceeding packets during periods of congestion. If the link is currently not congested, the router places the exceeding packets onto the outbound link.

If bandwidth remaining ratio (BRR) has also been configured, the router services priority traffic first. After servicing the priority traffic bandwidth, the router allocates unused bandwidth to the logical queues based on the configured bandwidth.remaining ratio. In this default case, the three-level scheduler allocates an equal share of the unused bandwidth to each logical queue.
If high priority traffic is not policed appropriately, bandwidth starvation of low priority traffic can occur. Therefore, though not required, we recommend that you use the `police` command to configure a policer for high priority traffic. If you configure the `police` command for priority queues, the traffic rate is policed to the police rate for each of the priority queues.

Priority-Rate Propagation Configuration Guidelines

As you configure priority-rate propagation for use with BRR, consider the following guidelines:

- Use the `no qos scheduler priority-rate-propagation platform sip400` command in global configuration mode to enable and disable the priority-rate propagation feature.

- The `no qos scheduler priority-rate-propagation platform sip400` command has no effect on QoS policies that are already attached to interfaces. Therefore, we recommend that you issue the command before attaching QoS policies.

 Note

 If you issue the `no qos scheduler priority-rate-propagation platform sip400` command after attaching QoS policies to Cisco 7600 SIP-400 interfaces, you must save the configuration and reload the router for the command to take effect.

- Priority-rate propagation and BRR work together as follows:
 - When priority-rate propagation is enabled, the router services the priority bandwidth for all subinterface policies. The remaining bandwidth is then distributed according to the bandwidth remaining ratios. In this scenario, the priority rate was propagated from the child level to the interface queue.
 - When priority-rate propagation is disabled, the aggregate subinterface bandwidth (priority and best effort) is shared according to the bandwidth remaining ratios. In this scenario, the priority bandwidth is not propagated from the child queue to the interface queue.

Priority-Rate Propagation and BRR Configuration Example

Here is an example of a priority level (2) being assigned to video traffic in a child policy map and used with BRR, which is configured in the parent policy map:

```plaintext
policy-map parent
  class class-default
    bandwidth remaining ratio 1
    service-policy child

policy-map child
  class video
    priority level 2
    police 200 Mbps
```

Unsupported IP Subscriber Session Features

Due to the way that internal VLANs are allocated for sharing among IP subscribers, the following features are not available for individual subscribers:

- Policy-based routing (PBR), Network Address Translation (NAT), or unicast Reverse Path Forwarding (uRPF)
- IPv4 and IPv6 multicast
• Encoded address resolution logic (EARL) features, such as reflexive ACL, Generic Route Encapsulation (GRE) tunneling, Context-Based Access Control (CBAC), and server load balancing (SLB)

IP Subscriber Awareness over Ethernet Configuration Guidelines

Note
The IP Subscriber Awareness over Ethernet feature is not available in the IP services software image (xxx-ipservices_wan-mz). Although the image shows the access keyword as being available for the interface command, the subscriber awareness functionality is not available.

Observe the following guidelines and limitations as you configure IP Subscriber Awareness over Ethernet on Cisco 7600 routers:

• Software and hardware requirements:
 • Cisco IOS Release 12.2SRB or later
 • RSP720 with PFC3C or PFC3CXL (other supervisor engines are not supported)
 • Cisco 7600 SIP-400 and 5-Port Gigabit Ethernet SPA (SPA-5X1GE-V2)
 • Support for ES+ linecards from 12.2(33)SRE onwards.
• Oversubscription is supported only on the 5-Port Gigabit Ethernet SPA.
• A maximum of 32000 interfaces are supported on the router. To support 32000 interfaces:
 – The RSP720 must have 2 GB of RP memory and 1 GB of SP memory.
 – The Cisco 7600 SIP-400 must have 1 GB of memory.
• The Cisco 7600 SIP-400 supports a maximum of 8000 IP subscribers.
• The 5-Port Gigabit Ethernet SPA (SPA-5X1GE-V2) supports up to 8000 VLANs.
• The access subinterface that represents an IP subscriber must be configured for .1Q or Q-in-Q encapsulation.
• The MTU of the access subinterface is 1500 and this value cannot be changed.
• You can convert a regular GE subinterface to an access interface, but you cannot convert an access interface to a regular GE subinterface. Instead, you must delete the access subinterface.
• EARL-based features are not supported. This includes Network Address Translation (NAT), Reflexive ACL, Generic Route Encapsulation (GRE) tunneling, Context-Based Access Control (CBAC), and server load balancing (SLB).
• We recommend that you do not configure Hot Standby Routing Protocol (HSRP) for link redundancy.
• See the “QoS Recommendations” section on page 24-20 for QoS guidelines.

Interaction with Other Features

The following list describes the interaction between IP Subscriber Awareness over Ethernet and other features that are configured on the router:
Multicast traffic is not affected by the feature. The router can participate in IGMP functions and replication without being affected by IP Subscriber Awareness over Ethernet. In addition, the router supports multicast traffic without the authentication of data service. This allows basic video service to be provided without data service.

The DSLAM (not the router) is responsible for replicating multicast traffic and delivering it to IP subscribers. Therefore, it is not necessary for the IP Subscriber Awareness over Ethernet feature to support multicast traffic on IP subscriber interfaces (access interfaces).

Configuring IP Subscriber Awareness over Ethernet

The following sections provide information about configuring the IP Subscriber Awareness over Ethernet feature on a Cisco 7600 series router:

- Configuration Summary, page 24-28
- Configuration Examples, page 24-30

Configuration Summary

Following is a summary of the steps required to configure IP Subscriber Awareness over Ethernet on Cisco 7600 routers. Detailed configuration instructions are provided in the next section.

Before Starting

- Determine which VPN routing and forwarding (VRF) table each IP subscriber should be part of. All of the subscribers in a VRF share a single internal VLAN for data services. Use the `ip vrf` and `rd` commands to create each of the VRF tables that you need.

 To use the same VRF, subscribers must all belong to the same network service provider (NSP), Internet service provider (ISP), or access service provider (ASP). If you do not assign a subscriber to a VRF, the subscriber is added to the default VRF, which the router creates during system bootup.

- Make sure that the router is configured as a DHCP server or a DHCP relay device in order to allow IP addresses to be dynamically assigned for IP subscriber sessions. Otherwise, you would have to assign a static IP address to each IP subscriber access subinterface (which is not recommended).

 For information about configuring DHCP, see “Configuring DHCP” in the Cisco IOS IP Configuration Guide at:

 http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fipr_c/ipcrpt1/1cfdhcp.htm

- Determine which physical interfaces are used by IP subscribers. For each IP subscriber, you configure an access subinterface on the physical interface that the subscriber is connected to.

Configure QoS and HQoS Policies for IP Subscribers

- Define QoS policies (class maps and policy maps) to define traffic bandwidth and shaping policies for subscriber traffic. You can use a hierarchical QoS (HQoS) policy to shape traffic at different levels. For example, the parent policy could define the total bandwidth for the subscriber, and the child policy could define the bandwidth for different types of subscriber traffic (such as video).

 On a subinterface, the child policy can be attached only at the default class of the parent.

- (Optional) You can create dual-priority queues to handle the subscriber’s voice and video traffic.
• You can also define a class-based weighted fair queue (CBWFQ) or priority queue (PQ) for different types of subscriber traffic.

Configure Access Lists and Security ACLs
• Determine the security policies that are needed for IP subscribers. Create access lists and security ACLs to define these policies.

Here is an example of two access lists (2 and 3) that will be applied to IP subscribers:

access-list 2 permit 18.18.18.18
access-list 3 permit 23.23.23.23
access-list 101 deny ip 44.1.1.0 0.0.0.255 any
access-list 101 permit icmp any any

The following example configures an input and output security ACL for the IP subscriber session that is represented by the access subinterface gig0/1/1.100:

interface gig0/1/1.100 access
encapsulation dot1q 100
ip address 10.10.10.1 255.255.255.0
ip access-group 101 in
ip access-group 102 out

Configure IP Subscriber Interfaces
• Create an access interface for each IP subscriber. Create the access interface as a subinterface of the subscriber’s physical interface. For example, if the subscriber is connected to Gig1/0/0, you could configure the access interface as Gig1/0/0.100.

• Configure the access interface as follows:
 – If necessary, assign an IP address to the interface (this is a static IP address). We recommend that you do not configure many access interfaces with a static IP address. Instead, you should allow DHCP to dynamically assign IP addresses for IP subscriber sessions.
 – If the IP subscriber belongs to a particular VRF table, include the ip vrf forwarding vrf-name command in the configuration to associate the interface with the table. If you do not specify a VRF table, the subscriber is added to the default VRF.
 – Set the encapsulation type (.1Q or Q-in-Q) and specify which VLAN the interface is part of.
 – Attach QoS policies to the interface to define traffic bandwidth and shaping policies for the subscriber traffic.

This example shows two IP subscriber access interfaces (gig1/0/0.100 and gig1/0/0.300). Since the subscribers connect through Gig1/0/0, the access interfaces are created as subinterfaces of Gig1/0/0. Notice that gig1/0/0.100 is assigned a static IP address and gig1/0/0.300 uses DHCP to obtain an IP address. In addition, notice that gig1/0/0.300 is VRF aware.

interface gig1/0/0.100 access
ip address 10.10.10.10 255.255.255.255
encapsulation dot1q 100
service-policy input bband-in1
service-policy output bband-out1

interface gig1/0/0.300 access
ip vrf forwarding vrf1
encapsulation dot1q 300
service-policy input bband-in1
service-policy output bband-out1
Verify the IP Subscriber Awareness over Ethernet Feature

Use the following commands to verify the status of each access interface that represents an IP subscriber. An access subinterface should exist for each subscriber and the interfaces should be in the Up state.

- Issue the `show running-config interface interface.subinterface` command to verify the configuration of each access subinterface (where `interface` is the physical interface and `.subinterface` is the access subinterface). For example, `show running-config interface Gig1/0/2.1` displays the access subinterface (.1) that exists on the physical interface Gig1/0/2.

Configuration Examples

The following example shows a configuration with three subscribers (Gig3/2/0.10, Gig3/2/0.11, and Gig3/2/0.12), each receiving a different type of service: gold (30 Mbps), silver (15 Mbps), and bronze (5 Mbps). Each subscriber has per-subscriber accounting and per-subscriber ACL configured.

The QoS policy maps are configured so that video traffic is never dropped, and default traffic is shared in the ratio of 30:15:5 (which results in a bandwidth remaining ratio of 6:3:1).

```plaintext
aaa new-model
aaa accounting network default start group radius
radius-server key cisco
radius-server host 2.2.2.2
int loopback 1
ip address 13.0.7.254 255.255.248.0

ip dhcp pool Loopback1
  network 13.0.0.0 255.255.248.0

Class-map voip
  match ip precedence 5

Class-map video
  match ip precedence 6

policy-map data_gold_child_out
  class video
    priority level 2
    police 27000000
    set cos 5
    class class-default
    police 30000000
    set cos 3

policy-map data_gold_parent_out
  class class-default
  shape average 29900000
  bandwidth remaining ratio 6
  service-policy data_gold_child_out

policy-map data_silver_child_out
  class video
    priority level 2
    police 27000000
    set cos 5
    class class-default
    police 15000000
    set cos 2

policy-map data_silver_parent_out
  class class-default
```


Configuring IP Subscriber Awareness over Ethernet

shape average 29900000
bandwidth remaining ratio 3
service-policy data_silver_child_out

policy-map data_bronze_child_out
class video
 priority level 2
 police 27000000
 set cos 5
 class class-default
 police 5000000
 set cos 1

access-list 102 permit ip any any precedence 5
access-list 102 permit ip any any precedence 2
access-list 102 permit ip any any precedence 0

policy-map data_bronze_parent_out
class class-default
 shape average 29900000
 bandwidth remaining ratio 1
 service-policy data_bronze_child_out

policy-map data_gold_in
class class-default
 police 5000000
policy-map data_silver_in
class class-default
 police 2000000
policy-map data_bronze_in
class class-default
 police 2000000

interface gig 3/2/0.10 access
 ip unnumbered Loopback 1
 encapsulation dot1q 10
 service-policy output data_gold_parent_out
 service-policy input data_gold_in
 accounting dhcp source-ip aaa list default
 ip access-group 103 in

interface gig 3/2/0.11 access
 ip unnumbered Loopback 1
 encapsulation dot1q 11
 service-policy output data_silver_parent_out
 service-policy input data_silver_in
 accounting dhcp source-ip aaa list default
 ip access-group 103 in

interface gig 3/2/0.12 access
 ip unnumbered Loopback 1
 encapsulation dot1q 12
 service-policy output data_bronze_parent_out
 service-policy input data_bronze_in
 accounting dhcp source-ip aaa list default
 ip access-group 103 in
Command Reference

This section describes the new commands for IP Subscriber Awareness over Ethernet. The following new command is being introduced as part of this feature:

- **interface access**
interface access

To create an access interface for an IP subscriber, use the `interface access` command in global configuration mode. Use the `no` form of the command to delete an IP subscriber access interface.

```
interface interface.subinterface access
no interface interface.subinterface access
```

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>interface</code></td>
<td>Identifies the physical interface that this IP subscriber is connected to.</td>
</tr>
<tr>
<td><code>subinterface</code></td>
<td>A subinterface number to assign to the access interface.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default settings.

Command Modes

Global configuration

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Usage Guidelines

This command creates an access interface for an IP subscriber. Create the access interface as a subinterface of the physical interface that the subscriber is connected to. For example, if the subscriber is connected to Gig1/0/0, you could configure the access interface as Gig1/0/0.1, Gig1/0/0.2, Gig1/0/0.3, and so on.

Include the `ip vrf forwarding vrf-name` command in the configuration to associate the IP subscriber with the specified VRF table. If you do not specify a VRF table, the subscriber is added to the default VRF table (which is created during router bootup).

Examples

The following command example creates an access interface for an IP subscriber and assigns the subscriber to the VRF table named vrf1. The access interface is created as subinterface .300 on the physical interface Gig2/0/1. You would issue additional commands to complete the configuration (for example, to specify encapsulation type, and to assign QoS policies).

```
Router(config)# interface Gig2/0/1.300 access
Router(config-if)# ip vrf forwarding vrf1
Router(config-if)#
```
interface access
Configuring UDE and UDLR

This chapter describes how to configure unidirectional Ethernet (UDE) and unidirectional link routing (UDLR) on the Cisco 7600 series router.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter contains the following sections:

- Understanding UDE and UDLR, page 25-1
- Configuring UDE and UDLR, page 25-3

Understanding UDE and UDLR

These sections describe UDE and UDLR:

- UDE and UDLR Overview, page 25-1
- Supported Hardware, page 25-2
- Understanding UDE, page 25-2
- Understanding UDLR, page 25-3

UDE and UDLR Overview

Routing protocols support unidirectional links only if the unidirectional links emulate bidirectional links because routing protocols expect to send and receive traffic through the same interface.

Unidirectional links are advantageous because when you transmit mostly unacknowledged unidirectional high-volume traffic (for example, a video broadcast stream) over a high-capacity full-duplex bidirectional link, you use both the link from the source to the receiver and the equally high-capacity reverse-direction link, called the “back channel,” that carries the few acknowledgements from the receiver back to the source.
Understanding UDE and UDLR

UDE and UDLR support use of a high-capacity unidirectional link for the high-volume traffic without consuming a similar high-capacity link for the back channel. UDE provides a high-capacity unidirectional link. UDLR provides the back channel through a tunnel that is configured over a regular-capacity link, and also provides bidirectional link emulation by transparently making the back channel appear to be on the same interface as the high-capacity unidirectional link.

Supported Hardware

On Cisco 7600 series routers, UDE and UDLR are supported on the interfaces of these switching modules:

- WS-X6704-10GE 4-port 10-Gigabit Ethernet
- WS-X6816-GBIC 16-port Gigabit Ethernet
- WS-X6516A-GBIC 16-port Gigabit Ethernet
- WS-X6516-GBIC 16-port Gigabit Ethernet

Understanding UDE

These sections describe UDE:

- UDE Overview, page 25-2
- Understanding Hardware-Based UDE, page 25-3
- Understanding Software-Based UDE, page 25-3

UDE Overview

On Cisco 7600 series routers, you can implement UDE with hardware or in software. Hardware-based UDE and software-based UDE both use only one strand of fiber instead of the two strands of fiber required by bidirectional traffic.

The unidirectional transceiver determines whether hardware-based UDE is receive-only or transmit-only. You can configure software-based UDE as either transmit-only or receive-only.

You do not need to configure software-based UDE on ports where you implement hardware-based UDE.

Note: Refer to the “Supported Hardware” section on page 25-2 for a list of the module with interfaces that support hardware-based UDE and software-based UDE.

Understanding Hardware-Based UDE

You can create a unidirectional link by using a unidirectional transceiver, which are less expensive than bidirectional transceivers. Cisco 7600 series routers support the following unidirectional transceivers:

- Receive-only WDM GBIC (WDM-GBIC-REC=)
- Receive-only XENPAK (WDM-XENPAK-REC=)
Understanding Software-Based UDE

You can create a unidirectional link by configuring ports equipped with bidirectional transceivers to unidirectionally transmit or receive traffic. You can use software-based UDE when there is no appropriate unidirectional transceiver available. For example, with no support for any transmit-only transceivers, you must configure transmit-only links with software-based UDE.

Understanding UDLR

UDLR provides a unidirectional tunnel as the back channel of a unidirectional high-capacity link, and transparently emulates a single bidirectional link for unicast and multicast traffic.

UDLR intercepts packets that need to be sent on receive-only interfaces and sends them on UDLR back-channel tunnels. When routers receive these packets over UDLR back-channel tunnels, UDLR makes the packets appear as if received on send-only interfaces.

UDLR back-channel tunnels support these IPv4 features:

- Address Resolution Protocol (ARP)
- Next Hop Resolution Protocol (NHRP)
- Emulation of a bidirectional link for all IPv4 traffic (as opposed to only broadcast and multicast control traffic)
- IPv4 GRE multipoint at a receive-only tunnels

Note: UDLR back-channel tunnels do not support IPv6 or MPLS.

Configuring UDE and UDLR

These sections describe how to configure UDE and UDLR:

- Configuring UDE, page 25-3
- Configuring UDLR, page 25-6

Note: This caveat is open in releases that support UDLR: Neighboring ISIS routers are not seen through a UDLR topology. (CSCee56596)

Configuring UDE

These sections describe how to configure UDE:

- UDE Configuration Guidelines, page 25-4
- Configuring Hardware-Based UDE, page 25-5
- Configuring Software-Based UDE, page 25-5
UDE Configuration Guidelines

When configuring UDE, follow these guidelines:

- UDE is supported on the Supervisor Engine 720.
- STP cannot prevent Layer 2 loops in topologies that include unidirectional links.
- Send-only ports always transition to the STP forwarding state, because send-only ports never receive BPDUs.
- Receive-only ports cannot send BPDUs.
- Unidirectional ports do not support any features or protocols that require negotiation with the port at the other end of the link, including these:
 - Speed and duplex mode autonegotiation
 - Link negotiation
 - IEEE 802.3Z flow control
 - Dynamic trunking protocol (DTP)

You must manually configure the parameters that are typically controlled by Layer 2 protocols.

- A topology that includes unidirectional links only supports the VLAN Trunking Protocol (VTP) when the VTP server can send VTP frames to all routers in the VTP domain.
- Disable VTP pruning on routers that have send-only ports, because VTP pruning depends on a bidirectional exchange of information.
- Unidirectional EtherChannels cannot support PAgP or LACP. To create a unidirectional EtherChannel, you must configure the EtherChannel “on” mode.
- You can configure software-based UDE on the physical ports in an EtherChannel. You cannot configure software-based UDE on any nonphysical interfaces (for example, port-channel interfaces).
- When you implement hardware-based UDE on a port or configure software-based UDE on a port, UDLD is automatically disabled on the port.
- CDP sends CDP frames from send-only ports and receives CDP frames from receive-only ports, which means that the router on the send-only side of a unidirectional link never receives CDP information.
- SPAN does not restrict configuration of unidirectional ports as sources or destinations.
- Send-only ports can be SPAN destinations.
- Receive-only ports can be SPAN sources.
- Unidirectional ports do not support IEEE 802.1X port-based authentication.
- Prior to 12.2(33) SRD4 release, when you configure SPAN and UDLD combination on a port where the interface is the span destination port, the current operational state of the UDLD peer is disabled as if the UDLD is disabled at the local end. Post 12.2(33) SRD4 release, if the interface is set as the SPAN destination, the current operational state of the UDLD peer is displayed as Advertisement instead of Disabled.
- IGMP snooping does not support topologies where there are unidirectional links between the router and the hosts that are receiving multicast traffic.
- Configure UDLR with UDE to support communication over unidirectional links between IGMP snooping on the switch and a multicast router.
- Unidirectional links do not support ARP.
• During OIR, unless the line card comes online, you should not attempt to delete the UDE configuration or you will lose UDLD capability on the port.

In case you have deleted the UDE configuration while the card is still offline and you want to enable UDLD again, you should:
 – Reload the router, or
 – Configure UDE on that port again and unconfigure UDE only when the line card is online.

Configuring Hardware-Based UDE

There are no software configuration procedures required to support hardware-based UDE. Install a unidirectional transceiver to implement hardware-based UDE.

To verify hardware-based UDE on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show interfaces gigabitethernet 1/1 status</code></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to verify the configuration of Gigabit Ethernet port 1/1:

```
Router# show interfaces gigabitethernet 1/1 status
```

<table>
<thead>
<tr>
<th>Port</th>
<th>Name</th>
<th>Status</th>
<th>Vlan</th>
<th>Duplex</th>
<th>Speed</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/1</td>
<td>notconnect</td>
<td>1</td>
<td>full</td>
<td>1000</td>
<td>WDM-RXONLY</td>
<td></td>
</tr>
</tbody>
</table>

Configuring Software-Based UDE

To configure software-based UDE on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# interface {{gigabitethernet</td>
<td>tengigabitethernet} slot/interface}`</td>
</tr>
<tr>
<td>`Router(config-if)# unidirectional {send-only</td>
<td>receive-only}`</td>
</tr>
<tr>
<td><code>Router(config-if)# no unidirectional</code></td>
<td>Removes the software-based UDE configuration.</td>
</tr>
<tr>
<td><code>Router(config-if)# end</code></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>`Router# show interface {{gigabitethernet</td>
<td>tengigabitethernet} slot/interface} unidirectional`</td>
</tr>
</tbody>
</table>

This example shows how to configure 10 Gigabit Ethernet port 1/1 as a UDE send-only port:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface tengigabitethernet 1/1
Router(config-if)# unidirectional send-only
Router(config-if)# end
```

Warning!

Enable port unidirectional mode will automatically disable port udld. You must manually ensure that the unidirectional link does not create a spanning tree loop in the network.
Enable l3 port unidirectional mode will automatically disable ip routing on the port. You must manually configure static ip route and arp entry in order to route ip traffic.

This example shows how to configure 10 Gigabit Ethernet port 1/2 as a UDE receive-only port:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface tengigabitethernet 1/2
Router(config-if)# unidirectional receive-only
Router(config-if)# end

Warning!
Enable port unidirectional mode will automatically disable port udld. You must manually ensure that the unidirectional link does not create a spanning tree loop in the network.

Enable l3 port unidirectional mode will automatically disable ip routing on the port. You must manually configure static ip route and arp entry in order to route ip traffic.

This example shows how to verify the configuration:

Router# show interface tengigabitethernet 1/1 unidirectional
 Unidirectional configuration mode: send only
 CDP neighbour unidirectional configuration mode: receive only

This example shows how to disable UDE on 10 Gigabit Ethernet interface 1/1:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface tengigabitethernet 1/1
Router(config-if)# no unidirectional
Router(config-if)# end

This example shows the result of entering the show interface command for a port that does not support unidirectional Ethernet:

Router# show interface fastethernet 6/1 unidirectional
Unidirectional Ethernet is not supported on FastEthernet6/1

Configuring UDLR

These sections describe how to configure UDLR:

- UDLR Back-Channel Tunnel Configuration Guidelines, page 25-6
- Configuring a Receive-Only Tunnel Interface for a UDE Send-Only Port, page 25-7
- Configuring a Send-Only Tunnel Interface for a UDE Receive-Only Port, page 25-7

UDLR Back-Channel Tunnel Configuration Guidelines

When configuring UDLR back-channel tunnels, follow these guidelines:

- The PFC3 does not provide hardware support for UDLR back-channel tunnels. The MSFC3 and MSFC4 (RSP720) support UDLR back-channel tunnels in software.
- Configure a UDLR back-channel tunnel for each unidirectional link.
- On UDE send-only interfaces, configure the UDLR back-channel tunnel interface to receive.
- On UDE receive-only interfaces, configure the UDLR back-channel tunnel interface to send.
- You must configure IPv4 addresses on UDLR back-channel tunnel interfaces.
- You must configure source and destination IPv4 addresses on UDLR back-channel tunnel interfaces.
- The UDLR back-channel tunnel default mode is GRE.
- UDLR back-channel tunnels do not support IPv6 or MPLS.

Configuring a Receive-Only Tunnel Interface for a UDE Send-Only Port

To configure a receive-only tunnel interface for a UDE send-only port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface tunnel number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# tunnel udlr receive-only ude_send_only_port</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip address ipv4_address</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# tunnel source {ipv4_address</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# tunnel destination {hostname</td>
</tr>
</tbody>
</table>

Configuring a Send-Only Tunnel Interface for a UDE Receive-Only Port

To configure a send-only tunnel interface for a UDE receive-only port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface tunnel number</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# tunnel udlr send-only ude_receive_only_port</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip address ipv4_address</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# tunnel source {ipv4_address</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# tunnel destination {hostname</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if)# tunnel udlr address-resolution</td>
</tr>
</tbody>
</table>

In the following UDE and UDLR sample configuration:

- On Router A:
 - Open Shortest Path First (OSPF) and PIM are configured.
 - 10 Gigabit Ethernet port 1/1 is a send-only UDE port.
 - The UDLR back-channel tunnel is configured as receive only and is associated with 10 Gigabit Ethernet port 1/1.
- On Router B:
 - OSPF and PIM are configured.
– 10 Gigabit Ethernet port 1/2 is a receive-only UDE port.
– The UDLR back-channel tunnel is configured as send-only and is associated with 10 Gigabit Ethernet port 1/2.
– ARP and NHRP are enabled.

Router A Configuration

```plaintext
ip multicast-routing

! tengigabitethernet 1/1 is send-only
! interface tengigabitethernet 1/1
  unidirectional send-only
  ip address 10.1.0.1 255.255.0.0
  ip pim sparse-dense-mode

! Configure tunnel as receive-only UDLR tunnel.
! interface tunnel 0
  tunnel source 11.0.0.1
  tunnel destination 11.0.0.2
  tunnel udlr receive-only tengigabitethernet 1/1

! Configure OSPF.
! router ospf <pid>
  network 10.0.0.0 0.255.255.255 area 0
```

Router B Configuration

```plaintext
ip multicast-routing

! tengigabitethernet 1/2 is receive-only
! interface tengigabitethernet 1/2
  unidirectional receive-only
  ip address 10.1.0.2 255.255.0.0
  ip pim sparse-dense-mode

! Configure tunnel as send-only UDLR tunnel.
! interface tunnel 0
  tunnel source 11.0.0.2
  tunnel destination 11.0.0.1
  tunnel udlr send-only tengigabitethernet 1/2
  tunnel udlr address-resolution

! Configure OSPF.
! router ospf <pid>
  network 10.0.0.0 0.255.255.255 area 0
```
Configuring Multiprotocol Label Switching on the PFC

This chapter describes how to configure Multiprotocol Label Switching (MPLS) on the Cisco 7600 PFC card. The information in this chapter describes MPLS operation on the PFC3B, PFC3BXL, PFC3C, and PFC3CXL cards. Unless otherwise noted, MPLS operation is the same on all of these PFC cards.

Note

For complete syntax and usage information for the commands used in this chapter, see these publications:

- The Cisco 7600 Series Routers Command References at this URL:
- The Release 12.2 publications at this URL:

This chapter contains these sections:

- PFC MPLS Label Switching, page 26-1
- VPN Switching on the PFC, page 26-14
- Any Transport over MPLS, page 26-18

PFC MPLS Label Switching

These sections describe MPLS label switching:

- Understanding MPLS, page 26-2
- Understanding MPLS Label Switching, page 26-2
- Supported Hardware Features, page 26-4
- Supported Cisco IOS Features, page 26-5
- MPLS Guidelines and Restrictions, page 26-7
- Configuring MPLS, page 26-8
- MPLS Per-Label Load Balancing, page 26-8
- MPLS Configuration Examples, page 26-8
Understanding MPLS

MPLS uses label switching to forward packets over various link-level technologies such as Packet-over-SONET (POS), Frame Relay, ATM, and Ethernet. Labels are assigned to packets based on groupings or forwarding equivalence classes (FECs). The label is added between the Layer 2 and the Layer 3 header.

In an MPLS network, the label edge router (LER) performs a label lookup of the incoming label, swaps the incoming label with an outgoing label, and sends the packet to the next hop at the label switch router (LSR). Labels are imposed (pushed) on packets only at the ingress edge of the MPLS network and are removed (popped) at the egress edge. The core network LSRs (provider, or P routers) read the labels, apply the appropriate services, and forward the packets based on the labels.

Incoming labels are aggregate or nonaggregate. The aggregate label indicates that the arriving MPLS packet must be switched through an IP lookup to find the next hop and the outgoing interface. The nonaggregate label indicates that the packet contains the IP next hop information.

Figure 26-1 shows an MPLS network of a service provider that connects two sites of a customer network.

For additional information on MPLS, see this publication:

Understanding MPLS Label Switching

The PFC supports Layer 3 Multiprotocol Label Switching (MPLS) virtual private networks (VPNs), and Layer 2 Ethernet over MPLS (EoMPLS), with quality of service (QoS) and security.

The MSFC on the supervisor engine performs Layer 3 control-plane functions, including address resolution and routing protocols. The MSFC processes information from the Routing and Label Distribution Protocols and builds the IP forwarding (FIB) table and the label forwarding (LFIB) table. The MSFC distributes the information in both tables to the PFC.
The PFC receives the information and creates its own copies of the FIB and LFIB tables. Together, these tables comprise the FIB TCAM. The DFC looks up incoming IP packets and labeled packets against the FIB TCAM table. The lookup result is the pointer to a particular adjacency entry. It is the adjacency entry that contains appropriate information for label pushing (for IP to MPLS path), label swapping (for MPLS to MPLS path), label popping (for MPLS to IP path), and encapsulation.

Figure 26-2 shows the various functional blocks on the PFC that support MPLS label switching. Routing protocol generates a routing information base (RIB) that is used for forwarding IP and MPLS data packets. For Cisco Express Forwarding (CEF), necessary routing information from the RIB is extracted and built into a forwarding information base (FIB). The label distribution protocol (LDP) obtains routes from the RIB and distributes the label across a label switch path to build a label forwarding information base (LFIB) in each of the LSRs and LERs.

Figure 26-2 MPLS Forwarding, Control and Data Planes

- **IP to MPLS**

 At the ingress to the MPLS network, the PFC examines the IP packets and performs a route lookup in the FIB TCAM. The lookup result is the pointer to a particular adjacency entry. The adjacency entry contains the appropriate information for label pushing (for IP to MPLS path) and encapsulation. The PFC generates a result containing the imposition label(s) needed to switch the MPLS packet.

 Note If MPLS load sharing is configured, the adjacency may point to a load-balanced path. See “Basic MPLS Load Balancing” section on page 26-8.

- **MPLS to MPLS**

 At the core of an MPLS network, the PFC uses the topmost label to perform a lookup in the FIB TCAM. The successful lookup points to an adjacency that swaps the top label in the packet with a new label as advertised by the downstream label switch router (LSR). If the router is the penultimate hop LSR router (the upstream LSR next to the egress LER), the adjacency instructs the PFCBXL or PFC3CXL to pop the topmost label, resulting in either an MPLS packet with the remaining label for any VPN or AToM use or a native IP packet.
MPLS to IP

At the egress of the MPLS network there are several possibilities.

For a native IP packet (when the penultimate router has popped the label), the PFC performs a route lookup in the FIB TCAM.

For a MPLS VPN packet, after the Interior Gateway Protocol (IGP) label is popped at penultimate router, the VPN label remains. The operation that the PFC performs depends on the VPN label type. Packets carrying aggregate labels require a second lookup based on the IP header after popping the aggregate label. For a nonaggregate label, the PFC performs a route lookup in the FIB TCAM to obtain the IP next hop information.

For the case of a packet with an IGP label and a VPN label, when there is no penultimate hop popping (PHP), the packet carries the explicit-null label on top of the VPN label. The PFC looks up the top label in the FIB TCAM and recirculates the packet. Then the PFC handles the remaining label as described in the preceding paragraph, depending on whether it is an aggregate or nonaggregate label.

Packets with the explicit-null label for the cases of EoMPLS, MPLS, and MPLS VPN an MPLS are handled the same way.

MPLS VPN Forwarding

There are two types of VPN labels: aggregate labels for directly connected network or aggregate routes, and nonaggregate labels. Packets carrying aggregate labels require a second lookup based on the IP header after popping the aggregate label. The VPN information (VPN-IPv4 address, extended community, and label) is distributed through the Multiprotocol-Border Gateway Protocol (MP-BGP).

Recirculation

In certain cases, the PFC provides the capability to recirculate the packets. Recirculation can be used to perform additional lookups in the ACL or QoS TCAMs, the Netflow table, or the FIB TCAM table. Recirculation is necessary in these situations:

- To push more than three labels on imposition
- To pop more than two labels on disposition
- To pop an explicit null top label
- When the VPN Routing and Forwarding (VRF) number is more than 511
- For IP ACL on the egress interface (for nonaggregate (per-prefix) labels only)

Packet recirculation occurs only on a particular packet flow; other packet flows are not affected. The rewrite of the packet occurs on the modules; the packets are then forwarded back to the PFC for additional processing.

Supported Hardware Features

The following hardware features are supported:

- Label operation— Any number of labels can be pushed or popped, although for best results, up to three labels can be pushed, and up to two labels can be popped in the same operation.
- IP to MPLS path—IP packets can be received and sent to the MPLS path.
- MPLS to IP path—Labeled packets can be received and sent to the IP path.
Chapter 26 Configuring Multiprotocol Label Switching on the PFC

PFC MPLS Label Switching

- MPLS to MPLS path—Labeled packets can be received and sent to the label path.
- MPLS Traffic Engineering (MPLS TE)—Enables an MPLS backbone to replicate and expand the traffic engineering capabilities of Layer 2 ATM and Frame Relay networks.
- Time to live (TTL) operation—At the ingress edge of the MPLS network, the TTL value in the MPLS frame header can be received from either the TTL field of the IP packet header or the user-configured value from the adjacency entry. At the egress of the MPLS network, the final TTL equals the minimum (label TTL and IP TTL)-1.

Note With the Uniform mode, the TTL is taken from the IP TTL; with the Pipe mode, a value of 255, taken from the hardware register, is used for the outgoing label.

- QoS—Information on Differentiated Services (DiffServ) and ToS from IP packets can be mapped to MPLS EXP field.
- MPLS/VPN Support—Up to 1024 VRFs can be supported (over 511 VRFs requires recirculation).
- Ethernet over MPLS—The Ethernet frame can be encapsulated at the ingress to the MPLS domain and the Ethernet frame can be decapsulated at the egress.
- Packet recirculation—The PFC provides the capability to recirculate the packets. See the “Recirculation” section on page 26-4.
- Configuration of MPLS switching is supported on VLAN interfaces with the **mpls ip** command.

Supported Cisco IOS Features

The following Cisco IOS software features are supported on the PFC:

Note Multi-VPN Routing and Forwarding (VRF) for CE Routers (VRF Lite) is supported with the following features: IPv4 forwarding between VRFs interfaces, IPv4 ACLs, and IPv4 HSRP.

- Multi-VRF for CE Routers (VRF Lite)—VRF-lite is a feature that enables a service provider to support two or more VPNs (using only VRF-based IPv4), where IP addresses can be overlapped among the VPNs. See this publication:
- MPLS on Cisco routers—This feature provides basic MPLS support for imposing and removing labels on IP packets at label edge routers (LERs) and switching labels at label switch routers (LSRs). See this publication:
 http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newf/120limit/120st/120st21/fs_rtr.htm
- MPLS TE—MPLS traffic engineering software enables an MPLS backbone to replicate and expand upon the traffic engineering capabilities of Layer 2 ATM and Frame Relay networks. MPLS traffic engineering thereby makes traditional Layer 2 features available to Layer 3 traffic flows. For more information, see these publications:
MPLS TE DiffServ Aware (DS-TE)—This feature provides extensions made to MPLS TE to make it DiffServ aware, allowing constraint-based routing of guaranteed traffic. See this publication:

MPLS TE Forwarding Adjacency—This feature allows a network administrator to handle a traffic engineering, label-switched path (LSP) tunnel as a link in an Interior Gateway Protocol (IGP) network based on the Shortest Path First (SPF) algorithm. For information on forwarding adjacency with Intermediate System-to-Intermediate System (IS-IS) routing, see this publication:

MPLS TE Interarea Tunnels—This feature allows the router to establish MPLS TE tunnels that span multiple Interior Gateway Protocol (IGP) areas and levels, removing the restriction that had required the tunnel head-end and tail-end routers to be in the same area. See this publication:

MPLS virtual private networks (VPNs)—This feature allows you to deploy scalable IPv4 Layer 3 VPN backbone services over a Cisco IOS network. See this publication:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120st/120st21/fs_vpn.htm

MPLS VPN Carrier Supporting Carrier (CSC)—This feature enables one MPLS VPN-based service provider to allow other service providers to use a segment of its backbone network. See this publication:

MPLS VPN Carrier Supporting Carrier IPv4 BGP Label Distribution—This feature allows you to configure your CSC network to enable Border Gateway Protocol (BGP) to transport routes and MPLS labels between the backbone carrier provider edge (PE) routers and the customer carrier customer edge (CE) routers. See this publication:

MPLS VPN Interautonomous System (InterAS) Support—This feature allows an MPLS VPN to span service providers and autonomous systems. See this publication:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120st/120st24/fsias24.htm

MPLS VPN Inter-AS IPv4 BGP label distribution—This feature enables you to set up a VPN service provider network so that the autonomous system boundary routers (ASBRs) exchange IPv4 routes with MPLS labels of the PE routers. See this publication:

MPLS VPN Hot Standby Router Protocol (HSRP) Support—This feature ensures that the HSRP virtual IP address is added to the correct IP routing table and not to the global routing table. See this publication:
http://www.cisco.com/univercd/cc/td/doc/product/software/ios121/121newft/121t/121t3/dt_hsmp.htm
• OSPF Sham-Link Support for MPLS VPN—This feature allows you to use a sham-link to connect VPN client sites that run the Open Shortest Path First (OSPF) protocol and share OSPF links in an MPLS VPN configuration. See this publication:

 http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122newft/122t/122t8/ospfshmk.htm

• Any Transport over MPLS (AToM)—Transports Layer 2 packets over an MPLS backbone. See the “Any Transport over MPLS” section on page 26-18.

MPLS Guidelines and Restrictions

When configuring MPLS on the PFC follow these guidelines and restrictions:
• The PFC supports up to 8 load-shared paths. Cisco IOS releases for other platforms support only 8 load-shared paths.
• The PFC supports MTU checking and fragmentation.
• Fragmentation is supported with software (for IP to MPLS path). See the mtu command description in the Cisco 7600 Series Router Cisco IOS Command Reference.
• Observe the following maximum transmission unit (MTU) guidelines when you configure MPLS:
 – Both ends of the MPLS link must have the same MTU size; otherwise, MPLS detects a mismatch between the interfaces and it never becomes operational.

 Note that MPLS over RBE allows different MTU sizes (for example, default Gigabit Ethernet and ATM). However, when running OSPF over RBE, you must include the ip ospf mtu-ignore command on the ATM interface; otherwise, OSPF detects a mismatch and never becomes active.

 – The MPLS MTU size must be less than the MTU size of the physical interface that the MPLS link uses. Otherwise, problems can occur and MPLS packets might be dropped.

 Although not recommended, you can use the mpls mtu override bytes command to set the MPLS MTU size to a value greater than the interface MTU size (where bytes specifies MPLS MTU size).

 Note
 The mpls mtu override bytes command is available only on interfaces with a default MTU size of 1580 bytes or less (for example, Ethernet). It is not available on ATM bridged interfaces.

• For information on other restrictions, see the “MPLS VPN Guidelines and Restrictions” section on page 26-15 and the “EoMPLS Guidelines and Restrictions” section on page 26-19.

MPLS Supported Commands

MPLS on the PFC supports these commands:
• mpls ip default route
• mpls ip propagate-ttl
• mpls ip ttl-expiration pop
• mpls label protocol
• mpls label range
• mpls ip
PFC MPLS Label Switching

Chapter 26 Configuring Multiprotocol Label Switching on the PFC

- mpls label protocol
- mpls mtu

For information about these commands, see these publications:

Configuring MPLS

For information about configuring MPLS, see the Multiprotocol Label Switching on Cisco Routers publication at the following URL:

MPLS Per-Label Load Balancing

The following sections provide information on basic MPLS, MLPS Layer 2 VPN, and MPLS Layer 3 VPN load balancing.

Basic MPLS Load Balancing

The maximum number of load balancing paths is 8. The PFC forwards MPLS labeled packets without explicit configuration. If the packet has three labels or less and the underlying packet is IPv4, then the PFC uses the source and destination IPv4 address. If the underlying packet is not IPv4 or more than three labels are present, the PFC parses down as deep as the fifth or lowest label and uses it for hashing.

MPLS Layer 2 VPN Load Balancing

Load balancing is based on the VC label in the MPLS core if the first nibble of the MAC address in the customer Ethernet frame is not 4.

Note
Load balancing is not supported at the ingress PE for Layer 2 VPNs.

MPLS Layer 3 VPN Load Balancing

MPLS Layer 3 VPN load balancing is similar to basic MPLS load balancing. For more information, see the “Basic MPLS Load Balancing” section on page 26-8.

MPLS Configuration Examples

The following is an example of a basic MPLS configuration:

Basic MPLS

IP ingress interface:

Router# mpls label protocol ldp
interface GigabitEthernet6/2
 ip address 75.0.77.1 255.255.255.0
 media-type rj45
 speed 1000
end

Label egress interface:

interface GigabitEthernet7/15
 mtu 9216
 ip address 75.0.67.2 255.255.255.0
 logging event link-status
 mpls ip

Router# show ip route 188.0.0.0
Routing entry for 188.0.0.0/24, 1 known subnets
 O IA 188.0.0.0 [110/1] via 75.0.77.2, 00:00:10, GigabitEthernet6/2

Router# sh ip ro 88.0.0.0
Routing entry for 88.0.0.0/24, 1 known subnets
 O E2 88.0.0.0 [110/0] via 75.0.67.1, 00:00:24, GigabitEthernet7/15
 [110/0] via 75.0.21.2, 00:00:24, GigabitEthernet7/16

Router# show mpls forwarding-table 88.0.0.0
Local Outgoing Prefix Bytes tag or Tunnel Id switched interface
 30 50 88.0.0.0/24 0 Gi7/15 75.0.67.1
 50 88.0.0.0/24 0 Gi7/16 75.0.21.2

Router# show mls cef 88.0.0.0 detail
Codes: M - mask entry, V - value entry, A - adjacency index, P - priority bit
 D - full don't switch, m - load balancing modnumber, B - BGP Bucket sel
V0 - Vlan 0,C0 - don't comp bit 0,V1 - Vlan 1,C1 - don't comp bit 1
 RVTEN - RPF Vlan table enable, RVTSEL - RPF Vlan table select
Format: IPV4_DA - (8 | xtag vpn pi cr recirc tos prefix)
Format: IPV4_SA - (9 | xtag vpn pi cr recirc prefix)
M(3223): E | 1 FFF 0 0 0 0 255.255.255.0
V(3223): 8 | 1 0 0 0 0 88.0.0.0 {A:344105,P:1,D:0,m:1,B:0}
M(3223): E | 1 FFF 0 0 0 0 255.255.255.0
V(3223): 9 | 1 0 0 0 0 88.0.0.0 [V0:0 ,C0:0 ,V1:0 ,C1:0 ,RVTEN:0 ,RVTSEL:0]

Router# show mls cef adj ent 344105
Index: 344105 smac: 0005.9a39.a480, dmac: 000a.8ad8.2340
 mtu: 9234, vlan: 1031, dindex: 0x0, l3rw_vld: 1
 packets: 109478260, bytes: 7006608640

Router# show mls cef adj ent 344105 de
Index: 344105 smac: 0005.9a39.a480, dmac: 000a.8ad8.2340
 mtu: 9234, vlan: 1031, dindex: 0x0, l3rw_vld: 1
 format: MPLS, flags: 0x100008418
 label0: 0, exp: 0, ovr: 0
 label1: 0, exp: 0, ovr: 0
 label2: 50, exp: 0, ovr: 0
 op: PUSH_LABEL2
 packets: 112344419, bytes: 7190042816
Multicast Adjacency Allocation

Multicast adjacency allocation feature allows adjacency entry reservation for multicast routes. You can configure the multicast range in a region or per-region.

Restrictions for the Multicast Adjacency Allocation

Following restrictions apply for the multicast adjacency allocation:

- This feature is supported on PFC-3A, 3B, 3BXL, 3C, and 3CXL.
- Once you configure the multicast adjacency entries, you have to restart the router for enabling the new adjacency allocation scheme.
- The new allocation scheme is limited to unicast adjacencies. The allocation scheme for multicast adjacencies remains the same.

Configuring Multicast Adjacency Allocation

This section describes how to configure the multicast adjacency allocation.

SUMMARY STEPS

1. enable
2. configure terminal
3. mls cef adjacency-mcast {number | region region per-region}
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
</tr>
</tbody>
</table>
Chapter 26 Configuring Multiprotocol Label Switching on the PFC

Multicast Adjacency Allocation

Verifying the Configuration

This example shows how to display the multicast adjacency allocation table:

```
Router# show mls cef adjacency list
Region0:
    Head: 1738B928, 16351, 33
    Next: 1738B928, 16351, 33
    Midptr: 0
```

Configuration Examples

This example shows how to specify the multicast adjacency number:

```
Router# configure terminal
Router(config)# mls cef adjacency-mcast region 31 2
```

This example shows how to disable the feature at global level:

```
Router# configure terminal
Router(config)# no mls cef adjacency-mcast
```

This example shows how to disable the feature at per-region level:

```
Router# configure terminal
Router(config)# no mls cef adjacency-mcast region 31
```
Multicast Adjacency Allocation

<table>
<thead>
<tr>
<th>Limit:</th>
<th>16384</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usage:</td>
<td>33</td>
</tr>
<tr>
<td>Start:</td>
<td>0</td>
</tr>
<tr>
<td>End:</td>
<td>16383</td>
</tr>
<tr>
<td>Size:</td>
<td>16384</td>
</tr>
<tr>
<td>MidPt:</td>
<td>8192</td>
</tr>
<tr>
<td>Search:</td>
<td>1</td>
</tr>
<tr>
<td>Stats:</td>
<td>1</td>
</tr>
<tr>
<td>BC[0]:</td>
<td>1</td>
</tr>
<tr>
<td>BC[1]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[2]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[3]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[4]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[5]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[6]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[7]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[8]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[9]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[10]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[11]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[12]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[13]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[14]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[15]:</td>
<td>0</td>
</tr>
<tr>
<td>BC[16]:</td>
<td>0</td>
</tr>
</tbody>
</table>

Region1:
- Head: 1738B904, 16377, 16391
- Next: 1738B904, 16377, 16391
- MidPtr: 0
- Limit: 16057
- Usage: 7
- Start: 16384
- End: 32767
- Size: 16384
- MidPt: 24412
- Search: 1
- Stats: 1
- BC[0]: 1
- BC[1]: 0
- BC[2]: 0
- BC[3]: 0
- BC[4]: 0
- BC[5]: 0
- BC[6]: 0
- BC[7]: 0
- BC[8]: 0
- BC[9]: 0
- BC[10]: 0
- BC[11]: 0
- BC[12]: 0
- BC[13]: 0
- BC[14]: 0
- BC[15]: 0
- BC[16]: 0

Region2:
- Head: 1738B8E0, 16377, 32775
- Next: 1738B8E0, 16377, 32775
- MidPtr: 0
- Limit: 16057
- Usage: 7
- Start: 32768
- End: 49151
- Size: 16384
- MidPt: 40796
This example shows how to display the multicast adjacency usage:

```
Router#show mls cef adjacency usage
Adjacency Table Size: 1048576
ACL region usage: 3
Non-stats region usage: 132
Stats region usage: 249
Total adjacency usage: 384
```

This example shows how to display the multicast adjacency count:

```
Router#show mls cef adjacency count
Region0: 33 Region1: 7
Region2: 7 Region3: 7
Region4: 7 Region5: 7
Region6: 7 Region7: 7
Region8: 7 Region9: 7
Region10: 7 Region11: 7
Region12: 7 Region13: 7
Region14: 7 Region15: 7
Region16: 7 Region17: 7
Region18: 7 Region19: 7
Region20: 7 Region21: 7
Region22: 7 Region23: 7
Region24: 7 Region25: 7
Region26: 7 Region27: 7
Region28: 7 Region29: 7
Region30: 7 Region31: 6
Region32: 130 Region33: 2
Region34: 0 Region35: 0
Region36: 0 Region37: 0
Region38: 0 Region39: 0
Region40: 0 Region41: 0
Region42: 0 Region43: 0
Region44: 0 Region45: 0
Region46: 0 Region47: 0
```

This example shows how to display the multicast adjacency allocation in a region:

```
Router#show mls cef adjacency region 22
Region22:
Head: 173BB610, 16377, 360455
Next: 173BB610, 16377, 360455
Midptr: 0
Limit: 16057
Usage: 7
Start: 360448
End: 376831
Size: 16384
MidPt: 368476
Search: 1
Stats: 1
BC[0]: 1
```
VPN Switching on the PFC

These sections describe VPN switching on the PFC:

- **VPN Switching Operation on the PFC**, page 26-14
- **MPLS VPN Guidelines and Restrictions**, page 26-15
- **MPLS VPN Supported Commands**, page 26-16
- **MPLS VPN Sample Configuration**, page 26-16

VPN Switching Operation on the PFC

The IP VPN feature for MPLS allows a Cisco IOS network to deploy scalable IP Layer 3 VPN backbone services to multiple sites deployed on a shared infrastructure while also providing the same access or security policies as a private network. VPN based on MPLS technology provides the benefits of routing isolation and security, as well as simplified routing and better scalability.

Refer to the Cisco IOS software documentation for a conceptual MPLS VPN overview and configuration details at this URL:

A typical MPLS VPN network topology is shown in Figure 26-3.
At the ingress PE, the PFC makes a forwarding decision based on the packet headers. The PFC contains a table that maps VLANs to VPNs. In the Cisco 7600 series router architecture, all physical ingress interfaces in the system are associated with a specific VPN. The PFC looks up the IP destination address in the CEF table but only against prefixes that are in the specific VPN. (The table entry points to a specific set of adjacencies and one is chosen as part of the load-balancing decision if multiple parallel paths exist.)

The table entry contains the information on the Layer 2 header that the packet needs, as well as the specific MPLS labels to be pushed onto the frame. The information to rewrite the packet goes back to the ingress line card where it is rewritten and forwarded to the egress line interface.

VPN traffic is handled at the egress from the PE based upon the per-prefix labels or aggregate labels. If per-prefix labels are used, then each VPN prefix has a unique label association; this allows the PE to forward the packet to the final destination based upon a label lookup in the FIB.

Note

The PFC allocates only one aggregate label per VRF.

If aggregate labels are used for disposition in an egress PE, many prefixes on the multiple interfaces may be associated with the label. In this case, the PFC must perform an IP lookup to determine the final destination. The IP lookup may require recirculation.

MPLS VPN Guidelines and Restrictions

When configuring MPLS VPN, follow these guidelines and restrictions:

- The PFC supports a total of 1024 VRFs per chassis with enhanced OSMs. Using a nonenhanced OSM causes the system to default to 511 VRFs.
- The PFC recirculates VPNs when the number of VPNs is over 511.
MPLS VPN Supported Commands

The PFC supports these MPLS VPN commands:

- address-family
- exit-address-family
- import map
- ip route vrf
- ip route forwarding
- ip vrf
- neighbor activate
- rd
- route-target

For information about these commands, see these publications:

Configuring MPLS VPN

For information on configuring MPLS VPN, refer to the *MPLS Virtual Private Networks* feature module at this URL:

Note

If you use a Layer 3 VLAN interface as the MPLS uplink through a Layer 2 port peering with another MPLS device, then you can use another Layer 3 VLAN interface as the VRF interface.

MPLS VPN Sample Configuration

This sample configuration shows LAN, OSM, and Enhanced FlexWAN CE-facing interfaces. The PFC MPLS switching configuration is identical to configuration on other platforms.

```
!ip vrf blues
  rd 100:10
  route-target export 100:1
  route-target import 100:1
!mpls label protocol ldp
mpls ldp logging neighbor-changes
mls mpls tunnel-recirc
!interface Loopback0
  ip address 10.4.4.4 255.255.255.255
!interface GigabitEthernet4/2
  description Catalyst link to P2
  no ip address
  mls qos trust dscp
!interface GigabitEthernet4/2.42
  encapsulation dot1Q 42
```
ip address 10.0.3.2 255.255.255.0
 tag-switching ip
 !
interface GigabitEthernet7/3
 description Catalyst link to CE2
 no ip address
 mls qos trust dscp
 !
interface GigabitEthernet7/3.73
 encapsulation dot1Q 73
 ip vrf forwarding blues
 ip address 10.19.7.1 255.255.255.0
 !
interface POS8/1
 description OSM link to CE3
 ip vrf forwarding blues
 ip address 10.19.8.1 255.255.255.252
 encapsulation ppp
 mls qos trust dscp
 pos scramble-atm
 pos flag c2 22
 !
interface POS9/0/0
 description FlexWAN link to CE1
 ip vrf forwarding blues
 ip address 10.19.9.1 255.255.255.252
 encapsulation ppp
 pos scramble-atm
 pos flag c2 22
 !
router ospf 100
 log-adjacency-changes
 network 10.4.4.4 0.0.0.0 area 0
 network 10.0.0.0 0.0.255.255 area 0
 !
router ospf 65000 vrf blues
 log-adjacency-changes
 redistribute bgp 100 subnets
 network 10.19.0.0 0.0.255.255 area 0
 !
router bgp 100
 no synchronization
 bgp log-neighbor-changes
 neighbor 10.3.3.3 remote-as 100
 neighbor 10.3.3.3 description MP-BGP to PE1
 neighbor 10.3.3.3 update-source Loopback0
 no auto-summary
 !
address-family vpnv4
 neighbor 10.3.3.3 activate
 neighbor 10.3.3.3 send-community extended
 exit-address-family
 !
address-family ipv4 vrf blues
 redistribute connected
 redistribute ospf 65000 match internal external 1 external 2
 no auto-summary
 no synchronization
 exit-address-family
 !
Any Transport over MPLS

Any Transport over MPLS (AToM) transports Layer 2 packets over an MPLS backbone. AToM uses a directed Label Distribution Protocol (LDP) session between edge routers for setting up and maintaining connections. Forwarding occurs through the use of two level labels that provide switching between the edge routers. The external label (tunnel label) routes the packet over the MPLS backbone to the egress PE at the ingress PE. The VC label is a demuxing label that determines the connection at the tunnel endpoint (the particular egress interface on the egress PE as well as the VLAN identifier for an Ethernet frame).

AToM supports the following like-to-like transport types on the PFC:

- Ethernet over MPLS (EoMPLS) (VLAN mode and port mode)
- Frame Relay over MPLS with DLCI-to-DLCI connections
- ATM AAL5 over MPLS
- ATM Cell Relay over MPLS

Note: Additional AToM types are planned in future releases.

The PFC supports hardware-based EoMPLS and OSM- or Enhanced FlexWAN-based EoMPLS. (Note that Release 12.2SR does not support FlexWAN-based EoMPLS). For more information, see:

For information on other AToM implementations (ATM AAL5 over MPLS, ATM Cell Relay over MPLS, Frame Relay over MPLS), see this publication:

These sections describe AToM:

- AToM Load Balancing, page 26-18
- Understanding EoMPLS, page 26-18
- EoMPLS Guidelines and Restrictions, page 26-19
- Configuring EoMPLS, page 26-23
- Configuring 7600-MUX-UNI Support on LAN Cards, page 26-30

AToM Load Balancing

EoMPLS on the PFC does not support load balancing at the tunnel ingress; only one Interior Gateway Protocol (IGP) path is selected even if multiple IGP paths are available, but load balancing is available at the MPLS core.

Understanding EoMPLS

EoMPLS is one of the AToM transport types. AToM transports Layer 2 packets over a MPLS backbone using a directed LDP session between edge routers for setting up and maintaining connections. Forwarding occurs through the use of two level labels that provide switching between the edge routers.
Chapter 26 Configuring Multiprotocol Label Switching on the PFC

Any Transport over MPLS

The external label (tunnel label) routes the packet over the MPLS backbone to the egress PE at the ingress PE. The VC label is a demuxing label that determines the connection at the tunnel endpoint (the particular egress interface on the egress PE as well as the VLAN identifier for an Ethernet frame).

EoMPLS works by encapsulating Ethernet PDUs in MPLS packets and forwarding them across the MPLS network. Each PDU is transported as a single packet.

Note

Use OSM-based or Enhanced FlexWAN-based EoMPLS when you want local Layer 2 switching and EoMPLS on the same VLAN. You must configure EoMPLS on the SVI, and the core-facing card must be an OSM or an Enhanced FlexWAN module. When local Layer 2 switching is not required, use PFC-based EoMPLS configured on the subinterface or physical interface.

EoMPLS Guidelines and Restrictions

When configuring EoMPLS, consider these guidelines and restrictions:

- Ensure that the maximum transmission unit (MTU) of all intermediate links between endpoints is sufficient to carry the largest Layer 2 packet received.

- EoMPLS supports VLAN packets that conform to the IEEE 802.1Q standard. The 802.1Q specification establishes a standard method for inserting VLAN membership information into Ethernet frames.

- For VLAN-based EoMPLS, the MTU size on the VLAN subinterface must be greater than 1500 (the default) if a larger MTU size is specified on the physical interface.

Note

Port-channel and xconnect combinations are supported on Port-based EoMPLS. However, all the restrictions for normal PFC based EoMPLS are applicable to port-channel and xconnect as well.

- If QoS is disabled globally, both the 802.1p and IP precedence bits are preserved. When the QoS is enabled on a Layer 2 port, either 802.1q P bits or IP precedence bits can be preserved with the trusted configuration. However, by default the unpreserved bits are overwritten by the value of preserved bits. For instance, if you preserve the P bits, the IP precedence bits are overwritten with the value of the P bits. A new command allows you to configure the PFC to trust the P bits while preserving the IP precedence bits. To preserve the IP precedence bits, use the `no mls qos rewrite ip dscp` command.

Note

The `no mls qos rewrite ip dscp` command is not compatible with the MPLS and MPLS VPN features. See Chapter 48, “Configuring PFC QoS.”

Note

Do not use the `no mls qos rewrite ip dscp` command if you have PFC-based EoMPLS and PXF-based EoMPLS services in the same system.

- EoMPLS is not supported with private VLANs.
- The following restrictions apply to using trunks with EoMPLS:
To support Ethernet spanning tree bridge protocol data units (BPDUs) across an EoMPLS cloud, you must disable the supervisor engine spanning tree for the Ethernet-over-MPLS VLAN. This ensures that the EoMPLS VLANs are carried only on the trunk to the customer router. Otherwise, the BPDUs are directed to the supervisor engine and not to the EoMPLS cloud.

- The native VLAN of a trunk must not be configured as an EoMPLS VLAN. For more information on Scalable EoMPLS (SVI-based EoMPLS) and Port-mode EoMPLS and its sample configuration, see Scalable EoMPLS and Port-mode EoMPLS, page 26-21 and Sample Configuration for SwEoMPLS and VPLS, page 26-21.

- Cisco 7600 provides three different flavors of the Ethernet over MPLS (EoMPLS) solutions.
 - PFC-based EoMPLS, also known as Hardware-based EoMPLS where the Earl imposes on the Supervisor or DFC based line card
 - LAN-based EoMPLS, also known as Software-based EoMPLS, where Earl imposes on the MPLS Core-facing line card
 - Scalable EoMPLS, where the Earl imposes on customer device facing line card. The feature is supported in the SIP400, ES20, and ES40 as customer-facing line cards. Further, in ES20 and ES40 the solution is supported only in EVC-based configuration.

- On the PFC, all protocols (for example, CDP, VTP, BPDUs) are tunneled across the MPLS cloud without conditions.
- ISL encapsulation is not supported for the interface that receives EoMPLS packets.
- Unique VLANs are required across interfaces. You cannot use the same VLAN ID on different interfaces.
- EoMPLS tunnel destination route in the routing table and the CEF table must be a /32 address (host address where the mask is 255.255.255.255) to ensure that there is a label-switched path (LSP) from PE to PE.
- For a particular EoMPLS connection, both the ingress EoMPLS interface on the ingress PE and the egress EoMPLS interface on the egress PE have to be subinterfaces with dot1Q encapsulation or neither is a subinterface.
- 802.1Q in 802.1Q over EoMPLS is supported if the outgoing interface connecting to MPLS network is a port on an Layer 2 card.
- Shaping EoMPLS traffic is not supported if the egress interface connecting to an MPLS network is a Layer 2 LAN port (a mode known as PFC-based EoMPLS).
- EoMPLS based on a PFC does not perform any Layer 2 lookup to determine if the destination MAC address resides on the local or remote segment and does not perform any Layer 2 address learning (as traditional LAN bridging does). This functionality (local switching) is available only when using OSM and FlexWAN modules as uplinks.
- In previous releases of AToM, the command used to configure AToM circuits was **mpls l2 transport route**. This command has been replaced with the **xconnect** command. You can use the **xconnect** command to configure EoMPLS circuits.
- The AToM control word is not supported.
- EoMPLS is not supported on Layer 3 VLAN interfaces.
- Point-to-point EoMPLS works with a physical interface and subinterfaces.
- Some of the SPA-based Ethernet line cards like the ES20 support matching the outer VLAN for QinQ traffic. See the documentation for the line card you are interested in for more information.
Scalable EoMPLS and Port-mode EoMPLS

In a scalable EoMPLS scenario, you can configure cross-connect directly on the EVC on the PE routers. In a port-mode EoMPLS, you can configure a cross-connect on the physical interface or subinterface. In case of scalable and port-mode EoMPLS, it is not required to disable spanning tree, since the access facing interfaces do not participate in spanning tree protocol (STP). For more information on configuring the Spanning Tree Protocol (STP) and Multiple Spanning Tree (MST) protocol on Cisco 7600 series routers, refer Chapter 20, “Configuring STP and MST”.

Note
Cisco 7600 series routers do not support multiple backup PWs.

HSPW Support for Ethernet ACs

Effective from Cisco IOS Release 15.1(01)S, the Hot-Standby Pseudowire (HSPW) feature is supported on ES+ Line Card and SIP400 PW having imposition and disposition on the access side for ScEoMPLS, ATM and TDM cross connect. Hot-Standby capability helps to improve the switchover time for PW in the service providers network. This feature keeps the backup PW pre-programmed in the hardware. And at switchover, the backup PW is enabled to pass the traffic.

The next section describes sample configurations and scenarios to handle STP and allow the BPDUs to relay through the pseudowire.

Sample Configuration for SwEoMPLS and VPLS

Also termed as SVI-based EoMPLS, the following example outlines a sample topology for SwEoMPLS:

CE1----PE1------P------PE2----CE2

In a SwEoMPLS, you configure cross-connect on a SVI interface (interface VLAN). The following is a sample configuration on the CE facing interface:

```plaintext
interface FastEthernet1/13
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed vlan 110
switchport mode trunk
end
```

The following is a sample configuration for the SVI interface with cross-connect.

```plaintext
interface Vlan110
no ip address
xconnect 6.6.6.6 200 encapsulation mpls
end
```

Following sample shows a configuration on a core facing line card towards a P router:

```plaintext
interface GigabitEthernet2/2/0
ip address 53.53.53.1 255.255.255.0
mpls ip
end
```
Following sample shows a configuration on a CE facing line card for VPLS:

```
interface FastEthernet1/13
switchport switchport trunk encapsulation dot1q
switchport trunk allowed vlan 110
switchport mode trunk
end
```

Following sample shows a configuration when a cross-connect is configured within SVI:

```
interface Vlan110
description VPLS
no ip address
xconnect vfi PE1-VPLS
end
```

Based on the previous sample configurations, the VFI definitions are defined:

```
l2 vfi PE1-VPLS manual
vpn id 110
neighbor 6.6.6.6 encapsulation mpls
```

Following sample shows a configuration on a CE facing line card for VFI:

```
interface GigabitEthernet2/2/0
ip address 53.53.53.1 255.255.255.0
mpls ip
end
```

In the topologies and configurations listed previously:

- The customer routers CE1 and CE2 possess ethernet connectivity.
- Relays traffic tagged with any VLANs
- A EoMPLS pseudo wire is created between routers PE1 and PE2 to allow CE1-CE2 traffic transparently through PE1-PE2.

Managing Spanning Tree Protocol to allow Bridge Protocol Data Units

The Customer facing interfaces on the PE routers participate in the STP. To support Ethernet spanning tree bridge protocol data units (BPDUs) across an EoMPLS cloud (PE1-P-PE2), modify the methods listed below to disable the supervisor engine spanning tree:

1. If spanning tree mode is MST, then STP BPDUs are untagged.

```
spanning-tree mode mst
```

On the CE facing interface on a PE router:

```
Int Gig 1/1
switchport
switchport trunk allowed vlan 110
switchport mode trunk
```
Configure a VFI (mst-1 here) to relay the STP BPDUs.

```
l2 vfi mst-1 manual
vpn id 1
forward permit l2protocol all
```

Attach the VFI configured in the previous step to SVI.

```
interface Vlan1
no ip address
xconnect vfi mst-1
```

2. If spanning tree mode is PVST, STP BPDUs are tagged. For example, if the customer router’s traffic is expected on VLAN110, then the BPDU’s are tagged with VLAN 110.

```
spanning-tree mode pvst
```

On the access facing interface:

```
Int Gig1/1
switchport
switchport trunk allowed vlan 110
switchport mode trunk
no spanning-tree vlan 110
```

In the above scenario, **no spanning-tree vlan 110** is sufficient and a special VFI is not needed to relay BPDUs.

Configuring EoMPLS

These sections describe how to configure EoMPLS:

- **Prerequisites, page 26-23**
- **Configuring PFC-Mode VLAN-Based EoMPLS, page 26-24**
- **Configuring Port-Based EoMPLS on the PFC, page 26-27**

Prerequisites

Before you configure EoMPLS, ensure that the network is configured as follows:

- Configure IP routing in the core so that the PE routers can reach each other through IP.
- Configure MPLS in the core so that a label switched path (LSP) exists between the PE routers.
EoMPLS works by encapsulating Ethernet PDUs in MPLS packets and forwarding them across the MPLS network. Each PDU is transported as a single packet. Two methods are available to configure EoMPLS on the PFC:

- **VLAN mode**—Transports Ethernet traffic from a source 802.1Q VLAN to a destination 802.1Q VLAN through a single VC over an MPLS network. VLAN mode uses VC type 5 as default (no dot1q tag) and VC type 4 (transport dot1 tag) if the remote PE does not support VC type 5 for subinterface (VLAN) based EoMPLS.

- **Port mode**—Allows all traffic on a port to share a single VC across an MPLS network. Port mode uses VC type 5.

Note

- For both VLAN mode and port mode, EoMPLS on the PFC does not allow local switching of packets between interfaces unless you use loopback ports.

- A system can have both an OSM or Enhanced FlexWAN configuration and PFC-mode configuration enabled at the same time. Cisco supports this configuration but does not recommend it.

- Unless the uplinks to the MPLS core are through OSM or Enhanced FlexWAN-enabled interfaces, OSM or Enhanced FlexWAN-based EoMPLS connections will not be active; this causes packets for OSM or Enhanced FlexWAN-based EoMPLS arriving on non-WAN interfaces to be dropped.

The PFC supports MPLS. With a PFC, LAN ports can receive Layer 2 traffic, impose labels, and switch the frames into the MPLS core without using an OSM or Enhanced FlexWAN module.

With a PFC, you can configure an OSM or an Enhanced FlexWAN module to face the core of MPLS network and use either the OSM configuration, the Enhanced FlexWAN configuration, or the PFC-mode configuration.

For more information on EoMPLS over WAN (Enhanced FlexWAN and OSM), see the following publication. (Note that Release 12.2SR does not support FlexWAN-based EoMPLS).

Configuring PFC-Mode VLAN-Based EoMPLS

When configuring VLAN-based EoMPLS on the PFC, follow these guidelines and restrictions:

- The AToM control word is not supported.

- Ethernet packets with hardware-level cyclic redundancy check (CRC) errors, framing errors, and runt packets are discarded on input.

- You must configure VLAN-based EoMPLS on subinterfaces. In addition, the MTU size on the VLAN subinterface must be greater than 1500 (the default) if a larger MTU size is specified on the physical interface.

To configure VLAN-based EoMPLS on the PFC, perform this task on the provider edge (PE) routers.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Step 2</td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Router(config)# interface gigabitethernet slot/interface.subinterface</td>
</tr>
<tr>
<td>Enters global configuration mode.</td>
<td>Specifies the Gigabit Ethernet subinterface. Make sure that the subinterface on the adjoining CE router is on the same VLAN as this PE router.</td>
</tr>
</tbody>
</table>
Verifying the Configuration

To verify and display the configuration of Layer 2 VLAN transport over MPLS tunnels, perform the following:

- To display a single line for each VLAN, naming the VLAN, status, and ports, enter the `show vlan brief` command.

  ```
  Router# show vlan brief
  
  +-----------------+-------+-----------------+
  | VLAN Name       | Status| Ports           |
  +-----------------+-------+-----------------+
  | 1 default       | active|                 |
  | 2 VLAN0002      | active|                 |
  | 3 VLAN0003      | active|                 |
  | 1002 fddi-default | act/unsup |       |
  | 1003 token-ring-default | act/unsup |       |
  | 1004 fddinet-default | act/unsup |       |
  | 1005 trnet-default | act/unsup |       |
  +-----------------+-------+-----------------+
  ```

- To make sure that the PE router endpoints have discovered each other, enter the `show mpls ldp discovery` command. When an PE router receives an LDP Hello message from another PE router, it considers that router and the specified label space to be “discovered.”

  ```
  Router# show mpls ldp discovery
  
  Local LDP Identifier:
    13.13.13.13:0
  Discovery Sources:
    Interfaces:
    GE-WAN3/3 (ldp): xmit/recv
    LDP Id: 12.12.12.12:0
  Targeted Hellos:
    13.13.13.13 -> 11.11.11.11 (ldp): active/passive, xmit/recv
    LDP Id: 11.11.11.11:0
  ```
Any Transport over MPLS

- To make sure that the label distribution session has been established, enter the `show mpls ldp neighbor` command. The third line of the output shows that the state of the LDP session is operational and shows that messages are being sent and received.

  ```
  Router# show mpls ldp neighbor
  State: Oper; Msgs sent/rcvd: 1649/1640; Downstream
  Up time: 23:42:45
  LDP discovery sources:
  GE-WAN3/3, Src IP addr: 34.0.0.2
  Addresses bound to peer LDP Ident:
  23.2.1.14    37.0.0.2    12.12.12.12    34.0.0.2
  99.0.0.1
  Peer LDP Ident: 11.11.11.11:0; Local LDP Ident 13.13.13.13:0
  TCP connection: 11.11.11.11.646 - 13.13.13.13.11013
  State: Oper; Msgs sent/rcvd: 1650/1653; Downstream
  Up time: 23:42:29
  LDP discovery sources:
  Targeted Hello 13.13.13.13 -> 11.11.11.11, active, passive
  Addresses bound to peer LDP Ident:
  11.11.11.11    37.0.0.1    23.2.1.13
  ```

- To ensure that the label forwarding table is built correctly, enter the `show mpls forwarding-table` command to verify that a label has been learned for the remote PE and that the label is going from the correct interface to the correct next-hop.

  ```
  Router# show mpls forwarding-table
  Local  Outgoing    Prefix              Bytes tag  Outgoing   Next Hop
  tag    tag or VC   or Tunnel Id        switched   interface
  tag     16     Untagged    223.255.254.254/32   \
  or Tunnel Id     0          Gi2/1      23.2.0.1
  20     Untagged    l2ckt(2)          133093     Vl2        point2point
  21     Untagged    l2ckt(3)          185497     Vl3        point2point
  24     Pop tag     37.0.0.0/8        0          GE3/3      34.0.0.2
  25     17          11.11.11.11/32    0          GE3/3      34.0.0.2
  26     Pop tag     12.12.12.12/32    0          GE3/3      34.0.0.2
  Router#```

  The output shows the following data:
  - Local tag—Label assigned by this router.
  - Outgoing tag or VC—Label assigned by next hop.
  - Prefix or Tunnel Id—Address or tunnel to which packets with this label are going.
  - Bytes tag switched—Number of bytes switched out with this incoming label.
  - Outgoing interface—Interface through which packets with this label are sent.
  - Next Hop—IP address of neighbor that assigned the outgoing label.

- To view the state of the currently routed VCs, enter the `show mpls l2transport vc` command.

  ```
 Router# show mpls l2transport vc
 Local intf Local circuit Dest address VC ID Status
 VL2 Eth VLAN 2 11.11.11.11 2 UP
 VL3 Eth VLAN 3 11.11.11.11 3 UP
  ```

  To see detailed information about each VC, add the keyword `detail`.

  ```
 Router# show mpls l2transport vc detail
  ```
Configuring Port-Based EoMPLS on the PFC

When configuring port-based EoMPLS on the PFC, follow these guidelines and restrictions:

- The AToM control word is not supported.
- Ethernet packets with hardware-level cyclic redundancy check (CRC) errors, framing errors, and runt packets are discarded on input.
- Port-based EoMPLS and VLAN-based EoMPLS are mutually exclusive. If you enable a main interface for port-to-port transport, you also cannot enter commands on a subinterface.

To support 802.1Q-in-802.1Q traffic and Ethernet traffic over EoMPLS on the PFC, configure port-based EoMPLS by performing this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# interface gigabitethernet{slot}/{interface}</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# xconnect peer_router_id vcid encapsulation mpls</td>
</tr>
</tbody>
</table>

The following is an example of a port-based configuration:

```
! EoMPLS:
```
Port-Based EoMPLS Config:

router# show mpls l2transport vc

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa8/48</td>
<td>Ethernet</td>
<td>75.0.78.1</td>
<td>1</td>
<td>UP</td>
</tr>
<tr>
<td>Gi7/11.2000</td>
<td>Eth VLAN 2000</td>
<td>75.0.78.1</td>
<td>2000</td>
<td>UP</td>
</tr>
</tbody>
</table>

Sub-Interface Based Mode:

router# show run interface f8/48

Building configuration...

Current configuration : 86 bytes

interface FastEthernet8/48
  no ip address
  xconnect 75.0.78.1 1 encapsulation mpls
end

router# show run interface g7/11

Building configuration...

Current configuration : 118 bytes

interface GigabitEthernet7/11
  description Traffic-Generator
  no ip address
  logging event link-status
  speed nongotiate
end

router# show run int g7/11.2000

Building configuration...

Current configuration : 112 bytes

interface GigabitEthernet7/11.2000
  encapsulation dot1Q 2000
  xconnect 75.0.78.1 2000 encapsulation mpls
end

To obtain the VC type:

kb7606# remote command switch show mpls l2transport vc 1 de
Local interface: GigabitEthernet7/47, Ethernet
Destination address: 75.0.80.1, VC ID: 1
VC status: receive UP, send DOWN
VC type: receive 5, send 5
  Tunnel label: not ready, destination not in LFIB
  Output interface: unknown, imposed label stack {}
MPLS VC label: local 10579, remote 10038
Linecard VC statistics:
  packet totals: receive: 0 send: 0
  byte totals: receive: 0 send: 0
  packet drops: receive: 0 send: 0
  Control flags:
    receive 1, send: 31

Verifying the Configuration

To verify and display the configuration of Layer 2 VLAN transport over MPLS tunnels, perform the following:

• To display a single line for each VLAN, naming the VLAN, status, and ports, enter the `show vlan brief` command.

  Router# show vlan brief

  VLAN Name     Status    Ports
  --------      --------   ------------
  1    default      active    Gi1/4
  2    VLAN0002      active    Gi1/4
  1002 fddi-default act/unsup
  1003 token-ring-default act/unsup
  1004 fddinet-default act/unsup
  1005 trnet-default act/unsup

• To make sure the PE router endpoints have discovered each other, enter the `show mpls ldp discovery` command. When an PE router receives an LDP Hello message from another PE router, it considers that router and the specified label space to be “discovered.”

  Router# show mpls ldp discovery

  Local LDP Identifier: 13.13.13.0
  Discovery Sources:
  Interfaces:
    GE-WAN3/3 (ldp): xmit/recv
    LDP Id: 12.12.12.0
  Targeted Hellos:
    13.13.13.13 -> 11.11.11.11 (ldp): active/passive, xmit/recv
    LDP Id: 11.11.11.0

• To make sure the label distribution session has been established, enter the `show mpls ldp neighbor` command. The third line of the output shows that the state of the LDP session is operational and shows that messages are being sent and received.

  Router# show mpls ldp neighbor

    Peer LDP Ident: 12.12.12.0; Local LDP Ident 13.13.13.0
    State: Oper; Msgs sent/rcvd: 1715/1706; Downstream
    Up time: 1d00h
    LDP discovery sources:
      GE-WAN3/3, Src IP addr: 34.0.0.2
    Addresses bound to peer LDP Ident:
      23.2.1.14 37.0.0.2 12.12.12.12 34.0.0.2
Chapter 26 Configuring Multiprotocol Label Switching on the PFC

Any Transport over MPLS

99.0.0.1
Peer LDP Ident: 11.11.11.11:0; Local LDP Ident 13.13.13.13:0
TCP connection: 11.11.11.11.646 - 13.13.13.13.11013
State: Oper; Msgs sent/rcvd: 1724/1730; Downstream
Up time: id00h
LDP discovery sources:
Targeted Hello 13.13.13.13 -> 11.11.11.11, active, passive
Addresses bound to peer LDP Ident:
11.11.11.11 37.0.0.1 23.2.1.13

- To make sure the label forwarding table is built correctly, enter the `show mpls forwarding-table` command.

```
Router# show mpls forwarding-table
```

<table>
<thead>
<tr>
<th>Local tag or VC</th>
<th>Prefix or Tunnel Id</th>
<th>Bytes tag switched</th>
<th>Outgoing interface</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 Untagged</td>
<td>223.255.254.254/32</td>
<td>0</td>
<td>Gi2/1</td>
<td>23.2.0.1</td>
</tr>
<tr>
<td>20 Untagged</td>
<td>12ckt(2)</td>
<td>55146580</td>
<td>Vl2</td>
<td>point2point</td>
</tr>
<tr>
<td>24 Pop tag</td>
<td>37.0.0.0/8</td>
<td>0</td>
<td>GE3/3</td>
<td>34.0.0.2</td>
</tr>
<tr>
<td>25 17</td>
<td>11.11.11.11/32</td>
<td>0</td>
<td>GE3/3</td>
<td>34.0.0.2</td>
</tr>
<tr>
<td>26 Pop tag</td>
<td>12.12.12.12/32</td>
<td>0</td>
<td>GE3/3</td>
<td>34.0.0.2</td>
</tr>
</tbody>
</table>

- The output shows the following data:
  - Local tag—Label assigned by this router.
  - Outgoing tag or VC—Label assigned by next hop.
  - Prefix or Tunnel Id—Address or tunnel to which packets with this label are going.
  - Bytes tag switched—Number of bytes switched out with this incoming label.
  - Outgoing interface—Interface through which packets with this label are sent.
  - Next Hop—IP address of neighbor that assigned the outgoing label.

- To view the state of the currently routed VCs, enter the `show mpls l2transport vc` command:

```
Router# show mpls l2transport vc
```

<table>
<thead>
<tr>
<th>Local intf</th>
<th>Local circuit</th>
<th>Dest address</th>
<th>VC ID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vl2</td>
<td>Eth VLAN 2</td>
<td>11.11.11.11</td>
<td>2</td>
<td>UP</td>
</tr>
</tbody>
</table>

Configuring 7600-MUX-UNI Support on LAN Cards

A User Network Interface (UNI) is the point where the customer edge (CE) equipment connects to the ingress PE and an attachment VLAN is a VLAN on a UNI port.

The 7600-MUX-UNI Support on LAN Cards feature provides the ability to partition a physical port on an attachment VLAN to provide multiple Layer 2 and Layer 3 services over a single UNI.

When configuring 7600-MUX-UNI Support on LAN Cards, follow these guidelines and restrictions:

- Encapsulation on main interface has to be dot1Q and not ISL
- With dot1q encapsulation on the main interface, you cannot configure ISL on the subinterfaces; Layer 3 interfaces are unaffected

To configure 7600-MUX-UNI Support on LAN Cards, perform this task on the provider edge (PE) routers.
### Command	Purpose
**Step 1** | Router# configure terminal
Enters global configuration mode.

**Step 2** | Router(config)# interface type number
Selects an interface to configure and enters interface configuration mode; valid only for Ethernet ports.

**Step 3** | Router(config-if)# switchport
Puts an interface that is in Layer 3 mode into Layer 2 mode for Layer 2 configuration.

**Step 4** | Router(config-if)# switchport trunk encapsulation {isl | dot1q}
Configure the port to support 802.1Q encapsulation. You must configure each end of the link with the same encapsulation type.

**Note** The valid choice for MUX-UNI Support is dot1q.

**Step 5** | Router(config-if)# switchport mode trunk
Configure the port as a VLAN trunk.

**Step 6** | Router(config-if)# switchport trunk allowed vlan vlan-list
By default, all VLANs are allowed. Use this command to explicitly allow VLANs; valid values for vlan-list are from 1 to 4094.

**Note** Avoid overlapping VLAN assignments between main and subinterfaces. VLAN assignments between the main interface and subinterfaces must be mutually exclusive.

**Step 7** | Router(config)# interface type slot/port.subinterface-number
Selects a subinterface to configure and enters interface configuration mode; valid only for Ethernet ports.

**Step 8** | Router(config-if)# encapsulation dot1q vlan_id
Enables the subinterface to accept 802.1Q VLAN packets.

The subinterfaces between the CE and PE routers that are running Ethernet over MPLS must be in the same subnet. All other subinterfaces and backbone routers do not need to be on the same subnet.

**Step 9** | Router(config-if)# xconnect peer_router_id vcid encapsulation mpls
Binds the attachment circuit to a pseudowire VC. The syntax for this command is the same as for all other Layer 2 transports.

This example for the 7600-MUX-UNI Support on LAN Cards feature shows a physical trunk port used as UNI:

```plaintext
interface Fastethernet3/1
switchport
switchport encapsulation dot1q
switchport mode trunk
switchport trunk allowed VLAN 200-250

interface Fastethernet3/1.10
encap dot1q 3000
xconnect 10.0.0.1 3000 encapsulation mpls
```

This example for the 7600-MUX-UNI Support on LAN Cards feature shows a Layer 2 port channel used as UNI:

```plaintext
interface Port-channel100
```
This example for the 7600-MUX-UNI Support on LAN Cards feature shows Layer 3 termination and VRF for Muxed UNI ports:

```
switchport
switchport trunk encapsulation dot1q
switchport trunk allowed VLAN 100-200
switchport mode trunk
no ip address

interface Port-channel100.1
 encapsulation dot1Q 3100
 xconnect 10.0.0.30 100 encapsulation mpls

Vlan 200, 300, 400
interface Fastethernet3/1
 switchport
 switchport encapsulation dot1q
 switchport mode trunk
 switchport trunk allowed VLAN 200-500

interface Fastethernet3/1.10
 encap dot1q 3000
 xconnect 10.0.0.1 3000 encapsulation mpls

interface Vlan 200
 ip address 1.1.1.3

interface Vlan 300
 ip vpn VRF A
 ip address 3.3.3.1

interface Vlan 400
 ip address 4.4.4.1
 ip ospf network broadcast
 mpls label protocol ldp
 mpls ip
```
Chapter 27

Configuring Multicast VPN Support

This chapter describes how to configure Multicast Virtual Private Network (MVPN) support on Cisco 7600 series routers. MVPN is supported when a PFC3B, PFC3BXL, PFC3C, or PFC3CXL is installed in the router.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter contains these sections:
- Understanding How MVPN Works, page 27-1
- MVPN Configuration Guidelines and Restrictions, page 27-7
- Configuring MVPN, page 27-8

Understanding How MVPN Works

These sections describe MVPN:
- MVPN Overview, page 27-1
- Multicast Routing and Forwarding and Multicast Domains, page 27-2
- Multicast Distribution Trees, page 27-2
- Multicast Tunnel Interfaces, page 27-5
- PE Router Routing Table Support for MVPN, page 27-6
- Multicast Distributed Switching Support, page 27-6
- Hardware-Assisted IPv4 Multicast, page 27-6

MVPN Overview

MVPN is a standards-based feature that transmits IPv4 multicast traffic across an MPLS VPN cloud. MVPN on Cisco 7600 series routers uses the existing PFC hardware support for IPv4 multicast traffic to forward multicast traffic over VPNs at wire speeds. MVPN adds support for IPv4 multicast traffic over Layer 3 IPv4 VPNs to the existing IPv4 unicast support.
MVPN routes and forwards multicast packets for each individual VPN routing and forwarding (VRF) instance, as well as transmitting the multicast packets through VPN tunnels across the service provider backbone.

MVPN is an alternative to IP-in-IP generic route encapsulation (GRE) tunnels. GRE tunnels are not a readily scalable solution and they are limited in the granularity they provide to customers.

### Multicast Routing and Forwarding and Multicast Domains

MVPN adds multicast routing information to the VPN routing and forwarding table. When a provider-edge (PE) router receives multicast data or control packets from a customer-edge (CE) router, forwarding is performed according to the information in the multicast VRF (MVRF).

Note

MVRF is also commonly referred to as multicast over VRF-lite.

Each MVRF maintains the routing and forwarding information that is needed for its particular VRF instance. An MVRF is created and configured in the same way as existing VRFs, except multicast routing is also enabled on each MVRF.

A multicast domain constitutes the set of hosts that can send multicast traffic to each other within the MPLS network. For example, the multicast domain for a customer that wanted to send certain types of multicast traffic to all global employees would consist of all CE routers associated with that enterprise.

### Multicast Distribution Trees

The MVPN feature establishes at least one multicast distribution tree (MDT) for each multicast domain. The MDT provides the information needed to interconnect the same MVRFs that exist on the different PE routers.

MVPN supports two MDT types:

- **Default MDT**—The default MDT is a permanent channel for PIM control messages and low-bandwidth streams between all PE routers in a particular multicast domain. All multicast traffic in the default MDT is replicated to every other PE router in the domain. Each PE router is logically seen as a PIM neighbor (one hop away) from every other PE router in the domain.

- **Data MDT**—Data MDTs are optional. If enabled, they are dynamically created to provide optimal paths for high-bandwidth transmissions, such as full-motion video, that do not need to be sent to every PE router. This allows for on-demand forwarding of high-bandwidth traffic between PE routers, so as to avoid flooding every PE router with every high-bandwidth stream that might be created.

To create data MDTs, each PE router that is forwarding multicast streams to the backbone periodically examines the traffic being sent in each default MDT as follows:

1. Each PE router periodically samples the multicast traffic (approximately every 10 seconds for software switching, and 90 seconds for hardware switching) to determine whether a multicast stream has exceeded the configured threshold. (Depending on when the stream is sampled, this means that in a worst-case scenario, it could take up to 180 seconds before a high-bandwidth stream is detected.)
Note: Data MDTs are created only for (S, G) multicast route entries within the VRF multicast routing table. They are not created for (*, G) entries.

2. If a particular multicast stream exceeds the defined threshold, the sending PE router dynamically creates a data MDT for that particular multicast traffic.

3. The sending PE router then transmits a DATA-MDT JOIN request (which is a User Datagram Protocol (UDP) message to port 3232) to the other PE routers, informing them of the new data MDT.

4. Receiving PE routers examine their VRF routing tables to determine if they have any customers interested in receiving this data stream. If so, they use the PIM protocol to transmit a PIM JOIN message for this particular data MDT group (in the global table PIM instance) to accept the stream. Routers that do not currently have any customers for this stream still cache the information, in case any customers request it later on.

5. Three seconds after sending the DATA-MDT JOIN message, the sending PE router removes the high-bandwidth multicast stream from the default MDT and begins transmitting it over the new data MDT.

6. The sending PE router continues to send a DATA-MDT JOIN message every 60 seconds, as long as the multicast stream continues to exceed the defined threshold. If the stream falls below the threshold for more than 60 seconds, the sending PE router stops sending the DATA-MDT JOIN messages, and moves the stream back to the default MDT.

7. Receiving routers age out the cache information for the default MDT when they do not receive a DATA-MDT JOIN message for more than three minutes.

Data MDTs allow for high-bandwidth sources inside the VPN while still ensuring optimal traffic forwarding in the MPLS VPN core.

Note: For technical information about the DATA-MDT JOIN message and other aspects of the data MDT creation and usage, see the Internet-Draft, *Multicast in MPLS/BGP IP VPNs*, by Eric C. Rosen et al.

In the following example, a service provider has a multicast customer with offices in San Jose, New York, and Dallas. The San Jose site is transmitting a one-way multicast presentation. The service provider network supports all three sites associated with this customer, in addition to the Houston site of a different enterprise customer.

The default MDT for the enterprise customer consists of provider routers P1, P2, and P3 and their associated PE routers. Although PE4 is interconnected to these other routers in the MPLS core, PE4 is associated with a different customer and is therefore not part of the default MDT.

*Figure 27-1* shows the situation in this network when no one outside of San Jose has joined the multicast broadcast, which means that no data is flowing along the default MDT. Each PE router maintains a PIM relationship with the other PE routers over the default MDT, as well as a PIM relationship with its directly attached PE routers.
If an employee in New York joins the multicast session, the PE router associated for the New York site sends a join request that flows across the default MDT for the multicast domain. The PE router associated with the multicast session source (PE1) receives the request. Figure 27-2 shows how the PE router forwards the request to the CE router associated with the multicast source (CE1a).
The CE router (CE1a) starts sending the multicast data to the associated PE router (PE1), which recognizes that the multicast data exceeds the bandwidth threshold at which a data MDT should be created. PE1 then creates a data MDT and sends a message to all routers using the default MDT that contains information about the data MDT.

Approximately three seconds later, PE1 begins sending the multicast data for that particular stream using the data MDT. Because only PE2 has receivers who are interested in this source, only PE2 joins the data MDT and receives traffic on it.

**Multicast Tunnel Interfaces**

The PE router creates a multicast tunnel interface (MTI) for each multicast VRF (MVRF) in the multicast domain. The MVRF uses the tunnel interface to access the multicast domain to provide a conduit that connects an MVRF and the global MVRF.

On the router, the MTI is a tunnel interface (created with the `interface tunnel` command) with a class D multicast address. All PE routers that are configured with a default MDT for this MVRF create a logical network in which each PE router appears as a PIM neighbor (one hop away) to every other PE router in the multicast domain, regardless of the actual physical distance between them.

The MTI is automatically created when an MVRF is configured. The BGP peering address is assigned as the MTI interface source address, and the PIM protocol is automatically enabled on each MTI.
Understanding How MVPN Works

When the router receives a multicast packet from the customer side of the network, it uses the incoming interface’s VRF to determine which MVRFs should receive it. The router then encapsulates the packet using GRE encapsulation. When the router encapsulates the packet, it sets the source address to that of the BGP peering interface and sets the destination address to the multicast address of the default MDT, or to the source address of the data MDT if configured. The router then replicates the packet as needed for forwarding on the appropriate number of MTI interfaces.

When the router receives a packet on the MTI interface, it uses the destination address to identify the appropriate default MDT or data MDT, which in turn identifies the appropriate MVRF. It then decapsulates the packet and forwards it out the appropriate interfaces, replicating it as many times as are necessary.

Note • Unlike other tunnel interfaces that are commonly used on Cisco routers, the MVPN MTI is classified as a LAN interface, not a point-to-point interface. The MTI interface is not configurable, but you can use the show interface tunnel command to display its status.
• The MTI interface is used exclusively for multicast traffic over the VPN tunnel.
• The tunnel does not carry unicast routed traffic.

PE Router Routing Table Support for MVPN

Each PE router that supports the MVPN feature uses the following routing tables to ensure that the VPN and MVPN traffic is routed correctly:

• Default routing table—Standard routing table used in all Cisco routers. This table contains the routes that are needed for backbone traffic and for non-MPLS VPN unicast and multicast traffic (including Generic Routing Encapsulation (GRE) multicast traffic).

• VPN routing/forwarding (VRF) table—Routing table created for each VRF instance. Responsible for routing the unicast traffic between VPNs in the MPLS network.

• Multicast VRF (MVRF) table—Multicast routing table and multicast routing protocol instance created for each VRF instance. Responsible for routing the multicast traffic in the multicast domain of the network. This table also includes the multicast tunnel interfaces that are used to access the multicast domain.

Multicast Distributed Switching Support

MVPN supports multicast distributed switching (MDS) for multicast support on a per-interface and a per-VRF basis. When configuring MDS, you must make sure that no interface (including loopback interfaces) has the no ip mroute-cache command configured.

Hardware-Assisted IPv4 Multicast

The PFC supports hardware acceleration for IPv4 multicast over VPN traffic, which forwards multicast traffic to the appropriate VPNs at wire speed without increased MSFC3 CPU utilization.

In a customer VRF, PFC hardware acceleration supports multicast traffic in PIM dense, PIM sparse, PIM bidirectional, and PIM Source Specific Multicast (SSM) modes.
In the service provider core, PFC hardware acceleration supports multicast traffic in PIM sparse, PIM bidirectional, and PIM SSM modes. In the service provider core, PFC hardware acceleration does not support multicast traffic in PIM dense mode.

**MVPN Configuration Guidelines and Restrictions**

When configuring MVPN, follow these guidelines and restrictions:

- The Cisco 7600 series router must have a PFC3B, PFC3BXL, PFC3C, or PFC3CXL installed to run MVPN.
- All PE routers in the multicast domain need to be running a Cisco IOS software image that supports the MVPN feature. There is no requirement for MVPN support on the P and CE routers.
- Support for IPv4 multicast traffic must also be enabled on all backbone routers.
- The Border Gateway Protocol (BGP) routing protocol must be configured and operational on all routers supporting multicast traffic. In addition, BGP extended communities must be enabled (using the `neighbor send-community both` or `neighbor send-community extended` command) to support the use of MDTs in the network.
- Only ingress replication is supported when MVPN is configured. If the router is currently configured for egress replication, it is forced into ingress replication when the first MVRF is configured.
- When the router is acting as a PE, and receives a multicast packet from a customer router with a time-to-live (TTL) value of 2, it drops the packet instead of encapsulating it and forwarding it across the MVPN link. Because such packets would normally be dropped by the PE at the other end of the MVPN link, this does not affect traffic flow.
- If the core multicast routing uses SSM, then the data and default multicast distribution tree (MDT) groups must be configured within the SSM range of IPv4 addresses.
- The update source interface for the BGP peerings must be the same for all BGP peerings configured on the router in order for the default MDT to be configured properly. If you use a loopback address for BGP peering, then PIM sparse mode must be enabled on the loopback address.
- The `ip mroute-cache` command must be enabled on the loopback interface used as the BGP peering interface in order for distributed multicast switching to function on the platforms that support it. The `no ip mroute-cache` command must not be present on these interfaces.
- Data MDTs are not created for VRF PIM dense mode multicast streams because of the flood and prune nature of dense mode multicast flows and the resulting periodic bring-up and tear-down of such data MDTs.
- Data MDTs are not created for VRF PIM bidirectional mode because source information is not available.
- MVPN does not support multiple BGP peering update sources, and configuring them can break MVPN RPF checking. The source IPv4 address of the MVPN tunnels is determined by the highest IPv4 address used for the BGP peering update source. If this IPv4 address is not the IPv4 address used as the BGP peering address with the remote PE router, MVPN will not function properly.
- MDT tunnels do not carry unicast traffic.
- Although MVPN uses the infrastructure of MPLS VPN networks, you cannot apply MPLS tags or labels to multicast traffic over the VPNs.
• Each MVRF that is configured with a default MDT uses three hidden VLANs (one each for encapsulation, decapsulation, and interface), in addition to external, user-visible VLANs. This means that an absolute maximum of 1,000 MVRFs are supported on each router. (MVRFs without a configured MDT still use one internal VLAN, so unused MVRFs should be deleted to conserve VLAN allocation.)

• Because MVPN uses MPLS, MVPN supports only the RPR and RPR+ redundancy modes. MPLS can coexist with NSF with SSO redundancy mode, but there is no support for stateful MPLS switchover.

• If your MPLS VPN network already contains a network of VRFs, you do not need to delete them or recreate them to be able to support MVRF traffic. Instead, configure the `mdt default` and `mdt data` commands, as listed in the following procedure, to enable multicast traffic over the VRF.

• BGP should be already configured and operational on all routers that are sending or receiving multicast traffic. In addition, BGP extended communities must be enabled (using the `neighbor send-community both` or `neighbor send-community extended` command) to support the use of MDTs in the network.

• The same MVRF must be configured on each PE router that is to support a particular VPN connection.

• Each PE router that supports a particular MVRF must be configured with the same `mdt default` command.

• In Cisco IOS Release 15.0(1)S egress and ingress replication modes are supported when MVPN is configured on the Cisco 7600 series router. The router can be configured either for ingress or egress replication mode.

• 20k is the maximum supported scale for native multicast.

Configuring MVPN

These sections describe how to configure MVPN:

• Configuring Egress and Ingress Multicast Replication Mode, page 27-8
• Configuring a Multicast VPN Routing and Forwarding Instance, page 27-10
• Configuring Multicast VRF Routing, page 27-16
• Configuring Interfaces for Multicast Routing to Support MVPN, page 27-20

Note These configuration tasks assume that BGP is already configured and operational on all routers that are sending or receiving the multicast traffic. In addition, BGP extended communities must be enabled (using the `neighbor send-community both` or `neighbor send-community extended` command) to support the use of MDTs in the network.

Configuring Egress and Ingress Multicast Replication Mode

To configure either egress or ingress multicast replication mode, use the following commands:
The following is a sample output of the running-configuration, when the ingress replication mode is changed to egress replication mode:

```
Router(config)# ip multicast hardware-switching replication-mode ingress
Warning: This command will change the replication mode for all address families.
```

```
Router(config)# do sh runn | i ingress
ip multicast hardware-switching replication-mode ingress
ipv6 multicast hardware-switching replication-mode ingress
```

```
Router(config)# ip multicast hardware-switching replication-mode egress
Warning: This command will change the replication mode for all address families.
Warning: Egress replication-mode forced by CLI in presence of an egress-incapable card
*Apr 19 05:07:30.180: %CONST_MFIB_RP-6-REPLICATION_MODE_CHANGE: Replication Mode Change
Detected.
Current system replication mode is Egress
```

```
Router(config)# do sh runn | i egress
ip multicast hardware-switching replication-mode egress
```

```
Router(config)# show platform software multicast ip capability
Current System HW Replication Mode : Egress
Auto-detection of Replication Mode : ON
```

```
Slot Replication-Capability Replication-Mode
 2 Egress Egress
 3 Egress Egress
 4 Egress Egress
 6 Egress Egress
```

If the current replication mode is egress or if any of the switching modules are capable of egress replication mode, configure ingress replication mode during a scheduled maintenance period to minimize the disruption of customer traffic.

To configure ingress multicast replication mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# ip multicast hardware-switching replication-mode (egress</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Configures ingress multicast replication mode and disables automatic detection of the replication mode (enabled by default). Restores the system to automatic detection mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config)# show platform software multicast ip capability</td>
</tr>
<tr>
<td><strong>Purpose</strong></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>
Chapter 27  Configuring Multicast VPN Support

Configuring MVPN

This example shows how to configure ingress multicast replication mode and verify the configuration:

Router(config)# ip multicast hardware-switching replication-mode ingress

Router(config)# show platform software multicast ip capability

Current System HW Replication Mode : Ingress
Auto-detection of Replication Mode : ON

Slot Replication-Capability Replication-Mode
2 Ingress
3 Ingress
4 Ingress
6 Ingress

Router#

Configuring a Multicast VPN Routing and Forwarding Instance

These sections describe how to configure a multicast VPN routing and forwarding (MVRF) instance for each VPN connection on each PE router that is to handle the traffic for each particular VPN connection that is to transmit or receive multicast traffic:

- Configuring a VRF Entry, page 27-10
- Configuring the Route Distinguisher, page 27-11
- Configuring the Route-Target Extended Community, page 27-11
- Configuring the Default MDT, page 27-12
- Configuring Data MDTs (Optional), page 27-13
- Enabling Data MDT Logging, page 27-13
- Sample Configuration, page 27-13
- Displaying VRF Information, page 27-14

Configuring a VRF Entry

To configure a VRF entry, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
### Configuring Multicast VPN Support

#### Configuring MVPN

This example shows how to configure a VRF named blue and verify the configuration:

```
Router# configure terminal
Router(config)# ip vrf blue
Router(config-vrf)# do show ip vrf blue
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Default RD</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td></td>
<td>&lt;not set&gt;</td>
</tr>
</tbody>
</table>

#### Configuring the Route Distinguisher

To configure the route distinguisher, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf)# rd route_distinguisher</td>
<td>Specifies the route distinguisher for a VPN IPv4 prefix.</td>
</tr>
<tr>
<td>Router(config-vrf)# no rd route_distinguisher</td>
<td>Deletes the route distinguisher.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf)# do show ip vrf vrf_name</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When configuring the route distinguisher, enter the route distinguisher in one of the following formats:

- 16-bit AS number:your 32-bit number (101:3)
- 32-bit IPv4 address:your 16-bit number (192.168.122.15:1)

This example shows how to configure 55:1111 as the route distinguisher and verify the configuration:

```
Router(config-vrf)# rd 55:1111
Router(config-vrf)# do show ip vrf blue
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Default RD</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>55:1111</td>
<td></td>
</tr>
</tbody>
</table>

#### Configuring the Route-Target Extended Community

To configure the route-target extended community, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf)# route-target [import</td>
<td>export</td>
</tr>
<tr>
<td>Router(config-vrf)# no route-target [[import</td>
<td>export</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-vrf)# do show ip vrf detail</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When configuring the route-target extended community, note the following information:

- **import**—Imports routing information from the target VPN extended community.
Chapter 27  Configuring Multicast VPN Support

Configuring MVPN

- **export**—Exports routing information to the target VPN extended community.
- **both**—Imports and exports.
- **route_target_ext_community**—Adds the 48-bit route-target extended community to the VRF.
  Enter the number in one of the following formats:
  - 16-bit AS number:your 32-bit number (101:3)
  - 32-bit IPv4 address:your 16-bit number (192.168.122.15:1)

This example shows how to configure 55:1111 as the import and export route-target extended community and verify the configuration:

```plaintext
Router(config-vrf)# route-target both 55:1111
Router(config-vrf)# do show ip vrf detail
VRF blue; default RD 55:1111; default VPNID <not set>
 VRF Table ID = 1
 No interfaces
 Connected addresses are not in global routing table
 Export VPN route-target communities
 RT:55:1111
 Import VPN route-target communities
 RT:55:1111
 No import route-map
 No export route-map
 CSC is not configured.
```

Configuring the Default MDT

To configure the default MDT, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-vrf)# mdt default group_address</td>
<td>Configures the default MDT.</td>
</tr>
<tr>
<td>Router(config-vrf)# no mdt default</td>
<td>Deletes the default MDT.</td>
</tr>
</tbody>
</table>

When configuring the default MDT, note the following:

- The **group_address** is the multicast IPv4 address of the default MDT group. This address serves as an identifier for the MVRF community, because all provider-edge (PE) routers configured with this same group address become members of the group, which allows them to receive the PIM control messages and multicast traffic that are sent by other members of the group.
- This same default MDT must be configured on each PE router to enable the PE routers to receive multicast traffic for this particular MVRF.

This example shows how to configure 239.1.1.1 as the default MDT:

```plaintext
Router(config-vrf)# mdt default 239.1.1.1
```
Configuring Data MDTs (Optional)

To configure optional data MDTs, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config-vrf# mdt data group_address wildcard_bits [threshold threshold_value] [list access_list]</code></td>
<td>(Optional) Configures a data MDTs for the specified range of multicast addresses.</td>
</tr>
<tr>
<td><code>config-vrf# no mdt data</code></td>
<td>Deletes the data MDT.</td>
</tr>
</tbody>
</table>

When configuring optional data MDTs, note the following information:

- **group_address**—Multicast group address. The address can range from 224.0.0.1 to 239.255.255.255, but cannot overlap the address that has been assigned to the default MDT.
- **wildcard_bits**—Wildcard bitmask to be applied to the multicast group address to create a range of possible addresses. This allows you to limit the maximum number of data MDTs that each MVRF can support.
- **threshold threshold_value**—(Optional) Defines the threshold value in kilobits, at which multicast traffic should be switched from the default MDT to the data MDT. The `threshold_value` parameter can range from 1 through 4294967296 kilobits.
- **list access_list**—(Optional) Specifies an access list name or number to be applied to this traffic.

This example shows how to configure a data MDT:

```
Router(config-vrf)# mdt data 239.1.2.0 0.0.0.3 threshold 10
```

Enabling Data MDT Logging

To enable data MDT logging, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>config-vrf# mdt log-reuse</code></td>
<td>(Optional) Enables the recording of data MDT reuse information, by generating a SYSLOG message whenever a data MDT is reused. Frequent reuse of a data MDT might indicate a need to increase the number of allowable data MDTs by increasing the size of the wildcard bitmask that is used in the <code>mdt data</code> command.</td>
</tr>
<tr>
<td><code>config-vrf# no log-reuse</code></td>
<td>Disables data MDT logging.</td>
</tr>
</tbody>
</table>

This example shows how to enable data MDT logging:

```
Router(config-vrf)# mdt log-reuse
```

Sample Configuration

The following excerpt from a configuration file shows typical VRF configurations for a range of VRFs. To simplify the display, only the starting and ending VRFs are shown.

```
! vrf mvpn-cus1
 rd 200:1
```
route-target export 200:1
route-target import 200:1
mdt default 239.1.1.1
!
ip vrf mvpn-cus2
rd 200:2
route-target export 200:2
route-target import 200:2
mdt default 239.1.1.2
!
ip vrf mvpn-cus3
rd 200:3
route-target export 200:3
route-target import 200:3
mdt default 239.1.1.3
!
...

ip vrf mvpn-cus249
rd 200:249
route-target export 200:249
route-target import 200:249
mdt default 239.1.1.249
mdt data 239.1.1.128 0.0.0.7

Displaying VRF Information

To display all of the VRFs that are configured on the router, use the show ip vrf command:

Router# show ip vrf

<table>
<thead>
<tr>
<th>Name</th>
<th>Default RD</th>
<th>Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>green</td>
<td>1:52</td>
<td>GigabitEthernet6/1</td>
</tr>
<tr>
<td>red</td>
<td>200:1</td>
<td>GigabitEthernet1/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GigabitEthernet3/16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loopback2</td>
</tr>
</tbody>
</table>

Router#

To display information about the MDTs that are currently configured for all MVRFs, use the show ip pim mdt command. The following example shows typical output for this command:

Router# show ip pim mdt

<table>
<thead>
<tr>
<th>MDT Group</th>
<th>Interface</th>
<th>Source</th>
<th>VRF</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 227.1.0.1</td>
<td>Tunnel1</td>
<td>Loopback0</td>
<td>BIDIR01</td>
</tr>
<tr>
<td>* 227.2.0.1</td>
<td>Tunnel2</td>
<td>Loopback0</td>
<td>BIDIR02</td>
</tr>
<tr>
<td>* 228.1.0.1</td>
<td>Tunnel3</td>
<td>Loopback0</td>
<td>SPARSE01</td>
</tr>
<tr>
<td>* 228.2.0.1</td>
<td>Tunnel4</td>
<td>Loopback0</td>
<td>SPARSE02</td>
</tr>
</tbody>
</table>

Note: To display information about a specific tunnel interface, use the show interface tunnel command. The IPv4 address for the tunnel interface is the multicast group address for the default MDT of the MVRF.

To display entries for a specific VRF, use the show platform software multicast ip vrf command. The following example shows typical output for this command:

Router# show platform software multicast ip vrf

State: H - Hardware Installed, I - Install Pending, D - Delete Pending, Z - Zombie
To display routing information for a particular VRF, use the `show ip route vrf` command:

```
Router# show ip route vrf red
```

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route

Gateway of last resort is not set

```
2.0.0.0/32 is subnetted, 1 subnets
 C 2.2.2.2 is directly connected, Loopback2
3.0.0.0/32 is subnetted, 1 subnets
 B 3.3.3.3 [200/0] via 3.1.1.3, 00:20:09
C 21.0.0.0/8 is directly connected, GigabitEthernet3/16
B 22.0.0.0/8 [200/0] via 3.1.1.3, 00:20:09
```

Router#

To display information about the multicast routing table and tunnel interface for a particular MVRF, use the `show ip mroute vrf` command. The following example shows typical output for a MVRF named BIDIR01:

```
Router# show ip mroute vrf BIDIR01
```

IP Multicast Routing Table
Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel
Y - Joined MDT-data group, y - Sending to MDT-data group

Incoming interface flags: SJCF
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode
(*, 228.1.0.1), 00:16:25/stopped, RP 10.10.10.12, flags: SJCF
Incoming interface: Tunnel1, RPF nbr 10.10.10.12, Partial-SC
Outgoing interface list:
  GigabitEthernet3/1.3001, Forward/Sparse-Dense, 00:16:25/00:02:49, H
  (6.9.0.100, 228.1.0.1), 00:14:13/00:03:29, flags: FT
Incoming interface: GigabitEthernet3/1.3001, RPF nbr 0.0.0.0, RPF-MFD
Outgoing interface list:
  Tunnel1, Forward/Sparse-Dense, 00:14:13/00:02:46, H

Router#
Chapter 27  Configuring Multicast VPN Support

Configuring Multicast VRF Routing

These sections describe how to configure multicast routing to support MVPN:

- Enabling IPv4 Multicast Routing Globally, page 27-16
- Enabling IPv4 Multicast VRF Routing, page 27-17
- Configuring a PIM VRF Register Message Source Address, page 27-17
- Specifying the PIM VRF Rendezvous Point (RP) Address, page 27-17
- Configuring a Multicast Source Discovery Protocol (MSDP) Peer, page 27-18
- Enabling IPv4 Multicast Header Storage, page 27-18
- Configuring the Maximum Number of Multicast Routes, page 27-19
- Sample Configuration, page 27-19
- Displaying IPv4 Multicast VRF Routing Information, page 27-20

Note  BGP should be already configured and operational on all routers that are sending or receiving multicast traffic. In addition, BGP extended communities must be enabled (using the `neighbor send-community both` or `neighbor send-community extended` command) to support the use of MDTs in the network.

Enabling IPv4 Multicast Routing Globally

To enable IPv4 multicast routing globally, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip multicast-routing</td>
<td>Enables IPv4 multicast routing globally.</td>
</tr>
<tr>
<td>Router(config)# no ip multicast-routing</td>
<td>Disables IPv4 multicast routing globally.</td>
</tr>
</tbody>
</table>

This example show how to enable IPv4 multicast routing globally:

```
Router# configure terminal
Router(config)# ip multicast-routing
```
### Enabling IPv4 Multicast VRF Routing

To enable IPv4 multicast VRF routing, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# ip multicast-routing vrf vrf_name [distributed]</code></td>
<td>Enables IPv4 multicast VRF routing.</td>
</tr>
<tr>
<td><code>Router(config)# no ip multicast-routing</code></td>
<td>Disables IPv4 multicast VRF routing.</td>
</tr>
</tbody>
</table>

When enabling IPv4 multicast VRF routing, note the following information:

- `vrf_name`—Specifies a particular VRF for multicast routing. The `vrf_name` should refer to a VRF that has been previously created, as specified in the “Configuring a Multicast VPN Routing and Forwarding Instance” section on page 27-10.
- `distributed`—(Optional) Enables Multicast Distributed Switching (MDS).

This example show how to enable IPv4 multicast VRF routing:

```
Router# configure terminal
Router(config)# ip multicast-routing vrf blue
```

### Configuring a PIM VRF Register Message Source Address

To configure a PIM VRF register message source address, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# ip pim vrf vrf_name register-source interface_type interface_number</code></td>
<td>(Optional) Configures a PIM VRF register message source address. You can configure a loopback interface as the source of the register messages.</td>
</tr>
<tr>
<td><code>Router(config)# no ip pim vrf vrf_name register-source</code></td>
<td>Disables IPv4 multicast VRF routing.</td>
</tr>
</tbody>
</table>

This example show how to configure a PIM VRF register message source address:

```
Router(config)# ip pim vrf blue register-source loopback 3
```

### Specifying the PIM VRF Rendezvous Point (RP) Address

To specify the PIM VRF RP address, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# ip pim vrf vrf_name rp-address rp_address [access_list] [override] [bidir]</code></td>
<td>Specifies the PIM RP IPv4 address for a (required for sparse PIM networks):</td>
</tr>
<tr>
<td><code>Router(config)# no ip pim vrf vrf_name rp-address rp_address</code></td>
<td>Clears the PIM RP IPv4 address.</td>
</tr>
</tbody>
</table>

When specifying the PIM VRF RP address, note the following information:

- `vrf vrf_name`—(Optional) Specifies a particular VRF instance to be used.
- `rp_address`—Unicast IP address for the PIM RP router.
Chapter 27 Configuring Multicast VPN Support

Configuring MVPN

- `access_list`—(Optional) Number or name of an access list that defines the multicast groups for the RP.
- `override`—(Optional) In the event of conflicting RP addresses, this particular RP overrides any RP that is learned through Auto-RP.
- `bidir`—(Optional) Specifies that the multicast groups specified by the `access_list` argument are to operate in bidirectional mode. If this option is not specified, the groups operate in PIM sparse mode.

Use bidirectional mode whenever possible, because it offers better scalability.

This example show how to specify the PIM VRF RP address:

`Router(config)# ip pim vrf blue rp-address 198.196.100.33`

Configuring a Multicast Source Discovery Protocol (MSDP) Peer

To configure an MSDP peer, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# ip msdp vrf vrf_name peer {peer_name</td>
<td>peer_address} [connect-source interface_type interface_number] [remote-as ASN]`</td>
</tr>
<tr>
<td>`Router(config)# no ip msdp vrf vrf_name peer {peer_name</td>
<td>peer_address} [connect-source interface_type interface_number] [remote-as ASN]`</td>
</tr>
</tbody>
</table>

When configuring an MSDP peer, note the following information:

- `vrf vrf_name`—Specifies a particular VRF instance to be used.
- `{peer_name | peer_address}`—Domain Name System (DNS) name or IP address of the MSDP peer router.
- `connect-source interface_type interface_number`—Interface name and number for the interface whose primary address is used as the source IP address for the TCP connection.
- `remote-as ASN`—(Optional) Autonomous system number of the MSDP peer. This is for display-only purposes.

This example show how to configure an MSDP peer:

`Router(config)# ip msdp peer router.cisco.com connect-source fastethernet 1/1 remote-as 109`

Enabling IPv4 Multicast Header Storage

To enable IPv4 multicast header storage, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# ip multicast vrf vrf_name cache-headers [rtp]</code></td>
<td>(Optional) Enables a circular buffer to store IPv4 multicast packet headers.</td>
</tr>
<tr>
<td><code>Router(config)# no ip multicast vrf vrf_name cache-headers [rtp]</code></td>
<td>Disables IPv4 multicast header storage.</td>
</tr>
</tbody>
</table>

When enabling IPv4 multicast header storage, note the following information:
• **vrf vrf_name**—Allocates a buffer for the specified VRF.
• **rtp**—(Optional) Also caches Real-Time Transport Protocol (RTP) headers.
• The buffers can be displayed with the `show ip mpacket` command.

This example shows how to enable IPv4 multicast header storage:

```
Router(config)# ip multicast vrf blue cache-headers
```

### Configuring the Maximum Number of Multicast Routes

To configure the maximum number of multicast routes, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| ```
Router(config)# ip multicast vrf vrf_name route-limit limit [threshold]
``` | (Optional) Configures the maximum number of multicast routes that can be added for multicast traffic. |
| ```
Router(config)# no ip multicast vrf vrf_name route-limit limit [threshold]
``` | Clears the configured maximum number of routes.                            |

When configuring the maximum number of routes, note the following information:

- **vrf vrf_name**—Enables route limiting for the specified VRF.
- **limit**—The number of multicast routes that can be added. The range is from 1 to 2147483647, with a default of 2147483647.
- **threshold**—(Optional) Number of multicast routes that can be added before a warning message occurs. The valid range is from 1 to the value of the `limit` parameter.

This example shows how to configure the maximum number of multicast routes:

```
Router(config)# ip multicast vrf blue route-limit 200000 20000
```

### Configuring IPv4 Multicast Route Filtering

To configure IPv4 multicast route filtering, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| ```
Router(config)# ip multicast mrinfo-filter access_list
``` | (Optional) Configures IPv4 multicast route filtering with an access list. The `access_list` parameter can be the name or number of a access list. |
| ```
Router(config)# no ip multicast mrinfo-filter
``` | Clears the configured maximum number of routes.                            |

This example shows how to configure IPv4 multicast route filtering:

```
Router(config)# ip multicast mrinfo-filter 101
```

### Sample Configuration

The following excerpt from a configuration file shows the minimum configuration that is needed to support multicast routing for a range of VRFs. To simplify the display, only the starting and ending VRFs are shown.

```
Configuring MVPN

ip multicast-routing
ip multicast-routing vrf lite
ip multicast-routing vrf vpn201
ip multicast-routing vrf vpn202

...
ip multicast-routing vrf vpn249
ip multicast-routing vrf vpn250
ip multicast cache-headers

...
ip pim rp-address 192.0.1.1
ip pim vrf lite rp-address 104.1.1.2
ip pim vrf vpn201 rp-address 192.200.1.1
ip pim vrf vpn202 rp-address 192.200.2.1

...
ip pim vrf vpn249 rp-address 192.200.49.6
ip pim vrf vpn250 rp-address 192.200.50.6

Displaying IPv4 Multicast VRF Routing Information

To display the known PIM neighbors for a particular MVRF, use the show ip pim vrf neighbor command:

Router# show ip pim vrf 98 neighbor

PIM Neighbor Table
Neighbor Interface Uptime/Expires Ver DR
Address Prio/Mode
40.60.0.11 Tunnel96 00:00:31/00:01:13 v2 1 / S
40.50.0.11 Tunnel96 00:00:54/00:00:50 v2 1 / S

Router#

Configuring Interfaces for Multicast Routing to Support MVPN

These sections describe how to configure interfaces for multicast routing to support MVPN:

• Multicast Routing Configuration Overview, page 27-20
• Configuring PIM on an Interface, page 27-21
• Configuring an Interface for IPv4 VRF Forwarding, page 27-22
• Sample Configuration, page 27-22

Multicast Routing Configuration Overview

Protocol Independent Multicast (PIM) must be configured on all interfaces that are being used for IPv4 multicast traffic. In a VPN multicast environment, you should enable PIM on at least all of the following interfaces:

• Physical interface on a provider edge (PE) router that is connected to the backbone.
• Loopback interface that is used for BGP peering.
• Loopback interface that is used as the source for the sparse PIM rendezvous point (RP) router address.

In addition, you must also associate MVRFs with those interfaces over which they are going to forward multicast traffic.

BGP should be already configured and operational on all routers that are sending or receiving multicast traffic. In addition, BGP extended communities must be enabled (using the `neighbor send-community both` or `neighbor send-community extended` command) to support the use of MDTs in the network.

Configuring PIM on an Interface

To configure PIM on an interface, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>`Router(config)# interface type {slot/port</td>
<td>number}`</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>`Router(config-if)# ip pim {dense-mode</td>
<td>sparse-mode</td>
</tr>
<tr>
<td>`Router(config-if)# no ip pim {dense-mode</td>
<td>sparse-mode</td>
</tr>
</tbody>
</table>

When configuring PIM on an interface, note the following information:

- You can use one of these interface types:
 - A physical interface on a provider edge (PE) router that is connected to the backbone.
 - A loopback interface that is used for BGP peering.
 - A loopback interface that is used as the source for the sparse PIM network rendezvous point (RP) address.

- These are the PIM modes:
 - `dense-mode`—Enables dense mode of operation.
 - `sparse-mode`—Enables sparse mode of operation.
 - `sparse-dense-mode`—Enables sparse mode if the multicast group has an RP router defined, or enables dense mode if an RP router is not defined.

- Use `sparse-mode` for the physical interfaces of all PE routers that are connected to the backbone, and on all loopback interfaces that are used for BGP peering or as the source for RP addressing.

This example shows how to configure PIM sparse mode on a physical interface:

```
Router# configure terminal
interface gigabitethernet 10/1
Router(config-if)# ip pim sparse-mode
```

This example shows how to configure PIM sparse mode on a loopback interface:

```
Router# configure terminal
Router(config)# interface loopback 2
Router(config-if)# ip pim sparse-mode
```
Configuring an Interface for IPv4 VRF Forwarding

To configure an interface for IPv4 VRF forwarding, perform this task:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ip vrf forwarding vrf_name</td>
<td>(Optional) Associates the specified VRF routing and forwarding tables with the interface. If this is not specified, the interface defaults to using the global routing table.</td>
</tr>
<tr>
<td>Router(config-if)# no ip vrf forwarding [vrf_name]</td>
<td>Disables IPv4 VRF forwarding.</td>
</tr>
</tbody>
</table>

This example shows how to configure the interface for VRF blue forwarding:

```
Router(config-if)# ip vrf forwarding blue
```

Sample Configuration

The following excerpt from a configuration file shows the interface configuration, along with the associated MVRF configuration, to enable multicast traffic over a single MVRF:

```
ip multicast-routing vrf blue
ip multicast-routing
ip vrf blue
rd 100:27
route-target export 100:27
route-target import 100:27
mdt default 239.192.10.2

interface GigabitEthernet1/1
description blue connection
ip vrf forwarding blue
ip address 192.168.2.26 255.255.255.0
ip pim sparse-mode

interface GigabitEthernet1/15
description Backbone connection
ip address 10.8.4.2 255.255.255.0
ip pim sparse-mode
ip pim vrf blue rp-address 192.7.25.1
ip pim rp-address 10.1.1.1
```

Sample Configurations for MVPN

This section contains the following sample configurations for the MVPN feature:

- MVPN Configuration with Default MDTs Only, page 27-23
- MVPN Configuration with Default and Data MDTs, page 27-24
MVPN Configuration with Default MDTs Only

The following excerpt from a configuration file shows the lines that are related to the MVPN configuration for three MVRFs. (The required BGP configuration is not shown.)

```
! version 12.2
service timestamps debug datetime msec
service timestamps log datetime msec
service password-encryption
!
hostname MVPN Router
!
boot system flash slot0:
logging snmp-authfail
!
ip subnet-zero
!
!
oip domain-lookup
ip host tftp 223.255.254.238
!
ip vrf mvpn-cus1
  rd 200:1
  route-target export 200:1
  route-target import 200:1
  mdt default 239.1.1.1
!
ip vrf mvpn-cus2
  rd 200:2
  route-target export 200:2
  route-target import 200:2
  mdt default 239.1.1.2
!
ip vrf mvpn-cus3
  rd 200:3
  route-target export 200:3
  route-target import 200:3
  mdt default 239.1.1.3
!
ip multicast-routing
ip multicast-routing vrf mvpn-cus1
ip multicast-routing vrf mvpn-cus2
ip multicast-routing vrf mvpn-cus3
ip multicast multipath
frame-relay switching
mpls label range 4112 262143
mpls label protocol ldp
mpls ldp logging neighbor-changes
mpls ldp explicit-null
mpls traffic-eng tunnels
tag-switching tdp discovery directed-hello accept from 1
tag-switching tdp router-id Loopback0 force
ip multicast hardware-switching replication-mode ingress
mls ip multicast flow-stat-timer 9
mls ip multicast bidir gm-scan-interval 10
mls flow ip destination
no mls flow ipv6
mls rate-limit unicast cef gleam 10 10
mls qos
mls cef error action freeze
```
Sample Configurations for MVPN

```plaintext
... 

vlan internal allocation policy ascending 
vlan access-log ratelimit 2000 
! 
vlan 2001-2101,3501-3700,4001,4051-4080,4093 
! 
! 
interface Loopback0 
ip address 201.252.1.14 255.255.255.255 
ip pim sparse-dense-mode 
! 
interface Loopback1 
ip address 209.255.255.14 255.255.255.255 
! 
interface Loopback10 
ip vrf forwarding mvpn-cus1 
ip address 210.101.255.14 255.255.255.255 
! 
interface Loopback11 
ip vrf forwarding mvpn-cus1 
ip address 210.111.255.14 255.255.255.255 
ip pim sparse-dense-mode 
! 
interface Loopback12 
ip vrf forwarding mvpn-cus1 
ip address 210.112.255.14 255.255.255.255 
! 
interface GigabitEthernet3/3 
mtu 9216 
ip vrf forwarding mvpn-cus3 
ip address 172.10.14.1 255.255.255.0 
ip pim sparse-dense-mode 
! 
interface GigabitEthernet3/19 
ip vrf forwarding mvpn-cus2 
ip address 192.16.4.1 255.255.255.0 
ip pim sparse-dense-mode 
ip igmp static-group 229.1.1.1 
ip igmp static-group 229.1.1.2 
ip igmp static-group 229.1.1.4 
! 
interface GigabitEthernet3/20 
ip vrf forwarding mvpn-cus1 
ip address 192.16.1.1 255.255.255.0 
ip pim sparse-dense-mode 
! 

MVPN Configuration with Default and Data MDTs

The following sample configuration includes three MVRFs that have been configured for both default and data MDTs. Only the configuration that is relevant to the MVPN configuration is shown.

... 
ip vrf v1 
rd 1:1
```
route-target export 1:1
droute-target import 1:1
mdt default 226.1.1.1
mdt data 226.1.1.128 0.0.0.7 threshold 1
!
ip vrf v2
rd 2:2
route-target export 2:2
route-target import 2:2
mdt default 226.2.2.1
mdt data 226.2.2.128 0.0.0.7
!
ip vrf v3
rd 3:3
route-target export 3:3
route-target import 3:3
mdt default 226.3.3.1
mdt data 226.3.3.128 0.0.0.7
!
ip vrf v4
rd 155.255.255.1:4
route-target export 155.255.255.1:4
route-target import 155.255.255.1:4
mdt default 226.4.4.1
mdt data 226.4.4.128 0.0.0.7
!
ip multicast-routing
ip multicast-routing vrf v1
ip multicast-routing vrf v2
ip multicast-routing vrf v3
ip multicast-routing vrf v4
mpls label protocol ldp
mpls ldp logging neighbor-changes
tag-switching tdp router-id Loopback1
ip multicast hardware-switching replication-mode ingress
mls ip multicast bidir gm-scan-interval 10
no mls flow ip
no mls flow ipv6
mls cef error action freeze
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
Sample Configurations for MVPN

```plaintext
ip vrf forwarding v2
ip address 155.255.255.22 255.255.255.255
ip pim sparse-mode
!
interface Loopback33
ip vrf forwarding v3
ip address 155.255.255.33 255.255.255.255
ip pim sparse-mode
!
interface Loopback44
no ip address
!
interface Loopback111
ip vrf forwarding v1
ip address 1.1.1.1 255.255.255.252
ip pim sparse-dense-mode
ip ospf network point-to-point
!
interface GigabitEthernet1/1
description Gi1/1 - 155.50.1.155 255.255.255.0 - peer dut50 - mpls
mtu 9216
ip address 155.50.1.155 255.255.255.0
ip pim sparse-mode
tag-switching ip
!
interface GigabitEthernet1/2
ip vrf forwarding v1
ip address 155.1.2.254 255.255.255.0
ip pim sparse-mode
!
interface GigabitEthernet1/3
description Gi1/3 - 185.155.1.155/24 - vrf v1 stub peer 185.Gi1/3
ip vrf forwarding v1
ip address 185.155.1.155 255.255.255.0
ip pim sparse-mode
!
interface GigabitEthernet1/48
ip vrf forwarding v1
ip address 157.155.1.155 255.255.255.0
ip pim bsr-border
ip pim sparse-dense-mode
!
interface GigabitEthernet6/1
no ip address
shutdown
!
interface GigabitEthernet6/2
ip address 9.1.10.155 255.255.255.0
media-type rj45
!
interface Vlan1
no ip address
shutdown
!
routing ospf 11 vrf v1
router-id 155.255.255.11
log-adjacency-changes
redistribute connected subnets tag 155
redistribute bgp 1 subnets tag 155
network 1.1.1.0 0.0.0.3 area 155
```

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S
network 155.255.255.11 0.0.0.0 area 155
network 155.0.0.0 0.255.255.255 area 155
network 157.155.1.0 0.0.0.255 area 0
!
router ospf 22 vrf v2
 router-id 155.255.255.22
 log-adjacency-changes
 network 155.255.255.22 0.0.0.0 area 155
 network 155.0.0.0 0.255.255.255 area 155
 network 157.155.1.0 0.0.0.255 area 0
!
router ospf 33 vrf v3
 router-id 155.255.255.33
 log-adjacency-changes
 network 155.255.255.33 0.0.0.0 area 155
!
router ospf 1
 log-adjacency-changes
 network 155.50.1.0 0.0.0.255 area 0
 network 155.255.255.1 0.0.0.0 area 155
!
router bgp 1
 bgp router-id 155.255.255.1
 no bgp default ipv4-unicast
 bgp log-neighbor-changes
 neighbor 175.255.255.1 remote-as 1
 neighbor 175.255.255.1 update-source Loopback1
 neighbor 185.255.255.1 remote-as 1
 neighbor 185.255.255.1 update-source Loopback1
!
 address-family vpnv4
 neighbor 175.255.255.1 activate
 neighbor 175.255.255.1 send-community extended
 neighbor 185.255.255.1 activate
 neighbor 185.255.255.1 send-community extended
 exit-address-family
!
 address-family ipv4 vrf v4
 no auto-summary
 no synchronization
 exit-address-family
!
 address-family ipv4 vrf v3
 redistribute ospf 33
 no auto-summary
 no synchronization
 exit-address-family
!
 address-family ipv4 vrf v2
 redistribute ospf 22
 no auto-summary
 no synchronization
 exit-address-family
!
 address-family ipv4 vrf v1
 redistribute ospf 11
 no auto-summary
 no synchronization
 exit-address-family
!
ip classless
ip route 9.255.254.1 255.255.255.255 9.1.10.254
no ip http server
ip pim bidir-enable
Sample Configurations for MVPN

ip pim rp-address 50.255.2.2 MCAST.MVPN.MDT.v2 override bidir
ip pim rp-address 50.255.3.3 MCAST.MVPN.MDT.v3 override bidir
ip pim rp-address 50.255.1.1 MCAST.MVPN.MDT.v1 override bidir
ip pim vrf v1 spt-threshold infinity
ip pim vrf v1 send-rp-announce Loopback11 scope 16 group-list MCAST.GROUP.BIDIR bidir
ip pim vrf v1 send-rp-discovery Loopback11 scope 16
ip pim vrf v1 bsr-candidate Loopback111 0
ip msdp vrf v1 peer 185.255.255.11 connect-source Loopback11
ip msdp vrf v1 cache-sa-state
!
!
ip access-list standard MCAST.ANYCAST.CE
 permit 2.2.2.2
ip access-list standard MCAST.ANYCAST.PE
 permit 1.1.1.1
ip access-list standard MCAST.BOUNDARY.VRF.v1
deny 226.192.1.1
permit any
ip access-list standard MCAST.GROUP.BIDIR
 permit 226.192.0.0 0.0.255.255
ip access-list standard MCAST.GROUP.SPARSE
 permit 226.193.0.0 0.0.255.255
ip access-list standard MCAST.MVPN.BOUNDARY.DATA.MDT
deny 226.1.1.128
permit any
ip access-list standard MCAST.MVPN.MDT.v1
 permit 226.1.0.0 0.0.255.255
ip access-list standard MCAST.MVPN.MDT.v2
 permit 226.2.0.0 0.0.255.255
ip access-list standard MCAST.MVPN.MDT.v3
 permit 226.3.0.0 0.0.255.255
ip access-list standard MCAST.MVPN.RP.v4
 permit 227.0.0.0 0.255.255.255
!
access-list 1 permit 226.1.1.1
access-list 2 deny 226.1.1.1
access-list 2 permit any
...

Chapter 27 Configuring Multicast VPN Support
IPv6 Multicast Virtual Private Network (MVPNv6)

To provide layer 3 multicast services to customers with multiple distributed sites, service providers need a secure and scalable mechanism to transmit multicast traffic across the service provider network. IPv4 Multicast VPN (MVPN) provides such services for IPv4 multicast traffic over a shared service provider backbone.

Since many service providers are migrating to IPv6, they also need the same services for IPv6 multicast traffic. IPv6 Multicast Virtual Private Network (MVPNv6) provides multiple VPN support that enables service providers to provide multicast enabled private IPv6 networks to their customers using the same IPv4 back bone. In MVPNv6 implementation, the IPv6 multicast traffic is carried over the same IPv4 based core network and hence both the IPv4 and IPv6 VPN traffic are carried over the same tunnels simultaneously. Effective with Cisco IOS release 15.2(4)S, MVPNv6 is supported on Cisco 7600 series routers.

Restrictions for the MVPNv6 Feature

Following restrictions apply to MVPNv6 on the Cisco 7600 series routers:

- Support up to 8000 IPv6 routes in VRF.
- Support up to 60 multicast VRFs.
- For MVPNv6 support, MVPNv4 should co-exist.
- All core facing cards should be ES+ line cards.
- Point to Point GRE tunnel as output interface in VRF for MVPNv6 is not supported.
- Default Multicast Distribution Tree (MDT) and data MDT are supported.
- An IPv6 protocol inside a VRF should operate in ingress replication mode irrespective of the configured replication mode. IPv4 backbone can operate in both ingress and egress replication modes.
- Effective with Cisco IOS Release 15.3(1)S, if replication mode is Egress, the entries in v6-vrf lite is installed as Egress. Before this release, it was Ingress.
- MVRF with MDT default configured on IPv4 and IPv6 address families (dual stack) does not support SVI as core facing interface.

Configuring MPVPNv6

Configuring MVPNv6 includes the following procedures:

1. Configuring Multicast VRF Instances on PE Routers
2. Configuring Multicast Routing
3. Configuring Multicast VRF Interfaces on PE Routers
4. Configuring Routing Protocols Between the PE and CE Routers

Note

These configuration tasks assume that BGP is already configured and operational on all routers sending or receiving the multicast traffic. Additionally, BGP extended communities must be enabled (using the neighbor send-community both or neighbor send-community extended command) to support the use of MDTs in the network.
Configuring Multicast VRF Instances on PE Routers

Complete these steps to configure Multicast VRFs on PE routers.

Summary Steps

1. `enable`
2. `configure terminal`
3. `mls ipv6 vrf`
4. `vrf definition vrf-name`
5. `rd route-distinguisher`
6. `route-target {import | export | both} route-target-ext-community`
7. `exit`
8. `address-family ipv4`
9. `mdt default group_address`
10. `mdt data group_address wildcard_bits [threshold threshold_value] [list access_list]`
11. `exit`
12. `address-family ipv6`
13. `mdt default group_address`
14. `mdt data group_address wildcard_bits [threshold threshold_value] [list access_list]`
15. `exit`

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router> enable</td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# configure terminal</td>
</tr>
<tr>
<td>Step 3 <code>mls ipv6 vrf</code></td>
<td>Enables IPv6 globally in a VRF.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# mls ipv6 vrf</td>
</tr>
<tr>
<td>Step 4 <code>vrf definition vrf-name</code></td>
<td>Configures a VPN VRF routing table and enters VRF configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# vrf definition vrf1</td>
</tr>
<tr>
<td>Step 5 <code>rd route-distinguisher</code></td>
<td>Specifies the route distinguisher (RD) for a VRF.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vrf)# rd 100:1</td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 6 | `route-target {import | export | both}`
 | `route-target-ext-community` | Specifies the route target VPN extended communities for both IPv4 and IPv6. |
| | **Example:**
 | `Router(config-vrf)# route target import 100:10` | |
| 7 | `exit` | Exits VRF configuration mode. |
| | **Example:**
 | `Router(config-vrf)# exit` | |
| 8 | `address-family ipv4` | Enters address family configuration mode to configure a routing session using standard IPv4 address prefixes. |
| | **Example:**
 | `Router(config-vrf)# address-family ipv4` | |
| 9 | `mdt default group_address` | Configures the default IPv4 MDT address. |
| | **Example:**
 | `Router(config-vrf-af)# mdt default 232.1.1.1` | |
| 10 | `mdt data group_address wildcard_bits [threshold threshold_value] [list access_list]` | (Optional) Configures data MDTs for the specified range of multicast addresses. |
| | **Example:**
 | `Router(config-vrf-af)# mdt data 232.20.24.1 0.0.0.0 threshold 10` | |
| 11 | `exit` | Exits address family configuration mode on this VRF. |
| | **Example:**
 | `Router(config-vrf-af)# exit` | |
| 12 | `address-family ipv6` | Enters address family configuration mode for configuring routing sessions that use standard IPv6 address prefixes. |
| | **Example:**
 | `Router(config-vrf)# address-family ipv6` | |
| 13 | `mdt default group_address` | Configures the default MDT address. |
| | **Example:**
 | `Router(config-vrf-af)# mdt-default 232.1.1.1` | |

- **group_address** — Multicast group address. The address can range from 224.0.0.1 to 239.255.255.255, but cannot overlap the address that has been assigned to the default MDT.
- **wildcard_bits** — Wildcard bitmask to be applied to the multicast group address to create a range of possible addresses. This allows you to limit the maximum number of data MDTs that each MVRF can support.
- **threshold_value** — (Optional) Defines the threshold value in kilobits, at which multicast traffic should be switched from the default MDT to the data MDT. The threshold_value parameter can range from 1 to 4294967 kilobits.
- **access_list** — (Optional) Specifies an access list name or number to be applied to this traffic.
Configuring Multicast VPN Support

Chapter 27 Configuring Multicast VPN Support

IPv6 Multicast Virtual Private Network (MVPNv6)

Configuring Multicast Routing

Complete these steps to configure multicast routing.

Summary Steps

1. configure terminal
2. ip multicast-routing
3. ip multicast-routing [vrf vrf-name]
4. ipv6 multicast-routing
5. ipv6 multicast-routing [vrf vrf-name]
6. exit

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>mdt data group_address wildcard_bits [threshold threshold_value] [list access_list]</td>
<td>Configures data MDTs for the specified range of multicast addresses.</td>
</tr>
<tr>
<td>exit-address-family</td>
<td>Exits address family configuration mode</td>
</tr>
</tbody>
</table>

Step 14 mdt data group_address wildcard_bits [threshold threshold_value] [list access_list]

Example:
Router(config-vrf-af)# mdt data 232.12.24.1 0.0.0.0 threshold 10

Step 15 exit-address-family

Example:
Router(config-vrf-af)# exit-address-family
Chapter 27 Configuring Multicast VPN Support

IPv6 Multicast Virtual Private Network (MVPNv6)

Configuring Multicast VRF Interfaces on PE Routers

Complete these steps to configure IPv6 Multicast VRF interfaces.

Summary Steps

1. interface type number
2. vrf forwarding vrf-name
3. bandwidth bandwidth-value
4. ip address ip-address
5. no ip redirects
6. no ip proxy-arp
7. ip pim sparse-dense-mode
8. delay tens-of-microseconds
9. ipv6 address ipv6-address link-local
10. ipv6 address ipv6-address/prefix
11. ipv6 pim
12. exit
13. ip pim rp-address ip-address
14. ipv6 pim vrf vrf-name rp-address ipv6-address

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>configure terminal Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>interface type number Specifies the interface to configure and enters interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface GigabitEthernet 3/0/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td>ipv6 multicast-routing vrf vrf-name Enables IPv4 multicast routing for the Multicast VPN routing and forwarding (MVRF) instance.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ipv6 multicast-routing vrf blue</td>
</tr>
<tr>
<td>Step 6</td>
<td>exit Exits from the configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# exit</td>
</tr>
</tbody>
</table>

Command Purpose

Step 1 configure terminal

Example:
Router(config)# configure terminal

Step 2 interface type number

Example:
Router(config)# interface GigabitEthernet 3/0/3

Step 5 ipv6 multicast-routing vrf vrf-name

Example:
Router(config)# ipv6 multicast-routing vrf blue

Step 6 exit

Example:
Router(config)# exit

Step 7 ipv6 multicast-routing vrf vrf-name

Example: Router(config)# ipv6 multicast-routing vrf blue

Enables IPv4 multicast routing for the Multicast VPN routing and forwarding (MVRF) instance.

Exits from the configuration mode.

Step 8 exit

Example:
Router(config)# exit

Exits from the configuration mode.
Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>vrf forwarding vrf-name</td>
<td>Associates a VRF with the specified interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# vrf forwarding blue</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>bandwidth bandwidth-value</td>
<td>Specifies a bandwidth.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# bandwidth 1000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ip address ip-address mask</td>
<td>Configures an IPv4 address on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip address 10.1.0.1 255.255.0.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>no ip redirects</td>
<td>Disables sending redirect messages.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip redirects</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>no ip proxy-arp</td>
<td>Disables proxy ARP on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip proxy-arp</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ip pim sparse-mode</td>
<td>Enables Protocol-Independent Multicast (PIM) on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>delay tens-of-microseconds</td>
<td>Sets a delay value for the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if) delay 1000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>ipv6 address ipv6-address link-local</td>
<td>Specifies a link local IPv6 address. This address is used instead of the link local address that is automatically configured when IPv6 is enabled on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ipv6 address FE80::20:1:1 link-local</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>ipv6 address ipv6-address/prefix</td>
<td>Specifies an IPv6 address on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ipv6 address 20::1:1:1/64</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>ipv6 pim</td>
<td>Enables PIM for IPv6.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ipv6 pim</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>exit</td>
<td>Exits the interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>ip pim rp-address ip-address</td>
<td>Configure the address of a Protocol Independent Multicast (PIM) rendezvous point (RP) for multicast groups.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ip pim rp-address 11.11.11.11</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ipv6 pim vrf vrf-name rp-address ipv6-address</td>
<td>Configures the IPv6 address of a PIM RP and associates with the MVRF instance.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# ipv6 pim vrf blue rp-address 20::1:1:1</td>
<td></td>
</tr>
</tbody>
</table>
Configuring Routing Protocols Between the PE and CE Routers

Configure the PE router with the same routing protocol that the CE router uses. In this configuration, EIGRP is used as the routing protocol between PE and CE routers. Complete these steps to configure EIGRP as the routing protocol between PE and CE Routers.

Summary Steps

1. `router bgp as-number`
2. `address-family ipv6 vrf vrf-name`
3. `redistribute connected`
4. `redistribute eigrp as-number`
5. `redistribute static`
6. `exit-address-family`

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>configure terminal</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# configure terminal</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>router bgp as-number</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config)# router bgp 55</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>address-family ipv6 vrf vrf-name</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-router)# address-family ipv6 vrf blue</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>redistribute connected</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-router-af)# redistribute connected</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>redistribute eigrp as-number</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-router-af)# redistribute eigrp 11</code></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>redistribute static</code></td>
</tr>
<tr>
<td>Example:</td>
<td><code>Router(config-router-af)# redistribute static</code></td>
</tr>
</tbody>
</table>
IPv6 Multicast Virtual Private Network (MVPNv6)

Configuration Examples

This example shows how to configure MVPNv6 on the Cisco 7600 series routers. In this example, EIGRP is used as the routing protocol between PE and CE routers.

Note These configuration tasks are based on the assumption that BGP is already configured and operational on all routers sending or receiving the multicast traffic.

```
Router> enable
Router# configure terminal
Router(config)# mls ipv6 vrf
Router(config)# vrf definition blue
    Router(config-vrf)# rd 55:1111
    Router(config-vrf)# route target export 55:1111
    Router(config-vrf)# route target import 55:1111
    Router(config-vrf)# address-family ipv4
        Router(config-vrf-af)# mdt default 232.1.1.1
        Router(config-vrf-af)# mdt data 232.20.24.1 0.0.0.0 threshold 10
        Router(config-vrf-af)# exit
    Router(config-vrf)# address-family ipv6
        Router(config-vrf-af)# mdt default 232.12.24.1 0.0.0.0 threshold 10
        Router(config-vrf-af)# exit-address-family
    Router(config-vrf)# exit

Router(config)# ip multicast-routing
Router(config)# ip multicast-routing vrf blue
Router(config)# ipv6 multicast-routing
Router(config)# ipv6 multicast-routing vrf blue
Router(config)# interface GigabitEthernet 3/0/3
    Router(config-if)# vrf forwarding blue
    Router(config-if)# bandwidth 1000
    Router(config-if)# ip address 10.1.0.1 255.255.0.0
    Router(config-if)# no ip redirects
    Router(config-if)# ip pim sparse-mode
    Router(config-if)# delay 100
    Router(config-if)# ipv6 address FE80::20:1:1 link-local
    Router(config-if)# ipv6 address 20::1:1/64
    Router(config-if)# ipv6 pim
    Router(config-if)# exit
    Router(config)# ip pim rp-address 11.11.11.11
    Router(config)# ipv6 pim vrf blue rp-address 20::1:1
    Router(config)# router bgp 55
    Router(config-router)# address-family ipv6 vrf blue
    Router(config-router-af)# redistribute connected
    Router(config-router-af)# redistribute eigrp 11
    Router(config-router-af)# redistribute static
    Router(config-router-af)# exit-address-family
```
Verifying MVPNv6 Configuration

Use these commands to verify the MVPNv6 configuration.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show ipv6 pim vrf vrf-name neighbor</code></td>
<td>Displays the PIM neighbors discovered.</td>
</tr>
<tr>
<td><code>show ipv6 pim vrf vrf-name mdt</code></td>
<td>Displays information about MDT data streams.</td>
</tr>
<tr>
<td><code>show ipv6 mroute vrf vrf-name source-ip-address group-ip-address</code></td>
<td>Displays the contents of the IPv6 multicast routing table.</td>
</tr>
<tr>
<td><code>show ipv6 mfib vrf vrf-name source-ip-address group-address verbose</code></td>
<td>Displays MFIB entries, forwarding interfaces, and traffic statistics.</td>
</tr>
<tr>
<td><code>show ipv6 pim vrf vrf-name mdt send</code></td>
<td>Displays the data MDT groups in use.</td>
</tr>
<tr>
<td><code>show ipv6 pim vrf vrf-name mdt receive detail</code></td>
<td>Displays the data multicast distribution tree MDT group mappings received from other PE routers.</td>
</tr>
</tbody>
</table>
Configuring Multicast VPN Extranet Support

This chapter describes how to configure Multicast Virtual Private Network (MVPN) Extranet support on Cisco 7600 series routers. MVPN is supported when a PFC3B, PFC3BXL, PFC3C, or PFC3CXL is installed on the router.

This chapter contains the following sections:

• Overview
• Extranet MVPN Architecture
• Configuring MVPN Extranet
• Restrictions and Usage guidelines

Overview

Extranet is a virtual private network that allows an external user to access intranet of an organization. An external user may be a business partner, customer, or a supplier to the organization. The MVPN Extranet feature allows service providers to distribute multicast content originating from an enterprise site to other enterprise sites or between different VRF configurations. It allows different closed user groups to share multicast information across multiple VPN customers. This feature enables a service provider to offer advanced flexible extranet services that aid in business partnerships between different enterprises. Using the MVPN Extranet feature, a service provider can provide efficient content distribution between:

• Different enterprises.
• Service provider or content provider and VPN customers.

MPLS VPNs ensures that users access only authorized information. MPLS VPN extranet services offer extranet users unicast and multicast connectivity without comprising the security and integrity of sensitive data. The Multicast VPN Extranet Support feature extends this functionality to include multicast connectivity to the extranet user.

Extranet MVPN Architecture

Figure 28-1 shows the Extranet MVPN architecture:
Overview

Figure 28-1 Extranet MVPN Architecture

Configuring MVPN Extranet

To provide extranet MVPN services to enterprise VPN customers, you need to configure a source Multicast Virtual Routing and Forwarding (MVRF) on a receiver Provider Edge (PE) router using this procedure:

- On a receiver PE router that has one or more receivers in an extranet site behind a directly connected CE router, configure an additional MVRF having the same default Multicast Distribution Tree (MDT) group as the site connected to the multicast source (if the MVRF is not configured).
- On the receiver PE router, configure the unicast routing policy similar to the routing policy used for importing routes from the source MVRF to the receiver MVRF.

MVPN Extranet works in both ingress replication and egress replication modes. The platform programs the hardware entries based on the Multicast Forwarding Information Base (MFIB) notifications, in both the modes. For an end user, the extranet works in a similar way irrespective of the mode used by the platform to switch the packets.

Note For more information on Configuring MVPN Extranet Support, see Configuring Multicast VPN Extranet Support.
Restrictions and Usage guidelines

Follow these restrictions and usage guidelines when configuring the Multicast VPN Extranet support on a Cisco 7600 Series Router:

- IPV6 based MVPN Extranet is not supported on Cisco 7600 Series Routers.
- Data traffic performance, latency, and convergence is the same for MVPN extranet and MVPN intranet.
- The scale data for MVPN extranet is as follows:
 - Maximum number of mVRFs supported is 100.
 - Maximum number of mroutes supported in each MVRF is 100.
- Extranet content group mode should be consistent across all the VRFs, the following modes are supported:
 - The MVPN Extranet feature supports Protocol Independent Multicast (PIM) sparse mode (PIM-SM) and Source Specific Multicast (SSM) traffic, PIM dense mode (PIM-DM) and bidirectional PIM (bidir-PIM) traffic are not supported.
 - PIM-Sparse Mode is supported only if the RP is configured behind the PE router (on CE) and the source is in the same intranet-MVPN and behind the CE router.
- Only the static mroute with fallback-lookup option is supported for RPF lookup.
- To configure MVPN extranet support, configure the Source MVRF on the Receiver PE. Configuring the Receiver MVRF on the Source PE to implement MVPN Extranet support is not possible.
Chapter 28 Configuring Multicast VPN Extranet Support

Overview
Configuring IP Unicast Layer 3 Switching

This chapter describes how to configure IP unicast Layer 3 switching on Cisco 7600 series routers.

Note
For complete syntax and usage information for the commands used in this chapter, refer to these publications:

- The Cisco 7600 Series Routers Command References at this URL:
- The Release 12.2 publications at this URL:

This chapter consists of these sections:

- **Understanding How Layer 3 Switching Works**, page 29-1
- **Default Hardware Layer 3 Switching Configuration**, page 29-4
- **Configuration Guidelines and Restrictions**, page 29-4
- **Configuring Hardware Layer 3 Switching**, page 29-5
- **Displaying Hardware Layer 3 Switching Statistics**, page 29-6

Note
- IPX traffic is fast switched on the MSFC. For more information, refer to this URL:
- For information about IP multicast Layer 3 switching, see Chapter 31, “Configuring IPv4 Multicast Layer 3 Switching.”

Understanding How Layer 3 Switching Works

These sections describe Layer 3 switching:

- **Understanding Hardware Layer 3 Switching**, page 29-2
- **Understanding Layer 3-Switched Packet Rewrite**, page 29-2
Understanding Hardware Layer 3 Switching

Hardware Layer 3 switching allows the PFC and DFCs, instead of the MSFC, to forward IP unicast traffic between subnets. Hardware Layer 3 switching provides wire-speed forwarding on the PFC and DFCs, instead of in software on the MSFC. Hardware Layer 3 switching requires minimal support from the MSFC. The MSFC routes any traffic that cannot be hardware Layer 3 switched.

Hardware Layer 3 switching supports the routing protocols configured on the MSFC. Hardware Layer 3 switching does not replace the routing protocols configured on the MSFC.

Hardware Layer 3 switching runs equally on the PF3 and DFCs to provide IP unicast Layer 3 switching locally on each module. Hardware Layer 3 switching provides the following functions:

- Hardware access control list (ACL) switching for policy-based routing (PBR)
- Hardware NetFlow switching for TCP intercept, reflexive ACL forwarding decisions
- Hardware Cisco Express Forwarding (CEF) switching for all other IP unicast traffic

Hardware Layer 3 switching on the PFC supports modules that do not have a DFC. The MSFC forwards traffic that cannot be Layer 3 switched.

Traffic is hardware Layer 3 switched after being processed by access lists and quality of service (QoS).

Hardware Layer 3 switching makes a forwarding decision locally on the ingress-port module for each packet and sends the rewrite information for each packet to the egress port, where the rewrite occurs when the packet is transmitted from the Cisco 7600 series router.

Hardware Layer 3 switching generates flow statistics for Layer 3-switched traffic. Hardware Layer 3 flow statistics can be used for NetFlow Data Export (NDE). (See Chapter 56, “Configuring NetFlow and NDE”.)

Understanding Layer 3-Switched Packet Rewrite

When a packet is Layer 3 switched from a source in one subnet to a destination in another subnet, the Cisco 7600 series router performs a packet rewrite at the egress port based on information learned from the MSFC so that the packets appear to have been routed by the MSFC.

Packet rewrite alters five fields:

- Layer 2 (MAC) destination address
- Layer 2 (MAC) source address
- Layer 3 IP Time to Live (TTL)
- Layer 3 checksum
- Layer 2 (MAC) checksum (also called the frame checksum or FCS)

Note: Packets are rewritten with the encapsulation appropriate for the next-hop subnet.

If Source A and Destination B are in different subnets and Source A sends a packet to the MSFC to be routed to Destination B, the router recognizes that the packet was sent to the Layer 2 (MAC) address of the MSFC.

To perform Layer 3 switching, the router rewrites the Layer 2 frame header, changing the Layer 2 destination address to the Layer 2 address of Destination B and the Layer 2 source address to the Layer 2 address of the MSFC. The Layer 3 addresses remain the same.
In IP unicast and IP multicast traffic, the router decrements the Layer 3 TTL value by 1 and recomputes the Layer 3 packet checksum. The router recomputes the Layer 2 frame checksum and forwards (or, for multicast packets, replicates as necessary) the rewritten packet to Destination B’s subnet.

A received IP unicast packet is formatted (conceptually) as follows:

<table>
<thead>
<tr>
<th>Layer 2 Frame Header</th>
<th>Layer 3 IP Header</th>
<th>Data</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Source</td>
<td>Destination</td>
<td>Source</td>
</tr>
<tr>
<td>MSFC MAC</td>
<td>Source A MAC</td>
<td>Destination B IP</td>
<td>Source A IP</td>
</tr>
</tbody>
</table>

After the router rewrites an IP unicast packet, it is formatted (conceptually) as follows:

<table>
<thead>
<tr>
<th>Layer 2 Frame Header</th>
<th>Layer 3 IP Header</th>
<th>Data</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Source</td>
<td>Destination</td>
<td>Source</td>
</tr>
<tr>
<td>Destination B MAC</td>
<td>MSFC MAC</td>
<td>Destination B IP</td>
<td>Source A IP</td>
</tr>
</tbody>
</table>

Hardware Layer 3 Switching Examples

Figure 29-1 on page 29-4 shows a simple network topology. In this example, Host A is on the Sales VLAN (IP subnet 171.59.1.0), Host B is on the Marketing VLAN (IP subnet 171.59.3.0), and Host C is on the Engineering VLAN (IP subnet 171.59.2.0).

When Host A initiates an HTTP file transfer to Host C, Hardware Layer 3 switching uses the information in the local forwarding information base (FIB) and adjacency table to forward packets from Host A to Host C.
Default Hardware Layer 3 Switching Configuration

Table 29-1 shows the default hardware Layer 3 switching configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware Layer 3 switching enable state</td>
<td>Enabled (cannot be disabled)</td>
</tr>
<tr>
<td>Cisco IOS CEF enable state on MSFC</td>
<td>Enabled (cannot be disabled)</td>
</tr>
<tr>
<td>Cisco IOS dCEF(^{1}) enable state on MSFC</td>
<td>Enabled (cannot be disabled)</td>
</tr>
</tbody>
</table>

1. \(\text{dCEF} = \text{Distributed Cisco Express Forwarding}\)

Configuration Guidelines and Restrictions

Follow these guidelines and restrictions when configuring hardware Layer 3 switching:

- Hardware Layer 3 switching supports the following ingress and egress encapsulations:
 - Ethernet V2.0 (ARPA)
 - 802.3 with 802.2 with 1 byte control (SAP1)
 - 802.3 with 802.2 and SNAP
Configuring Hardware Layer 3 Switching

Note

For information on configuring unicast routing on the MSFC, see Chapter 22, “Configuring Layer 3 Interfaces.”

Hardware Layer 3 switching is permanently enabled. No configuration is required.

To display information about Layer 3-switched traffic, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router# show interface {{type slot/port}</td>
<td>{port-channel number}}</td>
</tr>
</tbody>
</table>

1. *type* = *ethernet*, *fastethernet*, *gigabitethernet*, or *tengigabitethernet*

This example shows how to display information about hardware Layer 3-switched traffic on Fast Ethernet port 3/3:

```
Router# show interface fastethernet 3/3 | begin L3
L3 in Switched: ucast: 0 pkt, 0 bytes - mcast: 12 pkt, 778 bytes mcast
L3 out Switched: ucast: 0 pkt, 0 bytes - mcast: 0 pkt, 0 bytes
  4046399 packets input, 349370039 bytes, 0 no buffer
  Received 3795255 broadcasts, 2 runts, 0 giants, 0 throttles
<...output truncated...>
Router#
```

Note

The Layer 3 switching packet count is updated approximately every five seconds.

Cisco IOS CEF and dCEF are permanently enabled. No configuration is required to support hardware Layer 3 switching.

With a PFC (and DFCs, if present), hardware Layer 3 switching uses per-flow load balancing based on IP source and destination addresses. Per-flow load balancing avoids the packet reordering that can be necessary with per-packet load balancing. For any given flow, all PFC- and DFC-equipped switches make exactly the same load-balancing decision, which can result in nonrandom load balancing.

The Cisco IOS CEF **ip load-sharing per-packet**, **ip cef accounting per-prefix**, and **ip cef accounting non-recursive** commands are not supported on the C7600 series routers.

For information about Cisco IOS CEF and dCEF on the MSFC, refer to these publications:

- The “Cisco Express Forwarding” sections at this URL:

- The *Cisco IOS Switching Services Command Reference* publication at this URL:

Displaying Hardware Layer 3 Switching Statistics

Hardware Layer 3 switching statistics are obtained on a per-VLAN basis.

To display hardware Layer 3 switching statistics, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# `show interfaces {{type slot/port}</td>
<td>{port-channel number}}`</td>
</tr>
</tbody>
</table>

1. `type` = `ethernet`, `fastethernet`, `gigabitethernet`, or `tengigabitethernet`

This example shows how to display hardware Layer 3 switching statistics:

```
Router# show interfaces gigabitethernet 9/5 | include Switched
L2 Switched: ucast: 8199 pkt, 1362060 bytes - mcast: 6980 pkt, 371952 bytes
L3 in Switched: ucast: 0 pkt, 0 bytes - mcast: 0 pkt, 0 bytes mcast
L3 out Switched: ucast: 0 pkt, 0 bytes - mcast: 0 pkt, 0 bytes
```

To display adjacency table information, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# `show adjacency {{type slot/port}</td>
<td>{port-channel number}}</td>
</tr>
</tbody>
</table>

1. `type` = `ethernet`, `fastethernet`, `gigabitethernet`, or `tengigabitethernet`

This example shows how to display adjacency statistics:

```
Router# show adjacency gigabitethernet 9/5 detail
Protocol Interface Address
IP GigabitEthernet9/5 172.20.53.206(11)
          504 packets, 6110 bytes
          000605C865B82
          000164F83FA50800
          ARP 03:49:31
```

Note Adjacency statistics are updated approximately every 60 seconds.
CHAPTER 30

Configuring IPv6 Multicast PFC3 and DFC3 Layer 3 Switching

The PFC3 and DFC3 provide hardware support for IPv6 multicast traffic. Use these publications to configure IPv6 multicast on Cisco 7600 series routers:

- The *Cisco IOS IPv6 Configuration Library*, “Implementing IPv6 Multicast”:
- The *Cisco IOS IPv6 Command Reference*:

These sections provide additional information about IPv6 multicast support on Cisco 7600 series routers:

- Features that Support IPv6 Multicast, page 30-1
- IPv6 Multicast Guidelines and Restrictions, page 30-2
- Configuring IPv6 Multicast Layer 3 Switching, page 30-3
- Using show Commands to Verify IPv6 Multicast Layer 3 Switching, page 30-3

Features that Support IPv6 Multicast

These features support IPv6 multicast:

- RPR and RPR+ redundancy mode—See Chapter 7, “Configuring RPR and RPR+ Supervisor Engine Redundancy.”
- Multicast Listener Discovery version 2 (MLDv2) snooping—See Chapter 32, “Configuring MLDv2 Snooping for IPv6 Multicast Traffic.”

Note MLDv1 snooping is not supported.

- IPv6 Multicast rate limiters—See Chapter 43, “Configuring Denial of Service Protection.”
- IPv6 Multicast: Bootstrap Router (BSR)—See the BSR information in the *Cisco IOS IPv6 Configuration Library* and *Cisco IOS IPv6 Command Reference*.
- IPv6 Access Services—See DHCPv6 Prefix Delegation—See this publication:
IPv6 Multicast Guidelines and Restrictions

These guidelines and restrictions apply to IPv6 multicast support on Cisco 7600 series routers:

• The PFC3 and DFC3 provide hardware support for the following:
 – Completely switched IPv6 multicast flows
 – IPv6 PIM-Sparse Mode (PIM-SM) (S,G) forwarding
 – Multicast RPF check for IPv6 PIM-SM (S,G) traffic using the NetFlow table
 – Rate limiting of IPv6 PIM-SM (S,G) traffic that fails the multicast RPF check
 – Static IPv6 multicast routes
 – SSM Mapping for IPv6 (PIM-SSM)
 – IPv6 multicast forwarding information base (MFIB) using the NetFlow table
 – IPv6 distributed MFIB (dMFIB) using the NetFlow table
 – Link-local and link-global IPv6 multicast scopes
 – Egress multicast replication with the `ipv6 mfib hardware-switching` command
 – Ingress interface statistics for multicast routes (egress interface statistics not available)
 – RPR and RPR+ redundancy mode (see Chapter 7, “Configuring RPR and RPR+ Supervisor Engine Redundancy”)
 – Ingress and egress PFC QoS (see Chapter 48, “Configuring PFC QoS”)
 – Input and output Cisco access-control lists (ACLs)

• The PFC3 and DFC3 do not provide hardware support for the following:
 – Partially switched IPv6 multicast flows
 – PIM-SM (*,G) forwarding
 – Multicast RPF check for PIM-SM (*,G) traffic
 – Multicast helper maps
 – Site-local multicast scopes
 – Manually configured IPv6 over IPv4 tunnels
 – IPv6 multicast 6to4 tunnels
 – IPv6 multicast automatic tunnels
 – IPv6 over GRE tunnels
 – IPv6-in-IPv6 PIM register tunnels
 – IPv6 multicast basic ISATAP tunnels
 – ISATAP tunnels with embedded 6to4 tunnels

SSM mapping for IPv6—See this publication:
Configuring IPv6 Multicast Layer 3 Switching

To configure IPv6 multicast Layer 3 switching, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ipv6 unicast-routing</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ipv6 multicast-routing</td>
</tr>
</tbody>
</table>

Using show Commands to Verify IPv6 Multicast Layer 3 Switching

These sections describe how to use show commands to verify IPv6 multicast Layer 3 switching:

- Verifying MFIB Clients, page 30-3
- Displaying the Switching Capability, page 30-4
- Verifying the (S,G) Forwarding Capability, page 30-4
- Verifying the (*,G) Forwarding Capability, page 30-4
- Verifying the Subnet Entry Support Status, page 30-4
- Displaying the Replication Mode Capabilities, page 30-4
- Displaying Subnet Entries, page 30-5
- Displaying the IPv6 Multicast Summary, page 30-5
- Displaying the NetFlow Hardware Forwarding Count, page 30-5
- Displaying the FIB Hardware Bridging and Drop Counts, page 30-6
- Displaying the Shared and Well-Known Hardware Adjacency Counters, page 30-6

Note

The show commands in the following sections are for a router with a DFC3-equipped switching module in slot 1 and a Supervisor Engine 720 with a PFC3 in slot 6.

Verifying MFIB Clients

This example shows the complete output of the show ipv6 mrib client command:

```
Router# show ipv6 mrib client
IP MRIB client-connections
mrib ipv6:81 (connection id 0)
igmp:124 (connection id 1)
pim:281 (connection id 2)
slot 1  mfib ipv6 rp agent:15 (connection id 3)
slot 6  mfib ipv6 rp agent:15 (connection id 4)
```

This example shows how to display the MFIB client running on the MSFC:

```
Router# show ipv6 mrib client | include ^mfb ipv6
mfb ipv6:81 (connection id 0)
```
This example shows how to display the MFIB clients running on the PFC3 and any DFC3s:

Router# show ipv6 mrib client | include slot
slot 1 mfib ipv6 rp agent:15 (connection id 3)
slot 6 mfib ipv6 rp agent:15 (connection id 4)

Displaying the Switching Capability

This example displays the complete output of the `show platform software multicast ipv6 capability` command:

Router# show platform software multicast ipv6 capability | i switching
Hardware switching for IPv6 is enabled
(S,G) forwarding for IPv6 supported using Netflow
(*,G) bridging for IPv6 is supported using FIB
Directly-connected entries for IPv6 is supported using ACL-TCAM.

Current System HW Replication Mode : Egress
Auto-detection of Replication Mode : ON

Slot Replication-Capability Replication-Mode
 2 Egress Egress
 3 Egress Egress
 4 Egress Egress
 6 Egress Egress

PE1-7600#

Verifying the (S,G) Forwarding Capability

This example shows how to verify the (S,G) forwarding:

Router# show platform software ipv6-multicast capability | include (S,G)
(S,G) forwarding for IPv6 supported using Netflow

Verifying the (*,G) Forwarding Capability

This example shows how to verify the (*,G) forwarding:

Router# show platform software ipv6-multicast capability | include (*,G)
(*,G) bridging for IPv6 is supported using FIB

Verifying the Subnet Entry Support Status

This example shows how to verify the subnet entry support status:

Router# show platform software ipv6-multicast capability | include entries
Directly-connected entries for IPv6 is supported using ACL-TCAM.

Displaying the Replication Mode Capabilities

This example shows how to display the replication mode capabilities of the installed modules:

Router# show platform software multicast ipv6 capability
Hardware switching for IPv6 is enabled
(S,G) forwarding for IPv6 supported using Netflow
(*,G) bridging for IPv6 is supported using FIB
Directly-connected entries for IPv6 is supported using ACL-TCAM.

Current System HW Replication Mode : Egress
Auto-detection of Replication Mode : ON

Slot Replication-Capability Replication-Mode
2 Egress
3 Egress
4 Egress
6 Egress

Displaying Subnet Entries

This example shows how to display subnet entries:
Router# show platform software multicast ipv6 connected
IPv6 Multicast Subnet entries
Flags : H - Installed in ACL-TCAM
X - Not installed in ACL-TCAM due to label-full exception

Displaying the IPv6 Multicast Summary

This example shows how to display the IPv6 multicast summary:
Router# show platform software multicast ipv6 summary module 4
IPv6 Multicast Netflow SC summary on Slot[4]:
Shortcut Type Shortcut count
(S, G) 0
(*, G) 0

IPv6 Multicast FIB SC summary on Slot[4]:
Shortcut Type Shortcut count
(*, G/128) 0
(*, G/m) 3

Displaying the NetFlow Hardware Forwarding Count

This example shows how to display the NetFlow hardware forwarding count:
Router# show platform software ipv6-multicast summary
IPv6 Multicast Netflow SC summary on Slot[1]:
Shortcut Type Shortcut count
(S, G) 100
(*, G) 0

IPv6 Multicast Netflow SC summary on Slot[6]:
Shortcut Type Shortcut count
(S, G) 100
(*, G) 0
Chapter 30 Configuring IPv6 Multicast PFC3 and DFC3 Layer 3 Switching

Using show Commands to Verify IPv6 Multicast Layer 3 Switching

...Output truncated...

Note: The Netflow (*., G) count is always zero because PIM-SM (*.,G) forwarding is supported in software on the MSFC3.

Displaying the FIB Hardware Bridging and Drop Counts

This example shows how to display the FIB hardware bridging and drop hardware counts:

Router# show platform software ipv6-multicast summary | begin FIB
IPv6 Multicast FIB SC summary on Slot[1]:
Shortcut Type Shortcut count
--------------------+--------------
(*, G/128) 10
(*, G/m) 47
<...Output deleted...>
IPv6 Multicast FIB SC summary on Slot[6]:
Shortcut Type Shortcut count
--------------------+--------------
(*, G/128) 10
(*, G/m) 47

Note:
• The (*., G/128) value is a hardware bridge entry count.
• The (*., G/m) value is a hardware bridge/drop entry count.

Displaying the Shared and Well-Known Hardware Adjacency Counters

The show platform software multicast ipv6 shared-adjacencies command displays the shared and well-known hardware adjacency counters used for IPv6 multicast by entries in FIB and ACL-TCAM.

Router# show platform software multicast ipv6 shared-adjacencies module 4

---- SLOT [4] ----
Shared IPv6 Mcast Adjacencies Index Packets Bytes
---------------------------------+------+--------+
Subnet bridge adjacency 0x7F802 0 0
Control bridge adjacency 0x7 0 0
StarG_M bridge adjacency 0x8 0 0
S_G bridge adjacency 0x9 0 0
Default drop adjacency 0xA 0 0
StarG (spt == INF) adjacency 0xB 0 0
StarG (spt != INF) adjacency 0xC 0 0
---- SLOT [6] ----
Shared IPv6 Mcast Adjacencies Index Packets Bytes
---------------------------------+------+--------+
Subnet bridge adjacency 0x7F802 0 0
Control bridge adjacency 0x7 0 0
StarG_M bridge adjacency 0x8 0 0
Using show Commands to Verify IPv6 Multicast Layer 3 Switching

<table>
<thead>
<tr>
<th>Adjacency Type</th>
<th>Value</th>
<th>Flags</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_G bridge adjacency</td>
<td>0x9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Default drop adjacency</td>
<td>0xA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>StarG (spt == INF) adjacency</td>
<td>0xB</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>StarG (spt != INF) adjacency</td>
<td>0xC</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Router
Using show Commands to Verify IPv6 Multicast Layer 3 Switching
Configuring IPv4 Multicast Layer 3 Switching

This chapter describes how to configure IPv4 multicast Layer 3 switching on the Cisco 7600 series routers.

Note
For complete syntax and usage information for the commands used in this chapter, refer to these publications:
• The Cisco 7600 Series Routers Command References at this URL:
• The Release 12.2 publications at this URL:

This chapter consists of these sections:
• Understanding How IPv4 Multicast Layer 3 Switching Works, page 31-1
• Understanding How IPv4 Bidirectional PIM Works, page 31-6
• Default IPv4 Multicast Layer 3 Switching Configuration, page 31-7
• IPv4 Multicast Layer 3 Switching Configuration Guidelines and Restrictions, page 31-7
• Configuring IPv4 Multicast Layer 3 Switching, page 31-9
• Configuring IPv4 Bidirectional PIM, page 31-22

Understanding How IPv4 Multicast Layer 3 Switching Works

These sections describe how IPv4 multicast Layer 3 switching works:
• IPv4 Multicast Layer 3 Switching Overview, page 31-2
• Multicast Layer 3 Switching Cache, page 31-2
• Layer 3-Switched Multicast Packet Rewrite, page 31-3
• Partially and Completely Switched Flows, page 31-3
• Non-RPF Traffic Processing, page 31-5
• Understanding How IPv4 Bidirectional PIM Works, page 31-6
IPv4 Multicast Layer 3 Switching Overview

The Policy Feature Card (PFC) provides Layer 3 switching for IP multicast flows using the hardware replication table and hardware Cisco Express Forwarding (CEF), which uses the forwarding information base (FIB) and the adjacency table on the PFC. In systems with Distributed Forwarding Cards (DFCs), IP multicast flows are Layer 3 switched locally using Multicast Distributed Hardware Switching (MDHS). MDHS uses local hardware CEF and replication tables on each DFC to perform Layer 3 switching and rate limiting of reverse path forwarding (RPF) failures locally on each DFC-equipped switching module.

The PFC and the DFCs support hardware switching of (*,G) state flows. The PFC and the DFCs support rate limiting of non-RPF traffic.

Also termed as hardware switching, Multicast Layer 3 switching forwards IP multicast data packet flows between IP subnets using advanced application-specific integrated circuit (ASIC) switching hardware, which offloads processor-intensive multicast forwarding and replication from network routers.

Layer 3 flows that cannot be hardware switched are still forwarded in the software by routers. Protocol Independent Multicast (PIM) is used for route determination and mcast rate-limiters limit the traffic relayed to the route processor.

The PFC and the DFCs all use the Layer 2 multicast forwarding table to determine on which ports Layer 2 multicast traffic should be forwarded (if any). The multicast forwarding table entries are populated in conjunction with Internet Group Management Protocol (IGMP) snooping (see Chapter 33, “Configuring IGMP Snooping for IPv4 Multicast Traffic”).

Current implementation of IPV4 multicast in 7600 uses the platform specific distribution mechanism from Route Processor (RP) to Switch Processor (SP). With the introduction of MFIB, MFIB provides support for distribution of the information in a platform independent way to the Switch Processor (SP) and Line cards (LC’s). In 12.2(33)SRE, this feature is supported on SUP720, Sup32, RSP720 and compatible DFCs.

For more information on the MDSS (Multicast Distributed Switching Services) implementation used prior to MFIB implementation, see:

Multicast Layer 3 Switching Cache

This section describes how the PFC and the DFCs maintain Layer 3 switching information in hardware tables.

The PFC and DFC populate the (S,G) or (*,G) flows in the hardware FIB table with the appropriate masks; for example, (S/32, G/32) and (*/0, G/32). The RPF interface and the adjacency pointer information is also stored in each entry. The adjacency table contains the rewrite information and pointers to the multicast expansion table (MET) table. If a flow matches a FIB entry, the RPF check compares the incoming interface/VLAN with the entry. A mismatch is an RPF failure, which can be rate limited if this feature is enabled.

The MSFC updates its multicast routing table and forwards the new information to the PFC whenever it receives traffic for a new flow. In addition, if an entry in the multicast routing table on the MSFC ages out, the MSFC deletes the entry and forwards the updated information to the PFC. In systems with DFCs, flows are populated symmetrically on all DFCs and on the PFC.

The Layer 3 switching cache contains flow information for all active Layer 3-switched flows. After the switching cache is populated, multicast packets identified as belonging to an existing flow can be Layer 3 switched based on the cache entry for that flow. For each cache entry, the PFC maintains a list of outgoing interfaces for the IP multicast group. From this list, the PFC determines onto which VLANs traffic from a given multicast flow should be replicated.
These commands affect the Layer 3 switching cache entries:

- When you clear the multicast routing table using the `clear ip mroute` command, all multicast Layer 3 switching cache entries are cleared.
- When you disable IP multicast routing on the MSFC using the `no ip multicast-routing` command, all multicast Layer 3 switching cache entries on the PFC are purged.

Layer 3-Switched Multicast Packet Rewrite

When a multicast packet is Layer 3 switched from a multicast source to a destination multicast group, the PFC and the DFCs perform a packet rewrite that is based on information learned from the MSFC and stored in the adjacency table.

For example, Server A sends a multicast packet addressed to IP multicast group G1. If there are members of group G1 on VLANs other than the source VLAN, the PFC must perform a packet rewrite when it replicates the traffic to the other VLANs (the router also bridges the packet in the source VLAN).

When the PFC receives the multicast packet, it is (conceptually) formatted as follows:

<table>
<thead>
<tr>
<th>Layer 2 Frame Header</th>
<th>Layer 3 IP Header</th>
<th>Data</th>
<th>FC S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Source</td>
<td>Destination</td>
<td>Source</td>
</tr>
<tr>
<td>Group G1 MAC</td>
<td>Source A MAC</td>
<td>Group G1 IP</td>
<td>Source A IP</td>
</tr>
</tbody>
</table>

1. In this example, Destination B is a member of Group G1.

The PFC rewrites the packet as follows:

- Changes the source MAC address in the Layer 2 frame header from the MAC address of the host to the MAC address of the MSFC (This is the burned-in MAC address of the system. This MAC address will be the same for all outgoing interfaces and cannot be modified.)
- Decrements the IP header Time to Live (TTL) by one and recalculates the IP header checksum

The result is a rewritten IP multicast packet that appears to have been routed. The PFC replicates the rewritten packet onto the appropriate destination VLANs, where it is forwarded to members of IP multicast group G1.

After the PFC performs the packet rewrite, the packet is (conceptually) formatted as follows:

<table>
<thead>
<tr>
<th>Frame Header</th>
<th>IP Header</th>
<th>Data</th>
<th>FC S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination</td>
<td>Source</td>
<td>Destination</td>
<td>Source</td>
</tr>
<tr>
<td>Group G1 MAC</td>
<td>MSFC MAC</td>
<td>Group G1 IP</td>
<td>Source A IP</td>
</tr>
</tbody>
</table>

Partially and Completely Switched Flows

When at least one outgoing Layer 3 interface for a given flow is hardware switched and at least one outgoing interface is not hardware switched, that flow is considered partially switched. When a partially switched flow is created, all multicast traffic belonging to that flow still reaches the MSFC and is forwarded by software on those outgoing interfaces that are not hardware switched.
These sections describe partially and completely switched flow:

- Partially Switched Flows, page 31-4
- Completely Switched Flows, page 31-4

Partially Switched Flows

A flow might be partially switched instead of completely switched in these situations:

- If the router is configured as a member of the IP multicast group on the RPF interface of the multicast source (using the `ip igmp join-group` command).
- During the registering state, if the router is the first-hop router to the source in PIM sparse mode (in this case, the router must send PIM-register messages to the rendezvous point [RP]).
- If the multicast TTL threshold is configured on an outgoing interface for the flow (using the `ip multicast ttl-threshold` command).
- If the multicast helper is configured on the RPF interface for the flow, and multicast to broadcast translation is required.
- If the outgoing interface is a Distance Vector Multicast Routing Protocol (DVMRP) tunnel interface.
- If Network Address Translation (NAT) is configured on an interface and source address translation is required for the outgoing interface.
- Flows are partially switched if any of the outgoing interfaces for a given flow are not Layer 3 switched.

(S,G) flows are partially switched instead of completely switched in these situations:

- (S,G) flows are partially switched if the (S,G) entry has the RPT-bit (R bit) set.
- (S,G) flows are partially switched if the (S,G) entry does not have the SPT bit (T flag) set and the Prune bit (P flag) set.

(*,G) flows are partially switched instead of completely switched in these situations:

- (*,G) flows are partially switched on the last-hop leaf router if the shared-tree to shortest-path-tree (SPT) threshold is not equal to infinity. This allows the flow to transition from the SPT.
- (*,G) flows are partially switched if at least one (S,G) entry has the same RPF as a (*,g) entry but any of these is true:
 - The RPT flag (R bit) is not set.
 - The SPT flag (T bit) is not set.
 - The Prune-flag (P bit) is not set.
- (*,G) flows are partially switched if a DVMRP neighbor is detected on the input interface of a (*,G) entry.
- (*,G) flows are partially switched if the interface and mask entry is not installed for the RPF-interface of a (*,G) entry and the RPF interface is not a point-to-point interface.

Completely Switched Flows

When all the outgoing interfaces for a given flow are Layer 3 switched, and none of the above situations apply to the flow, that flow is considered completely switched. When a completely switched flow is created, the PFC prevents multicast traffic bridged on the source VLAN for that flow from reaching the MSFC interface in that VLAN, freeing the MSFC of the forwarding and replication load for that flow.
One consequence of a completely switched flow is that multicast statistics on a per-packet basis for that flow cannot be recorded. Therefore, the PFC periodically sends multicast packet and byte count statistics for all completely switched flows to the MSFC. The MSFC updates the corresponding multicast routing table entry and resets the expiration timer for that multicast route.

Note

A (*,G) state is created on the PIM-RP or for PIM-dense mode but is not used for forwarding the flows, and Layer 3 switching entries are not created for these flows.

Non-RPF Traffic Processing

These sections describe non-RPF traffic processing:

- Non-RPF Traffic Overview, page 31-5
- Filtering of RPF Failures for Stub Networks, page 31-6
- Rate Limiting of RPF Failure Traffic, page 31-6

Non-RPF Traffic Overview

In a redundant configuration where multiple routers connect to the same LAN segment, only one router forwards the multicast traffic from the source to the receivers on the outgoing interfaces (see Figure 31-1). In this kind of topology, only the PIM designated router (PIM DR) forwards the data in the common VLAN, but the non-PIM DR receives the forwarded multicast traffic. The redundant router (non-PIM DR) must drop this traffic because it has arrived on the wrong interface and fails the RPF check. Traffic that fails the RPF check is called non-RPF traffic.

The Cisco 7600 series router processes non-RPF traffic in hardware on the PFC by filtering (dropping) or rate limiting the non-RPF traffic.

Figure 31-1 Redundant Multicast Router Configuration in a Stub Network
Chapter 31 Configuring IPv4 Multicast Layer 3 Switching

Understanding How IPv4 Bidirectional PIM Works

Filtering of RPF Failures for Stub Networks

The PFC and the DFCs support ACL-based filtering of RPF failures for sparse mode stub networks. When you enable the ACL-based method of filtering RPF failures by entering the `nms ip multicast stub` command on the redundant router, the following ACLs automatically download to the PFC and are applied to the interface you specify:

- `access-list 100 permit ip A.B.C.0 0.0.0.255 any`
- `access-list 100 permit ip A.B.D.0 0.0.0.255 any`
- `access-list 100 permit ip any 224.0.0.0 0.0.0.255`
- `access-list 100 permit ip any 224.0.1.0 0.0.0.255`
- `access-list 100 deny ip any 224.0.0.0 15.255.255.255`

The ACLs filter RPF failures and drop them in hardware so that they are not forwarded to the router.

Use the ACL-based method of filtering RPF failures only in sparse mode stub networks where there are no downstream routers. For dense mode groups, RPF failure packets have to be seen on the router for the PIM assert mechanism to function properly. Use CEF-based or NetFlow-based rate limiting to limit the rate of RPF failures in dense mode networks and sparse mode transit networks.

For information on configuring ACL-based filtering of RPF failures, see the “Configuring ACL-Based Filtering of RPF Failures” section on page 31-15.

Rate Limiting of RPF Failure Traffic

When you enable rate limiting of packets that fail the RPF check (non-RPF packets), most non-RPF packets are dropped in hardware. According to the multicast protocol specification, the router needs to receive the non-RPF packets for the PIM assert mechanism to function properly, so all non-RPF packets cannot be dropped in hardware.

When a non-RPF packet is received, a NetFlow entry is created for each non-RPF flow.

When the first non-RPF packet arrives, the PFC bridges the packet to the MSFC and to any bridged ports and creates a NetFlow entry that contains source, group, and ingress interface information, after which the NetFlow entry handles all packets for that source and group, sending packets only to bridged ports and not to the MSFC.

To support the PIM assert mechanism, the PFC periodically forwards a percentage of the non-RPF flow packets to the MSFC.

The first packets for directly connected sources in PIM sparse mode are also rate-limited and are processed by the CPU.

Rate limiting of RPF failures is enabled by default.

Understanding How IPv4 Bidirectional PIM Works

The PFC3 supports hardware forwarding of IPv4 bidirectional PIM groups. To support IPv4 bidirectional PIM groups, the PFC3 implements a new mode called designated forwarder (DF) mode. The designated forwarder is the router elected to forward packets to and from a segment for an IPv4 bidirectional PIM group. In DF mode, the supervisor engine accepts packets from the RPF and from the DF interfaces.

When the supervisor engine is forwarding IPv4 bidirectional PIM groups, the RPF interface is always included in the outgoing interface list of (*,G) entry, and the DF interfaces are included depending on IGMP/PIM joins.
If the route to the RP becomes unavailable, the group is changed to dense mode. Should the RPF link to the RP become unavailable, the IPv4 bidirectional PIM flow is removed from the hardware FIB.

For information on configuring IPv4 bidirectional PIM, see the “Configuring IPv4 Bidirectional PIM” section on page 31-22.

Default IPv4 Multicast Layer 3 Switching Configuration

Table 31-1 shows the default IP multicast Layer 3 switching configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACL for stub networks</td>
<td>Disabled on all interfaces</td>
</tr>
<tr>
<td>Installing of directly connected subnet entries</td>
<td>Enabled globally</td>
</tr>
<tr>
<td>Multicast routing</td>
<td>Disabled globally</td>
</tr>
<tr>
<td>PIM routing</td>
<td>Disabled on all interfaces</td>
</tr>
<tr>
<td>IP multicast Layer 3 switching</td>
<td>Enabled when multicast routing is enabled and PIM is enabled on the interface</td>
</tr>
</tbody>
</table>

Internet Group Management Protocol (IGMP) snooping is enabled by default on all VLAN interfaces. If you disable IGMP snooping on an interface, multicast Layer 3 flows are still switched by the hardware. Bridging of the flow on an interface with IGMP snooping disabled causes flooding to all forwarding interfaces of the VLAN. For details on configuring IGMP snooping, see Chapter 33, “Configuring IGMP Snooping for IPv4 Multicast Traffic.”

IPv4 Multicast Layer 3 Switching Configuration Guidelines and Restrictions

These sections describe IP Multicast Layer 3 switching configuration restrictions:

- Restrictions, page 31-7
- Unsupported Features, page 31-8

Restrictions

IP multicast Layer 3 switching is not provided for an IP multicast flow in the following situations:

- For IP multicast groups that fall into the range 224.0.0.* (where * is in the range 0 to 255), which is used by routing protocols. Layer 3 switching is supported for groups 225.0.0.* through 239.0.0.* and 224.128.0.* through 239.128.0.*.

Note

Groups in the 224.0.0.* range are reserved for routing control packets and must be flooded to all forwarding ports of the VLAN. These addresses map to the multicast MAC address range 01-00-5E-00-00-xx, where xx is in the range 0–0xFF.
IPv4 Multicast Layer 3 Switching Configuration Guidelines and Restrictions

Chapter 31 Configuring IPv4 Multicast Layer 3 Switching

For PIM auto-RP multicast groups (IP multicast group addresses 224.0.1.39 and 224.0.1.40).

For packets with IP options. However, packets in the flow that do not specify IP options are hardware switched.

For source traffic received on tunnel interfaces (such as MBONE traffic).

If a (S,G) entry for sparse mode does not have the SPT-bit, RPT-bit, or Pruned flag set.

A (*,G) entry is not hardware switched if at least one (S,G) entry has an RPF different from the (*,G) entry’s RPF and the (S,G) is not hardware switched.

If the ingress interface of a (S,G) or (*,G) entry is null, except if the (*,G) entry is a IPv4 bidirectional PIM entry and the router is the RP for the group.

For IPv4 bidirectional PIM entries when a DF interface or RPF interface is a tunnel.

Supervisor Engine 32 does not support egress multicast replication and cannot detect the multicast replication mode.

In a MFIB implementation, `ip multicast rate-limit` command that limits the number of data packets in either direction is not supported in hardware configurations.

In a MFIB implementation, `ip multicast ttl-threshold command` is not supported in hardware configurations.

In a MFIB implementation, Network Address Translation (NAT) is not supported in hardware configurations.

Following MDSS commands are invalid after MFIB IPv4 implementation:
- `debug mdss [vrf <vrf-name>] [all | error | events | mdt | p2p | packet]`
- `mls ip multicast [vrf <name>] connected {config command - global and interface-level}
- `mls ip multicast consistency-check {config command - global and interface-level}`
- `show mls ip multicast consistency-check`
- `show mls ip multicast rp-mapping`

Following commands are deprecated post MFIB implementation:
- `mls ip multicast non-rpf aging fast`
- `mls ip multicast non-rpf aging global`
- `ip multicast replication-mode egress`
- `mls ip multicast replication-mode ingress`
- `mls ip multicast flow-stat timer`

Unsupported Features

If you enable IP multicast Layer 3 switching, IP accounting for Layer 3 interfaces does not report accurate values. The `show ip accounting` command is not supported.

Multicast streaming is not supported across DMVPN on Cat6500 and 7600. Only multicast packets from the local control plane such as routing protocols are supported.
Chapter 31 Configuring IPv4 Multicast Layer 3 Switching

Configuring IPv4 Multicast Layer 3 Switching

These sections describe how to configure IP multicast Layer 3 switching:
- Source-Specific Multicast with IGMPv3, IGMP v3lite, and URD, page 31-9
- Enabling IPv4 Multicast Routing Globally, page 31-9
- Enabling IPv4 PIM on Layer 3 Interfaces, page 31-10
- Enabling IP Multicast Layer 3 Switching on Layer 3 Interfaces, page 31-11
- Configuring the Replication Mode, page 31-11
- Enabling Local Egress Replication, page 31-13
- Configuring the Layer 3 Switching Global Threshold, page 31-14
- Enabling Installation of Directly Connected Subnets, page 31-15
- Specifying the Flow Statistics Message Interval, page 31-15
- Configuring IPv4 Bidirectional PIM, page 31-22
- Setting the IPv4 Bidirectional PIM Scan Interval, page 31-23
- Configuring ACL-Based Filtering of RPF Failures, page 31-15
- Validating the Rate-Limiter Status, page 31-16
- Displaying IPv4 Multicast Layer 3 Hardware Switching Summary, page 31-17
- Displaying the IPv4 Multicast Routing Table, page 31-20
- Displaying IPv4 Multicast Layer 3 Switching Statistics, page 31-21
- Displaying IPv4 Bidirectional PIM Information, page 31-24
- Using IPv4 Debug Commands, page 31-25

Note
When you are in configuration mode you can enter EXEC mode commands by entering the do keyword before the EXEC mode command.

Source-Specific Multicast with IGMPv3, IGMP v3lite, and URD

For complete information and procedures about source-specific multicast with IGMPv3, IGMP v3lite, and URD Rendezvous Directory (URD), refer to this URL:

Enabling IPv4 Multicast Routing Globally

You must enable IP multicast routing globally before you can enable IP multicast Layer 3 switching on Layer 3 interfaces.

For complete information and procedures, refer to these publications:
- Cisco IOS IP and IP Routing Configuration Guide, Release 12.2, at this URL:
- Cisco IOS IP and IP Routing Command Reference, Release 12.1, at this URL:

To enable IP multicast routing globally, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip multicast-routing</td>
<td>Enables IP multicast routing globally.</td>
</tr>
<tr>
<td>Router(config)# no ip multicast-routing</td>
<td>Disables IP multicast routing globally.</td>
</tr>
</tbody>
</table>

This example shows how to enable multicast routing globally:

```
Router(config)# ip multicast-routing
Router(config)#
```

Enabling IPv4 PIM on Layer 3 Interfaces

You must enable PIM on the Layer 3 interfaces before IP multicast Layer 3 switching functions on those interfaces.

To enable IP PIM on a Layer 3 interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface</td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td>{{vlan vlan_ID}</td>
<td>{type slot/port}}</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ip pim</td>
<td>Enables IP PIM on a Layer 3 interface.</td>
</tr>
<tr>
<td>{dense-mode</td>
<td>sparse-mode</td>
</tr>
<tr>
<td>Router(config-if)# no ip pim</td>
<td>Disables IP PIM on a Layer 3 interface.</td>
</tr>
<tr>
<td>{dense-mode</td>
<td>sparse-mode</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to enable PIM on an interface using the default mode (sparse-dense-mode):

```
Router(config-if)# ip pim
Router(config-if)#
```

This example shows how to enable PIM sparse mode on an interface:

```
Router(config-if)# ip pim sparse-mode
Router(config-if)#
```

Enabling IP Multicast Layer 3 Switching Globally

To enable hardware switching of multicast routes globally on your system, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mls ip multicast</td>
<td>Globally enables hardware switching of multicast routes.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router# show platform software multicast ip</td>
<td>Displays brief information about the packet flows in the system.</td>
</tr>
</tbody>
</table>

This example shows how to globally enable hardware switching of multicast routes:

```
Router(config)# mls ip multicast
```
Router(config)# show platform software multicast ip
(40.0.0.2, 232.0.1.4) Incoming interface: Lspvif0, Packets Switched: 119954142
Hardware switched outgoing interfaces:
GigabitEthernet3/6
Total hardware switched flows: 1

Enabling IP Multicast Layer 3 Switching on Layer 3 Interfaces

IP multicast Layer 3 switching is enabled by default on the Layer 3 interface when you enable PIM on the interface. Perform this task only if you disabled IP multicast Layer 3 switching on the interface and you want to reenable it.

PIM can be enabled on any Layer 3 interface, including VLAN interfaces.

Note
You must enable PIM on all participating Layer 3 interfaces before IP multicast Layer 3 switching will function. For information on configuring PIM on Layer 3 interfaces, see the “Enabling IPv4 PIM on Layer 3 Interfaces” section on page 31-10.

To enable IP multicast Layer 3 switching on a Layer 3 interface, perform this task:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{vlan vlan_ID}</td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mls ip multicast</td>
<td>Enables IP multicast Layer 3 switching on a Layer 3 interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# no mls ip multicast</td>
<td>Disables IP multicast Layer 3 switching on a Layer 3 interface.</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to enable IP multicast Layer 3 switching on a Layer 3 interface:

Router(config-if)# mls ip multicast
Router(config-if)#

Configuring the Replication Mode

Note
Supervisor Engine 32 supports only ingress replication mode.

The Supervisor Engine 720 supports the `egress` keyword. Support for the `egress` keyword is called “Multicast Enhancement - Replication Mode Detection” in the release notes and Feature Navigator.

By default, a Supervisor Engine 720 automatically detects the replication mode based on the module types installed in the system. If all modules are capable of egress replication, the system uses egress-replication mode. If the supervisor engine detects modules that are not capable of egress replication, the replication mode automatically changes to ingress replication. You can override this action by entering the `ip multicast hardware-switching replication-mode egress` command so that the
system continues to work in egress-replication mode even if there are fabric-enabled modules installed that do not support egress replication (for example, OSMs). You can also configure the system to operate only in ingress-replication mode.

If the system is functioning in automatic detection mode, and you install a module that cannot perform egress replication, the following occurs:

- The system reverts to ingress mode
- A system log is generated
- A system reload occurs to revert to the old configuration

If the system is functioning in forced egress mode, a system log is created that will display the presence of modules that are not capable of egress replication mode.

Note: If you configure forced egress mode in a system that has fabric-enabled modules that are not capable of egress replication, you must make sure that these modules are not sourcing or receiving multicast traffic.

During a change from egress- to ingress-replication mode, traffic interruptions may occur because the shortcuts will be purged and reinstalled. To avoid interruptions in traffic forwarding, enter the `ip multicast hardware-switching replication-mode ingress` command in global configuration mode. This command forces the system to operate in ingress-replication mode.

The `no` form of the `ip multicast hardware-switching replication-mode ingress` command restores the system to automatic detection mode.

To enable IP multicast Layer 3 switching, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>`Router(config)# ip multicast hardware-switching replication-mode [egress</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router# show platform software multicast ip capability</code> Displays the configured replication mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router# show platform software multicast ip summary</code> Displays the replication mode and if automatic detection is enabled or disabled.</td>
</tr>
</tbody>
</table>

This example shows how to enable the replication mode:

```plaintext
Router (config)# ip multicast hardware-switching replication-mode egress
Router# show platform software multicast ip capability
Current System HW Replication Mode : Egress
Auto-detection of Replication Mode : ON

Slot  Replication-Capability  Replication-Mode
  2     Egress                  Egress
  3     Egress                  Egress
  4     Egress                  Egress
  6     Egress                  Egress

Router#

Router# show platform software multicast ip summary

IPv6 Multicast Netflow SC summary on Slot[7]:
Shortcut Type    Shortcut count
(S, G)            0
```
Enabling Local Egress Replication

Note

Supervisor Engine 32 supports only ingress replication mode.

With a Supervisor Engine 720, you can unconditionally enable local egress replication. This feature is called “Multicast enhancement - egress replication performance improvement” in the release notes and Feature Navigator.

DFC-equipped modules with dual switch-fabric connections host two packet replication engines, one per fabric connection. Each replication engine is responsible for forwarding packets to and from the interfaces associated with the switch-fabric connections. The interfaces that are associated with a switch-fabric connection are considered to be “local” from the perspective of the packet replication engine.

You can prevent redundant replication of multicast packets across the switch-fabric connection by entering a command that instructs the two replication engines on these modules to forward packets only to local interfaces which are associated with the switch-fabric connection that the replication engine supports.

When you enable this feature, the multicast expansion table (MET) for each replication engine is populated with the local Layer 3 interfaces only. This action prevents replication for interfaces that are not supported by the replication engine (nonlocal interfaces) and increases replication performance.

Local egress replication is supported with the following software configuration and hardware:

- IPv4 egress replication mode
- Dual fabric-connection DFC-equipped modules
- Layer 3-routed interfaces and subinterfaces that are not part of a port channel

The local egress replication feature is not supported for the following internal VLANs:

- Egress internal VLAN
- Partial-shortcut internal VLAN
- Internal VLAN for Multicast VPN Multicast Distribution Tree (MDT) tunnel
- Point-to-point tunnel internal VLAN
- QoS internal VLAN

Note

The local egress replication feature is not supported with IPv6 multicast or in a system that has a mix of IPv4 and IPv6 multicast enabled.

To enable local egress replication, perform this task:
Configuring IPv4 Multicast Layer 3 Switching

This example shows how to enable local egress replication:

```
Router (config)# mls ip multicast egress local
Router (config)# exit
Router # reload
Router # show platform software multicast ip capability
```

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router(config)# mls ip multicast egress local</td>
<td>Enables local egress replication. Note: This command requires a system reset for the configuration to take effect.</td>
</tr>
<tr>
<td>2</td>
<td>Router # reload</td>
<td>Reloads the system.</td>
</tr>
<tr>
<td>3</td>
<td>Router# show platform software multicast ip capability</td>
<td>Displays the configured replication mode.</td>
</tr>
</tbody>
</table>

Configuring the Layer 3 Switching Global Threshold

You can configure a global multicast rate threshold (specified in packets per second) below which all multicast traffic is routed by the MSFC. This configuration prevents creation of switching cache entries for low-rate Layer 3 flows.

Note

This command does not affect flows that are already being routed. To apply the threshold to existing routes, clear the route and let it reestablish.

To configure the Layer 3 switching threshold, perform this task:

```
Router(config)# mls ip multicast threshold pps
Router(config)# no mls ip multicast threshold
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls ip multicast threshold pps</td>
<td>Configures the IP MMLS threshold.</td>
</tr>
<tr>
<td>Router(config)# no mls ip multicast threshold</td>
<td>Reverts to the default IP MMLS threshold.</td>
</tr>
</tbody>
</table>

This example shows how to configure the Layer 3 switching threshold to 10 packets per second:

```
Router(config)# mls ip multicast threshold 10
Router(config)#
```
Enabling Installation of Directly Connected Subnets

In PIM sparse mode, a first-hop router that is the designated router for the interface may need to encapsulate the source traffic in a PIM register message and unicast it to the rendezvous point. To prevent new sources for the group from being learned in the routing table, the (*,G) flows should remain as completely hardware-switched flows. When (subnet/mask, 224/4) entries are installed in the hardware, the FIB allows both (*,G) flows to remain completely hardware-switched flows, and new, directly connected sources to be learned correctly. The installation of directly connected subnets is enabled globally by default. One (subnet/mask, 224/4) is installed per PIM-enabled interface.

To view FIB entries, enter the `show platform software multicast ip connected` command.

To enable installation of directly connected subnets, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls ip multicast connected</td>
<td>Enables installation of directly connected subnets.</td>
</tr>
<tr>
<td>Router(config)# no mls ip multicast connected</td>
<td>Disables installation of directly connected subnets.</td>
</tr>
</tbody>
</table>

This example shows how to enable installation of directly connected subnets:

Router(config)# mls ip multicast connected
Router(config)#

Specifying the Flow Statistics Message Interval

By default, the supervisor engine forwards flow statistics messages to the MSFC every 25 seconds. The messages are forwarded in batches, and each batch of messages contains statistics for 25 percent of all flows. If you leave the interval at the default of 25 seconds, it will take 100 seconds to forward statistics for all flows to the MSFC.

To specify how often flow statistics messages forwarded from the supervisor engine to the MSFC, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls ip multicast flow-stat-timer num</td>
<td>Specifies how the supervisor engine forwards flow statistics messages to the MSFC.</td>
</tr>
<tr>
<td>Router(config)# no mls ip multicast flow-stat-timer num</td>
<td>Restores the default.</td>
</tr>
</tbody>
</table>

This example shows how to configure the supervisor engine to forward flow statistics messages to the MSFC every 10 seconds:

Router(config)# mls ip multicast flow-stat-timer 10
Router(config)#

Configuring ACL-Based Filtering of RPF Failures

When you configure ACL-based filtering of RPF failures, ACLs that filter RPF failures in hardware are downloaded to the hardware-based ACL engine and applied on the interface you specify.
To enable ACL-based filtering of RPF failures on an interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{vlan vlan_ID}</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mls ip multicast stub</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls ip multicast stub</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

Validating the Rate-Limiter Status

To validate the rater-limiter status, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show mls rate-limit</td>
<td>Displays RPF failure rate-limiting information with the current state of the rate limiter.</td>
</tr>
</tbody>
</table>

This example shows how to display RPF failure rate-limiting information:

Router# show mls rate-limit
IP RPF FAILURE 100 10
Manager-I# sh mls rate-limit usage

<table>
<thead>
<tr>
<th>Rate Limiter Type</th>
<th>Packets/s</th>
<th>Burst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer3 Rate Limiters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL# 0: Free</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RL# 1: Free</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RL# 2: Free</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RL# 3: Free</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RL# 4: Free</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RL# 5: Used</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RL# 6: Used</td>
<td>MCAST DFLT ADJ</td>
<td>10</td>
</tr>
<tr>
<td>RL# 7: Used</td>
<td>IP RPF FAILURE</td>
<td>100</td>
</tr>
<tr>
<td>RL# 8: Rsvd for capture</td>
<td>ICMP UNREAC. NO-ROUTE</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ICMP UNREAC. ACL-DROP</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>IP ERRORS</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>RL# 7: Used</td>
<td>ACL VACL LOG</td>
</tr>
<tr>
<td></td>
<td>RL# 8: Rsvd for capture</td>
<td>-</td>
</tr>
</tbody>
</table>

Layer2 Rate Limiters:
RL# 9: Reserved
RL#10: Reserved
RL#11: Free
RL#12: Free

Router-1# sh mls rate-limit

Sharing Codes: S - static, D - dynamic
Codes dynamic sharing: H - owner (head) of the group, g - guest of the group
Configuring IPv4 Multicast Layer 3 Switching

<table>
<thead>
<tr>
<th>Rate Limiter Type</th>
<th>Status</th>
<th>Packets/s</th>
<th>Burst</th>
<th>Sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAST NON RPF</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST DPLT ADJ</td>
<td>On</td>
<td>10</td>
<td>10</td>
<td>Not sharing</td>
</tr>
<tr>
<td>MCAST DIRECT CON</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ACL BRIDGED IN</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ACL BRIDGED OUT</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IP FEATURES</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ACL VAACL LOG</td>
<td>On</td>
<td>2000</td>
<td>1</td>
<td>Not sharing</td>
</tr>
<tr>
<td>CEF RECEIVE</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CEF GLEAN</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST PARTIAL SC</td>
<td>On</td>
<td>100000</td>
<td>100</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>IP RPF FAILURE</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>TTL FAILURE</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ICMP UNREAC. NO-ROUTE</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>ICMP UNREAC. ACL-DROP</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>ICMP REDIRECT</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MTU FAILURE</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IP OPTION</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UCAST IP OPTION</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LAYER_2 PDU</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LAYER_2 PT</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DHCP Snooping IN</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DHCP Snooping OUT</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ARP Inspection</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LAYER_2 PORTSEC</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LAYER_2 MiniProto</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IP ERRORS</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>CAPTURE PKT</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IGMP</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IPv6 DIRECT CON</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IPv6 ROUTE CNTRL</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IPv6 *G M BRIDG</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IPv6 SG BRIDGE</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IPv6 DPLT DROP</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IPv6 SECOND. DR</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IPv6 *G BRIDGE</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IPv6 MLD</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IP ADMIS. ON L2 PORT</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LAYER_2 MACSEC</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST IPv4 PIM</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Displaying IPv4 Multicast Layer 3 Hardware Switching Summary

Note The *show interface statistics* command does not display hardware-switched packets, only packets switched by software.

The *show ip pim interface count* command displays the IP multicast Layer 3 switching enable state on IP PIM interfaces and the number of packets received and sent on the interface.
To display IP multicast Layer 3 switching information for an IP PIM Layer 3 interface, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ip pim interface [{{vlan vlan_ID}</td>
<td>{type\ slot/port}</td>
</tr>
<tr>
<td>Router# show ip interface</td>
<td>Displays the IP multicast Layer 3 switching enable state on the Layer 3 interfaces.</td>
</tr>
</tbody>
</table>

These examples show how to display the IP PIM configuration of the interfaces:

Router# show ip pim interface count

State:* - Fast Switched, D - Distributed Fast Switched
H - Hardware Switching Enabled
Address Interface FS Mpackets In/Out
10.15.1.20 GigabitEthernet4/8 * H 952/4237130770
10.20.1.7 GigabitEthernet4/9 * H 1385673757/34
10.25.1.7 GigabitEthernet4/10* H 0/34
10.11.1.30 FastEthernet6/26 * H 0/0
10.37.1.1 FastEthernet6/37 * H 0/0
1.22.33.44 FastEthernet6/47 * H 514/68

The “*” flag indicates that this interface can be fast switched and the “H” flag indicates that this interface is hardware switched. The “In” flag indicates the number of multicast packet bytes that have been received on the interface. The “Out” flag indicates the number of multicast packet bytes that have been forwarded from this interface.

Router# show ip mroute count

IP Multicast Statistics
56 routes using 28552 bytes of memory
13 groups, 3.30 average sources per group
Forwarding Counts:Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts:Total/RPF failed/Other drops(OIF-null, rate-limit etc)
Group:224.2.136.89, Source count:1, Group pkt count:29051
 Source:132.206.72.28/32, Forwarding:29051/-278/1186/0, Other:85724/8/56665

Note: The -tive counter means that the outgoing interface list of the corresponding entry is NULL, and this indicates that this flow is still active.

This example shows how to display the IP multicast Layer 3 switching configuration of interface VLAN 10:

Router# show ip interface vlan 10

Vlan10 is up, line protocol is up
 Internet address is 10.0.0.6/8
 Broadcast address is 255.255.255.255
 Address determined by non-volatile memory
 MTU is 1500 bytes
 Helper address is not set
 Directed broadcast forwarding is disabled
 Multicast reserved groups joined: 224.0.0.1 224.0.0.2 224.0.0.13 224.0.0.10
 Outgoing access list is not set
 Inbound access list is not set
Proxy ARP is enabled
Security level is default
Split horizon is enabled
ICMP redirects are always sent
ICMP unreachable responses are never sent
ICMP mask replies are never sent
IP fast switching is enabled
IP fast switching on the same interface is disabled
IP flow switching is disabled
IP CEF switching is enabled
IP fast switching turbo vector
IP Normal CEF switching turbo vector
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
IP route-cache flags are Fast, CEF
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTP/IP header compression is disabled
Probe proxy name replies are disabled
Policy routing is disabled
Network address translation is disabled
WCCP Redirect outbound is disabled
WCCP Redirect exclude is disabled
BGP Policy Mapping is disabled
IP multicast multilayer switching is enabled
IP mls switching is enabled
Router#

This example shows how to display the IP multicast Layer 3 switching configuration of Gigabit Ethernet interface 1/2:

Router# show interfaces gigabitEthernet 1/2
GigabitEthernet1/2 is up, line protocol is up (connected)
Hardware is C6k 1000Mb 802.3, address is 0001.c9db.2441 (bia 0001.c9db.2441)
MTU 1500 bytes, BW 1000000 Kbit, DLY 10 usec,
Last clearing of "show interface" counters 00:05:13
Input queue: 0/2000/0/0 (size/max/drops/flushes); Total output drops: 0
Queueing strategy: fifo
Output queue :0/40 (size/max)
5 minute input rate 10000 bits/sec, 1 packets/sec
5 minute output rate 0 bits/sec, 0 packets/sec
284 packets input, 131104 bytes, 0 no buffer
Received 284 broadcasts (284 multicast)
0 runts, 41 giants, 0 throttles
41 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
0 input packets with dribble condition detected
198 packets output, 14732 bytes, 0 underruns
0 output errors, 0 collisions, 0 interface resets
0 babbles, 0 late collisions, 0 deferred
0 lost carrier, 0 no carrier
0 output buffer failures, 0 output buffers swapped out
Router#
Displaying the IPv4 Multicast Routing Table

The `show ip mroute` command displays the IP multicast routing table.

To display the IP multicast routing table, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# `show ip mroute [hostname</td>
<td>group_number]`</td>
</tr>
</tbody>
</table>

This example shows how to display the IP multicast routing table:

```
Router# show ip mroute 230.13.13.1
IP Multicast Routing Table
Flags: D - Dense, S - Sparse, s - SSM Group, C - Connected, L - Local,
      P - Pruned, R - RP-bit set, F - Register flag, T - SPT-bit set,
      J - Join SPT, M - MSDP created entry, X - Proxy Join Timer Running
      A - Advertised via MSDP, U - URD, I - Received Source Specific Host Report
Outgoing interface flags:H - Hardware switched
Timers:Uptime/Expires
Interface state:Interface, Next-Hop or VCD, State/Mode

(*, 230.13.13.1), 00:16:41/00:00:00, RP 10.15.1.20, flags:SJC
Incoming interface:GigabitEthernet4/8, RPF nbr 10.15.1.20
Outgoing interface list:
  GigabitEthernet4/9, Forward/Sparse-Dense, 00:16:41/00:00:00, H

(*, 230.13.13.2), 00:16:41/00:00:00, RP 10.15.1.20, flags:SJC
Incoming interface:GigabitEthernet4/8, RPF nbr 10.15.1.20, RPF-MFD
Outgoing interface list:
  GigabitEthernet4/9, Forward/Sparse-Dense, 00:16:41/00:00:00, H

(10.20.1.15, 230.13.13.1), 00:14:31/00:01:40, flags:CJT
Incoming interface:GigabitEthernet4/8, RPF nbr 10.15.1.20, RPF-MFD
Outgoing interface list:
  GigabitEthernet4/9, Forward/Sparse-Dense, 00:14:31/00:00:00, H

(132.206.72.28, 224.2.136.89), 00:14:31/00:01:40, flags:CJT
Incoming interface:GigabitEthernet4/8, RPF nbr 10.15.1.20, RPF-MFD
Outgoing interface list:Null
```

Note

The RPF-MFD flag indicates that the flow is completely switched by the hardware. The H flag indicates the flow is switched by the hardware on the outgoing interface.
Displaying IPv4 Multicast Layer 3 Switching Statistics

The `show platform software multicast ip` command displays detailed information about IP multicast Layer 3 switching.

To display detailed IP multicast Layer 3 switching information, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show platform software multicast ip group group-id</code></td>
<td>Displays IP multicast Layer 3 switching group information.</td>
</tr>
<tr>
<td>Router# `show platform software multicast ip interface [gigabitethernet 1-6</td>
<td>port-channel 1-256</td>
</tr>
<tr>
<td>Router# <code>show platform software multicast ip source source-ip</code></td>
<td>Displays IP multicast Layer 3 switching source information.</td>
</tr>
<tr>
<td>Router# <code>show platform software multicast ip summary</code></td>
<td>Displays a summary of IP multicast Layer 3 switching information.</td>
</tr>
<tr>
<td>Router# <code>show platform software multicast ip statistics [group group-id]</code></td>
<td>Displays IP multicast Layer 3 switching statistics.</td>
</tr>
</tbody>
</table>

This example shows how to display information on a specific IP multicast Layer 3 switching entry:

```
Router# show platform software multicast ip group 232.0.1.4
Multicast hardware switched flows:
(40.0.0.2, 232.0.1.4) Incoming interface: GigabitEthernet3/2/1, Packets Switched: 8069027
Hardware switched outgoing interfaces:
   Tunnel10
Total hardware switched flows: 1
PE1-7600
```

This example shows how to display IP multicast group information:

```
Router# show platform software multicast ip source 40.0.0.2
Multicast hardware switched flows:
(40.0.0.2, 232.0.1.4) Incoming interface: GigabitEthernet3/2/1, Packets Switched: 8778143
Hardware switched outgoing interfaces:
   Tunnel10
Total hardware switched flows: 1
```

This example shows how to display IP multicast Layer 3 switching information for gigabitethernet interface 3/2/1:

```
Router# show platform software multicast ip interface gigabitethernet 3/2/1
Multicast hardware switched flows:
(40.0.0.2, 232.0.1.4) Incoming interface: GigabitEthernet3/2/1, Packets Switched: 8206582
Hardware switched outgoing interfaces:
   Tunnel10
Total hardware switched flows: 1
```
This example shows how to display the IP multicast Layer 3 switching statistics:

```
Router# show platform software multicast ip statistics group 232.0.1.4
```

MLS Multicast Operation Status:
MLS Multicast configuration and state:
 Router Mac: 00e0.b0ff.7b00, Router IP: 33.0.33.24
 MLS multicast operating state: ACTIVE
 Shortcut Request Queue size 4
 Maximum number of allowed outstanding messages: 1
 Maximum size reached from feQ: 3096
 Feature Notification sent: 1
 Feature Notification Ack received: 1
 Unsolicited Feature Notification received: 0
 MSM sent: 205170
 MSM ACK received: 205170
 Delete notifications received: 0
 Flow Statistics messages received: 35211

MLS Multicast statistics:
 Flow install Ack: 996508
 Flow install Nack: 1
 Flow update Ack: 1415959
 Flow update Nack: 0
 Flow delete Ack: 774953
 Complete flow install Ack: 958469

Router#

Configuring IPv4 Bidirectional PIM

These sections describe how to configure IPv4 bidirectional protocol independent multicast (PIM):

- Enabling IPv4 Bidirectional PIM Globally, page 31-22
- Configuring the Rendezvous Point for IPv4 Bidirectional PIM Groups, page 31-23
- Setting the IPv4 Bidirectional PIM Scan Interval, page 31-23
- Displaying IPv4 Bidirectional PIM Information, page 31-24

Enabling IPv4 Bidirectional PIM Globally

To enable IPv4 bidirectional PIM, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip pim bidir-enable</td>
<td>Enables IPv4 bidirectional PIM globally on the router.</td>
</tr>
<tr>
<td>Router(config)# no ip pim bidir-enable</td>
<td>Disables IPv4 bidirectional PIM globally on the router.</td>
</tr>
</tbody>
</table>

This example shows how to enable IPv4 bidirectional PIM on the router:

```
Router(config)# ip pim bidir-enable
Router(config)#
```

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S

OL-10113-33
Configuring the Rendezvous Point for IPv4 Bidirectional PIM Groups

To statically configure the rendezvous point for an IPv4 bidirectional PIM group, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# ip pim rp-address ip_address access_list [override]</td>
<td>Statically configures the IP address of the rendezvous point for the group. When you specify the <code>override</code> option, the static rendezvous point is used.</td>
</tr>
<tr>
<td>Step 2: Router(config)# access-list access-list permit</td>
<td>Configures an access list.</td>
</tr>
<tr>
<td>Step 3: Router(config)# ip pim send-rp-announce type number scope ttl_value [group-list access-list] [interval seconds] [bidir]</td>
<td>Configures the system to use Auto-RP to configure groups for which the router will act as a rendezvous point (RP).</td>
</tr>
<tr>
<td>Step 4: Router(config)# ip access-list standard access-list-name permit</td>
<td>Configures a standard IP access list.</td>
</tr>
<tr>
<td>Step 5: Router(config)# mls ip multicast</td>
<td>Enables MLS IP multicast.</td>
</tr>
</tbody>
</table>

This example shows how to configure a static rendezvous point for an IPv4 bidirectional PIM group:

```
Router(config)# ip pim rp-address 10.0.0.1 10 bidir override
Router(config)# access-list 10 permit 224.1.0.0 255.255.255.255
Router(config)# ip pim send-rp-announce Loopback0 scope 16 group-list c21-rp-list-0 bidir
Router(config)# ip access-list standard c21-rp-list-0 permit 230.31.31.1 255.255.255.255
```

Setting the IPv4 Bidirectional PIM Scan Interval

You can specify the interval between the IPv4 bidirectional PIM RP Reverse Path Forwarding (RPF) scans.

To set the IPv4 bidirectional PIM RP RPF scan interval, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls ip multicast bidir gm-scan-interval interval</td>
<td>Specifies the IPv4 bidirectional PIM RP RPF scan interval; valid values are from 1 to 1000 seconds. The default is 10 seconds.</td>
</tr>
<tr>
<td>Router(config)# no mls ip multicast bidir gm-scan-interval</td>
<td>Restores the default.</td>
</tr>
</tbody>
</table>

This example shows how to set the IPv4 bidirectional PIM RP RPF scan interval:

```
Router(config)# mls ip multicast bidir gm-scan-interval 30
Router(config)#
```
Displaying IPv4 Bidirectional PIM Information

To display IPv4 bidirectional PIM information, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show ip pim rp mapping</code></td>
<td>Displays mappings between PIM groups and rendezvous points and shows learned rendezvous points in use.</td>
</tr>
<tr>
<td>Router# <code>show mls ip multicast bidir</code></td>
<td>Displays IPv4 bidirectional PIM information.</td>
</tr>
<tr>
<td>Router# <code>show ip mroute</code></td>
<td>Displays information about the multicast routing table.</td>
</tr>
</tbody>
</table>

This example shows how to display information about the PIM group and rendezvous point mappings:

Router# `show ip pim rp mapping`
PIM Group-to-RP Mappings
This system is an RP (Auto-RP)
This system is an RP-mapping agent
Group(s) 230.31.0.0/16
RP 60.0.0.60 (?), v2v1, bidir
Info source:60.0.0.60 (?), elected via Auto-RP
Uptime:00:03:47, expires:00:02:11
RP 50.0.0.50 (?), v2v1, bidir
Info source:50.0.0.50 (?), via Auto-RP
Uptime:00:03:04, expires:00:02:55
RP 40.0.0.40 (?), v2v1, bidir
Info source:40.0.0.40 (?), via Auto-RP
Uptime:00:04:19, expires:00:02:38

This example shows how to display information in the IP multicast routing table that is related to IPv4 bidirectional PIM:

Router# `show ip mroute bidirectional`
(*, 225.1.3.0), 00:00:00/00:02:57, RP 3.3.3.3, flags:BC
Bidir-Upstream:GigabitEthernet2/1, RPF nbr 10.53.1.7, RPF-MFD
Outgoing interface list:
GigabitEthernet2/1, Bidir-Upstream/Sparse-Dense, 00:00:02/00:00:00,H
Vlan30, Forward/Sparse-Dense, 00:00:02/00:02:57, H

(*, 225.1.2.0), 00:00:04/00:02:55, RP 3.3.3.3, flags:BC
Bidir-Upstream:GigabitEthernet2/1, RPF nbr 10.53.1.7, RPF-MFD
Outgoing interface list:
GigabitEthernet2/1, Bidir-Upstream/Sparse-Dense, 00:00:04/00:00:00,H
Vlan30, Forward/Sparse-Dense, 00:00:02/00:02:55, H

(*, 225.1.4.1), 00:00:00/00:02:59, RP 3.3.3.3, flags:BC
Bidir-Upstream:GigabitEthernet2/1, RPF nbr 10.53.1.7, RPF-MFD
Outgoing interface list:
GigabitEthernet2/1, Bidir-Upstream/Sparse-Dense, 00:00:00/00:00:00,H
Vlan30, Forward/Sparse-Dense, 00:00:00/00:02:59, H

This example shows how to display information related to a specific multicast route. In the output below, the arrow in the margin points to information about a particular short cut:

Router# `show ip mroute 239.1.1.2 4.4.4.4`
IP Multicast Routing Table
Flags:D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report, Z - Multicast Tunnel
Using IPv4 Debug Commands

Table 31-2 describes IPv4 multicast Layer 3 switching debug commands that you can use to troubleshoot IP multicast Layer 3 switching problems.

Note The old debug commands will not be available.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[no] debug ip multicast hardware-switching {control group-name</td>
<td>error A.B.C.D</td>
</tr>
<tr>
<td>debug platform software multicast [all</td>
<td>assert]</td>
</tr>
<tr>
<td>debug platform software multicast</td>
<td>Displays the multicast debugging information.</td>
</tr>
<tr>
<td>debug platform software multicast ha 12-sso [all</td>
<td>error</td>
</tr>
<tr>
<td>debug platform software multicast lc</td>
<td>Displays the layer 2 line card multicast events.</td>
</tr>
<tr>
<td>debug platform software multicast cgmp [event</td>
<td>pak]</td>
</tr>
<tr>
<td>debug platform software multicast ha [error</td>
<td>event]</td>
</tr>
<tr>
<td>debug platform software multicast ip hal [error</td>
<td>event</td>
</tr>
<tr>
<td>debug platform software multicast igmp [event</td>
<td>pak]</td>
</tr>
<tr>
<td>debug platform software multicast mld [event</td>
<td>pak]</td>
</tr>
</tbody>
</table>
Table 31-2
IP Multicast Layer 3 Switching Debug Commands (continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug platform software multicast mrouter</code></td>
<td>Displays the multicast router events and packet information.</td>
</tr>
<tr>
<td>`error</td>
<td>event</td>
</tr>
<tr>
<td><code>debug platform software multicast msc</code></td>
<td>Displays the multicast shortcut debugging information.</td>
</tr>
<tr>
<td>`error</td>
<td>event</td>
</tr>
<tr>
<td><code>debug platform software multicast rgmp</code></td>
<td>Displays the multicast rgmp debugging information.</td>
</tr>
<tr>
<td>`event</td>
<td>pak`</td>
</tr>
<tr>
<td><code>debug platform software multicast rpdf</code></td>
<td>Displays the multicast bidirectional df debugging information.</td>
</tr>
<tr>
<td>`error</td>
<td>event`</td>
</tr>
<tr>
<td><code>debug platform software multicast titan</code></td>
<td>Displays the multicast titan debugging information.</td>
</tr>
<tr>
<td>`error</td>
<td>event`</td>
</tr>
<tr>
<td><code>debug platform software multicast ipv6</code></td>
<td>Displays the MFIB IPv6 platform code debugging and multicast HAL IPv6 debug command information.</td>
</tr>
<tr>
<td>`cmfib</td>
<td>hal`</td>
</tr>
<tr>
<td><code>debug platform software multicast ip cmfib</code></td>
<td>Displays the multicast ip cmfib errors, shortcut events, and export the hardware statistics information.</td>
</tr>
<tr>
<td>`error</td>
<td>event</td>
</tr>
<tr>
<td><code>debug platform software multicast ip cmfib</code></td>
<td>Displays the source or group IP address and the mfib IPv4 pending entry error information.</td>
</tr>
<tr>
<td>`error</td>
<td>event</td>
</tr>
<tr>
<td><code>debug platform software multicast ipv6 hal</code></td>
<td>Displays the multicast ipv6 hal errors and events.</td>
</tr>
<tr>
<td>`error</td>
<td>event `</td>
</tr>
</tbody>
</table>
Configuring MLDv2 Snooping for IPv6 Multicast Traffic

This chapter describes how to configure Multicast Listener Discovery version 2 (MLDv2) snooping for IPv6 multicast traffic on the Cisco 7600 series routers. MLDv2 snooping is supported on all versions of the PFC3.

Note • For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL: http://www.cisco.com/en/US/products/hw/routers/ps368/prod_command_reference_list.html
• To constrain IPv4 Multicast traffic, see Chapter 33, “Configuring IGMP Snooping for IPv4 Multicast Traffic.”

This chapter consists of these sections:
• Understanding How MLDv2 Snooping Works, page 32-1
• Default MLDv2 Snooping Configuration, page 32-7
• MLDv2 Snooping Configuration Guidelines and Restrictions, page 32-7
• MLDv2 Snooping Querier Configuration Guidelines and Restrictions, page 32-8
• Enabling the MLDv2 Snooping Querier, page 32-8
• Configuring MLDv2 Snooping, page 32-9

Understanding How MLDv2 Snooping Works

These sections describe MLDv2 snooping:
• MLDv2 Snooping Overview, page 32-2
• MLDv2 Messages, page 32-2
• Source-Based Filtering, page 32-3
• Explicit Host Tracking, page 32-3
• MLDv2 Snooping Proxy Reporting, page 32-3
• Joining an IPv6 Multicast Group, page 32-4
MLDv2 Snooping Overview

MLDv2 snooping allows Cisco 7600 series routers to examine MLDv2 packets and make forwarding decisions based on their content.

You can configure the router to use MLDv2 snooping in subnets that receive MLDv2 queries from either MLDv2 or the MLDv2 snooping querier. MLDv2 snooping constrains IPv6 multicast traffic at Layer 2 by configuring Layer 2 LAN ports dynamically to forward IPv6 multicast traffic only to those ports that want to receive it.

MLDv2, which runs at Layer 3 on a multicast router, generates Layer 3 MLDv2 queries in subnets where the multicast traffic needs to be routed.

You can configure the MLDv2 snooping querier on the router to support MLDv2 snooping in subnets that do not have any multicast router interfaces. For more information about the MLDv2 snooping querier, see the “Enabling the MLDv2 Snooping Querier” section on page 32-8.

MLDv2 (on a multicast router) or the MLDv2 snooping querier (on the supervisor engine) sends out periodic general MLDv2 queries that the router forwards through all ports in the VLAN, and to which hosts respond. MLDv2 snooping monitors the Layer 3 MLDv2 traffic.

If a multicast group has only sources and no receivers in a VLAN, MLDv2 snooping constrains the multicast traffic to only the multicast router ports.

MLDv2 Messages

MLDv2 uses these messages:

- Multicast listener queries:
 - General query—Sent by a multicast router to learn which multicast addresses have listeners.
 - Multicast address specific query—Sent by a multicast router to learn if a particular multicast address has any listeners.
 - Multicast address and source specific query—Sent by a multicast router to learn if any of the sources from the specified list for the particular multicast address has any listeners.

- Multicast listener reports:
 - Current state record (solicited)—Sent by a host in response to a query to specify the INCLUDE or EXCLUDE mode for every multicast group in which the host is interested.
 - Filter mode change record (unsolicited)—Sent by a host to change the INCLUDE or EXCLUDE mode of one or more multicast groups.
 - Source list change record (unsolicited)—Sent by a host to change information about multicast sources.
Source-Based Filtering

MLDv2 uses source-based filtering, which enables hosts and routers to specify which multicast sources should be allowed or blocked for a specific multicast group. Source-based filtering either allows or blocks traffic based on the following information in MLDv2 messages:

- Source lists
- INCLUDE or EXCLUDE mode

Because the Layer 2 table is (MAC-group, VLAN) based, with MLDv2 hosts it is preferable to have only a single multicast source per MAC-group.

Note
Source-based filtering is not supported in hardware. The states are maintained only in software and used for explicit host tracking and statistics collection.

Explicit Host Tracking

MLDv2 supports explicit tracking of membership information on any port. The explicit-tracking database is used for fast-leave processing, proxy reporting, and statistics collection. When explicit tracking is enabled on a VLAN, the MLDv2 snooping software processes the MLDv2 report it receives from a host and builds an explicit-tracking database that contains the following information:

- The port connected to the host
- The channels reported by the host
- The filter mode for each group reported by the host
- The list of sources for each group reported by the hosts
- The router filter mode of each group
- For each group, the list of hosts requesting the source

Note
- Disabling explicit host tracking disables fast-leave processing and proxy reporting.
- When explicit tracking is enabled and the router is in report-suppression mode, the multicast router might not be able to track all the hosts accessed through a VLAN interface.

MLDv2 Snooping Proxy Reporting

Because MLDv2 does not have report suppression, all the hosts send their complete multicast group membership information to the multicast router in response to queries. The router snoops these responses, updates the database and forwards the reports to the multicast router. To prevent the multicast router from becoming overloaded with reports, MLDv2 snooping does proxy reporting.

Proxy reporting forwards only the first report for a multicast group to the router and suppresses all other reports for the same multicast group.

Proxy reporting processes solicited and unsolicited reports. Proxy reporting is enabled and cannot be disabled.
Joining an IPv6 Multicast Group

Hosts join IPv6 multicast groups either by sending an unsolicited MLDv2 report or by sending an MLDv2 report in response to a general query from an IPv6 multicast router (the router forwards general queries from IPv6 multicast routers to all ports in a VLAN). The router snoops these reports.

In response to a snooped MLDv2 report, the router creates an entry in its Layer 2 forwarding table for the VLAN on which the report was received. When other hosts that are interested in this multicast traffic send MLDv2 reports, the router snoops their reports and adds them to the existing Layer 2 forwarding table entry. The router creates only one entry per VLAN in the Layer 2 forwarding table for each multicast group for which it snoops an MLDv2 report.

MLDv2 snooping suppresses all but one of the host reports per multicast group and forwards this one report to the IPv6 multicast router.

The router forwards multicast traffic for the multicast group specified in the report to the interfaces where reports were received (see Figure 32-1).

Layer 2 multicast groups learned through MLDv2 snooping are dynamic. However, you can statically configure Layer 2 multicast groups using the `mac-address-table static` command. When you specify group membership for a multicast group address statically, the static setting supersedes any MLDv2 snooping learning. Multicast group membership lists can consist of both static and MLDv2 snooping-learned settings.

Figure 32-1 Initial MLDv2 Listener Report

Multicast router A sends an MLDv2 general query to the router, which forwards the query to ports 2 through 5 (all members of the same VLAN). Host 1 wants to join an IPv6 multicast group and multicasts an MLDv2 report to the group with the equivalent MAC destination address of 0x0100.5E01.0203. When the router snoops the MLDv2 report multicast by Host 1, the router uses the information in the
MLDv2 report to create a forwarding-table entry, as shown in Table 32-1, that includes the port numbers of Host 1, the multicast router, and the router.

Table 32-1 MLDv2 Snooping Forwarding Table

<table>
<thead>
<tr>
<th>Destination MAC Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100.5exx.xxxx</td>
<td>MLDv2</td>
<td>0</td>
</tr>
<tr>
<td>0100.5e01.0203</td>
<td>!MLDv2</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

The router hardware can distinguish MLDv2 information packets from other packets for the multicast group. The first entry in the table tells the router to send only MLDv2 packets to the CPU. This prevents the router from becoming overloaded with multicast frames. The second entry tells the router to send frames addressed to the 0x0100.5E01.0203 multicast MAC address that are not MLDv2 packets (!MLDv2) to the multicast router and to the host that has joined the group.

If another host (for example, Host 4) sends an unsolicited MLDv2 report for the same group (Figure 32-2), the router snoops that message and adds the port number of Host 4 to the forwarding table as shown in Table 32-2. Because the forwarding table directs MLDv2 messages only to the router, the message is not flooded to other ports. Any known multicast traffic is forwarded to the group and not to the router.

Table 32-2 Updated MLDv2 Snooping Forwarding Table

<table>
<thead>
<tr>
<th>Destination MAC Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100.5exx.xxxx</td>
<td>MLDv2</td>
<td>0</td>
</tr>
<tr>
<td>0100.5e01.0203</td>
<td>!MLDv2</td>
<td>1, 2, 5</td>
</tr>
</tbody>
</table>
Leaving a Multicast Group

These sections describe leaving a multicast group:

- Normal Leave Processing, page 32-6
- Fast-Leave Processing, page 32-6

Normal Leave Processing

Interested hosts must continue to respond to the periodic MLDv2 general queries. As long as at least one host in the VLAN responds to the periodic MLDv2 general queries, the multicast router continues forwarding the multicast traffic to the VLAN. When hosts want to leave a multicast group, they can either ignore the periodic MLDv2 general queries (called a “silent leave”), or they can send an MLDv2 filter mode change record.

When MLDv2 snooping receives a filter mode change record from a host that configures the EXCLUDE mode for a group, MLDv2 snooping sends out a MAC-addressed general query to determine if any other hosts connected to that interface are interested in traffic for the specified multicast group.

If MLDv2 snooping does not receive an MLDv2 report in response to the general query, MLDv2 snooping assumes that no other hosts connected to the interface are interested in receiving traffic for the specified multicast group, and MLDv2 snooping removes the interface from its Layer 2 forwarding table entry for the specified multicast group.

If the filter mode change record was from the only remaining interface with hosts interested in the group, and MLDv2 snooping does not receive an MLDv2 report in response to the general query, MLDv2 snooping removes the group entry and relays the MLDv2 filter mode change record to the multicast router. If the multicast router receives no reports from a VLAN, the multicast router removes the group for the VLAN from its MLDv2 cache.

The interval for which the router waits before updating the table entry is called the “last member query interval.” To configure the interval, enter the `ipv6 mld snooping last-member-query-interval interval` command.

Fast-Leave Processing

Fast-leave processing is enabled by default. To disable fast-leave processing, turn off explicit-host tracking.

Fast-leave processing is implemented by maintaining source-group based membership information in software while also allocating LTL indexes on a MAC GDA basis.

When fast-leave processing is enabled, hosts send BLOCK_OLD_SOURCES{src-list} messages for a specific group when they no longer want to receive traffic from that source. When the router receives such a message from a host, it parses the list of sources for that host for the given group. If this source list is exactly the same as the source list received in the leave message, the router removes the host from the LTL index and stops forwarding this multicast group traffic to this host.

If the source lists do not match, the router does not remove the host from the LTL index until the host is no longer interested in receiving traffic from any source.

Note Disabling explicit host tracking disables fast-leave processing and proxy reporting.
Understanding the MLDv2 Snooping Querier

Use the MLDv2 snooping querier to support MLDv2 snooping in a VLAN where PIM and MLDv2 are not configured because the multicast traffic does not need to be routed.

In a network where IP multicast routing is configured, the IP multicast router acts as the MLDv2 querier. If the IP-multicast traffic in a VLAN only needs to be Layer 2 switched, an IP-multicast router is not required, but without an IP-multicast router on the VLAN, you must configure another router as the MLDv2 querier so that it can send queries.

When enabled, the MLDv2 snooping querier sends out periodic MLDv2 queries that trigger MLDv2 report messages from the router that wants to receive IP multicast traffic. MLDv2 snooping listens to these MLDv2 reports to establish appropriate forwarding.

You can enable the MLDv2 snooping querier on all the Cisco 7600 series routers in the VLAN, but for each VLAN that is connected to switches that use MLDv2 to report interest in IP multicast traffic, you must configure at least one router as the MLDv2 snooping querier.

You can configure a router to generate MLDv2 queries on a VLAN regardless of whether or not IP multicast routing is enabled.

Default MLDv2 Snooping Configuration

Table 32-3 shows the default MLDv2 snooping configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLDv2 snooping querier</td>
<td>Disabled</td>
</tr>
<tr>
<td>MLDv2 snooping</td>
<td>Enabled</td>
</tr>
<tr>
<td>Multicast routers</td>
<td>None configured</td>
</tr>
<tr>
<td>MLDv2 report suppression</td>
<td>Enabled</td>
</tr>
<tr>
<td>MLDv2 snooping router learning method</td>
<td>Learned automatically through PIM or MLDv2 packets</td>
</tr>
<tr>
<td>Fast-Leave Processing</td>
<td>Enabled</td>
</tr>
<tr>
<td>MLDv2 Explicit Host Tracking</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

MLDv2 Snooping Configuration Guidelines and Restrictions

When configuring MLDv2 snooping, follow these guidelines and restrictions:

- MLDv2 is derived from Internet Group Management Protocol version 3 (IGMPv3). MLDv2 protocol operations and state transitions, host and router behavior, query and report message processing, message forwarding rules, and timer operations are exactly same as IGMPv3. See draft-vida-mld-v2.02.txt for detailed information on MLDv2 protocol.
- MLDv2 protocol messages are Internet Control Message Protocol version 6 (ICMPv6) messages.
- MLDv2 message formats are almost identical to IGMPv3 messages.
MLDv2 Snooping Querier Configuration Guidelines and Restrictions

When configuring the MLDv2 snooping querier, follow these guidelines and restrictions:

- Configure the VLAN in global configuration mode (see Chapter 14, “Configuring VLANs”).
- Configure an IPv6 address on the VLAN interface (see Chapter 22, “Configuring Layer 3 Interfaces”). When enabled, the MLDv2 snooping querier uses the IPv6 address as the query source address.
- If there is no IPv6 address configured on the VLAN interface, the MLDv2 snooping querier does not start. The MLDv2 snooping querier disables itself if the IPv6 address is cleared. When enabled, the MLDv2 snooping querier restarts if you configure an IPv6 address.
- When enabled, the MLDv2 snooping querier does not start if it detects MLDv2 traffic from an IPv6 multicast router.
- When enabled, the MLDv2 snooping querier starts after 60 seconds with no MLDv2 traffic detected from an IPv6 multicast router.
- When enabled, the MLDv2 snooping querier disables itself if it detects MLDv2 traffic from an IPv6 multicast router.
- QoS does not support MLDv2 packets when MLDv2 snooping is enabled.
- You can enable the MLDv2 snooping querier on all the Cisco 7600 series routers in the VLAN that support it. One router is elected as the querier.

Enabling the MLDv2 Snooping Querier

Use the MLDv2 snooping querier to support MLDv2 snooping in a VLAN where PIM and MLDv2 are not configured because the multicast traffic does not need to be routed.

To enable the MLDv2 snooping querier in a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# interface vlan vlan_ID</td>
<td>Selects the VLAN interface.</td>
</tr>
<tr>
<td>Step 2: Router(config-if)# ipv6 address prefix/prefix_length</td>
<td>Configures the IPv6 address and subnet.</td>
</tr>
<tr>
<td>Step 3: Router(config-if)# ipv6 mld snooping querier</td>
<td>Enables the MLDv2 snooping querier.</td>
</tr>
<tr>
<td>Router(config-if)# no ipv6 mld snooping querier</td>
<td>Disables the MLDv2 snooping querier.</td>
</tr>
</tbody>
</table>
Chapter 32 Configuring MLDv2 Snooping for IPv6 Multicast Traffic

Configuring MLDv2 Snooping

Note To use MLDv2 snooping, configure a Layer 3 interface in the subnet for IPv6 multicast routing or enable the MLDv2 snooping querier in the subnet (see the “Enabling the MLDv2 Snooping Querier” section on page 32-8).

These sections describe how to configure MLDv2 snooping:
- Enabling MLDv2 Snooping, page 32-9
- Configuring a Static Connection to a Multicast Receiver, page 32-10
- Enabling Fast-Leave Processing, page 32-12
- Configuring Explicit Host Tracking, page 32-12
- Configuring Report Suppression, page 32-13
- Displaying MLDv6 Snooping Information, page 32-13

Note Except for the global enable command, all MLDv2 snooping commands are supported only on VLAN interfaces.

Enabling MLDv2 Snooping

To enable MLDv2 snooping globally, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# ipv6 mld snooping</code></td>
<td>Enables MLDv2 snooping.</td>
</tr>
<tr>
<td><code>Router(config)# no ipv6 mld snooping</code></td>
<td>Disables MLDv2 snooping.</td>
</tr>
<tr>
<td><code>Router(config)# end</code></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>`Router# show ipv6 mld interface vlan vlan_ID</td>
<td>include querier`</td>
</tr>
</tbody>
</table>
Configuring MLDv2 Snooping

This example shows how to enable MLDv2 snooping globally and verify the configuration:

```
Router(config)# ipv6 mld snooping
Router(config)# end
```

```
MLD snooping is globally enabled
```

To enable MLDv2 snooping in a VLAN, perform this task:

```
Router(config)# interface vlan vlan_ID
```

```
Step 1
Step 2
Step 3
Step 4
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface vlan vlan_ID</td>
<td>Selects a VLAN interface.</td>
</tr>
<tr>
<td>Router(config-if)# ipv6 mld snooping</td>
<td>Enables MLDv2 snooping.</td>
</tr>
<tr>
<td>Router(config-if)# no ipv6 mld snooping</td>
<td>Disables MLDv2 snooping.</td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Router(config-if)# show ipv6 mld interface vlan vlan_ID</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to enable MLDv2 snooping on VLAN 25 and verify the configuration:

```
Router# interface vlan 25
```

```
Step 1
Step 2
Step 3
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface vlan 25</td>
<td>Selects a VLAN interface.</td>
</tr>
<tr>
<td>Router(config-if)# ipv6 mld snooping</td>
<td>Enables MLDv2 snooping.</td>
</tr>
<tr>
<td>Router(config-if)# no ipv6 mld snooping</td>
<td>Disables MLDv2 snooping.</td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Router(config-if)# show ipv6 mld interface vlan 25</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mac-address-table static mac_addr vlan vlan_id interface type slot/port</td>
<td>Configures a static connection to a multicast receiver.</td>
</tr>
<tr>
<td>Router(config)# no mac-address-table static mac_addr vlan vlan_id</td>
<td>Clears a static connection to a multicast receiver.</td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Router(config)# show mac-address-table address mac_addr</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

Configuring a Static Connection to a Multicast Receiver

To configure a static connection to a multicast receiver, perform this task:

1. `type` = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

When you configure a static connection, enter the `disable-snooping` keyword to prevent multicast traffic addressed to the statically configured multicast MAC address from also being sent to other ports in the same VLAN.

This example shows how to configure a static connection to a multicast receiver:
Chapter 32 Configuring MLDv2 Snooping for IPv6 Multicast Traffic

Configuring MLDv2 Snooping

Router(config)# mac-address-table static 0050.3e8d.6400 vlan 12 interface fastethernet 5/7

Configuring a Multicast Router Port Statically

To configure a static connection to a multicast router, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface vlan vlan_ID</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ipv6 mld snooping mrouter interface type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show ipv6 mld snooping mrouter</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

The interface to the router must be in the VLAN where you are entering the command, the interface must be administratively up, and the line protocol must be up.

This example shows how to configure a static connection to a multicast router:

```
Router(config-if)# ipv6 mld snooping mrouter interface fastethernet 5/6
```

Configuring the MLD Snooping Query Interval

You can configure the interval for which the router waits after sending a group-specific query to determine if hosts are still interested in a specific multicast group.

```
Note
When both MLD snooping fast-leave processing and the MLD snooping query interval are configured, fast-leave processing takes precedence.
```

To configure the interval for the MLD snooping queries sent by the router, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface vlan vlan_ID</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ipv6 mld snooping last-member-query-interval interval</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ipv6 mld snooping last-member-query-interval</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show ipv6 mld interface vlan vlan_ID</td>
</tr>
</tbody>
</table>

```
include last
```

This example shows how to configure the MLD snooping query interval:

```
Router(config-if)# ipv6 mld snooping last-member-query-interval 1000
Router(config-if)# exit
Router# show ipv6 mld interface vlan 200 | include last
MLD snooping last member query response interval is 1000 ms
```
Enabling Fast-Leave Processing

To enable fast-leave processing in a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface vlan vlan_ID</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ipv6 mld snooping fast-leave</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ipv6 mld snooping fast-leave</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show ipv6 mld interface vlan vlan_ID</td>
</tr>
<tr>
<td></td>
<td>include fast-leave</td>
</tr>
</tbody>
</table>

This example shows how to enable fast-leave processing on the VLAN 200 interface and verify the configuration:

```
Router# interface vlan 200
Router(config-if)# ipv6 mld snooping fast-leave
Configuring fast leave on vlan 200
Router(config-if)# end
Router# show ipv6 mld interface vlan 200 | include fast-leave
  MLD snooping fast-leave is enabled and querier is enabled
Router#
```

Enabling SSM Safe Reporting

To enable source-specific multicast (SSM) safe reporting, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface vlan vlan_ID</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ipv6 mld snooping ssm-safe-reporting</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ipv6 mld snooping ssm-safe-reporting</td>
</tr>
</tbody>
</table>

This example shows how to SSM safe reporting:

```
Router(config)# interface vlan 10
Router(config-if)# ipv6 mld snooping ssm-safe-reporting
```

Configuring Explicit Host Tracking

Note Disabling explicit host tracking disables fast-leave processing and proxy reporting.
To enable explicit host tracking on a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface vlan vlan_ID</td>
<td>Selects a VLAN interface.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# ipv6 mld snooping explicit-tracking</td>
<td>Enables explicit host tracking.</td>
</tr>
<tr>
<td>Router(config-if)# no ipv6 mld snooping explicit-tracking</td>
<td>Clears the explicit host tracking configuration.</td>
</tr>
<tr>
<td>Step 3 Router# show ipv6 mld snooping explicit-tracking vlan vlan_ID</td>
<td>Displays the status of explicit host tracking.</td>
</tr>
</tbody>
</table>

This example shows how to enable explicit host tracking:

```console
Router(config)# interface vlan 25
Router(config-if)# ipv6 mld snooping explicit-tracking
Router(config-if)# end
Router# show ipv6 mld snooping explicit-tracking vlan 25
```

<table>
<thead>
<tr>
<th>Source/Group</th>
<th>Interface</th>
<th>Reporter</th>
<th>Filter_mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.1/226.2.2.2</td>
<td>Vl25:1/2</td>
<td>16.27.2.3</td>
<td>INCLUDE</td>
</tr>
<tr>
<td>10.2.2.2/226.2.2.2</td>
<td>Vl25:1/2</td>
<td>16.27.2.3</td>
<td>INCLUDE</td>
</tr>
</tbody>
</table>

Configuring Report Suppression

To enable report suppression on a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface vlan vlan_ID</td>
<td>Selects a VLAN interface.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# ipv6 mld snooping report-suppression</td>
<td>Enables report suppression.</td>
</tr>
<tr>
<td>Router(config-if)# no ipv6 mld snooping report-suppression</td>
<td>Clears the report suppression configuration.</td>
</tr>
<tr>
<td>Step 3 Router# show ipv6 mld interface vlan_vlan_ID</td>
<td>include report-suppression</td>
</tr>
</tbody>
</table>

This example shows how to enable explicit host tracking:

```console
Router(config)# interface vlan 25
Router(config-if)# ipv6 mld snooping report-suppression
Router(config-if)# end
Router# Router# show ipv6 mld interface vlan_vlan_ID | include report-suppression
     MLD snooping report-suppression is enabled
```

Displaying MLDv6 Snooping Information

These sections describe displaying MLDv6 snooping information:

- Displaying Multicast Router Interfaces, page 32-14
- Displaying MAC Address Multicast Entries, page 32-14
Displaying MLDv2 Snooping Information for a VLAN Interface, page 32-15

Displaying Multicast Router Interfaces

When you enable IGMP snooping, the router automatically learns to which interface the multicast routers are connected.

To display multicast router interfaces, perform this task:

```
Command Purpose
---+------------------------------------------------------
Router# show ipv6 mld snooping mrouter vlan_ID Displays multicast router interfaces.
```

This example shows how to display the multicast router interfaces in VLAN 1:

```
Router# show ipv6 mld snooping mrouter vlan 1
vlan  ports
------+--------------------------------------------------
1     Gi1/1,Gi2/1,Fa3/48,Router
Router#
```

Displaying MAC Address Multicast Entries

To display MAC address multicast entries for a VLAN, perform this task:

```
Command Purpose
---+--------------------------------------------------
Router# show mac-address-table multicast vlan_ID [count] Displays MAC address multicast entries for a VLAN.
```

This example shows how to display MAC address multicast entries for VLAN 1:

```
Router# show mac-address-table multicast vlan 1
vlan  mac address  type  qos  ports
-----+---------------+-------+---+----------------------------------
1    0100.5e02.0203  static  --  Gi1/1,Gi2/1,Fa3/48,Router
1    0100.5e00.0127  static  --  Gi1/1,Gi2/1,Fa3/48,Router
1    0100.5e00.0128  static  --  Gi1/1,Gi2/1,Fa3/48,Router
1    0100.5e00.0001  static  --  Gi1/1,Gi2/1,Fa3/48,Router,Switch
Router#
```

This example shows how to display a total count of MAC address entries for a VLAN:

```
Router# show mac-address-table multicast 1 count
Multicast MAC Entries for vlan 1:  4
Router#
```
Displaying MLDv2 Snooping Information for a VLAN Interface

To display MLDv2 snooping information for a VLAN interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show ipv6 mld snooping {{explicit-tracking vlan_ID}</td>
<td>{mrouter [vlan vlan_ID]}</td>
</tr>
</tbody>
</table>

This example shows how to display explicit tracking information on VLAN 25:

Router# show ipv6 mld snooping explicit-tracking vlan 25

<table>
<thead>
<tr>
<th>Source/Group</th>
<th>Interface</th>
<th>Reporter</th>
<th>Filter_mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.1/226.2.2.2</td>
<td>Vl25:1/2</td>
<td>16.27.2.3</td>
<td>INCLUDE</td>
</tr>
<tr>
<td>10.2.2.2/226.2.2.2</td>
<td>Vl25:1/2</td>
<td>16.27.2.3</td>
<td>INCLUDE</td>
</tr>
</tbody>
</table>

This example shows how to display the multicast router interfaces in VLAN 1:

Router# show ipv6 mld snooping mrouter vlan 1

<table>
<thead>
<tr>
<th>vlan</th>
<th>ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gi1/1,Gi2/1,Fa3/48,Router</td>
</tr>
</tbody>
</table>

This example shows IGMP snooping statistics information for VLAN 25:

Router# show ipv6 mld snooping statistics interface vlan 25

Snooping statistics for Vlan25
#channels:2
#hosts :1

<table>
<thead>
<tr>
<th>Source/Group</th>
<th>Interface</th>
<th>Reporter</th>
<th>Uptime</th>
<th>Last-Join</th>
<th>Last-Leave</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.1/226.2.2.2</td>
<td>Gi1/2:Vl25</td>
<td>16.27.2.3</td>
<td>00:01:47</td>
<td>00:00:50</td>
<td>-</td>
</tr>
<tr>
<td>10.2.2.2/226.2.2.2</td>
<td>Gi1/2:Vl25</td>
<td>16.27.2.3</td>
<td>00:01:47</td>
<td>00:00:50</td>
<td>-</td>
</tr>
</tbody>
</table>
Configuring IGMP Snooping for IPv4 Multicast Traffic

This chapter describes how to configure Internet Group Management Protocol (IGMP) snooping for IPv4 multicast traffic on the Cisco 7600 series routers.

Note
• For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL: http://www.cisco.com/en/US/products/hw/routers/ps368/prod_command_reference_list.html
• To constrain IPv6 Multicast traffic, see Chapter 32, “Configuring MLDv2 Snooping for IPv6 Multicast Traffic.”

This chapter consists of these sections:
• Understanding How IGMP Snooping Works, page 33-1
• Default IGMP Snooping Configuration, page 33-7
• IGMP Snooping Configuration Guidelines and Restrictions, page 33-8
• IGMP Snooping Querier Configuration Guidelines and Restrictions, page 33-8
• Enabling the IGMP Snooping Querier, page 33-9
• Configuring IGMP Snooping, page 33-9
• Understanding MVR, page 33-16
• Configuring MVR, page 33-18

Understanding How IGMP Snooping Works

These sections describe IGMP snooping:
• IGMP Snooping Overview, page 33-2
• Joining a Multicast Group, page 33-2
• Leaving a Multicast Group, page 33-4
• Understanding the IGMP Snooping Querier, page 33-5
• Understanding IGMP Version 3 Support, page 33-5
Chapter 33 Configuring IGMP Snooping for IPv4 Multicast Traffic

Understanding How IGMP Snooping Works

IGMP Snooping Overview

You can configure the router to use IGMP snooping in subnets that receive IGMP queries from either IGMP or the IGMP snooping querier. IGMP snooping constrains IPv4 multicast traffic at Layer 2 by configuring Layer 2 LAN ports dynamically to forward IPv4 multicast traffic only to those ports that want to receive it.

IGMP, which runs at Layer 3 on a multicast router, generates Layer 3 IGMP queries in subnets where the multicast traffic needs to be routed. For information about IGMP, see Chapter 31, “Configuring IPv4 Multicast Layer 3 Switching.”

You can configure the IGMP snooping querier on the router to support IGMP snooping in subnets that do not have any multicast router interfaces. For more information about the IGMP snooping querier, see the “Enabling the IGMP Snooping Querier” section on page 33-9.

IGMP (on a multicast router) or the IGMP snooping querier (on the supervisor engine) sends out periodic general IGMP queries that the router forwards through all ports in the VLAN and to which hosts respond. IGMP snooping monitors the Layer 3 IGMP traffic.

Note

If a multicast group has only sources and no receivers in a VLAN, IGMP snooping constrains the multicast traffic to only the multicast router ports.

Joining a Multicast Group

Hosts join multicast groups either by sending an unsolicited IGMP join message or by sending an IGMP join message in response to a general query from a multicast router (the router forwards general queries from multicast routers to all ports in a VLAN).

In response to an IGMP join request, the router creates an entry in its Layer 2 forwarding table for the VLAN on which the join request was received. When other hosts that are interested in this multicast traffic send IGMP join requests, the router adds them to the existing Layer 2 forwarding table entry. The router creates only one entry per VLAN in the Layer 2 forwarding table for each multicast group for which it receives an IGMP join request.

IGMP snooping suppresses all but one of the host join messages per multicast group and forwards this one join message to the multicast router.

The router forwards multicast traffic for the multicast group specified in the join message to the interfaces where join messages were received (see Figure 33-1).

Layer 2 multicast groups learned through IGMP snooping are dynamic. However, you can statically configure Layer 2 multicast groups using the `mac-address-table static` command. When you specify group membership for a multicast group address statically, the static setting supersedes any IGMP snooping learning. Multicast group membership lists can consist of both static and IGMP snooping-learned settings.
Chapter 33 Configuring IGMP Snooping for IPv4 Multicast Traffic

Understanding How IGMP Snooping Works

Figure 33-1 Initial IGMP Join Message

Multicast router A sends a general query to the router, which forwards the query to ports 2 through 5 (all members of the same VLAN). Host 1 wants to join multicast group 224.1.2.3 and multicasts an IGMP membership report (IGMP join message) to the group with the equivalent MAC destination address of 0x0100.5E01.0203. When the CPU receives the IGMP report multicast by Host 1, the CPU uses the information in the IGMP report to set up a forwarding-table entry, as shown in Table 33-1, that includes the port numbers of Host 1, the multicast router, and the router internal CPU.

Table 33-1 IGMP Snooping Forwarding Table

<table>
<thead>
<tr>
<th>Destination Address</th>
<th>Type of Packet</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100.5e01.0203</td>
<td>IGMP</td>
<td>0</td>
</tr>
<tr>
<td>0100.5e01.0203</td>
<td>!IGMP</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

The router hardware can distinguish IGMP information packets from other packets for the multicast group. The first entry in the table tells the switching engine to send only IGMP packets to the CPU. This prevents the CPU from becoming overloaded with multicast frames. The second entry tells the switching engine to send frames addressed to the 0x0100.5E01.0203 multicast MAC address that are not IGMP packets (!IGMP) to the multicast router and to the host that has joined the group.

If another host (for example, Host 4) sends an unsolicited IGMP join message for the same group (Figure 33-2), the CPU receives that message and adds the port number of Host 4 to the forwarding table as shown in Table 33-2. Because the forwarding table directs IGMP messages only to the CPU, the message is not flooded to other ports. Any known multicast traffic is forwarded to the group and not to the CPU.

Table 33-1 IGMP Snooping Forwarding Table
Chapter 33 Configuring IGMP Snooping for IPv4 Multicast Traffic

Understanding How IGMP Snooping Works

Figure 33-2 Second Host Joining a Multicast Group

Leaving a Multicast Group

These sections describe leaving a multicast group:

- Normal Leave Processing, page 33-4
- Fast-Leave Processing, page 33-5

Normal Leave Processing

Interested hosts must continue to respond to the periodic general IGMP queries. As long as at least one host in the VLAN responds to the periodic general IGMP queries, the multicast router continues forwarding the multicast traffic to the VLAN. When hosts want to leave a multicast group, they can either ignore the periodic general IGMP queries (called a “silent leave”), or they can send a group-specific IGMPv2 leave message.

When IGMP snooping receives a group-specific IGMPv2 leave message from a host, it sends out a MAC-based general query to determine if any other devices connected to that interface are interested in traffic for the specific multicast group. If IGMP snooping does not receive an IGMP Join message in response to the general query, it assumes that no other devices connected to the interface are interested in receiving traffic for this multicast group, and it removes the interface from its Layer 2 forwarding table entry for that multicast group. If the leave message was from the only remaining interface with hosts interested in the group and IGMP snooping does not receive an IGMP Join in response to the general
query, it removes the group entry and relays the IGMP leave to the multicast router. If the multicast router receives no reports from a VLAN, the multicast router removes the group for the VLAN from its IGMP cache.

The interval for which the router waits before updating the table entry is called the “last member query interval.” To configure the interval, enter the `ip igmp snooping last-member-query-interval interval` command.

Fast-Leave Processing

IGMP snooping fast-leave processing allows IGMP snooping to remove a Layer 2 LAN interface from the forwarding-table entry without first sending out IGMP group-specific queries to the interface. Upon receiving a group-specific IGMPv2 leave message, IGMP snooping immediately removes the interface from the Layer 2 forwarding table entry for that multicast group, unless a multicast router was learned on the port. Fast-leave processing improves bandwidth management for all hosts on a switched network.

Note

Use fast-leave processing only on VLANs where only one host is connected to each Layer 2 LAN port. If fast-leave is enabled in VLANs where more than one host is connected to a Layer 2 LAN port, some hosts might be dropped inadvertently. Fast-leave processing is supported only with IGMP version 2 hosts.

Understanding the IGMP Snooping Querier

Use the IGMP snooping querier to support IGMP snooping in a VLAN where PIM and IGMP are not configured because the multicast traffic does not need to be routed.

In a network where IP multicast routing is configured, the IP multicast router acts as the IGMP querier. If the IP-multicast traffic in a VLAN only needs to be Layer 2 switched, an IP-multicast router is not required, but without an IP-multicast router on the VLAN, you must configure another router as the IGMP querier so that it can send queries.

When enabled, the IGMP snooping querier sends out periodic IGMPv3 queries that trigger IGMP report messages from the router that wants to receive IP multicast traffic. IGMP snooping listens to these IGMP reports to establish appropriate forwarding.

You can enable the IGMP snooping querier on all the Cisco 7600 series routers in the VLAN, but for each VLAN that is connected to switches that use IGMP to report interest in IP multicast traffic, you must configure at least one router as the IGMP snooping querier.

You can configure a router to generate IGMP queries on a VLAN regardless of whether or not IP multicast routing is enabled.

Understanding IGMP Version 3 Support

These sections describe IGMP version 3 support:

- IGMP Version 3 Support Overview, page 33-6
- IGMPv3 Fast-Leave Processing, page 33-6
- Proxy Reporting, page 33-6
- Explicit Host Tracking, page 33-7
Chapter 33 Configuring IGMP Snooping for IPv4 Multicast Traffic

Understanding How IGMP Snooping Works

IGMP Version 3 Support Overview

IGMP snooping supports IGMP version 3. IGMP version 3 uses source-based filtering, which enables hosts and routers to specify which source addresses should be allowed or blocked for a specific multicast group. When you enable IGMP version 3 snooping on a Cisco 7600 series router, the system maintains IGMP version 3 states based on messages it receives for a particular group in a particular VLAN and either allows or blocks traffic based on the following information in these messages:

- Source lists
- Allow (include) or block (exclude) filtering options

Because the Layer 2 table is (MAC-group, VLAN) based, with IGMPv3 hosts it is preferable to have only a single multicast source per MAC-group.

Note
Source-based filtering for IGMP version 3 reports is not supported in hardware. The states are maintained only in software and used for explicit host tracking and statistics collection. The source-only entries are deleted every 5 minutes and relearned to ensure that they are still valid.

IGMPv3 Fast-Leave Processing

IGMP version 3 fast-leave processing is enabled by default. To disable IGMP version 3 fast-leave processing you must turn off explicit-host tracking.

Fast-leave processing with IGMPv3 is implemented by maintaining source-group based membership information in software while also allocating LTL indexes on a MAC GDA basis.

When fast-leave processing is enabled, hosts send \texttt{BLOCK_OLD_SOURCES\{src-list\}} messages for a specific group when they no longer want to receive traffic from that source. When the router receives such a message from a host, it parses the list of sources for that host for the given group. If this source list is exactly the same as the source list received in the leave message, the router removes the host from the LTL index and stops forwarding this multicast group traffic to this host.

If the source lists do not match, the router does not remove the host from the LTL index until the host is no longer interested in receiving traffic from any source.

Proxy Reporting

IGMP supports proxy reporting for IGMPv1 and IGMPv2 messages to handle group-specific queries. These queries are not sent downstream, but the switch does respond to them directly. When the switch receives a group-specific query, the switch terminates the query and sends an IGMP proxy report if there is a receiver for the group. There is no proxy reporting for IGMPv3 messages. For IGMPv3, a group-specific query or a group source-specific query is flooded to all VLAN member ports. The database for the IGMPv3 membership report is built based on the reports received.

Host reports responding to a specific query can be suppressed by the report suppression feature. Report suppression is supported for IGMPv1, IGMPv2 and IGMPv3 messages. With report suppression enabled (by default), when the switch receives a general query, the switch starts a suppression cycle for reports from all hosts to each group or channel \((S,G)\). Only the first report to the discovered multicast routers are forwarded; the rest of the reports are suppressed. For IGMPv1 and IGMPv2, the time of suppression is the report response time indicated in the general query message. For IGMPv3, suppression occurs for the entire general query interval.
Explicit Host Tracking

IGMPv3 supports explicit tracking of membership information on any port. The explicit-tracking database is used for fast-leave processing for IGMPv3 hosts, proxy reporting, and statistics collection. When explicit tracking is enabled on a VLAN, the IGMP snooping software processes the IGMPv3 report it receives from a host and builds an explicit-tracking database that contains the following information:

- The port connected to the host
- The channels reported by the host
- The filter mode for each group reported by the host
- The list of sources for each group reported by the hosts
- The router filter mode of each group
- For each group, the list of hosts requesting the source

Note • Turning off explicit host tracking disables fast-leave processing and proxy reporting.

• When explicit tracking is enabled and the router is working in proxy-reporting mode, the router may not be able to track all the hosts behind a VLAN interface.

Default IGMP Snooping Configuration

Table 33-3 shows the default IGMP snooping configuration.

Table 33-3 IGMP Snooping Default Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP snooping querier</td>
<td>Disabled</td>
</tr>
<tr>
<td>IGMP snooping</td>
<td>Enabled</td>
</tr>
<tr>
<td>Multicast routers</td>
<td>None configured</td>
</tr>
<tr>
<td>IGMPv3 proxy reporting</td>
<td>Enabled</td>
</tr>
<tr>
<td>IGMPv3 snooping router learning method</td>
<td>Learned automatically through PIM or IGMP packets</td>
</tr>
<tr>
<td>Fast-Leave Processing</td>
<td>Disabled</td>
</tr>
<tr>
<td>IGMPv3 Explicit Host Tracking</td>
<td>Enabled</td>
</tr>
<tr>
<td>IGMPv3 SSM Safe Reporting</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
IGMP Snooping Configuration Guidelines and Restrictions

When configuring IGMP snooping, follow these guidelines and restrictions:

 http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fipr_c/ipcpt3/1cfmulti.htm
- For more information on IP multicast and IGMP, refer to RFC 1112 and RFC 2236.
- IGMP snooping supports private VLANs. Private VLANs do not impose any restrictions on IGMP snooping.
- IGMP snooping constrains traffic in MAC multicast groups 0100.5e00.0001 to 0100.5eff.ffff.
- IGMP snooping does not constrain Layer 2 multicasts generated by routing protocols.

IGMP Snooping Querier Configuration Guidelines and Restrictions

When configuring the IGMP snooping querier, follow these guidelines and restrictions:

- Configure the VLAN in global configuration mode (see Chapter 14, “Configuring VLANs”).
- Configure an IP address on the VLAN interface (see Chapter 22, “Configuring Layer 3 Interfaces”). When enabled, the IGMP snooping querier uses the IP address as the query source address.
- If there is no IP address configured on the VLAN interface, the IGMP snooping querier does not start. The IGMP snooping querier disables itself if the IP address is cleared. When enabled, the IGMP snooping querier restarts if you configure an IP address.
- The IGMP snooping querier supports IGMP version 2.
- When enabled, the IGMP snooping querier does not start if it detects IGMP traffic from a multicast router.
- When enabled, the IGMP snooping querier starts after 60 seconds with no IGMP traffic detected from a multicast router.
- When enabled, the IGMP snooping querier disables itself if it detects IGMP traffic from a multicast router.
- QoS does not support IGMP packets when IGMP snooping is enabled.
- You can enable the IGMP snooping querier on all the Cisco 7600 series routers in the VLAN. One router is elected as the querier.

Note
When you are in configuration mode you can enter EXEC mode commands by entering the `do` keyword before the EXEC mode command.
Enabling the IGMP Snooping Querier

Use the IGMP snooping querier to support IGMP snooping in a VLAN where PIM and IGMP are not configured because the multicast traffic does not need to be routed.

To enable the IGMP snooping querier in a VLAN, perform this task:

This example shows how to enable the IGMP snooping querier on VLAN 200 and verify the configuration:

```
Router# interface vlan 200
Router(config-if)# ip address 172.20.52.106 255.255.255.248
Router(config-if)# ip igmp snooping querier
Router(config-if)# end
Router# show ip igmp interface vlan 200 | include querier
```

Configuring IGMP Snooping

To use IGMP snooping, configure a Layer 3 interface in the subnet for multicast routing (see Chapter 31, “Configuring IPv4 Multicast Layer 3 Switching”) or enable the IGMP snooping querier in the subnet (see the “Enabling the IGMP Snooping Querier” section on page 33-9).

IGMP snooping allows Cisco 7600 series routers to examine IGMP packets and make forwarding decisions based on their content.

These sections describe how to configure IGMP snooping:

- Enabling IGMP Snooping, page 33-10
- Configuring a Static Connection to a Multicast Receiver, page 33-11
- Configuring a Multicast Router Port Statically, page 33-11
- Configuring the IGMP Snooping Query Interval, page 33-11
- Enabling IGMP Fast-Leave Processing, page 33-12
- Configuring Source Specific Multicast (SSM) Mapping, page 33-12
- Enabling SSM Safe Reporting, page 33-13
- Configuring IGMPv3 Explicit Host Tracking, page 33-13
Configuring IGMP Snooping for IPv4 Multicast Traffic

Chapter 33

Configuring IGMP Snooping

- Displaying IGMP Snooping Information, page 33-14

Note

Except for the global enable command, all IGMP snooping commands are supported only on VLAN interfaces.

Enabling IGMP Snooping

To enable IGMP snooping globally, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Router(config)# ip igmp snooping
 Router(config)# no ip igmp snooping | Enables IGMP snooping.
Disables IGMP snooping. |
| Step 2 | Router(config)# end | Exits configuration mode. |
| Step 3 | Router# show ip igmp interface vlan vlan_ID | Verifies the configuration. |
| | include globally | |

This example shows how to enable IGMP snooping globally and verify the configuration:

```
Router(config)# ip igmp snooping  
Router(config)# end  
Router# show ip igmp interface vlan 200 | include globally
   IGMP snooping is globally enabled  
Router#
```

To enable IGMP snooping in a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface vlan vlan_ID</td>
</tr>
</tbody>
</table>
| Step 2 | Router(config-if)# ip igmp snooping
 Router(config-if)# no ip igmp snooping | Enables IGMP snooping.
Disables IGMP snooping. |
| Step 3 | Router(config-if)# end | Exits configuration mode. |
| Step 4 | Router# show ip igmp interface vlan vlan_ID | Verifies the configuration. |
| | include snooping | |

This example shows how to enable IGMP snooping on VLAN 25 and verify the configuration:

```
Router# interface vlan 25  
Router(config-if)# ip igmp snooping  
Router(config-if)# end  
Router# show ip igmp interface v125 | include snooping
   IGMP snooping is globally enabled  
   IGMP snooping is enabled on this interface  
   IGMP snooping fast-leave is disabled and querier is disabled  
   IGMP snooping explicit-tracking is enabled on this interface  
   IGMP snooping last member query interval on this interface is 1000 ms  
Router#
```
Configuring a Static Connection to a Multicast Receiver

To configure a static connection to a multicast receiver, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# <code>mac-address-table static mac_addr vlan vlan_id interface type slot/port</code> [disable-snooping]</td>
</tr>
<tr>
<td></td>
<td>Router(config)# <code>no mac-address-table static mac_addr vlan vlan_id</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# <code>end</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# <code>show mac-address-table address mac_addr</code></td>
</tr>
</tbody>
</table>

When you configure a static connection, enter the `disable-snooping` keyword to prevent multicast traffic addressed to the statically configured multicast MAC address from also being sent to other ports in the same VLAN.

This example shows how to configure a static connection to a multicast receiver:

```
Router(config)# mac-address-table static 0050.3e8d.6400 vlan 12 interface fastethernet 5/7
```

Configuring a Multicast Router Port Statically

To configure a static connection to a multicast router, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-if)# <code>ip igmp snooping mrouter interface type slot/port</code></td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# <code>end</code></td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# <code>show ip igmp snooping mrouter</code></td>
</tr>
</tbody>
</table>

The interface to the router must be in the VLAN where you are entering the command, the interface must be administratively up, and the line protocol must be up.

This example shows how to configure a static connection to a multicast router:

```
Router(config-if)# ip igmp snooping mrouter interface fastethernet 5/6
```

Configuring the IGMP Snooping Query Interval

You can configure the interval for which the router waits after sending a group-specific query to determine if hosts are still interested in a specific multicast group.
Chapter 33 Configuring IGMP Snooping for IPv4 Multicast Traffic

Configuring IGMP Snooping

Note When both IGMP fast-leave processing and the IGMP query interval are configured, fast-leave processing takes precedence.

To configure the interval for the IGMP snooping queries sent by the router, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface vlan vlan_ID</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip igmp snooping last-member-query-interval interval</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip igmp snooping last</td>
</tr>
</tbody>
</table>

This example shows how to configure the IGMP snooping query interval:

```
Router(config-if)# ip igmp snooping last-member-query-interval 200
Router(config-if)# exit
Router# show ip igmp interface vlan 200 | include last
IGMP snooping last member query interval on this interface is 200 ms
```

Enabling IGMP Fast-Leave Processing

To enable IGMP fast-leave processing in a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface vlan vlan_ID</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip igmp snooping fast-leave</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip igmp snooping fast-leave</td>
</tr>
</tbody>
</table>

This example shows how to enable IGMP fast-leave processing on the VLAN 200 interface and verify the configuration:

```
Router# interface vlan 200
Router(config-if)# ip igmp snooping fast-leave
Configuring fast leave on vlan 200
Router(config-if)# end
Router# show ip igmp interface vlan 200 | include fast-leave
IGMP snooping fast-leave is enabled on this interface
Router(config-if)#
```

Configuring Source Specific Multicast (SSM) Mapping

Note • Do not configure SSM mapping in a VLAN that supports IGMPv3 multicast receivers.

To configure SSM mapping, refer to this publication:
Enabling SSM Safe Reporting

Note
Source-specific multicast (SSM) safe reporting is presently deprecated.

When you configure SSM safe reporting, the group mode is IGMPv3 even in the presence of IGMPv1 and IGMPv2 hosts.

To make sure the router is able to support both IGMPv1, IGMPv2, and IGMPv3 hosts in the same VLAN, perform this task:

```
Step 1
Router(config)# interface vlan vlan_ID

Step 2
Router(config-if)# ip igmp snooping ssm-safe-reporting

Router(config-if)# no ip igmp snooping ssm-safe-reporting
```

This example shows how to configure the router to support both IGMPv2 and IGMPv3 hosts:

```
Router(config)# interface vlan 10
Router(config-if)# ip igmp snooping ssm-safe-reporting
```

Configuring IGMPv3 Explicit Host Tracking

To enable explicit host tracking on a VLAN, perform this task:

```
Step 1
Router(config)# interface vlan vlan_ID

Step 2
Router(config-if)# ip igmp snooping explicit-tracking

Router(config-if)# no ip igmp snooping explicit-tracking

Step 3
Router# show ip igmp snooping explicit-tracking
    {vlan vlan-id}
```

This example shows how to enable explicit host tracking:

```
Router(config)# interface vlan 25
Router(config-if)# ip igmp snooping explicit-tracking
Router(config-if)# end
Router# show ip igmp snooping explicit-tracking vlan 25
```

<table>
<thead>
<tr>
<th>Source/Group</th>
<th>Interface</th>
<th>Reporter</th>
<th>Filter_mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.1/226.2.2.2</td>
<td>Vl25:1/2</td>
<td>16.27.2.3</td>
<td>INCLUDE</td>
</tr>
<tr>
<td>10.2.2.2/226.2.2.2</td>
<td>Vl25:1/2</td>
<td>16.27.2.3</td>
<td>INCLUDE</td>
</tr>
</tbody>
</table>
Displaying IGMP Snooping Information

These sections describe displaying IGMP snooping information:

- Displaying Multicast Router Interfaces, page 33-14
- Displaying MAC Address Multicast Entries, page 33-14
- Displaying IGMP Snooping Information for a VLAN Interface, page 33-15
- Displaying IGMP Snooping Statistics, page 33-15

Displaying Multicast Router Interfaces

When you enable IGMP snooping, the router automatically learns to which interface the multicast routers are connected.

To display multicast router interfaces, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show ip igmp snooping mrouter vlan_ID</code></td>
<td>Displays multicast router interfaces.</td>
</tr>
</tbody>
</table>

This example shows how to display the multicast router interfaces in VLAN 1:

```
Router# show ip igmp snooping mrouter vlan 1
vlan          ports
-----+----------------------------------------
1          Gi1/1,Gi2/1,Fa3/48,Router
```

Displaying MAC Address Multicast Entries

To display MAC address multicast entries for a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show mac-address-table multicast vlan_ID [count]</code></td>
<td>Displays MAC address multicast entries for a VLAN.</td>
</tr>
</tbody>
</table>

This example shows how to display MAC address multicast entries for VLAN 1:

```
Router# show mac-address-table multicast vlan 1
vlan  mac address   type    qos      ports
-----+---------------+--------+---+--------------------------------
1    0100.5e02.0203  static   --  Gi1/1,Gi2/1,Fa3/48,Router
1    0100.5e00.0127  static   --  Gi1/1,Gi2/1,Fa3/48,Router
1    0100.5e00.0128  static   --  Gi1/1,Gi2/1,Fa3/48,Router
1    0100.5e00.0001  static   --  Gi1/1,Gi2/1,Fa3/48,Router,Switch
```

This example shows how to display a total count of MAC address entries for a VLAN:

```
Router# show mac-address-table multicast 1 count
Multicast MAC Entries for vlan 1:  4
Router#```
Chapter 33 Configuring IGMP Snooping for IPv4 Multicast Traffic

Configuring IGMP Snooping

Displaying IGMP Snooping Information for a VLAN Interface

To display IGMP snooping information for a VLAN interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show ip igmp interface vlan_ID</code></td>
<td>Displays IGMP snooping information on a VLAN interface.</td>
</tr>
</tbody>
</table>

This example shows how to display IGMP snooping information on the VLAN 200 interface:

```
Router# show ip igmp interface vlan 43
Vlan43 is up, line protocol is up
Internet address is 43.0.0.1/24
IGMP is enabled on interface
Current IGMP host version is 2
Current IGMP router version is 2
IGMP query interval is 60 seconds
IGMP querier timeout is 120 seconds
IGMP max query response time is 10 seconds
Last member query count is 2
Last member query response interval is 1000 ms
Inbound IGMP access group is not set
IGMP activity:1 joins, 0 leaves
Multicast routing is enabled on interface
Multicast TTL threshold is 0
Multicast designated router (DR) is 43.0.0.1 (this system)
IGMP querying router is 43.0.0.1 (this system)
Multicast groups joined by this system (number of users):
 224.0.1.40(1)
IGMP snooping is globally enabled
IGMP snooping is enabled on this interface
IGMP snooping fast-leave is disabled and querier is disabled
IGMP snooping explicit-tracking is enabled on this interface
IGMP snooping last member query interval on this interface is 1000 ms
Router#
```

Displaying IGMP Snooping Statistics

The `show ip igmp snooping statistics interface vlan_ID` command displays the following information:

- The list of ports that are members of a group
- The filter mode
- The reporter-address behind the port
- The last-join and last-leave information collected since the last time a `clear ip igmp snooping statistics` command was entered

To display IGMP snooping statistics, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show ip igmp snooping statistics interface vlan_ID</code></td>
<td>Displays IGMP snooping information on a VLAN interface.</td>
</tr>
</tbody>
</table>
This example shows IGMP snooping statistics information for interface VLAN 25:

Router# show ip igmp snooping statistics interface vlan 25

Snooping statistics for Vlan25
#channels:2
#hosts :1

<table>
<thead>
<tr>
<th>Source/Group</th>
<th>Interface</th>
<th>Reporter</th>
<th>Uptime</th>
<th>Last-Join</th>
<th>Last-Leave</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1.1.1/226.2.2.2</td>
<td>Gi1/2:Vl25</td>
<td>16.27.2.3</td>
<td>00:01:47</td>
<td>00:00:50</td>
<td>-</td>
</tr>
<tr>
<td>10.2.2.2/226.2.2.2</td>
<td>Gi1/2:Vl25</td>
<td>16.27.2.3</td>
<td>00:01:47</td>
<td>00:00:50</td>
<td>-</td>
</tr>
</tbody>
</table>

Understanding MVR

Multicast VLAN Registration (MVR) is used to deploy multicast traffic across an Ethernet ring-based service-provider network. For example, the broadcast of multiple television channels over a service-provider network.

MVR performs the following:

- Identifies the MVR IP multicast streams and their associated IP multicast groups in the Layer 2 forwarding table.
- Intercepts the IGMP messages.
- Allows a subscriber on a port to subscribe and unsubscribe to a multicast stream on the multicast VLAN.
- Allows a single multicast VLAN to be shared in the network while subscribers remain in separate VLANs.
- Provides the ability to continuously send multicast streams in the multicast VLAN and isolate the streams from the subscriber VLANs for bandwidth and security reasons.
- Modifies the Layer 2 forwarding table to include or remove the subscriber as a receiver of the multicast stream, even though the receivers might be in a different VLAN from the source. This forwarding behavior selectively allows traffic to cross between different VLANs.

The router forwards multicast data for MVR IP multicast streams only to MVR ports on which hosts have joined, either by IGMP reports or by MVR static configuration. The router forwards IGMP reports received from MVR hosts only to the source (uplink) port. This eliminates using unnecessary bandwidth on MVR data port links.

Note

Only layer 2 ports participate in MVR. You must configure ports as MVR receiver ports. Only one MVR multicast VLAN per router is allowed.

During MVR, subscriber ports subscribe and unsubscribe multicast streams by sending out IGMP join and leave messages. These messages can originate from an IGMP version-2-compatible host with an Ethernet connection. Although MVR operates on the underlying mechanism of IGMP snooping, the two features operate independent of each other. However, if IGMP snooping and MVR are both enabled, MVR reacts only to join and leave messages from multicast groups configured under MVR. Join and leave messages from all other multicast groups are managed by IGMP snooping.
Using MVR in a Multicast Television Application

In a multicast television application, a PC or a television with a set-top box receives the multicast stream. Multiple set-top boxes or PCs can be connected to one subscriber port, which is a switch port configured as an MVR receiver port. Figure 33-3 illustrates this configuration.

The MVR feature in a multicast television application functions in this sequence:

- DHCP assigns an IP address to the set-top box or the PC. When a subscriber selects a channel, the set-top box or PC sends an IGMP report to Switch A to join the appropriate multicast. If the IGMP report matches one of the configured IP multicast group addresses, the Source Port (SP) CPU modifies the hardware address table to include this receiver port and VLAN as a forwarding destination of the specified multicast stream when it is received from the multicast VLAN. Uplink ports that send and receive multicast data to and from the multicast VLAN are called MVR source ports.

![Figure 33-3 Multicast VLAN Registration](image-url)
When a subscriber changes channels or switches off the television, the set-top box sends an IGMP leave message to the multicast stream. The SP CPU sends a MAC-based general query through the receiver port VLAN. If there is another set-top box in the VLAN still subscribing to this group, that set-top box must respond within the maximum response time specified in the query. If the CPU does not receive a response, it eliminates the receiver port as a forwarding destination for this group.

Unless the Immediate Leave feature is enabled, when the router receives an IGMP leave message from a subscriber on a receiver port, it sends out an IGMP query on that port and waits for IGMP group membership reports. If no reports are received in a configured time period, the receiver port is removed from multicast group membership. With the Immediate Leave feature enabled, an IGMP query is not sent from the receiver port on which the IGMP leave was received. As soon as the leave message is received, the receiver port is removed from multicast group membership, which speeds up leave latency. Enable the Immediate Leave feature only on receiver ports to which a single receiver device is connected.

MVR eliminates the need to duplicate television-channel multicast traffic for subscribers in each VLAN. Multicast traffic for all channels is only sent around the VLAN trunk once—only on the multicast VLAN. The IGMP leave and join messages are in the VLAN to which the subscriber port is assigned. These messages dynamically register for streams of multicast traffic in the multicast VLAN on the layer 3 device, Switch B. The access layer switch, Switch A, modifies the forwarding behavior to allow the traffic to be forwarded from the multicast VLAN to the subscriber port in a different VLAN, selectively allowing traffic to cross between two VLANs.

IGMP reports are sent to the same IP multicast group address as the multicast data. The Switch A CPU must capture all IGMP join and leave messages from receiver ports and forward them to the multicast VLAN of the source (uplink) port.

Configuring MVR

These sections contain the MVR configuration information:
- Default MVR Configuration
- Restrictions for MVR Configuration
- Configuring MVR Global Parameters
- Configuring MVR Interfaces
- Displaying MVR Information
- Clearing MVR Counters

Default MVR Configuration

Table 33-4 shows the default MVR configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVR</td>
<td>Disabled globally per interface</td>
</tr>
<tr>
<td>MVR maximum groups</td>
<td>1000 maximum groups</td>
</tr>
<tr>
<td>Multicast addresses</td>
<td>None configured</td>
</tr>
<tr>
<td>Query response time</td>
<td>1 second</td>
</tr>
</tbody>
</table>
Restrictions for MVR Configuration

The following restrictions apply to MVR:

- Only one MVR VLAN can be present in a router, and you should configure the same VLAN as the MVR VLAN for all the routers in the same network.
- Source ports must be in the MVR VLAN.
- Receiver ports on a router can be in different VLANs, but must not be in the MVR VLAN.
- Receiver ports can only be access ports; they cannot be trunk ports.
- Receiver ports of the VLAN should either have a snooping querier or an L3 SVI to generate an IGMP query on that VLAN.
- When using private VLANs, you cannot configure a primary or secondary VLAN as the MVR VLAN.
- Do not connect a multicast router to a receiver port.
- The MVR VLAN must not be a reverse path forwarding (RPF) interface for any multicast route.
- MVR data received on an MVR receiver port is not forwarded to MVR source ports.
- The maximum number of multicast entries (MVR group addresses) on a router (maximum number of television channels received) is 8000.
- MVR is available only on native systems.
- VTP pruning should be disabled if the MVR VLAN number is between 1 and 1000.
- MVR can coexist with IGMP snooping on a router.
- MVR supports IGMPv3 messages.
- MVR cannot coexist with storm control on ES-20 ports.
- When Layer 2 port-channel is configured as mvr receiver port, multicast data traffic from MVR group is not forwarded out of the member links.

Configuring MVR Global Parameters

You can use the default settings to configure the global parameters for MVR. Use the optional settings if necessary, for specific actions. Before changing the default parameters (except for the MVR VLAN), you must first enable MVR.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multicast VLAN</td>
<td>VLAN 1</td>
</tr>
<tr>
<td>Interface (per port) default</td>
<td>Neither a receiver nor a source port</td>
</tr>
<tr>
<td>Immediate Leave</td>
<td>Disabled on all ports</td>
</tr>
</tbody>
</table>
To configure the MVR global parameters, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>Router# configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>Router(config)# mvr</strong></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>Router(config)# mvr max-groups max-groups</strong></td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>**Router(config)# mvr group ip-address [count count</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>Router(config)# mvr querytime value</strong></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>Router(config)# mvr vlan vlan-id</strong></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>Router(config)# end</strong></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>Router# show mvr</strong></td>
</tr>
</tbody>
</table>

To return to default settings, use the `no mvr [group ip-address | querytime | vlan]` global configuration command.

This example shows how to enable MVR, configure the group address, set the query time to 1 second or 10 tenths of a second, and specify the MVR multicast VLAN as VLAN 22:

```
Router(config)# mvr
Router(config)# mvr group 228.1.23.4 256
Router(config)# mvr querytime 10
Router(config)# mvr vlan 22
Router(config)# end
```
Configuring MVR Interfaces

To configure Layer 2 MVR interfaces, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# mvr</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# interface interface-id</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# mvr type {source</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# mvr immediate</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router# show mvr</td>
</tr>
</tbody>
</table>

To return to default settings, use the **no mvr [type | immediate]** interface configuration commands.

This example shows how to configure a source port and a receiver port, and how to configure Immediate Leave on the receiver port:

```
Router(config)# mvr
Router(config)# interface gigabitethernet 3/48
Router(config-if)# switchport
Router(config-if)# switchport access vlan 22
Router(config-if)# mvr type source
Router(config-if)# exit
Router(config)# interface gigabitethernet 3/47
Router(config-if)# switchport
Router(config-if)# switchport access vlan 30
Router(config-if)# mvr type receiver
Router(config-if)# mvr immediate
Router(config-if)# exit
```
Displaying MVR Information

You can display MVR information for the router or for a specified interface. To display MVR configurations, perform one or more of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router# `show mvr` | Displays the MVR status with the following information:  
  - MVR (True or False)  
  - The multicast VLAN  
  - The configured maximum and current number of multicast groups  
  - The query response time |
| Router# `show mvr groups` | Displays the MVR group configuration along with the maximum and current multicast group information. |
| Router# `show mvr interface [type module/port]` | Displays all MVR interfaces and their MVR configurations.  
When a specific interface is entered, it displays this information:  
  - Type—Receiver or Source  
  - Status—One of these:  
    - Active—At least one IGMP joins message is received for an MVR group on the port.  
    - Inactive—The port is not participating in any MVR groups.  
    - Up/Down—The port is forwarding (Up) or non-forwarding (Down).  
  - Immediate Leave—Enabled or Disabled |
| Router# `show mvr members [[vlan vlan-id] | [type module/port]] count` | Displays details of all MVR members and number (count) of MVR members in all active MVR groups or on a specified VLAN or port. |
| Router# `show mvr {receiver-ports | source-ports} [type module/port]` | Displays all receiver or source ports that are members of any IP multicast group or those on the specified interface port. |

This example displays MVR status and values for the router:

```
Router# show mvr
MVR Running: TRUE
MVR multicast vlan: 22
MVR Max Multicast Groups: 1000
MVR Current multicast groups: 16
MVR Global query response time: 10 (tenths of sec)
```

This example displays the MVR group configuration:
Router# show mvr groups
MVR max Multicast Groups allowed: 8000
MVR current multicast groups:  8000
MVR groups:

<table>
<thead>
<tr>
<th>Group start</th>
<th>Group end</th>
<th>Type</th>
<th>Count/Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>225.0.7.226</td>
<td>225.0.7.226</td>
<td>count</td>
<td>1</td>
</tr>
<tr>
<td>225.0.7.227</td>
<td>225.0.7.227</td>
<td>count</td>
<td>1</td>
</tr>
<tr>
<td>225.0.7.228</td>
<td>225.0.7.228</td>
<td>count</td>
<td>1</td>
</tr>
<tr>
<td>225.0.7.229</td>
<td>225.0.7.229</td>
<td>count</td>
<td>1</td>
</tr>
<tr>
<td>225.0.7.230</td>
<td>225.0.7.230</td>
<td>count</td>
<td>1</td>
</tr>
<tr>
<td>225.0.7.231</td>
<td>225.0.7.231</td>
<td>count</td>
<td>1</td>
</tr>
<tr>
<td>236.8.7.0</td>
<td>236.8.7.255</td>
<td>mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>237.8.7.0</td>
<td>237.8.7.255</td>
<td>mask</td>
<td>255.255.255.0</td>
</tr>
<tr>
<td>237.8.8.0</td>
<td>237.8.8.255</td>
<td>mask</td>
<td>255.255.255.0</td>
</tr>
</tbody>
</table>

This example displays all the MVR interfaces and configurations:

Router# show mvr interface

<table>
<thead>
<tr>
<th>Port</th>
<th>VLAN</th>
<th>Type</th>
<th>Status</th>
<th>Immediate Leave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/20</td>
<td>2</td>
<td>RECEIVER</td>
<td>ACTIVE/UP</td>
<td>DISABLED</td>
</tr>
<tr>
<td>Gi1/21</td>
<td>2</td>
<td>SOURCE</td>
<td>ACTIVE/UP</td>
<td>DISABLED</td>
</tr>
</tbody>
</table>

This example displays all the MVR members on VLAN 2:

Router# show mvr members vlan 2

<table>
<thead>
<tr>
<th>MVR Group IP</th>
<th>Status</th>
<th>Members VLAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>224.000.001.001</td>
<td>ACTIVE</td>
<td>Gi1/20(u),Gi1/21(u) 2</td>
</tr>
<tr>
<td>224.000.001.002</td>
<td>ACTIVE</td>
<td>Fa3/2(d),Gi1/12(u) 2</td>
</tr>
</tbody>
</table>

This example displays the number of MVR members on all MVR VLANs:

Router# show mvr members count

Count of active MVR groups:
Vlan 490: 400
Vlan 600: 400
Vlan 700: 0
Vlan 950: 0

This example displays all receiver ports that are members of any IP multicast group:

Router# show mvr receiver-ports

<table>
<thead>
<tr>
<th>Port</th>
<th>VLAN</th>
<th>Status</th>
<th>Immediate Leave</th>
<th>Joins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/7</td>
<td>202</td>
<td>INACTIVE/UP</td>
<td>Enabled</td>
<td>305336</td>
</tr>
<tr>
<td>Gi1/8</td>
<td>202</td>
<td>ACTIVE/UP</td>
<td>Disabled</td>
<td>4005</td>
</tr>
<tr>
<td>Gi1/9</td>
<td>203</td>
<td>INACTIVE/DOWN</td>
<td>Disabled</td>
<td>53007</td>
</tr>
<tr>
<td>Gi1/10</td>
<td>203</td>
<td>ACTIVE/UP</td>
<td>Disabled</td>
<td>6204</td>
</tr>
<tr>
<td>Gi1/11</td>
<td>204</td>
<td>ACTIVE/UP</td>
<td>Disabled</td>
<td>0</td>
</tr>
<tr>
<td>Gi1/12</td>
<td>205</td>
<td>INACTIVE/UP</td>
<td>Enabled</td>
<td>8623</td>
</tr>
</tbody>
</table>

Clearing MVR Counters

You can clear MVR join counters for the router, for source or receiver ports, or for a specified interface.

To clear MVR counters, perform this task:
Chapter 33      Configuring IGMP Snooping for IPv4 Multicast Traffic

Configuring MVR

This example shows how to clear the join counters for a receiver port on the GigabitEthernet port 1/7:

Router# clear mvr receiver-ports GigabitEthernet 1/7
Router# show mvr receiver-ports GigabitEthernet 1/7

<table>
<thead>
<tr>
<th>Port</th>
<th>VLAN Status</th>
<th>Immediate</th>
<th>Joins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/7</td>
<td>202 INACTIVE/UP</td>
<td>ENABLED</td>
<td>0</td>
</tr>
</tbody>
</table>

Troubleshooting

Table 33-5 lists the troubleshooting issues while configuring MVR:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The MVR receiver ports do not receive the traffic or when the data traffic from MVR group is not sent on MVR VLAN.</td>
<td>• Check for the MAC address entries using the <code>show mac-address table vlan mvr vlan</code> command.</td>
</tr>
<tr>
<td></td>
<td>• Check for the MVR receiver port status using the <code>show mvr receiver ports</code> command.</td>
</tr>
<tr>
<td></td>
<td>• Check whether the IGMP joins for the MVR group on the MVR receiver port are redirected to the MVR VLAN, using the following debug commands:</td>
</tr>
<tr>
<td></td>
<td>– debug mvr all</td>
</tr>
<tr>
<td></td>
<td>– debug platform software multicast igmp event</td>
</tr>
<tr>
<td></td>
<td>– debug platform software multicast igmp pak</td>
</tr>
</tbody>
</table>
Configuring PIM Snooping

This chapter describes how to configure protocol independent multicast (PIM) snooping on the Cisco 7600 series routers.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:


This chapter consists of these sections:

- Understanding How PIM Snooping Works, page 34-1
- Default PIM Snooping Configuration, page 34-3
- PIM Snooping Configuration Guidelines and Restrictions, page 34-4
- Configuring PIM Snooping, page 34-4

Understanding How PIM Snooping Works

In networks where a Layer 2 router interconnects several routers, such as an Internet exchange point (IXP), the router floods IP multicast packets on all multicast router ports by default, even if there are no multicast receivers downstream. With PIM snooping enabled, the router restricts multicast packets for each IP multicast group to only those multicast router ports that have downstream receivers joined to that group. When you enable PIM snooping, the router learns which multicast router ports need to receive the multicast traffic within a specific VLAN by listening to the PIM hello messages, PIM join and prune messages, and bidirectional PIM designated forwarder-election messages.

To use PIM snooping, you must enable IGMP snooping on the Cisco 7600 series router. IGMP snooping restricts multicast traffic that exits through the LAN ports to which hosts are connected. IGMP snooping does not restrict traffic that exits through the LAN ports to which one or more multicast routers are connected.

The following illustrations show the flow of traffic and flooding that results in networks without PIM snooping enabled and the flow of traffic and traffic restriction when PIM snooping is enabled.

**Figure 34-1** shows the flow of a PIM join message without PIM snooping enabled. In the figure, the switches flood the PIM join message intended for Router B to all connected routers.
Understanding How PIM Snooping Works

Figure 34-1  PIM Join Message Flow without PIM Snooping

Figure 34-2 shows the flow of a PIM join message with PIM snooping enabled. In the figure, the switches restrict the PIM join message and forward it only to the router that needs to receive it (Router B).

Figure 34-2  PIM Join Message Flow with PIM Snooping

Figure 34-3 shows the flow of data traffic without PIM snooping enabled. In the figure, the switches flood the data traffic intended for Router A to all connected routers.
PIM snooping is disabled by default.
PIM Snooping Configuration Guidelines and Restrictions

When configuring PIM snooping, follow these guidelines and restrictions:

- When you use the PIM-sparse mode (PIM-SM) feature, downstream routers only see traffic if they previously indicated interest through a PIM join or prune message. An upstream router only sees traffic if it was used as an upstream router during the PIM join or prune process.
- Join or prune messages are not flooded on all router ports but are sent only to the port corresponding to the upstream router mentioned in the payload of the join or prune message.
- Directly connected sources are supported for bidirectional PIM groups. Traffic from directly connected sources is forwarded to the designated router and designated forwarder for a VLAN. In some cases, a nondesignated router (NDR) can receive a downstream (S, G) join. For source-only networks, the initial unknown traffic is flooded only to the designated routers and designated forwarders.
- Dense group mode traffic is seen as unknown traffic and is dropped.
- The AUTO-RP groups (224.0.1.39 and 224.0.1.40) are always flooded.
- The router snoops on designated forwarder election and maintains a list of all designated forwarder routers for various RPs for the VLAN. All traffic is sent to all designated forwarders which ensures that bidirectional functionality works properly.
- PIM snooping and IGMP snooping can be enabled at the same time in a VLAN. Either RGMP or PIM snooping can be enabled in a VLAN but not both.
- Any non-PIMv2 multicast router will receive all traffic.
- You can enable or disable PIM snooping on a per-VLAN basis.
- All mroute and router information is timed out based on the hold-time indicated in the PIM hello and join/prune control packets. All mroute state and neighbor information is maintained per VLAN.

Configuring PIM Snooping

These sections describe how to configure PIM snooping:

- Enabling PIM Snooping Globally, page 34-4
- Enabling PIM Snooping in a VLAN, page 34-5
- Disabling PIM Snooping Designated-Router Flooding, page 34-5

Enabling PIM Snooping Globally

To enable PIM snooping globally, perform this task:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip pim snooping</td>
<td>Enables PIM snooping.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no ip pim snooping</td>
<td>Disables PIM snooping.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show ip pim snooping</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>
This example shows how to enable PIM snooping globally and verify the configuration:

```
Router(config)# ip pim snooping
Router(config)# end
Router# show ip pim snooping
Global runtime mode: Enabled
Global admin mode : Enabled
Number of user enabled VLANS: 1
User enabled VLANs: 10
Router#
```

**Note**
You do not need to configure an IP address or IP PIM in order to run PIM snooping.

### Enabling PIM Snooping in a VLAN

To enable PIM snooping in a VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface vlan vlan_ID</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip pim snooping</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip pim snooping</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show ip pim snooping</td>
</tr>
</tbody>
</table>

This example shows how to enable PIM snooping on VLAN 10 and verify the configuration:

```
Router# interface vlan 10
Router(config-if)# ip pim snooping
Router(config-if)# end
Router# show ip pim snooping vlan 10
3 neighbors (0 DR priority incapable, 0 Bi-dir incapable)
6 mroutes, 3 mac entries
DR is 10.10.10.4
RP DF Set
Router#
```

### Disabling PIM Snooping Designated-Router Flooding

**Note**
- The PIM snooping DR flooding enhancement is supported with the Supervisor Engine 720
- Do not disable designated-router flooding on routers in a Layer 2 broadcast domain that supports multicast sources.
By default, routers that have PIM snooping enabled will flood multicast traffic to the designated router (DR). This method of operation can send unnecessary multicast packets to the designated router. The network must carry the unnecessary traffic, and the designated router must process and drop the unnecessary traffic.

To reduce the traffic sent over the network to the designated router, disable designated-router flooding. With designated-router flooding disabled, PIM snooping only passes to the designated-router traffic that is in multicast groups for which PIM snooping receives an explicit join from the link towards the designated router.

To disable PIM snooping designated-router flooding, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router(config)# no ip pim snooping dr-flood</td>
<td>Disables PIM snooping designated-router flooding.</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong> Router# show running-config</td>
<td>include dr-flood</td>
</tr>
</tbody>
</table>

This example shows how to disable PIM snooping designated-router flooding:

Router(config)# no ip pim snooping dr-flood
Router(config)# end
CHAPTER 35

Configuring Network Security

This chapter contains network security information unique to the Cisco 7600 series routers, which supplements the network security information and procedures in these publications:

- *Cisco IOS Security Configuration Guide*, Release 12.2, at this URL:
- The Cisco 7600 Series Routers Command References at this URL:

**Note**

For complete syntax and usage information for the commands used in this chapter, refer to these publications:

- The *Cisco 7600 Series Router Cisco IOS Command Reference* at this URL:
- The Release 12.2 publications at this URL:

This chapter consists of these sections:

- Configuring MAC Address-Based Traffic Blocking, page 35-1
- Configuring TCP Intercept, page 35-2
- Configuring Unicast Reverse Path Forwarding Check, page 35-2

### Configuring MAC Address-Based Traffic Blocking

To block all traffic to or from a MAC address in a specified VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Router(config)# mac-address-table static mac_address vlan vlan_ID drop</strong></td>
<td>Blocks all traffic to or from the configured MAC address in the specified VLAN.</td>
</tr>
<tr>
<td><strong>Router(config)# no mac-address-table static mac_address vlan vlan_ID</strong></td>
<td>Clears MAC address-based blocking.</td>
</tr>
</tbody>
</table>
This example shows how to block all traffic to or from MAC address 0050.3e8d.6400 in VLAN 12:

```
Router# configure terminal
Router(config)# mac-address-table static 0050.3e8d.6400 vlan 12 drop
```

## Configuring TCP Intercept

TCP intercept flows are processed in hardware.

For configuration procedures, refer to the *Cisco IOS Security Configuration Guide*, Release 12.2, “Traffic Filtering and Firewalls,” “Configuring TCP Intercept (Preventing Denial-of-Service Attacks),” at this URL:


## Configuring Unicast Reverse Path Forwarding Check

These sections describe configuring Cisco IOS Unicast Reverse Path Forwarding check (Unicast RPF check):

- Understanding PFC3 Unicast RPF Check Support, page 35-2
- Unicast RPF Check Guidelines and Restrictions, page 35-3
- Configuring Unicast RPF Check, page 35-3

### Understanding PFC3 Unicast RPF Check Support

For a complete explanation of how Unicast RPF check works, refer to the *Cisco IOS Security Configuration Guide*, Release 12.2, “Other Security Features,” “Configuring Unicast Reverse Path Forwarding” at this URL:


The PFC3 provides hardware support for RPF check of traffic from multiple interfaces.

With strict-method Unicast RPF check, the PFC3 supports two parallel paths for all prefixes in the routing table, and up to four parallel paths for prefixes reached through any of four user-configurable RPF interface groups (each interface group can contain four interfaces).

With loose-method Unicast RPF check (also known as exist-only method), the PFC3 supports up to eight reverse-path interfaces (the Cisco IOS software is limited to eight reverse paths in the routing table).

There are four methods of performing Unicast RPF check in Cisco IOS:

- Strict Unicast RPF check
- Strict Unicast RPF check with allow-default
- Loose Unicast RPF check
- Loose Unicast RPF check with allow-default

You configure Unicast RPF check on a per-interface basis, but the PFC3 supports only one Unicast RPF method for all interfaces that have Unicast RPF check enabled. When you configure an interface to use a Unicast RPF method that is different from the currently configured method, all other interfaces in the system that have Unicast RPF check enabled use the new method.
Unicast RPF Check Guidelines and Restrictions

When configuring Unicast RPF check, follow these guidelines and restrictions:

• If you configure Unicast RPF check to filter with an ACL, the PFC determines whether or not traffic matches the ACL. The PFC sends the traffic denied by the RPF ACL to the MSFC for the Unicast RPF check. Packets permitted by the ACL are forwarded in hardware without a Unicast RPF check (CSCdz35099).

• Because the packets in a denial-of-service attack typically match the deny ACE and are sent to the MSFC for the Unicast RPF check, they can overload the MSFC.

• The PFC provides hardware support for traffic that does not match the Unicast RPF check ACL, but that does match an input security ACL.

• The PFC does not provide hardware support Unicast RPF check for policy-based routing (PBR) traffic. (CSCea53554)

Configuring Unicast RPF Check

These sections describe how to configure Unicast RPF check:

• Configuring the Unicast RPF Check Mode, page 35-3
• Configuring the Multiple-Path Unicast RPF Check Mode on a PFC3, page 35-5
• Enabling Self-Pinging, page 35-6

Configuring the Unicast RPF Check Mode

There are two Unicast RPF check modes:

• Strict check mode, which verifies that the source IP address exists in the FIB table and verifies that the source IP address is reachable through the input port.

• Exist-only check mode, which only verifies that the source IP address exists in the FIB table.

Note The most recently configured mode is automatically applied to all ports configured for Unicast RPF check.

To configure Unicast RPF check mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface {{vlan vlan_ID</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# ip verify unicast source reachable-via {rx</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip verify unicast</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# exit</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router# show mls cef ip rpf</td>
</tr>
</tbody>
</table>
When configuring the Unicast RPF check mode, note the following information:

- Use the `rx` keyword to enable strict check mode.
- Use the `any` keyword to enable exist-only check mode.
- Use the `allow-default` keyword to allow use of the default route for RPF verification.
- Use the `list` option to identify an access list.
  - If the access list denies network access, spoofed packets are dropped at the port.
  - If the access list permits network access, spoofed packets are forwarded to the destination address. Forwarded packets are counted in the interface statistics.
  - If the access list includes the logging action, information about the spoofed packets is sent to the log server.

Note When you enter the `ip verify unicast source reachable-via` command, the Unicast RPF check mode changes on all ports in the router.

This example shows how to enable Unicast RPF exist-only check mode on Gigabit Ethernet port 4/1:

```
Router(config)# interface gigabitethernet 4/1
Router(config-if)# ip verify unicast source reachable-via any
Router(config-if)# end
Router#
```

This example shows how to enable Unicast RPF strict check mode on Gigabit Ethernet port 4/2:

```
Router(config)# interface gigabitethernet 4/2
Router(config-if)# ip verify unicast source reachable-via rx
Router(config-if)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show running-config interface gigabitethernet 4/2
Building configuration...
Current configuration : 114 bytes
!
interface GigabitEthernet4/2
ip address 42.0.0.1 255.0.0.0
ip verify unicast reverse-path
no cdp enable
end
```

```
Router# show running-config interface gigabitethernet 4/1
Building configuration...
Current configuration : 114 bytes
!
interface GigabitEthernet4/1
ip address 41.0.0.1 255.0.0.0
ip verify unicast reverse-path (RPF mode on g4/1 also changed to strict-check RPF mode)
no cdp enable
end
Router#
```
Configuring the Multiple-Path Unicast RPF Check Mode on a PFC3

To configure the multiple-path Unicast RPF check mode on a PFC3, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# mls ip cef rpf mpath {punt</td>
<td>pass</td>
</tr>
<tr>
<td>Step 1 Router(config)# no mls ip cef rpf mpath {punt</td>
<td>interface-group}</td>
</tr>
<tr>
<td>Step 2 Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3 Router# show mls cef ip rpf</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When configuring multiple path RPF check, note the following information:

- **punt** (default)—The PFC3 performs the Unicast RPF check in hardware for up to two interfaces per prefix. Packets arriving on any additional interfaces are redirected (punted) to the MSFC3 for Unicast RPF check in software.

- **pass**—The PFC3 performs the Unicast RPF check in hardware for single-path and two-path prefixes. Unicast RPF check is disabled for packets coming from multipath prefixes with three or more reverse-path interfaces (these packets always pass the Unicast RPF check).

- **interface-group**—The PFC3 performs the Unicast RPF check in hardware for single-path and two-path prefixes. The PFC3 also performs the Unicast RPF check for up to four additional interfaces per prefix through user-configured multipath Unicast RPF check interface groups. Unicast RPF check is disabled for packets coming from other multipath prefixes that have three or more reverse-path interfaces (these packets always pass the Unicast RPF check).

This example shows how to configure multiple path RPF check:

```
Router(config)# mls ip cef rpf mpath punt
```

Configuring Multiple-Path Interface Groups on a PFC3

To configure multiple-path Unicast RPF interface groups on a PFC3, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# mls ip cef rpf interface-group [0</td>
<td>1</td>
</tr>
<tr>
<td>Step 2 Router(config)# mls ip cef rpf interface-group group_number</td>
<td>Removes an interface group.</td>
</tr>
<tr>
<td>Step 3 Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4 Router# show mls cef ip rpf</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure interface group 2:

```
Router(config)# mls ip cef rpf interface-group 2 fastethernet 3/3 fastethernet 3/4 fastethernet 3/5 fastethernet 3/6
```
Enabling Self-Pinging

With Unicast RPF check enabled, by default the router cannot ping itself.

To enable self-pinging, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;Router(config)# interface {{vlan vlan_ID}</td>
<td>{type' slot/port}</td>
</tr>
<tr>
<td><strong>Step 2</strong>&lt;br&gt;Router(config-if)# ip verify unicast source reachable-via any allow-self-ping&lt;br&gt;Router(config-if)# no ip verify unicast source reachable-via any allow-self-ping</td>
<td>Enables the router to ping itself or a secondary address. Disables self-pinging.</td>
</tr>
<tr>
<td><strong>Step 3</strong>&lt;br&gt;Router(config-if)# exit</td>
<td>Exits interface configuration mode.</td>
</tr>
</tbody>
</table>

1. *type* = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to enable self-pinging:

Router(config)# interface gigabitethernet 4/1
Router(config-if)# ip verify unicast source reachable-via any allow-self-ping
Router(config-if)# end
Understanding Cisco IOS ACL Support

This chapter describes Cisco IOS ACL support on the Cisco 7600 series routers:

- Cisco IOS ACL Configuration Guidelines and Restrictions, page 36-1
- Hardware and Software ACL Support, page 36-2
- Optimized ACL Logging with a PFC3, page 36-3
- Guidelines and Restrictions for Using Layer 4 Operators in ACLs, page 36-5

For complete information about configuring Cisco IOS ACLs, refer to the Cisco IOS Security Configuration Guide, Release 12.2 at this URL:


Cisco IOS ACL Configuration Guidelines and Restrictions

The following guidelines and restrictions apply to Cisco IOS ACL configurations:

- You can apply Cisco IOS ACLs directly to Layer 3 ports and to VLAN interfaces.
- You can apply VLAN ACLs (VACLs) to VLANs (refer to Chapter 38, “Configuring VLAN ACLs”).
- Each type of ACL (IP, IPX, and MAC) filters only traffic of the corresponding type. A Cisco IOS MAC ACL never matches IP or IPX traffic.
- The PFC does not provide hardware support for Cisco IOS IPX ACLs. Cisco IOS IPX ACLs are supported in software on the MSFC.
- By default, the MSFC sends Internet Control Message Protocol (ICMP) unreachable messages when a packet is denied by an access group.

  With the `ip unreachables` command enabled (which is the default), the supervisor engine drops most of the denied packets in hardware and sends only a small number of packets to the MSFC to be dropped (10 packets per second, maximum), which generates ICMP-unreachable messages.

  To eliminate the load imposed on the MSFC CPU by the task of dropping denied packets and generating ICMP-unreachable messages, you can enter the `no ip unreachables` interface configuration command to disable ICMP unreachable messages, which allows all access group-denied packets to be dropped in hardware.

- ICMP unreachable messages are not sent if a packet is denied by a VACL.
- Access Control Entries (ACEs) matching IP options are not supported in the hardware forwarding path.
Hardware and Software ACL Support

Access control lists (ACLs) can be processed in hardware by the Policy Feature Card (PFC), a Distributed Forwarding Card (DFC), or in software by the Multilayer Switch Feature Card (MSFC). The following behavior describes software and hardware handling of ACLs:

- The PFC provides more efficient hardware support for named ACLs than it can for numbered ACLs.
- ACL flows that match a “deny” statement in standard and extended ACLs (input and output) are dropped in hardware if “ip unreachables” is disabled.
- ACL flows that match a “permit” statement in standard and extended ACLs (input and output) are processed in hardware.
- VLAN ACL (VACL) flows are processed in hardware. If a field specified in a VACL is not supported by hardware processing that field is ignored (for example, the log keyword in an ACL) or the whole configuration is rejected (for example, a VACL containing IPX ACL parameters).
- VACL logging is processed in software.
- Dynamic ACL flows are processed in hardware.
- Idle timeout is processed in software.

Note: Idle timeout is not configurable. Cisco 7600 series routers do not support the access-enable host timeout command.

- IP accounting for an ACL access violation on a given port is supported by forwarding all denied packets for that port to the MSFC for software processing without impacting other flows.
- The PFC does not provide hardware support for Cisco IOS IPX ACLs. Cisco IOS IPX ACLs are supported in software on the MSFC.
- Extended name-based MAC address ACLs are supported in hardware.
- The following ACL types are processed in software:
  - Internetwork Packet Exchange (IPX) access lists
  - Standard XNS access list
  - Extended XNS access list
  - DECnet access list
  - Extended MAC address access list
  - Protocol type-code access list

Note: IP packets with a header length of less than five will not be access controlled.

- Unless you configure optimized ACL logging (OAL), flows that require logging are processed in software without impacting nonlogged flow processing in hardware (see the “Optimized ACL Logging with a PFC3” section on page 36-3).
- The forwarding rate for software-processed flows is substantially less than for hardware-processed flows.
- When you enter the show ip access-list command, the match count displayed does not include packets processed in hardware.
Optimized ACL Logging with a PFC3

These sections describe OAL:
- Understanding OAL, page 36-3
- OAL Guidelines and Restrictions, page 36-3
- Configuring OAL, page 36-3

Understanding OAL

Optimized ACL Logging (OAL) provides hardware support for ACL logging. Unless you configure OAL, packets that require logging are processed completely in software on the MSFC. OAL permits or drops packets in hardware on the PFC3 and uses an optimized routine to send information to the MSFC3 to generate the logging messages.

OAL Guidelines and Restrictions

The following guidelines and restrictions apply to OAL:
- OAL and VACL capture are incompatible. Do not configure both features on the router. With OAL configured, use SPAN to capture traffic.
- OAL is supported only on the PFC3.
- OAL supports only IPv4 unicast packets.
- OAL supports VACL logging of permitted ingress traffic.
- OAL does not provide hardware support for the following:
  - Reflexive ACLs
  - ACLs used to filter traffic for other features (for example, QoS)
  - Exception packets (for example, TTL failure and MTU failure)
  - Packets with IP options
  - Packets addressed at Layer 3 to the router
  - Packets sent to the MSFC3 to generate ICMP unreachable messages
  - Packets being processed by features not accelerated in hardware
- To provide OAL support for denied packets, enter the `mls rate-limit unicast ip icmp unreachable acl-drop 0` command.

Configuring OAL

These sections describe how to configure OAL:
- Configuring OAL Global Parameters, page 36-4
- Configuring OAL on an Interface, page 36-5
- Displaying OAL Information, page 36-5
- Clearing Cached OAL Entries, page 36-5
Optimized ACL Logging with a PFC3

Chapter 36  Understanding Cisco IOS ACL Support

Note

- For complete syntax and usage information for the commands used in this section, refer to the Cisco 7600 Series Router Cisco IOS Command Reference.
- To provide OAL support for denied packets, enter the **mls rate-limit unicast ip icmp unreachable acl-drop 0** command.

Configuring OAL Global Parameters

To configure global OAL parameters, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# logging ip access-list cache {entries number_of_entries}</td>
<td>Sets OAL global parameters.</td>
</tr>
<tr>
<td>Router(config)# logging ip access-list cache {interval seconds}</td>
<td></td>
</tr>
<tr>
<td>Router(config)# logging ip access-list cache {rate-limit number_of_packets}</td>
<td></td>
</tr>
<tr>
<td>Router(config)# logging ip access-list cache {threshold number_of_packets}</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no logging ip access-list cache {entries</td>
<td>interval</td>
</tr>
</tbody>
</table>

When configuring OAL global parameters, note the following information:

- **entries number_of_entries**:  
  - Sets the maximum number of entries cached.  
  - Range: 0–1,048,576 (entered without commas).  
  - Default: 8000.

- **interval seconds**:  
  - Sets the maximum time interval before an entry is sent to be logged. Also if the entry is inactive for this duration it is removed from the cache.  
  - Range: 5–86,400 (1440 minutes or 24 hours, entered without commas).  
  - Default: 300 seconds (5 minutes).

- **rate-limit number_of_packets**:  
  - Sets the number of packets logged per second in software.  
  - Range: 10–1,000,000 (entered without commas).  
  - Default: 0 (rate limiting is off and all packets are logged).

- **threshold number_of_packets**:  
  - Sets the number of packet matches before an entry is logged.  
  - Range: 1–1,000,000 (entered without commas).  
  - Default: 0 (logging is not triggered by the number of packet matches).
Configuring OAL on an Interface

To configure OAL on an interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{type slot/port}</td>
</tr>
<tr>
<td></td>
<td>Specifies the interface to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# logging ip access-list cache in</td>
</tr>
<tr>
<td></td>
<td>Enables OAL for ingress traffic on the interface.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no logging ip access-list cache</td>
</tr>
<tr>
<td></td>
<td>Disables OAL on the interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# logging ip access-list cache out</td>
</tr>
<tr>
<td></td>
<td>Enables OAL for egress traffic on the interface.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no logging ip access-list cache</td>
</tr>
<tr>
<td></td>
<td>Disables OAL on the interface.</td>
</tr>
</tbody>
</table>

1. type = any that supports Layer 3-switched traffic.

Displaying OAL Information

To display OAL information, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router # show logging ip access-list cache</td>
<td>Displays OAL information.</td>
</tr>
</tbody>
</table>

Clearing Cached OAL Entries

To clear cached OAL entries, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router # clear logging ip access-list cache</td>
<td>Clears cached OAL entries.</td>
</tr>
</tbody>
</table>

Guidelines and Restrictions for Using Layer 4 Operators in ACLs

These sections describe guidelines and restrictions when configuring ACLs that include Layer 4 port operations:

- Determining Layer 4 Operation Usage, page 36-5
- Determining Logical Operation Unit Usage, page 36-6

Determining Layer 4 Operation Usage

You can specify these types of operations:

- gt (greater than)
- lt (less than)
- neq (not equal)
• eq (equal)
• range (inclusive range)

We recommend that you do not specify more than *nine different* operations on the same ACL. If you exceed this number, each new operation might cause the affected ACE to be translated into more than one ACE.

Use the following two guidelines to determine Layer 4 operation usage:

• Layer 4 operations are considered different if the operator or the operand differ. For example, in this ACL there are three different Layer 4 operations (“gt 10” and “gt 11” are considered two different Layer 4 operations):

```
... gt 10 permit
... lt 9 deny
... gt 11 deny
```

**Note** There is no limit to the use of “eq” operators as the “eq” operator does not use a logical operator unit (LOU) or a Layer 4 operation bit. See the “Determining Logical Operation Unit Usage” section on page 36-6 for a description of LOUs.

• Layer 4 operations are considered different if the same operator/operand couple applies once to a source port and once to a destination port. For example, in this ACL there are two different Layer 4 operations because one ACE applies to the source port and one applies to the destination port.

```
... Src gt 10 ...
... Dst gt 10
```

### Determining Logical Operation Unit Usage

Logical operation units (LOUs) are registers that store operator-operand couples. All ACLs use LOUs. There can be up to 32 LOUs; each LOU can store two different operator-operand couples with the exception of the range operator. LOU usage per Layer 4 operation is as follows:

• gt uses 1/2 LOU
• lt uses 1/2 LOU
• neq uses 1/2 LOU
• range uses 1 LOU
• eq does not require a LOU

For example, this ACL would use a single LOU to store two different operator-operand couples:

```
... Src gt 10 ...
... Dst gt 10
```

A more detailed example follows:

```
ACL1
... (dst port) gt 10 permit
... (dst port) lt 9 deny
... (dst port) gt 11 deny
... (dst port) neq 6 permit
... (src port) neq 6 deny
... (dst port) gt 10 deny

ACL2
... (dst port) gt 20 deny
```
... (src port) lt 9 deny
... (src port) range 11 13 deny
... (dst port) neq 6 permit

The Layer 4 operations and LOU usage is as follows:

- ACL1 Layer 4 operations: 5
- ACL2 Layer 4 operations: 4
- LOUs: 4

An explanation of the LOU usage follows:

- LOU 1 stores “gt 10” and “lt 9”
- LOU 2 stores “gt 11” and “neq 6”
- LOU 3 stores “gt 20” (with space for one more)
- LOU 4 stores “range 11 13” (range needs the entire LOU)
Configuring VRF aware 6RD Tunnels

This chapter describes how to configure VRF aware 6RD tunnels on Cisco 7600 series routers. Following are the sections:

- Understanding VRF aware 6RD Tunnels, page 37-1
- Configuring VRF aware 6RD Tunnels, page 37-2

Understanding VRF aware 6RD Tunnels

Currently the 6RD tunneling feature on c7600 does not support virtual routing and forwarding (VRF) awareness. The forwarding table lookups for IPv6 overlay addresses and IPv4 transport addresses are performed in global routing tables. This feature extends the 6RD tunneling support for IPv6 overlay addresses and IPv4 transport addresses in VRF.

These scenarios explain the VRF aware 6RD tunnel function:

- IPv6 overlay address in VRF and IPv4 transport address in Global routing table (RT).
- IPv6 overlay address in VRF and IPv4 transport address in VRF.

Figure 37-1  Topology for the IPv6 overlay address in VRF, and the IPv4 transport address in GRT.

The VRF Aware IPv6 over IPv4 Tunnel should have an ES+ line card towards the tunnel facing side.
Restriction for VRF aware 6RD Tunnels

- Currently the c7600 supports only 256 VRF instances for IPv6.
- The incoming physical interface, and the tunnel interface should have the same VRF instance defined.
- The tunnel transport VRF and the egress physical interface, through which the traffic leaves should have the same VRF instance defined.
- For 6RD customer edge router configuration, the tunnel source and the border relay (BR) address should have the same VRF instance defined as the physical interface, through which the traffic flows.

Configuring VRF aware 6RD Tunnels

For information on VRF aware 6RD tunnels configuration, see:
Configuring VLAN ACLs

This chapter describes how to configure VLAN ACLs (VACLs) on Cisco 7600 series routers.

Note

- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
- OAL and VACL capture are incompatible. Do not configure both features on the router. With OAL configured (see the “Optimized ACL Logging with a PFC3” section on page 36-3), use SPAN to capture traffic.

This chapter consists of these sections:

- Understanding VACLs, page 38-1
- Configuring VACLs, page 38-4
- Configuring VACL Logging, page 38-10

Understanding VACLs

These sections describe VACLs:

- VACL Overview, page 38-1
- Bridged Packets, page 38-2
- Routed Packets, page 38-2
- Multicast Packets, page 38-3

VACL Overview

VACLs can provide access control for all packets that are bridged within a VLAN or that are routed into or out of a VLAN or a WAN interface for VACL capture. Unlike regular Cisco IOS standard or extended ACLs that are configured on router interfaces only and are applied on routed packets only, VACLs apply to all packets and can be applied to any VLAN or WAN interface. VACLs are processed in hardware. VACLs use Cisco IOS ACLs. VACLs ignore any Cisco IOS ACL fields that are not supported in hardware.
You can configure VACLs for IP, IPX, and MAC-Layer traffic. VACLs applied to WAN interfaces support only IP traffic for VACL capture.

When you configure a VACL and apply it to a VLAN, all packets entering the VLAN are checked against this VACL. If you apply a VACL to the VLAN and an ACL to a routed interface in the VLAN, a packet coming in to the VLAN is first checked against the VACL and, if permitted, is then checked against the input ACL before it is handled by the routed interface. When the packet is routed to another VLAN, it is first checked against the output ACL applied to the routed interface and, if permitted, the VACL configured for the destination VLAN is applied. If a VACL is configured for a packet type and a packet of that type does not match the VACL, the default action is deny.

Note

- TCP Intercepts and Reflexive ACLs take precedence over a VACL action if these are configured on the same interface.
- VACLs and CBAC cannot be configured on the same interface.
- IGMP packets are not checked against VACLs.

Bridged Packets

Figure 38-1 shows a VACL applied on bridged packets.

Figure 38-1 Applying VACLs on Bridged Packets

Routed Packets

Figure 38-2 shows how ACLs are applied on routed and Layer 3-switched packets. For routed or Layer 3-switched packets, the ACLs are applied in the following order:

1. VACL for input VLAN
2. Input Cisco IOS ACL
3. Output Cisco IOS ACL
4. VACL for output VLAN
Figure 38-2 Applying VACLs on Routed Packets

Multicast Packets

Figure 38-3 shows how ACLs are applied on packets that need multicast expansion. For packets that need multicast expansion, the ACLs are applied in the following order:

1. Packets that need multicast expansion:
   a. VACL for input VLAN
   b. Input Cisco IOS ACL
2. Packets after multicast expansion:
   a. Output Cisco IOS ACL
   b. VACL for output VLAN
3. Packets originating from router—VACL for output VLAN
Configuring VACLs

These sections describe how to configure VACLs:

- **VACL Configuration Overview**, page 38-4
- **Defining a VLAN Access Map**, page 38-5
- **Configuring a Match Clause in a VLAN Access Map Sequence**, page 38-6
- **Configuring an Action Clause in a VLAN Access Map Sequence**, page 38-7
- **Applying a VLAN Access Map**, page 38-7
- **Verifying VLAN Access Map Configuration**, page 38-8
- **VLAN Access Map Configuration and Verification Examples**, page 38-8
- **Configuring a Capture Port**, page 38-9

**VACL Configuration Overview**

VACLs use standard and extended Cisco IOS IP and IPX ACLs, and MAC Layer-named ACLs (see the “Configuring MAC ACLs” section on page 48-55) and VLAN access maps.

VLAN access maps can be applied to VLANs or to WAN interfaces for VACL capture. VACLs attached to WAN interfaces support only standard and extended Cisco IOS IP ACLs.
Each VLAN access map can consist of one or more map sequences, each sequence with a match clause and an action clause. The match clause specifies IP, IPX, IPv6 or MAC ACLs for traffic filtering and the action clause specifies the action to be taken when a match occurs. When a flow matches a permit ACL entry, the associated action is taken and the flow is not checked against the remaining sequences. When a flow matches a deny ACL entry, it will be checked against the next ACL in the same sequence or the next sequence. If a flow does not match any ACL entry and at least one ACL is configured for that packet type, the packet is denied.

To use access control for both bridged and routed traffic, you can use VACLs alone or a combination of VACLs and ACLs. You can define ACLs on the VLAN interfaces to use access control for both the input and output routed traffic. You can define a VACL to use access control for the bridged traffic.

The following caveats apply to ACLs when used with VACLs:

- Packets that require logging on the outbound ACLs are not logged if they are denied by a VACL.
- VACLs are applied on packets before NAT translation. If the translated flow is not subject to access control, the flow might be subject to access control after the translation because of the VACL configuration.

The action clause in a VACL can be forward, drop, capture, or redirect. Traffic can also be logged. VACLs applied to WAN interfaces do not support the redirect or log actions.

**Note**

- VACLs have an implicit deny at the end of the map; a packet is denied if it does not match any ACL entry, and at least one ACL is configured for the packet type.
- If an empty or undefined ACL is specified in a VACL, any packets will match the ACL and the associated action is taken.

- All the IP address related restrictions such as address compression that apply to RACL and PACL also apply to VACL.
- While configuring the VACL, the LOG attribute from the ACE is always ignored.

### Defining a VLAN Access Map

To define a VLAN access map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config)# vlan access-map map_name [0-65535]</code></td>
<td>Defines the VLAN access map. Optionally, you can specify the VLAN access map sequence number.</td>
</tr>
<tr>
<td><code>Router(config)# no vlan access-map map_name 0-65535</code></td>
<td>Deletes a map sequence from the VLAN access map.</td>
</tr>
<tr>
<td><code>Router(config)# no vlan access-map map_name</code></td>
<td>Deletes the VLAN access map.</td>
</tr>
</tbody>
</table>

When defining a VLAN access map, note the following information:

- To insert or modify an entry, specify the map sequence number.
- If you do not specify the map sequence number, a number is automatically assigned.
- You can specify only one match clause and one action clause per map sequence.
- Use the `no` keyword with a sequence number to remove a map sequence.
Use the no keyword without a sequence number to remove the map.

Note: While defining the VLAN access-map, you should use only single word as the access-map name and white spaces are not allowed in the access-map name. For example, you can use map_name to name the access-map, but you should not use multiple words such as map name. Effective from Cisco IOS release 12.2(33)SRE8, the length of the VLAN access-map name should not exceed 25 characters.

See the “VLAN Access Map Configuration and Verification Examples” section on page 38-8.

Configuring a Match Clause in a VLAN Access Map Sequence

To configure a match clause in a VLAN access map sequence, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-map)# match {ip address</td>
<td>1300-2699</td>
</tr>
<tr>
<td>Router(config-access-map)# match ip</td>
<td>1300-2699</td>
</tr>
<tr>
<td>match acl_address acl_name</td>
<td>ipv6 address acl_name}</td>
</tr>
<tr>
<td>Router(config-access-map)# no match {ip address</td>
<td>1-199</td>
</tr>
<tr>
<td>Router(config-access-map)# no match ip</td>
<td>1-199</td>
</tr>
<tr>
<td>Router(config-access-map)# no match acl_address acl_name}</td>
<td></td>
</tr>
</tbody>
</table>

When configuring a match clause in a VLAN access map sequence, note the following information:

- You can select one or more ACLs.
- VACLs attached to WAN interfaces support only standard and extended Cisco IOS IP ACLs.
- Use the no keyword to remove a match clause or specified ACLs in the clause.
- For information about named MAC-Layer ACLs, refer to the “Configuring MAC ACLs” section on page 48-55.

See the “VLAN Access Map Configuration and Verification Examples” section on page 38-8.

Sample Configuration for Match Clause

The following example shows the configuration of an IPv6 based match.

```
Router(config)#vlan access-map new
Router(config-access-map)#match ipv6 address <acl_name>
Router(config-access-map)#action
Router(config-access-map)#action drop
Router(config-access-map)#end
```
Configuring an Action Clause in a VLAN Access Map Sequence

To configure an action clause in a VLAN access map sequence, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-access-map)# action {drop [log]}</td>
<td>Configures the action clause in a VLAN access map sequence.</td>
</tr>
<tr>
<td>Router(config-access-map)# action {forward [capture]}</td>
<td></td>
</tr>
<tr>
<td>Router(config-access-map)# action {redirect {ethernet</td>
<td>fastethernet</td>
</tr>
<tr>
<td>Router(config-access-map)# no action {drop [log]}</td>
<td>Deletes the action clause in from the VLAN access map sequence.</td>
</tr>
<tr>
<td>Router(config-access-map)# no action {forward [capture]}</td>
<td></td>
</tr>
<tr>
<td>Router(config-access-map)# no action {redirect {ethernet</td>
<td>fastethernet</td>
</tr>
</tbody>
</table>

When configuring an action clause in a VLAN access map sequence, note the following information:

- You can set the action to drop, forward, forward capture, or redirect packets.
- VACLs applied to WAN interfaces support only the forward capture action. VACLs applied to WAN interfaces do not support the drop, forward, or redirect actions.
- Forwarded packets are still subject to any configured Cisco IOS security ACLs.
- The **capture** action sets the capture bit for the forwarded packets so that ports with the capture function enabled can receive the packets. Only forwarded packets can be captured. For more information about the **capture** action, see the “Configuring a Capture Port” section on page 38-9.
- VACLs applied to WAN interfaces do not support the **log** action.
- When the **log** action is specified, dropped packets are logged in software. Only dropped IP packets can be logged.
- The **redirect** action allows you to specify up to five interfaces, which can be physical interfaces or EtherChannels. You cannot specify packets to be redirected to an EtherChannel member or a VLAN interface.
- The redirect interface must be in the VLAN for which the VACL access map is configured.
- With a PFC3, if a VACL is redirecting traffic to an egress SPAN source port, SPAN does not copy the VACL-redirected traffic.
- SPAN and RSPAN destination ports transmit VACL-redirected traffic.
- Use the **no** keyword to remove an action clause or specified redirect interfaces.

See the “VLAN Access Map Configuration and Verification Examples” section on page 38-8.

Applying a VLAN Access Map

To apply a VLAN access map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# vlan filter map_name {vlan-list vlan_list</td>
<td>interface type number}</td>
</tr>
<tr>
<td>Router(config)# no vlan filter map_name {vlan-list vlan_list</td>
<td>interface type number}</td>
</tr>
</tbody>
</table>
Configuring VACLs

When applying a VLAN access map, note the following information:

- You can apply the VLAN access map to one or more VLANs or WAN interfaces.
- The `vlan_list` parameter can be a single VLAN ID or a comma-separated list of VLAN IDs or VLAN ID ranges (`vlan_ID–vlan_ID`).
- If you delete a WAN interface that has a VACL applied, the VACL configuration on the interface is also removed.
- You can apply only one VLAN access map to each VLAN or WAN interface.
- VACLs applied to VLANs are active only for VLANs with a Layer 3 VLAN interface configured. Applying a VLAN access map to a VLAN without a Layer 3 VLAN interface creates an administratively down Layer 3 VLAN interface to support the VLAN access map.
- VACLs applied to VLANs are inactive if the Layer 2 VLAN does not exist or is not operational.
- You cannot apply a VACL to a secondary private VLAN. VACLs applied to primary private VLANs also apply to secondary private VLANs.
- Use the `no` keyword to clear VLAN access maps from VLANs or WAN interfaces.

See the “VLAN Access Map Configuration and Verification Examples” section on page 38-8.

Verifying VLAN Access Map Configuration

To verify VLAN access map configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>show vlan access-map [map_name]</code></td>
<td>Verifies VLAN access map configuration by displaying the content of a VLAN access map.</td>
</tr>
<tr>
<td>Router# `show vlan filter [access-map map_name</td>
<td>vlan vlan_id</td>
</tr>
</tbody>
</table>

1. `type` = `pos`, `atm`, or `serial`
2. `number` = `slot/port` or `slot/port_adapter/port`; can include a subinterface or channel group descriptor

VLAN Access Map Configuration and Verification Examples

Assume IP-named ACL `net_10` and `any_host` are defined as follows:

```
Router# show ip access-lists net_10
Extended IP access list net_10
 permit ip 10.0.0.0 0.255.255.255 any
```

```
Router# show ip access-lists any_host
Standard IP access list any_host
 permit any
```
This example shows how to define and apply a VLAN access map to forward IP packets. In this example, IP traffic matching net_10 is forwarded and all other IP packets are dropped due to the default drop action. The map is applied to VLAN 12 to 16.

```plaintext
Router(config)# vlan access-map thor 10
Router(config-access-map)# match ip address net_10
Router(config-access-map)# action forward
Router(config-access-map)# exit
Router(config)# vlan filter thor vlan-list 12-16
```

This example shows how to define and apply a VLAN access map to drop and log IP packets. In this example, IP traffic matching net_10 is dropped and logged and all other IP packets are forwarded:

```plaintext
Router(config)# vlan access-map ganymede 10
Router(config-access-map)# match ip address net_10
Router(config-access-map)# action drop log
Router(config-access-map)# exit
Router(config)# vlan access-map ganymede 20
Router(config-access-map)# match ip address any_host
Router(config-access-map)# action forward
Router(config-access-map)# exit
Router(config)# vlan filter ganymede vlan-list 7-9
```

This example shows how to define and apply a VLAN access map to forward and capture IP packets. In this example, IP traffic matching net_10 is forwarded and captured and all other IP packets are dropped:

```plaintext
Router(config)# vlan access-map mordred 10
Router(config-access-map)# match ip address net_10
Router(config-access-map)# action forward capture
Router(config-access-map)# exit
Router(config)# vlan filter mordred vlan-list 2, 4-6
```

### Configuring a Capture Port

A port configured to capture VACL-filtered traffic is called a capture port.

**Note**

To apply IEEE 802.1Q or ISL tags to the captured traffic, configure the capture port to trunk unconditionally (see the “Configuring the Layer 2 Switching Port as an ISL or 802.1Q Trunk” section on page 10-8 and the “Configuring the Layer 2 Trunk Not to Use DTP” section on page 10-9).

To configure a capture port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface {{type} slot/port}</td>
</tr>
<tr>
<td></td>
<td>Specifies the interface to configure.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# switchport capture allowed vlan {add</td>
</tr>
<tr>
<td></td>
<td>(Optional) Filters the captured traffic on a per-destination-VLAN basis. The default is all.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport capture allowed vlan</td>
</tr>
<tr>
<td></td>
<td>Clears the configured destination VLAN list and returns to the default value (all).</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# switchport capture</td>
</tr>
<tr>
<td></td>
<td>Configures the port to capture VACL-filtered traffic.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport capture</td>
</tr>
<tr>
<td></td>
<td>Disables the capture function on the interface.</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet
Chapter 38      Configuring VLAN ACLs

When configuring a capture port, note the following information:

- You can configure any port as a capture port.
- The `vlan_list` parameter can be a single VLAN ID or a comma-separated list of VLAN IDs or VLAN ID ranges (vlan_ID–vlan_ID).
- To encapsulate captured traffic, configure the capture port with the `switchport trunk encapsulation` command (see the “Configuring a Layer 2 Switching Port as a Trunk” section on page 10-7) before you enter the `switchport capture` command.
- For unencapsulated captured traffic, configure the capture port with the `switchport mode access` command (see the “Configuring a LAN Interface as a Layer 2 Access Port” section on page 10-13) before you enter the `switchport capture` command.
- The capture port supports only egress traffic. No traffic can enter the router through a capture port.
- LI overrides VAACL Capture.
- VAACL Capture and OAL are mutually exclusive features.
- When the VAACL capture is configured on an egress interface with another egress feature that requires software processing of the traffic, packets of the overlapping traffic may be captured twice.

This example shows how to configure a Fast Ethernet interface 5/1 as a capture port:

```
Router(config)# interface gigabitEthernet 5/1
Router(config-if)# switchport capture
Router(config-if)# end
```

This example shows how to display VLAN access map information:

```
Router# show vlan access-map mordred
Vlan access-map "mordred" 10
 match: ip address net_10
 action: forward capture
```

This example shows how to display mappings between VAACLs and VLANs. For each VAACL map, there is information about the VLANs that the map is configured on and the VLANs that the map is active on. A VAACL is not active if the VLAN does not have an interface.

```
Router# show vlan filter
VLAN Map mordred:
 Configured on VLANs: 2,4-6
 Active on VLANs: 2,4-6
```

Configuring VAACL Logging

When you configure VAACL logging, IP or IPv6 packets that are denied generate log messages in these situations:

- When the first matching packet is received
- For any matching packets received during the last 5-minute interval
- If the threshold is reached before the 5-minute interval

Log messages are generated on a per-flow basis. A flow is defined as packets with the same IP addresses and Layer 4 (UDP or TCP) port numbers. When a log message is generated, the timer and packet count is reset. These restrictions apply to VAACL logging:
• Because of the rate-limiting function for redirected packets, VACL logging counters may not be accurate.

• Only denied IP packets are logged.

To configure VACL logging, use the action drop log command action in VLAN access map submode (see the “Configuring VACLs” section on page 38-4 for configuration information) and perform this task in global configuration mode to specify the global VACL logging parameters:

```
Step 1 Router(config)# vlan access-log maxflow max_number
 Sets the log table size. The content of the log table can be deleted by setting the maxflow number to 0. The default is 500 with a valid range of 0 to 2048. When the log table is full, logged packets from new flows are dropped by the software.

Step 2 Router(config)# vlan access-log ratelimit pps
 Sets the maximum redirect VACL logging packet rate. The default packet rate is 2000 packets per second with a valid range of 0 to 5000. Packets exceeding the limit are dropped by the hardware.

Step 3 Router(config)# vlan access-log threshold pkt_count
 Sets the logging threshold. A logging message is generated if the threshold for a flow is reached before the 5-minute interval. By default, no threshold is set.

Step 4 Router(config)# exit
 Exits VLAN access map configuration mode.

Step 5 Router# show vlan access-log config
 (Optional) Displays the configured VACL logging properties.

Step 6 Router# show vlan access-log flow protocol
 (Optional) Displays the content of the VACL log table.

Step 7 Router# show vlan access-log statistics
 (Optional) Displays packet and message counts and other statistics.
```

This example shows how to configure global VACL logging in hardware:

```
Router(config)# vlan access-log maxflow 800
Router(config)# vlan access-log ratelimit 2200
Router(config)# vlan access-log threshold 4000
```

### Displaying IPv6 VACL Logging

To display the contents of the IPv6 VACL log table, use the following command:

```
show vlan access-log v6flow protocol {{src_addr src_mask} | any | {host {hostname | host_ip}}}
{{dst_addr dst_mask} | any | {host {hostname | host_ip}}}[vlan vlan_id]
```

The following examples shows sample outputs for the command.

```
Router# show vlan access-log v6flow icmp any any
Matched flows:
 id prot src_ip dst_ip sport dport vlan mod/port count
total lastlog

 1 58 CACA::1 2009::10

```

This 38-11
### Configuring VACL Logging

```plaintext
Router#show vlan access-log v5flow ipv6 any any
Matched flows:

<table>
<thead>
<tr>
<th>id</th>
<th>prot</th>
<th>src_ip</th>
<th>dst_ip</th>
<th>sport</th>
<th>dport</th>
<th>vlan</th>
<th>mod/port</th>
<th>count</th>
<th>total</th>
<th>lastlog</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>CACA::1</td>
<td></td>
<td>0</td>
<td>102</td>
<td>7/2</td>
<td>4</td>
<td>5</td>
<td>129</td>
<td>01:13:06</td>
</tr>
</tbody>
</table>

Total number of matched entries: 1
```

Router#show vlan access-log v5flow ipv6 any any
Matched flows:

<table>
<thead>
<tr>
<th>id</th>
<th>prot</th>
<th>src_ip</th>
<th>dst_ip</th>
<th>sport</th>
<th>dport</th>
<th>vlan</th>
<th>mod/port</th>
<th>count</th>
<th>total</th>
<th>lastlog</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>58</td>
<td>CACA::1</td>
<td></td>
<td>0</td>
<td>102</td>
<td>7/2</td>
<td>4</td>
<td>5</td>
<td>129</td>
<td>01:13:06</td>
</tr>
</tbody>
</table>

Total number of matched entries: 1
Private Hosts (Using PACLs)

This chapter describes the Private Hosts feature, which is being introduced for the Cisco 7600 series router in Cisco IOS Release 12.2SRB. This chapter contains the following sections:

- Overview, page 39-1
- Configuration Guidelines and Limitations, page 39-5
- Configuring Private Hosts, page 39-9
- Command Reference, page 39-13

Overview

The Private Hosts feature provides Layer 2 (L2) isolation between the hosts in a VLAN. You can use Private Hosts as an alternative to the Private VLAN isolated-trunks feature, which is currently not available on the Cisco 7600 router.

Service Providers (SPs) worldwide face increasing demand to provide their customers with triple-play services (voice, video, and data) over a single physical interface (copper or fiber). Typically, triple-play services are delivered over three different VLANs for each user, even though the VLAN for video traffic is often shared by multiple end users.

The key benefits of the Private Hosts feature are the ability to:

- Isolate traffic among hosts (subscribers) that share the same VLAN ID
- Reuse VLAN IDs across different subscribers, which improves VLAN scalability by making better use of the 4096 VLANs allowed
- Prevent MAC spoofing to prevent denial of service (DOS) attacks

The Private Hosts feature uses port-based access control lists (PACLs) to provide Layer 2 isolation between hosts on trusted ports within a purely Layer 2 domain. The PACLs isolate the hosts by imposing Layer 2 forwarding constraints on the router ports.

**Note**

In Release 12.2SRB, PACLs are supported only as part of Private Hosts; you cannot configure your own PACLs. Instead, the router creates and applies PACLs based on your Private Hosts configuration.

The sections that follow provide more detail about the following Private Hosts concepts:

- Isolating Hosts in a VLAN, page 39-2
- Restricting Traffic Flow (Using Private Hosts Port Mode and PACLs), page 39-3
Overview

- Port ACLs, page 39-4

Isolating Hosts in a VLAN

Typically, triple-play services (voice, video, and data) are delivered over three different VLANs for each user, even though the VLANs for the same set of services could be shared among multiple end users. For example, if 10 end users all receive the same set of services, Private Hosts can be used to deliver the services to all of 10 end users over a single set of VLANs. However, to allow VLAN sharing, the service provider must be able to isolate traffic between the users (hosts) at Layer 2.

The Private Hosts feature provides Layer 2 isolation among hosts (end users) in a VLAN. By isolating the hosts, a service provider can use a single set of VLANs to deliver the same set of broadband or metro Ethernet services to multiple end users while ensuring that none of the hosts in the VLAN can communicate directly with each other. For example, VLAN 10 can be used for voice traffic, VLAN 20 for video traffic, and VLAN 30 for data traffic.

When the Cisco 7600 router is used as a DSLAM Gigabit Ethernet (GE) aggregator, the DSLAM is connected to the router through a trunk port that can carry data for multiple VLANs. The service provider uses a single physical port and a single set of VLANs to deliver the same set of services to different end users (isolated hosts). A separate VLAN is used for each service (voice, video, and data).

Figure 39-1 shows an example of triple-play services being delivered from the Cisco 7600 router to multiple end users attached to a DSLAM. In the figure note that:

- A single trunk link (between the router and the DSLAM) carries traffic for all three VLANs.
- Virtual circuits deliver the VLAN traffic from the DSLAM to individual end users.

Figure 39-1 VC to VLAN Mapping
Chapter 39  Private Hosts (Using PACLs)

Overview

Restricting Traffic Flow (Using Private Hosts Port Mode and PACLs)

The Private Hosts feature uses PACLs to restrict the type of traffic that is allowed to flow through each of the ports configured for Private Hosts. A port’s mode (specified when you enable Private Hosts on the port) determines what type of PACL is applied to the port. Each type of PACL restricts the traffic flow for a different type of traffic (for example, from content servers to isolated hosts, from isolated hosts to servers, and traffic between isolated hosts).

The following list describes the port modes used by the Private Hosts feature (see Figure 39-2):

- **Isolated**—Ports connected to the DSLAMs that the end users (isolated hosts) are connected to. The hosts on the VLANs on these ports need to be isolated from each other. Hosts connected through these ports are allowed to pass unicast traffic to upstream devices only.
- **Promiscuous**—Ports that face the core network or the Broadband Remote Access Server (BRAS) devices and multicast servers that are providing the broadband services.
- **Mixed**—Ports that interconnect Cisco 7600 routers. These ports can act as either an isolated port or a promiscuous port, depending on Spanning Tree Protocol (STP) topology changes. These ports allow unicast traffic to upstream devices (such as BRAS and multicast servers) only.

The following list summarizes how the Private Hosts feature restricts traffic flow:

- **Broadcast traffic at the ingress of the service provider network is redirected to BRAS and multicast servers (such as video servers).**
- **All unicast traffic between access routers (Cisco 7600 routers connected to each other) is blocked except for traffic directed toward BRAS and multicast servers.**
- **The unknown unicast flood blocking (UUF) feature is used to block unknown unicast traffic on DSLAM-facing ports.**

Figure 39-2 shows the different types of port modes (isolated, promiscuous, and mixed) used in a Private Hosts configuration.
Port ACLs

The Private Hosts software creates several types of port ACLs (PACLs) to impose Layer 2 forwarding constraints on router ports. Each type of PACL restricts traffic flow for a particular type of traffic (for example, from content servers to isolated hosts, from isolated hosts to servers, and traffic between isolated hosts).
The software creates PACLs for the different types of Private Hosts ports based on the MAC addresses of the content servers providing broadband services and the VLAN IDs of the isolated hosts to deliver those services to. You specify the mode in which each Private Hosts port is to operate and the software applies the appropriate PACL to the port based on the port’s mode (isolated, promiscuous, or mixed).

Following are examples of the different types of PACLs that are used by the Private Hosts feature.

**Isolated Hosts PACL**

Following is an example of a PACL for isolated ports:

```plaintext
deny host BRAS_MAC any
permit any host BRAS_MAC
redirect any host FFFF.FFFF.FFFF to LTLIndex 6
permit any 0100.5E00.0000/0000.007F.FFFF
permit any 3333.0000.0000/000.FFFF.FFFF
deny any any
```

**Promiscuous Port PACL**

Following is an example of a PACL for promiscuous ports:

```plaintext
permit host BRAS_MAC any
deny any any
```

**Mixed-Mode Port PACL**

Following is an example of a PACL for mixed-mode ports:

```plaintext
permit host BRAS_MAC ffff.ffff.ffff
redirect any host FFFF.FFFF.FFFF to LTLIndex 6
permit host BRAS_MAC any
permit any host BRAS_MAC
deny any any
```

**Configuration Guidelines and Limitations**

Observe the following guidelines and limitations as you configure the Private Hosts feature on Cisco 7600 routers:

- **Software and hardware requirements:**
  - Cisco IOS Release 12.2SRB or later
  - RSP720 (with PFC3C or PFC3CXL), Sup720 (with PFC3B or PFC3BXL), or Sup32
  - Supported on line cards with Fast Ethernet or Gigabit Ethernet (GE) interfaces that can be configured as switch ports (for example, SIP-600, ESM-20, and 67xx LAN cards). (Note that the SIP-400 and Enhanced FlexWAN do not support Private Hosts.)
  - Supported on Layer 2 interfaces that are configured as switchports (802.1q or ISL trunk ports).
  - Supported on port-channel interfaces (Etherchannel, FastEtherchannel, and GigabitEtherchannel). You must enable Private Hosts on the port-channel interface; you cannot enable the feature on member ports.

- **Private Hosts and Private VLANs cannot both be configured on the same port (interface). Both features can co-exist on the router, but each feature must be configured on different ports.

- **Private Hosts is an end-to-end feature. You must enable the feature on all of the routers between the DSLAMs and upstream devices like BRAS and multicast servers.

- **Currently, only trusted ports can be configured as isolated ports.

- **Supported on Layer 2 interfaces that are configured as switchports (802.1q or ISL trunk ports).

- **Supported on port-channel interfaces (Etherchannel, FastEtherchannel, and GigabitEtherchannel). You must enable Private Hosts on the port-channel interface; you cannot enable the feature on member ports.
Configuration Guidelines and Limitations

Chapter 39      Private Hosts (Using PACLs)

• LAN based features such as DAI and DHCP-snooping will not co-exist functionally on the Private Host’s port because the Private Host feature enforces a mac-based lookup at the switchport and not vlan-based. In other words, the Private Host’s vlan-list and the DAI or DHCP snooping vlan list should be mutually exclusive and should not overlap on the Private Host’s switchport.

The following protocol-independent MAC ACL restrictions also apply:

• You can configure the following interface types for Protocol-independent MAC ACL filtering:
  – VLAN interfaces with no IP address
  – Physical LAN ports that support EoMPLS
  – Logical LAN subinterfaces that support EoMPLS

• Protocol-independent MAC ACL filtering applies MAC ACLs to all ingress traffic types (for example, IPv4 traffic, IPv6 traffic, and MPLS traffic, in addition to MAC-layer traffic).

• Ingress traffic that is permitted or denied by a protocol-independent MAC ACL is processed by egress interfaces as MAC-layer traffic. You cannot apply egress IP ACLs to traffic permitted or denied by a MAC ACL on an interface configured for protocol-independent MAC ACL filtering.

• Do not configure protocol-independent MAC ACL filtering on VLAN interfaces where you have configured an IP address.

• Do not configure protocol-independent MAC ACL filtering with microflow policing when the permitted traffic would be bridged or Layer 3 switched in hardware by the PFC3.

• Protocol-independent MAC ACL filtering supports microflow policing when the permitted traffic is routed in software by the MSFC.

The following limitations are applicable when you apply a private host to a port with only a subset of configured VLANS:
### Table 39-1 PACL Scenarios and Limitations

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Limitations</th>
</tr>
</thead>
</table>
| For all the VLANs in the Private-Host enabled port associated with Private-Host VLAN-list | • Since IP and non-IP traffic are subjected to PACL, based on the configured MAC addresses in the mac-list, both IP and non-IP traffic are permitted or denied.  
• From 12.2(SRD4) onwards, you can associate Private Host VLAN-list with one VLAN having cross connect(xconnect). Traffic received from the isolated Port is subjected to PACL. If another VLAN in the VLAN-list is configured with cross-connect, it is rejected. Similarly if a VLAN configured with cross-connect is added to Private Host VLAN-list, it is rejected if the VLAN-list already has a VLAN with cross-connect.  
• In the above case traffic which are permitted by PACL will be switched over the cross-connect. |
| For all the VLANs in the Private-Host enabled port not associated with Private-Host VLAN-list | • All Non-IP traffic are subjected to the PACL. The traffic is permitted or denied based on mac addresses configured in the Private Host mac-list.  
• IP traffic on these VLANs are not subjected to PACL.  
• If cross connect is configured on these VLANs, the IP traffic is switched to the cross connect without being subjected to PACL.  
• If the VLAN is Layer-3 routed (SVI), and the IP traffic is Layer-3 routed, the default ACL on the port denies all the packet. However, the L3 packets are forwarded to the CPU (MSFC) where it is rate-limited.  
• If the VLAN is associated with cross-connect, non-IP traffic is switched on the cross-connect only if the PACL permits the traffic.  
• If the VLAN is configured with **mac packet-classify**, then both IP and non-IP traffic on the VLAN are subjected to PACL. |

- The following protocol-independent MAC ACL restrictions also apply from release 12.2(33) SRD4 onwards:  
  - The Private Host feature prevents any traffic on the VLAN, which has Private Host configured, from passing directly between any two subscribers that share the VLAN.  
  - You can configure the system where one VLAN on the system operates with Private Host and cross-connect connectivity.
Chapter 39 Private Hosts (Using PACLs)

Configuration Guidelines and Limitations

– If one VLAN is configured for cross-connect and Private Host, then the configured VLAN’s cross-connect is in promiscuous mode. However, you cannot apply a ACL on the configured cross-connect when traffic is relayed from the core side.
– There is no change in scale or performance when you apply the MAC ACL restrictions.
– Private Host limits VPLS support for only one VLAN. If the Private Host VLAN-list already has a VPLS VLAN (VLAN with cross-connect), the addition of another VPLS VLAN is blocked. Similarly, if any VLAN in the VLAN-list has cross-connect configured, the configuration of cross-connect on another VLAN in the VLAN-list is blocked.

Note In Release 12.2SRB, PACLs are supported only as part of Private Hosts; you cannot configure your own PACLs. Instead, the router creates and applies PACLs based on your Private Hosts configuration.

ACL Guidelines

The following configuration guidelines and limitations apply to access control lists (ACLs):

• 12.2 (33) SRD4 release of the Private Hosts feature uses Protocol Independent MAC ACLs. Do not apply IP-based ACLs to any port configured for Private Hosts or you will break the Private Hosts feature (because the router will not be able to apply a Private Hosts MAC ACL to the port).
• VLAN ACLs (VACLs) and port ACLs cannot both be applied to the same interface.
• Routing ACLs (RACLs) and PACLs cannot both be applied to the same interface. However, you can apply ACLs to separate interfaces.
• You can apply an ACL based IPv4 port feature on a trunk port, but it will work only if the trunk port is configured in prefer port mode. Use the access-group mode prefer port command to configure the trunk port in prefer port mode.

VLANs on the Trunk Port

The following guidelines and limitations apply to VLANs:

• You can enable IGMP snooping on VLANs that use trunk ports configured for Private Hosts.
• You cannot enable IP multicast on a VLAN that uses a trunk port that is configured for Private Hosts.
• Because PACLs operate in override mode on trunk ports, you cannot apply VLAN-based features to switchports.
• The Multicast VLAN Registration (MVR) feature can co-exist with Private Hosts as long as the multicast source exists on a promiscuous port.

Interaction with Other Features

The following list describes how the Private Hosts feature interacts with other features that are configured on the router:

• Private Hosts feature does not affect Layer 2 based services such as MAC limiting, unicast flood protection (UFP), or unknown unicast flood blocking (UUFB).
• Private Hosts feature does not affect IGMP snooping. However, if IGMP snooping is globally disabled, IGMP control packets will be subject to ACL checks. To permit IGMP control packets, the Private Hosts software adds a multicast permit statement to the PACLs for isolated hosts. Note that this behavior occurs automatically and no user intervention is required.
• Port security can be enabled on isolated ports to provide added security to those ports.
• When enabled on promiscuous or mixed-mode ports, the port security feature may restrict a change in source port for upstream devices (such as BRAS or multicast servers).
• When enabled on an access port, 802.1x is not affected by the Private Hosts.

Spoofing Protection

The Private Hosts feature prevents MAC address spoofing but does not validate the customer MAC or IP address. To prevent MAC address spoofing the Private Hosts feature:
• Uses a static MAC address for the BRAS and multicast servers.
• Disables learning in the Layer 2 (L2) forwarding table.
• Alerts the router software when a BRAS or multicast server moves from one source port to another. The software then validates the move, and updates the L2 forwarding table.

Multicast Operation

Multicast traffic that originates from upstream devices (such as BRAS or multicast servers) is always permitted. In addition, the Private Hosts PACLs are not applied to multicast control packets (such as IGMP query and join requests). This behavior allows isolated hosts to participate in multicast groups, respond to IGMP queries, and receive traffic from any groups of interest.

Multicast traffic that originates from a host is dropped by the Private Hosts PACLs. However, if other hosts need to receive multicast traffic originating from a host, Private Hosts does the following adds a multicast permit entry to the PACLs.

Configuring Private Hosts

The following sections provide information about configuring the Private Hosts feature on a Cisco 7600 series router and instructions for configuring the feature:
• Configuration Summary, page 39-9
• Detailed Configuration Steps, page 39-10
• Configuration Examples, page 39-12

Configuration Summary

This section provides a summary of the steps to perform to configure the Private Hosts feature on Cisco 7600 routers. Detailed configuration instructions follow in the next section.

1. Determine which router ports (interfaces) to use for the Private Hosts feature. You can configure the feature on switchports (802.1q or ISL trunk ports) or port-channel interfaces (Etherchannel, FastEtherchannel, and GigabitEtherchannel). Note that Private Hosts must be enabled on the port-channel interface; you cannot enable the feature on member ports.

2. Configure each port (interface) for normal, non-Private Hosts service. Note that you can configure the VLANs at this point or later.

3. Determine which VLAN or set of VLANs will be used to deliver broadband services to end-users. The Private Hosts feature will provide Layer 2 isolation among the hosts in these VLANs.
4. Identify the MAC addresses of all Broadband Remote Access Servers (BRAS) and multicast servers that are being used to provide broadband services to end-users (isolated hosts).

Note: If a server is not connected directly to the router, determine the MAC address of the core network device that provides access to the server.

5. (Optional) If you plan to offer different types of broadband services to different sets of isolated hosts, create multiple MAC and VLAN lists.
   - Each MAC address list identifies a server or set of servers providing a particular type of service.
   - Each VLAN list identifies the isolated hosts where that service to be delivered.

6. Configure promiscuous ports and specify a MAC and VLAN list to identify the server and receiving hosts for a particular type of service.

Note: You can specify multiple MAC and VLAN combinations to allow for different types of services to be delivered to different sets of hosts. For example, the BRAS at xxxx.xxx.xxx.xxx could be used to deliver a basic set of services over VLANs 20, 25, and 30, and the BRAS at yyyy.yyyyyyyyy could be used to deliver a premium set of services over VLANs 5, 10, and 15.


8. Enable Private Hosts on individual ports (interfaces) and specify the mode in which the port is to operate. To determine port mode, you need to know whether the port faces upstream (toward content servers or core network), faces downstream (toward DSLAM and isolated hosts), or is connected to another Cisco 7600 router (typically, in a ring topology). See Restricting Traffic Flow (Using Private Hosts Port Mode and PACLs), page 39-3.

After you enable the feature on individual ports, the router is ready to run the Private Hosts feature. The Private Hosts software uses the MAC and VLAN lists you defined to create the isolated, promiscuous, and mixed-mode PACLs for your configuration. The software then applies the appropriate PACL to each Private Hosts port based on the port’s mode.

**Detailed Configuration Steps**

Perform the following steps to configure the Private Hosts feature. Note that these steps assume that you have already configured the Layer 2 interfaces that you plan for Private Hosts. See the “Command Reference” section on page 39-13 for detailed descriptions of the commands listed in the following table.

Note: You can configure Private Hosts only on switchports (802.1q or ISL trunk ports) or Etherchannel ports. In addition, you must enable Private Hosts on all of the routers between the DSLAMs and upstream devices.
### Command or Action

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Router(config)# configure terminal</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Router(config)# private-hosts mac-list mac-list-name mac-address [remark device-name</th>
<th>comment]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Creates a list of MAC addresses that identify the BRAS and multicast servers providing broadband services, where:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mac-list-name specifies a name to assign to this list of content servers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• mac-address identifies the BRAS or multicast server (or set of servers) providing a particular broadband service or set of services.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• remark allows you to specify an optional device name or comment to assign to this MAC list.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specify the MAC address of every content server being used to deliver services. If you plan to offer different types of services to different sets of hosts, create a separate MAC list for each server or set of servers providing a particular service.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note If a server is not directly connected to the router, specify the MAC address of the core network device that provides access to the server.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 3 | Router(config)# private-hosts vlan-list vlan-ids |
|--------|-------------------------------------------------|---------|
|        | Creates a list of the VLANs (vlan-ids) whose hosts need to be isolated so that the hosts can receive broadband services. |
|        | Create separate VLAN lists if you plan to offer particular services to different sets of hosts. Otherwise, all of the broadband services will be delivered to all isolated hosts. |

| Step 4 | Router(config)# private-hosts promiscuous mac-list-name [vlan-list vlan-ids] |
|--------|--------------------------------------------------------------------------|---------|
|        | Identifies the content servers for broadband services and the end users (isolated hosts) to deliver the services to, where: |
|        | • mac-list-name specifies the name of the MAC address lists that identifies the BRAS or multicast server (or set of servers) providing a particular type of broadband service or set of services. |
|        | • vlan-ids identifies the VLAN or set of VLANs whose hosts are to receive services from the above servers. If no VLAN list is specified, the software uses the global VLAN list (configured in Step 3). |
|        | Note You can issue this command multiple times to configure multiple MAC and VLAN combinations, each defining the server and receiving hosts for a particular type of service. |

| Step 5 | Router(config)# private-hosts |
|--------|-------------------------------|---------|
|        | Globally enables Private Hosts on the router. |

| Step 6 | Router(config)# interface interface |
|--------|-----------------------------------|---------|
|        | Selects the switchport (802.1Q or ISL trunk port) or Etherchannel port to enable for Private Hosts. |
### Command or Action

**Step 7**

Router(config-if)# private-hosts mode (promiscuous | isolated | mixed)

---

#### Example:

Router(config-if)# private-hosts mode isolated

---

**Step 8**

Router(config-if)# end

---

### Purpose

Enables Private Hosts on the port. Use one of the following keywords to define the mode that the port is to operate in:
- **promiscuous**—upstream-facing ports that connect to broadband servers (BRAS, multicast, or video) or to core network devices providing access to the servers.
- **isolated**—ports that connect to DSLAMs.
- **mixed**—ports that connect to other Cisco 7600 routers, typically in a ring topology.

**Note** You must perform this step on each port being used for Private Hosts.

---

### Configuration Examples

The following example shows the interface configuration of a Private Hosts isolated port:

```plaintext
Router# show run int gi 5/2
Building configuration...

Current configuration : 200 bytes
!
interface GigabitEthernet5/2
 switchport
 switchport trunk encapsulation dot1q
 switchport mode trunk
 private-hosts mode isolated
end
```

The following example shows the interface configuration of a Private Hosts promiscuous port:

```plaintext
Router# show run int gi 4/2
Building configuration...

Current configuration : 189 bytes
!
interface GigabitEthernet4/2
 switchport
 switchport access vlan 200
 switchport mode access
 private-hosts mode promiscuous
end

private-hosts
private-hosts vlan-list 200
private-hosts promiscuous bras-list
private-hosts mac-list bras-list 0000.1111.1111 remark BRAS-SERVER
```
Command Reference

This section documents the commands related to the Private Hosts feature introduced in release 12.2(33) SRD4:

- `private-hosts`
- `private-hosts mac-list`
- `private-hosts mode`
- `private-hosts promiscuous`
- `private-hosts vlan-list`
- `show fm private-hosts`
- `show private-hosts access-lists`
- `show private-hosts configuration`
- `show private-hosts interface configuration`
- `show private-hosts mac-list`
- `debug fm private-hosts`
- `debug private-hosts`
private-hosts

To globally enable the Private Hosts feature, use the **private-hosts** command in global configuration mode. Use the **no** form of the command to disable the feature.

```
private-hosts

no private-hosts
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command is disabled by default.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Use this command to enable Private Hosts on the router. Then, use the **private-hosts mode** command to enable Private Hosts on individual interfaces (ports).

**Examples**

The following command example globally enables the Private Hosts feature on the router:

```
Router(config)# private-hosts
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>private-hosts mac list</td>
<td>Creates a MAC address list that identifies the content servers that are being used to provide broadband services to isolated hosts.</td>
</tr>
<tr>
<td>private-hosts mode</td>
<td>Specifies the operating mode for a Private Hosts port.</td>
</tr>
<tr>
<td>private-hosts promiscuous</td>
<td>Identifies the content servers and receiving hosts for broadband services.</td>
</tr>
<tr>
<td>private-hosts vlan-list</td>
<td>Identifies the VLANs whose hosts need to be isolated.</td>
</tr>
<tr>
<td>show private-hosts configuration</td>
<td>Displays Private Hosts configuration information for the router.</td>
</tr>
<tr>
<td>show private-hosts interface configuration</td>
<td>Displays Private Hosts configuration information for individual interfaces.</td>
</tr>
</tbody>
</table>
**private-hosts mac-list**

Identifies the content servers that provide broadband services to isolated hosts and create a MAC address list, use the **private-hosts mac-list** command in global configuration mode. To delete an address from the MAC address list and remove that device from the list of content servers providing services for the Private Hosts feature, use the **no** form of the command.

```
private-hosts mac-list mac-list-name mac-address [remark device-name | comment]
no private-hosts mac-list mac-list-name mac-address
```

<table>
<thead>
<tr>
<th>Syntax Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>mac-list-name</code></td>
<td>A name assigned to the address list (up to 80 characters).</td>
</tr>
<tr>
<td><code>mac-address</code></td>
<td>The MAC address of a Broadband Remote Access Server (BRAS), multicast server, or video server that provides broadband services for the Private Hosts feature.</td>
</tr>
<tr>
<td><strong>Note</strong></td>
<td>If the server is not directly connected to the router, specify the MAC address of the core network device that provides access to the server.</td>
</tr>
<tr>
<td>`remark device-name</td>
<td>(Optional) Specifies an optional device name or comment to assign to this MAC address list.</td>
</tr>
<tr>
<td><code>comment</code></td>
<td></td>
</tr>
</tbody>
</table>

**Defaults**

This command has no default settings.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

This command creates a list of MAC addresses that identify the content servers being used to provide broadband services to isolated hosts in the Private Hosts configuration.

Use this command to specify the MAC address of every content server that provides broadband services for the Private Hosts feature. A content server is any Broadband Remote Access Server (BRAS), multicast server, or video server that provides services to the isolated hosts in your network.

You can assign all the content servers to a single MAC address list, or you can create multiple MAC address lists, each identifying the content server providing a particular type of broadband service or set of services. When you configure the promiscuous ports for Private Hosts, you specify a MAC address list and VLAN list to identify the server and receiving hosts for broadband services.

**Note**

The MAC address list is automatically deleted when the last address in the list is deleted.
This example creates a MAC address list named BRAS_list that identifies the MAC address of the upstream BRAS. The optional remark indicates that the BRAS is in San Jose.

Router(config)# `private-hosts mac-list BRAS_list 0000.1111.1111 remark BRAS_San-Jose`

### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show private-hosts mac-list</td>
<td>Displays a list of the MAC addresses that identify the content servers that are providing broadband defined for Private Hosts.</td>
</tr>
</tbody>
</table>
private-hosts mode

To enable Private Hosts on an interface (port) and specify the mode in which the port is to operate, use the `private-hosts mode` command in interface configuration mode. Use the `no` form of the command to disable Private Hosts on the port.

```plaintext
private-hosts mode {promiscuous | isolated | mixed}

no private-hosts
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>promiscuous</td>
<td>Configures the port for promiscuous mode. Use this mode for ports that face upstream traffic. These are the ports that connect the router to servers providing broadband services (BRAS, multicast, or video), or to core network devices providing access to the servers.</td>
</tr>
<tr>
<td>isolated</td>
<td>Configures the port for isolated mode. Use this mode for ports that face the DSLAM to which isolated hosts are connected.</td>
</tr>
<tr>
<td>mixed</td>
<td>Configures the port for mixed mode. Use this mode for ports that connect to other Cisco 7600 routers, typically in a ring topology. The behavior of this port can change depending on the Spanning Tree Protocol (STP) topology.</td>
</tr>
</tbody>
</table>

**Defaults**

This command is disabled by default. The default for `mode` is promiscuous.

**Command Modes**

Interface configuration (switchport or port-channel)

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

Before you use this command, you must globally enable the Private Hosts feature on the router by issuing the `private-hosts` command.

Use this command to enable the Private Hosts feature on individual ports and to define the mode of operation for the port. A port’s mode determines which type of PACL is assigned to the port in order to restrict the type of traffic that is allowed to pass through the port. Each type of PACL restricts the traffic flow for a different type of traffic (for example, from content servers to isolated hosts, from isolated hosts to servers, and traffic between isolated hosts). Use the `show private-hosts interface configuration` command to display the mode assigned to Private Hosts ports.

**Examples**

The following command example enables Private Hosts on an interface (port) and configures the port for isolated mode:

```plaintext
Router(config-if)# private-hosts mode isolated
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show private-hosts</td>
<td>Displays Private Hosts configuration information for individual interfaces.</td>
</tr>
<tr>
<td>interface configuration</td>
<td></td>
</tr>
</tbody>
</table>
private-hosts promiscuous

To identify the content servers and receiving hosts that provide broadband services, use the private-hosts promiscuous command in global configuration mode. Use the no form of the command to remove a promiscuous ports setting.

```
private-hosts promiscuous mac-list-name [vlan vlan-ids]
no private-hosts promiscuous mac-list-name
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-list-name</td>
<td>The name of MAC address list that identifies the content servers (BRAS, multicast, or video) providing broadband services for Private Hosts.</td>
</tr>
<tr>
<td>vlan vlan-ids</td>
<td>(Optional) The VLAN or set of VLANs whose hosts will be allowed to receive services from the content servers identified by the MAC address list. Use commas to separate individual VLANs or specify a range of VLANs (for example, 1,3,5,20-25).</td>
</tr>
</tbody>
</table>

**Note**

If no VLAN list is specified, the global VLAN list is used.

**Defaults**

This command has no default settings.

**Command Modes**

Global configuration

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Usage Guidelines**

The MAC address list and the VLAN list define the content servers and receiving hosts that provide broadband services. If no VLAN list is specified, the system uses the global VLAN list created with the private-hosts vlan-list command.

You can issue this command multiple times to specify multiple combinations of MAC and VLAN lists, each defining the server and receiving hosts for a particular type of service. For example, the BRAS at xxxx.xxxx.xxxx could be used to deliver a basic set of services over VLANs 20, 25, and 30, and the BRAS at yyyy.yyyy.yyyy could be used to deliver a premium set of services over VLANs 5, 10, and 15.

**Examples**

The following command example configures the broadband services provided by content servers defined in the BRAS_list address list, to be delivered to isolated hosts in VLANs 10, 12, 15, and 200 through 300:

```
Router(config)# private-hosts promiscuous BRAS_list vlan 10,12,15,200-300
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show private-hosts configuration</td>
<td>Displays Private Hosts configuration information for the router.</td>
</tr>
<tr>
<td>show private-hosts interface configuration</td>
<td>Displays Private Hosts configuration information for individual interfaces.</td>
</tr>
</tbody>
</table>
private-hosts vlan-list

Identifies the VLANs whose hosts need to be isolated from each other (so that the VLANs can be used to deliver broadband services), use the `private-hosts vlan-list` command in global configuration mode. Use the `no` form of the command to remove a VLAN from the list of VLANs requiring host isolation.

```
private-hosts vlan-list vlan-ids

no private-hosts vlan-list vlan-ids
```

### Syntax Description

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-ids</td>
<td>A list of the VLANs whose hosts need to be isolated from each other. Use commas to separate individual VLANs or specify a range of VLANs (for example, 1,3,5,20-25).</td>
</tr>
</tbody>
</table>

### Defaults

This command has no default settings.

### Command Modes

Global configuration

### Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

### Usage Guidelines

This command creates a list of VLANs whose hosts need to be isolated through the Private Hosts feature. The VLAN list should include all of the VLANs that are being used to deliver broadband services to multiple end-users (isolated hosts).

If you plan to deliver different types of broadband services to different sets of hosts, you can create multiple VLAN lists and multiple MAC address lists. When you configure promiscuous ports, you can specify different combinations of MAC and VLAN lists to identify content servers and receiving hosts for each type of service.

If you do not specify a VLAN list when you configure promiscuous ports, the system uses the global VLAN list created by this command.

### Note

The Private Hosts feature isolates the hosts in all VLANs included in the VLAN lists; therefore, VLAN lists should include only those VLANs that are being used to deliver broadband services.

### Examples

This command configures the Private Hosts feature to isolate the hosts in VLANs 10, 12, 15, and 200 through 300:

```
Router(config)# private-hosts vlan-list 10,12,15,200-300
```
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show private-hosts</td>
<td>Displays Private Hosts configuration information for the router.</td>
</tr>
<tr>
<td>configuration</td>
<td></td>
</tr>
</tbody>
</table>
show fm private-hosts

To display information about the Private Hosts feature manager, use the show fm private-hosts command in privileged EXEC mode.

    show fm private-hosts { all | interface intf }

Syntax Description

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Displays the feature manager information for all of the interfaces that are configured for Private Hosts.</td>
</tr>
<tr>
<td>interface interf</td>
<td>Specifies the interface where the feature manager information is displayed.</td>
</tr>
</tbody>
</table>

Defaults

This command has no default settings.

Command Modes

Privileged EXEC

Command History

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

Examples

The following example shows sample command output:

```
Router# show fm private-hosts interface GigabitEthernet 1/2
--
FM_FEATURE_PVT_HOST_INGRESS i/f: Gi1/2 map name: PVT_HOST_ISOLATED
--
MAC Seq. No: 10 Seq. Result : PVT_HOSTS_ACTION_DENY
| Indx | T | Dest Node | Source Node | EtTy | EtCo |
+-----+---+-----------+-------------+------|------+
1 V 0000.0000.0000 0000.1111.4001 0 0
M 0000.0000.0000 ffff.ffff.ffff 0 0
TM_PERMIT_RESULT
2 V 0000.0000.0000 0000.0000.0000 0 0
M 0000.0000.0000 0000.0000.0000 0 0
TM_L3_DENY_RESULT
--
MAC Seq. No: 20 Seq. Result : PVT_HOSTS_ACTION_PERMIT
| Indx | T | Dest Node | Source Node | EtTy | EtCo |
+-----+---+-----------+-------------+------|------+
```

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S

OL-10113-33

39-23
Here is the text from the image in a plain text representation:

```
<table>
<thead>
<tr>
<th>Index</th>
<th>T</th>
<th>Dest Node</th>
<th>Source Node</th>
<th>EtTy</th>
<th>EtCo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>0000.0000.0000 0000.0000.0000 00 0</td>
<td>M 0000.0000.0000 0000.0000.0000 00 0</td>
<td>TM_PERMIT_RESULT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>0000.0000.0000 0000.0000.0000 00 0</td>
<td>M 0000.0000.0000 0000.0000.0000 00 0</td>
<td>TM_L3_DENY_RESULT</td>
<td></td>
</tr>
</tbody>
</table>

MAC Seq. No: 30 Seq. Result: PVT_HOSTS_ACTION_REDIRECT

<table>
<thead>
<tr>
<th>Index</th>
<th>T</th>
<th>Dest Node</th>
<th>Source Node</th>
<th>EtTy</th>
<th>EtCo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>ffff.ffff.ffff 0000.0000.0000 00 0</td>
<td>M ffff.ffff.ffff 0000.0000.0000 00 0</td>
<td>TM_PERMIT_RESULT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>0000.0000.0000 0000.0000.0000 00 0</td>
<td>M 0000.0000.0000 0000.0000.0000 00 0</td>
<td>TM_L3_DENY_RESULT</td>
<td></td>
</tr>
</tbody>
</table>

MAC Seq. No: 40 Seq. Result: PVT_HOSTS_ACTION_PERMIT

<table>
<thead>
<tr>
<th>Index</th>
<th>T</th>
<th>Dest Node</th>
<th>Source Node</th>
<th>EtTy</th>
<th>EtCo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>0100.5e00.0000 0000.0000.0000 00 0</td>
<td>M ffff.ff80.0000 0000.0000.0000 00 0</td>
<td>TM_PERMIT_RESULT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>3333.0000.0000 0000.0000.0000 00 0</td>
<td>M ffff.0000.0000 0000.0000.0000 00 0</td>
<td>TM_PERMIT_RESULT</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>0000.0000.0000 0000.0000.0000 00 0</td>
<td>M 0000.0000.0000 0000.0000.0000 00 0</td>
<td>TM_L3_DENY_RESULT</td>
<td></td>
</tr>
</tbody>
</table>

MAC Seq. No: 50 Seq. Result: PVT_HOSTS_ACTION_DENY

<table>
<thead>
<tr>
<th>Index</th>
<th>T</th>
<th>Dest Node</th>
<th>Source Node</th>
<th>EtTy</th>
<th>EtCo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>0000.0000.0000 0000.0000.0000 00 0</td>
<td>M 0000.0000.0000 0000.0000.0000 00 0</td>
<td>TM_PERMIT_RESULT</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>0000.0000.0000 0000.0000.0000 00 0</td>
<td>M 0000.0000.0000 0000.0000.0000 00 0</td>
<td>TM_L3_DENY_RESULT</td>
<td></td>
</tr>
</tbody>
</table>

Interfaces using this pvt host feature in ingress dir.:

Interfaces (I/E = Ingress/Egress)
```
Router#

<table>
<thead>
<tr>
<th>Related Commands</th>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>show private-hosts</td>
<td>Displays Private Hosts configuration information for the router.</td>
</tr>
<tr>
<td></td>
<td>configuration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>show private-hosts</td>
<td>Displays Private Hosts configuration information for individual interfaces.</td>
</tr>
<tr>
<td></td>
<td>interface configuration</td>
<td></td>
</tr>
</tbody>
</table>
show private-hosts access-lists

To display the access lists for a Private Hosts configuration, use the `show private-hosts access-lists` command in privileged EXEC mode.

```
show private-hosts access-lists
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command has no default settings.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to display the Private Hosts access lists for the customized configuration:

```
Router# show private-hosts access-lists

Promiscuous ACLs
Action Permit Sequence # 010
 Source:0000.1111.4001 0000.0000.0000 Destination:0000.0000.0000 ffff.ffff.ffff
Action Deny Sequence # 020
 Source:0000.0000.0000 ffff.ffff.ffff Destination:0000.0000.0000 ffff.ffff.ffff

Isolated ACLs
Action Deny Sequence # 010
 Source:0000.1111.4001 0000.0000.0000 Destination:0000.0000.0000 ffff.ffff.ffff
Action Permit Sequence # 020
 Source:0000.0000.0000 ffff.ffff.ffff Destination:0000.1111.4001 0000.0000.0000
Redirect Sequence # 030 Redirect index 6
 Source:0000.0000.0000 ffff.ffff.ffff Destination:fff.ffff.ffff 0000.0000.0000
Action Permit Sequence # 040
 Source:0000.0000.0000 ffff.ffff.ffff Destination:0100.5e00.0000 0000.007f.ffff
Source:0000.0000.0000 ffff.ffff.ffff Destination:3333.0000.0000 0000.ffff.ffff
Action Deny Sequence # 050
 Source:0000.0000.0000 ffff.ffff.ffff Destination:0000.0000.0000 ffff.ffff.ffff

Mixed ACLs
Action Permit Sequence # 010
 Source:0000.1111.4001 0000.0000.0000 Destination:ffff.ffff.ffff 0000.0000.0000 0000.0000.0000
Redirect Sequence # 020 Redirect index 6
 Source:0000.0000.0000 ffff.ffff.ffff Destination:0000.0000.0000 ffff.ffff.ffff 0000.0000.0000
Action Permit Sequence # 030
 Source:0000.1111.4001 0000.0000.0000 Destination:0000.0000.0000 ffff.ffff.ffff
Action Permit Sequence # 040
 Source:0000.0000.0000 ffff.ffff.ffff Destination:0000.1111.4001 0000.0000.0000
Action Deny Sequence # 050
```

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S
### Related Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show fm private-hosts</code></td>
<td>Displays information about the Private Hosts feature manager.</td>
</tr>
<tr>
<td><code>show private-hosts configuration</code></td>
<td>Displays Private Hosts configuration information for the router.</td>
</tr>
<tr>
<td><code>show private-hosts interface configuration</code></td>
<td>Displays Private Hosts configuration information for individual interfaces.</td>
</tr>
</tbody>
</table>
show private-hosts configuration

To display information about the Private Hosts configuration on the router, use the **show private-hosts configuration** command in privileged EXEC mode.

```
show private-hosts configuration
```

**Syntax Description**
This command has no arguments or keywords.

**Defaults**
This command has no default settings.

**Command Modes**
Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows sample command output:

```
Router# show private-hosts configuration

Private hosts enabled. BR INDEX 6 State 0000000F
Privated hosts vlans lists:
 200
Privated promiscuous MAC configuration:
A '*' mark behind the mac list indicates non-existant mac-list
--
MAC-list VLAN list
--
bras-list *** Uses the isolated vlans (if any) ***
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show private-hosts interface configuration</td>
<td>Displays Private Hosts configuration information for individual interfaces.</td>
</tr>
</tbody>
</table>
show private-hosts interface configuration

To display information about the Private Hosts configuration on individual interfaces (ports), use the show private-hosts interface configuration command in privileged EXEC mode.

```
show private-hosts interface configuration
```

**Syntax Description**

This command has no arguments or keywords.

**Defaults**

This command has no default settings.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows sample command output:

```
Router# show private-hosts interface configuration

Private hosts enabled
Debug Events: 0 Acl: 0 API: 0
Promiscuous interface list

GigabitEthernet4/2
Isolated interface list

GigabitEthernet5/2
Mixed mode interface list

```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>show private-hosts</td>
<td>Displays Private Hosts configuration information for the router.</td>
</tr>
<tr>
<td>configuration</td>
<td></td>
</tr>
</tbody>
</table>
show private-hosts mac-list

To display the contents of the MAC address lists defined for Private Hosts, use the `show private-hosts mac-list` command in privileged EXEC mode.

```
show private-hosts mac-list [list-name]
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>list-name</td>
<td>(Optional) The name of the MAC address list whose contents you want to display.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no default settings.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows sample command output:

```
Router# show private-hosts mac-list
MAC-List: bras-list

<table>
<thead>
<tr>
<th>MAC address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000.1111.1111</td>
<td>BRAS-SERVER</td>
</tr>
</tbody>
</table>
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>private-hosts mac-list</td>
<td>Creates a MAC address list that identifies a content server that is being used to provide broadband services to isolated hosts.</td>
</tr>
</tbody>
</table>
debug fm private-hosts

To enable debug messages for the Private Hosts feature manager, use the `debug fm private-hosts` command in privileged EXEC mode.

```
 debug fm private-hosts { all | vmr | unusual | events }
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables debug messages for all Private Hosts errors and events.</td>
</tr>
<tr>
<td>vmr</td>
<td>Enables debug messages for the Multicast VLAN Registration (MVR) feature.</td>
</tr>
<tr>
<td>unusual</td>
<td>Enables debug messages for unexpected Private Hosts behavior.</td>
</tr>
<tr>
<td>events</td>
<td>Enables debug messages for Private Hosts events.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no default settings.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows sample command output:

```
Router# debug fm private-hosts all
fm private-hosts vmr debugging is on
fm private-hosts unusual debugging is on
fm private-hosts events debugging is on
Router#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug private-hosts</td>
<td>Enables debug messages for Private Hosts.</td>
</tr>
</tbody>
</table>
**debug private-hosts**

To enable debug messages for the Private Hosts feature, use the `debug private-hosts` command in privileged EXEC mode.

```
decrypt private-hosts {all | events | acl | api}
```

**Syntax Description**

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Enables debug messages for all Private Hosts errors and events.</td>
</tr>
<tr>
<td>events</td>
<td>Enables debug messages for issues related to Private Hosts events.</td>
</tr>
<tr>
<td>acl</td>
<td>Enables debug messages for issues and events related to ACLs.</td>
</tr>
<tr>
<td>api</td>
<td>Enables debug messages for issues related to the application programming interface.</td>
</tr>
</tbody>
</table>

**Defaults**

This command has no default settings.

**Command Modes**

Privileged EXEC

**Command History**

<table>
<thead>
<tr>
<th>Release</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.2(33)SRB</td>
<td>This command was introduced.</td>
</tr>
</tbody>
</table>

**Examples**

The following example shows sample command output:

```
Router# debug private-hosts all
private-hosts events debugging is on
private-hosts api debugging is on
private-hosts acl debugging is on
Router#
```

**Related Commands**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug fm private-hosts</code></td>
<td>Enables debug messages for the Private Hosts feature manager.</td>
</tr>
</tbody>
</table>
Configuring IPv6 PACL

This chapter describes how to configure the IPv6 Port based Access Control List (PACL).

This chapter includes the following sections:

- Understanding IPv6 PACL, page 40-1
- Configuring IPv6 PACL, page 40-2
- Verifying IPv6 PACL, page 40-6

Understanding IPv6 PACL

The c7600 has mechanisms to apply Access Control Lists (ACLs) at various levels such as Router, VLAN, and Port level. Router Access Control Lists (RACLs) are applied on a Switch Virtual Interface (SVI) or physical interface to filter out the layer 3 traffic. VLAN Access Control Lists (VACLs) are configured on VLANs, and are applicable on the layer 2 and the layer 3 packets passing through the VLAN.

PACLs help filter the incoming Layer 3 packets based on layer 2 and layer 4 parameters at the layer 2 switchports.

Figure 40-1 PACL on Physical Ports
Restrictions for IPv6 PACL feature

Following restrictions apply to the IPv6 PACL feature:

- IPv6 PACL is not supported in the IOS software path.
- IPv6 PACL is not supported in the egress direction.
- IPv6 PACL logging is not supported.
- IPv6 PACL does not support routing header match and Differentiated Services Code Point (DSCP) ACL match as these features do not have hardware support.
- IPv6 supports fragment keyword and layer 4 information.
- IPv6 PACL supports time-based ACLs.
- When you configure the platform ipv6 acl icmp optimize neighbor-discovery command, a global Internet Control Message Protocol (ICMP) Neighbor Discovery (ND) Value Mask Result (VMR) is appended at the top of the Ternary Content-Addressable Memory (TCAM). This ICMP entry overrides the applicable PACL configured on the interface.
- IPv6 PACL is supported on the layer 2 etherchannel, but not on its member ports.
- IPv6 PACL is supported on the trunk ports only in the port prefer mode.
- IPv6 PACL does not support the access-list log and reflect/evaluate keywords. These keywords are ignored if you add them to the access list for a PACL.
- Due to the limited size of the flow key in the TCAM, IPv6 addresses along with the layer 4 port information cannot be accommodated unless the IPv6 addresses are compressed. Use the mls ipv6 acl compress address unicast command to compress the IPv6 address. You cannot apply the IPv6 PACL to non-compressible addresses, if the filtering is based on layer 4 ports.

Configuring IPv6 PACL

The following sections describe how to configure IPv6 PACL on c7600:

- Creating Access List, page 40-2
- Configuring PACL mode and Applying IPv6 PACL, page 40-4

Creating Access List

Complete the following steps to create an access list:

SUMMARY STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>3</td>
<td>ipv6 access-list access-list-name</td>
</tr>
<tr>
<td>4</td>
<td>{permit</td>
</tr>
<tr>
<td>5</td>
<td>end</td>
</tr>
</tbody>
</table>

Step 1 enable
Step 2 configure terminal
Step 3 ipv6 access-list access-list-name
Step 4 {permit | deny} {protocol/ IPv6 source prefix} source [source-ipv6-address] destination [destination-ipv6-address]
Step 5 end
## ETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> ipv6 access-list access-list-name</td>
<td>Defines an IPv6 ACL, and enters the IPv6 access list configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# ipv6 access-list list1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> {permit</td>
<td>deny} {protocol/IPv6 source prefix} source [source-ipv6-address] destination [destination-ipv6-address]</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-ipv6-acl)# permit tcp 1000::1/64 any</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> end</td>
<td>Ends the current configuration session.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-ipv6-acl)# end</td>
<td></td>
</tr>
</tbody>
</table>

### Configuration Example

This example shows how to create an IPv6 ACL:

```
Router# enable
Router# configure terminal
Router(config)# ipv6 access-list list1
Router(config-ipv6-acl)# permit tcp 1000::1/64 any
Router(config-ipv6-acl)# end
```
Configuring PACL mode and Applying IPv6 PACL

Complete the following steps to configure the PACL mode, and apply IPv6 PACL on a switchport interface:

SUMMARY STEPS

Step 1  enable
Step 2  configure terminal
Step 3  interface type number
Step 4  switchport
Step 5  switchport mode {access | trunk}
Step 6  switchport access vlan vlan-id [or] switchport trunk allowed vlan vlan-list
Step 7  access-group mode {prefer {port | vlan} | merge}
Step 8  ipv6 traffic-filter access-list-name in
Step 9  end
# Chapter 40  Configuring IPv6 PACL

## Understanding IPv6 PACL

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Configures an interface, and enters the interface configuration mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config)# interface gigabitethernet 3/24</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> switchport</td>
<td>Moves the interface into Layer 2 mode.</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> switchport mode {access</td>
<td>trunk}</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# switchport mode access</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> switchport access vlan vlan-id</td>
<td>Sets the VLAN when an interface is in access mode.</td>
</tr>
<tr>
<td>or switchport trunk allowed vlan vlan-list</td>
<td>or</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# switchport access vlan 1000 or Router(config-if)# switchport trunk allowed vlan 1000, 2000</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> access-group mode {prefer {port</td>
<td>vlan}</td>
</tr>
<tr>
<td><strong>Example:</strong> Router(config-if)# access-group mode prefer port</td>
<td></td>
</tr>
</tbody>
</table>

**Note** IPv6 PACL is applied on the trunk port only if the access-group mode on the trunk port is set to prefer port. On access ports, if the access-group mode is set to prefer port, then the features between the SVI and the switchport do not merge.
Chapter 40  Configuring IPv6 PACL

Understanding IPv6 PACL

Configuration Example

This example shows how to configure a PACL mode and apply an IPv6 PACL on a switchport interface:

```
Router# enable
Router# configure terminal
Router(config)# interface gigabitethernet 3/24
Router(config-if)# switchport
Router(config-if)# switchport mode access
Router(config-if)# switchport access vlan 1000
Router(config-if)# access-group mode prefer port
Router(config-if)# ipv6 traffic-filter list1 in
Router(config-if)# end
```

Verifying IPv6 PACL

Use these commands to verify the configuration of IPv6 PACL on c7600:

- The `show ipv6 access-list` command displays the details of all the IPv6 access lists created.

  ```
 Router# show ipv6 access-list
 IPv6 access list PACL
 permit ipv6 host 2001:410:1:0:200:FF:FE00:1 host 2001:410:2:0:200:FF:FE00:1 sequence 10
 permit ipv6 host 2001:410:1::3 host 2001:410:2::3 sequence 30
  ```

- The `show run interface GigabitEthernet` command displays the IOS interface configuration.

  ```
 Router# show run interface GigabitEthernet 7/0/1
 Current configuration : 179 bytes
 interface GigabitEthernet7/0/1
 switchport
 switchport access vlan 10
 switchport mode access
 ipv6 traffic-filter PACL in
 end
  ```

- The `show tcam interface GigabitEthernet acl in ipv6` command displays the following output when the IPv6 PACL is configured on an interface.

  ```
 Router# show tcam interface GigabitEthernet 7/0/1 acl in ipv6
  ```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8 ipv6 traffic-filter access-list-name in</td>
<td>Filters the incoming IPv6 traffic on a switchport interface.</td>
</tr>
<tr>
<td>Example: Router(config-if)# ipv6 traffic-filter list1 in</td>
<td></td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Ends the current configuration session.</td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 40  Configuring IPv6 PACL

Understanding IPv6 PACL

* Global Defaults shared

---------------------------------------------
ICMP Neighbor Discovery Packet Types:
na - neighbor advertisement  ra - router advertisement
ns - neighbor solicit  rs - router solicit
r - redirect

IPV6 Address Types:
full - IPv6 Full  eui - IPv6 EUI
eipv4 - IPv6 embedded IPv4
---------------------------------------------
permit  ipv6 host 0:2001:410:1::3(full) host 0:2001:410:2::3(full)
permit  icmp(nd-ra) any(eui) any
permit  icmp(nd-na) any(eui) any
permit  icmp(nd-rs) any(eui) any
permit  icmp(nd-ra) any(full) any
permit  icmp(nd-na) any(full) any
permit  icmp(nd-rs) any(full) any
deny  ipv6 any(eipv4) any
deny  ipv6 any(eui) any
deny  ipv6 any(full) any

• The show fm interface FastEthernet command displays all the features configured on a specific interface including the PACLs.

Router# show fm interface FastEthernet 2/1
Interface: FastEthernet2/1 IP is disabled
hw_state[INGRESS] = not reduced, hw_state[BGRESS] = not reduced
mcast = 0
priority = 0
flags = 0x0
parent[INGRESS] = none
inbound label: 65
Feature IPV6_PACL:
ACL: test

---------------------------------------------
FM_FEATURE_IPV6_PACL - PACL Name: test  Direction:Ingress
---------------------------------------------
DPort  - Destination Port  SPort  - Source Port       Pro    - Protocol
PT    - Packet Type  DPT    - Dst. Packet Type  SPT    - Src. Packet Type
X      - XTAG              TOS    - TOS Value         Res    - VMR Result
RFM    - R-Recirc. Flag    MRTNPC - M-Multicast Flag  R      - Reflexive flag
        - F-Fragment flag          - T-Tcp Control     N      - Non-cachable
        - M-More Fragments         - P-Mask Priority(H-High, L-Low)
Adj.   - Adj. Index        C      - Capture Flag  T      - M(Mask)/V(Value)
FM     - Flow Mask         NULL   - Null FM           SAO    - Source Only FM
DAO    - Dest. Only FM     SADA   - Sour.& Dest. Only VSADA  - Vlan SADA Only
ISADA  - Intf. SADA        FF    - Full Flow          VFF    - Vlan Full Flow
IFF    - Intf. FF          F-VFF  - Either FF or VFF  IFF-F  - Either IFF or FF
A-VSD  - Atleast VSADA    A-FF    - Atleast FF  A-VFF    - Atleast VFF
A-SON  - Atleast SAO      A-DON   - Atleast DAO  A-SD     - Atleast SADA
SHORT  - Shortest        ISADA-L-  ISADA Least  FF-L    - FF Least
IFF-L  - IFF Least        A-SFF   - Any short than FF A-EFF    - Any except FF
A-EVFF - Any except VFF   SA-L   - Source Least  DA-L    - Dest. Least
SADA-L - SADA Least       FF-LESS- FF Less  N-FF    - Not FF
N-IFF  - Not IFF          A-LVFF  - Any less than VFF FULL  Full Pkt Type
EUI   - EUI 64 Pkt Type    EMBD   - Embedded Pkt Type ELNK  - EUI Link Overlap
BSIT  - EUI Site Overlap  LINK   - Link Pkt Type  SITE   - Site Pkt Type
ERR   - Floormask Error
### Understanding IPv6 PACL

<table>
<thead>
<tr>
<th>Index</th>
<th>Type</th>
<th>Dest IPv6 Addr</th>
<th>Source IPv6 Addr</th>
<th>DPT</th>
<th>SPT</th>
<th>PT</th>
<th>Program-Related Function</th>
<th>Match</th>
<th>Matches</th>
<th>Adjacency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>14::</td>
<td>2:: FULL FULL</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EMBD EMBD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>15::1</td>
<td>:: FULL EUI</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EMBD EUI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>15::1</td>
<td>:: FULL FULL</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EMBD EMBD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V</td>
<td>::</td>
<td>:: EUI FULL</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EUI 255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>V</td>
<td>::</td>
<td>:: FULL EUI</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EUI 255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>V</td>
<td>::</td>
<td>:: EUI FULL</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EUI 255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>V</td>
<td>::</td>
<td>:: FULL EUI</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EUI 255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>V</td>
<td>::</td>
<td>:: EUI FULL</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EUI 255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>V</td>
<td>::</td>
<td>:: FULL EUI</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EUI 255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>V</td>
<td>::</td>
<td>:: EUI FULL</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EUI 255</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>SHORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Troubleshooting Tips

For troubleshooting information, contact Cisco Technical Assistance Center (TAC) at:

IPv6 First-Hop Security Features

This chapter describes how to configure the IPv6 First-Hop Security (FHS) features. This chapter includes the following sections:

- Understanding IPv6 First-Hop Security features, page 41-1
- Configuring IPv6 FHS Features, page 41-6
- Verifying IPv6 FHS Configuration, page 41-6

Understanding IPv6 First-Hop Security features

IPv6 FHS features enable a better IPv6 link security and management over the layer 2 links. In a service provider environment, these features closely control address assignment and derived operations, such as Duplicate Address Detection (DAD) and Address Resolution (AR).

These are the features supported on the c7600 platform:

- IPv6 Snooping
- IPv6 Router Advertisement Guard
- IPv6 - Destination Guard
- Binding Table Recovery
- DHCPv6 Guard
- IPv6 Source Guard
- IPv6 Prefix Guard
- Data Gleaning

IPv6 Snooping

IPv6 snooping captures the IPv6 traffic and helps in populating the binding table. It gathers addresses in control messages such as Neighbor Discovery Protocol (NDP) or Dynamic Host Configuration Protocol (DHCP) packets. Depending on the security level, it blocks unwanted messages such as Router Advertisements (RA) or DHCP replies. This feature is a pre-requisite to the remaining security features mentioned here.
IPv6 Router Advertisement Guard

IPv6 RA Guard validates the content of the RAs and redirect messages, and blocks or rejects unwanted RA. Depending on the configuration options, RA guard validates various parameters such as the IPv6 source address of the packet, flags in the RA, prefixes advertised by the router, hop-count limit advertised, and the default router preference advertised.

On the c7600, the ports can be configured to allow or disallow RA messages. If the port is configured to disallow the RA and router-redirect packets, the RA guard blocks them. The RA guard can be configured on the VLAN, including all the ports on the VLAN.

IPv6 - Destination Guard

The Destination Guard feature helps in minimizing denial-of-service (DoS) attacks. It performs address resolutions only for those addresses that are active on the link, and requires the FHS binding table to be populated with the help of the IPv6 snooping feature.

The feature enables the filtering of IPv6 traffic based on the destination address, and blocks the NDP resolution for destination addresses that are not found in the binding table. By default, the policy drops traffic coming for an unknown destination.

Binding Table Recovery

This feature helps in recovering the missing binding table entries when the resolution for a destination address fails in the destination guard. It does so by querying the DHCP server or the destination host, depending on the configuration.

DHCPv6 Guard

The DHCPv6 Guard blocks DHCP replies or advertisements not originating from a DHCP server or relay. It decides whether or not to switch or block the DHCP replies based on the device-role configuration. It also verifies the information found in the message.

The DHCPv6 Guard classifies the information into one of the three DHCP type messages (client message, server message, and relay message), and takes action depending on the device role. All client messages are switched regardless of the device role, and the DHCP server messages are only processed further if the device role is set to server.

IPv6 Source Guard

IPv6 Source Guard (SG) is a security feature that filters the IPv6 traffic on Layer 2 ports that are not trusted. SG helps a switch or router deny access to traffic from an address that is not stored in the binding table of the IPv6 Snooping feature. SG drops those data packets whose IPv6 source addresses are unavailable in the binding table. The binding table has entries for the link local addresses of hosts.

An entry is installed in the binding table when one of the following conditions is satisfied:

- An IPv6 binding is learnt through DHCP.
- An IPv6 address or prefix is learnt through NDP.
- A static binding is configured by the user.
A corresponding entry is also installed in Network Processor Ternary Content-Addressable Memory (NP TCAM) of the line card. A data packet that does not match any NP TCAM entry is dropped.

SG installs a “deny-all” Access Control Entry (ACE) on targets, except control packets, where the feature is configured. SG also installs an IPv6, MAC address, Port, or VLAN ID filter to validate the binding table entries learnt from the targets.

Table 41-1 lists the filters that SG applies to incoming network traffic.

<table>
<thead>
<tr>
<th>Filter</th>
<th>What It Means</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 address</td>
<td>IPv6 address of the host</td>
</tr>
<tr>
<td>MAC address</td>
<td>MAC address of the host</td>
</tr>
<tr>
<td>VLAN ID</td>
<td>VLAN ID of the port associated with the host</td>
</tr>
<tr>
<td>Port</td>
<td>Number of the port associated with the host</td>
</tr>
</tbody>
</table>

SG is an ingress feature and filters incoming data packets alone. If SG is enabled, every ingress packet on a switch port or Layer 2 VLAN is checked against entries in the IPv6 binding table. Initially, SG blocks all IPv6 traffic on the target except for Dynamic Host Configuration Protocol (DHCP) or Neighbor Discovery Protocol (NDP) packets that are used for IPv6 Snooping processes.

SG works in the policy mode. SG and snooping policies are configured in the global configuration mode. The policies are applied to switch ports and VLANs. Validate Address, which inspects IPv6 addresses, is enabled by default in the IPv6 Source Guard policy. The configurations only apply to the ports of ES 40 cards. Enabling IPv6 SG causes the attachment of ICMPv6 policies and DHCPv6 Snooping policies on NP TCAM for the interface.

The configuration of IPv6 Snooping is a prerequisite for SG. SG requires the configuration of IPv6 Snooping on one of the following:

- Layer 2 access or trunk ports
- Layer 2 VLANs

**IPv6 Prefix Guard**

IPv6 Prefix Guard (PG) is an ingress, security feature. PG helps a switch or router deny access to traffic from sources with addresses that are correct, but are topologically incorrect.

PG works in the policy mode. The policy for PG includes both IPv6 addresses and their prefixes.

The following are prerequisites for PG:

- Enablement of Prefix-glean under the IPv6 Snooping policy options
- Enablement of Validate Prefix under the Source Guard policy

Prefix Guard can be used in the following kinds of deployment:

- Service Provider (SP) deployment
- Enterprise deployment
**Understanding IPv6 First-Hop Security features**

### PG in Service Provider Deployment

PG in an SP deployment involves the delegation of prefixes to routers that are connected to a switch. Prefixes are gleaned in DHCP Prefix Delegation messages to create entries in the binding table. A binding entry binds the prefix to the port and MAC address, and indicates the router to which the prefix is delegated. PG verifies if the traffic received from that router matches the binding entry.

**Note**

Prefixes that are snooped from a DHCP REQUEST/REPLY sequence or a manual configuration are bound to the MAC address or port. Only incoming traffic with snooped prefixes from that MAC address or port is given network access.

### PG in Enterprise Deployment

PG in an enterprise deployment involves the gleaning of prefixes in Router Advertisements (RA). PG blocks traffic that originates from nodes with a source outside any known prefix.

**Note**

Ensure that you attach the RA guard policy and a snooping policy to the ports of the switch on which you learn bindings.

**Note**

A prefix that is learnt from a multicast RA applies to an entire VLAN, and not to a specific port or MAC address.

### Data Gleaning

If a network receives valid data packets with binding information that is either lost or incorrectly set, the process of data gleaning populates the binding table with binding information extracted from the data packets. The process of punting or gleaning data packets from unknown hosts to get new bindings is called data gleaning.

When an unknown host sends a data packet with IPv6 and MAC addresses along with its VLAN ID to the network, the network processor checks if IPv6 SG is enabled for the port or VLAN. If the host is trusted, and data gleaning is configured on the VLAN or port, new bindings are extracted from the data packets.

Data gleaning is commonly used in conjunction with IPv6 Source and Prefix Guard. Data gleaning works the same way as IPv6 SG works with the snooping feature configured. Data gleaning is a configuration in the snooping policy.

When you use data gleaning, run the following command to limit the rate of data that is redirected to the Route Processor (RP):

```
hw-module slot number rate-limit punt_rate
```

### Restrictions for IPv6 FHS features

Following restrictions apply to the IPv6 FHS features:

- The c7600 only supports port and VLAN as the targets.
• The Ternary Content-Addressable Memory (TCAM) stores around 16,000 IPv6 ACL entries and 2000 masks. Therefore, an approximate number of 8000 IPv6 prefixes are supported for the FHS features.
• The c7600 does not support per-port and VLAN Access Control List (PVACL).
• The c7600 does not support the IPv6 address if it is not compressed. Use the `mls ipv6 acl compress address unicast` command to compress the IPv6 address.
• The c7600 supports a maximum of 16 broadcast groups.
• The IPv6 FHS features are SSO compliant.
• The c7600 internally creates a Switch Virtual Interface (SVI) of the layer 2 VLAN for the access port. But for the trunk ports, you need to create a SVI of the layer 2 VLAN to prevent traffic from dropping.
• All the FHS configurations are supported only in the ingress direction.
• The FHS configurations are supported on the trunk-port only in the port prefer mode.
• The Destination Guard is applicable only on the VLAN mode.

Restrictions for IPv6 Source and Prefix Guards

The following restrictions apply to Source Guard and Prefix Guard usage:
• SG and PG are used only for ES 40 cards, and the configurations are applied to the ports of ES 40 cards.
• SG and PG are layer 2 features that are supported only on access or trunk ports, and L2 VLAN configurations.
• To configure SG or PG on a trunk port, you must first configure ‘port prefer mode’ on the trunk port using ‘access-group mode prefer port’ under the interface configurations.
• For SG and PG to operate properly, when you enable SG or PG on a switch port, ensure that you attach IPv6 Snooping to the interface. All data traffic from this port is blocked unless bindings are available.
• The hardware resources on the line card limit not only the number of ACLs learnt through SG and PG, but also the ACEs that you can configure for SG and PG. The different features that are configured on the line card share the TCAM resources that are available.
• SG and PG are ingress traffic only features.
• SG and PG do not support the software forwarding of data packets.
• During an LC Online Insertion and Removal (OIR) event, all the relevant IPV6 snooping bindings are distributed to the line card and programmed into TCAM. A large number of bindings may need more time for processing.
• Support is available only for 4096 SG or PG entries per network processor (NP).
• For IPv6 Prefix Guard and RA Guard to work on the system in the PFC3CXL mode, ensure that you globally configure ‘No mld ipv6 snooping’.
• Not all incoming data traffic is sent to the Route Processor (RP) to learn binding for data gleaning. The rate of data that is redirected to RP is limited.
• SG and PG are not supported on Port Channels.
• PG that is attached to a VLAN configuration will apply to the entire VLAN. It is recommended that PG be configured either at the VLAN or port level.
Configuring IPv6 FHS Features


Verifying IPv6 FHS Configuration

Use these commands to verify the configuration of IPv6 FHS features on c7600:

- The `show ipv6 snooping policy trusted` command displays the IPv6 snooping policy configuration, and the interfaces where the policy is applied.

```
Router# show ipv6 snooping policy trusted
Policy trusted configuration:
 trusted-port
device-role node
Policy applied on the following interfaces:
 Et0/0 vlan all
 Et1/0 vlan all
Policy applied on the following vlans:
 vlan 1-100,200,300-400
```

- The `show ipv6 snooping messages` command displays the latest messages that were processed by ipv6 snooping.

```
Router# show ipv6 snooping messages
On VLAN 100, From Et0/0 MAC A8BB:CC01.F500: NDP::NS, FE80::A8BB:CCFF:FE01:F500,
On VLAN 100, From Et1/0 MAC A8BB:CC01.F500: NDP::NA, FE80::A8BB:CCFF:FE01:F500, Drop reason=Message unauthorized on port
On VLAN 100, From Rto0/0 MAC A8BB:CC01.F500: NDP::NA, FE80::A8BB:CCFF:FE01:F500,
On VLAN 100, From Rto1/0 MAC A8BB:CC01.F500: NDP::NA, FE80::A8BB:CCFF:FE01:F500,
```

- The `show ipv6 snooping messages detailed N` command displays a defined number of messages as specified.
Router# show ipv6 snooping messages detailed 8

On VLAN 100, From Et0/0 seclvl [guard], unparsed message.

On VLAN 100, From Et0/0 seclvl [guard], NDP::NS,
1 addresses advertised:
  IPv6 addr: FE80::A8BB:CCFF:FE01:F500,

On VLAN 100, From Et0/0 seclvl [glean], NDP::NS,
1 addresses advertised:
  IPv6 addr: FE80::A8BB:CCFF:FE01:F500,

On VLAN 100, From Et0/0 seclvl [glean], MAC AABB.C901.6601: DHCPv6::SOL, no IPv6
target. packet ignored.

On VLAN 100, From Et0/0 seclvl [glean], DHCPv6::REP,
1 addresses advertised:
  IPv6 addr: 3000:901:1::14, protocol lifetime: 0x100==3600, packet ignored.

On VLAN 100, From Et0/0 seclvl [glean], DHCPv6::REP,
1 addresses advertised:
  IPv6 addr: 3000:901:1::14, protocol lifetime: 0xFFFFFFFF==4294967295, packet
ignored.

On VLAN 100, From Et0/0 seclvl [glean], MAC AABB.CC01.F500: DHCPv6::REN, no IPv6
target. packet ignored.

On VLAN 100, From Et1/0 seclvl [glean], about Et0/0, MAC AABB.CC01.F500: DHCPv6::REP,
3 addresses advertised:
  IPv6 addr: 2001:600::60AF:3195:BC06:EAFB, protocol lifetime: 0x5==5,
  IPv6 addr: 2001:400::A1C9:9B4F:2D34:C621, protocol lifetime: 0x5==5,
  IPv6 addr: 2001:500::2, protocol lifetime: 0x5==5,

• The show ipv6 snooping counters target command displays the drop counters statistics. Whenever
  any feature drops a received packet, the counters are incremented.

Router# show ipv6 snooping counters vlan 100

Received messages on vlan 100 :
Protocol    Protocol message
NDP         RA[58] NS[23] NA[14]

Bridged messages from vlan 100 :
Protocol    Protocol message

Dropped messages on vlan 100 :
ND Suppress   NS[1] reason ND multicast suppressed[1]
              ADV[5] reason Packet is not authorized on the received port[5]

On the port:
SWITCH#show ipv6 snooping counters int e 1/0
Received messages on Et1/0:
Protocol    Protocol message
NDP         RA[63] NA[13]
DHCPv6      ADV[1] REP[10]
Bridged messages from Et1/0:
 Protocol Protocol message
 NDP RA[63] NA[13]
 DHCPv6 DV[1] REP[10]

- The `show ipv6 destination-guard` command displays the destination guard policy configuration, and all the interfaces where the policy is applied.

  Router# `show ipv6 destination-guard`  
  ? Shows the policy configuration as well as all the interfaces where the policy is applied:

  Policy default configuration:
  Policy applied on the following vlans:
  vlan 1-100,200,300-400

- The `show ipv6 neighbors binding` command displays the binding table entries populated by the snooping policy.

  Router# `show ipv6 neighbors binding`  
  Binding Table has 1 entries, 1 dynamic  
  Codes: L - Local, S - Static, ND - Neighbor Discovery, DH - DHCP, PKT - Other Packet, API - API created
  Prflevel flags (prlvl):
  0001:MAC and LLA match 0002:Orig trunk 0004:Orig access
  0008:Orig trusted trunk 0010:Orig trusted access 0020:HCP assigned
  0040:Cga authenticated 0080:Cert authenticated 00100:Statically assigned

<table>
<thead>
<tr>
<th>IPv6 address</th>
<th>Link-Layer addr</th>
<th>Interface</th>
<th>vlan</th>
<th>prlvl</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND 1000::2</td>
<td>0000.00a3.FB6A</td>
<td>Gi3/3</td>
<td>30</td>
<td>0005</td>
<td></td>
</tr>
</tbody>
</table>

  13m STALE 88671 s

- The `show ipv6 nd raguard policy` command displays the RA guard policy configuration, and all the interfaces where the policy is applied.

  Router# `show ipv6 nd raguard policy`  
  Policy raguard configuration:
  device-role host
  Policy raguard is applied on the following targets:
  Target Type Policy Feature Target range
  Gi3/7 PORT raguard RA guard vlan all

- The `show ipv6 dhcp guard policy` command displays the DHCP guard policy configuration, and all the interfaces where the policy is applied.

  Router# `show ipv6 dhcp guard`  
  Dhcp guard policy: dhcp
  Device Role: dhcp client
  Target: Gi3/7

- The `show tcam interface` command displays the following output when the IPv6 snooping is configured on an interface.

  Router# `show tcam interface gigabitEthernet 3/3 acl in ipv6`  
  * Global Defaults shared

  ICMP Neighbor Discovery Packet Types:
  na - neighbor advertisement  ra - router advertisement
  ns - neighbor solicit  rs - router solicit
  r - redirect
**Troubleshooting Tips**

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The IPv6 snooping feature is not working.</td>
<td>• Use the <strong>debug ipv6 snooping</strong> command to check if the TCAM is programmed in the hardware.</td>
</tr>
<tr>
<td>Packets are not switching as expected during router reboot.</td>
<td>• Use the <strong>show ipv6 neighbors binding</strong> and <strong>debug ipv6 neighbor discovery</strong> commands to check the configuration.</td>
</tr>
<tr>
<td>The Switch Integrated Security Features (SISF) does not work as expected.</td>
<td>• Use the <strong>debug fm sisf</strong> command to print the debugs for the feature manager.</td>
</tr>
</tbody>
</table>
Understanding IPv6 First-Hop Security features
Configuring Online Diagnostics

This chapter describes how to configure the online diagnostics on the Cisco 7600 series routers:

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

• Understanding How Online Diagnostics Work, page 42-1
• Configuring Online Diagnostics, page 42-2
• Running Online Diagnostic Tests, page 42-6
• Performing Memory Tests, page 42-10

For descriptions of the online diagnostics tests, refer to Appendix A, “Online Diagnostic Tests.”

Understanding How Online Diagnostics Work

With online diagnostics, you can test and verify the hardware functionality of the supervisor engine, modules, and router while the router is connected to a live network.

The online diagnostics contain packet switching tests that check different hardware components and verify the data path and control signals. Disruptive online diagnostic tests, such as the built-in self-test (BIST) and the disruptive loopback test, and nondisruptive online diagnostic tests, such as packet switching, run during bootup, line card online insertion and removal (OIR), and system reset. The nondisruptive online diagnostic tests run as part of background health monitoring or at the user’s request (on-demand).

The online diagnostics detect problems in the following areas:

• Hardware components
• Interfaces (GBICs, Ethernet ports, and so forth)
• Connectors (loose connectors, bent pins, and so forth)
• Solder joints
• Memory (failure over time)
Online diagnostics is one of the requirements for the high availability feature. High availability is a set of quality standards that seek to limit the impact of equipment failures on the network. A key part of high availability is detecting hardware failures and taking corrective action while the router runs in a live network. Online diagnostics in high availability detect hardware failures and provide feedback to high availability software components to make switchover decisions.

Online diagnostics are categorized as bootup, on-demand, schedule, or health monitoring diagnostics. Bootup diagnostics run during bootup, module OIR, or switchover to a backup supervisor engine; on-demand diagnostics run from the CLI; schedule diagnostics run at user-designated intervals or specified times when the router is connected to a live network; and health-monitoring runs in the background.

### Configuring Online Diagnostics

These sections describe how to configure online diagnostics:

- [Setting Bootup Online Diagnostics Level, page 42-2](#)
- [Configuring On-Demand Online Diagnostics, page 42-3](#)
- [Scheduling Online Diagnostics, page 42-4](#)

### Setting Bootup Online Diagnostics Level

You can set the bootup diagnostics level as minimal or complete or you can bypass the bootup diagnostics entirely. Enter the `complete` keyword to run all diagnostic tests; enter the `minimal` keyword to run only EARL tests for the supervisor engine and loopback tests for all ports in the router. Enter the `no` form of the command to bypass all diagnostic tests. The default bootup diagnostics level is minimal.

**Note**
The diagnostic level applies to the entire router and cannot be configured on a per-module basis.

To set the bootup diagnostic level, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# diagnostic bootup level {minimal</td>
<td>complete}`</td>
</tr>
</tbody>
</table>

This example shows how to set the bootup online diagnostic level:

```
Router(config)# diagnostic bootup level complete
Router(config)#
```

This example shows how to display the bootup online diagnostic level:

```
Router(config)# show diagnostic bootup level
Router(config)#
```
Configuring On-Demand Online Diagnostics

You can run the on-demand online diagnostic tests from the CLI. You can set the execution action to either stop or continue the test when a failure is detected or to stop the test after a specific number of failures occur by using the failure count setting. You can configure a test to run multiple times using the iteration setting.

You should run packet-switching tests before memory tests. Run the memory tests on the other modules before running them on the supervisor engine.

**Note**
Do not use the `diagnostic start all` command until all of the following steps are completed.

Because some on-demand online diagnostic tests can affect the outcome of other tests, you should perform the tests in the following order:

1. Run the non-disruptive tests.
2. Run all tests in the relevant functional area.
3. Run the `TestTrafficStress` test.
4. Run the `TestEobcStressPing` test.
5. Run the exhaustive memory tests.

To run on-demand online diagnostic tests, perform this task:

**Step 1**
Run the non-disruptive tests.

To display the available tests and their attributes, and determine which commands are in the non-disruptive category, enter the `show diagnostic content` command.

**Step 2**
Run all tests in the relevant functional area.

Packet-switching tests fall into specific functional areas. When a problem is suspected in a particular functional area, run all tests in that functional area. Not all functional areas are present on each module. If you are unsure about which functional area you need to test, or if you want to run all available tests, enter the `complete` keyword.

**Step 3**
Run the `TestTrafficStress` test.

This is a disruptive packet-switching test that is only available on the supervisor engine. This test switches packets between pairs of ports at line rate for the purpose of stress testing. During this test all of the ports are shut down, and you may see link flaps. The link flaps will not recover after the test is complete. The test takes several minutes to complete.

Disable all health-monitoring tests for the module being tested before running this test by using the `no diagnostic monitor module module test all` command.

**Step 4**
Run the `TestEobcStressPing` test.

This is a disruptive test and tests the Ethernet over backplane channel (EOBC) connection for the module. The test takes several minutes to complete. You cannot run any of the packet-switching tests described in previous steps after running this test. However, you can run tests described in subsequent steps after running this test.

Disable all health-monitoring tests for the module being tested before running this test by using the `no diagnostic monitor module module test all` command. The EOBC connection is disrupted during this test and will cause the health-monitoring tests to fail and take recovery action.

**Step 5**
Run the exhaustive-memory tests.
Chapter 42  Configuring Online Diagnostics

All modules have exhaustive memory tests available on them. Because the supervisor engine goes into an unusable state and must be rebooted after the exhaustive memory tests, run the tests on all other modules first. Some of the exhaustive memory tests can take several hours to complete because of the large memory size of the modules.

Before running the exhaustive memory tests, all health-monitoring tests should be disabled on the module that will run the exhaustive memory tests because the tests will fail with health monitoring enabled and the switch will take recovery action. Disable the health-monitoring diagnostic tests by using the **no diagnostic monitor module module test all** command.

Perform the exhaustive memory tests in the following order (you can skip any tests not available for a particular module):

1. TestFibTcamSSRAM
2. TestAclQosTcam
3. TestNetFlowTcam
4. TestAsicMemory
5. TestAsicMemory

You must reboot the supervisor engine after running the exhaustive memory tests before it is operational again. You cannot run any other tests on the supervisor engine or other modules after running the exhaustive memory tests. Do not save the configuration when rebooting as it will have changed during the tests. You will need to power cycle the modules before they can be operational. After a module comes back on line, reenable the health monitoring tests using the **diagnostic monitor module module test all** command.

To set the bootup diagnostic level, perform this task:

**Command**

```
Router# diagnostic ondemand {iteration iteration_count} | {action-on-error {continue | stop}|error_count}
```

**Purpose**

Configures on-demand diagnostic tests to run, how many times to run (iterations), and what action to take when errors are found.

This example shows how to set the on-demand testing iteration count:

```
Router# diagnostic ondemand iteration 3
Router#
```

This example shows how to set the execution action when an error is detected:

```
Router# diagnostic ondemand action-on-error continue 2
Router#
```

**Scheduling Online Diagnostics**

You can schedule online diagnostics to run at a designated time of day or on a daily, weekly, or monthly basis for a specific module. You can schedule tests to run only once or to repeat at an interval. Use the **no** form of this command to remove the scheduling.
To schedule online diagnostics, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# diagnostic schedule {module num} test {test_id</td>
<td>test_id_range</td>
</tr>
</tbody>
</table>

This example shows how to schedule diagnostic testing on a specific date and time for a specific module and port:

```
Router(config)# diagnostic schedule module 1 test 1,2,5-9 port 3 on january 3 2003 23:32
```

This example shows how to schedule diagnostic testing to occur daily at a certain time for a specific port and module:

```
Router(config)# diagnostic schedule module 1 test 1,2,5-9 port 3 daily 12:34
```

This example shows how to schedule diagnostic testing to occur weekly on a certain day for a specific port and module:

```
Router(config)# diagnostic schedule module 1 test 1,2,5-9 port 3 weekly friday 09:23
```

### Configuring Health-Monitoring Diagnostics

You can configure health-monitoring diagnostic testing on specified modules while the router is connected to a live network. You can configure the execution interval for each health monitoring test, whether or not to generate a system message upon test failure, or to enable or disable an individual test. Use the `no` form of this command to disable testing.

To configure health monitoring diagnostic testing, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> `Router(config)# diagnostic monitor interval {module num} test {test_id</td>
<td>test_id_range</td>
</tr>
<tr>
<td><strong>Step 2</strong> `Router(config)# [no] diagnostic monitor {module num} test {test_id</td>
<td>test_id_range</td>
</tr>
</tbody>
</table>

This example shows how to configure the specified test to run every two minutes:

```
Router(config)# diagnostic monitor interval module 1 test 1 min 2
```

This example shows how to run the test on the specified module if health monitoring has not previously been enabled:

```
Router(config)# diagnostic monitor module 1 test 1
```
This example shows how to enable the generation of a syslog message when any health monitoring test fails:

```
Router(config)# diagnostic monitor syslog
Router(config)#
```

## Running Online Diagnostic Tests

After you configure online diagnostics, you can start or stop diagnostic tests or display the test results. You can also see which tests are configured for each module and what diagnostic tests have already run. These sections describe how to run online diagnostic tests after they have been configured:

- Starting and Stopping Online Diagnostic Tests, page 42-6
- Displaying Online Diagnostic Tests and Test Results, page 42-6

### Starting and Stopping Online Diagnostic Tests

After you configure diagnostic tests to run on the router or individual modules, you can use the `start` and `stop` to begin or end a diagnostic test.

To start or stop an online diagnostic command, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`diagnostic start [module num] test [test_id</td>
<td>test_id_range</td>
</tr>
<tr>
<td><code>diagnostic stop [module num]</code></td>
<td>Stops a diagnostic test on a specific module.</td>
</tr>
</tbody>
</table>

This example shows how to start a diagnostic test on a specific module:

```
Router# diagnostic start module 1 test 5
Module 1:Running test(s) 5 may disrupt normal system operation
Do you want to run disruptive tests? [no]yes
00:48:14:Running OnDemand Diagnostics [Iteration #1] ...
00:48:14:%DIAG-SP-6-TEST_RUNNING:Module 1:Running TestNewLearn{id=5} ...
00:48:14:%DIAG-SP-6-TEST_OK:Module 1:TestNewLearn{id=5} has completed successfully
00:48:14:Running OnDemand Diagnostics [Iteration #2] ...
00:48:14:%DIAG-SP-6-TEST_RUNNING:Module 1:Running TestNewLearn{id=5} ...
00:48:14:%DIAG-SP-6-TEST_OK:Module 1:TestNewLearn{id=5} has completed successfully
Router#
```

This example shows how to stop a diagnostic test on a specific module:

```
Router# diagnostic stop module 3
Router#
```

### Displaying Online Diagnostic Tests and Test Results

You can display the online diagnostic tests that are configured for specific modules and check the results of the tests using the `show` commands.
To display the diagnostic tests that are configured for a module, perform this task:

```
Router# show diagnostic content module 7
```

Module 7:

Diagnostics test suite attributes:
M/C* - Minimal bootup level test / Complete bootup level test / NA
B/* - Basic ondemand test / NA
P/V/* - Per port test / Per device test / NA
D/N/* - Disruptive test / Non-disruptive test / NA
S/* - Only applicable to standby unit / NA
X/* - Not a health monitoring test / NA
F/* - Fixed monitoring interval test / NA
E/* - Always enabled monitoring test / NA
A/I - Monitoring is active / Monitoring is inactive
R/* - Power-down line cards and need reset supervisor / NA
K/* - Require resetting the line card after the test has completed / NA

<table>
<thead>
<tr>
<th>ID</th>
<th>Test Name</th>
<th>Attributes</th>
<th>Testing Interval (day hh:mm:ss.ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TestScratchRegister</td>
<td><strong>N****A</strong></td>
<td>000 00:00:30.00</td>
</tr>
<tr>
<td>2</td>
<td>TestSPRPInbandPing</td>
<td><strong>N****A</strong></td>
<td>000 00:00:15.00</td>
</tr>
<tr>
<td>3</td>
<td>TestTransceiverIntegrity</td>
<td><strong>PD****I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>4</td>
<td>TestActiveToStandbyLoopback</td>
<td><strong>PDS****I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>5</td>
<td>TestLoopback</td>
<td><strong>PDS****I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>6</td>
<td>TestNewLearn</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>7</td>
<td>TestIndexLearn</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>8</td>
<td>TestDontLearn</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>9</td>
<td>TestConditionLearn</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>10</td>
<td>TestBadBpdu</td>
<td>**M<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>11</td>
<td>TestTrap</td>
<td>**M<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>12</td>
<td>TestMatch</td>
<td>**M<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>13</td>
<td>TestCapture</td>
<td>**M<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>14</td>
<td>TestProtocolMatch</td>
<td>**M<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>15</td>
<td>TestChannel</td>
<td>**M<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>16</td>
<td>TestFibDevices</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>17</td>
<td>TestIPv4FibShortcut</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>18</td>
<td>TestIPv6FibShortcut</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>19</td>
<td>TestMLSPFibShortcut</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>20</td>
<td>TestNATFibShortcut</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>21</td>
<td>TestACLPermit</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>22</td>
<td>TestACIDeny</td>
<td>**M<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>23</td>
<td>TestQoSSTcam</td>
<td>**M<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>24</td>
<td>TestL3VlanNet</td>
<td>**M<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>25</td>
<td>TestIngressSpan</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>26</td>
<td>TestEgressSpan</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>27</td>
<td>TestFabricSnakeForward</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>28</td>
<td>TestFabricSnakeBackward</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>29</td>
<td>TestNetflowInlineRewrite</td>
<td>**C<strong><strong>D</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>30</td>
<td>TestFabricSnakeRewrite</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>31</td>
<td>TestFabricTcamSSRAM</td>
<td>**M<strong><strong>N</strong>*I</strong></td>
<td>not configured</td>
</tr>
<tr>
<td>32</td>
<td>ScheduleSwitchover</td>
<td><strong>D****I</strong></td>
<td>not configured</td>
</tr>
</tbody>
</table>

This example shows how to display the online diagnostics that are configured on a module:
Router#

This example shows how to display the online diagnostic results for a module:

Router# show diagnostic result module 5
Current bootup diagnostic level:minimal

Module 5:

Overall Diagnostic Result for Module 5 :PASS
Diagnostic level at card bootup:minimal

Test results:(. = Pass, F = Fail, U = Untested)

1) TestScratchRegister  -------------> .
2) TestSPRPInbandPing  --------------> .
3) TestGBICIntegrity:
   Port 1 2
   1 2
   U U

4) TestActiveToStandbyLoopback:
   Port 1 2
   1 2
   U U

5) TestLoopback:
   Port 1 2
   1 2
   . .

6) TestNewLearn  -------------> .
7) TestIndexLearn  -------------> .
8) TestDropLearn  -------------> .
9) TestConditionalLearn  -------------> .
10) TestBadBpdu  -------------> .
11) TestTrap  -------------> .
12) TestMatch  -------------> .
13) TestCapture  -------------> .
14) TestProtocolMatch  -------------> .
15) TestChannel  -------------> .
16) TestIPv4FibShortcut  -------------> .
17) TestL3Capture2  -------------> .
18) TestL3VlanMet  -------------> .
19) TestIngressSpan  -------------> .
20) TestEgressSpan  -------------> .
21) TestIPv6FibShortcut  -------------> .
22) TestMPLSFibShortcut  -------------> .
23) TestNATFibShortcut  -------------> .
24) TestAclPermit  -------------> .
25) TestAclDeny  -------------> .
26) TestQoSICam  -----------------> .
27) TestNetflowInlineRewrite:
   Port 1 2
   1 2
   U U
This example shows how to display the detailed online diagnostic results for a module:

Router# **show diagnostic result module 5 detail**

Current bootup diagnostic level: minimal

Module 5:

Overall Diagnostic Result for Module 5 : PASS
Diagnostic level at card bootup: minimal

Test results: (. = Pass, F = Fail, U = Untested)

___________________________________________________________________________

1) TestScratchRegister ----------- > .

Error code ------------------> 0 (DIAG_SUCCESS)
Total run count -------------> 330
Last test execution time -----> May 12 2003 14:49:36
First test failure time -------> n/a
Last test failure time -------> n/a
Last test pass time -----------> May 12 2003 14:49:36
Total failure count ---------> 0
Consecutive failure count ---> 0

___________________________________________________________________________

2) TestSPRPInbandPing ------------> .

Error code ------------------> 0 (DIAG_SUCCESS)
Total run count -------------> 660
Last test execution time -----> May 12 2003 14:49:38
First test failure time -------> n/a
Last test failure time -------> n/a
Last test pass time -----------> May 12 2003 14:49:38
Total failure count ---------> 0
Consecutive failure count ---> 0

___________________________________________________________________________

3) TestGBICIntegrity:

             Port  1  2
            ----------
               U  U

Error code ------------------> 0 (DIAG_SUCCESS)
Total run count ---------------> 0
Last test execution time ------> n/a
First test failure time -------> n/a
Last test failure time ---------> n/a
Last test pass time -----------> n/a
Total failure count ---------> 0
Consecutive failure count ---> 0

Router#
Schedule Switchover

The schedule switchover is used to check the readiness of the standby supervisor engine to take over in case the active supervisor engine fails or is taken out of service. You can run this test once or schedule it to run on a regular (daily, weekly, or monthly) basis.

Note: When setting the time for a schedule switchover on both supervisors, the switchover for the active and standby supervisor engines should be scheduled at least 10 minutes apart to reduce system downtime if the switchover fails.

To configure a schedule switchover, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 show diagnostic content [module num]</td>
<td>Displays the online diagnostics configured for a module. Use this command to obtain the test ID for the schedule switchover.</td>
</tr>
<tr>
<td>Step 2 Router(config)# diagnostic schedule module {num</td>
<td>active-sup-slot} test {test-id} {on mm dd yyyy hh:mm}</td>
</tr>
</tbody>
</table>

This example shows how to schedule a switchover for the active supervisor engine every Friday at 10:00 PM, and switch the standby supervisor engine back to the active supervisor engine 10 minutes after the scheduled switchover from the active supervisor engine occurs.

Router(config)# diagnostic schedule module 5 test 32 weekly Friday 22:00
Router(config)# diagnostic schedule module 6 test 32 weekly Friday 22:10

Performing Memory Tests

Most online diagnostic tests do not need any special setup or configuration. However, the memory tests, which include the TestFibTcamSSRAM and TestLinecardMemory tests, have some required tasks and some recommended tasks that you should complete before running them.

Before you run any of the online diagnostic memory tests, perform the following tasks:

- Required tasks
  - Isolate network traffic by disabling all connected ports.
  - Do not send test packets during a memory test.
  - Remove all switching modules for testing FIB TCAM and SSRAM on the policy feature card (PFC) of the supervisor engine.
  - Reset the system or the module you are testing before returning the system to normal operating mode.

- Recommended tasks:
  - If you have a distributed forwarding card (DFC) installed, remove all switching modules and then reboot the system before starting the memory test on the central PFC of the supervisor engine or route switch processor.
– Turn off all background health monitoring tests on the supervisor engine and switching modules using the `no diagnostic monitor module num test all` command.

### Diagnostic Sanity Check

You can run the diagnostic sanity check in order to see potential problem areas in your network. The sanity check runs a set of predetermined checks on the configuration with a possible combination of certain system states to compile a list of warning conditions. The checks are designed to look for anything that seems out of place and are intended to serve as an aid for maintaining the system sanity.

To run the diagnostic sanity check, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show diagnostic sanity</code></td>
<td>Runs a set of tests on all of the Gigabit Ethernet WAN interfaces in the Cisco 7600 series router.</td>
</tr>
</tbody>
</table>

This example displays samples of the messages that could be displayed with the `show diagnostic sanity` command:

```
Router# show diagnostic sanity
Pinging default gateway 10.6.141.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 10.6.141.1, timeout is 2 seconds:
..!!.
Success rate is 0 percent (0/5)

IGMP snooping disabled please enable it for optimum config.

IGMP snooping disabled but RGMP enabled on the following interfaces, please enable IGMP for proper config:
Vlan1, Vlan2, GigabitEthernet1/1

Multicast routing is enabled globally but not enabled on the following interfaces:
GigabitEthernet1/1, GigabitEthernet1/2

A programming algorithm mismatch was found on the device bootflash: Formatting the device is recommended.

The bootflash: does not have enough free space to accommodate the crashinfo file.

Please check your confreg value : 0x0.

Please check your confreg value on standby: 0x0.

The boot string is empty. Please enter a valid boot string . Could not verify boot image "disk0:" specified in the boot string on the slave.

Invalid boot image "bootflash:asdasd" specified in the boot string on the slave.

Please check your boot string on the slave.

UDLD has been disabled globally - port-level UDLD sanity checks are being bypassed.
```

OR
Chapter 42  Configuring Online Diagnostics

Diagnostic Sanity Check

[The following ports have UDLD disabled. Please enable UDLD for optimum config:
Fa9/45

The following ports have an unknown UDLD link state. Please enable UDLD on both sides of the link:
Fa9/45
]

The following ports have portfast enabled:
Fa9/35, Fa9/45

The following ports have trunk mode set to on:
Fa4/1, Fa4/13

The following trunks have mode set to auto:
Fa4/2, Fa4/3

The following ports with mode set to desirable are not trunking:
Fa4/3, Fa4/4

The following trunk ports have negotiated to half-duplex:
Fa4/3, Fa4/4

The following ports are configured for channel mode on:
Fa4/1, Fa4/2, Fa4/3, Fa4/4

The following ports, not channeling are configured for channel mode desirable:
Fa4/14

The following vlan(s) have a spanning tree root of 32768:
1

The following vlan(s) have max age on the spanning tree root different from the default:
1-2

The following vlan(s) have forward delay on the spanning tree root different from the default:
1-2

The following vlan(s) have hello time on the spanning tree root different from the default:
1-2

The following vlan(s) have max age on the bridge different from the default:
1-2

The following vlan(s) have fwd delay on the bridge different from the default:
1-2

The following vlan(s) have hello time on the bridge different from the default:
1-2

The following vlan(s) have a different port priority than the default on the port FastEthernet4/1
1-2

The following ports have receive flow control disabled:
Fa9/35, Fa9/45

The following inline power ports have power-deny/faulty status:
    Gi7/1, Gi7/2

The following ports have negotiated to half-duplex:
    Fa9/45

The following vlans have a duplex mismatch:
    Fas 9/45

The following interfaces have a native vlan mismatch:
    interface (native vlan - neighbor vlan)
    Fas 9/45 (1 - 64)

The value for Community-Access on read-only operations for SNMP is the same as default. Please verify that this is the best value from a security point of view.

The value for Community-Access on write-only operations for SNMP is the same as default. Please verify that this is the best value from a security point of view.

The value for Community-Access on read-write operations for SNMP is the same as default. Please verify that this is the best value from a security point of view.

Please check the status of the following modules:
    8,9

Module 2 had a MINOR_ERROR.

The Module 2 failed the following tests:
    TestIngressSpan

The following ports from Module2 failed test1:
    1,2,4,48
Diagnostic Sanity Check
Configuring Denial of Service Protection

This chapter contains information on how to protect your Cisco 7600 series router against Denial of Service (DoS) attacks. The information covered in this chapter is unique to the Cisco 7600 series routers, and it supplements the network security information and procedures in the “Configuring Network Security” chapter in this publication as well as the network security information and procedures in these publications:

- *Cisco IOS Security Configuration Guide*, Release 12.2, at this URL:
- *Cisco 7600 Series Routers Command References*, at this URL:

This chapter consists of these sections:

- Understanding Control Plane Protection, page 43-1
- Understanding How DoS Protection Works, page 43-10
- MLS Rate-limiter Default Configuration, page 43-22
- DoS Protection Configuration Guidelines and Restrictions, page 43-23
- Understanding How Control Plane Policing Works, page 43-29
- CoPP Default Configuration, page 43-29
- CoPP Configuration Guidelines and Restrictions, page 43-29
- Configuring CoPP, page 43-31
- Monitoring CoPP, page 43-33
- Personalizing a CoPP Policy, page 43-34
- Developing a CoPP Policy, page 43-34
- Defining Traffic Classification, page 43-38
- Configuring Sticky ARP, page 43-41

Understanding Control Plane Protection

To achieve routing stability, it is important to ensure that important control plane and management traffic reaches the Route Processor (RP) or Switch Processor (SP) CPU in Cisco 7600 routers. Also traffic such as IP options, Time to Live (TTL) packets, packets with errors, layer 2 broadcast and multicast packets...
are forwarded to the RP and results in congestion and such traffic needs to be controlled. Protecting the control plane involves protecting the RP or SP from unnecessary traffic and also ensuring that the important control plane and management traffic is delivered to the RP or SP.

DOS protection on 7600 involves enabling the following control-plane protection mechanisms:

- Control Plane Policing (CoPP) using Modular QoS Command Line (MQC)
- Multi Layer Switching (MLS) rate limiters
- MLS protocol policing
- Broadcast and multicast storm control
- Selective Packet Discard (SPD)

By default only the basic set of control plane protection mechanisms are enabled. You should customize the control plane mechanism according to your requirement.

Implementing Control Plane Protection in Cisco 7600

This section explains the available mechanisms in the Cisco 7600 router to implement control plane protection and also explains the packet flow inside the c7600 router. Control plane protection can be implemented at different stages and it is usually applied when a packet is analyzed and forwarded to the route processor (punt packet). The decision to punt a packet is made at Policy Feature Card (PFC) or DFC level, or also at the IOS process level on RP or SP. Once the decision to punt a packet is made, you can use policing and rate limiting to implement control plane protection. Control Plane Protection can also be applied before the punt decision by configuring traffic storm control, Access Control List (ACL) or ingress Quality of Service (QoS) in the interface and thus dropping unnecessary data packets.

The following sections explain the path of a packet towards the IOS process level on SP or RP in a Cisco 7600 router. Understanding the path of a data packet helps in configuring the control plane protection better.

Path of a Control Packet

Figure 43-1 shows the basic architecture of c7600 routers, with specifying actions in the punt path of a packet.
Figure 43-1  Path of a Punted Packet

Path of a punted packet up to the forwarding decision on the PFC or DFC is similar to the path of the transit packet. When a PFC or DFC determines that the packet needs to be punted to the RP or SP CPU, the ingress line card forwards the packet to the fabric or bus interface of the active supervisor through the switch fabric. Packet then passes through the packet ASIC towards RP or SP CPU.

Linecard Support for Control Plane Protection

This section explains the QoS features and other functionalities on the supported line cards for C7600 that impacts control plane protection.

LAN Cards

Unicast, broadcast, or multicast storm-control is implemented in port Application Specific Integrated Circuits (ASICS) on LAN cards. Packets dropped as a result of storm control do not reach the EARL on DFC or PFC. Packets pass first through port ASIC and then through the Encoded Address Recognition Logic (EARL) on the LAN cards. EARL is a centralized processing engine in the c7600 supervisor engines for learning and forwarding packets based on the MAC addresses.

Ingress queuing is performed only for ports in trust Class of Service (CoS) state, and for frames that carry a valid CoS tag except for the WS-X6708 linecard where queuing can be performed on ports in DSCP state. If port is in trust CoS or DSCP state, CoS in the internal databus header is derived from the packet CoS or DSCP. Global mapping can be modified to change this setting. Otherwise, DSCP in the internal databus header is set to zero. To ensure that important packets are treated with high priority on the entire path from interface to the SP or RP CPU, it is important to preserve the original dot1q CoS or IP COS or DSCP field values in those packets. Use the `show queueing interface` command to verify the port trust state.

Further actions on the packet are performed on DFC, if the line card has one, or on the PFC. Ports on SUP 720 or RSP720 can be considered as ports on a LAN card.

This example shows how to use the `show queueing interface` command to verify the port trust state.

```
Router# show queueing int Gig5/1 | inc Port
Port QoS is enabled
```
Port is untrusted

For information on default mapping of ingress CoS to queue and Ingress DSCP queueing for WS-X6708 module, see Chapter 48, “Configuring PFC QoS”.

7600-SIP-200 Cards

Unicast, broadcast or multicast storm control is not implemented on SIP-200 line cards.

QoS on the SIP-200 is configured using MQC. QoS functionalities such as classification, marking, policing, WRED, CBWFQ, shaping, priority queuing and LLQ are performed on the RX (receive) CPU on the 7600-SIP-200. QoS is not applicable for non IP packets on RX CPU.

CoS in the internal data bus header is derived from IP precedence. For non IP traffic, CoS is set to 6 for control plane traffic. For non-IP packets other than control traffic, internal CoS is set to 0. 7600-SIP-200 cards do not use the concept of port trust.

7600-SIP-400 Cards

Unicast, broadcast or multicast storm-control is not implemented on SIP-400 linecards.

When a packet is received from the SPA, Ingress Network Processor (INP) first classifies a packet. Internal `pak_priority` flag is set for IP routing protocol packets and non-IP control plane traffic (including ARP). The `pak_priority` flag in SIP-400 is has only local significance. It is considered when data bus header is built, but there is no provisioning for carrying the `pak_priority` flag to the IOS on SP or RP CPU. If `pak_priority` is set and the packet is non-IP, index-directed bit is set in the internal databus header.

The CoS field in internal databus header is copied from dot1q tag. Databus CoS value is set to 6 when packet is non-IP and `pak_priority` is set. Ingress Network Processor (INP) then applies ingress QoS if it is configured on the input interface. Packets with internal data bus CoS value set to 6 are sent towards the fabric on a separate channel. The packets are then sent to PFC through fabric interface.

7600-SIP-400 cards do not use the concept of port trust.

7600-ES20 and 7600-SIP-600 Cards

Unicast, broadcast or multicast storm control is implemented in the Network Processor (NP) on SIP-600 and ES20 linecards. Packets pass first through EARL on the SIP-600 or ES20 line card and then through the NP. On SIP-600, storm control is supported only on gigabit and tengigabit interfaces. ES20 and SIP-600 cards have a DFC. Before a packet is sent towards the EARL, databus BPDU is set for Cisco Discovery Protocol (CDP), Spanning Tree Protocol (STP), Dynamic Trunking Protocol (DTP), VLAN Trunking Protocol (VTP), Uni Directional Link Detection (UDLD), Port Aggregation Protocol (PAgP), Link Aggregation Control Protocol (LACP) or IEEE-flow-control packets. For IP packets, the databus CoS field may be copied from IP precedence, depending on the port trust state. ES20 and SIP-600 have two queues towards DFC, packets with CoS value from 0 to 5 move into the low priority queue and CoS value 6 and 7 move into the high priority queue.

7600-SIP-600 and 7600-ES20 cards use the port trust concept. Implications are the same as for LAN cards.
ES+ Line cards

Unicast, broadcast or multicast storm control is implemented in the Network Processor (NP) on the ES+ line cards. Packets pass through NP and then through the EARL on the ES+ line card. Packets dropped by storm control do not reach the EARL on the ES+ line card.

Input packet memory on Network Processor Unit (NPU) on ES+ cards has two RX queues per port (high priority and low priority queues). In addition, Intermediate System-to-Intermediate System (IS-IS) has its own special queue. High priority control packets are placed into the high priority queue.

Ingress QoS is applied in the NP. After that packets are passed to the EARL. On 7600-ES+ cards ports are always trusted.

Shared Port Adapters (SPA)

Shared Port Adapters (SPAs) are used in 7600-SIP-200, 7600-SIP-400 and 7600-SIP-600 cards.

Some SPAs may have limited QoS capabilities. For more information regarding the QoS capabilities for each SPA, see the Cisco 7600 Series Router SIP, SSC, and SPA Software Configuration Guide at:


Path of the Punted Packet Through Earl on PFC or DFC

This section explains the path of a punted packet through the PFC or DFC, focusing only on checks and actions that result in a punt.

When a packet is received by the PFC or DFC, lookup of the destination MAC is performed first and the appropriate action is performed depending on the type of packet as follows:

- Broadcast Frames: If there is a layer 3 interface in the VLAN on which the packet was received, broadcast frames are punted to RP CPU. Broadcast packets are not subject to MLS rate limiting.
- Multicast Frames: If there is a layer 3 interface in the VLAN on which the packet was received and if the destination MAC address corresponds to IPv4 local network control block multicast or IPv4 internetwork control block multicast (0100.5e00.0000 - 0100.5e00.01ff), the frames are punted to RP CPU. Other multicast frames may be punted to RP or SP CPU for various reasons. All packets are evaluated against the MLS QoS protocol policer and the policer is applied depending on the MLS QoS protocol policer configuration. Multicast packets punted to RP or SP CPU are subject to MLS rate limiter.
- Unicast frames: Frames with a destination MAC address of the same router may be forwarded for a layer 3 lookup. At layer 3 lookup, the result can be a punt for various reasons like layer 3 address is local to the router or feature unsupported in PFC or DFC. Unicast packets punted to the RP or SP CPU are also subject to MLS rate limiting. Unicast packets are also subject to control plane policing. You need to configure control plane policing and it is not active by default.

Policing Control Plane Traffic on the PFC or DFC

There are three mechanisms in PFC or DFC for policing control plane traffic.

- MLS protocol policer - MLS protocol policer polices all traffic of the specified protocol, not only traffic punted to the RP or SP CPU. It can also be used to change the IP precedence in these packets. It is configured using the `mls qos protocol police` command. For more information on the MLS protocol policing, see the section MLS Protocol Policing, page 43-14.
Understanding Control Plane Protection

- **MLS rate limiter** - MLS rate limiter is applicable only to traffic punted to RP or SP CPU. EARL on PFC3 or DFC3 provides 10 rate limiter registers, which are configured in global configuration mode. These rate limiter registers contain rate limiting information for result packets that match a particular rate limiter. Out of 10 rate limiter registers, two registers are on the layer 2 forwarding engine and are reserved for layer 2 rate limiters. The remaining eight registers are in the layer 3 forwarding engine, reserved for layer 3 rate limiters. Some of the rate limiters are enabled by default and others need to be configured. MLS rate limiters are configured using the `mls rate-limit` command.

  Active and inactive rate limiters, as well as the destination index used for the punt packet can be viewed using the `show mls rate-limit` command on the RP CPU and `show mls rate-limit hw-detail` command on the SP CPU. Some rate limiting scenarios are pre-configured to share the same register. To check which rate limiters share the same register, run the `show mls rate-limit usage` command on the RP CPU. For more information on MLS rate limiter configuration, see MLS Rate-limiter Default Configuration, page 43-22.

- **Control plane policer** - Control plane policer configured using MQC is applicable only to unicast traffic punted to RP CPU. Packet paths through the control plane policer and MLS rate limiter are mutually exclusive. If packets pass through the MLS rate limiter, they cannot be limited by the control plane policer. CoPP offers better visibility of offered rates, drop rates and packet counters. The `show policy-map control-plane` command displays the control plane policer statistics.

  Figure 43-2 and Figure 43-3 describe the packet paths in EARL for unicast and multicast packets.

**Figure 43-2**  Packet Path in EARL for Unicast Packets

![Packet Path in EARL for Unicast Packets](image1)

**Figure 43-3**  Packet Path in EARL for Multicast Packets

![Packet Path in EARL for Multicast Packets](image2)

The incoming packet is first evaluated against the MLS protocol policer. MLS protocol policer and Ingress PFC or DFC QoS are mutually exclusive. MLS protocol policer and ingress PFC or DFC QoS are performed before the forwarding decision.
If forwarding decision is to punt the packet to RP CPU, the punt packet is evaluated against the configured rate limiters. If the packet matches the rate limiters, the packet passes through the appropriate rate limiter. If it does not match any of the configured rate limiters and it is destined to RP CPU, it passes through hardware CoPP. MLS rate limiters and hardware CoPP are mutually exclusive. Hardware CoPP is not applied on the punt path to SP CPU. MLS rate limiters and hardware CoPP are egress features and applied after the forwarding decision.

Figure 43-4 explains CoPP on PFC or DFC.

Figure 43-4  Control Plane Policer on PFC or DFC (Hardware CoPP)

Both the MLS rate limiters and CoPP are configured in the global configuration mode. Once configured the same configuration is propagated to all PFCs or DFCs in the chassis. The first part of CoPP is applied on PFC or DFC, while the second part is applied on the RP CPU. MLS rate limiters are applied only in hardware on PFC or DFC.

Hardware policing and rate limiting for control plane protection is aggregated per PFC or DFC. The aggregate traffic coming through each PFC or DFC is again policed at the software level by CoPP.

For example, if there are two DFCs and a PFC in the chassis and aggregate policer rate in CoPP is configured as 1Mbps, the RP CPU receives a maximum of 3Mbps traffic, which is policed in the software to 1Mbps.

The command `show policy-map control-plane` command displays control plane policer statistics for all PFCs or DFCs and IOS. The `show mls rate-limit` command is executed on RP CPU shows only the configuration of the active PFC. To display the configuration of DFCs and standby PFC, execute the command `show mls rate-limit` on the DFC and standby RP respectively.

Path of the Punted Packet After PFC or DFC

RSP720/SUP 720 Hardware

Figure 43-5 describes the path of the punted packet after PFC or DFC.
Understanding Control Plane Protection

Figure 43-5  Packet Path on RSP720 or SUP 720

When a PFC or DFC decides to punt the packet, it instructs the ingress line card to send the packet through the switch fabric to the fabric or bus interface on the supervisor. The fabric or bus interface forwards the packet to the packet ASIC. The packet ASIC forwards the packet to the SP or RP CPU.

Each processor has a separate In-band Interface Channel (IBC) with two input queues. The high priority queue (queue 0) receives packets with the data bus CoS value from 4 to 7 and low priority queue (queue 1) receives packets with the data bus CoS value from 0 to 3. When the IBC controller receives the packet, it copies the packet into IOS input/output memory and raises a Network Input/Output (NetIO) interrupt to the CPU.

For information on packets received on IBC, including the SPD statistics, use the `show ibc exec` command. This command provides information about counters, which helps to confirm that configured control plane protection is limiting the rate of punted traffic. It can be also useful in troubleshooting punted traffic on SP and RP.
This is a sample output for the `show ibc exec` command.

```
Router# show ibc inc Rx{
 Rx(0) 23116485 2693239358
 Rx(1) 2294534 386747297
```

### Path of the Punted Packet on IOS

Once the NetIO interrupt is raised, NetIO interrupt handler routine calls the interface driver. Multiple packets received from IBC can be handled under a single NetIO interrupt. If the current NetIO interrupt is longer than the netint usec (maximum time that the network-level interrupt is allowed to run, in microseconds) period, the NetIO interrupt handler exits and NetIO interrupts are disabled during the netint mask usec (maximum time that the network-level interrupt is masked out) period. This mechanism is called NetIO throttling. During NetIO throttle, copy of packets through DMA into the IO memory happens as long as the receive buffer is not full. NetIO throttling only delays the handling of the NetIO interrupt. Since there is no control over which packets are dropped during NetIO throttling, it is important to impose proper control over packets that are punted to RP or SP CPU.

During a NetIO interrupt, the interface driver determines the type of packet and calls the the NetIO interrupt handler for the appropriate network protocol packets. If the packet is an IP packet, since software forwarding by RP CPU is permitted on c7600, IOS first calls the Cisco Express Forwarding (CEF) routine. If the packet cannot be forwarded at the interrupt level or if it is destined to the router, the packet is punted to process level.

Before CEF attempts to place the packet into the input process queue, SPD mechanism is applied. SPD allows buffering of high priority packets above the limit allowed for normal packets to avoid dropping important packets.

If the number of packets in the input queue of an interface reaches the input queue limit, interface is throttled. This means that no further packets for this interface are received until it is un-throttled. This mechanism is called interface throttling. Use the `show ibc` commands to see how many packets are dropped on throttled interfaces, and use the `show interfaces` command to see how many times the interface is throttled. To prevent drops of packets that go into SPD headroom and SPD extended headroom during interface throttle, configure the throttle selective interface configuration command. If a packet is not dropped by SPD, software CoPP is applied at the process level. Therefore, it is important to make sure that CoPP is optimally configured.

Use the `show platform netint` command to check the NetIO interrupt timers and throttling statistics.

This is a sample output for the `show platform netint` command.

```
Router# show platform netint
 Network IO Interrupt Throttling:
 throttle count=90, timer count=90
 active=0, configured=1
 netint usec=4000, netint mask usec=800
 inband_throttle_mask_hi = 0x0
 inband_throttle_mask_lo = 0x800000
```

In the `show platform netint` command, `timer count` shows how many times `netint mask usec` timer is invoked and `throttle count` shows how many times a NetIO interrupt is throttled.
Control Plane Protection Best Practices

Control plane protection involves the following best practices:

- Deploy storm control.
- Set the port state as trust if important control plane traffic is to be received on the interface. If a port is untrusted, CoS and IP precedence are reset to zero, which affects the prioritisation of the packet in the punt path.
- Determine the CoPP policy that needs to be applied.
- Consider the limitations in different protection mechanisms on c7600 while implementing control plane protection.
- Determine if any other traffic needs to be rate limited using MLS rate limiters or MLS protocol policing.
- Monitor and adjust traffic rates. For monitoring traffic rates, these commands are useful:
  - The `show mls statistics [module]` command that displays information about MLS statistics.
  - The `show policy-map control-plane` command that displays information about control plane policer classification counters, especially in the class-default.
  - The `show platform netint` command that displays information regarding NetIO throttle count and timer count.
  - The `show ibc` command that displays information on classification and drop counters.
  - The `debug netdr capture` command that displays information for capturing punted packets. The captured packets can be viewed using the `show netdr captured-packets` command.

Understanding How DoS Protection Works

The following sections contain an overview of the DoS protection on the Cisco 7600 series router and describe some types of DoS attack scenarios:

- DoS Protection with a PFC3, page 43-10

DoS Protection with a PFC3

This section contains information about the available methods to counteract DoS attacks with a PFC3 and includes configuration examples. The PFC3 provides a layered defense against DoS attacks using the following methods:

- CPU rate limiters—Controls traffic types.
- Control plane policing (CoPP)—Filters and rate limits control plane traffic. For information about CoPP, see Understanding How Control Plane Policing Works, page 43-29.

These sections describe DoS protection with a PFC3:

- Security ACLs and VACLs, page 43-11
- QoS Rate Limiting, page 43-12
- uRPF Check, page 43-12
Chapter 43  Configuring Denial of Service Protection

Understanding How DoS Protection Works

- Traffic Storm Control, page 43-13
- Network Under SYN Attack, page 43-13
- MLS Protocol Policing, page 43-14
- Hardware-based Rate Limiters on the PFC3, page 43-14
- Shared Rate-Limiters, page 43-15
- Recommended Rate-Limiter Configuration, page 43-15
  - Ingress-Egress ACL Bridged Packets (Unicast Only), page 43-16
  - uRPF Check Failure, page 43-17
  - TTL Failure, page 43-17
  - ICMP Unreachable (Unicast Only), page 43-17
  - FIB (CEF) Receive Cases (Unicast Only), page 43-18
  - FIB Glean (Unicast Only), page 43-18
  - Layer 3 Security Features (Unicast Only), page 43-18
  - ICMP Redirect (Unicast Only), page 43-18
  - VACL Log (Unicast Only), page 43-19
  - MTU Failure, page 43-19
  - Layer 2 Multicast IGMP Snooping, page 43-19
  - Layer 2 PDU, page 43-19
  - Layer 2 Protocol Tunneling, page 43-19
  - IP Errors, page 43-20
  - IPv4 Multicast, page 43-20
  - IPv6 Multicast, page 43-21

Security ACLs and VACLs

If the network is under a DoS attack, ACLs can be an efficient method for dropping the DoS packets before they reach the intended target. Use security ACLs if an attack is detected from a particular host. In this example, the host 10.1.1.10 and all traffic from that host is denied:

```
Router(config)# access-list 101 deny ip host 10.1.1.10 any
Router(config)# access-list 101 permit ip any any
```

Security ACLs also protect against the spoofing of addresses. For example, assume that a source address A is on the inside of a network and a router interface that is pointing to the Internet. You can apply an inbound ACL on the router Internet interface that denies all addresses with a source of A (the inside address). This action stops attacks where the attackers spoof inside source addresses. When the packet arrives at the router interface, it matches on that ACL and drops the packet before it causes damage.

When the Cisco 7600 series router is used with a Cisco Intrusion Detection Module (CIDM), you can dynamically install the security ACL as a response to the detection of the attack by the sensing engine.
VACLs are a security enforcement tool based on Layer 2, Layer 3, and Layer 4 information. The result of a VACL lookup against a packet can be a permit, a deny, a permit and capture, or a redirect. When you associate a VACL with a particular VLAN, all traffic must be permitted by the VACL before the traffic is allowed into the VLAN. VACLs are enforced in hardware, so there is no performance penalty for applying VACLs to a VLAN on the Cisco 7600 series routers.

**QoS Rate Limiting**

QoS ACLs limit the amount of a particular type of traffic that is processed by the MSFC3. If a DoS attack is initiated against the MSFC, QoS ACLs can prevent the DoS traffic from reaching the MSFC data path and congesting it. The PFC3 performs QoS in hardware, which offers an efficient means of limiting DoS traffic (once that traffic has been identified) to protect the router from impacting the MSFC.

For example, if the network is experiencing ping-of-death or smurf attacks, the administrator should rate limit the ICMP traffic to counteract the DoS attack and still allow legitimate traffic through the processor, or allow it to be forwarded to the MSFC or host. This rate limiting configuration must be done for each flow that should be rate limited and the rate-limiting policy action should be applied to the interface.

In the following example, the access-list 101 permits and identifies ping (echo) ICMP messages from any source to any destination as traffic. Within the policy map, a policing rule defines a specified committed information rate (CIR) and burst value (96000 bps and 16000 bps) to rate limit the ping (ICMP) traffic through the chassis. The policy map then is applied to an interface or VLAN. If the ping traffic exceeds the specified rate on the VLAN or interface where the policy map is applied, it is dropped as specified in the markdown map (the markdown map for the normal burst configurations is not shown in the example).

```
Router(config)# access-list 101 permit icmp any any echo
Router(config)# class-map match-any icmp_class
Router(config-cmap)# match access-group 101
Router(config-cmap)# exit
Router(config)# policy-map icmp_policer
Router(config-pmap)# class icmp_class
Router(config-pmap-c)# police 96000 16000 conform-action transmit exceed-action policed-dscp-transmit drop
Router(config-pmap-c)# exit
Router(config-pmap)# exit
```

**uRPF Check**

When you enable the unicast reverse path forwarding (uRPF) check, packets that lack a verifiable source IP address, such as spoofed IP source addresses, are discarded. Cisco Express Forwarding (CEF) tables are used to verify that the source addresses and the interfaces on which they were received are consistent with the FIB tables on the supervisor engine.

After you enable uRPF check on an interface (per-VLAN basis), the incoming packet is compared to the CEF tables through a reverse lookup. If the packet is received from one of the reverse path routes, the packet is forwarded. If there is no reverse path route on the interface on which the packet was received, the packet fails the uRPF check and is either dropped or forwarded, depending on whether an ACL is applied to the uRPF check fail traffic. If no ACL is specified in the CEF tables, then the forged packets are immediately dropped.

You can only specify an ACL for the uRPF check for packets that fail the uRPF check. The ACL checks whether the packet should immediately be dropped or forwarded. The uRPF check with ACL is not supported in any PFC3 in hardware. Packets that are denied in the uRPF ACL are forwarded in hardware. Packets that are permitted are sent to the CPU.
The uRPF check with a PFC3 is supported in hardware. However, all packets that fail the uRPF check, and are forwarded because of an applied ACL, can be sent and rate limited to the MSFC to generate ICMP unreachable messages; these actions are all software driven. The uRPF check in hardware is supported for routes with up to two return paths (interfaces) and up to six return paths with interface groups configured (two from the FIB table and four from the interface groups).

**Traffic Storm Control**

A traffic storm occurs when packets flood the LAN, which creates excessive traffic and degrades network performance. The traffic storm control feature prevents LAN ports from being disrupted by a broadcast, multicast, or unicast traffic storm on physical interfaces from either mistakes in network configurations or from users issuing a DoS attack. Traffic storm control (also called traffic suppression) monitors incoming traffic levels over a 1-second traffic storm control interval. During the interval, traffic storm control compares the traffic level with the configured traffic storm control level. The traffic storm control level is a percentage of the total available bandwidth of the port. Each port has a single traffic storm control level that is used for all types of traffic (broadcast, multicast, and unicast).

Traffic storm control is configured on an interface and is disabled by default. The configuration example here enables broadcast address storm control on interface FastEthernet 2/3 to a level of 20 percent. When the broadcast traffic exceeds the configured level of 20 percent of the total available bandwidth of the port within a 1-second traffic-storm-control interval, traffic storm control will drop all broadcast traffic until the end of the traffic-storm-control interval.

```
Router(config-if)# storm-control broadcast level 20
```

The Cisco 7600 series router supports broadcast storm control on all LAN ports and multicast and unicast storm control on Gigabit Ethernet ports.

When two or three suppression modes are configured simultaneously, they share the same level settings. If broadcast suppression is enabled, and if multicast suppression is also enabled and configured at a 70-percent threshold, the broadcast suppression will also have a setting for 70 percent.

**Network Under SYN Attack**

A network under a SYN attack is easily recognized. The target host becomes unusually slow, crashes, or suspends operation. Traffic returned from the target host can also cause trouble on the MSFC because return traffic goes to randomized source addresses of the original packets, lacks the locality of “real” IP traffic, and may overflow route caches, or CEF tables.

When the network is under a SYN attack, the TCP intercept feature becomes aggressively defensive. Two factors determine when aggressive behavior on the router begins and ends:

- The total incomplete connections
- Connection requests during the last one-minute sample period

Both factors are configured with low and high values.

If the number of incomplete connections exceed 1,100, or the number of connections arriving in the last one-minute period exceed 1,100, each new arriving connection causes the oldest partial connection (or a random connection) to be deleted. These are the default values, which can be altered. When either of the thresholds is exceeded, the TCP intercept assumes the server is under attack and goes into aggressive mode with the following reactions:

- Each new arriving connection causes the oldest partial (or random partial) to be deleted.
- The initial retransmission timeout is reduced by half to 0.5 seconds, and so the total time trying to establish the connection is cut in half.
Chapter 43 Configuring Denial of Service Protection

Understanding How DoS Protection Works

- In watch mode, the watch timeout is reduced by half.

Note When both thresholds fall below the configured low value, the aggressive behavior ceases (default value is 900 in both factors).

TCP flows are hardware assisted on all PFC3 types.

MLS Protocol Policing

During an attack, malicious users may try to overwhelm the MSFC CPU with control packets such as routing protocol or ARP packets. These special control packets can be hardware rate limited using a specific routing protocol and an ARP policing mechanism configurable with the `mls qos protocol` command. The routing protocols supported include RIP, BGP, LDP, OSPF, IS-IS, IGRP, and EIGRP. For example, the command `mls qos protocol arp police 32000` rate limits ARP packets in hardware at 32,000 bps. Although this policing mechanism effectively protects the MSFC CPU against attacks such as line-rate ARP attacks, it does not only police routing protocols and ARP packets to the router but also polices traffic through the box with less granularity than CoPP.

The policing mechanism shares the root configuration with a policing-avoidance mechanism. The policing-avoidance mechanism lets the routing protocol and ARP packets flow through the network when they reach a QoS policer. This mechanism can be configured using the `mls qos protocol protocol pass-through` command.

This example shows how to display the available protocols to use with ARP policing.

```
Router(config)# mls qos protocol ?
 isis
 eigrp
 ldp
 ospf
 rip
 bgp
 ospfv3
 bgpV2
 ripng
 neigh-discover
 wlccp
 arp
```

This example shows how to display the available keywords to use with the `mls qos protocol arp` command:

```
Router(config)# mls qos protocol arp ?
 pass-through pass-through keyword
 police police keyword
 precedence change ip-precedence(used to map the dscp to cos value)
```

Hardware-based Rate Limiters on the PFC3

The PFC3 supports additional hardware-based rate limiters. The PFC3 provides eight rate-limiter registers for the new rate limiters, which are configured globally on the router. These rate-limiter registers are present in the Layer 3 forwarding engine (PFC) and are responsible for containing rate-limiting information for result packets that match the various available configured rate limiters.
Because eight rate-limiter registers are present on the PFC3, these registers can force different rate-limiting scenarios to share the same register. The registers are assigned on a first-come, first-serve basis. If all registers are being utilized, the only way to configure another rate limiter is to free one register.

The hardware-based rate limiters available on the PFC3 are as follows:

- Ingress and egress ACL bridged packets
- uRPF check failures
- FIB receive cases
- FIB glean cases
- Layer 3 security features
- ICMP redirects
- ICMP unreachable (ACL drop)
- No-route (FIB miss)
- VACL log
- TTL failure
- MTU failure
- Multicast IPv4
- Multicast IPv6

**Shared Rate-Limiters**

These shared rate limiters can be configured on the Cisco 7600 router:

- IP RPF failure
- ICMP unreachable no-route
- ICMP unreachable acl-drop
- IP errors

If you enable or disable one of the shared rate limiter, all the other shared limiters are enabled or disabled.

**Recommended Rate-Limiter Configuration**

The recommended rate-limiter configuration is as follows:

- Enable the rate limiters for the traffic types commonly used in a DoS attack.
- Do not use a rate limiter on VACL logging, unless you configure VACL logging.
- Disable redirects because a platform that supports hardware forwarding, such as the Cisco 7600 series router, reduces the need for redirects.
- Disable unreachables because a platform that supports hardware unreachables, such as the Cisco 7600 series router, reduces the need for unreachables.
- Do not enable the MTU rate limiter if all interfaces have the same MTU.
- When configuring the Layer 2 PDU rate limiter, note the following information:
  - Calculate the expected or possible number of valid PDUs and double or triple the number.
– PDUs include BPDUs, DTP, VTP, PAgP, LACP, UDLD and so on.
– Rate limiters do not discriminate between good frames or bad frames.

- The MTU and TTL rate limiters are enabled by default from the 15.1(1)S1 and 15.0(1)S3a release.
  - The default MTU and TTL values are 970 and 97 respectively. You can change the default values once the router is booted.
  - If non-default values on MTU and TTL have already been configured on the router, then the user defined configurations takes precedence.
  - The default values of MTU and TTL rate limiters can be modified and saved in the configurations.
  - If the maximum supported rate limiters have already been configured, then the MTU and TTL rate limiters are not enabled by default at the boot up. The user defined rate limiters is given precedence.

**Ingress-Egress ACL Bridged Packets (Unicast Only)**

This rate limiter rate limits packets sent to the MSFC because of an ingress/egress ACL bridge result. The router accomplishes this by altering existing and new ACL TCAM entries with a TCAM bridge result to a Layer 3 redirect result pointing to the MSFC. Packets hitting the TCAM entries with the altered Layer 3 redirect rate limit result will be rate limited according to the instructions set in CLI by the network administrator. Both the ingress and egress values will be the same, as they both share the same rate-limiter register. If the ACL bridge ingress/egress rate limiting is disabled, the Layer 3 redirect rate limit results are converted to the bridge result.

Ingress or egress ACL-bridged packet cases share a single rate-limiter register. If the feature is turned on, ingress and egress ACLs use the same rate-limiter value.

Burst values regulate how many packets can be allowed in a burst. Each allowed packet consumes a token and a token must be available for a packet to be allowed. One token is generated per millisecond. When packets are not coming in, tokens can be accumulated up to the burst value. For example, if the burst value is set to 50, the router can accumulate up to 50 tokens and absorb a burst of 50 packets.

This example shows how to rate limit the unicast packets from an ingress ACL bridge result to 50000 packets per second, and 50 packets in burst:

```
Router(config)# mls rate-limit unicast acl input 50000 50
```

This example shows how to rate limit the unicast packets from an ingress ACL bridge result to the same rate (50000 pps and 50 packets in burst) for egress ACL bridge results:

```
Router(config)# mls rate-limit unicast acl output 50000 50
```

If the values of the rate limiter are altered on either the ingress or the egress when both are enabled, both values are changed to that new value. In the following example, the output rate is changed to 40000 pps:

```
Router(config)# mls rate-limit unicast acl output 40000 50
```

When you enter the `show mls rate-limit` command, both the ACL bridged in and the ACL bridged out display the new value of 40000 pps:

```
Router# show mls rate-limit
Rate Limiter Type Status Packets/s Burst

MCAST NON RPF Off - -
MCAST DFLT ADJ On 100000 100
MCAST DIRECT CON Off - -
ACL BRIDGED IN On 40000 50
ACL BRIDGED OUT On 40000 50
```
IP FEATURES Off

uRPF Check Failure

The uRPF check failure rate limiter allows you to configure a rate for the packets that need to be sent to the MSFC because they failed the uRPF check. The uRPF checks validate that incoming packets on an interface are from a valid source, which minimizes the potential threat of DoS attacks from users using spoofed addresses. When spoofed packets fail the uRPF check, those failures can be sent to the MSFC. The uRPF check rate limiters allow you to rate limit the packets per second that are bridged to the MSFC CPU when a uRPF check failure occurs.

This example shows how to rate limit the uRPF check failure packets sent to the MSFC to 100000 pps with a burst of 100 packets:

```
Router(config)# mls rate-limit unicast ip rpf-failure 100000 100
```

TTL Failure

This rate limiter rate limits packets sent to the MSFC because of a time-to-live (TTL) check failure. As indicated by the `all` keyword in the following example, this rate limiter applies to both multicast and unicast traffic.

```
Note

The TTL failure rate limiter is not supported for IPv6 multicast.
```

This example shows how to rate limit the TTL failures to 70000 pps with a burst of 150:

```
Router(config)# mls rate-limit all ttl-failure 70000 150
```

ICMP Unreachable (Unicast Only)

In an ICMP unreachable attack, a device is flooded with a large number of packets that contain a destination address that is unreachable from the flooded device (in this case, the MSFC). The ICMP unreachable rate limiter allows you to rate limit the packets that are sent to the MSFC containing unreachable addresses.

This example shows how to rate limit the packets that are sent to the MSFC because of an ACL drop to 10000 pps and a burst of 100:

```
Router(config)# mls rate-limit unicast ip icmp unreachable acl-drop 10000 100
```

This example shows how to rate limit the packets that require generation of ICMP-unreachable messages because of a FIB miss to 80000 pps and burst to 70:

```
Router(config)# mls rate-limit unicast ip icmp unreachable no-route 80000 70
```

The four rate limiters, ICMP unreachable no route, ICMP unreachable ACL drop, IP errors, and IP RPF failure, share a single rate-limiter register. If any of these limiters are enabled, all of the limiters in this group will share the same value and sometimes the same state (for example, ON/ON/ON). When verifying the rate limiters, if the members of this register are enabled through another feature, an ON-Sharing status (instead of an ON status) is displayed. The exception is the TTL failure rate limiter: its value shares the same value as the other members in the register if you have manually enabled the feature.
FIB (CEF) Receive Cases (Unicast Only)

The FIB receive rate limiter provides the capability to rate limit all packets that contain the MSFC IP address as the destination address. The rate limiters do not discriminate between good frames and bad frames.

Note
Do not enable the FIB receive rate limiter if you are using CoPP. The FIB receive rate limiter overrides the CoPP policies.

This example shows how to rate limit the traffic to 25000 pps with a burst of 60:

Router(config)# mls rate-limit unicast cef receive 25000 60

FIB Glean (Unicast Only)

The FIB glean rate limiter does not limit ARP traffic, but provides the capability to rate limit traffic that requires address resolution (ARP) and requires that it be sent to the MSFC. This situation occurs when traffic enters a port and contains the destination of a host on a subnet that is locally connected to the MSFC, but no ARP entry exists for that destination host. In this case, because the MAC address of the destination host will not be answered by any host on the directly connected subnet that is unknown, the “glean” adjacency is hit and the traffic is sent directly to the MSFC for ARP resolution. This rate limiter limits the possibility of an attacker overloading the CPU with such ARP requests.

This example shows how to rate limit the rate at which this traffic is sent to the MSFC to 20000 pps and a burst of 60:

Router(config)# mls rate-limit unicast cef glean 20000 60

Layer 3 Security Features (Unicast Only)

Some security features are processed by first being sent to the MSFC. For these security features, you need to rate limit the number of these packets being sent to the MSFC to reduce any potential overloading. The security features include authentication proxy (auth-proxy), IPSEC, and inspection.

Authentication proxy is used to authenticate inbound or outbound users or both. These users are normally blocked by an access list, but with auth-proxy, the users can bring up a browser to go through the firewall and authenticate on a terminal access controller access control system plus (TACACS+) or RADIUS server (based on the IP address). The server passes additional access list entries down to the router to allow the users through after authentication. These ACLs are stored and processed in software, and if there are many users utilizing auth-proxy, the MSFC may be overwhelmed. Rate limiting would be advantageous in this situation.

IPSec and inspection are also done by the MSFC and may require rate limiting. When the Layer 3 security feature rate limiter is enabled, all Layer 3 rate limiters for auth-proxy, IPSec and inspection are enabled at the same rate.

This example shows how to rate limit the security features to the MSFC to 100000 pps with a burst of 10 packets:

Router(config)# mls rate-limit unicast ip features 100000 10

ICMP Redirect (Unicast Only)

The ICMP-redirect rate limiter allows you to rate limit ICMP traffic. For example, when a host sends packets through a nonoptimal router, the MSFC sends ICMP-redirect messages to the host to correct its sending path. If this traffic occurs continuously, and is not rate limited, the MSFC will continuously generate ICMP-redirect messages.
Chapter 43  Configuring Denial of Service Protection

Understanding How DoS Protection Works

This example shows how to rate limit the ICMP redirects to 20000 pps, with a burst of 20 packets:

Router(config)# mls rate-limit unicast ip icmp redirect 20000 20

VACL Log (Unicast Only)

Packets that are sent to the MSFC because of VLAN-ACL logging can be rate limited to ensure that the CPU is not overwhelmed with logging tasks. VACLs are processed in hardware, but the MSFC does the logging. When VACL logging is configured on the router, IP packets that are denied in the VACL generate log messages.

This example shows how to rate limit logging requests to 5000 pps (the range for this rate limiter is from 10 to 5000 pps):

Router(config)# mls rate-limit unicast acl vacl-log 5000

MTU Failure

Similar to the TTL failure rate limiter, the rate limiter for MTU failures is supported for both unicast and multicast traffic. Packets that fail an MTU check are sent to the MSFC CPU. This might cause the MSFC to be overwhelmed.

This example shows how to rate limit packets failing the MTU failures from being sent to the MSFC to 10000 pps with a burst of 10:

Router(config)# mls rate-limit all mtu 10000 10

Layer 2 Multicast IGMP Snooping

The IGMP snooping rate limiter limits the number of Layer 2 IGMP packets destined for the supervisor engine. IGMP snooping listens to IGMP messages between the hosts and the supervisor engine. You cannot enable the Layer 2 PDU rate limiter if the Cisco 7600 series router is operating in truncated mode. The router uses truncated mode for traffic between fabric-enabled modules when there are both fabric-enabled and nonfabric-enabled modules installed. In this mode, the router sends a truncated version of the traffic (the first 64 bytes of the frame) over the switch fabric channel.

This example shows how to rate limit IGMP-snooping traffic:

Router(config)# mls rate-limit multicast ipv4 igmp 20000 40

Layer 2 PDU

The Layer 2 protocol data unit (PDU) rate limiter allows you to limit the number of Layer 2 PDU protocol packets (including BPDUs, DTP, PAgP, CDP, STP, and VTP packets) destined for the supervisor engine and not the MSFC CPU. You cannot enable the Layer 2 PDU rate limiter if the Cisco 7600 series router is operating in truncated mode. The router uses truncated mode for traffic between fabric-enabled modules when there are both fabric-enabled and nonfabric-enabled modules installed. In this mode, the router sends a truncated version of the traffic (the first 64 bytes of the frame) over the switch fabric channel.

This example shows how to rate limit Layer 2 PDUs to 20000 pps with a burst of 20 packets.

Router(config)# mls rate-limit layer2 pdu 20000 20

Layer 2 Protocol Tunneling

This rate limiter limits the Layer 2 protocol tunneling packets, which include control PDUs, CDP, STP, and VTP packets destined for the supervisor engine. These packets are encapsulated in software (rewriting the destination MAC address in the PDU), and then forwarded to a proprietary multicast...
address (01-00-0c-cd-cd-d0). You cannot enable the Layer 2 PDU rate limiter if the Cisco 7600 series router is operating in truncated mode. The router uses truncated mode for traffic between fabric-enabled modules when there are both fabric-enabled and nonfabric-enabled modules installed. In this mode, the router sends a truncated version of the traffic (the first 64 bytes of the frame) over the switch fabric channel.

This example shows how to rate limit Layer 2 protocol tunneling packets to 10000 pps with a burst of 10 packets:

```
Router(config)# mls rate-limit layer2 l2pt 10000 10
```

**IP Errors**

This rate limiter limits the packets with IP checksum and length errors. When a packet reaches the PFC3 with an IP checksum error or a length inconsistency error, it must be sent to the MSFC for further processing. An attacker might use the malformed packets to carry out a DoS attack, but the network administrator can configure a rate for these types of packets to protect the control path.

This example shows how to rate limit IP errors sent to the MSFC to 1000 pps with a burst of 20 packets:

```
Router(config)# mls rate-limit unicast ip errors 1000 20
```

**IPv4 Multicast**

This rate limiter limits the IPv4 multicast packets. The rate limiters can rate limit the packets that are sent from the data path in the hardware up to the data path in the software. The rate limiters protect the control path in the software from congestion and drop the traffic that exceeds the configured rate. Within the IPv4 multicast rate limiter, there are three rate limiters that you can also configure: the FIB-miss rate limiter, the multicast partially switched flows rate limiter, and the multicast directly connected rate limiter.

The FIB-miss rate limiter allows you to rate limit the multicast traffic that does not match an entry in the mroute table.

The partially switched flow rate limiter allows you to rate limit the flows destined to the MSFC3 for forwarding and replication. For a given multicast traffic flow, if at least one outgoing Layer 3 interface is multilayer switched, and at least one outgoing interface is not multilayer switched (no H-bit set for hardware switching), the particular flow is considered partially switched, or partial-SC (partial shortcut). The outgoing interfaces that have the H-bit flag are switched in hardware and the remaining traffic is switched in software through the MSFC3. For this reason, it may be desirable to rate limit the flow destined to the MSFC3 for forwarding and replication, which might otherwise increase CPU utilization.

The multicast directly connected rate limiter limits the multicast packets from directly connected sources.

This example shows how to rate limit the multicast packets to 30000 pps with a burst of 30:

```
Router(config)# mls rate-limit multicast ipv4 connected 30000 30
```

The `ip-option` keyword and the ip-option rate limiter are supported with a PFC3B, PFC3BXL, PFC3C, or PFC3CXL only.

This example shows how to set the rate limiters for the IPv4 multicast packets failing the uRPF check:

```
Router(config)# mls rate-limit multicast ipv4 non-rpf 100
```

This example shows how to rate limit the multicast FIB miss packets to 10000 pps with a burst of 10:

```
Router(config)# mls rate-limit multicast ipv4 fib-miss 10000 10
```

This example shows how to rate limit the partial shortcut flows to 20000 pps with a burst of 20 packets:
Configuring Denial of Service Protection

### Understanding How DoS Protection Works

```bash
Router(config)# mls rate-limit multicast ipv4 partial 20000 20
```

This example shows how to rate limit the multicast packets to 30000 pps with a burst of 20:

```bash
Router(config)# mls rate-limit multicast ipv4 connected 30000 20
```

This example shows how to rate limit IGMP-snooping traffic:

```bash
Router(config)# mls rate-limit multicast ipv4 igmp 20000 40
```

### IPv6 Multicast

This rate limiter limits the IPv6 multicast packets. Table 43-1 lists the IPv6 rate limiters and the class of traffic that each rate limiter serves.

**Table 43-1 IPv6 Rate Limiters**

<table>
<thead>
<tr>
<th>Rate Limiter</th>
<th>Traffic Classes to be Rate Limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connected</td>
<td>Directly connected source traffic</td>
</tr>
<tr>
<td>Default-drop</td>
<td>* (*, G/m) SSM</td>
</tr>
<tr>
<td></td>
<td>* (*, G/m) SSM non-rpf</td>
</tr>
<tr>
<td>Route-control</td>
<td>* (*, FF02::X/128)</td>
</tr>
<tr>
<td>Starg-bridge</td>
<td>* (*, G/128) SM</td>
</tr>
<tr>
<td></td>
<td>* SM non-rpf traffic when (*, G) exists</td>
</tr>
<tr>
<td>Starg-M-bridge</td>
<td>* (*, G/m) SM</td>
</tr>
<tr>
<td></td>
<td>* (*, FF/8)</td>
</tr>
<tr>
<td></td>
<td>* SM non-rpf traffic when (*, G) doesn’t exist</td>
</tr>
</tbody>
</table>

You can configure rate limiters for IPv6 multicast traffic using one of the following methods:

- **Direct association of the rate limiters for a traffic class**—Select a rate and associate the rate with a rate limiter. This example shows how to pick a rate of 1000 pps and 20 packets per burst and associate the rate with the `default-drop` rate limiter:

  ```bash
 Router(config)# mls rate-limit multicast ipv6 default-drop 1000 20
  ```

- **Static sharing of a rate limiter with another preconfigured rate limiter**—When there are not enough adjacency-based rate limiters available, you can share a rate limiter with an already configured rate limiter (target rate limiter). This example shows how to share the `route-cntl` rate limiter with the `default-drop` target rate limiter:

  ```bash
 Router(config)# mls rate-limit multicast ipv6 route-cntl share default-drop
  ```

  If the target rate limiter is not configured, a message is displayed that indicates that the target rate limiter must be configured for it to be shared with other rate limiters.

- **Dynamic sharing of rate limiters**—If you are not sure about which rate limiter to share with, use the `share auto` keywords to enable dynamic sharing. When you enable dynamic sharing, the system selects a preconfigured rate limiter and shares the given rate limiter with the preconfigured rate limiter. This example shows how to choose dynamic sharing for the `route-cntl` rate limiter:

  ```bash
 Router(config)# mls rate-limit multicast ipv6 route-cntl share auto
  ```
This example shows how to set the rate limiters for the IPv6 multicast packets from a directly connected source:

```
Router(config)# mls rate-limit multicast ipv6 connected 1500 20
```

This example shows how to configure a direct association of the rate limiters for a traffic class:

```
Router(config)# mls rate-limit multicast ipv6 default-drop 1000 20
```

This example shows how to configure the static sharing of a rate limiter with another preconfigured rate limiter:

```
Router(config)# mls rate-limit multicast ipv6 route-cntl share default-drop
```

This example shows how to enable dynamic sharing for the route control rate limiter:

```
Router(config)# mls rate-limit multicast ipv6 route-cntl share auto
```

### MLS Rate-limiter Default Configuration

Table 43-2 shows the MLS Rate-limiter default configuration for the PFC3 hardware-based rate limiters.

<table>
<thead>
<tr>
<th>Rate Limiter</th>
<th>Default Status (ON/OFF)</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress/Egress ACL Bridged Packets</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>RPF Failures</td>
<td>ON</td>
<td>100 pps, burst of 10 packets</td>
</tr>
<tr>
<td>FIB Receive cases</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>FIB Glean Cases</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Layer 3 Security features</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>ICMP Redirect</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>ICMP Unreachable</td>
<td>ON</td>
<td>100 pps, burst of 10 packets</td>
</tr>
<tr>
<td>VACL Log</td>
<td>ON</td>
<td>2000 pps, burst of 10 packets</td>
</tr>
<tr>
<td>TTL Failure</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>MTU Failure</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Layer 2 PDU</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Layer 2 Protocol Tunneling</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>IP Errors</td>
<td>ON</td>
<td>100 pps, burst of 10 packets</td>
</tr>
<tr>
<td>Multicast IGMP</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Multicast FIB-Miss</td>
<td>ON</td>
<td>100000 pps, burst of 100 packets</td>
</tr>
<tr>
<td>Multicast Partial-SC</td>
<td>ON</td>
<td>1000000 pps, burst of 100 packets</td>
</tr>
<tr>
<td>Multicast Directly Connected</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Multicast Non-RPF</td>
<td>OFF</td>
<td></td>
</tr>
<tr>
<td>Multicast IPv6</td>
<td>ON</td>
<td>If the packets-in-burst is not set, a default of 100 is programmed for multicast cases.</td>
</tr>
</tbody>
</table>
DoS Protection Configuration Guidelines and Restrictions

The section contains these configuration guidelines and restrictions:

- PFC3, page 43-23

PFC3

When configuring DoS protection on systems configured with a PFC3, follow these CPU rate limiter guidelines and restrictions:

Note

For the CoPP guidelines and restrictions, see the “CoPP Configuration Guidelines and Restrictions” section on page 43-29.

- Do not use these rate limiters if multicast is enabled in systems configured with a PFC3A:
  - TTL failure
  - MTU failure
- These rate limiters are supported only on a PFC3B, PFC3BXL, PFC3C, or PFC3CXL:
  - Unicast IP options
  - Multicast IP options
- These are Layer 2 rate limiters:
  - Layer 2 PDUs
  - Layer 2 protocol tunneling
  - Layer 2 Multicast IGMP
- There are eight Layer 3 registers and two Layer 2 registers that can be used as CPU rate limiters.
- Do not use the CEF receive limiter if CoPP is being used. The CEF receive limiter will override the CoPP traffic.
- Rate limiters override the CoPP traffic.
- Configured rate limits is applied to each forwarding engine (except for the Layer 2 hardware rate limiter which is applied globally).
- Layer 2 rate limiters are not supported in truncated mode.
- The following restrictions apply when using the ingress and egress ACL-bridged packet rate limiters:
  - The ingress and egress ACL-bridged packet rate limiter is available for unicast traffic only.
  - The ingress and egress ACL-bridged packet rate limiters share a single rate-limiter register. If you enable the ACL-bridge ingress and egress rate limiters, both the ingress and the egress ACLs must share the same rate-limiter value.
- Use the `mls rate-limit unicast` command to rate limit unicast traffic.
- Use the `mls rate-limit multicast` command to rate limit multicast traffic.
- Use the `mls rate-limit multicast ipv4 igmp/pim rate in pps burst size` command to limit punting of IGMP or PIM packets in a layer 2/3 cloud.
Monitoring Packet Drop Statistics

You can capture the incoming or outgoing traffic on an interface and send a copy of this traffic to an external interface for monitoring by a traffic analyzer. To capture traffic and forward it to an external interface, use the `monitor session` command.

When capturing traffic, these restrictions apply:

- The incoming captured traffic is not filtered.
- The incoming captured traffic is not rate limited to the capture destination.

Monitoring Dropped Packets Using Monitor Session Commands

This example shows how to use the `monitor session` command to capture and forward traffic to an external interface:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# monitor session 1 source vlan 44 both
Router(config)# monitor session 1 destination interface g9/1
Router(config)# end
```

This example shows how to use the `show monitor session` command to display the destination port location:

```
Router# show monitor session 1
Session 1

Source Ports:
 RX Only: None
 TX Only: None
 Both: None
Source VLANs:
 RX Only: None
 TX Only: None
 Both: 44
Destination Ports: G9/1
Filter VLANs: None
```

Monitoring Dropped Packets Using show tcam interface Command

The PFC3B, PFC3BXL, PFC3C, and PFC3CXL support ACL hit counters in hardware. You can use the `show tcam interface` command to display each entry in the ACL TCAM.

This example shows how to use the `show tcam interface` command to display the number of times the entry was hit:

```
Router# show tcam interface fa5/2 acl in ip detail
```

<table>
<thead>
<tr>
<th>DPort</th>
<th>Destination Port</th>
<th>Sport</th>
<th>Source Port</th>
<th>TCP-P</th>
<th>U-URG Pro</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Inverted LOU</td>
<td>TOS</td>
<td>TOS Value</td>
<td>U-URG</td>
<td>Protocol</td>
<td></td>
</tr>
<tr>
<td>MRFM</td>
<td>M -MPLS Packet</td>
<td>TN</td>
<td>T-Tcp Control</td>
<td>P-FSH</td>
<td>C-Bank Care Flag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R -Recirc. Flag</td>
<td>CAP</td>
<td>Capture Flag</td>
<td>R-RST</td>
<td>I-OrdIndep. Flag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F-Fragment Flag</td>
<td>F-P</td>
<td>FlowMask-Prior.</td>
<td>S-SYN</td>
<td>D-Dynamic Flag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M-More Fragments</td>
<td></td>
<td></td>
<td>F-FIN</td>
<td>V(Value)/M(Mask)/R(Result)</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>XTAG</td>
<td>(*)</td>
<td>Bank Priority</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
You can also use the TTL and IP options counters to monitor the performance of the Layer 3 forwarding engine.

This example shows how to use the `show mls statistics` command to display packet statistics and errors associated with the Layer 3 forwarding engine:

```
Router# show mls statistics
Statistics for Earl in Module 6
L2 Forwarding Engine
  Total packets Switched : 25583421
L3 Forwarding Engine
  Total packets L3 Switched : 25433414 @ 24 pps
  Total Packets Bridged : 937860
  Total Packets FIB Switched : 23287640
  Total Packets ACL Routed : 0
  Total Packets Netflow Switched : 0
  Total Mcast Packets Switched/Routed : 96727
  Total ip packets with TOS changed : 2
  Total ip packets with COS changed : 2
  Total non ip packets COS changed : 0
  Total packets dropped by ACL : 33
  Total packets dropped by Policing : 0
Errors
  MAC/IP length inconsistencies : 0
  Short IP packets received : 0
  IP header checksum errors : 0
  TTL failures : 0
  TTL counters
    MTU failures : 0
  MTU failure counters

Total packets L3 Switched by all Modules: 25433414 @ 24 pps
```

Monitoring Dropped Packets Using VACL Capture

The VACL capture feature allows you to direct traffic to ports configured to forward captured traffic. The capture action sets the capture bit for the forwarded packets so that ports with the capture function enabled can receive the packets. Only forwarded packets can be captured.

You can use VACL capture to assign traffic from each VLAN to a different interface.
VAACL capture does not allow you to send one type of traffic, such as HTTP, to one interface and another type of traffic, such as DNS, to another interface. Also, VAACL capture granularity is only applicable to traffic switched locally; you cannot preserve the granularity if you direct traffic to a remote router.

This example shows how to use VAACL capture to capture and forward traffic to a local interface:

```
Router(config-if)# switchport capture
Router(config-if)# switchport capture allowed vlan add 100
```

Displaying Rate-Limiter Information

The `show mls rate-limit` command displays information about the configured rate limiters. The `show mls rate-limit usage` command displays the hardware register that is used by a rate-limiter type. If the register is not used by any rate-limiter type, Free is displayed in the output. If the register is used by a rate-limiter type, Used and the rate-limiter type are displayed.

In the command output, the rate-limit status could be one of the following:

- On indicates that a rate for that particular case has been set.
- Off indicates that the rate-limiter type has not been configured, and the packets for that case are not rate limited.
- High CPU utilization occurs when:
 - CoPP rate limits and drops exceeding traffic
 - mls qos protocol protocol pass-through is configured

To avoid this, rely on the CoPP to drop excessive traffic and not on `mls qos protocol`.

- On/Sharing indicates that a particular case (not manually configured) is affected by the configuration of another rate limiter belonging to the same sharing group.
- A hyphen indicates that the multicast partial-SC rate limiter is disabled.

In the command output, the rate-limit sharing indicates the following information:

- Whether sharing is static or dynamic
- Group dynamic sharing codes

To display the configured rate limiters, use the `show mls rate-limit` command:

```
Router# show mls rate-limit
Sharing Codes: S - static, D - dynamic
Codes dynamic sharing: H - owner (head) of the group, g - guest of the group

<table>
<thead>
<tr>
<th>Rate Limiter Type</th>
<th>Status</th>
<th>Packets/s</th>
<th>Burst</th>
<th>Sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAST NON RPF</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST DFLT ADJ</td>
<td>On</td>
<td>100000</td>
<td>100</td>
<td>Not sharing</td>
</tr>
<tr>
<td>MCAST DIRECT CON</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ACL BRIDGED IN</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ACL BRIDGED OUT</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IP FEATURES</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ACL VAACL LOG</td>
<td>On</td>
<td>2000</td>
<td>1</td>
<td>Not sharing</td>
</tr>
<tr>
<td>CEF RECEIVE</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CEF GLEAN</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCAST PARTIAL SC</td>
<td>On</td>
<td>100000</td>
<td>100</td>
<td>Not sharing</td>
</tr>
<tr>
<td>IP RPF FAILURE</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>TTL FAILURE</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ICMP UNREAC. NO-ROUTE</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>ICMP UNREAC. ACL-DROP</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>ICMP REDIRECT</td>
<td>Off</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
```
MTU FAILURE Off - - -
MCAST IP OPTION Off - - -
UCAST IP OPTION Off - - -
LAYER_2 PDU Off - - -
LAYER_2 PT Off - - -
IP ERRORS On 100 10 Group:0 S
CAPTURE PKT Off - - -
MCAST IGMP Off - - -
MCAST IPv6 DIRECT CON Off - - -
MCAST IPv6 *G M BRIDG Off - - -
MCAST IPv6 *G BRIDGE Off - - -
MCAST IPv6 SG BRIDGE Off - - -
MCAST IPv6 ROUTE CNTL Off - - -
MCAST IPv6 DFLT DROP Off - - -
MCAST IPv6 SECOND. DR Off - - -

Router#

To display the usage of the hardware rate limiters, use the `show mls rate-limit usage` command:

```
Router# show mls rate-limit usage
Rate Limiter Type     Packets/s   Burst
---------------------   ---------   -----  
Layer3 Rate Limiters:
   RL# 0: Free                       -           -       -
   RL# 1: Free                       -           -       -
   RL# 2: Free                       -           -       -
   RL# 3: Used
   MCAST DFLT ADJ        100000     100
   RL# 4: Free                       -           -       -
   RL# 5: Free                       -           -       -
   RL# 6: Used
   IP RPF FAILURE         100      10
   ICMP UNREAC. NO-ROUTE         100      10
   ICMP UNREAC. ACL-DROP         100      10
   IP ERRORS         100      10
   RL# 7: Used
   ACL VACL LOG        2000       1
   RL# 8: Rsvd for capture           -           -       -
Layer2 Rate Limiters:
   RL# 9: Reserved
   RL#10: Reserved
   RL#11: Free                       -           -       -
   RL#12: Free                       -           -       -
```

Router#

Due to hardware limitations, PFCor DFC cannot report how many packets are passed to MLS rate limiter or dropped. However, using the `show mls statistics` and `terminal exec prompt timestamp` commands, the rate of some erroneous packets can be calculated.

MLS Rate Limiter Configuration Example

This section contains a sample MLS rate limiter configuration. To meet your requirements, you need to modify the example accordingly.

This sample configuration is valid for Cisco IOS 12.2(33)SRE3, 15.0(1)S3, 15.1(1)S2 and later releases:

```
Router(config)# mls rate-limit unicast acl input 1000 10
Router(config)# mls rate-limit unicast acl output 1000 10
Router(config)# mls rate-limit multicast ipv4 igmp 1000 10
Router(config)# mls rate-limit multicast ipv4 fib-miss 100 10
Router(config)# mls rate-limit multicast ipv4 partial 100 10
```
DoS Protection Configuration Guidelines and Restrictions

Chapter 43 Configuring Denial of Service Protection

Router(config)# mls rate-limit multicast ipv4 connected 100 250
Router(config)# no mls rate-limit unicast acl vacl-log
Router(config)# mls rate-limit unicast ip options 1000 10
Router(config)# mls rate-limit multicast ipv4 ip-options 1000 10

For releases earlier than Cisco IOS 12.2(33)SRE3, add the following two lines to the MLS rate limiter configuration:

Router(config)# mls rate-limit all ttl-failure 100 10
Router(config)# mls rate-limit all mtu-failure 100 10

This configuration uses all the eight rate limit registers as shown in this sample output for the show mls rate-limit command.

Router# show mls rate-limit | exclude -
Sharing Codes: S - static, D - dynamic
Codes dynamic sharing: H - owner (head) of the group, g - guest of the group

<table>
<thead>
<tr>
<th>Rate Limiter Type</th>
<th>Status</th>
<th>Packets/s</th>
<th>Burst</th>
<th>Sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAST DFLT ADJ</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Not sharing</td>
</tr>
<tr>
<td>MCAST DIRECT CON</td>
<td>On</td>
<td>100</td>
<td>250</td>
<td>Not sharing</td>
</tr>
<tr>
<td>ACL BRIDGED IN</td>
<td>On</td>
<td>1000</td>
<td>10</td>
<td>Group:1 S</td>
</tr>
<tr>
<td>ACL BRIDGED OUT</td>
<td>On</td>
<td>1000</td>
<td>10</td>
<td>Group:1 S</td>
</tr>
<tr>
<td>MCAST PARTIAL SC</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Not sharing</td>
</tr>
<tr>
<td>IP RPF FAILURE</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>TTL FAILURE</td>
<td>On</td>
<td>97</td>
<td>10</td>
<td>Not sharing</td>
</tr>
<tr>
<td>ICMP UNREAC. NO-ROUTE</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>ICMP UNREAC. ACL-DROP</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
<tr>
<td>MTU FAILURE</td>
<td>On</td>
<td>997</td>
<td>10</td>
<td>Not sharing</td>
</tr>
<tr>
<td>MCAST IP OPTION</td>
<td>On</td>
<td>1000</td>
<td>10</td>
<td>Group:3 S</td>
</tr>
<tr>
<td>UCAST IP OPTION</td>
<td>On</td>
<td>1000</td>
<td>10</td>
<td>Group:2 S</td>
</tr>
<tr>
<td>IP ERRORS</td>
<td>On</td>
<td>100</td>
<td>10</td>
<td>Group:0 S</td>
</tr>
</tbody>
</table>

Router# show mls rate-limit usage

<table>
<thead>
<tr>
<th>Rate Limiter Type</th>
<th>Packets/s</th>
<th>Burst</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer3 Rate Limiters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RL# 0: Used</td>
<td>MCAST IP OPTION</td>
<td>1000</td>
</tr>
<tr>
<td>RL# 1: Used</td>
<td>MCAST DIRECT CON</td>
<td>100</td>
</tr>
<tr>
<td>RL# 2: Used</td>
<td>ACL BRIDGED IN</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>ACL BRIDGED OUT</td>
<td>1000</td>
</tr>
<tr>
<td>RL# 3: Used</td>
<td>UCAST IP OPTION</td>
<td>1000</td>
</tr>
<tr>
<td>RL# 4: Used</td>
<td>MCAST DFLT ADJ</td>
<td>100</td>
</tr>
<tr>
<td>RL# 5: Used</td>
<td>IP RPF FAILURE</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ICMP UNREAC. NO-ROUTE</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ICMP UNREAC. ACL-DROP</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>IP ERRORS</td>
<td>100</td>
</tr>
<tr>
<td>RL# 6: Used</td>
<td>MTU FAILURE</td>
<td>997</td>
</tr>
<tr>
<td>RL# 7: Used</td>
<td>TTL FAILURE</td>
<td>97</td>
</tr>
<tr>
<td>RL# 8: Rsvd for capture</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Layer2 Rate Limiters:
RL# 9: Reserved
Understanding How Control Plane Policing Works

The control plane policing (CoPP) feature increases security on the Cisco 7600 series router by protecting the MSFC from unnecessary or DoS traffic and giving priority to important control plane and management traffic. The PFC3 and DFC3 provide hardware support for CoPP. CoPP works with the PFC3 rate limiters.

The PFC3 supports the built-in “special case” rate limiters that can be used when an ACL cannot classify particular scenarios, such as IP options cases, TTL and MTU failure cases, packets with errors, and multicast packets. When enabling the special-case rate limiters, the special-case rate limiters override the CoPP policy for packets matching the rate-limiter criteria.

The traffic managed by the MSFC is divided into three functional components or planes:

- Data plane
- Management plane
- Control plane

The majority of traffic managed by the MSFC is handled by way of the control and management planes. You can use CoPP to protect the control and management planes, and ensure routing stability, reachability, and packet delivery. CoPP uses a dedicated control plane configuration through the modular QoS CLI (MQC) to provide filtering and rate-limiting capabilities for the control plane packets.

CoPP Default Configuration

CoPP is disabled by default and it is recommended that you enable CoPP. For information on CoPP, see Control Plane Policing Implementation Best Practices at: http://www.cisco.com/web/about/security/intelligence/coppwp_gs.html

CoPP Configuration Guidelines and Restrictions

When configuring CoPP, follow these guidelines and restrictions:

- Classes that match multicast are not applied in hardware but are applied in software.
- CPP is not supported in hardware for broadcast packets. The combination of ACLs, traffic storm control, and CPP software protection provides protection against broadcast DoS attacks.
- CoPP does not support ARP policies. ARP policing mechanisms provide protection against ARP storms.
- CoPP does not support non-IP classes except for the default non-IP class. ACLs can be used instead of non-IP classes to drop non-IP traffic, and the default non-IP CoPP class can be used to limit to non-IP traffic that reaches the RP CPU.
- Do not use the log keyword in CoPP policy ACLs.
CoPP Configuration Guidelines and Restrictions

- With PFC3A, egress QoS and CoPP cannot be configured at the same time. In this situation, CoPP is performed in the software. A warning message is displayed to inform you that egress QoS and CoPP cannot be configured at the same time.
- If you have a large QoS configuration, the system may run out of TCAM space. If this is the case, CoPP may be performed in software.
- When there is a large QoS configuration for other interfaces, you can run out of TCAM space. When this situation occurs, CoPP may be performed entirely in software and result in performance degradation and CPU cycle consumption.
- You must ensure that the CoPP policy does not filter critical traffic such as routing protocols or interactive access to the routers. Filtering this traffic could prevent remote access to the router, requiring a console connection.
- PFC3 supports built-in special-case rate limiters, which are useful for situations where an ACL cannot be used (for example, TTL, MTU, and IP options). When you enable the special-case rate limiters, you should be aware that the special-case rate limiters will override the CoPP policy for packets matching the rate-limiter criteria.
- CoPP is not enabled in hardware unless MMLS QoS is enabled globally with the `mls qos` command. If the `mls qos` command is not entered, CoPP will only work in software and will not provide any benefit to the hardware.
- Neither egress CoPP nor silent mode is supported. CoPP is only supported on ingress (service-policy output CoPP cannot be applied to the control plane interface).
- ACE hit counters in hardware are only for ACL logic. You can rely on software ACE hit counters and the `show access-list`, `show policy-map control-plane`, and `show mls ip qos` commands to troubleshoot evaluate CPU traffic.
- CoPP is performed on a per-forwarding-engine basis and software CoPP is performed on an aggregate basis.
- CoPP is not supported in hardware for multicast packets. The combination of ACLs, multicast CPU rate limiters and CoPP software protection provides protection against multicast DoS attacks.
- CoPP does not support ACEs with the `log` keyword.
- CoPP uses hardware QoS TCAM resources. Enter the `show tcam utilization` command to verify the TCAM utilization.
- When CoPP is configured and a unicast traffic passes through the CoPP classification, packets punted to RP are treated with trust DSCP action regardless of trust configured on the input port. If CoPP is configured, and you want the punted packets to be marked or trusted based on the input port, then execute the `platform ip features sequential` command on the input port. Since multicast and broadcast traffic do not go through the hardware CoPP classification, this is not applicable to multicast and broadcast traffic.
- When you set the policer value, note that the mls qos protocol is supported and impacts the traffic switch in the router.
- The incoming control packets needs to be trusted for priorioritizing them in control plane SPD. Otherwise, the packets may be competing with other data packets punted to RP and this increases their probability of getting dropped.
- For packets ingressing on LAN interfaces:
 - If a CoPP is not applied on the router, its preferable that either the ingress traffic DSCP or precedence is trusted using `mls qos trust`. Also avoid remarking of the incoming control protocol packets to precedence values lower than precedence 6. The control protocol packets could be classified based on their precedence or DSCP value.
If a CoPP is applied and a unicast traffic reaches the CoPP classification, then the CoPP overrides incoming trust state with trust dscp and preserves DSCP or precedence on the packets being punted to control plane. Multicast and broadcast traffic do not go through the hardware CoPP classification and hence this is not applicable to multicast or broadcast traffic.

- For packets ingressing on WAN interfaces like SIP 400 and ES+ linecards, avoid remarking the incoming control protocol packets to precedence values lower than precedence 6 or 7. The control protocol packets can be identified based on their precedence or DSCP value.
- High CPU utilization occurs when CoPP rate limits and drops the exceeding traffic and the protocol pass-through mode is configured using the `mls qos protocol` command. To avoid this, use the CoPP to drop excessive traffic and do not use the `mls qos protocol` command to route traffic directly to the route processor. For information on classifying CoPP traffic, see “Traffic Classification Overview” section on page 43-38.
- CoPP processing on IPv6 traffic in the class-map also processes Layer 2 traffic.

Configuring CoPP

CoPP uses MQC to define traffic classification criteria and to specify the configurable policy actions for the classified traffic. You must first identify the traffic to be classified by defining a class map. The class map defines packets for a particular traffic class. After you have classified the traffic, you can create policy maps to enforce policy actions for the identified traffic. The `control-plane` global configuration command allows the CoPP service policies to be directly attached to the control plane.

For information on how to define the traffic classification criteria, refer to the “Defining Traffic Classification” section on page 43-38.

To configure CoPP, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# <code>mls qos</code>
Enables MLS QoS globally.</td>
</tr>
</tbody>
</table>
| **Step 2** | Router(config)# `ip access-list extended access-list-name`
`permit` | Defines ACLs to match traffic:
• `permit` sets the conditions under which a packet passes a named IP access list.
• `deny` sets the conditions under which a packet does not pass a named IP access list.

Note: You must configure ACLs in most cases to identify the important or unimportant traffic. |
| **Step 3** | Router(config)# `class-map traffic-class-name`
Router(config-cmap)# `{match (ip precedence) | [ip dscp] | access-group}`
Defines the packet classification criteria. Use the `match` statements to identify the traffic associated with the class. |
| **Step 4** | Router(config)# `policy-map service-policy-name`
Router(config-pmap)# `{class traffic-class-name`
Router(config-pmap-c)# `police {bits-per-second [normal-burst-bytes]`
`[maximum-burst-bytes]`
`[pir peak-rate-bps]`
`[conform-action action]`
`[exceed-action action]`
`[violate-action action]`
`}`
Defines a service policy map. Use the `class traffic-class-name` command to associate classes to the service policy map. Use the `police` statements to associate actions to the service policy map. |
When defining the packet classification criteria, follow these guidelines and restrictions:

- To avoid matching the filtering and policing that are configured in a subsequent class, configure policing in each class. CoPP does not apply the filtering in a class that does not contain a police command. A class without a police command matches no traffic.
- The ACLs used for classification are QoS ACLs. QoS ACLs supported are IP standard, extended, and named.
- These are the only match types supported:
 - `ip precedence`
 - `ip dscp`
 - `access-group`
- Only IP ACLs are supported in hardware.
- MAC-based matching is done in software only.
- You can enter one `match` command in a single class map only.

When defining the service policy, the `police` policy-map action is the only supported action.

When applying the service policy to the control plane, the `input` direction is only supported.

Effective with Cisco IOS Release 15.3(1)S, you can configure Netflow on CoPP VLAN. Use the `ip flow ingress` command to enable the feature on control plane. The command enables all flows hitting the control plane of the router.

To configure Netflow on CoPP, perform this task:

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Router(config)# control-plane</td>
<td>Enters the control plane configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# control-plane</td>
<td>Enables NetFlow on control plane. NetFlow will collect statistics for packets forwarded in hardware (PFC) or software (RP).</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# exit</td>
<td>Disables NetFlow on control plane.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# exit</td>
<td>Exits the control plane.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router# show ip cache flow</td>
<td>Exits the configuration mode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router# show ip cache flow</td>
<td>Displays the flows hitting the control-plane.</td>
</tr>
</tbody>
</table>
Monitoring CoPP

You can enter the `show policy-map control-plane` command for developing site-specific policies, monitoring statistics for the control plane policy, and troubleshooting CoPP. This command displays dynamic information about the actual policy applied, including rate information and the number of bytes (and packets) that conformed or exceeded the configured policies both in hardware and in software.

The output of the `show policy-map control-plane` command is as follows:

```
Router# show policy-map control-plane
Control Plane Interface
   Service policy CoPP-normal
Hardware Counters:
   class-map: CoPP-normal (match-all)
   Match: access-group 130
   police:
   96000 bps 3000 limit 3000 extended limit
   Earl in slot 3:
   0 bytes
   5 minute offered rate 0 bps
   aggregate-forwarded 0 bytes action: transmit
   exceeded 0 bytes action: drop
   aggregate-forward 0 bps exceed 0 bps
   Earl in slot 5:
   0 bytes
   5 minute offered rate 0 bps
   aggregate-forwarded 0 bytes action: transmit
   exceeded 0 bytes action: drop
   aggregate-forward 0 bps exceed 0 bps

Software Counters:
   Class-map: CoPP-normal (match-all) 0 packets, 0 bytes
   5 minute offered rate 0 bps, drop rate 0 bps
   Match: access-group 130
   police:
   96000 bps, 3125 limit, 3125 extended limit
   conformed 0 packets, 0 bytes; action: transmit
   exceeded 0 packets, 0 bytes; action: drop
   conformed 0 bps, exceed 0 bps, violate 0 bps
```

To display the hardware counters for bytes dropped and forwarded by the policy, enter the `show mls qos ip` command:

```
Router# show mls qos ip
QoS Summary [IP]: (* - shared aggregates, Mod - switch module)

Int Mod Dir Class-map DSCP Agg Trust Fl AgForward-By AgPoliced-By
   Id Id Id
-------------------------------------------------------------------
CPP 5 In CoPP-normal 0 1 dscp 0 505408 83822272
CPP 9 In CoPP-normal 0 4 dscp 0 0 0
```

To display the CoPP access list information, enter the `show access-lists coppacl-bgp` command:

```
Router# show access-lists coppacl-bgp
Extended IP access list coppacl-bgp
10 permit tcp host 47.1.1.1 host 10.9.9.9 eq bgp (4 matches)
20 permit tcp host 47.1.1.1 eq bgp host 10.9.9.9
30 permit tcp host 10.86.183.120 host 10.9.9.9 eq bgp (1 match)
40 permit tcp host 10.86.183.120 eq bgp host 10.9.9.9
```
Personalizng a CoPP Policy

CoPP policy applied on a router should be personalized to best fit the router traffic profile getting punt to RP.

Customizing ensures the following:

- The right kind of traffic is prioritized over other less priority or non priority traffic
- Stabilizes the network
- Achieves control plane protection
- Understand if any traffic is missed in the classification

To customize the policy, use the Mini Protocol Analyzer tool to analyze the traffic punted to RP. This tool helps you capture traffic being punted to RP and check what is the rate at which packets are punted. The data obtained can be used to identify the classes and police rates required to set up CoPP. For more information on the Mini Protocol Analyzer tool, see “Using the Mini Protocol Analyzer”.

Developing a CoPP Policy

Prior to create a CoPP policy, a required volume of traffic must be identified and separated into different classes. Stratifying traffic into distinct groups based on relative importance is the recommended method:

Here are the sample classification critera used when developing CoPP policer:

- Do not use any policer in class-default. All the potential traffic should be classified in a specific class rather than in class-default.
- For catch-all traffic, use the `match ipv4 any class` or `match ipv6 any class` command. Though class-default serves the same purpose, it is recommended to minimize the traffic with class-default action as shown in this example:

```plaintext
Policy-map CoPP
Class CLASS1
  Police <>
Class CLASS2
  Police <>
Class MATCH-IPv4-ANY Match all IPv4 traffic which doesn't fall in any of the above mentioned classes
  Police <>
Class MATCH-IPv6-ANY Match all IPv6 traffic which doesn't fall in any of the above mentioned classes
  Police <>
```

In the section “Example Of a CoPP Policy” section on page 43-37, traffic is grouped into five different classes. The actual number of classes differs and should be selected based on local requirements and security policies. These traffic classes are defined with regard to the CPU or control plane.

The five different classes are:

- Critical
 - Traffic that is crucial to the operation of the router and the network
 - Examples: routing protocols like Border Gateway Protocol (BGP)
 - Some sites might choose to classify traffic other than the ones crucial to the operation as critical when appropriate
- Important
- Frequently used traffic that is necessary for day-to-day operations
- Examples: traffic used for remote network access and management (telnet, Secure Shell (SSH), Network Time Protocol (NTP) and Simple Network Management Protocol (SNMP)

- Normal
 - Traffic that is functional but not essential to network operation
 - Normal traffic used to be particularly hard to address when designing control-plane protection schemes, as it should be permitted but should never pose a risk to the router. With CoPP, this traffic is permitted, but limited to a low rate.
 - Examples: ICMP echo request

- Undesirable
 - Explicitly identifies bad or malicious traffic that should be dropped and denied access to the Route Processor
 - Particularly useful when known traffic destined to the router should always be denied and not placed into a default category. Explicitly denying traffic allows the end-user to collect rough statistics on this traffic using the show commands and therefore offers some insight into the rate of denied traffic.

- Layer 2 class
 - Traffic used for address resolution protocol (ARP). Excessive ARP packets can potentially monopolize RP CPU resources, depriving other important processes of resources; CoPP can be used to rate limit ARP packets to prevent this situation. Currently, ARP is the only Layer 2 protocol specifically classified using the match protocol classification criteria.

- Match-Any class
 - Matches all the other IPv4/IPv6 traffic (which does not fall into any of the above class), and police them as appropriate. It is primarily designed so that the class-default doesn't need a policer.

- Default
 - The remaining traffic destined to the Route Processor and has not been identified
 - A default classification helps monitoring of statistics to determine the rate of unidentified traffic destined to the control-plane. The identified traffic can be further analyzed to classify and if needed updated with the other CoPP policy entries
 - The Sup720 in Release 12.2(18)SXD1 does not support the MQC class-default in hardware. The support has been added effective Release 12.2(18)SXE1 software release. Anyway, this is not a big limitation as shown in the example below, where the "class-default" is replaced by a normal class-map.
 - Certain traffic types, namely Layer 2 keepalives, CLNS, and other non-IP packets will be seen by a CoPP (only in class-default). These traffic types cannot be classified by MQC for CoPP and hence, will always fall into the a CoPP class-default class. If aCoPP is configured, it is best practice to never rate limiting class-default so that Layer 2 keepalives and other essential control plane traffic are not dropped. This is the primary reason for always configuring a "catch all" IP class in the CoPP policy-map just prior to class-default.

Using the classification scheme defined above, commonly used traffic is identified with a series of ACLs:

- Class CoPP-CRITICAL : ACL 120: critical traffic
- Class CoPP-IMPORTANT: ACL 121: important traffic
Developing a CoPP Policy

- Class CoPP-NORMAL: ACL 122: normal traffic
- Class CoPP-UNWANTED ACL 123: explicitly denies unwanted traffic (For example, slammer worm traffic)
- Class CoPP-ARP: Match the ARP protocol
- Class CoPP-Match-all ACL 124: the rest of the traffic

The ACLs build classes of traffic that are used to define the policies.

Sample CoPP Policy

This is an example of a CoPP policy developed using the ACLs above:

```
access-list 120 remark *** ACL for CoPP-Critical ***
access-list 120 remark *** LDP ***
access-list 120 permit udp 172.0.0.0 0.0.255.255 eq 646 any
access-list 120 permit udp 172.0.0.0 0.0.255.255 any eq 646
access-list 120 permit tcp 172.0.0.0 0.0.255.255 eq 646 any
access-list 120 permit tcp 172.0.0.0 0.0.255.255 any eq 646
access-list 120 remark *** BGP ***
access-list 120 permit tcp 172.0.0.0 0.0.255.255 eq bgp any
access-list 120 permit tcp 172.0.0.0 0.0.255.255 any eq bgp
access-list 120 remark *** PIM ***
access-list 120 permit pim 172.0.0.0 0.0.255.255 any
access-list 120 permit pim any 172.0.0.0 0.0.255.255
access-list 121 remark *** ACL for CoPP-IMPORTANT
access-list 121 remark *** Telnet ***
access-list 121 permit tcp 172.0.0.0 0.0.255.255 172.0.0.0 0.0.255.255 eq telnet
access-list 121 remark *** SSH ***
access-list 121 permit tcp 172.0.0.0 0.0.255.255 152.0.0.0 0.0.255.255 eq 22
access-list 121 remark *** SNMP ***
access-list 121 permit udp 172.0.0.0 0.0.255.255 152.0.0.0 0.0.255.255 eq snmp
access-list 121 remark *** NTP ***
access-list 121 permit udp 172.0.0.0 0.0.255.255 host 192.168.70.10 eq ntp
access-list 121 permit udp 172.0.0.0 0.0.255.255 host 192.168.70.30 eq ntp
access-list 121 remark *** Syslog ***
access-list 121 permit udp 172.0.0.0 0.0.255.255 152.0.0.0 0.0.255.255 eq syslog
access-list 121 remark *** TACAS+ ***
access-list 121 permit tcp 172.0.0.0 0.0.255.255 152.0.0.0 0.0.255.255 eq tacacs
access-list 122 remark CoPP normal traffic
access-list 122 permit icmp any any ttl-exceeded
access-list 122 permit icmp any any port-unreachable
access-list 122 permit icmp any any echo-reply
access-list 122 permit icmp any any echo
access-list 123 remark *** ACL for CoPP-UNDESIRABLE
access-list 123 permit icmp any any fragments
access-list 123 permit udp any any fragments
access-list 123 permit tcp any any fragments
access-list 123 permit ip any any fragments
access-list 124 remark *** ACL for CoPP-Match-all
access-list 124 permit ip any any
access-list 124 permit ipv6 any any
```
```
match protocol ARP
class-map match-all CoPP-UNWANTED
match access-group 123
class-map match-all CoPP-Match-all
match access-group 124

Although rate limiting punted traffic is recommended, ensure that the required rates of traffic are well understood, particularly for critical traffic. A very low rate might discard or drop necessary traffic, whereas a very high rate might inundate the Route Processor with non-critical packets to process. These rates are site-specific and vary depending on the local topology and routing table size.

The policed rate depends on both determined criticality and site-specific rate values. For instance, the "normal" SNMP rates differ based on environment. Using the classification scheme mentioned above, critical traffic is permitted without limitation, while important, normal, and default traffic are permitted with appropriate rate limiting. However, this deployment causes the network to drop undesirable traffic immediately.

Table 39-3 extends this example and summarizes a sample policy. Note that the rates defined in the table are used for illustrative purposes; every environment contains different baselines. For example, a large Service Provider topology would require a higher rate of critical traffic (due to large BGP routing tables) than would a typical enterprise network.

The purpose of defining the critical traffic class is not limit rates, but tag this traffic as critical and provide it with unconditional access to the Route Processor. As the policy becomes increasingly refined, a more representative rate should be used for critical traffic and show commands can detect abnormal increases in traffic rates.

### Table 43-3 Sample CoPP Policy

<table>
<thead>
<tr>
<th>Traffic class</th>
<th>Rate (bps)</th>
<th>Conform action</th>
<th>Exceed action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical</td>
<td>N/A</td>
<td>Transmit</td>
<td>Transmit</td>
</tr>
<tr>
<td>Important</td>
<td>125,000</td>
<td>Transmit</td>
<td>Drop</td>
</tr>
<tr>
<td>Normal</td>
<td>64,000</td>
<td>Transmit</td>
<td>Drop</td>
</tr>
<tr>
<td>Undesirable</td>
<td>32,000</td>
<td>Drop</td>
<td>Drop</td>
</tr>
<tr>
<td>ARP</td>
<td>64,000</td>
<td>Transmit</td>
<td>Drop</td>
</tr>
<tr>
<td>MATCH-ALL</td>
<td>96,000</td>
<td>Transmit</td>
<td>Drop</td>
</tr>
<tr>
<td>Class-default</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

### Example Of a CoPP Policy

```plaintext
policy-map CoPP
 class CoPP-CRITICAL
 police 1000000 31250 31250 conform-action transmit exceed-action transmit violate-action transmit
 class CoPP-IMPORTANT
 police 128000 4000 4000 conform-action transmit exceed-action drop violate-action drop
 class CoPP-NORMAL
 police 64000 2000 2000 conform-action transmit exceed-action drop violate-action drop
 class CoPP-UNDESIRABLE
 police 32000 1500 1500 conform-action transmit exceed-action drop violate-action drop
 class CoPP-ARP
 police 64000 1500 1500 conform-action transmit exceed-action drop violate-action drop
 class CoPP-Match-all
 police 96000 3000 3000 conform-action transmit exceed-action drop violate-action drop
```
Defining Traffic Classification

The following sections contain information on how to classify CoPP traffic:

- Traffic Classification Overview, page 43-38
- Traffic Classification Guidelines, page 43-39
- Sample Basic ACLs for CoPP Traffic Classification, page 43-39

Traffic Classification Overview

You can define any number of classes, but typically traffic is grouped into classes that are based on relative importance. The following provides a sample grouping:

- Border Gateway Protocol (BGP)—Traffic that is crucial to maintaining neighbor relationships for BGP routing protocol, for example, BGP keepalives and routing updates. Maintaining BGP routing protocol is crucial to maintaining connectivity within a network or to a service provider. Sites that do not run BGP do not need to use this class.
- Interior Gateway Protocol (IGP)—Traffic that is crucial to maintaining IGP routing protocols, for example, open shortest path first OSPF, enhanced interior gateway routing protocol (EIGRP), and routing information protocol (RIP). Maintaining IGP routing protocols is crucial to maintaining connectivity within a network.
- Management—Necessary, frequently used traffic that is required during day-to-day operations. For example, traffic used for remote network access, and Cisco IOS image upgrades and management, such as telnet, secure shell (SSH), network time protocol (NTP), simple network management protocol (SNMP), terminal access controller access control system (TACACS), hypertext transfer protocol (HTTP), trivial file transfer protocol (TFTP), and file transfer protocol (FTP).
- Reporting—Traffic used for generating network performance statistics for the purpose of reporting. For example, using Cisco IOS IP service level agreements (SLAs) to generate ICMP with different DSCP settings in order to report on response times within different QoS data classes.
- Monitoring—Traffic used for monitoring a router. Traffic should be permitted but should never pose a risk to the router; with CoPP, this traffic can be permitted but limited to a low rate. For example, ICMP echo request (ping) and traceroute.
- Critical Applications—Critical application traffic that is specific and crucial to a particular customer environment. Traffic included in this class should be tailored specifically to the required application requirements of the user (in other words, one customer may use multicast, while another uses IPSec or generic routing encapsulation (GRE). For example, GRE, hot standby router protocol (HSRP), virtual router redundancy protocol (VRRP), session initiation protocol (SIP), data link switching (DLSw), dynamic host configuration protocol (DHCP), multicast source discovery protocol (MSDP), Internet group management protocol (IGMP), protocol independent multicast (PIM), multicast traffic, and IPsec.
- Layer 2 Protocols—Traffic used for address resolution protocol (ARP). Excessive ARP packets can potentially monopolize MSFC resources, starving other important processes; CoPP can be used to rate limit ARP packets to prevent this situation. Currently, ARP is the only Layer 2 protocol that can be specifically classified using the match protocol classification criteria.
Defining Traffic Classification

• Undesirable—Explicitly identifies bad or malicious traffic that should be unconditionally dropped and denied access to the MSFC. The undesirable classification is particularly useful when known traffic destined for the router should always be denied and not placed into a default category. If you explicitly deny traffic, then you can enter `show` commands to collect approximate statistics on the denied traffic and estimate its rate.

• Default—All remaining traffic destined for the MSFC that has not been identified. MQC provides the default class, so the user can specify the treatment to be applied to traffic not explicitly identified in the other user-defined classes. This traffic has a highly reduced rate of access to the MSFC. With a default classification in place, statistics can be monitored to determine the rate of otherwise unidentified traffic destined for the control plane. After this traffic is identified, further analysis can be performed to classify it and, if needed, the other CoPP policy entries can be updated to accommodate this traffic.

After you have classified the traffic, the ACLs build the classes of traffic that are used to define the policies. For sample basic ACLs for CoPP classification, see the “Sample Basic ACLs for CoPP Traffic Classification” section on page 43-39.

Traffic Classification Guidelines

When defining traffic classification, follow these guidelines and restrictions:

• Before you develop the actual CoPP policy, you must identify and separate the required traffic into different classes. Traffic is grouped into nine classes that are based on relative importance. The actual number of classes needed might differ and should be selected based on your local requirements and security policies.

• You do not have to define policies that match bidirectionally. You only need to identify traffic unidirectionally (from the network to the MSFC) since the policy is applied on ingress only.

Sample Basic ACLs for CoPP Traffic Classification

This section shows sample basic ACLs for CoPP classification. In the samples, the commonly required traffic is identified with these ACLs:

• ACL 120—Critical traffic
• ACL 121—Important traffic
• ACL 122—Normal traffic
• ACL 123—Explicitly denies unwanted traffic
• ACL 124—All other traffic

This example shows how to define ACL 120 for critical traffic:

```
Router(config)# access-list 120 remark CoPP ACL for critical traffic
```

This example shows how to allow BGP from a known peer to this router’s BGP TCP port:

```
Router(config)# access-list 120 permit tcp host 47.1.1.1 host 10.9.9.9 eq bgp
```

This example shows how to allow BGP from a peer’s BGP port to this router:

```
Router(config)# access-list 120 permit tcp host 47.1.1.1 eq bgp host 10.9.9.9
Router(config)# access-list 120 permit tcp host 10.86.183.120 host 10.9.9.9 eq bgp
Router(config)# access-list 120 permit tcp host 10.86.183.120 eq bgp host 10.9.9.9
```
This example shows how to define ACL 121 for the important class:
```
Router(config)# access-list 121 remark CoPP Important traffic
```
This example shows how to permit return traffic from TACACS host:
```
Router(config)# access-list 121 permit tcp host 1.1.1.1 host 10.9.9.9 established
```
This example shows how to permit SSH access to the router from a subnet:
```
Router(config)# access-list 121 permit tcp 10.0.0.0 0.0.0.255 host 10.9.9.9 eq 22
```
This example shows how to allow full access for Telnet to the router from a host in a specific subnet and police the rest of the subnet:
```
Router(config)# access-list 121 deny tcp host 10.86.183.3 any eq telnet
Router(config)# access-list 121 permit tcp 10.86.183.0 0.0.0.255 any eq telnet
```
This example shows how to allow SNMP access from the NMS host to the router:
```
Router(config)# access-list 121 permit udp host 1.1.1.2 host 10.9.9.9 eq snmp
```
This example shows how to allow the router to receive NTP packets from a known clock source:
```
Router(config)# access-list 121 permit udp host 1.1.1.3 host 10.9.9.9 eq ntp
```
This example shows how to define ACL 122 for the normal traffic class:
```
Router(config)# access-list 122 remark CoPP normal traffic
```
This example shows how to permit router-originated traceroute traffic:
```
Router(config)# access-list 122 permit icmp any any ttl-exceeded
Router(config)# access-list 122 permit icmp any any port-unreachable
```
This example shows how to permit receipt of responses to the router that originated the pings:
```
Router(config)# access-list 122 permit icmp any any echo-reply
```
This example shows how to allow pings to the router:
```
Router(config)# access-list 122 permit icmp any any echo
```
This example shows how to define ACL 123 for the undesirable class.
```
Router(config)# access-list 123 remark explicitly defined "undesirable" traffic
```
This example shows how to allow all traffic destined to UDP 1434 for policing:
```
Router(config)# access-list 123 permit udp any any eq 1434
```
This example shows how to define ACL 124 for all other traffic:
```
Router(config)# access-list 124 remark rest of the IP traffic for CoPP
Router(config)# access-list 124 permit ip any any
```
Configuring Sticky ARP

Sticky ARP prevents MAC address spoofing by ensuring that ARP entries (IP address, MAC address, and source VLAN) do not get overridden. The router maintains ARP entries in order to forward traffic to end devices or other routers. ARP entries are usually updated periodically or modified when ARP broadcasts are received. During an attack, ARP broadcasts are sent using a spoofed MAC address (with a legitimate IP address) so that the router learns the legitimate IP address with the spoofed MAC address and begins to forward traffic to that MAC address. With sticky ARP enabled, the router learns the ARP entries and does not accept modifications received through ARP broadcasts. If you attempt to override the sticky ARP configuration, you will receive an error message. For a complete description of the system error messages, refer to the Cisco 7600 Series Router Cisco IOS System Message Guide at this URL:


Note
Sticky ARP configurability is supported.

To configure sticky ARP on a Layer 3 interface, perform the following task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>&lt;br&gt;Router(config)# interface type(^1 ) slot/port</td>
<td>Selects the interface on which sticky ARP is applied.</td>
</tr>
<tr>
<td><strong>Step 2</strong>&lt;br&gt;Router(config-if)# ip sticky-arp&lt;br&gt;Router(config-if)# no ip sticky-arp ignore</td>
<td>Enables sticky ARP.&lt;br&gt;Removes the previously configured sticky ARP command.</td>
</tr>
<tr>
<td><strong>Step 3</strong>&lt;br&gt;Router(config-if)# ip sticky-arp ignore</td>
<td>Disables sticky ARP.</td>
</tr>
</tbody>
</table>

1. *type* = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to enable sticky ARP on interface 5/1:

```
Router# configure terminal
Router(config)# interface gigabitethernet 5/1
Router(config-if)# ip sticky-arp
Router(config-if)# end
Router#
```
Configuring DHCP Snooping

This chapter describes how to configure Dynamic Host Configuration Protocol (DHCP) snooping on Cisco 7600 series routers.

Note

The DHCP snooping feature requires PFC3 and Release 12.2(18)SXE and later releases. The PFC2 does not support DHCP snooping.

This chapter consists of the following major sections:

- Understanding DHCP Snooping, page 44-1
- Default Configuration for DHCP Snooping, page 44-6
- DHCP Snooping Configuration Restrictions and Guidelines, page 44-7
- Configuring DHCP Snooping, page 44-8

Note

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:


Understanding DHCP Snooping

These sections describe the DHCP snooping feature:

- Overview of DHCP Snooping, page 44-2
- Trusted and Untrusted Sources, page 44-2
- DHCP Snooping Binding Database, page 44-2
- Packet Validation, page 44-3
- DHCP Snooping Option-82 Data Insertion, page 44-3
- Overview of the DHCP Snooping Database Agent, page 44-5
Overview of DHCP Snooping

DHCP snooping is a security feature that acts like a firewall between untrusted hosts and trusted DHCP servers. The DHCP snooping feature performs the following activities:

- Validates DHCP messages received from untrusted sources and filters out invalid messages.
- Rate-limits DHCP traffic from trusted and untrusted sources.
- Builds and maintains the DHCP snooping binding database, which contains information about untrusted hosts with leased IP addresses.
- Utilizes the DHCP snooping binding database to validate subsequent requests from untrusted hosts.

Other security features, such as dynamic ARP inspection (DAI), also use information stored in the DHCP snooping binding database.

DHCP snooping is enabled on a per-VLAN basis. By default, the feature is inactive on all VLANs. You can enable the feature on a single VLAN or a range of VLANs.

The DHCP snooping feature is implemented in software on the MSFC. Therefore, all DHCP messages for enabled VLANs are intercepted in the PFC and directed to the MSFC for processing.

Trusted and Untrusted Sources

The DHCP snooping feature determines whether traffic sources are trusted or untrusted. An untrusted source may initiate traffic attacks or other hostile actions. To prevent such attacks, the DHCP snooping feature filters messages and rate-limits traffic from untrusted sources.

In an enterprise network, devices under your administrative control are trusted sources. These devices include the switches, routers and servers in your network. Any device beyond the firewall or outside your network is an untrusted source. Host ports are generally treated as untrusted sources.

In a service provider environment, any device that is not in the service provider network is an untrusted source (such as a customer switch). Host ports are untrusted sources.

In the Catalyst 6500 series switch, you indicate that a source is trusted by configuring the trust state of its connecting interface.

The default trust state of all interfaces is untrusted. You must configure DHCP server interfaces as trusted. You can also configure other interfaces as trusted if they connect to devices (such as switches or routers) inside your network. You usually do not configure host port interfaces as trusted.

Note

For DHCP snooping to function properly, all DHCP servers must be connected to the router through trusted interfaces.

DHCP Snooping Binding Database

The DHCP snooping binding database is also referred to as the DHCP snooping binding table.

The DHCP snooping feature dynamically builds and maintains the database using information extracted from intercepted DHCP messages. The database contains an entry for each untrusted host with a leased IP address if the host is associated with a VLAN that has DHCP snooping enabled. The database does not contain entries for hosts connected through trusted interfaces.
The DHCP snooping feature updates the database when the switch receives specific DHCP messages. For example, the feature adds an entry to the database when the switch receives a DHCPACK message from the server. The feature removes the entry in the database when the IP address lease expires or the switch receives a DHCPRELEASE message from the host.

Each entry in the DHCP snooping binding database includes the MAC address of the host, the leased IP address, the lease time, the binding type, and the VLAN number and interface information associated with the host.

Packet Validation

The router validates DHCP packets received on the untrusted interfaces of VLANs with DHCP snooping enabled. The switch forwards the DHCP packet unless any of the following conditions occur (in which case the packet is dropped):

- The router receives a packet (such as a DHCPOFFER, DHCPACK, DHCPNAK, or DHCPLEASEQUERY packet) from a DHCP server outside the network or firewall.
- The router receives a packet on an untrusted interface, and the source MAC address and the DHCP client hardware address do not match. This check is performed only if the DHCP snooping MAC address verification option is turned on.
- The router receives a DHCPRELEASE or DHCPDECLINE message from an untrusted host with an entry in the DHCP snooping binding table, and the interface information in the binding table does not match the interface on which the message was received.
- The router receives a DHCP packet that includes a relay agent IP address that is not 0.0.0.0.

In releases earlier than Release 12.2(18)SXF1, the router drops DHCP packets that include option-82 information that are received on untrusted ports. With Release 12.2(18)SXF1 and later releases, to support trusted edge routers that are connected to untrusted aggregation-router ports, you can enable the DHCP option-82 on untrusted port feature, which enables untrusted aggregation-router ports to accept DHCP packets that include option-82 information. Configure the port on the edge router that connects to the aggregation switch as a trusted port.

Note
With the DHCP option-82 on untrusted port feature enabled, use dynamic ARP inspection on the aggregation router to protect untrusted input interfaces.

DHCP Snooping Option-82 Data Insertion

In residential, metropolitan Ethernet-access environments, DHCP can centrally manage the IP address assignments for a large number of subscribers. When the DHCP snooping option-82 feature is enabled on the router, a subscriber device is identified by the router port through which it connects to the network (in addition to its MAC address). Multiple hosts on the subscriber LAN can be connected to the same port on the access router and are uniquely identified.

Figure 44-1 is an example of a metropolitan Ethernet network in which a centralized DHCP server assigns IP addresses to subscribers connected to the router at the access layer. Because the DHCP clients and their associated DHCP server do not reside on the same IP network or subnet, a DHCP relay agent is configured with a helper address to enable broadcast forwarding and to transfer DHCP messages between the clients and the server.
When you enable the DHCP snooping information option-82 on the router, this sequence of events occurs:

- The host (DHCP client) generates a DHCP request and broadcasts it on the network.
- When the router receives the DHCP request, it adds the option-82 information in the packet. The option-82 information contains the router MAC address (the remote ID suboption) and the port identifier, `vlan-mod-port`, from which the packet is received (the circuit ID suboption).
- If the IP address of the relay agent is configured, the router adds the IP address in the DHCP packet.
- The router forwards the DHCP request that includes the option-82 field to the DHCP server.
- The DHCP server receives the packet. If the server is option-82 capable, it can use the remote ID, or the circuit ID, or both to assign IP addresses and implement policies, such as restricting the number of IP addresses that can be assigned to a single remote ID or circuit ID. The DHCP server then echoes the option-82 field in the DHCP reply.
- The DHCP server unicasts the reply to the router if the request was relayed to the server by the router. When the client and server are on the same subnet, the server broadcasts the reply. The router verifies that it originally inserted the option-82 data by inspecting the remote ID and possibly the circuit ID fields. The router removes the option-82 field and forwards the packet to the router port that connects to the DHCP client that sent the DHCP request.

When the previously described sequence of events occurs, the values in these fields in Figure 44-2 do not change:

- Circuit ID suboption fields
  - Suboption type
  - Length of the suboption type
  - Circuit ID type
  - Length of the circuit ID type
- Remote ID suboption fields
  - Suboption type
  - Length of the suboption type
  - Remote ID type
  - Length of the circuit ID type
Figure 44-2 shows the packet formats for the remote ID suboption and the circuit ID suboption. The router uses the packet formats when DHCP snooping is globally enabled and when the `ip dhcp snooping information option` global configuration command is entered. For the circuit ID suboption, the module field is the slot number of the module.

![Figure 44-2  Suboption Packet Formats](image)

**Overview of the DHCP Snooping Database Agent**

To retain the bindings across reloads, you must use the DHCP snooping database agent. Without this agent, the bindings established by DHCP snooping are lost upon reload, and connectivity is lost as well.

The database agent stores the bindings in a file at a configured location. Upon reload, the router reads the file to build the database for the bindings. The router keeps the file current by writing to the file as the database changes.

The format of the file that contains the bindings is as follows:

```
<initial-checksum>
TYPE DHCP-SNOOPING
VERSION 1
BEGIN
<entry-1> <checksum-1>
<entry-2> <checksum-1-2>
...
<entry-n> <checksum-1-2-..-n>
END
```

Each entry in the file is tagged with a checksum that is used to validate the entries whenever the file is read. The `<initial-checksum>` entry on the first line helps distinguish entries associated with the latest write from entries that are associated with a previous write.
This is a sample bindings file:

```
3ebe1518
TYPE DHCP-SNOOPING
VERSION 1
BEGIN
 1.1.1.1 512 0001.0001.0005 3EDE2881 Gi1/1 e5e1e733
 1.1.1.1 512 0001.0001.0002 3EDE2881 Gi1/1 4b3486ec
 1.1.1.1 1536 0001.0001.0004 3EDE2881 Gi1/1 f0e02872
 1.1.1.1 1024 0001.0001.0003 3EDE2881 Gi1/1 ac441af9
 1.1.1.1 1 0001.0001.0001 3EDE2881 Gi1/1 34b3273e
END
```

Each entry holds an IP address, VLAN, MAC address, lease time (in hex), and the interface associated with a binding. At the end of each entry is a checksum that is based on all the bytes from the start of the file through all the bytes associated with the entry. Each entry consists of 72 bytes of data, followed by a space, followed by a checksum.

Upon bootup, when the calculated checksum equals the stored checksum, the router reads entries from the file and adds the bindings to the DHCP snooping database. If the calculated checksum does not equal the stored checksum, the entry read from the file is ignored and so are all the entries following the failed entry. The router also ignores all those entries from the file whose lease time has expired. (This is possible because the lease time might indicate an expired time.) An entry from the file is also ignored if the interface referred to in the entry no longer exists on the system, or if it is a router port or a DHCP snooping-trusted interface.

When the router learns of new bindings or when it loses some bindings, the router writes the modified set of entries from the snooping database to the file. The writes are performed with a configurable delay to batch as many changes as possible before the actual write happens. Associated with each transfer is a timeout after which a transfer is aborted if it is not completed. These timers are referred to as the write delay and abort timeout.

---

### Default Configuration for DHCP Snooping

Table 44-1 shows all the default configuration values for each DHCP snooping option.

<table>
<thead>
<tr>
<th>Option</th>
<th>Default Value/State</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP snooping</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping information option</td>
<td>Enabled</td>
</tr>
<tr>
<td>DHCP option-82 on untrusted port feature</td>
<td>Disabled</td>
</tr>
<tr>
<td>DHCP snooping limit rate</td>
<td>None</td>
</tr>
<tr>
<td>DHCP snooping trust</td>
<td>Untrusted</td>
</tr>
<tr>
<td>DHCP snooping vlan</td>
<td>Disabled</td>
</tr>
</tbody>
</table>
DHCP Snooping Configuration Restrictions and Guidelines

These sections provide DHCP snooping configuration restrictions and guidelines:

- DHCP Snooping Configuration Restrictions, page 44-7
- DHCP Snooping Configuration Guidelines, page 44-7
- Minimum DHCP Snooping Configuration, page 44-8

DHCP Snooping Configuration Restrictions

When configuring DHCP snooping, note these restrictions:

- The PFC2 does not support DHCP snooping.
- With releases earlier than Release 12.2(18)SXF5, the DHCP snooping database stores a maximum of 512 bindings. If the database attempts to add more than 512 DHCP bindings, all bindings are removed from the database.
- With Release 12.2(18)SXF5 and later releases, the DHCP snooping database stores at least 8,000 bindings.
- With Release 12.2(18)SRA and later releases, the DHCP snooping database stores at least 64,000 bindings.

DHCP Snooping Configuration Guidelines

When configuring DHCP snooping, follow these guidelines:

- DHCP snooping is not active until you enable the feature on at least one VLAN as well as globally on the router. Ensure that service DHCP is enabled (service DHCP is enabled by default).
- Before globally enabling DHCP snooping on the router, make sure that the devices acting as the DHCP server and the DHCP relay agent are configured and enabled.
- For DHCP server configuration information, refer to “Configuring DHCP” in the Cisco IOS IP and IP Routing Configuration Guide at:
  http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fipr_c/ipcprt1/1cfdhcp.htm
- If a Layer 2 LAN port is connected to a DHCP server, configure the port as trusted by entering the `ip dhcp snooping trust` interface configuration command.
- If a Layer 2 LAN port is connected to a DHCP client, configure the port as untrusted by entering the `no ip dhcp snooping trust` interface configuration command.
- You can enable DHCP snooping on private VLANs:
  - If DHCP snooping is enabled, any primary VLAN configuration is propagated to its associated secondary VLANs.
  - If DHCP snooping is configured on the primary VLAN and you configure DHCP snooping with different settings on an associated secondary VLAN, the configuration on the secondary VLAN does not take effect.
  - If DHCP snooping is not configured on the primary VLAN and you configure DHCP snooping on a secondary VLAN, the configuration takes effect only on the secondary VLAN.
– When you manually configure DHCP snooping on a secondary VLAN, this message appears:

```text
DHCP Snooping configuration may not take effect on secondary vlan XXX
```

– The `show ip dhcp snooping` command displays all VLANs (both primary and secondary) that have DHCP snooping enabled.

## Minimum DHCP Snooping Configuration

The minimum configuration steps for the DHCP snooping feature are as follows:

1. Define and configure the DHCP server.
   
   For DHCP server configuration information, refer to “Configuring DHCP” in the *Cisco IOS IP and IP Routing Configuration Guide* at:
   
   http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cger/fipr_c/ipcrpt1/1cfdhcp.htm

2. Enable DHCP snooping on at least one VLAN.
   
   By default, DHCP snooping is inactive on all VLANs. Refer to the “Enabling DHCP Snooping on VLANS” section on page 44-11

3. Ensure that DHCP server is connected through a trusted interface.
   
   By default, the trust state of all interfaces is untrusted. Refer to the “Configuring the DHCP Trust State on Layer 2 LAN Interfaces” section on page 44-13

4. Configure the DHCP snooping database agent.
   
   This step ensures that database entries are restored after a restart or switchover. Refer to the “Configuring the DHCP Snooping Database Agent” section on page 44-14

5. Enable DHCP snooping globally.
   
   The feature is not active until you complete this step. Refer to the “Enabling DHCP Snooping Globally” section on page 44-9

If you are configuring the switch for DHCP relay, the following additional steps are required:

1. Define and configure the DHCP relay agent IP address.
   
   If the DHCP server is in a different subnet from the DHCP clients, configure the server IP address in the helper address field of the client side VLAN.

2. Configure DHCP option-82 on untrusted port.
   
   Refer to the “Enabling the DHCP Option-82 on Untrusted Port Feature” section on page 44-10

## Configuring DHCP Snooping

These sections describe how to configure DHCP snooping:

- Enabling DHCP Snooping Globally, page 44-9
- Enabling DHCP Option-82 Data Insertion, page 44-9
- Enabling the DHCP Option-82 on Untrusted Port Feature, page 44-10
- Enabling DHCP Snooping MAC Address Verification, page 44-11
- Enabling DHCP Snooping on VLANS, page 44-11
Enabling DHCP Snooping Globally

**Note** Configure this command as the last configuration step (or enable the DHCP feature during a scheduled maintenance period) because after you enable DHCP snooping globally, the router drops DHCP requests until you configure the ports.

To enable DHCP snooping globally, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp snooping</td>
<td>Enables DHCP snooping globally.</td>
</tr>
<tr>
<td>Router(config)# no ip dhcp snooping</td>
<td>Disables DHCP snooping.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# do show ip dhcp snooping</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td>include Switch</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to enable DHCP snooping globally:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip dhcp snooping
Router(config)# do show ip dhcp snooping | include Switch
Switch DHCP snooping is enabled
Router(config)#
```

Enabling DHCP Option-82 Data Insertion

To enable DHCP option-82 data insertion, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp snooping information option</td>
<td>Enables DHCP option-82 data insertion.</td>
</tr>
<tr>
<td>Router(config)# no ip dhcp snooping information option</td>
<td>Disables DHCP option-82 data insertion.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# do show ip dhcp snooping</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td>include 82</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to disable DHCP option-82 data insertion:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# no ip dhcp snooping information option
Router(config)# do show ip dhcp snooping | include 82
```
Insertion of option 82 is disabled

Router# (config)

This example shows how to enable DHCP option-82 data insertion:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip dhcp snooping information option
Router(config)# do show ip dhcp snooping  | include 82
Insertion of option 82 is enabled
Router# (config)

Enabling the DHCP Option-82 on Untrusted Port Feature

Note
With the DHCP option-82 on untrusted port feature enabled, the router does not drop DHCP packets that include option-82 information that are received on untrusted ports. Do not enter the ip dhcp snooping information option allowed-untrusted command on an aggregation router to which any untrusted devices are connected.

With Release 12.2(18)SXF1 and later releases, to enable untrusted ports to accept DHCP packets that include option-82 information, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp snooping information option allow-untrusted</td>
<td>(Optional) Enables untrusted ports to accept incoming DHCP packets with option-82 information.</td>
</tr>
<tr>
<td>Router(config)# no ip dhcp snooping information option allow-untrusted</td>
<td>The default setting is disabled.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td>Router(config)# do show ip dhcp snooping</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to enable the DHCP option-82 on untrusted port feature:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip dhcp snooping information option allow-untrusted
Router# (config)
Enabling DHCP Snooping MAC Address Verification

With DHCP snooping MAC address verification enabled, DHCP snooping verifies that the source MAC address and the client hardware address match in DHCP packets that are received on untrusted ports. The source MAC address is a Layer 2 field associated with the packet, and the client hardware address is a Layer 3 field in the DHCP packet.

To enable DHCP snooping MAC address verification, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp snooping verify mac-address</td>
<td>Enables DHCP snooping MAC address verification.</td>
</tr>
<tr>
<td>Router(config)# no ip dhcp snooping verify mac-address</td>
<td>Disables DHCP snooping MAC address verification.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# do show ip dhcp snooping</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to disable DHCP snooping MAC address verification:

Router(config)# no ip dhcp snooping verify mac-address
Router(config)# do show ip dhcp snooping | include hwaddr
Verification of hwaddr field is disabled
Router(config)#

This example shows how to enable DHCP snooping MAC address verification:

Router(config)# ip dhcp snooping verify mac-address
Router(config)# do show ip dhcp snooping | include hwaddr
Verification of hwaddr field is enabled
Router(config)#

Enabling DHCP Snooping on VLANs

By default, the DHCP snooping feature is inactive on all VLANs. You may enable the feature on a single VLAN or a range of VLANs.

When enabled on a VLAN, the DHCP snooping feature creates four entries in the VACL table in the MFC3. These entries cause the PFC3 to intercept all DHCP messages on this VLAN and send them to the MSFC. The DHCP snooping feature is implemented in MSFC software.

To enable DHCP snooping on VLANs, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip dhcp snooping vlan {vlan_ID</td>
<td>vlan_ID}</td>
</tr>
<tr>
<td>Router(config)# no ip dhcp snooping</td>
<td>Disables DHCP snooping.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# do show ip dhcp snooping</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>
You can configure DHCP snooping for a single VLAN or a range of VLANs:

- To configure a single VLAN, enter a single VLAN number.
- To configure a range of VLANs, enter a beginning and an ending VLAN number or a dash-separated pair of VLAN numbers.
- You can enter a comma-separated list of VLAN numbers and dash-separated pairs of VLAN numbers.

This example shows how to enable DHCP snooping on VLANs 10 through 12:

```
Router# configure terminal
Router(config)# ip dhcp snooping vlan 10 12
```

This example shows another way to enable DHCP snooping on VLANs 10 through 12:

```
Router# configure terminal
Router(config)# ip dhcp snooping vlan 10-12
```

This example shows another way to enable DHCP snooping on VLANs 10 through 12:

```
Router# configure terminal
Router(config)# ip dhcp snooping vlan 10,11,12
```

This example shows how to enable DHCP snooping on VLANs 10 through 12 and VLAN 15:

```
Router# configure terminal
Router(config)# ip dhcp snooping vlan 10-12,15
```

This example shows how to verify the configuration:

```
Router(config)# do show ip dhcp snooping
Switch DHCP snooping is enabled
DHCP snooping is configured on following VLANs: 10-12,15
DHCP snooping is operational on following VLANs: none
DHCP snooping is configured on the following Interfaces:

Insertion of option 82 is enabled
Verification of hwaddr field is enabled
Interface Trusted Rate limit (pps)
------------------------ ------- ----------------

Router#
```
Configuring the DHCP Trust State on Layer 2 LAN Interfaces

To configure DHCP trust state on a Layer 2 LAN interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface {type^ slot/port</td>
</tr>
<tr>
<td></td>
<td>Note: Select only LAN ports configured with the <code>switchport</code> command or Layer 2 port-channel interfaces.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# ip dhcp snooping trust</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip dhcp snooping trust</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# do show ip dhcp snooping</td>
</tr>
<tr>
<td></td>
<td>begin pps</td>
</tr>
<tr>
<td>1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to configure Fast Ethernet port 5/12 as trusted:

```
Router# configure terminal
Router(config)# interface FastEthernet 5/12
Router(config-if)# ip dhcp snooping trust
Router(config-if)# do show ip dhcp snooping | begin pps
Interface Trusted Rate limit (pps)
------------------------------ ------ ----------------
FastEthernet5/12 yes unlimited
```

This example shows how to configure Fast Ethernet port 5/12 as untrusted:

```
Router# configure terminal
Router(config)# interface FastEthernet 5/12
Router(config-if)# no ip dhcp snooping trust
Router(config-if)# do show ip dhcp snooping | begin pps
Interface Trusted Rate limit (pps)
------------------------------ ------ ----------------
FastEthernet5/12 no unlimited
```

Configuring DHCP Snooping Rate Limiting on Layer 2 LAN Interfaces

To configure DHCP snooping rate limiting on a Layer 2 LAN interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface {type^ slot/port</td>
</tr>
<tr>
<td></td>
<td>Note: Select only LAN ports configured with the <code>switchport</code> command or Layer 2 port-channel interfaces.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# ip dhcp snooping limit rate rate</td>
</tr>
</tbody>
</table>
Configuring DHCP Snooping

When configuring DHCP snooping rate limiting on a Layer 2 LAN interface, note the following information:

- We recommend an untrusted rate limit of not more than 100 packets per second (pps).
- If you configure rate limiting for trusted interfaces, you might need to increase the rate limit on trunk ports carrying more than one VLAN on which DHCP snooping is enabled.
- DHCP snooping puts ports where the rate limit is exceeded into the error-disabled state.

This example shows how to configure DHCP packet rate limiting to 100 pps on Fast Ethernet port 5/12:

```
Router# configure terminal
Router(config)# interface FastEthernet 5/12
Router(config-if)# ip dhcp snooping limit rate 100
Router(config-if)# do show ip dhcp snooping | begin pps
Interface Trusted Rate limit (pps)
------------------------ ------- ----------------
FastEthernet5/12 no 100
Router#
```

### Configuring the DHCP Snooping Database Agent

To configure the DHCP snooping database agent, perform one or more of the following tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip dhcp snooping database { _url</td>
<td>write-delay seconds</td>
</tr>
<tr>
<td>Router(config)# no ip dhcp snooping database [write-delay</td>
<td>timeout]</td>
</tr>
<tr>
<td>Router# show ip dhcp snooping database [detail]</td>
<td>(Optional) Displays the current operating state of the database agent and statistics associated with the transfers.</td>
</tr>
<tr>
<td>Router# clear ip dhcp snooping database statistics</td>
<td>(Optional) Clears the statistics associated with the database agent.</td>
</tr>
<tr>
<td>Router# renew ip dhcp snooping database [validation none] [url]</td>
<td>(Optional) Requests the read entries from a file at the given URL.</td>
</tr>
<tr>
<td>Router# ip dhcp snooping binding mac_address vlan vlan_ID ip_address interface ifname expiry lease_in_seconds</td>
<td>(Optional) Adds bindings to the snooping database.</td>
</tr>
<tr>
<td>Router# no ip dhcp snooping binding mac_address vlan vlan_ID ip_address interface ifname</td>
<td>(Optional) Deletes bindings from the snooping database.</td>
</tr>
</tbody>
</table>

When configuring the DHCP snooping database agent, note the following information:

- With releases earlier than Release 12.2(18)SXF5, the DHCP snooping database stores a maximum of 512 bindings. If the database attempts to add more than 512 DHCP bindings, all bindings are removed from the database.
• With Release 12.2(18)SXFS5 and later releases, the DHCP snooping database stores at least 8,000 bindings.
• Store the file on a TFTP server to avoid consuming storage space on the router storage devices.
• When a switchover occurs, if the file is stored in a remote location accessible through TFTP, the newly active supervisor engine can use the binding list.
• Network-based URLs (such as TFTP and FTP) require that you create an empty file at the configured URL before the router can write the set of bindings for the first time.

Configuration Examples for the Database Agent

These sections provide examples for the database agent:
• Example 1: Enabling the Database Agent, page 44-15
• Example 2: Reading Binding Entries from a TFTP File, page 44-16
• Example 3: Adding Information to the DHCP Snooping Database, page 44-17

Example 1: Enabling the Database Agent

The following example shows how to configure the DHCP snooping database agent to store the bindings at a given location and to view the configuration and operating state:

Router# configure terminal
Router(config)# ip dhcp snooping database tftp://10.1.1.1/directory/file
Router(config)# end

Router# show ip dhcp snooping database detail
Agent URL : tftp://10.1.1.1/directory/file
Write delay Timer : 300 seconds
Abort Timer : 300 seconds
Agent Running : No
Delay Timer Expiry : 7 (00:00:07)
Abort Timer Expiry : Not Running

Last Succeeded Time : None
Last Failed Time : 17:14:25 UTC Sat Jul 7 2001
Last Failed Reason : Unable to access URL.

Total Attempts       :       21   Startup Failures :        0
Successful Transfers :        0   Failed Transfers :       21
Successful Reads     :        0   Failed Reads     :        0
Successful Writes    :        0   Failed Writes    :       21
Media Failures       :        0

First successful access: Read

Last ignored bindings counters:
Binding Collisions :        0   Expired leases :        0
Invalid interfaces :        0   Unsupported vlans :        0
Parse failures      :        0
Last Ignored Time : None

Total ignored bindings counters:
Binding Collisions :        0   Expired leases :        0
Invalid interfaces :        0   Unsupported vlans :        0
Parse failures      :        0
The first three lines of output show the configured URL and related timer-configuration values. The next three lines show the operating state and the amount of time left for expiry of write delay and abort timers. Among the statistics shown in the output, startup failures indicate the number of attempts to read or create the file that failed on bootup.

**Note**
Create a temporary file on the TFTP server with the `touch` command in the TFTP server daemon directory. With some UNIX implementations, the file should have full read and write access permissions (777).

DHCP snooping bindings are keyed on the MAC address and VLAN combination. If an entry in the remote file has an entry for a given MAC address and VLAN set for which the router already has a binding, the entry from the remote file is ignored when the file is read. This condition is referred to as the *binding collision*.

An entry in a file may no longer be valid because the lease indicated by the entry may have expired by the time it is read. The expired leases counter indicates the number of bindings that are ignored because of this condition. The Invalid interfaces counter refers to the number of bindings that have been ignored when the interface referred by the entry either does not exist on the system or is a router or DHCP snooping trusted interface (if it exists) when the read happened. Unsupported VLANs refers to the number of entries that have been ignored because the indicated VLAN is not supported on the system. The Parse failures counter provides the number of entries that have been ignored when the router is unable to interpret the meaning of the entries from the file.

The router maintains two sets of counters for these ignored bindings. One provides the counters for a read that has at least one binding ignored by at least one of these conditions. These counters are shown as the “Last ignored bindings counters.” The total ignored bindings counters provides a sum of the number of bindings that have been ignored because of all the reads since the router bootup. These two sets of counters are cleared by the `clear` command. The total counter set may indicate the number of bindings that have been ignored since the last clear.

**Example 2: Reading Binding Entries from a TFTP File**

To manually read the entries from a TFTP file, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# show ip dhcp snooping database</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# renew ip dhcp snoop data url</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show ip dhcp snoop data</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show ip dhcp snoop bind</td>
</tr>
</tbody>
</table>

This is an example of how to manually read entries from the tftp://10.1.1.1/directory/file:

```
Router# show ip dhcp snooping database
Agent URL :
Write delay Timer : 300 seconds
Abort Timer : 300 seconds

Agent Running : No
Delay Timer Expiry : Not Running
Abort Timer Expiry : Not Running
```
Last Succeeded Time : None
Last Failed Time : None
Last Failed Reason : No failure recorded.

Total Attempts : 0 Startup Failures : 0
Successful Transfers : 0 Failed Transfers : 0
Successful Reads : 0 Failed Reads : 0
Successful Writes : 0 Failed Writes : 0
Media Failures : 0

Router# renew ip dhcp snoop data tftp://10.1.1.1/directory/file
Loading directory/file from 10.1.1.1 (via GigabitEthernet1/1): 
[OK - 457 bytes]
Database downloaded successfully.

Router# show ip dhcp snoop data
Agent URL :
Write delay Timer : 300 seconds
Abort Timer : 300 seconds
Agent Running : No
Delay Timer Expiry : Not Running
Abort Timer Expiry : Not Running

Last Succeeded Time : 15:24:34 UTC Sun Jul 8 2001
Last Failed Time : None
Last Failed Reason : No failure recorded.

Total Attempts : 1 Startup Failures : 0
Successful Transfers : 1 Failed Transfers : 0
Successful Reads : 1 Failed Reads : 0
Successful Writes : 0 Failed Writes : 0
Media Failures : 0

Router# show ip dhcp snoop bind
MacAddress          IpAddress        Lease(sec)  Type           VLAN  Interface
------------------  ---------------  ----------  -------------  ----  --------------------
00:01:00:01:00:05   1.1.1.1          49810       dhcp-snooping  512   GigabitEthernet1/1
00:01:00:01:00:02   1.1.1.1          49810       dhcp-snooping  512   GigabitEthernet1/1
00:01:00:01:00:04   1.1.1.1          49810       dhcp-snooping  1536  GigabitEthernet1/1
00:01:00:01:00:03   1.1.1.1          49810       dhcp-snooping  1024  GigabitEthernet1/1
00:01:00:01:00:01   1.1.1.1          49810       dhcp-snooping  1     GigabitEthernet1/1

Router# clear ip dhcp snoop bind

Router# show ip dhcp snoop bind
MacAddress          IpAddress        Lease(sec)  Type           VLAN  Interface
------------------  ---------------  ----------  -------------  ----  --------------------

Example 3: Adding Information to the DHCP Snooping Database

To manually add a binding to the DHCP snooping database, perform the following task:
Configuring DHCP Snooping

This example shows how to manually add a binding to the DHCP snooping database:

```
Router# show ip dhcp snooping binding
MacAddress IpAddress Lease(sec) Type VLAN Interface
------------------ --------------- ---------- ------------- ---- --------------------
Router# ip dhcp snooping binding 1.1.1 vlan 1 1.1.1.1 interface gi1/1 expiry 1000
Router# show ip dhcp snooping binding
MacAddress IpAddress Lease(sec) Type VLAN Interface
------------------ --------------- ---------- ------------- ---- --------------------
00:01:00:01:00:01 1.1.1.1 992 dhcp-snooping 1 GigabitEthernet1/1
```

**Displaying a Binding Table**

The DHCP snooping binding table for each router contains binding entries that correspond to untrusted ports. The table does not contain information about hosts interconnected with a trusted port because each interconnected router will have its own DHCP snooping binding table.

This example shows how to display the DHCP snooping binding information for a router:

```
Router# show ip dhcp snooping binding
MacAddress IpAddress Lease(sec) Type VLAN Interface
------------------ --------------- ---------- ------------- ---- --------------------
00:02:B3:3F:3B:99 55.5.5.2 6943 dhcp-snooping 10 FastEthernet6/10
```

Table 44-2 describes the fields in the `show ip dhcp snooping binding` command output.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Address</td>
<td>Client hardware MAC address</td>
</tr>
<tr>
<td>IP Address</td>
<td>Client IP address assigned from the DHCP server</td>
</tr>
<tr>
<td>Lease (seconds)</td>
<td>IP address lease time</td>
</tr>
<tr>
<td>Type</td>
<td>Binding type: dynamic binding learned by DHCP snooping or statically-configured binding</td>
</tr>
<tr>
<td>VLAN</td>
<td>VLAN number of the client interface</td>
</tr>
<tr>
<td>Interface</td>
<td>Interface that connects to the DHCP client host</td>
</tr>
</tbody>
</table>
Configuring Dynamic ARP Inspection

This chapter describes how to configure dynamic Address Resolution Protocol (ARP) inspection (DAI) on the Cisco 7600 series router.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

- Understanding DAI, page 45-1
- Default DAI Configuration, page 45-5
- DAI Configuration Guidelines and Restrictions, page 45-5
- Configuring DAI, page 45-6
- DAI Configuration Samples, page 45-16

Understanding DAI

These sections describe how DAI helps prevent ARP spoofing attacks:

- Understanding ARP, page 45-1
- Understanding ARP Spoofing Attacks, page 45-2
- Understanding DAI and ARP Spoofing Attacks, page 45-2

Understanding ARP

ARP provides IP communication within a Layer 2 broadcast domain by mapping an IP address to a MAC address. For example, Host B wants to send information to Host A but does not have the MAC address of Host A in its ARP cache. Host B generates a broadcast message for all hosts within the broadcast domain to obtain the MAC address associated with the IP address of Host A. All hosts within the broadcast domain receive the ARP request, and Host A responds with its MAC address.
Understanding ARP Spoofing Attacks

ARP spoofing attacks and ARP cache poisoning can occur because ARP allows a gratuitous reply from a host even if an ARP request was not received. After the attack, all traffic from the device under attack flows through the attacker’s computer and then to the router, switch, or host.

An ARP spoofing attack can target hosts, switches, and routers connected to your Layer 2 network by poisoning the ARP caches of systems connected to the subnet and by intercepting traffic intended for other hosts on the subnet. Figure 45-1 shows an example of ARP cache poisoning.

Figure 45-1  ARP Cache Poisoning

Hosts A, B, and C are connected to the router on interfaces A, B and C, all of which are on the same subnet. Their IP and MAC addresses are shown in parentheses; for example, Host A uses IP address IA and MAC address MA. When Host A needs to communicate to Host B at the IP layer, it broadcasts an ARP request for the MAC address associated with IP address IB. When the router and Host B receive the ARP request, they populate their ARP caches with an ARP binding for a host with the IP address IA and a MAC address MA; for example, IP address IA is bound to MAC address MA. When Host B responds, the router and Host A populate their ARP caches with a binding for a host with the IP address IB and the MAC address MB.

Host C can poison the ARP caches of the router, Host A, and Host B by broadcasting forged ARP responses with bindings for a host with an IP address of IA (or IB) and a MAC address of MC. Hosts with poisoned ARP caches use the MAC address MC as the destination MAC address for traffic intended for IA or IB. This means that Host C intercepts that traffic. Because Host C knows the true MAC addresses associated with IA and IB, it can forward the intercepted traffic to those hosts by using the correct MAC address as the destination. Host C has inserted itself into the traffic stream from Host A to Host B, which is the topology of the classic man-in-the-middle attack.

Understanding DAI and ARP Spoofing Attacks

DAI is a security feature that validates ARP packets in a network. DAI intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings. This capability protects the network from some man-in-the-middle attacks.

DAI ensures that only valid ARP requests and responses are relayed. The router performs these activities:

- Intercepts all ARP requests and responses on untrusted ports
- Verifies that each of these intercepted packets has a valid IP-to-MAC address binding before updating the local ARP cache or before forwarding the packet to the appropriate destination
- Drops invalid ARP packets
DAI determines the validity of an ARP packet based on valid IP-to-MAC address bindings stored in a trusted database, the DHCP snooping binding database. This database is built by DHCP snooping if DHCP snooping is enabled on the VLANs and on the router. If the ARP packet is received on a trusted interface, the router forwards the packet without any checks. On untrusted interfaces, the router forwards the packet only if it is valid.

DAI can validate ARP packets against user-configured ARP access control lists (ACLs) for hosts with statically configured IP addresses (see “Applying ARP ACLs for DAI Filtering” section on page 45-8). The router logs dropped packets (see the “Logging of Dropped Packets” section on page 45-4).

You can configure DAI to drop ARP packets when the IP addresses in the packets are invalid or when the MAC addresses in the body of the ARP packets do not match the addresses specified in the Ethernet header (see the “Enabling Additional Validation” section on page 45-11).

### Interface Trust States and Network Security

DAI associates a trust state with each interface on the router. Packets arriving on trusted interfaces bypass all DAI validation checks, and those arriving on untrusted interfaces undergo the DAI validation process.

In a typical network configuration, you configure all router ports connected to host ports as untrusted and configure all router ports connected to routers as trusted. With this configuration, all ARP packets entering the network from a given router bypass the security check. No other validation is needed at any other place in the VLAN or in the network. You configure the trust setting by using the `ip arp inspection trust` interface configuration command.

**Caution**

Use the trust state configuration carefully. Configuring interfaces as untrusted when they should be trusted can result in a loss of connectivity.

In Figure 45-2, assume that both Router A and Router B are running DAI on the VLAN that includes Host 1 and Host 2. If Host 1 and Host 2 acquire their IP addresses from the DHCP server connected to Router A, only Router A binds the IP-to-MAC address of Host 1. Therefore, if the interface between Router A and Router B is untrusted, the ARP packets from Host 1 are dropped by Router B. Connectivity between Host 1 and Host 2 is lost.

**Figure 45-2**  ARP Packet Validation on a VLAN Enabled for DAI
Configuring interfaces to be trusted when they are actually untrusted leaves a security hole in the network. If Router A is not running DAI, Host 1 can easily poison the ARP cache of Router B (and Host 2, if the link between the routers is configured as trusted). This condition can occur even though Router B is running DAI.

DAI ensures that hosts (on untrusted interfaces) connected to a router running DAI do not poison the ARP caches of other hosts in the network. However, DAI does not prevent hosts in other portions of the network from poisoning the caches of the hosts that are connected to a router running DAI.

In cases in which some routers in a VLAN run DAI and other routers do not, configure the interfaces connecting such routers as untrusted. However, to validate the bindings of packets from routers where DAI is not configured, configure ARP ACLs on the router running DAI. When you cannot determine such bindings, isolate routers running DAI at Layer 3 from routers not running DAI. For configuration information, see the “Sample Two: One Switch Supports DAI” section on page 45-21.

**Note** Depending on the setup of the DHCP server and the network, it might not be possible to validate a given ARP packet on all routers in the VLAN.

**Rate Limiting of ARP Packets**

The router performs DAI validation checks, which rate limits incoming ARP packets to prevent a denial-of-service attack. By default, the rate for untrusted interfaces is 15 packets per second (pps). Trusted interfaces are not rate limited. You can change this setting by using the `ip arp inspection limit` interface configuration command.

When the rate of incoming ARP packets exceeds the configured limit, the router places the port in the error-disabled state. The port remains in that state until you intervene. You can use the `errdisable recovery` global configuration command to enable error disable recovery so that ports automatically emerge from this state after a specified timeout period.

For configuration information, see the “Configuring ARP Packet Rate Limiting” section on page 45-9.

**Relative Priority of ARP ACLs and DHCP Snooping Entries**

DAI uses the DHCP snooping binding database for the list of valid IP-to-MAC address bindings.

ARP ACLs take precedence over entries in the DHCP snooping binding database. The router uses ACLs only if you configure them by using the `ip arp inspection filter` global configuration command. The router first compares ARP packets to user-configured ARP ACLs. If the ARP ACL denies the ARP packet, the router also denies the packet even if a valid binding exists in the database populated by DHCP snooping.

**Logging of Dropped Packets**

When the router drops a packet, it places an entry in the log buffer and then generates system messages on a rate-controlled basis. After the message is generated, the router clears the entry from the log buffer. Each log entry contains flow information, such as the receiving VLAN, the port number, the source and destination IP addresses, and the source and destination MAC addresses.
You use the `ip arp inspection log-buffer` global configuration command to configure the number of entries in the buffer and the number of entries needed in the specified interval to generate system messages. You specify the type of packets that are logged by using the `ip arp inspection vlan logging` global configuration command. For configuration information, see the “Configuring DAI Logging” section on page 45-13.

### Default DAI Configuration

Table 45-1 shows the default DAI configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAI</td>
<td>Disabled on all VLANs.</td>
</tr>
<tr>
<td>Interface trust state</td>
<td>All interfaces are untrusted.</td>
</tr>
<tr>
<td>Rate limit of incoming ARP packets</td>
<td>The rate is 15 pps on untrusted interfaces, assuming that the network is a Layer 2-switched network with a host connecting to as many as 15 new hosts per second. The rate is unlimited on all trusted interfaces. The burst interval is 1 second.</td>
</tr>
<tr>
<td>ARP ACLs for non-DHCP environments</td>
<td>No ARP ACLs are defined.</td>
</tr>
<tr>
<td>Validation checks</td>
<td>No checks are performed.</td>
</tr>
<tr>
<td>Log buffer</td>
<td>When DAI is enabled, all denied or dropped ARP packets are logged.</td>
</tr>
<tr>
<td></td>
<td>The number of entries in the log is 32.</td>
</tr>
<tr>
<td></td>
<td>The number of system messages is limited to 5 per second.</td>
</tr>
<tr>
<td></td>
<td>The logging-rate interval is 1 second.</td>
</tr>
<tr>
<td>Per-VLAN logging</td>
<td>All denied or dropped ARP packets are logged.</td>
</tr>
</tbody>
</table>

### DAI Configuration Guidelines and Restrictions

When configuring DAI, follow these guidelines and restrictions:

- **DAI** is an ingress security feature; it does not perform any egress checking.
- **DAI** is not effective for hosts connected to routers that do not support DAI or that do not have this feature enabled. Because man-in-the-middle attacks are limited to a single Layer 2 broadcast domain, separate the domain with DAI checks from the one with no checking. This action secures the ARP caches of hosts in the domain enabled for DAI.
- **DAI** depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically assigned IP addresses. For configuration information, see Chapter 44, “Configuring DHCP Snooping.”
• When DHCP snooping is disabled or in non-DHCP environments, use ARP ACLs to permit or to deny packets.

• DAI is supported on access ports, trunk ports, EtherChannel ports, and private VLAN ports.

• A physical port can join an EtherChannel port channel only when the trust state of the physical port and the channel port match. Otherwise, the physical port remains suspended in the port channel. A port channel inherits its trust state from the first physical port that joins the channel. Consequently, the trust state of the first physical port need not match the trust state of the channel.

Conversely, when you change the trust state on the port channel, the router configures a new trust state on all the physical ports that comprise the channel.

• The operating rate for the port channel is cumulative across all the physical ports within the channel. For example, if you configure the port channel with an ARP rate-limit of 400 pps, all the interfaces combined on the channel receive an aggregate 400 pps. The rate of incoming ARP packets on EtherChannel ports is equal to the sum of the incoming rate of packets from all the channel members. Configure the rate limit for EtherChannel ports only after examining the rate of incoming ARP packets on the channel-port members.

The rate of incoming packets on a physical port is checked against the port-channel configuration rather than the physical-ports configuration. The rate-limit configuration on a port channel is independent of the configuration on its physical ports.

If the EtherChannel receives more ARP packets than the configured rate, the channel (including all physical ports) is placed in the error-disabled state.

• Make sure to limit the rate of ARP packets on incoming trunk ports. Configure trunk ports with higher rates to reflect their aggregation and to handle packets across multiple DAI-enabled VLANs. You also can use the `ip arp inspection limit none` interface configuration command to make the rate unlimited. A high rate-limit on one VLAN can cause a denial-of-service attack to other VLANs when the software places the port in the error-disabled state.

• Cisco IOS Release 12.2(33)SRD2 provides support for ARP Scale to 512k (static or dynamic)—This feature is supported with 3CXL versions of the Cisco 7600 Series ES+ line cards with RSP720-3CXL-GE with 2G SP memory or RSP720-3CXL-10GE with 2G SP memory. Use the following guidelines:
  – If you are using an Switched Virtual Interface (SVI) as a Layer 3 interface, you need to disable MAC Learning.
  – Use the `mls cef maximum-routes` command to increase Cisco Express Forwarding (CEF) holding capacity for IPv4.

## Configuring DAI

These sections describe how to configure DAI:

• **Enabling DAI on VLANs**, page 45-7
• **Configuring the DAI Interface Trust State**, page 45-8
• **Applying ARP ACLs for DAI Filtering**, page 45-8
• **Configuring ARP Packet Rate Limiting**, page 45-9
• **Enabling DAI Error-Disabled Recovery**, page 45-11
• **Enabling Additional Validation**, page 45-11
• **Configuring DAI Logging**, page 45-13
Enabling DAI on VLANs

To enable DAI on VLANs, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>**ip arp inspection vlan {vlan_ID</td>
</tr>
<tr>
<td></td>
<td>**no ip arp inspection vlan {vlan_ID</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>**do show ip arp inspection vlan {vlan_ID</td>
</tr>
</tbody>
</table>

You can enable DAI on a single VLAN or a range of VLANs:
- To enable a single VLAN, enter a single VLAN number.
- To enable a range of VLANs, enter a dash-separated pair of VLAN numbers.
- You can enter a comma-separated list of VLAN numbers and dash-separated pairs of VLAN numbers.

This example shows how to enable DAI on VLANs 10 through 12:

Router# configure terminal
Router(config)# ip arp inspection vlan 10-12

This example shows another way to enable DAI on VLANs 10 through 12:

Router# configure terminal
Router(config)# ip arp inspection vlan 10,11,12

This example shows how to enable DAI on VLANs 10 through 12 and VLAN 15:

Router# configure terminal
Router(config)# ip arp inspection vlan 10,12,15

This example shows how to verify the configuration:

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Configuration</th>
<th>Operation</th>
<th>ACL Match</th>
<th>Static ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Enabled</td>
<td>Inactive</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>11</td>
<td>Enabled</td>
<td>Inactive</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>12</td>
<td>Enabled</td>
<td>Inactive</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>15</td>
<td>Enabled</td>
<td>Inactive</td>
<td>----------</td>
<td>------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlan</th>
<th>ACL Logging</th>
<th>DHCP Logging</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>11</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>12</td>
<td>Deny</td>
<td>Deny</td>
</tr>
<tr>
<td>15</td>
<td>Deny</td>
<td>Deny</td>
</tr>
</tbody>
</table>

- Displaying DAI Information, page 45-15
Configuring the DAI Interface Trust State

The router does not check ARP packets that it receives from the other router on the trusted interface. It simply forwards the packets.

On untrusted interfaces, the router intercepts all ARP requests and responses. It verifies that the intercepted packets have valid IP-to-MAC address bindings before updating the local cache and before forwarding the packet to the appropriate destination. The router drops invalid packets and logs them in the log buffer according to the logging configuration specified with the `ip arp inspection vlan logging` global configuration command. For more information, see the “Configuring DAI Logging” section on page 45-13.

To configure the DAI interface trust state, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface {type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip arp inspection trust</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no ip arp inspection trust</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# do show ip arp inspection</td>
</tr>
<tr>
<td></td>
<td>interfaces</td>
</tr>
</tbody>
</table>

This example shows how to configure Fast Ethernet port 5/12 as trusted:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/12
Router(config-if)# ip arp inspection trust
Router(config-if)# do show ip arp inspection interfaces | include Int|--|5/12
Interface Trust State Rate (pps) Burst Interval
--------------- ----------- ---------- --------------
Fa5/12 Trusted None N/A
```

Applying ARP ACLs for DAI Filtering

![Note] See the Cisco 7600 Series Router Cisco IOS Command Reference, for information about the `arp access-list` command.

To apply an ARP ACL, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
Chapter 45  Configuring Dynamic ARP Inspection

Configuring DAI

When applying ARP ACLs, note the following information:

- For *vlan_range*, you can specify a single VLAN or a range of VLANs:
  - To specify a single VLAN, enter a single VLAN number.
  - To specify a range of VLANs, enter a dash-separated pair of VLAN numbers.
  - You can enter a comma-separated list of VLAN numbers and dash-separated pairs of VLAN numbers.

- (Optional) Specify *static* to treat implicit denies in the ARP ACL as explicit denies and to drop packets that do not match any previous clauses in the ACL. DHCP bindings are not used.
  
  If you do not specify this keyword, it means that there is no explicit deny in the ACL that denies the packet, and DHCP bindings determine whether a packet is permitted or denied if the packet does not match any clauses in the ACL.

- ARP packets containing only IP-to-MAC address bindings are compared against the ACL. Packets are permitted only if the access list permits them.

This example shows how to apply an ARP ACL named example_arp_acl to VLANs 10 through 12 and VLAN 15:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip arp inspection filter example_arp_acl vlan 10-12,15
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Router# `ip arp inspection filter arp_acl_name vlan {vlan_ID</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# `do show ip arp inspection vlan {vlan_ID</td>
</tr>
</tbody>
</table>

Configuring ARP Packet Rate Limiting

When DAI is enabled, the router performs ARP packet validation checks, which makes the router vulnerable to an ARP-packet denial-of-service attack. ARP packet rate limiting can prevent an ARP-packet denial-of-service attack.
To configure ARP packet rate limiting on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface {type+ slot/port</td>
</tr>
<tr>
<td></td>
<td>Selects the interface to be configured.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip arp inspection limit {rate pps [burst interval seconds]</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configures ARP packet rate limiting.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no ip arp inspection limit</td>
</tr>
<tr>
<td></td>
<td>Clears the ARP packet rate-limiting configuration.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# do show ip arp inspection interfaces</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When configuring ARP packet rate limiting, note the following information:

- The default rate is 15 pps on untrusted interfaces and unlimited on trusted interfaces.
- For rate pps, specify an upper limit for the number of incoming packets processed per second. The range is 0 to 2048 pps.
- The rate none keywords specify that there is no upper limit for the rate of incoming ARP packets that can be processed.
- (Optional) For burst interval seconds (default is 1), specify the consecutive interval, in seconds, over which the interface is monitored for a high rate of ARP packets. The range is 1 to 15.
- When the rate of incoming ARP packets exceeds the configured limit, the router places the port in the error-disabled state. The port remains in the error-disabled state until you enable error-disabled recovery, which allows the port to emerge from the error-disabled state after a specified timeout period.
- Unless you configure a rate-limiting value on an interface, changing the trust state of the interface also changes its rate-limiting value to the default value for the configured trust state. After you configure the rate-limiting value, the interface retains the rate-limiting value even when you change its trust state. If you enter the no ip arp inspection limit interface configuration command, the interface reverts to its default rate-limiting value.
- For configuration guidelines about limiting the rate of incoming ARP packets on trunk ports and EtherChannel ports, see the “DAI Configuration Guidelines and Restrictions” section on page 45-5.

This example shows how to configure ARP packet rate limiting on Fast Ethernet port 5/14:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/14
Router(config-if)# ip arp inspection limit rate 20 burst interval 2
Router(config-if)# do show ip arp inspection interfaces
<table>
<thead>
<tr>
<th>Interface</th>
<th>Trust State</th>
<th>Rate (pps)</th>
<th>Burst Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa5/14</td>
<td>Untrusted</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>
```
Enabling DAI Error-Disabled Recovery

To enable DAI error disabled recovery, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# errdisable recovery cause arp-inspection</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enables DAI error disabled recovery (disabled by default).</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no errdisable recovery cause arp-inspection</td>
</tr>
<tr>
<td></td>
<td>Disables DAI error disabled recovery.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# do show errdisable recovery</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to enable DAI error disabled recovery:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# errdisable recovery cause arp-inspection
ErrDisable Reason Timer Status
----------------- -------------
arp-inspection Enabled
```

Enabling Additional Validation

DAI intercepts, logs, and discards ARP packets with invalid IP-to-MAC address bindings. You can enable additional validation on the destination MAC address, the sender and target IP addresses, and the source MAC address.

To enable additional validation, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enter global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ip arp inspection validate {[dst-mac] [ip] [src-mac]}</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enables additional validation (default is none).</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no ip arp inspection validate {[dst-mac] [ip] [src-mac]}</td>
</tr>
<tr>
<td></td>
<td>Disables additional validation.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# do show ip arp inspection</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When enabling additional validation, note the following information:

- You must specify at least one of the keywords.
- Each `ip arp inspection validate` command overrides the configuration from any previous commands. If an `ip arp inspection validate` command enables `src` and `dst mac` validations, and a second `ip arp inspection validate` command enables IP validation only, the `src` and `dst mac` validations are disabled as a result of the second command.
- These are the additional validations:
  - **dst-mac**—Checks the destination MAC address in the Ethernet header against the target MAC address in ARP body. This check is performed for ARP responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.
  - **ip**—Checks the ARP body for invalid and unexpected IP addresses. Addresses include 0.0.0.0, 255.255.255.255, and all IP multicast addresses. Sender IP addresses are checked in all ARP requests and responses, and target IP addresses are checked only in ARP responses.
  - **src-mac**—Checks the source MAC address in the Ethernet header against the sender MAC address in the ARP body. This check is performed on both ARP requests and responses. When enabled, packets with different MAC addresses are classified as invalid and are dropped.

This example shows how to enable src-mac additional validation:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip arp inspection validate src-mac
```

```
Source Mac Validation : Enabled
Destination Mac Validation : Disabled
IP Address Validation : Disabled
```

This example shows how to enable dst-mac additional validation:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip arp inspection validate dst-mac
```

```
Source Mac Validation : Disabled
Destination Mac Validation : Enabled
IP Address Validation : Disabled
```

This example shows how to enable ip additional validation:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip arp inspection validate ip
```

```
Source Mac Validation : Disabled
Destination Mac Validation : Disabled
IP Address Validation : Enabled
```

This example shows how to enable src-mac and dst-mac additional validation:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip arp inspection validate src-mac dst-mac
```

```
Source Mac Validation : Enabled
Destination Mac Validation : Enabled
IP Address Validation : Disabled
```

This example shows how to enable src-mac, dst-mac, and ip additional validation:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip arp inspection validate src-mac dst-mac ip
```

```
Source Mac Validation : Enabled
Destination Mac Validation : Enabled
IP Address Validation : Enabled
```
Configuring DAI Logging

These sections describe DAI logging:
- DAI Logging Overview, page 45-13
- Configuring the DAI Logging Buffer Size, page 45-13
- Configuring the DAI Logging System Messages, page 45-14
- Configuring DAI Log Filtering, page 45-14

DAI Logging Overview

When DAI drops a packet, it places an entry in the log buffer and then generates system messages on a rate-controlled basis. After the message is generated, DAI clears the entry from the log buffer. Each log entry contains flow information, such as the receiving VLAN, the port number, the source and destination IP addresses, and the source and destination MAC addresses.

A log-buffer entry can represent more than one packet. For example, if an interface receives many packets on the same VLAN with the same ARP parameters, DAI combines the packets as one entry in the log buffer and generates a single system message for the entry.

If the log buffer overflows, it means that a log event does not fit into the log buffer, and the display for the `show ip arp inspection log` privileged EXEC command is affected. Two dashes ("--") appear instead of data except for the packet count and the time. No other statistics are provided for the entry. If you see this entry in the display, increase the number of entries in the log buffer or increase the logging rate.

Configuring the DAI Logging Buffer Size

To configure the DAI logging buffer size, perform this task:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>2</td>
<td>Router(config)# ip arp inspection log-buffer entries number</td>
<td>Configures the DAI logging buffer size (range is 0 to 1024).</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no ip arp inspection log-buffer entries</td>
<td>Reverts to the default buffer size (32).</td>
</tr>
<tr>
<td>3</td>
<td>Router(config)# do show ip arp inspection log</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the DAI logging buffer for 64 messages:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTRL/Z.
Router(config)# ip arp inspection log-buffer entries 64
Router(config)# do show ip arp inspection log | include Size
Total Log Buffer Size : 64
```
Configuring the DAI Logging System Messages

To configure the DAI logging system messages, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ip arp inspection log-buffer logs number_of_messages interval length_in_seconds</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no ip arp inspection log-buffer logs</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# do show ip arp inspection log</td>
</tr>
</tbody>
</table>

When configuring the DAI logging system messages, note the following information:

- For logs number_of_messages (default is 5), the range is 0 to 1024. A 0 value means that the entry is placed in the log buffer, but a system message is not generated.
- For interval length_in_seconds (default is 1), the range is 0 to 86400 seconds (1 day). A 0 value means that a system message is immediately generated (and the log buffer is always empty). An interval setting of 0 overrides a log setting of 0.
- System messages are sent at the rate of number_of_messages per length_in_seconds.

This example shows how to configure DAI logging to send 12 messages every 2 seconds:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip arp inspection log-buffer logs 12 interval 2
Router(config)# do show ip arp inspection log | include Syslog
Syslog rate : 12 entries per 2 seconds.
```

This example shows how to configure DAI logging to send 20 messages every 60 seconds.

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip arp inspection log-buffer logs 20 interval 60
Router(config)# do show ip arp inspection log | include Syslog
Syslog rate : 20 entries per 60 seconds.
```

Configuring DAI Log Filtering

To configure DAI log filtering, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ip arp inspection vlan vlan_range logging {acl-match {matchlog</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# do show running-config</td>
</tr>
</tbody>
</table>
When configuring the DAI log filtering, note the following information:

- By default, all denied packets are logged.
- For `vlan_range`, you can specify a single VLAN or a range of VLANs:
  - To specify a single VLAN, enter a single VLAN number.
  - To specify a range of VLANs, enter a dash-separated pair of VLAN numbers.
  - You can enter a comma-separated list of VLAN numbers and dash-separated pairs of VLAN numbers.
- `acl-match matchlog`—Logs packets based on the DAI ACL configuration. If you specify the `matchlog` keyword in this command and the `log` keyword in the `permit` or `deny` ARP access-list configuration command, ARP packets permitted or denied by the ACL are logged.
- `acl-match none`—Does not log packets that match ACLs.
- `dhcp-bindings all`—Logs all packets that match DHCP bindings.
- `dhcp-bindings none`—Does not log packets that match DHCP bindings.
- `dhcp-bindings permit`—Logs DHCP-binding permitted packets.

This example shows how to configure the DAI log filtering for VLAN 100 not to log packets that match ACLs:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip arp inspection vlan 100 logging acl-match none
Router(config)# do show running-config | include ip arp inspection vlan 100
ip arp inspection vlan 100 logging acl-match none
```

### Displaying DAI Information

To display DAI information, use the privileged EXEC commands described in Table 45-2.

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>show arp access-list [acl_name]</code></td>
<td>Displays detailed information about ARP ACLs.</td>
</tr>
<tr>
<td><code>show ip arp inspection interfaces [interface_id]</code></td>
<td>Displays the trust state and the rate limit of ARP packets for the specified interface or all interfaces.</td>
</tr>
<tr>
<td><code>show ip arp inspection vlan vlan_range</code></td>
<td>Displays the configuration and the operating state of DAI for the specified VLAN. If no VLANs are specified or if a range is specified, displays information only for VLANs with DAI enabled (active).</td>
</tr>
</tbody>
</table>
To clear or display DAI statistics, use the privileged EXEC commands in Table 45-3.

**Table 45-3  Commands for Clearing or Displaying DAI Statistics**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip arp inspection statistics</td>
<td>Clears DAI statistics.</td>
</tr>
<tr>
<td>show ip arp inspection statistics [vlan vlan_range]</td>
<td>Displays statistics for forwarded, dropped, MAC validation failure, IP validation failure, ACL permitted and denied, and DHCP permitted and denied packets for the specified VLAN. If no VLANs are specified or if a range is specified, displays information only for VLANs with DAI enabled (active).</td>
</tr>
</tbody>
</table>

For the `show ip arp inspection statistics` command, the router increments the number of forwarded packets for each ARP request and response packet on a trusted DAI port. The router increments the number of ACL-permitted or DHCP-permitted packets for each packet that is denied by source MAC, destination MAC, or IP validation checks, and the router increments the appropriate failure count.

To clear or display DAI logging information, use the privileged EXEC commands in Table 45-4:

**Table 45-4  Commands for Clearing or Displaying DAI Logging Information**

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear ip arp inspection log</td>
<td>Clears the DAI log buffer.</td>
</tr>
<tr>
<td>show ip arp inspection log</td>
<td>Displays the configuration and contents of the DAI log buffer.</td>
</tr>
</tbody>
</table>

### DAI Configuration Samples

This section includes these samples:

- **Sample One: Two Switches Support DAI**, page 45-16
- **Sample Two: One Switch Supports DAI**, page 45-21

### Sample One: Two Switches Support DAI

This procedure shows how to configure DAI when two routers support this feature. Host 1 is connected to Router A, and Host 2 is connected to Router B as shown in Figure 45-2 on page 45-3. Both routers are running DAI on VLAN 1 where the hosts are located. A DHCP server is connected to Router A. Both hosts acquire their IP addresses from the same DHCP server. Router A has the bindings for Host 1 and Host 2, and Router B has the binding for Host 2. Router A Fast Ethernet port 6/3 is connected to the Router B Fast Ethernet port 3/3.

**Note**

- DAI depends on the entries in the DHCP snooping binding database to verify IP-to-MAC address bindings in incoming ARP requests and ARP responses. Make sure to enable DHCP snooping to permit ARP packets that have dynamically assigned IP addresses. For configuration information, see Chapter 44, “Configuring DHCP Snooping.”
- This configuration does not work if the DHCP server is moved from Router A to a different location.
To ensure that this configuration does not compromise security, configure Fast Ethernet port 6/3 on Router A and Fast Ethernet port 3/3 on Router B as trusted.

Configuring Router A

To enable DAI and configure Fast Ethernet port 6/3 on Router A as trusted, follow these steps:

**Step 1** Verify the connection between switches Router A and Router B:

```bash
RouterA# show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID Local Intrfce Holdtme Capability Platform Port ID
RouterB Fas 6/3 177 R S I WS-C6506 Fas 3/3
```

**Step 2** Enable DAI on VLAN 1 and verify the configuration:

```bash
RouterA# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
RouterA(config)＃ ip arp inspection vlan 1
RouterA(config)＃ end
RouterA＃ show ip arp inspection vlan 1
```

**Step 3** Configure Fast Ethernet port 6/3 as trusted:

```bash
RouterA# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
RouterA(config)# interface fastethernet 6/3
RouterA(config-if)# ip arp inspection trust
RouterA(config-if)# end
RouterA＃ show ip arp inspection interfaces fastethernet 6/3
```

**Step 4** Verify the bindings:

```bash
RouterA# show ip dhcp snooping binding
MacAddress IpAddress Lease(sec) Type VLAN Interface
------------- -------- ------- ------- ------ ---------------
00:02:00:02:00:02 1.1.1.2 4993 dhcp-snooping 1 FastEthernet6/4
```
Check the statistics before and after DAI processes any packets:

RouterA# show ip arp inspection statistics vlan 1

Vlan      Forwarded        Dropped     DHCP Drops     ACL Drops
----      ---------        -------     ----------     ----------
1              0              0              0              0

Vlan   DHCP Permits    ACL Permits   Source MAC Failures
----   ------------    -----------   -------------------
1              0              0                    0

Vlan   Dest MAC Failures   IP Validation Failures
----   -----------------   ----------------------
1                  0                        0

If Host 1 then sends out two ARP requests with an IP address of 1.1.1.2 and a MAC address of 0002.0002.0002, both requests are permitted, as reflected in the following statistics:

RouterA# show ip arp inspection statistics vlan 1

Vlan      Forwarded        Dropped     DHCP Drops     ACL Drops
----      ---------        -------     ----------     ----------
1              2              0              0              0

Vlan   DHCP Permits    ACL Permits   Source MAC Failures
----   ------------    -----------   -------------------
1              2              0                    0

Vlan   Dest MAC Failures   IP Validation Failures
----   -----------------   ----------------------
1                  0                        0

If Host 1 then tries to send an ARP request with an IP address of 1.1.1.3, the packet is dropped and an error message is logged:

00:12:08: %SW_DAI-4-DHCP_SNOOPING_DENY: 2 Invalid ARPs (Req) on Fa6/4, vlan 1.((0002.0002.0002/1.1.1.3/0000.0000.0000/0.0.0.0/02:42:35 UTC Tue Jul 10 2001))

RouterA# show ip arp inspection statistics vlan 1

The statistics will display as follows:

Vlan      Forwarded        Dropped     DHCP Drops     ACL Drops
----      ---------        -------     ----------     ----------
1              2              2              2              0

Vlan   DHCP Permits    ACL Permits   Source MAC Failures
----   ------------    -----------   -------------------
1              2              0                    0

Vlan   Dest MAC Failures   IP Validation Failures
----   -----------------   ----------------------
1                  0                        0
Configuring Router B

To enable DAI and configure Fast Ethernet port 3/3 on Router B as trusted, follow these steps:

---

**Step 1** Verify the connectivity:

```
RouterA# show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone
Device ID Local Intrfce Holdtme Capability Platform Port ID
RouterB Fas 3/3 120 R S I WS-C6506 Fas 6/3
RouterB#
```

**Step 2** Enable DAI on VLAN 1, and verify the configuration:

```
RouterB# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
RouterB(config)# ip arp inspection vlan 1
RouterB(config)# end
RouterB#
```

```
RouterB# show ip arp inspection vlan 1
Source Mac Validation : Disabled
Destination Mac Validation : Disabled
IP Address Validation : Disabled

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Configuration</th>
<th>Operation</th>
<th>ACL Match</th>
<th>Static ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>Active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vlan ACL Logging DHCP Logging
------ ----------- ------------
1 Deny Deny
```

**Step 3** Configure Fast Ethernet port 3/3 as trusted:

```
RouterB# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
RouterB(config)# interface fastethernet 3/3
RouterB(config-if)# ip arp inspection trust
RouterB(config-if)# end
RouterB#
```

```
RouterB# show ip arp inspection interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trust State</th>
<th>Rate (pps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi1/1</td>
<td>Untrusted</td>
<td>15</td>
</tr>
<tr>
<td>Gi1/2</td>
<td>Untrusted</td>
<td>15</td>
</tr>
<tr>
<td>Gi3/1</td>
<td>Untrusted</td>
<td>15</td>
</tr>
<tr>
<td>Gi3/2</td>
<td>Untrusted</td>
<td>15</td>
</tr>
<tr>
<td>Fa3/3</td>
<td>Trusted</td>
<td>None</td>
</tr>
<tr>
<td>Fa3/4</td>
<td>Untrusted</td>
<td>15</td>
</tr>
<tr>
<td>Fa3/5</td>
<td>Untrusted</td>
<td>15</td>
</tr>
<tr>
<td>Fa3/6</td>
<td>Untrusted</td>
<td>15</td>
</tr>
<tr>
<td>Fa3/7</td>
<td>Untrusted</td>
<td>15</td>
</tr>
</tbody>
</table>
```

**Step 4** Verify the list of DHCP snooping bindings:

```
RouterB# show ip dhcp snooping binding
```

```
MacAddress IpAddress Lease(sec) Type | VLAN | Interface
-----------|-------------|-------------|------|------|--------
```

<output truncated>

RouterB#
## DAI Configuration Samples

---

```
00:01:00:01:00:01 1.1.1.1 4995 dhcp-snooping 1 FastEthernet3/4
```

RouterB#

### Step 5

Check the statistics before and after DAI processes any packets:

```
RouterB# show ip arp inspection statistics vlan 1
```

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Forwarded</th>
<th>Dropped</th>
<th>DHCP Drops</th>
<th>ACL Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlan</th>
<th>DHCP Permits</th>
<th>ACL Permits</th>
<th>Source MAC Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Dest MAC Failures</th>
<th>IP Validation Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

RouterB#

If Host 2 then sends out an ARP request with the IP address 1.1.1.1 and the MAC address 0001.0001.0001, the packet is forwarded and the statistics are updated appropriately:

```
RouterB# show ip arp inspection statistics vlan 1
```

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Forwarded</th>
<th>Dropped</th>
<th>DHCP Drops</th>
<th>ACL Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlan</th>
<th>DHCP Permits</th>
<th>ACL Permits</th>
<th>Source MAC Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Dest MAC Failures</th>
<th>IP Validation Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

RouterB#

If Host 2 attempts to send an ARP request with the IP address 1.1.1.2, DAI drops the request and logs a system message:

```
00:18:08: %SW_DAI-4-DHCP_SNOOPING_DENY: 1 Invalid ARPs (Req) on Fa3/4, vlan 1.([0001.0001.0001/1.1.1.2/0000.0000.0000/0.0.0.0/01:53:21 UTC Fri May 23 2003])
```

RouterB#

The statistics display as follows:

```
RouterB# show ip arp inspection statistics vlan 1
```

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Forwarded</th>
<th>Dropped</th>
<th>DHCP Drops</th>
<th>ACL Drops</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlan</th>
<th>DHCP Permits</th>
<th>ACL Permits</th>
<th>Source MAC Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Dest MAC Failures</th>
<th>IP Validation Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

RouterB#
Sample Two: One Switch Supports DAI

This procedure shows how to configure DAI when Router B shown in Figure 45-2 on page 45-3 does not support DAI or DHCP snooping.

If switch Router B does not support DAI or DHCP snooping, configuring Fast Ethernet port 6/3 on Router A as trusted creates a security hole because both Router A and Host 1 could be attacked by either Router B or Host 2.

To prevent this possibility, you must configure Fast Ethernet port 6/3 on Router A as untrusted. To permit ARP packets from Host 2, you must set up an ARP ACL and apply it to VLAN 1. If the IP address of Host 2 is not static, which would make it impossible to apply the ACL configuration on Router A, you must separate Router A from Router B at Layer 3 and use a router to route packets between them.

To set up an ARP ACL on switch Router A, follow these steps:

**Step 1** Configure the access list to permit the IP address 1.1.1.1 and the MAC address 0001.0001.0001, and verify the configuration:

```
RouterA# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
RouterA(config)# arp access-list H2
RouterA(config-arp-nacl)# permit ip host 1.1.1.1 mac host 1.1.1
RouterA(config-arp-nacl)# end
RouterA# show arp access-list
ARP access list H2
permit ip host 1.1.1.1 mac host 0001.0001.0001
```

**Step 2** Apply the ACL to VLAN 1, and verify the configuration:

```
RouterA# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
RouterA(config)# ip arp inspection filter H2 vlan 1
RouterA(config)# end
RouterA# show ip arp inspection vlan 1
Source Mac Validation : Disabled
Destination Mac Validation : Disabled
IP Address Validation : Disabled

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Configuration</th>
<th>Operation</th>
<th>ACL Match</th>
<th>Static ACL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Enabled</td>
<td>Active</td>
<td>H2</td>
<td>No</td>
</tr>
</tbody>
</table>

Vlan ACL Logging DHCP Logging

<table>
<thead>
<tr>
<th>Vlan</th>
<th>ACL Logging</th>
<th>DHCP Logging</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deny</td>
<td>Deny</td>
</tr>
</tbody>
</table>
```

**Step 3** Configure Fast Ethernet port 6/3 as untrusted, and verify the configuration:

```
RouterA# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
RouterA(config)# interface fastethernet 6/3
RouterA(config-if)# no ip arp inspection trust
RouterA(config-if)# end
Switch# show ip arp inspection interfaces fastethernet 6/3

<table>
<thead>
<tr>
<th>Interface</th>
<th>Trust State</th>
<th>Rate (pps)</th>
</tr>
</thead>
</table>
```

When Host 2 sends 5 ARP requests through Fast Ethernet port 6/3 on Router A and a “get” is permitted by Router A, the statistics are updated appropriately:

```
Switch# show ip arp inspection statistics vlan 1
Vlan Forwarded Dropped DHCP Drops ACL Drops
 ---- ------- ---------- ----------
 1 5 0 0 0

Vlan DHCP Permits ACL Permits Source MAC Failures
 ---- --------- ----------- -------------------
 1 0 5 0

Vlan Dest MAC Failures IP Validation Failures
 ---- ----------------- ----------------------
 1 0 0
```

Switch#
Configuring Traffic Storm Control

This chapter describes how to configure the traffic storm control feature on the Cisco 7600 series routers.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

• Understanding Traffic Storm Control, page 46-1
• Detecting and Controlling Traffic Storms, page 46-2
• Default Traffic Storm Control Configuration, page 46-3
• Configuration Guidelines and Restrictions, page 46-3
• Enabling Traffic Storm Control, page 46-4

Understanding Traffic Storm Control

A traffic storm occurs when packets flood the LAN, creating excessive traffic and degrading network performance. The traffic storm control feature prevents LAN ports from being disrupted by a broadcast, multicast, or unicast traffic storm on physical interfaces.

Traffic storm control (also called traffic suppression) monitors incoming traffic levels over a 1-second traffic storm control interval and, during the interval, compares the traffic level with the traffic storm control level that you configure. The traffic storm control level is a percentage of the total available bandwidth of the port. Each port has a single traffic storm control level that is used for all types of traffic (broadcast, multicast, and unicast).

Traffic storm control monitors the level of each traffic type for which you enable traffic storm control in 1-second traffic storm control intervals. Within an interval, when the ingress traffic for which traffic storm control is enabled reaches the traffic storm control level that is configured on the port, traffic storm control drops the traffic until the traffic storm control interval ends.

Figure 46-1 shows the broadcast traffic patterns on a LAN interface over a given interval. In this example, traffic storm control occurs between times T1 and T2 and between T4 and T5. During those intervals, the amount of broadcast traffic exceeded the configured threshold.
Detecting and Controlling Traffic Storms

The mechanism to detect and control such storm event(s) is referred to as storm control or broadcast suppression.

A traffic storm is detected when the following occurs:

The traffic storm control threshold numbers and the time interval combination make the traffic storm control algorithm work with different levels of granularity. A higher threshold allows more packets to pass through.

Traffic storm control on the Cisco 7600 series routers is implemented in hardware. The traffic storm control circuitry monitors packets passing from a LAN interface to the switching bus. Using the Individual/Group bit in the packet destination address, the traffic storm control circuitry determines if the packet is unicast or broadcast, keeps track of the current count of packets within the 1-second interval, and when a threshold is reached, filters out subsequent packets.

Because hardware traffic storm control uses a bandwidth-based method to measure traffic, the most significant implementation factor is setting the percentage of total available bandwidth that can be used by controlled traffic. Because packets do not arrive at uniform intervals, the 1-second interval during which controlled traffic activity is measured can affect the behavior of traffic storm control.

The following are examples of traffic storm control behavior:

- If you enable broadcast traffic storm control, and broadcast traffic exceeds the level within a 1-second traffic storm control interval, traffic storm control drops all broadcast traffic until the end of the traffic storm control interval.
- If you enable broadcast and multicast traffic storm control, and the combined broadcast and multicast traffic exceeds the level within a 1-second traffic storm control interval, traffic storm control drops all broadcast and multicast traffic until the end of the traffic storm control interval.
- If you enable broadcast and multicast traffic storm control, and broadcast traffic exceeds the level within a 1-second traffic storm control interval, traffic storm control drops all broadcast and multicast traffic until the end of the traffic storm control interval.
- If you enable broadcast and multicast traffic storm control, and multicast traffic exceeds the level within a 1-second traffic storm control interval, traffic storm control drops all broadcast and multicast traffic until the end of the traffic storm control interval.
• The port receives multicast and broadcast traffic more than the bandwidth value as configured in the `storm-control` command.
• The value of the TotalSuppDiscards counter displayed in the `show interface gig<slot/port> counters storm-control` command increments.

In Cisco IOS Release 15.0(1)S the following storm control feature enhancements are covered on the 67xx, 6196, ES20 and ES+ line cards:
• Port-channel interfaces: Support for port-channel interfaces.
• Shutdown: When a storm is detected and the storm traffic exceeds the accepted threshold, the affected interface moves to error disable state. The traffic threshold is calculated as a percentage of the total bandwidth of the port (%BW). Use the error disable detection and the recovery feature, or the shut/no shut command to re-enable the port on the affected interface.
• Trap: An SNMP trap can be sent when a storm is detected.

Default Traffic Storm Control Configuration

Traffic storm control is disabled by default.

Configuration Guidelines and Restrictions

When configuring traffic storm control, follow these guidelines and restrictions:
• Storm control for multicast and unicast does not work on WS-X6148-RJ-45, WS-X6148-RJ21, WS-X6196-RJ21, 6196-21AF, WS-X6148X2-RJ-45, WS-X6548-RJ-45, WS-X6548-RJ21, these line cards (with Port-ASICs COIL/Pentamak) support broadcast storm control only.
• The WS-X6548-GE-TX, WS-X6548V-GE-TX, WS-X6148-GE-TX, and WS-X6148V-GE-TX switching modules do not support traffic storm control.
• ES+ line card does not support storm control for unicast packets.
• The router supports multicast and unicast traffic storm control only on Gigabit and 10 Gigabit Ethernet LAN ports.
• The router supports broadcast traffic storm control on all LAN ports.
• Except for BPDUs, traffic storm control does not differentiate between control traffic and data traffic.
• When multicast suppression is enabled, traffic storm control suppresses BPDUs when the multicast suppression threshold is exceeded on these modules:
  – WS-X6748-SFP
  – WS-X6724-SFP
  – WS-X6748-GE-TX
  – WS-X6748-GE-TX
  – WS-X6704-10GE
  – WS-SUP32-GE-3B
  – WS-SUP32-10GE-3B
When multicast suppression is enabled on the listed modules, do not configure traffic storm control on STP-protected ports that need to receive BPDUs. Except on the listed modules, traffic storm control does not suppress BPDUs.

- The 6196 line card supports suppression for broadcast traffic and not multicast traffic.
- Storm control on port-channel interfaces of the ES20 and ES+ line cards is supported in Cisco IOS Release 15.0(1)S.
- Unicast traffic is supported on 67XX line cards, but not supported on ES20 and ES40 line cards.
- Any addition or change made to the storm control configuration on port-channel interfaces is automatically updated on the port-channel member links.
- Storm control configuration or deletion is not allowed on member links.
- You can add an interface to a port-channel if the storm control configuration on the interface and the port-channel are alike.
  - You can either club member-links to form a port-channel and then configure the port-channel or change the storm control configuration on the interface to match with the port-channel, before adding it to the port-channel.
- Using the default interface command twice, removes the storm control feature from a member-link interface.

### Enabling Traffic Storm Control

To enable traffic storm control, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
Router(config)# interface {{type slot/port | port-channel number}} | Selects an interface to configure. |
| **Step 2**  
Router(config)# snmp-server enable traps  
storm-control trap-rate traps per minute | (Optional) Enables SNMP storm control trap parameters. The trap-rate range is 0 to 1000 traps per minute. However, the number of traps generated for storm control cannot exceed six per minute (by design). |
| **Step 3**  
Router(config-if)# storm-control broadcast level level[.level]  
Router(config-if)# no storm-control broadcast level | Enables broadcast traffic storm control on the interface, configures the traffic storm control level, and applies the traffic storm control level to all traffic storm control modes enabled on the interface.  
Disables broadcast traffic storm control on the interface. |
| **Step 4**  
Router(config-if)# storm-control multicast level level[.level]  
Router(config-if)# no storm-control multicast level | Enables multicast traffic storm control on the interface, configures the traffic storm control level, and applies the traffic storm control level to all traffic storm control modes enabled on the interface.  
**Note** The storm-control multicast command is supported only on Gigabit Ethernet interfaces.  
Disables multicast traffic storm control on the interface. |
Enabling Traffic Storm Control

When configuring the traffic storm control level, note the following information:

- You can configure traffic storm control on an EtherChannel (a port channel interface).
- Do not configure traffic storm control on ports that are members of an EtherChannel. Configuring traffic storm control on ports that are configured as members of an EtherChannel puts the ports into a suspended state.
- Specify the level as a percentage of the total interface bandwidth:
  - The level can be from 0 to 100.
  - The optional fraction of a level can be from 0 to 99.
  - 100 percent means no traffic storm control.
  - 0.0 percent suppresses all traffic.

Note On these modules, following levels suppress all traffic:
  — WS-X6704-10GE: less than 0.33 percent round to zero
  — WS-X6748-SFP: less than 0.03 percent
  — WS-X6748-GE-TX: depends on speed:
    if 10 Mbps: less than 0.33 percent round to zero
    if 100 Mbps: less than 0.03 percent round to zero

Because of hardware limitations and the method by which packets of different sizes are counted, the level percentage is an approximation. Depending on the sizes of the frames making up the incoming traffic, the actual enforced level might differ from the configured level by several percentage points.

This example shows how to enable multicast traffic storm control on Gigabit Ethernet interface 3/16 and how to configure the traffic storm control level at 70.5 percent. This configuration applies the traffic storm control level to all traffic storm control modes enabled on Gigabit Ethernet interface 3/16:

Router# configure terminal
Router(config)# interface gigabitethernet 3/16
Router(config-if)# storm-control multicast level 70.5
Router(config-if)# end

Command	Purpose
Step 5 | Enables unicast traffic storm control on the interface, configures the traffic storm control level, and applies the traffic storm control level to all traffic storm control modes enabled on the interface.

Note | The storm-control unicast command is supported only on Gigabit Ethernet interfaces.

Step 6 | Disables unicast traffic storm control on the interface.

Step 7 | Enables unicast traffic storm control on the interface.

Step 8 | Exits configuration mode.

Step 9 | Verifies the configuration.

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet
Displaying Traffic Storm Control Settings

To display traffic storm control information, use the commands described in Table 46-1.

Table 46-1 Commands for Displaying Traffic Storm Control Status and Configuration

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show interfaces {{type slot/port}</td>
<td>{port-channel number}} switchport</td>
</tr>
<tr>
<td>Router# show interfaces {{type slot/port}</td>
<td>{port-channel number}} counters storm-control</td>
</tr>
<tr>
<td>Router# show interfaces counters storm-control [module slot_number]</td>
<td></td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

Note: The show interfaces {{interface_type slot/port} | {port-channel number}} counters command does not display the discard count. You must the storm-control keyword to display the discard count.
Unknown Unicast Flood Blocking

This chapter describes how to configure the unknown unicast flood blocking (UUFB) feature on the Cisco 7600 series routers.

**Note**
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

**Understanding UUFB**

Unknown unicast traffic is flooded to all Layer 2 ports in a VLAN. You can prevent this behavior by using the UUFB feature. The UUFB feature blocks unknown unicast traffic flooding and only permits egress traffic with MAC addresses that are known to exit on the port. The UUFB feature is supported on all ports that are configured with the `switchport` command, including private VLAN (PVLAN) ports.

**Configuring UUFB**

To configure UUFB, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface {{type slot/port}</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# switchport block unicast</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# do show interfaces [type slot/port] switchport</td>
</tr>
</tbody>
</table>

1. `type` = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to configure UUFB on Fast Ethernet port 5/12 and how to verify the configuration:

```
Router# configure terminal
Router(config)# interface fastethernet 5/12
```
Router(config-if)# switchport block unicast
Router(config-if)# do show interface fastethernet 5/12 switchport | include unicast
Unknown unicast blocked: enabled
Configuring PFC QoS

This chapter describes how to configure quality of service (QoS) as implemented on the Policy Feature Card (PFC) and Distributed Forwarding Cards (DFCs) on the Cisco 7600 series routers.

Note

- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
  

- For information about QoS and MPLS, see Chapter 50, “Configuring MPLS QoS on the PFC.”

- QoS on the Cisco 7600 series routers (PFC QoS) uses some Cisco IOS modular QoS CLI (MQC). Because PFC QoS is implemented in hardware, it supports only a subset of the MQC syntax.

- The PFC does not support Network-Based Application Recognition (NBAR).

Note

Effective with Cisco IOS Software Release 15.0(1)S, a number of QoS commands are hidden in the software image. For more information on replacement MQC commands please see the Legacy QoS Command Deprecation feature document:


The Legacy QoS Command Deprecation document explains that show queueing has been replaced by show policy-map interface. However, show policy-map interface will not show any queueing information on LAN cards because LAN cards do not follow the MQC configuration model. The alternative command: show mls qos queuing interface must therefore be used to show queueing information on LAN cards on Cisco 7600 routers.

This chapter contains these sections:

- Understanding How PFC QoS Works, page 48-2
- PFC QoS Default Configuration, page 48-26
- PFC QoS Configuration Guidelines and Restrictions, page 48-40
- Configuring PFC QoS, page 48-45
- Common QoS Scenarios, page 48-97
- PFC QoS Glossary, page 48-107
Understanding How PFC QoS Works

The term “PFC QoS” refers to QoS on the Cisco 7600 series router. PFC QoS is implemented on various router components in addition to the PFC and any DFCs. These sections describe how PFC QoS works:

- Port Types Supported by PFC QoS, page 48-2
- Overview, page 48-2
- Component Overview, page 48-5
- Understanding Classification and Marking, page 48-13
- Understanding Port-Based Queue Types, page 48-20
- Sample Network Design Overview, page 48-98

Port Types Supported by PFC QoS

The PFC does not provide QoS for FlexWAN module ports. Refer to this publication for information about FlexWAN module QoS features:


PFC QoS supports LAN ports. LAN ports are Ethernet ports on Ethernet switching modules, except for the 4-port Gigabit Ethernet WAN (GBIC) modules (OSM-4GE-WAN and OSM-2+4GE-WAN+). Some OSMs have four Ethernet LAN ports in addition to WAN ports.

PFC QoS supports optical services module (OSM) ports. OSM ports are the WAN ports on OSMs.

Overview

Typically, networks operate on a best-effort delivery basis, which means that all traffic has equal priority and an equal chance of being delivered in a timely manner. When congestion occurs, all traffic has an equal chance of being dropped.

QoS makes network performance more predictable and bandwidth utilization more effective. QoS selects (classifies) network traffic, uses or assigns QoS labels to indicate priority, makes the packets comply with the configured resource usage limits (polices the traffic and marks the traffic), and provides congestion avoidance where resource contention exists.

PFC QoS classification, policing, marking, and congestion avoidance is implemented in hardware on the PFC, DFCs, and in LAN switching module port Application Specific Integrated Circuits (ASICs).

Note
Cisco 7600 series routers do not support all of the MQC features (for example, Committed Access Rate (CAR)) for traffic that is Layer 3 switched or Layer 2 switched in hardware. Because queuing is implemented in the port ASICs, Cisco 7600 series routers do not support MQC-configured queuing.

Figure 48-1 shows an overview of QoS processing in a Cisco 7600 series router.
The PFC QoS features are applied in this order:

1. Ingress port PFC QoS features:
   - Port trust state—In PFC QoS, trust means to accept as valid and use as the basis of the initial internal DSCP value. Ports are untrusted by default, which sets the initial internal DSCP value to zero. You can configure ports to trust received CoS, IP precedence, or DSCP.
   - Layer 2 CoS remarking—PFC QoS applies Layer 2 CoS remarking, which marks the incoming frame with the port CoS value, in these situations:
     - If a port is configured as untrusted.
     - If a port is configured as trusted, but the traffic is not in an ISL, 802.1Q, or 802.1p frame.
       On OSM ATM and POS ports, PFC QoS always sets CoS equal to zero.
   - Congestion avoidance—If you configure an Ethernet LAN port to trust CoS, QoS classifies the traffic on the basis of its Layer 2 CoS value and assigns it to an ingress queue to provide congestion avoidance. Layer 3 DSCP-based queue mapping is available only on WS-X6708-10GE ports.

2. PFC and DFC QoS features:
   - Internal DSCP—On the PFC and DFCs, QoS associates an internal DSCP value with all traffic to classify it for processing through the system. There is an initial internal DSCP based on the traffic trust state and a final internal DSCP. The final internal DSCP can be the same as the initial value or an MQC policy map can set it to a different value.
   - MQC policy maps—MQC policy maps can do one or more of these operations:
     - Change the trust state of the traffic (bases the internal DSCP value on a different QoS label)
     - Set the initial internal DSCP value (only for traffic from untrusted ports)
     - Mark the traffic
     - Police the traffic

3. Egress Ethernet LAN port QoS features:
   - Layer 3 DSCP marking with the final internal DSCP (optionally with PFC)
   - Layer 2 CoS marking mapped from the final internal DSCP
Chapter 48  Configuring PFC QoS

Understanding How PFC QoS Works

- Layer 2 CoS-based congestion avoidance. (Layer 3 DSCP-based queue mapping is available only on WS-X6708-10GE ports.)

These figures provide more detail about the relationship between QoS and the router components:

- Figure 48-2, Traffic Flow and PFC QoS Features with the PFC
- Figure 48-3, PFC QoS Features and Component Overview

Figure 48-2  Traffic Flow and PFC QoS Features with the PFC

FlexWAN traffic enters switch

FlexWAN ingress port and QoS features

Multilayer Switch Feature Card (MSFC)

FlexWAN egress port and QoS features

Transmit FlexWAN traffic

CoS = IP precedence for all traffic (not configurable)

LAN traffic enters switch

LAN ingress port and QoS features

Ingress PFC3 QoS

PFC3 Layer 2 or 3 switching

Egress PFC3 QoS

LAN egress port and QoS features

Transmit LAN traffic

OSM traffic enters switch

OSM ingress port and QoS features

Transmit OSM traffic

CoS = 0 for all ATM and POS traffic (not configurable)

Figure 48-2 shows how traffic flows through the QoS features with a PFC:

- Traffic can enter on any type of port and exit on any type of port.
- DFCs implement PFC QoS locally on switching modules.
- For FlexWAN module traffic:
  - Ingress FlexWAN QoS features can be applied to FlexWAN ingress traffic.
  - Ingress FlexWAN traffic can be Layer 3-switched by the PFC or routed in software by the MSFC.
  - Egress PFC QoS is not applied to FlexWAN ingress traffic.
  - Egress FlexWAN QoS can be applied to FlexWAN egress traffic.
- For LAN-port traffic:
  - Ingress LAN-port QoS features can be applied to LAN-port ingress traffic.
  - Ingress PFC QoS can be applied to LAN-port ingress traffic.
  - Ingress LAN-port traffic can be Layer-2 or Layer-3 switched by the PFC or routed in software by the MSFC.
  - Egress PFC QoS and egress LAN-port QoS can be applied to LAN-port egress traffic.
- For OSM traffic:
  - Ingress OSM-port QoS features can be applied to OSM-port ingress traffic.
  - Ingress PFC QoS can be applied to OSM-port ingress traffic.
  - Ingress OSM-port traffic can be Layer-3 switched by the PFC or routed in software by the MSFC.
Egress PFC QoS and egress OSM-port QoS can be applied to OSM-port egress traffic.

Component Overview

These sections provide more detail about the role of the following components in PFC QoS decisions and processes:
- Ingress LAN Port PFC QoS Features, page 48-5
- PFC and DFC QoS Features, page 48-7
- Egress Port QoS Features, page 48-10

Ingress LAN Port PFC QoS Features

These sections provide an overview of the ingress port QoS features:
- Flowchart of Ingress LAN Port PFC QoS Features, page 48-6
- Port Trust, page 48-7
- Congestion Avoidance, page 48-7
Flowchart of Ingress LAN Port PFC QoS Features

Figure 48-4 shows how traffic flows through the ingress LAN port PFC QoS features.

![Flowchart of Ingress LAN Port PFC QoS Features]

**Note**
Ingress CoS mutation is supported only on 802.1Q tunnel ports. DSCP-based queue mapping is supported only on WS-X6708-10GE ports.
Port Trust

In PFC QoS, trust means to accept as valid and use as the basis of the initial internal DSCP value. You can configure ports as untrusted or you can configure them to trust these QoS values:

- Layer 2 CoS
  - A port configured to trust CoS is called a trust CoS port.
  - Traffic received through a trust CoS port or configured by a policy map to trust CoS is called trust CoS traffic.

**Note** Not all traffic carries a CoS value. Only ISL, 802.1Q, and 802.1P traffic carries a CoS value. PFC QoS applies the port CoS value to any traffic that does not carry a CoS value. On untrusted ports, PFC QoS applies the port CoS value to all traffic, overwriting any received CoS value. Received CoS values are preserved only on ports configured to trust CoS.

- IP precedence
  - A port configured to trust IP precedence is called a trust IP precedence port.
  - Traffic received through a trust IP precedence port or configured by a policy map to trust IP precedence is called trust IP precedence traffic.

- DSCP
  - A port configured to trust DSCP is called a trust DSCP port.
  - Traffic received through a trust DSCP port or configured by a policy map to trust DSCP is called trust DSCP traffic.

Traffic received through an untrusted port is called untrusted traffic.

Congestion Avoidance

PFC QoS implements congestion avoidance on trust CoS ports. On a trust CoS port, QoS classifies the traffic on the basis of its Layer 2 CoS value and assigns it to an ingress queue to provide congestion avoidance. In Release 12.2(33)SRC and later releases, you can configure WS-X6708-10GE trust DSCP ports to use received DSCP values for congestion avoidance. See the “Classification and Marking at Trust CoS Ingress LAN Ports” section on page 48-14 for more information about ingress congestion avoidance.

PFC and DFC QoS Features

These sections describe PFCs and DFCs as they relate to QoS:

- Supported Policy Feature Cards, page 48-8
- Supported Distributed Forwarding Cards, page 48-8
- PFC and DFC QoS Feature List and Flowchart, page 48-8
- Internal DSCP Values, page 48-9
Supported Policy Feature Cards

The policy feature card (PFC) is a daughter card that resides on the supervisor engine. The PFC provides QoS in addition to other functionality. The following PFCs are supported on Cisco 7600 series routers:

- PFC3B on the Supervisor Engine 720 and Supervisor Engine 32
- PFC3BXL on the Supervisor Engine 720
- The PFC3C and PFC3CXL on the Route Switch Processor 720 (RSP720)

Supported Distributed Forwarding Cards

The PFC sends a copy of the QoS policies to the distributed forwarding card (DFC) to provide local support for the QoS policies, which enables the DFCs to support the same QoS features that the PFC supports.

The following DFCs are supported on the Cisco 7600 series routers:

- WS-F6700-DFC3B, WS-F6700-DFC3BXL, for use on CEF720 modules with a Supervisor Engine 720.

PFC and DFC QoS Feature List and Flowchart

Table 48-1 lists the QoS features supported on the different versions of PFCs and DFCs.

<table>
<thead>
<tr>
<th>Feature</th>
<th>PFC3B/DFC3B</th>
<th>PFC3BXL/DFC3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for DFCs</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Flow granularity</td>
<td>Source</td>
<td>Source</td>
</tr>
<tr>
<td>QoS ACLs</td>
<td>IP, MAC</td>
<td>IP, MAC</td>
</tr>
<tr>
<td>DSCP transparency</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Note</td>
<td>Enabling DSCP transparency disables egress ToS rewrite.</td>
<td></td>
</tr>
<tr>
<td>Egress ToS rewrite</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Policing:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingress aggregate policers</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Egress aggregate policers</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of aggregate polices</td>
<td>1022</td>
<td>1022</td>
</tr>
<tr>
<td>Microflow policers</td>
<td>64 rates</td>
<td>64 rates</td>
</tr>
<tr>
<td>Number of flows per Microflow policer</td>
<td>110,000</td>
<td>240,000</td>
</tr>
<tr>
<td>Unit of measure for policer statistics</td>
<td>Bytes</td>
<td>Bytes</td>
</tr>
<tr>
<td>Basis of policer operation</td>
<td>Layer 2 length</td>
<td>Layer 2 length</td>
</tr>
</tbody>
</table>
Figure 48-5 shows how traffic flows through the QoS features on the PFC and DFCs.

**Note**

The DSCP transparency feature makes writing the egress DSCP value into the Layer 3 ToS byte optional.

### Internal DSCP Values

During processing, PFC QoS represents the priority of all traffic (including non-IP traffic) with an internal DSCP value. On the PFC, before any marking or policing takes place, PFC QoS derives the initial internal DSCP value as follows:

- From received CoS values or from port CoS values for **trust CoS traffic**.
- Mapped from received IP precedence values for **trust IP precedence traffic**.
- From received DSCP values for **trust DSCP traffic**.

**Note**

Traffic from an untrusted ingress port has the port CoS value. If traffic from an untrusted port matches a trust CoS policer, PFC QoS derives the internal DSCP value from the ingress port CoS value.
Understanding How PFC QoS Works

- Mapped from port CoS or DSCP values configured in policy maps for untrusted traffic.

For trust CoS traffic and trust IP precedence traffic, PFC QoS uses configurable maps to derive the internal 6-bit DSCP value from CoS or IP precedence, which are 3-bit values.

Marking and policing on the PFC can change the initial internal DSCP value to a final internal DSCP value, which is then used for all subsequently applied QoS features.

Port-Based PFC QoS and VLAN-Based PFC QoS

You can configure each ingress LAN port for either physical port-based PFC QoS (default) or VLAN-based PFC QoS and attach a policy map to the selected interface.

On ports configured for port-based PFC QoS, you can attach a policy map to the ingress LAN port as follows:

- On a nontrunk ingress LAN port configured for port-based PFC QoS, all traffic received through the port is subject to the policy map attached to the port.
- On a trunking ingress LAN port configured for port-based PFC QoS, traffic in all VLANs received through the port is subject to the policy map attached to the port.

On a nontrunk ingress LAN port configured for VLAN-based PFC QoS, traffic received through the port is subject to the policy map attached to the port’s VLAN.

On a trunking ingress LAN port configured for VLAN-based PFC QoS, traffic received through the port is subject to the policy map attached to the traffic’s VLAN.

Egress Port QoS Features

These sections describe egress port QoS features:

- Flowchart of Egress LAN Port Features, page 48-11
- Egress CoS Values, page 48-11
- Egress DSCP Mutation, page 48-12
- Egress ToS Byte, page 48-12
- Egress PFC QoS Interfaces, page 48-12
- Egress ACL Support for Remarked DSCP, page 48-12
- Marking on Egress OSM Ports, page 48-13
Flowchart of Egress LAN Port Features

*Figure 48-6* shows how traffic flows through the QoS features on egress LAN ports.

*Figure 48-6  Egress LAN Port Scheduling, Congestion Avoidance, and Marking*

---

**Egress CoS Values**

For all egress traffic, PFC QoS uses a configurable map to derive a CoS value from the final *internal* DSCP value associated with the traffic. PFC QoS sends the derived CoS value to the egress LAN ports for use in scheduling and to be written into ISL and 802.1Q frames.

---

**Note**  
With Release 12.2(33)SRC and later releases, you can configure WS-X6708-10GE ports to use the final *internal* DSCP value for egress LAN port classification and congestion avoidance. See *Configuring DSCP-Based Queue Mapping*, page 48-86.
Understanding How PFC QoS Works

Egress DSCP Mutation

You can configure 15 egress DSCP mutation maps to mutate the internal DSCP value before it is written in the egress ToS byte. You can attach egress DSCP mutation maps to any interface that PFC QoS supports.

Note

- If you configure egress DSCP mutation, PFC QoS does not derive the egress CoS value from the mutated DSCP value.

Egress ToS Byte

Except when DSCP transparency is enabled, PFC QoS creates a ToS byte for egress IP traffic from the final internal or mutated DSCP value and sends it to the egress port to be written into IP packets. For trust DSCP and untrusted IP traffic, the ToS byte includes the original two least-significant bits from the received ToS byte.

The internal or mutated DSCP value can mimic an IP precedence value (see the “IP Precedence and DSCP Values” section on page 48-45).

Egress PFC QoS Interfaces

You can attach an output policy map to a Layer 3 interface (either a LAN port configured as a Layer 3 interface or a VLAN interface) to apply a policy map to egress traffic.

Note

- Output policies do not support microflow policing.
- You cannot apply microflow policing to ARP traffic.
- You cannot set a trust state in an output policy.

Egress ACL Support for Remarked DSCP

Note

Egress ACL support for remarked DSCP is also known as packet recirculation.

The PFC supports egress ACL support for remarked DSCP, which enables IP precedence-based or DSCP-based egress QoS filtering to use any IP precedence or DSCP policing or marking changes made by ingress PFC QoS.

Without egress ACL support for remarked DSCP, egress QoS filtering uses received IP precedence or DSCP values; it does not use any IP precedence or DSCP changes made by ingress PFC QoS as the result of policing or marking.

The PFC provides egress PFC QoS only for Layer 3-switched and routed traffic on egress Layer 3 interfaces (either LAN ports configured as Layer 3 interfaces or VLAN interfaces).

You configure egress ACL support for remarked DSCP on ingress Layer 3 interfaces (either LAN ports configured as Layer 3 interfaces or VLAN interfaces).
On interfaces where egress ACL support for remarked DSCP is configured, the PFC processes each QoS-filtered IP packet twice: once to apply ingress PFC QoS and once to apply egress PFC QoS.

After packets have been processed by ingress PFC QoS and any policing or marking changes have been made, the packets are processed again on the ingress interface by any configured Layer 2 features (for example, VACLs) before being processed by egress PFC QoS.

On an interface where egress ACL support for remarked DSCP is configured, if a Layer 2 feature matches the ingress-QoS-modified IP precedence or DSCP value, the Layer 2 feature might redirect or drop the matched packets, which prevents them from being processed by egress QoS.

After packets have been processed by ingress PFC QoS and any policing or marking changes have been made, the packets are processed on the ingress interface by any configured Layer 3 features (for example, ingress Cisco IOS ACLs, policy based routing (PBR), etc.) before being processed by egress PFC QoS.

The Layer 3 features configured on an interface where egress ACL support for remarked DSCP is configured might redirect or drop the packets that have been processed by ingress PFC QoS, which would prevent them from being processed by egress PFC QoS.

### Marking on Egress OSM Ports

Ingress PFC QoS sets DSCP values that can be used by the OSM egress QoS features (see Figure 48-7).

**Figure 48-7  Egress WAN Port Marking**

![Diagram of Egress WAN Port Marking](image)

### Understanding Classification and Marking

The following sections describe where and how classification and marking occur on the Cisco 7600 series routers:

- [Classification and Marking at Trusted and Untrusted Ingress Ports](#)
- [Classification and Marking at Ingress OSM Ports](#)
Classification and Marking at Trusted and Untrusted Ingress Ports

The trust state of an ingress port determines how the port marks, schedules, and classifies received Layer 2 frames, and whether or not congestion avoidance is implemented. These are the port trust states:

- Untrusted (default)
- Trust IP precedence
- Trust DSCP
- Trust CoS

Ingress LAN port classification, marking, and congestion avoidance use Layer 2 CoS values only and do not use or set Layer 3 IP precedence or DSCP values.

In Release 12.2(33)SRC and later releases, you can configure WS-X6708-10GE ports to use received DSCP values for ingress LAN port classification and congestion avoidance (See Configuring DSCP-Based Queue Mapping, page 48-86.).

The following sections describe classification and marking at trusted and untrusted ingress ports:

- Classification and Marking at Untrusted Ingress Ports, page 48-14
- Classification and Marking at Trusted Ingress Ports, page 48-14

Classification and Marking at Untrusted Ingress Ports

PFC QoS Layer 2 remarking marks all frames received through untrusted ingress ports with the port CoS value (the default is zero).

To map the port CoS value applied to untrusted traffic to the initial internal DSCP value, configure a trust CoS policy map that matches the ingress traffic.

Classification and Marking at Trusted Ingress Ports

You should configure ports to trust only if they receive traffic that carries valid QoS labels. QoS uses the received QoS labels as the basis of initial internal DSCP value. After the traffic enters the router, you can apply a different trust state to traffic with a policy map. For example, traffic can enter the router through a trust CoS port, and then you can use a policy map to trust IP precedence or DSCP, which uses the trusted value as the basis of the initial internal DSCP value, instead of the QoS label that was trusted at the port.

These sections describe classification and marking at trusted ingress ports:

- Classification and Marking at Trust CoS Ingress LAN Ports, page 48-14
- Classification and Marking at Trust IP precedence Ingress Ports, page 48-15
- Classification and Marking at Trust DSCP Ingress Ports, page 48-15

Classification and Marking at Trust CoS Ingress LAN Ports

You should configure LAN ports to trust CoS only if they receive traffic that carries valid Layer 2 CoS.

When an ISL frame enters the router through a trusted ingress LAN port, PFC QoS accepts the three least significant bits in the User field as a CoS value. When an 802.1Q frame enters the router through a trusted ingress LAN port, PFC QoS accepts the User Priority bits as a CoS value. PFC QoS Layer 2 remarking marks all traffic received in untagged frames with the ingress port CoS value.
Chapter 48 Configuring PFC QoS

Understanding How PFC QoS Works

On ports configured to trust CoS, PFC QoS does the following:

- PFC QoS maps the received CoS value in tagged trust CoS traffic to the initial internal DSCP value.
- PFC QoS maps the ingress port CoS value applied to untagged trusted traffic to the initial internal DSCP value.

**Note**

A policy map can change the trust state of the traffic after it enters the router and use received IP precedence or DSCP as the basis of the initial internal DSCP value.

- PFC QoS enables the CoS-based ingress queues and thresholds to provide congestion avoidance. See the “Understanding Port-Based Queue Types” section on page 48-20 for more information about ingress queues and thresholds.

**Classification and Marking at Trust IP precedence Ingress Ports**

You should configure ports to trust IP precedence only if they receive traffic that carries valid Layer 3 IP precedence. For traffic from trust IP precedence ports, PFC QoS maps the received IP precedence value to the initial internal DSCP value, unless there is a policy map that changes the trust state of the traffic. Because the ingress port queues and thresholds use Layer 2 CoS, PFC QoS does not implement ingress port congestion avoidance on ports configured to trust IP precedence. PFC does not mark any traffic on ingress ports configured to trust IP precedence.

**Classification and Marking at Trust DSCP Ingress Ports**

You should configure ports to trust DSCP only if they receive traffic that carries valid Layer 3 DSCP. For traffic from trust DSCP ports, PFC QoS uses the received DSCP value as the initial internal DSCP value, unless there is a policy map that changes the trust state of the traffic. Because the ingress port queues and thresholds use Layer 2 CoS, PFC QoS does not implement ingress port congestion avoidance on ports configured to trust DSCP. PFC does not mark any traffic on ingress ports configured to trust received DSCP.

In Release 12.2(33)SRC and later releases, you can enable DSCP-based ingress queues and thresholds on WS-X6708-10GE ports to provide congestion avoidance (See Configuring DSCP-Based Queue Mapping, page 48-86).

**Classification and Marking at Ingress OSM Ports**

PFC QoS associates CoS zero with all traffic received through ingress OSM ports. You can configure ingress OSM port trust states that can be used by the PFC to set IP precedence or DSCP values and the CoS value. You can configure the trust state of each ingress OSM port as follows:

- Untrusted (default)
- Trust IP precedence
- Trust DSCP
- Trust CoS (CoS is always zero for POS and ATM OSM ports because the port CoS value is not configurable on POS and ATM OSM ports.)

**Classification and Marking on the PFC Using Service Policies and Policy Maps**

PFC QoS supports classification and marking with service policies that attach one policy map to these interface types to apply ingress PFC QoS:
Understanding How PFC QoS Works

- Each ingress port (except FlexWAN interfaces)
- Each EtherChannel port-channel interface
- Each VLAN interface

You can attach one policy map to each Layer 3 interface (except FlexWAN interfaces) to apply egress PFC QoS.

Each policy map can contain multiple policy-map classes. You can configure a separate policy-map class for each type of traffic handled by the interface. There are two ways to configure filtering in policy-map classes:

- Access control lists (ACLs)
- Class-map **match** commands for IP precedence and DSCP values

Policy-map classes specify actions with the following optional commands:

- Policy-map **set** commands—For untrusted traffic, PFC QoS can use configured IP precedence or DSCP values as the final internal DSCP value. The “IP Precedence and DSCP Values” section on page 48-45 shows the bit values for IP precedence and DSCP.

- Policy-map class **trust** commands—PFC QoS applies the policy-map class trust state to matched ingress traffic, which then uses the trusted value as the basis of its initial internal DSCP value, instead of the QoS label that was trusted at the port (if any). In a policy map, you can trust CoS, IP precedence, or DSCP.

  **Note**  
  A trust CoS policy map cannot restore received CoS in traffic from untrusted ingress LAN ports. Traffic from untrusted ingress LAN ports always has the port CoS value.

- Aggregate and microflow policers—PFC QoS can use policers to either mark or drop both conforming and nonconforming traffic.
Classification and Marking on the MSFC

PFC QoS sends IP traffic to the MSFC with the final internal DSCP values. CoS is equal to IP precedence in all traffic sent from the MSFC to egress ports.

**Figure 48-8  Marking with PFC3 and MSFC2A or MSFC3**

![Diagram of Marking with PFC3 and MSFC2A or MSFC3]

**Note**  Traffic that is Layer 3 switched on the PFC does not go through the MSFC and retains the CoS value assigned by the PFC.

Policers

These sections describe policers:

- *Overview of Policers, page 48-17*
- *Aggregate Policers, page 48-18*
- *Microflow Policers, page 48-19*

**Overview of Policers**

Policing allows you to rate limit incoming and outgoing traffic so that it adheres to the traffic forwarding rules defined by the QoS configuration. Sometimes these configured rules for how traffic should be forwarded through the system are referred to as a contract. If the traffic does not adhere to this contract, it is marked down to a lower DSCP value or dropped.

Policing does not buffer out-of-profile packets. As a result, policing does not affect transmission delay. In contrast, traffic shaping works by buffering out-of-profile traffic, which moderates the traffic bursts. (PFC QoS does not support shaping.)
The PFC supports both ingress and egress PFC QoS, which includes ingress and egress policing. Traffic shaping is supported on some WAN modules.

**Note**

Policers can act on ingress traffic per-port or per-VLAN. With a PFC, for egress traffic, the policers can act per-VLAN only.

You can create policers to do the following:

- Mark traffic
- Limit bandwidth utilization and mark traffic

### Aggregate Policers

PFC QoS applies the bandwidth limits specified in an aggregate policer cumulatively to all flows in matched traffic. For example, if you configure an aggregate policer to allow 1 Mbps for all TFTP traffic flows on VLAN 1 and VLAN 3, it limits the TFTP traffic for all flows combined on VLAN 1 and VLAN 3 to 1 Mbps.

- You define per-interface aggregate policers in a policy map class with the `police` command. If you attach a per-interface aggregate policer to multiple ingress ports, it polices the matched traffic on each ingress port separately.

- You create named aggregate policers with the `mls qos aggregate-policer` command. If you attach a named aggregate policer to multiple ingress ports, it polices the matched traffic from all the ingress ports to which it is attached.

- Aggregate policing works independently on each DFC-equipped switching module and independently on the PFC, which supports any non-DFC-equipped switching modules. Aggregate policing does not combine flow statistics from different DFC-equipped switching modules. You can display aggregate policing statistics for each DFC-equipped switching module and for the PFC and any non-DFC-equipped switching modules supported by the PFC.

- Each PFC or DFC polices independently, which might affect QoS features being applied to traffic that is distributed across the PFC and any DFCs. Examples of these QoS feature are:
  - Policers applied to a port channel interface.
  - Policers applied to a switched virtual interface.
  - Egress policers applied to either a Layer 3 interface or an SVI. Note that PFC QoS performs egress policing decisions at the ingress interface, on the PFC or ingress DFC.

Policers affected by this restriction deliver an aggregate rate that is the sum of all the independent policing rates.
Chapter 48 Configuring PFC QoS

Understanding How PFC QoS Works

Microflow Policers

PFC QoS applies the bandwidth limit specified in a microflow policer separately to each flow in matched traffic. For example, if you configure a microflow policer to limit the TFTP traffic to 1 Mbps on VLAN 1 and VLAN 3, then 1 Mbps is allowed for each flow in VLAN 1 and 1 Mbps for each flow in VLAN 3. In other words, if there are three flows in VLAN 1 and four flows in VLAN 3, the microflow policer allows each of these flows 1 Mbps.

You can configure PFC QoS to apply the bandwidth limits in a microflow policer as follows:

• You can create microflow policers with up to 63 different rate and burst parameter combinations.
• You create microflow policers in a policy map class with the `police flow` command.
• You can configure a microflow policer to use only source addresses, which applies the microflow policer to all traffic from a source address regardless of the destination addresses.
• You can configure a microflow policer to use only destination addresses, which applies the microflow policer to all traffic to a destination address regardless of the source addresses.
• For MAC-Layer microflow policing, PFC QoS considers MAC-Layer traffic with the same protocol and the same source and destination MAC-Layer addresses to be part of the same flow, including traffic with different EtherTypes. You can configure MAC ACLs to filter IPX traffic.
• For IPX microflow policing, PFC QoS considers IPX traffic with the same source network, destination network, and destination node to be part of the same flow, including traffic with different source nodes or source sockets.
• By default, microflow policers only affect traffic routed by the MSFC. To enable microflow policing of other traffic, including traffic in bridge groups, enter the `mls qos bridged` command.
• You cannot apply microflow policing to ARP traffic.

You can include both an aggregate policer and a microflow policer in each policy map class to police a flow based on both its own bandwidth utilization and on its bandwidth utilization combined with that of other flows.

Note If traffic is both aggregate and microflow policed, then the aggregate and microflow policers must both be in the same policy-map class and each must use the same `conform-action` and `exceed-action` keyword option: `drop`, `set-dscp-transmit`, `set-prec-transmit`, or `transmit`.

For example, you could create a microflow policer with a bandwidth limit suitable for individuals in a group, and you could create a named aggregate policer with bandwidth limits suitable for the group as a whole. You could include both policers in policy map classes that match the group’s traffic. The combination would affect individual flows separately and the group aggregate.

For policy map classes that include both an aggregate and a microflow policer, PFC QoS responds to an out-of-profile status from either policer and, as specified by the policer, applies a new DSCP value or drops the packet. If both policers return an out-of-profile status, then if either policer specifies that the packet is to be dropped, it is dropped; otherwise, PFC QoS applies a marked-down DSCP value.

Note To avoid inconsistent results, ensure that all traffic policed by the same aggregate policer has the same trust state.

Policing uses the Layer 2 frame size. You specify the bandwidth utilization limit as a committed information rate (CIR). You can also specify a higher peak information rate (PIR). Packets that exceed a rate are “out of profile” or “nonconforming.”
In each policer, you specify if out-of-profile packets are to be dropped or to have a new DSCP value applied to them (applying a new DSCP value is called “markdown”). Because out-of-profile packets do not retain their original priority, they are not counted as part of the bandwidth consumed by in-profile packets.

If you configure a PIR, the PIR out-of-profile action cannot be less severe than the CIR out-of-profile action. For example, if the CIR out-of-profile action is to mark down the traffic, then the PIR out-of-profile action cannot be to transmit the traffic.

For all policers, PFC QoS uses a configurable global table that maps the internal DSCP value to a marked-down DSCP value. When markdown occurs, PFC QoS gets the marked-down DSCP value from the table. You cannot specify marked-down DSCP values in individual policers.

**Note**

- Policing with the **conform-action transmit** keywords supersedes the ingress LAN port trust state of matched traffic with trust DSCP or with the trust state defined by a **trust** policy-map class command.
- By default, the markdown table is configured so that no markdown occurs: the marked-down DSCP values are equal to the original DSCP values. To enable markdown, configure the table appropriately for your network.
- When you apply both ingress policing and egress policing to the same traffic, both the input policy and the output policy must either mark down traffic or drop traffic. PFC QoS does not support ingress markdown with egress drop or ingress drop with egress markdown.

**Understanding Port-Based Queue Types**

Port-based queue types are determined by the ASICs that control the ports. The following sections describe the queue types, drop thresholds, and buffers that are supported on the Cisco 7600 series router LAN modules:

- **Ingress and Egress Buffers and Layer 2 CoS-Based Queues**, page 48-20
- **Ingress Queue Types**, page 48-22
- **Egress Queue Types**, page 48-23
- **Module to Queue Type Mappings**, page 48-23

**Ingress and Egress Buffers and Layer 2 CoS-Based Queues**

The Ethernet LAN module port ASICs have buffers that are divided into a fixed number of queues. When **congestion avoidance** is enabled, PFC QoS uses the traffic’s Layer 2 CoS value to assign traffic to the queues. The buffers and queues store frames temporarily as they transit the switch. PFC QoS allocates the port ASIC memory as buffers for each queue on each port.

The Cisco 7600 series router LAN modules support the following types of queues:

- Standard queues
- Strict-priority queues
The Cisco 7600 series router LAN modules support the following types of scheduling algorithms between queues:

- Weighted Round Robin (WRR)—WRR does not explicitly reserve bandwidth for the queues. Instead, the amount of bandwidth assigned to each queue is user configurable. The percentage allocated to a queue defines the amount of bandwidth allocated to the queue.

- Deficit weighted round robin (DWRR)—In addition to the operation provided by WRR, DWRR keeps track of any low-priority queue under-transmission and compensates in the next round.

- Strict-priority queueing—Strict priority queueing allows delay-sensitive data such as voice to be dequeued and sent before packets in other queues are dequeued, giving delay-sensitive data preferential treatment over other traffic. The router services traffic in the strict-priority transmit queue before servicing the standard queues. After transmitting a packet from a standard queue, the switch checks for traffic in the strict-priority queue. If the switch detects traffic in the strict-priority queue, it suspends its service of the standard queue and completes service of all traffic in the strict-priority queue before returning to the standard queue.

The Cisco 7600 series router LAN modules provides congestion avoidance with these types of thresholds within a queue:

- Weighted Random Early Detection (WRED)—On ports with WRED drop thresholds, frames of a given CoS value are admitted to the queue based on a random probability designed to avoid buffer congestion. The probability of a frame with a given CoS being admitted to the queue or discarded depends on the weight and threshold assigned to that CoS value.

  For example, if CoS 2 is assigned to queue 1, threshold 2, and the threshold 2 levels are 40 percent (low) and 80 percent (high), then frames with CoS 2 will not be dropped until queue 1 is at least 40 percent full. As the queue depth approaches 80 percent, frames with CoS 2 have an increasingly higher probability of being discarded rather than being admitted to the queue. Once the queue is over 80 percent full, all CoS 2 frames are dropped until the queue is less than 80 percent full. The frames the switch discards when the queue level is between the low and high thresholds are picked out at random, rather than on a per-flow basis or in a FIFO manner. This method works well with protocols such as TCP that can adjust to periodic packet drops by backing off and adjusting their transmission window size.

- Tail-drop thresholds—On ports with tail-drop thresholds, frames of a given CoS value are admitted to the queue until the drop threshold associated with that CoS value is exceeded; subsequent frames of that CoS value are discarded until the threshold is no longer exceeded. For example, if CoS 1 is assigned to queue 1, threshold 2, and the threshold 2 watermark is 60 percent, then frames with CoS 1 will not be dropped until queue 1 is 60 percent full. All subsequent CoS 1 frames will be dropped until the queue is less than 60 percent full. With some port types, you can configure the standard receive queue to use both a tail-drop and a WRED-drop threshold by mapping a CoS value to the queue or to the queue and a threshold. The switch uses the tail-drop threshold for traffic carrying CoS values mapped only to the queue. The switch uses WRED-drop thresholds for traffic carrying CoS values mapped to the queue and a threshold. All LAN ports of the same type use the same drop-threshold configuration.

---

In Release 12.2(33)SRC and later releases, you can enable DSCP-based queues and thresholds on WS-X6708-10GE ports. See Configuring DSCP-Based Queue Mapping, page 48-86.

The combination of multiple queues and the scheduling algorithms associated with each queue allows the switch to provide congestion avoidance.

Figure 48-9 illustrates the drop thresholds for a 1q4t ingress LAN port. Drop thresholds in other configurations function similarly.
Ingress Queue Types

To see the queue structure of a LAN port, enter the `show mls qos queuing interface {ethernet | fastethernet | gigabitethernet | tengigabitethernet} slot/port | include type` command. The command displays one of the following architectures:

- **1q2t** indicates one standard queue with one configurable tail-drop threshold and one nonconfigurable tail-drop threshold.
- **1q4t** indicates one standard queue with four configurable tail-drop thresholds.
- **1q8t** indicates one standard queue with eight configurable tail-drop thresholds.
- **2q8t** indicates two standard queues, each with eight configurable tail-drop thresholds.
- **8q8t** indicates eight standard queues, each with eight thresholds, each configurable as either WRED-drop or tail-drop.
- **1p1q4t** indicates:
  - One strict-priority queue
  - One standard queue with four configurable tail-drop thresholds.
- **1p1q0t** indicates:
  - One strict-priority queue
  - One standard queue with no configurable threshold (effectively a tail-drop threshold at 100 percent).
Understanding How PFC QoS Works

- **1p1q8t** indicates the following:
  - One strict-priority queue
  - One standard queue with these thresholds:
    - Eight thresholds, each configurable as either WRED-drop or tail-drop
    - One non-configurable (100 percent) tail-drop threshold

Egress Queue Types

To see the queue structure of an egress LAN port, enter the `show mls qos queuing interface {ethernet | fastethernet | gigabitethernet | tengigabitethernet} slot/port | include type` command.

The command displays one of the following architectures:

- **2q2t** indicates two standard queues, each with two configurable tail-drop thresholds.
- **1p2q2t** indicates the following:
  - One strict-priority queue
  - Two standard queues, each with two configurable WRED-drop thresholds
- **1p3q1t** indicates the following:
  - One strict-priority queue
  - Three standard queues with these thresholds:
    - One threshold configurable as either WRED-drop or tail-drop
    - One non-configurable (100 percent) tail-drop threshold
- **1p2q1t** indicates the following:
  - One strict-priority queue
  - Two standard queues with these thresholds:
    - One WRED-drop threshold
    - One non-configurable (100 percent) tail-drop threshold
- **1p3q8t** indicates the following:
  - One strict-priority queue
  - Three standard queues, each with eight thresholds, each threshold configurable as either WRED-drop or tail-drop
- **1p7q8t** indicates the following:
  - One strict-priority queue
  - Seven standard queues, each with eight thresholds, each threshold configurable as either WRED-drop or tail-drop

Module to Queue Type Mappings

The following tables show the module to queue structure mapping:

- Supervisor Engine Module QoS Queue Structures
- Ethernet and Fast Ethernet Module Queue Structures
- Gigabit and 10/100/1000 Ethernet Modules
- 10 Gigabit Ethernet Modules

### Table 48-2  
**Supervisor Engine Module QoS Queue Structures**

<table>
<thead>
<tr>
<th>Supervisor Engines</th>
<th>Ingress Queue and Drop Thresholds</th>
<th>Ingress Queue Scheduler</th>
<th>Egress Queue and Drop Thresholds</th>
<th>Egress Queue Scheduler</th>
<th>Total Buffer Size</th>
<th>Ingress Buffer Size</th>
<th>Egress Buffer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSP720-3C-10GE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSP720-3CXL-10GE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With Gigabit Ethernet ports enabled</td>
<td>2q4t</td>
<td>WRR</td>
<td>1p3q4t</td>
<td>DWRR or SRR</td>
<td>108 MB</td>
<td>98 MB</td>
<td></td>
</tr>
<tr>
<td>With Gigabit Ethernet ports disabled</td>
<td>8q4t</td>
<td></td>
<td>1p7q4t</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-SUP720</td>
<td>1p1q4t</td>
<td>WRR</td>
<td>1p2q2t</td>
<td>WRR</td>
<td>512 KB</td>
<td>73 KB</td>
<td>439 KB</td>
</tr>
<tr>
<td>WS-SUP720-3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-SUP720-3BXL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSP720-3C-GE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSP720-3CXL-GE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-SUP32-10GE</td>
<td>2q8t</td>
<td>WRR</td>
<td>1p3q8t</td>
<td>DWRR or SRR</td>
<td>193 MB</td>
<td>105 MB</td>
<td>88 MB</td>
</tr>
<tr>
<td>10-Gigabit Ethernet ports</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gigabit Ethernet port</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.7 MB</td>
<td>9.6 MB</td>
<td>8.1 MB</td>
</tr>
<tr>
<td>WS-SUP32-GE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Table 48-3  
**Ethernet and Fast Ethernet Module Queue Structures**

<table>
<thead>
<tr>
<th>Modules</th>
<th>Ingress Queue and Drop Thresholds</th>
<th>Ingress Queue Scheduler</th>
<th>Egress Queue and Drop Thresholds</th>
<th>Egress Queue Scheduler</th>
<th>Total Buffer Size</th>
<th>Ingress Buffer Size</th>
<th>Egress Buffer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS-X6524-100FX-MM</td>
<td>1p1q0t</td>
<td>WRR</td>
<td>1p3q1t</td>
<td>DWRR</td>
<td>1,116 KB</td>
<td>28 KB</td>
<td>1,088 KB</td>
</tr>
<tr>
<td>WS-X6548-RJ-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6548-RJ-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 48-3 Ethernet and Fast Ethernet Module Queue Structures (continued)

<table>
<thead>
<tr>
<th>Modules</th>
<th>Ingress Queue and Drop Thresholds</th>
<th>Ingress Queue Scheduler</th>
<th>Egress Queue and Drop Thresholds</th>
<th>Egress Queue Scheduler</th>
<th>Total Buffer Size</th>
<th>Ingress Buffer Size</th>
<th>Egress Buffer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS-X6324-100FX-MM</td>
<td>1q4t</td>
<td>WRR</td>
<td>2q2t</td>
<td>WRR</td>
<td>128 KB</td>
<td>16 KB</td>
<td>112 KB</td>
</tr>
<tr>
<td>WS-X6324-100FX-SM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6348-RJ-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6348-RJ-45V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6348-RJ-21V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6224-100FX-MT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64 KB</td>
<td>8 KB</td>
<td>56 KB</td>
</tr>
<tr>
<td>WS-X6248-RJ-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128 KB</td>
<td>16 KB</td>
<td>112 KB</td>
</tr>
<tr>
<td>WS-X6248-TEI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6248A-TEI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>128 KB</td>
<td>16 KB</td>
<td>112 KB</td>
</tr>
<tr>
<td>WS-X6148-RJ-45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6148-RJ-45V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6148-45AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6148-RJ-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6148-RJ-21V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6148-21AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6148X2-RJ-45</td>
<td>1p1q0t</td>
<td>WRR</td>
<td>1p3q1t</td>
<td>DWRR</td>
<td>1.116 KB</td>
<td>28 KB</td>
<td>1.088 KB</td>
</tr>
<tr>
<td>WS-X6148X2-45AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6024-10FL-MT</td>
<td>1q4t</td>
<td>WRR</td>
<td>2q2t</td>
<td>WRR</td>
<td>64 KB</td>
<td>8 KB</td>
<td>56 KB</td>
</tr>
</tbody>
</table>

### Table 48-4 Gigabit and 10/100/1000 Ethernet Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Ingress Queue and Drop Thresholds</th>
<th>Ingress Queue Scheduler</th>
<th>Egress Queue and Drop Thresholds</th>
<th>Egress Queue Scheduler</th>
<th>Total Buffer Size</th>
<th>Ingress Buffer Size</th>
<th>Egress Buffer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS-X6816-GBIC</td>
<td>1p1q4t</td>
<td>WRR</td>
<td>1p2q2t</td>
<td>WRR</td>
<td>512 KB</td>
<td>73 KB</td>
<td>439 KB</td>
</tr>
<tr>
<td>WS-X6748-GE-TX with DFC3</td>
<td>2q8t</td>
<td>WRR</td>
<td>1p3q8t</td>
<td>DWRR</td>
<td>1.3 MB</td>
<td>166 KB</td>
<td>1.2 MB</td>
</tr>
<tr>
<td>WS-X6748-GE-TX with CFC</td>
<td>1q8t</td>
<td>WRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6748-SFP with DFC3</td>
<td>2q8t</td>
<td>WRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6748-SFP with CFC</td>
<td>1q8t</td>
<td>WRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6724-SFP with DFC3</td>
<td>2q8t</td>
<td>WRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6724-SFP with CFC</td>
<td>1q8t</td>
<td>WRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 48-4  Gigabit and 10/100/1000 Ethernet Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Ingress Queue and Drop Thresholds</th>
<th>Ingress Queue Scheduler</th>
<th>Egress Queue and Drop Thresholds</th>
<th>Egress Queue Scheduler</th>
<th>Total Buffer Size</th>
<th>Ingress Buffer Size</th>
<th>Egress Buffer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS-X6548-GE-TX</td>
<td>1q2t</td>
<td>WRR</td>
<td>1p2q2t</td>
<td>WRR</td>
<td>1.4 MB</td>
<td>185 KB</td>
<td>1.2 MB</td>
</tr>
<tr>
<td>WS-X6548V-GE-TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6548-GE-45AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6516-GBIC</td>
<td>1p1q4t</td>
<td>WRR</td>
<td>1p2q2t</td>
<td>WRR</td>
<td>512 KB</td>
<td>73 KB</td>
<td>439 KB</td>
</tr>
<tr>
<td>WS-X6516A-GBIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6516-GE-TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X66408-GBIC</td>
<td>1q4t</td>
<td>WRR</td>
<td>2q2t</td>
<td>WRR</td>
<td>80 KB</td>
<td>432 KB</td>
<td></td>
</tr>
<tr>
<td>WS-X66408A-GBIC</td>
<td>1p1q4t</td>
<td>WRR</td>
<td>1p2q2t</td>
<td>WRR</td>
<td>73 KB</td>
<td>439 KB</td>
<td></td>
</tr>
<tr>
<td>WS-X6516-GBIC</td>
<td></td>
<td>WRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6416-GE-MT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6316-GE-TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6418-GE-TX</td>
<td>1q2t</td>
<td>WRR</td>
<td></td>
<td></td>
<td>1.4 MB</td>
<td>185 KB</td>
<td>1.2 MB</td>
</tr>
<tr>
<td>WS-X6418V-GE-TX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6418-GE-45AF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 48-5  10 Gigabit Ethernet Modules

<table>
<thead>
<tr>
<th>Modules</th>
<th>Ingress Queue and Drop Thresholds</th>
<th>Ingress Queue Scheduler</th>
<th>Egress Queue and Drop Thresholds</th>
<th>Egress Queue Scheduler</th>
<th>Total Buffer Size</th>
<th>Ingress Buffer Size</th>
<th>Egress Buffer Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS-X6708-10GE</td>
<td>8q4t</td>
<td>DWRR</td>
<td>1p7q4t</td>
<td>DWRR SRR</td>
<td>198 MB</td>
<td>108 MB</td>
<td>90 MB</td>
</tr>
<tr>
<td>WS-X6704-10GE with DFC3</td>
<td>8q8t</td>
<td>WRR</td>
<td>1p7q8t</td>
<td>DWRR</td>
<td>16 MB</td>
<td>2 MB</td>
<td>14 MB</td>
</tr>
<tr>
<td>WS-X6704-10GE with CFC</td>
<td>1q8t</td>
<td>WRR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS-X6502-10GE</td>
<td>1p1q8t</td>
<td>WRR</td>
<td>1p2q1t</td>
<td>DWRR</td>
<td>64.2 MB</td>
<td>256 KB</td>
<td>64 MB</td>
</tr>
<tr>
<td>WS-X6501-10GEX4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PFC QoS Default Configuration

These sections describe the PFC QoS default configuration:

- PFC QoS Global Settings, page 48-27
- Default Values With PFC QoS Enabled, page 48-28
- Default Values With PFC QoS Disabled, page 48-39
## PFC QoS Global Settings

The following global PFC QoS settings apply:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC QoS global enable state</td>
<td>Disabled</td>
</tr>
<tr>
<td>PFC QoS port enable state</td>
<td>Enabled when PFC QoS is globally enabled</td>
</tr>
<tr>
<td>Port CoS value</td>
<td>0</td>
</tr>
<tr>
<td>Microflow policing</td>
<td>Enabled</td>
</tr>
<tr>
<td>IntraVLAN microflow policing</td>
<td>Disabled</td>
</tr>
<tr>
<td>Port-based or VLAN-based PFC QoS</td>
<td>Port-based</td>
</tr>
</tbody>
</table>
| Received CoS to initial internal DSCP map (initial internal DSCP set from received CoS values) | CoS 0 = DSCP 0  
CoS 1 = DSCP 8  
CoS 2 = DSCP 16  
CoS 3 = DSCP 24  
CoS 4 = DSCP 32  
CoS 5 = DSCP 40  
CoS 6 = DSCP 48  
CoS 7 = DSCP 56 |
| Received IP precedence to initial internal DSCP map (initial internal DSCP set from received IP precedence values) | IP precedence 0 = DSCP 0  
IP precedence 1 = DSCP 8  
IP precedence 2 = DSCP 16  
IP precedence 3 = DSCP 24  
IP precedence 4 = DSCP 32  
IP precedence 5 = DSCP 40  
IP precedence 6 = DSCP 48  
IP precedence 7 = DSCP 56 |
| Final internal DSCP to egress CoS map (egress CoS set from final internal DSCP values) | DSCP 0–7 = CoS 0  
DSCP 8–15 = CoS 1  
DSCP 16–23 = CoS 2  
DSCP 24–31 = CoS 3  
DSCP 32–39 = CoS 4  
DSCP 40–47 = CoS 5  
DSCP 48–55 = CoS 6  
DSCP 56–63 = CoS 7 |
| Marked-down DSCP from DSCP map                              | Marked-down DSCP value equals original DSCP value (no markdown)              |
| Policers                                                    | None                                                                          |
| Policy maps                                                 | None                                                                          |
| Protocol-independent MAC ACL filtering                     | Disabled                                                                      |
| VLAN-based MAC ACL QoS filtering                           | Disabled                                                                      |
Default Values With PFC QoS Enabled

These sections list the default values that apply when PFC QoS is enabled:

- Receive-queue Size Percentages, page 48-28
- Transmit-Queue Size Percentages, page 48-28
- Bandwidth Allocation Ratios, page 48-29
- Default Drop-Threshold Percentages and CoS Value Mappings, page 48-29

Note

The ingress LAN port trust state defaults to untrusted with QoS enabled.

Receive-queue Size Percentages

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
</table>
| 2q8t    | Low priority: 80%
|         | High priority: 20% |
| 8q8t    | Lowest priority: 80%
|         | Intermediate queues: 0%
|         | Highest priority: 20% |

Transmit-Queue Size Percentages

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
</table>
| 2q2t    | Low priority: 80%
|         | High priority: 20% |
| 1p2q2t  | Low priority: 70%
|         | High priority: 15%
|         | Strict priority 15% |
| 1p2q1t  | Low priority: 70%
|         | High priority: 15%
|         | Strict priority 15% |
| 1p3q8t  | Low priority: 50%
|         | Medium priority: 20%
|         | High priority: 15%
|         | Strict priority 15% |
Chapter 48 Configuring PFC QoS

PFC QoS Default Configuration

### Bandwidth Allocation Ratios

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2q8t</td>
<td>10:90</td>
</tr>
<tr>
<td>8q8t</td>
<td>10:0:0:0:0:0:0:90</td>
</tr>
<tr>
<td>1p3q8t</td>
<td>22:33:45</td>
</tr>
<tr>
<td>1p7q8t</td>
<td>22:33:45:0:0:0:0</td>
</tr>
<tr>
<td>1p2q1t</td>
<td>100:255</td>
</tr>
<tr>
<td>2q2t, 1p2q2t, and 1p2q1t</td>
<td>5:255</td>
</tr>
<tr>
<td>1p3q1t</td>
<td>100:150:255</td>
</tr>
</tbody>
</table>

### Default Drop-Threshold Percentages and CoS Value Mappings

The following tables list the default drop-thresholds values and CoS mappings for different queue types:

- 1q2t Receive Queues, page 48-30
- 1p1q4t Receive Queues, page 48-30
- 1p1q0t Receive Queues, page 48-31
- 1p1q6t Receive Queues, page 48-32
- 1q8t Receive Queues, page 48-32
- 2q8t Receive Queues, page 48-33
- 8q8t Receive Queues, page 48-34
- 2q2t Transmit Queues, page 48-35
- 1p2q2t Transmit Queues, page 48-36
- 1p3q8t Transmit Queues, page 48-37
- 1p7q8t Transmit Queues, page 48-38
- 1p3q1t Transmit Queues, page 48-39
- 1p2q1t Transmit Queues, page 48-39

#### 1q2t Receive Queues

The following table lists the default values when you configure `mls qos` and `mls qos trust cos`.
### PFC QoS Default Configuration

#### 1q4t Receive Queues

The following table lists the default values when you configure `mls qos` and `mls qos trust cos`.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard receive queue</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>CoS 0, 1, 2, 3, and 4</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 80%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Not supported</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>CoS 5, 6, and 7</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 100% (not configurable)</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Not supported</td>
</tr>
</tbody>
</table>

#### 1p1q4t Receive Queues
### PFC QoS Default Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1p1q0t Receive Queues</strong></td>
<td></td>
</tr>
<tr>
<td>Standard receive queue</td>
<td>CoS 0, 1, 2, 3, 4, 6, and 7</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 100% (nonconfigurable)</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Not supported</td>
</tr>
<tr>
<td>Strict-priority receive queue</td>
<td>CoS 5</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 100% (nonconfigurable)</td>
</tr>
</tbody>
</table>

### 1p1q0t Receive Queues

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Threshold 1</strong></td>
<td>CoS 0 and 1</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 50%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Not supported</td>
</tr>
<tr>
<td><strong>Threshold 2</strong></td>
<td>CoS 2 and 3</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 60%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Not supported</td>
</tr>
<tr>
<td><strong>Threshold 3</strong></td>
<td>CoS 4</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 80%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Not supported</td>
</tr>
<tr>
<td><strong>Threshold 4</strong></td>
<td>CoS 6 and 7</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 100% (nonconfigurable)</td>
</tr>
<tr>
<td><strong>Strict-priority receive queue</strong></td>
<td>CoS 5</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 100% (nonconfigurable)</td>
</tr>
</tbody>
</table>
PFC QoS Default Configuration

Chapter 48 Configuring PFC QoS

1p1q8t Receive Queues

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard receive queue</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td></td>
</tr>
<tr>
<td>CoS</td>
<td>0</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Disabled; 70%</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>Enabled; 40% low, 70% high</td>
</tr>
<tr>
<td>Threshold 2</td>
<td></td>
</tr>
<tr>
<td>CoS</td>
<td>1</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Disabled; 70%</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>Enabled; 40% low, 70% high</td>
</tr>
<tr>
<td>Threshold 3</td>
<td></td>
</tr>
<tr>
<td>CoS</td>
<td>2</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Disabled; 80%</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>Enabled; 50% low, 80% high</td>
</tr>
<tr>
<td>Threshold 4</td>
<td></td>
</tr>
<tr>
<td>CoS</td>
<td>3</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Disabled; 80%</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>Enabled; 50% low, 80% high</td>
</tr>
<tr>
<td>Threshold 5</td>
<td></td>
</tr>
<tr>
<td>CoS</td>
<td>4</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Disabled; 90%</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>Enabled; 60% low, 90% high</td>
</tr>
<tr>
<td>Threshold 6</td>
<td></td>
</tr>
<tr>
<td>CoS</td>
<td>6</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Disabled; 90%</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>Enabled; 60% low, 90% high</td>
</tr>
<tr>
<td>Threshold 7</td>
<td></td>
</tr>
<tr>
<td>CoS</td>
<td>7</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Disabled; 100%</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td>Strict-priority receive queue</td>
<td></td>
</tr>
<tr>
<td>CoS</td>
<td>5</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>100% (nonconfigurable)</td>
</tr>
</tbody>
</table>

1q8t Receive Queues

The following table lists the default values when you configure `mls qos` and `mls qos trust cos`.
### PFC QoS Default Configuration

#### 2q8t Receive Queues

The following table lists the default values when you configure `mls qos` and `mls qos trust cos`.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Threshold 1</th>
<th>Threshold 2</th>
<th>Threshold 3</th>
<th>Threshold 4</th>
<th>Threshold 5</th>
<th>Threshold 6</th>
<th>Threshold 7</th>
<th>Threshold 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>None</td>
<td>1, 2, 3, 4</td>
<td>None</td>
<td>6 and 7</td>
<td>None</td>
<td>5</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Tail-drop</td>
<td>Tail-drop</td>
<td>Tail-drop</td>
<td>Tail-drop</td>
<td>Tail-drop</td>
<td>Tail-drop</td>
<td>Tail-drop</td>
<td>Tail-drop</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>50%</td>
<td>60%</td>
<td>60%</td>
<td>80%</td>
<td>80%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop</td>
<td>WRED-drop</td>
<td>WRED-drop</td>
<td>WRED-drop</td>
<td>WRED-drop</td>
<td>WRED-drop</td>
<td>WRED-drop</td>
<td>WRED-drop</td>
</tr>
<tr>
<td></td>
<td>Not supported</td>
</tr>
</tbody>
</table>
### PFC QoS Default Configuration

#### 8q8t Receive Queues

The following table lists the default values when you configure `mls qos` and `mls qos trust cos` or `mls qos trust dscp`.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Standard receive queue 1</strong> <em>(low priority)</em></td>
<td></td>
</tr>
<tr>
<td><strong>Threshold 1</strong></td>
<td>CoS: 0 and 1; Tail-drop: 70%; WRED-drop: Not supported</td>
</tr>
<tr>
<td><strong>Threshold 2</strong></td>
<td>CoS: 2 and 3; Tail-drop: 80%; WRED-drop: Not supported</td>
</tr>
<tr>
<td><strong>Threshold 3</strong></td>
<td>CoS: 4; Tail-drop: 90%; WRED-drop: Not supported</td>
</tr>
<tr>
<td><strong>Threshold 4</strong></td>
<td>CoS: 6 and 7; Tail-drop: 100%; WRED-drop: Not supported</td>
</tr>
<tr>
<td><strong>Thresholds 5–8</strong></td>
<td>CoS: None; Tail-drop: 100%; WRED-drop: Not supported</td>
</tr>
<tr>
<td><strong>Standard receive queue 2</strong> <em>(high priority)</em></td>
<td></td>
</tr>
<tr>
<td><strong>Threshold 1</strong></td>
<td>CoS: 5; Tail-drop: 100%; WRED-drop: Not supported</td>
</tr>
<tr>
<td><strong>Thresholds 2–8</strong></td>
<td>CoS: None; Tail-drop: 100%; WRED-drop: Not supported</td>
</tr>
</tbody>
</table>
### PFC QoS Default Configuration

#### Standard receive queue 1

- **(lowest priority)**
- **Threshold 1**
  - CoS: 0 and 1
  - Tail-drop: Disabled; 70%
  - WRED-drop: Enabled; 40% low, 70% high

- **Threshold 2**
  - CoS: 2 and 3
  - Tail-drop: Disabled; 80%
  - WRED-drop: Enabled; 40% low, 80% high

- **Threshold 3**
  - CoS: 4
  - Tail-drop: Disabled; 90%
  - WRED-drop: Enabled; 50% low, 90% high

- **Threshold 4**
  - CoS: 6 and 7
  - Tail-drop: Disabled; 100%
  - WRED-drop: Enabled; 50% low, 100% high

- **Thresholds 5–8**
  - CoS: None
  - Tail-drop: Disabled; 100%
  - WRED-drop: Enabled; 50% low, 100% high

#### Standard receive queues 2–7

- **(intermediate priorities)**
- **Thresholds 1–8**
  - CoS: None
  - Tail-drop: Enabled; 100%
  - WRED-drop: Disabled; 100% low, 100% high

#### Standard receive queue 8

- **(highest priority)**
- **Threshold 1**
  - CoS: 5
  - Tail-drop: Enabled; 100%
  - WRED-drop: Disabled; 100% low, 100% high

- **Thresholds 2–8**
  - CoS: None
  - Tail-drop: Enabled; 100%
  - WRED-drop: Disabled; 100% low, 100% high

### 2q2t Transmit Queues

#### Standard transmit queue 1

- **(low priority)**
- **Threshold 1**
  - CoS: 0 and 1
  - Tail-drop: 80%
  - WRED-drop: Not supported

- **Threshold 2**
  - CoS: 2 and 3
  - Tail-drop: 100%
  - WRED-drop: Not supported
### PFC QoS Default Configuration

#### Chapter 48    Configuring PFC QoS

#### PFC QoS Default Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard transmit queue 2</td>
<td></td>
</tr>
<tr>
<td>(high priority)</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>CoS 4 and 5</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>80%</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>Not supported</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>CoS 6 and 7</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>100%</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

#### 1p2q2t Transmit Queues

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard transmit queue 1</td>
<td></td>
</tr>
<tr>
<td>(low priority)</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>CoS 0 and 1</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Not supported</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>40% low, 70% high</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>CoS 2 and 3</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Not supported</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>70% low, 100% high</td>
</tr>
<tr>
<td>Standard transmit queue 2</td>
<td></td>
</tr>
<tr>
<td>(high priority)</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>CoS 4</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Not supported</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>40% low, 70% high</td>
</tr>
<tr>
<td>Threshold 2</td>
<td>CoS 6 and 7</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>Not supported</td>
</tr>
<tr>
<td>WRED-drop</td>
<td>70% low, 100% high</td>
</tr>
<tr>
<td>Strict-priority transmit queue</td>
<td>CoS 5</td>
</tr>
<tr>
<td>Tail-drop</td>
<td>100% (nonconfigurable)</td>
</tr>
</tbody>
</table>
## 1p3q8t Transmit Queues

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Standard transmit queue 1</strong> (lowest priority)</td>
<td></td>
</tr>
<tr>
<td><strong>Threshold 1</strong></td>
<td>CoS 0</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 70%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 40% low, 70% high</td>
</tr>
<tr>
<td><strong>Threshold 2</strong></td>
<td>CoS 1</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td><strong>Threshold 3</strong></td>
<td>CoS None</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td><strong>Threshold 4</strong></td>
<td>CoS None</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td><strong>Thresholds 5–8</strong></td>
<td>CoS None</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 50% low, 100% high</td>
</tr>
<tr>
<td><strong>Standard transmit queue 2</strong> (medium priority)</td>
<td></td>
</tr>
<tr>
<td><strong>Threshold 1</strong></td>
<td>CoS 2</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 70%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 40% low, 70% high</td>
</tr>
<tr>
<td><strong>Threshold 2</strong></td>
<td>CoS 3 and 4</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td><strong>Thresholds 3–8</strong></td>
<td>CoS None</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td><strong>Standard transmit queue 3</strong> (high priority)</td>
<td></td>
</tr>
<tr>
<td><strong>Threshold 1</strong></td>
<td>CoS 6 and 7</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td><strong>Thresholds 2–8</strong></td>
<td>CoS None</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td><strong>Strict-priority transmit queue</strong></td>
<td>CoS 5</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 100% (nonconfigurable)</td>
</tr>
</tbody>
</table>
### 1p7q8t Transmit Queues

The following table lists the default values when you configure `mls qos` and `mls qos trust cos` or `mls qos trust dscp`.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard transmit queue 1 (lowest priority)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threshold 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threshold 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thresholds 3–8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard transmit queue 2 (intermediate priority)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threshold 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threshold 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thresholds 3–8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard transmit queue 3 (intermediate priority)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threshold 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thresholds 2–8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard transmit queues 4–7 (intermediate priorities)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thresholds 1–8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Strict-priority transmit queue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CoS 5</td>
</tr>
<tr>
<td></td>
<td>Tail-drop</td>
</tr>
</tbody>
</table>
### 1p3q1t Transmit Queues

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard transmit queue 1 (lowest priority)</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>CoS 0 and 1</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td>Standard transmit queue 2 (medium priority)</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>CoS 2, 3, and 4</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td>Standard transmit queue 3 (high priority)</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>CoS 6 and 7</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Disabled; 100%</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td>Strict-priority transmit queue</td>
<td>CoS 5</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 100% (nonconfigurable)</td>
</tr>
</tbody>
</table>

### 1p2q1t Transmit Queues

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard transmit queue 1 (lowest priority)</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>CoS 0, 1, 2, and 3</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Not supported</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td>Standard transmit queue 3 (high priority)</td>
<td></td>
</tr>
<tr>
<td>Threshold 1</td>
<td>CoS 4, 6, and 7</td>
</tr>
<tr>
<td></td>
<td>Tail-drop Not supported</td>
</tr>
<tr>
<td></td>
<td>WRED-drop Enabled; 70% low, 100% high</td>
</tr>
<tr>
<td>Strict-priority transmit queue</td>
<td>CoS 5</td>
</tr>
<tr>
<td></td>
<td>Tail-drop 100% (nonconfigurable)</td>
</tr>
</tbody>
</table>

### Default Values With PFC QoS Disabled

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingress LAN port trust state</td>
<td>trust DSCP.</td>
</tr>
<tr>
<td>Receive-queue drop-threshold percentages</td>
<td>All thresholds set to 100%.</td>
</tr>
<tr>
<td>Transmit-queue drop-threshold percentages</td>
<td>All thresholds set to 100%.</td>
</tr>
<tr>
<td>Transmit-queue bandwidth allocation ratio</td>
<td>255:1.</td>
</tr>
<tr>
<td>Transmit-queue size ratio</td>
<td>Low priority: 100% (other queues not used).</td>
</tr>
<tr>
<td>CoS value and drop threshold mapping</td>
<td>All CoS values mapped to the low-priority queue.</td>
</tr>
</tbody>
</table>
Note
If you enable only mls qos and do not configure any trusts, the default values for the queues 1p1q4t, 1q2t, 1q4t, 1q8t, 2q8t, 8q8t or 1p7q8t are equal to the values when PFC QoS is disabled.

PFC QoS Configuration Guidelines and Restrictions

When configuring PFC QoS, follow these guidelines and restrictions:

- General Guidelines, page 48-40
- PFC Guidelines, page 48-42
- Class Map Command Restrictions, page 48-42
- Policy Map Command Restrictions, page 48-43
- Policy Map Class Command Restrictions, page 48-43
- Supported Granularity for CIR and PIR Rate Values, page 48-43
- Supported Granularity for CIR and PIR Token Bucket Sizes, page 48-44

General Guidelines

- The `match ip precedence` and `match ip dscp` commands filter only IPv4 traffic.
- The `match precedence` and `match dscp` commands filter IPv4 and IPv6 traffic.
- The `set ip dscp` and `set ip precedence` commands are saved in the configuration file as `set dscp` and `set precedence` commands.
- PFC QoS supports the `set dscp` and `set precedence` policy map class commands for IPv4 and IPv6 traffic.
- The flowmask requirements of QoS, NetFlow, and NetFlow data export (NDE) might conflict, especially if you configure microflow policing.
- With egress ACL support for remarked DSCP and VACL capture both configured on an interface, VACL capture might capture two copies of each packet, and the second copy might be corrupt.
- You cannot configure egress ACL support for remarked DSCP on tunnel interfaces.
- Egress ACL support for remarked DSCP supports IP unicast traffic.
- Egress ACL support for remarked DSCP is not relevant to multicast traffic. PFC QoS applies ingress QoS changes to multicast traffic before applying egress QoS.
- NetFlow and NetFlow data export (NDE) do not support interfaces where egress ACL support for remarked DSCP is configured.
- When egress ACL support for remarked DSCP is configured on any interface, you must configure an interface-specific flowmask to enable NetFlow and NDE support on interfaces where egress ACL support for remarked DSCP is not configured. Enter either the `mls flow ip interface-destination-source` or the `mls flow ip interface-full` global configuration mode command.
- Interface counters are not accurate on interfaces where egress ACL support for remarked DSCP is configured.
• You cannot apply microflow policing to traffic that has been permitted by egress ACL support for remarked DSCP.

• Traffic that has been permitted by egress ACL support for remarked DSCP cannot be tagged as MPLS traffic. (The traffic can be tagged as MPLS traffic on another network device.)

• When you apply both ingress policing and egress policing to the same traffic, both the input policy and the output policy must either mark down traffic or drop traffic. PFC QoS does not support ingress markdown with egress drop or ingress drop with egress markdown. (CSCea23571)

• If traffic is both aggregate and microflow policed, then the aggregate and microflow policers must both be in the same policy-map class and each must use the same conform-action and exceed-action keyword option: drop, set-dscp-transmit, set-prec-transmit, or transmit.

• You cannot configure PFC QoS features on tunnel interfaces.

• PFC QoS does not rewrite the payload ToS byte in tunnel traffic.

• PFC QoS filters only by ACLs, dscp values, or IP precedence values.

• For these commands, PFC QoS applies identical configuration to all LAN ports controlled by the same application-specific integrated circuit (ASIC):
  – rcv-queue cos-map
  – wrr-queue cos-map

• Except for WS-X6716-10GE, WS-X6708-10GE, WS-X6704-10GE, WS-X6748-SFP, WS-X6724-SFP, and WS-X6748-GE-TX modules, PFC QoS applies identical configuration to all the LAN ports controlled by the same application-specific integrated circuit (ASIC) for these commands:
  – rcv-queue random-detect
  – rcv-queue queue-limit
  – wrr-queue queue-limit
  – wrr-queue bandwidth
  – priority-queue cos-map
  – wrr-queue threshold
  – rcv-queue threshold
  – wrr-queue random-detect
  – wrr-queue random-detect min-threshold
  – wrr-queue random-detect max-threshold

• Configure these commands only on physical ports. Do not configure these commands on logical interfaces:
  – priority-queue cos-map
  – wrr-queue cos-map
  – wrr-queue random-detect
  – wrr-queue random-detect max-threshold
  – wrr-queue random-detect min-threshold
  – wrr-queue threshold
  – wrr-queue queue-limit
  – wrr-queue bandwidth
PFC Guidelines

- All versions of the PFC support QoS for IPv6 unicast and multicast traffic.
- To display information about IPv6 PFC QoS, enter the `show mls qos ipv6` command.
- The QoS features implemented in the port ASICs (queue architecture and dequeuing algorithms) support IPv4 and IPv6 traffic.
- The PFC supports IPv6 named extended ACLs and named standard ACLs.
- The PFC supports the `match protocol ipv6` command.
- Because of conflicting TCAM lookup flow key bit requirements, you cannot configure IPv6 DSCP-based filtering and IPv6 Layer 4 range-based filtering on the same interface. For example:
  - If you configure both a DSCP value and a Layer 4 “greater than” (gt) or “less than” (lt) operator in an IPv6 ACE, you cannot use the ACL for PFC QoS filtering.
  - If you configure a DSCP value in one IPv6 ACL and a Layer 4 “greater than” (gt) or “less than” (lt) operator in another IPv6 ACL, you cannot use both ACLs in different class maps on the same interface for PFC QoS filtering.
- You can apply aggregate and microflow policers to IPv6 traffic.
- With egress ACL support for remarked DSCP configured, the PFC does not provide hardware-assistance for these features:
  - Cisco IOS reflexive ACLs
  - TCP intercept
  - Context-Based Access Control (CBAC)
  - Network Address Translation (NAT)
- You cannot apply microflow policing to ARP traffic.
- The PFC does not apply egress policing to traffic that is being bridged to the MSFC.
- The PFC does not apply egress policing or egress DSCP mutation to multicast traffic from the MSFC.
- PFC QoS does not rewrite the ToS byte in bridged multicast traffic.

Class Map Command Restrictions

- PFC QoS supports the `match any` class map command.
PFC QoS supports class maps that contain a single match command.

PFC QoS does not support these class map commands:
- `match classmap`
- `match destination-address`
- `match input-interface`
- `match qos-group`
- `match source-address`

### Policy Map Command Restrictions

PFC QoS does not support these policy map commands:
- `class class_name destination-address`
- `class class_name input-interface`
- `class class_name protocol`
- `class class_name qos-group`
- `class class_name source-address`

### Policy Map Class Command Restrictions

PFC QoS does not support these policy map class commands:
- `bandwidth`
- `priority`
- `queue-limit`
- `random-detect`
- `set qos-group`
- `service-policy`

### Supported Granularity for CIR and PIR Rate Values

PFC QoS has the following hardware granularity for CIR and PIR rate values:

<table>
<thead>
<tr>
<th>CIR and PIR Rate Value Range</th>
<th>Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>32768 to 2097152 (2 Mbs)</td>
<td>32768 (32 Kb)</td>
</tr>
<tr>
<td>2097153 to 4194304 (4 Mbs)</td>
<td>65536 (64 Kb)</td>
</tr>
<tr>
<td>4194305 to 8388608 (8 Mbs)</td>
<td>131072 (128 Kb)</td>
</tr>
<tr>
<td>8388609 to 16777216 (16 Mbs)</td>
<td>262144 (256 Kb)</td>
</tr>
<tr>
<td>16777217 to 33554432 (32 Mbs)</td>
<td>524288 (512 Kb)</td>
</tr>
<tr>
<td>33554433 to 67108864 (64 Mbs)</td>
<td>1048576 (1 Mb)</td>
</tr>
</tbody>
</table>
PFC QoS Configuration Guidelines and Restrictions

Chapter 48    Configuring PFC QoS

PFC QoS Configuration Guidelines and Restrictions

Within each range, PFC QoS programs the PFC with rate values that are multiples of the granularity values.

Supported Granularity for CIR and PIR Token Bucket Sizes

PFC QoS has the following hardware granularity for CIR and PIR token bucket (burst) sizes:

<table>
<thead>
<tr>
<th>CIR and PIR Token Bucket Size Range</th>
<th>Granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 32768 (32 KB)</td>
<td>1024 (1 KB)</td>
</tr>
<tr>
<td>32769 to 65536 (64 KB)</td>
<td>2048 (2 KB)</td>
</tr>
<tr>
<td>65537 to 131072 (128 KB)</td>
<td>4096 (4 KB)</td>
</tr>
<tr>
<td>131073 to 262144 (256 KB)</td>
<td>8196 (8 KB)</td>
</tr>
<tr>
<td>262145 to 524288 (512 KB)</td>
<td>16392 (16 KB)</td>
</tr>
<tr>
<td>524289 to 1048576 (1 MB)</td>
<td>32768 (32 KB)</td>
</tr>
<tr>
<td>1048577 to 2097152 (2 MB)</td>
<td>65536 (64 KB)</td>
</tr>
<tr>
<td>2097153 to 4194304 (4 MB)</td>
<td>131072 (128 KB)</td>
</tr>
<tr>
<td>4194305 to 8388608 (8 MB)</td>
<td>262144 (256 KB)</td>
</tr>
<tr>
<td>8388609 to 16777216 (16 MB)</td>
<td>524288 (512 KB)</td>
</tr>
<tr>
<td>16777217 to 33554432 (32 MB)</td>
<td>1048576 (1 MB)</td>
</tr>
</tbody>
</table>

Within each range, PFC QoS programs the PFC with token bucket sizes that are multiples of the granularity values.
IP Precedence and DSCP Values

<table>
<thead>
<tr>
<th>3-bit IP Precedence</th>
<th>6 MSb(^1) of ToS</th>
<th>6-bit DSCP</th>
<th>3-bit IP Precedence</th>
<th>6 MSb(^1) of ToS</th>
<th>6-bit DSCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0 0 0 0</td>
<td>0</td>
<td>4</td>
<td>1 0 0 0 0 0 0</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0 1 1</td>
<td>1</td>
<td></td>
<td>1 0 0 0 0 1 3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>0 0 0 1 0 2</td>
<td>2</td>
<td></td>
<td>1 0 0 0 1 0 34</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>0 0 1 1 3</td>
<td>3</td>
<td></td>
<td>1 0 0 0 1 1 35</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>0 0 1 0 4</td>
<td>4</td>
<td></td>
<td>1 0 0 1 0 0 36</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>0 0 1 0 5</td>
<td>5</td>
<td></td>
<td>1 0 0 1 0 1 37</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>0 0 1 1 6</td>
<td>6</td>
<td></td>
<td>1 0 0 1 1 0 38</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>0 0 1 1 7</td>
<td>7</td>
<td></td>
<td>1 0 0 1 1 1 39</td>
<td>39</td>
</tr>
<tr>
<td>1</td>
<td>0 0 1 0 0 0 8</td>
<td>8</td>
<td>5</td>
<td>0 1 1 0 0 0 40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0 1 0 0 1 9</td>
<td>9</td>
<td></td>
<td>0 1 1 0 0 1 41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0 1 0 1 10</td>
<td>10</td>
<td></td>
<td>0 1 1 0 1 0 42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0 1 0 1 11</td>
<td>11</td>
<td></td>
<td>0 1 1 0 1 1 43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0 1 1 0 12</td>
<td>12</td>
<td></td>
<td>0 1 1 1 0 0 44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0 1 1 0 13</td>
<td>13</td>
<td></td>
<td>0 1 1 1 0 1 45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0 1 1 0 14</td>
<td>14</td>
<td></td>
<td>0 1 1 1 1 0 46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0 1 1 1 15</td>
<td>15</td>
<td></td>
<td>0 1 1 1 1 1 47</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 1 0 0 0 0 16</td>
<td>16</td>
<td>6</td>
<td>1 1 0 0 0 1 48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 0 0 1 17</td>
<td>17</td>
<td></td>
<td>1 1 0 0 0 1 49</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 0 1 0 18</td>
<td>18</td>
<td></td>
<td>1 1 0 1 0 1 50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 0 1 1 19</td>
<td>19</td>
<td></td>
<td>1 1 0 1 1 0 51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 0 1 1 20</td>
<td>20</td>
<td></td>
<td>1 1 0 1 1 0 52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 0 1 1 21</td>
<td>21</td>
<td></td>
<td>1 1 0 1 1 1 53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 0 1 1 22</td>
<td>22</td>
<td></td>
<td>1 1 0 1 1 1 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 0 1 1 23</td>
<td>23</td>
<td></td>
<td>1 1 0 1 1 1 55</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0 1 1 0 0 0 24</td>
<td>24</td>
<td>7</td>
<td>1 1 1 0 0 0 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 1 0 1 25</td>
<td>25</td>
<td></td>
<td>1 1 1 0 0 1 57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 1 0 1 26</td>
<td>26</td>
<td></td>
<td>1 1 1 0 1 0 58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 1 0 1 27</td>
<td>27</td>
<td></td>
<td>1 1 1 0 1 1 59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 1 1 0 28</td>
<td>28</td>
<td></td>
<td>1 1 1 1 0 0 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 1 1 0 29</td>
<td>29</td>
<td></td>
<td>1 1 1 1 0 1 61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 1 1 1 30</td>
<td>30</td>
<td></td>
<td>1 1 1 1 1 0 62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1 1 1 1 31</td>
<td>31</td>
<td></td>
<td>1 1 1 1 1 1 63</td>
<td></td>
</tr>
</tbody>
</table>

1. MSb = most significant bit

Configuring PFC QoS

These sections describe how to configure PFC QoS on the Cisco 7600 series routers:

- Enabling PFC QoS Globally, page 48-46
- Configuring DSCP Transparency, page 48-47
- Configuring Trust State, page 48-47
- Enabling Queuing-Only Mode, page 48-48
Enabling PFC QoS Globally

To enable PFC QoS globally, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls qos</td>
<td>Enables PFC QoS globally on the router.</td>
</tr>
<tr>
<td>Router(config)# no mls qos</td>
<td>Disables PFC QoS globally on the router.</td>
</tr>
<tr>
<td>Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Router# show mls qos [ipv6]</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to enable PFC QoS globally:

```
Router# configure terminal
Router(config)# mls qos
Router(config)# end
```

This example shows how to verify the configuration:

```
Router# show mls qos
QoS is enabled globally
Microflow QoS is enabled globally

QoS global counters:
Total packets: 544393
IP shortcut packets: 1410
Packets dropped by policing: 0
```
Configuring PFC QoS

Chapter 48      Configuring PFC QoS

IP packets with TOS changed by policing: 467
IP packets with COS changed by policing: 59998
Non-IP packets with COS changed by policing: 0

Router#

Configuring DSCP Transparency

To enable DSCP transparency, which preserves the received Layer 3 ToS byte, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# no mls qos rewrite ip dscp</td>
</tr>
<tr>
<td></td>
<td>Router(config)# mls qos rewrite ip dscp</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# end</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router# show mls qos [ipv6]</td>
</tr>
</tbody>
</table>

When you preserve the received Layer 3 ToS byte, QoS uses the marked or marked-down CoS value for egress queueing and in egress tagged traffic.

This example shows how to preserve the received Layer 3 ToS byte:

Router# configure terminal
Router(config)# no mls qos rewrite ip dscp
Router(config)# end
Router#

Configuring Trust State

To enable or disable the trust state over the internal recirculate path, use the **mls qos recirc untrust** command in the global configuration mode.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# no mls qos recirc untrust</td>
</tr>
<tr>
<td></td>
<td>Router(config)# mls qos recirc untrust</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# end</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router# show mls qos [ipv6]</td>
</tr>
</tbody>
</table>

When you preserve the received Layer 3 ToS byte, QoS uses the marked or marked-down CoS value for egress queueing and in egress tagged traffic.

This example shows how to preserve the received Layer 3 ToS byte:

Router# configure terminal
Router(config)# no mls qos recirc untrust
Router(config)# end
Router#
Enabling Queueing-Only Mode

To enable queueing-only mode on the router, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos queueing-only</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no mls qos queueing-only</td>
</tr>
<tr>
<td>Note</td>
<td>You cannot disable queueing-only mode separately.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show mls qos [ipv6]</td>
</tr>
</tbody>
</table>

When you enable queueing-only mode, the router does the following:
- Disables marking and policing globally
- Configures all ports to trust Layer 2 CoS

**Note**
The router applies the port CoS value to untagged ingress traffic and to traffic that is received through ports that cannot be configured to trust CoS.

This example shows how to enable queueing-only mode:

Router# configure terminal
Router(config)# mls qos queueing-only
Router(config)# end
Router#

Enabling Microflow Policing of Bridged Traffic

By default, microflow policers affect only routed traffic. To enable microflow policing of bridged traffic on specified VLANs, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{vlan vlan_ID}</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mls qos bridged</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls qos bridged</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos</td>
</tr>
</tbody>
</table>

This example shows how to enable microflow policing of bridged traffic on VLANs 3 through 5:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface range vlan 3 - 5
Configuring PFC QoS

This example shows how to verify the configuration:

```
Router# show mls qos | begin Bridged QoS
Bridged QoS is enabled on the following interfaces:
 Vl3 Vl4 Vl5
<...output truncated...>
Router#
```

Enabling VLAN-Based PFC QoS on Layer 2 LAN Ports

Note

- PFC QoS supports VLAN-based QoS with DFC3s installed.
- You can attach policy maps to Layer 3 interfaces for application of PFC QoS to egress traffic. VLAN-based or port-based PFC QoS on Layer 2 ports is not relevant to application of PFC QoS to egress traffic on Layer 3 interfaces.

By default, PFC QoS uses policy maps attached to LAN ports. For ports configured as Layer 2 LAN ports with the `switchport` keyword, you can configure PFC QoS to use policy maps attached to a VLAN. Ports not configured with the `switchport` keyword are not associated with a VLAN.

To enable VLAN-based PFC QoS on a Layer 2 LAN port, perform this task:

```
Step 1
Router(config)# interface {{type} slot/port | [port-channel number]}}
Selects the interface to configure.

Step 2
Router(config-if)# mls qos vlan-based
Enables VLAN-based PFC QoS on a Layer 2 LAN port or a Layer 2 EtherChannel.

Router(config-if)# no mls qos vlan-based
Disables VLAN-based PFC QoS.

Step 3
Router(config-if)# end
Exits configuration mode.

Step 4
Router# show mls qos
Verifies the configuration.
```

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to enable VLAN-based PFC QoS on Fast Ethernet port 5/42:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/42
Router(config-if)# mls qos vlan-based
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show mls qos | begin QoS is vlan-based
QoS is vlan-based on the following interfaces:
 Fa5/42
<...Output Truncated...>
```
Enabling Egress ACL Support for Remarked DSCP

To enable egress ACL support for remarked DSCP on an ingress interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{vlan vlan_ID}</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# platform ip features sequential [access-group IP_acl_name_or_number]</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no platform ip features sequential [access-group IP_acl_name_or_number]</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show running-config interface {{type ethernet, fastethernet, gigabitethernet, or tengigabitethernet}</td>
</tr>
</tbody>
</table>

When configuring egress ACL support for remarked DSCP on an ingress interface, note the following information:

- To enable egress ACL support for remarked DSCP only for the traffic filtered by a specific standard, extended named, or extended numbered IP ACL, enter the IP ACL name or number.
- If you do not enter an IP ACL name or number, egress ACL support for remarked DSCP is enabled for all IP ingress IP traffic on the interface.

This example shows how to enable egress ACL support for remarked DSCP on Fast Ethernet port 5/36:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/36
Router(config-if)# platform ip features sequential
Router(config-if)# end
Creating Named Aggregate Policers

To create a named aggregate policer, perform this task:

```
Router(config)# mls qos aggregate-policer
policer_name bits_per_second normal_burst_bytes
[maximum_burst_bytes] [pir peak_rate_bps]
[[[conform-action {drop | set-dscp-transmit |
dscp_value | set-prec-transmit' ip_precedence_value |
transmit}] exceed-action {drop | policed-dscp |
transmit}] violate-action {drop | policed-dscp |
transmit}]
```

```
Router(config)# no mls qos aggregate-policer
policer_name
```

When creating a named aggregate policer, note the following information:

- Aggregate policing works independently on each DFC-equipped switching module and independently on the PFC, which supports any non-DFC-equipped switching modules. Aggregate policing does not combine flow statistics from different DFC-equipped switching modules. You can display aggregate policing statistics for each DFC-equipped switching module and for the PFC and any non-DFC-equipped switching modules supported by the PFC.
- Each PFC or DFC polices independently, which might affect QoS features being applied to traffic that is distributed across the PFC and any DFCs. Examples of these QoS feature are:
  - Policers applied to a port channel interface.
  - Policers applied to a switched virtual interface.
  - Egress policers applied to either a Layer 3 interface or an SVI. Note that PFC QoS performs egress policing decisions at the ingress interface, on the PFC or ingress DFC. Policers affected by this restriction deliver an aggregate rate that is the sum of all the independent policing rates.
- You can apply aggregate policers to IPv6 traffic.
- Policing uses the Layer 2 frame size.
- See the “PFC QoS Configuration Guidelines and Restrictions” section on page 48-40 for information about rate and burst size granularity.
- The valid range of values for the CIR `bits_per_second` parameter is as follows:
  - Minimum—32 kilobits per second, entered as 32000
  - Maximum—10 gigabits per second, entered as 10000000000
- The `normal_burst_bytes` parameter sets the CIR token bucket size.
- The `maximum_burst_bytes` parameter sets the PIR token bucket size.
- When configuring the size of a token bucket, note the following information:
  - The minimum token bucket size is 1 kilobyte, entered as 1000 (the `maximum_burst_bytes` parameter must be set larger than the `normal_burst_bytes` parameter).
  - The maximum token bucket size is 32 megabytes, entered as 32000000.
- To sustain a specific rate, set the token bucket size to be at least the rate value divided by 4000 because tokens are removed from the bucket every 1/4000th of a second (0.25 ms).
- Because the token bucket must be large enough to hold at least one frame, set the parameter larger than the maximum size of the traffic being policed.
- For TCP traffic, configure the token bucket size as a multiple of the TCP window size, with a minimum value at least twice as large as the maximum size of the traffic being policed.

- The valid range of values for the `pir bits_per_second` parameter is as follows:
  - Minimum—32 kilobits per second, entered as 32000 (the value cannot be smaller than the `CIR bits_per_second` parameters)
  - Maximum—10 gigabits per second, entered as 1000000000

- (Optional) You can specify a conform action for matched in-profile traffic as follows:
  - The default conform action is `transmit`, which sets the policy map class trust state to `trust DSCP` unless the policy map class contains a `trust DSCP` command.
  - To set PFC QoS labels in untrusted traffic, enter the `set-dscp-transmit` keyword to mark matched untrusted traffic with a new DSCP value or enter the `set-prec-transmit` keyword to mark matched untrusted traffic with a new IP precedence value. The `set-dscp-transmit` and `set-prec-transmit` keywords are only supported for IP traffic. PFC QoS sets egress ToS and CoS from the configured value.
  - Enter the `drop` keyword to drop all matched traffic.

  **Note**: When you configure `drop` as the conform action, PFC QoS configures `drop` as the exceed action and the violate action.

- (Optional) For traffic that exceeds the CIR, you can specify an exceed action as follows:
  - The default exceed action is `drop`, except with a `maximum_burst_bytes` parameter (`drop` is not supported with a `maximum_burst_bytes` parameter).

  **Note**: When the exceed action is `drop`, PFC QoS ignores any configured violate action.

  - Enter the `policed-dscp-transmit` keyword to cause all matched out-of-profile traffic to be marked down as specified in the markdown map.

  **Note**: When you create a policer that does not use the `pir` keyword and the `maximum_burst_bytes` parameter is equal to the `normal_burst_bytes` parameter (which is the case if you do not enter the `maximum_burst_bytes` parameter), the `exceed-action policed-dscp-transmit` keywords cause PFC QoS to mark traffic down as defined by the `policed-dscp max-burst` markdown map.

- (Optional) For traffic that exceeds the PIR, you can specify a violate action as follows:
  - To mark traffic without policing, enter the `transmit` keyword to transmit all matched out-of-profile traffic.
  - The default violate action is equal to the exceed action.
  - Enter the `policed-dscp-transmit` keyword to cause all matched out-of-profile traffic to be marked down as specified in the markdown map.
For marking without policing, enter the **transmit** keyword to transmit all matched out-of-profile traffic.

**Note**

When you apply both ingress policing and egress policing to the same traffic, both the input policy and the output policy must either mark down traffic or drop traffic. PFC QoS does not support ingress markdown with egress drop or ingress drop with egress markdown.

This example shows how to create a named aggregate policer with a 1-Mbps rate limit and a 10-MB burst size that transmits conforming traffic and marks down out-of-profile traffic:

```
Router(config)# mls qos aggregate-policer aggr-1 1000000 10000000 conform-action transmit exceed-action policed-dscp-transmit
Router(config)# end
```

This example shows how to verify the configuration:

```
Router# show mls qos aggregate-policer aggr-1
ag1 1000000 1000000 conform-action transmit exceed-action policed-dscp-transmit AgId=0 [pol4]
```

The output displays the following:

- The **AgId** parameter displays the hardware policer ID.
- The policy maps that use the policer are listed in the square brackets ({}).

### Configuring a PFC QoS Policy

These sections describe PFC QoS policy configuration:

- PFC QoS Policy Configuration Overview, page 48-53
- Configuring MAC ACLs, page 48-55
- Configuring ARP ACLs for QoS Filtering, page 48-58
- Configuring a Class Map, page 48-59
- Verifying Class Map Configuration, page 48-61
- Configuring a Policy Map, page 48-61
- Verifying Policy Map Configuration, page 48-68
- Attaching a Policy Map to an Interface, page 48-68

**Note**

PFC QoS policies process both unicast and multicast traffic.

### PFC QoS Policy Configuration Overview

**Note**

To mark traffic without limiting bandwidth utilization, create a policer that uses the **transmit** keywords for both conforming and nonconforming traffic.
These commands configure traffic classes and the policies to be applied to those traffic classes and attach the policies to ports:

- **access-list** (Optional for IP traffic. You can filter IP traffic with **class-map** commands.):
  - PFC QoS supports these ACL types:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Numbered ACLs</th>
<th>Extended ACLs</th>
<th>Named ACLs</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
<td>Yes: 1 to 99</td>
<td>Yes: 100 to 199</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>1300 to 199</td>
<td>2000 to 2699</td>
<td></td>
</tr>
<tr>
<td>IPv6</td>
<td>—</td>
<td>Yes (named)</td>
<td>Yes</td>
</tr>
<tr>
<td>MAC Layer</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>ARP</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- The PFC supports IPv6 named extended ACLs and named standard ACLs.
- The PFC supports ARP ACLs.

---

*Note*—The PFC does not apply IP ACLs to ARP traffic.

---

—You cannot apply microflow policing to ARP traffic.

- The PFC does not support IPX ACLs. With a PFC, you can configure MAC ACLs to filter IPX traffic.
- PFC QoS supports time-based Cisco IOS ACLs.
- Except for MAC ACLs and ARP ACLs, refer to the *Cisco IOS Security Configuration Guide*, Release 12.2, “Traffic Filtering and Firewalls,” at this URL:

- **class-map** (optional)—Enter the **class-map** command to define one or more traffic classes by specifying the criteria by which traffic is classified.

- **policy-map**—Enter the **policy-map** command to define the following:
  - Policy map class trust mode
  - Aggregate policing and marking
  - Microflow policing and marking

- **service-policy**—Enter the **service-policy** command to attach a policy map to an interface.
Configuring MAC ACLs

These sections describe MAC ACL configuration:

- Configuring Protocol-Independent MAC ACL Filtering, page 48-55
- Enabling VLAN-Based MAC QoS Filtering, page 48-56
- Configuring MAC ACLs, page 48-57

Note

You can use MAC ACLs with VLAN ACLs (VACLs). For more information, see Chapter 38, “Configuring VLAN ACLs.”

Configuring Protocol-Independent MAC ACL Filtering

The PFC supports protocol-independent MAC ACL filtering. Protocol-independent MAC ACL filtering applies MAC ACLs to all ingress traffic types (for example, IPv4 traffic, IPv6 traffic, and MPLS traffic, in addition to MAC-layer traffic).

You can configure these interface types for protocol-independent MAC ACL filtering:

- VLAN interfaces without IP addresses
- Physical LAN ports configured to support EoMPLS
- Logical LAN subinterfaces configured to support EoMPLS

Ingress traffic permitted or denied by a MAC ACL on an interface configured for protocol-independent MAC ACL filtering is processed by egress interfaces as MAC-layer traffic. You cannot apply egress IP ACLs to traffic that was permitted or denied by a MAC ACL on an interface configured for protocol-independent MAC ACL filtering.

To configure protocol-independent MAC ACL filtering, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{vlan vlan_ID}</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mac packet-classify</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mac packet-classify</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

When configuring protocol-independent MAC ACL filtering, note the following information:

- Do not configure protocol-independent MAC ACL filtering on VLAN interfaces where you have configured an IP address.
- Do not configure protocol-independent MAC ACL filtering with microflow policing when the permitted traffic would be bridged or Layer 3 switched in hardware by the PFC3BXL or PFC3CXL.
- Protocol-independent MAC ACL filtering supports microflow policing when the permitted traffic is routed in software by the MSFC3 or MSFC4 (part of the RSP720).
This example shows how to configure VLAN interface 4018 for protocol-independent MAC ACL filtering and how to verify the configuration:

```
Router(config)# interface vlan 4018
Router(config-if)# mac packet-classify
Router(config-if)# end
Router# show running-config interface vlan 4018 | begin 4018
interface Vlan4018
 mtu 9216
 ipv6 enable
 mac packet-classify
end
```

This example shows how to configure Gigabit Ethernet interface 6/1 for protocol-independent MAC ACL filtering and how to verify the configuration:

```
Router(config)# interface gigabitethernet 6/1
Router(config-if)# mac packet-classify
Router(config-if)# end
Router# show running-config interface gigabitethernet 6/1 | begin 6/1
interface GigabitEthernet6/1
 mtu 9216
 no ip address
 mac packet-classify
 mpls l2transport route 4.4.4.4 4094
end
```

This example shows how to configure Gigabit Ethernet interface 3/24, subinterface 4000, for protocol-independent MAC ACL filtering and how to verify the configuration:

```
Router(config)# interface gigabitethernet 3/24.4000
Router(config-if)# mac packet-classify
Router(config-if)# end
Router# show running-config interface gigabitethernet 3/24.4000 | begin 3/24.4000
interface GigabitEthernet3/24.4000
 encapsulation dot1Q 4000
 mac packet-classify
 mpls l2transport route 4.4.4.4 4000
end
```

**Enabling VLAN-Based MAC QoS Filtering**

You can globally enable or disable VLAN-based QoS filtering in MAC ACLs. VLAN-based QoS filtering in MAC ACLs is disabled by default.

To enable VLAN-based QoS filtering in MAC ACLs, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mac packet-classify use vlan</td>
<td>Enables VLAN-based QoS filtering in MAC ACLs.</td>
</tr>
</tbody>
</table>

To disable VLAN-based QoS filtering in MAC ACLs, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# no mac packet-classify use vlan</td>
<td>Disables VLAN-based QoS filtering in MAC ACLs.</td>
</tr>
</tbody>
</table>
Configuring MAC ACLs

You can configure named ACLs that filter IPX, DECnet, AppleTalk, VINES, or XNS traffic based on MAC addresses.

You can configure MAC ACLs that perform VLAN-based filtering or CoS-based filtering or both.

You can globally enable or disable VLAN-based QoS filtering in MAC ACLs (disabled by default).

To configure a MAC ACL, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configures a MAC ACL. Deletes a MAC ACL.</td>
</tr>
<tr>
<td>Router(config)# mac access-list extended list_name</td>
<td></td>
</tr>
<tr>
<td>Router(config)# no mac access-list extended list_name</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Configures an access control entry (ACE) in a MAC ACL. Deletes an ACE from a MAC ACL.</td>
</tr>
<tr>
<td>Router(config-ext-macl)# {permit</td>
<td>deny} {src_mac_mask</td>
</tr>
<tr>
<td>Router(config-ext-macl)# no {permit</td>
<td>deny} {src_mac_mask</td>
</tr>
</tbody>
</table>

When configuring an entry in a MAC-Layer ACL, note the following information:

- The **ipx-arpa** and **ipx-non-arpa** keywords are supported.
- The **vlan** and **cos** keywords are not supported in MAC ACLs used for VACL filtering.
- The **vlan** keyword for VLAN-based QoS filtering in MAC ACLs can be globally enabled or disabled and is disabled by default.
- You can enter MAC addresses as three 4-byte values in dotted hexadecimal format. For example, 0030.9629.9f84.
- You can enter MAC address masks as three 4-byte values in dotted hexadecimal format. Use 1 bits as wildcards. For example, to match an address exactly, use 0000.0000.0000 (can be entered as 0.0.0).
- You can enter an EtherType and an EtherType mask as hexadecimal values.
- Entries without a protocol parameter match any protocol.
- ACL entries are scanned in the order you enter them. The first matching entry is used. To improve performance, place the most commonly used entries near the beginning of the ACL.
- An implicit **deny any any** entry exists at the end of an ACL unless you include an explicit **permit any any** entry at the end of the list.
- All new entries to an existing list are placed at the end of the list. You cannot add entries to the middle of a list.
- This list shows the EtherType values and their corresponding protocol keywords:
  - 0x0600—xns-idp—Xerox XNS IDP
  - 0x0BAD—vines-ip—Banyan VINES IP
  - 0x0bf—vines-echo—Banyan VINES Echo
  - 0x6000—etype-6000—DEC unassigned, experimental
This example shows how to create a MAC-Layer ACL named mac_layer that denies dec-phase-iv traffic with source address 0000.4700.0001 and destination address 0000.4700.0009, but permits all other traffic:

```bash
Router(config)# mac access-list extended mac_layer
Router(config-ext-macl)# deny 0000.4700.0001 0.0.0 0000.4700.0009 0.0.0 dec-phase-iv
Router(config-ext-macl)# permit any any
```

### Configuring ARP ACLs for QoS Filtering

**Note**
- The PFC does not apply IP ACLs to ARP traffic.
- With a PFC, you cannot apply microflow policing to ARP traffic.

You can configure named ACLs that filter ARP traffic (EtherType 0x0806) for QoS.

To configure an ARP ACL for QoS filtering, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**
- `Router(config)# arp access-list list_name`
- `Router(config)# no arp access-list list_name`
| Configures an ARP ACL for QoS filtering. Deletes an ARP ACL. |
| **Step 2**
- `Router(config-arp-nacl)# {permit | deny} {ip | host} sender_ip | sender_ip sender_ip wildcardmask} mac any`
- `Router(config-arp-nacl)# no {permit | deny} {ip | host} sender_ip | sender_ip sender_ip wildcardmask} mac any`
| Configures an access control entry (ACE) in an ARP ACL for QoS filtering. Deletes an ACE from an ARP ACL. |
When configuring an entry in an ARP ACL for QoS filtering, note the following information:

- This publication describes the ARP ACL syntax that is supported in hardware by the PFC. Any other ARP ACL syntax displayed by the CLI help when you enter a question mark ("?") is not supported and cannot be used to filter ARP traffic for QoS.

- ACLs entries are scanned in the order you enter them. The first matching entry is used. To improve performance, place the most commonly used entries near the beginning of the ACL.

- An implicit **deny ip any mac any** entry exists at the end of an ACL unless you include an explicit **permit ip any mac any** entry at the end of the list.

- All new entries to an existing list are placed at the end of the list. You cannot add entries to the middle of a list.

This example shows how to create an ARP ACL named `arp_filtering` that only permits ARP traffic from IP address 1.1.1.1:

```plaintext
Router(config)# arp access-list arp_filtering
Router(config-arp-nacl)# permit ip host 1.1.1.1 mac any
```

### Configuring a Class Map

These sections describe class map configuration:

- **Creating a Class Map**, page 48-59
- **Class Map Filtering Guidelines and Restrictions**, page 48-59
- **Configuring Filtering in a Class Map**, page 48-60

### Creating a Class Map

To create a class map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# class-map class_name</td>
<td>Creates a class map.</td>
</tr>
<tr>
<td>Router(config)# no class-map class_name</td>
<td>Deletes a class map.</td>
</tr>
</tbody>
</table>

### Class Map Filtering Guidelines and Restrictions

When configuring class map filtering, follow these guidelines and restrictions:

- PFC QoS supports multiple match criteria in class maps configured with the **match-any** keywords.

- The PFC supports the **match protocol ipv6** command.

- Because of conflicting TCAM lookup flow key bit requirements, you cannot configure IPv6 DSCP-based filtering and IPv6 Layer 4 range-based filtering on the same interface. For example:
  - If configure both a DSCP value and a Layer 4 greater than (gt) or less than (lt) operator in an IPv6 ACE, you cannot use the ACL for PFC QoS filtering.
  - If configure a DSCP value in one IPv6 ACL and a Layer 4 greater than (gt) or less than (lt) operator in another IPv6 ACL, you cannot use both ACLs in different class maps on the same interface for PFC QoS filtering.

- PFC QoS supports the **match protocol ip** command for IPv4 traffic.
• PFC QoS does not support the **match cos, match any, match classmap, match destination-address, match input-interface, match qos-group**, and **match source-address** class map commands.

• Cisco 7600 series routers do not detect the use of unsupported commands until you attach a policy map to an interface.

• Filtering based on IP precedence or DSCP for egress QoS uses the received IP precedence or DSCP. Egress QoS filtering is not based on any IP precedence or DSCP changes made by ingress QoS.

---

**Note**

*This chapter includes the following ACL documentation:*

- Configuring MAC ACLs, page 48-55
- Configuring ARP ACLs for QoS Filtering, page 48-58

*Other ACLs are not documented in this publication. See the references under `access-list` in the “PFC QoS Policy Configuration Overview” section on page 48-53.*

---

### Configuring Filtering in a Class Map

To configure filtering in a class map, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router(config-cmap)# match access-group name acl_index_or_name</code></td>
<td>(Optional) Configures the class map to filter using an ACL.</td>
</tr>
<tr>
<td><code>Router(config-cmap)# no match access-group name acl_index_or_name</code></td>
<td>Clears the ACL configuration from the class map.</td>
</tr>
<tr>
<td><code>Router (config-cmap)# match protocol ipv6</code></td>
<td>(Optional—for IPv6 traffic) Configures the class map to filter IPv6 traffic.</td>
</tr>
<tr>
<td><code>Router (config-cmap)# no match protocol ipv6</code></td>
<td>Clears IPv6 filtering.</td>
</tr>
<tr>
<td><code>Router (config-cmap)# match precedence ipp_value1 [ipp_value2 [ipp_valueN]]</code></td>
<td>(Optional—for IPv4 or IPv6 traffic) Configures the class map to filter based on up to eight IP precedence values.</td>
</tr>
<tr>
<td><code>Router (config-cmap)# no match precedence ipp_value1 [ipp_value2 [ipp_valueN]]</code></td>
<td>Clears configured IP precedence values from the class map.</td>
</tr>
<tr>
<td><code>Router (config-cmap)# match dscp dscp_value1 [dscp_value2 [dscp_valueN]]</code></td>
<td>(Optional—for IPv4 or IPv6 traffic only) Configures the class map to filter based on up to eight DSCP values.</td>
</tr>
<tr>
<td><code>Router (config-cmap)# no match dscp dscp_value1 [dscp_value2 [dscp_valueN]]</code></td>
<td>Clears configured DSCP values from the class map.</td>
</tr>
<tr>
<td><code>Router (config-cmap)# match ip precedence ipp_value1 [ipp_value2 [ipp_valueN]]</code></td>
<td>(Optional—for IPv4 traffic) Configures the class map to filter based on up to eight IP precedence values.</td>
</tr>
<tr>
<td><code>Router (config-cmap)# no match ip precedence ipp_value1 [ipp_value2 [ipp_valueN]]</code></td>
<td>Clears configured IP precedence values from the class map.</td>
</tr>
</tbody>
</table>
Chapter 48  Configuring PFC QoS

Configuring PFC QoS

Verifying Class Map Configuration

To verify class map configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router (config-cmap)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Router# show class-map class_name</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to create a class map named **ipp5** and how to configure filtering to match traffic with IP precedence 5:

```plaintext
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# class-map ipp5
Router(config-cmap)# match ip precedence 5
Router(config-cmap)# end
```

This example shows how to verify the configuration:

```plaintext
Router# show class-map ipp5
Class Map match-all ipp5 (id 1)
Match ip precedence 5
```

Configuring a Policy Map

You can attach only one policy map to an interface. Policy maps can contain one or more policy map classes, each with different policy map commands.

Configure a separate policy map class in the policy map for each type of traffic that an interface receives. Put all commands for each type of traffic in the same policy map class. PFC QoS does not attempt to apply commands from more than one policy map class to matched traffic.

These sections describe policy map configuration:

- Creating a Policy Map, page 48-62
- Policy Map Class Configuration Guidelines and Restrictions, page 48-62
- Creating a Policy Map Class and Configuring Filtering, page 48-62
- Configuring Policy Map Class Actions, page 48-62
Chapter 48  Configuring PFC QoS

Creating a Policy Map

To create a policy map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# policy-map policy_name</td>
<td>Creates a policy map.</td>
</tr>
<tr>
<td>Router(config)# no policy-map policy_name</td>
<td>Deletes the policy map.</td>
</tr>
</tbody>
</table>

Policy Map Class Configuration Guidelines and Restrictions

When you configuring policy map classes, follow the guidelines and restrictions:

- PFC QoS does not support the class class_name destination-address, class class_name input-interface, class class_name qos-group, and class class_name source-address policy map commands.
- PFC QoS supports the class default policy map command.
- PFC QoS does not detect the use of unsupported commands until you attach a policy map to an interface.

Creating a Policy Map Class and Configuring Filtering

To create a policy map class and configure it to filter with a class map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-pmap)# class class_name</td>
<td>Creates a policy map class and configures it to filter with a class map. Note: PFC QoS supports class maps that contain a single match command.</td>
</tr>
<tr>
<td>Router(config-pmap)# no class class_name</td>
<td>Clears use of the class map.</td>
</tr>
</tbody>
</table>

Configuring Policy Map Class Actions

When configuring policy map class actions, note the following information:

- Policy maps can contain one or more policy map classes.
- Put all trust-state and policing commands for each type of traffic in the same policy map class.
- PFC QoS only applies commands from one policy map class to traffic. After traffic has matched the filtering in one policy map class, QoS does apply the filtering configured in other policy map classes.
- For hardware-switched traffic, PFC QoS does not support the bandwidth, priority, queue-limit, or random-detect policy map class commands. You can configure these commands because they can be used for software-switched traffic.
- PFC QoS does not support the set mpls or set qos-group policy map class commands.
- PFC QoS supports the set ip dscp and set ip precedence policy map class commands for IPv4 traffic.
  - You can use the set ip dscp and set ip precedence commands on non-IP traffic to mark the internal DSCP value, which is the basis of the egress Layer 2 CoS value.
Chapter 48 Configuring PFC QoS

Configuring PFC QoS

– The set ip dscp and set ip precedence commands are saved in the configuration file as set dscp and set precedence commands.

• PFC QoS supports the set dscp and set precedence policy map class commands for IPv4 and IPv6 traffic.

• You cannot do all three of the following in a policy map class:
  – Mark traffic with the set commands
  – Configure the trust state
  – Configure policing

In a policy map class, you can either mark untrusted traffic with the set commands or do one or both of the following:
  – Configure the trust state
  – Configure policing

Note When configure policing, you can mark traffic with policing keywords.

These sections describe policy map class action configuration:
• Configuring Policy Map Class Marking, page 48-63
• Configuring the Policy Map Class Trust State, page 48-63
• Configuring Policy Map Class Policing, page 48-64

Configuring Policy Map Class Marking

PFC QoS supports policy map class marking for untrusted traffic with set policy map class commands.

To configure policy map class marking for untrusted traffic, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-pmap-c)# set {dscp dscp_value</td>
<td>precedence ip_precedence_value}</td>
</tr>
<tr>
<td>Router(config-pmap-c)# no set {dscp dscp_value</td>
<td>precedence ip_precedence_value}</td>
</tr>
</tbody>
</table>

Configuring the Policy Map Class Trust State

Note You cannot attach a policy map that configures a trust state with the service-policy output command.

To configure the policy map class trust state, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-pmap-c)# trust {cos</td>
<td>dscp</td>
</tr>
<tr>
<td>Router(config-pmap-c)# no trust</td>
<td>Reverts to the default policy-map class trust state (untrusted).</td>
</tr>
</tbody>
</table>
When configuring the policy map class trust state, note the following information:

- Enter the `no trust` command to use the trust state configured on the ingress port (this is the default).
- With the `cos` keyword, PFC QoS sets the internal DSCP value from received or ingress port CoS.
- With the `dscp` keyword, PFC QoS uses received DSCP.
- With the `ip-precedence` keyword, PFC QoS sets DSCP from received IP precedence.

### Configuring Policy Map Class Policing

When you configure policy map class policing, note the following information:

- PFC QoS does not support the `set-qos-transmit` policer keyword.
- PFC QoS does not support the `set-dscp-transmit` or `set-prec-transmit` keywords as arguments to the `exceed-action` keyword.
- PFC QoS does not detect the use of unsupported keywords until you attach a policy map to an interface.

These sections describe configuration of policy map class policing:

- Using a Named Aggregate Policer, page 48-64
- Configuring a Per-Interface Policer, page 48-65

---

**Note**

Policing with the `conform-action transmit` keywords sets the port trust state of matched traffic to trust DSCP or to the trust state configured by a `trust` command in the policy map class.

### Using a Named Aggregate Policer

To use a named aggregate policer, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-pmap-c)# <code>police aggregate aggregate_name</code></td>
<td>Configures the policy map class to use a previously defined named aggregate policer.</td>
</tr>
<tr>
<td>Router(config-pmap-c)# <code>no police aggregate aggregate_name</code></td>
<td>Clears use of the named aggregate policer.</td>
</tr>
</tbody>
</table>
Configuring a Per-Interface Policer

To configure a per-interface policer, perform this task:

### Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`police [flow [mask {src-only</td>
<td>dest-only</td>
</tr>
<tr>
<td>`no police [flow [mask {src-only</td>
<td>dest-only</td>
</tr>
</tbody>
</table>

When configuring a per-interface policer, note the following information:

- Aggregate policing works independently on each DFC-equipped switching module and independently on the PFC, which supports any non-DFC-equipped switching modules. Aggregate policing does not combine flow statistics from different DFC-equipped switching modules. You can display aggregate policing statistics for each DFC-equipped switching module and for the PFC and any non-DFC-equipped switching modules supported by the PFC.

- Aggregate policing works independently on each DFC-equipped switching module and independently on the PFC, which supports any non-DFC-equipped switching modules. Aggregate policing does not combine flow statistics from different DFC-equipped switching modules. You can display aggregate policing statistics for each DFC-equipped switching module and for the PFC and any non-DFC-equipped switching modules supported by the PFC.

- Each PFC or DFC polices independently, which might affect QoS features being applied to traffic that is distributed across the PFC and any DFCs. Examples of these QoS feature are:
  - Policers applied to a port channel interface.
  - Policers applied to a switched virtual interface.
  - Egress policers applied to either a Layer 3 interface or an SVI. Note that PFC QoS performs egress policing decisions at the ingress interface, on the PFC or ingress DFC.

Policers affected by this restriction deliver an aggregate rate that is the sum of all the independent policing rates.

- When you apply both ingress policing and egress policing to the same traffic, both the input policy and the output policy must either mark down traffic or drop traffic. PFC QoS does not support ingress markdown with egress drop or ingress drop with egress markdown.

- You can apply aggregate and microflow policers to IPv6 traffic.

- Policing uses the Layer 2 frame size.

- See the “PFC QoS Configuration Guidelines and Restrictions” section on page 48-40 for information about rate and burst size granularity.
• You can enter the `flow` keyword to define a microflow policer (you cannot apply microflow policing to ARP traffic). When configuring a microflow policer, note the following information:
  – You can enter the `mask src-only` keywords to base flow identification only on source addresses, which applies the microflow policer to all traffic from each source address. The `mask src-only` keywords are supported for both IP traffic and MAC traffic.
  – You can enter the `mask dest-only` keywords to base flow identification only on destination addresses, which applies the microflow policer to all traffic to each source address. The `mask dest-only` keywords are supported for both IP traffic and MAC traffic.
  – By default and with the `mask full-flow` keywords, PFC QoS bases IP flow identification on source IP address, destination IP address, the Layer 3 protocol, and Layer 4 port numbers.
  – PFC QoS considers MAC-Layer traffic with the same protocol and the same source and destination MAC-Layer addresses to be part of the same flow, including traffic with different EtherTypes.
  – Microflow policers do not support the `maximum_burst_bytes` parameter, the `pir_bits_per_second` keyword and parameter, or the `violate-action` keyword.

Note: The flowmask requirements of microflow policing, NetFlow, and NetFlow data export (NDE) might conflict.

• The valid range of values for the CIR `bits_per_second` parameter is as follows:
  – Minimum—32 kilobits per second, entered as 32000
  – Maximum—10 gigabits per second, entered as 10000000000

• The `normal_burst_bytes` parameter sets the CIR token bucket size.

• The `maximum_burst_bytes` parameter sets the PIR token bucket size (not supported with the `flow` keyword)

• When configuring the size of a token bucket, note the following information:
  – The minimum token bucket size is 1 kilobyte, entered as 1000 (the `maximum_burst_bytes` parameter must be set larger than the `normal_burst_bytes` parameter)
  – The maximum token bucket size is 32 megabytes, entered as 32000000
  – To sustain a specific rate, set the token bucket size to be at least the rate value divided by 4000, because tokens are removed from the bucket every 1/4000th of a second (0.25 ms).
  – Because the token bucket must be large enough to hold at least one frame, set the parameter larger than the maximum size of the traffic being policed.
  – For TCP traffic, configure the token bucket size as a multiple of the TCP window size, with a minimum value at least twice as large as the maximum size of the traffic being policed.

• (Not supported with the `flow` keyword.) The valid range of values for the `pir_bits_per_second` parameter is as follows:
  – Minimum—32 kilobits per second, entered as 32000 (the value cannot be smaller than the CIR `bits_per_second` parameters)
  – Maximum—10 gigabits per second, entered as 10000000000

• (Optional) You can specify a conform action for matched in-profile traffic as follows:
  – The default conform action is `transmit`, which sets the policy map class trust state to `trust DSCP` unless the policy map class contains a `trust` command.
Chapter 48  Configuring PFC QoS

Configuring PFC QoS

– To set PFC QoS labels in untrusted traffic, you can enter the set-dscp-transmit keyword to mark matched untrusted traffic with a new DSCP value or enter the set-prec-transmit keyword to mark matched untrusted traffic with a new IP precedence value. The set-dscp-transmit and set-prec-transmit keywords are only supported for IP traffic. PFC QoS sets egress ToS and CoS from the configured value.

– You can enter the drop keyword to drop all matched traffic.

– Ensure that aggregate and microflow policers that are applied to the same traffic each specify the same conform-action behavior.

• (Optional) For traffic that exceeds the CIR, you can specify an exceed action as follows:
  – For marking without policing, you can enter the transmit keyword to transmit all matched out-of-profile traffic.
  – The default exceed action is drop, except with a maximum_burst_bytes parameter (drop is not supported with a maximum_burst_bytes parameter).

Note When the exceed action is drop, PFC QoS ignores any configured violate action.

– You can enter the policed-dscp-transmit keyword to cause all matched out-of-profile traffic to be marked down as specified in the markdown map.

Note When you create a policer that does not use the pir keyword and the maximum_burst_bytes parameter is equal to the normal_burst_bytes parameter (which is the case if you do not enter the maximum_burst_bytes parameter), the exceed-action policed-dscp-transmit keywords cause PFC QoS to mark traffic down as defined by the policed-dscp max-burst markdown map.

• (Optional—Not supported with the flow keyword) for traffic that exceeds the PIR, you can specify a violate action as follows:
  – For marking without policing, you can enter the transmit keyword to transmit all matched out-of-profile traffic.
  – The default violate action is equal to the exceed action.
  – You can enter the policed-dscp-transmit keyword to cause all matched out-of-profile traffic to be marked down as specified in the markdown map.

This example shows how to create a policy map named max-pol-ipp5 that uses the class-map named ipp5, which is configured to trust received IP precedence values and is configured with a maximum-capacity aggregate policer and with a microflow policer:

```plaintext
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# policy-map max-pol-ipp5
Router(config-pmap)# class ipp5
Router(config-pmap-c)# trust ip-precedence
Router(config-pmap-c)# police 200000000 200000000 conform-action set-prec-transmit 6
 exceed-action policed-dscp-transmit
Router(config-pmap-c)# police flow 10000000 100000000 conform-action set-prec-transmit 6
 exceed-action policed-dscp-transmit
Router(config-pmap-c)# end
```
Chapter 48      Configuring PFC QoS

Verifying Policy Map Configuration

To verify policy map configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config-pmap-c)# end</td>
</tr>
<tr>
<td></td>
<td>Exits policy map class configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Note Enter additional class commands to create additional classes in the policy map.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router# show policy-map policy_name</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to verify the configuration:

Router# show policy-map max-pol-ipp5
Policy Map max-pol-ipp5
class ipp5
class ipp5
  police flow 10000000 10000 conform-action set-prec-transmit 6 exceed-action policed-dscp-transmit
  trust precedence
  police 2000000000 2000000000 2000000000 conform-action set-prec-transmit 6 exceed-action policed-dscp-transmit

Router#

Attaching a Policy Map to an Interface

To attach a policy map to an interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{vlan vlan_ID}</td>
</tr>
<tr>
<td></td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# service-policy [input</td>
</tr>
<tr>
<td></td>
<td>Attaches a policy map to the interface.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no service-policy [input</td>
</tr>
<tr>
<td></td>
<td>Removes the policy map from the interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show policy-map interface {{vlan vlan_ID}</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When attaching a policy map to an interface, note the following information:

- Do not attach a service policy to a port that is a member of an EtherChannel.
- PFC QoS supports the output keyword only on Layer 3 interfaces (either LAN ports configured as Layer 3 interfaces or VLAN interfaces). You can attach both an input and an output policy map to a Layer 3 interface.
- VLAN-based or port-based PFC QoS on Layer 2 ports is not relevant to policies attached to Layer 3 interfaces with the output keyword.
• Policies attached with the **output** keyword do not support microflow policing.

• You cannot attach a policy map that configures a trust state with the **service-policy output** command.

• Filtering based on IP precedence or DSCP in policies attached with the **output** keyword uses the received IP precedence or DSCP values. Filtering based on IP precedence or DSCP in policies attached with the **output** keyword is not based on any IP precedence or DSCP changes made by ingress QoS.

• Aggregate policing works independently on each DFC-equipped switching module and independently on the PFC, which supports any non-DFC-equipped switching modules. Aggregate policing does not combine flow statistics from different DFC-equipped switching modules. You can display aggregate policing statistics for each DFC-equipped switching module and for the PFC and any non-DFC-equipped switching modules supported by the PFC.

• Each PFC or DFC polices independently, which might affect QoS features being applied to traffic that is distributed across the PFC and any DFCs. Examples of these QoS feature are:
  - Policers applied to a port channel interface.
  - Policers applied to a switched virtual interface.
  - Egress policers applied to either a Layer 3 interface or an SVI. Note that PFC QoS performs egress policing decisions at the ingress interface, on the PFC or ingress DFC.

Policers affected by this restriction deliver an aggregate rate that is the sum of all the independent policing rates.

• When you apply both ingress policing and egress policing to the same traffic, both the input policy and the output policy must either mark down traffic or drop traffic. PFC QoS does not support ingress markdown with egress drop or ingress drop with egress markdown.

This example shows how to attach the policy map named **pmap1** to Fast Ethernet port 5/36:

```bash
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/36
Router(config-if)# service-policy input pmap1
Router(config-if)# end
```

This example shows how to verify the configuration:

```bash
Router# show policy-map interface fastethernet 5/36
FastEthernet5/36
 service-policy input: pmap1
 class-map: cmap1 (match-all)
 0 packets, 0 bytes
 5 minute rate 0 bps
 match: ip precedence 5
 class cmap2
 police 8000 8000 conform-action transmit exceed-action drop
 class-map: cmap2 (match-any)
 0 packets, 0 bytes
 5 minute rate 0 bps
 match: ip precedence 2
 0 packets, 0 bytes
 5 minute rate 0 bps
 class cmap2
 police 8000 10000 conform-action transmit exceed-action drop
```

*OL-10113-33*

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S

48-69
Chapter 48  Configuring PFC QoS

Configuring Egress DSCP Mutation on a PFC

These sections describe how to configure egress DSCP mutation on a PFC:

- Configuring Named DSCP Mutation Maps, page 48-70
- Attaching an Egress DSCP Mutation Map to an Interface, page 48-71

Configuring Named DSCP Mutation Maps

To configure a named DSCP mutation map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos map dscp-mutation map_name dscp1 [dscp2 [dscp3 [dscp4 [dscp5 [dscp6 [dscp7 [dscp8]]]]]]] to output_dscp</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no mls qos map dscp-mutation map_name</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show mls qos maps</td>
</tr>
</tbody>
</table>

When configuring a named DSCP mutation map, note the following information:

- You can enter up to 8 DSCP values that map to a mutated DSCP value.
- You can enter multiple commands to map additional DSCP values to a mutated DSCP value.
- You can enter a separate command for each mutated DSCP value.

This example shows how to map DSCP 30 to mutated DSCP value 8:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# mls qos map dscp-mutation mutmap1 30 to 8
Router(config)# end
Router#

This example shows how to verify the configuration:

Router# show mls qos map | begin DSCP mutation
DSCP mutation map mutmap1: (dscp= d1d2)
  d1 :  d2  0  1  2  3  4  5  6  7  8  9  
-----------------------------
  0 :  00  01  02  03  04  05  06  07  08  09
  1 :  10  11  12  13  14  15  16  17  18  19
  2 :  20  21  22  23  24  25  26  27  28  29
  3 :  30  31  32  33  34  35  36  37  38  39
  4 :  40  41  42  43  44  45  46  47  48  49
  5 :  50  51  52  53  54  55  56  57  58  59
  6 :  60  61  62  63
<...Output Truncated...>
Router#

Note
In the DSCP mutation map displays, the marked-down DSCP values are shown in the body of the matrix; the first digit of the original DSCP value is in the column labeled d1 and the second digit is in the top row. In the example shown, DSCP 30 maps to DSCP 08.
Attaching an Egress DSCP Mutation Map to an Interface

To attach an egress DSCP mutation map to an interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {{vlan vlan_ID}</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mls qos dscp-mutation mutation_map_name</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls qos dscp-mutation mutation_map_name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show running-config interface {{vlan vlan_ID}</td>
</tr>
</tbody>
</table>

1. **type** = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to attach the egress DSCP mutation map named mutmap1 to Fast Ethernet port 5/36:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/36
Router(config-if)# mls qos dscp-mutation mutmap1
Router(config-if)# end
```

Configuring Ingress CoS Mutation on IEEE 802.1Q Tunnel Ports

Ingress CoS mutation on IEEE 802.1Q tunnel ports configured to trust received CoS is supported (see the “Applying Ingress CoS Mutation Maps to IEEE 802.1Q Tunnel Ports” section on page 48-73 for the list of supported modules).

When you configure ingress CoS mutation on an IEEE 802.1Q tunnel port that you have configured to trust received CoS, PFC QoS uses the mutated CoS value instead of the received CoS value in the ingress drop thresholds and for any trust CoS marking and policing.

These sections describe how to configure ingress CoS mutation:

- Ingress CoS Mutation Configuration Guidelines and Restrictions, page 48-72
- Configuring Ingress CoS Mutation Maps, page 48-73
- Applying Ingress CoS Mutation Maps to IEEE 802.1Q Tunnel Ports, page 48-73
Ingress CoS Mutation Configuration Guidelines and Restrictions

When configuring ingress CoS mutation, follow these guidelines and restrictions:

- Ports that are not configured as IEEE 802.1Q tunnel ports do not support ingress CoS mutation.
- Ports that are not configured to trust received CoS do not support ingress CoS mutation.
- Ingress CoS mutation does not change the CoS value carried by the customer frames. When the customer traffic exits the 802.1Q tunnel, the original CoS is intact.
- Ingress CoS mutation configuration applies to all ports in a port group. The port groups are:
  - WS-X6704-10GE—4 ports, 4 port groups, 1 port in each group
  - WS-X6724-SFP—24 ports, 2 port groups: ports 1–12 and 13–24
- To avoid ingress CoS mutation configuration failures, only create EtherChannels where all member ports support ingress CoS mutation or where no member ports support ingress CoS mutation. Do not create EtherChannels with mixed support for ingress CoS mutation.
- If you configure ingress CoS mutation on a port that is a member of an EtherChannel, the ingress CoS mutation is applied to the port-channel interface.
- You can configure ingress CoS mutation on port-channel interfaces.
- With ingress CoS mutation configured on a port-channel interface, the following occurs:
  - The ingress CoS mutation configuration is applied to the port groups of all member ports of the EtherChannel. If any member port cannot support ingress CoS mutation, the configuration fails.
  - If a port in the port group is a member of a second EtherChannel, the ingress CoS mutation configuration is applied to the second port-channel interface and to the port groups of all member ports of the second EtherChannel. If any member port of the second EtherChannel cannot support ingress CoS mutation, the configuration fails on the first EtherChannel. If the configuration originated on a nonmember port in a port group that has a member port of the first EtherChannel, the configuration fails on the nonmember port.
  - The ingress CoS mutation configuration propagates without limit through port groups, member ports, and port-channel interfaces, regardless of whether or not the ports are configured to trust CoS or are configured as IEEE 802.1Q tunnel ports.
- An EtherChannel where you want to configure ingress CoS mutation must not have member ports that are in port groups containing member ports of other EtherChannels that have member ports that do not support ingress CoS mutation. (This restriction extends without limit through all port-group-linked member ports and port-channel-interface-linked ports.)
- A port where you want to configure ingress CoS mutation must not be in a port group that has a member port of an EtherChannel that has members that do not support ingress CoS mutation. (This restriction extends without limit through all port-group-linked member ports and port-channel-interface-linked ports.)
- There can be only be one ingress CoS mutation configuration applied to all port-group-linked member ports and port-channel-interface-linked ports.
Configuring Ingress CoS Mutation Maps

To configure an ingress CoS mutation map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# mls qos map cos-mutation mutation_map_name mutated_cos1 mutated_cos2 mutated_cos3 mutated_cos4 mutated_cos5 mutated_cos6 mutated_cos7 mutated_cos8</td>
</tr>
<tr>
<td></td>
<td>Configures an ingress CoS mutation map. You must enter 8 mutated CoS values to which PFC QoS maps ingress CoS values 0 through 7.</td>
</tr>
<tr>
<td>Router(config)# no mls qos map cos-mutation map_name</td>
<td>Deletes the named map.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# end</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router# show mls qos maps cos-mutation</td>
</tr>
</tbody>
</table>

This example shows how to configure a CoS mutation map named testmap:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# mls qos map cos-mutation testmap 4 5 6 7 0 1 2 3
Router(config)# end
```

This example shows how to verify the map configuration:

```
Router(config)# show mls qos maps cos-mutation
COS mutation map testmap
cos-in : 0 1 2 3 4 5 6 7

cos-out : 4 5 6 7 0 1 2 3
```

Applying Ingress CoS Mutation Maps to IEEE 802.1Q Tunnel Ports

To attach an ingress CoS mutation map to an IEEE 802.1Q tunnel port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface {{type^ slot/port}</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# mls qos cos-mutation mutation_map_name</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls qos cos-mutation mutation_map_name</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router# show running-config interface {{type^ slot/port}</td>
</tr>
<tr>
<td></td>
<td>Router# show mls qos maps cos-mutation</td>
</tr>
<tr>
<td>1. type = gigabitethernet or tengigabitethernet</td>
<td></td>
</tr>
</tbody>
</table>

This example shows how to attach the ingress CoS mutation map named testmap to Gigabit Ethernet port 1/1:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
```
Configuring PFC QoS

Router(config)# interface gigabitethernet 1/1
Router(config-if)# mls qos cos-mutation testmap
Router(config-if)# end
Router# show mls qos maps cos-mutation
COS mutation map testmap
cos-in : 0 1 2 3 4 5 6 7
------------------------
cos-out : 4 5 6 7 0 1 2 3
testmap is attached on the following interfaces
Gi1/1
Router#

Configuring DSCP Value Maps

These sections describe how DSCP values are mapped to other values:
- Mapping Received CoS Values to Internal DSCP Values, page 48-74
- Mapping Received IP Precedence Values to Internal DSCP Values, page 48-75
- Configuring DSCP Markdown Values, page 48-75
- Mapping Internal DSCP Values to Egress CoS Values, page 48-77

Mapping Received CoS Values to Internal DSCP Values

To configure the mapping of received CoS values to the DSCP value that PFC QoS uses internally on the PFC, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# mls qos map cos-dscp dscp1 dscp2 dscp3 dscp4 dscp5 dscp6 dscp7 dscp8</td>
<td>Configures the received CoS to internal DSCP map. You must enter 8 DSCP values to which PFC QoS maps CoS values 0 through 7.</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default map.</td>
</tr>
<tr>
<td>Step 2 Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3 Router# show mls qos maps</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the received CoS to internal DSCP map:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# mls qos map cos-dscp 0 1 2 3 4 5 6 7
Router(config)# end
Router#

This example shows how to verify the configuration:

Router# show mls qos maps | begin Cos-dscp map
Cos-dscp map:
  cos: 0 1 2 3 4 5 6 7
  ------------------------
  dscp: 0 1 2 3 4 5 6 7
<...Output Truncated...>
Router#
Mapping Received IP Precedence Values to Internal DSCP Values

To configure the mapping of received IP precedence values to the DSCP value that PFC QoS uses internally on the PFC, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configures the received IP precedence to internal DSCP map. You must enter 8 internal DSCP values to which PFC QoS maps received IP precedence values 0 through 7.</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default map.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the received IP precedence to internal DSCP map:

```
Router(config)# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# mls qos map ip-prec-dscp dscp1 dscp2 dscp3 dscp4 dscp5 dscp6 dscp7 dscp8
Router(config)# no mls qos map ip-prec-dscp
```

This example shows how to verify the configuration:

```
Router# show mls qos maps | begin IpPrecedence-dscp map
IpPrecedence-dscp map:
 ipprec: 0 1 2 3 4 5 6 7

 dscp: 0 1 2 3 4 5 6 7
<...Output Truncated...>
```

Configuring DSCP Markdown Values

To configure the mapping of DSCP markdown values used by policers, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configures a DSCP markdown map.</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default map.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When configuring a DSCP markdown map, note the following information:

- You can enter the `normal-burst` keyword to configure the markdown map used by the `exceed-action policed-dscp-transmit` keywords.
- You can enter the `max-burst` keyword to configure the markdown map used by the `violate-action policed-dscp-transmit` keywords.
Configuring PFC QoS

**Note** When you create a policer that does not use the `pir` keyword, and the `maximum_burst_bytes` parameter is equal to the `normal_burst_bytes` parameter (which occurs if you do not enter the `maximum_burst_bytes` parameter), the `exceed-action policed-dscp-transmit` keywords cause PFC QoS to mark traffic down as defined by the `policed-dscp max-burst` markdown map.

- To avoid out-of-sequence packets, configure the markdown maps so that conforming and nonconforming traffic uses the same queue.
- You can enter up to 8 DSCP values that map to a marked-down DSCP value.
- You can enter multiple commands to map additional DSCP values to a marked-down DSCP value.
- You can enter a separate command for each marked-down DSCP value.

**Note** Configure marked-down DSCP values that map to CoS values consistent with the markdown penalty.

This example shows how to map DSCP 1 to marked-down DSCP value 0:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# mls qos map policed-dscp normal-burst 1 to 0
Router(config)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show mls qos map
Normal Burst Policed-dscp map: (dscp= d1d2)
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 01 02 03 04 05 06 07 08 09
 1 : 10 11 12 13 14 15 16 17 18 19
 2 : 20 21 22 23 24 25 26 27 28 29
 3 : 30 31 32 33 34 35 36 37 38 39
 4 : 40 41 42 43 44 45 46 47 48 49
 5 : 50 51 52 53 54 55 56 57 58 59
 6 : 60 61 62 63

Maximum Burst Policed-dscp map: (dscp= d1d2)
 d1 : d2 0 1 2 3 4 5 6 7 8 9

 0 : 00 01 02 03 04 05 06 07 08 09
 1 : 10 11 12 13 14 15 16 17 18 19
 2 : 20 21 22 23 24 25 26 27 28 29
 3 : 30 31 32 33 34 35 36 37 38 39
 4 : 40 41 42 43 44 45 46 47 48 49
 5 : 50 51 52 53 54 55 56 57 58 59
 6 : 60 61 62 63
``` 

<...Output Truncated...>

```
Router#
```

**Note** In the Policed-dscp displays, the marked-down DSCP values are shown in the body of the matrix; the first digit of the original DSCP value is in the column labeled d1 and the second digit is in the top row. In the example shown, DSCP 41 maps to DSCP 41.
Mapping Internal DSCP Values to Egress CoS Values

To configure the mapping of the DSCP value that PFC QoS uses internally on the PFC to the CoS value used for egress LAN port scheduling and congestion avoidance, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Configures the internal DSCP to egress CoS map.</td>
</tr>
<tr>
<td>Router(config)# mls qos map dscp-cos dscp1 [dscp2 [dscp3 [dscp4 [dscp5 [dscp6 [dscp7 [dscp8]]]]]]] to cos_value</td>
<td>Configures the internal DSCP to egress CoS map.</td>
</tr>
<tr>
<td>Router(config)# no mls qos map dscp-cos</td>
<td>Reverts to the default map.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td>Router# show mls qos maps</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When configuring the internal DSCP to egress CoS map, note the following information:

- You can enter up to 8 DSCP values that PFC QoS maps to a CoS value.
- You can enter multiple commands to map additional DSCP values to a CoS value.
- You can enter a separate command for each CoS value.

This example shows how to configure internal DSCP values 0, 8, 16, 24, 32, 40, 48, and 54 to be mapped to egress CoS value 0:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# mls qos map dscp-cos 0 8 16 24 32 40 48 54 to 0
Router(config)# end
```

This example shows how to verify the configuration:

```
Router# show mls qos maps | begin Dscp-cos map
Dscp-cos map: (dscp= d1d2)
 d1 : d2 0 1 2 3 4 5 6 7 8 9
 0 : 00 00 00 00 00 00 00 00 00 01
 1 : 01 01 01 01 01 01 00 02 02 02
 2 : 02 02 02 02 00 03 03 03 03 03
 3 : 03 03 00 04 04 04 04 04 04 04
 4 : 00 05 05 05 05 05 05 05 00 06
 5 : 06 06 06 06 06 06 07 07 07 07
 6 : 07 07 07 07
<...Output Truncated...>
```

**Note**

In the Dscp-cos display, the CoS values are shown in the body of the matrix; the first digit of the DSCP value is in the column labeled d1 and the second digit is in the top row. In the example shown, DSCP values 41 through 47 all map to CoS 05.

Configuring the Trust State of Ethernet LAN and OSM Ingress Ports

By default, all ingress ports are untrusted. You can configure the ingress port trust state on all Ethernet LAN ports and OSM ports.
To configure the trust state of an ingress port, perform this task:

```
Step 1 Router(config)# interface {{type slot/port} |
 {port-channel number}}
 Selects the interface to configure.

Step 2 Router(config-if)# mls qos trust [dscp |
 ip-precedence | cos]
 Configures the trust state of the port.

 Router(config-if)# no mls qos trust
 Reverts to the default trust state (untrusted).

Step 3 Router(config-if)# end
 Exits configuration mode.

Step 4 Router# show mls qos [ipv6]
 Verifies the configuration.
```

When configuring the trust state of an ingress port, note the following information:

- With no other keywords, the `mls qos trust` command is equivalent to `mls qos trust dscp`.
- With Release 12.2(33)SRC and later releases, you can use the `mls qos trust dscp` command to enable DSCP-based receive-queue drop thresholds on WS-X6708-10GE ports (See Configuring DSCP-Based Queue Mapping, page 48-86). To avoid dropping traffic because of inconsistent DSCP values when DSCP-based queue mapping is enabled, configure ports with the `mls qos trust dscp` command only when the received traffic carries DSCP values that you know to be consistent with network policy.
- The `mls qos trust cos` command enables receive-queue drop thresholds. To avoid dropping traffic because of inconsistent CoS values, configure ports with the `mls qos trust cos` command only when the received traffic is ISL or 802.1Q frames carrying CoS values that you know to be consistent with network policy.
- You can configure IEEE 8021.Q tunnel ports configured with the `mls qos trust cos` command to use a mutated CoS value instead of the received CoS value (“Configuring Ingress CoS Mutation on IEEE 802.1Q Tunnel Ports” section on page 48-71).
- Use the `no mls qos trust` command to set the port state to untrusted.

This example shows how to configure Gigabit Ethernet port 1/1 with the `trust cos` keywords:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 1/1
Router(config-if)# mls qos trust cos
Router(config-if)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show mls qos queuing interface gigabitethernet 1/1 | include trust
Trust state: trust COS
Router#
```
Chapter 48 Configuring PFC QoS

Configuring the Ingress LAN Port CoS Value

Note Whether or not PFC QoS uses the CoS value applied with the `mls qos cos` command depends on the trust state of the port and the trust state of the traffic received through the port. The `mls qos cos` command does not configure the trust state of the port or the trust state of the traffic received through the port.

To use the CoS value applied with the `mls qos cos` command as the basis of internal DSCP:

- On a port that receives only untagged ingress traffic, configure the ingress port as trusted or configure a trust CoS policy map that matches the ingress traffic.
- On a port that receives tagged ingress traffic, configure a trust CoS policy map that matches the ingress traffic.

You can configure the CoS value that PFC QoS assigns to untagged frames from ingress LAN ports configured as trusted and to all frames from ingress LAN ports configured as untrusted.

To configure the CoS value for an ingress LAN port, perform this task:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface {{type1 slot/port} | {port-channel number}}
Selects the interface to configure.
Router(config-if)# mls qos cos port_cos
Configures the ingress LAN port CoS value.
Router(config-if)# no mls qos cos port_cos
Reverts to the default port CoS value.
Router(config-if)# end
Exits configuration mode.
Router# show mls qos queuing interface {ethernet | fastethernet | gigabitethernet | tengigabitethernet} slot/port
Verifies the configuration.
```

This example shows how to configure the CoS value 5 on Fast Ethernet port 5/24 and verify the configuration:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/24
Router(config-if)# mls qos cos 5
Router(config-if)# end
Router# show mls qos queuing interface fastethernet 5/24 | include Default COS
Default COS is 5
Router#
```

Configuring Standard-Queue Drop Threshold Percentages

These sections describe configuring standard-queue drop threshold percentages:

- Configuring a Tail-Drop Receive Queue, page 48-80
- Configuring a WRED-Drop Transmit Queue, page 48-81
- Configuring a WRED-Drop and Tail-Drop Receive Queue, page 48-82
- Configuring a WRED-Drop and Tail-Drop Transmit Queue, page 48-82
• Configuring 1q4t/2q2t Tail-Drop Threshold Percentages, page 48-84

<table>
<thead>
<tr>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Enter the `show mls qos queuing interface {ethernet</td>
</tr>
<tr>
<td>• 1p1q0t ports have no configurable thresholds.</td>
</tr>
<tr>
<td>• 1p3q1t (transmit), 1p2q1t (transmit), and 1p1q8t (receive) ports also have nonconfigurable tail-drop thresholds.</td>
</tr>
</tbody>
</table>

When configuring thresholds, note the following information:

• Queue number 1 is the lowest-priority standard queue.
• Higher-numbered queues are higher priority standard queues.

When you configure multiple-threshold standard queues, note the following information:

• The first percentage that you enter sets the lowest-priority threshold.
• The second percentage that you enter sets the next highest-priority threshold.
• The last percentage that you enter sets the highest-priority threshold.
• The percentages range from 1 to 100. A value of 10 indicates a threshold when the buffer is 10-percent full.
• Always set highest-numbered threshold to 100 percent.

When configuring the WRED-drop thresholds, note the following information:

• Each WRED-drop threshold has a low-WRED and a high-WRED value.
• Low-WRED and high-WRED values are a percentage of the queue capacity (the range is from 1 to 100).
• The low-WRED value is the traffic level under which no traffic is dropped. The low-WRED value must be lower than the high-WRED value.
• The high-WRED value is the traffic level above which all traffic is dropped.
• Traffic in the queue between the low- and high-WRED values has an increasing chance of being dropped as the queue fills.

**Configuring a Tail-Drop Receive Queue**

These port types have only tail-drop thresholds in their receive-queues:

• 1q2t
• 1p1q4t
• 2q8t
• 1q8t
Chapter 48  Configuring PFC QoS

To configure the drop thresholds, perform this task:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>**Router(config)# interface [fastethernet</td>
<td>gigabitethernet] slot/port**</td>
</tr>
<tr>
<td>2</td>
<td><strong>Router(config-if)# rcv-queue threshold queue_id thr1% thr2% thr3% thr4% {thr5% thr6% thr7% thr8%]</strong></td>
<td>Configures the receive-queue tail-drop threshold percentages.</td>
</tr>
<tr>
<td></td>
<td><strong>Router(config-if)# no rcv-queue threshold [queue_id]</strong></td>
<td>Reverts to the default receive-queue tail-drop threshold percentages.</td>
</tr>
<tr>
<td>3</td>
<td><strong>Router(config-if)# end</strong></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td>**Router# show mls qos queuing interface [fastethernet</td>
<td>gigabitethernet] slot/port**</td>
</tr>
</tbody>
</table>

This example shows how to configure the receive-queue drop thresholds for Gigabit Ethernet port 1/1:

```cisco
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 1/1
Router(config-if)# rcv-queue threshold 1 60 75 85 100
Router(config-if)# end
Router# show mls qos queuing interface gigabitethernet 1/1 | begin Receive queues
Receive queues [type = 1pq4t]:
Queue Id Scheduling Num of thresholds

1 Standard 4
2 Priority 1
Trust state: trust COS
queue tail-drop-thresholds

<...Output Truncated...>
Router#```

Configuring a WRED-Drop Transmit Queue

These port types have only WRED-drop thresholds in their transmit queues:

- 1p2q2t (transmit)
- 1p2q1t (transmit)

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router(config)# interface type1 slot/port</td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>2</td>
<td>Router(config-if)# wrr-queue random-detect min-threshold queue_id thr1% [thr2%]</td>
<td>Configures the low WRED-drop thresholds.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no wrr-queue random-detect min-threshold [queue_id]</td>
<td>Reverts to the default low WRED-drop thresholds.</td>
</tr>
</tbody>
</table>
Chapter 48 Configuring PFC QoS

Configuring PFC QoS

Configuring a WRED-Drop and Tail-Drop Receive Queue

These port types have both WRED-drop and tail-drop thresholds in their receive queues:

- **8q8t** (receive)
- **1p1q8t** (receive)

To configure the drop thresholds, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 3 | Router(config-if)# wrr-queue random-detect max-threshold queue_id thr1% [thr2%]
 | Configures the high WRED-drop thresholds.
 | Router(config-if)# no wrr-queue random-detect max-threshold [queue_id]
 | Reverts to the default high WRED-drop thresholds. |
| Step 4 | Router(config-if)# end
 | Exits configuration mode. |
| Step 5 | Router# show mls qos queuing interface {fastethernet | gigabitethernet} slot/port
 | Verifies the configuration. |

1. **type** = fastethernet, gigabitethernet, or tengigabitethernet

Configuring a WRED-Drop and Tail-Drop Transmit Queue

These port types have both WRED-drop and tail-drop thresholds in their transmit queues:

- **1p3q1t** (transmit)
- **1p3q8t** (transmit)

To configure the drop thresholds, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | Router(config)# interface type' slot/port
 | Selects the interface to configure. |
| Step 2 | Router(config-if)# rcv-queue threshold queue_id thr1% thr2% thr3% thr4% thr5% thr6% thr7% thr8%
 | Configures the tail-drop thresholds.
 | Router(config-if)# no rcv-queue threshold [queue_id]
 | Reverts to the default tail-drop thresholds. |
| Step 3 | Router(config-if)# rcv-queue random-detect min-threshold queue_id thr1% thr2% thr3% thr4% thr5% thr6% thr7% thr8%
 | Configures the low WRED-drop thresholds.
 | Router(config-if)# no rcv-queue random-detect min-threshold [queue_id]
 | Reverts to the default low WRED-drop thresholds. |
| Step 4 | Router(config-if)# rcv-queue random-detect max-threshold queue_id thr1% thr2% thr3% thr4% thr5% thr6% thr7% thr8%
 | Configures the high WRED-drop thresholds.
 | Router(config-if)# no rcv-queue random-detect max-threshold [queue_id]
 | Reverts to the default high WRED-drop thresholds. |
| Step 5 | Router(config-if)# rcv-queue random-detect queue_id
 | Enables WRED-drop thresholds.
 | Router(config-if)# no rcv-queue random-detect [queue_id]
 | Enables tail-drop thresholds. |
| Step 6 | Router(config-if)# end
 | Exits configuration mode. |
| Step 7 | Router# show mls qos queuing interface {fastethernet | gigabitethernet} slot/port
 | Verifies the configuration. |

1. **type** = fastethernet, gigabitethernet, or tengigabitethernet
Chapter 48 Configuring PFC QoS

• 1p7q8t (transmit)

To configure the drop thresholds, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# wrr-queue threshold queue_id thr1% [thr2% thr3% thr4% thr5% thr6% thr7% thr8%]</td>
</tr>
<tr>
<td></td>
<td>Configures the tail-drop thresholds.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no wrr-queue threshold [queue_id]</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default tail-drop thresholds.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# wrr-queue random-detect min-threshold queue_id thr1% [thr2% thr3% thr4% thr5% thr6% thr7% thr8%]</td>
</tr>
<tr>
<td></td>
<td>Configures the low WRED-drop thresholds.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no wrr-queue random-detect min-threshold [queue_id]</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default low WRED-drop thresholds.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# wrr-queue random-detect max-threshold queue_id thr1% [thr2% thr3% thr4% thr5% thr6% thr7% thr8%]</td>
</tr>
<tr>
<td></td>
<td>Configures the high WRED-drop thresholds.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no wrr-queue random-detect max-threshold [queue_id]</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default high WRED-drop thresholds.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# wrr-queue random-detect queue_id</td>
</tr>
<tr>
<td></td>
<td>Enables WRED-drop thresholds.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no wrr-queue random-detect [queue_id]</td>
</tr>
<tr>
<td></td>
<td>Enables tail-drop thresholds.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router# show mls qos queuing interface [fastethernet</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to configure the low-priority transmit queue high-WRED-drop thresholds for Gigabit Ethernet port 1/1:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 1/1
Router(config-if)# wrr-queue random-detect max-threshold 1 70 70
Router(config-if)# end
Router#

This example shows how to verify the configuration:

Router# show mls qos queuing interface gigabitethernet 1/1 | begin Transmit queues
Transmit queues [type = 1p2q2t]:
<table>
<thead>
<tr>
<th>Queue Id</th>
<th>Scheduling</th>
<th>Num of thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WRR low</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>WRR high</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Priority</td>
<td>1</td>
</tr>
</tbody>
</table>

queue random-detect-max-thresholds
| 1 | 40[1] 70[2] |
| 2 | 40[1] 70[2] |

<...Output Truncated...>
Router#
Configuring 1q4t/2q2t Tail-Drop Threshold Percentages

On 1q4t/2q2t ports, the receive- and transmit-queue drop thresholds have this relationship:

- Receive queue 1 (standard) threshold 1 = transmit queue 1 (standard low priority) threshold 1
- Receive queue 1 (standard) threshold 2 = transmit queue 1 (standard low priority) threshold 2
- Receive queue 1 (standard) threshold 3 = transmit queue 2 (standard high priority) threshold 1
- Receive queue 1 (standard) threshold 4 = transmit queue 2 (standard high priority) threshold 2

To configure tail-drop threshold percentages for the standard receive and transmit queues on 1q4t/2q2t LAN ports, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {ethernet</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# wrr-queue threshold queue_id thr1% thr2%</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no wrr-queue threshold [queue_id]</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos queuing interface {ethernet</td>
</tr>
</tbody>
</table>

When configuring the receive- and transmit-queue tail-drop thresholds, note the following information:

- You must use the transmit queue and threshold numbers.
- The queue_id is 1 for the standard low-priority queue and 2 for the standard high-priority queue.
- The percentages range from 1 to 100. A value of 10 indicates a threshold when the buffer is 10-percent full.
- Always set threshold 2 to 100 percent.
- Ethernet and Fast Ethernet 1q4t ports do not support receive-queue tail-drop thresholds.

This example shows how to configure receive queue 1/threshold 1 and transmit queue 1/threshold 1 for Gigabit Ethernet port 2/1:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 2/1
Router(config-if)# wrr-queue threshold 1 60 100
Router(config-if)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show mls qos queuing interface gigabitethernet 2/1
Transmit queues [type = 2q2t]:
<...Output Truncated...>
queue tail-drop-thresholds
-------------------------------
  1  60[1] 100[2]
  2  40[1] 100[2]
```
Configuring PFC QoS

Chapter 48 Configuring PFC QoS

Mapping QoS Labels to Queues and Drop Thresholds

These sections describe how to map QoS labels to queues and drop thresholds:

Note

From Cisco IOS Software Release 15.0(1)S enter the `show mls qos queuing interface {ethernet | fastethernet | gigabitethernet | tengigabitethernet} slot/port | include type` command to see the queue structure of a LAN port.

These sections describe how to map QoS labels to queues and drop thresholds:

- Queue and Drop Threshold Mapping Guidelines and Restrictions, page 48-85
- Configuring DSCP-Based Queue Mapping, page 48-86
- Configuring CoS-Based Queue Mapping, page 48-90

Queue and Drop Threshold Mapping Guidelines and Restrictions

When mapping QoS labels to queues and thresholds, note the following information:

- When SRR is enabled, you cannot map any CoS values or DSCP values to strict-priority queues.
- Queue number 1 is the lowest-priority standard queue.
- Higher-numbered queues are higher priority standard queues.
- You can map up to 8 CoS values to a threshold.
- You can map up to 64 DSCP values to a threshold.
- Threshold 0 is a nonconfigurable 100-percent tail-drop threshold on these port types:
 - 1p1q0t (receive)
 - 1p1q8t (receive)
 - 1p3q1t (transmit)
 - 1p2q1t (transmit)
- The standard queue thresholds can be configured as either tail-drop or WRED-drop thresholds on these port types:
 - 1p1q8t (receive)
 - 1p3q1t (transmit)
 - 1p3q8t (transmit)
 - 1p7q1t (transmit)
Chapter 48 Configuring PFC QoS

Configuring PFC QoS

Configuring DSCP-Based Queue Mapping

These sections describe how to configure DSCP-based queue mapping:

- Configuring Ingress DSCP-Based Queue Mapping, page 48-86
- Mapping DSCP Values to Standard Transmit-Queue Thresholds, page 48-88
- Mapping DSCP Values to the Transmit Strict-Priority Queue, page 48-90

Note
DSCP-based queue mapping is supported on WS-X6708-10GE ports.

Enabling DSCP-Based Queue Mapping

To enable DSCP-based queue mapping, perform this task:

This example shows how to enable DSCP-based queue mapping on 10-Gigabit Ethernet port 6/1:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface tengigabitethernet slot/port
Selects the interface to configure.
Step 2
Router(config-if)# mls qos queue-mode mode-dscp
Enables DSCP-based queue mapping.
Router(config-if)# no mls qos queue-mode mode-dscp
Reverts to CoS-based queue mapping.
Step 3
Router(config-if)# end
Exits configuration mode.
Step 4
Router# show mls qos queuing interface tengigabitethernet slot/port | include Queueing Mode
Verifies the configuration.

This example shows how to enable DSCP-based queue mapping on 10-Gigabit Ethernet port 6/1:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface tengigabitethernet 6/1
Router(config-if)# mls qos queue-mode mode-dscp
Router(config-if)# end

This example shows how to verify the configuration:

Router# show mls qos queuing interface tengigabitethernet 6/1 | include Queueing Mode
Queueing Mode In Tx direction: mode-dscp
Queueing Mode In Rx direction: mode-dscp

Configuring Ingress DSCP-Based Queue Mapping

Ingress DSCP-to-queue mapping is supported only on ports configured to trust DSCP.
These sections describe how to configure ingress DSCP-based queue mapping:

- Enabling DSCP-Based Queue Mapping, page 48-86
- Mapping DSCP Values to Standard Receive-Queue Thresholds, page 48-87

Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface tengigabitethernet slot/port</td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mls qos queue-mode mode-dscp</td>
<td>Enables DSCP-based queue mapping.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls qos queue-mode mode-dscp</td>
<td>Reverts to CoS-based queue mapping.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos queuing interface tengigabitethernet slot/port</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>
Configuring PFC QoS

Chapter 48 Configuring PFC QoS

Configuring the Port to Trust DSCP

To configure the port to trust DSCP perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface tengigabitethernet slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mls qos trust dscp</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls qos trust</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos queuing interface tengigabitethernet slot/port</td>
</tr>
</tbody>
</table>

This example shows how to configure 10-Gigabit Ethernet port 6/1 to trust received DSCP values:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 6/1
Router(config-if)# mls qos trust dscp
Router(config-if)# end
Router#

This example shows how to verify the configuration:

Router# show mls qos queuing interface gigabitethernet 6/1 | include Trust state
Trust state: trust DSCP

Mapping DSCP Values to Standard Receive-Queue Thresholds

To map DSCP values to the standard receive-queue thresholds, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface tengigabitethernet slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# rcv-queue dscp-map queue_# threshold_# dscp1 [dscp2 [dscp3 [dscp4 [dscp5 [dscp6 [dscp7 [dscp8]]]]]]]</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no rcv-queue dscp-map</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos queuing interface tengigabitethernet slot/port</td>
</tr>
</tbody>
</table>

When mapping DSCP values, note the following information:

- You can enter up to 8 DSCP values that map to a queue and threshold.
- You can enter multiple commands to map additional DSCP values to the queue and threshold.
- You must enter a separate command for each queue and threshold.

This example shows how to map the DSCP values 0 and 1 to threshold 1 in the standard receive queue for 10-Gigabit Ethernet port 6/1:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Chapter 48 Configuring PFC QoS

Configuring PFC QoS

Router(config)# interface tengigabitethernet 6/1
Router(config-if)# rcv-queue dscp-map 1 1 0 1
Router(config-if)# end
Router#

This example shows how to verify the configuration:

Router# show mls qos queuing interface tengigabitethernet 1/1 | begin queue thresh dscp-map
<...Output Truncated...>
queue thresh dscp-map

1 1 0 1 2 3 4 5 6 7 8 9 11 13 15 16 17 19 21 23 25 27 29 31 33 39 41 42 43 44 45 47
1 2
1 3
1 4
2 1 14
2 2 12
2 3 10
2 4
3 1 22
3 2 20
3 3 18
3 4
4 1 24 30
4 2 28
4 3 26
4 4
5 1 32 34 35 36 37 38
5 2
5 3
5 4
6 1 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
6 2
6 3
6 4
7 1
7 2
7 3
7 4
8 1 40 46
8 2
8 3
8 4
<...Output Truncated...>
Router#

Mapping DSCP Values to Standard Transmit-Queue Thresholds

To map DSCP values to standard transmit-queue thresholds, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface tengigabitethernet slot/port</td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# wrq-queue dscp-map transmit_queue # threshold # dscp1 [dscp2 [dscp3 [dscp4 [dscp5 [dscp6 [dscp7 [dscp8]]]]]]]</td>
<td>Maps DSCP values to a standard transmit-queue threshold.</td>
</tr>
<tr>
<td>Router(config-if)# no wrq-queue dscp-map</td>
<td>Reverts to the default mapping.</td>
</tr>
</tbody>
</table>
When mapping DSCP values, note the following information:

- You can enter up to 8 DSCP values that map to a queue and threshold.
- You can enter multiple commands to map additional DSCP values to the queue and threshold.
- You must enter a separate command for each queue and threshold.

This example shows how to map the DSCP values 0 and 1 to standard transmit queue 1/threshold 1 for 10-Gigabit Ethernet port 6/1:

```bash
Router# configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
Router(config)# interface tengigabitethernet 6/1
Router(config-if)# wrr-queue dscp-map 1 1 0 1
Router(config-if)# end
```

This example shows how to verify the configuration:

```bash
Router# show mls qos queuing interface tengigabitethernet 6/1 | begin queue thresh
queue thresh dscp-map
-----------------------------
1 1 0 1 2 3 4 5 6 7 8 9 11 13 15 16 17 19 21 23 25 27 29 31 33 39 41 42 43 44 45 47
1 2
1 3
1 4
2 1 14
2 2 12
2 3 10
2 4
3 1 22
3 2 20
3 3 18
3 4
4 1 24 30
4 2 28
4 3 26
4 4
5 1 32 34 35 36 37 38
5 2
5 3
5 4
6 1 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
6 2
6 3
6 4
7 1
7 2
7 3
7 4
8 1 40 46
<...Output Truncated...>
Router#
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos queuing interface tengigabitethernet slot/port</td>
</tr>
</tbody>
</table>
Mapping DSCP Values to the Transmit Strict-Priority Queue

To map DSCP values to the transmit strict-priority queue, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface tengigabitethernet slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# priority-queue dscp-map queue # dscp1 [dscp2 [dscp3 [dscp4 [dscp5 [dscp6 [dscp7 [dscp8]]]]]]]</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no priority-queue dscp-map</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos queuing interface tengigabitethernet slot/port</td>
</tr>
</tbody>
</table>

When mapping DSCP values to the strict-priority queue, note the following information:

- The queue number is always 1.
- You can enter up to 8 DSCP values to map to the queue.
- You can enter multiple commands to map additional DSCP values to the queue.

This example shows how to map DSCP value 7 to the strict-priority queue on 10 Gigabit Ethernet port 6/1:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface tengigabitethernet 6/1
Router(config-if)# priority-queue dscp-map 1 7
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show mls qos queuing interface tengigabitethernet 6/1 | begin queue thresh dscp-map
queue thresh dscp-map
---------------------------------------
<...Output Truncated...>
  8     1      7  40 46
<...Output Truncated...>
Router#
```

Configuring CoS-Based Queue Mapping

These sections describe how to configure CoS-based queue mapping:

- Mapping CoS Values to Standard Receive-Queue Thresholds, page 48-91
- Mapping CoS Values to Standard Transmit-Queue Thresholds, page 48-91
- Mapping CoS Values to Strict-Priority Queues, page 48-92
- Mapping CoS Values to Tail-Drop Thresholds on 1q4t/2q2t LAN Ports, page 48-93
Mapping CoS Values to Standard Receive-Queue Thresholds

To map CoS values to the standard receive-queue thresholds, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type slot/port</td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# rcv-queue cos-map queue_# threshold_# cos1 [cos2 [cos3 [cos4 [cos5 [cos6 [cos7 [cos8]]]]]]]</td>
<td>Maps CoS values to the standard receive queue thresholds.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no rcv-queue cos-map</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4 Router# show mls qos queuing interface type slot/port</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

1. type = fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to map the CoS values 0 and 1 to threshold 1 in the standard receive queue for Gigabit Ethernet port 1/1:

```bash
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 1/1
Router(config-if)# rcv-queue cos-map 1 1 0 1
Router(config-if)# end
Router#
```

This example shows how to verify the configuration:

```bash
Router# show mls qos queuing interface gigabitethernet 1/1
<...Output Truncated...>
  queue thresh cos-map
  ---------------------------------------
  1 1 0 1
  1 2 2 3
  1 3 4 5
  1 4 6 7
<...Output Truncated...>
Router#
```

Mapping CoS Values to Standard Transmit-Queue Thresholds

To map CoS values to standard transmit-queue thresholds, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type slot/port</td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# wrq-queue cos-map transmit_queue_# threshold_# cos1 [cos2 [cos3 [cos4 [cos5 [cos6 [cos7 [cos8]]]]]]]</td>
<td>Maps CoS values to a standard transmit-queue threshold.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no wrq-queue cos-map</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4 Router# show mls qos queuing interface type slot/port</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

1. type = fastethernet, gigabitethernet, or tengigabitethernet
This example shows how to map the CoS values 0 and 1 to standard transmit queue 1/threshold 1 for Fast Ethernet port 5/36:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/36
Router(config-if)# wrr-queue cos-map 1 1 0 1
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show mls qos queuing interface fastethernet 5/36 | begin queue thresh cos-map
queue thresh cos-map
---------------------------------------
1     1      0 1
1     2      2 3
2     1      4 5
2     2      6 7
<...Output Truncated...>
```

Mapping CoS Values to Strict-Priority Queues

To map CoS values to the receive and transmit strict-priority queues, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type1 slot/port</td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# priority-queue cos-map queue_# cos1 [cos2 [cos3 [cos4 [cos5 [cos6 [cos7 [cos8]]]]]]]</td>
<td>Maps CoS values to the receive and transmit strict-priority queues.</td>
</tr>
<tr>
<td>Router(config-if)# no priority-queue cos-map</td>
<td>Reverts to the default mapping.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 4 Router# show mls qos queuing interface type1 slot/port</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

1. type = fastethernet, gigabitethernet, or tengigabitethernet

When mapping CoS values to the strict-priority queues, note the following information:

- The queue number is always 1.
- You can enter up to 8 CoS values to map to the queue.

This example shows how to map CoS value 7 to the strict-priority queues on Gigabit Ethernet port 1/1:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 1/1
Router(config-if)# priority-queue cos-map 1 7
Router(config-if)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show mls qos queuing interface gigabitethernet 1/1
<...Output Truncated...>
Transmit queues [type = 1p2q2t]:
<...Output Truncated...>
```
Mapping CoS Values to Tail-Drop Thresholds on 1q4t/2q2t LAN Ports

Note
Enter the `show mls qos queuing interface {ethernet | fastethernet | gigabitethernet | tengigabitethernet} slot/port | include type` command to see the queue structure of a port.

On 1q4t/2q2t LAN ports, the receive- and transmit-queue tail-drop thresholds have this relationship:

- Receive queue 1 (standard) threshold 1 = transmit queue 1 (standard low priority) threshold 1
- Receive queue 1 (standard) threshold 2 = transmit queue 1 (standard low priority) threshold 2
- Receive queue 1 (standard) threshold 3 = transmit queue 2 (standard high priority) threshold 1
- Receive queue 1 (standard) threshold 4 = transmit queue 2 (standard high priority) threshold 2

To map CoS values to tail-drop thresholds, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config)# interface type1 slot/port</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router(config-if)# wrr-queue cos-map transmit_queue_# threshold_# cos1 [cos2 [cos3 [cos4 [cos5 [cos6 [cos7 [cos8]]]]]]]</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-if)# no wrr-queue cos-map</code></td>
</tr>
<tr>
<td>Step 4</td>
<td><code>Router(config-if)# end</code></td>
</tr>
<tr>
<td>Step 5</td>
<td><code>Router# show mls qos queuing interface type1 slot/port</code></td>
</tr>
</tbody>
</table>

1. *type* = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

When mapping CoS values to a tail-drop threshold, note the following information:

- Use the transmit queue and threshold numbers.
- Queue 1 is the low-priority standard transmit queue.
- Queue 2 is the high-priority standard transmit queue.
- There are two thresholds in each queue.
• Enter up to 8 CoS values to map to the threshold.

This example shows how to map the CoS values 0 and 1 to standard transmit queue 1/threshold 1 for Fast Ethernet port 5/36:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/36
Router(config-if)# wrr-queue cos-map 1 1 0 1
Router(config-if)# end
Router#

This example shows how to verify the configuration:

Router# show mls qos queuing interface fastethernet 5/36 | begin queue thresh cos-map
queue thresh cos-map

1 1 0 1
1 2 2 3
1 1 4 5
2 2 6 7
<...Output Truncated...>
Router#

Allocating Bandwidth Between Standard Transmit Queues

The router transmits frames from one standard queue at a time using one of these dequeuing algorithms, which use percentages or weights to allocate relative bandwidth to each queue as it is serviced in a round-robin fashion:

• Deficit weighted round robin (DWRR)—Supported on 1p3q1t, 1p2q1t, 1p3q8t, and 1p7q8t ports. DWRR keeps track of any low-priority queue under-transmission and compensates in the next round.

• Weighted round robin (WRR)—Supported on all other ports. WRR allows a queue to use more than the allocated bandwidth if the other queues are not using any, up to the total bandwidth of the port.

You can enter percentages or weights to allocate bandwidth.

The higher the percentage or weight that is assigned to a queue, the more transmit bandwidth is allocated to it. If you enter weights, the ratio of the weights divides the total bandwidth of the queue. For example, for three queues on a Gigabit Ethernet port, weights of 25:25:50 provide this division:

• Queue 1—250 Mbps
• Queue 2—250 Mbps
• Queue 3—500 Mbps

Note

The actual bandwidth division depends on the granularity that the port hardware applies to the configured percentages or weights.
Chapter 48 Configuring PFC QoS

To allocate bandwidth between standard transmit queues, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type1 slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# wrr-queue bandwidth low_priority_queue_percentage [intermediate_priority_queue_percentages] high_priority_queue_percentage</td>
</tr>
<tr>
<td></td>
<td>Or:</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# wrr-queue bandwidth low_priority_queue_weight [intermediate_priority_queue_weights] high_priority_queue_weight</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# no wrr-queue bandwidth</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos queuing interface type1 slot/port</td>
</tr>
</tbody>
</table>

This example shows how to allocate a 3-to-1 bandwidth ratio for Gigabit Ethernet port 1/2:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface gigabitethernet 1/2
Router(config-if)# wrr-queue bandwidth 3 1
Router(config-if)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show mls qos queuing interface gigabitethernet 1/2 | include bandwidth
WRR bandwidth ratios: 3[queue 1] 1[queue 2]
Router#
```

Setting the Receive-Queue Size Ratio on 1p1q0t and 1p1q8t Ports

To set the size ratio between the strict-priority and standard receive queues on a 1p1q0t or 1p1q8t port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {fastethernet</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# rcv-queue queue-limit standard_queue_weight strict_priority_queue_weight</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no rcv-queue queue-limit</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos queuing interface [fastethernet</td>
</tr>
</tbody>
</table>
When setting the receive-queue size ratio, note the following information:

- The `rcv-queue queue-limit` command configures ports on a per-ASIC basis.
- Estimate the mix of strict priority-to-standard traffic on your network (for example, 80 percent standard traffic and 20 percent strict-priority traffic).
- Use the estimated percentages as queue weights.
- Valid values are from 1 to 100 percent, except on 1p1q8t ports, where valid values for the strict priority queue are from 3 to 100 percent.

This example shows how to set the receive-queue size ratio for Fast Ethernet port 2/2:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 2/2
Router(config-if)# rcv-queue queue-limit 75 15
Router(config-if)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show mls qos queuing interface fastethernet 2/2 | include queue-limit
queue-limit ratios:     75[queue 1]  15[queue 2]
Router#
```

Setting the LAN-Port Transmit-Queue Size Ratio

To set the transmit-queue size ratio, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# <code>interface type</code> <code>slot/port</code> selects the interface to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# <code>wrr-queue queue-limit</code> sets the transmit-queue size ratio between transmit queues.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# <code>no wrr-queue queue-limit</code> reverts to the default transmit-queue size ratio.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# <code>end</code> exits configuration mode.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# <code>show mls qos queuing interface type</code> <code>slot/port</code> verifies the configuration.</td>
</tr>
</tbody>
</table>

1. `type` = `ethernet`, `fastethernet`, `gigabitethernet`, or `tengigabitethernet`

When setting the transmit-queue size ratio between transmit queues, note the following information:

- Estimate the mix of low priority-to-high priority traffic on your network (for example, 80 percent low-priority traffic and 20 percent high-priority traffic).
- For ports that have an egress strict priority queue:
 - With Release 12.2SR and later releases, you can enter the priority-queue queue-limit interface command to set the size of the egress strict priority queue on these switching modules:
 - WS-X6502-10GE (1p2q1t)
 - WS-X6148A-GE-TX (1p3q8t)
 - WS-X6148-RJ-45 (1p3q8t)
Common QoS Scenarios

This section provides sample configurations for some common QoS scenarios. If you already know how to configure PFC QoS for your network or if you need specific configuration information, see the other sections of this chapter.

The scenarios in this section are based on a sample network that is described in the “Sample Network Design Overview” section on page 48-98. This section uses this sample network to describe some regularly used QoS configurations.

These sections describe some common QoS scenarios:

- Sample Network Design Overview, page 48-98
- Classifying Traffic from PCs and IP Phones in the Access Layer, page 48-99
- Accepting the Traffic Priority Value on Interswitch Links, page 48-101
- Prioritizing Traffic on Interswitch Links, page 48-102
- Using Policers to Limit the Amount of Traffic from a PC, page 48-105
Sample Network Design Overview

This sample network is based on a traditional campus network architecture that uses Catalyst 6500 series switches in the access, distribution, and core layers. The access layer provides 10/100 Ethernet service to desktop users. The network has Gigabit Ethernet links from the access layer to the distribution layer and Gigabit or 10 Gigabit Ethernet links from the distribution layer to the core layer.

This is the basic port configuration:

Access Layer

```plaintext
switchport mode access
switchport access vlan 10
switchport voice vlan 110
```

Distribution and Core Interswitch Links

```plaintext
switchport mode trunk
```

These are the three traffic classes in the sample network:

- Voice
- High-priority application traffic
- Best-effort traffic

The QoS configuration described in this section identifies and prioritizes each of these traffic classes.

Note
If your network requires more service levels, PFC QoS supports up to 64 traffic classes.

These QoS scenarios describe the following three fundamental QoS configurations, which are often a general part of QoS deployment:

- Classifying traffic from PCs and IP phones in the access layer
- Accepting the traffic priority value on interswitch links between layers
- Prioritizing traffic on interswitch links between layers

These QoS scenarios assume that the network carries only IP traffic and use the IP DSCP values to assign traffic priority. These QoS scenarios do not directly use IP type of service (ToS) or Ethernet 802.1p class of service (CoS).

IP packets can carry a priority value, which can be set at various points within the network topology. Best-practice design recommendations are to classify and mark traffic as close to the source of the traffic as possible. If traffic priorities are set correctly at the edge, then intermediate hops do not have to perform detailed traffic identification. Instead, they can administer QoS policies based on these previously set priority values. This approach simplifies policy administration.

Note
- You should develop a QoS deployment strategy for assigning packet priorities to your particular network traffic types and applications. For more information on QoS guidelines, refer to RFC 2597 and RFC 2598 as well as the various QoS design guides published by Cisco Systems, Inc.
- Do not enable PFC QoS globally and leave all other PFC QoS configuration at default values. When you enable PFC QoS globally, it uses its default values. These are two problems that exist with the PFC QoS default configuration:
With PFC QoS globally enabled, the default trust state of the Ethernet ports in the system is untrusted. The untrusted port state sets the QoS priority of all traffic flowing through the router to the port CoS value (zero by default): all traffic will be zero-priority traffic.

With PFC QoS globally enabled, the port buffers are allocated into CoS-based queues and only part of the buffer is available for zero-priority traffic: zero-priority traffic has less buffer available than when PFC QoS is disabled.

These problems with the PFC QoS default configuration can have a negative effect on network performance.

Classifying Traffic from PCs and IP Phones in the Access Layer

The access layer routers have a PC daisy-chained to an IP Phone on a 100 Mbps link. This section describes how to classify voice traffic from the phone and data traffic from the PC so that they have different priorities.

This is the QoS classification scheme for the traffic arriving on an access layer port:

- Voice traffic: DSCP 46 (highest priority)
- Voice signaling traffic: DSCP 24 (medium priority)
- PC SAP traffic: DSCP 25 (medium priority)
- All other PC traffic: DSCP 0 (best effort)

This classification strategy provides a way to support three different classes of service on the network:

- High priority for voice traffic
- Medium priority for voice signaling and important application traffic
- Low priority for the remaining traffic

You can alter this model to fit other network environments.

PFC QoS can trust received priorities or assign new priorities by applying a QoS policy to the traffic. You configure a QoS policy using the Modular QoS CLI (MQC). In the access switches, the traffic is identified using ACLs, which differentiate the various traffic types entering the port. Once identified, a QoS policy marks the traffic with the appropriate DSCP value. These assigned DSCP values will be trusted when the traffic enters the distribution and core routers.

The port on the access router where the phone and PC are attached has been configured for a voice VLAN (VLAN 110), which is used to separate the phone traffic (subnet 10.1.110.0/24) from the PC traffic (10.1.10.0/24). The voice VLAN subnet uniquely identifies the voice traffic. The UDP and TCP port numbers identify the different applications.

This is the access port access control list (ACL) configuration:

Identify the Voice Traffic from an IP Phone (VVLAN)

```plaintext
ip access-list extended CLASSIFY-VOICE
    permit udp 10.1.110.0 0.0.0.255 any range 16384 32767
```

Identify the Voice Signaling Traffic from an IP Phone (VVLAN)

```plaintext
ip access-list extended CLASSIFY-VOICE-SIGNAL
    permit udp 10.1.110.0 0.0.0.255 any range 2000 2002
```
Identify the SAP Traffic from the PC (DVLAN)

```cisco
ip access-list extended CLASSIFY-PC-SAP
  permit tcp 10.1.10.0 0.0.0.255 any range 3200 3203
  permit tcp 10.1.10.0 0.0.0.255 any eq 3600 any

ip access-list extended CLASSIFY-OTHER
  permit ip any any
```

The next step in configuring the QoS policy is to define the class maps. These class maps associate the identifying ACLs with the QoS actions that you want to perform (marking, in this case). This is the syntax for the class maps:

```cisco
class-map match-all CLASSIFY-VOICE
  match access-group name CLASSIFY-VOICE
class-map match-all CLASSIFY-VOICE-SIGNAL
  match access-group name CLASSIFY-VOICE-SIGNAL
class-map match-all CLASSIFY-PC-SAP
  match access-group name CLASSIFY-PC-SAP
class-map match-all CLASSIFY-OTHER
  match access-group name CLASSIFY-OTHER
```

After you create the class maps, create a policy map that defines the action of the QoS policy so that it sets a particular DSCP value for each traffic type or traffic class. This example creates one policy map (called IPPHONE-PC), and all the class maps are included in that single policy map, with an action defined in each class map. This is the syntax for the policy map and class maps:

```cisco
policy-map IPPHONE-PC
  class CLASSIFY-VOICE
    set dscp ef
  class CLASSIFY-VOICE-SIGNAL
    set dscp cs3
  class CLASSIFY-PC-SAP
    set dscp 25
  class CLASSIFY-OTHER
    set dscp 0
```

At this point, the QoS policy defined in the policy map still has not taken effect. After you configure a policy map, you must apply it to an interface for it to affect traffic. You use the `service-policy` command to apply the policy map. Remember that an input service policy can be applied to either a port or to VLAN interfaces, but an output service policy can only be applied to VLAN interfaces. In this example, you apply the policy as an input service-policy to each interface that has a PC and IP Phone attached. This example uses port-based QoS, which is the default for Ethernet ports.

```cisco
interface FastEthernet5/1
service-policy input IPPHONE-PC
```

A QoS policy now has been successfully configured to classify the traffic coming in from both an IP phone and a PC.

To ensure that the policy maps are configured properly, enter this command:

```cisco
Router# show policy-map interface fastethernet 5/1
FastEthernet5/1
  Service-policy input:IPPHONE-PC
    class-map:CLASSIFY-VOICE (match-all)
      Match:access-group name CLASSIFY-VOICE
        set dscp 46:
    class-map:CLASSIFY-PC-SAP (match-all)
      Match:access-group name CLASSIFY-PC-SAP
```
set dscp 25:

class-map:CLASSIFY-OTHER (match-all)
 Match:access-group name CLASSIFY-OTHER
set dscp 0:

class-map:CLASSIFY-VOICE-SIGNAL (match-all)
 Match:access-group name CLASSIFY-VOICE-SIGNAL
set dscp 24:

To ensure that the port is using the correct QoS mode, enter this command:

Router# show mls qos queuing interface gigabitethernet 5/1 | include Port QoS
Port QoS is enabled

To ensure that the class map configuration is correct, enter this command:

Router# show class-map
Class Map match-all CLASSIFY-OTHER (id 1)
 Match access-group name CLASSIFY-OTHER

Class Map match-any class-default (id 0)
 Match any

Class Map match-all CLASSIFY-PC-SAP (id 2)
 Match access-group name CLASSIFY-PC-SAP

Class Map match-all CLASSIFY-VOICE-SIGNAL (id 4)
 Match access-group name CLASSIFY-VOICE-SIGNAL

Class Map match-all CLASSIFY-VOICE (id 5)
 Match access-group name CLASSIFY-VOICE

To monitor the byte statistics for each traffic class, enter this command:

Router# show mls qos ip gig 5/1
[In] Policy map is IPPHONE-PC [Out] Default.
QoS Summary [IP]: (* - shared aggregates, Mod - switch module)

<table>
<thead>
<tr>
<th>Int</th>
<th>Mod</th>
<th>Dir</th>
<th>Class-map</th>
<th>DSCP</th>
<th>Agg</th>
<th>Trust</th>
<th>Fl</th>
<th>AgForward-By</th>
<th>AgPoliced-By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gi5/1</td>
<td>5</td>
<td>In</td>
<td>CLASSIFY-V</td>
<td>46</td>
<td>1</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gi5/1</td>
<td>5</td>
<td>In</td>
<td>CLASSIFY-V</td>
<td>24</td>
<td>2</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gi5/1</td>
<td>5</td>
<td>In</td>
<td>CLASSIFY-O</td>
<td>0</td>
<td>3</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gi5/1</td>
<td>5</td>
<td>In</td>
<td>CLASSIFY-P</td>
<td>25</td>
<td>4</td>
<td>No</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Router#

Accepting the Traffic Priority Value on Interswitch Links

The previous section described how to configure the marking operation. This section describes how the upstream devices will use the packet marking.

You must decide whether the incoming traffic priority should be honored or not. To implement the decision, you configure the trust state of the port. When traffic arrives on a port that is set not to trust incoming traffic priority settings, the priority setting of the incoming traffic is rewritten to the lowest priority (zero). Traffic that arrives on an interface that is set to trust incoming traffic priority settings retains its priority setting.
Examples of ports on which it might be valid to trust incoming priority settings are ports that are connected to IP Phones and other IP voice devices, video devices, or any device that you trust to send frames with a valid predetermined priority. If you know that appropriate marking is completed when traffic first enters the network, you may also want to set uplink interfaces to trust the incoming priority settings.

Configure ports that are connected to workstations or any devices that do not send all traffic with a predetermined valid priority as untrusted (the default).

In the previous example, you configured QoS to properly mark the voice, SAP, and other best effort traffic at the access layer. This example configures QoS to honor those values as the traffic passes through other network devices by configuring the interswitch links to trust the packet DSCP values.

The previous example had several different traffic classes entering a port and selectively applied different QoS policies to the different traffic types. The configuration was done with the MQC QoS policy syntax, which allows you to apply different marking or trust actions to the different traffic classes arriving on a port.

If you know that all traffic entering a particular port can be trusted (as is the case on access-distribution or distribution-core uplink ports), you can use the port trust configuration. Using port trust does not provide any support for different traffic types entering a port, but it is a much simpler configuration option. This is the command syntax for port trust:

```
interface gigabitethernet 5/1
mls qos trust dscp
```

With ports configured to trust received DSCP, the DSCP value for the traffic leaving the router will be the same as the DSCP value for the traffic entering the trusted ports. After you have configured the trust state, you can use the following commands to verify that the setting has taken effect:

```
Router# show mls qos queuing interface gigabitethernet 5/1 | include Trust
Trust state:trust DSCP
```

Prioritizing Traffic on Interswitch Links

This section describes how the routers operate using trusted values.

One of the most fundamental principles of QoS is to protect high-priority traffic in the case of oversubscription. The marking and trusting actions described in the “Classifying Traffic from PCs and IP Phones in the Access Layer” section on page 48-99 and the “Accepting the Traffic Priority Value on Interswitch Links” section on page 48-101 prepare the traffic to handle oversubscription, but they do not provide different levels of service. To achieve differing levels of service, the networking device must have an advanced scheduling algorithm to prioritize traffic as it sends traffic from a particular interface. This scheduling function is responsible for transmitting the high-priority traffic with greater frequency than the low-priority traffic. The net effect is a differentiated service for the various traffic classes.

These two concepts are fundamental to the provision of differentiated service for various traffic classes:

- Assigning the traffic to a particular queue
- Setting the queue scheduling algorithm

Once QoS has been enabled, default values are applied for both of these features. For many networks, these default values are sufficient to differentiate the network traffic. For other networks, these values might need to be adjusted to produce the desired result. Only in rare cases should there be a need for significant changes from the default settings for these features.

The Cisco 7600 series router Ethernet modules support a variety of queue structures, ranging from a single queue up to an eight-queue architecture. You can compare the queue structure to a group of traffic lanes used to service different traffic types. For example, the police get prioritized treatment when
driving down the freeway so that they can get to accidents or crime scenes quickly. In an analogous way, the voice traffic on an IP network requires the same prioritized treatment. The switch uses the queue structure to provide these lanes of differentiated service.

The exact queue type is specific to the Ethernet module that you are working with. This example uses a module that has four transmit queues, described as 1p3q8t, which indicates:

- One strict priority queue (1p)
- Three regular queues supporting Weighted-Round Robin scheduling (3q), each with eight WRED thresholds (8t, not discussed here)

Cisco 7600 series router Ethernet modules also have input queue structures, but these are used less often, and because there probably will not be congestion within the switch fabric, this example does not include them.

To assign traffic to these queues, you need to configure a mapping of priority values to queues. QoS uses the DSCP-to-CoS map to map the 64 possible outgoing DSCP values to the eight possible 802.1p values, and then uses a CoS-to-queue map to map the CoS values to queues.

When the packet enters the router, QoS is either configured to classify and mark the packet with a configured DSCP value (as in the “Classifying Traffic from PCs and IP Phones in the Access Layer” section on page 48-99) or to trust the packet’s incoming DSCP value (as in the “Accepting the Traffic Priority Value on Interswitch Links” section on page 48-101). These options determine the packet’s priority as it leaves the router.

This example shows how to display the DSCP-to-CoS mapping:

```
Router# show mls qos maps dscp-cos
Dscp-cos map:                                  (dscp= d1d2)
   d1 :  d2 0  1  2  3  4  5  6  7  8  9
-------------------------------------
  0 :    00 00 00 00 00 00 00 01 01 01
  1 :    01 01 01 01 01 01 01 02 02 02
  2 :    02 02 02 02 03 03 03 03 03 03
  3 :    03 03 04 04 04 04 04 04 04 04
  4 :    05 05 05 05 05 05 05 05 05 05
  5 :    06 06 06 06 06 06 06 07 07 07
  6 :    07 07 07 07
```

The example marked the voice traffic with a DSCP value of 46. You can use the command output to translate DSCP 46 to CoS 5. You can use the command output to translate the other marked DSCP values to CoS values.

You can make changes to this mapping table to suit the needs of your particular network. Only minor changes are typically necessary; this example does not make any changes.

For queueing purposes, the configuration derives a CoS value from the outgoing DSCP value. This CoS value is used for queue assignment even if the outgoing port is an access port (that is, not a trunk port). However, there will be no 802.1q VLAN tag transmitted on the network if the outgoing port is an access port.

Map each derived CoS value to the queue structure. This example shows how to display the default CoS-to-queue mapping, which shows the queue to which each of the eight CoS values is mapped:

```
Router# show mls qos queuing interface gigabitethernet 5/1 | begin cos-map
queue thresh cos-map
---------------------------------------
  1 :    1 1 0
  2 :    1 2 1
  3 :    1 3
  4 :
```
From Cisco IOS Software Release 15.0(1)S use the `show mls qos queuing interface` command to verify the configuration on LAN ports.

You want voice traffic mapped to the strict priority queue, which is queue 4 on 1p3q8t ports. The example maps the DSCP 46 voice traffic to CoS 5, which means that you want the CoS 5 traffic to be mapped to the strict priority queue, and you can use the output of the `show queueing interface` command to verify that CoS 5 traffic is mapped to the strict priority queue.

This is a list of the queue mappings for all of the traffic types in this example:

<table>
<thead>
<tr>
<th>Traffic Type</th>
<th>DSCP</th>
<th>CoS (from DSCP-to-CoS map)</th>
<th>Output Queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice</td>
<td>46</td>
<td>5</td>
<td>Strict Priority</td>
</tr>
<tr>
<td>Voice signaling</td>
<td>24</td>
<td>3</td>
<td>Queue 2, Threshold 2</td>
</tr>
<tr>
<td>PC SAP</td>
<td>25</td>
<td>3</td>
<td>Queue 2, Threshold 2</td>
</tr>
<tr>
<td>Other traffic</td>
<td>0</td>
<td>0</td>
<td>Queue 1, Threshold 1</td>
</tr>
</tbody>
</table>

Traffic that is transmitted through the router is directed to these different queues (or “traffic lanes”) based on priority. Because there are more CoS values (zero through seven) than egress queues (three per interface in this example), there are drop thresholds in each standard (that is, nonstrict priority) queue. When more than one CoS value is assigned to a given queue, different drop thresholds can be assigned to these CoS values to distinguish between the different priorities. The thresholds specify the maximum percentage of the queue that traffic with a given CoS value can use before additional traffic with that CoS value is dropped. The example only uses three QoS values (high, medium, and low), so you can assign each CoS value to a separate queue and use the default 100-percent drop thresholds.

You can change the DCSP-to-CoS and CoS-to-queue mapping to suit the needs of your particular network. Only minor changes are typically necessary, and this example includes no changes. If your network requires different mapping, see the “Mapping CoS Values to Standard Transmit-Queue Thresholds” section on page 48-91.
Chapter 48 Configuring PFC QoS

Common QoS Scenarios

Now you understand how traffic is assigned to the available queues on the output ports of the router. The next concept to understand is how the queue weights operate, which is called the queue scheduling algorithm.

On the Cisco 7600 series router, the scheduling algorithms used on the LAN switching modules are strict priority (SP) queueing and weighted round robin (WRR) queueing. These algorithms determine the order, or the priority, that the various queues on a port are serviced.

The strict priority queueing algorithm is simple. One queue has absolute priority over all of the other queues. Whenever there is a packet in the SP queue, the scheduler will service that queue, which ensures the highest possibility of transmitting the packet and the lowest possible latency in transmission even in periods of congestion. The strict priority queue is ideal for voice traffic because voice traffic requires the highest priority and lowest latency on a network, and it also is a relatively low-bandwidth traffic type, which means that voice traffic is not likely to consume all available bandwidth on a port. You would not want to assign a high-bandwidth application (for example, FTP) to the strict priority queue because the FTP traffic could consume all of the bandwidth available to the port, starving the other traffic classes.

The WRR algorithm uses relative weights that are assigned to the WRR queues. If there are three queues and their weights are 22:33:45 (which are the default settings), then queue 1 gets only 22 percent of the available bandwidth, queue 2 gets 33 percent, and queue 3 gets 45 percent. With WRR, none of the queues are restricted to these percentages. If queue 2 and queue 3 do not have any traffic, queue 1 can use all available bandwidth.

In this example, queue 1 has a lower priority than queue 2, and queue 2 has a lower priority than queue 3. The low-priority traffic (phone-other and PC-other) maps to queue 1, and the medium-priority traffic (voice-signaling and PC-SAP) maps to queue 2.

The strict-priority queue does not require any configuration after traffic has been mapped to it. The WRR queues have a default bandwidth allocation that might be sufficient for your network; if it is not, then you can change the relative weights to suit your traffic types (see the “Allocating Bandwidth Between Standard Transmit Queues” section on page 48-94).

Note From Cisco IOS Software Release 15.0(1)S use the show mls qos queuing interface command to determine where packet loss is happening on LAN ports.

The best way to verify that the router is handling oversubscription is to ensure that there is minimal packet drop. Use the show queueing interface command to determine where that packet loss is happening. This command displays the number of dropped packets for each queue.

Using Policers to Limit the Amount of Traffic from a PC

Rate limiting is a useful way of ensuring that a particular device or traffic class does not consume more bandwidth than expected. On the Cisco 7600 series router Ethernet ports, the supported rate-limiting method is called policing. Policing is implemented in the PFC hardware with no performance impact. A policer operates by allowing the traffic to flow freely as long as the traffic rate remains below the configured transmission rate. Traffic bursts are allowed, provided that they are within the configured burst size. Any traffic that exceeds the configured rate and burst can be either dropped or marked down to a lower priority. The benefit of policing is that it can constrain the amount of bandwidth that a particular application consumes, which helps ensure quality of service on the network, especially during abnormal network conditions such as a virus or worm attack.

This example focuses on a basic per-interface aggregate policer applied to a single interface in the inbound direction, but you can use other policing options to achieve this same result.
The configuration of a policer is similar to the marking example provided in the “Classifying Traffic from PCs and IP Phones in the Access Layer” section on page 48-99 because policing uses the same ACL and MQC syntax. The syntax in that example created a class-map to identify the traffic and then created a policy-map to specify how to mark the traffic.

The policing syntax is similar enough that we can use the marking example ACL and modify the marking example class map by replacing the `set dscp` command with a `police` command. This example reuses the CLASSIFY-OTHER class-map to identify the traffic with a modified IPPHONE-PC policy map to police the matched traffic to a maximum of 50 Mbps, while continuing to mark the traffic that conforms to this rate.

The class maps and the ACL and `class-map` commands that are used to identify the “other” traffic are included below for reference; no changes have been made.

- **ACL commands:**
  ```
  ip access-list extended CLASSIFY-OTHER
  permit ip any any
  ```

- **Class map commands:**
  ```
  class-map match-all CLASSIFY-OTHER
  match access-group name CLASSIFY-OTHER
  ```

The difference between this policer configuration and the marking configuration is the policy-map action statements. The marking example uses the `set dscp` command to mark the traffic with a particular DSCP value. This policing example marks the CLASSIFY-OTHER traffic to a DSCP value of zero and polices that traffic to 50 Mbps. To do this, replace the `set dscp` command with a `police` command. The `police` command allows a marking action to take place: it marks all traffic below the 50 Mbps limit to DSCP 0 and drops any traffic above the 50 Mbps threshold.

This is the modified IPPHONE-PC policy map, which includes the `police` command:

```
policy-map IPPHONE-PC
class CLASSIFY-OTHER
police 50000000 1562500 conform-action set-dscp-transmit default exceed-action drop
```

These are the `police` command parameters:

- The 50000000 parameter defines the committed information rate (CIR) for traffic allowed in this traffic class. This example configures the CIR to be 50 Mbps.
- The 1562500 parameter defines the CIR burst size for traffic in this traffic class; this example uses a default maximum burst size. Set the CIR burst size to the maximum TCP window size used on the network.
- The `conform action` keywords define what the policer does with CLASSIFY-OTHER packets transmitted when the traffic level is below the 50 Mbps rate. In this example, `set-dscp-transmit default` applies DSCP 0 to those packets.
- The `exceed action` defines what the policer does with CLASSIFY-OTHER packets transmitted when the traffic level is above the 50 Mbps CIR. In this example, `exceed action drop` drops those packets.

This is a basic example of a single rate per-interface aggregate policer. The Supervisor Engine 720 forwarding engine also supports a dual-rate policer for providing both CIR and peak information rate (PIR) granularity.

Attach the policy map to the appropriate interface using the `service-policy input` command:

```
interface FastEthernet5/1
service-policy input IPPHONE-PC
```

To monitor the policing operation, use these commands:
PFC QoS Glossary

This section defines some of the QoS terminology used in this chapter:

- **Buffers**—A storage area used for handling data in transit. Buffers are used in internetworking to compensate for differences in processing speed between network devices. Bursts of data can be stored in buffers until they can be handled by slower processing devices. Sometimes referred to as a packet buffer.

- **Class of Service (CoS)** is a Layer 2 QoS label carried in three bits of either an ISL, 802.1Q, or 802.1p header. CoS values range between zero and seven.

Layer 2 ISL frame

<table>
<thead>
<tr>
<th>ISL header (26 bytes)</th>
<th>Encapsulated frame 1... (24.5 KB)</th>
<th>FCS (4 bytes)</th>
</tr>
</thead>
</table>

- 3 bits used for CoS

Layer 2 802.1Q and 802.1p frame

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Start frame delimiter</th>
<th>DA</th>
<th>SA</th>
<th>Tag</th>
<th>PT</th>
<th>Data</th>
<th>FCS</th>
</tr>
</thead>
</table>

- 3 bits used for CoS (user priority)

- **Classification** is the process used for selecting traffic to be marked for QoS.

- **Congestion avoidance** is the process by which PFC QoS reserves ingress and egress LAN port capacity for Layer 2 frames with high-priority Layer 2 CoS values. PFC QoS implements congestion avoidance with Layer 2 CoS value-based drop thresholds. A drop threshold is the percentage of queue buffer utilization above which frames with a specified Layer 2 CoS value is dropped, leaving the buffer available for frames with higher-priority Layer 2 CoS values.

- **Differentiated Services Code Point (DSCP)** is a Layer 3 QoS label carried in the six most-significant bits of the ToS byte in the IP header. DSCP ranges between 0 and 63.

Layer 3 IPv4 packet

<table>
<thead>
<tr>
<th>Version length</th>
<th>ToS (1 byte)</th>
<th>Len</th>
<th>ID</th>
<th>Offset</th>
<th>TTL</th>
<th>Proto</th>
<th>FCS</th>
<th>IP-SA</th>
<th>IP-DA</th>
<th>Data</th>
</tr>
</thead>
</table>

- 6 bits for DSCP

- **Frames** carry traffic at Layer 2. Layer 2 frames carry Layer 3 packets.
PFC QoS Glossary

- **IP Precedence** is a Layer 3 QoS label carried in the three most-significant bits of the ToS byte in the IP header. IP precedence ranges between zero and seven.

 ![Layer 3 IPv4 packet](image)

 - **3 bits for IP precedence**

- **Labels**—See QoS labels.

- **Marking** is the process of setting a Layer 3 DSCP value in a packet; in this publication, the definition of marking is extended to include setting Layer 2 CoS values. Marking changes the value of a label.

- **Packets** carry traffic at Layer 3.

- **Policing** is limiting bandwidth used by a flow of traffic. Policing is done on the PFC and Distributed Forwarding Cards (DFCs). Policing can mark or drop traffic.

- **Queues**—Queues are allocations of buffer space used to temporarily store data on a port.

- **QoS labels**—PFC QoS uses CoS, DSCP, and IP Precedence as QoS labels. QoS labels are prioritization values carried in Layer 3 packets and Layer 2 frames.

- **Scheduling** is the assignment of Layer 2 frames to a queue. PFC QoS assigns frames to a queue based on Layer 2 CoS values.

- **Threshold**—Percentage of queue capacity above which traffic is dropped.

- **Type of Service** (ToS) is a one-byte field that exists in an IP version 4 header that is used to specify the priority value applied to the packet. The ToS field consists of eight bits. The first three bits specify the IP precedence value, which can range from zero to seven, with zero being the lowest priority and seven being the highest priority. The ToS field can also be used to specify a DSCP value. DSCP is defined by the six most significant bits of the ToS. DSCP values can range from 0 to 63.

- **Weight**—ratio of bandwidth allocated to a queue.
This chapter describes how to configure PFC QoS statistics data export on Cisco 7600 series routers.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter contains these sections:
- Understanding PFC QoS Statistics Data Export, page 49-1
- PFC QoS Statistics Data Export Default Configuration, page 49-2
- Configuring PFC QoS Statistics Data Export, page 49-2

Understanding PFC QoS Statistics Data Export

The PFC QoS statistics data export feature generates per-LAN-port and per-aggregate policer utilization information and forwards this information in UDP packets to traffic monitoring, planning, or accounting applications. You can enable PFC QoS statistics data export on a per-LAN-port or on a per-aggregate policer basis. The statistics data generated per port consists of counts of the input and output packets and bytes. The aggregate policer statistics consist of counts of allowed packets and counts of packets exceeding the policed rate.

The PFC QoS statistics data collection occurs periodically at a fixed interval, but you can configure the interval at which the data is exported. PFC QoS statistics collection is enabled by default, and the data export feature is disabled by default for all ports and all aggregate policers configured on the Cisco 7600 series router.

Note
The PFC QoS statistics data export feature is completely separate from NetFlow Data Export and does not interact with it.
PFC QoS Statistics Data Export Default Configuration

Table 49-1 shows the PFC QoS statistics data export default configuration.

Table 49-1 PFC QoS Default Configuration

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC QoS Data Export</td>
<td></td>
</tr>
<tr>
<td>Global PFC QoS data export</td>
<td>Disabled</td>
</tr>
<tr>
<td>Per port PFC QoS data export</td>
<td>Disabled</td>
</tr>
<tr>
<td>Per named aggregate policer PFC QoS data export</td>
<td>Disabled</td>
</tr>
<tr>
<td>Per class map policer PFC QoS data export</td>
<td>Disabled</td>
</tr>
<tr>
<td>PFC QoS data export time interval</td>
<td>300 seconds</td>
</tr>
<tr>
<td>Export destination</td>
<td>Not configured</td>
</tr>
</tbody>
</table>
| PFC QoS data export field delimiter | Pipe character (|)

Configuring PFC QoS Statistics Data Export

These sections describe how to configure PFC QoS statistics data export:

- Enabling PFC QoS Statistics Data Export Globally, page 49-2
- Enabling PFC QoS Statistics Data Export for a Port, page 49-3
- Enabling PFC QoS Statistics Data Export for a Named Aggregate Policer, page 49-4
- Enabling PFC QoS Statistics Data Export for a Class Map, page 49-5
- Setting the PFC QoS Statistics Data Export Time Interval, page 49-6
- Configuring PFC QoS Statistics Data Export Destination Host and UDP Port, page 49-7
- Setting the PFC QoS Statistics Data Export Field Delimiter, page 49-9

Enabling PFC QoS Statistics Data Export Globally

To enable PFC QoS statistics data export globally, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1
 Router(config)# mls qos statistics-export | Enables PFC QoS statistics data export globally. |
| Router(config)# no mls qos statistics-export | Disables PFC QoS statistics data export globally. |
| Step 2
 Router(config)# end | Exits configuration mode. |
| Step 3
 Router# show mls qos statistics-export info | Verifies the configuration. |

This example shows how to enable PFC QoS statistics data export globally and verify the configuration:

Router# configure terminal
Router(config)# mls qos statistics-export
Router(config)# end
Chapter 49 Configuring PFC QoS Statistics Data Export

Configuring PFC QoS Statistics Data Export

% Warning: Export destination not set.
% Use 'mls qos statistics-export destination' command to configure the export destination
Router# show mls qos statistics-export info
QoS Statistics Data Export Status and Configuration information

Export Status : enabled
Export Interval : 300 seconds
Export Delimiter : |
Export Destination : Not configured
Router#

Note: You must enable PFC QoS statistics data export globally for other PFC QoS statistics data export configuration to take effect.

Enabling PFC QoS Statistics Data Export for a Port

To enable PFC QoS statistics data export for a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mls qos statistics-export</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls qos statistics-export</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show mls qos statistics-export info</td>
</tr>
</tbody>
</table>

1. \textit{type} = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to enable PFC QoS statistics data export on FastEthernet port 5/24 and verify the configuration:

Router# configure terminal
Router(config)# interface fastethernet 5/24
Router(config-if)# mls qos statistics-export
Router(config-if)# end
Router# show mls qos statistics-export info
QoS Statistics Data Export Status and Configuration information

Export Status : enabled
Export Interval : 300 seconds
Export Delimiter : |
Export Destination : Not configured

QoS Statistics Data Export is enabled on following ports:

FastEthernet5/24

Router#

When enabled on a port, PFC QoS statistics data export contains the following fields, separated by the delimiter character:

- Export type (“1” for a port)
- Slot/port
- Number of ingress packets
- Number of ingress bytes
Chapter 49 Configuring PFC QoS Statistics Data Export

- Number of egress packets
- Number of egress bytes
- Time stamp

Enabling PFC QoS Statistics Data Export for a Named Aggregate Policer

To enable PFC QoS statistics data export for a named aggregate policer, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables PFC QoS statistics data export for a named aggregate policer.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to enable PFC QoS statistics data export for an aggregate policer named aggr1M and verify the configuration:

```
Router# configure terminal
Router(config)# mls qos statistics-export aggregate-policer aggr1M
Router(config)# end
Router# show mls qos statistics-export info
QoS Statistics Data Export Status and Configuration information
---
Export Status : enabled
Export Interval : 300 seconds
Export Delimiter : |
Export Destination : Not configured
QoS Statistics Data Export is enabled on following ports:
--------------------------
FastEthernet5/24
QoS Statistics Data export is enabled on following shared aggregate policers:
-----------------------------------------------
aggr1M
Router#
```

When enabled for a named aggregate policer, PFC QoS statistics data export contains the following fields, separated by the delimiter character:

- Export type ("3" for an aggregate policer)
- Aggregate policer name
- Direction ("in")
- PFC or DFC slot number
- Number of in-profile bytes
- Number of bytes that exceed the CIR
- Number of bytes that exceed the PIR
- Time stamp
Enabling PFC QoS Statistics Data Export for a Class Map

To enable PFC QoS statistics data export for a class map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enables PFC QoS statistics data export for a class map.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to enable PFC QoS statistics data export for a class map named class3 and verify the configuration:

```
Router# configure terminal
Router(config)# mls qos statistics-export class-map class3
Router(config)# no mls qos statistics-export class-map class3
Router(config)# end
```

```
QoS Statistics Data Export Status and Configuration information

Export Status : enabled
Export Interval : 300 seconds
Export Delimiter : |
Export Destination : Not configured

QoS Statistics Data Export is enabled on following ports:

| FastEthernet5/24 |

QoS Statistics Data export is enabled on following shared aggregate policers:

| aggr1M |

QoS Statistics Data Export is enabled on following class-maps:

| class3 |
```

When enabled for a class map, PFC QoS statistics data export contains the following fields, separated by the delimiter character:

- For data from a physical port:
 - Export type (“4” for a classmap and port)
 - Class map name
 - Direction (“in”)
 - Slot/port
 - Number of in-profile bytes
 - Number of bytes that exceed the CIR
 - Number of bytes that exceed the PIR
 - Time stamp

- For data from a VLAN interface:
Configuring PFC QoS Statistics Data Export

- Export type (“5” for a class map and VLAN)
- Classmap name
- Direction (“in”)
- PFC or DFC slot number
- VLAN ID
- Number of in-profile bytes
- Number of bytes that exceed the CIR
- Number of bytes that exceed the PIR
- Time stamp

- For data from a port channel interface:
 - Export type (“6” for a class map and port channel)
 - Class map name
 - Direction (“in”)
 - PFC or DFC slot number
 - Port channel ID
 - Number of in-profile bytes
 - Number of bytes that exceed the CIR
 - Number of bytes that exceed the PIR
 - Time stamp

Setting the PFC QoS Statistics Data Export Time Interval

To set the time interval for the PFC QoS statistics data export, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos statistics-export interval interval_in_seconds</td>
</tr>
<tr>
<td></td>
<td>Sets the time interval for the PFC QoS statistics data export.</td>
</tr>
<tr>
<td></td>
<td>Note The interval needs to be short enough to avoid counter wraparound with the activity in your configuration, but because exporting PFC QoS statistic creates a significant load on the router, be careful when decreasing the interval.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no mls qos statistics-export interval interval_in_seconds</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default time interval for the PFC QoS statistics data export.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td></td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show mls qos statistics-export info</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to set the PFC QoS statistics data export interval and verify the configuration:

```
Router# configure terminal
Router(config)# mls qos statistics-export interval 250
Router(config)# end
Router# show mls qos statistics-export info
```
QoS Statistics Data Export Status and Configuration information

Export Status: enabled
Export Interval: 250 seconds
Export Delimiter: |
Export Destination: Not configured

QoS Statistics Data Export is enabled on following ports:

FastEthernet5/24

QoS Statistics Data export is enabled on following shared aggregate policers:

tag1M
QoS Statistics Data Export is enabled on following class-maps:

class3

Configuring PFC QoS Statistics Data Export Destination Host and UDP Port

To configure the PFC QoS statistics data export destination host and UDP port number, perform this task:

Command	Purpose
Step 1 Router(config)# mls qos statistics-export destination {host_name | host_ip_address} {port port_number | syslog [facility facility_name] [severity severity_value]}
Configures the PFC QoS statistics data export destination host and UDP port number.
Router(config)# no mls qos statistics-export destination
Clears configured values.
Step 2 Router(config)# end
Exits configuration mode.
Step 3 Router# show mls qos statistics-export info
Verifies the configuration.

Note When the PFC QoS data export destination is a syslog server, the exported data is prefaced with a syslog header.

Table 49-2 lists the supported PFC QoS data export facility and severity parameter values.

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>kern</td>
<td>kernel messages</td>
<td>cron</td>
<td>cron/at subsystem</td>
</tr>
<tr>
<td>user</td>
<td>random user-level messages</td>
<td>local0</td>
<td>reserved for local use</td>
</tr>
<tr>
<td>mail</td>
<td>mail system</td>
<td>local1</td>
<td>reserved for local use</td>
</tr>
<tr>
<td>daemon</td>
<td>system daemons</td>
<td>local2</td>
<td>reserved for local use</td>
</tr>
<tr>
<td>auth</td>
<td>security/authentication messages</td>
<td>local3</td>
<td>reserved for local use</td>
</tr>
<tr>
<td>syslog</td>
<td>internal syslogd messages</td>
<td>local4</td>
<td>reserved for local use</td>
</tr>
<tr>
<td>lpr</td>
<td>line printer subsystem</td>
<td>local5</td>
<td>reserved for local use</td>
</tr>
</tbody>
</table>
Chapter 49 Configuring PFC QoS Statistics Data Export

Table 49-2 Supported PFC QoS Data Export Facility Parameter Values (continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Name</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>news</td>
<td>netnews subsystem</td>
<td>local6</td>
<td>reserved for local use</td>
</tr>
<tr>
<td>uucp</td>
<td>uucp subsystem</td>
<td>local7</td>
<td>reserved for local use</td>
</tr>
</tbody>
</table>

Table 49-3 lists the supported PFC QoS data export severity parameter values.

Table 49-3 Supported PFC QoS Data Export Severity Parameter Values

<table>
<thead>
<tr>
<th>Severity Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>emerg</td>
</tr>
<tr>
<td>alert</td>
</tr>
<tr>
<td>crit</td>
</tr>
<tr>
<td>err</td>
</tr>
<tr>
<td>warning</td>
</tr>
<tr>
<td>notice</td>
</tr>
<tr>
<td>info</td>
</tr>
<tr>
<td>debug</td>
</tr>
</tbody>
</table>

This example shows how to configure 172.20.52.3 as the destination host and syslog as the UDP port number and verify the configuration:

```
Router# configure terminal
Router(config)# mls qos statistics-export destination 172.20.52.3 syslog
Router(config)# end
Router# show mls qos statistics-export info
QoS Statistics Data Export Status and Configuration information
-----------------------------------------------
Export Status : enabled
Export Interval : 250 seconds
Export Delimiter : |
Export Destination : 172.20.52.3, UDP port 514 Facility local6, Severity debug
QoS Statistics Data Export is enabled on following ports:
-------------------------------
FastEthernet5/24
QoS Statistics Data export is enabled on following shared aggregate policers:
-------------------------------
aggr1M
QoS Statistics Data Export is enabled on following class-maps:
-------------------------------
class3
```
Setting the PFC QoS Statistics Data Export Field Delimiter

To set the PFC QoS statistics data export field delimiter, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mls qos statistics-export delimiter delimiter_character</td>
<td>Sets the PFC QoS statistics data export field delimiter.</td>
</tr>
<tr>
<td>Router(config)# no mls qos statistics-export delimiter</td>
<td>Reverts to the default PFC QoS statistics data export field delimiter</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>Router# show mls qos statistics-export info</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to set the PFC QoS statistics data export field delimiter and verify the configuration:

```
Router# configure terminal
Router(config)# mls qos statistics-export delimiter ,
Router(config)# end
Router# show mls qos statistics-export info
QoS Statistics Data Export Status and Configuration information
---------------------------------------------------------------
Export Status : enabled
Export Interval : 250 seconds
Export Delimiter : ,
Export Destination : 172.20.52.3, UDP port 514 Facility local6, Severity debug

QoS Statistics Data Export is enabled on following ports:
-----------------------------------------------
FastEthernet5/24

QoS Statistics Data export is enabled on following shared aggregate policers:
-----------------------------------------------
aggr1M

QoS Statistics Data Export is enabled on following class-maps:
-----------------------------------------------
class3
```
This chapter describes how to configure Multiprotocol Label Switching (MPLS) quality of service (QoS) on a Cisco 7600 PFC3B, PFC3BXL, PFC3C, and PFC3CXL card. Unless otherwise noted, MPLS QoS operation is the same on all of these PFC cards.

Note • For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
• PFC-mode MPLS QoS provides MPLS traffic with the PFC QoS features described in Chapter 48, “Configuring PFC QoS.”
• This chapter provides supplemental information about MPLS QoS features on the PFC. Be sure that you understand the PFC QoS features before you read this chapter.
• All policing and marking available for MPLS QoS on the PFC are managed from the modular QoS command-line interface (CLI). The modular QoS CLI (MQC) is a command-line interface that allows you to define traffic classes, create and configure traffic policies (policy maps), and then attach those traffic policies to interfaces. A detailed description of the modular QoS CLI can be found in the Cisco IOS Quality of Service Solutions Configuration Guide, Release 12.2 at this URL:

This chapter contains these sections:
• Terminology, page 50-2
• PFC-Mode MPLS QoS Features, page 50-3
• PFC-Mode MPLS QoS Overview, page 50-4
• PFC-Mode MPLS QoS, page 50-5
• Understanding PFC-Mode MPLS QoS, page 50-7
• PFC MPLS QoS Default Configuration, page 50-15
• MPLS QoS Commands, page 50-16
• PFC-Mode MPLS QoS Restrictions and Guidelines, page 50-17
• Configuring MPLS QoS on the PFC, page 50-17
• MPLS DiffServ Tunneling Modes, page 50-31
Terminology

This section defines some MPLS QoS terminology:

- **Class of Service (CoS)** refers to three bits in either an Inter-Switch Link (ISL) header or an 802.1Q header that are used to indicate the priority of the Ethernet frame as it passes through a switched network. The CoS bits in the 802.1Q header are commonly referred to as the 802.1p bits. To maintain QoS when a packet traverses both Layer 2 and Layer 3 domains, the type of service (ToS) and CoS values can be mapped to each other.

- **Classification** is the process used for selecting traffic to be marked for QoS.

- **Differentiated Services Code Point (DSCP)** is the first six bits of the ToS byte in the IP header. DSCP is only present in an IP packet.

- **E-LSP** is a label switched path (LSP) on which nodes infer the QoS treatment for MPLS packets exclusively from the experimental (EXP) bits in the MPLS header. Because the QoS treatment is inferred from the EXP (both class and drop precedence), several classes of traffic can be multiplexed onto a single LSP (use the same label). A single LSP can support up to eight classes of traffic because the EXP field is a 3-bit field. The maximum number of classes would be less after reserving some values for control plane traffic or if some of the classes have a drop precedence associated with them.

- **EXP bits** define the QoS treatment (per-hop behavior) that a node should give to a packet. It is the equivalent of the DiffServ Code Point (DSCP) in the IP network. A DSCP defines a class and drop precedence. The EXP bits are generally used to carry all the information encoded in the IP DSCP. In some cases, however, the EXP bits are used exclusively to encode the dropping precedence.

- **Frames** carry traffic at Layer 2. Layer 2 frames carry Layer 3 packets.

- **IP precedence** is the three most significant bits of the ToS byte in the IP header.

- **QoS tags** are prioritization values carried in Layer 3 packets and Layer 2 frames. A Layer 2 CoS label can have a value ranging between zero for low priority and seven for high priority. A Layer 3 IP precedence label can have a value ranging between zero for low priority and seven for high priority. IP precedence values are defined by the three most significant bits of the 1-byte ToS byte. A Layer 3 DSCP label can have a value between 0 and 63. DSCP values are defined by the six most significant bits of the 1-byte IP ToS field.

- **LERs** (label edge routers) are devices that impose and dispose of labels upon packets; also referred to as Provider Edge (PE) routers.

- **LSRs** (label switching routers) are devices that forward traffic based upon labels present in a packet; also referred to as Provider (P) routers.

- **Marking** is the process of setting a Layer 3 DSCP value in a packet. Marking is also the process of choosing different values for the MPLS EXP field to mark packets so that they have the priority that they require during periods of congestion.

- **Packets** carry traffic at Layer 3.

- **Policing** is limiting bandwidth used by a flow of traffic. Policing can mark or drop traffic.
PFC-Mode MPLS QoS Features

QoS enables a network to provide improved service to selected network traffic. This section explains the following PFC-mode MPLS QoS features, which are supported in an MPLS network:

- MPLS Experimental Field, page 50-3
- Trust, page 50-3
- Classification, page 50-3
- Policing and Marking, page 50-4
- Preserving IP ToS, page 50-4
- EXP Mutation, page 50-4
- MPLS DiffServ Tunneling Modes, page 50-4

MPLS Experimental Field

Setting the MPLS experimental (EXP) field value satisfies the requirement of service providers who do not want the value of the IP precedence field modified within IP packets transported through their networks.

By choosing different values for the MPLS EXP field, you can mark packets so that packets have the priority that they require during periods of congestion.

By default, the IP precedence value is copied into the MPLS EXP field during imposition. You can mark the MPLS EXP bits with a PFC-mode MPLS QoS policy.

Trust

For received Layer 3 MPLS packets, the PFC usually trusts the EXP value in the received topmost label. None of the following have any effect on MPLS packets:

- Interface trust state
- Port CoS value
- Policy-map trust command

For received Layer 2 MPLS packets, the PFC can either trust the EXP value in the received topmost label or apply port trust or policy trust to the MPLS packets for CoS and egress queueing purposes.

Classification

Classification is the process that selects the traffic to be marked. Classification accomplishes this by partitioning traffic into multiple priority levels, or classes of service. Traffic classification is the primary component of class-based QoS provisioning. The PFC makes classification decisions based on the EXP bits in the received topmost label of received MPLS packets (after a policy is installed). See the “Configuring a Class Map to Classify MPLS Packets” section on page 50-20 for information.
Policing and Marking

Policing causes traffic that exceeds the configured rate to be discarded or marked down to a higher drop precedence. Marking is a way to identify packet flows to differentiate them. Packet marking allows you to partition your network into multiple priority levels or classes of service.

The PFC-mode MPLS QoS policing and marking features that you can implement depend on the received traffic type and the forwarding operation applied to the traffic. See “Configuring a Policy Map” section on page 50-23 for information.

Preserving IP ToS

The PFC automatically preserves the IP ToS during all MPLS operations including imposition, swapping, and disposition. You do not need to enter a command to save the IP ToS.

EXP Mutation

You can configure up to eight egress EXP mutation maps to mutate the internal EXP value before it is written as the egress EXP value. You can attach egress EXP mutation maps to these interface types:

- Optical service module (OSM) ports
- LAN or OSM port subinterfaces
- Layer 3 VLAN interfaces
- Layer 3 LAN ports

You cannot attach EXP mutation maps to these interface types:

- Layer 2 LAN ports (switchports)
- FlexWAN ports or subinterfaces

For configuration information, see the “Configuring PFC-Mode MPLS QoS Egress EXP Mutation” section on page 50-28.

MPLS DiffServ Tunneling Modes

The PFC uses MPLS DiffServ tunneling modes. Tunneling provides QoS transparency from one edge of a network to the other edge of the network. See the “MPLS DiffServ Tunneling Modes” section on page 50-31 for information.

PFC-Mode MPLS QoS Overview

PFC-mode MPLS QoS enables network administrators to provide differentiated types of service across an MPLS network. Differentiated service satisfies a range of requirements by supplying for each transmitted packet the service specified for that packet by its QoS. Service can be specified in different ways, for example, using the IP precedence bit settings in IP packets.
Specifying the QoS in the IP Precedence Field

When you send IP packets from one site to another, the IP precedence field (the first three bits of the DSCP field in the header of an IP packet) specifies the QoS. Based on the IP precedence marking, the packet is given the treatment configured for that quality of service. If the service provider network is an MPLS network, then the IP precedence bits are copied into the MPLS EXP field at the edge of the network. However, the service provider might want to set QoS for an MPLS packet to a different value determined by the service offering.

In that case, the service provider can set the MPLS EXP field. The IP header remains available for the customer’s use; the QoS of an IP packet is not changed as the packet travels through the MPLS network. For more information, see the “MPLS DiffServ Tunneling Modes” section on page 50-31.

PFC-Mode MPLS QoS

This section describes how PFC-mode MPLS QoS works.

Figure 50-1 shows an MPLS network of a service provider that connects two sites of a customer network.

The network is bidirectional, but for the purpose of this document the packets move left to right. In Figure 50-1, the symbols have the following meanings:

- CE1—Customer equipment 1
- PE1—Service provider ingress label edge router (LER)
- P1—Label switch router (LSR) within the core of the network of the service provider
- P2—LSR within the core of the network of the service provider
- PE2—service provider egress LER
- CE2—Customer equipment 2

Note PE1 and PE2 are at the boundaries between the MPLS network and the IP network.
These sections describe LER and LSR operation in an MPLS network.

- **LERs at the Input Edge of an MPLS Network**, page 50-6
- **LSRs in the Core of an MPLS Network**, page 50-6
- **LERs at the Output Edge of an MPLS Network**, page 50-7

Note The QoS capabilities at the input interface differ depending on whether the input interface is a LAN port, a WAN port on an OSM, or a port adapter on a FlexWAN or Enhanced FlexWAN module. This section is for LAN ports. For information on OSMs, see the *OSM Configuration Note, 12.2SX*. For information on a FlexWAN or Enhanced FlexWAN module, see the *FlexWAN and Enhanced FlexWAN Installation and Configuration Note*.

LERs at the Input Edge of an MPLS Network

Note Incoming labels are aggregate or nonaggregate. The aggregate label indicates that the arriving MPLS or MPLS VPN packet must be switched through an IP lookup to find the next hop and the outgoing interface. The nonaggregate label indicates that the packet contains the IP next hop information.

This section describes how edge LERs can operate at either the ingress or the egress side of an MPLS network.

At the ingress side of an MPLS network, LERs process packets as follows:

1. Layer 2 or Layer 3 traffic enters the edge of the MPLS network at the edge LER (PE1).
2. The PFC receives the traffic from the input interface and uses the 802.1p bits or the IP ToS bits to determine the EXP bits and to perform any classification, marking, and policing. For classification of incoming IP packets, the input service policy can also use access control lists (ACLs).
3. For each incoming packet, the PFC performs a lookup on the IP address to determine the next-hop router.
4. The appropriate label is pushed (imposition) into the packet, and the EXP value resulting from the QoS decision is copied into the MPLS EXP field in the label header.
5. The PFC forwards the labeled packets to the appropriate output interface for processing.
6. The PFC also forwards the 802.1p bits or the IP ToS bits to the output interface.
7. At the output interface, the labeled packets are differentiated by class for marking or policing. For LAN interfaces, egress classification is still based on IP, not on MPLS.
8. The labeled packets (marked by EXP) are sent to the core MPLS network.

LSRs in the Core of an MPLS Network

This section describes how LSRs used at the core of an MPLS network process packets:

1. Incoming MPLS-labeled packets (and 802.1p bits or IP ToS bits) from an edge LER (or other core device) arrive at the core LSR.
2. The PFC receives the traffic from the input interface and uses the EXP bits to perform classification, marking, and policing.
Chapter 50 Configuring MPLS QoS on the PFC

Understanding PFC-Mode MPLS QoS

3. The PFC performs a table lookup to determine the next-hop LSR.
4. An appropriate label is placed (swapped) into the packet and the MPLS EXP bits are copied into the label header.
5. The PFC forwards the labeled packets to the appropriate output interface for processing.
6. The PFC also forwards the 802.1p bits or the IP ToS bits to the output interface.
7. The outbound packet is differentiated by the MPLS EXP field for marking or policing.
8. The labeled packets (marked with EXP) are sent to another LSR in the core MPLS network or to an LER at the output edge.

Note Within the service provider network, there is no IP precedence field for the queuing algorithm to use because the packets are MPLS packets. The packets remain MPLS packets until they arrive at PE2, the provider edge router.

LERs at the Output Edge of an MPLS Network

At the egress side of an MPLS network, LERs process packets as follows:

1. MPLS-labeled packets (and 802.1p bits or IP ToS bits) from a core LSR arrive at the egress LER (PE2) from the MPLS network backbone.
2. The PFC pops the MPLS labels (disposition) from the packets. Aggregate labels are classified using the original 802.1p bits or the IP ToS bits. Nonaggregate labels are classified with the EXP value by default.
3. For aggregate labels, the PFC performs a lookup on the IP address to determine the packet’s destination; the PFC then forwards the packet to the appropriate output interface for processing.
 For non-aggregate labels, forwarding is based on the label. By default, non-aggregate labels are popped at the penultimate-hop router (next to last), not the egress PE router.
4. The PFC also forwards the 802.1p bits or the IP ToS bits to the output interface.
5. The packets are differentiated according to the 802.1p bits or the IP ToS bits and treated accordingly.

Note The MPLS EXP bits allow you to specify the QoS for an MPLS packet. The IP precedence and DSCP bits allow you to specify the QoS for an IP packet.

Understanding PFC-Mode MPLS QoS

PFC-mode MPLS QoS supports IP QoS. For MPLS packets, the EXP value is mapped into an internal DSCP so that the PFC can apply non-MPLS QoS marking and policing.

For both the ingress and egress policies, PFC-mode MPLS QoS marking and policing decisions are made on a per-interface basis at an ingress PFC. The ingress interfaces are physical ports, subinterfaces, or VLANs.

The QoS policy ACLs are programmed in QoS TCAM separately for ingress and egress lookup. The ternary content addressable memory (TCAM) egress lookup takes place after the IP forwarding table (FIB) and NetFlow lookups are completed.
The results of each QoS TCAM lookup yield an index into RAM that contains policer configuration and policing counters. Additional RAM contains the microflow policer configuration; the microflow policing counters are maintained in the respective NetFlow entries that match the QoS ACL.

The results of ingress and egress aggregate and microflow policing are combined into a final policing decision. The out-of-profile packets can be either dropped or marked down in the DSCP.

This section describes PFC-mode MPLS QoS for the following:

- LERs at the EoMPLS Edge, page 50-8
- LERs at the IP Edge (MPLS, MPLS VPN), page 50-9
- LSRs at the MPLS Core, page 50-13

Note

The following sections refer to QoS features for LAN ports, OSM ports, and FlexWAN ports. For details about how the different features work, refer to the appropriate documentation.

LERs at the EoMPLS Edge

This section summarizes the Ethernet over MPLS (EoMPLS) QoS features that function on the LERs. EoMPLS QoS support is similar to IP-to-MPLS QoS:

- For EoMPLS, if the port is untrusted, the CoS trust state is automatically configured for VC type 4 (VLAN mode), not for VC type 5 (port mode). 802.1q CoS preservation across the tunnel is similar.
- Packets received on tunnel ingress are treated as untrusted for EoMPLS interfaces, except for VC Type 4 where trust CoS is automatically configured on the ingress port and policy marking is not applied.
- If the ingress port is configured as trusted, packets received on an EoMPLS interface are never marked by QoS policy in the original IP packet header (marking by IP policy works on untrusted ports).
- 802.1p CoS is preserved from entrance to exit, if available through the 802.1q header.
- After exiting the tunnel egress, queueing is based on preserved 802.1p CoS if 1p tag has been tunnelled in the EoMPLS header (VC type 4); otherwise, queueing is based on the CoS derived from the QoS decision.

Ethernet to MPLS

For Ethernet to MPLS, the ingress interface, PFC-mode MPLS QoS, and egress interface features are similar to corresponding features for IP to MPLS. For more information, see these sections:

- Classification for IP-to-MPLS, page 50-9
- Classification for IP-to-MPLS PFC-Mode MPLS QoS, page 50-10
- Classification at IP-to-MPLS Ingress Port, page 50-10
- Classification at IP-to-MPLS Egress Port, page 50-10
MPLS to Ethernet

For MPLS to Ethernet, the ingress interface, PFC-mode MPLS QoS, and egress interface features are similar to corresponding features for MPLS to IP except for the case of EoMPLS decapsulation where egress IP policy cannot be applied (packets can be classified as MPLS only). For more information, see these sections:

- Classification for MPLS-to-IP, page 50-11
- Classification for MPLS-to-IP PFC3BXL or PFC3B Mode MPLS QoS, page 50-11
- Classification at MPLS-to-IP Ingress Port, page 50-11
- Classification at MPLS-to-IP Egress Port, page 50-12.

LERs at the IP Edge (MPLS, MPLS VPN)

This section provides information about QoS features for LERs at the ingress (CE-to-PE) and egress (PE-to-CE) edges for MPLS and MPLS VPN networks. Both MPLS and MPLS VPN support general MPLS QoS features. See the “MPLS VPN” section on page 50-12 for additional MPLS VPN-specific QoS information.

IP to MPLS

The PFC provides the following MPLS QoS capabilities at the IP-to-MPLS edge:

- Assigning an EXP value based on the mls qos trust or policy-map command
- Marking an EXP value using a policy
- Policing traffic using a policy

This section provides information about the MPLS QoS classification that the PFC3BXL or PFC3B supports at the IP-to-MPLS edge. Additionally, this section provides information about the capabilities provided by the ingress and egress interface modules.

Classification for IP-to-MPLS

The PFC ingress and egress policies for IP traffic classify traffic on the original received IP using match commands for IP precedence, IP DSCP, and IP ACLs. Egress policies do not classify traffic on the imposed EXP value nor on a marking done by an ingress policy.

After the PFC applies the port trust and QoS policies, it assigns the internal DSCP. The PFC then assigns the EXP value based on the internal DSCP-to-EXP global map for the labels that it imposes. If more than one label is imposed, the EXP value is the same in each label. The PFC preserves the original IP ToS when the MPLS labels are imposed.

The PFC assigns the egress CoS based on the internal DSCP-to-CoS global map. If the default internal DSCP-to-EXP and the internal DSCP-to-CoS maps are consistent, then the egress CoS has the same value as the imposed EXP.
If the ingress port receives both IP-to-IP and IP-to-MPLS traffic, classification should be used to separate the two types of traffic. For example, if the IP-to-IP and IP-to-MPLS traffic have different destination address ranges, you can classify traffic on the destination address, and then apply IP ToS policies to the IP-to-IP traffic and apply a policy (that marks or sets the EXP value in the imposed MPLS header) to the IP-to-MPLS traffic. See the following two examples:

- A policy to mark IP ToS sets the internal DSCP—If it is applied to all traffic, then for IP-to-IP traffic, the egress port will rewrite the CoS (derived from the internal DSCP) to the IP ToS byte in the egress packet. For IP-to-MPLS traffic, the PFC maps the internal DSCP to the imposed EXP value.

- A policy to mark MPLS EXP sets the internal DSCP—If it is applied to all traffic, then for IP-to-IP traffic, the egress port rewrites the IP ToS according to the ingress IP policy (or trust). The CoS is mapped from the ToS. For IP-to-MPLS traffic, the PFC maps the internal DSCP to the imposed EXP value.

Classification for IP-to-MPLS PFC-Mode MPLS QoS

PFC-mode MPLS QoS at the ingress to PE1 supports:

- Matching on IP precedence or DSCP values or filtering with an access group
- The `set mpls experimental imposition` and `police` commands

PFC-mode MPLS QoS at the egress of PE1 supports the `mpls experimental topmost` command.

Classification at IP-to-MPLS Ingress Port

Classification for IP-to-MPLS is the same as for IP-to-IP. LAN port classification is based on the received Layer 2 802.1Q CoS value. OSM and FlexWAN interfaces classify based on information in the received Layer 3 IP header.

Classification at IP-to-MPLS Egress Port

LAN port classification is based on the received EXP value and the egress CoS values is mapped from that value.

OSM and FlexWAN interfaces classify traffic when you use the `match mpls experimental` command to match on the egress CoS as a proxy for the EXP value. The `match mpls experimental` command does not match on the EXP value in the topmost label.

If the egress port is a trunk, the LAN ports and the OSM GE-WAN ports copy the egress CoS into the egress 802.1Q field.

MPLS to IP

PFC-mode MPLS QoS supports these capabilities at the MPLS-to-IP edge:

- Option to propagate EXP value into IP DSCP on exit from an MPLS domain per egress interface
- Option to use IP service policy on the MPLS-to-IP egress interface

This section provides information about the MPLS-to-IP MPLS QoS classification. Additionally, this section provides information about the capabilities provided by the ingress and egress modules.
Classification for MPLS-to-IP

The PFC assigns the internal DSCP (internal priority that is assigned to each frame) based on the QoS result. The QoS result is affected by the following:

- Default trust EXP value
- Label type (per-prefix or aggregate)
- Number of VPNs
- Explicit NULL use
- QoS policy

There are three different classification modes:

- Regular MPLS classification—For nonaggregate labels, in the absence of MPLS recirculation, the PFC classifies the packet based on MPLS EXP ingress or egress policy. The PFC3BXL and PFC3CXL queue the packet based on COS derived from EXP-to-DSCP-to-CoS mapping. The underlying IP DSCP is either preserved after egress decapsulation, or overwritten from the EXP (through the EXP-to-DSCP map).

- IP classification for aggregate label hits in VPN CAM—The PFC does one of the following:
 - Preserves the underlying IP ToS
 - Rewrites the IP ToS by a value derived from the EXP-to-DSCP global map
 - Changes the IP ToS to any value derived from the egress IP policy

 In all cases, egress queueing is based on the final IP ToS from the DSCP-to-CoS map.

- IP classification with aggregate labels not in VPN CAM—After recirculation, the PFC differentiates the MPLS-to-IP packets from the regular IP-to-IP packets based on the ingress reserved VLAN specified in the MPLS decapsulation adjacency. The reserved VLAN is allocated per VRF both for VPN and non-VPN cases. The ingress ToS after recirculation can be either the original IP ToS value, or derived from the original EXP value. The egress IP policy can overwrite this ingress ToS to an arbitrary value.

Note For information about recirculation, see the “Recirculation” section on page 26-4.

For incoming MPLS packets on the PE-to-CE ingress, the PFC supports MPLS classification only. Ingress IP policies are not supported. PE-to-CE traffic from the MPLS core is classified or policed on egress as IP.

Classification for MPLS-to-IP PFC3BXL or PFC3B Mode MPLS QoS

PFC-mode MPLS QoS at the ingress to PE2 supports matching on the EXP value and the `police` command.

PFC-mode MPLS QoS at the egress of PE2 supports matching on IP precedence or DSCP values or filtering with an access group and the `police` command.

Classification at MPLS-to-IP Ingress Port

LAN port classification is based on the EXP value. OSM and FlexWAN interfaces classify traffic using the `match mpls experimental` command. The `match mpls experimental` command matches on the EXP value in the received topmost label.
Understanding PFC-Mode MPLS QoS

Classification at MPLS-to-IP Egress Port

Note
The egress classification queuing is different for LAN and WAN ports.

Classification for MPLS-to-IP is the same as it is for IP-to-IP.
The LAN interface classification is based on the egress CoS. The OSM and WAN interfaces classify traffic on information in the transmitted IP header.

Note
You can use PFC QoS features or OSM QoS features in an output policy; however, you cannot use both in the same output policy.

If the egress port is a trunk, the LAN ports and OSM GE-WAN ports copy the egress CoS into the egress 802.1Q field.

Note
For MPLS to IP, egress IP ACL or QoS is not effective on the egress interface if the egress interface has MPLS IP (or tag IP) enabled. The exception is a VPN CAM hit, in which case the packet is classified on egress as IP.

MPLS VPN

The information in this section also applies to an MPLS VPN network.

The following PE MPLS QoS features are supported for MPLS VPN:

- Classification, policing, or marking of CE-to-PE IP traffic through the VPN subinterface
- Per-VPN QoS (per-port, per-VLAN, or per-subinterface)

For customer edge (CE)-to-PE traffic, or for CE-to-PE-to-CE traffic, the subinterface support allows you to apply IP QoS ingress or egress policies to subinterfaces and to physical interfaces. Per-VPN policing is also provided for a specific interface or subinterface associated with a given VPN on the CE side.

In situations when there are multiple interfaces belonging to the same VPN, you can perform per-VPN policing aggregation using the same shared policer in the ingress or egress service policies for all similar interfaces associated with the same PFC3BXLs or PFC3Bs.

For aggregate VPN labels, the EXP propagation in recirculation case may not be supported because MPLS adjacency does not know which egress interface the final packet will use.

Note
For information on recirculation, see the “Recirculation” section on page 26-4.

The PFC propagates the EXP value if all interfaces in the VPN have EXP propagation enabled.

The following PE MPLS QoS features are supported:

- General MPLS QoS features for IP packets
- Classification, policing, or marking of CE-to-PE IP traffic through the VPN subinterface
- Per-VPN QoS (per-port, per-VLAN, or per-subinterface)
LSRs at the MPLS Core

This section provides information about MPLS QoS features for LSRs at the core (MPLS-to-MPLS) for MPLS and MPLS VPN networks. Ingress features, egress interface, and PFC features for Carrier Supporting Carrier (CsC) QoS features are similar to those used with MPLS to MPLS described in the next section. A difference between CsC and MPLS to MPLS is that with CsC labels can be imposed inside the MPLS domain.

MPLS to MPLS

PFC-mode MPLS QoS at the MPLS core supports the following:

- Per-EXP policing based on a service policy
- Copying the input topmost EXP value into the newly imposed EXP value
- Optional EXP mutation (changing of EXP values on an interface edge between two neighboring MPLS domains) on the egress boundary between MPLS domains
- Microflow policing based on individual label flows for a particular EXP value
- Optional propagation of topmost EXP value into the underlying EXP value when popping the topmost label from a multi-label stack.

The following section provides information about MPLS-to-MPLS PFC-mode MPLS QoS classification. Additionally, the section provides information about the capabilities provided by the ingress and egress modules.

Classification for MPLS-to-MPLS

For received MPLS packets, the PFC ignores the port trust state, the ingress CoS, and any policy-map trust commands. Instead, the PFC trusts the EXP value in the topmost label.

Note

PFC-mode MPLS QoS ingress and egress policies for MPLS traffic classify traffic on the EXP value in the received topmost label when you enter the match mpls experimental command.

PFC-mode MPLS QoS maps the EXP value to the internal DSCP using the EXP-to-DSCP global map. What the PFC does next depends on whether it is swapping labels, imposing a new label, or popping a label:

- Swapping labels—When swapping labels, the PFC preserves the EXP value in the received topmost label and copies it to the EXP value in the outgoing topmost label. The PFC assigns the egress CoS using the internal DSCP-to-CoS global map. If the DSCP global maps are consistent, then the egress CoS is based on the EXP value in the topmost outgoing label.

The PFC can mark down out-of-profile traffic using the police command’s exceed and violate actions. It does not mark in-profile traffic, so the conform action must be transmitted and the set command cannot be used. If the PFC is performing a markdown, it uses the internal DSCP as an index into the internal DSCP markdown map. The PFC maps the result of the internal DSCP markdown to an EXP value using the internal DSCP-to-EXP global map. The PFC rewrites the new EXP value to the topmost outgoing label and does not copy the new EXP value to the other labels in the stack. The PFC assigns the egress CoS using the internal DSCP-to-CoS global map. If the DSCP maps are consistent, then the egress CoS is based on the EXP value in the topmost outgoing label.
• Imposing an additional label—When imposing a new label onto an existing label stack, the PFC maps the internal DSCP to the EXP value in the imposed label using the internal DSCP-to-EXP map. It then copies the EXP value in the imposed label to the underlying swapped label. The PFC assigns the egress CoS using the internal DSCP-to-CoS global map. If the DSCP maps are consistent, the egress CoS is based on the EXP value in the imposed label.

The PFC can mark in-profile and mark down out-of-profile traffic. After it marks the internal DSCP, the PFC uses the internal DSCP-to-EXP global map to map the internal DSCP to the EXP value in the newly imposed label. The PFC then copies the EXP in the imposed label to the underlying swapped label. The PFC assigns the egress CoS using the internal DSCP-to-CoS global map. Therefore, the egress CoS is based on the EXP in the imposed label.

• Popping a label—When popping a label from a multi-label stack, the PFC preserves the EXP value in the exposed label. The PFC assigns the egress CoS using the internal DSCP-to-CoS global map. If the DSCP maps are consistent, then the egress CoS is based on the EXP value in the popped label.

• If EXP propagation is configured for the egress interface, the PFC maps the internal DSCP to the EXP value in the exposed label using the DSCP-to-EXP global map. The PFC assigns the egress CoS using the internal DSCP-to-CoS global map. If the DSCP maps are consistent, the egress CoS is based on the EXP value in the exposed label.

Classification for MPLS-to-MPLS PFC-Mode MPLS QoS

PFC-mode MPLS QoS at the ingress to P1 or P2 supports the following:

• Matching with the `mpls experimental topmost` command
• The `set mpls experimental imposition`, `police`, and `police` with `set imposition` commands

PFC-mode MPLS QoS at the egress of P1 or P2 supports matching with the `mpls experimental topmost` command.

Classification at MPLS-to-MPLS Ingress Port

LAN port classification is based on the egress CoS from the PFC. OSM and FlexWAN interfaces classify traffic using the `match mpls experimental` command. The `match mpls experimental` command matches on the EXP value in the received topmost label.

Classification at MPLS-to-MPLS Egress Port

LAN port classification is based on the egress CoS value from the PFC. OSM and FlexWAN interfaces classify traffic using the `match mpls experimental` command. The `match mpls experimental` command matches on the egress CoS; it does not match on the EXP in the topmost label.

If the egress port is a trunk, the LAN ports and OSM GE-WAN ports copy the egress CoS into the egress 802.1Q field.
PFC MPLS QoS Default Configuration

This section describes the MPLS QoS default configuration on the PFC. The PFC has the following global MPLS QoS settings:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC QoS global enable state</td>
<td>Note: With PFC QoS disabled and all other PFC QoS parameters at default values, default EXP is mapped from IP precedence.</td>
</tr>
<tr>
<td></td>
<td>Note: With PFC QoS enabled and all other PFC QoS parameters at default values, PFC QoS sets Layer 3 DSCP to zero (untrusted ports only), Layer 2 CoS to zero, the imposed EXP to zero in all traffic transmitted from LAN ports (default is untrusted). For trust CoS, the default EXP value is mapped from COS; for trust DSCP, the default EXP value is mapped from IP precedence. For OSM WAN ports, (default is trust DSCP) the DSCP is mapped to the imposed EXP.</td>
</tr>
<tr>
<td>Port QoS port enable state</td>
<td>Enabled when PFC QoS is globally enabled</td>
</tr>
<tr>
<td>Port CoS value</td>
<td>0</td>
</tr>
<tr>
<td>Microflow policing</td>
<td>Enabled</td>
</tr>
<tr>
<td>IntraVLAN microflow policing</td>
<td>Disabled</td>
</tr>
<tr>
<td>Port-based or VLAN-based PFC QoS</td>
<td>Port-based</td>
</tr>
<tr>
<td>EXP to DSCP map (DSCP set from EXP values)</td>
<td>EXP 0 = DSCP 0</td>
</tr>
<tr>
<td></td>
<td>EXP 1 = DSCP 8</td>
</tr>
<tr>
<td></td>
<td>EXP 2 = DSCP 16</td>
</tr>
<tr>
<td></td>
<td>EXP 3 = DSCP 24</td>
</tr>
<tr>
<td></td>
<td>EXP 4 = DSCP 32</td>
</tr>
<tr>
<td></td>
<td>EXP 5 = DSCP 40</td>
</tr>
<tr>
<td></td>
<td>EXP 6 = DSCP 48</td>
</tr>
<tr>
<td></td>
<td>EXP 7 = DSCP 56</td>
</tr>
<tr>
<td>IP precedence to DSCP map (DSCP set from IP precedence values)</td>
<td>IP precedence 0 = DSCP 0</td>
</tr>
<tr>
<td></td>
<td>IP precedence 1 = DSCP 8</td>
</tr>
<tr>
<td></td>
<td>IP precedence 2 = DSCP 16</td>
</tr>
<tr>
<td></td>
<td>IP precedence 3 = DSCP 24</td>
</tr>
<tr>
<td></td>
<td>IP precedence 4 = DSCP 32</td>
</tr>
<tr>
<td></td>
<td>IP precedence 5 = DSCP 40</td>
</tr>
<tr>
<td></td>
<td>IP precedence 6 = DSCP 48</td>
</tr>
<tr>
<td></td>
<td>IP precedence 7 = DSCP 56</td>
</tr>
<tr>
<td>DSCP to EXP map (EXP set from DSCP values)</td>
<td>DSCP 0–7 = EXP 0</td>
</tr>
<tr>
<td></td>
<td>DSCP 8–15 = EXP 1</td>
</tr>
<tr>
<td></td>
<td>DSCP 16–23 = EXP 2</td>
</tr>
<tr>
<td></td>
<td>DSCP 24–31 = EXP 3</td>
</tr>
<tr>
<td></td>
<td>DSCP 32–39 = EXP 4</td>
</tr>
<tr>
<td></td>
<td>DSCP 40–47 = EXP 5</td>
</tr>
<tr>
<td></td>
<td>DSCP 48–55 = EXP 6</td>
</tr>
<tr>
<td></td>
<td>DSCP 56–63 = EXP 7</td>
</tr>
</tbody>
</table>
Chapter 50 Configuring MPLS QoS on the PFC

MPLS QoS Commands

The Cisco 7600 PFC supports the following MPLS QoS commands:

- `match mpls experimental topmost`
- `set mpls experimental imposition`
- `police`
- `mls qos map exp-dscp`
- `mls qos map dscp-exp`
- `mls qos map exp-mutation`
- `mls qos exp-mutation`
- `show mls qos mpls`
- `no mls qos mpls trust exp`

Note For information about supported non-MPLS QoS commands, see “Configuring PFC QoS” section on page 48-45.

The following commands are not supported:

- `set qos-group`
- `set discard-class`
PFC-Mode MPLS QoS Restrictions and Guidelines

When configuring MPLS QoS on the PFC, follow these guidelines and restrictions:

- For IP-to-MPLS or EoMPLS imposition when the received packet is an IP packet:
 - When QoS is disabled, the EXP value is based on the received IP ToS.
 - When QoS is queuing only, the EXP value is based on the received IP ToS.
- For EoMPLS imposition when the received packet is a non-IP packet:
 - When QoS is disabled, the EXP value is based on the ingress CoS.
 - When QoS is queuing only, the EXP value is based on the received IP ToS.
- For MPLS-to-MPLS operations:
 - Swapping when QoS is disabled, the EXP value is based on the original EXP value (in the absence of EXP mutation).
 - Swapping when QoS is queuing only, the EXP value is based on the original EXP value (in the absence of EXP mutation).
 - Imposing additional label when QoS is disabled, the EXP value is based on the original EXP value (in the absence of EXP mutation).
 - Imposing an additional label when QoS is queuing only, the EXP value is based on the original EXP value (in the absence of EXP mutation).
 - Popping one label when QoS is disabled, the EXP value is based on the underlying EXP value.
 - Popping one label when QoS is queuing only, the EXP value is based on the underlying EXP value.
- EXP value is irrelevant to MPLS-to-IP disposition.
- To preserve DSCP, enable DSCP transparency using 'no mls qos rewrite ip dscp slot <slot_num>'. The command is incompatible on PFC3B/PFC3BXL EARL, both Supervisor EARL and DFC EARL. If DSCP transparency is enabled on PFC3B/PFC3BXL EARLs, an incorrect EXP value is imposed on the label for L3VPN traffic ingressing on PFC3B/PFC3BXL EARLs. However, you can enable this command on PFC3C/PFC3CXL EARLs. If the traffic ingressing EARL is PFC3C/PFC3CXL, even if the system PFC mode is 3B/3BXL, the correct EXP value is imposed on the label for L3VPN traffic.

Configuring MPLS QoS on the PFC

These sections describe how to configure MPLS QoS on the PFC:

- Enabling QoS Globally, page 50-18
- Enabling Queueing-Only Mode, page 50-19
- Configuring a Class Map to Classify MPLS Packets, page 50-20
- Configuring the MPLS Packet Trust State on Ingress Ports, page 50-22
- Configuring a Policy Map, page 50-23
- Displaying a Policy Map, page 50-27
- Configuring PFC-Mode MPLS QoS Egress EXP Mutation, page 50-28
- Configuring EXP Value Maps, page 50-30
Enabling QoS Globally

Before you can configure QoS on the PFC, you must enable the QoS functionality globally using the `mls qos` command. This command enables default QoS conditioning of traffic.

When the `mls qos` command is enabled, the PFC assigns a priority value to each frame. This value is the internal DSCP. The internal DSCP is assigned based on the contents of the received frame and the QoS configuration. This value is rewritten to the egress frame’s CoS and ToS fields.

To enable QoS globally, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mls qos</td>
<td>Enables PFC QoS globally on the router.</td>
</tr>
<tr>
<td>Router(config)# no mls qos</td>
<td>Disables PFC QoS globally on the router.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td>Router# show mls qos</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to enable QoS globally:

```
Router(config)# mls qos
Router(config)# end
Router#
```

This example shows how to verify the configuration:

```
Router# show mls qos
QoS is enabled globally
    Microflow policing is enabled globally
    QoS ip packet dscp rewrite enabled globally

Qos trust state is DSCP on the following interfaces:
    Gi4/1 Gi4/1.12

Qos trust state is IP Precedence on the following interfaces:
    Gi4/2 Gi4/2.42
Vlan or Portchannel(Multi-Earl) policies supported: Yes
Egress policies supported: Yes

----- Module [5] -----  
QoS global counters:
    Total packets: 5957870
    IP shortcut packets: 0
    Packets dropped by policing: 0
    IP packets with TOS changed by policing: 6
    IP packets with COS changed by policing: 0
    Non-IP packets with COS changed by policing: 3
    MPLS packets with EXP changed by policing: 0
Enabling Queueing-Only Mode

To enable queueing-only mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router(config)# mls qos queueing-only</td>
<td>Enables queueing-only mode.</td>
</tr>
<tr>
<td>Router(config)# no mls qos queueing-only</td>
<td>Disables PFC QoS globally.</td>
</tr>
</tbody>
</table>

**Note** You cannot disable queueing-only mode separately.

<table>
<thead>
<tr>
<th>Step 2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show mls qos</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When you enable queueing-only mode, the router does the following:

- Disables marking and policing globally
- Configures all ports to trust Layer 2 CoS

**Note** The router applies the port CoS value to untagged ingress traffic and to traffic that is received through ports that cannot be configured to trust CoS.

This example shows how to enable queueing-only mode:

Router# configure terminal
Router(config)# mls qos queueing-only
Router(config)# end
Router#

Restrictions and Usage Guidelines

If QoS is disabled (no mls qos) for the PFC, the EXP value is determined as follows:

- For IP-to-MPLS or EoMPLS imposition when the received packet is an IP packet:
  - When QoS is disabled (no mls qos), the EXP value is based on the received IP ToS.
  - When QoS is queueing only (mls qos queueing-only), the EXP value is based on the received IP ToS.
- For EoMPLS imposition when the received packet is a non-IP packet:
  - When QoS is disabled, the EXP value is based on the ingress CoS.
  - When QoS is queueing only, the EXP value is based on the received IP ToS.
- For MPLS-to-MPLS operations:
  - Swapping when QoS is disabled, the EXP value is based on the original EXP value (in the absence of EXP mutation).
  - Swapping when QoS is queueing only, the EXP value is based on the original EXP value (in the absence of EXP mutation).
  - Imposing an additional label when QoS is disabled, the EXP value is based on the original EXP value (in the absence of EXP mutation).
– Imposing additional label when QoS is queuing only, the EXP value is based on the original EXP value (in the absence of EXP mutation).
– Popping one label when QoS is disabled, the EXP value is based on the underlying EXP value.
– Popping one label when QoS is queuing only, the EXP value is based on the underlying EXP value.
• EXP value is irrelevant to MPLS-to-IP disposition.

Configuring a Class Map to Classify MPLS Packets

You can use the `match mpls experimental topmost` command to define traffic classes inside the MPLS domain by packet EXP values. This allows you to define service policies to police the EXP traffic on a per-interface basis by using the `police` command.

To configure a class map, perform this task beginning in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config)# class-map class_name</code></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>Router(config-cmap)# match mpls experimental topmost value</code></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-cmap)# exit</code></td>
</tr>
</tbody>
</table>

This example shows that all packets that contain MPLS experimental value 3 are matched by the traffic class named `exp3`:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# class-map exp3
Router(config-cmap)# match mpls experimental topmost 3
Router(config-cmap)# exit
Router(config)# policy-map exp3
Router(config-pmap)# class exp3
Router(config-pmap-c)# police 1000000 8000000 conform-action transmit exceed-action drop
Router(config-pmap-c)# exit
Router(config-pmap)# end
Router# show class exp3
Class Map match-all exp3 (id 61)
 Match mpls experimental topmost 3
Router# show policy-map exp3
Policy Map exp3
 Class exp3
 police cir 1000000 bc 8000000 be 8000000 conform-action transmit exceed-action drop
Router# show running-config interface fastethernet 3/27
Building configuration...

Current configuration : 173 bytes
!
interface FastEthernet3/27
 ip address 47.0.0.1 255.0.0.0
tag-switching ip
end
```

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.

Command Purpose
Step 1 `Router(config)# class-map class_name` Specifies the class map to which packets will be matched.
Step 2 `Router(config-cmap)# match mpls experimental topmost value` Specifies the packet characteristics that will be matched to the class.
Step 3 `Router(config-cmap)# exit` Exits class-map configuration mode.
Router(config)# interface fastethernet 3/27
Router(config-if)# service-policy input exp3
Router(config-if)#
Router# Enter configuration commands, one per line. End with CNTL/Z.
Router# show running-config interface fastethernet 3/27
Building configuration...

Current configuration : 173 bytes
!
interface FastEthernet3/27
  ip address 47.0.0.1 255.0.0.0
tag-switching ip
  service-policy input exp3
end

Router# 1w4d: %SYS-5-CONFIG_I: Configured from console by console
Router# show mls qos mpls
QoS Summary [MPLS]: (* - shared aggregates, Mod - switch module)

<table>
<thead>
<tr>
<th>Int Mod Dir</th>
<th>Class-map</th>
<th>DSCP</th>
<th>Agg</th>
<th>Trust Fl</th>
<th>AgForward-By</th>
<th>AgPoliced-By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa3/27</td>
<td>In</td>
<td>exp3</td>
<td>0</td>
<td>2</td>
<td>dscp</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>-</td>
<td>Default</td>
<td>0</td>
<td>0*</td>
<td>No</td>
<td>0</td>
</tr>
</tbody>
</table>

Router# show policy-map interface fastethernet 3/27
FastEthernet3/27

Service-policy input: exp3

class-map: exp3 (match-all)
  Match: mpls experimental topmost 3
  police:
    1000000 bps 8000000 limit 8000000 extended limit
  Earl in slot 5:
    0 bytes
    5 minute offered rate 0 bps
    aggregate-forwarded 0 bytes action: transmit
    exceeded 0 bytes action: drop
    aggregate-forward 0 bps exceed 0 bps

Class-map: class-default (match-any)
  0 packets, 0 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
  Match: any

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 3/27
Router(config-if)# service-policy output ip2tag
Router(config-if)# end
Router# show mls qos ip
QoS Summary [IPv4]: (* - shared aggregates, Mod - switch module)

<table>
<thead>
<tr>
<th>Int Mod Dir</th>
<th>Class-map</th>
<th>DSCP</th>
<th>Agg</th>
<th>Trust Fl</th>
<th>AgForward-By</th>
<th>AgPoliced-By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vl300</td>
<td>In</td>
<td>x</td>
<td>44</td>
<td>1</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Fa3/27</td>
<td>Out</td>
<td>iptcp</td>
<td>24</td>
<td>2</td>
<td>--</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>-</td>
<td>Default</td>
<td>0</td>
<td>0*</td>
<td>No</td>
<td>0</td>
</tr>
</tbody>
</table>
Restrictions and Usage Guidelines

The following restrictions and guidelines apply when classifying MPLS packets:

- The `match mpls experimental` command specifies the name of an EXP field value to be used as the match criterion against which packets are checked to determine if they belong to the class specified by the class map.
- To use the `match mpls experimental` command, you must first enter the `class-map` command to specify the name of the class whose match criteria you want to establish. After you identify the class, you can use the `match mpls experimental` command to configure its match criteria.
- If you specify more than one command in a class map, only the last command entered applies. The last command overrides the previously entered commands.

Configuring the MPLS Packet Trust State on Ingress Ports

You can use the `no mls qos mpls trust exp` command to apply port or policy trust to MPLS packets in the same way that you apply them to Layer 2 packets.

To configure the MPLS packet trust state of an ingress port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface {{type slot/port</td>
<td>Selects the interface to configure.</td>
</tr>
<tr>
<td></td>
<td>[port-channel number]}}</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# no mls qos mpls trust exp</td>
<td>Sets the trust state of an MPLS packet so that all trusted cases (trust cos, trust dscp, trust ip-precedence) are treated as trust-cos.</td>
</tr>
<tr>
<td></td>
<td>mls qos mpls trust exp</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# end</td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td>Step 4 Router# show mls qos</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

This example shows how to set the trusted state of MPLS packets to untrusted so that the incoming MPLS packets operate like incoming Layer 2 packets.

```plaintext
Router(config)# interface fastethernet 3/27
Router(config-if)# no mls qos mpls trust exp
Router(config-if)#
```

Restrictions and Usage Guidelines

The following restrictions and guidelines apply when using the `no mls qos mpls trust exp` command to configure the MPLS packet trust state on input ports:

- This command affects both Layer 2 and Layer 3 packets; use this command only on interfaces with Layer 2 switched packets.
- The `no mls qos mpls trust exp` command affects ingress marking; it does not affect classification.
Configuring a Policy Map

You can attach only one policy map to an interface. Policy maps can contain one or more policy map classes, each with different policy map commands.

Configure a separate policy map class in the policy map for each type of traffic that an interface receives. Put all commands for each type of traffic in the same policy map class. MPLS QoS on the PFC does not attempt to apply commands from more than one policy map class to matched traffic.

Configuring a Policy Map to Set the EXP Value on All Imposed Labels

To set the value of the MPLS EXP field on all imposed label entries, use the `set mpls experimental imposition` command in QoS policy-map class configuration mode. To disable the setting, use the `no` form of this command.

Note: The `set mpls experimental imposition` command replaces the `set mpls experimental` command.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>Router(config)# policy-map policy_name</code> Creates a policy map.</td>
</tr>
<tr>
<td>Step 2</td>
<td>`Router(config-pmap)# class-map name [match-all</td>
</tr>
<tr>
<td>Step 3</td>
<td>`Router(config-pmap-c)# set mpls experimental imposition {mpls-exp-value</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>Router(config-pmap-c)# exit</code> Exits class-map configuration mode.</td>
</tr>
</tbody>
</table>

The following example sets the MPLS EXP imposition value according to the DSCP value defined in the MPLS EXP value 3.

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# access-l 101 p tcp any any
Router(config)# class-map iptcp
Router(config-cmap)# match acc 101
Router(config-cmap)# exit
Router(config)#
Router(config-cmap)# policy-map ip2tag
Router(config-pmap)# class iptcp
Router(config-pmap-c)# set mpls exp imposition 3
Router(config-pmap-c)# exit
Router(config-pmap-c)# exit
Router(config)#
Router# 1w4d: %SYS-5-CONFIG_I: Configured from console by console
Router# Router# show policy-map ip2tag
 Policy Map ip2tag
 Class iptcp
 set mpls experimental imposition 3
Router# show class iptcp
 Class Map match-all iptcp (id 62)
 Match access-group101
Router# configure terminal
```
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 3/27
Router(config-if)# ser in ip2tag
Router(config-if)#
Routers
1w4d: %SYS-5-CONFIG_I: Configured from console by console
Router# show pol ip2tag
Policy Map ip2tag
 Class iptcp
 set mpls experimental imposition 3
Router# show class-map iptcp
 Class Map match-all iptcp (id 62)
 Match access-group  101
Router# show access-l 101
 Extended IP access list 101
 10 permit tcp any any
Router# show mls qos ip
QoS Summary [IPv4]: (* - shared aggregates, Mod - switch module)
<table>
<thead>
<tr>
<th>Int</th>
<th>Mod</th>
<th>Dir</th>
<th>Class-map</th>
<th>DSCP</th>
<th>Agg</th>
<th>Trust Fl</th>
<th>AgForward-By</th>
<th>AgPoliced-By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa3/27</td>
<td>5</td>
<td>In</td>
<td>iptcp</td>
<td>24</td>
<td>2</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vl300</td>
<td>5</td>
<td>In</td>
<td>x</td>
<td>44</td>
<td>1</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>5</td>
<td>-</td>
<td>Default</td>
<td>0</td>
<td>0*</td>
<td>No</td>
<td>0</td>
<td>3466448105</td>
</tr>
</tbody>
</table>

Router# show policy-map interface fastethernet 3/27
FastEthernet3/27
Service-policy input: ip2tag

class-map: iptcp (match-all)
 Match: access-group 101
 set mpls experimental 3:
 Earl in slot 5 :
  0 bytes
  5 minute offered rate 0 bps
 aggregate-forwarded 0 bytes

class-map: class-default (match-any)
 Match: any

Class-map: class-default (match-any)
 0 packets, 0 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
 Match: any

This example shows how to verify the configuration:

Router# show policy map ip2tag
Policy Map ip2tag
 Class iptcp
 set mpls experimental imposition 3

EXP Value Imposition Guidelines and Restrictions

When setting the EXP value on all imposed labels, follow these guidelines and restrictions:

- Use the set mpls experimental imposition command during label imposition. This command sets the MPLS EXP field on all imposed label entries.
• The **set mpls experimental imposition** command is supported only on input interfaces (imposition).

• The **set mpls experimental imposition** command does not mark the EXP value directly; instead, it marks the internal DSCP that is mapped to EXP through the internal DSCP-to-EXP global map.

• It is important to note that classification (based on the original received IP header) and marking (done to the internal DSCP) do not distinguish between IP-to-IP traffic and IP-to-MPLS traffic. The commands that you use to mark IP ToS and mark EXP have the same result as when you mark the internal DSCP.

• To set the pushed label entry value to a value different from the default value during label imposition, use the **set mpls experimental imposition** command.

• You optionally can use the **set mpls experimental imposition** command with the IP precedence, DSCP field, or QoS IP ACL to set the value of the MPLS EXP field on all imposed label entries.

• When imposing labels onto the received IP traffic with the PFC, you can mark the EXP field using the **set mpls experimental imposition** command.

For more information on this command, see the **Cisco IOS Switching Services Command Reference, Release 12.3** located at this URL:


### Configuring a Policy Map Using the Police Command

Policing is a function in the PFC hardware that provides the ability to rate limit a particular traffic class to a specific rate. The PFC supports aggregate policing and microflow policing. Aggregate policing meters all traffic that ingresses into a port, regardless of different source, destination, protocol, source port, or destination port. Microflow policing meters all traffic that ingresses into a port, on a per flow (per source, destination, protocol, source port, and destination port). For additional information on aggregate and microflow policing, see the “Policers” section on page 48-17.

To configure traffic policing, use the **police** command. For information on this command, see the **Cisco 7600 Series Router Cisco IOS Command Reference**.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# <strong>policy-map</strong> policy_name</td>
</tr>
<tr>
<td></td>
<td>Creates a policy map.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-pmap)# <strong>class-map</strong> name [match-all</td>
</tr>
<tr>
<td></td>
<td>Accesses the QoS class map configuration mode to configure QoS class maps.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-pmap-c)# <strong>police</strong> {aggregate name}</td>
</tr>
<tr>
<td></td>
<td>Adds the class to a shared aggregate policer.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-pmap-c)# <strong>police</strong> bps burst_normal burst_max conform-action action exceed-action action violate-action action</td>
</tr>
<tr>
<td></td>
<td>Creates a per-class-per-interface policer.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router(config-pmap-c)# <strong>police</strong> flow {bps [burst_normal]</td>
</tr>
<tr>
<td></td>
<td>Creates an ingress flow policer. (Not supported in egress policy.)</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Router(config-pmap-c)# <strong>exit</strong></td>
</tr>
<tr>
<td></td>
<td>Exits class-map configuration mode.</td>
</tr>
</tbody>
</table>

This is an example of creating a policy map with a policer:

Router(config)# **policy-map** ip2tag
Router(config-pmap)# **class** iptcp
Router(config-pmap-c)# **no set mpls exp** topmost 3
Router(config-pmap-c)# **police** 1000000 1000000 c set-mpls-exp?
set-mpls-exp-imposition-transmit

Router(config-pmap-c)# police 1000000 1000000 c set-mpls-exp-imposit 3 e d
Router(config-pmap-c)# exit
Router(config-pmap)# exit
Router(config)# interface fastethernet 3/27
Router(config-if)# ser in ip2tag
Router(config-if)#

This is an example of verifying the configuration:

Router# show pol ip2tag
Policy Map ip2tag
Class iptcp
  police cir 1000000 bc 1000000 be 1000000 conform-action
  set-mpls-exp-imposition-transmit 3 exceed-action drop
Router# show running-config interface fastethernet 3/27
Building configuration...

Current configuration : 202 bytes
!
interface FastEthernet3/27
  logging event link-status
  service-policy input ip2tag
end

Router# show mls qos ip
QoS Summary [IPv4]:  (* - shared aggregates, Mod - switch module)

<table>
<thead>
<tr>
<th>Int Mod Dir</th>
<th>Class-map DSCP</th>
<th>Ag</th>
<th>Trust Fl</th>
<th>AgForward-By</th>
<th>AgPoliced-By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa3/27 5 In</td>
<td>iptcp 24</td>
<td>2</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vl300 5 In</td>
<td>x   44</td>
<td>1</td>
<td>No</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

All 5 - Default 0 0* No 0 3468105262 0

Router# show policy interface fastethernet 3/27
FastEthernet3/27

Service-policy input: ip2tag

class-map: iptcp (match-all)
  Match: access-group 101
  police:
    1000000 bps 1000000 limit 1000000 extended limit
Earl in slot 5:
  0 bytes
  5 minute offered rate 0 bps
  aggregate-forwarded 0 bytes action: set-mpls-exp-imposition-transmit exceeded 0 bytes action: drop
  aggregate-forward 0 bps exceed 0 bps

class-map: class-default (match-any)
  Match: any

Class-map: class-default (match-any)
  0 packets, 0 bytes
  5 minute offered rate 0 bps, drop rate 0 bps
  Match: any

R7# show mls qos ip
QoS Summary [IPv4]:  (* - shared aggregates, Mod - switch module)

<table>
<thead>
<tr>
<th>Int Mod Dir</th>
<th>Class-map DSCP</th>
<th>Ag</th>
<th>Trust Fl</th>
<th>AgForward-By</th>
<th>AgPoliced-By</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Restrictions and Usage Guidelines

The following restrictions and guidelines apply when using the `police` command to configure a policy map:

- With MPLS, the `exceed-action` action command and the `violate-action` action command work similarly to IP usage. The packet may get dropped or the EXP value is marked down. For information on how these actions affect IP-to-IP traffic, see the “Configuring a Policy Map” section on page 48-61.

- With MPLS, the `set-dscp transmit` action command and the `set-prec-transmit` action command set the internal DSCP that is mapped into the CoS bits, which affects queueing, however, they do not change the EXP value, except for imposition.

- When swapping labels for received MPLS traffic with the PFC, you can mark down out-of-profile traffic using the `police` command `exceed-action policed-dscp-transmit` and `violate-action policed-dscp-transmit` keywords. The PFC does not mark in-profile traffic; when marking down out-of-profile traffic, the PFC marks the outgoing topmost label. The PFC does not propagate the marking down through the label stack.

- With MPLS, the flow key is based on the label and EXP value; there is no flowmask option. Otherwise, flow key operation is similar to IP-to-IP. See the “Configuring a Policy Map” section on page 48-61.

- You can use the `police` command to set the pushed label entry value to a value different from the default value during label imposition.

- When imposing labels onto the received IP traffic with the PFC, you can mark the EXP field using the `conform-action set-mpls-exp-imposition-transmit` keywords.

- During IP-to-MPLS imposition, IP ToS marking is not supported. If you configure a policy to mark IP ToS, the PFC marks the EXP value.

Displaying a Policy Map

You can display a policy map with an interface summary for MPLS QoS classes or with the configuration of all classes configured for all service policies on the specified interface.

Displaying a PFC-Mode MPLS QoS Policy Map Class Summary

To display a PFC-mode MPLS QoS policy map class summary, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show mls qos mpls [{interface interface_type interface_number}</td>
<td>{module slot}]</td>
</tr>
</tbody>
</table>
This example shows how to display a PFC-mode MPLS QoS policy map class summary:

```bash
Router# show mls qos mpls
QoS Summary [MPLS]: (* - shared aggregates, Mod - switch module)
Int Mod Dir Class-map DSCP Agg Trust Fl AgForward-By AgPoliced-By
Id Id

Fa3/27 5 In exp3 0 2 dscp 0 0 0
All 5 - Default 0 0* No 0 3466140423 0
```

### Displaying the Configuration of All Classes

To display the configuration of all classes configured for all service policies on the specified interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show policy interface interface_type interface_number</td>
<td>Displays the configuration of all classes configured for all policy maps on the specified interface.</td>
</tr>
</tbody>
</table>

This example shows the configurations for all classes on Fast Ethernet interface 3/27:

```bash
Router# show policy interface fastethernet 3/27
FastEthernet3/27

Service-policy input: ip2tag

class-map: iptcp (match-all)
 Match: access-group 101
 police :
 1000000 bps 1000000 limit 1000000 extended limit
 Earl in slot 5 :
 0 bytes
 5 minute offered rate 0 bps
 aggregate-forwarded 0 bytes action: set-mpls-exp-imposition-transmit exceeded 0 bytes action: drop
 aggregate-forward 0 bps exceed 0 bps

class-map: class-default (match-any)
 Match: any

Class-map: class-default (match-any)
 0 packets, 0 bytes
 5 minute offered rate 0 bps, drop rate 0 bps
 Match: any
```

### Configuring PFC-Mode MPLS QoS Egress EXP Mutation

These sections describe how to configure MPLS QoS egress EXP mutation on the PFC:

- Configuring Named EXP Mutation Maps, page 50-29
- Attaching an Egress EXP Mutation Map to an Interface, page 50-29
Configuring Named EXP Mutation Maps

To configure a named EXP mutation map, perform this task:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router(config)# mls qos map exp-mutation name mutated_exp1 mutated_exp2 mutated_exp3 mutated_exp4 mutated_exp5 mutated_exp6 mutated_exp7 mutated_exp8</td>
<td>Configures a named EXP mutation map.</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no mls qos map exp-mutation name</td>
<td>Reverts to the default map.</td>
</tr>
<tr>
<td>2</td>
<td>Router(config)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>3</td>
<td>Router# show mls qos maps</td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

When configuring a named EXP mutation map, note the following information:

- You can enter up to eight input EXP values that map to a mutated EXP value.
- You can enter multiple commands to map additional EXP values to a mutated EXP value.
- You can enter a separate command for each mutated EXP value.
- You can configure 15 ingress EXP mutation maps to mutate the internal EXP value before it is written as the ingress EXP value. You can attach ingress EXP mutation maps to any interface that PFC QoS supports.
- PFC QoS derives the egress EXP value from the internal DSCP value. If you configure ingress EXP mutation, PFC QoS does not derive the ingress EXP value from the mutated EXP value.

Attaching an Egress EXP Mutation Map to an Interface

To attach an egress EXP mutation map to an interface, perform this task:

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Router(config)# interface {{vlan vlan_ID}</td>
<td>{type slot/port</td>
</tr>
<tr>
<td>2</td>
<td>Router(config-if)# mls qos exp-mutation exp-mutation-table-name</td>
<td>Attaches an egress EXP mutation map to the interface.</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls qos exp-mutation</td>
<td>Removes the egress DSCP mutation map from the interface.</td>
</tr>
<tr>
<td>3</td>
<td>Router(config-if)# end</td>
<td>Exits configuration mode.</td>
</tr>
<tr>
<td>4</td>
<td>Router# show running-config interface {{vlan vlan_ID}</td>
<td>{type slot/port</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to attach the egress EXP mutation map named mutemap2:

```
Router(config)# interface fastethernet 3/26
Router(config-if)# mls qos exp-mutation mutemap2
Router(config-if)# end
```
Configuring EXP Value Maps

These sections describe how EXP values are mapped to other values:

- Configuring an Ingress-EXP to Internal-DSCP Map, page 50-30
- Configuring a Named Egress-DSCP to Egress-EXP Map, page 50-30

Configuring an Ingress-EXP to Internal-DSCP Map

To configure an ingress-EXP to internal-DSCP map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos map exp-dscp values</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no mls qos map exp-dscp</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show mls qos maps</td>
</tr>
</tbody>
</table>

This example shows how to configure an ingress-EXP to internal-DSCP map:

```
Router(config)# mls qos map exp-dscp 43 43 43 43 43 43 43 43
```

This example shows how to verify the configuration:

```
Router(config)# show mls qos map exp-dscp
Exp-dscp map:
 exp: 0 1 2 3 4 5 6 7
 dscp: 43 43 43 43 43 43 43 43
```

Configuring a Named Egress-DSCP to Egress-EXP Map

To configure a named egress-DSCP to egress-EXP map, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos map dscp-exp dscp_values to exp_values</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no mls qos map dscp-exp</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show mls qos maps</td>
</tr>
</tbody>
</table>

This example shows how to configure a named egress-DSCP to egress-EXP map:

```
Router(config)# mls qos map dscp-exp 20 25 to 3
```

```
Router(config)#
```
MPLS DiffServ Tunneling Modes

Tunneling provides QoS the ability to be transparent from one edge of a network to the other edge of the network. A tunnel starts where there is label imposition. A tunnel ends where there is label disposition; that is, where the label is removed from the stack, and the packet goes out as an MPLS packet with a different per-hop behavior (PHB) layer underneath or as an IP packet with the IP PHB layer.

For the PFC, there are two ways to forward packets through a network:

- **Short Pipe mode**—In Short Pipe mode, the egress PE router uses the original packet marking instead of the marking used by the intermediate provider (P) routers. EXP marking does not propagate to the packet ToS byte.
  
  For a description of this mode, see the “Short Pipe Mode” section on page 50-31.
  
  For the configuration information, see the “Configuring Short Pipe Mode” section on page 50-34.

- **Uniform mode**—In Uniform mode, the marking in the IP packet may be manipulated to reflect the service provider’s QoS marking in the core. This mode provides consistent QoS classification and marking throughout the network including CE and core routers. EXP marking is propagated to the underlying ToS byte.
  
  For a description, see the “Uniform Mode” section on page 50-32.
  
  For the configuration procedure, see the “Configuring Uniform Mode” section on page 50-39.

Both tunneling modes affect the behavior of edge and penultimate label switching routers (LSRs) where labels are put onto packets and removed from packets. They do not affect label swapping at intermediate routers. A service provider can choose different types of tunneling modes for each customer.

For additional information, see “MPLS DiffServ Tunneling Modes” at this URL: [http://www.cisco.com/en/US/docs/ios/12_2t/12_2t13/feature/guide/ftdtmode.html](http://www.cisco.com/en/US/docs/ios/12_2t/12_2t13/feature/guide/ftdtmode.html)

**Short Pipe Mode**

Short pipe mode is used when the customer and service provider are in different DiffServ domains. It allows the service provider to enforce its own DiffServ policy while preserving customer DiffServ information, which provides a DiffServ transparency through the service provider network.

QoS policies implemented in the core do not propagate to the packet ToS byte. The classification based on MPLS EXP value ends at the customer-facing egress PE interface; classification at the customer-facing egress PE interface is based on the original IP packet header and not the MPLS header.

**Note**

The presence of an egress IP policy (based on the customer’s PHB marking and not on the provider’s PHB marking) automatically implies the Short Pipe mode.
Short Pipe mode functions as follows:

1. CE1 transmits an IP packet to PE1 with an IP DSCP value of 1.
2. PE1 sets the MPLS EXP field to 5 in the imposed label entries.
3. PE1 transmits the packet to P1.
4. P1 sets the MPLS EXP field value to 5 in the swapped label entry.
5. P1 transmits the packet to P2.
6. P2 pops the IGP label entry.
7. P2 transmits the packet to PE2.
8. PE2 pops the BGP label.
9. PE2 transmits the packet to CE2, but does QoS based on the IP DSCP value.

For additional information, see “MPLS DiffServ Tunneling Modes” at this URL:

Short Pipe Mode Restrictions and Guidelines

The following restriction applies to Short Pipe mode:
- Short Pipe mode is not supported if the MPLS-to-IP egress interface is EoMPLS (the adjacency has the end of marker (EOM) bit set).

Uniform Mode

In Uniform mode, packets are treated uniformly in the IP and MPLS networks; that is, the IP precedence value and the MPLS EXP bits always correspond to the same PHB. Whenever a router changes or recolors the PHB of a packet, that change must be propagated to all encapsulation markings. The propagation is performed by a router only when a PHB is added or exposed due to label imposition or
disposition on any router in the packet’s path. The color must be reflected everywhere at all levels. For example, if a packet’s QoS marking is changed in the MPLS network, the IP QoS marking reflects that change.

*Figure 50-3 Uniform Mode Operation*

The procedure varies according to whether IP precedence bit markings or DSCP markings are present. The following actions occur if there are IP precedence bit markings:

1. IP packets arrive in the MPLS network at PE1, the service provider edge router.
2. A label is copied onto the packet.
3. If the MPLS EXP field value is recolored (for example, if the packet becomes out-of-rate because too many packets are being transmitted), that value is copied to the IGP label. The value of the BGP label is not changed.
4. At the penultimate hop, the IGP label is removed. That value is copied into the next lower level label.
5. When all MPLS labels have been removed from the packet that is sent out as an IP packet, the IP precedence or DSCP value is set to the last changed EXP value in the core.

The following is an example when there are IP precedence bit markings:

1. At CE1 (customer equipment 1), the IP packet has an IP precedence value of 3.
2. When the packet arrives in the MPLS network at PE1 (the service provider edge router), the IP precedence value of 3 is copied to the imposed label entries of the packet.
3. The MPLS EXP field in the IGP label header might be changed within the MPLS core (for example, at P1) by a mark down.

*Note* Because the IP precedence bits are 3, the BGP label and the IGP label also contain 3 because in Uniform mode, the labels always are identical. The packet is treated uniformly in the IP and MPLS networks.
Uniform Mode Restrictions and Guidelines

The following restriction applies to the Uniform mode:

- If the egress IP ACLs or service policies are configured on the MPLS-to-IP exit point, the Uniform mode is always enforced because of recirculation.

MPLS DiffServ Tunneling Restrictions and Usage Guidelines

The MPLS DiffServ tunneling restrictions and usage guidelines are as follows:

- One label-switched path (LSP) can support up to eight classes of traffic (that is, eight PHBs) because the MPLS EXP field is a 3-bit field.
- MPLS DiffServ tunneling modes support E-LSPs. An E-LSP is an LSP on which nodes determine the QoS treatment for MPLS packet exclusively from the EXP bits in the MPLS header.

The following features are supported with the MPLS differentiated service (DiffServ) tunneling modes:

- MPLS per-hop behavior (PHB) layer management. (Layer management is the ability to provide an additional layer of PHB marking to a packet.)
- Improved scalability of the MPLS layer management by control on managed customer edge (CE) routers.
- MPLS can tunnel a packet’s QoS (that is, the QoS is transparent from edge to edge). With QoS transparency, the IP marking in the IP packet is preserved across the MPLS network.
- The MPLS EXP field can be marked differently and separately from the PHB marked in the IP precedence or DSCP field.

Configuring Short Pipe Mode

The following sections describe how to configure the Short Pipe mode:

- Ingress PE Router—Customer Facing Interface, page 50-34
- Configuring Ingress PE Router—P Facing Interface, page 50-35
- Configuring the P Router—Output Interface, page 50-37
- Configuring the Egress PE Router—Customer Facing Interface, page 50-38

Note

- The steps that follow show one way, but not the only way, to configure Short Pipe mode.
- The Short Pipe mode on the egress PE (or PHP) is automatically configured when you attach to the interface an egress service policy that includes an IP class.

Ingress PE Router—Customer Facing Interface

This procedure configures a policy map to set the MPLS EXP field in the imposed label entries.

To set the EXP value, the ingress LAN or OSM port must be untrusted. FlexWAN ports do not have the trust concept, but, as with traditional Cisco IOS routers, the ingress ToS is not changed (unless a marking policy is configured).
Chapter 50  Configuring MPLS QoS on the PFC

For MPLS and VPN, the ingress PE supports all ingress PFC IP policies. For information about the classification for PFC IP policies based on IP ACL/DSCP/precedence, see http://www.cisco.com/univercd/cc/td/doc/product/core/cis7600/software/122sx/swcg/qos.htm.

To configure a policy map to set the MPLS EXP field in the imposed label entries, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos Enables QoS functionality.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# access-list ipv4_acl_number_or_name permit any Creates an IPv4 access list.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# class-map class_name Creates a class map.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-cmap)# match access-group ipv4_acl_number_or_name Configures the class map to filter with the ACL created in step 2.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# policy-map policy_map_name Creates a named QoS policy.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-pmap)# class class_name Configures the policy to use the class map created in step 3.</td>
</tr>
</tbody>
</table>
| Step 7  | Router(config-pmap-c)# police bits_per_second [normal_burst_bytes] conform-action set-mpls-exp-transmit exp_value exceed-action drop Configures policing, including the following:  
  • Action to take on packets that conform to the rate limit specified in the service level agreement (SLA).  
  • Action to take on packets that exceed the rate limit specified in the SLA.  
  The exp_value sets the MPLS EXP field. |
| Step 8  | Router(config)# interface type slot/port Selects an interface to configure. |
| Step 9  | Router(config-if)# no mls qos trust Configures the interface as untrusted. |
| Step 10 | Router(config-if)# service-policy input policy_map_name Attaches the policy map created in step 5 to the interface as an input service policy. |

**Configuration Example**

This example shows how to configure a policy map to set the MPLS EXP field in the imposed label entries:

```
Router(config)# mls qos
Router(config)# access-list 1 permit any
Router(config)# class-map CUSTOMER-A
Router(config-cmap)# match access-group 1
Router(config)# policy-map set-MPLS-PHB
Router(config-pmap)# class CUSTOMER-A
Router(config-pmap-c)# police 50000000 conform-action set-mpls-exp-transmit 4 exceed-action drop
Router(config)# interface GE-WAN 3/1
Router(config-if)# no mls qos trust
Router(config-if)# interface GE-WAN 3/1.31
Router(config-if)# service-policy input set-MPLS-PHB
```

**Configuring Ingress PE Router—P Facing Interface**

This procedure classifies packets based on their MPLS EXP field and provides appropriate discard and scheduling treatments.
Configuring Short Pipe Mode

Note

QoS features shown here are available only with OSM and FlexWAN and Enhanced FlexWAN modules.

To classify packets based on their MPLS EXP field and provide appropriate discard and scheduling treatments, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos</td>
</tr>
<tr>
<td></td>
<td>Enables QoS functionality.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# class-map class_name</td>
</tr>
<tr>
<td></td>
<td>Specifies the class map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-c-map)# match mpls experimental exp_list</td>
</tr>
<tr>
<td></td>
<td>Specifies the MPLS EXP field values used as a match criteria against which packets are checked to determine if they belong to the class.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# policy-map name</td>
</tr>
<tr>
<td></td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-p-map)# class class_name</td>
</tr>
<tr>
<td></td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-p-map-c)# bandwidth {bandwidth_kbps</td>
</tr>
<tr>
<td></td>
<td>Specifies the minimum bandwidth guarantee to a traffic class.</td>
</tr>
<tr>
<td></td>
<td>You can specify the minimum bandwidth guarantee in kilobits per second or by percent of the overall bandwidth.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-p-map)# class class-default</td>
</tr>
<tr>
<td></td>
<td>Specifies the default class so that you can configure or modify its policy.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-p-map-c)# random-detect</td>
</tr>
<tr>
<td></td>
<td>Enables a WRED drop policy for a traffic class that has a bandwidth guarantee.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Router(config-if)# service-policy output name</td>
</tr>
<tr>
<td></td>
<td>Attaches a QoS policy to an interface and specifies that policies should be applied on packets leaving the interface.</td>
</tr>
</tbody>
</table>

Note

The bandwidth command and random-detect command are not supported on LAN ports.

Configuration Example

This example shows how to classify packets based on their MPLS EXP field and provide appropriate discard and scheduling treatments:

```
Router(config)# mls qos
Router(config)# class-map MPLS-EXP-4
Router(config-c-map)# match mpls experimental 4
Router(config)# policy-map output-qos
Router(config-p-map)# class MPLS-EXP-4
Router(config-p-map-c)# bandwidth percent 40
Router(config-p-map)# class class-default
Router(config-p-map-c)# random-detect
Router(config)# interface pos 4/1
Router(config-if)# service-policy output output-qos
```
Chapter 50      Configuring MPLS QoS on the PFC

Configuring Short Pipe Mode

Configuring the P Router—Output Interface

Note    QoS features shown here are available only with OSM and FlexWAN and Enhanced FlexWAN modules.

To classify packets based on their MPLS EXP field and provide appropriate discard and scheduling treatments, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos</td>
</tr>
<tr>
<td></td>
<td>Enables QoS functionality.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# class-map class_name</td>
</tr>
<tr>
<td></td>
<td>Specifies the class map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-c-map)# match mpls experimental exp_list</td>
</tr>
<tr>
<td></td>
<td>Specifies the MPLS EXP field values used as a match criteria against which packets are checked to determine if they belong to the class.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# policy-map name</td>
</tr>
<tr>
<td></td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-p-map)# class class_name</td>
</tr>
<tr>
<td></td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-p-map-c)# bandwidth {bandwidth_kbps</td>
</tr>
<tr>
<td></td>
<td>Specifies the minimum bandwidth guarantee to a traffic class. You can specify the minimum bandwidth guarantee in kilobits per second or by percent of the overall bandwidth.</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-p-map)# class class-default</td>
</tr>
<tr>
<td></td>
<td>Specifies the default class so that you can configure or modify its policy.</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-p-map-c)# random-detect</td>
</tr>
<tr>
<td></td>
<td>Applies WRED to the policy based on the IP precedence or the MPLS EXP field value.</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td>Step 10</td>
<td>Router(config-if)# service-policy output name</td>
</tr>
<tr>
<td></td>
<td>Attaches a QoS policy to an interface and specifies that policies should be applied on packets leaving the interface.</td>
</tr>
</tbody>
</table>

Note    The bandwidth command and random-detect command are not supported on LAN ports.

Configuration Example

This example shows how to classify packets based on their MPLS EXP field and provide appropriate discard and scheduling treatments:

Router(config)# mls qos
Router(config)# class-map MPLS-EXP-4
Router(config-c-map)# match mpls experimental 4
Router(config)# policy-map output-qos
Router(config-p-map)# class MPLS-EXP-4
Router(config-p-map-c)# bandwidth percent 40
Router(config-p-map)# class class-default
Router(config-p-map-c)# random-detect
Router(config)# interface pos 2/1
Router(config-if)# service-policy output output-qos
Configuring the Egress PE Router—Customer Facing Interface

To classify a packet based on its IP DSCP value and provide appropriate discard and scheduling treatments, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# class-map class_name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-c-map)# match ip dscp dscp_values</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# policy-map name</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-p-map)# class class_name</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-p-map-c)# bandwidth {bandwidth_kbps</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-p-map)# class class-default</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-p-map-c)# random-detect dscp-based</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 10</td>
<td>Router(config-if)# service-policy output name</td>
</tr>
</tbody>
</table>

The bandwidth command and random-detect command are not supported on LAN ports.

Configuration Example

This example shows how to classify a packet based on its IP DSCP value and provide appropriate discard and scheduling treatments:

```
Router(config)# mls qos
Router(config)# class-map IP-PREC-4
Router(config-c-map)# match ip precedence 4
Router(config)# policy-map output-qos
Router(config-p-map)# class IP-PREC-4
Router(config-p-map-c)# bandwidth percent 40
Router(config-p-map-c)# class class-default
Router(config-p-map-c)# random-detect
Router(config)# interface GE-WAN 3/2.32
Router(config-if)# service-policy output output-qos
```
Configuring Uniform Mode

This section describes how to configure the following:

- Configuring the Ingress PE Router—Customer Facing Interface, page 50-39
- Configuring the Ingress PE Router—P Facing Interface, page 50-40
- Configuring the Egress PE Router—Customer Facing Interface, page 50-41

Note

The steps that follow show one way, but not the only way, to configure the Uniform mode.

Configuring the Ingress PE Router—Customer Facing Interface

For Uniform mode, setting the trust state to IP precedence or IP DSCP allows the PFC’ to copy the IP PHB into the MPLS PHB.

Note

This description applies to PFC QoS for LAN or OSM ports. For information about FlexWAN and Enhanced FlexWAN QoS, see the FlexWAN and Enhanced FlexWAN Modules Installation and Configuration Guide at this URL:


To configure a policy map to set the MPLS EXP field in imposed label entries, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# mls qos</td>
<td>Enables QoS functionality.</td>
</tr>
<tr>
<td>Step 2: Router(config)# access-list ipv4_acl_number_or_name permit any</td>
<td>Creates an IPv4 access list.</td>
</tr>
<tr>
<td>Step 3: Router(config)# class-map class_name</td>
<td>Creates a class map.</td>
</tr>
<tr>
<td>Step 4: Router(config-map)# match access-group ipv4_acl_number_or_name</td>
<td>Configures the class map to filter with the ACL created in Step 2.</td>
</tr>
<tr>
<td>Step 5: Router(config)# policy-map policy_map_name</td>
<td>Creates a named QoS policy.</td>
</tr>
<tr>
<td>Step 6: Router(config-map)# class class_name</td>
<td>Configures the policy to use the class map created in step 3.</td>
</tr>
<tr>
<td>Step 7: Router(config-map-c)# police bits_per_second</td>
<td>Configures policing, including the following:</td>
</tr>
<tr>
<td>[normal_burst_bytes] conform-action transmit exceed-action drop</td>
<td>• Action to take on packets that conform to the rate limit specified</td>
</tr>
<tr>
<td>[normal_burst_bytes] conform-action transmit exceed-action drop</td>
<td>• Action to take on packets that exceed the rate limit specified in</td>
</tr>
<tr>
<td>Step 8: Router(config)# interface type slot/port</td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td>Step 9: Router(config-if)# mls qos trust dscp</td>
<td>Configures received DSCP as the basis of the internal DSCP for all the</td>
</tr>
<tr>
<td>Step 10: Router(config-if)# service-policy input policy_map_name</td>
<td>Attaches the policy map created in step 5 to the interface as an input</td>
</tr>
<tr>
<td></td>
<td>service policy.</td>
</tr>
</tbody>
</table>
Configuration Example

This example shows how to configure a policy map to set the MPLS EXP field in imposed label entries:

```
Router(config)# mls qos
Router(config)# access-list 1 permit any
Router(config)# class-map CUSTOMER-A
Router(config-c-map)# match access-group 1
Router(config)# policy-map SLA-A
Router(config-p-map)# class CUSTOMER-A
Router(config-p-map-c)# police 50000000 conform-action transmit exceed-action drop
Router(config)# interface GE-WAN 3/1
Router(config-if)# mls qos trust dscp
Router(config)# interface GE-WAN 3/1.31
Router(config-if)# service-policy input SLA-A
```

Configuring the Ingress PE Router—P Facing Interface

To classify packets based on their MPLS EXP field and provide appropriate discard and scheduling treatments, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1   Router(config)# mls qos</td>
<td>Enables QoS functionality.</td>
</tr>
<tr>
<td>Step 2   Router(config)# class-map class_name</td>
<td>Specifies the class map to which packets will be mapped (matched). Creates a traffic class.</td>
</tr>
<tr>
<td>Step 3   Router(config-c-map)# match mpls experimental exp_list</td>
<td>Specifies the MPLS EXP field values used as a match criteria against which packets are checked to determine if they belong to the class.</td>
</tr>
<tr>
<td>Step 4   Router(config)# policy-map name</td>
<td>Configures the QoS policy for packets that match the class or classes.</td>
</tr>
<tr>
<td>Step 5   Router(config-p-map)# class class_name</td>
<td>Associates the traffic class with the service policy.</td>
</tr>
<tr>
<td>Step 6   Router(config-p-map-c)# bandwidth (bandwidth_kbps</td>
<td>percent percent)</td>
</tr>
<tr>
<td>Step 7   Router(config-p-map)# class class-default</td>
<td>Specifies the default class so that you can configure or modify its policy.</td>
</tr>
<tr>
<td>Step 8   Router(config-p-map-c)# random-detect</td>
<td>Enables a WRED drop policy for a traffic class that has a bandwidth guarantee.</td>
</tr>
<tr>
<td>Step 9   Router(config)# interface type slot/port</td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td>Step 10  Router(config-if)# service-policy output name</td>
<td>Attaches a QoS policy to an interface and specifies that policies should be applied on packets leaving the interface.</td>
</tr>
</tbody>
</table>

Note: The bandwidth command and random-detect command are not supported on LAN ports.
Configuration Example

This example shows how to classify packets based on their MPLS EXP field and provide appropriate discard and scheduling treatments:

```
Router(config)# mls qos
Router(config)# class-map MPLS-EXP-3
Router(config-c-map)# match mpls experimental 3
Router(config)# policy-map output-qos
Router(config-p-map)# class MPLS-EXP-3
Router(config-p-map-c)# bandwidth percent 40
Router(config-p-map-c)# class class-default
Router(config-p-map-c)# random-detect
Router(config)# interface pos 4/1
Router(config-if)# service-policy output output-qos
```

Configuring the Egress PE Router—Customer Facing Interface

To configure the egress PE router at the customer-facing interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls qos</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# class-map class_name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-c-map)# match ip precedence precedence-value</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# policy-map name</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-p-map)# class class_name</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-p-map-c)# bandwidth {bandwidth_kbps</td>
</tr>
<tr>
<td>Step 7</td>
<td>Router(config-p-map-c)# class class-default</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-p-map-c)# random-detect</td>
</tr>
<tr>
<td>Step 9</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 10</td>
<td>Router(config-if) mpls propagate-cos</td>
</tr>
<tr>
<td>Step 11</td>
<td>Router(config-if)# service-policy output name</td>
</tr>
</tbody>
</table>

Note: The bandwidth command and random-detect command are not supported on LAN ports.
Configuring Uniform Mode

Configuration Example

This example shows how to configure the egress PE router at the customer-facing interface:

Router(config)# mls qos
Router(config)# class-map IP-PREC-4
Router(config-c-map)# match ip precedence 4
Router(config)# policy-map output-qos
Router(config-p-map)# class IP-PREC-4
Router(config-p-map-c)# bandwidth percent 40
Router(config-p-map)# class class-default
Router(config-p-map-c)# random-detect
Router(config)# interface GE-WAN 3/2.32
Router(config-if)# mpls propagate-cos
Router(config-if)# service-policy output output-qos
Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast VPN (MVPN) Support

The Label Switched Multicast (LSM) feature enables service providers to extend the existing IPv4 MPLS backbone network for IPv4 multicast services. By default, MPLS creates an out-label for an in-label for each packet. This feature extends this functionality to create multiple out-labels for a single in-label. The IPv4 Multicast service includes point-to-multipoint (P2MP) and multipoint-to-multipoint (M2M) packet transport. The P2MP packet transport is implemented using Resource Reservation Protocol (RSVP) P2MP – Traffic Engineering (P2MP-TE) and M2M packet transport is implemented through IPv4 Multicast VPN (MVPN) using multicast Label Distribution Protocol (MLDP). The packet are transported over three types of routers:

- Headend router: Encapsulates the IP packet with one or more labels.
- Midpoint router: Replaces the in-label with an out-label.
- Tailend router: Removes the label from the packet.

LSM is implemented on systems based on EARL 7 or EARL 7.5 versions, which support two modes of multicast replication—ingress and egress. The ingress card performs the replication in case of ingress mode and the multicast traffic throughput is limited to 20 Gb/s. The egress replication mode uses the replication capability of fabric to deliver a copy of a packet to each line card. Distributing the replication process across multiple line cards significantly improves the system throughput. On the Cisco 7600 Series Routers, LSM is implemented in the egress mode.

Note

LSM MLDP-based MVPN feature is supported on ES+ and ES20 line cards and these supervisors: RSP720, SUP720, and RSP720-10GE. MLDP is supported on all the egress replication capable line cards.

For more information on RSVP P2MP-TE, see http://www.cisco.com/en/US/docs/ios/mpls/configuration/guide/mp_te_p2mp.html

Configuring MLDP MVPN

The MLDP MVPN configuration enables IPv4 multicast packet delivery using MPLS. This configuration uses MPLS labels to construct default and data Multicast Distribution Trees (MDTs). The MPLS replication is used as a forwarding mechanism in the core network. For MLDP MVPN configuration to work, ensure that the global MPLS MLDP configuration is enabled.
To configure MVPN extranet support, configure the source multicast VPN Routing and Forwarding (mVRF) on the receiver Provider Edge (PE) router or configure the receiver mVRF on the source PE. MLDP MVPN is supported for both intranet and extranet.

Figure 51-1 shows MLDP based MVPN network.

**Figure 51-1   MLDP Based MVPN Network**

Packet Flow in MLDP-based MVPN Network

For each packet coming in, MPLS creates multiple out-labels. Packets from the source network are replicated along the path to the receiver network. The CE1 router sends out the native IP multicast traffic. The PE1 router imposes a label on the incoming multicast packet and replicates the labeled packet towards the MPLS core network. When the packet reaches the core router (P), the packet is replicated with the appropriate labels for the MP2MP default MDT or the P2MP data MDT and transported to all the egress PEs. Once the packet reaches the egress PE, the label is removed and the IP multicast packet is replicated onto the VRF interface.

Restrictions and Usage Guidelines

Follow these restrictions and usage guidelines while configuring LSM MLDP based MVPN support:

- MLDP is supported only in the egress replication mode.
- A headend router does not support multiple sub Label Switched Paths (subLSPs) belonging to different tunnels, over the same physical interface.
- NAT with P2MP TE is not supported.
- Process level software forwarding is not supported.
Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

- MLDP-based MVPN is not supported for global IPv4 multicast.
- These are the scale considerations for MLDP based MVPN:
  - Maximum number of mVRFs supported is 100.
  - Maximum number of multicast routes supported in each MVRF is 100.
- Extranet content group mode should be consistent across all the VRFs. These are the valid content group modes: Supported, Unsupported, and PM-sparse mode.
- Supported content group modes are Protocol Independent Multicast (PIM) sparse mode (PIM-SM) and Source Specific Multicast (SSM) traffic.
- Unsupported content group modes are PIM dense mode (PIM-DM) and bidirectional PIM (bidir-PIM) traffic.
- PIM-sparse content group mode is supported if the RP is configured behind the PE router (on CE).
- Only the static multicast route with fallback-lookup option is supported for RPF lookup for extranet.
- MLDP provides only link protection with the FRR TE. Only single hop is supported with MLDP TE, the backup path can have multiple hops.

**Configuring Label Switched Multicast on 7600**

Deployment of an LSM MLDP-based MVPN involves configuring a default MDT and one or more data MDTs.

A static default MDT is established for each multicast domain. The default MDT defines the path used by PE routers to send multicast data and control messages to other PE routers in the multicast domain. A default MDT is created in the core network using a single MP2MP LSP.

An MLDP based MLDP-based MVPN also supports dynamic creation of the data MDTs for high-bandwidth transmission. For high-rate data sources, a data MDT is created using the P2MP LSPs to off-load the traffic from the default MDT to avoid unnecessary waste of bandwidth to PEs that are not part of the stream. You can configure MLDP MVPN for both the intranet or extranet.

**Note**

Before configuring MLDP based MVPN, ensure that the MPLS is enabled on the core facing interface. For information in MPLS configuration, see the Cisco IOS Multiprotocol Label Switching Configuration Guide. Also, ensure that BGP and any interior gateway protocol (OSPF or ISIS) is enabled on the core router.

**Configuring MLDP MVPN (Intranet)**

Complete these steps to configure MLDP MVPN for intranet:
- Enabling MPLS MLDP
- Configuring MVPN Routing and Forwarding instance
- Configuring a VRF entry
- Configuring the route distinguisher
- Configuring VPN Id
- Configuring the Route-Target extended community
- Configuring the default MDT
Chapter 51      Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

• Configuring Data MDTs (optional)
• Configuring BGP MDT address family
• Configuring BGP vpnv4 address family
• Configuring BGP IPv4 VRF address family
• Configuring PIM SM/SSM mode for the VRFs

Summary Steps

1. enable
2. configure terminal
3. mpls mldp
4. ip vrf vrf-name
5. rd route-distinguisher
6. vpn id vpn_id
7. route-target [import | export | both] route-target-ext-community
8. route-target [import | export | both] route-target-ext-community
9. mdt default mpls mldp root-node
10. mdt data mpls mldp numberofdataMDTs
11. mdt data threshold bandwidth
12. exit
13. ip multicast-routing vrf vrf-name
14. end

Note
See Configuring the MDT Address Family in BGP for Multicast VPN for information on configuring an MDT and vpnv4 address family session on the PE routers to establish MDT peering sessions for MVPN.

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables privileged EXEC mode. <em>Enter your password when prompted.</em></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step</td>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>3</td>
<td>mpls mldp</td>
<td>Enables MPLS MLDP support. <strong>Note</strong> To disable MPLS MLDP use the <code>no mpls mldp</code> command.</td>
</tr>
</tbody>
</table>
| 4    | ip vrf vrf-name | Defines the VPN routing instance by assigning a VRF name and enters VRF configuration mode.  
  - The vrf-name argument is the name assigned to a VRF. |
| 5    | rd route-distinguisher | Creates routing and forwarding tables. Specify the route-distinguisher argument to add an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter an RD value in either of these formats:  
  - 16-bit autonomous system number. For example, 101:3.  
  - 32-bit IP address: your 16-bit number. For example, 192.168.122.15:1. |
| 6    | vpn id vpn-id | Sets or updates a VPN identifier on a VRF. |
| 7    | route-target import route-target-ext-community | Creates a route-target extended community for a VRF.  
  - The import keyword imports the routing information from the target VPN extended community.  
  - The route-target-ext-community argument adds the route-target extended community attributes to the VRF list of import, export, or both (import and export) route-target extended communities. |
| 8    | route-target export route-target-ext-community | Creates a route-target extended community for a VRF.  
  - The export keyword exports the routing information from the target VPN extended community.  
  - The route-target-ext-community argument adds the route-target extended community attributes to the VRF list of import, export, or both (import and export) route-target extended communities. |
### Command | Purpose
---|---
**Step 9** mdt default mpls mldp root-node

*Example:*
```plaintext
Router(config-vrf)# mdt default mpls mldp 2.2.2.2
```

Configures MLDP MDT for a VRF. The root node can be IP address of a loopback or physical interface on any router (source PE, receiver PE or core router) in the provider network. The root node address should be reachable by all the routers in the network. The router from where the signalling occurs functions as the root node.

The default MDT must be configured on each PE router to enable the PE routers to receive multicast traffic for this particular MVRF.

**Note** By default MPLS MLDP is enabled. To disable, use the `no mpls mldp` command.

**Note** LSPVIF tunnel is created as a result of `mdt default mpls mldp root-node` command.

**Step 10** mdt data mpls mldp numberofdataMDTs

*Example:*
```plaintext
Router(config-vrf)# mdt data mpls mldp 100
```

Configures the MLDP data MDP.

**Step 11** mdt data threshold bandwidth

*Example:*
```plaintext
Router(config-vrf)# mdt data threshold 20
```

Configures the threshold value for data MDT.

**Note** Bandwidth is traffic rate in Kb/s.

**Step 12** exit

*Example:*
```plaintext
Router(config-vrf)# exit
```

Exits the configuration session.

**Step 13** ip multicast-routing vrf vrf-name

*Example:*
```plaintext
Router(config)# ip multicast-routing vrf blue
```

Enables IPv4 multicast routing for the specified VRF.

**Step 14** end

*Example:*
```plaintext
Router(config)# end
```

Closes the configuration session.
Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

Note  See Configuring the MDT Address Family in BGP for Multicast VPN for information on configuring an MDT address family session on the PE routers to establish MDT peering sessions for MVPN.

Example

This example describes how to configure MLDP MVPN on an intranet:

Router> enable
Router# configure terminal
Router(config)# mpls mldp
Router(config)# ip vrf blue
Router(config-vrf)# rd 10:3
Router(config-vrf)# vpn id 10:3
Router(config-vrf)# route-target import 10:3
Router(config-vrf)# route-target export 10:3
Router(config-vrf)# mdt default mpls mldp 2.2.2.2
Router(config-vrf)# mdt data mpls mldp 100
Router(config-vrf)# mdt data threshold 20
Router(config-vrf)# exit
Router(config)# ip multicast-routing vrf blue
Router(config)# end

Verification

Use these commands to verify LSM MLDP based MVPN support intranet configuration:

- To check the MLDP neighbors, use the show mpls mldp neighbor command:

  Router# show mpls mldp neighbors
  MLDP peer ID  : 3.3.3.3:0, uptime 00:41:41 Up,
  Target Adj    : Yes
  Session hndl  : 2
  Upstream count : 2
  Branch count   : 0
  Path count     : 1
  Path(s)        : 3.3.3.3     No LDP Tunnel20
  Nhopt count    : 1
  Nhopt list     : 3.3.3.3

  MLDP peer ID  : 2.2.2.2:0, uptime 00:17:42 Up,
  Target Adj    : No
  Session hndl  : 4
  Upstream count : 0
  Branch count   : 0
  Path count     : 1
  Path(s)        : 3.3.3.3     No LDP Tunnel20
  Nhopt count    : 0

- To check the PIM neighbors, use the show ip pim vrf vrf-name neighbor command:

  Router# show ip pim vrf blue neighbor
  PIM Neighbor Table
  Mode: B - Bidir Capable, DR - Designated Router, N - Default DR Priority,
  P - Proxy Capable, S - State Refresh Capable, G - GenID Capable
  Neighbor         Interface     Uptime/Expires Ver   Prio/Mode
  Address          00:06:21/00:01:17 v2  1 / DR S P G

- To check the multicast routes for a given VRF, use show ip mroute vrf vrf-name verbose command:

  Router# show ip mroute vrf blue verbose
  IP Multicast Routing Table
  Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

L - Local, P - Pruned, R - RP-bit set, F - Register flag,
T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
U - URD, I - Received Source Specific Host Report,
Z - Multicast Tunnel, Z - MDT-data group sender,
Y - Joined MDT-data group, Y - Sending to MDT-data group,
V - RD & Vector, V - Vector

Outgoing interface flags: H - Hardware switched, A - Assert winner
Timers: Uptime/Expires
Interface state: Interface, Next-Hop or VCD, State/Mode

{(40.0.0.2, 232.0.1.4), 00:00:16/00:03:13, flags: sT}
Incoming interface: GigabitEthernet3/2/1, RPF nbr 0.0.0.0
Outgoing interface list:
  Lspvif1, LSM MDT: B0000004 (default), Forward/Sparse, 00:00:16/00:03:13

(*, 224.0.1.40), 00:47:09/00:02:56, RP 0.0.0.0, flags: DPL
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list: Null

To check the packet counters, use `show ip mroute vrf vrf_name count` command:

Router# show ip mroute vrf blue count
IP Multicast Statistics
2 routes using 1208 bytes of memory
2 groups, 0.50 average sources per group
Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
Other counts: Total/RPF failed/Other drops (OIF-null, rate-limit etc)

Group: 232.0.1.4, Source count: 1, Packets forwarded: 1333, Packets received: 1334
  Source: 40.0.0.2/32, Forwarding: 1333/20/46/7, Other: 1334/0/1

Group: 224.0.1.40, Source count: 0, Packets forwarded: 0, Packets received: 0

To check the MPLS forwarding, use `show mpls forwarding-table` command:

Router# show mpls forwarding-table
Local Outgoing Prefix Bytes Label Outgoing Next Hop
Label Label or Tunnel Id Switched interface
16 Pop Label IPv4 VRF[V] 0 aggregate/blue
17 Pop Label IPv4 VRF[V] 0 aggregate/red
18 [T] Pop Label 3.3.3.3/32 0 Tu20 point2point
19 [T] 25 2.2.2.2/32 0 Tu20 point2point
20 [T] Pop Label 19.0.0.0/24 0 Tu20 point2point
22 [T] No Label [mdt 55:1111 0] [V] \9422 aggregate/red
23 [T] No Label [mdt 55:2222 0] [V] \9708 aggregate/blue

[T] Forwarding through a LSP tunnel.
View additional labelling info with the 'detail' option

To check the contents of a label on SP/DFC, use `show mls cef mpls labels mldp_label` command:

Router# show mls cef mpls labels op
Codes: + - Push label, - - Pop Label         * - Swap Label, E - exp1
Index Local Label Op Out i/f
2189 23 (EOS) (-) recirc

Configuring MLDP MVPN for Extranet Services

You can configure MLDP MVPN for extranet services using these methods:

- Source Side Chaining (SSC): Configure the phantom receiver MVRF on the source side router.
  Multicast routes with fallback loopback should be configured on the source PE.
- Receiver Side Chaining (RSC): Configure the phantom source MVRF on the receiver side router.
  Multicast routes with fallback lookup should be configured on the receiver VRF.
Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

See Multicast VPN Extranet Support for more information on MVPN Extranet support on Cisco 7600 series routers. MVPN is supported on PFC3B, PFC3BXL, PFC3C, or PFC3CXL router installations.

Configuring MLDP MVPN for Extranet using SSC

Complete these steps to configure the MLDP MVPN extranet support using SSC:

- Configuring receiver MVRF on the source PE.
- Configuring a loopback address in the receiver VRF on the source PE.
- Configuring fallback multicast route for source address on source PE.
- Configuring fallback multicast route for RP address on the source PE in case of SM mode.
- Configuring static multicast route on receiver PE for loopback IP in the receiver VRF configured on the source PE.

**Note**
This configuration is based on illustration Figure 51-1. Configure multicast routes on the PE1 router.

Summary Steps

**Configuration on the source PE:**

1. enable
2. configure terminal
3. ip vrf vrf-name
4. rd route-distinguisher
5. vpn id vpn_id
6. route-target import route-target-ext-community
7. route-target import route-target-ext-community
8. mdt default mpls mldp root-node
9. end
10. interface type instance
11. ip vrf forwarding vrf-name
12. ip address ip-address subnet
13. ip mroute [vrf receiver-vrf-name] source-address mask fallback-lookup (global | vrf source-vrf-name) [distance]
14. (For SM Mode) ip mroute [vrf receiver-vrf-name] rp-address mask fallback-lookup (global | vrf source-vrf-name) [distance]
15. end

**Configuration on the receiver PE:**

1. enable
2. configure terminal
3. ip vrf vrf-name
4. rd route-distinguisher
5. **vpn id** *vpn_id*
6. **route-target import** *route-target-ext-community*
7. **route-target import** *route-target-ext-community*
8. **mdt default mpls mldp root-node**
9. **end**
10. **interface type** *instance*
11. **ip vrf forwarding** *vrf-name*
12. **ip address** *ip-address subnet*
13. **ip mroutem vrf** *receiver_vrf source_address subnet_mask loopback_ip*
14. **end**

**DETAILED STEPS**

**Configuration on the source PE:**

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1 | enable | Enables privileged EXEC mode.  
- Enter your password when prompted.  |
| Example: | Router> enable |  |
| Step 2 | configure terminal | Enters global configuration mode. |
| Example: | Router# configure terminal |  |
| Step 3 | ip vrf vrf-name | Defines the VPN routing instance by assigning a VRF name and enters VRF configuration mode.  
- The vrf-name argument is the name assigned to a VRF. |
| Example: | Router(config)# ip vrf blue |  |
| Step 4 | rd route-distinguisher | Creates routing and forwarding tables. Specify the route-distinguisher argument to add an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter an RD value in either of these formats:  
- 16-bit autonomous system number. For example, 101:3.  
- 32-bit IP address: your 16-bit number. For example, 192.168.122.15:1. |
<p>| Example: | Router(config-if)# rd 10:4 |  |
| Step 5 | vpn id vpn-id | Sets or updates a VPN identifier on a VRF. |
| Example: | Router(config-if)# vpn id 10:4 |  |</p>
<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| 6    | `route-target import`  
     | `route-target-ext-community` | Creates a route-target extended community for a VRF.  
     |                     | • The import keyword imports the routing information from the target VPN extended community.  
     |                     | • The route-target-ext-community argument adds the route-target extended community attributes to the VRF list of import, export, or both (import and export) route-target extended communities. |
| 7    | `route-target export`  
     | `route-target-ext-community` | Creates a route-target extended community for a VRF.  
     |                     | • The export keyword export the routing information to the target VPN extended community.  
     |                     | • The route-target-ext-community argument adds the route-target extended community attributes to the VRF list of import, export, or both (import and export) route-target extended communities. |
| 8    | `mdt default mpls mldp root-node` | Configures MLDP multicast distribution tree (MDT) for a VRF.  
     | | Note: LSPVIF tunnel is created as a result of this command. | |
| 9    | `end` | Closes the configuration session. |
| 10   | `interface type instance` | Enters interface configuration mode and names the new loopback interface. |
| 11   | `ip vrf forwarding vrf-name` | Associates a VRF instance with an interface or subinterface.  
     | | • vrf-name is the name assigned to a VRF. |
| 12   | `ip address ip-address subnet-mask` | Specifies the interface IP address and subnet mask.  
     | | • ip-address specifies the IP address of the interface.  
     | | • subnet-mask specifies the subnet mask of the interface. |
### Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

#### Configuration on receiver PE:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 13 ip mroute [vrf receiver-vrf-name]</td>
<td>Configures the RPF lookups originating in a receiver MVRF or in the global routing table to be resolved in a source MVRF or in the global routing table.</td>
</tr>
<tr>
<td>source-address mask {fallback-lookup vrf source-vrf-name} [distance]</td>
<td>• The optional vrf keyword and receiver-vrf-name argument are used to apply a group-based VRF selection policy to RPF lookups originating in the VRF specified for the receiver-vrf-name argument. If the optional vrf keyword and receiver-vrf-name argument are not specified, the group-based VRF selection policy applies to RPF lookups originating in the global table.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip mroute vrf red 40.0.0.0 255.255.255.0 fallback-lookup vrf blue</td>
</tr>
<tr>
<td>Step 14 ip mroute [vrf receiver-vrf-name]</td>
<td>Configures the RPF lookups originating in a receiver MVRF or in the global routing table for RP (Rendezvous Point) to be resolved in a source MVRF or in the global routing table.</td>
</tr>
<tr>
<td>rp-address mask {fallback-lookup vrf source-vrf-name} [distance]</td>
<td>• This command is required for SM mode only.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip mroute vrf red 44.44.44.44 255.255.255.0 fallback-lookup vrf blue</td>
</tr>
<tr>
<td>Step 15 end</td>
<td>Closes the configuration session.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-vrf)# end</td>
</tr>
</tbody>
</table>

### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>ip vrf vrf-name</td>
<td>Defines the VPN routing instance by assigning a VRF name and enters VRF configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ip vrf blue</td>
</tr>
<tr>
<td></td>
<td>• The vrf-name argument is the name assigned to a VRF.</td>
</tr>
<tr>
<td>Command</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>\texttt{rd route-distinguisher}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-if)# \texttt{rd 10:4}</td>
</tr>
<tr>
<td></td>
<td>Creates routing and forwarding tables. Specify the route-distinguisher argument to add an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter an RD value in either of these formats:</td>
</tr>
<tr>
<td></td>
<td>• 16-bit autonomous system number: your 32-bit number. For example, 101:3</td>
</tr>
<tr>
<td></td>
<td>• 32-bit IP address: your 16-bit number. For example, 192.168.122.15:1</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>\texttt{vpn id vpn-id}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-if)# \texttt{vpn id 10:4}</td>
</tr>
<tr>
<td></td>
<td>Sets or updates a VPN identifier on a VRF.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>\texttt{route-target import route-target-ext-community}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-vrf)# \texttt{route-target import 10:4}</td>
</tr>
<tr>
<td></td>
<td>Creates a route-target extended community for a VRF.</td>
</tr>
<tr>
<td></td>
<td>• The import keyword imports the routing information from the target VPN extended community.</td>
</tr>
<tr>
<td></td>
<td>• The route-target-ext-community argument adds the route-target extended community attributes to the VRF list of import, export, or both (import and export) route-target extended communities.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>\texttt{route-target export route-target-ext-community}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-vrf)# \texttt{route-target export 10:4}</td>
</tr>
<tr>
<td></td>
<td>Creates a route-target extended community for a VRF.</td>
</tr>
<tr>
<td></td>
<td>• The export keyword exports the routing information to the target VPN extended community.</td>
</tr>
<tr>
<td></td>
<td>• The route-target-ext-community argument adds the route-target extended community attributes to the VRF list of import, export, or both (import and export) route-target extended communities.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>\texttt{mdt default mpls mldp root-node}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-vrf)# \texttt{mdt default mpls mldp 2.2.2.2}</td>
</tr>
<tr>
<td></td>
<td>Configures MLDP multicast distribution tree (MDT) for a VRF.</td>
</tr>
<tr>
<td></td>
<td>\textit{Note} \quad LSPVIF tunnel is created as a result of this command.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>\texttt{end}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config-vrf)# \texttt{end}</td>
</tr>
<tr>
<td></td>
<td>Closes the configuration session.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td>\texttt{interface type instance}</td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td>Router(config)# \texttt{interface loopback 3}</td>
</tr>
<tr>
<td></td>
<td>Enters interface configuration mode and names the new loopback interface.</td>
</tr>
</tbody>
</table>
Chapter 51      Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

Example

This is sample example for configuring MLDP MVPN for configuring extranet using SSC:

Configuration on the source PE(Configure these steps for both red and blue VRFs)

```
Router> enable
Router# configure terminal
Router(config)# ip vrf blue
Router(config-if)# rd 10:4
Router(config-if)# vpn id 10:4
Router(config-vrf)# route-target import 10:4
Router(config-vrf)# route-target export 10:4
Router(config-vrf)# mdt default mpls mldp 2.2.2.2
Router(config-vrf)# end
Router(config)# interface loopback 3
Router(config-if)# ip vrf forwarding red
Router(config-if)# ip address 1.1.1.1 255.255.255.255
Router(config-if)# ip mroute vrf red 40.0.0.0 255.255.255.0 1.1.1.1
```

Configuration on the receiver PE

```
Router> enable
Router# configure terminal
Router(config)# ip vrf blue
Router(config-if)# rd 10:4
Router(config-if)# vpn id 10:4
Router(config-vrf)# route-target import 10:4
```
Configuring MLDP MVPN for Extranet Services using RSC

Complete these steps to configuring MLDP MVPN for extranet services using RSC:

- Configuring the source mVRF on the receiver PE router.
- Configuring RPF for MLDP based MVPN extranet support using static multicast routes on the receiver PE.

**Note** This configuration is based on illustration Figure 51-1. Configure multicast routes on PE2 and PE3 routers.

**Summary Steps**

**Configuration on Source PE:**

1. enable
2. configure terminal
3. ip vrf vrf-name
4. rd route-distinguisher
5. vpn id vpn_id
6. route-target import route-target-ext-community
7. route-target import route-target-ext-community
8. mdt default mpls mldp root-node
9. end

**Configuration on Receiver PE (Configure these steps for both red and blue VRFs)**

1. enable
2. configure terminal
3. ip vrf vrf-name
4. rd route-distinguisher
5. vpn id vpn_id
6. route-target import route-target-ext-community
7. route-target import route-target-ext-community
8. mdt default mpls mldp root-node
9. ip mroute [vrf receiver-vrf-name] source-address mask fallback-lookup {global | vrf source-vrf-name} {distance}
10. end
# DETAILED STEPS

## Configuration on Source PE

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Enter your password when prompted.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td><code>ip vrf vrf-name</code></td>
<td>Defines the VPN routing instance by assigning a VRF name and enters VRF configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config)# ip vrf blue</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- The vrf-name argument is the name assigned to a VRF.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>rd route-distinguisher</code></td>
<td>Creates routing and forwarding tables. Specify the route-distinguisher argument to add an 8-byte value to an IPv4 prefix to create a VPN IPv4 prefix. You can enter an RD value in either of these formats:</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-if)# rd 10:3</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 16-bit autonomous system number: your 32-bit number. For example, 101:3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 32-bit IP address: your 16-bit number. For example, 192.168.122.15:1</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>vpn id vpn-id</code></td>
<td>Sets or updates a VPN identifier on a VRF.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-if)# vpn id 10:3</code></td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td><code>route-target import</code></td>
<td>Creates a route-target extended community for a VRF.</td>
</tr>
<tr>
<td></td>
<td><code>route-target-ext-community</code></td>
<td>- The import keyword imports routing information from the target VPN extended community.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-vrf)# route-target import 10:3</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>route-target-ext-community</code></td>
<td>- The route-target-ext-community argument adds the route-target extended community attributes to the VRF list of import, export, or both (import and export) route-target extended communities.</td>
</tr>
<tr>
<td>Step 7</td>
<td><code>route-target export</code></td>
<td>Creates a route-target extended community for a VRF.</td>
</tr>
<tr>
<td></td>
<td><code>route-target-ext-community</code></td>
<td>- The export keyword exports the routing information to the target VPN extended community.</td>
</tr>
<tr>
<td></td>
<td>Example: <code>Router(config-vrf)# route-target export 10:3</code></td>
<td></td>
</tr>
</tbody>
</table>
### Configuration on Receiver PE

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td><code>mdt default mpls mldp root-node</code></td>
<td>Configures MLDP multicast distribution tree (MDT) for a VRF.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-vrf)# mdt default mpls mldp 2.2.2.2</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Note:</strong></td>
<td>LSPVIF tunnel is created as a result of this command.</td>
</tr>
<tr>
<td>9</td>
<td><code>end</code></td>
<td>Closes the configuration session.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>Router(config-vrf)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

## Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router&gt; enable</code></td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password when prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router# configure terminal</code></td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>ip vrf vrf-name</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config)# ip vrf blue</code></td>
</tr>
<tr>
<td></td>
<td>Defines the VPN routing instance by assigning a VRF name and enters VRF</td>
</tr>
<tr>
<td></td>
<td>configuration mode.</td>
</tr>
<tr>
<td></td>
<td>• The vrf-name argument is the name assigned to a VRF.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>rd route-distinguisher</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-if)# rd 10:3</code></td>
</tr>
<tr>
<td></td>
<td>Creates routing and forwarding tables. Specify the route-distinguisher</td>
</tr>
<tr>
<td></td>
<td>argument to add an 8-byte value to an IPv4 prefix to create a VPN IPv4</td>
</tr>
<tr>
<td></td>
<td>prefix. You can enter an RD value in either of these formats:</td>
</tr>
<tr>
<td></td>
<td>• 16-bit autonomous system number. For example, 101:3.</td>
</tr>
<tr>
<td></td>
<td>• 32-bit IP address: your 16-bit number. For example, 192.168.122.15:1</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>vpn id vpn-id</strong></td>
</tr>
<tr>
<td><strong>Example:</strong></td>
<td><code>Router(config-if)# vpn id 10:3</code></td>
</tr>
<tr>
<td></td>
<td>Sets or updates a VPN identifier on a VRF.</td>
</tr>
</tbody>
</table>
## Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 6</td>
<td><code>route-target import</code></td>
<td>Creates a route-target extended community for a VRF.</td>
</tr>
<tr>
<td></td>
<td><code>route-target-ext-community</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td><strong>Router(config-vrf)# route-target import 10:3</strong></td>
</tr>
<tr>
<td></td>
<td><code>route-target export</code></td>
<td>Creates a route-target extended community for a VRF.</td>
</tr>
<tr>
<td></td>
<td><code>route-target-ext-community</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td><strong>Router(config-vrf)# route-target export 10:3</strong></td>
</tr>
<tr>
<td>Step 7</td>
<td><code>mdt default mpls mldp root-node</code></td>
<td>Configures MLDP multicast distribution tree (MDT) for a VRF. LSPVIF tunnel is created as a result of this command.</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong></td>
<td>LSPVIF tunnel is created as a result of this command.</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>ip mroute</code></td>
<td>Configures RPF lookups originating in a receiver MVRF or in the global routing table to be resolved in a source MVRF or in the global routing table based on group address. Use this command on the receiver PE.</td>
</tr>
<tr>
<td></td>
<td><code>[vrf receiver-vrf-name]</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>source-address mask</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>{fallback-lookup vrf source-vrf-name}</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><code>[distance]</code></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td><strong>Router(config)# ip mroute vrf red 40.0.0.0 255.255.255.0 fallback-lookup vrf blue</strong></td>
</tr>
<tr>
<td>Step 9</td>
<td><code>end</code></td>
<td>Closes the configuration session.</td>
</tr>
<tr>
<td></td>
<td><strong>Example:</strong></td>
<td><strong>Router(config-vrf)# end</strong></td>
</tr>
</tbody>
</table>

### Example

This is sample example for configuring MLDP MVPN for configuring extranet using RSC:

**Configuration on Source PE:**

```
Router# enable
Router# conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip vrf blue1
Router(config-if)# rd 10:3
```
Configuration on Receiver PE:

Router# enable
Router# conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip vrf blue1
Router(config-if)# rd 10:3
Router(config-if)# vpn id 10:3
Router(config-vrf)# route-target import 10:3
Router(config-vrf)# route-target export 10:3
Router(config-vrf)# mdt default mpls mldp 2.2.2.2
Router(config)# ip mroute vrf red 40.0.0.0 255.255.255.0 fallback-lookup vrf blue
Router(config-if)# end

Configuring MLDP TE-FRR Support

TE-FRR provides link protection, however TE-FRR on MLDP provides link protection only for the single hop primary path. Node protection is not supported. These are the highlights:

• Backup tunnel support
• Backup bandwidth protection

For more information on MPLS TE-FRR, see MPLS Point-to-Multipoint Traffic Engineering.

Summary Steps

1. enable
2. configure terminal
3. ip multicast mpls traffic-eng [range {access-list-number | access-list-name}]
4. mpls mldp path traffic-eng
5. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
<td>• Enter your password when prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
<td></td>
</tr>
</tbody>
</table>

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S
Chapter 51      Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

For more information, see MPLS Traffic Engineering (TE) - Fast Reroute (FRR) Link and Node Protection.

**Configuring MLDP with PIM-based MVPN**

MLDP with PIM-based MVPN supports MLDP coexistence with a PIM-based MVPN deployment. Using this feature, you can gradually introduce MLDP in an existing PIM-based MVPN environment, facilitating phased migration towards a complete LSM-based MVPN network infrastructure. If both the MLDP-based MVPN and GRE-based MVPN are configured, MDT selects PIM based MVPN by default. Configure the precedence for MLDP MVPN and PIM based MVPN using the `mdt preference option1 option2` command. This example sets MLDP MVPN precedence over PIM based MVPN:

```
Router(config-vrf)# mdt preference mldp pim
```

**MLDP Support with Load Balancing**

MLDP supports load balancing of multicast traffic with Equal Cost Multipath (ECMP) links. For Load balancing to work with MLDP, use the `disable mpls mldp forwarding recursive` command, which is enabled by default. Also, ensure that the `mpls mldp path multipath` command is enabled for load balancing to function as expected.

**Root Node Redundancy**

Configure multiple root nodes in the network using the `mdt default mpls mldp ip_address` command. The control plane builds a corresponding tree with root at the configured node to enable efficient forwarding. A node in the network selects the nearest root for optimal bandwidth usage. Also, in case a root node is unreachable (due to link failure, or router crash), the node switches to the next available root.
This example describes the root node redundancy configuration:

```
Router(config)# ip vrf blue1
Router(config-if)# rd 10:3
Router(config-if)# vpn id 10:3
Router(config-vrf)# route-target import 10:3
Router(config-vrf)# route-target export 10:3
Router(config-vrf)# mdt default mpls mldp 2.2.2.2
Router(config-vrf)# mdt default mpls mldp 5.5.5.5
```

**Verification**

Use these commands to verify LSM MLDP based MVPN support configuration:

- To check the MLDP neighbors, use the `show mpls mldp neighbor` command:
  
  ```
 Router# show mpls mldp neighbors
 MLDP peer ID : 3.3.3.3:0, uptime 00:41:41 Up,
 Target Adj : Yes
 Session hndl : 2
 Upstream count : 2
 Branch count : 0
 Path count : 1
 Path(s) : 3.3.3.3 No LDP Tunnel20
 Nhopt count : 1
 Nhopt list : 3.3.3.3

 MLDP peer ID : 2.2.2.2:0, uptime 00:17:42 Up,
 Target Adj : No
 Session hndl : 4
 Upstream count : 0
 Branch count : 0
 Path count : 1
 Path(s) : 3.3.3.3 No LDP Tunnel20
 Nhopt count : 0

  ```

- To check the PIM neighbors, use the `show ip pim vrf vrf_name neighbor` command:
  
  ```
 Router# show ip pim vrf blue neighbor
 PIM Neighbor Table
 Mode: B - Bidir Capable, DR - Designated Router, N - Default DR Priority,
 P - Proxy Capable, S - State Refresh Capable, G - GenID Capable
 Neighbor Interface Uptime/Expires Ver DR
 Address Prio/Mode
 3.3.3.3 Lspvif1 00:06:21/00:01:17 v2 1 / DR S P G

  ```

- To check the multicast routes for a given VRF, use `show ip mroute vrf vrf_name verbose` command:
  
  ```
 Router# show ip mroute vrf blue verbose
 IP Multicast Routing Table
 Flags: D - Dense, S - Sparse, B - Bidir Group, s - SSM Group, C - Connected,
 L - Local, P - Pruned, R - RP-bit set, F - Register flag,
 T - SPT-bit set, J - Join SPT, M - MSDP created entry, E - Extranet,
 X - Proxy Join Timer Running, A - Candidate for MSDP Advertisement,
 U - URD, I - Received Source Specific Host Report,
 Z - Multicast Tunnel, z - MDT-data group sender,
 y - Joined MDT-data group, v - Sending to MDT-data group,
 V - RD & Vector, v - Vector
 Outgoing interface flags: H - Hardware switched, A - Assert winner
 Timers: Uptime/Expires
 Interface state: Interface, Next-Hop or VCD, State/Mode
 (40.0.0.2, 232.0.1.4), 00:00:16/00:03:13, flags: sT
 Incoming interface: GigabitEthernet3/2/1, RPF nbr 0.0.0.0
  ```
Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

Outgoing interface list:
  Lspvif1, LSM MDT: B0000004 (default), Forward/Sparse, 00:00:16/00:03:13

(*, 224.0.1.40), 00:47:09/00:02:56, RP 0.0.0.0, flags: DPL
Incoming interface: Null, RPF nbr 0.0.0.0
Outgoing interface list: Null

- To check the packet counters, use `show ip mroute vrf vrf_name count` command:

  Router# show ip mroute vrf blue count
  IP Multicast Statistics
  2 routes using 1208 bytes of memory
  2 groups, 0.50 average sources per group
  Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kilobits per second
  Other counts: Total/RPF failed/Other drops (OIF-null, rate-limit etc)

  Group: 232.0.1.4, Source count: 1, Packets forwarded: 1333, Packets received: 1334
  Source: 40.0.0.2/32, Forwarding: 1333/20/46/7, Other: 1334/0/1

  Group: 224.0.1.40, Source count: 0, Packets forwarded: 0, Packets received: 0

- To check the MFIB output and whether hardware switching or software switching is enabled, use `show ip mfib vrf vrf_name group_address verbose` command:

  Router# show ip mfib vrf blue 232.0.1.4 verbose
  Entry Flags:    C - Directly Connected, S - Signal, IA - Inherit A flag,
                  ET - Data Rate Exceeds Threshold, K - Keepalive
                  DDE - Data Driven Event, HW - Hardware Installed
  I/O Item Flags: IC - Internal Copy, NP - Not platform switched,
                  NS - Negate Signalling, SP - Signal Present,
                  A - Accept, F - Forward, RA - MRIB Accept, RF - MRIB Forward,
                  MA - MFIB Accept
  Platform per slot HW-Forwarding Counts: Pkt Count/Byte Count
  Platform Entry flags: HF - Hardware Forwarding, NP - Not platform switched,
                        PF - Partial Hardware Forwarding
  Platform Interface flags: HW - Hardware Switched, NP - Not platform switched
  Forwarding Counts: Pkt Count/Pkts per second/Avg Pkt Size/Kbits per second
  Other counts:      Total/RPF failed/Other drops
  I/O Item Counts:   FS Pkt Count/PS Pkt Count
  VRF blue
  (40.0.0.2, 232.0.1.4) Flags: K HW
  Platform Flags:    HW
  Slot 6: HW Forwarding: 912/41952, Platform Flags: HF
  SW Forwarding: 0/0/0/0, Other: 1/0/1
  HW Forwarding: 912/20/46/7, Other: 0/0/0
  GigabitEthernet3/2/1 Flags: RA A MA
  Platform Flags:
  Lspvif1, LSM/B0000004 Flags: RF F NS
  Platform Flags: HW
  CEF: Mid chain adjacency
  Pkts: 0/0

- To check the hardware entries on the Switched Processor /Distributed Forwarding Card (SP/DFC), use the `show platform software multicast ip cmfib vrf vrf_name group_add verbose` command:

  Router# show platform software multicast ip cmfib vrf blue 232.0.1.4 verbose
  Multicast CEF Entries for VPN#1
  (40.0.0.2, 232.0.1.4) IOSVPN:256  (1) PI:1 (1) CR:0 (1) Recirc:0 (1)
  Vlan:1033 AdjPtr:442371 FidRpfF:1 FidRpfDF:1 FidAddr:0x800C0 rwvlans:1033
  rwindex:0x77FA adjmac:000a.f330.2480 rdt:1 E:0 CAP1:0 fmt:Mcast l3rwvld:1 DM:0
  mtu:1532 rctype:L2&L3 met2:0x8002 met3:0x8003
  packets:00000000002184 bytes:000000000000139776
  Starting Offset: 0x8002
Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

To check the contents of the LSM adjacency, use `show mls cef adjacency entry mpls_label detail` command:

```
Router# show mls cef adjacency entry 30 detail
Index: 30 smac: 000a.f330.2480, dmac: 001b.0de4.2b00
 mtu: 65535, vlan: 1031, dindex: 0x2117, l3rw_vld: 1
 format: MPLS, flags: 0x8610
 label0: 0, exp: 0, ovr: 0
 label1: 0, exp: 0, ovr: 0
 label2: 20, exp: 0, ovr: 0
 op: PUSH_LABEL2
 packets: 6432, bytes: 411648
```

To check the internal VLANS, use `show vlan internal usage` command:

```
Router# sh vlan internal usage
VLAN Usage
------ ---------------
1006 online diag vlan0
1007 online diag vlan1
1008 online diag vlan3
1010 online diag vlan4
1011 online diag vlan5
1012 PM vlan process (trunk tagging)
1013 Ls0 Label Replication (0) (0)
1014 Ls1 Label Replication (0) (0)
```
Chapter 51     Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

1015 Control Plane Protection
1016 vrf_0_vlan
1017 Lspvif0
1018 Container0
1019 Lspvif1
1020 IPv6-mpls RSVD VLAN
1021 IPv4 VPN 0 Egress multicast
1022 IP Multicast Partial SC vpn(2)
1023 IPv4 VPN 2 Egress multicast
1024 Multicast VPN 2 QOS Vlan
1025 IP Multicast Partial SC vpn(1)

VLAN Usage

• To check the label replication VLANs, use `show mpls platform vlan lsm` command:

```
Router# show mpls platform vlan lsm
VLAN Interface Opaque Vrf id MLS VPN hw_id subblock
1013 Lspvif0 0 0 0 258 0x4BC4A190
1014 Lspvif1 0 0 1 259 0x4BC491C0
1034 FastEthernet2/1/0 1000000200000000 1 2 260 0x4BC481F0
1035 FastEthernet2/1/0 1000000200000000 2 3 261 0x4BC481F0
1036 GigabitEthernet3/2/2 1600000200000000 1 4 262 0x4BC47220
1037 GigabitEthernet3/2/2 1600000200000000 2 5 263 0x4BC47220
```

• To check the labels, use `show mpls forwarding-table` command:

```
Router# show mpls forwarding-table
Local Outgoing Prefix Bytes Label Outgoing Next Hop
Label Label Out i/f Switched interface
16 Pop Label IPv4 VRF[V] 0 aggregate/blue
17 Pop Label IPv4 VRF[V] 0 aggregate/red
18 [T] 3.3.3.3/32 0 Tu20 point2point
19 [T] 2.2.2.2/32 0 Tu20 point2point
20 [T] 19.0.0.0/24 0 Tu20 point2point
22 [T] No Label [mdt 55:1111 0][V] \9422 aggregate/red
23 [T] No Label [mdt 55:2222 0][V] \9708 aggregate/blue
[T] Forwarding through a LSP tunnel.
```

• To check the contents of a label on SP/DFC, use `show mls cef mpls labels mpls_label` command:

```
Router# show mls cef mpls labels 23
Codes: + - Push label, - - Pop Label * - Swap Label, E - expl
Index Local Label Out 1/f
Label Op
2189 23 (EOS) (-) recirc
```

• To check the contents in detail, use `show mls cef mpls labels mpls_label detail` command:

```
Router# show mls cef mpls labels 23 detail
Codes: M - mask entry, V - value entry, A - adjacency index, P - FIB Priority
```
Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

D - FIB Don't short-cut, m - mod-num, E - ELSF?
Format: MPLS - (b | xtag vpn pi cr mcast label1 exp1 eos1 valid2 label2 exp2 eos2)
V(2184 ) : B | 1 0 0 0 22 0 1 0 0 0 0 (A:163840 ,P:0,D:0,m:0 :E:1)
M(2184 ) : F | 1 FFF 0 0 0 22 0 1 0 0 0 0

- To check the contents of the label ternary content addressable memory (TCAM) adjacency, use show mls cef adj entry adjacency_pointer detail command:

Router# show mls cef adjacency entry 163840 detail
Index: 163840 smac: 000a.f330.2480, dmac: 0100.5e00.000d
mtu: 65535, vlan: 1017, dindex: 0x7FFA, l3rw_vld: 1
format: MPLS, flags: 0x1000008600
label0: 0, exp: 0, ovr: 0
label1: 0, exp: 0, ovr: 0
label2: 0, exp: 0, ovr: 0
op: POP
packets: 0, bytes: 0

Sample Configuration for MLDP MVPN

You can configure MLDP MVPN in these two modes:
- Source Specific Mode (SSM)
- Sparse Mode (SM)

Configuration Example Using SSM mode

These examples are based on the topology shown in Figure 51-1. Consider these scenarios while configuring MLDP MVPN using SSM mode:
- MLDP MVPN Extranet SSC
- MLDP MVPN Extranet RSC
- MLDP MVPN Intranet

MLDP MVPN Extranet SSC

Configuration on PE1 router (Source PE):

```
ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:2
route-target import 10:2
!
ip vrf red3
rd 10:3
vpn id 10:3
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:3
route-target import 10:3
!
ip multicast-routing
ip multicast-routing vrf red2
```
interface Loopback1
  ip address 1.1.1.1 255.255.255.255
  ip pim sparse-mode
!
interface Loopback102
  ip vrf forwarding red2
  ip address 101.2.0.2 255.255.255.255
  ip pim sparse-mode
!
interface Loopback103
  ip vrf forwarding red3
  ip address 101.3.0.2 255.255.255.255
  ip pim sparse-mode
!
interface GigabitEthernet1/22.2
  encapsulation dot1Q 2
  ip vrf forwarding red2
  ip address 12.2.0.1 255.255.0.0
  ip pim sparse-mode
!
interface TenGigabitEthernet8/1
  ip address 10.1.1.1 255.255.255.0
  load-interval 30
  mpls ip
  mpls label protocol ldp

router ospf 1
  router-id 1.1.1.1
  network 1.1.1.1 0.0.0.0 area 0
!
routing bgp 100
  bgp log-neighbor-changes
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 update-source Loopback1
  neighbor 3.3.3.3 remote-as 100
  neighbor 3.3.3.3 update-source Loopback1
  neighbor 4.4.4.4 remote-as 100
  neighbor 4.4.4.4 update-source Loopback1
!
  address-family ipv4
    neighbor 2.2.2.2 activate
    neighbor 3.3.3.3 activate
    neighbor 4.4.4.4 activate
    no auto-summary
  exit-address-family
!
  address-family vpnv4
    neighbor 2.2.2.2 activate
    neighbor 3.3.3.3 activate
    neighbor 4.4.4.4 activate
    exit-address-family
!
  address-family ipv4 mdt
    neighbor 2.2.2.2 activate
    neighbor 3.3.3.3 activate
    neighbor 4.4.4.4 activate
    exit-address-family
!
  address-family ipv4 vrf red2
Configuration on P router:

interface Loopback1
  ip address 4.4.4.4 255.255.255.255

interface GigabitEthernet2/10
  ip address 20.1.1.2 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  mpls ip
  mpls label protocol ldp

interface GigabitEthernet2/20
  ip address 30.1.1.2 255.255.255.0
  ip ospf 1 area 0
  mpls ip
  mpls label protocol ldp

interface TenGigabitEthernet4/0/0
  ip address 10.1.1.2 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  mpls ip
  mpls label protocol ldp

router ospf 1
  router-id 4.4.4.4
  network 4.4.4.4 0.0.0.0 area 0
  !
router bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 2.2.2.2 remote-as 100
  neighbor 3.3.3.3 remote-as 100
  !
  address-family ipv4
  neighbor 1.1.1.1 activate
neighbor 2.2.2.2 activate
neighbor 3.3.3.3 activate
no auto-summary
exit-address-family

Configuration on PE2 router (Receiver PE):

ip vrf red3
  rd 10:3
  vpn id 10:3
  mdt default mpls mldp 4.4.4.4
  mdt data mpls mldp 100
  mdt data threshold 20
  route-target export 10:3
  route-target import 10:3
! ip multicast-routing
ip multicast-routing vrf red3

interface Loopback1
  ip address 2.2.2.2 255.255.255.255
  ip pim sparse-mode
!
interface Loopback103
  ip vrf forwarding red3
  ip address 102.3.0.2 255.255.255.255
  ip pim sparse-mode
!
interface GigabitEthernet4/0/0
  ip address 20.1.1.1 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  negotiation auto
  mpls ip
  mpls label protocol ldp
!
interface GigabitEthernet4/0/1.3
  encapsulation dot1Q 3
  ip vrf forwarding red3
  ip address 22.2.0.1 255.255.0.0
  ip pim sparse-mode
!
router ospf 1
  router-id 2.2.2.2
  network 2.2.2.2 0.0.0.0 area 0
!
router bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 1.1.1.1 update-source Loopback1
  neighbor 3.3.3.3 remote-as 100
  neighbor 3.3.3.3 update-source Loopback1
  neighbor 4.4.4.4 remote-as 100
  neighbor 4.4.4.4 update-source Loopback1
!
address-family ipv4
  neighbor 1.1.1.1 activate
  neighbor 3.3.3.3 activate
  neighbor 4.4.4.4 activate
  no auto-summary
  exit-address-family
!
address-family vpnv4
neighbor 1.1.1.1 activate
eighbor 1.1.1.1 send-community both
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community both
exit-address-family
!
address-family ipv4 mdt
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community both
exit-address-family
!
address-family ipv4 vrf red3
redistribute static
redistribute connected
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community both
exit-address-family
!
ip pim vrf red3 ssm default
ip mroute vrf red3 12.2.0.0 255.255.0.0 101.3.0.2

Configuraton on PE3 router (Receiver PE)

ip vrf red3
rd 10:3
vpn id 10:3
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:3
route-target import 10:3
!
ip multicast-routing
ip multicast-routing vrf red3
!
interface Loopback1
 ip address 3.3.3.3 255.255.255.255
 ip pim sparse-mode
!
interface Loopback103
 ip vrf forwarding red3
 ip address 103.3.0.2 255.255.255.255
 ip pim sparse-mode
!
interface GigabitEthernet3/2/0.3
 encapsulation dot1Q 3
 ip vrf forwarding red3
 ip address 32.2.0.1 255.255.0.0
 ip pim sparse-mode
 ip igmp version 3
!
interface GigabitEthernet3/2/1
 ip address 30.1.1.1 255.255.255.0
 ip ospf 1 area 0
 load-interval 30
 negotiation auto
Chapter 51      Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

mpls ip
mpls label protocol ldp
!
router ospf 1
router-id 3.3.3.3
network 3.3.3.3 0.0.0.0 area 0
!
router bgp 100
bgp log-neighbor-changes
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 update-source Loopback1
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 update-source Loopback1
neighbor 4.4.4.4 remote-as 100
neighbor 4.4.4.4 update-source Loopback1
!
address-family ipv4
neighbor 1.1.1.1 activate
neighbor 2.2.2.2 activate
neighbor 4.4.4.4 activate
no auto-summary
exit-address-family
!
address-family vpnv4
neighbor 1.1.1.1 activate
neighbor 2.2.2.2 activate
neighbor 4.4.4.4 activate
exit-address-family
!
address-family ipv4 mdt
neighbor 1.1.1.1 activate
neighbor 2.2.2.2 activate
neighbor 4.4.4.4 activate
exit-address-family
!
address-family ipv4 vrf red3
redistribute static
redistribute connected
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 2.2.2.2 activate
neighbor 2.2.2.2 send-community both
neighbor 4.4.4.4 activate
neighbor 4.4.4.4 send-community both
exit-address-family
!
ip pim vrf red3 ssm default
ip mrouting vrf red3 12.2.0.0 255.255.0.0 101.3.0.2

MLDP MVPN Extranet RSC

Configuration on PE1 router (Source PE)

ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls midp 100
mdt data threshold 20
route-target export 10:2

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S
route-target import 10:2
!
ip multicast-routing
ip multicast-routing vrf red2
!
interface Loopback1
  ip address 1.1.1.1 255.255.255.255
  ip pim sparse-mode
!
interface Loopback102
  ip vrf forwarding red2
  ip address 101.2.0.2 255.255.255.255
  ip pim sparse-mode
!
interface GigabitEthernet1/22.2
  encapsulation dot1Q 2
  ip vrf forwarding red2
  ip address 12.2.0.1 255.255.0.0
  ip pim sparse-mode
!
interface TenGigabitEthernet8/1
  ip address 10.1.1.1 255.255.255.0
  load-interval 30
  mpls ip
  mpls label protocol ldp
!
routing ospf 1
  router-id 1.1.1.1
  network 1.1.1.1 0.0.0.0 area 0
!
routing bgp 100
  bgp log-neighbor-changes
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 update-source Loopback1
  neighbor 3.3.3.3 remote-as 100
  neighbor 3.3.3.3 update-source Loopback1
  neighbor 4.4.4.4 remote-as 100
  neighbor 4.4.4.4 update-source Loopback1
!
address-family ipv4
  neighbor 2.2.2.2 activate
  neighbor 3.3.3.3 activate
  neighbor 4.4.4.4 activate
  no auto-summary
  exit-address-family
!
address-family ipv4 vrf red2
  redistribute static
  redistribute connected
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 activate
neighbor 2.2.2.2 send-community both
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community both
exit-address-family
!
ip pim vrf red2 ssm default

Configuration on P router (Core router)

interface Loopback1
  ip address 4.4.4.4 255.255.255.255
!
interface GigabitEthernet2/10
  ip address 20.1.1.2 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  mpls ip
  mpls label protocol ldp
!
interface GigabitEthernet2/20
  ip address 30.1.1.2 255.255.255.0
  ip ospf 1 area 0
  mpls ip
  mpls label protocol ldp
!
interface TenGigabitEthernet4/0/0
  ip address 10.1.1.2 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  mpls ip
  mpls label protocol ldp
  mls qos trust dscp
!
router ospf 1
  router-id 4.4.4.4
  network 4.4.4.4 0.0.0.0 area 0
!
routor bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 2.2.2.2 remote-as 100
  neighbor 3.3.3.3 remote-as 100
!
address-family ipv4
  neighbor 1.1.1.1 activate
  neighbor 2.2.2.2 activate
  neighbor 3.3.3.3 activate
  no auto-summary
  exit-address-family
!

Configuration on PE2 router (Receiver PE)

ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mtd data threshold 20
route-target export 10:2
route-target import 10:2
!
ip vrf red3
rd 10:3
vpn id 10:3
mtd default mpls mldp 4.4.4.4
mtd data mpls mldp 100
mtd data threshold 20
route-target export 10:3
route-target import 10:3
!
ip multicast-routing
ip multicast-routing vrf red3
ip multicast-routing vrf red2
!
interface Loopback1
ip address 2.2.2.2 255.255.255.255
ip pim sparse-mode
!
interface Loopback102
ip vrf forwarding red2
ip address 102.2.0.2 255.255.255.255
ip pim sparse-mode
!
interface Loopback103
ip vrf forwarding red3
ip address 102.3.0.2 255.255.255.255
ip pim sparse-mode
!
interface GigabitEthernet4/0/0
ip address 20.1.1.1 255.255.255.0
ip ospf 1 area 0
load-interval 30
negotiation auto
mpls ip
mpls label protocol ldp
!
interface GigabitEthernet4/0/1.3
encapsulation dot1Q 3
ip vrf forwarding red3
ip address 22.2.0.1 255.255.0.0
ip pim sparse-mode
!
router ospf 1
router-id 2.2.2.2
network 2.2.2.2 0.0.0.0 area 0
!
router bgp 100
bgp log-neighbor-changes
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 update-source Loopback1
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 update-source Loopback1
neighbor 4.4.4.4 remote-as 100
neighbor 4.4.4.4 update-source Loopback1
!
address-family ipv4
neighbor 1.1.1.1 activate
neighbor 3.3.3.3 activate
neighbor 4.4.4.4 activate
no auto-summary
exit-address-family
Configuration on PE3 router (Receiver PE)

ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:2
route-target import 10:2

ip vrf red3
rd 10:3
vpn id 10:3
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:3
route-target import 10:3

ip multicast-routing
ip multicast-routing vrf red3
ip multicast-routing vrf red2
!
interface Loopback1
ip address 3.3.3.3 255.255.255.255
ip pim sparse-mode
!
interface Loopback102
ip vrf forwarding red2
ip address 103.2.0.2 255.255.255.255
ip pim sparse-mode
!
interface Loopback103
ip vrf forwarding red3
ip address 103.3.0.2 255.255.255.255
ip pim sparse-mode
!
interface GigabitEthernet3/2/0.3
encapsulation dot1Q 3
ip vrf forwarding red3
ip address 32.2.0.1 255.255.0.0
ip pim sparse-mode
ip igmp version 3
!
interface GigabitEthernet3/2/1
ip address 30.1.1.1 255.255.255.0
ip ospf 1 area 0
load-interval 30
negotiation auto
mpls ip
mpls label protocol ldp
!
router ospf 1
router-id 3.3.3.3
network 3.3.3.3 0.0.0.0 area 0
!
routing bgp 100
bgp log-neighbor-changes
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 update-source Loopback1
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 update-source Loopback1
neighbor 4.4.4.4 remote-as 100
neighbor 4.4.4.4 update-source Loopback1
!
address-family ipv4
neighbor 1.1.1.1 activate
neighbor 2.2.2.2 activate
neighbor 4.4.4.4 activate
no auto-summary
exit-address-family
!
address-family vpnv4
neighbor 1.1.1.1 activate
neighbor 2.2.2.2 activate
neighbor 4.4.4.4 activate

exit-address-family
!
address-family ipv4 mdt
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 2.2.2.2 activate
neighbor 2.2.2.2 send-community both
exit-address-family
!
address-family ipv4 mdt
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 2.2.2.2 activate
neighbor 2.2.2.2 send-community both
exit-address-family
!
address-family ipv4 vrf red2
redistribute static
redistribute connected
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 activate
neighbor 2.2.2.2 send-community both
exit-address-family
!
address-family ipv4 vrf red3
redistribute static
redistribute connected
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 activate
neighbor 2.2.2.2 send-community both
exit-address-family
!
ip pim vrf red3 ssm default
ip pim vrf red2 ssm default
ip mroute vrf red3 12.2.0.0 255.255.0.0 fallback-lookup vrf red2

**MLDP MVPN Intranet**

**Configuration ond PE1 router (Source PE)**

ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:2
route-target import 10:2
!
ip multicast-routing
ip multicast-routing vrf red2
!
interface Loopback1
   ip address 1.1.1.1 255.255.255.255
   ip pim sparse-mode
!
interface Loopback102
   ip vrf forwarding red2
   ip address 101.2.0.2 255.255.255.255
   ip pim sparse-mode
!
interface GigabitEthernet1/22.2
   encapsulation dot1Q 2
   ip vrf forwarding red2
   ip address 12.2.0.1 255.255.0.0
   ip pim sparse-mode
!
interface TenGigabitEthernet8/1
   ip address 10.1.1.1 255.255.255.0
   ip ospf 1 area 0
   load-interval 30
mpls ip
mpls label protocol ldp
!
router ospf 1
   router-id 1.1.1.1
   network 1.1.1.1 0.0.0.0 area 0
!
router bgp 100
   bgp log-neighbor-changes
   neighbor 2.2.2.2 remote-as 100
   neighbor 2.2.2.2 update-source Loopback1
   neighbor 3.3.3.3 remote-as 100
   neighbor 3.3.3.3 update-source Loopback1
   neighbor 4.4.4.4 remote-as 100
   neighbor 4.4.4.4 update-source Loopback1
!
   address-family ipv4
   neighbor 2.2.2.2 activate
   neighbor 3.3.3.3 activate
   neighbor 4.4.4.4 activate
   no auto-summary
   exit-address-family
!
   address-family vpnv4
   neighbor 2.2.2.2 activate
   neighbor 2.2.2.2 send-community both
   neighbor 3.3.3.3 activate
   neighbor 3.3.3.3 send-community both
   exit-address-family
!
   address-family ipv4 mdt
   neighbor 2.2.2.2 activate
   neighbor 2.2.2.2 send-community both
   neighbor 3.3.3.3 activate
   neighbor 3.3.3.3 send-community both
   exit-address-family
!
   address-family ipv4 vrf red2
   redistribute static
   redistribute connected
   neighbor 2.2.2.2 remote-as 100
   neighbor 2.2.2.2 activate
   neighbor 2.2.2.2 send-community both
   neighbor 3.3.3.3 remote-as 100
   neighbor 3.3.3.3 activate
   neighbor 3.3.3.3 send-community both
   exit-address-family
!
ip pim vrf red2 ssm default

Configuration on P router (core router)

interface Loopback1
   ip address 4.4.4.4 255.255.255.255
!
interface GigabitEthernet2/10
   ip address 20.1.1.2 255.255.255.0
   ip ospf 1 area 0
   load-interval 30
mpls ip
mpls label protocol ldp
!
interface GigabitEthernet2/20
  ip address 30.1.1.2 255.255.255.0
  ip ospf 1 area 0
  mpls ip
  mpls label protocol ldp

interface TenGigabitEthernet4/0/0
  ip address 10.1.1.2 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  mpls ip
  mpls label protocol ldp
  mls qos trust dscp

router ospf 1
  router-id 4.4.4.4
  network 4.4.4.4 0.0.0.0 area 0

router bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 2.2.2.2 remote-as 100
  neighbor 3.3.3.3 remote-as 100

  address-family ipv4
    neighbor 1.1.1.1 activate
    neighbor 2.2.2.2 activate
    neighbor 3.3.3.3 activate
    no auto-summary
    exit-address-family

Configuration on PE2 router (Receiver PE)

  ip vrf red2
    rd 10:2
    vpn id 10:2
    mdt default mpls mldp 4.4.4.4
    mdt data mpls mldp 100
    mdt data threshold 20
    route-target export 10:2
    route-target import 10:2

  ip multicast-routing
  ip multicast-routing vrf red2

  interface Loopback1
    ip address 2.2.2.2 255.255.255.255
    ip pim sparse-mode

  interface Loopback102
    ip vrf forwarding red2
    ip address 102.2.0.2 255.255.255.255
    ip pim sparse-mode

  interface GigabitEthernet4/0/0
    ip address 20.1.1.1 255.255.255.0
    ip ospf 1 area 0
    load-interval 30
    negotiation auto
    mpls ip
    mpls label protocol ldp
interface GigabitEthernet4/0/1.2
encapsulation dot1Q 2
ip vrf forwarding red2
ip address 22.2.0.1 255.255.0.0
ip pim sparse-mode
ip igmp version 3
!
router ospf 1
  router-id 2.2.2.2
  network 2.2.2.2 0.0.0.0 area 0
!
router bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 1.1.1.1 update-source Loopback1
  neighbor 3.3.3.3 remote-as 100
  neighbor 3.3.3.3 update-source Loopback1
  neighbor 4.4.4.4 remote-as 100
  neighbor 4.4.4.4 update-source Loopback1
!
address-family ipv4
  neighbor 1.1.1.1 activate
  neighbor 3.3.3.3 activate
  neighbor 4.4.4.4 activate
  no auto-summary
  exit-address-family
!
address-family vpnv4
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 3.3.3.3 activate
  neighbor 3.3.3.3 send-community both
  exit-address-family
!
address-family ipv4 mdt
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 3.3.3.3 activate
  neighbor 3.3.3.3 send-community both
  exit-address-family
!
address-family ipv4 vrf red2
  redistribute static
  redistribute connected
  neighbor 1.1.1.1 remote-as 100
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 3.3.3.3 remote-as 100
  neighbor 3.3.3.3 activate
  neighbor 3.3.3.3 send-community both
  exit-address-family
!
ip pim vrf red2 ssm default
!
Configuration on PE3 router (Receiver PE)
ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:2
route-target import 10:2
!
ip multicast-routing
ip multicast-routing vrf red2
!
interface Loopback1
  ip address 3.3.3.3 255.255.255.255
  ip pim sparse-mode
!
interface Loopback102
  ip vrf forwarding red2
  ip address 103.2.0.2 255.255.255.255
  ip pim sparse-mode
!
interface GigabitEthernet3/2/0.2
  encapsulation dot1Q 2
  ip vrf forwarding red2
  ip address 32.2.0.1 255.255.0.0
  ip pim sparse-mode
  ip igmp version 3
!
interface GigabitEthernet3/2/1
  ip address 30.1.1.1 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  negotiation auto
  mpls ip
  mpls label protocol ldp
!
router ospf 1
  router-id 3.3.3.3
  network 3.3.3.3 0.0.0.0 area 0
!
router bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 1.1.1.1 update-source Loopback1
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 update-source Loopback1
  neighbor 4.4.4.4 remote-as 100
  neighbor 4.4.4.4 update-source Loopback1
!
address-family ipv4
  neighbor 1.1.1.1 activate
  neighbor 2.2.2.2 activate
  neighbor 4.4.4.4 activate
  no auto-summary
  exit-address-family
!
address-family vpnv4
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 2.2.2.2 activate
  neighbor 2.2.2.2 send-community both
  exit-address-family
!
address-family ipv4 mdt
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 2.2.2.2 activate
  neighbor 2.2.2.2 send-community both
  exit-address-family
!
address-family ipv4 vrf red2
redistribute static
redistribute connected
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 activate
neighbor 2.2.2.2 send-community both
exit-address-family
!
ip pim vrf red2 ssm default
!

Configuration Example Using SM Mode

These examples are based on the topology shown in Figure 51-1. Consider these scenarios while configuring MLDP MVPN using SSM mode:

- MLDP MVPN Extranet SSC
- MLDP MVPN Extranet RSC
- MLDP MVPN Intranet

MLDP MVPN Extranet SSC

Configuration on PE1 router (Source PE)

```conf
ip vrf red2
 rd 10:2
 vpn id 10:2
 mdt default mpls mldp 4.4.4.4
 mdt data mpls mldp 100
 mdt data threshold 20
 route-target export 10:2
 route-target import 10:2
!
ip vrf red3
 rd 10:3
 vpn id 10:3
 mdt default mpls mldp 4.4.4.4
 mdt data mpls mldp 100
 mdt data threshold 20
 route-target export 10:3
 route-target import 10:3
!
ip multicast-routing
-ip multicast-routing vrf red2
-ip multicast-routing vrf red3

interface Loopback1
 ip address 1.1.1.1 255.255.255.255
 ip pim sparse-mode
!
interface Loopback102
 ip vrf forwarding red2
 ip address 101.2.0.2 255.255.255.255
 ip pim sparse-mode
!
interface Loopback103
 ip vrf forwarding red3
 ip address 101.3.0.2 255.255.255.255
```
ip pim sparse-mode

interface GigabitEthernet1/22.2
capsulation dot1Q 2
ip vrf forwarding red2
ip address 12.2.0.1 255.255.0.0
ip pim sparse-mode
interface TenGigabitEthernet8/1
ip address 10.1.1.1 255.255.255.0
ip ospf 1 area 0
load-interval 30
mpls ip
mpls label protocol ldp

router ospf 1
router-id 1.1.1.1
network 1.1.1.1 0.0.0.0 area 0

router bgp 100
bgp log-neighbor-changes
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 update-source Loopback1
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 update-source Loopback1
neighbor 4.4.4.4 remote-as 100
neighbor 4.4.4.4 update-source Loopback1

address-family ipv4
neighbor 2.2.2.2 activate
neighbor 3.3.3.3 activate
neighbor 4.4.4.4 activate
no auto-summary
exit-address-family

address-family vpnv4
neighbor 2.2.2.2 activate
neighbor 3.3.3.3 activate
neighbor 4.4.4.4 activate
exit-address-family

address-family ipv4 mdt
neighbor 2.2.2.2 activate
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 activate
exit-address-family

address-family ipv4 vrf red2
redistribute static
redistribute connected
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 activate
neighbor 2.2.2.2 send-community both
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community both
exit-address-family

address-family ipv4 vrf red3
redistribute static
redistribute connected
neighbor 2.2.2.2 remote-as 100
neighor 2.2.2.2 activate
neighor 2.2.2.2 send-community both
neighor 3.3.3.3 remote-as 100
neighor 3.3.3.3 activate
neighor 3.3.3.3 send-community both
exit-address-family

ip pim vrf red2 rp-address 11.11.11.11
ip pim vrf red3 rp-address 11.11.11.11
ip mroute vrf red3 12.2.0.0 255.255.0.0 fallback-lookup vrf red2
ip mroute vrf red3 11.11.11.11 255.255.0.0 fallback-lookup vrf red2

Configuration on P router

interface Loopback1
ip address 4.4.4.4 255.255.255.255

interface GigabitEthernet2/10
ip address 20.1.1.2 255.255.255.0
ip ospf 1 area 0
load-interval 30
mpls ip
mpls label protocol ldp

interface GigabitEthernet2/20
ip address 30.1.1.2 255.255.255.0
ip ospf 1 area 0
mpls ip
mpls label protocol ldp

interface TenGigabitEthernet4/0/0
ip address 10.1.1.2 255.255.255.0
ip ospf 1 area 0
load-interval 30
mpls ip
mpls label protocol ldp

router ospf 1
router-id 4.4.4.4
network 4.4.4.4 0.0.0.0 area 0

router bgp 100
bgp log-neighbor-changes
neighbor 1.1.1.1 remote-as 100
neighbor 2.2.2.2 remote-as 100
neighbor 3.3.3.3 remote-as 100

address-family ipv4
neighbor 1.1.1.1 activate
neighbor 2.2.2.2 activate
neighbor 3.3.3.3 activate
no auto-summary
exit-address-family

Configuration on PE2 router (Receiver PE)

ip vrf red3
rd 10:3
vpn id 10:3
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:3
route-target import 10:3

ip multicast-routing
ip multicast-routing vrf red3

interface Loopback1
ip address 2.2.2.2 255.255.255.255
ip pim sparse-mode

interface Loopback103
ip vrf forwarding red3
ip address 102.3.0.2 255.255.255.255
ip pim sparse-mode

interface GigabitEthernet4/0/0
ip address 20.1.1.1 255.255.255.0
ip ospf 1 area 0
load-interval 30
negotiation auto
mpls ip
mpls label protocol ldp

interface GigabitEthernet4/0/1.3
encapsulation dot1Q 3
ip vrf forwarding red3
ip address 22.2.0.1 255.255.0.0
ip pim sparse-mode

router ospf 1
router-id 2.2.2.2
network 2.2.2.2 0.0.0.0 area 0

router bgp 100
bgp log-neighbor-changes
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 update-source Loopback1
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 update-source Loopback1
neighbor 4.4.4.4 remote-as 100
neighbor 4.4.4.4 update-source Loopback1

address-family ipv4
neighbor 1.1.1.1 activate
neighbor 3.3.3.3 activate
neighbor 4.4.4.4 activate
no auto-summary
exit-address-family

address-family vpnv4
neighbor 1.1.1.1 activate
neighbor 3.3.3.3 activate
neighbor 4.4.4.4 activate
exit-address-family

address-family ipv4 mdt
neighbor 1.1.1.1 activate
neighbor 3.3.3.3 activate
neighbor 4.4.4.4 activate
exit-address-family

address-family ipv4 vrf red3
Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

redistribute static
redistribute connected
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community both
exit-address-family
!
ip pim vrf red3 rp-address 11.11.11.11
ip mroute vrf red3 12.2.0.0 255.255.0.0 101.3.0.2

Configuration on PE3 router (Receiver PE)
ip vrf red3
rd 10:3
vpn id 10:3
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:3
route-target import 10:3
!
ip multicast-routing
ip multicast-routing vrf red3
!
interface Loopback1
ip address 3.3.3.3 255.255.255.255
ip pim sparse-mode
!
interface Loopback103
ip vrf forwarding red3
ip address 103.3.0.2 255.255.255.255
ip pim sparse-mode
!
interface GigabitEthernet3/2/0.3
encapsulation dot1Q 3
ip vrf forwarding red3
ip address 32.2.0.1 255.255.0.0
ip pim sparse-mode
ip igmp version 3
!
interface GigabitEthernet3/2/1
ip address 30.1.1.1 255.255.255.0
ip ospf 1 area 0
load-interval 30
negotiation auto
mpls ip
mpls label protocol ldp
!
rulesp 1
router-id 3.3.3.3
network 3.3.3.3 0.0.0.0 area 0
!
rulesp bgp 100
bgp log-neighbor-changes
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 update-source Loopback1
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 update-source Loopback1
neighbor 4.4.4.4 remote-as 100
neighbor 4.4.4.4 update-source Loopback1
!
address-family ipv4
  neighbor 1.1.1.1 activate
  neighbor 2.2.2.2 activate
  neighbor 4.4.4.4 activate
  no auto-summary
exit-address-family
!
address-family vpnv4
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 2.2.2.2 activate
  neighbor 2.2.2.2 send-community both
exit-address-family
!
address-family ipv4 mdt
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 2.2.2.2 activate
  neighbor 2.2.2.2 send-community both
exit-address-family
!
address-family ipv4 vrf red3
  redistribute static
  redistribute connected
  neighbor 1.1.1.1 remote-as 100
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 activate
  neighbor 2.2.2.2 send-community both
exit-address-family
!
ip vrf vrf red3 rp-address 11.11.11.11
ip mroute vrf red3 12.2.0.0 255.255.0.0 101.3.0.2

MLDP MVPN Extranet RSC

Configuration on PE1 router (Source PE)
ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:2
route-target import 10:2
!
ip multicast-routing
ip multicast-routing vrf red2
!
interface Loopback1
ip address 1.1.1.1 255.255.255.255
ip pim sparse-mode
!
interface Loopback102
ip vrf forwarding red2
ip address 101.2.0.2 255.255.255.255
ip pim sparse-mode
!
interface GigabitEthernet1/22.2
encapsulation dot1Q 2
ip vrf forwarding red2
ip address 12.2.0.1 255.255.0.0
ip pim sparse-mode
!
interface TenGigabitEthernet8/1
ip address 10.1.1.1 255.255.255.0
ip ospf 1 area 0
load-interval 30
mpls ip
mpls label protocol ldp
!
router ospf 1
  router-id 1.1.1.1
  network 1.1.1.1 0.0.0.0 area 0
!
router bgp 100
  bgp log-neighbor-changes
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 update-source Loopback1
  neighbor 3.3.3.3 remote-as 100
  neighbor 3.3.3.3 update-source Loopback1
  neighbor 4.4.4.4 remote-as 100
  neighbor 4.4.4.4 update-source Loopback1
  address-family ipv4
    neighbor 2.2.2.2 activate
    neighbor 3.3.3.3 activate
    neighbor 4.4.4.4 activate
    no auto-summary
    exit-address-family
  !
  address-family vpnv4
    neighbor 2.2.2.2 activate
    neighbor 3.3.3.3 activate
    neighbor 4.4.4.4 activate
    exit-address-family
  !
  address-family ipv4 mdt
    neighbor 2.2.2.2 activate
    neighbor 3.3.3.3 activate
    neighbor 4.4.4.4 activate
    exit-address-family
  !
  address-family ipv4 vrf red2
    redistribute static
    redistribute connected
    neighbor 2.2.2.2 remote-as 100
    neighbor 2.2.2.2 activate
    neighbor 3.3.3.3 remote-as 100
    neighbor 3.3.3.3 activate
    neighbor 4.4.4.4 remote-as 100
    neighbor 4.4.4.4 activate
    exit-address-family
  !
ip pim vrf red2 rp-address 11.11.11.11

Configuration on P router (Core router)

interface Loopback1
  ip address 4.4.4.4 255.255.255.255
!
interface GigabitEthernet2/10
  ip address 20.1.1.2 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  mpls ip
  mpls label protocol ldp
!
interface GigabitEthernet2/20
  ip address 30.1.1.2 255.255.255.0
  ip ospf 1 area 0
  mpls ip
  mpls label protocol ldp
!
interface TenGigabitEthernet4/0/0
  ip address 10.1.1.2 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  mpls ip
  mpls label protocol ldp
  mls qos trust dscp
!
router ospf 1
  router-id 4.4.4.4
  network 4.4.4.4 0.0.0.0 area 0
!
router bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 2.2.2.2 remote-as 100
  neighbor 3.3.3.3 remote-as 100
!
  address-family ipv4
  neighbor 1.1.1.1 activate
  neighbor 2.2.2.2 activate
  neighbor 3.3.3.3 activate
  no auto-summary
  exit-address-family

Configuration on PE2 router (Receiver PE)

ip vrf red2
  rd 10:2
  vpn id 10:2
  mdt default mpls mldp 4.4.4.4
  mdt data mpls mldp 100
  mdt data threshold 20
  route-target export 10:2
  route-target import 10:2
!
ip vrf red3
  rd 10:3
  vpn id 10:3
  mdt default mpls mldp 4.4.4.4
  mdt data mpls mldp 100
  mdt data threshold 20
  route-target export 10:3
  route-target import 10:3
!
ip multicast-routing
ip multicast-routing vrf red3
ip multicast-routing vrf red2
!
interface Loopback1
  ip address 2.2.2.2 255.255.255.255
  ip pim sparse-mode
!
interface Loopback102
  ip vrf forwarding red2
  ip address 102.2.0.2 255.255.255.255
  ip pim sparse-mode
!
interface Loopback103
  ip vrf forwarding red3
  ip address 102.3.0.2 255.255.255.255
  ip pim sparse-mode
!
interface GigabitEthernet4/0/0
  ip address 20.1.1.1 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  negotiation auto
  mpls ip
  mpls label protocol ldp
!
interface GigabitEthernet4/0/1.3
  encapsulation dot1Q 3
  ip vrf forwarding red3
  ip address 22.2.0.1 255.255.0.0
  ip pim sparse-mode
!
router ospf 1
  router-id 2.2.2.2
  network 2.2.2.2 0.0.0.0 area 0
!
router bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 1.1.1.1 update-source Loopback1
  neighbor 3.3.3.3 remote-as 100
  neighbor 3.3.3.3 update-source Loopback1
  neighbor 4.4.4.4 remote-as 100
  neighbor 4.4.4.4 update-source Loopback1
!
  address-family ipv4
    neighbor 1.1.1.1 activate
    neighbor 3.3.3.3 activate
    neighbor 4.4.4.4 activate
    no auto-summary
    exit-address-family
!
  address-family vpnv4
    neighbor 1.1.1.1 activate
    neighbor 1.1.1.1 send-community both
    neighbor 3.3.3.3 activate
    neighbor 3.3.3.3 send-community both
    exit-address-family
!
  address-family ipv4 mdt
    neighbor 1.1.1.1 activate
    neighbor 1.1.1.1 send-community both
    neighbor 3.3.3.3 activate
    neighbor 3.3.3.3 send-community both
    exit-address-family
!
  address-family ipv4 vrf red2
    redistribute static
Configuration on PE3 router (Receiver PE)

ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:2
route-target import 10:2

ip vrf red3
rd 10:3
vpn id 10:3
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:3
route-target import 10:3

ip multicast-routing
ip multicast-routing vrf red3
ip multicast-routing vrf red2

interface Loopback1
  ip address 3.3.3.3 255.255.255.255
  ip pim sparse-mode

interface Loopback102
  ip vrf forwarding red2
  ip address 103.2.0.2 255.255.255.255
  ip pim sparse-mode

interface Loopback103
  ip vrf forwarding red3
  ip address 103.3.0.2 255.255.255.255
  ip pim sparse-mode
! interface GigabitEthernet3/2/0.3
  encapsulation dot1Q 3
  ip vrf forwarding red3
  ip address 32.2.0.1 255.255.0.0
  ip pim sparse-mode
  ip igmp version 3
! interface GigabitEthernet3/2/1
  ip address 30.1.1.1 255.255.255.0
  ip ospf 1 area 0
  load-interval 30
  negotiation auto
  mpls ip
  mpls label protocol ldp
! router ospf 1
  router-id 3.3.3.3
  network 3.3.3.3 0.0.0.0 area 0
! router bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 1.1.1.1 update-source Loopback1
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 update-source Loopback1
  neighbor 4.4.4.4 remote-as 100
  neighbor 4.4.4.4 update-source Loopback1
! address-family ipv4
  neighbor 1.1.1.1 activate
  neighbor 2.2.2.2 activate
  neighbor 4.4.4.4 activate
  no auto-summary
  exit-address-family
! address-family vpnv4
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 2.2.2.2 activate
  neighbor 2.2.2.2 send-community both
  exit-address-family
! address-family ipv4 mdt
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 2.2.2.2 activate
  neighbor 2.2.2.2 send-community both
  exit-address-family
! address-family ipv4 vrf red2
  redistribute static
  redistribute connected
  neighbor 1.1.1.1 remote-as 100
  neighbor 1.1.1.1 activate
  neighbor 1.1.1.1 send-community both
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 activate
  neighbor 2.2.2.2 send-community both
  exit-address-family
! address-family ipv4 vrf red3
  redistribute static
  redistribute connected
Chapter 51  Label Switched Multicast (LSM) Multicast Label Distribution Protocol (MLDP) based Multicast

MLDP MVPN Intranet

Configuration on PE1 router (Source PE)

ip vrf red2
  rd 10:2
  vpn id 10:2
  mdt default mpls mldp 4.4.4.4
  mdt data mpls mldp 100
  route-target export 10:2
  route-target import 10:2
  ip multicast-routing
  ip multicast-routing vrf red2
  !
  interface Loopback1
    ip address 1.1.1.1 255.255.255.255
    ip pim sparse-mode
    !
  interface Loopback102
    ip vrf forwarding red2
    ip address 101.2.0.2 255.255.255.255
    ip pim sparse-mode
    !
  interface GigabitEthernet1/22.2
    encapsulation dot1Q 2
    ip vrf forwarding red2
    ip address 12.2.0.1 255.255.0.0
    ip pim sparse-mode
    !
  interface TenGigabitEthernet8/1
    ip address 10.1.1.1 255.255.255.0
    ip ospf 1 area 0
    load-interval 30
    mpls ip
    mpls label protocol ldp
    !
  router ospf 1
    router-id 1.1.1.1
    network 1.1.1.1 0.0.0.0 area 0
    !
  router bgp 100
    bgp log-neighbor-changes
    neighbor 2.2.2.2 remote-as 100
    neighbor 2.2.2.2 update-source Loopback1
    neighbor 3.3.3.3 remote-as 100
    neighbor 3.3.3.3 update-source Loopback1
    neighbor 4.4.4.4 remote-as 100
    neighbor 4.4.4.4 update-source Loopback1

neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 2.2.2.2 remote-as 100
neighbor 2.2.2.2 activate
neighbor 2.2.2.2 send-community both
exit-address-family
!
ip pim vrf red2 rp-address 11.11.11.11
ip pim vrf red3 rp-address 11.11.11.11
ip mroute vrf red3 12.2.0.0 255.255.0.0 fallback-lookup vrf red2
ip mroute vrf red3 11.11.11.11 255.255.255.255 fallback-lookup vrf red2


!  
address-family ipv4  
    neighbor 2.2.2.2 activate  
    neighbor 3.3.3.3 activate  
    neighbor 4.4.4.4 activate  
    no auto-summary  
exit-address-family

!  
address-family vpnv4  
    neighbor 2.2.2.2 activate  
    neighbor 2.2.2.2 send-community both  
    neighbor 3.3.3.3 activate  
    neighbor 3.3.3.3 send-community both  
exit-address-family

!  
address-family ipv4 mdt  
    neighbor 2.2.2.2 activate  
    neighbor 2.2.2.2 send-community both  
    neighbor 3.3.3.3 activate  
    neighbor 3.3.3.3 send-community both  
exit-address-family

!  
address-family ipv4 vrf red2  
    redistribute static  
    redistribute connected  
    neighbor 2.2.2.2 remote-as 100  
    neighbor 2.2.2.2 activate  
    neighbor 2.2.2.2 send-community both  
    neighbor 3.3.3.3 remote-as 100  
    neighbor 3.3.3.3 activate  
    neighbor 3.3.3.3 send-community both  
exit-address-family

!  
ip pim vrf red2 rp-address 11.11.11.11  

**Configuration ond P router (core router)**

interface Loopback1  
    ip address 4.4.4.4 255.255.255.255

!  
interface GigabitEthernet2/10  
    ip address 20.1.1.2 255.255.255.0  
    ip ospf 1 area 0  
    load-interval 30  
    mpls ip  
    mpls label protocol ldp

!  
interface GigabitEthernet2/20  
    ip address 30.1.1.2 255.255.255.0  
    ip ospf 1 area 0  
    mpls ip  
    mpls label protocol ldp

!  
interface TenGigabitEthernet4/0/0  
    ip address 10.1.1.2 255.255.255.0  
    ip ospf 1 area 0  
    load-interval 30  
    mpls ip  
    mpls label protocol ldp  
    mls qos trust dscp

!  
routing ospf 1  
router-id 4.4.4.4
network 4.4.4.4 0.0.0.0 area 0
!
router bgp 100
bgp log-neighbor-changes
neighbor 1.1.1.1 remote-as 100
neighbor 2.2.2.2 remote-as 100
neighbor 3.3.3.3 remote-as 100
!
address-family ipv4
neighbor 1.1.1.1 activate
neighbor 2.2.2.2 activate
neighbor 3.3.3.3 activate
no auto-summary
exit-address-family
!
Configuration on PE2 router (Receiver PE)

ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:2
route-target import 10:2
!
ip multicast-routing
ip multicast-routing vrf red2
!
interface Loopback1
ip address 2.2.2.2 255.255.255.255
ip pim sparse-mode
!
interface Loopback102
ip vrf forwarding red2
ip address 102.2.0.2 255.255.255.255
ip pim sparse-mode
!
interface GigabitEthernet4/0/0
ip address 20.1.1.1 255.255.255.0
ip ospf 1 area 0
load-interval 30
negotiation auto
mpls ip
mpls label protocol ldp
!
interface GigabitEthernet4/0/1.2
encapsulation dot1Q 2
ip vrf forwarding red2
ip address 22.2.0.1 255.255.0.0
ip pim sparse-mode
ip igmp version 3
!
routing ospf 1
router-id 2.2.2.2
network 2.2.2.2 0.0.0.0 area 0
!
routing bgp 100
bgp log-neighbor-changes
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 update-source Loopback1
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 update-source Loopback1
neighbor 4.4.4.4 remote-as 100
neighbor 4.4.4.4 update-source Loopback1
!
address-family ipv4
neighbor 1.1.1.1 activate
neighbor 3.3.3.3 activate
neighbor 4.4.4.4 activate
no auto-summary
exit-address-family
!
address-family vpnv4
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community both
exit-address-family
!
address-family ipv4 mdt
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community both
exit-address-family
!
address-family ipv4 vrf red2
redistribute static
redistribute connected
neighbor 1.1.1.1 remote-as 100
neighbor 1.1.1.1 activate
neighbor 1.1.1.1 send-community both
neighbor 3.3.3.3 remote-as 100
neighbor 3.3.3.3 activate
neighbor 3.3.3.3 send-community both
exit-address-family
!
ip pim vrf red2 rp-address 11.11.11.11
!
Configuration on PE3 router (Receiver PE)
ip vrf red2
rd 10:2
vpn id 10:2
mdt default mpls mldp 4.4.4.4
mdt data mpls mldp 100
mdt data threshold 20
route-target export 10:2
route-target import 10:2
!
ip multicast-routing
ip multicast-routing vrf red2
!
interface Loopback1
  ip address 3.3.3.3 255.255.255.255
  ip pim sparse-mode
!
interface Loopback102
  ip vrf forwarding red2
  ip address 103.2.0.2 255.255.255.255
  ip pim sparse-mode
!
interface GigabitEthernet3/2/0.2
encapsulation dot1Q 2
ip vrf forwarding red2
ip address 32.2.0.1 255.255.0.0
ip pim sparse-mode
ip igmp version 3
!
interface GigabitEthernet3/2/1
ip address 30.1.1.1 255.255.255.0
ip ospf 1 area 0
load-interval 30
negotiation auto
mpls ip
mpls label protocol ldp
!
router ospf 1
  router-id 3.3.3.3
  network 3.3.3.3 0.0.0.0 area 0
!
router bgp 100
  bgp log-neighbor-changes
  neighbor 1.1.1.1 remote-as 100
  neighbor 1.1.1.1 update-source Loopback1
  neighbor 2.2.2.2 remote-as 100
  neighbor 2.2.2.2 update-source Loopback1
  neighbor 4.4.4.4 remote-as 100
  neighbor 4.4.4.4 update-source Loopback1
!
  address-family ipv4
    neighbor 1.1.1.1 activate
    neighbor 2.2.2.2 activate
    neighbor 4.4.4.4 activate
    no auto-summary
  exit-address-family
!
  address-family vpnv4
    neighbor 1.1.1.1 activate
    neighbor 1.1.1.1 send-community both
    neighbor 2.2.2.2 activate
    neighbor 2.2.2.2 send-community both
  exit-address-family
!
  address-family ipv4 mdt
    neighbor 1.1.1.1 activate
    neighbor 1.1.1.1 send-community both
    neighbor 2.2.2.2 activate
    neighbor 2.2.2.2 send-community both
  exit-address-family
!
  address-family ipv4 vrf red2
    redistribute static
    redistribute connected
    neighbor 1.1.1.1 remote-as 100
    neighbor 1.1.1.1 activate
    neighbor 1.1.1.1 send-community both
    neighbor 2.2.2.2 remote-as 100
    neighbor 2.2.2.2 activate
    neighbor 2.2.2.2 send-community both
  exit-address-family
!
ip pim vrf red2 rp-address 11.11.11.11
Troubleshooting LSM MLDP based MVPN Support

Use these debug commands to troubleshoot the LSM MLDP based MVPN support on C7600 series router:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug platform software multicast ip cmfib event</td>
<td>Used for CMFIB issues.</td>
</tr>
<tr>
<td>debug platform software multicast ip cmfib error</td>
<td></td>
</tr>
<tr>
<td>debug platform software multicast ip hal error</td>
<td>Used for MET related issues [SP/DFC].</td>
</tr>
<tr>
<td>debug platform software multicast ip hal event</td>
<td></td>
</tr>
<tr>
<td>debug mpls platform lsm vm error</td>
<td>Used for Label replication vlan related issues [RP/SP/DFC].</td>
</tr>
<tr>
<td>debug mpls platform lsm vm event</td>
<td></td>
</tr>
<tr>
<td>debug mpls mldp packet</td>
<td>Used for MLDP debugging [RP].</td>
</tr>
<tr>
<td>debug mpls mldp neighbor</td>
<td></td>
</tr>
<tr>
<td>debug mpls mldp all</td>
<td></td>
</tr>
<tr>
<td>debug ip igmp vrf blue</td>
<td>Used for IGMP debugs.</td>
</tr>
<tr>
<td>debug ip pim vrf blue hello</td>
<td></td>
</tr>
<tr>
<td>debug ip pim vrf blue timer</td>
<td></td>
</tr>
<tr>
<td>debug ip pim vrf blue bsr</td>
<td></td>
</tr>
<tr>
<td>debug ip pim vrf blue auto-rp</td>
<td>Used for PIM debugs [RP].</td>
</tr>
</tbody>
</table>
Configuring IEEE 802.1X Port-Based Authentication

This chapter describes how to configure IEEE 802.1X port-based authentication to prevent unauthorized devices (clients) from gaining access to the network.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:
- Understanding IEEE 802.1X Port-Based Authentication, page 52-1
- Default IEEE 802.1X Port-Based Authentication Configuration, page 52-6
- IEEE 802.1X Port-Based Authentication Guidelines and Restrictions, page 52-7
- Configuring IEEE 802.1X Port-Based Authentication, page 52-8
- Displaying IEEE 802.1X Status, page 52-17

Understanding IEEE 802.1X Port-Based Authentication

The IEEE 802.1X standard defines a client-server-based access control and authentication protocol that restricts unauthorized clients from connecting to a LAN through publicly accessible ports. The authentication server authenticates each client connected to a router port and assigns the port to a VLAN before making available any services offered by the router or the LAN.

Until the client is authenticated, 802.1X access control allows only Extensible Authentication Protocol over LAN (EAPOL) traffic through the port to which the client is connected. After authentication is successful, normal traffic can pass through the port.

These sections describe 802.1X port-based authentication:
- Device Roles, page 52-2
- Authentication Initiation and Message Exchange, page 52-3
- Ports in Authorized and Unauthorized States, page 52-4
- Using IEEE 802.1X Authentication with DHCP Snooping, page 52-5
Device Roles

With IEEE 802.1X port-based authentication, the devices in the network have specific roles as shown in Figure 52-1.

Figure 52-1 802.1X Device Roles

The specific roles shown in Figure 52-1 are as follows:

- **Client**—The device (workstation) that requests access to the LAN and router services and responds to requests from the router. The workstation must be running 802.1X-compliant client software such as that offered in the Microsoft Windows XP operating system. (The client is the supplicant in the 802.1X specification.)

  *Note* To resolve Windows XP network connectivity and 802.1X port-based authentication issues, read the Microsoft Knowledge Base article at this URL: [http://support.microsoft.com/kb/q303597/](http://support.microsoft.com/kb/q303597/)

- **Authentication server**—Performs the actual authentication of the client. The authentication server validates the identity of the client and notifies the router whether or not the client is authorized to access the LAN and router services. Because the router acts as the proxy, the authentication service is transparent to the client. The Remote Authentication Dial-In User Service (RADIUS) security system with Extensible Authentication Protocol (EAP) extensions is the only supported authentication server; it is available in Cisco Secure Access Control Server, version 3.0. RADIUS uses a client-server model in which secure authentication information is exchanged between the RADIUS server and one or more RADIUS clients.

- **Router** (also called the authenticator and back-end authenticator)—Controls the physical access to the network based on the authentication status of the client. The router acts as an intermediary (proxy) between the client and the authentication server, requesting identity information from the client, verifying that information with the authentication server, and relaying a response to the client. The router includes the RADIUS client, which is responsible for encapsulating and decapsulating the EAP frames and interacting with the authentication server.

  When the router receives EAPOL frames and relays them to the authentication server, the Ethernet header is stripped and the remaining EAP frame is re-encapsulated in the RADIUS format. The EAP frames are not modified or examined during encapsulation, and the authentication server must
support EAP within the native frame format. When the router receives frames from the authentication server, the server’s frame header is removed, leaving the EAP frame, which is then encapsulated for Ethernet and sent to the client.

**Authentication Initiation and Message Exchange**

The router or the client can initiate authentication. If you enable authentication on a port by using the `dot1x port-control auto` interface configuration command, the router must initiate authentication when it determines that the port link state transitions from down to up. The router then sends an EAP-request/identity frame to the client to request its identity (typically, the router sends an initial identity request frame followed by one or more requests for authentication information). When the client receives the frame, it responds with an EAP-response/identity frame.

If the client does not receive an EAP-request/identity frame from the router during bootup, the client can initiate authentication by sending an EAPOL-start frame, which prompts the router to request the client’s identity.

*Note*

If IEEE 802.1X is not enabled or supported on the network access device, any EAPOL frames from the client are dropped. If the client does not receive an EAP-request/identity frame after three attempts to start authentication, the client transmits frames as if the port is in the authorized state. A port in the authorized state effectively means that the client has been successfully authenticated. For more information, see the “Ports in Authorized and Unauthorized States” section on page 52-4.

When the client supplies its identity, the router begins its role as the intermediary, passing EAP frames between the client and the authentication server until authentication succeeds or fails. If the authentication succeeds, the router port becomes authorized. For more information, see the “Ports in Authorized and Unauthorized States” section on page 52-4.

The specific exchange of EAP frames depends on the authentication method being used. Figure 52-2 shows a message exchange initiated by the client using the One-Time-Password (OTP) authentication method with a RADIUS server.
Chapter 52 Configuring IEEE 802.1X Port-Based Authentication

Understanding IEEE 802.1X Port-Based Authentication

Figure 52-2 Message Exchange

Ports in Authorized and Unauthorized States

The router port state determines whether or not the client is granted access to the network. The port starts in the unauthorized state. While in this state, the port disallows all ingress and egress traffic except for IEEE 802.1X protocol packets. When a client is successfully authenticated, the port transitions to the authorized state, allowing all traffic for the client to flow normally.

If a client that does not support 802.1X is connected to an unauthorized 802.1X port, the router requests the client’s identity. In this situation, the client does not respond to the request, the port remains in the unauthorized state, and the client is not granted access to the network.

In contrast, when an 802.1X-enabled client connects to a port that is not running the 802.1X protocol, the client initiates the authentication process by sending the EAPOL-start frame. When no response is received, the client sends the request for a fixed number of times. Because no response is received, the client begins sending frames as if the port is in the authorized state.

You control the port authorization state by using the `dot1x port-control` interface configuration command and these keywords:

- **force-authorized**—Disables 802.1X port-based authentication and causes the port to transition to the authorized state without any authentication exchange required. The port transmits and receives normal traffic without 802.1X-based authentication of the client. This is the default setting.

- **force-unauthorized**—Causes the port to remain in the unauthorized state, ignoring all attempts by the client to authenticate. The router cannot provide authentication services to the client through the interface.

- **auto**—Enables 802.1X port-based authentication and causes the port to begin in the unauthorized state, allowing only EAPOL frames to be sent and received through the port. The authentication process begins when the link state of the port transitions from down to up or when an EAPOL-start
Understanding IEEE 802.1X Port-Based Authentication

frame is received. The router requests the identity of the client and begins relaying authentication messages between the client and the authentication server. Each client attempting to access the network is uniquely identified by the router by using the client’s MAC address.

If the client is successfully authenticated (receives an Accept frame from the authentication server), the port state changes to authorized, and all frames from the authenticated client are allowed through the port. If the authentication fails, the port remains in the unauthorized state, but authentication can be retried. If the authentication server cannot be reached, the router can retransmit the request. If no response is received from the server after the specified number of attempts, authentication fails, and network access is not granted.

When a client logs off, it sends an EAPOL-logoff message, causing the router port to transition to the unauthorized state.

If the link state of a port transitions from up to down, or if an EAPOL-logoff frame is received, the port returns to the unauthorized state.

Using IEEE 802.1X Authentication with DHCP Snooping

When the Dynamic Host Configuration Protocol (DHCP) snooping option-82 with data insertion feature is enabled, the router can insert a client’s IEEE 802.1X-authenticated user identity information into the DHCP discovery process, allowing the DHCP server to assign IP addresses from different IP address pools to different classes of end users. This feature allows you to secure the IP addresses given to the end users for accounting purposes and to grant services based on Layer 3 criteria.

After a successful 802.1X authentication, the port is put into the forwarding state and stores the attributes that it receives from the RADIUS server. While performing DHCP snooping, the router acts as a DHCP relay agent, receiving DHCP messages and regenerating those messages for transmission on another interface.

After 802.1X authentication, when a client sends a DHCP discovery message, the router receives the packet and adds a RADIUS attributes suboption section to the packet containing the stored RADIUS attributes of the client. The router then submits the discovery broadcast again. The DHCP server receives the modified DHCP discovery packet and can, if configured to do so, use the authenticated user identity information when creating the IP address assignment.

The mapping of user to IP address can be on a one-to-one, one-to-many, or many-to-many basis. The one-to-many mapping allows the same user to authenticate through 802.1X hosts on multiple ports.

When 801.x authentication and DHCP snooping option-82 with data insertion features are enabled, the router will automatically insert the authenticated user identity information. To configure DHCP snooping option-82 with data insertion see the “DHCP Snooping Option-82 Data Insertion” section on page 37-3.

For information about the data inserted in the RADIUS attributes suboption, see RFC 4014, “Remote Authentication Dial-In User Service (RADIUS) Attributes Suboption for the Dynamic Host Configuration Protocol (DHCP) Relay Agent Information Option.”

Supported Topologies

The IEEE 802.1X port-based authentication is supported in two topologies:

- Point-to-point
- Wireless LAN
In a point-to-point configuration (see Figure 52-1 on page 52-2), only one client can be connected to the 802.1X-enabled router port. The router detects the client when the port link state changes to the up state. If a client leaves or is replaced with another client, the router changes the port link state to down, and the port returns to the unauthorized state.

Figure 52-3 shows 802.1X port-based authentication in a wireless LAN. The 802.1X port is configured as a multiple-host port that becomes authorized as soon as one client is authenticated. When the port is authorized, all other hosts indirectly attached to the port are granted access to the network. If the port becomes unauthorized (reauthentication fails or an EAPOL-logoff message is received), the router denies access to the network to all of the attached clients. In this topology, the wireless access point is responsible for authenticating the clients attached to it, and the wireless access point acts as a client to the router.

Table 52-1 shows the default IEEE 802.1X configuration.

**Table 52-1 Default 802.1X Configuration**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication, authorization, and accounting (AAA)</td>
<td>Disabled</td>
</tr>
<tr>
<td>RADIUS server IP address</td>
<td>None specified</td>
</tr>
<tr>
<td>RADIUS server User Datagram Protocol (UDP) authentication port</td>
<td>1812</td>
</tr>
<tr>
<td>RADIUS server key</td>
<td>None specified</td>
</tr>
<tr>
<td>Per-interface 802.1X protocol enable state</td>
<td>Disabled (force-authorized)</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong></td>
</tr>
<tr>
<td></td>
<td>The port transmits and receives normal traffic without 802.1X-based authentication of the client.</td>
</tr>
<tr>
<td>Periodic reauthentication</td>
<td>Disabled</td>
</tr>
<tr>
<td>Number of seconds between reauthentication attempts</td>
<td>3600 seconds</td>
</tr>
</tbody>
</table>
IEEE 802.1X Port-Based Authentication Guidelines and Restrictions

When configuring IEEE 802.1X port-based authentication, follow these guidelines and restrictions:

- When 802.1X is enabled, ports are authenticated before any other Layer 2 or Layer 3 features are enabled.
- The 802.1X protocol is supported on both Layer 2 static-access ports and Layer 3 routed ports, but it is not supported on these port types:
  - Trunk port—If you try to enable 802.1X on a trunk port, an error message appears, and 802.1X is not enabled. If you try to change the mode of an 802.1X-enabled port to trunk, the port mode is not changed.
  - EtherChannel port—Before enabling 802.1X on the port, you must first remove it from the EtherChannel port-channel interface. If you try to enable 802.1X on an EtherChannel port-channel interface or on an individual active port in an EtherChannel, an error message appears, and 802.1X is not enabled. If you enable 802.1X on a not-yet-active individual port of an EtherChannel, the port does not join the EtherChannel.
  - Secure port—You cannot configure a secure port as an 802.1X port. If you try to enable 802.1X on a secure port, an error message appears, and 802.1X is not enabled. If you try to change an 802.1X-enabled port to a secure port, an error message appears, and the security settings are not changed.
  - Switch Port Analyzer (SPAN) destination port—You can enable 802.1X on a port that is a SPAN destination port; however, 802.1X is disabled until the port is removed as a SPAN destination port. You can enable 802.1X on a SPAN source port.

### Table 52-1 Default 802.1X Configuration (continued)

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiet period</td>
<td>60 seconds (number of seconds that the router remains in the quiet state following a failed authentication exchange with the client)</td>
</tr>
<tr>
<td>Retransmission time</td>
<td>30 seconds (number of seconds that the router should wait for a response to an EAP request/identity frame from the client before retransmitting the request)</td>
</tr>
<tr>
<td>Maximum retransmission number</td>
<td>2 times (number of times that the router will send an EAP-request/identity frame before restarting the authentication process)</td>
</tr>
<tr>
<td>Multiple host support</td>
<td>Disabled</td>
</tr>
<tr>
<td>Client timeout period</td>
<td>30 seconds (when relaying a request from the authentication server to the client, the amount of time the router waits for a response before retransmitting the request to the client)</td>
</tr>
<tr>
<td>Authentication server timeout period</td>
<td>30 seconds (when relaying a response from the client to the authentication server, the amount of time the router waits for a reply before retransmitting the response to the server)</td>
</tr>
</tbody>
</table>
Configuring IEEE 802.1X Port-Based Authentication

These sections describe how to configure IEEE 802.1X port-based authentication:

- Enabling IEEE 802.1X Port-Based Authentication, page 52-8
- Configuring Router-to-RADIUS-Server Communication, page 52-9
- Enabling Periodic Reauthentication, page 52-11
- Manually Reauthenticating the Client Connected to a Port, page 52-11
- Initializing Authentication for the Client Connected to a Port, page 52-12
- Changing the Quiet Period, page 52-12
- Setting the Router-to-Client Retransmission Time for EAP-Request Frames, page 52-14
- Setting the Router-to-Authentication-Server Retransmission Time for Layer 4 Packets, page 52-14
- Setting the Router-to-Client Frame Retransmission Number, page 52-15
- Enabling Multiple Hosts, page 52-16
- Resetting the IEEE 802.1X Configuration to the Default Values, page 52-16

Enabling IEEE 802.1X Port-Based Authentication

To enable IEEE 802.1X port-based authentication, you must enable AAA and specify the authentication method list. A method list describes the sequence and authentication methods to be queried to authenticate a user.

The software uses the first method listed to authenticate users; if that method fails to respond, the software selects the next authentication method in the method list. This process continues until there is successful communication with a listed authentication method or until all defined methods are exhausted. If authentication fails at any point in this cycle, the authentication process stops, and no other authentication methods are attempted.

To configure 802.1X port-based authentication, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# aaa new-model</td>
</tr>
<tr>
<td></td>
<td>Enables AAA.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config)# aaa authentication dot1x {default} method1 [method2...]</td>
</tr>
<tr>
<td></td>
<td>Creates an 802.1X port-based authentication method list.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config)# dot1x system-auth-control</td>
</tr>
<tr>
<td></td>
<td>Globally enables 802.1X port-based authentication.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>Enters interface configuration mode and specifies the interface to be enabled for 802.1X port-based authentication.</td>
</tr>
<tr>
<td></td>
<td>type—ethernet, fastethernet, gigabitethernet, or tengigabitethernet.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Router(config-if)# dot1x port-control auto</td>
</tr>
<tr>
<td></td>
<td>Enables 802.1X port-based authentication on the interface.</td>
</tr>
</tbody>
</table>
Configuring IEEE 802.1X Port-Based Authentication

Configuring IEEE 802.1X Port-Based Authentication

When you enable 802.1X port-based authentication, note the following information:

- To create a default list that is used when a named list is not specified in the authentication command, use the default keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all interfaces.

- Enter at least one of these keywords:
  - group radius—Use the list of all RADIUS servers for authentication.
  - none—Use no authentication. The client is automatically authenticated by the router without using the information supplied by the client.

This example shows how to enable AAA and 802.1X on Fast Ethernet port 5/1:

```
Router# configure terminal
Router(config)# aaa new-model
Router(config)# aaa authentication dot1x default group radius
Router(config)# dot1x system-auth-control
Router(config)# interface fastethernet 5/1
Router(config-if)# dot1x port-control auto
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show dot1x all
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router# show dot1x all</td>
</tr>
</tbody>
</table>

Check the Status column in the 802.1X Port Summary section of the display. An enabled status means the port-control value is set either to auto or to force-unauthorized.

When you enable 802.1X port-based authentication, note the following information:

- To create a default list that is used when a named list is not specified in the authentication command, use the default keyword followed by the methods that are to be used in default situations. The default method list is automatically applied to all interfaces.

- Enter at least one of these keywords:
  - group radius—Use the list of all RADIUS servers for authentication.
  - none—Use no authentication. The client is automatically authenticated by the router without using the information supplied by the client.

This example shows how to enable AAA and 802.1X on Fast Ethernet port 5/1:

```
Router# configure terminal
Router(config)# aaa new-model
Router(config)# aaa authentication dot1x default group radius
Router(config)# dot1x system-auth-control
Router(config)# interface fastethernet 5/1
Router(config-if)# dot1x port-control auto
Router(config-if)# end
```

This example shows how to verify the configuration:

```
Router# show dot1x all
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Router(config)# end</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router# show dot1x all</td>
</tr>
</tbody>
</table>

Check the Status column in the 802.1X Port Summary section of the display. An enabled status means the port-control value is set either to auto or to force-unauthorized.

Configuring Router-to-RADIUS-Server Communication

RADIUS security servers are identified by any of the following:

- Host name
- Host IP address
- Host name and specific UDP port numbers
• IP address and specific UDP port numbers

The combination of the IP address and UDP port number creates a unique identifier, which enables RADIUS requests to be sent to multiple UDP ports on a server at the same IP address. If two different host entries on the same RADIUS server are configured for the same service (for example, authentication) the second host entry configured acts as the failover backup to the first one. The RADIUS host entries are tried in the order that they were configured.

To configure the RADIUS server parameters, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# ip radius source-interface interface_name</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# radius-server host {hostname</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config)# radius-server key string</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config)# end</td>
</tr>
</tbody>
</table>

When you configure the RADIUS server parameters, note the following information:

• For hostname or ip_address, specify the host name or IP address of the remote RADIUS server.

• Specify the key string on a separate command line.

• For key string, specify the authentication and encryption key used between the router and the RADIUS daemon running on the RADIUS server. The key is a text string that must match the encryption key used on the RADIUS server.

• When you specify the key string, spaces within and at the end of the key are used. If you use spaces in the key, do not enclose the key in quotation marks unless the quotation marks are part of the key. This key must match the encryption used on the RADIUS daemon.

• You can globally configure the timeout, retransmission, and encryption key values for all RADIUS servers by using the radius-server host global configuration command. If you want to configure these options on a per-server basis, use the radius-server timeout, radius-server retransmit, and the radius-server key global configuration commands. For more information, refer to the Cisco IOS Security Configuration Guide, Release 12.2 and the Cisco IOS Security Command Reference, Release 12.2 at these URLs:


**Note**

You also need to configure some settings on the RADIUS server. These settings include the IP address of the router and the key string to be shared by both the server and the router. For more information, refer to the RADIUS server documentation.
This example shows how to configure the RADIUS server parameters on the router:

Router# configure terminal
Router(config)# ip radius source-interface Vlan80
Router(config)# radius-server host 172.120.39.46
Router(config)# radius-server key rad123
Router(config)# end

Enabling Periodic Reauthentication

You can enable periodic IEEE 802.1X client reauthentication and specify how often it occurs. If you do not specify a time period before enabling reauthentication, the number of seconds between reauthentication attempts is 3600.

Automatic 802.1X client reauthentication is a global setting and cannot be set for clients connected to individual ports. To manually reauthenticate the client connected to a specific port, see the “Manually Reauthenticating the Client Connected to a Port” section on page 52-11.

To enable periodic reauthentication of the client and to configure the number of seconds between reauthentication attempts, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# dot1x reauthentication</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# dot1x timeout reauth-period seconds</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router# show dot1x all</td>
</tr>
</tbody>
</table>

This example shows how to enable periodic reauthentication, set the number of seconds between reauthentication attempts to 4000, then verify the entries:

Router(config)# interface gigabitethernet 4/1
Router(config-if)# dot1x reauthentication
Router(config-if)# dot1x timeout reauth-period 4000
Router(config-if)# end
Router# show dot1x all

Manually Reauthenticating the Client Connected to a Port

**Note** Reauthentication does not disturb the status of an already authorized port.
To manually reauthenticate the client connected to a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# dot1x re-authenticate</code></td>
<td>Manually reauthenticates the client connected to a port.</td>
</tr>
<tr>
<td><code>interface type slot/port</code></td>
<td><em>type</em>—ethernet, fastethernet, gigabitethernet, or tengigabitethernet.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show dot1x all</code></td>
<td>Verifies your entries.</td>
</tr>
</tbody>
</table>

This example shows how to manually reauthenticate the client connected to Fast Ethernet port 5/1 then verify the entries:
```
Router# dot1x re-authenticate interface fastethernet 5/1
Starting reauthentication on FastEthernet 5/1
Router# show dot1x all
```

### Initializing Authentication for the Client Connected to a Port

**Note** Initializing authentication disables any existing authentication before authenticating the client connected to the port.

To initialize the authentication for the client connected to a port, perform this task in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# dot1x initialize interface type slot/port</code></td>
<td>Initializes the authentication for the client connected to a port.</td>
</tr>
<tr>
<td><em>type</em>—ethernet, fastethernet, gigabitethernet, or tengigabitethernet.</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td></td>
</tr>
<tr>
<td><code>Router# show dot1x all</code></td>
<td>Verifies your entries.</td>
</tr>
</tbody>
</table>

This example shows how to initialize the authentication for the client connected to Fast Ethernet port 5/1 then verify the entries:
```
Router# dot1x initialize interface fastethernet 5/1
Starting reauthentication on FastEthernet 5/1
Router# show dot1x all
```

### Changing the Quiet Period

When the router cannot authenticate the client, the router remains idle for a set period of time, and then tries again. The idle time is determined by the quiet-period value. A failed authentication of the client might occur because the client provided an invalid password. You can provide a faster response time to the user by entering a smaller number than the default.
To change the quiet period, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# dot1x timeout quiet-period seconds</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show dot1x all</td>
</tr>
</tbody>
</table>

This example shows how to set the quiet time on the router to 30 seconds then verify the entries:

```
Router(config)# interface fastethernet 5/1
Router(config-if)# dot1x timeout quiet-period 30
Router(config-if)# end
Router# show dot1x all
```

### Changing the Router-to-Client Retransmission Time

The client responds to the EAP-request/identity frame from the router with an EAP-response/identity frame. If the router does not receive this response, it waits a set period of time (known as the retransmission time), and then retransmits the frame.

**Note**

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

To change the amount of time that the router waits for client notification, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# dot1x timeout tx-period seconds</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router# show dot1x all</td>
</tr>
</tbody>
</table>
Chapter 52  Configuring IEEE 802.1X Port-Based Authentication

This example shows how to set 60 as the number of seconds that the router waits for a response to an EAP-request/identity frame from the client before retransmitting the request, then verify the entries:

```
Router(config)# interface fastethernet 4/1
Router(config-if)# dot1x timeout tx-period 60
Router(config-if)# end
Router# show dot1x all
```

Setting the Router-to-Client Retransmission Time for EAP-Request Frames

The client notifies the router that it received the EAP-request frame. If the router does not receive this notification, the router waits a set period of time, and then retransmits the frame. You may set the amount of time that the router waits for notification from 1 to 65535 seconds. (The default is 30 seconds.)

To set the router-to-client retransmission time for the EAP-request frames, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# dot1x timeout supp-timeout seconds</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router# show dot1x all</td>
</tr>
</tbody>
</table>

This example shows how to set the router-to-client retransmission time for the EAP-request frame to 25 seconds, then verify the entries:

```
Router(config)# interface fastethernet 4/1
Router(config-if)# dot1x timeout supp-timeout 25
Router(config-if)# end
Router# show dot1x all
```

Setting the Router-to-Authentication-Server Retransmission Time for Layer 4 Packets

The authentication server notifies the router each time it receives a Layer 4 packet. If the router does not receive a notification after sending a packet, the router waits a set period of time and then retransmits the packet. You may set the amount of time that the router waits for notification from 1 to 65535 seconds. (The default is 30 seconds.)

To set the value for the retransmission of Layer 4 packets from the router to the authentication server, perform this task in interface configuration mode:
Chapter 52  Configuring IEEE 802.1X Port-Based Authentication

Configuring IEEE 802.1X  Port-Based Authentication

This example shows how to set the router-to-authentication-server retransmission time for Layer 4 packets to 25 seconds, then verify the entries:

Router(config)# interface gigabitethernet 5/2
Router(config-if)# dot1x timeout server-timeout 25
Router(config-if)# end
Router# show dot1x all

Setting the Router-to-Client Frame Retransmission Number

In addition to changing the router-to-client retransmission time, you can change the number of times that the router sends an EAP-request/identity frame (assuming no response is received) to the client before restarting the authentication process.

You should change the default value of this command only to adjust for unusual circumstances such as unreliable links or specific behavioral problems with certain clients and authentication servers.

To set the router-to-client frame retransmission number, perform this task in interface configuration mode:

Router(config)# interface gigabitethernet 5/2
Router(config-if)# dot1x timeout server-timeout 25
Router(config-if)# end
Router# show dot1x all

This example shows how to set the router-to-client frame retransmission number, perform this task in interface configuration mode:

Command	Purpose
Step 1  | Router(config)# interface type slot/port
        | Selects an interface to configure.
        | type—ethernet, fastethernet, gigabitethernet, or tengigabitethernet.
Step 2  | Router(config-if)# dot1x timeout server-timeout seconds
        | Sets the router-to-authentication-server retransmission time for Layer 4 packets.
Step 3  | Router(config-if)# end
        | Returns to privileged EXEC mode.
Step 4  | Router# show dot1x all
        | Verifies your entries.

Command	Purpose
Step 1  | Router(config)# interface type slot/port
        | Selects an interface to configure.
        | type—ethernet, fastethernet, gigabitethernet, or tengigabitethernet.
Step 2  | Router(config-if)# dot1x max-req count
        | Sets the number of times that the router sends an EAP-request/identity frame to the client before restarting the authentication process. The range is 1 to 10; the default is 2.
Step 3  | Router(config-if)# end
        | Returns to privileged EXEC mode.
Step 4  | Router# show dot1x all
        | Verifies your entries.

This example shows how to set 5 as the number of times that the router sends an EAP-request/identity request before restarting the authentication process, then verify the entries:

Router(config)# interface fastethernet 4/1
Router(config-if)# dot1x max-req 5
Router(config-if)# end
Enabling Multiple Hosts

You can attach multiple hosts to a single IEEE 802.1X-enabled port as shown in Figure 52-3 on page 52-6. In this mode, only one of the attached hosts must be successfully authorized for all hosts to be granted network access. If the port becomes unauthorized (reauthentication fails or an EAPOL-logoff message is received), all attached clients are denied access to the network.

To allow multiple hosts (clients) on an 802.1X-authorized port that has the dot1x port-control interface configuration command set to auto, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type slot/port</td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td></td>
<td>type—ethernet, fastethernet, gigabitethernet, or tengigabitethernet.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# dot1x host-mode multi-host</td>
<td>Allows multiple hosts (clients) on an 802.1X-authorized port.</td>
</tr>
<tr>
<td></td>
<td>Note Make sure that the dot1x port-control interface configuration command set is set to auto for the specified interface.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 Router# show dot1x all</td>
<td>Verifies your entries.</td>
</tr>
</tbody>
</table>

This example shows how to enable 802.1X on Fast Ethernet interface 5/1, allow multiple hosts, then verify the entries:

Router(config)# interface fastethernet 5/1
Router(config-if)# dot1x host-mode multi-host
Router(config-if)# end
Router# show dot1x all

Resetting the IEEE 802.1X Configuration to the Default Values

To reset the IEEE 802.1X configuration to the default values, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# interface type slot/port</td>
<td>Selects an interface to configure.</td>
</tr>
<tr>
<td></td>
<td>type—ethernet, fastethernet, gigabitethernet, or tengigabitethernet.</td>
</tr>
<tr>
<td>Step 2 Router(config-if)# dot1x default</td>
<td>Resets the configurable 802.1X parameters to the default values.</td>
</tr>
<tr>
<td>Step 3 Router(config-if)# end</td>
<td>Returns to privileged EXEC mode.</td>
</tr>
<tr>
<td>Step 4 Router# show dot1x all</td>
<td>Verifies your entries.</td>
</tr>
</tbody>
</table>
Displaying IEEE 802.1X Status

To display global IEEE 802.1X administrative and operational status for the router, use the `show dot1x` privileged EXEC command. To display the 802.1X administrative and operational status for a specific interface, use the `show dot1x interface interface-id` privileged EXEC command.

For detailed information about the keywords and arguments in these commands, refer to the *Cisco IOS Security Command Reference, Release 12.2 SR*.
Displaying IEEE 802.1X Status
Configuring IEEE 802.1ad

Provider networks handle traffic from a large number of customers. It is important that one customer’s traffic is isolated from the other customer’s traffic. IEEE 802.1ad implements standard protocols for double tagging of data. The data traffic coming from the customer side are double tagged in the provider network where the inner tag is the customer-tag (C-tag) and the outer tag is the provider-tag (S-tag). The control packets are tunneled by changing the destination MAC address in the provider network.

Cisco 7600 series routers already support VLAN double tagging through a feature called QinQ. 802.1ad is the standardized version of QinQ. It also extends the support for Layer 2 Protocol Tunneling Protocol (L2PT). By offering transparent Layer 2 connectivity, the service provider does not get involved in the customer’s Layer 3 network. This makes provisioning and maintenance simple, and reduces the operational cost.

Prerequisites for IEEE 802.1ad

- The ethertype should be programmable per port.

Restrictions for IEEE 802.1ad

Follow these restrictions and guidelines when you configure 802.1ad:

- The `l2protocol forward` command is available only on the main interface of switchports and L3 ports. The command is not available on the subinterfaces. All the subinterfaces on a port inherit the behavior from the main interface. The `l2protocol forward` command is also available on EVC service instance.
- The `l2protocol peer` and `l2protocol drop` commands are not supported.
- The `l2protocol forward` command on a main interface and on EVCs supports only cdp, dtp, vtp, stp, and dot1x.
- You cannot configure Dot1ad if custom ethertype is configured on port.
802.1ad is supported on the following port types:

<table>
<thead>
<tr>
<th>Port</th>
<th>EVC</th>
<th>Switchport</th>
<th>Layer Interfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-UNI</td>
<td>Ethertype 0x8100</td>
<td>Ethertype 0x8100</td>
<td>Ethertype 0x8100</td>
</tr>
<tr>
<td></td>
<td>C-VLAN BPDU</td>
<td>C-VLAN BPDU</td>
<td>C-VLAN BPDU</td>
</tr>
<tr>
<td></td>
<td>Any EVCs</td>
<td>Trunk or Access</td>
<td></td>
</tr>
<tr>
<td>S-UNI</td>
<td>Ethertype 0x88a8</td>
<td>Ethertype 0x88a8</td>
<td>Not supported</td>
</tr>
<tr>
<td></td>
<td>S-VLAN BPDU (Only Encapsulation default is supported)</td>
<td>S-VLAN BPDU</td>
<td>Access only</td>
</tr>
<tr>
<td>S-NNI</td>
<td>Ethertype 0x88a8</td>
<td>Ethertype 0x88a8</td>
<td>Ethertype 0x88a8</td>
</tr>
<tr>
<td></td>
<td>S-VLAN BPDU</td>
<td>S-VLAN BPDU</td>
<td>S-VLAN BPDU</td>
</tr>
<tr>
<td></td>
<td>Any EVC</td>
<td>Trunk</td>
<td>Trunk</td>
</tr>
</tbody>
</table>

**Information About IEEE 802.1ad**

To configure IEEE 802.1ad support, you should understand the following concepts:

- How Provider Bridges Work
- Guidelines for Handling BPDU
- Interoperability of QinQ and Dot1ad

**How Provider Bridges Work**

Provider bridges pass the network traffic of many customers, and each customer's traffic flow must be isolated from one another. For the Layer 2 protocols within customer domains to function properly, geographically separated customer sites must appear to be connected through a LAN, and the provider network must be transparent.

The IEEE has reserved 33 Layer 2 MAC addresses for customer devices operating Layer 2 protocols. If a provider bridge uses these standard MAC addresses for its Layer 2 protocols, the customers' and service provider's Layer 2 traffic will be mixed together. Provider bridges solve this traffic-mixing issue by providing Layer 2 protocol data unit (PDU) tunneling for customers using a provider bridge (S-bridge) component and a provider edge bridge (C-bridge) component. Figure 53-1 shows the topology.
The S-bridge component is capable of inserting or removing a service provider VLAN (S-VLAN) for all traffic on a particular port. IEEE 802.1ad adds a new tag called a Service tag (S-tag) to all the ingress frames from a customer to the service provider.

The VLAN in the S-tag is used for forwarding the traffic in the service provider network. Different customers use different S-VLANs, which results in each customer’s traffic being isolated. In the S-tag, provider bridges use an Ethertype value that is different from the standard 802.1Q Ethertype value, and do not understand the standard Ethertype. This difference makes customer traffic tagged with the standard Ethertype appear as untagged in the provider network so customer traffic is tunneled in the port VLAN of the provider port. The 802.1ad service provider user network interfaces (S-UNIs) and network to network interfaces (NNIs) implement the S-bridge component.

For example, a VLAN tag has a VLAN ID of 1, the C-tag Ethertype value is 8100 0001, the S-tag Ethertype value is 88A8 0001, and the class of service (CoS) is zero.

C-tag S-tag

0x8100 | Priority bits | CFI | C-VLAN-ID 0x88A8 | Priority bits | 0 | S-VLAN-ID

All the C-VLANs entering on a UNI port in an S-bridge component are provided the same service (marked with the same S-VLAN). Although, C-VLAN components are not supported, a customer may want to tag a particular C-VLAN packet separately to differentiate between services. Provider bridges allow C-VLAN packet tagging with a provider edge bridge, called the C-bridge component of the provider bridge. C-bridge components are C-VLAN aware and can insert or remove a C-VLAN 802.1Q tag. The C-bridge UNI port is capable of identifying the customer 802.1Q tag and inserting or removing...
an S-tag on the packet on a per service instance or C-VLAN basis. A C-VLAN tagged service instance allows service instance selection and identification by C-VLAN. The 802.1ad customer user network interfaces (C-UNIs) implement the C-component.

MAC Addresses for Layer 2 Protocols

Customers’ Layer 2 PDUs received by a provider bridge are not forwarded, so Layer 2 protocols running in customer sites do not know the complete network topology. By using a different set of addresses for the Layer 2 protocols running in provider bridges, IEEE 802.1ad causes customers’ Layer 2 PDUs entering the provider bridge to appear as unknown multicast traffic and forwards it on customer ports (on the same S-VLAN). Customers' Layer 2 protocols can then run transparently.

Table 53-1 shows the Layer 2 MAC addresses reserved for the C-VLAN component.

**Table 53-1**  
Reserved Layer 2 MAC Addresses for a C-VLAN Component

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Group Address</td>
<td>01-80-c2-00-00-00</td>
</tr>
<tr>
<td>IEEE Std 802.3 Full Duplex PAUSE operation</td>
<td>01-80-c2-00-00-01</td>
</tr>
<tr>
<td>IEEE Std. 802.3 Slow Protocols Multicast address</td>
<td>01-80-c2-00-00-02</td>
</tr>
<tr>
<td>IEEE Std. 802.1X PAE address</td>
<td>01-80-c2-00-00-03</td>
</tr>
<tr>
<td>Reserved for future standardization - media access method-specific</td>
<td>01-80-c2-00-00-04</td>
</tr>
<tr>
<td>Reserved for future standardization - media access method-specific</td>
<td>01-80-c2-00-00-05</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-06</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-07</td>
</tr>
<tr>
<td>Provider Bridge Group Address</td>
<td>01-80-c2-00-00-08</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-09</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-0a</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-0b</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-0c</td>
</tr>
<tr>
<td>Provider Bridge GVRP Address</td>
<td>01-80-c2-00-00-0d</td>
</tr>
<tr>
<td>IEEE Std. 802.1AB Link Layer Discovery Protocol multicast address</td>
<td>01-80-c2-00-00-0e</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-0f</td>
</tr>
</tbody>
</table>
Table 53-2 shows the Layer 2 MAC addresses reserved for an S-VLAN component. These addresses are a subset of the C-VLAN component addresses, and the C-bridge does not forward the provider's bridge protocol data units (BPDUs) to a customer network.

**Table 53-2 Reserved Layer 2 MAC Addresses for an S-VLAN Component**

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE Std 802.3 Full Duplex PAUSE operation</td>
<td>01-80-c2-00-00-01</td>
</tr>
<tr>
<td>IEEE Std. 802.3 Slow_Protocols_Multicast address</td>
<td>01-80-c2-00-00-02</td>
</tr>
<tr>
<td>IEEE Std. 802.1X PAE address</td>
<td>01-80-c2-00-00-03</td>
</tr>
<tr>
<td>Reserved for future standardization - media access method specific</td>
<td>01-80-c2-00-00-04</td>
</tr>
<tr>
<td>Reserved for future standardization - media access method specific</td>
<td>01-80-c2-00-00-05</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-06</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-07</td>
</tr>
<tr>
<td>Provider Bridge Group Address</td>
<td>01-80-c2-00-00-08</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-09</td>
</tr>
<tr>
<td>Reserved for future standardization</td>
<td>01-80-c2-00-00-0a</td>
</tr>
</tbody>
</table>

**Guidelines for Handling BPDU**

The general BPDU guidelines are listed here:

**UNI-C Ports**

The guidelines pertaining to UNI-C ports are:
- VLAN-aware L2 protocols can be peered, tunneled, or dropped.
- Port L2 protocols can either be peered or dropped. They cannot be tunneled.

Table 53-3 shows the Layer 2 PDU destination MAC addresses for customer-facing C-bridge UNI ports, and how frames are processed.

**Table 53-3 Layer 2 PDU Destination MAC Addresses for Customer-Facing C-Bridge UNI Ports**

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Protocol</th>
<th>Significance on C-UNI Port</th>
<th>Default Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-80-C2-00-00-00</td>
<td>Bridge Group Address (End-to-End BPDUs)</td>
<td>BPDU</td>
<td>Peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-01</td>
<td>802.3X Pause Protocol</td>
<td>BPDU</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-02</td>
<td>Slow Protocol address: 802.3ad LACP, 802.3ah OAM, CDP Pagp, VTP, DTP, UDLD</td>
<td>BPDU</td>
<td>Peer</td>
</tr>
</tbody>
</table>
Table 53-3 Layer 2 PDU Destination MAC Addresses for Customer-Facing C-Bridge UNI Ports

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Protocol</th>
<th>Significance on C-UNI Port</th>
<th>Default Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-80-C2-00-00-03</td>
<td>802.1X</td>
<td>BPDU</td>
<td>May peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-04</td>
<td>Reserved for future media access method</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-05</td>
<td>Reserved for future media access method</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-06</td>
<td>Reserved for future bridge use</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-07</td>
<td>Reserved for future bridge use</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-08</td>
<td>Provider STP (BPDU)</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-09</td>
<td>Reserved for future bridge use</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0A</td>
<td>Reserved for future bridge use</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0B</td>
<td>Reserved for future S-bridge purpose</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0C</td>
<td>Reserved for future S-bridge purpose</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0D</td>
<td>Provider Bridge GVRP address</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0E</td>
<td>802.1ab-LLDP</td>
<td>BPDU</td>
<td>May peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-0F</td>
<td>Reserved for future C-bridge or Q-bridge use</td>
<td>None</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-10</td>
<td>All bridge addresses</td>
<td>Read Data</td>
<td>Snoop if implemented. Else, discard</td>
</tr>
<tr>
<td>01-80-C2-00-00-20</td>
<td>GMRP</td>
<td>Data/BPDU</td>
<td>May peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-21</td>
<td>GVRP</td>
<td>Data/BPDU</td>
<td>May peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-22-2F</td>
<td>Other GARP addresses</td>
<td>Data/BPDU</td>
<td>May peer</td>
</tr>
<tr>
<td>01-00-0C-CC-CC-CC</td>
<td>Cisco’s CDP DTP VTP PagP UDLD (End-to-End)</td>
<td>BPDU</td>
<td>Peer</td>
</tr>
<tr>
<td>01-00-0C-CC-CC-CD</td>
<td>Cisco’s PVST(End-to-End)</td>
<td>BPDU</td>
<td>May peer</td>
</tr>
</tbody>
</table>

UNI-S Ports

The guidelines pertaining to UNI-S ports are:

- Packets with C-Bridge addresses (00 - 0F) that are not part of S-Bridge addresses (01 - 0A) are treated as data packet (tunneled).
- VLAN-aware L2 protocols cannot be peered because the port is not C-VLAN aware. They can only be tunneled or dropped.
- Port L2 protocols can be peered, tunneled, or dropped.

Table 53-4 shows the Layer 2 PDU destination MAC addresses for customer-facing S-bridge UNI ports, and how frames are processed.
### Table 53-4  Layer 2 PDU Destination MAC Addresses for Customer-Facing S-Bridge UNI Ports

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Protocol</th>
<th>Significance on S-UNI Port</th>
<th>Default Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-80-C2-00-00-00</td>
<td>Bridge Group Address (BPDUs)</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-80-C2-00-00-01</td>
<td>802.3X Pause Protocol</td>
<td>BPDU</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-02</td>
<td>Slow Protocol address: 802.3ad LACP, 802.3ah</td>
<td>BPDU</td>
<td>Peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-03</td>
<td>802.1X</td>
<td>BPDU</td>
<td>Peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-04</td>
<td>Reserved for future media access method</td>
<td>BPDU</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-05</td>
<td>Reserved for future media access method</td>
<td>BPDU</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-06</td>
<td>Reserved for future bridge use</td>
<td>BPDU</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-07</td>
<td>Reserved for future bridge use</td>
<td>BPDU</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-08</td>
<td>Provider STP (BPDU)</td>
<td>BPDU</td>
<td>Drop (peer on NNI)</td>
</tr>
<tr>
<td>01-80-C2-00-00-09</td>
<td>Reserved for future bridge use</td>
<td>BPDU</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0A</td>
<td>Reserved for future bridge use</td>
<td>BPDU</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0B</td>
<td>Reserved for future bridge use</td>
<td>Data if not implemented</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0C</td>
<td>Reserved for future bridge use</td>
<td>Data if not implemented</td>
<td>Treat as data until implemented</td>
</tr>
<tr>
<td>01-80-C2-00-00-0D</td>
<td>Reserved for future GVRP address</td>
<td>Data if not implemented</td>
<td>Treat as data until implemented</td>
</tr>
<tr>
<td>01-80-C2-00-00-0E</td>
<td>802.1ab-LLDP</td>
<td>BPDU</td>
<td>May peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-0F</td>
<td>Reserved for future C-bridge or Q-bridge use</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-80-C2-00-00-10</td>
<td>All bridge addresses</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-80-C2-00-00-20</td>
<td>GMRP</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-80-C2-00-00-21</td>
<td>GVRP</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-80-C2-00-00-22</td>
<td>Other GARP addresses</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-00-0C-CC-CC-CC</td>
<td>Cisco’s CDP DTP VTP PagP UDLD</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-00-0C-CC-CC-CD</td>
<td>Cisco’s PVST</td>
<td>Data</td>
<td>Data</td>
</tr>
</tbody>
</table>
NNI Ports

The Dot1add NNI ports behave in the same way as the customer facing S-bridge ports, with the following exceptions:

- On NNI ports, frames received with DA 01-80-C2-00-00-08 contain STP BPDU. The frames are received and transmitted. On S-UNI ports, any such frames that are received are dropped, and none are sent. Starting with Cisco IOS Release 15.4(3)S, on NNI ports, frames received with DA 01-80-C2-00-00-08 include PVST BPDU.
- On NNI ports, frames received with DA 01-80-C2-00-00-02 include CDP Pagp, VTP, DTP, and UDLD protocols.
- Starting with Cisco IOS Release 15.4(3)S, on NNI ports, frames received with DA 01-80-C2-00-00-03 include LLDP protocol.

7600 Action Table

Table 53-5 lists the actions performed on a packet when the packet is received with a specified destination MAC address.

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>Protocol</th>
<th>C-UNI Action</th>
<th>S-UNI Action</th>
<th>NNI Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-80-C2-00-00-00</td>
<td>Bridge Group Address (BPDUs)</td>
<td>Peer</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-80-C2-00-00-01</td>
<td>802.3X Pause Protocol</td>
<td>Drop</td>
<td>Drop</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-02</td>
<td>Slow Protocol address: 802.3ad LACP, 802.3ah</td>
<td>Peer</td>
<td>Peer</td>
<td>Peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-03</td>
<td>802.1X</td>
<td>May peer</td>
<td>May peer</td>
<td>May peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-04</td>
<td>Reserved</td>
<td>Drop</td>
<td>Drop</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-05</td>
<td>Reserved</td>
<td>Drop</td>
<td>Drop</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-06</td>
<td>Reserved</td>
<td>Drop</td>
<td>Drop</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-07</td>
<td>Reserved</td>
<td>Drop</td>
<td>Drop</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-08</td>
<td>Provider STP (BPDU)</td>
<td>Drop</td>
<td>Drop</td>
<td>Peer</td>
</tr>
<tr>
<td>01-80-C2-00-00-09</td>
<td>Reserved for future bridge use</td>
<td>Drop</td>
<td>Drop</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0A</td>
<td>Reserved for future bridge use</td>
<td>Drop</td>
<td>Drop</td>
<td>Drop</td>
</tr>
<tr>
<td>01-80-C2-00-00-0B</td>
<td>Reserved for future bridge use</td>
<td>Drop</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-80-C2-00-00-0C</td>
<td>Reserved for future bridge use</td>
<td>Drop</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-80-C2-00-00-0D</td>
<td>Reserved for future GVRP address</td>
<td>Drop</td>
<td>Data</td>
<td>Data</td>
</tr>
<tr>
<td>01-80-C2-00-00-0E</td>
<td>802.1ab-LLDP</td>
<td>May peer</td>
<td>Data</td>
<td>Data</td>
</tr>
</tbody>
</table>
Interoperability of QinQ and Dot1ad

The interoperability of QinQ and Dot1ad network enables the exchange of data frames between the networks. The 802.1Q network outer tag VLANs are mapped to the provider S-VLANs of the 802.1ad network.

Figure 53-2 illustrates the interoperability of a Dot1ad network and a QinQ network.
How to Configure IEEE 802.1ad

This section contains the information about following procedures:

- Configuring a Switchport
- Configuring a Layer 2 Protocol Forward
- Configuring a Switchport for Translating QinQ to 802.1ad
- Configuring a Switchport (L2PT)
- Configuring a Customer-Facing UNI-C Port with EVC
- Configuring a Customer-Facing UNI-C Port and Switchport on NNI with EVC
- Configuring a Customer-Facing UNI-S Port with EVC
- Configuring a Layer 3 Termination
- Displaying a Dot1ad Configuration

Configuring a Switchport

A switchport can be configured as a UNI-C port, UNI-S port, or NNI port.
UNI-C Port

A UNI-C port can be configured as either a trunk port or an access port. Perform the following tasks to configure a UNI-C port as an access port for 802.1ad.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ethernet dot1ad {nni | uni {c-port | s-port}}`
5. `switchport`
6. `switchport mode {access | trunk}`
7. `switchport access vlan vlan-id`
8. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# interface gigabitethernet 2/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ethernet dot1ad uni c-port</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> switchport</td>
<td>Put the interface into Layer 2 mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> switchport mode {access</td>
<td>trunk}</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# switchport mode access</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> switchport access vlan vlan-id</td>
<td>Sets the VLAN when an interface is in access mode. In this example, the VLAN is set to 1000.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# switchport access 1000</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
Perform the following tasks to configure a UNI-C port as a trunk port for 802.1ad.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface type number**
4. **ethernet dot1ad {nni | uni {c-port | s-port}}**
5. **switchport**
6. **switchport mode {access | trunk}**
7. **switchport trunk allowed vlan vlan-list**
8. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# interface gigabitethernet 2/1</td>
</tr>
<tr>
<td><strong>Step 4</strong> ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ethernet dot1ad uni c-port</td>
</tr>
<tr>
<td><strong>Step 5</strong> switchport</td>
<td>Put the interface into Layer 2 mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# switchport</td>
</tr>
<tr>
<td><strong>Step 6</strong> switchport mode {access</td>
<td>trunk}</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# switchport mode trunk</td>
</tr>
<tr>
<td><strong>Step 7</strong> switchport trunk allowed vlan vlan-list</td>
<td>Sets the list of allowed VLANs that transmit traffic from this interface in tagged format when in trunking mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# switchport trunk allowed vlan 1000, 2000</td>
</tr>
<tr>
<td><strong>Step 8</strong> end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# end</td>
</tr>
</tbody>
</table>
UNI-S Port

On a UNI-S port, all the customer VLANs that enter are provided with the same service. The port allows only access configuration. In this mode, the customer’s port is configured as a trunk port. Therefore, the traffic entering the UNI-S port is tagged traffic.

Perform the following tasks to configure a UNI-S port as an access port for 802.1ad.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. switchport
5. switchport mode {access | trunk}
6. ethernet dot1ad {nni | uni {c-port | s-port}}
7. switchport access vlan vlan-id
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# interface gigabitethernet 2/1</td>
</tr>
<tr>
<td>Step 4 switchport</td>
<td>Put the interface into Layer 2 mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# switchport</td>
</tr>
<tr>
<td>Step 5 switchport mode {access</td>
<td>trunk}</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# switchport mode access</td>
</tr>
<tr>
<td>Step 6 ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ethernet dot1ad uni s-port</td>
</tr>
</tbody>
</table>
How to Configure IEEE 802.1ad

NNI Port

NNI port allows only trunk configuration. On an NNI port, the frames received on all the allowed VLANs are bridged to the respective internal VLANs.

Perform the following tasks to configure an NNI port as a trunk port for 802.1ad.

SUMMARY STEPS

1. **enable**
2. **configure terminal**
3. **interface type number**
4. **switchport**
5. **switchport mode {access | trunk}**
6. **ethernet dot1ad {nni | uni {c-port | s-port}}**
7. **switchport trunk allowed vlan vlan-list**
8. **end**

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# interface gigabitethernet 2/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> switchport</td>
<td>Put the interface into Layer 2 mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# switchport</td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure IEEE 802.1ad

#### Examples

The following example shows how to configure a UNI-C port as an access port. In this example, all the frames that are received are bridged to one internal VLAN 1000. The transmitted frames do not have the access VLAN Dot1q tag.

```
Router# configure terminal
Router(config-if)# interface gig2/1
Router(config-if)# ethernet dot1ad uni c-port
Router(config-if)# switchport
Router(config-if)# switchport mode access
Router(config-if)# switchport access vlan 1000
```

The following example shows how to configure a UNI-C port as a trunk port. In this example, all the frames that are received on all allowed VLANs (1000 and 2000) are bridged to the respective internal VLANs. The transmitted frames have the respective internal VLAN Dot1q tag.

```
Router# configure terminal
Router(config-if)# interface gig2/1
Router(config-if)# ethernet dot1ad uni c-port
Router(config-if)# switchport
Router(config-if)# switchport mode trunk
Router(config-if)# switchport trunk allowed vlan 999, 1000
```

The following example shows how to configure a UNI-S port. In this example, all the frames that are received are bridged to one internal VLAN (999). The transmitted frames do not have the access VLAN Dot1q tag.

```
Router# configure terminal
Router(config-if)# interface gig2/1
Router(config-if)# switchport
Router(config-if)# ethernet dot1ad uni s-port
Router(config-if)# switchport mode access
Router(config-if)# switchport access vlan 999
```

The following example shows how to configure an NNI port. Only trunk configuration is allowed on an NNI port. In this example, all the frames that are received on all the allowed VLANs (999) are bridged to the respective internal VLANs. The transmitted frames have the respective internal VLAN Dot1q tag.

```
Router# configure terminal
Router(config-if)# interface gig2/1
```

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 5</strong> switchport mode {access</td>
<td>trunk}</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport mode trunk</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example: Router(config-if)# ethernet dot1ad nni</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> switchport trunk allowed vlan vlan-list</td>
<td>Sets the list of allowed VLANs that transmit traffic from this interface in tagged format when in trunking mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport trunk allowed vlan 999</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure IEEE 802.1ad

Router(config-if)# switchport
Router(config-if)# switchport mode trunk
Router(config-if)# ethernet dot1ad nni
Router(config-if)# switchport trunk allowed vlan 999

The following example shows how to configure Dot1ad on an SVI:

Router# configure terminal
Router(config)# interface gig2/1
Router(config-if)# ethernet dot1ad nni
Router(config-if)# switchport
Router(config-if)# switchport mode trunk
Router(config-if)# switchport trunk allowed vlan 999
Router(config)# interface vlan 999
Router(config-if)# ip address 1.2.3.4 255.255.0.0

Configuring a Layer 2 Protocol Forward

Perform the following tasks to configure the Layer 2 protocol forward:

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. switchport access vlan vlan-id
5. ethernet dot1ad {nni | uni {c-port | s-port}}
6. l2protocol [ forward] [protocol]
7. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitethernet 3/0</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> switchport access vlan vlan-id</td>
<td>Sets the VLAN when an interface is in access mode.</td>
</tr>
<tr>
<td>Example: Router(config)# switchport access vlan 500</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 53    Configuring IEEE 802.1ad

How to Configure IEEE 802.1ad

Examples

The following example shows how to configure a Layer 2 protocol forward:

Router# configure terminal
Router(config)# interface gig3/0
Router(config-if)# switchport access vlan 500
Router(config-if)# ethernet dot1ad uni s-port
Router(config-if)# l2protocol forward vtp

Configuring a Switchport for Translating QinQ to 802.1ad

Translating a QinQ port to 802.1ad involves configuring the port connecting to QinQ port and NNI port. Perform the following tasks to configure a port connecting to the QinQ port.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. switchport mode {access | trunk}
5. switchport trunk allowed vlan vlan-list
6. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 5</td>
<td></td>
</tr>
<tr>
<td>ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ethernet dot1ad uni s-port</td>
<td></td>
</tr>
<tr>
<td>Step 6</td>
<td></td>
</tr>
<tr>
<td>l2 protocol [forward] [protocol]</td>
<td>Processes or forwards the Layer 2 BPDUs. In this example, all the BPDUs are forwarded except VTP PDUs.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# l2 protocol forward vtp</td>
<td></td>
</tr>
<tr>
<td>Step 7</td>
<td></td>
</tr>
<tr>
<td>end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure IEEE 802.1ad

Perform the following tasks to configure an NNI port.

**SUMMARY STEPS**

1. enable
2. configure terminal
3. interface type number
4. ethernet dot1ad {nni | uni {c-port | s-port}}
5. switchport
6. switchport mode {access | trunk}
7. switchport trunk allowed vlan vlan-list
8. end

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: Router# interface gigabitethernet 4/1</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure IEEE 802.1ad

Examples

The following example shows how to translate a QinQ port to 802.1ad. In this example, the peer router to gig1/1 multiplexes various customer VLANs into VLAN 1000.

Router# configure terminal
Router(config)# interface gig1/1
Router(config-if)# switchport mode trunk
Router(config-if)# switchport trunk allowed vlan 1000

Router# configure terminal
Router(config)# interface gig4/0
Router(config-if)# ethernet dot1ad nni
Router(config-if)# switchport
Router(config-if)# switchport mode trunk
Router(config-if)# switchport trunk allowed vlan 1000,1199

Configuring a Switchport (L2PT)

Configuring the switchport for L2PT is required to tunnel the STP packets from a customer on the dot1ad network to a customer on the QinQ network.

Perform the following tasks to configure the port connecting to the customer.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. switchport

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 4</strong> ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example: Router(config-if)# ethernet dot1ad nni</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> switchport</td>
<td>Put the interface into Layer 2 mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> switchport mode {access</td>
<td>trunk}</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport mode trunk</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> switchport trunk allowed vlan vlan-list</td>
<td>Sets the list of allowed VLANs that transmit traffic from this interface in tagged format when in trunking mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport trunk allowed vlan 999-1199</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>
5. `ethernet dot1ad {nni | uni {c-port | s-port}}`
6. `no l2 protocol [peer | forward] [protocol]`
7. `l2protocol-tunnel [cdp | stp | vtp]`
8. `switchport mode {access | trunk}`
9. `end`

### Detailed Steps

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2 <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: <code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3 <code>interface type number</code></td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: <code>Router(config)# interface gigabitethernet 2/1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4 <code>switchport</code></td>
<td>Put the interface into Layer 2 mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# switchport</code></td>
<td></td>
</tr>
<tr>
<td>Step 5 `ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# ethernet dot1ad uni s-port</code></td>
<td></td>
</tr>
<tr>
<td>Step 6 `no l2 protocol [peer</td>
<td>forward] [protocol]`</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# no l2 protocol forward</code></td>
<td></td>
</tr>
<tr>
<td>Step 7 `l2protocol-tunnel [cdp</td>
<td>stp</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# l2protocol-tunnel stp</code></td>
<td></td>
</tr>
<tr>
<td>Step 8 `switchport mode {access</td>
<td>trunk}`</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# switchport mode trunk</code></td>
<td></td>
</tr>
<tr>
<td>Step 9 <code>end</code></td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: <code>Router(config-if)# end</code></td>
<td></td>
</tr>
</tbody>
</table>

Perform the following tasks to configure an NNI port.

### Summary Steps

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `switchport`
5. `ethernet dot1ad {nni | uni {c-port | s-port}}`
6. `switchport mode {access | trunk}`
7. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitethernet 2/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> switchport</td>
<td>Put the interface into Layer 2 mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example: Router(config-if)# ethernet dot1ad nni</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> switchport mode {access</td>
<td>trunk}</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport mode trunk</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

**Examples**

The following example shows how to tunnel the STP packets from a customer on the Dot1ad network to a customer on a QinQ network:

```
Router# configure terminal
Router(config)# interface gig1/0
Router(config-if)# switchport
Router(config-if)# ethernet dot1ad uni s-port
Router(config-if)# no l2protocol forward
Router(config-if)# l2protocol-tunnel stp
Router(config-if)# switchport mode access
```

```
Router# configure terminal
Router(config)# interface gig4/0
```
Configuring a Customer-Facing UNI-C Port with EVC

Perform the following tasks to configure a UNI-C port.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ethernet dot1ad {nni | uni {c-port | s-port}}`
5. `service instance id service-type`
6. `encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]`
7. `bridge-domain vlan-id`
8. `service instance id service-type`
9. `encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]`
10. `bridge-domain vlan-id`
11. `end`

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>interface type number</code></td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitethernet 2/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> `ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example: Router(config-if)# ethernet dot1ad uni c-port</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> <code>service instance id service-type</code></td>
<td>Configures an Ethernet service instance. In this example, the service instance is 1.</td>
</tr>
<tr>
<td>Example: Router(config-if)# service instance 1 ethernet</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure IEEE 802.1ad

Perform the following tasks to configure an NNI port.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ethernet dot1ad {nni | uni {c-port | s-port}}
5. service instance id service-type
6. encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]
7. rewrite ingress tag pop 1 symmetric
8. bridge-domain vlan-id
9. service instance id service-type
10. encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]
11. rewrite ingress tag pop 1 symmetric
12. bridge-domain vlan-id
13. end
## How to Configure IEEE 802.1ad

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong>  enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong>  configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong>  interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitethernet 2/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong>  ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example: Router(config-if)# ethernet dot1ad uni c-port</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong>  service instance id service-type</td>
<td>Configures an Ethernet service instance. In this example, the service instance is 1.</td>
</tr>
<tr>
<td>Example: Router(config-if)# service instance 1 ethernet</td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong>  encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id} [native]</td>
</tr>
<tr>
<td>Example: Router(config-if)# encapsulation dot1q 1000 second-dot1q 1-100</td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong>  rewrite ingress tag pop 1 symmetric</td>
<td>Specifies the encapsulation adjustment that is to be performed on the frame ingress to the service instance.</td>
</tr>
<tr>
<td>Example: Router(config-if)# rewrite ingress tag pop 1 symmetric</td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong>  bridge-domain vlan-id</td>
<td>Binds a service instance or a MAC tunnel to a bridge domain.</td>
</tr>
<tr>
<td>Example: Router(config-if)# bridge-domain 1000</td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong>  service instance id service-type</td>
<td>Configures an Ethernet service instance. In this example, the service instance is 2.</td>
</tr>
<tr>
<td>Example: Router(config-if)# service instance 2 ethernet</td>
<td></td>
</tr>
<tr>
<td><strong>Step 10</strong>  encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id} [native]</td>
</tr>
<tr>
<td>Example: Router(config-if)# encapsulation dot1q 500 second-dot1q 102-4904</td>
<td></td>
</tr>
<tr>
<td><strong>Step 11</strong>  rewrite ingress tag pop 1 symmetric</td>
<td>Specifies the encapsulation adjustment that is to be performed on the frame ingress to the service instance.</td>
</tr>
<tr>
<td>Example: Router(config-if)# rewrite ingress tag pop 1 symmetric</td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure IEEE 802.1ad

**Examples**

The following example shows how to configure a customer-facing UNI port. In this example, a dot1q frame coming on VLAN 50 matches service instance 1, and on the ingress port, the rewrite command pushes the 1000 outer-vlan.

```plaintext
Router# configure terminal
Router(config)# interface gig1/1
Router(config-if)# ethernet dot1ad uni c-port
Router(config-if)# service instance 1 ethernet
Router(config-if)# encapsulation dot1q 1-100
Router(config-if)# bridge-domain 1000

Router(config-if)# service instance 2 ethernet
Router(config-if)# encapsulation dot1q 102-4904
Router(config-if)# bridge-domain 500
```

#### Configuring a Customer-Facing UNI-C Port and Switchport on NNI with EVC

Perform the following tasks to configure a UNI-C port.

**SUMMARY STEPS**

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ethernet dot1ad {nni | uni {c-port | s-port}}`
5. `service instance id service-type`
6. `encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]`
7. `bridge-domain vlan-id`
### How to Configure IEEE 802.1ad

8. `service instance id service-type`
9. `encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]`
10. `bridge-domain vlan-id`
11. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> enable <strong>Example:</strong></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><code>Router&gt; enable</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> configure terminal <strong>Example:</strong></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><code>Router# configure terminal</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> interface type number <strong>Example:</strong></td>
<td>Configures an interface.</td>
</tr>
<tr>
<td><code>Router(config)# interface gigabitethernet 2/1</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td><code>Router(config-if)# ethernet dot1ad uni c-port</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> service instance id service-type <strong>Example:</strong></td>
<td>Configures an Ethernet service instance. In this example, the service instance is 1.</td>
</tr>
<tr>
<td><code>Router(config-if)# service instance 1 ethernet</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 6</strong> encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id} [native] <strong>Example:</strong></td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation dot1q 1-100</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 7</strong> bridge-domain vlan-id <strong>Example:</strong></td>
<td>Binds a service instance or a MAC tunnel to a bridge domain.</td>
</tr>
<tr>
<td><code>Router(config-if)# bridge-domain 1000</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 8</strong> service instance id service-type <strong>Example:</strong></td>
<td>Configures an Ethernet service instance. In this example, the service instance is 2.</td>
</tr>
<tr>
<td><code>Router(config-if)# service instance 2 ethernet</code></td>
<td></td>
</tr>
<tr>
<td><strong>Step 9</strong> encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id} [native] <strong>Example:</strong></td>
</tr>
<tr>
<td><code>Router(config-if)# encapsulation dot1q 102-4094</code></td>
<td></td>
</tr>
</tbody>
</table>
### How to Configure IEEE 802.1ad

Perform the following tasks to configure an NNI port.

#### SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface type number`
4. `ethernet dot1ad {nni | uni {c-port | s-port}}`
5. `switchport`
6. `switchport mode {access | trunk}`
7. `switchport trunk allowed vlan vlan-list`
8. `end`

#### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <code>enable</code></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td><strong>Step 2</strong> <code>configure terminal</code></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td><strong>Step 3</strong> <code>interface type number</code></td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: Router# interface gigabitethernet 4/1</td>
<td></td>
</tr>
<tr>
<td><strong>Step 4</strong> `ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example: Router(config-if)# ethernet dot1ad nni</td>
<td></td>
</tr>
<tr>
<td><strong>Step 5</strong> <code>switchport</code></td>
<td>Put the interface into Layer 2 mode.</td>
</tr>
<tr>
<td>Example: Router(config-if)# switchport</td>
<td></td>
</tr>
</tbody>
</table>
How to Configure IEEE 802.1ad

Examples

The following example shows how to configure a customer-facing UNI-C port and switchport on NNI with EVC:

```
Router# configure terminal
Router(config)# interface gig1/1
Router(config-if)# ethernet dot1ad uni c-port
Router(config-if)# service instance 1 ethernet
Router(config-if)# encapsulation dot1q 1-100
Router(config-if)# bridge-domain 1000
Router(config-if)# service instance 2 ethernet
Router(config-if)# encapsulation dot1q 102-4904
Router(config-if)# bridge-domain 500
```

```
Router# configure terminal
Router(config)# interface gig4/0
Router(config-if)# switchport
Router(config-if)# ethernet dot1ad uni
Router(config-if)# switchport mode trunk
Router(config-if)# switchport allowed vlan 1000-500
```

Configuring a Customer-Facing UNI-S Port with EVC

Perform the following tasks to configure a UNI-S port.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id service-type
5. ethernet dot1ad {nni | uni {c-port | s-port}}
6. encapsulation default
7. bridge-domain vlan-id
Chapter 53      Configuring IEEE 802.1ad

8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config)# interface gigabitethernet 2/1</td>
<td></td>
</tr>
<tr>
<td>Step 4 service instance id service-type</td>
<td>Configures an Ethernet service instance. In this example, the service instance is 1.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# service instance 1 ethernet</td>
<td></td>
</tr>
<tr>
<td>Step 5 ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# ethernet dot1ad uni s-port</td>
<td></td>
</tr>
<tr>
<td>Step 6 encapsulation default</td>
<td>Configures the default service instance on a port. Anything that does not meet the criteria of other service instances on the same physical interface falls into this service instance.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# encapsulation default</td>
<td></td>
</tr>
<tr>
<td>Step 7 bridge-domain vlan-id</td>
<td>Binds a service instance or a MAC tunnel to a bridge domain.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# bridge-domain 1000</td>
<td></td>
</tr>
<tr>
<td>Step 8 end</td>
<td>Returns the CLI to privileged EXEC mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Router(config-if)# end</td>
<td></td>
</tr>
</tbody>
</table>

Perform the following tasks to configure an NNI port.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. service instance id service-type
5. ethernet dot1ad {nni | uni {c-port | s-port}}
6. encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]
7. rewrite ingress tag pop 1 symmetric
8. **bridge-domain** *vlan-id*
9. **end**

**DETAILED STEPS**

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** enable | Enables privileged EXEC mode.  
Example:  
Router> enable |
| **Step 2** configure terminal | Enters global configuration mode.  
Example:  
Router# configure terminal |
| **Step 3** interface *type* *number* | Configures an interface.  
Example:  
Router(config)# interface gigabitethernet 2/1 |
| **Step 4** service instance *id* *service-type* | Configures an Ethernet service instance. In this example, the service instance is 1.  
Example:  
Router(config-if)# service instance 1 ethernet |
| **Step 5** ethernet dot1ad {nni | uni {c-port | s-port}} | Configures a dot1ad NNI or UNI port. In this example, it is a UNI C port.  
Example:  
Router(config-if)# ethernet dot1ad uni c-port |
| **Step 6** encapsulation dot1q *vlan-id* second-dot1q (any | *vlan-id* | native) | Enables IEEE 802.1Q encapsulation of traffic on a specified subinterface in a VLAN.  
Example:  
Router(config-if)# encapsulation dot1q 1000 second-dot1q 1-100 |
| **Step 7** rewrite ingress tag pop 1 symmetric | Specifies the encapsulation adjustment that is to be performed on the frame ingress to the service instance.  
Example:  
Router(config-if)# rewrite ingress tag pop 1 symmetric |
| **Step 8** bridge-domain *vlan-id* | Binds a service instance or a MAC tunnel to a bridge domain.  
Example:  
Router(config-if)# bridge-domain 1000 |
| **Step 9** end | Returns the CLI to privileged EXEC mode.  
Example:  
Router(config-if)# end |

**Examples**

The following example shows how to configure an NNI port:

```
Router# configure terminal
Router(config)# interface gig1/1
Router(config)# service instance 1 ethernet
Router(config-if)# ethernet dot1ad uni c-port
Router(config-if)# encapsulation dot1q 1000
```
Configuring a Layer 3 Termination

Perform the following tasks to configure a Layer 3 termination.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface type number
4. ethernet dot1ad {nni | uni {c-port | s-port}}
5. interface type number
6. encapsulation dot1q vlan-id second-dot1q {any | vlan-id} [native]
7. ip address ip-address mask
8. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router&gt; enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitethernet 3/0</td>
<td></td>
</tr>
<tr>
<td>Step 4 ethernet dot1ad {nni</td>
<td>uni {c-port</td>
</tr>
<tr>
<td>Example: Router(config-if)# ethernet dot1ad nni</td>
<td></td>
</tr>
<tr>
<td>Step 5 interface type number</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitethernet 3/0.1</td>
<td></td>
</tr>
<tr>
<td>Step 6 encapsulation dot1q vlan-id second-dot1q {any</td>
<td>vlan-id} [native]</td>
</tr>
<tr>
<td>Example: Router(config-if)# encapsulation dot1q 10 second-dot1q 10</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 53      Configuring IEEE 802.1ad

How to Configure IEEE 802.1ad

Examples

The following example shows how to configure a Layer 3 termination. Note that Layer 3 is supported only on trunk interfaces.

Router# configure terminal
Router(config)# interface gig3/0
Router(config-if)# ethernet dot1ad nni
Router(config-if)# interface gig3/0/0.1
Router(config-if)# encapsulation dot1q 10 second dot1q 10
Router(config-if)# ip address 1.2.3.4 255.255.0.0

The following example shows how to configure a Layer 3 termination on an SVI:

Router# configure terminal
Router(config)# interface gig4/1
Router(config-if)# ethernet dot1ad nni
Router(config-if)# service instance 1 ethernet
Router(config-if)# encapsulation dot1q 200 second dot1q 300
Router(config-if)# rewrite ingress tag pop 2 symmetric
Router(config-if)# bridge-domain 50
Router(config-if)# service instance 2 ethernet
Router(config-if)# encapsulation dot1q 300
Router(config-if)# rewrite ingress tag pop 1 symmetric
Router(config-if)# bridge-domain 60

Router(config)# interface vlan 50
Router(config-if)# ip address 2.3.4.5 255.255.0.0
Router(config)# interface vlan 60
Router(config-if)# ip address 3.4.5.6 255.255.0.0

Displaying a Dot1ad Configuration

You can display a Dot1ad configuration using the show ethernet dot1ad command. This command displays the Dot1ad configuration for all interfaces. To display the configuration on a particular interface, use the show ethernet dot1ad interface command.

The following example shows how to display a Dot1ad configuration on all interfaces:

Router# show ethernet dot1ad
Interface: GigabitEthernet4/0/1
DOT1AD C-Bridge Port
L2protocol pass cdp stp vtp dtp pagp dot1x lacp

Interface: GigabitEthernet4/0/2
DOT1AD C-Bridge Port
L2protocol pass cdp stp vtp dtp pagp dot1x lacp
Troubleshooting Dot1ad

The following section describes how to troubleshoot Dot1ad.

Note: The show commands in these examples should be run from a line card console.

• How do I verify the Dot1ad configuration on a switchport on an X40G card?

Run the following command to verify the Dot1ad configuration:

```
XYZ-PE1-dfc1# show platform npc switchport interface gi 1/2
[GigabitEthernet1/2]
 status [valid, -, applied, enabled]
 src_index [0x1]
 rpcb [0x178BB9C4]
 xlif_id [4097]
 xlif_handle [type:[3] hwidb:[0x20E97F08] if_number:[1121]]
 ft_bits [0x2]
 ing_ctrl_ft_bits [0x2]
 egr_ctrl_ft_bits [0x2]
 port vlan [1]
 mode ingress [NORMAL] egress [NORMAL]
 dot1q_tunnel [No]
 native tagging [No]
 PVLAN isolated or community [No] promiscuous [No]
 ingress vlan-translation [No] BPDU [No]
 egress vlan-translation [No] BPDU [No]
 dot1ad [Yes]<<<<<<<<<<<
 ethertype [0x88A8]<<<<<<<<<<<
 Ingress Stat ID: 778698
 Egress Stat ID: 778700
 VLAN List:
 1
 num of vlans [1]
XYZ-PE1-dfc1#
```

• How do I verify the Dot1ad configuration on the ports with EVCs on an X40G card?

Run the following command to verify the Dot1ad configuration:

```
XYZ-PE1-dfc1# show platform npc xlif interface gi 1/2 efp 1
EFP XLIF(GigabitEthernet1/2, efp1)[np0] = 4136
Ingress XLIF table fields
 Feature common enable: 0x1
 Feature enable: 0x1
 Feature bits: 0x1
 Control common bits: 0x0
 Control feature bits: 0x0
 Control rewrite opcode: 0x0
 Reserved 1: 0x0
 Match cond: 0x1
 Entry valid: 0x1
 Dbus VLAN: 30
 QoS policy ID: 0
 ACL ID: 0
 Statistics ID: 450976
 Inner rewrite VLAN: 0
 Outer rewrite VLAN: 0
 QoS flow ID: 0
 Feature data: 00000000 40000000 AAA80000 E0000829
```
EFP admin down state  0x0

----- Bridge data -------
layer2_acl_index:  0x00000000
evc_feat_data.ip_src_guard : 0x0
evc_feat_data.mst_evc : 0x1
evc_feat_data.layer2_acl : 0x0
EVC - Mac Security:  0x0
evc_feat_data.sacl : 0x0
evc_feat_data.layer2_acl_statid: 0
PDT: 0xAAA8
ipsg_label: 0
block_data: 0x0
block_l2bpdu: 0x0
split_h: 0x0
imp_ltl: 0x00829

EFP dot1ad port type 0x3

EFP CDP forward 0x1

EFP DTP forward 0x0
EFP VTP forward 0x0
EFP STP forward 0x0
EFP DOT1X forward 0x0

Egress XLIF table fields

Feature common enable: 0x1
Feature enable: 0x1
Feature bits: 0x01
Control common bits: 0x00
Control feature bits: 0x00
Control rewrite opcode: 0x00
Port: 0x1
Match cond 0x1
Entry valid: 0x1
dbus VLAN: 30
QoS policy ID: 0
ACL ID: 0
Statistics ID: 450980
Inner rewrite VLAN: 0
Outer rewrite VLAN: 0
QoS flow ID: 0
IP Session en : 0
Multicast en : 0
Feature data 0 0x00000000
Intf etype: 0x00008064
Post Filter Opcode 0x00000008
Pre Filter Opcode 0x00000000
Pre Tag Outer 0x00000000
Pre Tag Inner 0x00000000
Post Filter Vlan high 0x00000064
Post Filter Vlan low 0x00000064
Post Filter Vlan outer 0x00000000
EVC - MST: 0x1
EVC etype 0x8100
CFM MEP Level 0x00000008
CFM MIP Level 0x00000008
CFM disable 0x0
MIP filtering 0x0
block_data: 0x0
block_l2bpdu: 0x0
sacl: 0x0
sacl index: 0x0000
sacl statid: 0x0000
XYZ-PE1-dfc1#
XYZ-PE1-dfc1#
• How do I verify the L2 protocol forwarding on a regular L3 switchports?
  Run the following command to verify the L2 protocol forwarding:

  XYZ-PE1-dfc1# show platform npc xliif 0 port_sram 1

  dot1ad port type: 0x0002
  l2proto cdp fwd: 0x0001
  l2proto dtp fwd: 0x0000
  l2proto vtp fwd: 0x0000
  l2proto stp fwd: 0x0000
  l2proto dot1x fwd: 0x0000

• How do I verify the Dot1ad configuration on ES20 cards?
  For switchports, run the following command:

  XYZ-PE1-dfc1# show platform hardware dot1ad l2protocfg port <port-num>

  For EVCs, run the following command:

  XYZ-PE1-dfc1# show platform soft efp-client interface gi x/0/y efp-id l2protocfg

  To display the default values, run the following commands:

  XYZ-PE1-dfc1# show platform hardware dot1ad l2protocfg defaults ?
  <0-2> 0=c-uni, 1=s-uni, 2=nni

  XYZ-PE1-dfc1# show platform hardware dot1ad l2protocfg defaults 0 ?
  <0-2> 0=L3, 1=BD, 2=XCON

  XYZ-PE1-dfc1# show platform hardware dot1ad l2protocfg defaults 0 2

  Raw Data :000FFF77 FFFCFF51

  Protocol     IEEE          CISCO
  -----------------------------
  CDP           FRWD          FRWD
  VTP           FRWD          FRWD
  DTP           FRWD          FRWD
  Others        PEER          PEER

  802.1d protocols : 01:80:C2:00:00:XX

  XX | Config | XX | Config | XX | Config
  -----------------------------
  00 : PEER  01 : DROP  02 : PEER  03 : PEER
  04 : FRWD  05 : FRWD  06 : FRWD  07 : FRWD
  08 : DROP  09 : FRWD  0A : FRWD  0B : FRWD
  0C : FRWD  0D : FRWD  0E : FRWD  0F : FRWD

  All Bridge (0180C2000010)= FRWD
  Group = PEER
  PVST = FRWD

  XX | Config | XX | Config | XX | Config
  -----------------------------
  00 : PEER  01 : DROP  02 : PEER  03 : PEER
  04 : FRWD  05 : FRWD  06 : FRWD  07 : FRWD
  08 : DROP  09 : FRWD  0A : FRWD  0B : FRWD
  0C : FRWD  0D : FRWD  0E : FRWD  0F : FRWD

  All Bridge (0180C2000010)= FRWD
  Group = PEER
  PVST = FRWD
Configuring Port Security

This chapter describes how to configure the port security feature.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

- Understanding Port Security, page 54-1
- Default Port Security Configuration, page 54-3
- Port Security Guidelines and Restrictions, page 54-3
- Configuring Port Security, page 54-4
- Displaying Port Security Settings, page 54-11

Understanding Port Security

These sections describe port security:

- Port Security with Dynamically Learned and Static MAC Addresses, page 54-1
- Port Security with Sticky MAC Addresses, page 54-2

Port Security with Dynamically Learned and Static MAC Addresses

You can use port security with dynamically learned and static MAC addresses to restrict a port’s ingress traffic by limiting the MAC addresses that are allowed to send traffic into the port. When you assign secure MAC addresses to a secure port, the port does not forward ingress traffic that has source addresses outside the group of defined addresses. If you limit the number of secure MAC addresses to one and assign a single secure MAC address, the device attached to that port has the full bandwidth of the port.
A security violation occurs in either of these situations:

- When the maximum number of secure MAC addresses is reached on a secure port and the source MAC address of the ingress traffic is different from any of the identified secure MAC addresses, port security applies the configured violation mode.

- If traffic with a secure MAC address that is configured or learned on one secure port attempts to access another secure port in the same VLAN, port security applies the shutdown violation mode.

**Note** After a secure MAC address is configured or learned on one secure port, the sequence of events that occurs when port security detects that secure MAC address on a different port in the same VLAN is known as a MAC move violation.

See the “Configuring the Port Security Violation Mode on a Port” section on page 54-6 for more information about the violation modes.

After you have set the maximum number of secure MAC addresses on a port, port security includes the secure addresses in the address table in one of these ways:

- You can statically configure all secure MAC addresses by using the `switchport port-security mac-address mac_address` interface configuration command.

- You can allow the port to dynamically configure secure MAC addresses with the MAC addresses of connected devices.

- You can statically configure a number of addresses and allow the rest to be dynamically configured.

If the port has a link-down condition, all dynamically learned addresses are removed.

Following bootup, a reload, or a link-down condition, port security does not populate the address table with dynamically learned MAC addresses until the port receives ingress traffic.

A security violation occurs if the maximum number of secure MAC addresses have been added to the address table and the port receives traffic from a MAC address that is not in the address table.

You can configure the port for one of three violation modes: protect, restrict, or shutdown. See the “Configuring Port Security” section on page 54-4.

To ensure that an attached device has the full bandwidth of the port, set the maximum number of addresses to one and configure the MAC address of the attached device.

### Port Security with Sticky MAC Addresses

Port security with sticky MAC addresses provides many of the same benefits as port security with static MAC addresses, but sticky MAC addresses can be learned dynamically.

Port security with sticky MAC addresses retains dynamically learned MAC addresses during a link-down condition.

If you enter a `write memory` or `copy running-config startup-config` command, then port security with sticky MAC addresses saves dynamically learned MAC addresses in the startup-config file and the port does not have to learn addresses from ingress traffic after bootup or a restart.
Default Port Security Configuration

Table 54-1 shows the default port security configuration for an interface.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port security</td>
<td>Disabled on a port</td>
</tr>
<tr>
<td>Maximum number of secure MAC addresses</td>
<td>1</td>
</tr>
<tr>
<td>Violation mode</td>
<td>Shutdown. The port shuts down when the maximum number</td>
</tr>
<tr>
<td></td>
<td>of secure MAC addresses is exceeded, and an SNMP trap</td>
</tr>
<tr>
<td></td>
<td>notification is sent.</td>
</tr>
</tbody>
</table>

Port Security Guidelines and Restrictions

When configuring port security, follow these guidelines:

- To bring a secure port out of the error-disabled state with the default port security configuration, enter the `errdisable recovery cause shutdown` global configuration command, or manually reenable it by entering the `shutdown` and `no shutdown` interface configuration commands.

- Enter the `clear port-security dynamic` global configuration command to clear all dynamically learned secure addresses. See the Cisco 7600 Series Router Cisco IOS Command Reference, for complete syntax information.

- Port security learns authorized MAC addresses with a bit set that causes traffic to them or from them to be dropped. The `show mac-address-table` command displays the unauthorized MAC addresses, but does not display the state of the bit. (CSCeb76844)

- To preserve dynamically learned sticky MAC addresses and configure them on a port following a bootup or a reload and after the dynamically learned sticky MAC addresses have been learned, you must enter a `write memory` or `copy running-config startup-config` command to save them in the startup-config file.

- Port security supports private VLAN (PVLAN) ports.

- Port security supports nonnegotiating trunks.
  - Port security only supports trunks configured with these commands:
    ```
 switchport
 switchport trunk encapsulation
 switchport mode trunk
 switchport nonegotiate
    ```
  - If you reconfigure a secure access port as a trunk, port security converts all the sticky and static secure addresses on that port that were dynamically learned in the access VLAN to sticky or static secure addresses on the native VLAN of the trunk. Port security removes all secure addresses on the voice VLAN of the access port.
  - If you reconfigure a secure trunk as an access port, port security converts all sticky and static addresses learned on the native VLAN to addresses learned on the access VLAN of the access port. Port security removes all addresses learned on VLANs other than the native VLAN.
Configuring Port Security

These sections describe how to configure port security:

- Enabling Port Security, page 54-4
- Configuring the Port Security Violation Mode on a Port, page 54-6
- Configuring the Maximum Number of Secure MAC Addresses on a Port, page 54-7
- Enabling Port Security with Sticky MAC Addresses on a Port, page 54-8
- Configuring a Static Secure MAC Address on a Port, page 54-8
- Configuring Secure MAC Address Aging on a Port, page 54-9

Enabling Port Security

These sections describe how to enable port security:

- Enabling Port Security on a Trunk, page 54-4
- Enabling Port Security on an Access Port, page 54-5

Enabling Port Security on a Trunk

Port security supports nonnegotiating trunks.

Caution

Because the default number of secure addresses is one and the default violation action is to shut down the port, configure the maximum number of secure MAC addresses on the port before you enable port security on a trunk (see “Configuring the Maximum Number of Secure MAC Addresses on a Port” section on page 54-7).
To enable port security on a trunk, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# switchport</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# switchport trunk encapsulation {isl</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-if)# switchport mode trunk</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router(config-if)# switchport nonegotiate</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Router(config-if)# switchport port-security</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Router(config-if)# no switchport port-security</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Router(config-if)# do show port-security interface type slot/port</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to configure Fast Ethernet port 5/36 as a nonnegotiating trunk and enable port security:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/36
Router(config-if)# switchport
Router(config-if)# switchport trunk
Router(config-if)# switchport mode trunk
Router(config-if)# switchport nonegotiate
Router(config-if)# switchport port-security
Router(config-if)# do show port-security interface fastethernet 5/36
Port Security: Enabled
```

Enabling Port Security on an Access Port

To enable port security on an access port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config-if)# switchport</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config-if)# switchport mode access</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-if)# switchport port-security</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router(config-if)# no switchport port-security</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Router(config-if)# do show port-security interface type slot/port</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet
This example shows how to enable port security on Fast Ethernet port 5/12:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/12
Router(config-if)# switchport
Router(config-if)# switchport mode access
Router(config-if)# switchport port-security
Router(config-if)# do show port-security interface fastethernet 5/12 | include Port Security
Port Security : Enabled

Configuring the Port Security Violation Mode on a Port

To configure the port security violation mode on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# switchport port-security violation {protect</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport port-security violation</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# do show port-security interface type slot/port</td>
</tr>
<tr>
<td></td>
<td>violation_mode</td>
</tr>
</tbody>
</table>

When configuring port security violation modes, note the following information:

- **protect**—Drops packets with unknown source addresses until you remove a sufficient number of secure MAC addresses to drop below the maximum value.
- **restrict**—Drops packets with unknown source addresses until you remove a sufficient number of secure MAC addresses to drop below the maximum value and causes the SecurityViolation counter to increment.
- **shutdown**—Puts the interface into the error-disabled state immediately and sends an SNMP trap notification.

Note

To bring a secure port out of the error-disabled state, enter the `errdisable recovery cause violation_mode` global configuration command, or you can manually reenable it by entering the `shutdown` and `no shutdown` interface configuration commands.

This example shows how to configure the protect security violation mode on Fast Ethernet port 5/12:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/12
Router(config-if)# switchport port-security violation protect
Router(config-if)# do show port-security interface fastethernet 5/12 | include Protect Violation Mode : Protect
This example shows how to configure the restrict security violation mode on Fast Ethernet port 5/12:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 3/12
Router(config-if)# switchport port-security violation restrict
Router(config-if)# do show port-security interface fastethernet 5/12 | include Restrict
Violation Mode : Restrict
```

### Configuring the Maximum Number of Secure MAC Addresses on a Port

To configure the maximum number of secure MAC addresses on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router(config)# interface type(^1) slot/port</td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config-if)# switchport port-security maximum number_of_addresses vlan {vlan_ID</td>
<td>vlan_range}</td>
</tr>
<tr>
<td></td>
<td>Note Per-VLAN configuration is supported only on trunks.</td>
</tr>
<tr>
<td>Router(config-if)# no switchport port-security maximum</td>
<td>Reverts to the default configuration.</td>
</tr>
<tr>
<td><strong>Step 3</strong> Router(config-if)# do show port-security interface type(^1) slot/port</td>
<td>Verifies the configuration.</td>
</tr>
<tr>
<td></td>
<td>include Maximum</td>
</tr>
</tbody>
</table>

1. \(^1\) \textit{type} = \textit{ethernet}, \textit{fastethernet}, \textit{gigabitethernet}, or \textit{tengigabitethernet}  

When configuring the maximum number of secure MAC addresses on a port, note the following information:

- The range for \textit{number_of_addresses} is 1 to 4,097.
- Port security supports trunks.
  - On a trunk, you can configure the maximum number of secure MAC addresses both on the trunk and for all the VLANs on the trunk.
  - You can configure the maximum number of secure MAC addresses on a single VLAN or a range of VLANs.
  - For a range of VLANs, enter a dash-separated pair of VLAN numbers.
  - You can enter a comma-separated list of VLAN numbers and dash-separated pairs of VLAN numbers.

This example shows how to configure a maximum of 64 secure MAC addresses on Fast Ethernet port 5/12:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 3/12
Router(config-if)# switchport port-security maximum 64
Router(config-if)# do show port-security interface fastethernet 5/12 | include Maximum
Maximum MAC Addresses : 64
```
Enabling Port Security with Sticky MAC Addresses on a Port

To enable port security with sticky MAC addresses on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>configure terminal</code></td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td>Step 2: <code>interface type slot/port</code></td>
<td></td>
</tr>
<tr>
<td>Step 2: <code>switchport port-security mac-address sticky</code></td>
<td>Enables port security with sticky MAC addresses on a port.</td>
</tr>
<tr>
<td>Step 2: <code>no switchport port-security mac-address sticky</code></td>
<td>Disables port security with sticky MAC addresses on a port.</td>
</tr>
</tbody>
</table>

When enabling port security with sticky MAC addresses, note the following information:

- When you enter the `switchport port-security mac-address sticky` command:
  - All dynamically learned secure MAC addresses on the port are converted to sticky secure MAC addresses.
  - Static secure MAC addresses are not converted to sticky MAC addresses.
  - Secure MAC addresses dynamically learned in a voice VLAN are not converted to sticky MAC addresses.
  - New dynamically learned secure MAC addresses are sticky.
- When you enter the `no switchport port-security mac-address sticky` command, all sticky secure MAC addresses on the port are converted to dynamic secure MAC addresses.
- To preserve dynamically learned sticky MAC addresses and configure them on a port following a bootup or a reload, after the dynamically learned sticky MAC addresses have been learned, you must enter a `write memory` or `copy running-config startup-config` command to save them in the startup-config file.

This example shows how to enable port security with sticky MAC addresses on Fast Ethernet port 5/12:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/12
Router(config-if)# switchport port-security mac-address sticky
```

Configuring a Static Secure MAC Address on a Port

To configure a static secure MAC address on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>interface type slot/port</code></td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td>Step 2: <code>switchport port-security mac-address [sticky] mac_address</code></td>
<td>Configures a static MAC address as secure on the port.</td>
</tr>
<tr>
<td>Note: Per-VLAN configuration is supported only on trunks.</td>
<td></td>
</tr>
<tr>
<td>Step 2: <code>no switchport port-security mac-address [sticky] mac_address</code></td>
<td>Clears a static secure MAC address from the port.</td>
</tr>
</tbody>
</table>
When configuring a static secure MAC address on a port, note the following information:

- You can configure sticky secure MAC addresses if port security with sticky MAC addresses is enabled (see the “Enabling Port Security with Sticky MAC Addresses on a Port” section on page 54-8).
- The maximum number of secure MAC addresses on the port, configured with the `switchport port-security maximum` command, defines how many secure MAC addresses you can configure.
- If you configure fewer secure MAC addresses than the maximum, the remaining MAC addresses are learned dynamically.
- Port security is supported on trunks.
  - On a trunk, you can configure a static secure MAC address in a VLAN.
  - On a trunk, if you do not configure a VLAN for a static secure MAC address, it is secure in the VLAN configured with the `switchport trunk native vlan` command.

This example shows how to configure a MAC address 1000.2000.3000 as secure on Fast Ethernet port 5/12 and verify the configuration:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/12
Router(config-if)# switchport port-security mac-address 1000.2000.3000
Router(config-if)# end
```

```
Router# show port-security address
Secure Mac Address Table

<table>
<thead>
<tr>
<th>Vlan</th>
<th>Mac Address</th>
<th>Type</th>
<th>Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000.2000.3000</td>
<td>SecureConfigured</td>
<td>Fa5/12</td>
</tr>
</tbody>
</table>
```

Configuring Secure MAC Address Aging on a Port

When the aging type is configured with the `absolute` keyword, all the dynamically learned secure addresses age out when the aging time expires. When the aging type is configured with the `inactivity` keyword, the aging time defines the period of inactivity after which all the dynamically learned secure addresses age out.

**Note**
Static secure MAC addresses and sticky secure MAC addresses do not age out.
These sections describe how to configure secure MAC address aging on a port:

- Configuring the Secure MAC Address Aging Type on a Port, page 54-10
- Configuring Secure MAC Address Aging Time on a Port, page 54-10

**Configuring the Secure MAC Address Aging Type on a Port**

With a PFC3, you can configure the secure MAC address aging type on a port.

To configure the secure MAC address aging type on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type(^1) slot/port</td>
</tr>
<tr>
<td></td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# switchport port-security aging type {absolute</td>
</tr>
<tr>
<td></td>
<td>Configures the secure MAC address aging type on the port (default is absolute).</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport port-security aging type</td>
</tr>
<tr>
<td></td>
<td>Reverts to the default MAC address aging type.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# do show port-security interface type(^1) slot/port</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

1. \(^1\) type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to set the aging type to inactivity on Fast Ethernet Port 5/12:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/12
Router(config-if)# switchport port-security aging type inactivity
Router(config-if)# do show port-security interface fastethernet 5/12 | include Type
```

**Configuring Secure MAC Address Aging Time on a Port**

To configure the secure MAC address aging time on a port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type(^1) slot/port</td>
</tr>
<tr>
<td></td>
<td>Selects the LAN port to configure.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# switchport port-security aging time aging_time</td>
</tr>
<tr>
<td></td>
<td>Configures the secure MAC address aging time on the port. The aging_time range is 1 to 1440 minutes (default is 0).</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no switchport port-security aging time</td>
</tr>
<tr>
<td></td>
<td>Disables secure MAC address aging time.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# do show port-security interface type(^1) slot/port</td>
</tr>
<tr>
<td></td>
<td>Verifies the configuration.</td>
</tr>
</tbody>
</table>

1. \(^1\) type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

This example shows how to configure 2 hours (120 minutes) as the secure MAC address aging time on Fast Ethernet Port 5/1:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface fastethernet 5/1
```

---

54-10

Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S

OL-10113-33
Displaying Port Security Settings

To display port security settings, enter this command:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show port-security [interface {{vlan vlan_ID}</td>
<td>{type slot/port}}] [address]</td>
</tr>
</tbody>
</table>

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

When displaying port security settings, note the following information:

- Port security supports the vlan keyword only on trunks.
- Enter the address keyword to display secure MAC addresses, with aging information for each address, globally for the switch or per interface.
- The display includes these values:
  - The maximum allowed number of secure MAC addresses for each interface
  - The number of secure MAC addresses on the interface
  - The number of security violations that have occurred
  - The violation mode.

This example displays output from the show port-security command when you do not enter an interface:

```
Router# show port-security
Secure Port MaxSecureAddr CurrentAddr SecurityViolation Security
Action (Count) (Count) (Count)

Fa5/1 11 11 0 Shutdown
Fa5/5 15 5 0 Restrict
Fa5/11 5 4 0 Protect

Total Addresses in System: 21
Max Addresses limit in System: 128
```

This example displays output from the show port-security command for a specified interface:

```
Router# show port-security interface fastethernet 5/1
Port Security: Enabled
Port status: SecureUp
Violation mode: Shutdown
Maximum MAC Addresses: 11
Total MAC Addresses: 11
Configured MAC Addresses: 3
Aging time: 20 mins
Aging type: Inactivity
SecureStatic address aging: Enabled
Security Violation count: 0
```
### Displaying Port Security Settings

This example displays the output from the `show port-security address` privileged EXEC command:

```
Router# show port-security address
Secure Mac Address Table

+----+-------------+-----------+--------+--------+
<table>
<thead>
<tr>
<th>Vlan</th>
<th>Mac Address</th>
<th>Type</th>
<th>Ports</th>
<th>Remaining Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0001.0001.0001</td>
<td>SecureDynamic</td>
<td>Fa5/1</td>
<td>15 (I)</td>
</tr>
<tr>
<td>1</td>
<td>0001.0001.0002</td>
<td>SecureDynamic</td>
<td>Fa5/1</td>
<td>15 (I)</td>
</tr>
<tr>
<td>1</td>
<td>0001.0001.1111</td>
<td>SecureConfigured</td>
<td>Fa5/1</td>
<td>16 (I)</td>
</tr>
<tr>
<td>1</td>
<td>0001.0001.1112</td>
<td>SecureConfigured</td>
<td>Fa5/1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0001.0001.1113</td>
<td>SecureConfigured</td>
<td>Fa5/1</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0005.0005.0001</td>
<td>SecureConfigured</td>
<td>Fa5/5</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>0005.0005.0002</td>
<td>SecureConfigured</td>
<td>Fa5/5</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>0005.0005.0003</td>
<td>SecureConfigured</td>
<td>Fa5/5</td>
<td>23</td>
</tr>
<tr>
<td>1</td>
<td>0011.0011.0001</td>
<td>SecureConfigured</td>
<td>Fa5/11</td>
<td>25 (I)</td>
</tr>
<tr>
<td>1</td>
<td>0011.0011.0002</td>
<td>SecureConfigured</td>
<td>Fa5/11</td>
<td>25 (I)</td>
</tr>
</tbody>
</table>

+----+-------------+-----------+--------+--------+
```

Total Addresses in System: 10
Max Addresses limit in System: 128
Configuring UDLD

This chapter describes how to configure the UniDirectional Link Detection (UDLD) protocol on the Cisco 7600 series routers.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:
- Understanding How UDLD Works, page 55-1
- Default UDLD Configuration, page 55-3
- Restrictions for Configuring UDLD, page 55-3
- Configuring UDLD, page 55-3

Understanding How UDLD Works

These sections describe how UDLD works:
- UDLD Overview, page 55-1
- UDLD Aggressive Mode, page 55-2

UDLD Overview

The Cisco-proprietary UDLD protocol allows devices connected through fiber-optic or copper (for example, Category 5 cabling) Ethernet cables connected to LAN ports to monitor the physical configuration of the cables and detect when a unidirectional link exists. When a unidirectional link is detected, UDLD shuts down the affected LAN port and alerts the user. Unidirectional links can cause a variety of problems, including spanning tree topology loops.

UDLD is a Layer 2 protocol that works with the Layer 1 protocols to determine the physical status of a link. At Layer 1, autonegotiation takes care of physical signaling and fault detection. UDLD performs tasks that autonegotiation cannot perform, such as detecting the identities of neighbors and shutting
down misconnected LAN ports. When you enable both autonegotiation and UDLD, Layer 1 and Layer 2 detections work together to prevent physical and logical unidirectional connections and the malfunctioning of other protocols.

A unidirectional link occurs whenever traffic transmitted by the local device over a link is received by the neighbor but traffic transmitted from the neighbor is not received by the local device. If one of the fiber strands in a pair is disconnected, as long as autonegotiation is active, the link does not stay up. In this case, the logical link is undetermined, and UDLD does not take any action. If both fibers are working normally at Layer 1, then UDLD at Layer 2 determines whether those fibers are connected correctly and whether traffic is flowing bidirectionally between the correct neighbors. This check cannot be performed by autonegotiation, because autonegotiation operates at Layer 1.

The Cisco 7600 series router periodically transmits UDLD packets to neighbor devices on LAN ports with UDLD enabled. If the packets are echoed back within a specific time frame and they are lacking a specific acknowledgment (echo), the link is flagged as unidirectional and the LAN port is shut down. Devices on both ends of the link must support UDLD in order for the protocol to successfully identify and disable unidirectional links.

By default, UDLD is locally disabled on copper LAN ports to avoid sending unnecessary control traffic on this type of media since it is often used for access ports.

Figure 55-1 shows an example of a unidirectional link condition. Switch B successfully receives traffic from Switch A on the port. However, Switch A does not receive traffic from Switch B on the same port. UDLD detects the problem and disables the port.

**Figure 55-1  Unidirectional Link**

*UDLD Aggressive Mode*

UDLD aggressive mode is disabled by default. Configure UDLD aggressive mode only on point-to-point links between network devices that support UDLD aggressive mode. With UDLD aggressive mode enabled, when a port on a bidirectional link that has a UDLD neighbor relationship established stops receiving UDLD packets, UDLD tries to reestablish the connection with the neighbor. After eight failed retries, the port is disabled.

To prevent spanning tree loops, nonaggressive UDLD with the default interval of 15 seconds is fast enough to shut down a unidirectional link before a blocking port transitions to the forwarding state (with default spanning tree parameters).

When you enable UDLD aggressive mode, you receive additional benefits in the following situations:

- One side of a link has a port stuck (both Tx and Rx)
- One side of a link remains up while the other side of the link has gone down
In these cases, UDLD aggressive mode disables one of the ports on the link, which prevents traffic from being discarding.

Default UDLD Configuration

Table 55-1 shows the default UDLD configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDLD global enable state</td>
<td>Globally disabled</td>
</tr>
<tr>
<td>UDLD aggressive mode</td>
<td>Disabled</td>
</tr>
<tr>
<td>UDLD per-port enable state for fiber-optic media</td>
<td>Enabled on all Ethernet fiber-optic LAN ports</td>
</tr>
<tr>
<td>UDLD per-port enable state for twisted-pair (copper) media</td>
<td>Disabled on all Ethernet 10/100 and 1000BASE-TX LAN ports</td>
</tr>
</tbody>
</table>

Restrictions for Configuring UDLD

Do not configure UDLD between peer interfaces of cross-connect as it tunnels the UDLD packets to the other end of the EVC.

Configuring UDLD

These sections describe how to configure UDLD:
- Enabling UDLD Globally, page 55-3
- Enabling UDLD on Individual LAN Interfaces, page 55-4
- Disabling UDLD on Fiber-Optic LAN Interfaces, page 55-4
- Configuring the UDLD Probe Message Interval, page 55-5
- Resetting Disabled LAN Interfaces, page 55-5

Enabling UDLD Globally

To enable UDLD globally on all fiber-optic LAN ports, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# udld {enable</td>
<td>aggressive}</td>
</tr>
<tr>
<td></td>
<td>Note This command only configures fiber-optic LAN ports.</td>
</tr>
<tr>
<td></td>
<td>Individual LAN port configuration overrides the</td>
</tr>
<tr>
<td></td>
<td>setting of this command.</td>
</tr>
<tr>
<td>Router(config)# no udld {enable</td>
<td>aggressive}</td>
</tr>
</tbody>
</table>
## Enabling UDLD on Individual LAN Interfaces

To enable UDLD on individual LAN ports, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# udld port [aggressive]</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no udld port [aggressive]</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show udld type slot/number</td>
</tr>
</tbody>
</table>

1. `type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet`

## Disabling UDLD on Fiber-Optic LAN Interfaces

To disable UDLD on individual fiber-optic LAN ports, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type slot/port</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# udld port disable</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no udld port disable</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router# show udld type slot/number</td>
</tr>
</tbody>
</table>

1. `type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet`
Configuring the UDLD Probe Message Interval

To configure the time between UDLD probe messages on ports that are in advertisement mode and are currently determined to be bidirectional, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 1  | Router(config)# udld message time interval  
          | Configures the time between UDLD probe messages on ports that are in advertisement mode and are currently determined to be bidirectional; valid values are from 7 to 90 seconds.  
          | Router(config)# no udld message  
          | Returns to the default value (60 seconds).  
| Step 2  | Router# show udld type slot/number  
          | Verifies the configuration.  

1. type = ethernet, fastethernet, gigabitethernet, or tengigabitethernet

Resetting Disabled LAN Interfaces

To reset all LAN ports that have been shut down by UDLD, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Router# udld reset  
          | Resets all LAN ports that have been shut down by UDLD. |
Configuring NetFlow and NDE

This chapter describes how to configure NetFlow statistics collection and NetFlow Data Export (NDE) on the Cisco 7600 series routers.

### Note
- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco IOS NetFlow Command Reference at this URL:
- NetFlow version 9 is supported—See this publication: Cisco IOS NetFlow Configuration Guide
- NetFlow multicast support includes the NetFlow v9 export format feature. See this publication: Cisco IOS NetFlow Configuration Guide
  You do not need to configure multicast fast switching or multicast distributed fast switching (MDFS); multicast CEF switching is supported.

This chapter consists of these sections:
- Understanding How NetFlow and NDE Work, page 56-1
- Per-Interface NetFlow and NDE, page 56-10
- NetFlow v9 for IPv6, page 56-13
- NDE on VRF Interfaces, page 56-13
- Default NetFlow and NDE Configuration, page 56-14
- NetFlow and NDE Configuration Guidelines and Restrictions, page 56-14
- Configuring NetFlow and NDE, page 56-15
- NetFlow Support on GRE Tunnels, page 56-30

### Understanding How NetFlow and NDE Work

These sections describe how NetFlow and NDE work:
- NetFlow and NDE Overview, page 56-2
- NetFlow and NDE on the MSFC, page 56-2
Understanding How NetFlow and NDE Work

- NetFlow and NDE on the PFC, page 56-2

NetFlow and NDE Overview

NetFlow collects statistics about traffic that flows through the router. NetFlow Data Export (NDE) enables you to export those statistics to an external data collector for analysis.

NetFlow and NDE are either enabled globally or enabled on individual interfaces, depending on which software release you are using:

- In Cisco IOS Release 12.2SRA and earlier releases, NetFlow is enabled globally, which means that statistics are gathered for all interfaces on the router.
- In Cisco IOS Release 12.2SRB, you can enable NetFlow on individual interfaces for IPv4 traffic on Layer 3 interfaces. NetFlow for IPv6 traffic continues to operate in global mode. For more information about this feature, see the “Per-Interface NetFlow and NDE” section on page 56-10.

Note

Beginning in Release 12.2SRB, global-mode NetFlow for IPv4 traffic is no longer the default. To achieve the same global-mode functionality as before, you must now manually enable NetFlow on each Layer 3 interface where you want to capture statistics for IPv4 traffic flows.

You can collect statistics for both routed and bridged traffic. Note, however, that the PFC3A collects statistics only for routed traffic.

You can configure two external data collector addresses, which improves the probability of receiving complete NetFlow data by providing redundant data streams with a PFC3.

To reduce the volume of statistics collected, use:

- NetFlow Sampling, which reduces the number of statistics collected
- NetFlow aggregation, which merges collected statistics

NetFlow and NDE on the MSFC

The NetFlow cache on the MSFC captures statistics for flows routed in software. The MSFC supports NetFlow aggregation for traffic routed in software. For more information, see the Cisco IOS NetFlow Configuration Guide.

The MSFC supports NetFlow ToS-based router aggregation, For more information, see the Cisco IOS NetFlow Configuration Guide.

NetFlow and NDE on the PFC

The NetFlow cache on the PFC captures statistics for flows routed in hardware. The PFC supports sampled NetFlow and NetFlow aggregation for traffic routed in hardware. The PFC does not support NetFlow ToS-Based Router Aggregation.

These sections describe NetFlow and NDE on the PFC in more detail:

- Flow Masks, page 56-3
- NDE Versions, page 56-3
- MLS Cache Entries, page 56-7
Flow Masks

This section describes the flow masks that are used to create NetFlow entries. Two sets of flow masks are available: for Release 12.2SRA and Release 12.2SRB. NetFlow applies the selected flow mask to all statistics gathered on the router.

Release 12.2SRA
Cisco IOS Release 12.2SRA uses the following types of flow masks to create NetFlow entries:

- source-only—A less-specific flow mask. The PFC maintains one entry for each source IP address. All flows from a given source IP address use this entry.
- destination—A less-specific flow mask. The PFC maintains one entry for each destination IP address. All flows to a given destination IP address use this entry.
- destination-source—A more-specific flow mask. The PFC maintains one entry for each source and destination IP address pair. All flows between same source and destination IP addresses use this entry.
- destination-source-interface—A more-specific flow mask. Adds the source VLAN SNMP ifIndex to the information in the destination-source flow mask.
- full—A more-specific flow mask. The PFC creates and maintains a separate cache entry for each IP flow. A full entry includes the source IP address, destination IP address, protocol, and protocol interfaces.
- full-interface—The most-specific flow mask. Adds the source VLAN SNMP ifIndex to the information in the full-flow mask.

Release 12.2SRB
Cisco IOS Release 12.2SRB use the following flow masks:

- destination-source-interface—A more-specific flow mask. Adds the source VLAN SNMP ifIndex to the information in the destination-source flow mask.
- full-interface—The most-specific flow mask. Adds the source VLAN SNMP ifIndex to the information in the full-flow mask.

Other flow masks are handled as follows in order to accommodate per-interface mode for IPv4 traffic:

- Source-only, destination, and destination-source flow masks are treated as destination-source-interface.
- Full flow masks are treated as full-interface.

NDE Versions

NDE on the PFC supports NDE versions 5, 7, and 9 for the statistics captured on the PFC. For information about NetFlow version 9, see the publication at the following URL:


The following tables describe the supported NDE fields:

- Table 56-1—Version 5 header format
- Table 56-2—Version 7 header format
• Table 56-3—Version 5 flow record format
• Table 56-4—Version 7 flow record format

Table 56-1  NDE Version 5 Header Format

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Content</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>version</td>
<td>NetFlow export format version number</td>
</tr>
<tr>
<td>2–3</td>
<td>count</td>
<td>Number of flows exported in this packet (1–30)</td>
</tr>
<tr>
<td>4–7</td>
<td>SysUptime</td>
<td>Current time in milliseconds since router booted</td>
</tr>
<tr>
<td>8–11</td>
<td>unix_secs</td>
<td>Current seconds since 0000 UTC 1970</td>
</tr>
<tr>
<td>12–15</td>
<td>unix_nsec</td>
<td>Residual nanoseconds since 0000 UTC 1970</td>
</tr>
<tr>
<td>16–19</td>
<td>flow_sequence</td>
<td>Sequence counter of total flows seen</td>
</tr>
<tr>
<td>20–21</td>
<td>engine_type</td>
<td>Type of flow switching engine</td>
</tr>
<tr>
<td>21–23</td>
<td>engine_id</td>
<td>Slot number of the flow switching engine</td>
</tr>
</tbody>
</table>

Table 56-2  NDE Version 7 Header Format

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Content</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–1</td>
<td>version</td>
<td>NetFlow export format version number</td>
</tr>
<tr>
<td>2–3</td>
<td>count</td>
<td>Number of flows exported in this packet (1–30)</td>
</tr>
<tr>
<td>4–7</td>
<td>SysUptime</td>
<td>Current time in milliseconds since router booted</td>
</tr>
<tr>
<td>8–11</td>
<td>unix_secs</td>
<td>Current seconds since 0000 UTC 1970</td>
</tr>
<tr>
<td>12–15</td>
<td>unix_nsec</td>
<td>Residual nanoseconds since 0000 UTC 1970</td>
</tr>
<tr>
<td>16–19</td>
<td>flow_sequence</td>
<td>Sequence counter of total flows seen</td>
</tr>
<tr>
<td>20–23</td>
<td>reserved</td>
<td>Unused (zero) bytes</td>
</tr>
</tbody>
</table>

Note

Some fields in the flow records might not have values, depending on the current flow mask. Unsupported fields contain a zero (0).

Table 56-3  NDE Version 5 Flow Record Format

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Content</th>
<th>Description</th>
<th>Flow masks:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Source</td>
<td>Destination</td>
<td>Source</td>
</tr>
<tr>
<td></td>
<td>Destination</td>
<td>Destination</td>
<td>Source</td>
</tr>
<tr>
<td></td>
<td>Destination</td>
<td>Source Interface</td>
<td>Full</td>
</tr>
<tr>
<td></td>
<td>Destination</td>
<td>Full Interface</td>
<td></td>
</tr>
<tr>
<td>0–3</td>
<td>srcaddr</td>
<td>Source IP address</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4–7</td>
<td>dstaddr</td>
<td>Destination IP address</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>8–11</td>
<td>nexthop</td>
<td>Next hop router’s IP address(^1)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A(^2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

\[^1\]: Next hop router’s IP address
\[^2\]: Additional field
### Table 56-3  NDE Version 5 Flow Record Format (continued)

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Content</th>
<th>Description</th>
<th>Source</th>
<th>Destination</th>
<th>Destination</th>
<th>Source</th>
<th>Destination Source</th>
<th>Interface</th>
<th>Full</th>
<th>Full Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>12–13</td>
<td>input</td>
<td>Ingress interface SNMP ifIndex</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14–15</td>
<td>output</td>
<td>Egress interface SNMP ifIndex(^3)</td>
<td>0</td>
<td>A(^2)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16–19</td>
<td>dPkts</td>
<td>Packets in the flow</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20–23</td>
<td>dOctets</td>
<td>Octets (bytes) in the flow</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24–27</td>
<td>first</td>
<td>SysUptime at start of the flow (milliseconds)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28–31</td>
<td>last</td>
<td>SysUptime at the time the last packet of the flow was received (milliseconds)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32–33</td>
<td>srcport</td>
<td>Layer 4 source port number or equivalent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X(^4)</td>
<td>X(^4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34–35</td>
<td>dstport</td>
<td>Layer 4 destination port number or equivalent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>pad1</td>
<td>Unused (zero) byte</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>tcp_flags</td>
<td>Cumulative OR of TCP flags(^5)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>prot</td>
<td>Layer 4 protocol (for example, 6=TCP, 17=UDP)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40–41</td>
<td>src_as</td>
<td>Autonomous system number of the source, either origin or peer</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42–43</td>
<td>dst_as</td>
<td>Autonomous system number of the destination, either origin or peer</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44–45</td>
<td>src_mask</td>
<td>Source address prefix mask bits</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46–47</td>
<td>dst_mask</td>
<td>Destination address prefix mask bits</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>pad2</td>
<td>Pad 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Always zero when PBR, WCCP, or SLB is configured.
2. With the destination flow mask, the “Next hop router’s IP address” field and the “Output interface’s SNMP ifIndex” field might not contain information that is accurate for all flows.
3. Always zero when policy-based routing is configured.
4. With PFC3CXL, PFC3C, PFC3BXL, or PFC3B, for ICMP traffic, contains the ICMP code and type values.
5. Always zero for hardware-switched flows.
Table 56-4      NDE Version 7 Flow Record Format

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Content</th>
<th>Description</th>
<th>Source</th>
<th>Destination</th>
<th>Destination Source</th>
<th>Destination Interface</th>
<th>Full</th>
<th>Full Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–3</td>
<td>srcaddr</td>
<td>Source IP address</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4–7</td>
<td>dstaddr</td>
<td>Destination IP address</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8–11</td>
<td>nexthop</td>
<td>Next hop router’s IP address</td>
<td>0</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>12–15</td>
<td>input</td>
<td>Ingress interface SNMP ifIndex</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>14–15</td>
<td>output</td>
<td>Egress interface SNMP ifIndex</td>
<td>0</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>16–19</td>
<td>dPks</td>
<td>Packets in the flow</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20–23</td>
<td>dOctets</td>
<td>Octets (bytes) in the flow</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>24–27</td>
<td>First</td>
<td>SysUptime at start of the flow (milliseconds)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>28–31</td>
<td>Last</td>
<td>SysUptime at the time the last packet of the flow was received (milliseconds)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>32–33</td>
<td>srcport</td>
<td>Layer 4 source port number or equivalent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>34–35</td>
<td>dstport</td>
<td>Layer 4 destination port number or equivalent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>36</td>
<td>flags</td>
<td>Flow mask in use</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>37</td>
<td>tcp_flags</td>
<td>Cumulative OR of TCP flags</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>prot</td>
<td>Layer 4 protocol (for example, 6=TCP, 17=UDP)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>39</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>40–41</td>
<td>src_as</td>
<td>Autonomous system number of the source, either origin or peer</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>42–43</td>
<td>dst_as</td>
<td>Autonomous system number of the destination, either origin or peer</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>44</td>
<td>src_mask</td>
<td>Source address prefix mask bits</td>
<td>X</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>45</td>
<td>dst_mask</td>
<td>Destination address prefix mask bits</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>46–47</td>
<td>pad2</td>
<td>Pad 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>48–51</td>
<td>MLS RP</td>
<td>IP address of MLS router</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

1. Always zero when PBR, WCCP, or SLB is configured.
2. With the destination flow mask, the “Next hop router’s IP address” field and the “Output interface’s SNMP ifIndex” field might not contain information that is accurate for all flows.
3. Always zero when policy-based routing is configured.
4. With PFC3CXL, PFC3C, PFC3BXL, or PFC3B, for ICMP traffic, contains the ICMP code and type values.
5. Always zero for hardware-switched flows.
Chapter 56  Configuring NetFlow and NDE

Understanding How NetFlow and NDE Work

MLS Cache Entries

NetFlow captures traffic statistics in the NetFlow cache on the PFC.

NetFlow maintains traffic statistics for each active flow in the NetFlow cache and increments the statistics when packets within each flow are switched. Periodically, NDE exports summarized traffic statistics for all expired flows, which the external data collector receives and processes.

Exported NetFlow data contains statistics for the flow entries in the NetFlow cache that have expired since the last export. Flow entries in the NetFlow cache expire and are flushed from the NetFlow cache when one of the following conditions occurs:

• The entry ages out.
• The entry is cleared by the user.
• An interface goes down.
• Route flaps occur.

To ensure periodic reporting of continuously active flows, entries for continuously active flows expire at the end of the interval configured with the `mls aging long` command (default 1920 seconds [32 minutes]).

NDE packets go to the external data collector either when the number of recently expired flows reaches a predetermined maximum or after:

• 30 seconds for version 5 export.
• 10 seconds for version 9 export.

By default, all expired flows are exported unless they are filtered. If you configure a filter, NDE only exports expired and purged flows that match the filter criteria. NDE flow filters are stored in NVRAM and are not cleared when NDE is disabled. See the “Configuring NDE Flow Filters” section on page 56-27 for NDE filter configuration procedures.

NetFlow Sampling

NetFlow sampling is used when you want to report statistics for a subset of the traffic flowing through your network. The Netflow statistics can be exported to an external collector for further analysis.

There are two types of NetFlow sampling: NetFlow traffic sampling and NetFlow flow sampling. The configuration steps for configuring MSFC-based NetFlow traffic sampling for traffic switched in the software path and PFC/DFC-based NetFlow flow sampling for traffic switched in the hardware path on a Cisco 7600 series router use different commands because they are mutually independent features.

The following sections provide additional information on the two types of NetFlow sampling supported by Cisco 7600 series routers:

• NetFlow Traffic Sampling, page 56-7
• NetFlow Flow Sampling, page 56-8

NetFlow Traffic Sampling

NetFlow traffic sampling provides NetFlow data for a subset of traffic forwarded by a Cisco router by analyzing only one randomly selected packet out of n sequential packets (n is a user-configurable parameter) from the traffic that is processed by the router. NetFlow traffic sampling is used on platforms that perform software-based NetFlow accounting, such as Cisco 7200 series routers and Cisco 7600 series MSFCs, to reduce the CPU overhead of running NetFlow by reducing the number of packets that are analyzed (sampled) by NetFlow. The reduction in the number of packets sampled by NetFlow on
platforms that perform software based NetFlow accounting also reduces the number of packets that need to be exported to an external collector. Reducing the number of packets that need to be exported to an external collector by reducing the number of packets that are analyzed is useful when the volume of exported traffic created by analyzing every packet will overwhelm the collector, or result in an over-subscription of an outbound interface.

NetFlow traffic sampling and export for software-based NetFlow accounting behaves in the following manner:

- The flows are populated with statistics from a subset of the traffic that is seen by the router.
- The flows are expired.
- The statistics are exported.

On Cisco 7600 series routers, NetFlow traffic sampling is supported only on the MSFC for software switched packets. For more information on configuring NetFlow traffic sampling, see the Cisco IOS NetFlow Configuration Guide.

**NetFlow Flow Sampling**

NetFlow flow sampling does not limit the number of packets that are analyzed by NetFlow. NetFlow flow sampling is used to select a subset of the flows processed by the router for export. Therefore, NetFlow flow sampling is not a solution to reduce oversubscribed CPUs or oversubscribed hardware NetFlow table usage. NetFlow flow sampling can help reduce CPU usage by reducing the amount of data that is exported. Using NetFlow flow sampling to reduce the number of packets that need to be exported to an external collector by reporting statistics on only a subset of the flows is useful when the volume of exported traffic created by reporting statistics for all of the flows will overwhelm the collector, or result in an over-subscription of an outbound interface.

NetFlow flow sampling is available on Cisco 7600 series routers for hardware-based NetFlow accounting on the PFCs and DFCs installed in the router.

NetFlow flow sampling and export for hardware-based NetFlow accounting behaves in the following manner:

- Packets arrive at the switch and flows are created/updated to reflect the traffic seen.
- The flows are expired.
- The flows are sampled to select a subset of flows for exporting.
- The statistics for the subset of flows that have been selected by the NetFlow flow sampler are exported.

**Note**

When NetFlow flow sampling is enabled, aging schemes such as fast, normal, long aging are disabled.

You can configure NetFlow flow sampling to use time-based sampling or packet-based sampling. With either the full-interface or destination-source-interface flow masks, you can enable or disable NetFlow Flow Sampling on each Layer 3 interface.

**Packet-based NetFlow Flow Sampling**

Packet-based NetFlow flow sampling uses a sampling-rate in packets and an interval in milliseconds to select a subset (sample) of flows from the total number of flows processed by the router. The values for the sampling-rate are: 64, 128, 256, 512, 1024, 2048, 4096, 8192. The interval is a user-configurable value in the range 8000-16000 milliseconds. The default for the interval is 16000 milliseconds. The
interval value replaces the aging schemes such as fast, normal, long aging for expiring flows from the cache. The command syntax for configuring packet-based NetFlow flow sampling is:

```markdown
mls sampling packet-based rate [interval].
```

Packet-based NetFlow flow sampling uses one of these two methods to select flows for sampling and export:

- **The number of packets in the expired flow exceeds the sampling rate:** If in a interval of X - where X is a value in the range of 8000-16000 (inclusive), a flow has a greater number of packets than the value configured for the sampling-rate, the flow is sampled (selected) and then exported.

- **The number of packets in the expired flow is less than the sampling rate:** If in a interval of X - where X is a value in the range of 8000-16000 (inclusive), a flow has a smaller number of packets than the value configured for the sampling-rate, the packet count for the flow is added to one of eight buckets based on the number of packets in the flow. The eight bucket sizes are 1/8th increments of the sampling rate. The packet count for a flow that contains a quantity of packets that is 0–1/8th of the sampling rate is assigned to the first bucket. The packet count for a flow that contains a quantity of packets that is 1/8th–2/8th of the sampling rate is assigned to the second bucket. And so on. When adding the packet count for a flow to a bucket causes the counter for the bucket to exceed the sampling rate, the last flow for which the counters were added to the bucket is sampled and exported. The bucket counter is changed to 0 and the process of increasing the bucket counter is started over. This method ensures that some flows for which the packet count never exceeds the sampling rate are selected for sampling and export.

**Time-based Netflow Flow Sampling**

Time-based Netflow flow sampling samples flows created in the first sampling time (in milliseconds) of the export interval time (in milliseconds). Each of the sampling rates that you can configure with the `mls sampling time-based rate` command has fixed values for the sampling time and export interval used by time-based NetFlow flow sampling. For example:

- If you configure a sampling rate of 64, NetFlow flow sampling selects flows created within the first 64 milliseconds (sampling time) of every 4096 millisecond export interval.
- If you configure a sampling rate of 2048, NetFlow flow sampling selects flows created within the first 4 milliseconds (sampling time) of every 8192 millisecond export interval.

**Table 56-5** lists the sampling rates and export intervals for time-based NetFlow flow sampling.

<table>
<thead>
<tr>
<th>Sampling Rate (Configurable)</th>
<th>Sampling Time in Milliseconds (Not Configurable)</th>
<th>Export Interval Milliseconds (Not Configurable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 in 64</td>
<td>64</td>
<td>4096</td>
</tr>
<tr>
<td>1 in 128</td>
<td>32</td>
<td>4096</td>
</tr>
<tr>
<td>1 in 256</td>
<td>16</td>
<td>4096</td>
</tr>
<tr>
<td>1 in 512</td>
<td>8</td>
<td>4096</td>
</tr>
<tr>
<td>1 in 1024</td>
<td>4</td>
<td>4096</td>
</tr>
<tr>
<td>1 in 2048</td>
<td>4</td>
<td>8192</td>
</tr>
<tr>
<td>1 in 4096</td>
<td>4</td>
<td>16384</td>
</tr>
<tr>
<td>1 in 8192</td>
<td>4</td>
<td>32768</td>
</tr>
</tbody>
</table>
Per-Interface NetFlow and NDE

NetFlow Aggregation

For information about NetFlow aggregation support on the PFC and DFCs, see the “NetFlow Aggregation” section of the document at this URL:


Note

• In Release 12.2SRB, you must enable NetFlow on individual interfaces in order to enable the hardware flow cache to be populated. When enabled, the cache is populated with flows only from those interfaces where NetFlow is enabled.

• In Release 12.2SRA, configuring an aggregation scheme allows the hardware flow cache to be populated. The cache is globally populated with information for all Layer 3 interfaces.

• Configuring NetFlow aggregation for the MSFC also configures it for the PFC and DFCs. (See Configuring NetFlow Aggregation for Flows on the MSFC, page 56-23, for a pointer to configuration instructions).

• NetFlow aggregation uses NDE version 8.

Per-Interface NetFlow and NDE

In Cisco IOS Release 12.2SRB and later releases, the per-interface NetFlow and NDE feature allows you to enable NetFlow on individual interfaces in order to gather and export statistics for IPv4 traffic flows on those interfaces. Previously, when you enabled NetFlow, statistics were gathered for all of the interfaces on the router (global mode).

If you upgrade to Release 12.2SRB (per-interface mode) from an earlier release (global mode), you must issue the `ip flow ingress` command on individual interfaces to activate NetFlow. The upgrade process automatically converts existing global-mode flowmasks into the corresponding per-interface type (source, destination, and destination-source become destination-source-interface, and full becomes full-interface).

If you downgrade from Release 12.2SRB to an earlier release, NetFlow resumes global-mode operation (gathering statistics for all router interfaces) and the 12.2SRB flowmasks remain in effect.

The per-interface NetFlow feature improves NetFlow table utilization and performance as follows:

• Provides more room in the NetFlow table for flows that are of interest. With per-interface NetFlow, table entries are created only for those interfaces where NetFlow is enabled. This reduces the number of unwanted entries in the table, leaving more room for those flows that you are interested in. Previously, entries were created for all router interfaces.

Creating table entries only for interfaces where NetFlow is enabled improves performance because:

• The NetFlow table is shared by all flow-based features (NetFlow, QoS, multicast, and so on).

• If the NetFlow table gets too full, NetFlow shortcuts might not being installed, which can result in flow statistics (and accounting information) being lost.

• Helps to ensure that the export of NDE records to the Netflow Data Collector (NFC) at a high rate of speed does not overwhelm the NFC and cause important accounting data to be lost. Since statistics are gathered and exported for specific interfaces only, the number of NDE records sent to the NFC is more manageable.

• Helps to ensure that there is less unintentional conflict between NDE and other features.
The following sections provide information about per-interface NetFlow and NDE and some additional NetFlow and NDE related features that are being introduced in Release 12.2SRB:

- Per-Interface NetFlow and NDE Usage Guidelines and Limitations, page 56-11
- Configuring Per-Interface NetFlow and NDE, page 56-12
- Verifying Per-Interface NetFlow and NDE, page 56-12
- NetFlow v9 for IPv6, page 56-13
- NDE on VRF Interfaces, page 56-13

### Per-Interface NetFlow and NDE Usage Guidelines and Limitations

Consider the following usage guidelines and limitations when you configure per-interface NetFlow and NDE on the Cisco 7600 router:

- Supported in Cisco IOS Release 12.2SRB and later releases.
- Supported on RSP720, Sup720, and Sup32.
- Supported for IPv4 unicast and multicast traffic on Layer 3 interfaces.
  For IPv6 flows, NetFlow and NDE operate in global mode, not per-interface mode.
- When you enable NetFlow and NDE for Layer 2 (bridged) flows, the features are also automatically enabled for Layer 3 (routed) flows on the interface. To disable NetFlow and NDE for the interface, you must disable the feature for both the Layer 2 and Layer 3 flows. Use the `no ip flow ingress` `layer2-switched` command to disable L2 flows and `no ip flow ingress` to disable L3 flows.
- You can configure per-interface NetFlow and QoS micro-policing on an interface. However, do not configure different flow mask types on an interface. Only a single flow mask type should be configured for per-interface NetFlow and microflow policy.
- Beginning in Release 12.2SRB, the router supports both NDE flow mask and QoS flow mask; however, you cannot configure both types of flow masks on the same interface.
- When NDE and multicast non-RPF are both enabled, NDE has the potential to lose statistics. This potential loss occurs because NetFlow and NDE are enabled globally for multicast flows, which means that the NetFlow table could overflow.
- When you use the `platform ip features sequential` command on an interface , you must configure the interface-full flowmask feature. This enables the NDE to export the correct statistics, and avoids double accounting.
- The following limitations apply to flow masks in per-interface mode:
  - You cannot configure different flow mask types for individual interfaces. Only a single flow mask type is supported for all interfaces configured for per-interface NetFlow or NDE.
  - The same flow mask is used for both routed (L3) and bridged (L2) NetFlow entries for NDE.
  - All source and destination flow masks are treated as destination-source-interface and both of the full masks are treated as full-interface. See the “Flow Masks” section on page 56-3 for a description of flow mask types.
- All of guidelines and limitations in the “Per-Interface NetFlow and NDE Configuration Guidelines and Restrictions” section on page 56-14 apply.
Configuring Per-Interface NetFlow and NDE

Following is a summary of the steps you must perform to configure per-interface NetFlow and NDE on Cisco 7600 routers. Detailed procedures for each step are provided in the sections later in this chapter.

1. If you plan to export NetFlow statistics, globally enable NDE on the router by issuing the following commands:

   ```
 configure terminal
 ip flow-export destination
 ip flow-export version
 mls nde sender version
   ```

2. Enable NetFlow on individual interfaces by issuing the following commands:

   ```
 configure terminal
 interface
 ip flow ingress
   ```

3. (Optional) To configure NetFlow sampling, do the following:


   b. Enable sampled NetFlow on individual interfaces (`mls netflow sampling`).

   c. Apply the config on the interface (`ip flow ingress`)

4. Verify the NDE configuration to ensure that it does not conflict with other features such as QoS or multicast. Use the `show ip interface` command to verify the configuration (see the “Verifying Per-Interface NetFlow and NDE” section on page 56-12).

Verifying Per-Interface NetFlow and NDE

To verify whether per-interface NetFlow and NDE are properly configured, use the `show ip interface` command (as shown here). In the command output, fields showing NetFlow and NDE configuration information are shown in boldface.

```
Router# show ip interface gig2/9
GigabitEthernet2/9 is up, line protocol is up
 Internet address is 10.0.0.1/8
 Broadcast address is 255.255.255.255
 Address determined by non-volatile memory
 MTU is 1500 bytes
 Helper address is not set
 Directed broadcast forwarding is disabled
 Multicast reserved groups joined: 224.0.0.5 224.0.0.2 224.0.0.6
 Outgoing access list is not set
 Inbound access list is not set
 Proxy ARP is enabled
 Local Proxy ARP is disabled
 Security level is default
 Split horizon is enabled
 ICMP redirects are always sent
 ICMP unreachables are always sent
 ICMP mask replies are never sent
 IP fast switching is enabled
 IP Flow switching is disabled
 IP CEF switching is enabled
 IP CEF switching turbo vector
 IP Null turbo vector
```
Associated unicast routing topologies:
  Topology "base", operation state is UP
IP multicast fast switching is enabled
IP multicast distributed fast switching is disabled
IP route-cache flags are Fast, CEF
Router Discovery is disabled
IP output packet accounting is disabled
IP access violation accounting is disabled
TCP/IP header compression is disabled
RTP/IP header compression is disabled
Probe proxy name replies are disabled
Policy routing is disabled
Network address translation is disabled
BGP Policy Mapping is disabled
Input features: Ingress-NetFlow
Output features: Post-Ingress-NetFlow, HW Shortcut Installation
Post encapsulation features: HW Shortcut Installation
Sampled Netflow is disabled
IP Routed Flow creation is enabled in netflow table
IP Bridged Flow creation is disabled in netflow table
WCCP Redirect outbound is disabled
WCCP Redirect inbound is disabled
WCCP Redirect exclude is disabled
IP multicast multilayer switching is disabled

NetFlow v9 for IPv6

Cisco IOS Release 12.2SRB introduces support for NetFlow version 9 for IPv6. For information about how to configure this feature on the Cisco 7600 router, see its feature module description in the new feature documentation for Release 12.2SRB at the following URL:


NDE on VRF Interfaces

Cisco IOS Release 12.2SRB introduces support for NDE on VRF interfaces. This new feature enables the Cisco 7600 router to capture and export NetFlow statistics for IPv4 packets in an MPLS Virtual Private Network (VPN). In this scenario, the router is functioning as provider edge (PE) router at the edge of an MPLS network.

For additional information about NDE on VRF interfaces, see its feature module description in the new feature documentation for Release 12.2SRB at the following URL:

Default NetFlow and NDE Configuration

Table 56-6 shows the default NetFlow and NDE configuration.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetFlow</td>
<td>Disabled.</td>
</tr>
<tr>
<td></td>
<td>12.2SRB—Per-interface mode for IPv4 unicast (global mode for all else).</td>
</tr>
<tr>
<td></td>
<td>12.2SRA—Global mode.</td>
</tr>
<tr>
<td>NDE</td>
<td>Disabled.</td>
</tr>
<tr>
<td>NDE on VRF interfaces</td>
<td>12.2SRB—Disabled.</td>
</tr>
<tr>
<td></td>
<td>12.2SRA—Not available.</td>
</tr>
<tr>
<td>NetFlow and NDE of ingress bridged IP traffic</td>
<td>Disabled.</td>
</tr>
<tr>
<td>NDE source addresses</td>
<td>None.</td>
</tr>
<tr>
<td>NDE data collector address and UDP port</td>
<td>None.</td>
</tr>
<tr>
<td>NDE filters</td>
<td>None.</td>
</tr>
<tr>
<td>NetFlow Mask</td>
<td>None.</td>
</tr>
<tr>
<td>NetFlow Sampling</td>
<td>Disabled.</td>
</tr>
<tr>
<td>NetFlow Aggregation</td>
<td>Disabled.</td>
</tr>
<tr>
<td>Populating additional NDE fields</td>
<td>Enabled.</td>
</tr>
</tbody>
</table>

NetFlow and NDE Configuration Guidelines and Restrictions

When configuring NetFlow and NDE, follow these guidelines and restrictions:

NetFlow and NDE support IP multicast traffic only with NetFlow version 9. With other NetFlow versions, you can display NetFlow statistics for IP multicast traffic with the `show mls ip multicast` command.

- Cisco 7600 routers do not support Netflow in egress direction for unicast ip packets.
- All PFCs (except the PFC3A) support NetFlow and NDE for bridged IP traffic.
- NDE does not support Internetwork Packet Exchange (IPX) traffic.
- The Policy Feature Card 3 (PFC3) does not use the NetFlow table for Layer 3 switching in hardware.
- If the NetFlow table utilization exceeds these recommended utilization levels, there is an increased probability that there will be insufficient room to store statistics:
Configuring NetFlow and NDE

These sections describe how to configure NetFlow and NDE:

- Configuring NetFlow and NDE for Flows on the PFC, page 56-16
- Configuring NetFlow and NDE for Flows on the MSFC, page 56-22
- Displaying the NDE Address and Port Configuration, page 56-26
Configuring NetFlow and NDE

These sections describe how to configure NetFlow and NDE for flows on the PFC:

- Configuring NetFlow for Flows on the PFC, page 56-16
- Enabling NDE, page 56-21

Configuring NetFlow for Flows on the PFC

These sections describe how to configure NetFlow statistics collection for flows on the PFC:

- Enabling NetFlow on the PFC (Release 12.2SRA), page 56-16
- Enabling Per-Interface NetFlow (Release 12.2SRB and Later), page 56-17
- Configuring NetFlow Flow Sampling, page 56-17
- Configuring NetFlow Aggregation for Flows on the PFC, page 56-19
- Setting the Minimum IP MLS Flow Mask (Release 12.2SRA Only), page 56-19
- Configuring the MLS Aging Time, page 56-20

Enabling NetFlow on the PFC (Release 12.2SRA)

To enable NetFlow statistics collection for flows on the PFC in Release 12.2SRA, perform this task. For information about enabling NetFlow in Release 12.2SRB and later releases, see the following section.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls netflow</td>
<td>Enables NetFlow on the PFC.</td>
</tr>
<tr>
<td>Router(config)# no mls netflow</td>
<td>Disables NetFlow on the PFC.</td>
</tr>
</tbody>
</table>
Configuring NetFlow and NDE

Chapter 56

Configuring NetFlow and NDE

This example shows how to enable NetFlow statistics collection:

```
Router(config)# mls netflow
```

Enabling Per-Interface NetFlow (Release 12.2SRB and Later)

To enable NetFlow statistics collection for flows on the PFC in Release 12.2SRB and later releases, perform this task. See the “Per-Interface NetFlow and NDE” section on page 56-10 for information about how the router operates in NetFlow and NDE per-interface mode. For detailed information about command syntax, see the command reference documents listed at the beginning of this chapter.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Router(config)# mls flow ip</strong></td>
<td>Configures the flow mask to use for NetFlow entries.</td>
</tr>
<tr>
<td><strong>Router(config)# interface interface</strong></td>
<td>Selects the interface to enable NetFlow on.</td>
</tr>
<tr>
<td><strong>Router(config-if)# [no] ip flow ingress</strong></td>
<td>Enables NetFlow on a Layer 3 interface. Issue the command on each interface where you want to enable the feature. Use the no form of the command to disable NetFlow and NDE on the interface.</td>
</tr>
<tr>
<td><strong>Router(config-if)# exit</strong></td>
<td>Exits interface configuration mode.</td>
</tr>
<tr>
<td><strong>Router(config)# mls nde sender</strong></td>
<td>(Optional) Enables NDE. Issue these commands if you plan to export NetFlow statistics.</td>
</tr>
<tr>
<td>**Router(config)# ip flow-export destination {hostname</td>
<td>ip-address} udp-port**</td>
</tr>
<tr>
<td><strong>Router(config)# mls nde sender</strong></td>
<td>(Optional) Enables NDE. Use this command if you plan to export NetFlow statistics.</td>
</tr>
<tr>
<td>**Router(config)# ip flow-export destination {hostname</td>
<td>ip-address} udp-port**</td>
</tr>
<tr>
<td><strong>Router(config)# show ip interface interface</strong></td>
<td>Displays the configuration of the specified interface. Examine the configuration to ensure that the NDE configuration does not conflict with other features such as QoS or multicast (see “Verifying Per-Interface NetFlow and NDE”).</td>
</tr>
</tbody>
</table>

Configuring NetFlow Flow Sampling

These sections describe how to configure sampled NetFlow on the PFC:

- Configuring Per-Interface Mode NetFlow Flow Sampling (Release 12.2SRB), page 56-18
- Configuring NetFlow Flow Sampling on a Layer 3 Interface (Release 12.2SRA), page 56-18

Note

NDE on the MSFC does not support NetFlow Flow Sampling.
Configuring NetFlow and NDE

Chapter 56      Configuring NetFlow and NDE


To configure sampled NetFlow globally in Release 12.2SRB and Release 12.2SRA, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# mls sampling {time-based rate</td>
</tr>
<tr>
<td></td>
<td>Router(config)# no mls sampling</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# end</td>
</tr>
</tbody>
</table>

When you configure sampled NetFlow globally, note the following information:

- The valid values for rate are 64, 128, 256, 512, 1024, 2048, 4096, and 8192.
- The valid values for the packet-based export interval are from 8,000 through 16,000.
- To export any data in Release 12.2SRA, you must also configure sampled NetFlow on a Layer 3 interface.

See the “NetFlow Sampling” section on page 56-7 for more information.

Configuring Per-Interface Mode NetFlow Flow Sampling (Release 12.2SRB)

In Release 12.2SRB and later releases, you must enable sampled NetFlow globally and on individual interfaces (as shown in the following example).

In the example, the mls sampling command enables sampled NetFlow globally and the mls netflow sampling command enables sampled NetFlow on the interface (in this example, Fast Ethernet port 5/12).

```
Router# configure terminal
Router(config)# mls sampling packet-based 64
Router(config)# interface fastethernet 5/12
Router(config-if)# mls netflow sampling
Router(config)# end
```

Configuring NetFlow Flow Sampling on a Layer 3 Interface (Release 12.2SRA)

In Release 12.2SRA, with the full-interface or destination-source-interface flow masks, you can enable or disable sampled NetFlow on individual Layer 3 interfaces. With all other flow masks, sampled NetFlow is enabled or disabled globally.

To configure sampled NetFlow on a Layer 3 interface in Release 12.2SRA, make sure that sampled NetFlow is enabled globally and perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface {vlan vlan_ID</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# mls netflow sampling</td>
</tr>
<tr>
<td></td>
<td>Router(config-if)# no mls netflow sampling</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config)# end</td>
</tr>
</tbody>
</table>

This example shows how to enable sampled NetFlow on Fast Ethernet port 5/12:
Configuring NetFlow Aggregation for Flows on the PFC

NetFlow aggregation is configured automatically for flows on the PFC and DFCs when you configure NetFlow aggregation for the MSFC (see the “Configuring NetFlow Aggregation for Flows on the MSFC” section on page 56-23 for a pointer to configuration instructions).

To display NetFlow aggregation cache information for the PFC or DFCs, perform this task:

```
Router# configure terminal
Router(config)# interface fastethernet 5/12
Router(config-if)# mls netflow sampling
Router(config)# end
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router # show ip cache flow aggregation {as</td>
<td>destination-prefix</td>
</tr>
<tr>
<td>Router # show mls netflow aggregation flowmask</td>
<td>Displays the NetFlow aggregation flow mask information. This command is applicable only to Release 12.2SRA; the command is not applicable in Release 12.2SRB.</td>
</tr>
</tbody>
</table>

Note: The PFC and DFCs do not support NetFlow ToS-based router aggregation.

This example shows how to display the NetFlow aggregation cache information:

```
Router# show ip cache flow aggregation destination-prefix module 1
IPFLOW_DST_PREFIX_AGGREGATION records and statistics for module :1
IP Flow Switching Cache, 278544 bytes
2 active, 4094 inactive, 6 added
236 ager polls, 0 flow alloc failures
Active flows timeout in 30 minutes
Inactive flows timeout in 15 seconds
Dest If Dest Prefix Mask AS Flows Pkts B/Pk Active
Gi7/9 9.1.0.0 /16 0 3003 12M 64 1699.8
Gi7/10 11.1.0.0 /16 0 3000 9873K 64 1699.8
Router#
```

This example displays the NetFlow aggregation flow mask information (Release 12.2SRA only):

```
Router# show mls netflow aggregation flowmask
Current flowmask set for netflow aggregation : Vlan Full Flow
Netflow aggregations configured/enabled :
 AS Aggregation
 PROTOCOL-PORT Aggregation
 SOURCE-PREFIX Aggregation
 DESTINATION-PREFIX Aggregation
Router#
```

Setting the Minimum IP MLS Flow Mask (Release 12.2SRA Only)

You can set the minimum specificity of the flow mask for the NetFlow cache on the PFC (see the “Flow Masks” section on page 56-3). The actual flow mask that is used will have at least the specificity configured by the mls flow ip command.
Configuring NetFlow and NDE

Note

The task does not apply to Release 12.2SRB, which supports only the interface-destination-source and interface-full flow masks.

To set the minimum IP flow mask, perform this task:

```
Router(config)# mls flow ip [source | destination | destination-source | interface-destination-source | full | interface-full]
```

This example shows how to set the minimum IP flow mask:

```
Router(config)# mls flow ip destination
```

To display the IP flow mask configuration, perform this task:

```
Router# show mls netflow flowmask
```

This example shows how to display the MLS flow mask configuration:

```
Router# show mls netflow flowmask
current ip flowmask for unicast: destination address
Router#
```

Configuring the MLS Aging Time

The MLS aging time (default 300 seconds) applies to all NetFlow cache entries. You can configure the normal aging time in the range of 32 to 4092 seconds. Flows can age as much as 4 seconds sooner or later than the configured interval. On average, flows age within 2 seconds of the configured value.

Other events might cause MLS entries to be purged, such as routing changes or a change in link state.

Note

If the number of MLS entries exceeds the recommended utilization (see the “NetFlow and NDE Configuration Guidelines and Restrictions” section on page 56-14), only adjacency statistics might be available for some flows.

To keep the NetFlow cache size below the recommended utilization, enable the following parameters when using the `mls aging` command:

- **normal**—Configures the wait before aging out and deleting entries that are not covered by fast or long aging.

- **fast aging**—Configures an efficient process to age out entries created for flows that only switch a few packets, and then are never used again. The `fast aging` parameter uses the `time` keyword value to check if at least the `threshold` keyword value of packets have been switched for each flow. If a flow has not switched the threshold number of packets during the time interval, then the entry is aged out.
 Configuring NetFlow and NDE

• **long**—Configures the aging time for deleting entries that are always in use. Long aging is used to prevent counter wraparound, which can cause inaccurate statistics.

A typical cache entry that is removed is the entry for flows to and from a Domain Name Server (DNS) or TFTP server. This entry might not be used again after it is created. The PFC saves space in the NetFlow cache for other data when it detects and ages out these entries.

If you need to enable MLS fast aging time, initially set the value to 128 seconds. If the size of the NetFlow cache continues to grow over the recommended utilization, decrease the setting until the cache size stays below the recommended utilization. If the cache continues to grow over the recommended utilization, decrease the normal MLS aging time.

To configure an MLS aging time, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls aging {fast [threshold 1-128]</td>
<td>Configures an MLS aging time for a NetFlow cache entry.</td>
</tr>
<tr>
<td>[time 1-128]] ]</td>
<td>normal 32-4092]</td>
</tr>
<tr>
<td>Router(config)# no mls aging fast</td>
<td>Disables fast aging.</td>
</tr>
<tr>
<td>Router(config)# no mls aging {long</td>
<td>normal}</td>
</tr>
</tbody>
</table>

This example displays how to configure an MLS aging time:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# mls aging fast threshold 64 time 30

To display the MLS aging-time configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show mls netflow aging</td>
<td>Displays the MLS aging-time configuration.</td>
</tr>
</tbody>
</table>

This example shows how to display the MLS aging-time configuration:

Router# show mls netflow aging
enable timeout packet threshold
--------- --------- --------------------------
normal aging true 300 N/A
fast aging true 32 100
long aging true 900 N/A

**Enabling NDE**

For both Release 12.2SRA and Release 12.2 SRB, perform this task to globally enable NDE:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls nde sender [version 5</td>
<td>Enables NDE for flows on the PFC and (optionally) configures the NDE version. Specify an NDE version that matches the NetFlow collector that the data is being exported to.</td>
</tr>
<tr>
<td>[7]]</td>
<td></td>
</tr>
<tr>
<td>Router(config)# ip flow-export destination</td>
<td>Identifies the hostname ip-address] udp-port</td>
</tr>
<tr>
<td>[hostname</td>
<td>ip-address] udp-port</td>
</tr>
</tbody>
</table>
Chapter 56  Configuring NetFlow and NDE

Configuring NetFlow and NDE

Note

• NDE for the PFC uses the source interface configured for the MSFC (see the “Configuring the MSFC NDE Source Layer 3 Interface” section on page 56-23).

• NetFlow version 9 is supported—See this publication:

This example shows how to globally enable NDE for flows on the PFC:
Router(config)# mls nde sender

This example shows how to globally enable NDE for the PFC and configure NDE version 5:
Router(config)# mls nde sender version 5

Configuring NetFlow and NDE for Flows on the MSFC

This section supplements the NetFlow procedures at this URL:

These sections describe how to configure NDE on the MSFC:

• Enabling NetFlow for Flows on the MSFC, page 56-22
• Configuring NetFlow Aggregation for Flows on the MSFC, page 56-23
• Configuring the MSFC NDE Source Layer 3 Interface, page 56-23
• Configuring the NDE Destination, page 56-24

Enabling NetFlow for Flows on the MSFC

In Release 12.2SRB and later releases, NDE is automatically enabled on an interface when you enable NetFlow on the interface (ip flow ingress). However, for NDE to work, you must globally enable it and specify a destination to export the statistics to (mls nde sender and ip flow-export destination).

In Release 12.2SRA, enable NetFlow on the MSFC by performing this task for each Layer 3 interface where you want to enable NDE.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# no mls nde sender</td>
<td>Disables NDE for flows on the PFC.</td>
</tr>
<tr>
<td>Router(config)# no mls nde sender version</td>
<td>Reverts to the default (version 7).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# interface {vlan vlan_ID</td>
<td>type slot/port</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-if)# ip flow ingress</td>
<td>Enables NetFlow.</td>
</tr>
<tr>
<td>Router(config-if)# ip route-cache flow</td>
<td></td>
</tr>
</tbody>
</table>
Configuring NetFlow and NDE

Chapter 56  Configuring NetFlow and NDE

Note

If Netflow is enabled on the port channel, then the flow entries are created per port-channel interface. NetFlow entries are not created for each port channel member link and the NetFlow from member links will be part of the port-channel NetFlow.

Configuring NetFlow Aggregation for Flows on the MSFC

To configure NetFlow aggregation for flows on the MSFC, use the procedures in the section “Configuring an Aggregation Cache” at this URL:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fswtch_c/swprt2/xcfnc.htm#wp1001058

Note

• Configuring NetFlow aggregation for the MSFC automatically configures it for the PFC and DFCs.
• In Release 12.2SRB, you must enable NetFlow on individual interfaces in order to enable the hardware flow cache to be populated. When enabled, the cache is populated with flows only from those interfaces where NetFlow is enabled.
• In Release 12.2SRA, configuring an aggregation scheme allows the hardware flow cache to be populated. The cache is globally populated with information for all L3 interfaces.

To configure NetFlow ToS-based router aggregation for the MSFC, use the procedures at this URL:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s15/dtnfltos.htm

Note

The PFC and DFCs do not support NetFlow ToS-based router aggregation.

Configuring the MSFC NDE Source Layer 3 Interface

To configure the Layer 3 interface used as the source of the NDE packets containing statistics from the MSFC, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip flow-export source {{vlan vlan_ID}</td>
<td>Configures the interface used as the source of the NDE packets containing statistics from the MSFC.</td>
</tr>
<tr>
<td></td>
<td>{type slot/port}</td>
</tr>
<tr>
<td></td>
<td>{port-channel number}</td>
</tr>
<tr>
<td></td>
<td>{loopback number}}</td>
</tr>
<tr>
<td>Router(config)# no ip flow-export source</td>
<td>Clears the NDE source interface configuration.</td>
</tr>
</tbody>
</table>

When configuring the MSFC NDE source Layer 3 interface, note the following information:

• You must select an interface configured with an IP address.
• You can use a loopback interface.

This example shows how to configure a loopback interface as the NDE flow source:

Router(config)# ip flow-export source loopback 0
Router(config)#
Configuring the NDE Destination

To configure the destination IP address and UDP port to receive the NDE statistics, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip flow-export destination ip_address udp_port_number</td>
<td>Configures the NDE destination IP address and UDP port.</td>
</tr>
<tr>
<td>Router(config)# no ip flow-export destination ip_address udp_port_number</td>
<td>Clears the NDE destination configuration.</td>
</tr>
</tbody>
</table>

**Note**
Netflow Multiple Export Destinations—To configure redundant NDE data streams, which improves the probability of receiving complete NetFlow data, you can enter the `ip flow-export destination` command twice and configure a different destination IP address in each command. This hardware supports the Netflow Multiple Export Destinations feature:

- PFC3

This example shows how to configure the NDE flow destination IP address and UDP port:

```
Router(config)# ip flow-export destination 172.20.52.37 200
```

**Note**
The destination address and UDP port number are saved in NVRAM and are preserved if NDE is disabled and reenabled or if the router is power cycled. If you are using the NetFlow FlowCollector application for data collection, verify that the UDP port number you configure is the same port number shown in the FlowCollector’s `/opt/csconfc/config/nfconfig.file` file.

Enabling NetFlow and NDE for Ingress Bridged IP Traffic

All PFCs (except the PFC3A) support NetFlow and NDE for ingress bridged IP traffic. The following sections describe how to enable NetFlow and NDE for ingress bridged IP traffic:

- **Enabling NetFlow for Ingress Bridged IP Traffic in VLANs**, page 56-25
- **Enabling NDE for Ingress Bridged IP Traffic in VLANs**, page 56-25

**Note**
- When you enable NetFlow for ingress bridged IP traffic, the statistics are available to the Sampled Netflow feature (see the “NetFlow Sampling” section on page 56-7).
- For each VLAN where you want to enable NetFlow and NDE for bridged IP traffic, you must create a corresponding VLAN interface, assign an IP address to it, and issue the `no shutdown` command to bring the interface up.
- When you enable NetFlow for bridged IP traffic on a VLAN, export of the bridged traffic is enabled by default as long as NDE is globally enabled.
## Enabling NetFlow for Ingress Bridged IP Traffic in VLANs

To enable NetFlow for ingress bridged IP traffic in VLANs, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Router(config)# ip flow ingress layer2-switched vlan vlan_ID[-vlan_ID] [, vlan_ID[-vlan_ID]]` | Enables NetFlow for ingress bridged IP traffic in the specified VLANs.  
  **Note** NetFlow for ingress bridged IP traffic in a VLAN requires that NetFlow on the PFC be enabled with the `mls netflow` command. |
| `Router(config)# no ip flow ingress layer2-switched vlan vlan_ID[-vlan_ID] [, vlan_ID[-vlan_ID]]` | Disables NetFlow for ingress bridged IP traffic in the specified VLANs. |

This example shows how to enable NetFlow for ingress bridged IP traffic in VLAN 200:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip flow ingress layer2-switched vlan 200
```

## Enabling NDE for Ingress Bridged IP Traffic in VLANs

To enable NDE for ingress bridged IP traffic in VLANs, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| `Router(config)# ip flow export layer2-switched vlan vlan_ID[-vlan_ID] [, vlan_ID[-vlan_ID]]` | Enables NDE for ingress bridged IP traffic in the specified VLANs (enabled by default when you enter the `ip flow ingress layer2-switched vlan` command).  
  **Note** NDE for ingress bridged IP traffic in a VLAN requires that NDE on the PFC be enabled with the `mls nde sender` command. |
| `Router(config)# no ip flow export layer2-switched vlan vlan_ID[-vlan_ID] [, vlan_ID[-vlan_ID]]` | Disables NDE for ingress bridged IP traffic in the specified VLANs. |

This example shows how to enable NDE for ingress bridged IP traffic in VLAN 200:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip flow export layer2-switched vlan 200
```
Displaying the NDE Address and Port Configuration

To display the NDE address and port configuration, perform these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show mls nde</td>
<td>Displays the NDE export flow IP address and UDP port configuration.</td>
</tr>
<tr>
<td>Router# show ip flow export</td>
<td>Displays the NDE export flow IP address, UDP port, and the NDE source interface configuration.</td>
</tr>
</tbody>
</table>

This example shows how to display the NDE export flow source IP address and UDP port configuration:

```
Router# show mls nde
Netflow Data Export enabled
Exporting flows to 10.34.12.245 (9999)
Exporting flows from 10.6.58.7 (55425)
Version: 7
Include Filter not configured
Exclude Filter is:
 source: ip address 11.1.1.0, mask 255.255.255.0
Total Netflow Data Export Packets are:
 49 packets, 0 no packets, 247 records
Total Netflow Data Export Send Errors:
 IPWRITE_NO_FIB = 0
 IPWRITE_ADJ_FAILED = 0
 IPWRITE_PROCESS = 0
 IPWRITE_ENQUEUE_FAILED = 0
 IPWRITE_IPC_FAILED = 0
 IPWRITE_OUTPUT_FAILED = 0
 IPWRITE_MTU_FAILED = 0
 IPWRITE_ENCAPFIX_FAILED = 0
Netflow Aggregation Enabled
 source-prefix aggregation export is disabled
 destination-prefix aggregation exporting flows to 10.34.12.245 (9999)
 10.34.12.246 (9909)
 exported 84 packets, 94 records
prefix aggregation export is disabled
Router#
```

This example shows how to display the NDE export flow IP address, UDP port, and the NDE source interface configuration:

```
Router# show ip flow export
Flow export is enabled
 Exporting flows to 172.20.52.37 (200)
 Exporting using source interface FastEthernet5/8
 Version 1 flow records
 0 flows exported in 0 udp datagrams
 0 flows failed due to lack of export packet
 0 export packets were sent up to process level
 0 export packets were dropped due to no fib
 0 export packets were dropped due to adjacency issues
Router#
```
Chapter 56  Configuring NetFlow and NDE

Configuring NDE Flow Filters

These sections describe NDE flow filters:

- NDE Flow Filter Overview, page 56-27
- Configuring a Port Flow Filter, page 56-27
- Configuring a Host and Port Filter, page 56-27
- Configuring a Host Flow Filter, page 56-28
- Configuring a Protocol Flow Filter, page 56-28

NDE Flow Filter Overview

By default, all expired flows are exported until you configure a filter. After you configure a filter, only expired and purged flows matching the specified filter criteria are exported. Filter values are stored in NVRAM and are not cleared when NDE is disabled.

To display the configuration of the NDE flow filters you configure, use the `show mls nde` command described in the “Displaying the NDE Configuration” section on page 56-29.

Configuring a Port Flow Filter

To configure a destination or source port flow filter, perform this task:

This example shows how to configure a port flow filter so that only expired flows to destination port 23 are exported (assuming the flow mask is set to full):

```
Router(config)# mls nde flow include dest-port 23
```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls nde flow {exclude</td>
<td>include} {dest-port number</td>
</tr>
<tr>
<td>Router(config)# no mls nde flow {exclude</td>
<td>include}</td>
</tr>
</tbody>
</table>

Configuring a Host and Port Filter

To configure a host and TCP/UDP port flow filter, perform this task:

This example shows how to configure a source host and destination TCP/UDP port flow filter so that only expired flows from host 171.69.194.140 to destination port 23 are exported (assuming the flow mask is set to ip-flow):

```
Router(config)# mls nde flow include source 171.69.194.140 255.255.255.255 dest-port 23
```
Configuring a Host Flow Filter

To configure a destination or source host flow filter, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls nde flow {exclude</td>
<td>include}</td>
</tr>
<tr>
<td>{destination ip_address mask</td>
<td>source ip_address mask</td>
</tr>
<tr>
<td>Router(config)# no mls nde flow {exclude</td>
<td>include}</td>
</tr>
</tbody>
</table>

This example shows how to configure a host flow filter to export only flows to destination to host 172.20.52.37:

```
Router(config)# mls nde flow include destination 172.20.52.37 255.255.255.255
```

Configuring a Protocol Flow Filter

To configure a protocol flow filter, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# mls nde flow {exclude</td>
<td>include} protocol {tcp {dest-port number</td>
</tr>
<tr>
<td>Router(config)# no mls nde flow {exclude</td>
<td>include}</td>
</tr>
</tbody>
</table>

This example shows how to configure a TCP protocol flow filter so that only expired flows from destination port 35 are exported:

```
Router(config)# mls nde flow include protocol tcp dest-port 35
```

To display the status of the NDE flow filters, use the **show mls nde** command described in the “Displaying the NDE Configuration” section on page 56-29.

Usage Guidelines to Configure Protocol Flow Filter

Follow these restrictions and usage guidelines to configure NetFlow Data Export Filter:

- Only one filter is supported to include or exclude flow export. The flow export configuration is based on source IP, destination IP, source Port, destination port and protocol.
- If you separately configure each filter parameter, the final filter consists of all the configured filter values as shown in the next example:

```
Router(config)# mls nde flow include src-port 100
Router# sh run | I mls nde flow
mls nde flow include protocol tcp src-port 100
Router(config)# mls nde flow include dest-port 200
Router# sh run | I mls nde flow
mls nde flow include protocol tcp src-port 100 dest-port 200
Router#
```
• If you reconfigure a filter with a new value, the old value is overwritten as shown in the next example:

Router(config)#mls nde flow include dest-port 200
Router#sh run | I mls nde flow
mls nde flow include dest-port 200
Router(config)#mls nde flow include dest-port 500
Router#sh run | I mls nde flow
mls nde flow include dest-port 500

Displaying the NDE Configuration

To display the NDE configuration, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# show mls nde</td>
<td>Displays the NDE configuration.</td>
</tr>
</tbody>
</table>

This example shows how to display the NDE configuration:

Router# show mls nde
Netflow Data Export enabled
Exporting flows to 10.34.12.245 (9988) 10.34.12.245 (9999)
Exporting flows from 10.6.58.7 (57673)
Version: 7
Include Filter not configured
Exclude Filter not configured
Total Netflow Data Export Packets are:
  508 packets, 0 no packets, 3985 records
Total Netflow Data Export Send Errors:
  IPWRITE_NO_FIB = 0
  IPWRITE_ADJ_FAILED = 0
  IPWRITE_PROCESS = 0
  IPWRITE_ENQUEUE_FAILED = 0
  IPWRITE_IPC_FAILED = 0
  IPWRITE_OUTPUT_FAILED = 0
  IPWRITE_MTU_FAILED = 0
  IPWRITE_ENCAPFIX_FAILED = 0
Netflow Aggregation Enabled
Router#
NetFlow Support on GRE Tunnels

This section describes implementation of NetFlow accounting for IPv4 unicast flows over GRE tunnels on 7600 platform.

GRE is a tunneling protocol developed by Cisco and it is capable of encapsulating a wide variety of protocol packet types within IP tunnels, creating a virtual point-to-point link to Cisco routers at remote points over an IP internetwork. This feature is supported on 15.3(3)S4. IPv4 unicast flows can be exported in any NDE format.

Configuration

“ip flow ingress” needs to be configured on both the physical interface (f1/1) and tunnel interface (t0) for the encapsulated flows to be accounted. The following are the examples of ip flow ingress configuration.

Configuring NetFlow Accounting on a GRE IP Tunnel Example - Encapsulation Node

mls flow ip interface - full
mls sampling packet - based 64 8000
interface Tunnel1
ip address 12.0.0.1 255.255.255.252 12.0.0.2 255.255.255.252
ip flow ingress
mls netflow sampling
tunnel source 172.1.0.1
tunnel destination 172.1.0.2

Configuring NetFlow Accounting on a GRE IP Tunnel Example - Decapsulation Node

mls flow ip interface - full
mls sampling packet - based 64 8000
interface Tunnel1
ip address 12.0.0.2 255.255.255.252
ip flow ingress
mls netflow sampling
tunnel source 172.1.0.1
tunnel destination 172.1.0.2

Accounting of Flows

Unicast IPv4 packets encapsulated in IPv4 unicast GRE tunnels - this case needs to be considered for NetFlow accounting of packets in and out of a GRE tunnel.
The following figures explain the different terminologies used in the architecture.

**Encapsulation**

![Encapsulation Diagram]

**Decapsulation**

![Decapsulation Diagram]

The following table represents the configuration on different interfaces and the flows that need to be created.

<table>
<thead>
<tr>
<th></th>
<th>Ingress Tunnel Interface</th>
<th>Ingress Physical Interface</th>
<th>Egress Physical Interface</th>
<th>Egress Tunnel Interface</th>
<th>Flows</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Unicast Over GRE (Encap)</strong></td>
<td>Ip flow ingress</td>
<td>No configuration</td>
<td>Ip flow ingress</td>
<td></td>
<td>Flow (1) [Id, Is, fa1/1, t0] Flow (2) [Td, Ts, t0, fa1/2]</td>
</tr>
<tr>
<td><strong>Unicast Over GRE (Decap)</strong></td>
<td>Ip flow ingress</td>
<td>Ip flow ingress</td>
<td>No configuration</td>
<td></td>
<td>Flow (1) [Td, Ts, fa1/1, t0] Flow (2) [Id, Is, t0, fa1/2]</td>
</tr>
</tbody>
</table>
The following display output shows that NetFlow accounting is operational because these are statistics for the hardware-switched NetFlow flows.

```
CE1#sh mls netflow ip module 5
Displaying Netflow entries in module 5
DstIP SrcIP Prot:SrcPort:DstPort Src i/f :AdjPtr
--
Pkts Bytes Age LastSeen Attributes
--
12.0.0.1 12.0.0.2 icmp:0 :0 Tu1 :0x0
0 0 1 08:35:20 L3 - Dynamic
40.0.0.1 50.0.0.1 icmp:8 :0 Tu1 :0x0
0 0 1 08:35:20 L3 - Dynamic
```

**Impact on Memory and Performance**

The flows that get encapsulated or decapsulated on the router will now create two or more flows. This will have an impact on the hardware NetFlow table as more number of flows will be created. These flows need to be exported as well. Flows from the hardware table are converted to different format internally and then exported.

As the number of flows gets doubled, the required memory also gets doubled to convert the flows to different format internally.

**Limitations**

Though it supports 7600 with both sup720 and RSP720, it does not support mGRE and IPv6 packets in GRE. This design only supports hardware switched flows. The packets which are software switched are processed by the software path. This feature is supported only on ES+ line cards.

The following are the limitations of the updated design:

- NetFlow accounting on secondary VLAN of GRE tunnel is not supported
- In case secondary VLAN is present, accounting will happen only at the decapsulation side of the tunnel.
- This feature supports only P2P GRE tunnels
- MPLS aware NetFlow is not supported
- Number of flows depend on TCAM size
- Software - Feature is only applicable for GRE tunnel with unicast traffic
- Hardware - Only 7600 is supported
Configuring Local SPAN, RSPAN, and ERSPAN

This chapter describes how to configure local Switched Port Analyzer (SPAN), remote SPAN (RSPAN), and Encapsulated RSPAN (ERSPAN) on the Cisco 7600 series routers. Policy Feature Card 3 (PFC3) supports ERSPAN (see the “ERSPAN Guidelines and Restrictions” section on page 57-10).

Note
• For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
• Shared port adapter (SPA) ports and FlexWAN ports do not support SPAN, RSPAN, or ERSPAN.

This chapter consists of these sections:
• Understanding How Local SPAN, RSPAN, and ERSPAN Work, page 57-1
• Local SPAN, RSPAN, and ERSPAN Configuration Guidelines and Restrictions, page 57-6
• Configuring Local SPAN, RSPAN, and ERSPAN, page 57-12

Understanding How Local SPAN, RSPAN, and ERSPAN Work

These sections describe how local SPAN, RSPAN, and ERSPAN work:
• Local SPAN, RSPAN, and ERSPAN Overview, page 57-2
• Local SPAN, RSPAN, and ERSPAN Sources, page 57-5
• Local SPAN, RSPAN, and ERSPAN Destinations, page 57-6
Local SPAN, RSPAN, and ERSPAN Overview

SPAN copies traffic from one or more ports, one or more EtherChannels, or one or more VLANs, and sends the monitored traffic to one or more destinations such as a SwitchProbe device or other remote monitoring (RMON) probe.

SPAN does not affect the switching of traffic on sources. You must dedicate the destination for SPAN use. The SPAN-generated copies of traffic compete with user traffic for router resources.

These sections provide an overview of local SPAN, RSPAN, and ERSPAN:

- Local SPAN Overview, page 57-2
- RSPAN Overview, page 57-3
- ERSPAN Overview, page 57-4
- Understanding the Traffic Monitored at SPAN Sources, page 57-4

Local SPAN Overview

A local SPAN session is an association of source ports and source VLANs with one or more destinations. You configure a local SPAN session on a single router. Local SPAN does not have separate source and destination sessions.

Local SPAN sessions do not copy locally sourced RSPAN VLAN traffic from source trunk ports that carry RSPAN VLANs. Local SPAN sessions do not copy locally sourced RSPAN generic routing encapsulation (GRE)-encapsulated traffic from source ports.

Each local SPAN session can have either ports or VLANs as sources, but not both.

Local SPAN copies traffic from one or more source ports in any VLAN or from one or more VLANs to a destination for analysis (see Figure 57-1). For example, as shown in Figure 57-1, all traffic on Ethernet port 5 (the source port) is copied to Ethernet port 10. A network analyzer on Ethernet port 10 receives all traffic from Ethernet port 5 without being physically attached to Ethernet port 5.

Figure 57-1 Example SPAN Configuration
RSPAN Overview

RSPAN supports source ports, source VLANs, and destinations on different routers. This provides remote monitoring of multiple routers across your network (see Figure 57-2). RSPAN uses a Layer 2 VLAN to carry SPAN traffic between routers.

RSPAN consists of an RSPAN source session, an RSPAN VLAN, and an RSPAN destination session. You separately configure RSPAN source sessions and destination sessions on different routers. To configure an RSPAN source session on one router, you associate a set of source ports or VLANs with an RSPAN VLAN. To configure an RSPAN destination session on another router, you associate the destinations with the RSPAN VLAN.

The traffic for each RSPAN session is carried as Layer 2 nonroutable traffic over a user-specified RSPAN VLAN that is dedicated for that RSPAN session in all participating routers. All participating routers must be trunk-connected at Layer 2.

RSPAN source sessions do not copy locally sourced RSPAN VLAN traffic from source trunk ports that carry RSPAN VLANs. RSPAN source sessions do not copy locally sourced RSPAN GRE-encapsulated traffic from source ports.

Each RSPAN source session can have either ports or VLANs as sources, but not both.

The RSPAN source session copies traffic from the source ports or source VLANs and switches the traffic over the RSPAN VLAN to the RSPAN destination session. The RSPAN destination session switches the traffic to the destination ports.

Figure 57-2  RSPAN Configuration

![RSPAN Configuration Diagram]
ERSPAN Overview

ERSPAN supports source ports, source VLANs, and destinations on different routers. This provides remote monitoring of multiple routers across your network (see Figure 57-3). ERSHPAN uses a GRE tunnel to carry traffic between routers.

ERSPAN consists of an ERSHPAN source session, routable ERSHPAN GRE-encapsulated traffic, and an ERSHPAN destination session. You separately configure ERSHPAN source sessions and destination sessions on different routers.

To configure an ERSHPAN source session on one router, you associate a set of source ports or VLANs with a destination IP address, ERSHPAN ID number, and optionally with a VPN routing and forwarding (VRF) name. To configure an ERSHPAN destination session on another router, you associate the destination ports with the source IP address, ERSHPAN ID number, and optionally with a VRF name.

ERSPAN source sessions do not copy locally sourced RSPAN VLAN traffic from source trunk ports that carry RSPAN VLANs. ERSHPAN source sessions do not copy locally sourced ERSHPAN GRE-encapsulated traffic from source ports.

Each ERSHPAN source session can have either ports or VLANs as sources, but not both.

The ERSHPAN source session copies traffic from the source ports or source VLANs and forwards the traffic using routable GRE-encapsulated packets to the ERSHPAN destination session. The ERSHPAN destination session switches the traffic to the destinations.

Figure 57-3 ERSHPAN Configuration

Understanding the Traffic Monitored at SPAN Sources

These sections describe the traffic that local SPAN, RSPAN, and ERSHPAN sources can monitor:

- Monitored Traffic Direction, page 57-5
- Monitored Traffic Type, page 57-5
- Duplicate Traffic, page 57-5
Monitored Traffic Direction

You can configure local SPAN sessions, RSPAN source sessions, and ERSPAN source sessions to monitor ingress traffic (called ingress SPAN), or to monitor egress traffic (called egress SPAN), or to monitor traffic flowing in both directions.

Ingress SPAN copies traffic received by the source ports and VLANs for analysis at the destination port. Egress SPAN copies traffic transmitted from the source ports and VLANs. When you enter the both keyword, SPAN copies the traffic received and transmitted by the source ports and VLANs to the destination port.

Monitored Traffic Type

By default, local SPAN and ERSPAN monitor all traffic, including multicast and bridge protocol data unit (BPDU) frames. RSPAN does not support BPDU monitoring.

Duplicate Traffic

In some configurations, SPAN sends multiple copies of the same source traffic to the destination. For example, in a configuration with a bidirectional SPAN session (both ingress and egress) for two SPAN sources, called s1 and s2, to a SPAN destination, called d1, if a packet enters the router through s1 and is sent for egress from the switch to s2, ingress SPAN at s1 sends a copy of the packet to SPAN destination d1 and egress SPAN at s2 sends a copy of the packet to SPAN destination d1. If the packet was Layer 2 switched from s1 to s2, both SPAN packets would be the same. If the packet was Layer 3 switched from s1 to s2, the Layer 3 rewrite would alter the source and destination Layer 2 addresses, in which case the SPAN packets would be different.

Local SPAN, RSPAN, and ERSPAN Sources

These sections describe local SPAN, RSPAN, and ERSPAN sources:

- Source Ports and EtherChannels, page 57-5
- Source VLANs, page 57-5

Source Ports and EtherChannels

A source port or EtherChannel is a port or EtherChannel monitored for traffic analysis. You can configure both Layer 2 and Layer 3 ports as SPAN sources. SPAN can monitor one or more source ports or EtherChannels in a single SPAN session. You can configure ports or EtherChannels in any VLAN as SPAN sources. Trunk ports or EtherChannels can be configured as sources and mixed with nontrunk sources. SPAN does not copy the encapsulation from a source trunk port.

Source VLANs

A source VLAN is a VLAN monitored for traffic analysis. VLAN-based SPAN (VSPAN) uses a VLAN as the SPAN source. All the ports and EtherChannels in the source VLANs become sources of SPAN traffic.
Layer 3 VLAN interfaces on source VLANs are not sources of SPAN traffic. Traffic that enters a VLAN through a Layer 3 VLAN interface is monitored when it is transmitted from the router through an egress port of EtherChannel that is in the source VLAN.

Local SPAN, RSPAN, and ERSPAN Destinations

A SPAN destination is a Layer 2 or Layer 3 LAN port or, with Release 12.2(33)SRC and later, an Etherchannel, to which local SPAN, RSPAN, or ERSPAN sends traffic for analysis. When you configure a port or EtherChannel as a SPAN destination, it is dedicated for use only by the SPAN feature.

Destination EtherChannels do not support the Port Aggregation Protocol (PAgP) or Link Aggregation Control Protocol (LACP) EtherChannel protocols; only the on mode is supported, with all EtherChannel protocol support disabled.

There is no requirement that the member links of a destination EtherChannel be connected to a device that supports EtherChannels. For example, you can connect the member links to separate network analyzers. See Chapter 12, “Configuring EtherChannels” for more information about EtherChannels.

Destinations, by default, cannot receive any traffic. With Release 12.2(33)SRC and later, you can configure Layer 2 destinations to receive traffic from any attached devices.

Destinations, by default, do not transmit anything except SPAN traffic. Layer 2 destinations that you have configured to receive traffic can be configured to learn the Layer 2 address of any devices attached to the destination and transmit traffic that is addressed to the devices.

You can configure trunk ports as destinations, which allows trunk destinations to transmit encapsulated traffic. You can use allowed VLAN lists to configure destination trunk VLAN filtering.

Local SPAN, RSPAN, and ERSPAN Configuration Guidelines and Restrictions

These sections describe local SPAN, RSPAN, and ERSPAN configuration guidelines and restrictions:

- Feature Incompatibilities, page 57-6
- Local SPAN, RSPAN, and ERSPAN Session Limits, page 57-7
- Local SPAN, RSPAN, and ERSPAN Guidelines and Restrictions, page 57-8
- VSPAN Guidelines and Restrictions, page 57-9
- RSPAN Guidelines and Restrictions, page 57-10
- ERSPAN Guidelines and Restrictions, page 57-10

Feature Incompatibilities

These feature incompatibilities exist with local SPAN, RSPAN, and ERSPAN:

- Unknown Unicast Flood Blocking (UUFB) ports cannot be RSPAN or Local SPAN egress-only destinations. (CSCsj27695)
- EoMPLS ports cannot be SPAN sources. (CSCed51245)
• A port-channel interface (an EtherChannel) can be a SPAN source, but you cannot configure active member ports of an EtherChannel as SPAN source ports. Inactive member ports of an EtherChannel can be configured as SPAN sources, but they are put into the suspended state and carry no traffic.

• You cannot configure active member ports of an EtherChannel as SPAN destination ports. Inactive member ports of an EtherChannel can be configured as SPAN destination ports but they are put into the suspended state and carry no traffic.

• These features are incompatible with SPAN destination ports:
  – Private VLANs
  – IEEE 802.1X port-based authentication
  – Port security
  – Spanning Tree Protocol (STP) and related features (PortFast, PortFast BPDU Filtering, BPDU Guard, UplinkFast, BackboneFast, EtherChannel Guard, Root Guard, Loop Guard)
  – VLAN Trunking Protocol (VTP)
  – Dynamic Trunking Protocol (DTP)
  – IEEE 802.1Q tunneling

Note: SPAN destination ports can participate in IEEE 802.3Z Flow Control.

Local SPAN, RSPAN, and ERSPAN Session Limits

For Release 12.2(33)SRC and later, Table 57-1 shows the PFC3 local SPAN, RSPAN, and ERSPAN session limits. Table 57-2 shows the PFC3 local SPAN, RSPAN, and ERSPAN source and destination limits.

### Table 57-1  PFC3 Local SPAN, RSPAN, and ERSPAN Session Limits

<table>
<thead>
<tr>
<th>Total Sessions</th>
<th>Local and Source Sessions</th>
<th>Destination Sessions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local SPAN, RSPAN Source, ERSPAN Source Ingress or Egress or Both</td>
<td>Local SPAN Egress-Only</td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>14</td>
</tr>
</tbody>
</table>

### Table 57-2  PFC3 Local SPAN, RSPAN, and ERSPAN Source and Destination Limits

<table>
<thead>
<tr>
<th></th>
<th>In Each Local SPAN Session</th>
<th>In Each RSPAN Source Session</th>
<th>In Each ERSPAN Source Session</th>
<th>In Each RSPAN Destination Session</th>
<th>In Each ERSPAN Destination Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egress or “both” sources</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ingress sources</td>
<td>128</td>
<td>128</td>
<td>128</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Local SPAN, RSPAN, and ERSPAN Guidelines and Restrictions

These guidelines and restrictions apply to local SPAN, RSPAN, and ERSPAN:

- ERSPAN destination IP address should be used for the sole purpose of terminating ERSPAN traffic.
- A SPAN destination that is copying traffic from a single egress SPAN source port sends only egress traffic to the network analyzer. However, if you configure more than one egress SPAN source port, the traffic that is sent to the network analyzer also includes these types of ingress traffic that were received from the egress SPAN source ports:
  - Any unicast traffic that is flooded on the VLAN
  - Broadcast and multicast traffic
  
  This situation occurs because an egress SPAN source port receives these types of traffic from the VLAN but then recognizes itself as the source of the traffic and drops it instead of sending it back to the source from which it was received. Before the traffic is dropped, SPAN copies the traffic and sends it to the SPAN destination. (CSCds22021)

- Entering additional monitor session commands does not clear previously configured SPAN parameters. You must enter the no monitor session command to clear configured SPAN parameters.
- Connect a network analyzer to the SPAN destination.
- Within a SPAN session, all of the SPAN destinations receive all of the traffic from all of the SPAN sources, except when source-VLAN filtering is configured on the SPAN source.
- You can configure destination trunk VLAN filtering to select which traffic is transmitted from the SPAN destination.
- MPA/SPAN replicate traffic immediately when source interface is specified, without waiting for issue of start or no shutdown command.
- When you specify a single VLAN as MPA/SPAN source, all traffic from the physical interface to which that VLAN belongs is forwarded to the supervisor. This may cause over-subscription. MPA/SPAN must be done with caution in centralized mode.
- You can configure both Layer 2 LAN ports (LAN ports configured with the switchport command) and Layer 3 LAN ports (LAN ports not configured with the switchport command) as sources or destinations.
- You cannot mix individual source ports and source VLANs within a single session.
- If you specify multiple ingress source ports, the ports can belong to different VLANs.
- Within a session, you cannot configure both VLANs as SPAN sources and do source VLAN filtering. You can configure VLANs as SPAN sources or you can do source VLAN filtering of traffic from source ports and EtherChannels, but not both in the same session.

| Table 57-2 PFC3 Local SPAN, RSPAN, and ERSPAN Source and Destination Limits |
|-------------------------------------------------|-----------------|-----------------|-----------------|-----------------|
| RSPAN and ERSPAN destination session sources | In Each Local SPAN Session | In Each RSPAN Source Session | In Each ERSPAN Source Session | In Each RSPAN Destination Session | In Each ERSPAN Destination Session |
| Destinations per session | 64 | 1 RSPAN VLAN | 1 IP address | 64 | 64 |

Local SPAN, RSPAN, and ERSPAN Guidelines and Restrictions

These guidelines and restrictions apply to local SPAN, RSPAN, and ERSPAN:

- ERSPAN destination IP address should be used for the sole purpose of terminating ERSPAN traffic.
- A SPAN destination that is copying traffic from a single egress SPAN source port sends only egress traffic to the network analyzer. However, if you configure more than one egress SPAN source port, the traffic that is sent to the network analyzer also includes these types of ingress traffic that were received from the egress SPAN source ports:
  - Any unicast traffic that is flooded on the VLAN
  - Broadcast and multicast traffic
  
  This situation occurs because an egress SPAN source port receives these types of traffic from the VLAN but then recognizes itself as the source of the traffic and drops it instead of sending it back to the source from which it was received. Before the traffic is dropped, SPAN copies the traffic and sends it to the SPAN destination. (CSCds22021)

- Entering additional monitor session commands does not clear previously configured SPAN parameters. You must enter the no monitor session command to clear configured SPAN parameters.
- Connect a network analyzer to the SPAN destination.
- Within a SPAN session, all of the SPAN destinations receive all of the traffic from all of the SPAN sources, except when source-VLAN filtering is configured on the SPAN source.
- You can configure destination trunk VLAN filtering to select which traffic is transmitted from the SPAN destination.
- MPA/SPAN replicate traffic immediately when source interface is specified, without waiting for issue of start or no shutdown command.
- When you specify a single VLAN as MPA/SPAN source, all traffic from the physical interface to which that VLAN belongs is forwarded to the supervisor. This may cause over-subscription. MPA/SPAN must be done with caution in centralized mode.
- You can configure both Layer 2 LAN ports (LAN ports configured with the switchport command) and Layer 3 LAN ports (LAN ports not configured with the switchport command) as sources or destinations.
- You cannot mix individual source ports and source VLANs within a single session.
- If you specify multiple ingress source ports, the ports can belong to different VLANs.
- Within a session, you cannot configure both VLANs as SPAN sources and do source VLAN filtering. You can configure VLANs as SPAN sources or you can do source VLAN filtering of traffic from source ports and EtherChannels, but not both in the same session.
- You cannot configure source VLAN filtering for internal VLANs.
- When enabled, local SPAN, RSPAN, and ERSPAN use any previously entered configuration.
- When you specify sources and do not specify a traffic direction (ingress, egress, or both), “both” is used by default.
- SPAN copies Layer 2 Ethernet frames, but SPAN does not copy source trunk port Inter-Switch Link Protocol (ISL) or 802.1Q tags. You can configure destinations as trunks to send locally tagged traffic to the traffic analyzer.

**Note**  
A destination configured as a trunk tags traffic from a Layer 3 LAN source port with the internal VLAN used by the Layer 3 LAN port.

- Local SPAN sessions, RSPAN source sessions, and ERSPAN source sessions do not copy locally sourced RSPAN VLAN traffic from source trunk ports that carry RSPAN VLANs.
- Local SPAN sessions, RSPAN source sessions, and ERSPAN source sessions do not copy locally sourced ERSPAN GRE-encapsulated traffic from source ports.
- A port or EtherChannel can be a SPAN destination for only one SPAN session. SPAN sessions cannot share destinations.
- SPAN destinations cannot be SPAN sources.
- Sub-interfaces cannot be added as source interface in SPAN sessions.
- SPAN of an interface with various sub-interfaces configured is not supported.
- Destination ports never participate in any spanning tree instance. Local SPAN includes BPDUs in the monitored traffic, so any BPDUs seen on the destination are from the source. RSPAN does not support BPDU monitoring.
- All packets sent through the router for transmission from a port configured as an egress source are copied to the destination, including packets that do not exit the router through the egress port. This is because STP has put the egress port into the blocking state or, on an egress trunk port because STP has put the VLAN into the blocking state on the trunk port.

### VSPAN Guidelines and Restrictions

**Note**  
Local SPAN, RSPAN, and ERSPAN all support VSPAN.

These are VSPAN guidelines and restrictions:

- VSPAN sessions do not support VLAN filtering.
- For VSPAN sessions with both ingress and egress configured, two packets are forwarded from the destination to the analyzer if the packets get switched on the same VLAN (one as ingress traffic from the ingress port and one as egress traffic from the egress port).
- VSPAN only monitors traffic that leaves or enters Layer 2 ports in the VLAN.
  - If you configure a VLAN as an ingress source and traffic gets routed into the monitored VLAN, the routed traffic is not monitored because it never appears as ingress traffic entering a Layer 2 port in the VLAN.
– If you configure a VLAN as an egress source and traffic gets routed out of the monitored VLAN, the routed traffic is not monitored because it never appears as egress traffic leaving a Layer 2 port in the VLAN.

RSPAN Guidelines and Restrictions

These are RSPAN guidelines and restrictions:

• All participating routers must be connected by Layer 2 trunks.
• Any network device that supports RSPAN VLANs can be an RSPAN intermediate device.
• Networks impose no limit on the number of RSPAN VLANs that the networks carry.
• Intermediate network devices might impose limits on the number of RSPAN VLANs that they can support.
• You must configure the RSPAN VLANs in all source, intermediate, and destination network devices. If enabled, the VTP can propagate configuration of VLANs numbered 1 through 1024 as RSPAN VLANs. You must manually configure VLANs numbered higher than 1024 as RSPAN VLANs on all source, intermediate, and destination network devices.
• If you enable VTP and VTP pruning, RSPAN traffic is pruned in the trunks to prevent the unwanted flooding of RSPAN traffic across the network.
• RSPAN VLANs can be used only for RSPAN traffic.
• Do not configure a VLAN used to carry management traffic as an RSPAN VLAN.
• Do not assign access ports to RSPAN VLANs. RSPAN puts access ports in an RSPAN VLAN into the suspended state.
• Do not configure any ports in an RSPAN VLAN except trunk ports selected to carry RSPAN traffic.
• MAC address learning is disabled in the RSPAN VLAN.
• You can use output access control lists (ACLs) on the RSPAN VLAN in the RSPAN source router to filter the traffic sent to an RSPAN destination.
• RSPAN does not support BPDU monitoring.
• Do not configure RSPAN VLANs as sources in VSPAN sessions.
• You can configure any VLAN as an RSPAN VLAN as long as all participating network devices support configuration of RSPAN VLANs and you use the same RSPAN VLAN for each RSPAN session in all participating network devices.

ERSPAN Guidelines and Restrictions

These are ERSPAN guidelines and restrictions:

• ERSPAN is supported on the PFC3B, PFC3BXL, PFC3C, and PFC3CXL.
• A WS-SUP720 (a Supervisor Engine 720 manufactured with a PFC3A), can only support ERSPAN if it has hardware version 3.2 or later. Enter the `show module version | include WS-SUP720-BASE` command to display the hardware version. For example:

```
Router# show module version | include WS-SUP720-BASE
7 2 WS-SUP720-BASE SAD075301SZ Hw :3.2
```
• For ERSPAN packets, the “protocol type” field value in the GRE header is 0x88BE.
The payload of a Layer 3 ERSPAN packet is a copied Layer 2 Ethernet frame, excluding any ISL or 802.1Q tags.

ERSPAN adds a 50-byte header to each copied Layer 2 Ethernet frame and replaces the 4-byte cyclic redundancy check (CRC) trailer.

ERSPAN supports jumbo frames that contain Layer 3 packets of up to 9,202 bytes. If the length of the copied Layer 2 Ethernet frame is greater than 9,170 (9,152-byte Layer 3 packet), ERSPAN truncates the copied Layer 2 Ethernet frame to create a 9,202-byte ERSPAN Layer 3 packet.

Regardless of any configured MTU size, ERSPAN creates Layer 3 packets that can be as long as 9,202 bytes. ERSPAN traffic might be dropped by any interface in the network that enforces an MTU size smaller than 9,202 bytes.

With the default MTU size (1,500 bytes), if the length of the copied Layer 2 Ethernet frame is greater than 1,468 bytes (1,450-byte Layer 3 packet), the ERSPAN traffic is dropped by any interface in the network that enforces the 1,500-byte MTU size.

All participating routers must be connected at Layer 3 and the network path must support the size of the ERSPAN traffic.

ERSPAN does not support packet fragmentation. The “do not fragment” bit is set in the IP header of ERSPAN packets. ERSPAN destination sessions cannot reassemble fragmented ERSPAN packets.

ERSPAN traffic is subject to the traffic load conditions of the network. You can set the ERSPAN packet IP precedence or Differentiated Services Code Point (DSCP) value to prioritize ERSPAN traffic for Quality of Service (QoS).

The only supported destination for ERSPAN traffic is an ERSPAN destination session on a PFC3.

All ERSPAN source sessions on a router must use the same origin IP address, configured with the `origin ip address` command (see the “Configuring ERSPAN Source Sessions” section on page 57-25).

All ERSPAN destination sessions on a switch must use the same IP address on the same destination interface. You enter the destination interface IP address with the `ip address` command (see the “Configuring ERSPAN Destination Sessions” section on page 57-27).

The ERSPAN source session’s destination IP address, which must be configured on an interface on the destination router, is the source of traffic that an ERSPAN destination session sends to the destinations. You configure the same address in both the source and destination sessions with the `ip address` command.

The ERSPAN ID differentiates the ERSPAN traffic arriving at the same destination IP address from various different ERSPAN source sessions.

ERSPAN egress is not supported on EVC ports.

**Note** The `mtu` interface command and the `system jumbomtu` command (see the “Configuring Jumbo Frame Support” section on page 8-8) set the maximum Layer 3 packet size (default is 1,500 bytes, maximum is 9,216 bytes).
Configuring Local SPAN, RSPAN, and ERSPAN

These sections describe how to configure local SPAN, RSPAN, and ERSPAN:

- Configuring a Destination as an Unconditional Trunk (Optional), page 57-12
- Configuring Destination Trunk VLAN Filtering (Optional), page 57-13
- Configuring Destination Port Permit Lists (Optional), page 57-14
- Configuring Local SPAN, page 57-15
- Configuring RSPAN, page 57-19
- Configuring ERSPAN, page 57-25
- Configuring ERSPAN, page 57-25
- Configuring Source VLAN Filtering for Local SPAN and RSPAN, page 57-34
- Verifying the Configuration, page 57-35
- Configuration Examples, page 57-35

Configuring a Destination as an Unconditional Trunk (Optional)

To tag the monitored traffic as it leaves a destination, configure the destination as a trunk before you configure it as a destination.

To configure the destination as a trunk, perform this task in interface configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface {type slot/port</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# switchport</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-if)# switchport trunk encapsulation {isl</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-if)# switchport mode trunk</td>
</tr>
</tbody>
</table>

This example shows how to configure a port as an unconditional IEEE 802.1Q trunk:

```
Router# configure terminal
Router(config)# interface fastethernet 5/12
Router(config-if)# switchport
Router(config-if)# switchport trunk encapsulation dot1q
Router(config-if)# switchport mode trunk
```

Note

Releases earlier than Release 12.2(33)SRC required you to enter the switchport nonegotiate command when you configured a destination port as an unconditional trunk. This requirement has been removed in Release 12.2(33)SRC and later.
Configuring Destination Trunk VLAN Filtering (Optional)

**Note**
In addition to filtering VLANs on a trunk, you can also apply the allowed VLAN list to access ports.

Destination trunk VLAN filtering is applied at the destination. Destination trunk VLAN filtering does not reduce the amount of traffic being sent from the SPAN sources to the SPAN destinations.

When a destination is a trunk, you can use the list of VLANs allowed on the trunk to filter the traffic transmitted from the destination. (CSCeb01318)

Destination trunk VLAN filtering removes the restriction that, within a SPAN session, all destinations receive all the traffic from all the sources. Destination trunk VLAN filtering allows you to select, on a per-VLAN basis, the traffic that is transmitted from each destination trunk to the network analyzer.

To configure destination trunk VLAN filtering on a destination trunk, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1   Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2   Router(config)# interface type slot/port</td>
<td>Selects the destination trunk port to configure.</td>
</tr>
<tr>
<td>Step 3   Router(config-if)# switchport trunk allowed vlan {add</td>
<td>except</td>
</tr>
</tbody>
</table>

When configuring the list of VLANs allowed on a destination trunk port, note the following information:

- The `vlan` parameter is either a single VLAN number from 1 through 4094, or a range of VLANs described by two VLAN numbers, the lesser one first, separated by a dash. Do not enter any spaces between comma-separated `vlan` parameters or in dash-specified ranges.
- All VLANs are allowed by default.
- To remove all VLANs from the allowed list, enter the `switchport trunk allowed vlan none` command.
- To add VLANs to the allowed list, enter the `switchport trunk allowed vlan add` command.
- You can modify the allowed VLAN list without removing the SPAN configuration.

This example shows the configuration of a local SPAN session that has several VLANs as sources and several trunk ports as destinations, with destination trunk port VLAN filtering that filters the SPAN traffic so that each destination trunk port transmits the traffic from one VLAN:

```
interface GigabitEthernet1/1
 description SPAN destination interface for VLAN 10
 no ip address
 switchport
 switchport trunk encapsulation dot1q
 switchport trunk allowed vlan 10
 switchport mode trunk
 switchport nonegotiate
!
interface GigabitEthernet1/2
 description SPAN destination interface for VLAN 11
 no ip address
```

### Configuring Destination Port Permit Lists (Optional)

To prevent accidental configuration of ports as destinations, you can create a permit list of the ports that are valid for use as destinations. With a destination port permit list configured, you can only configure the ports in the permit list as destinations.

To configure a destination port permit list, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# monitor permit-list</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config)# monitor permit-list destination interface type slot/port[-port] [, type slot/port - port]</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config)# do show monitor permit-list</td>
</tr>
</tbody>
</table>

This example shows how to configure a destination port permit list that includes Gigabit Ethernet ports 5/1 through 5/4 and 6/1:

Router# configure terminal
Router(config)# monitor permit-list
Router(config)# monitor permit-list destination interface gigabitethernet 5/1-4,
gigabitethernet 6/1

This example shows how to verify the configuration:

Router(config)# do show monitor permit-list
SPAN Permit-list :Admin Enabled
Configuring Local SPAN

These sections describe how to configure local SPAN sessions:

- Configuring Local SPAN (SPAN Configuration Mode), page 57-15
- Configuring Local SPAN (Global Configuration Mode), page 57-17

Configuring Local SPAN (SPAN Configuration Mode)

Note
To tag the monitored traffic as it leaves a destination, you must configure the destination to trunk unconditionally before you configure it as a destination (see the “Configuring a Destination as an Unconditional Trunk (Optional)” section on page 57-12).

To configure a local SPAN session in SPAN configuration mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config)# monitor session local_span_session_number type [local</td>
<td>local-tx]</td>
</tr>
<tr>
<td></td>
<td>• Enter the local keyword to configure ingress or egress or both SPAN sessions.</td>
</tr>
<tr>
<td></td>
<td>• Enter the local-tx keyword to configure egress-only SPAN sessions.</td>
</tr>
<tr>
<td><strong>Step 3</strong> Router(config-mon-local)# description session_description</td>
<td>(Optional) Describes the local SPAN session.</td>
</tr>
<tr>
<td><strong>Step 4</strong> Router(config-mon-local)# source {single_interface</td>
<td>interface_list</td>
</tr>
<tr>
<td></td>
<td><strong>Note</strong> When you enter the local-tx keyword in the monitor session command, the rx and both keywords are not available and the tx keyword is required.</td>
</tr>
<tr>
<td></td>
<td>To make best use of the available SPAN sessions, it is always preferable to configure local-tx sessions instead of local sessions with the tx keyword.</td>
</tr>
<tr>
<td><strong>Step 5</strong> Router(config-mon-local)# filter {single_vlan</td>
<td>vlan_list</td>
</tr>
<tr>
<td><strong>Step 6</strong> Router(config-mon-local)# destination {single_interface</td>
<td>interface_list</td>
</tr>
</tbody>
</table>
### Chapter 57  Configuring Local SPAN, RSPAN, and ERSPAN

#### Step 7

**Command:**
```
Router(config-mon-local)# no shutdown
```

**Purpose:**
Activates the local SPAN session.

**Note:** The `no shutdown` and `shutdown` commands are not supported for local-tx egress-only SPAN sessions.

#### Step 8

**Command:**
```
Router(config-mon-local)# end
```

**Purpose:**
Exits configuration mode.

When configuring monitor sessions, note the following information:

- **session_description** can be up to 240 characters and cannot contain special characters; with Release 12.2(33)SRC and later, the description can contain spaces.

  **Note:** You can enter 240 characters after the `description` command.

- **local_span_session_number** can range from 1 to 80.

- **single_interface** is:
  - `interface` `type` `slot/port`; `type` is `fastethernet`, `gigabitethernet`, or `tengigabitethernet`.
  - `interface` `port-channel` `number`

  **Note:** Destination port channel interfaces must be configured with the `channel-group group_num mode on` command and the `no channel-protocol` command. See the “Configuring EtherChannels” section on page 12-7.

- **interface_list** is `single_interface`, `single_interface`, `single_interface` ...

  **Note:** In lists, you must enter a space before and after the comma. In ranges, you must enter a space before and after the dash.

- **interface_range** is `interface` `type` `slot/first_port - last_port`.

- **mixed_interface_list** is, in any order, `single_interface`, `interface_range`, ...

- **single_vlan** is the ID number of a single VLAN.

- **vlan_list** is `single_vlan`, `single_vlan`, `single_vlan` ...

- **vlan_range** is `first_vlan_ID - last_vlan_ID`.

- **mixed_vlan_list** is, in any order, `single_vlan`, `vlan_range`, ...

- Enter the `ingress` keyword to configure destinations to receive traffic from attached devices.

- Enter the `learning` keyword to enable MAC address learning from the destinations, which allows the switch to transmit traffic that is addresses to devices attached to the destinations.

When configuring destinations with the `ingress` and `learning` keywords, note the following:

- Configure the destinations for Layer 2 switching. See the “Configuring LAN Interfaces for Layer 2 Switching” section on page 10-6.

- If the destination is a trunk and the attached device transmits tagged traffic back to the router, you can use either ISL or 802.1Q trunking.
Chapter 57  Configuring Local SPAN, RSPAN, and ERSPAN

Configuring Local SPAN, RSPAN, and ERSPAN

– If the destination is a trunk and the attached device transmits untagged traffic back to the router, use 802.1Q trunking with the native VLAN configured to accept the traffic from the attached device.
– Do not configure the destination with Layer 3 addresses. Use a VLAN interface to route traffic to and from devices attached to destinations.
– Destinations are held in the down state. To route the traffic to and from attached devices, configure an additional active Layer 2 port in the VLAN to keep the VLAN interface up.

Note
On ES+ line cards, if local SPAN destination is configured with ingress and learning mode the replicated traffic is not egressing on the SPAN. Effective with Cisco IOS 15.2(4) release, even if you configure the local destination with ingress and learning mode the replicated traffic will egress on the SPAN destination.

This example shows how to configure session 1 to monitor ingress traffic from Gigabit Ethernet port 1/1 and configure Gigabit Ethernet port 1/2 as the destination:

Router# configure terminal
Router(config)# monitor session 1 type local
Router(config-mon-local)# source interface gigabitethernet 1/1 rx
Router(config-mon-local)# destination interface gigabitethernet 1/2
Router(config-mon-local)# no shutdown
Router(config-mon-local)# end

For additional examples, see the “Configuration Examples” section on page 57-35.

Configuring Local SPAN (Global Configuration Mode)

Note
To tag the monitored traffic as it leaves a destination, you must configure the destination to trunk unconditionally before you configure it as a destination (see the “Configuring a Destination as an Unconditional Trunk (Optional)” section on page 57-12).

You can configure up to two local SPAN sessions in global configuration mode.
You can use SPAN configuration mode for all SPAN configuration tasks.
You must use SPAN configuration mode to configure the supported maximum number of SPAN sessions.

Local SPAN does not use separate source and destination sessions. To configure a local SPAN session, configure local SPAN sources and destinations with the same session number. To configure a local SPAN session, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
</tbody>
</table>
When configuring local SPAN sessions, note the following information:

- `local_span_session_number` can range from 1 to 66.

- `single_interface` is:
  - `interface type slot/port; type` is `fastethernet`, `gigabitethernet`, or `tengigabitethernet`.
  - `interface port-channel number`

  **Note** Destination port channel interfaces must be configured with the `channel-group group_num mode on` command and the `no channel-protocol` command. See the “Configuring EtherChannels” section on page 12-7.

- `interface_list` is `single_interface , single_interface , single_interface ...`

  **Note** In lists, you must enter a space before and after the comma. In ranges, you must enter a space before and after the dash.

- `interface_range` is `interface type slot/first_port - last_port`.

- `mixed_interface_list` is, in any order, `single_interface , interface_range , ...`

- `single_vlan` is the ID number of a single VLAN.

- `vlan_list` is `single_vlan , single_vlan , single_vlan ...`

- `vlan_range` is `first_vlan_ID - last_vlan_ID`.

- `mixed_vlan_list` is, in any order, `single_vlan , vlan_range , ...`

- Enter the `ingress` keyword to configure destinations to receive traffic from attached services.

- Enter the `learning` keyword to enable MAC address learning from the destinations, which allows the router to transmit traffic that is addressed to devices attached to the destinations.

When configuring destinations with the `ingress` and `learning` keywords, note the following:

- Configure the destinations for Layer 2 switching. See the “Configuring LAN Interfaces for Layer 2 Switching” section on page 8-6.

- If the destination is a trunk and the attached device transmits tagged traffic back to the router, you can use either ISL or 802.1Q trunking.

- If the destination is a trunk and the attached device transmits untagged traffic back to the router, use 802.1Q trunking with the native VLAN configured to accept the traffic from the attached device.

### Command

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# `monitor session local_span_session_number source {single_interface</td>
<td>interface_list</td>
<td>interface_range</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# `monitor session local_span_session_number destination {single_interface</td>
<td>interface_list</td>
<td>interface_range</td>
</tr>
</tbody>
</table>
Do not configure the destination with Layer 3 addresses. Use a VLAN interface to route traffic to and from devices attached to destinations.

Destinations are held in the down state. To route the traffic to and from attached devices, configure an additional active Layer 2 port in the VLAN to keep the VLAN interface up.

This example shows how to configure Fast Ethernet port 5/1 as a bidirectional source for session 1:

```
Router(config)# monitor session 1 source interface fastethernet 5/1
```

This example shows how to configure Fast Ethernet port 5/48 as the destination for SPAN session 1:

```
Router(config)# monitor session 1 destination interface fastethernet 5/48
```

For additional examples, see the “Configuration Examples” section on page 57-35.

### Configuring RSPAN

RSPAN uses a source session on one router and a destination session on a different router. These sections describe how to configure RSPAN sessions:

- Configuring RSPAN VLANs, page 57-19
- Configuring RSPAN Sessions (SPAN Configuration Mode), page 57-19
- Configuring RSPAN Sessions (Global Configuration Mode), page 57-22

### Configuring RSPAN VLANs

To configure a VLAN as an RSPAN VLAN, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config)# vlan vlan_ID[-[vlan_ID]</td>
<td>Creates or modifies an Ethernet VLAN, a range of</td>
</tr>
<tr>
<td></td>
<td>Ethernet VLANs, or several Ethernet VLANs specified in</td>
</tr>
<tr>
<td></td>
<td>a comma-separated list (do not enter space characters).</td>
</tr>
<tr>
<td>Step 3 Router(config-vlan)# remote-span</td>
<td>Configures the VLAN as an RSPAN VLAN.</td>
</tr>
<tr>
<td>Step 4 Router(config-vlan)# end</td>
<td>Updates the VLAN database and returns to privileged EXEC mode.</td>
</tr>
</tbody>
</table>

### Configuring RSPAN Sessions (SPAN Configuration Mode)

These sections describe how to configure RSPAN sessions in SPAN configuration mode:

- Configuring RSPAN Source Sessions in SPAN Configuration Mode, page 57-20
- Configuring RSPAN Destination Sessions in SPAN Configuration Mode, page 57-21
Chapter 57  Configuring Local SPAN, RSPAN, and ERSPAN

Configuring RSPAN Source Sessions in SPAN Configuration Mode

To configure an RSPAN source session in SPAN configuration mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1**  
Router# configure terminal | Enters global configuration mode. |
| **Step 2**  
Router(config)# monitor session  
RSPAN_source_session_number type rspan-source | Configures an RSPAN source session number and enters RSPAN source session configuration mode for the session. |
| **Step 3**  
Router(config-mon-rspan-src)# description session_description | (Optional) Describes the RSPAN source session. |
| **Step 4**  
Router(config-mon-rspan-src)# source  
single_interface | Associates the RSPAN source session number with source ports or VLANs, and selects the traffic direction to be monitored. |
| **Step 5**  
Router(config-mon-rspan-src)# filter single_vlan | (Optional) Configures source VLAN filtering when the RSPAN source is a trunk port. |
| **Step 6**  
Router(config-mon-rspan-src)# destination remote vlan rspan_vlan_ID | Associates the RSPAN source session number session number with the RSPAN VLAN. |
| **Step 7**  
Router(config-mon-rspan-src)# no shutdown | Activates the RSPAN source session. |
| **Step 8**  
Router(config-mon-rspan-src)# end | Exits configuration mode. |

When configuring RSPAN source sessions, note the following information:

- *session_description* can be up to 240 characters and cannot contain special characters; with Release 12.2(33)SRC and later, the description can contain spaces.

  
  **Note**  
  You can enter 240 characters after the *description* command.

- *RSPAN_source_span_session_number* can range from 1 to 80.

- *single_interface* is:
  - *interface* type slot/port; type is fastethernet, gigabitethernet, or tengigabitethernet.
  - *interface* port_channel number

  **Note**  
  In lists, you must enter a space before and after the comma. In ranges, you must enter a space before and after the dash.

- *interface_range* is *interface* type slot/first_port - last_port.

- *mixed_interface_list* is, in any order, *single_interface*, *interface_range*, ...

- *single_vlan* is the ID number of a single VLAN.

- *vlan_list* is single_vlan, single_vlan, single_vlan ...

- *vlan_range* is first_vlan_ID - last_vlan_ID.

- *mixed_vlan_list* is, in any order, single_vlan, vlan_range, ...
Chapter 57 Configuring Local SPAN, RSPAN, and ERSPAN

Configuring Local SPAN, RSPAN, and ERSPAN

Configuring Local SPAN, RSPAN, and ERSPAN

- See the “Configuring RSPAN VLANs” section on page 57-19 for information about the RSPAN VLAN ID.

This example shows how to configure session 1 to monitor bidirectional traffic from Gigabit Ethernet port 1/1:

Router# configure terminal
Router(config)# monitor session 1 type rspan-source
Router(config-mon-rspan-src)# source interface gigabitethernet 1/1
Router(config-mon-rspan-src)# destination remote vlan 2
Router(config-mon-rspan-src)# no shutdown
Router(config-mon-rspan-src)# end

For additional examples, see the “Configuration Examples” section on page 57-35.

Configuring RSPAN Destination Sessions in SPAN Configuration Mode

Note

To tag the monitored traffic, you must configure the port to trunk unconditionally before you configure it as a destination (see the “Configuring a Destination as an Unconditional Trunk (Optional)” section on page 57-12).

You can configure an RSPAN destination session on the RSPAN source session router to monitor RSPAN traffic locally.

To configure an RSPAN destination session, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# monitor session RSPAN_source_session_number type rspan-destination Configures an RSPAN destination session number and enters RSPAN destination session configuration mode for the session.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-mon-rspan-dst)# description session_description (Optional) Describes the RSPAN destination session.</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-mon-rspan-dst)# source remote vlan rspan_vlan_ID Associates the RSPAN destination session number RSPAN VLAN.</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-mon-rspan-dst)# destination {single_interface</td>
</tr>
<tr>
<td>Step 6</td>
<td>Router(config-mon-rspan-dst)# end Exits configuration mode.</td>
</tr>
</tbody>
</table>

When configuring RSPAN destination sessions, note the following information:

- *RSPAN_destination_session_number* can range from 1 to 80.
- *single_interface* is:
  - *interface type slot/port*, type is *fastethernet*, *gigabitethernet*, or *tengigabitethernet*.
  - *interface port-channel number*
Cisco 7600 Series Router Cisco IOS Software Configuration Guide, Release 15 S

Chapter 57  Configuring Local SPAN, RSPAN, and ERSPAN

Configuring Local SPAN, RSPAN, and ERSPAN

Note

Destination port channel interfaces must be configured with the channel-group

  group_num mode on command and the no channel-protocol command. See the

  “Configuring EtherChannels” section on page 12-7.

• interface_list is single_interface , single_interface , single_interface ...

Note

  In lists, you must enter a space before and after the comma. In ranges, you must enter a space

  before and after the dash.

• interface_range is interface type slot/first_port - last_port.

• mixed_interface_list is, in any order, single_interface , interface_range , ...

• Enter the ingress keyword to configure destinations to receive traffic from attached devices.

• Enter the learning keyword to enable MAC address learning from the destinations, which allows the

  switch to transmit traffic that is addressed to devices attached to the destinations.

When configuring destinations with the ingress and learning keywords, note the following:

– Configure the destinations for Layer 2 switching. See the “Configuring LAN Interfaces for

  Layer 2 Switching” section on page 10-6.

– If the destination is a trunk and the attached device transmits tagged traffic back to the switch,

  you can use either ISL or 802.1Q trunking.

– If the destination is a trunk and the attached device transmits untagged traffic back to the switch,

  use 802.1Q trunking with the native VLAN configured to accept the traffic from the attached

  device.

– Do not configure the destinations with Layer 3 addresses. Use a VLAN interface to route traffic

  to and from devices attached to destinations.

– Destinations are held in the down state. To route the traffic to and from attached devices,

  configure an additional active Layer 2 port in the VLAN to keep the VLAN interface up.

• The no shutdown and shutdown commands are not supported for RSPAN destination sessions.

This example shows how to configure RSPAN VLAN 2 as the source for session 1 and Gigabit Ethernet

  port 1/2 as the destination:

  Router# configure terminal
  Router(config)# monitor session 1 type rspan-destination
  Router(config-rspan-dst)# source remote vlan2
  Router(config-rspan-dst)# destination interface gigabitethernet 1/2
  Router(config-rspan-dst)# end

  For additional examples, see the “Configuration Examples” section on page 57-35.

Configuring RSPAN Sessions (Global Configuration Mode)

These sections describe how to configure RSPAN sessions in global configuration mode

• Configuring RSPAN Source Sessions in Global Configuration Mode, page 57-23

• Configuring RSPAN Destination Sessions in Global Configuration Mode, page 57-24
# Configuring RSPAN Source Sessions in Global Configuration Mode

To configure an RSPAN source session in global configuration mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config)# monitor session</td>
<td>Associates the RSPAN source number with the source ports or VLANs, and selects the traffic direction to be monitored.</td>
</tr>
<tr>
<td>RSPAN_source_session_number source</td>
<td>single_interface</td>
</tr>
<tr>
<td>Step 3 Router(config)# monitor session</td>
<td>Associates the RSPAN source session number session number with the RSPAN VLAN.</td>
</tr>
<tr>
<td>RSPAN_source_session_number destination remote vlan</td>
<td></td>
</tr>
<tr>
<td>rspan_vlan_ID</td>
<td></td>
</tr>
</tbody>
</table>

When configuring RSPAN source sessions, note the following information:

- To configure RSPAN VLANs, see the "Configuring RSPAN VLANs" section on page 57-19.
- RSPAN_source_session_number can range from 1 to 66.
- single_interface is:
  - **interface** type slot/port; type is fastethernet, gigabitethernet, or tengigabitethernet.
  - **interface port-channel** number
- **interface_list** is single_interface, single_interface, single_interface ...

**Note** In lists, you must enter a space before and after the comma. In ranges, you must enter a space before and after the dash.

- **interface_range** is interface type slot/first_port - last_port.
- mixed_interface_list is, in any order, single_interface, interface_range, ...
- **single_vlan** is the ID number of a single VLAN.
- **vlan_list** is single_vlan, single_vlan, single_vlan ...
- **vlan_range** is first_vlan_ID - last_vlan_ID.
- mixed_vlan_list is, in any order, single_vlan, vlan_range, ...
- See the "Configuring RSPAN VLANs" section on page 57-19 for information about the RSPAN VLAN ID.

This example shows how to configure Fast Ethernet port 5/2 as the source for session 2:

```
Router(config)# monitor session 2 source interface fastethernet 5/2
```

This example shows how to configure RSPAN VLAN 200 as the destination for session 2:

```
Router(config)# monitor session 2 destination remote vlan 200
```

For additional examples, see the “Configuration Examples” section on page 57-35.
Configuring RSPAN Destination Sessions in Global Configuration Mode

To tag the monitored traffic, you must configure the port to trunk unconditionally before you configure it as a destination (see the “Configuring a Destination as an Unconditional Trunk (Optional)” section on page 57-12).

You can configure an RSPAN destination session on the RSPAN source session router to monitor RSPAN traffic locally.

To configure an RSPAN destination session in global configuration mode, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Associates the RSPAN destination session number with the RSPAN VLAN.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Associates the RSPAN destination session number with the destinations.</td>
</tr>
</tbody>
</table>

When configuring monitor sessions, not the following information:

- *RSPAN_destination_session_number* can range from 1 to 66.
- See the “Configuring RSPAN VLANs” section on page 57-19 for information about the RSPAN VLAN ID.
- *single_interface* is:
  - `interface` type slot/port; type is `fastethernet`, `gigabitethernet`, or `tengigabitethernet`.
  - `interface port-channel` number

**Note** Destination port channel interfaces must be configured with the `channel-group group_num mode on` command and the `no channel-protocol` command. See the “Configuring EtherChannels” section on page 12-7.

- `interface_list` is `single_interface`, `single_interface`, `single_interface` ...

**Note** In lists, you must enter a space before and after the comma. In ranges, you must enter a space before and after the dash.

- `interface_range` is `interface` type slot/first_port - last_port.
- `mixed_interface_list` is, in any order, `single_interface`, `interface_range` ...
- Enter the `ingress` keyword to configure destinations to receive traffic from attached devices.
- Enter the `learning` keyword to enable MAC address learning from the destinations, which allows the switch to transmit traffic that is addresses to devices attached to the destinations.

When configuring destinations with the `ingress` and `learning` keywords, note the following:
- Configure the destinations for Layer 2 switching. See the “Configuring LAN Interfaces for Layer 2 Switching” section on page 10-6.
- If the destination is a trunk and the attached device transmits untagged traffic back to the switch, you can use either ISL or 802.1Q trunking.
- If the destination is a trunk and the attached device transmits untagged traffic back to the switch, use 802.1Q trunking with the native VLAN configured to accept the traffic from the attached device.
- Do not configure the destinations with Layer 3 addresses. Use a VLAN interface to route traffic to and from devices attached to destinations.
- Destinations are held in the down state. To route the traffic to and from attached devices, configure an additional active Layer 2 port in the VLAN to keep the VLAN interface up.

This example shows how to configure RSPAN VLAN 200 as the source for session 3:

```
Router(config)# monitor session 3 source remote vlan 200
```

This example shows how to configure Fast Ethernet port 5/47 as the destination for session 3:

```
Router(config)# monitor session 3 destination interface fastethernet 5/4
```

For additional examples, see the “Configuration Examples” section on page 57-35.

### Configuring ERSPAN

ERSPAN uses separate source and destination sessions. You configure the source and destination sessions on different routers. These sections describe how to configure ERSPAN sessions:

- Configuring ERSPAN Source Sessions, page 57-25
- Configuring ERSPAN Destination Sessions, page 57-27

#### Note

The PFC3 supports ERSPAN (see the “ERSPAN Guidelines and Restrictions” section on page 57-10).

### Configuring ERSPAN Source Sessions

To configure an ERSPAN source session, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# monitor session ERSPAN_source_session_number type erspan-source</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-mon-erspan-src)# description session_description</td>
</tr>
<tr>
<td>Step 4</td>
<td>Router(config-mon-erspan-src)# source {single_interface</td>
</tr>
<tr>
<td>Step 5</td>
<td>Router(config-mon-erspan-src)# filter {single_vlan</td>
</tr>
</tbody>
</table>
When configuring monitor sessions, note the following information:

- **session_description** can be up to 240 characters and cannot contain special characters. With Release 12.2(33)SRC and later, the description can contain spaces.

  ![Note](image)

  You can enter 240 characters after the **description** command.

- **ERSPAN_source_session_number** can range from 1 to 66.

- **single_interface** is:
  - **interface** type slot/port; type is **fastethernet**, **gigabitethernet**, or **tengigabitethernet**.
  - **interface** port-channel number

  ![Note](image)

  Port channel interfaces must be configured with the **channel-group group_num mode on** command and the **no channel-protocol** command. See the “Configuring EtherChannels” section on page 12-7.
Chapter 57 Configuring Local SPAN, RSPAN, and ERSPAN

Configuring Local SPAN, RSPAN, and ERSPAN

- \textit{interface\_list} is single\_interface , single\_interface , single\_interface ...

\textit{Note} In lists, you must enter a space before and after the comma. In ranges, you must enter a space before and after the dash.

- \textit{interface\_range} is \textbf{interface} type slot\textit{first\_port} - last\_port.
- \textit{mixed\_interface\_list} is, in any order, single\_interface , interface\_range , ...
- \textit{single\_vlan} is the ID number of a single VLAN.
- \textit{vlan\_list} is single\_vlan , single\_vlan , single\_vlan ...
- \textit{vlan\_range} is first\_vlan\_ID - last\_vlan\_ID.
- \textit{mixed\_vlan\_list} is, in any order, single\_vlan , vlan\_range , ...
- \textit{ERSPAN\_flow\_id} can range from 1 to 1023.
- All ERSPAN source sessions on a switch must use the same source IP address. Enter the \texttt{origin ip address \textit{ip\_address} force} command to change the origin IP address configured in all ERSPAN source sessions on the router.
- \textit{ttl\_value} can range from 1 to 255.
- \textit{ipp\_value} can range from 0 to 7.
- \textit{dscp\_value} can range from 0 to 63.

This example shows how to configure session 3 to monitor bidirectional traffic from Gigabit Ethernet port 4/1:

```
Router# configure terminal
Router(config)# monitor session 3 type erspan-source
Router(config-mon-erspan-src)# source interface gigabitethernet 4/1
Router(config-mon-erspan-src)# destination
Router(config-mon-erspan-src-dst)# ip address 10.1.1.1
Router(config-mon-erspan-src-dst)# origin ip address 20.1.1.1
Router(config-mon-erspan-src-dst)# erspan-id 101
Router(config-mon-erspan-src-dst)# end
```

For additional examples, see the “Configuration Examples” section on page 57-35.

Configuring ERSPAN Destination Sessions

\textit{Note} You cannot monitor ERSPAN traffic locally.

To configure an ERSPAN destination session, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# monitor session ERSSPAN_destination_session_number type erspan-destination</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-mon-erspan-dst)# description session_description</td>
</tr>
</tbody>
</table>
### Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 4  | Router(config-mon-erspan-dst)# **destination**  
  [single_interface | interface_list | interface_range | mixed_interface_list] [ingress learning] | Associates the ERSPAN destination session number with the destination ports. |
| Step 5  | Router(config-mon-erspan-dst)# **source** | Enters ERSPAN destination session source configuration mode. |
| Step 6  | Router(config-mon-erspan-dst-src)# **ip address**  
  ip_address [force] | Configures the ERSPAN flow destination IP address. This must be an address on a local interface and match the address that you entered in the “Configuring ERSPAN Source Sessions” section on page 57-25, Step 7. |
| Step 7  | Router(config-mon-erspan-dst-src)# **erspan-id**  
  ERSSPAN_flow_id | Configures the ID number used by the destination and destination sessions to identify the ERSPAN traffic. This must match the ID that you entered in the “Configuring ERSPAN Source Sessions” section on page 57-25, Step 8. |
| Step 8  | Router(config-mon-erspan-dst-src)# **vrf** vrf_name | (Optional) Configures the VRF name used instead of the global routing table. |
| Step 9  | Router(config-mon-erspan-dst)# **no shutdown** | Activates the ERSPAN destination session. |
| Step 10 | Router(config-mon-erspan-dst-src)# **end** | Exits configuration mode. |

When configuring monitor sessions, note the following information:

- **ERSPAN_destination_session_number** can range from 1 to 66.
- **single_interface** is:
  - **interface** type slot/port; type is fastethernet, gigabitethernet, or tengigabitethernet.
  - **interface port-channel** number

**Note** Destination port channel interfaces must be configured with the **channel-group**  
  **group_num mode on** command and the **no channel-protocol** command. See the  
  “Configuring EtherChannels” section on page 12-7.

- **interface_list is single_interface , single_interface , single_interface ...**

**Note** In lists, you must enter a space before and after the comma. In ranges, you must enter a space before and after the dash.

- **interface_range is interface type slot[first_port - last_port].**
- **mixed_interface_list is, in any order, single_interface , interface_range , ...**
- All ERSPAN destination sessions on a switch must use the same IP address on the same destination interface. Enter the **ip address ip_address force** command to change the IP address configured in all ERSPAN destination sessions on the router.
Information About ERSPAN on EVC

Cisco 7600 routers support the Encapsulated Remote Switched Port Analyzer (ERSPAN) feature on a per service instance basis. It is the Ethernet Virtual Circuits (EVC) infrastructure that supports remote monitoring and troubleshooting on a per service instance basis. ERSPAN on EVC is supported on ES+ line cards.

Interception of traffic on EVC can be configured in the following ways:

- **ERSPAN on Port**: The configuration includes traffic on EVCs, switchports and routed traffic on the port.
- **ERSPAN on VLAN**: The configuration includes traffic on all EVC BDs in the box (on port or port channel) with the same VLAN for a SPAN session along with other switch ports on the same VLAN.
- **ERSPAN on EVC**: The configuration includes traffic on a given EFP or a set of EFPs (on port or port channel) for a SPAN session.
SPAN, sometimes called port mirroring or port monitoring, allows network traffic to be analyzed by a network analyzer such as a Cisco Switch Probe or other Remote Monitoring (RMON) probes. SPAN lets you monitor traffic on one or more ports, or one or more VLANs, and send the monitored traffic to one or more destination ports where the network analyzer is attached.

ERSPAN monitors traffic on multiple network devices across an IP network, and sends that traffic in an encapsulated envelope to destination analyzers. ERSpan can be used to monitor traffic remotely.

ERSPAN monitors ingress, egress, or both kinds of network traffic. Encapsulated ERSPAN packets are routed from a host through the routed network to the destination device where they are decapsulated and forwarded to the attached network analyzer. The destination may also be on the same Layer 2 or Layer 3 network as the source.

ERSPAN consists of an ERSPAN source session, routable ERSPAN GRE encapsulated traffic, and an ERSPAN destination session.

EVCs define a Layer 2 bridging architecture that supports Ethernet services. EVC supports service convergence over Ethernet. An EVC is a conceptual service pipe within a service provider network. Metro-Ethernet Forum (MEF) defines EVC as an association between two or more user network interfaces that identifies a point-to-point or multipoint-to-multipoint path within the service provider network.

EVC is the device local object (container) for network-wide service parameters and provides one-to-many mapping from EVC to Service Instance. Its support extends to a mix of Layer 2 and Layer 3 services on the same physical port.

EVC allows routers to reach multiple intranet and extranet locations from a single physical port. Routers see subinterfaces through which they access other routers.

Bridge Domain (BD) is the Ethernet Broadcast Domain local to a device. It exists separately from VLANs. BD provides a one-to-many mapping from BD to service instances.

An Ethernet service instance is a transport-agnostic abstraction of an Ethernet service on an interface. A service instance classifies frames belonging to a particular Ethernet service. It applies features selectively to service frames, and defines forwarding actions and behavior.

Restrictions for ERSPAN on EVC Configuration

- EVC ERSPAN is effective only if the EVC is on an ES+ line card.
- EVC is not supported as ERSPAN destination.
- Egress ERSPAN packets do not undergo QoS processing.
- For egress SPAN configurations with a VLAN as the source, where the VLAN is also part of BD and switchport for the router, all traffic that goes on the VLAN is replicated and spanned.
- Many service instances having the same BD results in a mix of BDs. In such situations, for egress SPAN configurations with VLAN as source, there is random selection and spanning. All EVCs are not spanned; single EVCs are randomly selected and spanned.
- Existing implementations restrict the configuring of SPAN source as both interface and VLANs. The same restriction applies to EFP configurations. If the SPAN source is VLAN, then the interface or EFP cannot be the source.
- Encapsulation requires a dedicated tunnel. When egress monitored traffic moves out of the tunnel interface to the remote router it allows no other traffic on the router.
## Configuring the Source Session for ERSPAN on EVC

### DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td><strong>enable</strong>&lt;br&gt;Enables the privileged EXEC mode. Enter your password, if prompted.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td><strong>configure terminal</strong>&lt;br&gt;Enters the global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td><strong>monitor session session number type erspan-source</strong>&lt;br&gt;Configures an ERSPAN source session number, and enters the ERSPAN source session configuration mode for the session.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td><strong>service instance range of EFPs interface source interface</strong>&lt;br&gt;Configures the service instance range, and specifies the sub-interface with slot and port number. Creates a service instance (an instantiation of an EVC) on an interface, and sets the device into the service instance submode.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td><strong>no shutdown</strong>&lt;br&gt;Enables the ERSPAN session, and saves it in the running configuration. By default, the session is created in the shut state.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td><strong>destination</strong>&lt;br&gt;Enters the ERSPAN source session destination configuration mode, and associates the SPAN session number with the destination.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td><strong>ip address ip address</strong>&lt;br&gt;Configures the ERSPAN flow destination IP address, which must also be configured on an interface on the destination router and be entered in the ERSPAN destination session configuration.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td><strong>origin ip address ip address</strong>&lt;br&gt;Configures the encapsulated packet Layer 3 source address.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td><strong>erspan-id erspan identifier</strong>&lt;br&gt;Adds an ERSPAN ID to the session configuration. Configures the ID number used by the source and the destination sessions to identify the ERSPAN traffic. This number is unique and within the limits permitted. It is identical for the source and the destination.</td>
</tr>
<tr>
<td><strong>Step 10</strong></td>
<td><strong>end</strong>&lt;br&gt;Exits the configuration mode.</td>
</tr>
</tbody>
</table>
## Configuration Examples for ERSPAN on EVC Source Session

```

rtr1(config)#monitor session 1 type erspan-source
rtr1(config-mon-erspan-src)#source service instance 1 - 12 GigabitEthernet9/1
rtr1(config-mon-erspan-src)#no shutdown
rtr1(config-mon-erspan-src)#destination
rtr1(config-mon-erspan-src-dst)#ip address 40.40.40.2
rtr1(config-mon-erspan-src-dst)#origin ip address 10.10.10.10
rtr1(config-mon-erspan-src-dst)#erspan-id 100
rtr1(config-mon-erspan-src-dst)#end

Note

If the configurations exclude TX or RX, ERSPAN monitors both ingress and egress traffic.

The configuration examples for ERSPAN source session for ingress and egress traffic are as follows:

```
---
rtr1(config)#monitor session 1 type erspan-source
rtr1(config-mon-erspan-src)#source service instance 1 - 12 GigabitEthernet9/1 TX
rtr1(config-mon-erspan-src)#no shutdown
rtr1(config-mon-erspan-src)#destination
rtr1(config-mon-erspan-src-dst)#ip address 40.40.40.2
rtr1(config-mon-erspan-src-dst)#origin ip address 10.10.10.10
rtr1(config-mon-erspan-src-dst)#erspan-id 100
rtr1(config-mon-erspan-src-dst)#end
---
```

```
---
rtr1(config)#monitor session 1 type erspan-source
rtr1(config-mon-erspan-src)#source service instance 1 - 12 GigabitEthernet9/1 RX
rtr1(config-mon-erspan-src)#no shutdown
rtr1(config-mon-erspan-src)#destination
rtr1(config-mon-erspan-src-dst)#ip address 40.40.40.2
rtr1(config-mon-erspan-src-dst)#origin ip address 10.10.10.10
rtr1(config-mon-erspan-src-dst)#erspan-id 100
rtr1(config-mon-erspan-src-dst)#end
---
```

The following examples show ERSPAN on port channel configurations:

ERSPAN on Port-channel

```
---
rtr1(config)#monitor session 1 type erspan-source
rtr1(config-mon-erspan-src)#source service instance 1 - 12 port-channel 1
rtr1(config-mon-erspan-src)#no shutdown
rtr1(config-mon-erspan-src)#destination
rtr1(config-mon-erspan-src-dst)#ip address 40.40.40.2
rtr1(config-mon-erspan-src-dst)#origin ip address 10.10.10.10
rtr1(config-mon-erspan-src-dst)#erspan-id 100
rtr1(config-mon-erspan-src-dst)#end
---
```

ERSPAN on Port-channel (tx)

```
---
rtr1(config)#monitor session 1 type erspan-source
rtr1(config-mon-erspan-src)#source service instance 1 - 12 port-channel 1 tx
rtr1(config-mon-erspan-src)#no shutdown
rtr1(config-mon-erspan-src)#destination
rtr1(config-mon-erspan-src-dst)#ip address 40.40.40.2
rtr1(config-mon-erspan-src-dst)#origin ip address 10.10.10.10
rtr1(config-mon-erspan-src-dst)#erspan-id 100
rtr1(config-mon-erspan-src-dst)#end
---
```

Port-channel (rx)

```
---
rtr1(config)#monitor session 1 type erspan-source
rtr1(config-mon-erspan-src)#source service instance 1 - 12 port-channel 1 rx
rtr1(config-mon-erspan-src)#no shutdown
rtr1(config-mon-erspan-src)#destination
rtr1(config-mon-erspan-src-dst)#ip address 40.40.40.2
---
```
rtr1(config-mon-erspan-src-dst)#origin ip address 10.10.10.10
rtr1(config-mon-erspan-src-dst)#erspan-id 100
rtr1(config-mon-erspan-src-dst)#end

Configuring the Destination Session for ERSPAN on EVC

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables the privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Example rtr3# enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td>Example rtr3# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 monitor session session number type erspan-destination</td>
<td>Configures an ERSPAN destination session number, and enters the ERSPAN destination session configuration mode for the session.</td>
</tr>
<tr>
<td>Example rtr3(config)#monitor session 1 type erspan-destination</td>
<td></td>
</tr>
<tr>
<td>Step 4 destination interface interface slot/port</td>
<td>Enters the ERSPAN destination session destination configuration mode, associates the SPAN session number with the destination, and specifies the sub-interface with slot and port number.</td>
</tr>
<tr>
<td>Example rtr3(config-mon-erspan-dst)#destination interface GigabitEthernet7/19</td>
<td></td>
</tr>
<tr>
<td>Step 5 no shutdown</td>
<td>Enables the ERSPAN session and saves it in the running configuration. By default, the session is created in the shut state.</td>
</tr>
<tr>
<td>Example rtr3(config-mon-erspan-dst)#no shutdown</td>
<td></td>
</tr>
<tr>
<td>Step 6 source</td>
<td>Enters the ERSPAN destination session source configuration mode.</td>
</tr>
<tr>
<td>Example rtr3(config-mon-erspan-dst)#source</td>
<td></td>
</tr>
<tr>
<td>Step 7 ip address ip address</td>
<td>Configures the ERSPAN flow destination IP address, which must also be configured on an interface on the destination router, and entered in the ERSPAN destination session configuration.</td>
</tr>
<tr>
<td>Example rtr3(config-mon-erspan-dst-src)#ip address 40.40.40.2</td>
<td></td>
</tr>
<tr>
<td>Step 8 erspan-id erspan identifier</td>
<td>Adds an ERSPAN ID to the session configuration. Configures the ID number used by the source and destination sessions to identify the ERSPAN traffic. This number is unique and within the prescribed limits. It is identical for the source and the destination.</td>
</tr>
<tr>
<td>Example rtr3(config-mon-erspan-dst-src)#erspan-id 100</td>
<td></td>
</tr>
<tr>
<td>Step 9 end</td>
<td>Exits the configuration mode.</td>
</tr>
<tr>
<td>Example rtr3(config-mon-erspan-dst-src)#end</td>
<td></td>
</tr>
</tbody>
</table>
ERSPAN on EVC: Destination Session Configuration Example

rtr3(config)#monitor session 1 type erspan-destination
rtr3(config-mon-erspan-dst)#destination interface GigabitEthernet7/19
rtr3(config-mon-erspan-dst)#no shutdown
rtr3(config-mon-erspan-dst)#source
rtr3(config-mon-erspan-dst)#ip address 40.40.40.2
rtr3(config-mon-erspan-dst)#erspan-id 100
rtr3(config-mon-erspan-dst)#end

Verification of ERSPAN on EVC Configuration

Use the following command to verify the ERSPAN on EVC configurations:

show monitor session all

Verification Example for ERSPAN on EVC

rtr1#show monitor session all
Session 1

Type : ERSPAN Destination Session
Status : Admin Disabled
Source IP Address : 1.1.1.1
Source ERSPAN ID : 100

Configuring Source VLAN Filtering for Local SPAN and RSPAN

Source VLAN filtering monitors specific VLANs when the source is a trunk port.

Note

To configure source VLAN filtering for ERSPAN, see the “Configuring ERSPAN” section on page 57-25.

To configure source VLAN filtering when the local SPAN or RSPAN source is a trunk port, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2 Router(config)# monitor session session_number filter single_vlan</td>
<td>Configures source VLAN filtering when the local SPAN or RSPAN source is a trunk port.</td>
</tr>
<tr>
<td>vlan_list</td>
<td>vlan_range</td>
</tr>
</tbody>
</table>

When configuring source VLAN filtering, note the following information:

- *single_vlan* is the ID number of a single VLAN.
- *vlan_list* is *single_vlan*, *single_vlan*, *single_vlan* ...
- *vlan_range* is *first_vlan_ID* - *last_vlan_ID*.
- *mixed_vlan_list* is, in any order, *single_vlan*, *vlan_range*, ...
This example shows how to monitor VLANs 1 through 5 and VLAN 9 when the source is a trunk port:

```
Router(config)# monitor session 2 filter vlan 1 - 5, 9
```

Verifying the Configuration

To verify the configuration, enter the `show monitor session` command.

This example shows how to verify the configuration of session 2:

```
Router# show monitor session 2
Session 2
------------
Type : Remote Source Session

Source Ports:
 RX Only:       Fa3/1
Dest RSPAN VLAN:   901
Router#
```

This example shows how to display the full details of session 2:

```
Router# show monitor session 2 detail
Session 2
------------
Type : Remote Source Session

Source Ports:
 RX Only:       Fa1/1-3
 TX Only:       None
 Both:          None

Source VLANs:
 RX Only:       None
 TX Only:       None
 Both:          None

Source RSPAN VLAN: None
Destination Ports: None
Filter VLANs:      None
Dest RSPAN VLAN:   901
```

Configuration Examples

This example shows the configuration of RSPAN source session 2:

```
Router(config)# monitor session 2 source interface fastethernet1/1 - 3 rx
Router(config)# monitor session 2 destination remote vlan 901
```

This example shows how to clear the configuration for sessions 1 and 2:

```
Router(config)# no monitor session range 1-2
```

This example shows the configuration of an RSPAN source session with multiple sources:

```
Router(config)# monitor session 2 source interface fastethernet 5/15 , 7/3 rx
Router(config)# monitor session 2 source interface gigabitethernet 1/2 tx
Router(config)# monitor session 2 source interface port-channel 102
Router(config)# monitor session 2 source filter vlan 2 - 3
Router(config)# monitor session 2 destination remote vlan 901
```

This example shows how to remove sources for a session:

```
Router(config)# no monitor session 2 source interface fastethernet 5/15 , 7/3
```
This example shows how to remove options for sources for a session:

Router(config)# no monitor session 2 source interface gigabitethernet 1/2
Router(config)# no monitor session 2 source interface port-channel 102 tx

This example shows how to remove VLAN filtering for a session:

Router(config)# no monitor session 2 filter vlan 3

This example shows the configuration of RSPAN destination session 8:

Router(config)# monitor session 8 source remote vlan 901
Router(config)# monitor session 8 destination interface fastethernet 1/2 , 2/3

This example shows the configuration of ERSPAN source session 12:

monitor session 12 type erspan-source
description SOURCE_SESSION_FOR_VRF_GRAY
source interface Gi8/48 rx
destination
erspan-id 120
ip address 10.8.1.2
origin ip address 32.1.1.1
vrf gray

This example shows the configuration of ERSPAN destination session 12:

monitor session 12 type erspan-destination
description DEST_SESSION_FOR_VRF_GRAY
destination interface Gi4/48
source
erspan-id 120
ip address 10.8.1.2
vrf gray

This example shows the configuration of ERSPAN source session 13:

monitor session 13 type erspan-source
source interface Gi6/1 tx
destination
erspan-id 130
ip address 10.11.1.1
origin ip address 32.1.1.1

This example shows the configuration of ERSPAN destination session 13:

monitor session 13 type erspan-destination
destination interface Gi6/1
source
erspan-id 130
ip address 10.11.1.1

Configuring SPAN on EVC

Currently, traffic mirroring, lawful intercept, or Switched Port Analyzer (SPAN) on a per service instance is unavailable.
The existing command line interface supports configuring interface and VLAN as the local SPAN source. The same command line interface is enhanced to accept service instance IDs along with the interface. Since an EVC is support only for the local session SPAN, service instance options for the SPAN source are added in the local SPAN configuration submode.

You configure SPAN to intercept traffic in three ways:

- **SPAN on Port**: The traffic on all EVCs on the port or port channel is included for a SPAN session along with routed traffic on that port.
- **SPAN on VLAN**: The traffic on all EVC bridge-domains with the same VLAN is included for a SPAN session along with other switchports on the same VLAN.
- **SPAN on EVC**: The traffic on a given EFP or a set of EFPS is included for a SPAN session.

Restrictions and Usage Guidelines

Follow these restrictions and usage guidelines while configuring SPAN on EVC, follow these restrictions and usage guidelines:

- Only Local SPAN is supported.
- EVC SPAN is effective only if the EVC is on the ES+ line card.
- EVC as a SPAN destination is not supported.
- Egress SPAN packet does not undergo QoS processing.
- If a combination of switchports and EVC bridge-domain exists, then for flood case packet on both is spanned. VLAN and SPAN are configured in the transmit direction on the source port.
- If a combination of different EVC bridge-domain exists, then for flood case packet on all the EVCs is spanned. VLAN and SPAN are configured in the transmit direction on the source port.
- EVC SPAN does not work with multiple destination ports.
- For EVCs configured as a part of more than one SPAN session (EVC, VLAN, or port), traffic is monitored on only one session.
- EFPS and VLAN cannot be configured as source in the same monitor session.
- For a 10G port, the aggregate of ingress traffic and SPAN traffic cannot exceed 10G.
- For a 10G port with port-shaper, the aggregate of port traffic and SPAN traffic cannot exceed the port-shaper.
- For a 1G port, the total SPAN traffic can be as high as 10G, but due to network processor limitations and fabric bottleneck, the net traffic can be reduced.

Configuring SPAN on EVC

Complete the following steps to configure SPAN on EVC.

SUMMARY STEPS

1. `enable`
2. `configure terminal`
3. `interface port-channel number`
4. `[no] ip address`
Configuring Local SPAN on EVC

5. `[no] service instance id Ethernet [service-name]`
6. `encapsulation { default|untagged|dot1q vlan-id [second-dot1q vlan-id]}
7. `rewrite ingress tag { push { dot1q vlan-id | dot1q vlan-id second-dot1q vlan-id | dot1ad vlan-id dot1q vlan-id } | pop { 1 | 2 } | translate { 1-to-1 { dot1q vlan-id | dot1ad vlan-id } | 2-to-1 dot1q vlan-id | dot1ad vlan-id } | 1-to-2 { dot1q vlan-id second-dot1q vlan-id | dot1ad vlan-id dot1q vlan-id } | 2-to-2 { dot1q vlan-id second-dot1q vlan-id | dot1ad vlan-id dot1q vlan-id } } symmetric`
8. `exit`
9. `monitor session local_span_session_number type [local | local-tx]`
10. `source { interface | service instance | vlan } [GigabitEthernet | Port-channel | TenGigabitEthernet] [rx | tx | both]`
11. `destination interface [GigabitEthernet | Port-channel | TenGigabitEthernet]`
12. `[no] shutdown`
13. `end`

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td><code>enable</code> Enables privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td><code>configure terminal</code> Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>interface port-channel number</code> Creates the port-channel interface.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>[no] ip address</code> Assigns a subnet mask to the ethernet channel.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>[no] service instance id Ethernet [service-name]</code> Creates a service instance (an instantiation of an EVC) on an interface and sets the device to the ethernet service configuration submode.</td>
</tr>
<tr>
<td>Step 6</td>
<td>`encapsulation { default</td>
</tr>
<tr>
<td>Step 7</td>
<td>`rewrite ingress tag { push { dot1q vlan-id</td>
</tr>
<tr>
<td>Step 8</td>
<td><code>exit</code> Exits to global configuration mode.</td>
</tr>
<tr>
<td>Step 9</td>
<td>`monitor session local_span_session_number type [local</td>
</tr>
<tr>
<td>Step 10</td>
<td>`source { interface</td>
</tr>
</tbody>
</table>
Sample Configuration

This is an example for configuring SPAN on EVC.

```bash
Router# enable
Router# configure terminal
Router(config)# interface port-channel 11
Router(config-if)# no ip address
Router(config-if)# service instance 101 ethernet
Router(config-if-srv)# encapsulation dot1q 13
Router(config-if-srv)# rewrite ingress tag push dot1q 20 symmetric
Router(config-if-srv)# exit
Router(config)# monitor session 1 type local
Router(config-mon-local)# source service instance 2 - 100 Port-channel 1 both
Router(config-mon-local)# destination interface Port-channel 3
Router(config-mon-local)# no shut
Router(config-mon-local)# end
```

Verifying SPAN on EVC

This section provides the commands to verify the SPAN configuration.

```bash
Router# show monitor session 1
Session 1
---------
Type : Local Session
Status : Admin Enabled
Source EFPs : 
  Both : Po1: 2-100
Destination Ports : Po3

Router# show run | section monitor
monitor session 1 type local
    source service instance 2 - 100 Port-channel 1
    destination interface Port-channel 3
```

Troubleshooting

For specific troubleshooting information, contact Cisco Technical Assistance Center (TAC) at this location:

Distributed Egress SPAN

In Centralized Egress SPAN, every packet that needs replication has to go through the supervisor engine. This reduces the performance of the router. In Distributed Egress SPAN (DES), the Transmit (Tx) SPAN replicates locally on the line card instead of relying on the supervisor engine.
Effective with Release 15.2(2)S, DES is supported on the Cisco 7600 routers.

Restrictions for the DES Feature

Following restrictions apply for DES:

- Hyperion ASIC revision levels 5.0 and higher, and all versions of the Metropolis ASIC support DES mode for ERSPAN sources.
- Switching modules with Hyperion ASIC revision levels lower than 5.0 do not support DES mode for ERSPAN sources.
- For Local SPAN and RSPAN sessions, the presence of DES incapable cards revert the system to Centralized Egress mode.
- The non-DFC line cards and the line cards that do not have Titan, Hyperion, or Metropolis are DES incapable cards.
- The DES should be configured using the sub-mode command, and not using the legacy global configuration command.

Configuring Distributed Egress SPAN

This section describes how to configure the Egress Replication mode:

SUMMARY STEPS

1. enable
2. configure terminal
3. no monitor session egress replication-mode centralized
4. end

DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>no monitor session egress replication-mode centralized</td>
</tr>
<tr>
<td>Step 4</td>
<td>end</td>
</tr>
</tbody>
</table>

Note: Enter the `monitor session egress replication-mode centralized` command to enable Centralized Egress SPAN mode.
Configuration Examples

This example shows how to enable Egress Replication mode:

Router# configure terminal
Router(config)# no monitor session egress replication-mode centralized
Router(config)# end

This example shows how to disable Egress Replication mode:

Router# configure terminal
Router(config)# monitor session egress replication-mode centralized
Router(config)# end

Verifying the Configuration

These examples show how to display the Egress Replication mode:

Router# show monitor session egress replication-mode
Egress SPAN Replication Mode Session State:

Session : 1
Session Type : Local Session
Operational mode : Distributed
Configured mode : Distributed/Default

Session : 2
Session Type : Local Session
Operational mode : Distributed
Configured mode : Distributed/Default

--
Global Egress SPAN Replication Mode Capability:

<table>
<thead>
<tr>
<th>Slot</th>
<th>LSPAN</th>
<th>RSPAN</th>
<th>ERSPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Centralized</td>
<td>Centralized</td>
<td>Centralized</td>
</tr>
<tr>
<td>7</td>
<td>Distributed</td>
<td>Distributed</td>
<td>Distributed</td>
</tr>
<tr>
<td>8</td>
<td>Distributed</td>
<td>Distributed</td>
<td>Distributed</td>
</tr>
<tr>
<td>12</td>
<td>Distributed</td>
<td>Distributed</td>
<td>Distributed</td>
</tr>
</tbody>
</table>

Router# show monitor session 1
Session 1

Type : Local Session
Status : Admin Enabled
Source Ports :
Both : Fa2/3
Destination Ports : Fa2/1
Ingress & Learn : Fa2/1

Egress SPAN Replication State:
Operational mode : Distributed
Configured mode : Distributed

Router# show monitor session 1 detail
Session 1

Type : Local Session
Status : Admin Enabled
Description : -
Distributed Egress SPAN

<table>
<thead>
<tr>
<th>Source Ports</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX Only</td>
<td>: None</td>
</tr>
<tr>
<td>TX Only</td>
<td>: None</td>
</tr>
<tr>
<td>Both</td>
<td>: Fa2/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source VLANs</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX Only</td>
<td>: None</td>
</tr>
<tr>
<td>TX Only</td>
<td>: None</td>
</tr>
<tr>
<td>Both</td>
<td>: None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source EFPs</th>
<th>:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX Only</td>
<td>: None</td>
</tr>
<tr>
<td>TX Only</td>
<td>: None</td>
</tr>
<tr>
<td>Both</td>
<td>: None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source RSPAN VLAN</th>
<th>: None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination Ports</td>
<td>: Fa2/1</td>
</tr>
<tr>
<td>Ingress & Learn</td>
<td>: Fa2/1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filter VLANs</th>
<th>: None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest RSPAN VLAN</td>
<td>: None</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>: None</td>
</tr>
<tr>
<td>Source IP VRF</td>
<td>: None</td>
</tr>
<tr>
<td>Source ERSSPAN ID</td>
<td>: None</td>
</tr>
<tr>
<td>Destination IP Address</td>
<td>: None</td>
</tr>
<tr>
<td>Destination IP VRF</td>
<td>: None</td>
</tr>
<tr>
<td>Destination ERSSPAN ID</td>
<td>: None</td>
</tr>
<tr>
<td>Origin IP Address</td>
<td>: None</td>
</tr>
<tr>
<td>IP QOS PREC</td>
<td>: 0</td>
</tr>
<tr>
<td>IP TTL</td>
<td>: 255</td>
</tr>
</tbody>
</table>

Egress SPAN Replication State:
Operational mode : Distributed
Configured mode : Distributed

Troubleshooting

For specific troubleshooting information, contact Cisco Technical Assistance Center (TAC) at this location:

Configuring SNMP IfIndex Persistence

This chapter describes how to configure the SNMP ifIndex persistence feature on Cisco 7600 series routers.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

- Understanding SNMP IfIndex Persistence, page 58-1
- Configuring SNMP IfIndex Persistence, page 58-2

Understanding SNMP IfIndex Persistence

The SNMP ifIndex persistence feature provides an interface index (ifIndex) value that is retained and used when the router reboots. The ifIndex value is a unique identifying number associated with a physical or logical interface.

There is no requirement in the relevant RFCs that the correspondence between particular ifIndex values and their interfaces be maintained when the router reboots, but many applications (for example, device inventory, billing, and fault detection) require maintenance of this correspondence.

You can poll the router at regular intervals to correlate the interfaces to the ifIndexes, but it is not practical to poll constantly. The SNMP ifIndex persistence feature provides permanent ifIndex values, which eliminates the need to poll interfaces.

The following definitions are based on RFC 2233, “The Interfaces Group MIB using SMIv2.” The following terms are values in the Interfaces MIB (IF-MIB):

- **ifIndex** — A unique number (greater than zero) that identifies each interface for SNMP identification of that interface.

- **ifName** — The text-based name of the interface, for example, “ethernet 3/1.”

- **ifDescr** — A description of the interface. Recommended information for this description includes the name of the manufacturer, the product name, and the version of the interface hardware and software.
Configuring SNMP IfIndex Persistence

These sections describe how to configure SNMP ifIndex persistence:

- Enabling SNMP IfIndex Persistence Globally, page 58-2 (Optional)
- Enabling and Disabling SNMP IfIndex Persistence on Specific Interfaces, page 58-2 (Optional)

Note
To verify that ifIndex commands have been configured, use the `more system:running-config` command.

Enabling SNMP IfIndex Persistence Globally

SNMP ifIndex persistence is disabled by default. To globally enable SNMP ifIndex persistence, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>router(config)# snmp-server ifindex persist</code></td>
<td>Globally enables SNMP ifIndex persistence.</td>
</tr>
</tbody>
</table>

In the following example, SNMP ifIndex persistence is enabled for all interfaces:

```
router(config)# snmp-server ifindex persist
```

Disabling SNMP IfIndex Persistence Globally

To globally disable SNMP ifIndex persistence after enabling it, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>router(config)# no snmp-server ifindex persist</code></td>
<td>Globally disables SNMP ifIndex persistence.</td>
</tr>
</tbody>
</table>

In the following example, SNMP ifIndex persistence is disabled for all interfaces:

```
router(config)# no snmp-server ifindex persist
```

Enabling and Disabling SNMP IfIndex Persistence on Specific Interfaces

To enable SNMP ifIndex persistence only on a specific interface, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router(config)# interface {vlan vlan_ID}</td>
<td>{type slot/port}</td>
</tr>
</tbody>
</table>
Chapter 58 Configuring SNMP IfIndex Persistence

Configuring SNMP IfIndex Persistence

Note

The `[no] snmp ifindex persistence` interface command cannot be used on subinterfaces. A command applied to an interface is automatically applied to all the subinterfaces associated with that interface.

In the following example, SNMP ifIndex persistence is enabled for Ethernet interface 3/1 only:

```
router(config)# interface ethernet 3/1
router(config-if)# snmp ifindex persist
router(config-if)# exit
```

In the following example, SNMP ifIndex persistence is disabled for Ethernet interface 3/1 only:

```
router(config)# interface ethernet 3/1
router(config-if)# no snmp ifindex persist
router(config-if)# exit
```

Clearing SNMP IfIndex Persistence Configuration from a Specific Interface

To clear the interface-specific SNMP ifIndex persistence setting and configure the interface to use the global configuration setting, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# snmp ifindex persist</code></td>
<td>Enables SNMP ifIndex persistence on the specified interface.</td>
</tr>
<tr>
<td><code>Router(config-if)# no snmp ifindex persist</code></td>
<td>Disables SNMP ifIndex persistence on the specified interface.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-if)# exit</code></td>
<td>Exits interface configuration mode.</td>
</tr>
</tbody>
</table>

1. `type` = any supported interface type.

Command Purpose

Step 1

`Router(config)# interface type slot/port`
Enters interface configuration mode for the specified interface. Note that the syntax of the interface command will vary depending on the platform you are using.

Step 2

`Router(config-if)# snmp ifindex clear`
Clears any interface-specific SNMP ifIndex persistence configuration for the specified interface and returns to the global configuration setting.

Step 3

`Router(config-if)# exit`
Exits interface configuration mode.

In the following example, any previous setting for SNMP ifIndex persistence on Ethernet interface 3/1 is removed from the configuration. If SNMP ifIndex persistence is globally enabled, SNMP ifIndex persistence will be enabled for Ethernet interface 3/1. If SNMP ifIndex persistence is globally disabled, SNMP ifIndex persistence will be disabled for Ethernet interface 3/1.

```
router(config)# interface ethernet 3/1
router(config-if)# snmp ifindex clear
router(config-if)# exit
```
Power Management and Environmental Monitoring

This chapter describes the power management and environmental monitoring features in the Cisco 7600 series routers.

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

- Understanding How Power Management Works, page 59-1
- Understanding How Environmental Monitoring Works, page 59-10

Understanding How Power Management Works

These sections describe power management in the Cisco 7600 series routers:

- Enabling or Disabling Power Redundancy, page 59-2
- Powering Modules Off and On, page 59-3
- Viewing System Power Status, page 59-4
- Power Cycling Modules, page 59-5
- Power Cycling Power Supplies, page 59-5
- Determining System Power Requirements, page 59-5
- Determining System Hardware Capacity, page 59-5
- Determining Sensor Temperature Threshold, page 59-9

Installed power supplies in a system can be of different wattage ratings. Installed power supplies can also be both AC-input, both DC-input, or one AC-input and one DC-input. Power supplies can be configured in either redundant or non-redundant mode. For detailed information on supported power supply configurations, refer to the Cisco 7600 Series Router Installation Guide.
Understanding How Power Management Works

The modules have different power requirements, and some configurations require more power than a single power supply can provide. The power management feature allows you to power all installed modules with two power supplies. However, redundancy is not supported in this configuration because the total power drawn from both power supplies is at no time greater than the capability of one supply. Redundant and nonredundant power configurations are described in the following sections.

To determine the power requirements for your system, see the “Determining System Power Requirements” section on page 59-5.

Enabling or Disabling Power Redundancy

To disable or enable redundancy (redundancy is enabled by default) from global configuration mode, enter the power redundancy-mode combined | redundant commands. You can change the configuration of the power supplies to redundant or nonredundant at any time.

To disable redundancy, use the combined keyword. In a nonredundant configuration, the power available to the system is the combined power capability of both power supplies. The system powers up as many modules as the combined capacity allows. However, if one power supply fails and there is not enough power for all of the previously powered-up modules, the system powers down those modules.

To enable redundancy, use the redundant keyword. In a redundant configuration, the total power drawn from both power supplies is not greater than the capability of one power supply. If one supply malfunctions, the other supply can take over the entire system load. When you install and power up two power supplies, each concurrently provides approximately half of the required power to the system. Load sharing and redundancy are enabled automatically; no software configuration is required.

To view the current state of modules and the total power available for modules, enter the show power command (see the “Viewing System Power Status” section on page 59-4).

Table 59-1 describes how the system responds to changes in the power supply configuration.

<table>
<thead>
<tr>
<th>Configuration Change</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundant to nonredundant</td>
<td>• System log and syslog messages are generated.</td>
</tr>
<tr>
<td></td>
<td>• System power is increased to the combined power capability of both power supplies.</td>
</tr>
<tr>
<td></td>
<td>• Modules marked power-deny in the show power oper state field are brought up if there is sufficient power.</td>
</tr>
<tr>
<td>Nonredundant to redundant (both power supplies must be of equal wattage)</td>
<td>• System log and syslog messages are generated.</td>
</tr>
<tr>
<td></td>
<td>• System power is decreased to the power capability of one supply.</td>
</tr>
<tr>
<td></td>
<td>• If there is not enough power for all previously powered-up modules, some modules are powered down and marked as power-deny in the show power oper state field.</td>
</tr>
<tr>
<td>Equal wattage power supply is inserted with redundancy enabled</td>
<td>• System log and syslog messages are generated.</td>
</tr>
<tr>
<td></td>
<td>• System power equals the power capability of one supply.</td>
</tr>
<tr>
<td></td>
<td>• No change in module status because the power capability is unchanged.</td>
</tr>
</tbody>
</table>
To power modules off and on from the CLI, perform this task.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
</tr>
<tr>
<td>Router(config)# power enable module slot_number</td>
<td>Powers a module on.</td>
</tr>
<tr>
<td>Router(config)# no power enable module slot_number</td>
<td>Powers a module off.</td>
</tr>
</tbody>
</table>
Note: When you enter the **no power enable module** *slot* command to power down a module, the module’s configuration is not saved.

This example shows how to power on the module in slot 3:

```
Router# configure terminal
Router(config)# power enable module 3
```

Viewing System Power Status

You can view the current power status of system components by entering the **show power** command as follows:

```
Router# show power
system power redundancy mode = redundant
system power total = 1153.32 Watts (27.46 Amps @ 42V)
system power used = 397.74 Watts (9.47 Amps @ 42V)
system power available = 755.58 Watts (17.99 Amps @ 42V)
```

```
<table>
<thead>
<tr>
<th>Slot</th>
<th>Card-Type</th>
<th>Pwr-Requested Watts</th>
<th>A @42V</th>
<th>Pwr-Allocated Watts</th>
<th>A @42V</th>
<th>Admin Oper Watts</th>
<th>A @42V</th>
<th>Oper State</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WS-X6K-SUP2-2GE</td>
<td>142.38</td>
<td>3.39</td>
<td>142.38</td>
<td>3.39</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>WS-X6248-RJ-45</td>
<td>112.98</td>
<td>2.69</td>
<td>112.98</td>
<td>2.69</td>
<td>on</td>
<td>on</td>
<td>on</td>
<td>on</td>
</tr>
</tbody>
</table>
```

```
Router# show power status power-supply 2
power-supply 2:
  power-supply 2 fan-fail: OK
  power-supply 2 power-input 1: AC low
  power-supply 2 power-output-fail: OK
```

```
Router# show env status power-supply 1
power-supply 1:
  power-supply 1 fan-fail: OK
  power-supply 1 power-input 1: AC low
  power-supply 1 power-output-fail: OK
```

```
Router# show env status power-supply 2
power-supply 2:
  power-supply 2 fan-fail: OK
  power-supply 2 power-input 1: none<< new
  power-supply 2 power-input 2: AC low<< new
  power-supply 2 power-input 3: AC high<< new
  power-supply 2 power-output: low (mode 1)<< high for highest mode only
  power-supply 2 power-output-fail: OK
```
Power Cycling Modules

You can power cycle (reset) a module from global configuration mode by entering the `power cycle module slot` command. The module powers off for 5 seconds, and then powers on.

Power Cycling Power Supplies

If you have redundant power supplies and you power cycle one of the power supplies, only that power supply is power cycled. If you power cycle both power supplies, the system goes down and comes back up in 10 seconds.

If you only have one power supply and you power cycle that power supply, the system goes down and comes back up in 10 seconds.

This example shows how to power cycle a power supply:

```
Router# hw-module power-supply 2 power-cycle
Power-cycling the power supply may interrupt service.
Proceed with power-cycling? [confirm]
Power-cycling power-supply 1
22:10:23: %C6KPWR-SP-2-PSFAIL: power supply 1 output failed.
22:10:25: %C6KENV-SP-4-PSFANFAILED: the fan in power supply 1 has failed
22:10:33: %C6KPWR-SP-4-PSOK: power supply 1 turned on.
22:10:33: %C6KENV-SP-4-PSFANOK: the fan in power supply 1 is OK
Router#
```

Determining System Power Requirements

The power supply size determines the system power requirements. When you use the 1000 W and 1300 W power supplies, you might have configuration limitations depending on the size of chassis and type of modules installed. For information about power consumption, refer to the Release Notes for Cisco IOS Release 12.2SX on the Supervisor Engine 720, Supervisor Engine 32, and Supervisor Engine 2 publication at this URL:

Determining System Hardware Capacity

You can determine the system hardware capacity by entering the `show platform hardware capacity` command. This command displays the current system utilization of the hardware resources and displays a list of the currently available hardware capacities, including the following:

- Hardware forwarding table utilization
- Switch fabric utilization
- CPU(s) utilization
- Memory device (flash, DRAM, NVRAM) utilization

This example shows how to display CPU capacity and utilization information for the route processor, the switch processor, and the LAN module in the Cisco 7600 series router:

```
Router# show platform hardware capacity cpu
CPU Resources
CPU utilization: Module 5 seconds 1 minute 5 minutes
1 RP 0% / 0% 1% 1%
```
Understanding How Power Management Works

Chapter 59 Power Management and Environmental Monitoring

Understanding How Power Management Works

Router# show platform hardware capacity eobc EOBC Resources
<table>
<thead>
<tr>
<th>Module</th>
<th>Packets/sec</th>
<th>Total packets</th>
<th>Dropped packets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RP</td>
<td>Rx:</td>
<td>61</td>
<td>108982</td>
</tr>
<tr>
<td></td>
<td>Tx:</td>
<td>37</td>
<td>77298</td>
</tr>
<tr>
<td>1 SP</td>
<td>Rx:</td>
<td>34</td>
<td>101627</td>
</tr>
<tr>
<td></td>
<td>Tx:</td>
<td>39</td>
<td>115417</td>
</tr>
<tr>
<td>7</td>
<td>Rx:</td>
<td>5</td>
<td>10358</td>
</tr>
<tr>
<td></td>
<td>Tx:</td>
<td>8</td>
<td>18543</td>
</tr>
<tr>
<td>8</td>
<td>Rx:</td>
<td>5</td>
<td>12130</td>
</tr>
<tr>
<td></td>
<td>Tx:</td>
<td>10</td>
<td>20317</td>
</tr>
</tbody>
</table>

Router# show platform hardware capacity fabric Switch Fabric Resources

Bus utilization: current is 100%, peak was 100% at 12:34 12mar45

Router# show platform hardware capacity flash Flash/NVRAM Resources

Router# show platform hardware capacity forwarding L2 Forwarding Resources
L3 Forwarding Resources

FIB TCAM usage:
- 72 bits (IPv4, MPLS, EoM): 196608 total, 36 used, 1%
- 144 bits (IPv mcast, IPv6): 32768 total, 7 used, 1%

Protocol usage:
- IPv4: 36 used, 1%
- MPLS: 0 used, 0%
- EoM: 0 used, 0%
- IPv6: 4 used, 1%
- IPv4 mcast: 3 used, 1%
- IPv6 mcast: 0 used, 0%

Adjacency usage:
- 1048576 total, 175 used, 1%

Forwarding engine load:

<table>
<thead>
<tr>
<th>Module</th>
<th>pps</th>
<th>peak-pps</th>
<th>peak-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
<td>1972</td>
<td>02:02:17 UTC Thu Apr 21 2005</td>
</tr>
</tbody>
</table>

Netflow Resources

TCAM utilization:
- Module 6: Created 1, Failed 0, 0%

ICAM utilization:
- Module 6: Created 0, Failed 0, 0%

Flowmasks:
- IPv4: 0 reserved, none
- IPv4: 1 Intf FuNAT_INGRESS NAT_EGRESS FM_GUARDIAN
- IPv4: 2 unused, none
- IPv4: 3 reserved, none
- IPv6: 0 reserved, none
- IPv6: 1 unused, none
- IPv6: 2 unused, none
- IPv6: 3 reserved, none

CPU Rate Limiters Resources

Rate limiters:
- Layer 3: 9 total, 4 used, 1 reserved, 44%
- Layer 2: 4 total, 2 used, 2 reserved, 50%

ACL/QoS TCAM Resources

Key:
- ACLent - ACL TCAM entries
- ACLmsk - ACL TCAM masks
- QoS - QoS TCAM entries
- QOSmk - QoS TCAM masks
- Lbl-in - ingress label
- Lbl-eg - egress label
- LOUsr - LOU source
- LOUdst - LOU destination
- ADJ - ACL adjacency

Module and Features:
- Module: ACLent ACLmsk QoS QOSmk Lbl-in Lbl-eg LOUsr LOUdst ADJ 6
- Features: 1% 1% 1% 1% 1% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1%

Router Command

```bash
Router# show platform hardware capacity interface Interface Resources
Interface drops:
Module       Total drops:  Tx         Rx      Highest drop port:  Tx         Rx
```

This example shows how to display the interface resources.
This example shows how to display SPAN information:

Router# show platform hardware capacity monitor SPAN Resources

Source sessions: 2 maximum, 0 used
 Type Used
 Local 0
 RSPAN source 0
 ERSSPAN source 0
 Service module 0

Destination sessions: 64 maximum, 0 used
 Type Used
 RSPAN destination 0
 ERSSPAN destination (max 24) 0

This example shows how to display the capacity and utilization of resources for Layer 3 multicast functionality:

Router# show platform hardware capacity multicast

IPv4 replication mode: ingress
IPv6 replication mode: ingress
Bi-directional PIM Designated Forwarder Table usage: 4 total, 0 (0%) used

Replication capability: Module
 IPv4 IPv6
 5 egress egress
 9 ingress ingress

MET table Entries: Module
 Total Used %Used
 5 65526 6 0%

This example shows how to display information about the system power capacities and utilizations:

Router# show platform hardware capacity power

Power supply redundancy mode: administratively combined operationally combined
System power: 1922W, 0W (0%) inline, 1289W (67%) total allocated
Powered devices: 0 total

This example shows how to display the capacity and utilization of QoS policer resources for each EARL in the Cisco 7600 series router.

Router# show platform hardware capacity qos

Aggregate policers: Module
 Total Used %Used
 1 1024 102 10%
 5 1024 1 1%

Microflow policer configurations: Module
 Total Used %Used
 1 64 32 50%
 5 64 1 1%

This example shows how to display information about the key system resources:
Understanding How Power Management Works

Router# show platform hardware capacity systems System Resources
 PFC operating mode: PFC3BXL
 Supervisor redundancy mode: administratively rpr-plus, operationally rpr-plus
 Switching Resources: Module | Part number | Series | CEF mode
 5 WS-SUP720-BASE supervisor CEF
 9 WS-X6548-RJ-45 CEF256 CEF

Router#

This example shows how to display VLAN information:

Router# show platform hardware capacity vlan VLAN Resources
 VLANs: 4094 total, 10 VTP, 0 extended, 0 internal, 4084 free Router#

Determining Sensor Temperature Threshold

The system sensors set off alarms based on different temperature threshold settings. You can determine the allowed temperatures for the sensors by using the `show environment alarm threshold` command.

This example shows how to determine sensor temperature thresholds:

Router# show environment alarm threshold

environmental alarm thresholds:

power-supply 1 fan-fail: OK
 threshold #1 for power-supply 1 fan-fail:
 (sensor value != 0) is system minor alarm
power-supply 1 power-output-fail: OK
 threshold #1 for power-supply 1 power-output-fail:
 (sensor value != 0) is system minor alarm
fantray fan operation sensor: OK
 threshold #1 for fantray fan operation sensor:
 (sensor value != 0) is system minor alarm operating clock count: 2
 threshold #2 for operating clock count:
 (sensor value < 2) is system minor alarm
fantray fan operation sensor: OK
 threshold #2 for operating clock count:
 (sensor value < 1) is system major alarm operating VTT count: 3
 threshold #1 for operating VTT count:
 (sensor value < 3) is system minor alarm
 threshold #2 for operating VTT count:
 (sensor value < 2) is system major alarm VTT 1 OK: OK
 (sensor value != 0) is system minor alarm
 threshold #1 for VTT 1 OK:
 (sensor value != 0) is system minor alarm VTT 2 OK: OK
 (sensor value != 0) is system minor alarm
 threshold #1 for VTT 2 OK:
 (sensor value != 0) is system minor alarm VTT 3 OK: OK
 (sensor value != 0) is system minor alarm
 threshold #1 for VTT 3 OK:
 (sensor value != 0) is system minor alarm clock 1 OK: OK
 (sensor value != 0) is system minor alarm
 threshold #1 for clock 1 OK:
 (sensor value != 0) is system minor alarm clock 2 OK: OK
 (sensor value != 0) is system minor alarm
 threshold #1 for clock 2 OK:
 (sensor value != 0) is system minor alarm module 1 power-output-fail: OK
 (sensor value != 0) is system minor alarm
 threshold #1 for module 1 power-output-fail:
 (sensor value != 0) is system major alarm module 1 outlet temperature: 21C
 threshold #1 for module 1 outlet temperature:
 (sensor value > 60) is system minor alarm
 threshold #2 for module 1 outlet temperature:
 (sensor value > 70) is system major alarm module 1 inlet temperature: 25C
 threshold #1 for module 1 inlet temperature:
 (sensor value > 60) is system major alarm
 threshold #2 for module 1 inlet temperature:
 (sensor value > 70) is system major alarm module 1 device-1 temperature: 30C
 threshold #1 for module 1 device-1 temperature:
 (sensor value > 60) is system minor alarm
 threshold #2 for module 1 device-1 temperature:
 (sensor value > 70) is system major alarm module 1 device-2 temperature: 29C
Understanding How Environmental Monitoring Works

Environmental monitoring of chassis components provides early-warning indications of possible component failures, which ensures a safe and reliable system operation and avoids network interruptions. This section describes the monitoring of these critical system components, which allows you to identify and rapidly correct hardware-related problems in your system.

Monitoring System Environmental Status

To display system status information, enter the `show environment [alarm | cooling | status | temperature]` command. The keywords display the following information:

- **alarm**—Displays environmental alarms.
 - **status**—Displays alarm status.
 - **thresholds**—Displays alarm thresholds.
- **cooling**—Displays fan tray status, chassis cooling capacity, ambient temperature, and per-slot cooling capacity.
- **status**—Displays field-replaceable unit (FRU) operational status and power and temperature information.
- **temperature**—Displays FRU temperature information.

To view the system status information, enter the `show environment` command:

```
Router# show environment
environmental alarms:
  no alarms

Router# show environment alarm
environmental alarms:
  no alarms

Router# show environment cooling
```

threshold #1 for module 1 device-2 temperature:
 (sensor value > 60) is system minor alarm
threshold #2 for module 1 device-2 temperature:
 (sensor value > 70) is system major alarm module 5 power-output-fail: OK
threshold #1 for module 5 power-output-fail:
 (sensor value != 0) is system major alarm
threshold #2 for module 5 power-output-fail:
 (sensor value > 75) is system major alarm module 5 outlet temperature: 26C
threshold #1 for module 5 outlet temperature:
 (sensor value > 60) is system minor alarm
threshold #2 for module 5 outlet temperature:
 (sensor value > 75) is system major alarm module 5 inlet temperature: 23C
threshold #1 for module 5 inlet temperature:
 (sensor value > 50) is system minor alarm
threshold #2 for module 5 inlet temperature:
 (sensor value > 65) is system major alarm EARL 1 outlet temperature: N/O
threshold #1 for EARL 1 outlet temperature:
 (sensor value > 60) is system minor alarm
threshold #2 for EARL 1 outlet temperature:
 (sensor value > 75) is system major alarm EARL 1 inlet temperature: N/O
threshold #1 for EARL 1 inlet temperature:
 (sensor value > 50) is system minor alarm
threshold #2 for EARL 1 inlet temperature:
 (sensor value > 65) is system major alarm

Understanding How Environmental Monitoring Works

Environmental monitoring of chassis components provides early-warning indications of possible component failures, which ensures a safe and reliable system operation and avoids network interruptions. This section describes the monitoring of these critical system components, which allows you to identify and rapidly correct hardware-related problems in your system.

Monitoring System Environmental Status

To display system status information, enter the `show environment [alarm | cooling | status | temperature]` command. The keywords display the following information:

- **alarm**—Displays environmental alarms.
 - **status**—Displays alarm status.
 - **thresholds**—Displays alarm thresholds.
- **cooling**—Displays fan tray status, chassis cooling capacity, ambient temperature, and per-slot cooling capacity.
- **status**—Displays field-replaceable unit (FRU) operational status and power and temperature information.
- **temperature**—Displays FRU temperature information.

To view the system status information, enter the `show environment` command:

```
Router# show environment
environmental alarms:
  no alarms

Router# show environment alarm
environmental alarms:
  no alarms

Router# show environment cooling
```
fan-tray 1:
 fan-tray 1 fan-fail: failed
fan-tray 2:
 fan 2 type: FAN-MOD-9
 fan-tray 2 fan-fail: OK
chassis cooling capacity: 690 cfm
ambient temperature: 55C
chassis per slot cooling capacity: 75 cfm
module 1 cooling requirement: 70 cfm
module 2 cooling requirement: 70 cfm
module 5 cooling requirement: 30 cfm
module 6 cooling requirement: 70 cfm
module 8 cooling requirement: 70 cfm
module 9 cooling requirement: 30 cfm
Router# show environment status
backplane:
 operating clock count: 2
 operating VTT count: 3
fan-tray 1:
 fan-tray 1 type: WS-9SLOT-FAN
 fan-tray 1 fan-fail: OK
VTT 1:
 VTT 1 OK: OK
 VTT 1 outlet temperature: 33C
VTT 2:
 VTT 2 OK: OK
 VTT 2 outlet temperature: 35C
VTT 3:
 VTT 3 OK: OK
 VTT 3 outlet temperature: 33C
clock 1:
 clock 1 OK: OK, clock 1 clock-inuse: in-use
clock 2:
 clock 2 OK: OK, clock 2 clock-inuse: not-in-use
power-supply 1:
 power-supply 1 fan-fail: OK
power-supply 1 power-output-fail: OK
module 1:
 module 1 power-output-fail: OK
 module 1 outlet temperature: 30C
 module 1 device-2 temperature: 35C
RP 1 outlet temperature: 35C
RP 1 inlet temperature: 36C
EARL 1 outlet temperature: 33C
EARL 1 inlet temperature: 31C
module 2:
 module 2 power-output-fail: OK
 module 2 outlet temperature: 31C
 module 2 inlet temperature: 29C
module 3:
 module 3 power-output-fail: OK
 module 3 outlet temperature: 36C
 module 3 inlet temperature: 29C
module 4:
 module 4 power-output-fail: OK
 module 4 outlet temperature: 32C
 module 4 inlet temperature: 32C
module 5:
 module 5 power-output-fail: OK
 module 5 outlet temperature: 39C
 module 5 inlet temperature: 34C
module 7:
Understanding LED Environmental Indications

The LEDs can indicate two alarm types: major and minor. Major alarms indicate a critical problem that could lead to the system being shut down. Minor alarms are for informational purposes only, giving you notice of a problem that could turn critical if corrective action is not taken.

When the system has an alarm (major or minor), that indicates an overtemperature condition, the alarm is not canceled nor is any action taken (such as module reset or shutdown) for 5 minutes. If the temperature falls 5°C (41°F) below the alarm threshold during this period, the alarm is canceled.

Table 59-2 lists the environmental indicators for the supervisor engine and switching modules.

Table 59-2 Environmental Monitoring for Supervisor Engine and Switching Modules

<table>
<thead>
<tr>
<th>Component</th>
<th>Alarm Type</th>
<th>LED Indication</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor engine temperature sensor exceeds major threshold</td>
<td>Major</td>
<td>STATUS LED red</td>
<td>Generates syslog message and an SNMP trap. If there is a redundancy situation, the system switches to a redundant supervisor engine and the active supervisor engine shuts down. If there is no redundancy situation and the overtemperature condition is not corrected, the system shuts down after 5 minutes.</td>
</tr>
<tr>
<td>Supervisor engine temperature sensor exceeds minor threshold</td>
<td>Minor</td>
<td>STATUS LED orange</td>
<td>Generates syslog message and an SNMP trap. Monitors the condition.</td>
</tr>
<tr>
<td>Redundant supervisor engine temperature sensor exceeds major or minor threshold</td>
<td>Major</td>
<td>STATUS LED red</td>
<td>Generates syslog message and an SNMP trap. If a major alarm is generated and the overtemperature condition is not corrected, the system shuts down after 5 minutes.</td>
</tr>
<tr>
<td></td>
<td>Minor</td>
<td>STATUS LED orange</td>
<td>Monitors the condition if a minor alarm is generated.</td>
</tr>
</tbody>
</table>
Understanding How Environmental Monitoring Works

Switching module temperature sensor exceeds major threshold

Major
STATUS LED red
Generates syslog message and SNMP.
Powers down the module.

Switching module temperature sensor exceeds minor threshold

Minor
STATUS LED orange
Generates syslog message and an SNMP trap.
Monitors the condition.

Table 59-2 Environmental Monitoring for Supervisor Engine and Switching Modules (continued)

<table>
<thead>
<tr>
<th>Component</th>
<th>Alarm Type</th>
<th>LED Indication</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switching module temperature sensor exceeds major threshold</td>
<td>Major</td>
<td>STATUS LED red</td>
<td>Generates syslog message and SNMP. Powers down the module.</td>
</tr>
<tr>
<td>Switching module temperature sensor exceeds minor threshold</td>
<td>Minor</td>
<td>STATUS LED orange</td>
<td>Generates syslog message and an SNMP trap. Monitors the condition.</td>
</tr>
</tbody>
</table>

1. Temperature sensors monitor key supervisor engine components including daughter cards.
2. A STATUS LED is located on the supervisor engine front panel and all module front panels.
3. The STATUS LED is red on the failed supervisor engine. If there is no redundant supervisor, the SYSTEM LED is red also.
4. See the “Understanding How Power Management Works” section on page 59-1 for instructions.
Understanding How Environmental Monitoring Works
Configuring Web Cache Services Using WCCP

This chapter describes how to configure the Cisco 7600 series routers to redirect traffic to cache engines (web caches) using the Web Cache Communication Protocol (WCCP), and describes how to manage cache engine clusters (cache farms).

Note

- For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:
- The PFC supports WCCP.
- To use the WCCP Layer 2 PFC redirection feature, configure WCCP on the Cisco 7600 series router as described in this chapter and configure accelerated WCCP on the cache engine as described in the following publication:
 http://www.cisco.com/univercd/cc/td/doc/product/webscale/uce/acns42/cnfg42/transprt.htm#xtocid34
- A cache engine configured for mask assignment that tries to join a farm where the selected assignment method is hash remains out of the farm as long as the cache engine assignment method does not match that of the existing farm.
- With WCCP Layer 2 PFC redirection as the forwarding method for a service group, the packet counters in the `show ip wccp service_name` command output displays flow counts instead of packet counts.

This chapter consists of these sections:

- Understanding WCCP, page 60-2
- Restrictions for WCCPv2, page 60-7
- Configuring WCCP, page 60-8
- Verifying and Monitoring WCCP Configuration Settings, page 60-12
- WCCP Configuration Examples, page 60-12
- VRF Support on WCCP, page 60-16
Understanding WCCP

These sections describe WCCP:

- WCCP Overview, page 60-2
- Hardware Acceleration, page 60-3
- Understanding WCCPv1 Configuration, page 60-4
- Understanding WCCPv2 Configuration, page 60-5
- WCCPv2 Features, page 60-6

WCCP Overview

The Web Cache Communication Protocol (WCCP) is a Cisco-developed content-routing technology that allows you to integrate cache engines (such as the Cisco Cache Engine 550) into your network infrastructure.

The Cisco IOS WCCP feature allows use of Cisco Cache Engines (or other caches running WCCP) to localize web traffic patterns in the network, enabling content requests to be fulfilled locally. Traffic localization reduces transmission costs and download time.

WCCP enables Cisco IOS routing platforms to transparently redirect content requests. The main benefit of transparent redirection is that users need not configure their browsers to use a web proxy. Instead, they can use the target URL to request content, and have their requests automatically redirected to a cache engine. The word “transparent” is this case means that the end user does not know that a requested file (such as a web page) came from the cache engine instead of from the originally specified server.

When a cache engine receives a request, it attempts to service it from its own local cache. If the requested information is not present, the cache engine issues its own request to the originally targeted server to get the required information. When the cache engine retrieves the requested information, it forwards it to the requesting client and caches it to fulfill future requests, thus maximizing download performance and substantially reducing transmission costs.

WCCP enables a series of cache engines, called a cache engine cluster, to provide content to a router or multiple routers. Network administrators can easily scale their cache engines to handle heavy traffic loads through these clustering capabilities. Cisco clustering technology enables each cache member to work in parallel, resulting in linear scalability. Clustering cache engines greatly improves the scalability, redundancy, and availability of your caching solution. You can cluster up to 32 cache engines to scale to your desired capacity.
Hardware Acceleration

Cisco 7600 series routers provide WCCP Layer 2 PFC redirection hardware acceleration for directly connected Cisco Cache Engines, which is more efficient than Layer 3 redirection in software on the MSFC with generic route encapsulation (GRE).

WCCP Layer 2 PFC redirection allows Cisco Cache Engines to use hardware-supported Layer 2 redirection. A directly connected Cache Engine can be configured to negotiate use of the WCCP Layer 2 PFC Redirection feature. The WCCP Layer 2 PFC redirection feature requires no configuration on the MSFC. The `show ip wccp web-cache detail` command displays which redirection method is in use for each cache.

The following guidelines apply to WCCP Layer 2 PFC redirection:

- The WCCP Layer 2 PFC redirection feature sets the IP flow mask to full-flow mode.
- You can configure the Cisco Cache Engine software release 2.2 or later releases to use the WCCP Layer 2 PFC redirection feature.
- Layer 2 redirection takes place on the PFC and is not visible to the MSFC. The `show ip wccp web-cache detail` command on the MSFC displays statistics for only the first packet of a Layer 2 redirected flow, which provides an indication of how many flows, rather than packets, are using Layer 2 redirection. Entering the `show mls entries` command displays the other packets in the Layer 2 redirected flows.

Note

- The PFC provides hardware acceleration for generic route encapsulation (GRE). If you use WCCP Layer 3 redirection with generic route encapsulation (GRE), there is hardware support for encapsulation, but the PFC3 does not provide hardware support for decapsulation of WCCP GRE traffic.
- Releases of Cisco Application and Content Networking System (ACNS) software later than Release 4.2.1 support the `accelerated` keyword.
Understanding WCCPv1 Configuration

With WCCP-Version 1, only a single router services a cluster. In this scenario, this router is the device that performs all the IP packet redirection. Figure 60-1 illustrates how this configuration appears.

Figure 60-1 Cisco Cache Engine Network Configuration Using WCCP-Version 1

Content is not duplicated on the cache engines. The benefit of using multiple caches is that you can scale a caching solution by clustering multiple physical caches to appear as one logical cache.

The following sequence of events details how WCCPv1 configuration works:

1. Each cache engine is configured by the system administrator with the IP address of the control router. Up to 32 cache engines can connect to a single control router.

2. The cache engines send their IP addresses to the control router using WCCP, indicating their presence. Routers and cache engines communicate to each other via a control channel; this channel is based on UDP port 2048.

3. This information is used by the control router to create a cluster view (a list of caches in the cluster). This view is sent to each cache in the cluster, essentially making all the cache engines aware of each other. A stable view is established after the membership of the cluster remains the same for a certain amount of time.

4. Once a stable view has been established, one cache engine is elected as the lead cache engine. (The lead is defined as the cache engine seen by all the cache engines in the cluster with the lowest IP address). This lead cache engine uses WCCP to indicate to the control router how IP packet redirection should be performed. Specifically, the lead cache engine designates how redirected traffic should be distributed across the cache engines in the cluster.
Understanding WCCPv2 Configuration

Multiple routers can use WCCPv2 to service a cache cluster. This is in contrast to WCCPv1 in which only one router could redirect content requests to a cluster. Figure 60-2 illustrates a sample configuration using multiple routers.

![Figure 60-2 Cisco Cache Engine Network Configuration Using WCCP v2](image)

The subset of cache engines within a cluster and routers connected to the cluster that are running the same service is known as a service group. Available services include TCP and User Datagram Protocol (UDP) redirection.

Using WCCPv1, the cache engines were configured with the address of the single router. WCCPv2 requires that each cache engine be aware of all the routers in the service group. To specify the addresses of all the routers in a service group, you must choose one of the following methods:

- **Unicast**—A list of router addresses for each of the routers in the group is configured on each cache engine. In this case the address of each router in the group must be explicitly specified for each cache engine during configuration.

- **Multicast**—A single multicast address is configured on each cache engine. In the multicast address method, the cache engine sends a single-address notification that provides coverage for all routers in the service group. For example, a cache engine could indicate that packets should be sent to a multicast address of 224.0.0.100, which would send a multicast packet to all routers in the service group configured for group listening using WCCP (see the `ip wccp group-listen` interface configuration command for details).

The multicast option is easier to configure because you need only specify a single address on each cache engine. This option also allows you to add and remove routers from a service group dynamically, without needing to reconfigure the cache engines with a different list of addresses each time.

The following sequence of events details how WCCPv2 configuration works:

1. Each cache engine is configured with a list of routers.
2. Each cache engine announces its presence and a list of all routers with which it has established communications. The routers reply with their view (list) of cache engines in the group.

3. Once the view is consistent across all cache engines in the cluster, one cache engine is designated as the lead and sets the policy that the routers need to deploy in redirecting packets.

The following sections describe how to configure WCCPv2 on routers so they may participate in a service group.

WCCPv2 Features

These sections describe WCCPv2 features:

- Support for Non-HTTP Services
- Support for Multiple Routers
- MD5 Security
- Web Cache Packet Return
- Load Distribution

Support for Non-HTTP Services

WCCPv2 allows redirection of traffic other than HTTP (TCP port 80 traffic), including a variety of UDP and TCP traffic. WCCPv1 supported the redirection of HTTP (TCP port 80) traffic only. WCCPv2 supports the redirection of packets intended for other ports, including those used for proxy-web cache handling, File Transfer Protocol (FTP) caching, FTP proxy handling, web caching for ports other than 80, and real audio, video, and telephony applications.

To accommodate the various types of services available, WCCPv2 introduces the concept of multiple service groups. Service information is specified in the WCCP configuration commands using dynamic services identification numbers (such as “98”) or a predefined service keywords (such as “web-cache”). This information is used to validate that service group members are all using or providing the same service.

The cache engines in service group specify traffic to be redirected by protocol (TCP or UDP) and port (source or destination). Each service group has a priority status assigned to it. Packets are matched against service groups in priority order.

Support for Multiple Routers

WCCPv2 allows multiple routers to be attached to a cluster of cache engines. The use of multiple routers in a service group allows for redundancy, interface aggregation, and distribution of the redirection load.

MD5 Security

WCCPv2 provides optional authentication that enables you to control which routers and cache engines become part of the service group using passwords and the HMAC MD5 standard. Shared-secret MD5 one-time authentication (set using the `ip wccp [password [0-7] password]` global configuration command) enables messages to be protected against interception, inspection, and replay.
Web Cache Packet Return

If a cache engine is unable to provide a requested object it has cached due to error or overload, the cache engine will return the request to the router for onward transmission to the originally specified destination server. WCCPv2 provides a check on packets that determines which requests have been returned from the cache engine unserviced. Using this information, the router can then forward the request to the originally targeted server (rather than attempting to resend the request to the cache cluster). This provides error handling transparency to clients.

Typical reasons why a cache engine would reject packets and initiate the packet return feature include the following:

- Instances when the cache engine is overloaded and has no room to service the packets
- Instances when the cache engine is filtering for certain conditions that make caching packets counterproductive (for example, when IP authentication has been turned on)

Load Distribution

WCCPv2 can be used to adjust the load being offered to individual cache engines to provide an effective use of the available resources while helping to ensure high quality of service (QoS) to the clients. WCCPv2 allows the designated cache to adjust the load on a particular cache and balance the load across the caches in a cluster. WCCPv2 uses three techniques to perform load distribution:

- Hot Spot Handling—Allows an individual hash bucket to be distributed across all the cache engines. Prior to WCCPv2, information from one hash bucket could only go to one cache engine.
- Load Balancing—Allows the set of hash buckets assigned to a cache engine to be adjusted so that the load can be shifted from an overwhelmed cache engine to other members that have available capacity.
- Load Shedding—Enables the router to selectively redirect the load to avoid exceeding the capacity of a cache engine.

By using these hashing parameters, you can prevent one cache from being overloaded and reduce the potential for congestion.

Restrictions for WCCPv2

The following limitations apply to WCCP v2:

- WCCP works only with IP networks.
- For routers servicing a multicast cluster, the time to live (TTL) value must be set at 15 or fewer.
- Because the messages may now be IP multicast, members may receive messages that will not be relevant or are duplicates. Appropriate filtering needs to be performed.
- Service groups can comprise up to 32 cache engines and 32 routers.
- All cache engines in a cluster must be configured to communicate with all routers servicing the cluster.
- Multicast addresses must be from 224.0.0.0 to 239.255.255.255.
Configuring WCCP

The following configuration tasks assume that you have already installed and configured the cache engines you want to include in your network. You must configure the cache engines in the cluster before configuring WCCP functionality on your routers. Refer to the Cisco Cache Engine Configuration Guide for cache engine configuration and setup tasks.

IP must be configured on the router interface connected to the cache engines and on the router interface connected to the Internet. Cisco Cache Engines require use of a Fast Ethernet interface for a direct connection. Examples of router configuration tasks follow this section. For complete descriptions of the command syntax, refer to the Release 12.2 Cisco IOS Configuration Fundamentals Command Reference.

These sections describe how to configure WCCP:

- Specifying a Version of WCCP, page 60-8 (Optional)
- Configuring a Service Group Using WCCPv2, page 60-8 (Required)
- Excluding Traffic on a Specific Interface from Redirection, page 60-10 (Optional)
- Registering a Router to a Multicast Address, page 60-10 (Optional)
- Using Access Lists for a WCCP Service Group, page 60-11 (Optional)
- Setting a Password for a Router and Cache Engines, page 60-11 (Optional)

Specifying a Version of WCCP

Until you configure a WCCP service using the `ip wccp {web-cache | service-number} global` configuration command, WCCP is disabled on the router. The first use of a form of the `ip wccp` command enables WCCP. By default WCCPv2 is used for services, but you can use WCCPv1 functionality instead. To change the running version of WCCP from Version 2 to Version 1, or to return to WCCPv2 after an initial change, perform this task in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router# ip wccp version {1</td>
<td>Specifies which version of WCCP to configure on a router.</td>
</tr>
<tr>
<td>2}`</td>
<td>WCCPv2 is the default version.</td>
</tr>
</tbody>
</table>

WCCPv1 does not use the WCCP commands from earlier Cisco IOS versions. Instead, use the WCCP commands documented in this chapter. If a function is not allowed in WCCPv1, an error prompt will be printed to the screen. For example, if WCCPv1 is running on the router and you try to configure a dynamic service, the following message will be displayed: “WCCP V1 only supports the web-cache service.” The `show ip wccp` EXEC command will display the WCCP protocol version number that is currently running on your router.

Configuring a Service Group Using WCCPv2

WCCPv2 uses service groups based on logical redirection services, deployed for intercepting and redirecting traffic. The standard service is web cache, which intercepts TCP port 80 (HTTP) traffic and redirects that traffic to the cache engines. This service is referred to as a well-known service, because the
characteristics of the web cache service are known by both the router and cache engines. A description
of a well-known service is not required beyond a service identification (in this case, the command line
interface (CLI) provides a **web-cache** keyword in the command syntax).

In addition to the web cache service, there can be up to seven dynamic services running concurrently in
a service group.

Note
More than one service can run on a router at the same time, and routers and cache devices can be part of
multiple service groups at the same time.

The dynamic services are defined by the cache engines; the cache instructs the router which protocol or
ports to intercept, and how to distribute the traffic. The router itself does not have information on the
characteristics of the dynamic service group’s traffic, because this information is provided by the first
web cache to join the group. In a dynamic service, up to eight ports can be specified within a single
protocol.

Cisco Cache Engines, for example, use dynamic service 99 to specify a reverse-proxy service. However,
other cache devices may use this service number for some other service. The following configuration
information deals with enabling general services on Cisco routers. Refer to the cache server
documentation for information on configuring services on cache devices.

To enable a service on a Cisco 7600 series router, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip wccp {web-cache</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip wccp {web-cache</td>
</tr>
</tbody>
</table>

Note
A future release of Cisco Application and Content Networking System (ACNS) software (Release 4.2.2
or later) supports the **ip wccp service accelerated** command.

As indicated by the **out** and **in** keyword options in the **ip wccp service redirect** command, redirection
can be specified for outbound interfaces or inbound interfaces.

Inbound traffic can be configured to use Cisco Express Forwarding (CEF), distributed Cisco Express
Forwarding (dCEF), Fast Forwarding, or Process Forwarding.

Configuring WCCP for redirection for inbound traffic on interfaces allows you to avoid the overhead
associated with CEF forwarding for outbound traffic. Setting an output feature on any interface results
in the slower switching path of the feature being taken by all packets arriving at all interfaces. Setting
an input feature on an interface results in only those packets arriving at that interface taking the
configured feature path; packets arriving at other interfaces will use the faster default path. Configuring
WCCP for inbound traffic also allows packets to be classified before the routing table lookup, which
provides faster redirection of packets.
Specifying a Web Cache Service

To configure a web-cache service, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip wccp web-cache</td>
</tr>
<tr>
<td></td>
<td>Enables the web cache service on the router.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td></td>
<td>Targets an interface number for which the web cache service will run, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip wccp web-cache redirect {out</td>
</tr>
<tr>
<td></td>
<td>Enables the check on packets to determine if they qualify to be redirected to a web cache, using the interface specified in Step 2.</td>
</tr>
</tbody>
</table>

Excluding Traffic on a Specific Interface from Redirection

To exclude any interface from redirecting inbound traffic, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td></td>
<td>Specifies an interface to configure, and enters interface configuration mode.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config-if)# ip wccp redirect exclude in</td>
</tr>
<tr>
<td></td>
<td>Allows inbound packets on this interface to be excluded from redirection.</td>
</tr>
</tbody>
</table>

Registering a Router to a Multicast Address

If you decide to use the multicast address option for your service group, you must configure the router to listen for the multicast broadcasts on an interface. To configure the router, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router(config)# ip wccp {web-cache</td>
</tr>
<tr>
<td></td>
<td>Specifies the multicast address for the service group.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td></td>
<td>Specifies the interface to be configured for multicast reception.</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(config-if)# ip wccp {web-cache</td>
</tr>
<tr>
<td></td>
<td>Enables the reception of IP multicast packets (content originating from the cache engines) on the interface specified in Step 2.</td>
</tr>
</tbody>
</table>

For network configurations where redirected traffic needs to traverse an intervening router, the router being traversed must be configured to perform IP multicast routing. You must configure the following two components to enable traversal over an intervening router:

- Enable IP multicast routing using the `ip multicast routing` interface configuration command.
- Enable the interfaces to which the cache engines will connect to receive multicast transmissions using the `ip wccp group-listen` interface configuration command (note that earlier Cisco IOS versions required the use of the `ip pim` interface configuration command).
Using Access Lists for a WCCP Service Group

To configure the router to use an access list to determine which traffic should be directed to which cache engines, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# access-list access-list permit ip host host-address [destination-address</td>
<td>Creates an access list that enables or disables traffic redirection to the cache engine.</td>
</tr>
<tr>
<td></td>
<td>destination-host</td>
</tr>
<tr>
<td>Step 2 Router(config)# ip wccp web-cache group-list access-list</td>
<td>Indicates to the router from which IP addresses of cache engines to accept packets.</td>
</tr>
</tbody>
</table>

To disable caching for certain clients, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Router(config)# access-list access-list permit ip host host-address [destination-address</td>
<td>Creates an access list that enables or disables traffic redirection to the cache engine.</td>
</tr>
<tr>
<td></td>
<td>destination-host</td>
</tr>
<tr>
<td>Step 2 Router(config)# ip wccp web-cache redirect-list access-list</td>
<td>Sets the access list used to enable redirection.</td>
</tr>
</tbody>
</table>

Setting a Password for a Router and Cache Engines

MD5 password security requires that each router and cache engine that wants to join a service group be configured with the service group password. The password can consist of up to seven characters. Each cache engine or router in the service group will authenticate the security component in a received WCCP packet immediately after validating the WCCP message header. Packets failing authentication will be discarded.

To configure an MD5 password for use by the router in WCCP communications, perform this task in global configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config)# ip wccp web-cache password password</td>
<td>Sets an MD5 password on the router.</td>
</tr>
</tbody>
</table>
Verifying and Monitoring WCCP Configuration Settings

To verify and monitor the configuration settings for WCCP, use the following commands in EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`Router# show ip wccp [web-cache</td>
<td>service-number]`</td>
</tr>
<tr>
<td>`Router# show ip wccp [web-cache</td>
<td>service-number] detail`</td>
</tr>
<tr>
<td><code>Router# show ip interface</code></td>
<td>Displays status about whether any ip wccp redirection commands are configured on an interface. For example, “Web Cache Redirect is enabled / disabled.”</td>
</tr>
<tr>
<td>`Router# show ip wccp [web-cache</td>
<td>service-number] view`</td>
</tr>
</tbody>
</table>

WCCP Configuration Examples

This section provides the following configuration examples:

- Changing the Version of WCCP on a Router Example, page 60-13
- Performing a General WCCPv2 Configuration Example, page 60-13
- Running a Web Cache Service Example, page 60-13
- Running a Reverse Proxy Service Example, page 60-14
- Registering a Router to a Multicast Address Example, page 60-14
- Using Access Lists Example, page 60-14
- Setting a Password for a Router and Cache Engines Example, page 60-15
- Verifying WCCP Settings Example, page 60-15
Changing the Version of WCCP on a Router Example

The following example shows the process of changing the WCCP version from the default of WCCPv2 to WCCPv1, and enabling the web-cache service in WCCPv1:

Router# show ip wccp
% WCCP version 2 is not enabled
Router# configure terminal
Router(config)# ip wccp version 1
Router(config)# end
Router# show ip wccp
% WCCP version 1 is not enabled

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# ip wccp web-cache
Router(config)# end
Router# show ip wccp
Global WCCP information:
 Router information:
 Router Identifier: 10.4.9.8
 Protocol Version: 1.0

Performing a General WCCPv2 Configuration Example

The following example shows a general WCCPv2 configuration session:

Router# configure terminal
Router(config)# ip wccp web-cache group-address 224.1.1.100 password alaska1
Router(config)# interface vlan 20
Router(config-if)# ip wccp web-cache redirect out

Running a Web Cache Service Example

The following example shows a web cache service configuration session:

router# configure terminal
router(config)# ip wccp web-cache
router(config)# interface vlan 20
router(config-if)# ip wccp web-cache redirect out
router(config-if)# ^Z
router# copy running-config startup-config

The following example shows a configuration session in which redirection of HTTP traffic arriving on VLAN interface 30 is enabled:

Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# interface vlan 30
Router(config-if)# ip wccp web-cache redirect in
Router(config-if)# ^Z
Router# show ip interface vlan 30 | include WCCP Redirect
WCCP Redirect inbound is enabled
WCCP Redirect exclude is disabled
Running a Reverse Proxy Service Example

The following example assumes you are configuring a service group using Cisco Cache Engines, which use dynamic service 99 to run a reverse proxy service:

route# configure terminal
route(config)# ip wccp 99
route(config)# interface vlan 40
route(config-if)# ip wccp 99 redirect out

Registering a Router to a Multicast Address Example

The following example shows how to register a router to a multicast address of 224.1.1.100:

Router(config)# ip wccp web-cache group-address 224.1.1.100
Router(config)# interface vlan 50
Router(config-if)# ip wccp web cache group-listen

The following example shows a router configured to run a reverse proxy service, using the multicast address of 224.1.1.1. Redirection applies to packets outgoing through VLAN interface 60:

Router(config)# ip wccp 99 group-address 224.1.1.1
Router(config)# interface vlan 60
Router(config-if)# ip wccp 99 redirect out

Using Access Lists Example

To achieve better security, you can use a standard access list to notify the router which IP addresses are valid addresses for a cache engine attempting to register with the current router. The following example shows a standard access list configuration session where the access list number is 10 for some sample hosts:

route(config)# access-list 10 permit host 11.1.1.1
route(config)# access-list 10 permit host 11.1.1.2
route(config)# access-list 10 permit host 11.1.1.3
route(config)# ip wccp web-cache group-list 10

To disable caching for certain clients, servers, or client/server pairs, you can use WCCP access lists. The following example shows that any requests coming from 10.1.1.1 to 12.1.1.1 will bypass the cache and that all other requests will be serviced normally:

Router(config)# ip wccp web-cache redirect-list 120
Router(config)# access-list 120 deny tcp host 10.1.1.1 any
Router(config)# access-list 120 deny tcp any host 12.1.1.1
Router(config)# access-list 120 permit ip any any

The following example configures a router to redirect web-related packets received through VLAN interface 70, destined to any host except 209.165.196.51:

Router(config)# access-list 100 deny ip any host 209.165.196.51
Router(config)# access-list 100 permit ip any any
Router(config)# ip wccp web-cache redirect-list 100
Router(config)# interface vlan 70
Router(config-if)# ip wccp web-cache redirect in
Setting a Password for a Router and Cache Engines Example

The following example shows a WCCPv2 password configuration session where the password is alaska1:

```
router# configure terminal
router(config)# ip wccp web-cache password alaska1
```

Verifying WCCP Settings Example

To verify your configuration changes, use the `more system:running-config` EXEC command. The following example shows that both the web cache service and dynamic service 99 are enabled on the router:

```
router# more system:running-config

Building configuration...
Current configuration:
!
version 12.0
service timestamps debug uptime
service timestamps log uptime
no service password-encryption
service udp-small-servers
service tcp-small-servers
!
hostname router4
!
enable secret 5 $1$nSVy$faliJsVQXVFw.KuCzXzNh1
enable password alabama1
!
ip subnet-zero
ip wccp web-cache
ip wccp 99
ip domain-name cisco.com
ip name-server 10.1.1.1
ip name-server 10.1.1.2
ip name-server 10.1.1.3
!
!
interface Vlan200
ip address 10.3.1.2 255.255.255.0
no ip directed-broadcast
ip wccp web-cache redirect out
ip wccp 99 redirect out
no ip route-cache
no ip mroute-cache
!
!
interface Vlan300
ip address 10.4.1.1 255.255.255.0
no ip directed-broadcast
ip wccp 99 redirect out
no ip route-cache
no ip mroute-cache
!
interface Serial0
no ip address
no ip directed-broadcast
no ip route-cache
```
Chapter 60 Configuring Web Cache Services Using WCCP

VRF Support on WCCP

Virtual Routing and Forwarding (VRF) is an IP technology that allows multiple instances of a routing table to coexist on the same router at the same time. Before Cisco IOS 15.1(3)S, VRF was not supported as a part of Web Cache Communication Protocol (WCCP). Service groups that defines the nature of the traffic for redirection were configured globally. The VRF support on WCCP enhances the existing WCCP protocol by allowing implementing support for VRF and allows you to configure service groups for each VRF. Both the service identifier and the VRF identifier of WCCP protocol packets are used to associate cache engines with a configured service group.

Configuring VRF Support on WCCP

Complete these steps to configure VRF support on WCCP.

Summary Steps

1. enable
2. configure terminal
3. ip vrf vrf-name
4. rd route-distinguisher
5. exit
6. ip wccp [vrf vrf-name] [web-cache | service-number | source-interface source-interface] [group-address group-address] [redirect-list access-list] [group-list access-list] [password password]
Chapter 60 Configuring Web Cache Services Using WCCP

7. `interface type number`
8. `ip vrf forwarding vrf-name`
9. `ip address ip-address subnet-mask`
10. `ip wccp [vrf vrf-name] [web-cache | service-number] redirect {out | in}`
11. `end`

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: <code>enable</code></td>
<td>Enables privileged EXEC mode. If prompted, enter your password.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router# enable</code></td>
<td></td>
</tr>
<tr>
<td>Step 2: <code>configure terminal</code></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# terminal</code></td>
<td></td>
</tr>
<tr>
<td>Step 3: <code>ip vrf vrf-name</code></td>
<td>Enters VRF configuration sub mode to configure the variables associated with the VRF.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config)# ip vrf vrf1</code></td>
<td></td>
</tr>
<tr>
<td>Step 4: <code>rd route-distinguisher</code></td>
<td>Specifies the eight-byte route distinguisher (RD). route-distinguisher: The route distinguisher (RD) is a number which helps to identify a VPN in a provider's network. Enter either an autonomous system (AS) number and an arbitrary number (xxx:y) or an IP address and arbitrary number (A.B.C.D:y).</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-vrf)# rd 100:1</code></td>
<td></td>
</tr>
<tr>
<td>Step 5: <code>exit</code></td>
<td>exits the VRF configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td><code>Router(config-vrf)# exit</code></td>
<td></td>
</tr>
</tbody>
</table>
VRF Support on WCCP

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| Step 6: `ip wccp vrf vrf-name {web-cache | service-number | source-interface source-interface} [accelerated] [group-address group-address] [redirect-list redirect-list] [group-list group-list] [password password]` | Enables the WCCP service.
 - `vrf-name` — Specifies a VRF name to associate with the service group.
 - `service-number` — Specifies a dynamic service number. You can specify a number from 0 to 255.
 - `source-interface` — Specifies the interface that WCCP use as the preferred router ID.
 - `group-address` — Specifies the IP multicast address used by the service group.
 - `redirect-list` — Specifies the access-list for redirecting traffic.
 - `group-list` — Specifies the access-list for filtering data traffic.
 - `password` — Specifies the authentication password

Example:
```
Router(config)# ip wccp vrf vrf1 web-cache
```

| Step 7: `interface gigabitethernet slot/port`
 or `interface tengigabitethernet slot/port` | Specifies the interface to configure VRF support on WCCP.
 - `slot/port` — Specifies the location of the interface.

Example:
```
Router(config)# interface gigabit ethernet 1/1
```

| Step 8: `ip vrf forwarding vrf-name` | Applies the specified VRF on the interface.

Example:
```
Router(config)# ip vrf forwarding vrf1
```

| Step 9: `ip address ip-address subnet-mask` | Specifies an IP address to the interface.

Example:
```
Router(config)# ip address 10.1.1.0 255.255.255.0
```

| Step 10: `ip wccp vrf vrf-name {web-cache | service-number} redirect {out | in}` | Enables redirection on an inbound or outbound interface using WCCP.

Example:
```
Router(config-if)# ip wccp vrf vrf1 web-cache redirect in
```

| Step 11: `end` | Closes the configuration session.

Example:
```
Router(config-if)# end
```

Examples

This example shows how to configure a web-cache service on an interface with VRF.
Chapter 60 Configuring Web Cache Services Using WCCP

VRF Support on WCCP

Router# enable
Router# configure terminal
Router(config)# ip vrf vrf1
Router(config-vrf1)# rd 100:1
Router(config)# ip wccp vrf vrf1 web-cache
Router(config)# interface gigabitethernet 1/1
Router(config-if)# ip vrf forwarding vrf1
Router(config-if)# ip address 100.1.1.1 255.255.0.0
Router(config-if)# ip wccp vrf vrf1 web-cache redirect in
Router(config-if)# end

This example shows how to configure a web-cache service on an interface with VRF and ACL configured.

Router# enable
Router# configure terminal
Router(config)# ip vrf vrf2
Router(config-vrf1)# rd 200:1
Router(config)# ip wccp vrf vrf2 web-cache
Router(config)# ip access-list extended wccp_acl
Router(config-ext-nacl)# 10 deny tcp any eq www any eq www
Router(config-ext-nacl)# 20 permit ip any
Router(config)# ip wccp vrf vrf2 web-cache redirect-list wccp_acl
Router(config)# interface gigabitethernet 1/2
Router(config-if)# ip vrf forwarding vrf2
Router(config-if)# ip address 200.1.1.1 255.255.0.0
Router(config-if)# ip wccp vrf vrf2 web-cache redirect in
Router(config-if)# end

Verification

Use the show ip wccp summary command to display the summary of all WCCP services including VRF specific WCCP configuration.

Router# show ip wccp summary
WCCP version 2 enabled, 2 services

<table>
<thead>
<tr>
<th>Service</th>
<th>Clients</th>
<th>Routers</th>
<th>Assign</th>
<th>Redirect</th>
<th>Bypass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default routing table (Router Id: 15.0.0.2):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>web-cache</td>
<td>1</td>
<td>1</td>
<td>MASK</td>
<td>L2</td>
<td>L2</td>
</tr>
<tr>
<td>VRF vrf1 (Router Id: 6.6.6.5):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>web-cache</td>
<td>1</td>
<td>1</td>
<td>MASK</td>
<td>L2</td>
<td>L2</td>
</tr>
</tbody>
</table>

Use the show ip wccp vrf vrf-id command to display the VRF specific WCCP configuration.

Router# show ip wccp vrf vrf1
VRF RED WCCP information:

Router information:
 | Router Identifier: | 80.20.1.3 |
 | Protocol Version: | 2.0 |

 Service Identifier: web-cache
 Number of Service Group Clients: 1
 Number of Service Group Routers: 1
 Total Packets Redirected: 0
 Process: 0
 CEF: 0
 Service mode: Open
VRF Support on WCCP

Service Access-list: -none-
Total Packets Dropped Closed: 0
Redirect access-list: -none-
Total Packets Denied Redirect: 0
Total Packets Unassigned: 0
Group access-list: -none-
Total Messages Denied to Group: 0
Total Authentication failures: 0
Total GRE Bypassed Packets Received: 0
Process: 0
CEF: 0

Troubleshooting Tips

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug ip wccp vrf vrf-id</td>
<td>Displays information about significant WCCP events or each WCCP packet sent or received by the router.</td>
</tr>
</tbody>
</table>
WCCPv2 IPv6 Support on the Cisco 7600 Series Router

The Web Cache Communication Protocol (WCCP) is a content-routing technology that intercepts IP packets and redirects those packets to a destination other than the specified destination in the IP packet. Earlier, WCCP support was available only for IPv4 networks on Cisco 7600 series routers. Effective with Cisco IOS release 15.3(1)S, WCCP also supports IPv6 networks on Cisco 7600 series routers.

For more information about WCCP, see “Understanding WCCP” section on page 60-2.

Restrictions and Usage Guidelines

Following restrictions apply while configuring WCCPv2 IPv6 feature on the Cisco 7600 series routers.

- Supports only these WCCP features:
 - Layer 2 redirection
 - Layer 2 return
 - Mask assignment
- VRF is not supported.
- Redirection is supported only in the ingress direction and egress redirection is not supported.
- Hash assignment is not supported.
- GRE redirection and return are not supported.
- These WCCP commands are disabled for the WCCPv2 IPv6 feature:
 - ipv6 wccp check acl outbound
 - ipv6 wccp check services all
 - ip wccp redirect exclude in

Configuring WCCPv2 IPv6 Support

Complete these steps to configure WCCPv2 IPv6 support on Cisco 7600 routers.

Summary Steps

1. enable
2. configure terminal
3. ipv6 wccp {web-cache | service-number | source-interface source-interface} [group-address group-address] [redirect-list access-list] [group-list access-list] [password password]
4. ipv6 unicast-routing
5. mls ipv6 acl compress address unicast
6. interface type number
7. ipv6 enable
8. ipv6 address ipv6-address/prefix
9. ipv6 wccp {web-cache | service-number} redirect in
Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# enable</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# terminal</td>
</tr>
<tr>
<td>Step 3</td>
<td>ipv6 wccp [web-cache</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ipv6 wccp web-cache</td>
</tr>
<tr>
<td>Step 4</td>
<td>ipv6 unicast-routing</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# ipv6 unicast-routing</td>
</tr>
<tr>
<td>Step 5</td>
<td>mls ipv6 acl compress address unicast</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# mls ipv6 acl compress address unicast</td>
</tr>
</tbody>
</table>
Chapter 60 Configuring Web Cache Services Using WCCP

WCCPv2 IPv6 Support on the Cisco 7600 Series Router

Examples

This example shows how to configure web-cache service on an interface with IPv6 address.

```
Router# enable
Router# configure terminal
Router(config)# ipv6 wccp web-cache
Router(config)# ipv6 unicast-routing
Router(config)# mls ipv6 acl compress address unicast
Router(config)# interface gigabitethernet 1/0/0
Router(config-if)# ipv6 enable
Router(config-if)# ipv6 address 3FFE:2002::A8BB:CCFF:FE01:2C01/112
Router(config-if)# ipv6 wccp web-cache redirect in
Router(config-if)# end
```

Verification

Use these commands to verify the WCCPv2 IPv6 support feature.

```
```
Chapter 60 Configuring Web Cache Services Using WCCP

WCCPv2 IPv6 Support on the Cisco 7600 Series Router

This is a sample output of the `show ipv6 wccp capabilities` command.

```
Router #show ipv6 wccp capabilities
WCCP Platform Capability Settings

<table>
<thead>
<tr>
<th>Capability</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported forwarding methods</td>
<td>L2</td>
</tr>
<tr>
<td>Supported return methods</td>
<td>L2</td>
</tr>
<tr>
<td>Supported assignment methods</td>
<td>Mask</td>
</tr>
<tr>
<td>Accelerated forwarding methods</td>
<td>L2</td>
</tr>
<tr>
<td>Accelerated return methods</td>
<td>L2</td>
</tr>
<tr>
<td>Accelerated assignment methods</td>
<td>Mask</td>
</tr>
<tr>
<td>Accelerated Mode CLI</td>
<td>On, CLI Disabled</td>
</tr>
<tr>
<td>Supported redirection types</td>
<td>Input</td>
</tr>
<tr>
<td>Check Outbound ACL CLI</td>
<td>Off, CLI Disabled</td>
</tr>
<tr>
<td>Check All Services CLI</td>
<td>On, CLI Disabled</td>
</tr>
<tr>
<td>Closed Service Support</td>
<td>Unsupported</td>
</tr>
<tr>
<td>VRF Support</td>
<td>Unsupported</td>
</tr>
<tr>
<td>Supported service groups</td>
<td>256</td>
</tr>
</tbody>
</table>
```

Troubleshooting Tips

```
Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`show ipv6 wccp [web-cache</td>
<td>service-number]`</td>
</tr>
<tr>
<td>`show ipv6 wccp [web-cache</td>
<td>service-number] detail`</td>
</tr>
<tr>
<td><code>show ipv6 wccp summary</code></td>
<td>Displays information on the configured WCCP services and a summary of their current state.</td>
</tr>
<tr>
<td><code>show ipv6 wccp capabilities</code></td>
<td>Displays information about WCCP platform capabilities.</td>
</tr>
</tbody>
</table>

This is a sample output of the `show ipv6 wccp capabilities` command.

```
Router #show ipv6 wccp capabilities
WCCP Platform Capability Settings

<table>
<thead>
<tr>
<th>Capability</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported forwarding methods</td>
<td>L2</td>
</tr>
<tr>
<td>Supported return methods</td>
<td>L2</td>
</tr>
<tr>
<td>Supported assignment methods</td>
<td>Mask</td>
</tr>
<tr>
<td>Accelerated forwarding methods</td>
<td>L2</td>
</tr>
<tr>
<td>Accelerated return methods</td>
<td>L2</td>
</tr>
<tr>
<td>Accelerated assignment methods</td>
<td>Mask</td>
</tr>
<tr>
<td>Accelerated Mode CLI</td>
<td>On, CLI Disabled</td>
</tr>
<tr>
<td>Supported redirection types</td>
<td>Input</td>
</tr>
<tr>
<td>Check Outbound ACL CLI</td>
<td>Off, CLI Disabled</td>
</tr>
<tr>
<td>Check All Services CLI</td>
<td>On, CLI Disabled</td>
</tr>
<tr>
<td>Closed Service Support</td>
<td>Unsupported</td>
</tr>
<tr>
<td>VRF Support</td>
<td>Unsupported</td>
</tr>
<tr>
<td>Supported service groups</td>
<td>256</td>
</tr>
</tbody>
</table>
```

Troubleshooting Tips

```
Command Purpose

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>`debug fm ipv6 wccp [all</td>
<td>events</td>
</tr>
</tbody>
</table>
```
CHAPTER 61

Using the Top N Utility

This chapter describes how to use the Top N utility on the Cisco 7600 series routers.

Note

For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:

• Understanding the Top N Utility, page 61-1
• Using the Top N Utility, page 61-2

Understanding the Top N Utility

These sections describe the Top N utility:

• Top N Utility Overview, page 61-1
• Understanding Top N Utility Operation, page 61-2

Top N Utility Overview

The Top N utility allows you to collect and analyze data for each physical port on a router. When the Top N utility starts, it obtains statistics from the appropriate hardware counters and then goes into sleep mode for a user-specified interval. When the interval ends, the utility obtains the current statistics from the same hardware counters, compares the current statistics from the earlier statistics, and stores the difference. The statistics for each port are sorted by one of the statistic types that are listed in Table 61-1.

Table 61-1  Valid Top N Statistic Types

<table>
<thead>
<tr>
<th>Statistic Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>broadcast</td>
<td>Number of input/output broadcast packets</td>
</tr>
<tr>
<td>bytes</td>
<td>Number of input/output bytes</td>
</tr>
<tr>
<td>errors</td>
<td>Number of input errors</td>
</tr>
<tr>
<td>multicast</td>
<td>Number of input/output multicast packets</td>
</tr>
</tbody>
</table>
Using the Top N Utility

Table 61-1  Valid Top N Statistic Types

<table>
<thead>
<tr>
<th>Statistic Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>overflow</td>
<td>Number of buffer overflows</td>
</tr>
<tr>
<td>packets</td>
<td>Number of input/output packets</td>
</tr>
<tr>
<td>utilization</td>
<td>Utilization</td>
</tr>
</tbody>
</table>

Note  When calculating the port utilization, the Top N utility bundles the Tx and Rx lines into the same counter and also looks at the full-duplex bandwidth when calculating the percentage of utilization. For example, a Gigabit Ethernet port would be 2000-Mbps full duplex.

Understanding Top N Utility Operation

When you enter the `collect top` command, processing begins and the system prompt reappears immediately. When processing completes, the reports are not displayed immediately on the screen; the reports are saved for later viewing. The Top N Utility notifies you when the reports are complete by sending a syslog message to the screen.

To view the completed reports, enter the `show top counters interface report` command. The Top N Utility displays only those reports that are completed. For reports that are not completed, the Top N Utility displays a short description of the Top N process information.

To terminate a Top N process, enter the `clear top counters interface report` command. Pressing Ctrl-C does not terminate Top N processes. The completed reports remain available for viewing until you remove them by entering the `clear top counters interface report {all | report_num}` command.

Using the Top N Utility

These sections describe how to use the Top N Utility:

- Displaying the Top N Utility Reports, page 61-3
- Clearing Top N Utility Reports, page 61-4

Enabling Top N Utility Report Creation

To enable Top N Utility report creation, perform this task:

```
Router# collect top [number_of_ports] counters
interface {interface_type | all | layer-2 | layer-3}
[sort-by statistic_type] [interval seconds]
```

1. `interface_type` = ethernet, fastethernet, gigabitethernet, tengigabitethernet, port-channel
2. `statistic_type` = broadcast, bytes, errors, multicast, overflow, packets, utilization

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
When enabling Top N Utility report creation, note the following information:

- You can specify the number of busiest ports for which to create reports (the default is 20).
- You can specify the statistic type by which ports are determined to be the busiest (the default is utilization).
- You can specify the interval over which statistics are collected (range: 0 through 999; the default is 30 seconds).
- Except for a utilization report (configured with the `sort-by utilization` keywords), you can specify an interval of zero to create a report that displays the current counter values instead of a report that displays the difference between the start-of-interval counter values and the end-of-interval counter values.

This example shows how to enable Top N Utility report creation for an interval of 76 seconds for the four ports with the highest utilization:

```
Router# collect top 4 counters interface all sort-by utilization interval 76
TopN collection started.
```

### Displaying the Top N Utility Reports

To display the Top N Utility reports, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Router# show top counters interface report [report_num]</code></td>
<td>Displays the Top N Utility reports.</td>
</tr>
<tr>
<td></td>
<td>Note: To display information about all the reports, do not enter a <code>report_num</code> value.</td>
</tr>
</tbody>
</table>

Top N Utility statistics are not displayed in these situations:

- If a port is not present during the first poll.
- If a port is not present during the second poll.
- If a port’s speed or duplex changes during the polling interval.
- If a port’s type changes from Layer 2 to Layer 3 during the polling interval.
- If a port’s type changes from Layer 3 to Layer 2 during the polling interval.

This example shows how to display information about all the Top N Utility reports:

```
Router# show top counters interface report
```

<table>
<thead>
<tr>
<th>Id</th>
<th>Start Time</th>
<th>Int</th>
<th>Sort-By</th>
<th>Status</th>
<th>Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08:18:25 UTC Tue Nov 23 2004</td>
<td>76</td>
<td>util</td>
<td>done</td>
<td>console</td>
</tr>
<tr>
<td>2</td>
<td>08:19:54 UTC Tue Nov 23 2004</td>
<td>76</td>
<td>util</td>
<td>done</td>
<td>console</td>
</tr>
<tr>
<td>3</td>
<td>08:21:34 UTC Tue Nov 23 2004</td>
<td>76</td>
<td>util</td>
<td>done</td>
<td>console</td>
</tr>
<tr>
<td>4</td>
<td>08:26:50 UTC Tue Nov 23 2004</td>
<td>90</td>
<td>util</td>
<td>done</td>
<td>console</td>
</tr>
</tbody>
</table>

- **Note**
  - Reports for which statistics are still being obtained are shown with a status of pending.

This example shows how to display a specific Top N Utility report:

```
Router# show top counters interface report 1
```
Using the Top N Utility

Started By : console
Start Time : 08:18:25 UTC Tue Nov 23 2004
End Time : 08:19:42 UTC Tue Nov 23 2004
Port Type : All
Sort By : util
Interval : 76 seconds

<table>
<thead>
<tr>
<th>Port</th>
<th>Bandwidth</th>
<th>Util (Tx + Rx)</th>
<th>Bytes (Tx + Rx)</th>
<th>Packets (Tx + Rx)</th>
<th>Broadcast (Tx + Rx)</th>
<th>Multicast (Tx + Rx)</th>
<th>In-err</th>
<th>Buf-ovflw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fa2/5</td>
<td>100</td>
<td>50</td>
<td>726047564</td>
<td>11344488</td>
<td>11344487</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fa2/48</td>
<td>100</td>
<td>35</td>
<td>508018905</td>
<td>7937789</td>
<td>0</td>
<td>43</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fa2/46</td>
<td>100</td>
<td>25</td>
<td>362860697</td>
<td>5669693</td>
<td>0</td>
<td>43</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fa2/47</td>
<td>100</td>
<td>22</td>
<td>323852889</td>
<td>4762539</td>
<td>4762495</td>
<td>43</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Clearing Top N Utility Reports

To clear Top N Utility reports, perform one of these tasks:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# clear top counters interface report</td>
<td>Clears all the Top N Utility reports that have a status of done.</td>
</tr>
</tbody>
</table>

This example shows how to remove all reports that have a status of done:

Router# clear top counters interface report
04:00:06: %TOPN_COUNTERS-5-DELETED: TopN report 1 deleted by the console
04:00:06: %TOPN_COUNTERS-5-DELETED: TopN report 2 deleted by the console
04:00:06: %TOPN_COUNTERS-5-DELETED: TopN report 3 deleted by the console
04:00:06: %TOPN_COUNTERS-5-DELETED: TopN report 4 deleted by the console

This example shows how to remove a report number 4:

Router# clear top counters interface report 4
04:52:12: %TOPN_COUNTERS-5-KILLED: TopN report 4 killed by the console
Using the Layer 2 Traceroute Utility

This chapter describes how to use the Layer 2 traceroute utility.

Note
For complete syntax and usage information for the commands used in this chapter, refer to the Cisco 7600 Series Routers Command References at this URL:

This chapter contains these sections:

- Understanding the Layer 2 Traceroute Utility, page 62-1
- Usage Guidelines, page 62-1
- Using the Layer 2 Traceroute Utility, page 62-2

Understanding the Layer 2 Traceroute Utility

The Layer 2 traceroute utility identifies the Layer 2 path that a packet takes from a source device to a destination device. Layer 2 traceroute supports only unicast source and destination MAC addresses. The utility determines the path by using the MAC address tables of the routers in the path. When the Layer 2 traceroute utility detects a device in the path that does not support Layer 2 traceroute, it continues to send Layer 2 trace queries and allows them to time out.

The Layer 2 traceroute utility can only identify the path from the source device to the destination device. The utility cannot identify the path that a packet takes from the source host to the source device or from the destination device to the destination host.

Usage Guidelines

When using the Layer 2 traceroute utility, follow these guidelines:

- Cisco Discovery Protocol (CDP) must be enabled on all the devices in the network. For the Layer 2 traceroute utility to function properly, do not disable CDP. If any devices in the Layer 2 path are transparent to CDP, the Layer 2 traceroute utility cannot identify these devices on the path.
- A router is defined as reachable from another router when you can test connectivity by using the ping privileged EXEC command. All devices in the Layer 2 path must be mutually reachable.
Using the Layer 2 Traceroute Utility

To display the Layer 2 path that a packet takes from a source device to a destination device, perform one of these tasks in privileged EXEC mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# traceroute mac [interface type interface_number] source_mac_address [interface type interface_number] destination_mac_address [vlan vlan_id] [detail]</td>
<td>Uses MAC addresses to trace the path that packets take through the network.</td>
</tr>
<tr>
<td>Router# traceroute mac ip {source_ip_address</td>
<td>source_hostname} {destination_ip_address</td>
</tr>
</tbody>
</table>

These examples show how to use the traceroute mac and traceroute mac ip commands to display the physical path a packet takes through the network to reach its destination:

Router# traceroute mac 0000.0201.0601 0000.0201.0201

Source 0000.0201.0601 found on con6[WS-C2950G-24-EI] (2.2.6.6)
con6 (2.2.6.6) :Fa0/1 => Fa0/3

- The maximum number of hops identified in the path is ten.
- You can enter the traceroute mac or the traceroute mac ip privileged EXEC command on a router that is not in the Layer 2 path from the source device to the destination device. All devices in the path must be reachable from this router.
- The traceroute mac command output shows the Layer 2 path only when the specified source and destination MAC addresses belong to the same VLAN. If you specify source and destination MAC addresses that belong to different VLANs, the Layer 2 path is not identified, and an error message appears.
- If you specify a multicast source or destination MAC address, the path is not identified, and an error message appears.
- If the source or destination MAC address belongs to multiple VLANs, you must specify the VLAN to which both the source and destination MAC addresses belong. If the VLAN is not specified, the path is not identified, and an error message appears.
- The traceroute mac ip command output shows the Layer 2 path when the specified source and destination IP addresses belong to the same subnet. When you specify the IP addresses, the Layer 2 traceroute utility uses the Address Resolution Protocol (ARP) to associate the IP addresses with the corresponding MAC addresses and the VLAN IDs.
  - If an ARP entry exists for the specified IP address, the Layer 2 traceroute utility uses the associated MAC address and identifies the Layer 2 path.
  - If an ARP entry does not exist, the Layer 2 traceroute utility sends an ARP query and tries to resolve the IP address. If the IP address is not resolved, the path is not identified, and an error message appears.
- When multiple devices are attached to one port through hubs (for example, multiple CDP neighbors are detected on a port), the Layer 2 traceroute utility terminates at that hop and displays an error message.
- The Layer 2 traceroute utility is not supported in Token Ring VLANs.
Using the Layer 2 Traceroute Utility

con5                   (2.2.5.5        )  :    Fa0/3 => Gi0/1
con1                   (2.2.1.1        )  :    Gi0/1 => Gi0/2
con2                   (2.2.2.2        )  :    Gi0/2 => Fa0/1
Destination 0000.0201.0201 found on con2[WS-C3550-24] (2.2.2.2)
Layer 2 trace completed
Router#

Router# traceroute mac 0001.0000.0204 0001.0000.0304 detail
Source 0001.0000.0204 found on VAYU[WS-C6509] (2.1.1.10)
1 VAYU / WS-C6509 / 2.1.1.10 :
   Gi6/1 [full, 1000M] => Po100 [auto, auto]
2 PANI / WS-C6509 / 2.1.1.12 :
   Po100 [auto, auto] => Po110 [auto, auto]
3 BUMI / WS-C6509 / 2.1.1.13 :
   Po110 [auto, auto] => Po120 [auto, auto]
4 AGNI / WS-C6509 / 2.1.1.11 :
   Po120 [auto, auto] => Gi8/12 [full, 1000M] Destination 0001.0000.0304 found on AGNI[WS-C6509] (2.1.1.11) Layer 2 trace completed.
Router#
Configuring Bidirectional Forwarding and Detection over Switched Virtual Interface

This chapter describes how to configure Bidirectional Forwarding and Detection (BFD) over Switched Virtual Interface (SVI) on Cisco 7600 series routers.

Note
For complete syntax and usage information of the commands used in this chapter, see the Cisco 7600 Series Routers Command References at this URL:

This chapter consists of these sections:
- Understanding BFD over SVI, page 1-1
- Restrictions and Usage Guidelines, page 1-1
- Sample Network with BFD over SVI, page 1-2
- Configuring BFD over SVI, page 1-4

Understanding BFD over SVI

Switched Virtual Interface (SVI) is a type of interface designed to provide basic Layer 3 functions for Layer 2 switch ports that belongs to a specific Virtual Local Area Network (VLAN). SVI connects a Layer 2 domain to a Layer 3 routing domain through an IP address configured on the VLAN interface.

When you use SVI in layer 2 networks to provide access to Layer3 routing domain, you can use Bidirectional Forwarding Detection (BFD) to detect data traffic failures in the network.

Note
You should run the platform bfd allow-svi command on the 15.1(1)S software before downgrading the software version from 15.1(1)S to 15.0(1)S when BFD over SVI feature is configured.

Restrictions and Usage Guidelines

Follow these restrictions and guidelines when you configure the BFD over SVI feature:
- BFD over SVI is supported on all the hardware platforms where BFD is supported.
Sample Network with BFD over SVI

Timer support for BFD over SVI is similar to the BFD timer values supported on main and sub interfaces.

If BFD runs on a port channel, BFD over SVI has a timer value restriction of 750 * 3 milliseconds.

Run `no ip redirect` command on all the BFD interfaces to optimize the data path on the C7600 series routers.

Sample Network with BFD over SVI

Figure 1-1 shows an example of a network with BFD over SVI on REP enabled ring topology. The Cell Site Routers (CSR) on the left side of the network are aggregated on the C7600 routers over Layer 2 networks. The SVI configured on C7600 provides Layer 3 services to CSRs.

The routing of upstream traffic from CSR towards 7600 routers is achieved through static routes on CSRs, which points to one of the C7600 routers (7609-1) as a primary route, and to an alternate C7600 router (7609-2) that acts as a back-up node and as a secondary route. The static route preference is configured using the metric value in the static route configuration.

Node Failure

Node failure is handled through BFD protected static routes. If the primary node fails, BFD detects the failure and triggers a re-convergence of the network through the backup node. Since static routes are used on CSRs, the re-convergence only requires initialization of the secondary or backup route.
Figure 1-2 explains a node failure in a network with BFD over SVI on a REP enabled ring topology. The routers 7609-1, 7609-2 and the two 2941 routers in the network are protected nodes. If there is a failure on the primary node (7609-1), traffic is redirected to the secondary node (7609-2). The Layer 2 nodes that are numbered from 1 to 8 are not protected.

Figure 1-2      Node Failure

When the primary node encounters a failure, the following events take place:
1. At Layer 2 level, REP detects that the primary path is faulty and opens the secondary path.
2. At Layer 3 level, BFD detects the primary node failure and trigger network convergence to the secondary node.

Link Failure

Link failure in the Layer 2 network is handled by REP. In most cases, REP detects a link failure in less than 100 milliseconds in the ring. In case the primary Layer 2 path fails, REP opens the secondary Layer 2 path for Layer 3 traffic.

Figure 1-3 explains link failure in a network with BFD over SVI. If there is a primary link failure in the Layer 2 ring, REP detects at the Layer 2 level that the primary path is faulty and opens the secondary path. As there is no node failure, BFD does not detect and trigger any network change.
REP should detect and act on any fault in the network before BFD. Otherwise, BFD may wrongly detect a node failure. If there is a link failure in the primary Layer 2 path and REP takes longer time than BFD to unblock the secondary path, BFD could wrongly detect a node failure. In that case, after unblocking the secondary path by REP, traffic flows through the secondary node.

For more information on configuring REP, see the following link:

## Configuring BFD over SVI

Perform these steps to configure BFD over SVI.

### Summary Steps

1. `enable`
2. `configure terminal`
3. `interface vlan number`
4. `ip address ip-address mask`
5. `bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier`
6. `ip route static bfd vlan number gateway`
7. `ip route [vrf vrf-name] mask [ip-address | vlan vlan-number [ip-address]] [dhcp] [distance] [name next-hop-name] [permanent | track number] [tag tag]`
8. `end`
9. `show ip static route`
## Chapter 1: Configuring Bidirectional Forwarding and Detection over Switched Virtual Interface

**Configuring BFD over SVI**

<table>
<thead>
<tr>
<th>Detailed Steps</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router&gt; enable</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config)# interface vlan number</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config)# interface vlan 100</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-if)# ip address ip-address mask</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip address 10.0.0.1 255.255.255.0</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router(config-if)# bfd interval milliseconds min_rx milliseconds multiplier interval-multiplier</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# bfd interval 500 min_rx 500 multiplier 5</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Router(config-if)# ip route static bfd vlan vlan-number gateway</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip route static bfd vlan 100 10.0.10.2</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Router(config-if)# ip route [vrf vrf-name] prefix mask [ip-address</td>
</tr>
<tr>
<td>Example:</td>
<td>Router(config-if)# ip route vrf red 10.0.0.0 255.0.0.0 vlan 100 10.0.10.2</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Router(config-if)# end</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Router# show ip static route</td>
</tr>
</tbody>
</table>

### Note
If you are downgrading the software version from 15.1(1)S to 15.0(1)S and you have BFD over SVI configuration, you should first run the `platform bfd allow-svi` command on the 15.1(1)S software and then start the software downgrade.

The following example shows BFD over SVI configuration on routers A and B in the same VLAN and verifies the configuration. The `show bfd neighbors details` command is used to verify that BFD session is created.

```plaintext
RouterA# show run
Building configuration...
Current configuration : 119 bytes
interface Vlan100
 ip address 51.1.1.1 255.255.255.0
 no ip redirects
 bfd interval 500 min_rx 500 multiplier 3
 end
 ip route static bfd Vlan100 51.1.1.1
 ip route 60.1.0.0 255.255.0.0 Vlan100 51.1.1.1
```
Chapter 1  Configuring Bidirectional Forwarding and Detection over Switched Virtual Interface

Configuring BFD over SVI

RouterB# show run
Building configuration...
Current configuration : 119 bytes
interface Vlan100
   ip address 51.1.1.1 255.255.255.0
   no ip redirects
   bfd interval 500 min_rx 500 multiplier 3
end
ip route static bfd Vlan100 51.1.1.2
ip route 10.1.0.0 255.255.0.0 Vlan100 51.1.1.2

RouterA# show bfd neighbors details
NeighAddr    ID/RD RH/RS State   Int
51.1.1.1      1/2 Up  Up     Vl100
Session state is UP and using echo function with 500 ms interval.
OurAddr: 51.1.1.2
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3 Received MinRxInt: 1000000, Received Multiplier: 3 Holddown (hits): 0(0), Hello (hits): 1000(447) Rx Count: 335, Rx Interval (ms) min/max/avg: 1/533592/2465 last: 24 ms ago Tx Count: 451, Tx Interval (ms) min/max/avg: 1/26236/4077 last: 628 ms ago Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: CEF IPv4 Static
Uptime: 00:04:43
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 2 - Your Discr.: 1
Min tx interval: 1000000 - Min rx interval: 1000000
Min Echo interval: 500000

RouterB# show bfd neighbors details
NeighAddr    ID/RD RH/RS State   Int
51.1.1.2      2/1 Up  Up     Vl100
Session state is UP and using echo function with 500 ms interval.
OurAddr: 51.1.1.1
Local Diag: 0, Demand mode: 0, Poll bit: 0
MinTxInt: 1000000, MinRxInt: 1000000, Multiplier: 3 Received MinRxInt: 1000000, Received Multiplier: 3 Holddown (hits): 0(0), Hello (hits): 1000(1904) Rx Count: 395, Rx Interval (ms) min/max/avg: 1/28616/1210 last: 228 ms ago Tx Count: 1908, Tx Interval (ms) min/max/avg: 1/26816/1210 last: 268 ms ago Elapsed time watermarks: 0 0 (last: 0)
Registered protocols: CEF IPv4 Static
Uptime: 00:05:39
Last packet: Version: 1 - Diagnostic: 0
State bit: Up - Demand bit: 0
Poll bit: 0 - Final bit: 0
Multiplier: 3 - Length: 24
My Discr.: 1 - Your Discr.: 2
Min tx interval: 1000000 - Min rx interval: 1000000
Min Echo interval: 500000
Configuring Call Home

This chapter describes how to configure the Call Home feature in Cisco IOS Software Release 12.2SX.

For complete syntax and usage information for the commands used in this chapter, see the Cisco 7600 Series Router Cisco IOS Command Reference at this URL: http://www.cisco.com/en/US/products/ps6922/prod_command_reference_list.html

Understanding Call Home

Call Home provides e-mail-based and web-based notification of critical system events. A versatile range of message formats are available for optimal compatibility with pager services, standard e-mail, or XML-based automated parsing applications. Common uses of this feature may include direct paging of a network support engineer, e-mail notification to a Network Operations Center, XML delivery to a support website, and utilization of Cisco Smart Call Home services for direct case generation with the Cisco Systems Technical Assistance Center (TAC).

The Call Home feature can deliver alert messages containing information on configuration, diagnostics, environmental conditions, inventory, and syslog events.

The Call Home feature can deliver alerts to multiple recipients, referred to as Call Home destination profiles, each with configurable message formats and content categories. A predefined destination profile is provided for sending alerts to the Cisco TAC, and you also can define your own destination profiles.

Flexible message delivery and format options make it easy to integrate specific support requirements.

The Call Home feature offers the following advantages:

- Multiple message-format options:
Chapter 64      Configuring Call Home

Configuring Call Home

- Short Text—Suitable for pagers or printed reports.
- Plain Text—Full formatted message information suitable for human reading.
- XML—Matching readable format using Extensible Markup Language (XML) and Adaptive Markup Language (AML) document type definitions (DTDs). The XML format enables communication with the Cisco TAC.

- Multiple concurrent message destinations.
- Multiple message categories including configuration, diagnostics, environmental conditions, inventory, and syslog events.
- Filtering of messages by severity and pattern matching.
- Scheduling of periodic message sending.

Obtaining Smart Call Home

If you have a service contract directly with Cisco Systems, you can register your devices for the Smart Call Home service. Smart Call Home provides fast resolution of system problems by analyzing Call Home messages sent from your devices and providing background information and recommendations. For issues that can be identified as known, particularly GOLD diagnostics failures, Automatic Service Requests will be generated with the Cisco TAC.

Smart Call Home offers the following features:

- Continuous device health monitoring and real-time diagnostics alerts.
- Analysis of call home messages from your device and, where appropriate, Automatic Service Request generation, routed to the appropriate TAC team, including detailed diagnostic information to speed problem resolution.
- Secure message transport directly from your device or through a downloadable Transport Gateway (TG) aggregation point. You can use a TG aggregation point in cases requiring support for multiple devices or in cases where security requirements mandate that your devices may not be connected directly to the Internet.
- Web-based access to Call Home messages and recommendations, inventory and configuration information for all Call Home devices. Provides access to associated Field Notices, Security Advisories and End-of-Life Information.

You need the following items to register:

- The SMARTnet contract number for your router.
- Your e-mail address
- Your Cisco.com ID

For detailed information on Smart Call Home, see the Smart Call Home page at this location:

http://www.cisco.com/go/smartcall/

Configuring Call Home

How you configure Call Home depends on how you intend to use the feature. Some information to consider before you configure Call Home includes:
Configuring Call Home

- At least one destination profile (predefined or user-defined) must be configured. The destination profile(s) used depends on whether the receiving entity is a pager, e-mail, or automated service such as Cisco Smart Call Home.
  - If the destination profile uses e-mail message delivery, you must specify a Simple Mail Transfer Protocol (SMTP) server.
  - If the destination profile uses secure HTTP (HTTPS) message transport, you must configure a trustpoint certificate authority (CA).
- The contact e-mail, phone, and street address information should be configured so that the receiver can determine the origin of messages received.
- The router must have IP connectivity to an e-mail server or the destination HTTP server.
- If Cisco Smart Call Home is used, an active service contract must cover the device being configured.

To configure Call Home, follow these steps:

Step 1 Configure your site's contact information.
Step 2 Configure destination profiles for each of your intended recipients.
Step 3 Subscribe each destination profile to one or more alert groups, and set alert options.
Step 4 Configure e-mail settings or HTTPS settings (including CA certificate), depending on the transport method.
Step 5 Enable the Call Home feature.
Step 6 Test Call Home messages.

Tip
From the Smart Call Home web application, you can download a basic configuration script to assist you in the configuration of the Call Home feature for use with Smart Call Home and the Cisco TAC. The script will also assist in configuring the trustpoint CA for secure communications with the Smart Call Home service. The script, provided on an as-is basis, can be downloaded from this URL: http://www.cisco.com/go/smartcall/

Configuring Contact Information

Each router must include a contact e-mail address. You can optionally include a phone number, street address, contract ID, customer ID, and site ID.

To assign the contact information, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# call-home</td>
</tr>
<tr>
<td>Step 3</td>
<td>Router(cfg-call-home)# contact-email-address</td>
</tr>
</tbody>
</table>
This example shows the configuration of contact information:

```plaintext
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# call-home
Router(config-call-home)# contact-email-addr username@example.com
Router(config-call-home)# phone-number +1-800-555-4567
Router(config-call-home)# street-address "1234 Picaboo Street, Any city, Any state, 12345"
Router(config-call-home)# customer-id Customer1234
Router(config-call-home)# site-id Site1ManhattanNY
Router(config-call-home)# contract-id Company1234
Router(config)#
```

### Configuring Destination Profiles

A destination profile contains the required delivery information for an alert notification. At least one destination profile is required. You can configure multiple destination profiles of one or more types.

You can use the predefined destination profile or define a desired profile. If you define a new destination profile, you must assign a profile name.

**Note** If you use the Cisco Smart Call Home service, the destination profile must use the XML message format.

You can configure the following attributes for a destination profile:

- Profile name—A string that uniquely identifies each user-defined destination profile. The profile name is limited to 31 characters and is not case-sensitive. You cannot use all as a profile name.
Configuring Call Home

- Transport method—The transport mechanism, either e-mail or HTTP (including HTTPS), for delivery of alerts.
  - For user-defined destination profiles, e-mail is the default, and you can enable either or both transport mechanisms. If you disable both methods, e-mail will be enabled.
  - For the predefined Cisco TAC profile, you can enable either transport method but not both.
- Destination address—The actual address related to the transport method to which the alert should be sent.
- Message formatting—The message format used for sending the alert.
  - The format options for a user-defined destination profile are long-text, short-text, or XML. The default is XML.
  - For the predefined Cisco TAC profile, only XML is allowed.
- Message size—The maximum destination message size. The valid range is 50 to 3,145,728 bytes and the default is 3,145,728 bytes.

To create and configure a destination profile, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# call-home</td>
</tr>
<tr>
<td></td>
<td>Enters the Call Home configuration submode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(cfg-call-home)# profile name</td>
</tr>
<tr>
<td></td>
<td>Enters the Call Home destination profile configuration submode for the specified destination profile. If the specified destination profile does not exist, it is created.</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home)# no profile name</td>
</tr>
<tr>
<td></td>
<td>Deletes the named user-defined destination profile.</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home)# no profile all</td>
</tr>
<tr>
<td></td>
<td>Deletes all user-defined destination profiles.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(cfg-call-home-profile)# [no] destination transport-method {email</td>
</tr>
<tr>
<td></td>
<td>(Optional) Enables the message transport method. The no option disables the method.</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router(cfg-call-home-profile)# destination address {email email-address</td>
</tr>
<tr>
<td></td>
<td>Configures the destination e-mail address or URL to which Call Home messages will be sent.</td>
</tr>
<tr>
<td></td>
<td>Note When entering a destination URL, include either http:// or https://, depending on whether the server is a secure server. If the destination is a secure server, you must also configure a trustpoint CA.</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Router(cfg-call-home-profile)# destination preferred-msg-format {long-text</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configures a preferred message format. The default is XML.</td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Router(cfg-call-home-profile)# destination message-size bytes</td>
</tr>
<tr>
<td></td>
<td>(Optional) Configures a maximum destination message size for the destination profile.</td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Router(cfg-call-home-profile)# active</td>
</tr>
<tr>
<td></td>
<td>Enables the destination profile. By default, the profile is enabled when it is created.</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home-profile)# no active</td>
</tr>
<tr>
<td></td>
<td>Disables the destination profile.</td>
</tr>
<tr>
<td><strong>Step 9</strong></td>
<td>Router(cfg-call-home-profile)# exit</td>
</tr>
<tr>
<td></td>
<td>Exits the Call Home destination profile configuration submode and returns to the Call Home configuration submode.</td>
</tr>
</tbody>
</table>
Copying a Destination Profile

To create a new destination profile by copying an existing profile, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 10</td>
<td>Router(c-g-call-home)# end</td>
</tr>
<tr>
<td>Step 11</td>
<td>Router# show call-home profile {name</td>
</tr>
</tbody>
</table>

Subscribing to Alert Groups

An alert group is a predefined subset of Call Home alerts supported in all routers. Different types of Call Home alerts are grouped into different alert groups depending on their type. These alert groups are available:

- Configuration
- Diagnostic
- Environment
- Inventory
- Syslog

The triggering events for each alert group are listed in the “Alert Group Trigger Events and Commands” section on page 64-18, and the contents of the alert group messages are listed in the “Message Contents” section on page 64-24.

You can select one or more alert groups to be received by a destination profile.

Note

A Call Home alert is only sent to destination profiles that have subscribed to the alert group containing that Call Home alert. In addition, the alert group must be enabled.

To subscribe a destination profile to an alert group, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td>Step 2</td>
<td>Router(config)# call-home</td>
</tr>
</tbody>
</table>
### Command Purpose

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Router(cfg-call-home)# alert-group (\text{all</td>
<td>configuration</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home)# no alert-group (\text{all</td>
<td>configuration</td>
</tr>
<tr>
<td>4</td>
<td>Router(cfg-call-home)# profile name</td>
<td>Enters the Call Home destination profile configuration submode for the specified destination profile.</td>
</tr>
<tr>
<td>5</td>
<td>Router(cfg-call-home-profile)# subscribe-to-alert-group configuration (\text{periodic {daily (h</td>
<td>mm)</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home-profile)# subscribe-to-alert-group all</td>
<td>Subscribes to all available alert groups.</td>
</tr>
<tr>
<td></td>
<td>Router(cfg-call-home-profile)# no subscribe-to-alert-group (\text{all</td>
<td>configuration</td>
</tr>
<tr>
<td>6</td>
<td>Router(cfg-call-home-profile)# subscribe-to-alert-group (\text{diagnostic</td>
<td>environment</td>
</tr>
<tr>
<td>7</td>
<td>Router(cfg-call-home-profile)# subscribe-to-alert-group (\text{environment</td>
<td>inventory</td>
</tr>
<tr>
<td>8</td>
<td>Router(cfg-call-home-profile)# subscribe-to-alert-group (\text{inventory</td>
<td>syslog</td>
</tr>
<tr>
<td>9</td>
<td>Router(cfg-call-home-profile)# subscribe-to-alert-group (\text{syslog</td>
<td>crash}) (\text{severity catastrophic</td>
</tr>
</tbody>
</table>
Chapter 64      Configuring Call Home

Configuring Call Home

Configuring Periodic Notification

When you subscribe a destination profile to either the Configuration or the Inventory alert group, you can choose to receive the alert group messages asynchronously or periodically at a specified time. The sending period can be one of the following:

- **Daily**—Specify the time of day to send, using an hour:minute format \( hh:mm \), with a 24-hour clock (for example, 14:30).
- **Weekly**—Specify the day of the week and time of day in the format \( day \ hh:mm \), where the day of the week is spelled out (for example, monday).
- **Monthly**—Specify the numeric date, from 1 to 31, and the time of day, in the format \( date \ hh:mm \).

Configuring Message Severity Threshold

When you subscribe a destination profile to the Diagnostic, Environment, or Syslog alert group, you can set a threshold for the sending of alert group messages based on the message’s level of severity. Any message with a value lower than the destination profile’s specified threshold is not sent to the destination.

The severity threshold is configured using the keywords in Table 64-1, and ranges from catastrophic (level 9, highest level of urgency) to debugging (level 0, lowest level of urgency). If no severity threshold is configured, the default is normal (level 1).

### Note

Call Home severity levels are not the same as system message logging severity levels.

#### Table 64-1     Severity and Syslog Level Mapping

<table>
<thead>
<tr>
<th>Level</th>
<th>Keyword</th>
<th>Syslog Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>catastrophic</td>
<td>N/A</td>
<td>Network-wide catastrophic failure.</td>
</tr>
<tr>
<td>8</td>
<td>disaster</td>
<td>N/A</td>
<td>Significant network impact.</td>
</tr>
<tr>
<td>7</td>
<td>fatal</td>
<td>Emergency (0)</td>
<td>System is unusable.</td>
</tr>
<tr>
<td>6</td>
<td>critical</td>
<td>Alert (1)</td>
<td>Critical conditions, immediate attention needed.</td>
</tr>
<tr>
<td>5</td>
<td>major</td>
<td>Critical (2)</td>
<td>Major conditions.</td>
</tr>
<tr>
<td>4</td>
<td>minor</td>
<td>Error (3)</td>
<td>Minor conditions.</td>
</tr>
<tr>
<td>3</td>
<td>warning</td>
<td>Warning (4)</td>
<td>Warning conditions.</td>
</tr>
<tr>
<td>2</td>
<td>notification</td>
<td>Notice (5)</td>
<td>Basic notification and informational messages. Possibly independently insignificant.</td>
</tr>
<tr>
<td>1</td>
<td>normal</td>
<td>Information (6)</td>
<td>Normal event signifying return to normal state.</td>
</tr>
<tr>
<td>0</td>
<td>debugging</td>
<td>Debug (7)</td>
<td>Debugging messages.</td>
</tr>
</tbody>
</table>
Configuring Syslog Pattern Matching

When you subscribe a destination profile to the Syslog alert group, you can optionally specify a text pattern to be matched within each syslog message. If you configure a pattern, a Syslog alert group message will be sent only if it contains the specified pattern and meets the severity threshold. If the pattern contains spaces, you must enclose it in quotes (""") when configuring it. You can specify up to five patterns for each destination profile.

Configuring General E-Mail Options

To use the e-mail message transport service, you must configure at least one Simple Mail Transfer Protocol (SMTP) e-mail server address. You can configure these options:

- From and reply-to e-mail addresses, and up to four backup e-mail servers.
- Set a rate limit on e-mail or HTTP messages and specify the VPN routing or forwarding (VRF) instance name to send call-home e-mail messages.
- `vrf` and `source-interface` (or `source-ip-address`) to send e-mail messages. To configure the above options to send http(s) messages, use the `ip http client source-interface interface-name` command in global configuration mode, where the `source-interface` can be associated with the VRF you would like to set.

Complete these steps to configure general e-mail options:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router# <code>configure terminal</code></td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router(config)# <code>call-home</code></td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(cfg-call-home)# `mail-server {ipv4-address</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(cfg-call-home)# `no mail-server {ipv4-address</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router(cfg-call-home)# <code>sender from email-address</code></td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Router(cfg-call-home)# <code>sender reply-to email-address</code></td>
</tr>
<tr>
<td><strong>Step 7</strong></td>
<td>Router(cfg-call-home)# <code>rate-limit number</code></td>
</tr>
<tr>
<td><strong>Step 8</strong></td>
<td>Router(cfg-call-home)# <code>vrf name</code></td>
</tr>
</tbody>
</table>
The following notes apply when configuring general e-mail options:

- Backup e-mail servers can be defined by repeating the `mail-server` command using different priority numbers.

- The `mail-server priority number` parameter can be configured from 1 to 100. The server with the highest priority (lowest priority number) will be tried first.

This example shows the configuration of general e-mail parameters, including a primary and secondary e-mail server:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# call-home
Router(config-call-home)# mail-server smtp.example.com priority 1
Router(config-call-home)# mail-server 192.168.0.1 priority 2
Router(config-call-home)# sender from username@example.com
Router(config-call-home)# sender reply-to username@example.com
Router(config-call-home)# exit
```

### Enabling Call Home

To enable or disable the Call Home feature, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Router(config)# configure terminal</td>
<td>Enters configuration mode.</td>
</tr>
<tr>
<td>Step 2: Router(config)# service call-home</td>
<td>Enables the Call Home feature.</td>
</tr>
<tr>
<td>Step 2: Router(config)# no service call-home</td>
<td>Disables the Call Home feature.</td>
</tr>
</tbody>
</table>

### Testing Call Home Communications

You can test Call Home communications by sending messages manually using two command types. To send a user-defined Call Home test message, use the `call-home test` command. To send a specific alert group message, use the `call-home send` command.
Sending a Call Home Test Message Manually

To manually send a Call Home test message, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# call-home test [&quot;test-message&quot;] profile name</td>
</tr>
</tbody>
</table>

Sending a Call Home Alert Group Message Manually

To manually trigger a Call Home alert group message, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Router# call-home send alert-group configuration [profile name]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router# call-home send alert-group diagnostic {module number</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Router# call-home send alert-group inventory [profile name]</td>
</tr>
</tbody>
</table>

When manually sending Call Home alert group messages, note the following guidelines:

- Only the configuration, diagnostic, and inventory alert groups can be sent manually.
- When you manually trigger a configuration, diagnostic, or inventory alert group message and you specify a destination profile name, a message is sent to the destination profile regardless of the profile’s active status, subscription status, or severity setting.
- When you manually trigger a configuration or inventory alert group message and do not specify a destination profile name, a message is sent to all active profiles that have either a normal or periodic subscription to the specified alert group.
- When you manually trigger a diagnostic alert group message and do not specify a destination profile name, the command will cause the following actions:
  - For any active profile that subscribes to diagnostic events with a severity level of less than minor, a message is sent regardless of whether the module or interface has observed a diagnostic event.
  - For any active profile that subscribes to diagnostic events with a severity level of minor or higher, a message is sent only if the specified module or interface has observed a diagnostic event of at least the subscribed severity level; otherwise, no diagnostic message is sent to the destination profile.
Sending a Request for an Analysis and Report

You can use the `call-home request` command to submit information about your system, to receive information such as security alerts, known bugs, best practices, and command references.

Complete these steps to request report and analysis information from the Cisco Output Interpreter (COI) tool:

### Step 1

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# <code>call-home request output-analysis &quot;show-command&quot; [profile name] [ccoid user-id]</code></td>
<td>Sends the output of the specified show command for analysis. The show command must be contained in quotes (&quot;&quot;).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router# `call-home request {config-sanity</td>
<td>bugs-list</td>
</tr>
</tbody>
</table>

Follow these guidelines when manually sending a Call Home report and analysis request:

- If you specify a `profile name`, the request is sent to the profile, else the request is sent to the Cisco TAC profile. You need not enable the recipient profile for the `call-home request`. The profile is programmed to specify email address where the transport gateway is configured so that the request message is forwarded to the Cisco TAC and you receive the reply from the Smart Call Home service.
- The `ccoid user-id` is the registered identifier of the Smart Call Home user. If you specify the user-id, the response is sent to the email address of the registered user, else the response is sent to the contact email address of the device.
- Based on the keyword that specifies the report type requested, this information is returned:
  - **config-sanity**—Information on best practices as related to the current running configuration.
  - **bugs-list**—Known bugs in the running version and in the currently configured features.
  - **command-reference**—Reference links to all commands in the running configuration.
  - **product-advisory**—Product Security Incident Response Team (PSIRT) notices, End of Life (EOL) or End of Sales (EOS) notices, or field notices (FN) that may affect devices in your network.

This example shows a request for analysis of a user-specified show command:

```plaintext
Router# call-home request output-analysis "show diagnostic result module all" profile TG
```

### Information About Crash Dump Reporting

The main feature of Call Home version 2 is crash dump reporting, which helps in troubleshooting. In the event of a crash, the necessary crash-related information is collected and stored in the crashinfo file in the router. The information is also collated into a Call Home message that the router forwards, either to the Smart Call Home backend server, or to users.

Crash dump reporting generates crash reports for the following:

- Active Supervisor crashes
- Standby Supervisor crashes
- Crashes of all line cards and service modules that run on IOS, and are supported on the 7600 chassis
The feature also helps collect tracebacks in real time for events such as nonfatal assertion failures, abnormal executions, and memory allocation failures. Crash dump reports are generated when the router configuration includes the email address of the customer.

If an email address is included, Cisco sends an email to the customer along with a generated HTTPS link (with an embedded token) at:

- The enablement of crash-dump reporting
- Occurrence of the first crash

**Note** The `remote` command is not supported on the Cisco 7600 SIP-200 and Cisco 7600 SIP-400 line cards.

## Prerequisites for Crash Dump Reporting

- Users must select the option to actively authorize the forwarding of information to Cisco.
- When configuring the router, users must opt for the crash dump feature.
- Preinstalled certificate authorities for IOS must be provided.
- Instead of connecting the networking equipment directly to the Internet, a gateway or HTTP proxy must be used.
- HTTP to HTTPS translation, using a gateway or proxy, must be enabled to support noncrypto images.
- A proxy or transport gateway must be used to provide an isolation layer between the customer network and the Internet.
- The router must be connected to an email server or the destination HTTP.
- The PI code is a prerequisite for the 7600 Series platform code to work.
- At least one Simple Mail Transfer Protocol (SMTP) email server address must be configured.

**Note** To get crash dump reports, a destination profile must be subscribed to the alert group, crash. For the procedure to do this, see “Subscribing to Alert Groups” section on page 64-6.

## Configuring and Enabling Smart Call Home

For application and configuration information of the Cisco Smart Call Home service, see the “FastStart” section of the *Smart Call Home User Guide* at this location:

http://www.cisco.com/go/smartcall/

The user guide includes configuration examples for sending Smart Call Home messages directly from your device or through a transport gateway (TG) aggregation point. You can use a TG aggregation point in cases requiring support for multiple devices or in cases where security requirements mandate that your devices may not be connected directly to the Internet.

Because the Smart Call Home service uses HTTPS as the transport method, you must also configure its CA as a trustpoint, as described in the *Smart Call Home User Guide*. 
Displaying Call Home Configuration Information

To display the configured Call Home information, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
<tr>
<td>Router# show call-home</td>
<td>Displays the Call Home configuration in summary.</td>
</tr>
<tr>
<td>Router# show call-home detail</td>
<td>Displays the Call Home configuration in detail.</td>
</tr>
<tr>
<td>Router# show call-home alert-group</td>
<td>Displays the available alert groups and their status.</td>
</tr>
<tr>
<td>Router# show call-home mail-server status</td>
<td>Checks and displays the availability of the configured e-mail server(s)</td>
</tr>
<tr>
<td>Router# show call-home profile {all</td>
<td>name}</td>
</tr>
<tr>
<td>Router# show call-home statistics</td>
<td>Displays the statistics of Call Home events.</td>
</tr>
</tbody>
</table>

Examples 55-2 to 55-8 show the results when using different options of the show call-home command.

**Example 64-1  Configured Call Home Information**

Router# show call-home
Current call home settings:
call home feature : disable
call home message’s from address: switch@example.com
call home message’s reply-to address: support@example.com

vrf for call-home messages: Not yet set up
contact person’s email address: technical@example.com
contact person’s phone number: +1-408-555-1234
street address: 1234 Picaboo Street, Any city, Any state, 12345
customer ID: ExampleCorp
contract ID: X123456789
site ID: SantaClara
source ip address: Not yet set up
source interface: Not yet set up
Mail-server[1]: Address: smtp.example.com Priority: 1
Mail-server[2]: Address: 192.168.0.1 Priority: 2
Rate-limit: 20 message(s) per minute

Available alert groups:
<table>
<thead>
<tr>
<th>Keyword</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration</td>
<td>Disable configuration info</td>
<td></td>
</tr>
<tr>
<td>diagnostic</td>
<td>Disable diagnostic info</td>
<td></td>
</tr>
<tr>
<td>environment</td>
<td>Disable environmental info</td>
<td></td>
</tr>
<tr>
<td>inventory</td>
<td>Enable inventory info</td>
<td></td>
</tr>
<tr>
<td>syslog</td>
<td>Disable syslog info</td>
<td></td>
</tr>
</tbody>
</table>

Profiles:
Profile Name: campus-noc
Profile Name: CiscoTAC-1

Router#
Example 64-2 Configured Call Home Information in Detail

Router# show call-home detail
Current call home settings:
call home feature : disable
call home message's from address: switch@example.com
call home message's reply-to address: support@example.com

vrf for call-home messages: Not yet set up
contact person's email address: technical@example.com
contact person's phone number: +1-408-555-1234
street address: 1234 Picaboo Street, Any city, Any state, 12345
customer ID: ExampleCorp
contract ID: X123456789
site ID: SantaClara
source ip address: Not yet set up
source interface: Not yet set up
Mail-server[1]: Address: smtp.example.com Priority: 1
Mail-server[2]: Address: 192.168.0.1 Priority: 2
Rate-limit: 20 message(s) per minute

Available alert groups:
KeywordStateDescription
------------------------ ------- -------------------------------
configuration Disable configuration info
diagnostic Disable diagnostic info
environment Disable environmental info
inventory Enable inventory info
syslog Disable syslog info

Profiles:
Profile Name: campus-noc
Profile status: ACTIVE
Preferred Message Format: long-text
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): noc@example.com
HTTP address(es): Not yet set up

Alert-group Severity
------------------------ ------------
inventory normal

Syslog-Pattern Severity
------------------------ -------
N/A N/A

Profile Name: CiscoTAC-1
Profile status: ACTIVE
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): callhome@cisco.com
HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService

Periodic configuration info message is scheduled every 1 day of the month at 09:27

Periodic inventory info message is scheduled every 1 day of the month at 09:12
Chapter 64 Configuring Call Home

Displaying Call Home Configuration Information

<table>
<thead>
<tr>
<th>Alert-group</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnostic</td>
<td>minor</td>
</tr>
<tr>
<td>environment</td>
<td>minor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syslog-Pattern</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>.*</td>
<td>major</td>
</tr>
</tbody>
</table>

Example 64-3 Available Call Home Alert Groups

Router# show call-home alert-group
Available alert groups:

<table>
<thead>
<tr>
<th>Keyword</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>configuration</td>
<td>Disable</td>
<td>configuration info</td>
</tr>
<tr>
<td>diagnostic</td>
<td>Disable</td>
<td>diagnostic info</td>
</tr>
<tr>
<td>environment</td>
<td>Disable</td>
<td>environmental info</td>
</tr>
<tr>
<td>inventory</td>
<td>Enable</td>
<td>inventory info</td>
</tr>
<tr>
<td>syslog</td>
<td>Disable</td>
<td>syslog info</td>
</tr>
</tbody>
</table>

Example 64-4 E-Mail Server Status Information

Router# show call-home mail-server status
Please wait. Checking for mail server status ...

Translating "smtp.example.com"
Mail-server[1]: Address: smtp.example.com Priority: 1 [Not Available]
Mail-server[2]: Address: 192.168.0.1 Priority: 2 [Not Available]

Example 64-5 Information for All Destination Profiles (Predefined and User-Defined)

Router# show call-home profile all

Profile Name: campus-noc
Profile status: ACTIVE
Preferred Message Format: long-text
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): noc@example.com
HTTP address(es): Not yet set up

<table>
<thead>
<tr>
<th>Alert-group</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>inventory</td>
<td>normal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syslog-Pattern</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Profile Name: CiscoTAC-1
Profile status: ACTIVE
Preferred Message Format: xml
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): callhome@cisco.com
Displaying Call Home Configuration Information

HTTP address(es): https://tools.cisco.com/its/service/oddce/services/DDCEService

Periodic configuration info message is scheduled every 1 day of the month at 09:27

Periodic inventory info message is scheduled every 1 day of the month at 09:12

<table>
<thead>
<tr>
<th>Alert-group</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>diagnostic</td>
<td>minor</td>
</tr>
<tr>
<td>environment</td>
<td>minor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syslog-Pattern</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>.*</td>
<td>major</td>
</tr>
</tbody>
</table>

Example 64-6 Information for a User-Defined Destination Profile

Router# show call-home profile campus-noc

Profile Name: campus-noc
Profile status: ACTIVE
Preferred Message Format: long-text
Message Size Limit: 3145728 Bytes
Transport Method: email
Email address(es): noc@example.com
HTTP address(es): Not yet set up

<table>
<thead>
<tr>
<th>Alert-group</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>inventory</td>
<td>normal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syslog-Pattern</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Router#

Example 64-7 Call Home Statistics

Router# show call-home statistics

Message Types Total Email HTTP
------------- -------------------- -------------------- ------------------
Total Success 13 13 0
Config 1 1 0
Diagnostic 0 0 0
Environment 0 0 0
Inventory 10 10 0
SysLog 1 1 0
Test 0 0 0
Request 0 0 0
Send-CLI 1 1 0

Total In-Queue 0 0 0
Config 0 0 0
Diagnostic 0 0 0
Environment 0 0 0
Inventory 0 0 0
SysLog 0 0 0
Test 0 0 0
Request 0 0 0
Default Settings

Table 64-2 lists the default Call Home settings.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Call Home feature status</td>
<td>Disabled</td>
</tr>
<tr>
<td>User-defined profile status</td>
<td>Active</td>
</tr>
<tr>
<td>Predefined Cisco TAC profile status</td>
<td>Inactive</td>
</tr>
<tr>
<td>Transport method</td>
<td>E-mail</td>
</tr>
<tr>
<td>Message format type</td>
<td>XML</td>
</tr>
<tr>
<td>Destination message size for a message sent in</td>
<td>3,145,728</td>
</tr>
<tr>
<td>long text, short text, or XML format</td>
<td></td>
</tr>
<tr>
<td>Alert group status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Call Home message severity threshold</td>
<td>1 (normal)</td>
</tr>
<tr>
<td>Message rate limit for messages per minute</td>
<td>20</td>
</tr>
</tbody>
</table>

Alert Group Trigger Events and Commands

Call Home trigger events are grouped into alert groups, with each alert group assigned CLI commands to execute when an event occurs. The CLI command output is included in the transmitted message. Table 64-3 lists the trigger events included in each alert group, including the severity level of each event and the executed CLI commands for the alert group.
### Table 64-3  Call Home Alert Groups, Events, and Actions

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and CLI Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syslog</td>
<td></td>
<td></td>
<td></td>
<td>Event logged to syslog. (Only sent to TAC if syslog level 0, 1, or 2) CLI commands executed: show logging</td>
</tr>
<tr>
<td>SYSLOG</td>
<td>LOG_EMERG</td>
<td>0</td>
<td>System is unusable.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>LOG_ALERT</td>
<td>1</td>
<td>Action must be taken immediately.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>LOG_CRIT</td>
<td>2</td>
<td>Critical conditions.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>LOG_ERR</td>
<td>3</td>
<td>Error conditions.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>LOG_WARNING</td>
<td>4</td>
<td>Warning conditions.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>LOG_NOTICE</td>
<td>5</td>
<td>Normal but significant condition.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>LOG_INFO</td>
<td>6</td>
<td>Informational.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>LOG_DEBUG</td>
<td>7</td>
<td>Debug-level messages.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>C2PLUSWITHNODB</td>
<td>2</td>
<td>The module in slot %d has no forwarding daughter board. Power denied.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>DFCMISMATCH</td>
<td>2</td>
<td>Module %d DFC incompatible with supervisor engine DFC. Power denied.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>BADFLOWCTRL</td>
<td>2</td>
<td>Module %d not at an appropriate hardware revision level to support DFC. Power denied.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>BADFLOWCTRL_WARN</td>
<td>2</td>
<td>WARNING: Module %d not at an appropriate hardware revision level to support DFC3.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>BADPINN1</td>
<td>2</td>
<td>Module %d not at an appropriate hardware revision level to coexist with PFC3 system. Power denied.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>FANUPGREQ</td>
<td>2</td>
<td>Module %d not supported without fan upgrade.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>INSUFFFCOO</td>
<td>4</td>
<td>Module %d cannot be adequately cooled.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>PROVISION</td>
<td>6</td>
<td>Module %d does not meet the provisioning requirements, power denied.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>PWRFAILURE</td>
<td>6</td>
<td>Module %d is being disabled due to power converter failure.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>LC_FAILURE</td>
<td>3</td>
<td>Module %d has major online diagnostic failure, %s.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>HARD_RESET</td>
<td>3</td>
<td>Module %d is being hard reset as a part of switchover error recovery.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>SOFT_RESET</td>
<td>3</td>
<td>Module %d is being soft reset as a part of switchover error recovery.</td>
<td></td>
</tr>
<tr>
<td>SYSLOG</td>
<td>DOWNGRADE</td>
<td>6</td>
<td>Fabric-capable module %d not at an appropriate hardware revision level, and can only run in flow-through mode.</td>
<td></td>
</tr>
</tbody>
</table>
### Table 64-3  Call Home Alert Groups, Events, and Actions (continued)

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and CLI Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental</td>
<td></td>
<td></td>
<td></td>
<td>Events related to power, fan, and environment sensing elements, such as temperature alarms. (Sent to TAC.) CLI commands executed: show environment show logging show module show power</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>FANPSINCOMPAT</td>
<td>4</td>
<td>Fan tray and power supply %d are incompatible.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALARMCLR</td>
<td>4</td>
<td>The specified alarm condition has been cleared, and shutdown has been cancelled.</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>FANHIOUTPUT</td>
<td>4</td>
<td>Version %d high-output fan tray is in effect.</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>FANLOOUTPUT</td>
<td>4</td>
<td>Version %d low-output fan tray is in effect.</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>FANVERCHK</td>
<td>4</td>
<td>Power supply %d inserted is only compatible with Version %d fan tray.</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>FANTRAYFAILED</td>
<td>4</td>
<td>Fan tray failed.</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>FANTRAYOK</td>
<td>4</td>
<td>Fan tray OK.</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>FANCOUNTFAILED</td>
<td>4</td>
<td>Required number of fan trays is not present.</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>FANCOUNTOK</td>
<td>4</td>
<td>Required number of fan trays is present.</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>PSFANFAIL</td>
<td>4</td>
<td>The fan in power supply has failed.</td>
</tr>
<tr>
<td></td>
<td>FAN_FAILURE</td>
<td>PSFANOK</td>
<td>4</td>
<td>The fan in power supply is OK.</td>
</tr>
<tr>
<td></td>
<td>TEMPERATURE_ALARM</td>
<td>MAJORTEMPALARM</td>
<td>2</td>
<td>Exceeded allowed operating temperature range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MAJORTEMPALARM_RECOVER</td>
<td>4</td>
<td>Returned to allowed operating temperature range.</td>
</tr>
<tr>
<td></td>
<td>TEMPERATURE_ALARM</td>
<td>MINORTEMPALARM</td>
<td>4</td>
<td>Exceeded normal operating temperature range.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MINORTEMPALARM_RECOVER</td>
<td>4</td>
<td>Returned to normal operating temperature range.</td>
</tr>
<tr>
<td></td>
<td>VTT_FAILED</td>
<td>VTTFAILED</td>
<td>4</td>
<td>VTT %d failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VTTOK</td>
<td>4</td>
<td>VTT %d operational.</td>
</tr>
<tr>
<td></td>
<td>VTT_FAILED</td>
<td>VTTMAJFAILED</td>
<td>0</td>
<td>Too many VTT failures to continue system operation.</td>
</tr>
</tbody>
</table>
### Table 64-3  Call Home Alert Groups, Events, and Actions (continued)

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and CLI Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VTTMAJ RECOVERED</td>
<td></td>
<td>2</td>
<td>Enough VTTs operational to continue system operation.</td>
</tr>
<tr>
<td></td>
<td>CLOCK_FAILLED</td>
<td>CLOCKFAILED</td>
<td>4</td>
<td>Clock failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CLOCKMAJOK</td>
<td>4</td>
<td>Clock operational.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SHUTDOWN-CANCELLED</td>
<td></td>
<td>2</td>
<td>Shutdown cancelled.</td>
</tr>
<tr>
<td></td>
<td>SHUTDOWN</td>
<td></td>
<td>2</td>
<td>Shutdown %s now because of %s.</td>
</tr>
<tr>
<td></td>
<td>SHUTDOWN-DISABLED</td>
<td></td>
<td>1</td>
<td>Need to shut down %s now but shutdown action is disabled.</td>
</tr>
<tr>
<td></td>
<td>RESET_SCHEDULED</td>
<td></td>
<td>2</td>
<td>System reset scheduled in seconds.</td>
</tr>
<tr>
<td></td>
<td>CLOCK_SWITCHOVER</td>
<td></td>
<td>2</td>
<td>Changing system switching clock.</td>
</tr>
<tr>
<td></td>
<td>CLOCK_A_MISSING</td>
<td></td>
<td>4</td>
<td>Cannot detect clock A in the system.</td>
</tr>
<tr>
<td></td>
<td>CLOCK_B_MISSING</td>
<td></td>
<td>4</td>
<td>Cannot detect clock B in the system.</td>
</tr>
<tr>
<td></td>
<td>USE_RED_CLOCK</td>
<td></td>
<td>4</td>
<td>System is using the redundant clock (clock B).</td>
</tr>
<tr>
<td></td>
<td>ENABLED</td>
<td></td>
<td>4</td>
<td>Power to module in slot %d set on.</td>
</tr>
<tr>
<td></td>
<td>DISABLED</td>
<td></td>
<td>4</td>
<td>Power to module in slot %d set %s.</td>
</tr>
<tr>
<td></td>
<td>PSOK</td>
<td></td>
<td>4</td>
<td>Power supply %d turned on.</td>
</tr>
<tr>
<td></td>
<td>POWER_SUPPLY_FAILURE</td>
<td>PSFAIL</td>
<td>4</td>
<td>Power supply %d output failed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSREDUNDANTMODE</td>
<td>4</td>
<td>Power supplies set to redundant mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSCOMBINEDMODE</td>
<td>4</td>
<td>Power supplies set to combined mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSREDUNDANTMISMATCH</td>
<td>4</td>
<td>Power supplies rated outputs do not match.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSMISMATCH</td>
<td>4</td>
<td>Power supplies rated outputs do not match.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSNOREDUNDANCY</td>
<td>4</td>
<td>Power supplies are not in full redundancy, power usage exceed lower capacity supply.</td>
</tr>
</tbody>
</table>
### Table 64-3  Call Home Alert Groups, Events, and Actions (continued)

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and CLI Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER_SUPPLY_FAILURE</td>
<td>PSOCPSHUTDOWN</td>
<td>2</td>
<td>Power usage exceeds power supply %d allowable capacity.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSREDUNDANTONE SUPPLY</td>
<td>4</td>
<td>In power-redundancy mode, system is operating on one power supply.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSREDUNDANTBOT HSUPPLY</td>
<td>4</td>
<td>In power-redundancy mode, system is operating on both power supplies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNDERPOWERED</td>
<td>4</td>
<td>Insufficient power to operate all FRUs in system.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COULDNOTREPOWERNR</td>
<td>4</td>
<td>Wanted to repower FRU (slot %d) but could not.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWERDENIED</td>
<td>4</td>
<td>Insufficient power, module in slot %d power denied.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UNSUPPORTED</td>
<td>4</td>
<td>Unsupported module in slot %d, power not allowed: %s.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INSUFFICIENT POWER</td>
<td>2</td>
<td>Powering down all line cards as there is not enough power to operate all critical cards.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INPUTCHANGE</td>
<td>4</td>
<td>Power supply %d input has changed. Power capacity adjusted to %sW.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PSINPUTDROP</td>
<td>4</td>
<td>Power supply %d input has dropped.</td>
<td></td>
</tr>
<tr>
<td>Inventory</td>
<td></td>
<td></td>
<td></td>
<td>Inventory status should be provided whenever a unit is cold-booted, or when FRUs are inserted or removed. This is considered a noncritical event, and the information is used for status and entitlement. (Sent to TAC.) CLI commands executed: remote command switch show version show diagbus show idprom all show install running (ION only) show inventory show module show version</td>
</tr>
<tr>
<td>HARDWARE_INSERTION</td>
<td>INSPS</td>
<td>6</td>
<td>Power supply inserted in slot %d.</td>
<td></td>
</tr>
<tr>
<td>HARDWARE_REMOVAL</td>
<td>REMPS</td>
<td>6</td>
<td>Power supply removed from slot %d.</td>
<td></td>
</tr>
</tbody>
</table>
Table 64-3  Call Home Alert Groups, Events, and Actions (continued)

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and CLI Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>HARDWARE_REMOVAL</td>
<td>REMCARD</td>
<td>6</td>
<td>Card removed from slot %d, interfaces disabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STDBY_REMCARD</td>
<td>6</td>
<td>The OIR facility on the standby supervisor engine was notified by the active supervisor engine that a processor from slot[n] has been removed.</td>
<td></td>
</tr>
<tr>
<td>HARDWARE_INSERTION</td>
<td>INSCAR</td>
<td>6</td>
<td>Card inserted in slot %d, interfaces are now online.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STDBY_INSCARD</td>
<td>6</td>
<td>The standby supervisor engine was notified, card online in slot %d.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEQ_MISMATCH</td>
<td>6</td>
<td>SCP sequence mismatch for card in slot %d : %s.</td>
<td></td>
</tr>
<tr>
<td>HARDWARE_REMOVAL</td>
<td>UNKNOWN</td>
<td>3</td>
<td>Unknown card in slot %d, card is being disabled.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STDBYUNKNOWN</td>
<td>3</td>
<td>The standby supervisor engine was notified, Unknown card in slot %d.</td>
<td></td>
</tr>
<tr>
<td>HARDWARE_REMOVAL</td>
<td>UNSUPPORTED</td>
<td>3</td>
<td>Card in slot %d is unsupported. %s.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PWRCYCLE</td>
<td>3</td>
<td>Card in module %d, is being power-cycled %s.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>STDBY_PWRCYCLE</td>
<td>3</td>
<td>The standby supervisor engine was notified, Card in module %d is being power-cycled %s.</td>
<td></td>
</tr>
<tr>
<td>CONSOLE</td>
<td></td>
<td>6</td>
<td>Changing console ownership to %s processor.</td>
<td></td>
</tr>
<tr>
<td>RUNNING_CONFIG</td>
<td></td>
<td>6</td>
<td>During switchover, the OIR facility is unable to clean up running-config processor.</td>
<td></td>
</tr>
<tr>
<td>DISALLOW</td>
<td></td>
<td>6</td>
<td>Supervisor engine attempting to come up as secondary in EHSAMode, will not be allowed.</td>
<td></td>
</tr>
<tr>
<td>HARDWARE_REMOVAL</td>
<td>REMFAN</td>
<td>6</td>
<td>Fan %d removed.</td>
<td></td>
</tr>
<tr>
<td>HARDWARE_INSERTION</td>
<td>INSFAN</td>
<td>6</td>
<td>Fan %d inserted.</td>
<td></td>
</tr>
<tr>
<td>HARDWARE_INSERTION</td>
<td>PSINSERTED</td>
<td>4</td>
<td>Power supply inserted in slot %d.</td>
<td></td>
</tr>
</tbody>
</table>
Table 64-3 Call Home Alert Groups, Events, and Actions (continued)

<table>
<thead>
<tr>
<th>Alert Group</th>
<th>Call Home Trigger Event</th>
<th>Syslog Event</th>
<th>Severity</th>
<th>Description and CLI Commands Executed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic</td>
<td></td>
<td></td>
<td></td>
<td>Events related to standard or intelligent line cards. (Sent to TAC.) CLI commands executed: remote command switch show version show buffers show diagnostic result module &lt;slot#&gt; detail show diagnostic result module all show install running (ION only) show inventory show logging show logging system last 100 show module show version</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIAG_OK</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIAG_BYPASS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIAGNOSTIC S_FAILURE</td>
<td>DIAG_ERROR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIAGNOSTIC S_FAILURE</td>
<td>DIAG_MINOR_ERROR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DIAGNOSTIC S_FAILURE</td>
<td>DIAG_MAJOR_ERROR</td>
</tr>
<tr>
<td>Configuration</td>
<td></td>
<td></td>
<td></td>
<td>User-generated request for configuration. (Sent to TAC.) CLI commands executed: remote command switch show version show install running (ION only) show module show running-config all show startup-config show version</td>
</tr>
<tr>
<td>Test</td>
<td></td>
<td>TEST</td>
<td></td>
<td>User-generated test message. (Sent to TAC.) CLI commands executed: show install running (ION only) show module show version</td>
</tr>
</tbody>
</table>

Message Contents

The following tables display the content formats of alert group messages:

- Table 64-4 describes the content fields of a short text message.
• Table 64-5 describes the content fields that are common to all long text and XML messages. The fields specific to a particular alert group message are inserted at a point between the common fields. The insertion point is identified in the table.

• Table 64-6 describes the inserted content fields for reactive messages (system failures that require a TAC case) and proactive messages (issues that might result in degraded system performance).

• Table 64-7 describes the inserted content fields for an inventory message.

**Table 64-4 Format for a Short Text Message**

<table>
<thead>
<tr>
<th>Data Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device identification</td>
<td>Configured device name</td>
</tr>
<tr>
<td>Date/time stamp</td>
<td>Time stamp of the triggering event</td>
</tr>
<tr>
<td>Error isolation message</td>
<td>Plain English description of triggering event</td>
</tr>
<tr>
<td>Alarm urgency level</td>
<td>Error level such as that applied to a system message</td>
</tr>
</tbody>
</table>

**Table 64-5 Common Fields for All Long Text and XML Messages**

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time stamp</td>
<td>Date and time stamp of event in ISO time notation: YYYY-MM-DDTHH:MM:SS</td>
<td>CallHome/EventTime</td>
</tr>
<tr>
<td>Message name</td>
<td>Name of message. Specific event names are listed in the “Alert Group Trigger Events and Commands” section on page 64-18.</td>
<td>(for short text message only)</td>
</tr>
<tr>
<td>Message type</td>
<td>Specifically Call Home.</td>
<td>CallHome/Event/Type</td>
</tr>
<tr>
<td>Message subtype</td>
<td>Specific type of message: full, delta, or test.</td>
<td>CallHome/Event/SubType</td>
</tr>
<tr>
<td>Message group</td>
<td>Specifically reactive or proactive.</td>
<td>(for long text message only)</td>
</tr>
<tr>
<td>Severity level</td>
<td>Severity level of message (see Table 64-1 on page 64-8).</td>
<td>Body/Block/Severity</td>
</tr>
<tr>
<td>Source ID</td>
<td>Product type for routing. Specifically Catalyst 6500.</td>
<td>(for long text message only)</td>
</tr>
</tbody>
</table>
| Device ID                      | Unique device identifier (UDI) for end device generating message. This field should be empty if the message is nonspecific to a fabric switch. The format is type@Sid@serial.  
  • type is the product model number from backplane IDPROM.  
  • @ is a separator character.  
  • Sid is C, identifying the serial ID as a chassis serial number.  
  • serial is the number identified by the Sid field.  
  Example: WS-C6509@C@12345678 | CallHome/CustomerData/ContractData/DeviceId |
| Customer ID                    | Optional user-configurable field used for contract information or other ID by any support service. | CallHome/CustomerData/ContractData/CustomerId |
| Contract ID                    | Optional user-configurable field used for contract information or other ID by any support service. | CallHome/CustomerData/ContractData/ContractId |
| Site ID                        | Optional user-configurable field used for Cisco-supplied site ID or other data meaningful to alternate support service. | CallHome/CustomerData/ContractData/SiteId |
### Table 64-5  Common Fields for All Long Text and XML Messages (continued)

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
</table>
| **Server ID**                  | If the message is generated from the fabric switch, this is the unique device identifier (UDI) of the switch. The format is type@Sid@serial.  
  • type is the product model number from backplane IDPROM.  
  • @ is a separator character.  
  • Sid is C, identifying the serial ID as a chassis serial number.  
  • serial is the number identified by the Sid field.  
  Example: WS-C6509@C@12345678                                                  | (for long text message only)                                                            |
| **Message description**        | Short text describing the error.                                                                | CallHome/MessageDescription                                                      |
| **Device name**                | Node that experienced the event. This is the host name of the device.                           | CallHome/CustomerData/SystemInfo/Name                                            |
| **Contact name**               | Name of person to contact for issues associated with the node experiencing the event.          | CallHome/CustomerData/SystemInfo/Contact                                         |
| **Contact e-mail**             | E-mail address of person identified as contact for this unit.                                   | CallHome/CustomerData/SystemInfo/ContactEmail                                    |
| **Contact phone number**       | Phone number of the person identified as the contact for this unit.                             | CallHome/CustomerData/SystemInfo/ContactPhoneNumber                              |
| **Street address**             | Optional field containing street address for RMA part shipments associated with this unit.     | CallHome/CustomerData/SystemInfo/StreetAddress                                  |
| **Model name**                 | Model name of the switch. This is the specific model as part of a product family name.          | CallHome/Device/Cisco_Chasis/Model                                              |
| **Serial number**              | Chassis serial number of the unit.                                                             | CallHome/Device/Cisco_Chasis/SerialNumber                                       |
| **Chassis part number**        | Top assembly number of the chassis.                                                             | CallHome/Device/Cisco_Chasis/AdditionalInformation/AD@name="PartNumber"/        |
| **System Object ID**           | The System ObjectID that uniquely identifies the system.                                       | CallHome/Device/Cisco_Chasis/AdditionalInformation/AD@name="sysObjectID"        |
| **SysDesc**                    | System description for the managed element.                                                     | CallHome/Device/Cisco_Chasis/AdditionalInformation/AD@name="sysDescr"           |

The following fields may be repeated if multiple CLI commands are executed for this alert group.

<table>
<thead>
<tr>
<th>Command output name</th>
<th>The exact name of the issued CLI command.</th>
<th>/aml/Attachments/Attachment/Name</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Attachment type</strong></td>
<td>Type (usually inline).</td>
<td>/aml/Attachments/Attachment/Type</td>
</tr>
</tbody>
</table>
### Table 64-5 Common Fields for All Long Text and XML Messages (continued)

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME type</td>
<td>Normally text/plain or encoding type.</td>
<td>/aml/attachments/attachment/Attachment/Data@encoding</td>
</tr>
<tr>
<td>Command output text</td>
<td>Output of command automatically executed (see Table 64-3 on page 64-19).</td>
<td>/aml/attachments/attachment/atdata</td>
</tr>
</tbody>
</table>

### Table 64-6 Fields for a Reactive or Proactive Event Message

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis hardware version</td>
<td>Hardware version of chassis.</td>
<td>CallHome/Device/Cisco_Chasis/HardwareVersion</td>
</tr>
<tr>
<td>Supervisor module software version</td>
<td>Top-level software version.</td>
<td>CallHome/Device/Cisco_Chasis/AdditionalInformation/AD@name=&quot;SoftwareVersion&quot;</td>
</tr>
<tr>
<td>Affected FRU name</td>
<td>Name of the affected FRU generating the event message.</td>
<td>CallHome/Device/Cisco_Chasis/Cisco_Card/Model</td>
</tr>
<tr>
<td>Affected FRU serial number</td>
<td>Serial number of affected FRU.</td>
<td>CallHome/Device/Cisco_Chasis/Cisco_Card/SerialNumber</td>
</tr>
<tr>
<td>Affected FRU part number</td>
<td>Part number of affected FRU.</td>
<td>CallHome/Device/Cisco_Chasis/Cisco_Card/PartNumber</td>
</tr>
<tr>
<td>FRU slot</td>
<td>Slot number of FRU generating the event message.</td>
<td>CallHome/Device/Cisco_Chasis/Cisco_Card/LocationWithinContainer</td>
</tr>
<tr>
<td>FRU hardware version</td>
<td>Hardware version of affected FRU.</td>
<td>CallHome/Device/Cisco_Chasis/Cisco_Card/HardwareVersion</td>
</tr>
<tr>
<td>FRU software version</td>
<td>Software version(s) running on affected FRU.</td>
<td>CallHome/Device/Cisco_Chasis/Cisco_Card/SoftwareIdentity/VersionString</td>
</tr>
<tr>
<td>Process name</td>
<td>Name of process.</td>
<td>/aml/body/process/name</td>
</tr>
<tr>
<td>Process ID</td>
<td>Unique process ID.</td>
<td>/aml/body/process/id</td>
</tr>
<tr>
<td>Process state</td>
<td>State of process (for example, running or halted).</td>
<td>/aml/body/process/processState</td>
</tr>
<tr>
<td>Process exception</td>
<td>Exception or reason code.</td>
<td>/aml/body/process/exception</td>
</tr>
</tbody>
</table>
Message Contents

Table 64-7    Fields for an Inventory Event Message

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis hardware version</td>
<td>Hardware version of chassis.</td>
<td>CallHome/Device/Cisco_Chassis/HardwareVersion</td>
</tr>
<tr>
<td>Supervisor module software version</td>
<td>Top-level software version.</td>
<td>CallHome/Device/Cisco_Chassis/AdditionalInformation/AD@name=&quot;SoftwareVersion&quot;</td>
</tr>
<tr>
<td>FRU name</td>
<td>Name of the affected FRU generating the event message.</td>
<td>CallHome/Device/Cisco_Chassis/Cisco_Card/Model</td>
</tr>
<tr>
<td>FRU s/n</td>
<td>Serial number of FRU.</td>
<td>CallHome/Device/Cisco_Chassis/Cisco_Card/SerialNumber</td>
</tr>
<tr>
<td>FRU part number</td>
<td>Part number of FRU.</td>
<td>CallHome/Device/Cisco_Chassis/Cisco_Card/PartNumber</td>
</tr>
<tr>
<td>FRU slot</td>
<td>Slot number of FRU.</td>
<td>CallHome/Device/Cisco_Chassis/Cisco_Card/LocationWithinContainer</td>
</tr>
<tr>
<td>FRU hardware version</td>
<td>Hardware version of FRU.</td>
<td>CallHome/Device/Cisco_Chassis/Cisco_Card/HardwareVersion</td>
</tr>
<tr>
<td>FRU software version</td>
<td>Software version(s) running on FRU.</td>
<td>CallHome/Device/Cisco_Chassis/Cisco_Card/SoftwareIdentity/VersionString</td>
</tr>
</tbody>
</table>

Table 64-8 Inserted Fields for a User-Generated Test Message

<table>
<thead>
<tr>
<th>Data Item (Plain Text and XML)</th>
<th>Description (Plain Text and XML)</th>
<th>XML Tag (XML Only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process ID</td>
<td>Unique process ID.</td>
<td>/aml/body/process/id</td>
</tr>
<tr>
<td>Process state</td>
<td>State of process (for example, running or halted).</td>
<td>/aml/body/process/processState</td>
</tr>
<tr>
<td>Process exception</td>
<td>Exception or reason code.</td>
<td>/aml/body/process/exception</td>
</tr>
</tbody>
</table>

Sample Syslog Alert Notification in Long-Text Format

source:MDS9000
Switch Priority:7
Device Id:WS-C6509@C@FG@07120011
Customer Id:Example.com
Contract Id:123
Site Id:San Jose
Sample Syslog Alert Notification in XML Format

From: example
Sent: Wednesday, April 25, 2007 7:20 AM
To: User (user)
Subject: System Notification From Router - syslog - 2007-04-25 14:19:55 GMT+00:00

<?xml version="1.0" encoding="UTF-8"?>
<soap-env:Envelope xmlns:soap-env="http://www.w3.org/2003/05/soap-envelope">
  <soap-env:Header>
      <aml-session:To>http://tools.example.com/services/DDCEService</aml-session:To>
      <aml-session:Path>
        <aml-session:Via>http://www.example.com/appliance/uri</aml-session:Via>
      </aml-session:Path>
      <aml-session:From>http://www.example.com/appliance/uri</aml-session:From>
      <aml-session:MessageId>M2:69000101:C9D9E20B</aml-session:MessageId>
    </aml-session:Session>
  </soap-env:Header>
  <soap-env:Body>
    <aml-block:Block xmlns:aml-block="http://www.example.com/2004/01/aml-block">
      <aml-block:Header>
        <aml-block:Type>http://www.example.com/2005/05/callhome/syslog</aml-block:Type>
        <aml-block:CreationDate>2007-04-25 14:19:55 GMT+00:00</aml-block:CreationDate>
        <aml-block:Builder>
          <aml-block:Name>Cat6500</aml-block:Name>
          <aml-block:Version>2.0</aml-block:Version>
        </aml-block:Builder>
        <aml-block:BlockGroup>
          <aml-block:GroupId>G3:69000101:C9F9E20C</aml-block:GroupId>
          <aml-block:Number>0</aml-block:Number>
          <aml-block:IsLast>true</aml-block:IsLast>
          <aml-block:IsPrimary>true</aml-block:IsPrimary>
          <aml-block:WaitForPrimary>false</aml-block:WaitForPrimary>
        </aml-block:BlockGroup>
        <aml-block:Severity>2</aml-block:Severity>
      </aml-block:Header>
      <aml-block:MessageId>M2:69000101:C9D9E20B</aml-block:MessageId>
      <aml-block:Description>2007-04-25 14:19:55 GMT+00:00</aml-block:Description>
      <aml-block:Facility>PORT</aml-block:Facility>
      <aml-block:Message>start chassis information:
        Affected Chassis:WS-C6509
        Affected Chassis Serial Number:FG@07120011
        Affected Chassis Hardware Version:0.104
        Affected Chassis Software Version:3.1(1)
        Affected Chassis Part No:73-8607-01
      end chassis information:

      syslog_facility:PORT
      start chassis information:
      Affected Chassis:WS-C6509
      Affected Chassis Serial Number:FG@07120011
      Affected Chassis Hardware Version:0.104
      Affected Chassis Software Version:3.1(1)
      Affected Chassis Part No:73-8607-01
      end chassis information:

      2007-04-25 14:19:55 10.76.100.177 %PORT-5-IF_TRUNK_UP: %$VSAN 1%$ Interface fc2/5, vsan 1 is up

      From: example
      Sent: Wednesday, April 25, 2007 7:20 AM
      To: User (user)
      Subject: System Notification From Router - syslog - 2007-04-25 14:19:55 GMT+00:00
      </aml-block:Block>
  </soap-env:Body>
</soap-env:Envelope>
Message Contents

<ch:CallHome xmlns:ch="http://www.example.com/2005/05/callhome" version="1.0">
  <ch:EventTime>2007-04-25 14:19:55 GMT+00:00</ch:EventTime>
  <ch:MessageDescription>03:29:29: %CLEAR-5-COUNTERS: Clear counter on all interfaces by console</ch:MessageDescription>
  <ch:Event>
    <ch:Type>syslog</ch:Type>
    <ch:SubType></ch:SubType>
    <ch:Brand>Cisco Systems</ch:Brand>
    <ch:Series>Catalyst 6500 Series Switches</ch:Series>
  </ch:Event>
  <ch:CustomerData>
    <ch:UserData>
      <ch:Email>user@example.com</ch:Email>
    </ch:UserData>
    <ch:ContractData>
      <ch:CustomerId>12345</ch:CustomerId>
      <ch:SiteId>building 1</ch:SiteId>
      <ch:ContractId>abcdefg12345</ch:ContractId>
      <ch:DeviceId>WS-C6509@C@69000101</ch:DeviceId>
    </ch:ContractData>
    <ch:SystemInfo>
      <ch:Name>Router</ch:Name>
      <ch:Contact>
        <ch:ContactEmail>user@example.com</ch:ContactEmail>
        <ch:ContactPhoneNumber>+1 408 555-1212</ch:ContactPhoneNumber>
      </ch:Contact>
      <ch:StreetAddress>270 E. Tasman Drive, San Jose, CA</ch:StreetAddress>
    </ch:SystemInfo>
  </ch:CustomerData>
  <ch:Device>
    <rme:Chassis xmlns:rme="http://www.example.com/rme/4.0">
      <rme:Model>WS-C6509</rme:Model>
      <rme:HardwareVersion>1.0</rme:HardwareVersion>
      <rme:SerialNumber>69000101</rme:SerialNumber>
      <rme:AdditionalInformation>
        <rme:AD name="PartNumber" value="73-3438-03 01" />
        <rme:AD name="SoftwareVersion" value="12.2(20070421:012711)" />
      </rme:AdditionalInformation>
    </rme:Chassis>
  </ch:Device>
</ch:CallHome>

 Syslog logging: enabled (0 messages dropped, 0 messages rate-limited, 0 flushes, 0 overruns, xml disabled, filtering disabled)
  Console logging: level debugging, 53 messages logged, xml disabled, filtering disabled
  Monitor logging: level debugging, 0 messages logged, xml disabled, filtering disabled
  Buffer logging: level debugging, 53 messages logged, xml disabled, filtering disabled
  Exception Logging: size (4096 bytes)
  Count and timestamp logging messages: disabled
  Trap logging: level informational, 72 message lines logged

Log Buffer (8192 bytes):

00:00:54: curr is 0x20000
Chapter 64 Configuring Call Home

Message Contents

00:00:54: RP: Currently running ROMMON from F2 region
00:01:05: %SYS-5-CONFIG_I: Configured from memory by console
00:01:09: %SYS-5-RESTART: System restarted --
Cisco IOS Software, s72033_rp Software (s72033_rp-ADVENTERPRISEK9_DBG-VM), Experimental
Version 12.2(20070421:012711)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 26-Apr-07 15:54 by xxx

Firmware compiled 11-Apr-07 03:34 by inetg Build [100]

00:01:01: %PFREDUN-6-ACTIVE: Initializing as ACTIVE processor for this switch

00:01:01: %SYS-3-LOGGER_FLUSHED: System was paused for 00:00:00 to ensure console
debugging output.

00:03:00: SP: SP: Currently running ROMMON from F1 region
00:03:07: %C6KPLATFORM-SP-4-CONFREG_BREAK_ENABLED: The default factory setting for config
register is 0x2102. It is advisable to retain 1 in 0x2102 as it prevents returning to
ROMMON when break is issued.

00:03:18: %SYS-SP-5-RESTART: System restarted --
Cisco IOS Software, s72033_sp Software (s72033_sp-ADVENTERPRISEK9_DBG-VM), Experimental
Version 12.2(20070421:012711)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 26-Apr-07 18:00 by xxx

00:03:18: %PFREDUN-6-ACTIVE: Initializing as ACTIVE processor for this switch

00:03:00: SP: SP: Currently running ROMMON from F1 region
00:03:07: %C6KPLATFORM-SP-4-CONFREG_BREAK_ENABLED: The default factory setting for config
register is 0x2102. It is advisable to retain 1 in 0x2102 as it prevents returning to
ROMMON when break is issued.

00:03:18: %SYS-SP-5-RESTART: System restarted --
Cisco IOS Software, s72033_sp Software (s72033_sp-ADVENTERPRISEK9_DBG-VM), Experimental
Version 12.2(20070421:012711)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 26-Apr-07 18:00 by xxx

00:03:18: %PFREDUN-6-ACTIVE: Initializing as ACTIVE processor for this switch

00:03:00: SP: SP: Currently running ROMMON from F1 region
00:03:07: %C6KPLATFORM-SP-4-CONFREG_BREAK_ENABLED: The default factory setting for config
register is 0x2102. It is advisable to retain 1 in 0x2102 as it prevents returning to
ROMMON when break is issued.

00:03:18: %SYS-SP-5-RESTART: System restarted --
Cisco IOS Software, s72033_sp Software (s72033_sp-ADVENTERPRISEK9_DBG-VM), Experimental
Version 12.2(20070421:012711)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 26-Apr-07 18:00 by xxx

00:03:18: %PFREDUN-6-ACTIVE: Initializing as ACTIVE processor for this switch

00:03:00: SP: SP: Currently running ROMMON from F1 region
00:03:07: %C6KPLATFORM-SP-4-CONFREG_BREAK_ENABLED: The default factory setting for config
register is 0x2102. It is advisable to retain 1 in 0x2102 as it prevents returning to
ROMMON when break is issued.

00:03:18: %SYS-SP-5-RESTART: System restarted --
Cisco IOS Software, s72033_sp Software (s72033_sp-ADVENTERPRISEK9_DBG-VM), Experimental
Version 12.2(20070421:012711)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 26-Apr-07 18:00 by xxx

00:03:18: %PFREDUN-6-ACTIVE: Initializing as ACTIVE processor for this switch

00:03:00: SP: SP: Currently running ROMMON from F1 region
00:03:07: %C6KPLATFORM-SP-4-CONFREG_BREAK_ENABLED: The default factory setting for config
register is 0x2102. It is advisable to retain 1 in 0x2102 as it prevents returning to
ROMMON when break is issued.

00:00:09: DaughterBoard (Distributed Forwarding Card 3)
Firmware compiled 11-Apr-07 03:34 by inetg Build [100]
Message Contents

Cisco IOS Software, c6lc2 Software (c6lc2-SPDBG-VM), Experimental Version 12.2(20070421:012711)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 26-Apr-07 17:20 by xxx
00:00:23: DFC4: Currently running ROMMON from F2 region
00:00:25: %SYS-DFC2-5-RESTART: System restarted --
Cisco IOS Software, c6slc Software (c6slc-SPDBG-VM), Experimental Version 12.2(20070421:012711)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 26-Apr-07 16:40 by username1
00:00:26: DFC2: Currently running ROMMON from F2 region
00:04:56: %DIAG-SP-6-RUN_MINIMUM: Module 4: Running Minimal Diagnostics...
00:00:09: DaughterBoard (Distributed Forwarding Card 3)
Firmware compiled 11-Apr-07 03:34 by integ Build [100]

slot_id is 8

00:00:31: %FLASHFS_HES-DFC8-3-BADCARD: /bootflash:: The flash card seems to be corrupted
00:00:31: %SYS-DFC8-5-RESTART: System restarted --
Cisco IOS Software, c6lc2 Software (c6lc2-SPDBG-VM), Experimental Version 12.2(20070421:012711)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 26-Apr-07 17:20 by username1
00:00:31: DFC8: Currently running ROMMON from S (Gold) region
00:04:59: %DIAG-SP-6-RUN_MINIMUM: Module 2: Running Minimal Diagnostics...
00:05:12: %DIAG-SP-6-RUN_MINIMUM: Module 8: Running Minimal Diagnostics...
00:05:13: %DIAG-SP-6-RUN_MINIMUM: Module 1: Running Minimal Diagnostics...
00:00:24: %SYS-DFC1-5-RESTART: System restarted --
Cisco IOS Software, c6slc Software (c6slc-SPDBG-VM), Experimental Version 12.2(20070421:012711)
Copyright (c) 1986-2007 by Cisco Systems, Inc.
Compiled Thu 26-Apr-07 16:40 by username1
00:00:25: DFC1: Currently running ROMMON from F2 region
00:05:30: %DIAG-SP-6-DIAG_OK: Module 4: Passed Online Diagnostics
00:05:31: %SPAN-SP-6-SPAN_EGRESS_REPLICATION_MODE_CHANGE: Span Egress HW Replication Mode Change Detected. Current replication mode for unused asic session 0 is Centralized
00:05:31: %SPAN-SP-6-SPAN_EGRESS_REPLICATION_MODE_CHANGE: Span Egress HW Replication Mode Change Detected. Current replication mode for unused asic session 1 is Centralized
00:05:31: %OIR-SP-6-INSCARD: Card inserted in slot 4, interfaces are now online
00:06:02: %DIAG-SP-6-DIAG_OK: Module 1: Passed Online Diagnostics
00:06:03: %OIR-SP-6-INSCARD: Card inserted in slot 1, interfaces are now online
00:06:31: %DIAG-SP-6-DIAG_OK: Module 2: Passed Online Diagnostics
00:06:33: %OIR-SP-6-INSCARD: Card inserted in slot 2, interfaces are now online
00:04:30: %XDR-6-XDRIPNOTIFY: Message not sent to slot 4/0 (4) because of IPC error timeout. Disabling linecard. (Expected during linecard OIR)
00:06:59: %DIAG-SP-6-DIAG_OK: Module 8: Passed Online Diagnostics
00:06:59: %OIR-SP-6-DOWNGRADE_EARL: Module 8 DFC installed is not identical to system PFC and will perform at current system operating mode.
00:07:06: %OIR-SP-6-INSCARD: Card inserted in slot 8, interfaces are now online

Router#]"></aml-block:Data>
</aml-block:Attachment>
</aml-block:Attachments>
</aml-block:Block>
</soap-env:Body>
</soap-env:Envelope>
Chapter 65

Configuring IPv6 Policy Based Routing

This chapter describes how to configure the IPv6 policy-based routing (PBR) in Cisco IOS Software Release 15.2(1)S.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco 7600 Series Router Command Reference at this URL:

This chapter includes the following sections:

- Understanding IPv6 Policy Based Routing, page 65-1
- Configuring IPv6 PBR, page 65-4

Understanding IPv6 Policy Based Routing

IPv6 PBR provides a flexible mechanism to route packets and define policy for the traffic flows. It extends and complements the existing mechanisms provided by routing protocols. PBR also provides a basic packet-marking capability.

PBR performs the following tasks:

- Classifies traffic based on extended access list criteria. It provides access to lists and then establishes the match criteria.
- Sets IPv6 precedence bits and enables the network to differentiate classes of service.
- Routes packets to specific traffic-engineered paths. You can route the packets to allow a specific quality of service (QoS) through the network.

The Cisco 7600 Series Router implements this feature using the Earl7 forwarding engines capability to classify traffic through an Access Control List (ACL) Ternary Content Addressable Memory (TCAM) lookup. The ACL TCAM lookup classifies traffic based on the combination of a variety of Layer 3 and Layer 4 traffic parameters. Once classified, the ACL TCAM drives results for matching flows. The Feature Manager (FM) component converts the route map policy configured on an interface into a series of values, masks and results (VMRs) and programs these in the ACL TCAM.
Policy Based Routing

All packets received on a PBR-enabled interface are passed through enhanced packet filters known as route maps. Route maps are composed of statements that are marked as *permit* or *deny*, and they are interpreted in these ways:

- If a packet matches all match statements for a route map that is marked as *permit*, the router subjects the packet to PBR using the set statements.
- If the packet matches any match statements for a route map that is marked as *deny*, the router does not subject the packet to PBR and forwards it normally.
- If the statement is marked as *permit* and the packets do not match any route map statements, the router sends the packets back through the normal forwarding channels and performs destination-based routing.

Packet Matching

The IPv6 PBR match criterion for a sequence is specified through a combination of IPv6 access-lists and packet length operations. Match statements are evaluated first by the criteria specified in the `match ipv6 address` command and then by criteria specified in the `match length` command. Therefore, if both an ACL and a length statement are used, a packet is first subjected to an ACL match. Only packets that pass the ACL match are subjected to the length match. Finally, only packets that pass both the ACL and the length statement are policy routed.

Packet Forwarding Using Set Statements

PBR for IPv6 packet forwarding is controlled using a number of set statements in the PBR route map. Listed below are the forwarding actions in order of decreasing priority, and the manner in which these options are reflected in the result from the VMRs programmed in the ACL TCAM. When more than one kind of packet forwarding action is specified in a sequence, the one with the highest priority is chosen.

<table>
<thead>
<tr>
<th>Set Statement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>set vrf vrf name</code></td>
<td>Specifies the VPN Routing and Forwarding (VRF) instance to which the packet should be sent, based on packet attributes. By default the VRF that a packet is forwarded on is the same as the VRF that receives the packet.</td>
</tr>
<tr>
<td><code>set ipv6 next-hop next-hop ipv6 address</code></td>
<td>Specifies the next hop for the packet. The next hop must be present in the Routing Information Base (RIB); it must be directly connected, and it must be a global IPv6 address. If the next hop is invalid, the set statement is ignored.</td>
</tr>
<tr>
<td><code>set interface next-hop interface</code></td>
<td>Specifies the next hop interface for the packet. A packet is forwarded out of a specified interface. An entry for the packet destination address must exist in the IPv6 RIB, and the specified output interface must be in the path set. If the interface is invalid, the set statement is ignored.</td>
</tr>
<tr>
<td><code>set ipv6 default next-hop default next-hop ipv6 address</code></td>
<td>Specifies the connected next hop for the packet if the usual forwarding method fails to produce the default result. It must be a global IPv6 address. This set statement is used only when there is no explicit entry for the packet destination in the IPv6 RIB.</td>
</tr>
</tbody>
</table>
Understanding IPv6 Policy Based Routing

Restrictions for IPv6 PBR

Following restrictions apply to the IPv6 PBR:

- Match length is not supported in the hardware, and the PBR is applied to the software.
- Packet marking actions are not supported in the hardware, and packets requiring marking due to PBR are punted to the software.
- Set interface is supported in the hardware only for the serial interface. Other interfaces are supported on the software.
- Packets containing an IPv6 hop-by-hop header need to be examined by the router and are punted to the software. Such packets are subjected to PBR in the software.
- PBR policies using access-lists matching on IPv6 flow label, DSCP value and extension headers such as, routing, mobility, destination headers cannot be fully classified in the hardware, and are punted to the software after partial classification.
- It is not possible to completely classify traffic in hardware, when access-lists matching on non-compressible addresses are used. In such cases, the PBR is applied to the software.
- On Tycho based systems, fragment packets that require matching on layer 4 protocol are punted to the software.
- Currently, IPv6 PBR on SVI interfaces is applied to the software, and hardware provides only partial classification. Starting with Cisco IOS Release 15.2(4)S4, when you configure the global CLI `platform ipv6 pbr svi hardware`, IPv6 PBR on SVI feature is applied directly in the hardware TCAM. As a result, the IPv6 PBR policy under SVI may impact layer 2 IPv6 PAKS in the VLAN. To overcome this impact, you can apply a sequence at the top of the route-map to deny policy-routing for PAKS within the same subnets.
- IPv6 PBR when applied to hardware will also be applied on packets destined to a router address.
- A set next-hop action where the next-hop is at the other end of a tunnel is not supported in the hardware.
- For set interface and set default interface, the interface should be a point-to-point one.
- PBR is not applied to multicast traffic and the traffic destined to link local addresses.
- When there is no traffic flow, the TCAM entry does not change from punt to policy-route.

Set Statement	Notes
**set ipv6 next-hop recursive ipv6-address** | Specifies the IPv6 address of the recursive next-hop in a PBR route map. The recursive next-hop address is installed in the routing table and can be a subnet that is not directly connected. If the recursive next-hop address is not available, traffic is routed using a default route.

**set default interface default next-hop interface** | Specifies the default next-hop interface, from which the matching packets are forwarded if the usual forwarding method fails to produce a result. This set statement is used only when there is no explicit entry for the packet destination in the IPv6 RIB.
### Configuring IPv6 PBR

To configure IPv6 PBR, complete the following steps:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router# enable</td>
</tr>
<tr>
<td></td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router# configure terminal</td>
</tr>
<tr>
<td></td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router(config)# route-map map-tag [permit</td>
</tr>
<tr>
<td></td>
<td>Defines the conditions for redistributing routes from one routing protocol into another, or enables policy routing.</td>
</tr>
<tr>
<td></td>
<td>• Use the <code>route-map</code> command to enter route-map configuration mode.</td>
</tr>
<tr>
<td><strong>Step 4</strong></td>
<td>Router(config-route-map)# match length minimum-length maximum-length</td>
</tr>
<tr>
<td></td>
<td>Specifies the match criteria.</td>
</tr>
<tr>
<td></td>
<td>• Matches the Level 3 length of the packet.</td>
</tr>
<tr>
<td></td>
<td>• Matches a specified IPv6 access list.</td>
</tr>
<tr>
<td></td>
<td>Note If you do not specify a match command, the route map applies to all packets.</td>
</tr>
<tr>
<td></td>
<td>Router(config-route-map)# match ipv6 address {prefix-list prefix-list-name</td>
</tr>
<tr>
<td><strong>Step 5</strong></td>
<td>Router(config-route-map)# set ipv6 precedence precedence-value</td>
</tr>
<tr>
<td></td>
<td>Specifies the actions to take on the packets that match the criteria.</td>
</tr>
<tr>
<td></td>
<td>• Sets a precedence value in the IPv6 header.</td>
</tr>
<tr>
<td></td>
<td>• Sets the next hop to which to route the packet (the next hop must be adjacent).</td>
</tr>
<tr>
<td></td>
<td>• Sets an output interface for the packet.</td>
</tr>
<tr>
<td></td>
<td>• Sets the next hop to which to route the packet, if there is no explicit route for this destination.</td>
</tr>
<tr>
<td></td>
<td>• Sets next hop to which to route the packet if the hop is to a router which is not adjacent.</td>
</tr>
<tr>
<td></td>
<td>• Sets the output interface for the packet, if there is no explicit route for this destination.</td>
</tr>
<tr>
<td></td>
<td>• Sets the VRF instance selection within a route map for a policy based routing VRF selection.</td>
</tr>
<tr>
<td></td>
<td>or</td>
</tr>
<tr>
<td></td>
<td>Router(config-route-map)# set ipv6 next-hop global-ipv6-address</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-route-map)# set interface type number</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-route-map)# set ipv6 default next-hop global-ipv6-address</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-route-map)# set default interface type number</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Router(config-route-map)# set vrf vrf-name</td>
</tr>
<tr>
<td><strong>Step 6</strong></td>
<td>Router(config-route-map)# exit</td>
</tr>
<tr>
<td></td>
<td>Returns the router to global configuration mode.</td>
</tr>
</tbody>
</table>
### Chapter 65      Configuring IPv6 Policy Based Routing

#### Configuring IPv6 PBR

#### Verification

The following commands help verifying the PBR configuration.

- **The show ipv6 policy command** displays PBR configuration:

  ```
 Router# show ipv6 policy
 Interface Routemap
 GigabitEthernet0/0/0 src-1
  ```

- **The show route-map command** displays specific route-map information, such as a count of policy matches:

  ```
 Router# show route-map
 route-map bill, permit, sequence 10
 Match clauses:
 Set clauses:
 Policy routing matches:0 packets, 0 bytes
  ```

- **The show tcam interface command** displays the supported hardware and software:

  **Hardware:**

  ```
 Router# show tcam interface gigabitEthernet 8/9 acl in ipv6 module 8
 ICMP Neighbor Discovery Packet Types:
 na - neighbor advertisement ra - router advertisement
 ns - neighbor solicit rs - router solicit
 r - redirect

 IPV6 Address Types:
 full - IPv6 Full eui - IPv6 EUI
 eipv4 - IPv6 embeded IPv4
 --
 policy-route ipv6 host 1000::2(full) host 4000::2(full)
 permit ipv6 any(eipv4) any
 permit ipv6 any(eui) any
 permit ipv6 any(full) any
  ```

  **Software:**

  ```
 Router# show tcam interface gigabitEthernet 4/2 acl in ipv6 module 4
 ICMP Neighbor Discovery Packet Types:
 na - neighbor advertisement ra - router advertisement
 ns - neighbor solicit rs - router solicit
 r - redirect

 IPV6 Address Types:
 full - IPv6 Full eui - IPv6 EUI
 eipv4 - IPv6 embeded IPv4
 --
 permit ipv6 any(eui) 0:FE80::/10(eui)
 permit ipv6 any(full) 0:FE80::/10(eui)
  ```

---

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>Router(config)# interface type number</td>
</tr>
<tr>
<td>Step 8</td>
<td>Router(config-if)# ipv6 policy route-map route-map-name</td>
</tr>
</tbody>
</table>
Configuring IPv6 PBR

- The **show fm ipv6 pbr all** command displays the IPv6 PBR VMRs for a specified interface:

```
Router# show fm ipv6 pbr all
```

---

### Seq. No: 65536  | Seq. Result : FM_RESULT_PERMIT
---

<table>
<thead>
<tr>
<th>Seq. No.</th>
<th>Seq. Result</th>
<th>DPort</th>
<th>SPort</th>
<th>Pro</th>
<th>Port</th>
<th>XTAG</th>
<th>X</th>
<th>MRTNPC</th>
<th>Adj.</th>
<th>FM</th>
<th>DAO</th>
<th>ISADA</th>
<th>IFF</th>
<th>A-SON</th>
<th>A-VSD</th>
<th>SHORT</th>
<th>N-IFF</th>
<th>BUI</th>
<th>ESI</th>
<th>ERR</th>
<th>SHORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>65536</td>
<td>FM_RESULT_PERMIT</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>---</td>
<td>--------</td>
<td>------</td>
<td>----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>FF00::</td>
<td>::</td>
<td></td>
</tr>
<tr>
<td>FULL</td>
<td>EUI</td>
<td>0</td>
<td>0</td>
<td>FF00::</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUID</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>FF00::</td>
<td>::</td>
<td></td>
</tr>
<tr>
<td>FULL</td>
<td>EUI</td>
<td>0</td>
<td>0</td>
<td>FF00::</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EUID</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>0:FF80::</td>
<td>::</td>
<td></td>
</tr>
<tr>
<td>EUI</td>
<td>EUI</td>
<td>0</td>
<td>0</td>
<td>0:FFC0::</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>
```
Chapter 65 Configuring IPv6 Policy Based Routing

Configuring IPv6 PBR

<table>
<thead>
<tr>
<th>Seq. No: 10</th>
<th>Seq. Result: FM_RESULT_ADJREDIRECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indx</td>
<td>T</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Seq. No: 65537</th>
<th>Seq. Result: FM_RESULT_PERMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indx</td>
<td>T</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
</tr>
</tbody>
</table>
Configuring IPv6 PBR

Step 1:

Display IPv6 PBR VMRs on a specified interface:

```
Router# show fm ipv6 pbr interface gigabitEthernet 3/3
```

```
FM_FEATURE_IPv6_PBR  i/f: Gi3/3  rmap: empty1
```

<table>
<thead>
<tr>
<th>Seq. No.</th>
<th>65536</th>
<th>Seq. Result</th>
<th>FM_RESULT_PERMIT</th>
</tr>
</thead>
</table>

- **DPort** - Destination Port
- **SPort** - Source Port
- **Pro** - Protocol
- **PT** - Packet Type
- **X** - XTAG
- **RFM** - R-Recirc. Flag
- **Adj.** - Adj. Index
- **FM** - Flow Mask
- **DAO** - Dest. Only FM
- **ISADA** - Intf. SADA
- **IFF** - Intf. FF
- **A-VSD** - Atleast VSADA
- **A-SON** - Atleast SAO
- **SHORT** - Shortest
- **IFF-L** - IFF Least
- **A-EVFF** - Any except VFF
- **N-FF** - Not FF
- **N-IPF** - Not IPF
- **EUI** - EUI 64 Pkt Type
- **BSIT** - EUI Site Overlap
- **ERR** - Flowmask Error

```
+----+-+----------------------------------------+----------------------------------------+
|Indx|T|    Dest IPv6 Addr                      |     Source IPv6 Addr                   |
|---|---+----------------------------------------+----------------------------------------|
|1  |   | FF00::                                   | :                                      |
```

Index : 0
Feature_id : 4C
adj : 5733EB50
vlan : 1027
dmac : 0000.1742.3558
smac : 0018.7415.1980
encap : 1
mtu : 1518
TTL : 1
Rdt Indx : 0
recirc : 0
Non-Cachable : 0
Priority : 1

- The `show fm ipv6 pbr interface` command displays the IPv6 PBR VMRs on a specified interface:

Router# show fm ipv6 pbr interface gigabitEthernet 3/3

```
FM_FEATURE_IPv6_PBR  i/f: Gi3/3  rmap: empty1

<table>
<thead>
<tr>
<th>Seq. No.</th>
<th>65536</th>
<th>Seq. Result</th>
<th>FM_RESULT_PERMIT</th>
</tr>
</thead>
</table>
```

- **DPort** - Destination Port
- **SPort** - Source Port
- **Pro** - Protocol
- **PT** - Packet Type
- **X** - XTAG
- **RFM** - R-Recirc. Flag
- **Adj.** - Adj. Index
- **FM** - Flow Mask
- **DAO** - Dest. Only FM
- **ISADA** - Intf. SADA
- **IFF** - Intf. FF
- **A-VSD** - Atleast VSADA
- **A-SON** - Atleast SAO
- **SHORT** - Shortest
- **IFF-L** - IFF Least
- **A-EVFF** - Any except VFF
- **N-FF** - Not FF
- **N-IPF** - Not IPF
- **EUI** - EUI 64 Pkt Type
- **BSIT** - EUI Site Overlap
- **ERR** - Flowmask Error

Indx	T	Dest IPv6 Addr	Source IPv6 Addr
---	---+--+--		
1		FF00::	:
```

Index : 0  
Feature_id : 4C  
adj : 5733EB50  
vlan : 1027  
dmac : 0000.1742.3558  
smac : 0018.7415.1980  
encap : 1  
mtu : 1518  
TTL : 1  
Rdt Indx : 0  
recirc : 0  
Non-Cachable : 0  
Priority : 1
Configuring IPv6 PBR

Table 65-2 lists the troubleshooting issues while configuring IPv6 PBR:

```
M :: 0 0
---- ---- 0 0
TM_L3_DENY_RESULT

Seq. No: 65537 Seq. Result : FM_RESULT_PERMIT

+----+-+--+--+
|Indx|T| Dest IPv6 Addr | Source IPv6 Addr |
|DPT| SPT| PT |Pro|RFM|X|MRTNPC|Adj.| FM |
+----+-+--+--+
1 V :: 0 0 0 0 0 0
 TM_PERMIT_RESULT

2 V :: 0 0 0 0 0 0
 TM_PERMIT_RESULT

3 V :: 0 0 0 0 0 0
 TM_L3_DENY_RESULT

Index : 0
Feature_id : 4C adj : 5733EB50 vlan : 1027 dmac : 0000.1742.3558
smac : 0018.7415.1980 encap : 1 mtu : 1518 TTL : 1
Rdt Indx : 0 recirc : 0 Non-Cachable : 0 Priority : 1
```
### Table 65-2 Troubleshooting IPv6 Issues

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| When you suspect an unspecified problem. | • Use the `debug fm ipv6 [all | events | pbr | vmrs]` command  
  – `all` - Displays all IPv6 debugging information.  
  – `events` - Displays debugging information about FM IPv6 events.  
  – `pbr` - Displays debugging information about FM IPv6 policy based routing.  
  – `vmrs` - Displays debugging information about FM IPv6 VMRs.  
• Use the `debug ipv6 policy` command to display the IPv6 policy routing packet activity. |
Using the Mini Protocol Analyzer

This chapter describes how to use the Mini Protocol Analyzer on the Cisco 7600 series routers. Release 12.2(33)SRD and later releases support the Mini Protocol Analyzer feature.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco IOS Master Command List, All Releases at this URL:

This chapter consists of these sections:
- Understanding How the Mini Protocol Analyzer Works, page 66-1
- Configuring the Mini Protocol Analyzer, page 66-2
- Starting and Stopping a Capture, page 66-4
- Displaying and Exporting the Capture Buffer, page 66-6
- Mini Protocol Analyzer Configuration, Operation, and Display Examples, page 66-7

Understanding How the Mini Protocol Analyzer Works

The Mini Protocol Analyzer captures network traffic from a SPAN session and stores the captured packets in a local memory buffer. Using the provided filtering options, you can limit the captured packets to:
- Packets from selected VLANs, ACLs, or MAC addresses.
- Packets of a specific EtherType
- Packets of a specified packet size

You can start and stop the capture using immediate commands, or you can schedule the capture to begin at a specified date and time.

The captured data can be displayed on the console, stored to a local file system, or exported to an external server using normal file transfer protocols. The format of the captured file is libpcap, which is supported by many packet analysis and sniffer programs. Details of this format can be found at the following URL: http://www.tcpdump.org/

By default, only the first 68 bytes of each packet are captured.
Configuring the Mini Protocol Analyzer

To configure a capture session using the Mini Protocol Analyzer, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td><strong>Step 2</strong> Router(config)# [no] monitor session number type capture</td>
<td>Configures a SPAN session number with packets directed to the processor for capture. Enters capture session configuration mode. The session number range is 1 to 80. The <em>no</em> prefix removes the session.</td>
</tr>
<tr>
<td><strong>Step 3</strong> Router(config-mon-capture)# buffer-size buf_size</td>
<td>(Optional) Sets the size in KB of the capture buffer. The range is 32-65535 KB; the default is 2048 KB.</td>
</tr>
<tr>
<td><strong>Step 4</strong> Router(config-mon-capture)# description session_description</td>
<td>(Optional) Describes the capture session. The description can be up to 240 characters and cannot contain special characters. If the description contains spaces, it must be enclosed in quotation marks (“”).</td>
</tr>
<tr>
<td><strong>Step 5</strong> Router(config-mon-capture)# rate-limit pps</td>
<td>(Optional) Sets a limit on the number of packets per second (<em>pps</em>) that can be captured. The range is 10-100000 packets per seconds; the default is 10000 packets per second.</td>
</tr>
<tr>
<td><strong>Step 6</strong> Router(config-mon-capture)# source { {interface [single_interface</td>
<td>interface_list</td>
</tr>
<tr>
<td><strong>Step 7</strong> Router(config-mon-capture)# exit</td>
<td>Exits the capture session configuration mode.</td>
</tr>
</tbody>
</table>

When configuring a capture session, note the following information:

- Only one capture session is supported; multiple simultaneous capture sessions cannot be configured.
- The **source interface** command argument is either a single interface, or a range of interfaces described by two interface numbers (the lesser one first, separated by a dash), or a comma-separated list of interfaces and ranges.

**Note** When configuring a source interface list, you must enter a space before and after the comma. When configuring a source interface range, you must enter a space before and after the dash.

- The **source vlan** command argument is either a single VLAN number from 1 through 4094 (except reserved VLANs), or a range of VLANs described by two VLAN numbers (the lesser one first, separated by a dash), or a list of VLANs and ranges.

**Note** When configuring a source VLAN list, do not enter a space before or after the comma. When configuring a source VLAN range, do not enter a space before or after the dash. Note that this requirement differs from the requirement for source interface lists and ranges.
• Data capture does not begin when the capture session is configured. The capture is started by the `monitor capture start` or `monitor capture schedule` command described in the “Starting and Stopping a Capture” section on page 66-4.

• Although the capture buffer is linear by default, it can be made circular as a run-time option in the `monitor capture start` or `monitor capture schedule` command.

• When no hardware rate limit registers are available, the capture session is disabled.

• The source VLAN cannot be changed if a VLAN filter is configured. Remove any VLAN filters before changing the source VLAN.

### Filtering the Packets to be Captured

Several options are provided for filtering the packets to be captured. Filtering by ACL and VLAN is performed in hardware before any rate-limiting is applied; all other filters are executed in software. Software filtering can decrease the capture rate.

To filter the packets to be captured by the Mini Protocol Analyzer, perform this task in capture session configuration mode:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>`Router(config-mon-capture)# [no] filter access-group [acl_number</td>
</tr>
<tr>
<td>Step 2</td>
<td>`Router(config-mon-capture)# [no] filter vlan {vlan_ID</td>
</tr>
<tr>
<td>Step 3</td>
<td><code>Router(config-mon-capture)# [no] filter ethertype type</code> (Optional) Captures only packets of the specified EtherType. The <code>type</code> can be specified in decimal, hex, or octal.</td>
</tr>
<tr>
<td>Step 4</td>
<td><code>Router(config-mon-capture)# [no] filter length min_len [max_len]</code> (Optional) Captures only packets whose size is between <code>min_len</code> and <code>max_len</code>, inclusive. If <code>max_len</code> is not specified, only packets of exactly size <code>min_len</code> will be captured. The range for <code>min_len</code> is 0 to 9216 bytes and the range for <code>max_len</code> is 1 to 9216 bytes.</td>
</tr>
<tr>
<td>Step 5</td>
<td><code>Router(config-mon-capture)# [no] filter mac-address mac_addr</code> (Optional) Captures only packets from the specified MAC address.</td>
</tr>
<tr>
<td>Step 6</td>
<td><code>Router(config-mon-capture)# end</code> Exits the configuration mode.</td>
</tr>
</tbody>
</table>

When configuring capture filtering, note the following information:

• The `filter vlan` argument is either a single VLAN number from 1 through 4094 (except reserved VLANs), or a range of VLANs described by two VLAN numbers (the lesser one first, separated by a dash), or a list of VLANs and ranges.

| Note | When configuring a filter VLAN list, you must enter a space before and after the comma. When configuring a filter VLAN range, you must enter a space before and after the dash. Note that this requirement differs from the requirement for source VLAN lists and ranges described in the preceding section. |
Starting and Stopping a Capture

To enter an EtherType as a decimal number, enter the number (1 to 65535) with no leading zero. To enter a hexadecimal number, precede four hexadecimal characters with the prefix 0x. To enter an octal number, enter numeric digits (0 to 7) with a leading zero. For example, the 802.1Q EtherType can be entered in decimal notation as 33024, in hexadecimal as 0x8100, or in octal as 0100400.

- Enter a MAC address as three 2-byte values in dotted hexadecimal format. An example is 0123.4567.89ab.
- The no keyword removes the filter.

Note: After removing a VLAN filter using the no keyword, you must exit configuration mode, reenter the capture configuration mode, and issue the source vlan command before making other capture configuration changes.

- When you configure a VLAN filter, the capture source or destination must be a VLAN. When you configure a port filter, the capture source or destination must be a port.

Starting and Stopping a Capture

The commands to start and stop a capture are not stored as configuration settings. These commands are executed from the console in EXEC mode. You can start a capture immediately or you can set a future date and time for the capture to start. The capture ends when one of the following conditions occurs:

- A stop or clear command is entered from the console.
- The capture buffer becomes full, unless it is configured as a circular buffer.
- The optionally specified number of seconds has elapsed.
- The optionally specified number of packets has been captured.

When the capture stops, the SPAN session is ended and no further capture session packets are forwarded to the processor.

When starting a packet capture, you have the option to override some configured settings.
To start, stop, or cancel a capture, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong></td>
<td>Router# monitor capture [buffer size buf_size][length cap_len][linear</td>
</tr>
<tr>
<td></td>
<td>Starts a capture with optional run-time configuration changes. The capture can start immediately or it can start at a specified time and date.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>buffer size</strong> option overrides the configured or default capture buffer size.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>length</strong> option determines the number of bytes that will be captured from each packet. The range for cap_len is 0 to 9216 bytes; the default is 68 bytes. A value of 0 causes the entire packet to be captured.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>circular</strong> option specifies that the capture buffer will overwrite earlier entries once it fills. The <strong>linear</strong> option specifies that the capture will stop when the buffer fills. The default is <strong>linear</strong>.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>filter</strong> option applies the specified ACL.</td>
</tr>
<tr>
<td></td>
<td>• The <strong>for</strong> option specifies that the capture will end after the specified number of seconds has elapsed or the specified number of packets has been captured.</td>
</tr>
<tr>
<td><strong>Step 2</strong></td>
<td>Router# monitor capture stop</td>
</tr>
<tr>
<td></td>
<td>Stops the capture.</td>
</tr>
<tr>
<td><strong>Step 3</strong></td>
<td>Router# monitor capture clear [filter]</td>
</tr>
<tr>
<td></td>
<td>Clears any run-time configuration settings, clears any pending scheduled capture, and clears the capture buffer. The <strong>filter</strong> option clears only the run-time filter settings.</td>
</tr>
</tbody>
</table>

When using these commands, note the following information:

- The format for **time** and **date** is hh:mm:ss dd mmm yyyy. The hour is specified in 24-hour notation, and the month is specified by a three-letter abbreviation. For example, to set a capture starting time of 7:30 pm on October 31, 2006, use the notation 19:30:00 31 oct 2006. The time zone is GMT.

- When you specify a capture filter ACL in the start command, the new ACL will not override any configured ACLs. The new ACL will execute in software.
Displaying and Exporting the Capture Buffer

To display the captured packets or information about the capture session, or to export the captured packets for analysis, perform this task:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Step 1</strong> <strong>Router# show monitor capture</strong></td>
<td>Displays the capture session configuration.</td>
</tr>
<tr>
<td><strong>Step 2</strong> <strong>Router# show monitor capture status</strong></td>
<td>Displays the capture session state, mode, and packet statistics.</td>
</tr>
<tr>
<td><strong>Step 3</strong> <strong>Router# show monitor capture buffer [start [end]]</strong></td>
<td>Displays the capture buffer contents.</td>
</tr>
<tr>
<td></td>
<td>• The <em>start</em> and <em>end</em> parameters specify packet number indices in the capture buffer. When a <em>start</em> index is specified with no <em>end</em> index, only the single packet at the <em>start</em> index is displayed. When both the <em>start</em> and <em>end</em> indices are specified, all packets between these indices are displayed. The range is 1 to 4294967295.</td>
</tr>
<tr>
<td></td>
<td>• The <em>detail</em> option adds expanded and formatted protocol and envelope information for each packet, including the packet arrival time.</td>
</tr>
<tr>
<td></td>
<td>• The <em>dump</em> option displays the hexadecimal contents of the packet. If <em>nowrap</em> is specified with <em>dump_length</em>, one line of hexadecimal packet content of <em>dump_length</em> characters will be displayed for each packet. If <em>dump_length</em> is not specified, a line of 72 characters will be displayed. The range of <em>dump_length</em> is 14 to 256.</td>
</tr>
<tr>
<td></td>
<td>• The <em>acl</em> option causes the display of only those packets that match the specified ACL.</td>
</tr>
<tr>
<td><strong>Step 4</strong> <strong>Router# show monitor capture buffer [start [end]]</strong></td>
<td>Displays only packet header information.</td>
</tr>
<tr>
<td><strong>Step 5</strong> <strong>Router# monitor capture export buffer url</strong></td>
<td>Copies the contents of the capture buffer to the specified file system or file transfer mechanism.</td>
</tr>
</tbody>
</table>
Mini Protocol Analyzer Configuration, Operation, and Display Examples

This section provides examples for configuring the Mini Protocol Analyzer, for starting and stopping a capture session, and for displaying the results of a capture session.

General Configuration Examples

This example shows how to minimally configure the Mini Protocol Analyzer:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# monitor session 1 type capture
Router(config-mon-capture)# end
```

```
Router# show mon cap
Capture instance [1] :
======================
Capture Session ID : 1
Session status : up
rate-limit value : 10000
redirect index : 0x807
buffer-size : 2097152
capture state : OFF
capture mode : Linear
capture length : 68
```

```
Router#
```

This example shows how to configure the buffer size, session description, and rate limit:

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# monitor session 1 type capture
Router(config-mon-capture)# buffer-size 4096
Router(config-mon-capture)# description "Capture from ports, no filtering."
Router(config-mon-capture)# rate-limit 20000
Router(config-mon-capture)# end
Router#
```

```
Router# show monitor capture
Capture instance [1] :
======================
Capture Session ID : 1
Session status : up
rate-limit value : 20000
redirect index : 0x807
buffer-size : 4194304
capture state : OFF
capture mode : Linear
capture length : 68
```

```
Router#
```

This example shows how to configure the source as a mixed list of ports:

```
Router(config-mon-capture)# source interface gig 3/1 - 3 , gig 3/5
```
This example shows how to configure the source as a mixed list of VLANs:

```
Router(config-mon-capture)# source vlan 123,234-245
```

### Filtering Configuration Examples

This example shows how to configure for capturing packets with the following attributes:

- The packets belong to VLANs 123 or 234 through 245
- The packets are of 802.1Q EtherType (hexadecimal 0x8100, decimal 33024)
- The packet size is exactly 8192 bytes
- The source MAC address is 01:23:45:67:89:ab
- The packets conform to ACL number 99

```
Router# configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)# monitor session 1 type capture
Router(config-mon-capture)# source vlan 123,234-245
Router(config-mon-capture)# filter ethertype 0x8100
Router(config-mon-capture)# filter length 8192
Router(config-mon-capture)# filter mac-address 0123.4567.89ab
Router(config-mon-capture)# filter access-group 99
Router(config-mon-capture)# end
```

```
Router# show monitor capture
Capture instance [1] :
======================
Capture Session ID : 1
Session status : up
rate-limit value : 20000
redirect index : 0x7E07
Capture vlan : 1019
buffer-size : 4194304
capture state : OFF
capture mode : Linear
capture length : 68
Sw Filters :
 ethertype : 33024
 src mac : 0123.4567.89ab
Hw acl : 99

Router# show monitor session 1
Session 1

Type : Capture Session
Description : capture from ports
Source VLANs :
 Both : 123,234-245
Capture buffer size : 4096 KB
Capture rate-limit value : 20000
Capture filters :
 ethertype : 33024
 src mac : 0123.4567.89ab
 acl : 99

Egress SPAN Replication State:
Operational mode : Centralized
Configured mode : Distributed (default)
```
This example shows how to capture packets whose size is less than 128 bytes:
Router(config-mon-capture)# filter length 0 128

This example shows how to capture packets whose size is more than 256 bytes:
Router(config-mon-capture)# filter length 256 9216

### Operation Examples

This example shows how to start and stop a capture:
Router# monitor capture start
Router# monitor capture stop
Router#

This example shows how to start a capture to end after 60 seconds:
Router# monitor capture start for 60 seconds
Router#

This example shows how to start a capture at a future date and time:
Router# monitor capture schedule at 11:22:33 30 jun 2008
capture will start at : <11:22:33 UTC Mon Jun 30 2008> after 32465825 secs
Router#

This example shows how to start a capture with options to override the buffer size and to change to a circular buffer:
Router# monitor capture buffer size 65535 circular start
Router#

This example shows how to export the capture buffer to an external server and a local disk:
Router# monitor capture export buffer tftp://server/user/capture_file.cap
Router# monitor capture export buffer disk1:capture_file.cap

### Display Examples

These examples show how to display configuration information, session status, and capture buffer contents.

### Displaying the Configuration

To display the capture session configuration, enter the `show monitor capture` command.

Router# show monitor capture
Capture instance [1] :
================================
Capture Session ID : 1
Session status : up
rate-limit value : 10000
redirect index : 0x807
buffer-size : 2097152
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>capture state</td>
<td>OFF</td>
</tr>
<tr>
<td>capture mode</td>
<td>Linear</td>
</tr>
<tr>
<td>capture length</td>
<td>68</td>
</tr>
</tbody>
</table>

This example shows how to display more details using the `show monitor session n` command:

```
Router# show monitor session 1
Session 1

Type : Capture Session
Source Ports :
 Both : Gi3/1-3,Gi3/5
Capture buffer size : 32 KB
Capture filters : None

Egress SPAN Replication State:
 Operational mode : Centralized
 Configured mode : Distributed (default)
```

This example shows how to display the full details using the `show monitor session n detail` command:

```
Router# show monitor session 1 detail
Session 1

Type : Capture Session
Description :
Source Ports :
 RX Only : None
 TX Only : None
 Both : Gi3/1-3,Gi3/5
Source VLANs :
 RX Only : None
 TX Only : None
 Both : None
Source RSPAN VLAN : None
Destination Ports : None
Filter VLANs : None
Dest RSPAN VLAN : None
Source IP Address : None
Source IP VRF : None
Source ERS Span ID : None
Destination IP Address: None
Destination IP VRF : None
Destination ERS Span ID: None
Origin IP Address : None
IP QOS PREC : 0
IP TTL : 255
Capture dst_cpu_id : 1
Capture vlan : 0
Capture buffer size : 32 KB
Capture rate-limit :
 value : 10000
Capture filters : None

Egress SPAN Replication State:
 Operational mode : Centralized
 Configured mode : Distributed (default)
```
Displaying the Capture Session Status

To display the capture session status, enter the `show monitor capture status` command.

```
Router# show monitor capture status
capture state : ON
capture mode : Linear
Number of packets
 received : 253
 dropped : 0
 captured : 90
```

Displaying the Capture Buffer Contents

To display the capture session contents, enter the `show monitor capture buffer` command. These examples show the resulting display using several options of this command:

```
Router# show monitor capture buffer
1 IP: s=10.12.0.5 , d=224.0.0.10, len 60
2 346 0180.c200.000e 0012.44d8.5000 88CC 020707526F7
3 60 0180.c200.0000 0004.c099.06c5 0026 42420300000
4 60 ffff.ffff.ffff 0012.44d8.5000 0806 00010800060
5 IP: s=7.0.84.23 , d=224.0.0.5, len 116
6 IP: s=10.12.0.1 , d=224.0.0.10, len 60

Router# show monitor capture buffer detail
1 Arrival time : 09:44:30 UTC Fri Nov 17 2006
 Packet Length : 74 , Capture Length : 68
 Ethernet II : 0100.5e00.000a 0008.a4c8.c038 0800
 IP: s=10.12.0.5 , d=224.0.0.10, len 60, proto=88
2 Arrival time : 09:44:31 UTC Fri Nov 17 2006
 Packet Length : 346 , Capture Length : 68
 346 0180.c200.000 0012.44d8.5000 88CC 020707526F7
3 60 0180.c200.000e 0012.44d8.5000 88CC 020707526F7
4 60 0180.c200.0000 0004.c099.06c5 0026 42420300000
5 60 ffff.ffff.ffff 0012.44d8.5000 0806 00010800060
6 IP: s=7.0.84.23 , d=224.0.0.5, len 116
```

```
Router# show monitor capture buffer dump
1 IP: s=10.12.0.5 , d=224.0.0.10, len 60
 08063810: 0100 5E00000A ..^...
 08063820: 0008A4C8 C0380000 45C0003C 00000000 ..$H@..J<.......n}
 08063830: 0258CD8F 00A00000 00000000 00000000d
 08063840: 00000000 00000000 00000000 00000000d
 08063850: 00000000 00000000 00000000 00000000d
2 346 0180.c200.000e 0012.44d8.5000 88CC 020707526F7
3 60 0180.c200.0000 0004.c099.06c5 0026 42420300000
4 60 ffff.ffff.ffff 0012.44d8.5000 0806 00010800060
5 IP: s=7.0.84.23 , d=224.0.0.5, len 116
 0806FC20: 0100 5E0000005 0004d
 0806FC30: 0015C7D7 AC000000 45C00074 00000000 ..$G,...E.T....
 0806FC40: 0159D55 07005417 E0000000 02010002C xI...T.`````
Configuring Resilient Ethernet Protocol

This chapter describes how to configure the Resilient Ethernet Protocol in Cisco IOS Software Release 15.0(1)S.

This chapter includes the following sections:

- Understanding Resilient Ethernet Protocol, page 67-1
- Configuring Resilient Ethernet Protocol, page 67-2

Understanding Resilient Ethernet Protocol

Resilient Ethernet Protocol (REP) is a Cisco proprietary protocol that provides an alternative to Spanning Tree Protocol (STP) to support L2 resiliency and fast failover with Ethernet networks. REP provides functionality to:

- Control network loops
- Handle link failures
- Improve convergence time

An REP segment is a connected chain of ports configured with a segment ID. Each segment consists of standard (non-edge) segment ports and two user-configured edge ports. REP is supported on Layer 2 trunk interfaces and EVC ports. REP controls a group of ports connected in a segment, ensures that the segment does not create any bridging loops, and responds to link failures within the segment. REP provides a basis for constructing more complex networks and supports VLAN load balancing. REP extends the network resiliency across Cisco IP Next-Generation Network (NGN) Carrier Ethernet Design. REP is designed to provide network and application convergence within 50 to 200 ms. REP is a segment protocol that integrates easily into existing Carrier Ethernet networks. It allows network architects to limit the scope of STP domains. REP can also notify the STP about potential topology changes, allowing interoperability with Spanning Tree.

REP is a distributed and secure protocol and does not rely on a master node controlling the status of the ring. Hence, the failures can be detected locally either through loss of signal (LOS) or loss of neighbor adjacency. Any REP port can initiate a switchover after acquiring the secure key to unblock the alternate port. An REP segment is a chain of ports connected to each other and configured with the same alternate port. Each end of a segment terminates on an edge switch. The port where the segment terminates is called the edge port.
REP Edge No-Neighbor

Effective from Cisco IOS release 15.1.(01)S, a new functionality provides capability to configure the non-rep switch facing ports as edge no-neighbor ports. These ports inherits the properties of edge ports, and overcomes the limitation of not being able to converge quickly during a failure.

In access ring topologies, the neighboring switch might not support REP, as shown in Figure 59-1. In this case, you can configure the non-REP facing ports (E1 and E2) as edge no-neighbor ports. These ports inherit all properties of edge ports, and you can configure them the same as any edge port, including configuring them to send STP or REP topology change notices to the aggregation switch. In this case the STP Topology Change Notice (TCN) that is sent is a Multiple Spanning-Tree (MST) STP message.

Configuring Resilient Ethernet Protocol

For information on Configuring REP over Ethernet Virtual Circuit, see:

For information on Configuring Resilient Ethernet Protocol Configurable Timers, see:
Configuring Synchronous Ethernet and 1588v2

This chapter describes how to configure the Synchronous Ethernet (SyncE) and IEEE 1588v2.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco 7600 Series Router Cisco IOS Command Reference at this URL: http://www.cisco.com/en/US/products/ps6922/prod_command_reference_list.html

This chapter includes the following sections:
- Implementing Frequency Synchronization over Ethernet, page 68-1
- Understanding Synchronous Ethernet, page 68-2
- Configuring Clock Recovery on the Cisco 7600 Router, page 68-5
- Network Clocking, page 68-28
- How to Configure Network Clocking, page 68-29
- Understanding 1588v2, page 68-22
- Configuring ToD on 1588v2 Master, page 68-26
- Configuring ToD on 1588v2 Slave, page 68-27

Implementing Frequency Synchronization over Ethernet

In today’s networks frequency and time synchronization over network elements is a key requirement for network service providers. Now, service providers widely use ethernet for data transmission due to low cost and high bandwidth. However frequency and time synchronization between network elements over Ethernet is a key challenge due to the asynchronous nature of ethernet.

Frequency synchronization over ethernet can be implemented in two ways:
- Synchronous Ethernet (SyncE) - Synchronized Ethernet (SyncE) supports frequency synchronization over ethernet by leveraging the physical layer of ethernet. For more information on SyncE and supported line cards see Understanding Synchronous Ethernet, page 68-2
- IEEE 1588v2 - IEEE 1588v2 is the IEEE standard used for frequency and time synchronization. While SyncE supports only frequency synchronization and each network element along the synchronization path needs to support SyncE, IEEE 1588 v2 supports frequency synchronization over asynchronous networks. 1588v2 support requires 2-Port Gigabit Synchronous Ethernet SPA.
Understanding Synchronous Ethernet

Synchronous Ethernet (SyncE) is a procedure where we use a physical layer interface to pass timing from node to node in the same way timing is passed in SONET or SDH. SyncE, defined by the ITU-T standards such as G.8261, G.8262, G.8264, and G.781, leverages the physical layer of Ethernet to transmit frequency to remote sites. SyncE over Ethernet provides a cost-effective alternative to the networks. For SyncE to work, each network element along the synchronization path must support SyncE.

SyncE is supported on the following line cards:
- ES+ line cards (4x10GE or 2x10GE with ITU-T G.709 DWDM optical interface)
- 2-Port Gigabit Synchronous Ethernet SPA on SIP-400

The following non ethernet SPAs support frequency synchronization:
- ATM SPAs (SPA-2xOC3-ATM, SPA-4xOC3-ATM, SPA-1xOC12-ATM, SPA-1xOC48-ATM, SPA-1xOC3-ATM-V2, SPA-2xOC3-ATM-V2, SPA-3xOC3-ATM-V2, SPA-1xOC12-ATM-V2)
- CEoP SPAs (SPA-1CHOC3-CE-ATM, SPA-24CHT1-CE-ATM)
- POS SPAs (SPA-2xOC3-POS, SPA-4xOC3-POS, SPA-1xOC12-POS, SPA-2xOC12-POS)
- Channelized SPAs (8-Port Channelized T1/E1 SPA, 1-Port Channelized OC3/STM-1 SPA)

The 2-Port Gigabit Synchronous Ethernet SPA has a dedicated external interface known as BITs interface to recover clock from a Synchronization Supply Unit (SSU). The 7600 router uses this clock for SyncE. The BITS interface supports E1 (European SSUs) and T1 (American BITS) framing. Table 68-1 lists the framing modes for the BITS port on a 2-Port Gigabit Synchronous Ethernet SPA.

<table>
<thead>
<tr>
<th>BITS/SSU port support Matrix</th>
<th>Framing modes supported</th>
<th>SSM/QL support</th>
<th>Tx Port</th>
<th>Rx Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>T1 ESF</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>T1</td>
<td>T1 SF</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>E1</td>
<td>E1 CRC4</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>E1</td>
<td>E1 FAS</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>E1</td>
<td>E1 CAS</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>E1</td>
<td>E1 CAS CRC4</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>2048kHz</td>
<td>2048kHz</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Squelching

Squelching is a process in which an alarm indication signal (AIS) is sent to the Tx interfaces whenever the clock source goes down. The squelching functionality is implemented in two cases:
- Line to external: If the line source goes down, an AIS is transmitted on the external interface to the SSU.
• System to external: If the router loses all the clock sources, an AIS is transmitted on the external interface to the SSU.

Squelching is performed only on an external device such as SSU or Primary Reference Clock (PRC).

SSM and ESMC

Network Clocking uses these mechanisms to exchange the quality level of the clock between the network elements:

• Synchronization Status Message
• Ethernet Synchronization Messaging Channel

Synchronization Status Message

Network elements use Synchronization Status Messages (SSM) to inform the neighboring elements about the Quality Level (QL) of the clock. The non-ethernet interfaces such as optical interfaces and SONET/T1/E1 SPA framers uses SSM. The key benefits of the SSM functionality:

• Prevents timing loops.
• Provides fast recovery when a part of the network fails.
• Ensures that a node derives timing from the most reliable clock source.

Ethernet Synchronization Messaging Channel

In order to maintain a logical communication channel in synchronous network connections, ethernet relies on a channel called Ethernet Synchronization Messaging Channel (ESMC) based on IEEE 802.3 Organization Specific Slow Protocol standards. ESMC relays the SSM code that represents the quality level of the Ethernet Equipment Clock (EEC) in a physical layer.

The ESMC packets are received only for those ports configured as clock sources and transmitted on all the SyncE interfaces in the system. These packets are then processed by the Clock selection algorithm on RP and are used to select the best clock. The Tx frame is generated based on the QL value of the selected clock source and sent to all the enabled SyncE ports.

Clock Selection Algorithm

Clock selection algorithm selects the best available synchronization source from the nominated sources. The clock selection algorithm has a non-revertive behavior among clock sources with same QL value and always selects the signal with the best QL value. For clock option 1, the default is revertive and for clock option 2, the default is non-revertive.

The clock selection process works in the QL enabled and QL disabled modes. When multiple selection processes are present in a network element, all processes work in the same mode.

QL-enabled mode

In QL-enabled mode, the following parameters contribute to the selection process:

• Quality level
• Signal fail via QL-FAILED
• Priority
• External commands.
If no external commands are active, the algorithm selects the reference (for clock selection) with the highest quality level that does not experience a signal fail condition. If multiple inputs have the same highest quality level, the input with the highest priority is selected. For multiple inputs having the same highest priority and quality level, the existing reference is maintained (if it belongs to this group), otherwise an arbitrary reference from this group is selected.

QL-disabled mode

In QL-disabled mode, the following parameters contribute to the selection process:

- Signal failure
- Priority
- External commands

If no external commands are active, the algorithm selects the reference (for clock selection) with the highest priority that does not experience a signal fail condition. For multiple inputs having the same highest priority, the existing reference is maintained (if it belongs to this group), otherwise an arbitrary reference from this group is selected.

Restrictions and Usage Guidelines

Follow these restrictions and usage guidelines when configuring the SyncE on an ES40 line card:

- If the network clock algorithm is enabled, all the ES+ cards on the router use the system clock as Tx clock (synchronous mode) for its ethernet interfaces. You cannot change the synchronous mode on a per interface basis for the line card. The whole line cards functions in the same mode.
- On an ES+ card, you can have a maximum of 4 ports configured as clock source at a time.
- For a 20x1 gigabit ES+ line card, you can select a maximum of two ports from each NPU.
- For a 40x1 gigabit ES+ line card, you can select only one port from each NPU.
- You can configure a maximum of 6 ports as a clock source for a Cisco 7600 router.
- The line to external for clock clean up is supported only if the line interface and the external (BITS) interface are on the same ES+ line card.
- SyncE feature is SSO co-existent, but not compliant. The clock selection algorithm is restarted on a switchover. During the switchover the router goes into hold-over mode.
- The ES+ SyncE interfaces in WAN mode cannot be used for QL-enabled clock selection. You should either use them with the system in QL disabled mode or disable ESMC on the interfaces and use them as QL-disabled interfaces.
- It is recommended that you do not configure multiple input sources with the same priority as this impacts the TSM switching delay.
- You cannot implement the network-clock based clock selection algorithm and the new algorithm simultaneously. Both these algorithms are mutually exclusive.
- SyncE is not supported on 1 Gigabit Ethernet copper SFPs (SFP GE-T and GLC-T).

Configuring Clock Recovery on the Cisco 7600 Router

This section describes how to configure clock recovery on the Cisco 7600 Router with ES+ Line Card. Clock recovery is implemented on Cisco 7600 router using four different configurations:
• **Clock Recovery from SyncE**: System clock is recovered from the SyncE clocking source (gigabit and ten gigabit interfaces only). Router uses this clock as the Tx clock for other SyncE interfaces or ATM/CEoP interfaces. For configuration information, see “Configuring the Clock Recovery from SyncE” section on page 68-5.

• **Clock Recovery from External Interface**: System clock is recovered from a BITS clocking source or a GPS interface (in case of a 2-Port Gigabit Synchronous Ethernet SPA). For configuration information, see “Configuring the Clock Recovery from BITS Port” section on page 68-7.

• **Line to External**: The clock received from an Ethernet is forwarded to an external Synchronization Supply Unit (SSU). During a synchronization chain, the received clock may have unacceptable wander and jitter. The router recovers the clock from the SyncE interface, converts it to the format required for the BITS interface, and sends to a SSU through the BITS port. The SSU performs the cleanup and sends it back to the BITS interface. This clock is used as Tx clock for the SyncE ports. For configuration information, see “Configuring the System to External” section on page 68-9.

• **System to External**: The system clock is used as Tx clock for an external interface. By default the system clock is not transmitted on an external interface. For configuration information, see “Configuring the Line to External” section on page 68-10.

Configuring the Clock Recovery from SyncE

This section describes how to configure clock recovery over ES+ card on Cisco 7600 router using clock recovery from SyncE method.

SUMMARY STEPS

1. enable
2. configure terminal
3. network-clock synchronization automatic
4. network-clock synchronization ssm option option_Id Generation_Id
5. interface gigabitethernet slot/port or interface tengigabitethernet slot/port
6. [no]clock source {internal | line | loop}
7. synchronous mode
8. exit
9. network-clock input-source priority {interface interface_name slot/card/port | {external slot/card/port } }
10. exit
Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example:</td>
<td>Router# enable</td>
</tr>
</tbody>
</table>
| | Enables privileged EXEC mode.
| | • Enter your password if prompted. | |
| **Step 2** | configure terminal |
| Example: | Router# configure terminal |
| | Enters global configuration mode. |
| **Step 3** | network-clock synchronization automatic |
| Example: | Router(config)# network-clock synchronization automatic |
| | Enables the network clock selection algorithm. This command disables the Cisco specific network-clock process and turns on G.781 based automatic clock selection process. |
| **Step 4** | network-clock synchronization ssm option {option_id {GEN1 | GEN2}} |
| Example: | Router(config)# network-clock synchronization ssm option 2 GEN1 |
| | Configures the equipment to work in synchronization network. The option_id value 1 refers to synchronization networks design for Europe. This is the default value. The option_id value 2 refers to synchronization networks design for US. |
| **Step 5** | interface gigabitethernet slot/port or interface tengigabitethernet slot/port |
| Example: | Router(config)# int gig 5/1 |
| | Specifies the Gigabit Ethernet or the Ten Gigabit Ethernet interface to configure, where:
| | slot/port—Specifies the location of the interface. | | |
| **Step 6** | clock source {internal | line | loop} |
| Example: | Router(config-if)# clock source line |
| | Indicates the clock source to use. The 3 options for clock source are:
| | • internal: Use internal clock.
| | • line: Recover clock from line.
| | • loop: Use local loop timing.
| | To implement SYNCE, use line option. |
| **Step 7** | synchronous mode |
| Example: | Router(config-if)# synchronous mode |
| | Sets the mode to synchronous mode. |
Chapter 68 Configuring Synchronous Ethernet and 1588v2

Understanding Synchronous Ethernet

Examples

This example shows how to configure clock recovery from SyncE for Cisco 7600 Routers:

```
Router> enable
Router# configure terminal
Router(config)# network-clock synchronization automatic
Router(config)# network-clock synchronization ssm option 2 GEN1
Router(config)# int gig 5/1
Router(config-if)# clock source line
Router(config-if)# synchronous mode
Router(config)# exit
Router(config-if)# network-clock input-source 1 interface TenGigabitEthernet7/1
Router(config)# exit
```

Configuring the Clock Recovery from BITS Port

This section describes how to configure clock recovery from a BITS port as an output source.

SUMMARY STEPS

1. enable
2. configure terminal
3. network-clock synchronization automatic
4. network-clock synchronization ssm option `option_Id Generation_Id`
5. network-clock input-source `priority {interface interface_name slot/card/port | {external slot/card/port }}`
6. exit
Understanding Synchronous Ethernet

Detailed Steps

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
</table>
| **Step 1** | **enable** | Enables privileged EXEC mode.
- Enter your password if prompted. |
| **Example:** | Router# enable | | |
| **Step 2** | **configure terminal** | Enters global configuration mode. |
| **Example:** | Router# configure terminal |
| **Step 3** | **network-clock synchronization automatic** | Enables the network clock selection algorithm. This command disables the Cisco specific network-clock process and turns on G.781 based automatic clock selection process. |
| **Example:** | Router(config)# network-clock synchronization automatic |
| **Step 4** | **network-clock synchronization ssm option** {option_id {GEN1 | GEN2}} | Configures the equipment to work in synchronization network. The **option_id** value 1 refers to synchronization networks design for Europe. This is the default value. The **option_id** value 2 refers to synchronization networks design for US. |
| **Example:** | Router(config)# network-clock synchronization ssm option 2 GEN1 |
| **Step 5** | **network-clock input-source priority** {interface interface_name slot/card/port | {external slot/card/port }} | Enables clock recovery from BITS port. |
| **Example:** | Router(config-if-srv)# network-clock input-source 1 External 7/0/0 t1 sf |
| **Step 6** | **exit** | Exits the global configuration mode |
| **Example:** | Router(config)# exit |

Examples

This example shows how to configure clock recovery from a BITS port as an output source.

```plaintext
Router> enable
Router# configure terminal
Router(config)# network-clock synchronization automatic
Router(config)# network-clock synchronization ssm option 2 GEN1
Router(config)# network-clock input-source 1 External 7/0/0 t1 sf
Router(config)# exit
```
Configuring the System to External

This section describes how to configure clock recovery by using System to External feature.

SUMMARY STEPS

1. enable
2. configure terminal
3. network-clock synchronization automatic
4. network-clock synchronization ssm option option_Id Generation_Id
5. network-clock output-source system priority {external slot|card|port [j1 | 2m | 10m] }
6. exit

DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>Example: enable</td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example: configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>network-clock synchronization automatic</td>
<td>Enables the network clock selection algorithm. This command disables the</td>
</tr>
<tr>
<td></td>
<td>Example: network-clock synchronization automatic</td>
<td>Cisco specific network-clock process and turns on G.781 based automatic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>clock selection process.</td>
</tr>
<tr>
<td>Step 4</td>
<td>network-clock synchronization ssm option {option_id {GEN1</td>
<td>GEN2}}</td>
</tr>
<tr>
<td></td>
<td>Example: network-clock synchronization ssm option 2 GEN1</td>
<td>value 1 refers to synchronization networks design for Europe. This is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>the default value. The option_id value 2 refers to synchronization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>networks design for US.</td>
</tr>
</tbody>
</table>
Understanding Synchronous Ethernet

Examples

This example shows how to configure system to external clocking for Cisco 7600 Routers:

```
Router>enable
Router# configure terminal
Router(config)# network-clock synchronization automatic
Router(config)# network-clock synchronization ssm option 2 GEN1
Router(config)# network-clock input-source 1 External 7/0/0 t1 sf
```

This example shows how to configure clock clean-up using an SSU:

```
Router(config)# network-clock output-source line 1 interface GigabitEthernet1/11 External 1/0/0 t1 sf
Router(config)# network-clock input-source 1 External 7/0/0 t1 sf
```

Configuring the Line to External

This section describes how to configure clock recovery by using Line to External feature.

SUMMARY STEPS

1. enable
2. configure terminal
3. network-clock synchronization automatic
4. network-clock synchronization ssm option option_Id Generation_Id
5. interface gigabitethernet slot/port or interface tengigabitethernet slot/port
6. [no]clock source {internal | line | loop}
7. synchronous mode
8. exit
9. network-clock output-source line priority {interface interface_name | controller {t1 | e1} slot/card/port} {external slot/card/port}
10. exit
DETAILED STEPS

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
</tr>
</tbody>
</table>
| `enable` | Enables privileged EXEC mode.
| **Example:** |
| `Router# enable` | - Enter your password if prompted. |
| **Step 2** |
| `configure terminal` | Enters global configuration mode.
| **Example:** |
| `Router# configure terminal` | |
| **Step 3** |
| `network-clock synchronization automatic` | Enables the network clock selection algorithm. This command disables the Cisco specific network-clock process and turns on G.781 based automatic clock selection process.
| **Example:** |
| `Router(config)# network-clock synchronization automatic` | |
| **Step 4** |
| `network-clock synchronization ssm option {option_id {GEN1 | GEN2}}` | Configures the equipment to work in synchronization network. The `option_id` value 1 refers to synchronization networks design for Europe. This is the default value. The `option_id` value 2 refers to synchronization networks design for US.
| **Example:** |
| `Router(config)# network-clock synchronization ssm option 2 GEN1` | |
| **Step 5** |
| `interface gigabitethernet slot/port or interface tengigabitethernet slot/port` | Specifies the Gigabit Ethernet or the Ten Gigabit Ethernet interface to configure, where:
| **Example:** |
| `Router(config)# int gig 5/1` | `slot/port`—Specifies the location of the interface. |
| **Step 6** |
| `clock source {internal | line | loop}` | Indicates the clock source to use. The 3 options for clock source are:
| **Example:** |
| `Router(config-if)# clock source line` | - internal: Use internal clock.
| | - line: Recover clock from line.
| | - loop: Use local loop timing.
| | To implement SYNCE, use `line` option. |
| **Step 7** |
| `synchronous mode` | Sets the mode to synchronous mode.
| **Example:** |
| `Router(config-if)# synchronous mode` | |
Chapter 68 Configuring Synchronous Ethernet and 1588v2

Understanding Synchronous Ethernet

Examples

This example shows how to configure clock recovery from SyncE for Cisco 7600 Routers:

```
Router>enable
Router# configure terminal
Router(config)# network-clock synchronization automatic
Router(config)# network-clock synchronization ssm option 2 GEN1
Router(config)# network-clock input-source 1 interface TenGigabitEthernet7/1
Router(config)# int gig 5/1
Router(config-if)# clock source line
Router(config-if)# synchronous mode
Router(config)# exit
Router(config)# network-clock output-source line 1 interface GigabitEthernet1/11 External 1/0/0
```

Managing Synchronization on ES+ Card

Manage the synchronization on ES+ cards with these management commands:

- Quality Level Enabled Clock Selection: Use the `network-clock synchronization mode QL-enabled` command in global configuration mode to configure the automatic selection process for QL-enabled mode. This succeeds only if the SyncE interfaces are capable of sending SSM. The following example shows how to configure network clock synchronization (QL-enabled mode) in global configuration mode:

  ```
  Router(config)# network-clock synchronization mode QL-enabled
  ```

- ESMC Process: Use the `esmc process` command in global configuration mode to enable the ESMC process at system level. The no form of the command disables the ESMC process. This command fails if there is no SyncE-capable interface installed in the platform. The following example shows how to enable ESMC in global configuration mode:

  ```
  ```

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 8</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 9</td>
<td>`network-clock output-source line priority {interface interface_name</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
<tr>
<td>Step 10</td>
<td>exit</td>
</tr>
<tr>
<td>Example:</td>
<td></td>
</tr>
</tbody>
</table>
Router(config)# esmc process

- **ESMC Mode**: Use the `esmc mode [tx | rx |<cr>]` command in interface configuration mode to enable ESMC process at interface level. The no form of the command disables the ESMC process. The following example shows how to enable ESMC in interface configuration mode:

  ```
  Router(config-if)# esmc mode tx
  ```

- **Network Clock Source Quality level**: Use the `network-clock source quality-level` command in interface configuration mode to configure the QL value for ESMC on gigabitethernet port. The value is based on global interworking options.
 - If Option 1 is configured, the available values are QL-PRC, QL-SSU-A, QL-SSU-B, QL-SEC, and QL-DNU.
 - If Option 2 is configured with GEN 2, the available values are QL-PRS, QL-STU, QL-ST2, QL-TNC, QL-ST3, QL-SMC, QL-ST4 and QL-DUS.
 - If option 2 is configured with GEN1, the available values are QL-PRS, QL-STU, QL-ST2, QL-SMC, QL-ST4 and QL-DUS

 Use the `network-clock quality-level` command in global configuration mode to configure the QL value for SSM on BITS port. The following example shows how to configure `network-clock quality-level` in global configuration mode:

  ```
  Router(config)# network-clock quality-level rx QL-PRC interface ToP3/0/20
  ```

 The following example shows how to configure network-clock source quality-level in interface configuration mode:

  ```
  Router(config-if)# network-clock source quality-level QL-PRC
  ```

- **Wait-to-Restore**: Use the `network-clock wait-to-restore timer global` command to set wait-to-restore time. You can configure the wait-to-restore time between 0 to 86400 seconds. The default value is 300 seconds. The wait-to-restore timer can be set at global configuration mode and interface configuration mode. The following example shows how to configure wait-to-restore timer in global configuration mode:

  ```
  Router(config)# network-clock wait-to-restore 10 global
  ```

 The following example shows how to configure the wait-to-restore timer in interface configuration mode:

  ```
  Router(config)# int ten 7/1
  Router(config-if)# network-clock wait-to-restore 10
  ```

- **Hold-off Time**: Use `network-clock hold-off timer global` command to configure hold-off time. You can configure the hold-off time to zero or any value between 50 to 10000 milliseconds. The default value is 300 milliseconds. The `network-clock hold-off timer` can be set at global configuration mode and interface configuration mode. The following example shows how to configure hold-off time:

  ```
  Router(config)# network-clock hold-off 50 global
  ```

- **Force Switch**: Use the `network-clock switch force` command to forcefully select a synchronization source irrespective of whether the source is available and within the range. The following example shows how to configure manual switch:

  ```
  Router(config)# network-clock switch force interface tenGigabitEthernet 7/1 t1
  ```
• Manual Switch: Use `network-clock switch manual` command to manually select a synchronization source provided the source is available and within the range. The following example shows how to configure manual switch:

```
Router(config)# network-clock switch manual interface tenGigabitEthernet 7/1 t1
```

• Clear Manual and Force Switch: Use the `network-clock clear switch controller-id` command to clear the manual or switch it by force. The following example shows how to clear a switch:

```
Router(config)# network-clock clear switch t0
```

• Lock out a Source: Use the `network-clock set lockout` command to lock-out a clock source. A clock source flagged as lock-out is not selected for SyncE. To clear the lock-out on a source, use the `network-clock clear lockout` command. The following example shows how to lock out a clock source:

```
Router(config)# network-clock set lockout interface tenGigabitEthernet 7/1
```

The following example shows how to clear lock-out on a clock source:

```
Router(config)# network-clock clear lockout interface tenGigabitEthernet 7/1
```

Verification

Use the following commands to verify the SyncE configuration:

• Use the `show network-clock synchronization` command to display the sample output:

```
Router# show network-clocks synchronization
Symbols:     En - Enable, Dis - Disable, Adis - Admin Disable
             NA - Not Applicable
             * - Synchronization source selected
             # - Synchronization source force selected
             & - Synchronization source manually switched

Automatic selection process : Enable
Equipment Clock : 2048 (BEC-Option1)
Clock Mode : QL-Enable
ESMC : Enabled
SSM Option : 1
T0 : TenGigabitEthernet12/1
Hold-off (global) : 300 ms
Wait-to-restore (global) : 300 sec
Tsm Delay : 180 ms
Revertive : No

Nominated Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>SigType</th>
<th>Mode/QL</th>
<th>Prio</th>
<th>QL_IN</th>
<th>ESMC Tx</th>
<th>ESMC Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>NA</td>
<td>NA/Dis</td>
<td>251</td>
<td>QL-SBC</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>*Te12/1</td>
<td>NA</td>
<td>Sync/En</td>
<td>1</td>
<td>QL-PRC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AT6/0/0</td>
<td>NA</td>
<td>NA/En</td>
<td>1</td>
<td>QL-SSU-A</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
```

• Use the `show network-clock synchronization detail` command to display all details of network-clock synchronization parameters at the global and interface levels.

```
Router# show network-clocks synchronization detail
Symbols:     En - Enable, Dis - Disable, Adis - Admin Disable
             NA - Not Applicable
```
Chapter 68 Configuring Synchronous Ethernet and 1588v2

Understanding Synchronous Ethernet

* - Synchronization source selected
- Synchronization source force selected
& - Synchronization source manually switched

Automatic selection process : Enable
Equipment Clock : 2048 (EKC-Option1)
Clock Mode : QL-Enable
ESMC : Enabled
SSM Option : 1
T0 : TenGigabitEthernet12/1
Hold-off (global) : 300 ms
Wait-to-restore (global) : 300 sec
Tsm Delay : 180 ms
Revertive : No
Force Switch: FALSE
Manual Switch: FALSE
Number of synchronization sources: 2
sm(netsync NETCLK_QL_ENABLE), running yes, state 1A
Last transition recorded: (sf_change)-> 1A (ql_change)-> 1A (sf_change)-> 1A
(ql_change)-> 1A (ql_change)-> 1A (sf_change)-> 1A (ql_change)-> 1A
(Nominated Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>SigType</th>
<th>Mode/QL</th>
<th>Prio</th>
<th>QL_IN</th>
<th>ESMC Tx</th>
<th>ESMC Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>NA</td>
<td>NA/Dis</td>
<td>251</td>
<td>QL-SEC</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>*Te12/1</td>
<td>NA</td>
<td>Sync/En</td>
<td>1</td>
<td>QL-PRC</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AT6/0/0</td>
<td>NA</td>
<td>NA/En</td>
<td>1</td>
<td>QL-SSU-A</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Interface:

Local Interface: Internal
Signal Type: NA
Mode: NA(Q1-enabled)
SSM Tx: Disable
SSM Rx: Disable
Priority: 251
QL Receive: QL-SEC
QL Receive Configured: -
QL Receive Overrided: -
QL Transmit: -
QL Transmit Configured: -
Hold-off: 0
Wait-to-restore: 0
Lock Out: FALSE
Signal Fail: FALSE
Alarms: FALSE
Slot Disabled: FALSE

Local Interface: Te12/1
Signal Type: NA
Mode: Synchronous(Q1-enabled)
ESMC Tx: Enable
ESMC Rx: Enable
Priority: 1
QL Receive: QL-PRC
QL Receive Configured: -
QL Receive Overrided: -
QL Transmit: QL-DNU
QL Transmit Configured: -
Hold-off: 300
Wait-to-restore: 300
Lock Out: FALSE
Signal Fail: FALSE
Understanding Synchronous Ethernet

Alarms: FALSE
Slot Disabled: FALSE

Local Interface: AT6/0/0
Signal Type: NA
Mode: NA(QL-enabled)
SSM Tx: Enable
SSM Rx: Enable
Priority: 1
QL Receive: QL-SSU-A
QL Receive Configured: -
QL Receive Overrided: -
QL Transmit: -
QL Transmit Configured: -
Hold-off: 300
Wait-to-restore: 300
Lock Out: FALSE
Signal Fail: FALSE
Alarms: FALSE
Slot Disabled: FALSE

- Use the show esmc command to display the sample output.

Router# show esmc
Interface: TenGigabitEthernet12/1
Administrative configurations:
 Mode: Synchronous
 ESMC TX: Enable
 ESMC RX: Enable
 QL TX: -
 QL RX: -
Operational status:
 Port status: UP
 QL Receive: QL-PRC
 QL Transmit: QL-DNU
 QL rx overrided: -
 ESMC Information rate: 1 packet/second
 ESMC Expiry: 5 second

Interface: TenGigabitEthernet12/2
Administrative configurations:
 Mode: Synchronous
 ESMC TX: Enable
 ESMC RX: Enable
 QL TX: -
 QL RX: -
Operational status:
 Port status: UP
 QL Receive: QL-DNU
 QL Transmit: QL-DNU
 QL rx overrided: QL-DNU
 ESMC Information rate: 1 packet/second
 ESMC Expiry: 5 second

- Use the show esmc detail command to display all details of esmc parameters at the global and interface levels.

Router# show esmc detail
Interface: TenGigabitEthernet12/1
Administrative configurations:
 Mode: Synchronous
 ESMC TX: Enable
 ESMC RX: Enable
 QL TX: -
 QL RX: -
Operational status:
 Port status: UP
 QL Receive: QL-PRC
 QL Transmit: QL-DNU
 QL rx overrided: -
 ESMC Information rate: 1 packet/second
 ESMC Expiry: 5 second
 ESMC Tx Timer: Running
 ESMC Rx Timer: Running
 ESMC Tx interval count: 1
 ESMC INFO pkts in: 2195
 ESMC INFO pkts out: 6034
 ESMC EVENT pkts in: 1
 ESMC EVENT pkts out: 16

Interface: TenGigabitEthernet12/2
 Administrative configurations:
 Mode: Synchronous
 ESMC TX: Enable
 ESMC RX: Enable
 QL TX: -
 QL RX: -

Operational status:
 Port status: UP
 QL Receive: QL-DNU
 QL Transmit: QL-DNU
 QL rx overrided: QL-DNU
 ESMC Information rate: 1 packet/second
 ESMC Expiry: 5 second
 ESMC Tx Timer: Running
 ESMC Rx Timer: Running
 ESMC Tx interval count: 1
 ESMC INFO pkts in: 0
 ESMC INFO pkts out: 2159
 ESMC EVENT pkts in: 0
 ESMC EVENT pkts out: 10

Note
For information on configuring the SyncE interfaces, verifying the configuration and troubleshooting the
2-Port Gigabit Synchronous Ethernet SPA, see:
76cfgeth.html#wpxref24513

Troubleshooting the Synchronous Ethernet configuration

The following debug commands are available for troubleshooting the Synchronous Ethernet
configuration on the Cisco 7600 ES+ Line Card:

<table>
<thead>
<tr>
<th>Debug Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>debug platform ssm</td>
<td>Debugs issues related to SSM such as Rx, Tx,QL values and so on.</td>
</tr>
</tbody>
</table>
Debug Command

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>debug platform network-clock</code></td>
<td>Debugs issues related to network clock such as alarms, OOR, active-standby sources not selected correctly and so on.</td>
</tr>
<tr>
<td><code>debug esmc error</code></td>
<td></td>
</tr>
<tr>
<td><code>debug esmc event</code></td>
<td></td>
</tr>
<tr>
<td><code>debug esmc packet [interface <interface name>]</code></td>
<td>Verifies whether the ESMC packets are transmitted or received with proper quality level values.</td>
</tr>
<tr>
<td><code>debug esmc packet rx [interface <interface name>]</code></td>
<td></td>
</tr>
<tr>
<td><code>debug esmc packet tx [interface <interface name>]</code></td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting Scenarios

Note: Before you troubleshoot, ensure that all the network clock synchronization configurations are complete.

Troubleshooting

Table 68-2 provides the troubleshooting solutions for the synchronous ethernet feature.
Understanding Synchronous Ethernet

Table 68-2 Troubleshooting Scenarios

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect clock limit set or disabled queue limit mode</td>
<td>• Verify that there are no alarms on the interfaces. Use the show network-clock synchronization detail RP command to confirm.</td>
</tr>
</tbody>
</table>

Warning We suggest you do not use these debug commands without TAC supervision.

• Use the **show network-clock synchronization** command to confirm if the system is in revertive mode or non-revertive mode and verify the non-revertive configurations as shown in this example:

```
RouterB#show network-clocks synchronization
Symbols:    En - Enable, Dis - Disable, 
Adis - Admin Disable NA - Not Applicable
- Synchronization source selected
# - Synchronization source force selected
& - Synchronization source manually switched
Automatic selection process : Enable
Equipment Clock : 1544 (EBC-Option2)
Clock Mode : QL-Enable
ESMC : Enabled
SSM Option : GEN1
T0 : POS3/1/0
Hold-off (global) : 300 ms
Wait-to-restore (global) : 0 sec
Tsm Delay : 180 ms
Revertive : Yes<<<<If it is non revertive then it will show NO here.
Nominated Interfaces

<table>
<thead>
<tr>
<th>Interface</th>
<th>SigType</th>
<th>Mode/QL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>NA</td>
<td>NA/Dis</td>
</tr>
<tr>
<td>251</td>
<td>QL-ST3</td>
<td>NA</td>
</tr>
<tr>
<td>SONET 3/0/0</td>
<td>NA</td>
<td>NA/En</td>
</tr>
<tr>
<td>3</td>
<td>QL-ST3</td>
<td>NA</td>
</tr>
<tr>
<td>*PO3/1/0</td>
<td>NA</td>
<td>NA/En</td>
</tr>
<tr>
<td>1</td>
<td>QL-ST3</td>
<td>NA</td>
</tr>
<tr>
<td>SONET 2/3/0</td>
<td>NA</td>
<td>NA/En</td>
</tr>
<tr>
<td>4</td>
<td>QL-ST3</td>
<td>NA</td>
</tr>
</tbody>
</table>
```
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| Incorrect quality level (QL) values when you use the `show network-clock synchronization detail` command. | • Reproduce the current issue and collect the logs using the `debug network-clock errors`, `debug network-clock event`, and `debug network-clock sm` RP commands.

⚠️ **Warning** We suggest you do not use these debug commands without TAC supervision.

• Contact Cisco technical support if the issue persists.

• Use the `network clock synchronization SSM (option 1 |option 2)` command to confirm that there is no framing mismatch. Use the `show run interface` command to validate the framing for a specific interface. For the SSM option 1 framing should be SDH or E1 and for SSM option 2, it should be SONET or T1.

• Reproduce the issue using the `debug network-clock errors`, `debug network-clock event` and `debug platform ssm` RP commands or enable the `debug hw-module subslot` command.

⚠️ **Warning** We suggest you do not use these debug commands without TAC supervision.

• Interfaces with alarms or OOR cannot be the part of selection process even if it has higher queue limit or priority. Use the `debug platform network-clock` RP command to troubleshoot network clock issues.

• Reproduce the issue using the `debug platform network-clock` command enabled in a route processor or enable the `debug network-clock event` and `debug network-clock errors` RP commands.

⚠️ **Warning** We suggest you do not use these debug commands without TAC supervision.

Error message “%NETCLK-6-SRC_UPD: Synchronization source SONET 2/3/0 status (Critical Alarms(OOR)) is posted to all selection process” displayed.
Understanding 1588v2

IEEE 1588-2008 is a protocol specification standard. It is also known as Precision Time Protocol Version 2 (PTPv2). It is a specifically designed to provide precise timing and synchronization over packet-based ethernet infrastructures. While SyncE supports only frequency synchronization and each network element along the synchronization path needs to support SyncE, IEEE 1588v2 supports frequency synchronization over asynchronous networks and also timing synchronization. 1588v2 is supported only on 2-Port Gigabit Synchronous Ethernet SPA.

Components of a PTP Enabled Network

PTP employs a hierarchy of clock types to ensure that precise timing and synchronization is maintained between the timing and synchronization source and the numerous PTP clients that are distributed throughout the network.

The four PTP clock types are Master, Slave, Boundary Clock and Transparent clock.
- **PTP Master**: A PTP Master has a precise clock from the primary reference clock (PRC) or GPS. This clock enables the timestamp engine to derive accurate timestamps.
- **PTP Slave**: A PTP slave is a network element that recovers the frequency and phase clock, from the timestamps sent by the Master.
- **Boundary Clock**: The Boundary clock functions as both PTP master and slave. It acts as the slave to a Grand Master and derive the reference from the Grand Master. Boundary clock starts its own PTP session with a number of downstream slaves. The boundary clock mitigates the number of network hops and results in packet delay variations in the packet network between the Grand Master and Slave.
- **Transparent clock**: A Transparent clock is a device that calculates the time it requires to forward traffic and updates the PTP time correction field to account for the delay, making the device transparent in terms of time calculations.

Timing over Packet Interface

Timing over packet (ToP) works as a virtual interface on route processor which is the address for the 2-Port Gigabit Synchronous Ethernet SPA’s PTP stack to outside world. Other PTP entities send and receive packets from the interface’s IP address.

When a packet is received on the router destined to ToP’s IP address, the router’s hardware redirects to use the 2-Port Gigabit Synchronous Ethernet SPA and not the route processor. ToP is configured with 32 bit mask. ToP does not support QOS. CoPP is supported.

Basic Operation of 1588v2

This section describes how the 1588v2 works. **Figure 68-1** shows the message exchange between the PTPv2 Master and Slave.
The message exchange occurs in this sequence:

- The master relays a SYNC message to the slave. The time at which this message is received is recorded by the hardware assist unit on the slave. In Figure 68-1, this is represented as t1.
- The master records the actual time the SYNC message was sent (t0) from its own hardware assist unit and relays a follow-up message containing the time stamp of the previous SYNC message to the slave.
- To calculate the network delay, the slave sends a “Delay Request” message (t2) to the master. The slave hardware assist unit records the time when the message is sent.
- Upon receiving the delay request message, the master transmits a delay response message (t3), with the time stamp of t2, back to the slave.
- The slave uses the timestamps, t0 through t3, to calculate the offset and propagation delay to correct its clock.

1588v2 Supported Models

These are the two 1588v2 supported PTP models:

- **Service SPA Model:**
 In service SPA model, packets originates and terminate on the 2-Port Gigabit Synchronous Ethernet SPA through SIP400. The service SPA model is simple, uses the existing infrastructure, and works with different encapsulations.
 The 2-Port Gigabit Synchronous Ethernet SPA receives redirected PTP packets, processes and sends the reply packets to the central switching engine. These packets are forwarded based on the IP address of the client.
 These are the restrictions for the service SPA model:
 - The time is not stamped done at the exact packet entry or exit of the system.
The PTP packet does not remain constant, leading to delays called the packet delay variations (PDV).

- Direct SPA Model:

2-Port Gigabit Synchronous Ethernet SPA is capable of accurately timestamping the packet, on the receiver and transmitter for the existing line cards on 7600. So to meet the ideal requirements of 1588v2, the PTP packets are received and transmitted on the same 2-Port Gigabit Synchronous Ethernet SPA.

In the Direct SPA model, PTP packets are received or transmitted through the Ethernet port of the 2-Port Gigabit Synchronous Ethernet SPA. The PTP packets coming on a 2-Port Gigabit Synchronous Ethernet SPA Ethernet interface are diverted to the PTP stack on the SPA by the field-programmable gate array (FPGA). The PTP stack or the algorithm then takes necessary action based on the configuration (master or slave). The reply packets are sent out of the SPA's Ethernet ports.

These are the restrictions for the direct SPA model:
- Only Limited encapsulations are supported.
- The PTP packets are received only on 2-Port Gigabit Synchronous Ethernet SPA ports.

Supported Transport Modes

These are the transport modes that 1588v2 supports:

- **Unicast Mode:** In unicast mode, the 1588v2 master transmits the Sync or Delay_Resp messages to the slave on the unicast IP address of the slave and the slave in turn transmits the Delay_Req to the master on the unicast IP address of the master.

- **Unicast Negotiation Mode:** In unicast negotiation mode, Master does not know of any slave at the outset. The slave sends a negotiation message to the Master. Unicast Negotiation mode is good for scalability purpose as one master can have multiple slaves.

- **Mix-multicast model:** In Mix-multicast model, the master transmits messages in a multicast packet, to the IP address 224.0.1.129 (defined by the 1588v2 standard). The slave learns the IP address of the master in this process and transmits a delay request message. The master then transmits back a delay response message to the slave in unicast mode.

To send messages in multicast mode, the master needs to explicitly specify the multicast egress interface. This enables the intermediate network to route the IP address 224.0.1.129 to the slave.

Time of Day (TOD)

2 port Gigabit synchronous Ethernet SPA provides two physical interfaces to retrieve or generate timestamp to the GPS signal.

The physical interfaces used to retrieve Time of Day(ToD) and estimated phase are:

- **1PPS interface**
- **RJ45 interface**

Figure 68-2 shows the Time of Day(ToD) and 1 PPS Synchronization using 1588v2:
Time of Day on the 1588v2 Master

In 1588v2 master mode, Time of Day (TOD) enables 2-port Gigabit synchronous Ethernet SPA to receive the time from the GPS receiver through RJ45 interface and synchronizes with the SPA’s current time. The 1588v2 master requires 1PPS input from the GPS device to read ToD correctly.

Time of Day on the 1588v2 Slave

In 1588v2 slave mode, 2-port Gigabit synchronous Ethernet SPA recovers ToD from the 1588v2 session. TOD and 1 PPS recovered from Precision Time Protocol (PTP) is replayed on the respective interfaces.

Restrictions

From 15.1(1)S release, these restrictions are applicable for the 1588v2 feature:

- The TOD recovered from the 1588v2 session is not in sync with the system clock.
- GPS interfaces can be used only for clock recovery. System clock cannot be transmitted out on the GPS interface.
- Only TOD format supported is UBOX, CISCO, and NTP.

To use the clock recovered from the 1588v2 session the ToP interface should be configured as the clock source.
Configuring ToD on 1588v2 Master

These commands are used to configure ToD on a 1588v2 master:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-ptp-clk)# tod <slot>/<subslot> <Cisco/ntp/ubx></td>
<td>Configures ToD on 1588v2.</td>
</tr>
<tr>
<td>Router(config-ptp-clk)# input 1pps <slot>/<subslot></td>
<td>Provides the input to the master.</td>
</tr>
</tbody>
</table>

This example shows the configuration of ToD on 1588v2 Master:

Router# config terminal
Router(config)# ptp clock ordinary domain 0
Router(config-ptp-clk)# tod 3/3 cisco
Router(config-ptp-clk)# input 1pps 3/3
Router(config-ptp-clk)# clock-port MASTER master
Router(config-ptp-clk)# transport ipv4 unicast interface Gi3/3/1 negotiation
Router(config-ptp-clk)# end

Verifying ToD Configuration on the 1588v2 Master

This example helps you verify the ToD configuration for 1588v2 Master.

Router# show ptp clock runn dom 0
PTP Ordinary Clock [Domain 0]
State Ports Pkts sent Pkts rcvd
FREQ_LOCKED 1 30052 5867

PORT SUMMARY
Name Tx Mode Role Transport State Sessions
MASTER unicast master To3/1/2 - 1

SESSION INFORMATION
MASTER [To3/1/2] [Sessions 1]
Peer addr Pkts in Pkts out In Errs Out Errs
4.4.4.4 5867 30052 0 1

Use the show platform ptp tod all command to display the sample output.

Router# show platform ptp tod all

ToD/1PPS Info for SPA 3/1

ToD CONFIGURED : YES
ToD FORMAT : CISCO
ToD DELAY : 0
1PPS MODE : INPUT
1PPS STATE : UP
ToD STATE : UP
ToD CLOCK : Mon Aug 30 09:36:47 UTC 2010
Configuring ToD on 1588v2 Slave

These commands are used to configure ToD on the 1588v2 slave:

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Router(config-ptp-clk)# tod <slot>/<subslot> <Cisco/ntp/ubx></td>
<td>Configures ToD on 1588v2.</td>
</tr>
<tr>
<td>Router(config-ptp-clk)# output 1pps <slot>/<subslot></td>
<td>Provides the output from the slave.</td>
</tr>
</tbody>
</table>

This example shows the ToD configuration on the 1588v2 slave:

```
Router# config terminal
Router(config)# ptp clock ordinary domain 0
Router(config-ptp-clk)# tod 3/3 cisco
Router(config-ptp-clk)# output 1pps 3/3
Router(config-ptp-clk)# clock-port SLAVE slave
Router(config-ptp-clk)# transport ipv4 unicast interface Gi3/3/1 negotiation
Router(config-ptp-clk)# clock source 1.1.1.1
Router(config-ptp-clk)# end
```

Verifying ToD Configuration on the 1588v2 Slave

This example helps you verify the ToD configuration on the 1588v2 slave.

```
Router# show ptp clock runn dom 0

PTP Ordinary Clock [Domain 0]

  State          Ports          Pkts sent      Pkts rcvd  
  ACQUIRING 1 5308 27185

PORT SUMMARY

  Name               Tx Mode  Role  Transport   State  Sessions
  SLAVE              unicast slave  To3/1/2 -         1

SESSION INFORMATION

SLAVE [To3/1/2] [Sessions 1]

  Peer addr          Pkts in  Pkts out  In Errs  Out Errs
  3.3.3.3 27185 5308 0 0

Use the show platform ptp tod all command to display the sample output.
```

```
Router# show ptp clock runn dom 0

PTP Ordinary Clock [Domain 0]

  State          Ports          Pkts sent      Pkts rcvd
  PHASE_ALIGNED 1 21428 109772

PORT SUMMARY
```
Understanding 1588v2

Name	**Tx Mode**	**Role**	**Transport**	**State**	**Sessions**
SLAVE | unicast | slave | To3/1/2 | - | 1

SESSION INFORMATION

SLAVE [To3/1/2] [Sessions 1]

Peer addr	Pkts in	Pkts out	In Errs	Out Errs
Router# **show platform ptp tod all**

```
ToD/1PPS Info for SPA 3/1
--------------------------------
ToD CONFIGURED : YES
ToD FORMAT : CISCO
ToD DELAY : 0
1PPS MODE : OUTPUT
OFFSET : 0
PULSE WIDTH : 0
ToD CLOCK : Mon Aug 30 09:52:08 UTC 2010
```

Network Clocking

The network clocking support for 76-ES+XT-2TG3CXL and 76-ES+XT-4TG3CXL line cards is built on top of the existing network clocking feature with SIP-200 and SIP-400 line cards. All the original network clock sources provided by SPA interfaces on SIP-200 and SIP-400 line cards operate the same way as before. Additionally, you can use network clocking support for the 76-ES+XT-2TG3CXL and 76-ES+XT-4TG3CXL to configure:

- BITS clock source
- 10GE interface clock source

These enhancements provide Synchronous Ethernet (SyncE) feature support for service provider applications making the 76-ES+XT-2TG3CXL and 76-ES+XT-4TG3CXL line cards the preferred choices for carrier Ethernet environments.

Note

This feature is applicable only for Cisco IOS releases 12.2 (33) SRD and SRE. Effective with Cisco IOS release 15.0(1)S, you can use SyncE for frequency synchronization over ethernet.

The 76-ES+XT-2TG3CXL or 76-ES+XT-4TG3CXL line cards operate in three different modes for clock synchronization depending on the configuration and the current source state.

- Free-running—a line card that is not participating in network clocking or a line card that is actively sourcing the clock operates in free-running mode. In this mode, the line card internal oscillator generates the reference clock to the backplane.

Note

In a nonparticipating mode or a disabled mode, the line card distributes a Stratum 3-quality timing signal to an external reference clock. Other interfaces on different line cards receive either the backplane reference clock or the external reference clock depending on their configurations.
Note: Line card operation is in free-running mode only if it is not participating in the system clocking, is configured as the active source using on-board oscillator, or does not currently have a valid clock source before the first clock synchronization; otherwise the line cards operate in normal mode.

- Normal—In normal mode, the module synchronizes with an externally supplied network timing reference, sourced from one of the chassis BITS inputs or recovered from a network interface. In this mode, the accuracy and stability of the output signal is determined by the accuracy and stability of the input reference.

- Holdover—In holdover mode, the network timing module generates a timing signal based on the stored timing reference used when operating in normal mode. Holdover mode is automatically selected when the recovered reference is lost or has drifted excessively.

Note: You cannot configure the drift range; it is set internally on the line card to +/-9.2~12 ppm (parts per million) by default. This ppm setting is typical for applications that requires a clock quality level of Stratum 3/3E, ITU-T G.813 option 1.

Note: All line cards operate in the free-running mode until the network clock is configured.

For network clocking information for SIP 200, see the following links:

How to Configure Network Clocking

The following sections provide information on configuring network clocking:

- Configuring BITS Clock Support, page 68-29
- Configuring 10GE Interface as Clock Source, page 68-31
- Verifying the Clock Source, page 68-33
- Clock Source Recovery, page 68-34

Configuring BITS Clock Support

You can select and configure the BITS port on the 76-ES+XT-2TG3CXL or 76-ES+XT-4TG3CXL line card as the system clock source. This will synchronize the system backplane clock with the corresponding BITS port input clock and distribute the BITS port input clock across the chassis as the transmit clock reference for all other interfaces that support network clocking.
Usage Guidelines

Use the following guidelines:

- When the network clocking configuration is present in the startup configuration, the clocking configuration is not applied until five minutes after the configuration has been parsed. This prevents clocking instability on the backplane when the interfaces and controllers come up out of order.

- Network clocking is enabled by default for the 76-ES+XT-2TG3CXL and 76-ES+XT-4TG3CXL.

- Cisco IOS Release 12.2(33)SRD1 does not support synchronization status messaging (SSM) through BITS input.

- If there is a BITS clock source flap because of Loss of Signal (LOS), Loss of Frame (LOF), T1 Blue Alarm, or E1 Alarm Indication Signal (AIS), there is an interval of 150 seconds before the source becomes valid and active.

- In the event of an Out-of-Range (OOR) switchover (revertive mode), the source switchover occurs when the clock offset crosses the ±12 ppm threshold. If this occurs, you must reconfigure the source.

SUMMARY STEPS

1. enable
2. configure terminal
3. network-clock slot slot bits number {2m | e1 [crc4] | j1 [esf] | t1 [d4 | esf] [133ft | 266ft | 399ft | 533ft | 655ft]}
4. network-clock select priority slot slot bits number
5. exit

Detailed Steps

To configure BITS clock support for the Cisco 76-ES+XT-2TG3CXL and 76-ES+XT-4TG3CXL, use the following commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>enable</td>
</tr>
<tr>
<td>Example: Router# enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>• Enter your password if prompted.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>configure terminal</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
</tbody>
</table>
| Step 3 | network-clock slot slot bits number {2m | e1 [crc4] | j1 [esf] | t1 [d4 | esf] [133ft | 266ft | 399ft | 533ft | 655ft]}
| Example: Router(config)# network-clock slot 1 bits 0 | (Optional) Configure BITS port signaling types. |
| The default signal type is T1 with ESF framing and a Line Build-Out Select value of 133 feet. |
Understanding 1588v2

Example

The following example shows how to configure BITS clock support for the Cisco 76-ES+XT-2TG3CXL and 76-ES+XT-4TG3CXL.

Router# enable
Router# configure terminal
Router(config)# network-clock slot 1 bits 0 ?
2m 2.048MHz square wave signal type
e1 E1 signal type
j1 Japan J1 signal type
t1 T1 signal type

Router(config)# network-clock slot 1 bits 0 t1 ?
d4 T1 D4 framing mode
esf T1 ESF framing mode

Router(config)# network-clock slot 1 bits 0 t1 d4 266ft

Router(config)# network-clock select 1 slot 1 bits 0
Router(config)# exit

Configuring 10GE Interface as Clock Source

This will set up the line card to extract the received clock from the 10GE interface, either the LAN PHY or the WANPHY, and have the system backplane clock synchronized to it. Then the system will use it as the transmission clock reference for all other interfaces in the chassis that support the network clocking feature.

Usage Guidelines

Use the following guidelines:
Understanding 1588v2

- When the network clocking configuration is present in the startup configuration, the clocking configuration is not applied until five minutes after the configuration has been parsed. This prevents clocking instability on the backplane when the interfaces/controllers come up out of order.
- Network clocking is enabled by default for the 76-ES+XT-2TG3CXL and 76-ES+XT-4TG3CXL.
- Cisco IOS Release 12.2(33)SRD1 does not support Ethernet Synchronization Message Channel (ESMC) on LAN PHY and SSM received from SONET/SDH frames for WANPHY.
- If there is a clock source flap because of interface up and down events, there is an interval of 150 seconds before the source becomes valid and active.
- In the event of an Out-of-Range (OOR) switchover (revertive mode), but the interface stays up, the source switchover occurs when the clock offset crosses the +/-12 ppm threshold. If this occurs, you must reconfigure the source.

SUMMARY STEPS

1. enable
2. configure terminal
3. interface TenGigabitEthernet slot/port
4. clock source {internal | line | loop}
5. exit
6. network-clock select priority interface TenGigabitEthernet slot/port
7. exit

Detailed Steps

To configure 10GE interface as the clock source, use the following commands.

<table>
<thead>
<tr>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td></td>
<td>• Enter your password if prompted.</td>
</tr>
<tr>
<td>configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>interface TenGigabitEthernet slot/port</td>
<td>Specifies the Ten Gigabit Ethernet interface to configure, where:</td>
</tr>
<tr>
<td></td>
<td>• slot/port—Specifies the location of the interface.</td>
</tr>
<tr>
<td>clock source {internal</td>
<td>line</td>
</tr>
</tbody>
</table>
Example

The following example shows how to configure 10GE interface as the clock source.

Router# enable
Router# configure terminal
Router(config)# interface tengigabitethernet 1/1
Router(config-if)# clock source line
Router(config-if)# exit
Router(config)# network-clock select 1 interface TenGigabitEthernet 1/1
Router(config)# exit

Verifying the Clock Source

Use the `show network-clocks` command to verify network clocking on the route processor (RP) side.

Router# show network-clocks
Active source = Slot 1 BITS 0
Active source backplane reference line = Secondary Backplane Clock
Standby source = TenGigabitEthernet1/1
Standby source backplane reference line = Primary Backplane Clock
(Standby source not driving backplane clock currently)

All Network Clock Configuration

Priority Clock Source State Reason
1 POS3/0/1 Hardware not present
2 Slot 1 BITS 0 Valid
3 TenGigabitEthernet1/1 Valid

Current operating mode is Revertive
Current OOR Switchover mode is Switchover

There are no slots disabled from participating in network clocking

BITS Port Configuration

Slot Port Signal Type/Mode Line Build-Out Select
1 0 T1 D4 DSX-1 (133 to 266 feet)

Use the `show platform hardware network-clocks` command to verify output on the line card side.
Router-dfc# show platform hardware network-clocks

Local Loop Timing:

Port 1: N Port 2: N Port 3: N Port 4: N

Backplane Bus Status and Source:

Primary : Disabled, Port 0 RX_DEMAP Clock
Secondary : Enabled, BITS Rx Clock
BITS : Disabled, Port 0 RX_DEMAP Clock

ZL30138 Configuration and Status:

DPLL1: Lock (2)

Mode of Operation : Automatic Normal
Selected Reference : 4
Ref0 Priority : 15 Ref1 Priority : 15
Ref2 Priority : 15 Ref3 Priority : 15
Ref4 Priority : 00 Ref5 Priority : 15
Ref6 Priority : 15 Ref7 Priority : 15

Reference Monitoring: Custom A frequency 25000 kHz

<table>
<thead>
<tr>
<th>Ref#</th>
<th>SCM</th>
<th>CPM</th>
<th>GST</th>
<th>FPM</th>
<th>Mode</th>
<th>Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CustA</td>
<td>38.88 MHz</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>CustA</td>
<td>not detected</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>CustA</td>
<td>38.88 MHz</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>CustA</td>
<td>not detected</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Auto</td>
<td>1.544 MHz</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Auto</td>
<td>not detected</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Auto</td>
<td>not detected</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Auto</td>
<td>8 kHz</td>
</tr>
</tbody>
</table>

BITS Configuration and Status:

Signal Type : T1 D4 Framing
Clock Divider : 1.544 MHz
Status : Good

Clock Source Recovery

For clock source recovery on the 76-ES+XT-2TG3CXL and 76-ES+XT-4TG3CXL, consider the following guidelines:

With BITS port as the clock source:

- Clock state shows “Hardware not present” if the line card is removed.
- Clock becomes “Validate but not present” if BITS Rx reports LOS, LOF, Blue Alarm (T1), or AIS (E1)
- If there are no BITS RX alarms, the clock state is “Valid”.

With 10GE ports as the clock source:

- Clock state shows Hardware not present if the line card is removed.
- Clock becomes Validate but not present if the interface is down.
- If interface goes back up, the clock state is “Valid”.
For both 10GE port clock recovery and BITS port clock recovery, when the clock source is recovered, the line card will send notification to the RP. Then after a 150-second debounce period, the RP sends a control message to every participant to synchronize with the valid clock source again.
Understanding 1588v2
Configuring Link State Tracking

This chapter describes how to configure the Link State Tracking in Cisco IOS Software Release 15.1(01)S.

Note
For complete syntax and usage information for the commands used in this chapter, see the Cisco 7600 Series Router Cisco IOS Command Reference at this URL:

This chapter includes the following sections:
- Understanding How Link State Tracking Works, page 69-1
- Configuring Link State Tracking, page 69-2

Understanding How Link State Tracking Works

When a link failure occurs on a REP and MST segment, the associated protocols handle the link failure event. However, if the primary link to the switch is enabled even though the corresponding uplink ports on the switch are disabled, the REP and MST protocol is unaware of backbone side, and does not trigger a failover. The router continues to receive the traffic from the access side and then drops it discreetly due to lack of backbone connectivity. Link state tracking provides a solution to this problem by allowing the uplink interfaces to bind the link status to the down link ports. Uplink state tracking is configured such that when a set of uplink ports are disabled, other ports linked through CLI commands are disabled as well. The state of all the downlink interfaces are error-disabled only when all the upstream interfaces are disabled.

The LST triggers REP/MST re-convergence on the access side depending on the state of the core-facing interface. The link state of the core facing interface and the access facing interface are bound by link state tracking group.

LST facilitates:
- Enabling and disabling of link state group tracking.
- Removal of downstream interfaces from a link state group.
- Performing shut/no shut on error disabled interface.
Restrictions and Usage Guidelines

Follow these restrictions and usage guidelines when you configure the LST:

- Ensure that the management interfaces are not part of a link state group.
- REP port cannot be configured as uplink port.
- LST does not allow any interface, upstream or downstream, to be part of more than one link state group.
- You can configure a maximum of 10 link state groups.
- When you configure LST for the first time, you must add upstream interfaces to the link state group before adding downstream, otherwise the state of the downlink interfaces are error-disabled.
- The configurable interfaces are physical (both routed and switch port), port-channel, sub-interface and VLAN.
- Upstream interfaces are required to be among:
 - L3 interface (physical or portchannel)
 - SVI
- Downstream interfaces are required to be among:
 - L2 interface
 - L2 Port-channel
 - EVC

Configuring Link State Tracking

Perform the following tasks to configure a Link State Tracking:

<table>
<thead>
<tr>
<th>Command or Action</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 enable</td>
<td>Enables privileged EXEC mode.</td>
</tr>
<tr>
<td>Example: Router> enable</td>
<td></td>
</tr>
<tr>
<td>Step 2 configure terminal</td>
<td>Enters global configuration mode.</td>
</tr>
<tr>
<td>Example: Router# configure terminal</td>
<td></td>
</tr>
<tr>
<td>Step 3 link state track number</td>
<td>Creates a link-state group, and enables LST. The acceptable range is 1-10; the default value is 1.</td>
</tr>
<tr>
<td>Example: Router(config)# link state track 1</td>
<td></td>
</tr>
<tr>
<td>Step 4 interface slot/port</td>
<td>Configures an interface.</td>
</tr>
<tr>
<td>Example: Router(config)# interface gigabitethernet 2/1</td>
<td></td>
</tr>
</tbody>
</table>
This example shows how to create a link-state group and configure the interfaces:

Router# configure terminal
Router(config)# link state track 1
Router(config)# interface gigabitethernet3/1
Router(config-if)# link state group 1 upstream
Router(config-if)# interface gigabitethernet3/3
Router(config-if)# link state group 1 upstream
Router(config-if)# interface gigabitethernet3/5
Router(config-if)# link state group 1 downstream
Router(config-if)# interface gigabitethernet3/7
Router(config-if)# link state group 1 downstream
Router(config-if)# end

This example shows how to verify the configuration:
The show link state group command displays the link-state group information.

Router> show link state group 1
Link State Group: 1 Status: Enabled, Down

The show link state group detail command displays detailed information about the group.

Router> show link state group detail
(Up):Interface up (Dwn):Interface Down (Dis):Interface disabled
Link State Group: 1 Status: Enabled, Down
Link State Group: 2 Status: Enabled, Down

Troubleshooting the Link State Tracking

Table 69-1 lists the troubleshooting issues while configuring LST:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The downstream interface is in error-disabled state even though the upstream interfaces are up.</td>
<td>Use the show interfaces <interface> status err-disabled command to check why the interface is in such state. Use the show errdisable recovery command to view information about the error-disable recovery timer.</td>
</tr>
</tbody>
</table>

This example shows how to create a link-state group and configure the interfaces:

Router# configure terminal
Router(config)# link state track 1
Router(config)# interface gigabitethernet3/1
Router(config-if)# link state group 1 upstream
Router(config-if)# interface gigabitethernet3/3
Router(config-if)# link state group 1 upstream
Router(config-if)# interface gigabitethernet3/5
Router(config-if)# link state group 1 downstream
Router(config-if)# interface gigabitethernet3/7
Router(config-if)# link state group 1 downstream
Router(config-if)# end

This example shows how to verify the configuration:
The show link state group command displays the link-state group information.

Router> show link state group 1
Link State Group: 1 Status: Enabled, Down

The show link state group detail command displays detailed information about the group.

Router> show link state group detail
(Up):Interface up (Dwn):Interface Down (Dis):Interface disabled
Link State Group: 1 Status: Enabled, Down
Link State Group: 2 Status: Enabled, Down

Troubleshooting the Link State Tracking

Table 69-1 lists the troubleshooting issues while configuring LST:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>The downstream interface is in error-disabled state even though the upstream interfaces are up.</td>
<td>Use the show interfaces <interface> status err-disabled command to check why the interface is in such state. Use the show errdisable recovery command to view information about the error-disable recovery timer.</td>
</tr>
</tbody>
</table>
Configuring BGP PIC Edge and Core for IP and MPLS

This chapter describes how to configure Border Gateway Protocol (BGP) Prefix-Independent Convergence (PIC) edge and core for Internet Protocol (IP) and Multiprotocol Label Switching (MPLS), on the Cisco 7600 series routers.

BGP PIC Edge and Core for IP and MPLS

The BGP PIC edge and core for the IP and MPLS function improves convergence after a network failure. This convergence is applicable to both core and edge failures on IP and MPLS networks. Use this feature to create and store an alternate path in the routing information base (RIB), forwarding information base (FIB) and the Cisco Express Forwarding (CEF). When a failure is detected, the alternate path immediately takes over, enabling fast failover.

These are the benefits of the feature:
- An alternate path for failover allows faster restoration of connectivity.
- Reduced traffic loss.
- Constant convergence time so that the switching time is the same for all prefixes.

Prerequisites for BGP PIC

These prerequisites apply to the BGP PIC feature:
- Ensure that the BGP and the IP or MPLS network is active with the customer site connected to the provider site by more than one path (multihomed).
- Ensure that the backup or alternate path has a unique next hop that is not the same as the next hop of the best path. This is applicable only to BGP PIC edge and is not applicable to core.
- Enable Bidirectional Forwarding Detection (BFD) protocol to detect link failures of directly connected neighbors.
- BGP PIC edge and core support native IPv4 and native IPv6 for multiple VRFs.
- The BGP IPv6 PIC scalability should match with the existing BGP IPv4 PIC scalability.
Restrictions

Follow these restrictions while using the BGP PIC feature:

- The BGP PIC feature is supported with BGP multipath and non-multipath.
- In MPLS VPNs, the BGP PIC feature is not supported with MPLS VPN Inter-Autonomous Systems Option B.
- The BGP PIC feature only supports prefixes for IPv4, IPv6, VPNv4, and VPNv6 address families.
- The BGP PIC feature cannot be configured with multicast or L2VPN Virtual Routing and Forwarding (VRF) address families.
- When two PE routers become mutual or alternate paths to a CE router, the traffic might loop if the CE router fails. In such cases neither router reaches the CE router, and traffic continues to be forwarded between the two routers until the time-to-live (TTL) timer expires.
- BGP PIC is supported for the following address families:
 - IPv6 with native IPv6 in service provider core
 - IPv6 and VPNv6 with IPv4-MPLS core and 6PE and 6VPE at service provider edge routers
- If you enable PIC edge, roughly twice the number of adjacency entries are used.
- When BGP PIC is configured, 2KB memory is required per prefix on RP, SP and each line card. For example, if you need to scale up to 100000 prefixes then you should ensure that at least 200 MB is free on RP, SP and each line card.

Configuring the BGP PIC for IP and MPLS

For more information on the BGP PIC edge and core configuration, see the *MPLS Configuration Guide* at:

CHAPTER 71

Configuring VRF aware IPv6 Tunnels over IPv4 Transport

This chapter describes how to configure the VRF aware IPv6 Tunnels over IPv4 Transport.
This chapter includes the following sections:

• Understanding VRF aware IPv6 Tunnels, page 71-1
• Configuring VRF aware IPv6 tunnel, page 71-4
• Understanding IPv6 over IPv4-GRE Tunnels, page 71-4
• Configuring IPv6 over IPv4-GRE tunnel, page 71-6

Understanding VRF aware IPv6 Tunnels

The current IPv6 tunneling feature on c7600 does not support Virtual Routing and Forwarding (VRF) awareness. The forwarding table lookups for IPv6 overlay addresses and IPv4 transport addresses are performed in the global routing tables. This feature extends the tunneling support for IPv6 overlay addresses in VRF.

These scenarios explain the VRF aware IPv6 tunnel function:

• IPv6 overlay address in VRF and IPv4 transport address in Global routing table (RT).
• IPv6 overlay address in VRF and IPv4 transport address in VRF.

Figure 71-1 illustrates the topology for the IPv6 overlay address in VRF, and the IPv4 transport address in VRF.

Figure 71-1 Topology for VRF aware IPv6 Tunnel

The VRF Aware IPv6 over IPv4 Tunnel can have any line card towards the core facing side.
Restrictions for VRF aware IPv6 tunnels

Following restrictions apply to the VRF aware IPv6 tunnels feature:

- This feature supports the IPv6IP and 6to4 tunnels mode.
- Due to EARL limitation, the same source tunnels across VRFs are not supported.
- The tunnel source and the tunnel destination should be in the same VRF instance.
- The tunnel IPv4 transport addresses and the physical interface where the tunnel traffic exits, should be in the same VRF instance.
- The incoming IPv6 interface and the tunnel should be in the same VRF instance.
- This feature does not support IPv6IP auto-tunnels and ISATAP.
Tunnel SSO

An IP tunnel is an IP network communications channel between two networks. It is used to transport another network protocol by packet encapsulation.

The IP Tunnel-SSO feature provides the following benefits:

- Cisco Nonstop Forwarding (NSF) works with the Stateful Switchover (SSO): In a distributed system with an active RP and a standby RP, check the necessary state on the standby RP to see if the loss of the packets sent or received on a tunnel interface is eliminated during a switchover.

 Note
 Hardware limitations may result in packet loss.

- In-Service Software Upgrade (ISSU): Allows the upgrade or downgrade from a version to another for IOS that supports tunnel HA with minimal packet loss.

- Uplink forwarding: Enables the ports on the standby RP of an HA system to switch traffic between tunnel endpoints.

- Solve the problems caused by the race conditions in distributed systems: In the current IP tunnel feature, many packets for tunnel forwarding are sent from the RP to line cards using the XDR DRAM. These packets should arrive on the line cards in a particular order, which is not guaranteed every time due to line card inconsistencies. The IP Tunnel-SSO feature helps prevent these race conditions.

 Note
 To minimize packet loss during switchover, all the relative components in the network need to be HA capable.

Supported Tunnel Types

The followings are the tunnel types that support HA:

- IPv4 over GRE (tunnel mode GRE)
- IPv4 over IPv4 (tunnel mode IPv4IP)
- IPv6 over GRE (tunnel mode GRE)
- IPv6 over IPv4 (tunnel mode IPv6IP)
- 6to4 tunneling (tunnel mode IPv6IP 6 to 4)
- 6RD (tunnel mode IPv6IP 6RD)
- MPLSoGRE
- MPLSoGRE Same Source tunnels
- MPLSoMGRE

Restrictions

MDT and MPLS-TE tunnels do not support HA.
Configuring VRF aware IPv6 tunnel

For information on VRF aware IPv6 tunnel configurations, see:

Understanding IPv6 over IPv4-GRE Tunnels

IPv6 traffic is carried over IPv4 generic routing encapsulation (GRE) tunnels using the standard GRE tunneling technique. As in the manually configured IPv6 tunnels, GRE tunnels are links between two points, with a separate tunnel for each link. The GRE tunnels provide stable connections that require regular secure communication between two edge routers or between an edge router and an end system. This feature supports VRF Aware IPv6 over IPv4-GRE Tunnel on the c7600, and is applicable only to the ES+ family of line cards.

Figure 71-2 Topology for VRF Aware IPv6 over IPv4-GRE

The VRF Aware IPv6 over IPv4 GRE tunnel must have ES+ line card towards the core facing side.
Restrictions for IPv6 over IPv4-GRE tunnel

Following restrictions apply to the IPv6 over IPv4-GRE tunnel:

- The IPv4 tunnel facing interface must be on the ES+ line card.
- The GRE tunnel key is not supported in the hardware.
- The IPv4 fragmentation after tunnel encapsulations is not supported in the hardware.
- The fragmented IPv4 packets for tunnel decapsulations is not supported in the hardware.
- The IPv4 GRE keepalives are supported, but the IPv6 GRE keepalives are not supported.
- The keepalives are not supported when the VRF instances configured using the `vrf forwarding` and `tunnel vrf` commands are different.
- Due to EARL limitation, same source tunnels across VRF’s are not supported.
- This feature is not SSO compliant.
• With scaled configurations, when changing the tunnel mode from IPv6 over GRE to IPv6IP and on enabling the `mls mpls tunnel-recirc` command, the system displays an error message with a trace back.

Configuring IPv6 over IPv4-GRE tunnel

For information on IPv6 over IPv4-GRE tunnel configurations, see:

ISIS IPv4 Loop Free Alternate Fast Reroute (LFA FRR)

Loop Free Alternate (LFA) Fast Reroute (FRR) uses a backup route, pre-computed using the dynamic routing protocol, whenever a network fails. The backup routes (repair paths) are pre-computed and installed on the router as the backup for the primary paths. Once the router detects a link or adjacent node failure, it switches to the backup path to avoid traffic loss.

Before Release 15.1(2)S, when a link or a router failed, or returned to service, the distributed routing algorithms computed the new routes based on the changes in the network. The time during which the new routes are computed is referred to as routing transition. Until the routing transition is completed, the network connectivity was interrupted because the routers adjacent to a failure continue to forward the data packets through the failed component until an alternative path is identified.

A scenario where the service failures caused by routing transitions were hidden by high-level protocols that retransmit the lost data packets. However, packet drop is not acceptable in case of audio/video data traffic. For these data services, the interruptions caused by routing transition and re-convergence should be transparent to a user. Effective from Release 15.1(2)S, the ISIS IPv4 Loop Free Alternate Fast ReRoute (LFA FRR) feature reduces the routing transition time to 50 ms. Currently, the IOS LFA FRR feature is supported only on the IGP Intermediate System-to-Intermediate System (ISIS) protocol.

Note

Effective from Release 15.1(3)S, the IOS LFA FRR feature supports Virtual Private LAN Services (VPLS) with 50ms routing transition time on ES+ line cards.

Restrictions for ISIS LFA FRR

The following restrictions apply to the ISIS IPv4 LFA FRR feature:

- Maximum number of next-hops supported is 40.
- Maximum number of prefixes supported is 10000.
- LFA FRR feature is supported only on IGP ISIS protocol.
- Only unicast repair paths are supported.
- ISIS does not select a link that belongs to the same Shared Risk Link Groups (SRLG) as a failed link.
- LAN interfaces are not recommended for LFA FRR primary paths due to longer link-down detection time. However, LAN interfaces can be used for a repair path.
- LAN interfaces configured as the core facing interfaces for VPLS over IP-FRR are not supported.
• A maximum of six port-channel (PoCH) interfaces (LAG-NNI) are supported in the core for VPLS over IP-FRR.
• Configure the LAN interfaces with a single neighbor using the **isis network point-to-point** command.
• If a Traffic Engineering (TE) FRR fail-over follows LFA FRR fail-over, the 50ms convergence is not guaranteed when the FRR protected TE tunnel is configured as repair path for IP FRR.
• ISIS does not calculate LFA for prefixes where the primary interface is a tunnel interface. However, you can configure a TE tunnel (plain and FRR protected).
• GRE tunnel as a primary or a backup tunnel is not supported for VPLS.
• For an IP FRR protected prefix having multiple equal cost primary paths, only one IP GRE tunnel is supported as repair path for all the primary paths.
• Only ES+ card supports VPLS over IP-FRR in both imposition and disposition direction.
 – VPLS over IP FRR feature consists of forwarding VPLS traffic (at PE) over IP-FRR protected core links. From the platform point of view, it requires programming of NP tables so that while imposition - when primary link fails, VPLS traffic switches to protected link. Similarly during disposition, NP tables should be able to identify which link (primary/backup) the traffic has come from. This extra imposition and disposition programming can be done only on ES+ line card.
• ISIS implementation waits for 5000 ms after the primary Shortest Path First (SPF) is identified for LFA calculation. A configured paths is protected only after ISIS completes the LFA calculation.
• Sub-interfaces are supported for repair interfaces only.
• ISIS LFA FRR feature supports only IPV4 prefixes.
• The LFA FRR does not support 50 ms convergence for MPLS labelled traffic when the repair path uses a GRE tunnel (MPLS over GRE).
• When a port-channel is configured as the primary path, the IP FRR convergence time is between 50 to 100 ms. Use the **port-channel min-links link_number config** command to reduce the convergence time when a port-channel fails.

Configuring IOS IPFRR Support on the Cisco 7600 Series Routers

Verification

Verify the IOS LFA FRR configuration using the remote commands to collect the verification information from the Distributed Forwarding Card (DFC) and Switch Processor (SP). Use these commands to verify the configuration:

• Use the **show mls cef ip-address** command to confirm whether the recirculation is programmed in line with the FRR protection.

```plaintext
router-sp# show mls cef 192.168.3.0
Codes: decap - Decapsulation, + - Push Label
Index  Prefix              Adjacency
3206   192.168.3.0/24     recirc (Hash: 0001)
       192.168.3.0/24     recirc (Hash: 0002)
```
- Use the `show mls cef ip-address detail` command to retrieve the adjacency entry address and hardware share (m-value) for the specific prefix lookup:

```
router-sp# show mls cef 192.168.3.0 detail
Codes: M - mask entry, V - value entry, A - adjacency index, P - priority bit
       D - full don't switch, m - load balancing modnumber, B - BGP Bucket sel
 V0 - Vlan 0, C0 - don't comp bit 0, V1 - Vlan 1, C1 - don't comp bit 1
 RVTEN - RPF Vlan table enable, RVTSEL - RPF Vlan table select
 Format: IPV4_DA - (8 | xtag vpn pi cr recirc tos prefix)
 Format: IPV4_SA - (9 | xtag vpn pi cr recirc prefix)
 M(3206 ) : E | 1 FFF  0 0 0 0   255.255.255.0
 V(3206 ) : 8 | 1 0  0 0 0 0   192.168.3.0       (A:425984 ,P:1,D:0,m:0 ,B:0 )
```

- Use the `show mls cef adjacency entry entry_id detail` command to display the actual adjacency details such as recirculation VLAN and the label stack imposed on the incoming packet:

```
router-sp# show mls cef adjacency entry 425984 detail
Index: 425984  smac: 0000.0000.0000, dmac: 00d0.bc39.1000
   mtu: 65535, vlan: 1025, dindex: 0x7FFA, l3rw_vld: 1
   format: MPLS, flags: 0x8710
   label0: 0, exp: 0, ovr: 0
   label1: 0, exp: 0, ovr: 0
   label2: 526346, exp: 0, ovr: 0
   op: PUSH_LABEL2
   packets: 0, bytes: 0
```

- Use the `show mls cef mpls label label_id detail` command to verify the primary and repair path adjacencies corresponding to the internal label imposed on the incoming packet:

```
router-sp# show mls cef mpls label 526346 detail
Codes: M - mask entry, V - value entry, A - adjacency index, P - FIB Priority
       D - FIB Don't short-cut, m - mod-num, E - ELSF?
 Format: MPLS - (b | xtag vpn pi cr mcast label1 exp1 eos1 valid2 label2 exp2 eos2)
 V(2152 ) : B | 1 510  0 1 0 526346  0 0 0 0         0 0 (A:147458 ,P:0,D:0,m:0 :E:1) <<
 VPN 510 entry is for primary path
 M(2152 ) : F | 1 FFF  0 1 1 FFFFF   0 0 0 0         0 0
 V(2153 ) : B | 1 511  0 1 0 526346  0 0 0 0         0 0 (A:163842 ,P:0,D:0,m:0 :E:1) <<
 VPN 511 entry is for repair path
 M(2153 ) : F | 1 FFF  0 1 1 FFFFF   0 0 0 0         0 0
```

Note The entry corresponding to VPN 510 represents the primary path and VPN 511 represents the repair path.
Multicast Service Reflection

Multicast service reflection feature enables the users to translate externally received multicast destination addresses to addresses that conform to the organization's internal addressing policy. With this feature, users need not redistribute routes at the translation boundary into their network infrastructure for the Reverse Path Forwarding (RPF) to work properly. Also, users can receive identical feeds from two ingress points in the network and route them independently.

The multicast service reflection feature is configured on the virtual interface. When a packet is forwarded to a virtual interface (original IP), this feature maps the original IP address to an internal IP address and the traffic is directed to the internal IP address. Therefore, it enables an organization to logically separate the private and public multicast networks.

Multicast Service Reflection Working Architecture

For multicast service reflection, the virtual interface is configured to statically join the group that needs to be translated to build a multicast tree. The virtual interface maintains information about:

- Input interface
- Private-to-public multicast group mappings
- Mask length to define the pool range
- Source of translated packet

When a packet is forwarded to a virtual interface, it is reflected for translation. The source IP address is changed to the IP address of the virtual interface subnet, which prevents RPF failures. Finally, the destination IP address is translated to a new multicast group IP address.
Figure 73-1 shows the multicast service reflection working architecture.

Restrictions for Multicast Service Reflection

Following restrictions apply for multicast service reflection feature:

- The virtual interface should be installed on the border router.
- Multicast service reflection does not support bidirectional multicast.
- Protocol Independent Multicast (PIM)/IGMP control packets are not translated.
- Multicast service reflection does not support P2P GRE tunnelling.
- Multicast service reflection does not support IPv6 multicasting.
• Only 1000 service reflection translations are supported.
• Multicast service reflection is not supported in the PIM-Dense mode.

Configuring Multicast Service Reflection

Complete these steps to configure multicast service reflection feature.

SUMMARY STEPS

1. enable
2. configure terminal
3. ip multicast-routing [distributed]
4. interface loopback loopback_id
5. description description
6. ip address ip_address subnet_mask
7. ip pim sparse-mode
8. exit
9. interface gigabitEthernet slot/port
10. ip address ip_address subnet_mask
11. ip pim sparse-mode
12. exit
13. interface gigabitEthernet slot/port
14. ip address ip_address subnet_mask
15. ip pim sparse-mode
16. exit
17. interface vif_id
18. ip address ip_address subnet_mask
19. ip pim sparse-mode
20. ip service reflect interface_id destination destination_ip1 to destination_ip2 mask-len subnet_mask_length source source_ip
21. ip igmp static-group { * | group-address [source {source-address | ssm-map}]}]
22. exit
23. ip pim rp-address rp_address
24. end
DETAILED STEPS

<table>
<thead>
<tr>
<th>Step</th>
<th>Command</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>enable</td>
<td>Enables the privileged EXEC mode. Enter your password if prompted.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>R1> <code>enable</code></td>
</tr>
<tr>
<td>2</td>
<td>configure terminal</td>
<td>Enters the global configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>R1# <code>configure terminal</code></td>
</tr>
<tr>
<td>3</td>
<td>ip multicast-routing [distributed]</td>
<td>Enables the IP multicast routing.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>R1(config)# <code>ip multicast-routing</code></td>
</tr>
<tr>
<td>4</td>
<td>interface loopback <code>loopback_if_number</code></td>
<td>Enters the interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>R1(config)# <code>interface Loopback0</code></td>
</tr>
<tr>
<td>5</td>
<td>description <code>description</code></td>
<td>Describes the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>R1(config-if)# <code>description Rendezvous Point for Public Net</code></td>
</tr>
<tr>
<td>6</td>
<td>ip address <code>ip_address</code> <code>subnet_mask</code></td>
<td>Assigns the IP address and subnet mask to the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>R1(config-if)# <code>ip address 22.22.22.22 255.255.255.255</code></td>
</tr>
<tr>
<td>7</td>
<td>ip pim sparse-mode</td>
<td>Enables the PIM sparse mode on the interface.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>R1(config-if)# <code>ip pim sparse-mode</code></td>
</tr>
<tr>
<td>8</td>
<td>exit</td>
<td>Exits the interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>R1(config-if)# <code>exit</code></td>
</tr>
<tr>
<td>9</td>
<td>interface gigabitethernet <code>GigabitEthernet_interface_number</code></td>
<td>Enters the interface configuration mode.</td>
</tr>
<tr>
<td></td>
<td>Example:</td>
<td>R1(config)# <code>interface GigabitEthernet2/0/0</code></td>
</tr>
</tbody>
</table>
Command Purpose

<table>
<thead>
<tr>
<th>Step 10</th>
<th>ip address ip_address subnet_mask</th>
<th>Assigns the IP address and subnet mask to the interface.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example:</td>
<td>R1(config-if)# ip address 2.1.1.1 255.255.0.0</td>
<td></td>
</tr>
<tr>
<td>Step 11</td>
<td>ip pim sparse-mode</td>
<td>Enables the PIM sparse mode on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>R1(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>Step 12</td>
<td>exit</td>
<td>Exits the interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>R1(config-if)# exit</td>
<td></td>
</tr>
<tr>
<td>Step 13</td>
<td>interface gigabitethernet GigabitEthernet_interface_number</td>
<td>Enters the interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>R1(config)# interface GigabitEthernet4/13</td>
<td></td>
</tr>
<tr>
<td>Step 14</td>
<td>ip address ip_address subnet_mask</td>
<td>Assigns the IP address and subnet mask to the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>R1(config-if)# ip address 23.1.1.2 255.255.0.0</td>
<td></td>
</tr>
<tr>
<td>Step 15</td>
<td>ip pim sparse-mode</td>
<td>Enables the PIM sparse mode on the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>R1(config-if)# ip pim sparse-mode</td>
<td></td>
</tr>
<tr>
<td>Step 16</td>
<td>exit</td>
<td>Exits the interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>R1(config-if)# end</td>
<td></td>
</tr>
<tr>
<td>Step 17</td>
<td>interface interface_name</td>
<td>Enters the interface configuration mode.</td>
</tr>
<tr>
<td>Example:</td>
<td>R1(config)# interface Vif1</td>
<td></td>
</tr>
<tr>
<td>Step 18</td>
<td>ip address ip_address subnet_mask</td>
<td>Assigns the IP address and subnet mask to the interface.</td>
</tr>
<tr>
<td>Example:</td>
<td>R1(config-if)# ip address 1.1.1.1 255.255.0.0</td>
<td></td>
</tr>
</tbody>
</table>
Command Purpose

| Step 19 | **ip pim sparse-mode** | Enables the PIM sparse mode on the interface. |

Example:
```
R1(config-if)# ip pim sparse-mode
```

| Step 20 | **ip service reflect input-interface destination destination-address to new-destination-address mask-len number source new-source-address** | Matches and rewrites the multicast packets routed onto the virtual interface.
- The matched and rewritten packets are sent back into multicast packet routing (or unicast routing if the destination is unicast), where they are handled like any other packets arriving from an interface. |

Example:
```
R1(config-if)# ip service reflect GigabitEthernet2/0/0 destination 239.1.1.100 to 225.1.1.100 mask-len 32 source 1.1.1.2
```

| Step 21 | **ip igmp static-group { | group-address [source {source-address | ssm-map}]}}** | Configures the router to be a statically connected member of the specified group on the interface, and forwards traffic destined for the multicast group onto the interface. |

Example:
```
R1(config-if)# ip igmp static-group 239.1.1.100
```

| Step 22 | **exit** | Exits the interface configuration mode. |

Example:
```
R1(config-if)# end
```

| Step 23 | **ip pim rp-address rp-address** | Configures the address of a PIM RP for a particular group. |

Example:
```
R1(config)# ip pim rp-address 22.22.22.22
```

| Step 24 | **end** | Ends the configuration session. |

Example:
```
R1(config-controller)# end
```

Configuration Example

This example describes how to configure multicast service reflection.

```
R1>enable
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#ip multicast-routing
R1(config)#interface Loopback0
R1(config-if)#description Rendezvous Point for Public Net
```

For more information on configuring multicast service reflection, see Configuring Multicast Service Reflection.
Y.1731 Performance Monitoring

This chapter describes how to configure the Y.1731 Performance Monitoring in Cisco IOS Software Release 15.4(2)S.

This chapter includes the following sections:
- Understanding Y.1731 Performance Monitoring, page 74-1
- Configuring Y.1731 PM, page 74-6

Understanding Y.1731 Performance Monitoring

When service providers sell connectivity services to a subscriber, a Service Level Agreement (SLA) is reached between the buyer and seller of the service. The SLA defines the attributes offered by a provider and serves as a legal obligation on the service provider. As the level of performance required by subscribers increases, service providers need to monitor the performance parameters being offered. In order to capture the needs of the service providers, organizations have defined various standards such as IEEE 802.1ag and ITU-T Y.1731 that define the methods and frame formats used to measure performance parameters.

Y.1731 Performance Monitoring (PM) provides a standard ethernet PM function that includes measurement of ethernet frame delay, frame delay variation, frame loss, and frame throughput measurements specified by the ITU-T Y-1731 standard and interpreted by the Metro Ethernet Forum (MEF) standards group. As per recommendations, the 7600 platform should be able to send, receive and process PM frames in intervals of 10ms (100 frames per second) with the maximum recommended transmission period being 100ms (10 frames per second) for any given service.

To measure SLA parameters such as frame delay or frame delay variation, a small number of synthetic frames are transmitted along with the service to the end point of the maintenance region, where the Maintenance End Point (MEP) responds to the synthetic frame. For a function such as connectivity fault management, the messages are sent less frequently, while performance monitoring frames are sent more frequently.

Figure 74-1 illustrates Maintenance Entities (ME) and Maintenance End Points (MEP) typically involved in a point-to-point metro ethernet deployment for the Y.1731 standard.
Chapter 74 Y.1731 Performance Monitoring

Figure 74-1 A Point-to-Point Metro Ethernet Deployment with Typical Maintenance Entities and Maintenance Points

Following are the performance monitoring parameters:
- Connectivity
- Frame Delay and Frame Delay Variation
- Frame Loss Ratio and Availability

Connectivity

The first step to performance monitoring is verifying the connectivity. Continuity Check Messages (CCM) are best suited for connectivity verification, but is optimized for fault recovery operation. It is usually not accepted as a component of an SLA due to the timescale difference between SLA and Fault recovery. Hence, Connectivity Fault Management (CFM) and Continuity Check Database (CCDB) are used to verify connectivity. For more information on CFM see: http://www.cisco.com/en/US/docs/routers/7600/install_config/ES40_config_guide/es40_chap4.html#wp1608025

Frame Delay and Frame Delay Variation

Ethernet frame Delay Measurement (ETH-DM) is used for on-demand ethernet Operations, Administration & Maintenance (OAM) to measure frame delay and frame delay variation.

Ethernet frame delay and frame delay variation are measured by sending periodic frames with ETH-DM information to the peer MEP and receiving frames with ETH-DM information from the peer MEP. During the interval, each MEP measures the frame delay and frame delay variation.

Ethernet frame delay measurement also collects useful information, such as worst and best case delays, average delay, and average delay variation. Ethernet frame delay measurement supports hardware-based timestamping in the ingress direction. It provides a runtime display of delay statistics during a two-way delay measurement. Ethernet frame delay measurement records the last 100 samples collected per remote Maintenance End Point (MEP) or per CFM session.

These are the two methods of delay measurement, as defined by the ITU-T Y.1731 standard:
• **One-way ETH-DM:**
Each MEP transmits frames with one-way ETH-DM information to its peer MEP in a point-to-point ME to facilitate one-way frame delay and/or one-way frame delay variation measurements at the peer MEP. One way frame delay requires clock to be synchronized at both ends while frame delay variation doesn't require clock synchronization. It is measured using a single delay measurement (1DM) or Delay Measurement Message (DMM) and Delay Measurement Reply (DMR) frame combination.

• **Two-way ETH-DM:**
Each MEP transmits frames with ETH-DM request information to its peer MEP and receives frames with ETH-DM reply information from its peer MEP. Two way frame delay and frame delay variation is measured using DMM and DMR frame.

These are the pre-requisites for 1DM measurements:
- The clocks of the two concerned end-points must be synchronized accurately and precisely. This is achieved through IEEE 1588-2002.
- There is no auto-session create supported on the peer or the receiver. You need to configure an receive-only session.
- You must configure all the create sessions on the receiver's datapath. These are passive listener sessions.

Note
On a Cisco 7600 router, clock synchronization is achieved using a 2-port gigabit synchronous ethernet SPA. On an ES+ line card, the Real Time Clock (RTC) is synchronized to the 2-port gigabit synchronous ethernet SPA time source using Precision Time Protocol (PTP) as the time source protocol. If the time source selected is PTP, all the Y.1731 PM delay packets should have the 1588V2 timestamps.

For a 7600 router that does not have 2-Port Gigabit Synchronous Ethernet SPA, delay measurement is done by using the timestamps with Network Time Protocol (NTP) as the time source protocol. This is applicable only to One-way delay measurements.

Frame Loss Ratio and Availability

Ethernet frame Loss Measurement (ETH-LM) is used to collect counter values applicable for ingress and egress service frames where the counters maintain a count of transmitted and received data frames between a pair of MEPs.

ETH-LM transmits frames with ETH-LM information to a peer MEP and similarly receives frames with ETH-LM information from the peer MEP. Each MEP performs frame loss measurements which contribute to unavailable time. A near-end frame loss refers to frame loss associated with ingress data frames. Far-end frame loss refers to frame loss associated with egress data frames. Both near-end and far-end frame loss measurements contribute to near-end severely errored seconds and far end severely errored seconds which together contribute to unavailable time.

These are the two methods of frame loss measurement, defined by the ITU-T Y.1731 standard:

• **Single-ended ETH-LM:** Each MEP transmits frames with the ETH-LM request information to its peer MEP and receives frames with ETH-LM reply information from its peer MEP to carry out loss measurements.
Understanding Y.1731 Performance Monitoring

- **Dual-ended ETH-LM:** Each MEP transmits periodic dual-ended frames with ETH-LM information to its peer MEP in a point-to-point ME and facilitates frame loss measurements at the peer MEP. As of now, the Cisco 7600 router does not support Dual-ended ETH-LM.

Y.1731 PM Synthetic Loss Measurement

Synthetic Loss Measurement (SLM) is an extension of the existing Y.1731 PM feature, and makes use of an additional functionality defined in the latest version of the ITU-T Y.1731 (2011) standard. SLM measures frame loss using synthetic frames, rather than data traffic. Frame loss is measured by calculating the difference between the number of synthetic frames that are sent and received.

Single-ended ETH-SLM

Single-ended ETH-SLM carries out synthetic loss measurements applicable to both point-to-point ETH connection or multipoint ETH connectivity. The MEP sends frames with the ETH-SLM request information to its peer MEPs and receives frames with ETH-SLM reply information from its peer MEPs to measure synthetic loss.

Supported Interfaces - LMM over Port-Channel

Y.1731 PM supports these interfaces:

- LMM, DMM and 1DM support on EVC BD OFM
- LMM, DMM and 1DM support on PC EVC BD OFM
- LMM, DMM and 1DM support on EVC Xconnect OFM
- LMM, DMM and 1DM support on PC EVC Xconnect OFM
- LMM, DMM and 1DM support on EVC Xconnect IFM
- LMM, DMM and 1DM support on PC EVC Xconnect IFM
- LMM, DMM and 1DM support on Subinterfaces (routed port)
- LMM, DMM and 1DM support on PC Subinterfaces (routed port)

Note

Release 15.4(1)S onwards, LMM over port-channel supports member links on different network processors (NP) and different LCs. This support is available only if fast-switchover LACP and max-bundle 1 is configured.

Supported Interfaces - SLM over Port-Channel

Y.1731 PM SLM supports these interfaces:

- SLM and SLR packet-type support on EVC BD OFM
- SLM and SLR packet-type support on EVC BD IFM
- SLM and SLR packet-type support on PC EVC BD OFM
- SLM and SLR packet-type support on PC EVC BD IFM
- SLM and SLR packet-type support on EVC cross-connect OFM
- SLM and SLR packet-type support on EVC cross-connect IFM
- SLM and SLR packet-type support on PC EVC cross-connect IFM
Chapter 74 Y.1731 Performance Monitoring

Understanding Y.1731 Performance Monitoring

- SLM and SLR packet-type support on PC EVC cross-connect OFM
- SLM and SLR packet-type support on subinterfaces (routed port)
- SLM and SLR packet-type support on PC subinterfaces (routed port)
- SLM and SLR packet-type support on EVC BD IFM with VPLS in core (Release 15.4(2) onwards)
- SLM and SLR packet-type support on EVC BD port-channel IFM with VPLS in core (Release 15.4(2) onwards)

Note: PM is supported in the EVC and CFM configurations mentioned above, with both Dot1q and QinQ encapsulations available on the EVC.

Note: Release 15.4(2)S onwards, SLM over port-channel supports member links on different NPs and different LCs. This support is available only if member links are in active-standby mode and with LACP max-bundle 1 configured port-channel interface.

Restrictions and Usage Guidelines

Follow these restrictions and usage guidelines when you configure Y.1731 PM on an ES+ line card:

- If the route processor CPU is busy with other processes and if software forwarding is used, the performance monitoring statistics are not accurate.
- Y.1731 PM measurement only works for a point to point network topology.
- Y.1731 PM is not SSO compliant. After switchover all sessions data is cleared.
- In case of one way session or two way session, when one way statistics are required, PTP needs to be synchronized between peers and stable. You should delay starting of sessions in such situations.
- On Cisco 7600 series router, PM is supported only on ES+Line Card in non-switchport mode.
- PM is not supported on these interfaces:
 - mLACP interfaces
 - Switchport OFM and IFM
 - Port MEPs
- PM is supported on VPLS configuration only for SLM.
- PM is not supported on QinQ subinterfaces, as CFM is not supported on these interfaces.
- PM does not support SNMP, although CLI and system-logging is supported.
- Frame Throughput measurements are not supported.

These are the restrictions for PM support on port-channel:

- Adding or deleting a member link renders the session invalid.
- Loss measurement on port-channel interfaces is supported:
 - when all the member links of a port-channel are on the same NPU.
 - when the member links of a port-channel are on different NPU/LC, only if the port-channel is configured with LACP max-bundle 1 and LACP fast-switchover.
- All the member links have to be ES+ ports.
- PM is not supported on manual PC EVC Load balancing configuration (UNI LAG).
• CFM Y.1731 packets work with a maximum of two VLAN tags. Expected behavior is not observed with more VLAN tags. CFM Y.1731 packets does not work with untagged cases.

Guidelines and Restrictions for LMM over Port-Channel

• LMM over port-channel is supported:
 – when all the member links of a port-channel are on the same NPU.
 – when the member links of a port-channel are on different NPU/LC, only if the port-channel is configured with LACP max-bundle 1 and LACP fast-switchover.

• The member link switchover invalidates the IP SLA session. The session remains invalid till the end of the SLA aggregate interval. The session will resume only at the start of the next aggregate interval.

Guidelines and Restrictions for SLM over Port-Channel

These are the restrictions for SLM over port-channel with distributed member links:

• SLM over port-channel is supported:
 – when all the member links of a port-channel are on the same NPU.
 – when the member links of a port-channel are on different NPU/LC, only if the port-channel is configured with LACP max-bundle 1 and LACP fast-switchover.

• The member link switchover invalidates the IP SLA session. The session remains invalid till the end of the SLA aggregate interval. The session resumes only at the start of the next aggregate interval.

• When monitor loss counter CLI is configured under MEP, Y1731 SLM does not work properly. It can cause line card reload.

These are the restrictions for SLM over VPLS:

• SLM/R over EVC BD IFM with VPLS in core is only supported if the core MPLS links are also on ES+ ports.

Configuring Y.1731 PM

For information on Y.1731 PM configurations, see: http://www.cisco.com/en/US/docs/routers/7600/install_config/ES40_config_guide/es40_chap4.html#wp1708139
Online Diagnostic Tests

This appendix describes the online diagnostic tests and provides recommendations for how to use them. The online diagnostic tests are included in these categories:

- Global Health-Monitoring Tests, page A-1
- Per-Port Tests, page A-3
- DFC Layer 2 Forwarding Engine Tests, page A-8
- PFC Layer 3 Forwarding Engine Tests, page A-13
- DFC Layer 3 Forwarding Engine Tests, page A-17
- Replication Engine Tests, page A-22
- Fabric Tests, page A-24
- Exhaustive Memory Tests, page A-26
- IPSEC Services Modules Tests, page A-29
- Stress Tests, page A-30
- Critical Recovery Tests, page A-31
- General Tests, page A-33

For information about configuring online diagnostic tests refer to Chapter 42, “Configuring Online Diagnostics.”

Global Health-Monitoring Tests

The global health monitoring tests consist of the following tests:

TestSPRPinbandPing, page A-2
TestMacNotification, page A-2
Global Health-Monitoring Tests

Appendix A Online Diagnostic Tests

TestSPRPInbandPing

The TestSPRPInbandPing test detects most runtime software driver and hardware problems on supervisor engines by running diagnostic packet tests using the Layer 2 forwarding engine, the Layer 3 and 4 forwarding engine, and the replication engine on the path from the switch processor to the route processor. Packets are sent at 15-second intervals.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not disable. Test is automatically disabled during CPU-usage spikes in order to maintain accuracy.</td>
</tr>
<tr>
<td>Default</td>
<td>On.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Reset the active supervisor engine.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Active and standby supervisor engine.</td>
</tr>
</tbody>
</table>

TestScratchRegister

The TestScratchRegister test monitors the health of application-specific integrated circuits (ASICs) by writing values into registers and reading back the values from these registers. The test runs every 30 seconds. Five consecutive failures causes a supervisor engine to switchover (or reset), if you are testing the supervisor engine, or in the module powering down when testing a module.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not disable.</td>
</tr>
<tr>
<td>Default</td>
<td>On.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Reset the malfunctioning supervisor engine or power down the module.</td>
</tr>
</tbody>
</table>

TestMacNotification

The TestMacNotification test verifies that the data and control path between DFC modules and supervisor engines is working properly. This test also ensures Layer 2 MAC address consistency across Layer 2 MAC address tables. The test runs every six seconds. Ten consecutive failures causes the module to reset during bootup or runtime (default). After three consecutive resets, the module powers down.
Per-Port Tests

The per-port tests consist of the following tests:

- TestNonDisruptiveLoopback, page A-3
- TestLoopback, page A-4
- TestActiveToStandbyLoopback, page A-4
- TestTransceiverIntegrity, page A-5
- TestNetflowInlineRewrite, page A-5

TestNonDisruptiveLoopback

The TestNonDisruptiveLoopback test verifies the data path between the supervisor engine and the network ports of a module. In this test, a Layer2 packet is flooded onto VLAN that contains a group of test ports. The test port group consists of one port per port ASIC channel. Each port in the test port group nondisruptively loops back the packet and directs it back to the supervisor engine’s inband port. The ports in the test port group are tested in parallel.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not disable.</td>
</tr>
<tr>
<td>Default</td>
<td>On.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Reset the module. After the module has ten consecutive failures or three consecutive resets, it powers down.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-equipped modules.</td>
</tr>
</tbody>
</table>
TestLoopback

The TestLoopback test verifies the data path between the supervisor engine and the network ports of a module. In this test, a Layer 2 packet is flooded onto a VLAN that consists of only the test port and the supervisor engine’s inband port. The packet loops back in the port and returns to the supervisor engine on that same VLAN.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Schedule during downtime.</td>
</tr>
<tr>
<td>Default</td>
<td>Runs at bootup or after online insertion and removal (OIR).</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Error disable a port if the loopback test fails on the port. Reset the module if all of the ports fail.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>All modules including supervisor engines.</td>
</tr>
</tbody>
</table>

TestActiveToStandbyLoopback

The TestActiveToStandbyLoopback test verifies the data path between the active supervisor engine and the network ports of the standby supervisor engine. In this test, a Layer 2 packet is flooded onto a VLAN that consists of only the test port and the supervisor engine’s inband port. The test packets are looped back in the targeted port and are flooded back onto the bus with only the active supervisor engines’s inband port listening in on the flooded VLAN.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of loopback port (for example, Spanning Tree Protocol.).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Schedule during downtime.</td>
</tr>
<tr>
<td>Default</td>
<td>Runs at bootup or after OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Error disable a port if the loopback test fails on the port. Reset the supervisor engine if all of the ports fail.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Standby supervisor engine only.</td>
</tr>
</tbody>
</table>
TestTransceiverIntegrity

The TestTransceiverIntegrity test is a security test performed on the transceiver during transceiver online insertion and removal (OIR) or module bootup to make sure that the transceiver is supported.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Error disable the port.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>All modules with transceivers.</td>
</tr>
</tbody>
</table>

TestNetflowInlineRewrite

The TestNetflowInlineRewrite test verifies the NetFlow lookup operation, the ACL permit and deny functionality, and the inline rewrite capabilities of the port ASIC. The test packet will undergo a NetFlow table lookup to obtain the rewrite information. The VLAN and the source and destination MAC addresses are rewritten when the packet reaches the targeted port.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on configuration of loopback port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Schedule during downtime. Run this test during bootup only.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>All modules including supervisor engines.</td>
</tr>
</tbody>
</table>

PFC Layer 2 Forwarding Engine Tests

The PFC Layer 2 Forwarding Engine tests consist of the following tests:

- TestNewIndexLearn, page A-6
- TestDontConditionalLearn, page A-6
- TestBadBpduTrap, page A-6
- TestMatchCapture, page A-7
- TestStaticEntry, page A-7
Appendix A Online Diagnostic Tests

PFC Layer 2 Forwarding Engine Tests

TestNewIndexLearn

The TestNewIndexLearn test is a combination of the TestNewLearn and the TestIndexLearn tests, which are described in the “DFC Layer 2 Forwarding Engine Tests” section on page A-8.

Table A-9 TestNewIndexLearn Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>If you experience problems with the Layer 2 forwarding engine learning capability, run this test on-demand to verify the Layer 2 learning functionality. This test can also be used as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines only.</td>
</tr>
</tbody>
</table>

TestDontConditionalLearn

The TestDontConditionalLearn test is a combination of the TestDontLearn and the TestConditionalLearn tests, which are described in the “DFC Layer 2 Forwarding Engine Tests” section on page A-8.

Table A-10 TestDontConditionalLearn Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>If you experience problems with the Layer 2 forwarding engine learning capability, run this test on-demand to verify the Layer 2 learning functionality. This test can also be used as a health monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines only.</td>
</tr>
</tbody>
</table>

TestBadBpduTrap

The TestBadBpduTrap test is a combination of the TestTrap and the TestBadBpdu tests, which are described in the “DFC Layer 2 Forwarding Engine Tests” section on page A-8.

Table A-11 TestBadBpduTrap Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
</tbody>
</table>
Appendix A Online Diagnostic Tests

Table A-11 TestBadBpduTrap Test Attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run this test on-demand to verify the Layer 2 learning functionality. This test can also be used as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines only.</td>
</tr>
</tbody>
</table>

TestMatchCapture

The TestMatchCapture test is a combination of the TestProtocolMatchChannel and the TestCapture tests, which are described in the “DFC Layer 2 Forwarding Engine Tests” section on page A-8.

Table A-12 TestMatchCapture Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run this test on-demand to verify the Layer 2 learning functionality. This test can also be used as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines only.</td>
</tr>
</tbody>
</table>

TestStaticEntry

The TestStaticEntry test verifies that static entries are populated in the Layer 2 MAC address table. This functionality is verified during diagnostic packet lookup by the Layer 2 forwarding engine.

Table A-13 TestStaticEntry Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>If you experience problems with the Layer 2 forwarding engine learning capability, run this test on-demand to verify the Layer 2 learning functionality. This test can also be used as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
</tbody>
</table>
DFC Layer 2 Forwarding Engine Tests

The DFC Layer 2 Forwarding Engine tests consists of the following tests:

- **TestDontLearn**, page A-8
- **TestNewLearn**, page A-9
- **TestIndexLearn**, page A-9
- **TestConditionalLearn**, page A-10
- **TestTrap**, page A-10
- **TestBadBpdu**, page A-11
- **TestProtocolMatchChannel**, page A-11
- **TestCapture**, page A-12
- **TestStaticEntry**, page A-12

TestDontLearn

The TestDontLearn test verifies that new source MAC addresses are not populated in the MAC address table when they should not be learned. This test verifies that the “don’t learn” feature of the Layer 2 forwarding engine is working properly. For DFC-enabled modules, the diagnostic packet is sent from the supervisor engine inband port through the switch fabric and looped back from one of the ports on the DFC-enabled module. The “don’t learn” feature is verified during diagnostic packet lookup by the Layer 2 forwarding engine.

Table A-14 TestDontLearn Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Schedule during downtime.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-enabled modules.</td>
</tr>
</tbody>
</table>
TestNewLearn

The TestNewLearn test verifies the Layer 2 source MAC address learning functionality of the Layer 2 forwarding engine. For supervisor engines, a diagnostic packet is sent from the supervisor engine inband port to verify that the Layer 2 forwarding engine is learning the new source MAC address from the diagnostic packet. For DFC-enabled modules, a diagnostic packet is sent from the supervisor engine inband port through the switch fabric and looped back from one of the ports on the DFC-enabled module. The Layer 2 learning functionality is verified during the diagnostic packet lookup by the Layer 2 forwarding engine.

Table A-15 TestNewLearn Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestIndexLearn

The TestIndexLearn test ensures that existing MAC address table entries can be updated. This test verifies the Index Learn feature of the Layer 2 forwarding engine is working properly. When running the test on the supervisor engine, the diagnostic packet is sent from the supervisor engine’s inband port and performs a packet lookup using the supervisor engine Layer 2 forwarding engine. For DFC-enabled modules, the diagnostic packet is sent from the supervisor engine’s inband port through the switch fabric and looped back from one of the DFC ports. The Index Learn feature is verified during the diagnostic packet lookup by the Layer 2 forwarding engine.

Table A-16 TestIndexLearn Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-enabled modules.</td>
</tr>
</tbody>
</table>
TestConditionalLearn

The TestConditionalLearn test verifies the ability to learn a Layer 2 source MAC address under specific conditions. When running the test on the supervisor engine, the diagnostic packet is sent from the supervisor engine’s inband port and performs a packet lookup using the supervisor engine Layer 2 forwarding engine. For DFC-enabled modules, the diagnostic packet is sent from the supervisor engine’s inband port through the switch fabric and looped back from one of the DFC ports. The Conditional Learn feature is verified during the diagnostic packet lookup by the Layer 2 forwarding engine.

Table A-17 TestConditionalLearn Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestTrap

The TestTrap test verifies the ability to trap or redirect packets to the switch processor. This test verifies that the Trap feature of the Layer 2 forwarding engine is working properly. When running the test on the supervisor engine, the diagnostic packet is sent from the supervisor engine’s inband port and performs a packet lookup using the supervisor engine’s Layer 2 forwarding engine. For DFC-enabled modules, the diagnostic packet is sent from the supervisor engine’s inband port through the switch fabric and looped back from one of the DFC ports. The Trap feature is verified during the diagnostic packet lookup by the Layer 2 forwarding engine.

Table A-18 TestTrap Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-enabled modules.</td>
</tr>
</tbody>
</table>
TestBadBpdu

The TestBadBpdu test verifies the ability to trap or redirect packets to the switch processor. This test verifies that the Trap feature of the Layer 2 forwarding engine is working properly. When running the test on the supervisor engine, the diagnostic packet is sent from the supervisor engine’s inband port and performs a packet lookup using the supervisor engine’s Layer 2 forwarding engine. For DFC-enabled modules, the diagnostic packet is sent from the supervisor engine’s inband port through the switch fabric and looped back from one of the DFC ports. The BPDU feature is verified during the diagnostic packet lookup by the Layer 2 forwarding engine.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestProtocolMatchChannel

The TestProtocolMatchChannel test verifies the ability to match specific Layer 2 protocols in the Layer 2 forwarding engine. When running the test on the supervisor engine, the diagnostic packet is sent from the supervisor engine’s inband port and performs a packet lookup using the supervisor engine’s Layer 2 forwarding engine. For DFC-enabled modules, the diagnostic packet is sent from the supervisor engine’s inband port through the switch fabric and looped back from one of the DFC ports. The Match feature is verified during the diagnostic packet lookup by the Layer 2 forwarding engine.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-enabled modules.</td>
</tr>
</tbody>
</table>
TestCapture

The TestCapture test verifies that the capture feature of Layer 2 forwarding engine is working properly. The capture functionality is used for multicast replication. When running the test on the supervisor engine, the diagnostic packet is sent from the supervisor engine’s inband port and performs a packet lookup using the supervisor engine’s Layer 2 forwarding engine. For DFC-enabled modules, the diagnostic packet is sent from the supervisor engine’s inband port through the switch fabric and looped back from one of the DFC ports. The Capture feature is verified during the diagnostic packet lookup by the Layer 2 forwarding engine.

Table A-21 TestCapture Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Schedule during downtime.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestStaticEntry

The TestStaticEntry test verifies the ability to populate static entries in the Layer 2 MAC address table. When running the test on the supervisor engine, the diagnostic packet is sent from the supervisor engine’s inband port and performs a packet lookup using the supervisor engine’s Layer 2 forwarding engine. For DFC-enabled modules, the diagnostic packet is sent from the supervisor engine’s inband port through the switch fabric and looped back from one of the DFC ports. The Static Entry feature is verified during the diagnostic packet lookup by the Layer 2 forwarding engine.

Table A-22 TestStaticEntry Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-enabled modules.</td>
</tr>
</tbody>
</table>
Appendix A Online Diagnostic Tests

PFC Layer 3 Forwarding Engine Tests

The PFC Layer 3 Forwarding Engine tests consists of the following tests:

- TestFibDevices, page A-13
- TestIPv4FibShortcut, page A-13
- TestIPv6FibShortcut, page A-14
- TestMPLSFibShortcut, page A-14
- TestNATFibShortcut, page A-15
- TestL3Capture2, page A-15
- TestAclPermit, page A-16
- TestAclDeny, page A-16
- TestQoS, page A-17

TestFibDevices

The TestFibDevices test verifies whether the FIB TCAM and adjacency devices are functional. One FIB entry is installed on each FIB TCAM device. A diagnostic packet is sent to make sure that the diagnostic packet is switched by the FIB TCAM entry installed on the TCAM device. This is not an exhaustive TCAM device test; only one entry is installed on each TCAM device.

Note

Compared to the IPv4FibShortcut and IPv6FibShortcut tests, this test tests all FIB and adjacency devices using IPv4 or IPv6 packets, depending on your configuration.

<table>
<thead>
<tr>
<th>Table A-23 TestFibDevices Test Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
</tr>
<tr>
<td>Disruptive/Nondisruptive</td>
</tr>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Release</td>
</tr>
<tr>
<td>Corrective action</td>
</tr>
<tr>
<td>Hardware support</td>
</tr>
</tbody>
</table>

TestIPv4FibShortcut

The TestIPv4FibShortcut test verifies the IPV4 FIB forwarding of the Layer 3 forwarding engine is working properly. One diagnostic IPV4 FIB and adjacency entry is installed and a diagnostic packet is sent to make sure that the diagnostic packet is forwarded according to rewritten MAC and VLAN information.
Appendix A Online Diagnostic Tests

Table A-24 TestIPv4FibShortcut Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run this test on-demand to verify the Layer 3 forwarding functionality if you experience problems with the routing capability. This test can also be used as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestIPv6FibShortcut

The TestIPv6FibShortcut test verifies that the IPV6 FIB forwarding of the Layer 3 forwarding engine is working properly. One diagnostic IPV6 FIB and adjacency entry is installed and a diagnostic IPv6 packet is sent to make sure the diagnostic packet is forwarded according to rewritten MAC and VLAN information.

Table A-25 TestIPv6FibShortcut Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run this test on-demand to verify the Layer 3 forwarding functionality if you experience problems with the routing capability. This test can also be used as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestMPLSFibShortcut

The TestMPLSFibShortcut test verifies that the MPLS forwarding of the Layer 3 forwarding engine is working properly. One diagnostic MPLS FIB and adjacency entry is installed and a diagnostic MPLS packet is sent to make sure that the diagnostic packet is forwarded according to the MPLS label from the adjacency entry.

Table A-26 TestMPLSFibShortcut Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
</tbody>
</table>
TestNATFibShortcut

The TestNATFibShortcut test verifies the ability to rewrite a packet based on the NAT adjacency information (rewrite destination IP address). One diagnostic NAT FIB and adjacency entry is installed and the diagnostic packet is sent to make sure that the diagnostic packet is forwarded according to the rewritten IP address.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test can also be used as a health-monitoring test. Use as a health-monitoring test if the destination IP address is being rewritten (for example, if you are using NAT).</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestL3Capture2

The TestL3Capture2 test verifies that the Layer 3 capture (capture 2) feature of the Layer 3 forwarding engine is working properly. This capture feature is used for ACL logging and VACL logging. One diagnostic FIB and adjacency entry with a capture 2 bit set is installed and a diagnostic packet is sent to make sure that the diagnostic packet is forwarded according to the capture bit information.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test can also be used as a health-monitoring test. Use as a health-monitoring test if you are using ACL or VACL logging.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
</tbody>
</table>
Appendix A Online Diagnostic Tests

Table A-28 TestL3Capture2 Test Attributes (continued)

<table>
<thead>
<tr>
<th>Corrective action</th>
<th>None. See the system message guide for more information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestAclPermit

The TestAclPermit test verifies that the ACL permit functionality is working properly. An ACL entry permitting a specific diagnostics packet is installed in the ACL TCAM. The corresponding diagnostic packet is sent from the supervisor engine and looked up by the Layer 3 forwarding engine to make sure that it hits the ACL TCAM entry and gets permitted and forwarded appropriately.

Table A-29 TestAclPermit Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test can also be used as a health-monitoring test. Use as a health-monitoring test if you are using ACLs.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestAclDeny

The TestAclDeny test verifies that the ACL deny feature of the Layer 2 and Layer 3 forwarding engine is working properly. The test uses different ACL deny scenarios such as input, output, Layer 2 redirect, Layer 3 redirect, and Layer 3 bridges to determine whether or not the ACL deny feature is working properly.

Table A-30 TestAclDeny Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not disable.</td>
</tr>
<tr>
<td>Default</td>
<td>On.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Automatic ASIC reset for recovery.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>
TestNetflowShortcut

The TestNetflowShortcut test verifies that the NetFlow forwarding functionality of the Layer 3 forwarding engine is working properly. One diagnostic NetFlow entry and adjacency entry is installed, and a diagnostic packet is sent to make sure it is forwarded according to the rewritten MAC and VLAN information.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped back ports. The disruption is 500 ms.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run this test on-demand if you suspect that NetFlow is not working properly.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestQoS

The TestQoS test verifies whether or not the QoS input and output TCAM is functional by programming the QoS input and output TCAM so that the ToS value of the diagnostic packet is changed to reflect either input or output.

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped back ports. The disruption is 500 ms.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Schedule during downtime.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

DFC Layer 3 Forwarding Engine Tests

The DFC Layer 3 Forwarding Engine tests consists of the following tests:
- TestFibDevices, page A-18
- TestIPv4FibShortcut, page A-18
- TestIPv6FibShortcut, page A-19
- TestMPLSFibShortcut, page A-19
- TestNATFibShortcut, page A-20
- TestL3Capture2, page A-20
TestFibDevices

The TestFibDevices test verifies that the FIB TCAM and adjacency devices are functional. One FIB entry is installed on each FIBTCAM device and a diagnostic packet is sent to make sure that the diagnostic packet is switched by the FIB TCAM entry installed on the TCAM device. This is not an exhaustive TCAM device test. Only one entry is installed on each TCAM device.

Note

Compared to the IPv4FibShortcut and IPv6FibShortcut tests, the TestFibDevices test tests all FIB and adjacency devices using IPv4 or IPv6 packets, depending on your configuration.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Schedule during downtime.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestIPv4FibShortcut

The TestIPv4FibShortcut test verifies that the IPv4 FIB forwarding functionality of the Layer 3 forwarding engine is working properly. One diagnostic IPv4 FIB and adjacency entry is installed and a diagnostic packet is sent to make sure that the diagnostic packet is forwarded according to rewritten MAC and VLAN information.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
</tbody>
</table>
The TestIPv6FibShortcut test verifies that the IPv6 FIB forwarding functionality of the Layer 3 forwarding engine is working properly. One diagnostic IPv6 FIB and adjacency entry is installed and a diagnostic IPv6 packet is sent to make sure that the diagnostic packet is forwarded according to rewritten MAC and VLAN information.

Table A-35 TestIPv6FibShortcut Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestMPLSFibShortcut

The TestMPLSFibShortcut test verifies that the MPLS forwarding functionality of the Layer 3 forwarding engine is working properly. One diagnostic MPLS FIB and adjacency entry is installed and a diagnostic MPLS packet is sent to make sure that the diagnostic packet is forwarded using the MPLS label from the adjacency entry.

Table A-36 TestMPLSFibShortcut Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>
TestNATFibShortcut

The TestNATFibShortcut test verifies the ability to rewrite a packet based on NAT adjacency information, such as the rewrite destination IP address. One diagnostic NAT FIB and adjacency entry is installed and a diagnostic packet is sent to make sure the diagnostic packet is forwarded according to the rewritten IP address.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestL3Capture2

The TestL3Capture2 test verifies that the Layer 3 capture (capture 2) feature of the Layer 3 forwarding engine is working properly. This capture feature is used for ACL logging and VACL logging. One diagnostic FIB and adjacency entry with a capture 2-bit set is installed, and a diagnostic packet is sent to make sure that the diagnostic packet is forwarded according to capture bit information.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestAclPermit

The TestAclPermit test verifies that the ACL permit functionality is working properly. An ACL entry permitting a specific diagnostics packet is installed in the ACL TCAM. The corresponding diagnostic packet is sent from the supervisor engine and is looked up by the Layer 3 forwarding engine to make sure it hits the ACL TCAM entry and gets permitted and forwarded correctly.
Appendix A Online Diagnostic Tests

DFC Layer 3 Forwarding Engine Tests

Table A-39 TestACLPermit Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestAclDeny

The TestAclDeny test verifies that the ACL deny feature of the Layer 2 and Layer 3 forwarding engine is working properly. The test uses different ACL deny scenarios such as input and output Layer 2 redirect, Layer 3 redirect, and Layer 3 bridges.

Table A-40 TestACLDeny Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second. Duration of the disruption depends on the configuration of the looped-back port (for example, Spanning Tree Protocol).</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Schedule during downtime if you are using ACLs.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestQoS

The TestQoS test verifies whether or not the QoS input and output TCAM is functional by programming the QoS input and output TCAM so that the ToS value of the diagnostic packet is changed to reflect either input or output.

Table A-41 TestQoS Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. The disruption is typically less than one second.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Schedule during downtime.</td>
</tr>
</tbody>
</table>
Table A-41 TestQoS Test Attributes (continued)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run this test on-demand if you suspect that NetFlow is not working properly.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

TestNetflowShortcut

The TestNetFlowShortcut test verifies that the NetFlow forwarding functionality of the Layer 3 forwarding engine is working properly. One diagnostic NetFlow entry and adjacency entry is installed and a diagnostic packet is sent to make sure it is forwarded according to the rewritten MAC and VLAN information.

Table A-42 TestNetflowShortcut Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for looped-back ports. Disruption is typically less than one second.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run this test on-demand if you suspect that NetFlow is not working properly.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor engines and DFC-enabled modules.</td>
</tr>
</tbody>
</table>

Replication Engine Tests

The Replication Engine tests consists of the following tests:

- TestL3VlanMet, page A-22
- TestIngressSpan, page A-23
- TestEgressSpan, page A-23

TestL3VlanMet

The TestL3VlanMet test verifies that the multicast functionality of the replication engine is working properly. The replication engine is configured to perform multicast replication of a diagnostic packet onto two different VLANs. After the diagnostic packet is sent out from the supervisor engine’s inband port, the test verifies that two packets are received back in the inband port on the two VLANs configured in the replication engine.
Appendix A Online Diagnostic Tests

Replication Engine Tests

Table A-43 TestL3VlanMet Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive for supervisor engines. Disruptive for DFC-equipped modules. Disruption is typically less than one second on looped-back ports.</td>
</tr>
</tbody>
</table>

Recommendation

Run this test on-demand to test the multicast replication abilities of the replication engine.

Default

This test runs by default during bootup or after a reset or OIR.

Release

12.2(33)SRA and later releases.

Corrective action

None. See the system message guide for more information.

Hardware support

TestIngressSpan

The TestIngressSpan test ensures that the port ASIC is able to tag packets for ingress SPAN. This test also verifies that the ingress SPAN operation of the rewrite engine for both SPAN queues is working properly.

Table A-44 TestIngressSpan Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for both SPAN sessions. Also disruptive for the loopback port on modules. Duration of the disruption depends on the configuration of the loopback port (for example, Spanning Tree Protocol).</td>
</tr>
</tbody>
</table>

Recommendation

Run this test on-demand.

Default

This test runs by default during bootup or after a reset or OIR.

Release

12.2(33)SRA and later releases.

Corrective action

None. See the system message guide for more information.

Hardware support

Supervisor engines and WS-65xx and WS-67xx modules.

TestEgressSpan

The TestEgressSpan test verifies that the egress SPAN replication functionality of the rewrite engine for both SPAN queues is working properly.

Table A-45 TestEgressSpan Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive for both SPAN sessions. Disruption is typically less than one second.</td>
</tr>
</tbody>
</table>

Recommendation

Run this test on-demand.
Fabric Tests

The Fabric tests consists of the following tests:

- TestFabricSnakeForward, page A-24
- TestFabricSnakeBackward, page A-24
- TestSynchedFabChannel, page A-25
- TestFabricCh0Health, page A-25
- TestFabricCh1Health, page A-26

TestFabricSnakeForward

The TestFabricSnakeForward test consists of two test cases: the internal snake test and the external snake test. The internal snake test generates the test packets inside the fabric ASIC and the test data path is limited so that it stays inside the fabric ASIC. The external snake test generates the test packet using the supervisor engine inband port; the test data path involves the port ASIC, the rewrite engine ASIC inside the supervisor engine, and the fabric ASIC. Whether or not the supervisor engine local channel is synchronized to the fabric ASIC determines which test is used. If it is synchronized, the external snake test is used; if it is not, the internal snake test is used. For both tests, only the channels that are not synchronized to any modules are involved in the test. The Forward direction indicates that the snaking direction is from the low-numbered channel to the high-numbered channel.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run on-demand. This test can result in high CPU utilization.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Supervisor engines crash to ROMMON; SFMs reset.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor Engine 720 and SFM.</td>
</tr>
</tbody>
</table>

TestFabricSnakeBackward

The TestFabricSnakeBackward test consists of two test cases: the internal snake test and the external snake test. The internal snake test generates the test packets inside the fabric ASIC, and the test data path is limited so that it stays inside the fabric ASIC. The external snake test generates the test packet using
the supervisor engine inband port and the test data path involves the port ASIC, the rewrite engine ASIC inside the supervisor engine, and the fabric ASIC. Whether or not the supervisor engine local channel is synchronized to the fabric ASIC determines which test is used. If it is synchronized, the external snake test is used; if it is not, internal snake test is used. For both tests, only the channels that are not synchronized to any modules are involved in the test. The backward direction indicates that the snaking direction is from the high-numbered channel to the low-numbered channel.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run on-demand. This test can result in high CPU utilization.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Supervisor engines crash to ROMMON; SFMs reset.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor Engine 720 and SFM.</td>
</tr>
</tbody>
</table>

TestSynchedFabChannel

The TestSynchedFabChannel test periodically checks the fabric synchronization status for both the module and the fabric. This test is available only for fabric-enabled modules. This test is not a packet-switching test so it does not involve the data path. This test sends an SCP control message to the module and fabric to query the synchronization status.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not turn this test off. Use as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>On.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>The module resets after five consecutive failures. Three consecutive reset cycles results in the module powering down. A fabric switchover may be triggered, depending on the type of failure.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>All fabric-enabled modules.</td>
</tr>
</tbody>
</table>

TestFabricCh0Health

The TestFabricCh0Health test constantly monitors the health of the ingress and egress data paths for fabric channel 0 on 10-gigabit modules. The test runs every five seconds. Ten consecutive failures are treated as fatal and the module resets; three consecutive reset cycles may result in a fabric switchover.
Exhaustive Memory Tests

The test constantly monitors the health of the ingress and egress data paths for fabric channel 1 on 10-gigabit modules. The test runs every five seconds. Ten consecutive failures are treated as fatal and the module resets; three consecutive reset cycles may result in a fabric switchover.

TestFabricCh1Health

The test constantly monitors the health of the ingress and egress data paths for fabric channel 1 on 10-gigabit modules. The test runs every five seconds. Ten consecutive failures are treated as fatal and the module resets; three consecutive reset cycles may result in a fabric switchover.

Table A-49 TestFabricCh0Health Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not turn this test off. Use as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>On</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>The module resets after 10 consecutive failures. Three consecutive resets powers down the module. Effective from 15.3(1)S1 release onwards, for ES+ line cards, a recovery mechanism is introduced for every two consecutive failure of the TestFabricCh0Health test. If the test fails even after 5 recovery patches or 10 consecutive failures, then the module is reloaded.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>WS-X6704-10GE and WS-6702-10GE.</td>
</tr>
</tbody>
</table>

Table A-50 TestFabricCh1Health Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not turn this test off. Use as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>On</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>The module resets after 10 consecutive failures. Three consecutive failures resets powers down the module. Effective from 15.3(1)S1 release onwards, for ES+ line cards, a recovery mechanism is introduced for every two consecutive failure of the TestFabricCh1Health test. If the test fails even after 5 recovery patches or 10 consecutive failures, then the module is reloaded.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>WS-X6704-10GE module.</td>
</tr>
</tbody>
</table>

Exhaustive Memory Tests

The exhaustive memory tests include the following tests:

- TestFibTcamSSRAM, page A-27
- TestAsicMemory, page A-27
TestAclQosTcam, page A-28
TestNetflowTcam, page A-28
TestQoSTcam, page A-28

Note
Because the supervisor engine must be rebooted after running memory tests, run memory tests on the other modules before running them on the supervisor engine. For more information about running on-demand online diagnostic tests see the “Configuring On-Demand Online Diagnostics” section on page 42-3.

TestFibTcamSSRAM

The TestFibTcamSSRAM test checks the FIB TCAM and Layer 3 Adjacency SSRAM memory.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive. Disruption is several hours.</td>
</tr>
</tbody>
</table>

Recommendation

<table>
<thead>
<tr>
<th>Default</th>
<th>Off.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>All modules including supervisor engines.</td>
</tr>
</tbody>
</table>

TestAsicMemory

The TestAsicMemory test uses an algorithm to test the memory on a module.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive. Disruption is approximately one hour.</td>
</tr>
</tbody>
</table>

Recommendation

<table>
<thead>
<tr>
<th>Default</th>
<th>Off.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>All modules including supervisor engines.</td>
</tr>
</tbody>
</table>
Exhaustive Memory Tests

Appendix A Online Diagnostic Tests

TestAclQosTcam

The TestAclQosTcam test tests all the bits and checks the location of both ACL and QOS TCAMs on the PFC3B, PFC3BXL, PFC3C, and PFC3CXL. It is not supported on the PFC3A.

Table A-53 TestAclQosTcam Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive. Disruption is approximately one hour.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Use this test only if you suspect a problem with the hardware or before putting the hardware into a live network. Do not run any traffic in the background on the module that you are testing. The supervisor engine must be rebooted after running this test.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>All modules including supervisor engines.</td>
</tr>
</tbody>
</table>

TestNetflowTcam

The TestNetflowTcam test tests all the bits and checks the location of the Netflow TCAM.

Table A-54 TestNetflowTcam Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive. Disruption is several minutes and can vary depending on the type of PFC you are testing.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Use this test only if you suspect a problem with the hardware or before putting the hardware into a live network. Do not run any traffic in the background on the module that you are testing. The supervisor engine must be rebooted after running this test.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>All modules including supervisor engines.</td>
</tr>
</tbody>
</table>

TestQoSTcam

The TestQoSTcam test performs exhaustive memory tests for QoS TCAM devices.
Appendix A Online Diagnostic Tests

IPSEC Services Modules Tests

The IPSEC Services Modules Tests include the following tests:

- TestIPSecClearPkt, page A-29
- TestHapiEchoPkt, page A-30
- TestIPSecEncryptDecryptPkt, page A-30

TestIPSecClearPkt

The TestIPSecClearPkt test sends a packet through the switch fabric or bus from the supervisor engine inband port through to the crypto engine. The packet is sent back without encryption from the crypto engine to the supervisor engine in-band port. The packet is checked to verify that the encryption is not done and that the packet data fields are reserved. The Layer 2 lookup drives the packet between the supervisor in-band port and the crypto engine.

<table>
<thead>
<tr>
<th>Table A-55 TestQoSITcam Test Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
</tr>
<tr>
<td>Disruptive/Nondisruptive</td>
</tr>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Release</td>
</tr>
<tr>
<td>Corrective action</td>
</tr>
<tr>
<td>Hardware support</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table A-56 TestIPSecClearPkt Test Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute</td>
</tr>
<tr>
<td>Disruptive/Nondisruptive</td>
</tr>
<tr>
<td>Recommendation</td>
</tr>
<tr>
<td>Default</td>
</tr>
<tr>
<td>Release</td>
</tr>
<tr>
<td>Corrective action</td>
</tr>
<tr>
<td>Hardware support</td>
</tr>
</tbody>
</table>
TestHapiEchoPkt

The TestHapiEchoPkt test sends a Hapi Echo packet to the crypto engine using the control path. After the Hapi Echo packet is sent to the crypto engine, it is echoed back from the crypto engine. The packet is sent from the supervisor engine inband port to the crypto engine using index-direct and is sent back using broadcast to a diagnostic VLAN.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Run this test on-demand. This test cannot be run from on-demand CLI.</td>
</tr>
<tr>
<td>Default</td>
<td>On.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>VPN service module.</td>
</tr>
</tbody>
</table>

TestIPSecEncryptDecryptPkt

The TestIPSecEncryptDecryptPkt test checks the encryption functionality by exchanging a packet between the supervisor engine in-band port and the crypto engine of the IPSec services modules (WS-SVC-IPSEC, SPA-IPSEC) using the switch fabric or bus (whichever is applicable). After several exchanges, the packet is checked to verify that the original data is preserved after the encryption and decryption process performed by the crypto engine. The Layer 2 lookup drives the packet between the supervisor in-band port and the crypto engine.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive. Test runs every minute by default.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test can only be run at bootup.</td>
</tr>
<tr>
<td>Default</td>
<td>This test runs by default during bootup or after a reset or OIR.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>VPN services module.</td>
</tr>
</tbody>
</table>

Stress Tests

The stress tests consist of the following tests:

TestTrafficStress, page A-31
TestEobcStressPing, page A-31
TestTrafficStress

The TestTrafficStress test stress tests the switch and the installed modules by configuring all of the ports on the modules into pairs, which then pass packets between each other. After allowing the packets to pass through the switch for a predetermined period, the test verifies that the packets are not dropped.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive. Disruption is several minutes.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Use this test to qualify hardware before installing it in your network.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor Engine 720 and Supervisor Engine 32.</td>
</tr>
</tbody>
</table>

TestEobcStressPing

The TestEobcStressPing test stress tests a module’s EOBC link with the supervisor engine. The test is started when the supervisor engine initiates a number of sweep-ping processes (the default is one). The sweep-ping process pings the module with 20,000 SCP-ping packets. The test passes if all 20,000 packets respond before each packet-ping timeout, which is two seconds. If unsuccessful, the test allows five retries to account for traffic bursts on the EOBC bus during the test.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive. Disruption is several minutes.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Use this test to qualify hardware before installing it in your network.</td>
</tr>
<tr>
<td>Default</td>
<td>Off.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor Engine 720 and Supervisor Engine 32.</td>
</tr>
</tbody>
</table>

Critical Recovery Tests

The critical recovery tests consist of the following tests:

- TestL3HealthMonitoring, page A-32
- TestTxPathMonitoring, page A-32
- TestSynchedFabChannel, page A-32

The TestFabricCh0Health and TestFabricCh1Health tests are also considered critical recovery tests. See the “Fabric Tests” section on page A-24 for a description of these tests.
Critical Recovery Tests

TestL3HealthMonitoring

The TestL3HealthMonitoring test triggers a set of diagnostic tests involving IPv4 and IPv6 packet switching on a local DFC whenever the system tries to self-recover from a detected hardware fault. The tests shut down the front panel port (usually port 1) for testing purposes. If the diagnostic tests are not passing, it is an indication that the hardware fault cannot be fixed and a self-recovery sequence will be applied again.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Disruptive. Disruption is typically less than one second. Duration of the disruption depends on the configuration of looped-back port (for example, Spanning Tree Protocol). Forwarding and port functions are disrupted during the test.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not disable.</td>
</tr>
<tr>
<td>Default</td>
<td>On.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Not applicable.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>DFC-equipped modules</td>
</tr>
</tbody>
</table>

TestTxPathMonitoring

The TestTxPathMonitoring test sends index-directed packets periodically to each port on the Supervisor Engine 720 and WS-X67xx series modules to verify ASIC synchronization and correct any related problems. The test runs every two seconds.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not change the default settings.</td>
</tr>
<tr>
<td>Default</td>
<td>On.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>Not applicable (self-recovering).</td>
</tr>
<tr>
<td>Hardware support</td>
<td>Supervisor Engine 720 and WS-67xx series modules.</td>
</tr>
</tbody>
</table>

TestSynchedFabChannel

The TestSynchedFabChannel test periodically checks the fabric synchronization status for both the module and the fabric. This test is available only for fabric-enabled modules. This test is not a packet-switching test so it does not involve the data path. This test sends an SCP control message to the module and fabric to query the synchronization status.
General Tests

The general tests consist of the following tests:

ScheduleSwitchover, page A-33
TestFirmwareDiagStatus, page A-33

ScheduleSwitchover

The ScheduleSwitchover test allows you to trigger a switchover at any time using the online diagnostics scheduling capability.

Table A-64 ScheduleSwitchover Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Do not turn off. Use as a health-monitoring test.</td>
</tr>
<tr>
<td>Default</td>
<td>On.</td>
</tr>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
<tr>
<td>Corrective action</td>
<td>None. See the system message guide for more information.</td>
</tr>
<tr>
<td>Hardware support</td>
<td>All fabric-enabled modules.</td>
</tr>
</tbody>
</table>

TestFirmwareDiagStatus

The TestFirmwareDiagStatus test displays the results of the power-on diagnostic tests run by the firmware during the module bootup.

Table A-65 TestFirmwareDiagStatus Test Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disruptive/Nondisruptive</td>
<td>Nondisruptive.</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This test can only be run at bootup.</td>
</tr>
</tbody>
</table>
General Tests

Default Tests

<table>
<thead>
<tr>
<th>Default</th>
<th>This test runs by default during bootup or after a reset or OIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release</td>
<td>12.2(33)SRA and later releases.</td>
</tr>
</tbody>
</table>
| Corrective action | None. See the system message guide. |}

| Hardware support | All modules, including supervisor engines. |
Acronyms

Table B-1 defines the acronyms used in this publication.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAL</td>
<td>ATM adaptation layer</td>
</tr>
<tr>
<td>ACE</td>
<td>access control entry</td>
</tr>
<tr>
<td>ACL</td>
<td>access control list</td>
</tr>
<tr>
<td>AFI</td>
<td>authority and format identifier</td>
</tr>
<tr>
<td>Agport</td>
<td>aggregation port</td>
</tr>
<tr>
<td>ALPS</td>
<td>Airline Protocol Support</td>
</tr>
<tr>
<td>AMP</td>
<td>Active Monitor Present</td>
</tr>
<tr>
<td>APaRT</td>
<td>Automated Packet Recognition and Translation</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>ATA</td>
<td>Analog Telephone Adaptor</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>AV</td>
<td>attribute value</td>
</tr>
<tr>
<td>BDD</td>
<td>binary decision diagrams</td>
</tr>
<tr>
<td>BECN</td>
<td>backward explicit congestion notification</td>
</tr>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
</tr>
<tr>
<td>BPDU</td>
<td>bridge protocol data unit</td>
</tr>
<tr>
<td>BRF</td>
<td>bridge relay function</td>
</tr>
<tr>
<td>BSC</td>
<td>Bisync</td>
</tr>
<tr>
<td>BSTUN</td>
<td>Block Serial Tunnel</td>
</tr>
<tr>
<td>BUS</td>
<td>broadcast and unknown server</td>
</tr>
<tr>
<td>BVI</td>
<td>bridge-group virtual interface</td>
</tr>
<tr>
<td>CAM</td>
<td>content-addressable memory</td>
</tr>
<tr>
<td>CAR</td>
<td>committed access rate</td>
</tr>
<tr>
<td>CCA</td>
<td>circuit card assembly</td>
</tr>
<tr>
<td>CDP</td>
<td>Cisco Discovery Protocol</td>
</tr>
</tbody>
</table>
Table B-1 List of Acronyms (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEF</td>
<td>Cisco Express Forwarding</td>
</tr>
<tr>
<td>CHAP</td>
<td>Challenge Handshake Authentication Protocol</td>
</tr>
<tr>
<td>CIR</td>
<td>committed information rate</td>
</tr>
<tr>
<td>CIST</td>
<td>Common and internal spanning tree</td>
</tr>
<tr>
<td>CLI</td>
<td>command-line interface</td>
</tr>
<tr>
<td>CLNS</td>
<td>Connection-Less Network Service</td>
</tr>
<tr>
<td>CMNS</td>
<td>Connection-Mode Network Service</td>
</tr>
<tr>
<td>COPS</td>
<td>Common Open Policy Server</td>
</tr>
<tr>
<td>COPS-DS</td>
<td>Common Open Policy Server Differentiated Services</td>
</tr>
<tr>
<td>CoS</td>
<td>class of service</td>
</tr>
<tr>
<td>CPLD</td>
<td>Complex Programmable Logic Device</td>
</tr>
<tr>
<td>CRC</td>
<td>cyclic redundancy check</td>
</tr>
<tr>
<td>CRF</td>
<td>concentrator relay function</td>
</tr>
<tr>
<td>CST</td>
<td>Common Spanning Tree</td>
</tr>
<tr>
<td>CUDD</td>
<td>University of Colorado Decision Diagram</td>
</tr>
<tr>
<td>DCC</td>
<td>Data Country Code</td>
</tr>
<tr>
<td>dCEF</td>
<td>distributed Cisco Express Forwarding</td>
</tr>
<tr>
<td>DDR</td>
<td>dial-on-demand routing</td>
</tr>
<tr>
<td>DE</td>
<td>discard eligibility</td>
</tr>
<tr>
<td>DEC</td>
<td>Digital Equipment Corporation</td>
</tr>
<tr>
<td>DFC</td>
<td>Distributed Forwarding Card</td>
</tr>
<tr>
<td>DFI</td>
<td>Domain-Specific Part Format Identifier</td>
</tr>
<tr>
<td>DFP</td>
<td>Dynamic Feedback Protocol</td>
</tr>
<tr>
<td>DISL</td>
<td>Dynamic Inter-Switch Link</td>
</tr>
<tr>
<td>DLC</td>
<td>Data Link Control</td>
</tr>
<tr>
<td>DLSw</td>
<td>Data Link Switching</td>
</tr>
<tr>
<td>DMP</td>
<td>data movement processor</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DOS</td>
<td>denial of service</td>
</tr>
<tr>
<td>dot1q</td>
<td>802.1Q</td>
</tr>
<tr>
<td>DRAM</td>
<td>dynamic RAM</td>
</tr>
<tr>
<td>DRiP</td>
<td>Dual Ring Protocol</td>
</tr>
<tr>
<td>DSAP</td>
<td>destination service access point</td>
</tr>
<tr>
<td>DSCP</td>
<td>differentiated services code point</td>
</tr>
<tr>
<td>DSPU</td>
<td>downstream SNA Physical Units</td>
</tr>
</tbody>
</table>
Table B-1 List of Acronyms (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTP</td>
<td>Dynamic Trunking Protocol</td>
</tr>
<tr>
<td>DTR</td>
<td>data terminal ready</td>
</tr>
<tr>
<td>DXI</td>
<td>data exchange interface</td>
</tr>
<tr>
<td>EAP</td>
<td>Extensible Authentication Protocol</td>
</tr>
<tr>
<td>EARL</td>
<td>Enhanced Address Recognition Logic</td>
</tr>
<tr>
<td>EEPROM</td>
<td>electrically erasable programmable read-only memory</td>
</tr>
<tr>
<td>EHSA</td>
<td>enhanced high system availability</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Association</td>
</tr>
<tr>
<td>ELAN</td>
<td>Emulated Local Area Network</td>
</tr>
<tr>
<td>EOBC</td>
<td>Ethernet out-of-band channel</td>
</tr>
<tr>
<td>EOF</td>
<td>end of file</td>
</tr>
<tr>
<td>ESI</td>
<td>end-system identifier</td>
</tr>
<tr>
<td>FAT</td>
<td>File Allocation Table</td>
</tr>
<tr>
<td>FECN</td>
<td>forward explicit congestion notification</td>
</tr>
<tr>
<td>FM</td>
<td>feature manager</td>
</tr>
<tr>
<td>FRU</td>
<td>field replaceable unit</td>
</tr>
<tr>
<td>fsck</td>
<td>file system consistency check</td>
</tr>
<tr>
<td>FSM</td>
<td>feasible successor metrics</td>
</tr>
<tr>
<td>GARP</td>
<td>General Attribute Registration Protocol</td>
</tr>
<tr>
<td>GMRP</td>
<td>GARP Multicast Registration Protocol</td>
</tr>
<tr>
<td>GVRP</td>
<td>GARP VLAN Registration Protocol</td>
</tr>
<tr>
<td>HSRP</td>
<td>Hot Standby Routing Protocol</td>
</tr>
<tr>
<td>ICC</td>
<td>Inter-card Communication</td>
</tr>
<tr>
<td>ICD</td>
<td>International Code Designator</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>IDB</td>
<td>interface descriptor block</td>
</tr>
<tr>
<td>IDP</td>
<td>initial domain part or Internet Datagram Protocol</td>
</tr>
<tr>
<td>IDSM</td>
<td>Intrusion Detection System Module</td>
</tr>
<tr>
<td>IFS</td>
<td>IOS File System</td>
</tr>
<tr>
<td>IGMP</td>
<td>Internet Group Management Protocol</td>
</tr>
<tr>
<td>IGRP</td>
<td>Interior Gateway Routing Protocol</td>
</tr>
<tr>
<td>ILMI</td>
<td>Integrated Local Management Interface</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPC</td>
<td>interprocessor communication</td>
</tr>
<tr>
<td>IPX</td>
<td>Internetwork Packet Exchange</td>
</tr>
<tr>
<td>Acronym</td>
<td>Expansion</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>ISL</td>
<td>Inter-Switch Link</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization of Standardization</td>
</tr>
<tr>
<td>ISR</td>
<td>Integrated SONET router</td>
</tr>
<tr>
<td>IST</td>
<td>Internal spanning tree</td>
</tr>
<tr>
<td>LAN</td>
<td>local area network</td>
</tr>
<tr>
<td>LANE</td>
<td>LAN Emulation</td>
</tr>
<tr>
<td>LAPB</td>
<td>Link Access Procedure, Balanced</td>
</tr>
<tr>
<td>LCP</td>
<td>Link Control Protocol</td>
</tr>
<tr>
<td>LDA</td>
<td>Local Director Acceleration</td>
</tr>
<tr>
<td>LEC</td>
<td>LAN Emulation Client</td>
</tr>
<tr>
<td>LECS</td>
<td>LAN Emulation Configuration Server</td>
</tr>
<tr>
<td>LEM</td>
<td>link error monitor</td>
</tr>
<tr>
<td>LER</td>
<td>link error rate</td>
</tr>
<tr>
<td>LES</td>
<td>LAN Emulation Server</td>
</tr>
<tr>
<td>LLC</td>
<td>Logical Link Control</td>
</tr>
<tr>
<td>LTL</td>
<td>Local Target Logic</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>MD5</td>
<td>Message Digest 5</td>
</tr>
<tr>
<td>MFD</td>
<td>multicast fast drop</td>
</tr>
<tr>
<td>MSFC</td>
<td>Multilayer Switch Feature Card</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MII</td>
<td>media-independent interface</td>
</tr>
<tr>
<td>MLS</td>
<td>Multilayer Switching</td>
</tr>
<tr>
<td>MLSE</td>
<td>maintenance loop signaling entity</td>
</tr>
<tr>
<td>MOP</td>
<td>Maintenance Operation Protocol</td>
</tr>
<tr>
<td>MOTD</td>
<td>message-of-the-day</td>
</tr>
<tr>
<td>MLSE</td>
<td>maintenance loops signaling entity</td>
</tr>
<tr>
<td>MRM</td>
<td>multicast routing monitor</td>
</tr>
<tr>
<td>MSDP</td>
<td>Multicast Source Discovery Protocol</td>
</tr>
<tr>
<td>MSFC</td>
<td>Multilayer Switching Feature Card</td>
</tr>
<tr>
<td>MSM</td>
<td>Multilayer Switch Module</td>
</tr>
<tr>
<td>MST</td>
<td>multiple spanning tree</td>
</tr>
<tr>
<td>MTU</td>
<td>maximum transmission unit</td>
</tr>
<tr>
<td>MVAP</td>
<td>multiple VLAN access port</td>
</tr>
</tbody>
</table>
Table B-1 List of Acronyms (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAM</td>
<td>Network Analysis Module</td>
</tr>
<tr>
<td>NBP</td>
<td>Name Binding Protocol</td>
</tr>
<tr>
<td>NCIA</td>
<td>Native Client Interface Architecture</td>
</tr>
<tr>
<td>NDE</td>
<td>NetFlow Data Export</td>
</tr>
<tr>
<td>NET</td>
<td>network entity title</td>
</tr>
<tr>
<td>NetBIOS</td>
<td>Network Basic Input/Output System</td>
</tr>
<tr>
<td>NFFC</td>
<td>NetFlow Feature Card</td>
</tr>
<tr>
<td>NMP</td>
<td>Network Management Processor</td>
</tr>
<tr>
<td>NSAP</td>
<td>network service access point</td>
</tr>
<tr>
<td>NSF</td>
<td>Nonstop Forwarding</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>NVRAM</td>
<td>nonvolatile RAM</td>
</tr>
<tr>
<td>OAM</td>
<td>Operation, Administration, and Maintenance</td>
</tr>
<tr>
<td>ODM</td>
<td>order dependent merge</td>
</tr>
<tr>
<td>OSI</td>
<td>Open System Interconnection</td>
</tr>
<tr>
<td>OSM</td>
<td>Optical Services Module</td>
</tr>
<tr>
<td>OSPF</td>
<td>open shortest path first</td>
</tr>
<tr>
<td>PAE</td>
<td>port access entity</td>
</tr>
<tr>
<td>PAgP</td>
<td>Port Aggregation Protocol</td>
</tr>
<tr>
<td>PBD</td>
<td>packet buffer daughterboard</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer (formerly PCMCIA)</td>
</tr>
<tr>
<td>PCM</td>
<td>pulse code modulation</td>
</tr>
<tr>
<td>PCR</td>
<td>peak cell rate</td>
</tr>
<tr>
<td>PDP</td>
<td>policy decision point</td>
</tr>
<tr>
<td>PDU</td>
<td>protocol data unit</td>
</tr>
<tr>
<td>PEP</td>
<td>policy enforcement point</td>
</tr>
<tr>
<td>PFC</td>
<td>Policy Feature Card</td>
</tr>
<tr>
<td>PGM</td>
<td>Pragmatic General Multicast</td>
</tr>
<tr>
<td>PHY</td>
<td>physical sublayer</td>
</tr>
<tr>
<td>PIB</td>
<td>policy information base</td>
</tr>
<tr>
<td>PIM</td>
<td>protocol independent multicast</td>
</tr>
<tr>
<td>PPP</td>
<td>Point-to-Point Protocol</td>
</tr>
<tr>
<td>PRID</td>
<td>Policy Rule Identifiers</td>
</tr>
<tr>
<td>PVST+</td>
<td>Per VLAN Spanning Tree+</td>
</tr>
<tr>
<td>QDM</td>
<td>QoS device manager</td>
</tr>
<tr>
<td>QM</td>
<td>QoS manager</td>
</tr>
<tr>
<td>Acronym</td>
<td>Expansion</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>QoS</td>
<td>quality of service</td>
</tr>
<tr>
<td>RACL</td>
<td>router interface access control list</td>
</tr>
<tr>
<td>RADIUS</td>
<td>Remote Access Dial-In User Service</td>
</tr>
<tr>
<td>RAM</td>
<td>random-access memory</td>
</tr>
<tr>
<td>RCP</td>
<td>Remote Copy Protocol</td>
</tr>
<tr>
<td>RGMP</td>
<td>Router-Ports Group Management Protocol</td>
</tr>
<tr>
<td>RIB</td>
<td>routing information base</td>
</tr>
<tr>
<td>RIF</td>
<td>Routing Information Field</td>
</tr>
<tr>
<td>RMON</td>
<td>remote network monitor</td>
</tr>
<tr>
<td>ROM</td>
<td>read-only memory</td>
</tr>
<tr>
<td>ROMMON</td>
<td>ROM monitor</td>
</tr>
<tr>
<td>RP</td>
<td>route processor or rendezvous point</td>
</tr>
<tr>
<td>RPC</td>
<td>remote procedure call</td>
</tr>
<tr>
<td>RPF</td>
<td>reverse path forwarding</td>
</tr>
<tr>
<td>RPR</td>
<td>route processor redundancy</td>
</tr>
<tr>
<td>RPR+</td>
<td>route processor redundancy plus</td>
</tr>
<tr>
<td>RSPAN</td>
<td>remote SPAN</td>
</tr>
<tr>
<td>RST</td>
<td>reset</td>
</tr>
<tr>
<td>RSVP</td>
<td>ReSerVation Protocol</td>
</tr>
<tr>
<td>SAID</td>
<td>Security Association Identifier</td>
</tr>
<tr>
<td>SAP</td>
<td>service access point</td>
</tr>
<tr>
<td>SCM</td>
<td>service connection manager</td>
</tr>
<tr>
<td>SCP</td>
<td>Switch-Module Configuration Protocol</td>
</tr>
<tr>
<td>SDLC</td>
<td>Synchronous Data Link Control</td>
</tr>
<tr>
<td>SGBP</td>
<td>Stack Group Bidding Protocol</td>
</tr>
<tr>
<td>SIMM</td>
<td>single in-line memory module</td>
</tr>
<tr>
<td>SLB</td>
<td>server load balancing</td>
</tr>
<tr>
<td>SLCP</td>
<td>Supervisor Line-Card Processor</td>
</tr>
<tr>
<td>SLIP</td>
<td>Serial Line Internet Protocol</td>
</tr>
<tr>
<td>SMDS</td>
<td>Software Management and Delivery Systems</td>
</tr>
<tr>
<td>SMF</td>
<td>software MAC filter</td>
</tr>
<tr>
<td>SMP</td>
<td>Standby Monitor Present</td>
</tr>
<tr>
<td>SMRP</td>
<td>Simple Multicast Routing Protocol</td>
</tr>
<tr>
<td>SMT</td>
<td>Station Management</td>
</tr>
<tr>
<td>SNAP</td>
<td>Subnetwork Access Protocol</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>Acronym</td>
<td>Expansion</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>SRM</td>
<td>single router mode</td>
</tr>
<tr>
<td>SSO</td>
<td>stateful switchover</td>
</tr>
<tr>
<td>SPAN</td>
<td>Switched Port Analyzer</td>
</tr>
<tr>
<td>SREC</td>
<td>S-Record format, Motorola defined format for ROM contents</td>
</tr>
<tr>
<td>SSTP</td>
<td>Cisco Shared Spanning Tree</td>
</tr>
<tr>
<td>STP</td>
<td>Spanning Tree Protocol</td>
</tr>
<tr>
<td>SVC</td>
<td>switched virtual circuit</td>
</tr>
<tr>
<td>SVI</td>
<td>switched virtual interface</td>
</tr>
<tr>
<td>TACACS+</td>
<td>Terminal Access Controller Access Control System Plus</td>
</tr>
<tr>
<td>TARP</td>
<td>Target Identifier Address Resolution Protocol</td>
</tr>
<tr>
<td>TCAM</td>
<td>Ternary Content Addressable Memory</td>
</tr>
<tr>
<td>TCL</td>
<td>table contention level</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>TFTP</td>
<td>Trivial File Transfer Protocol</td>
</tr>
<tr>
<td>TIA</td>
<td>Telecommunications Industry Association</td>
</tr>
<tr>
<td>TopN</td>
<td>Utility that allows the user to analyze port traffic by reports</td>
</tr>
<tr>
<td>TOS</td>
<td>type of service</td>
</tr>
<tr>
<td>TLV</td>
<td>type-length-value</td>
</tr>
<tr>
<td>TTL</td>
<td>Time To Live</td>
</tr>
<tr>
<td>TVX</td>
<td>valid transmission</td>
</tr>
<tr>
<td>ULDLD</td>
<td>UniDirectional Link Detection Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UNI</td>
<td>User-Network Interface</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time</td>
</tr>
<tr>
<td>VAACL</td>
<td>VLAN access control list</td>
</tr>
<tr>
<td>VCC</td>
<td>virtual channel circuit</td>
</tr>
<tr>
<td>VCI</td>
<td>virtual circuit identifier</td>
</tr>
<tr>
<td>VCR</td>
<td>Virtual Configuration Register</td>
</tr>
<tr>
<td>VINES</td>
<td>Virtual Network System</td>
</tr>
<tr>
<td>VLAN</td>
<td>virtual LAN</td>
</tr>
<tr>
<td>VMPS</td>
<td>VLAN Membership Policy Server</td>
</tr>
<tr>
<td>VPN</td>
<td>virtual private network</td>
</tr>
<tr>
<td>VRF</td>
<td>VPN routing and forwarding</td>
</tr>
<tr>
<td>VTP</td>
<td>VLAN Trunking Protocol</td>
</tr>
<tr>
<td>VVID</td>
<td>voice VLAN ID</td>
</tr>
<tr>
<td>WAN</td>
<td>wide area network</td>
</tr>
</tbody>
</table>
Table B-1 List of Acronyms (continued)

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>WCCP</td>
<td>Web Cache Communications Protocol</td>
</tr>
<tr>
<td>WFQ</td>
<td>weighted fair queueing</td>
</tr>
<tr>
<td>WRED</td>
<td>weighted random early detection</td>
</tr>
<tr>
<td>WRR</td>
<td>weighted round-robin</td>
</tr>
<tr>
<td>XNS</td>
<td>Xerox Network System</td>
</tr>
</tbody>
</table>
Cisco IOS Release 15.S Software Images

Table C-1 lists the software images that are provided with Cisco IOS Release 15.S. These images are available only for the Cisco 7600 router. If you attempt to run any of these images on another platform (such as a Catalyst 6500 series switch), the system displays one of the error messages shown in the following section.

Note Special images are available to support both the Cisco 7600 router and the Catalyst 6500 switch (rsp72043-adventerprisek9-mz, s3223-adventerprisek9-mz, and s72033-adventerprisek9-mz). Contact your Cisco account representative to determine how to obtain one of these images or if an alternative image is available.

<table>
<thead>
<tr>
<th>Image Filename</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c7600rps2043-adventerprisek9-mz (RSP720)</td>
<td>Advanced enterprise services software images</td>
</tr>
<tr>
<td>c7600s2033-adventerprisek9-mz (Sup720)</td>
<td></td>
</tr>
<tr>
<td>c7600s3223-adventerprisek9-mz (Sup32)</td>
<td></td>
</tr>
<tr>
<td>c7600rps2043-advipservicesk9-mz (RSP720)</td>
<td>Advanced IP services software images</td>
</tr>
<tr>
<td>c7600s2033-advipservicesk9-mz (Sup720)</td>
<td></td>
</tr>
<tr>
<td>c7600s3223-advipservicesk9-mz (Sup32)</td>
<td></td>
</tr>
<tr>
<td>c7600rps2043-ipservices-mz (RSP720)</td>
<td>IP services software images</td>
</tr>
<tr>
<td>c7600s2033-ipservices-mz (Sup720)</td>
<td></td>
</tr>
<tr>
<td>c7600s3223-ipservices-mz (Sup32)</td>
<td></td>
</tr>
<tr>
<td>c7600rps2043-ipservicesk9-mz (RSP720)</td>
<td>IP services SSH software images</td>
</tr>
<tr>
<td>c7600s2033-ipservicesk9-mz (Sup720)</td>
<td></td>
</tr>
<tr>
<td>c7600s3223-ipservicesk9-mz (Sup32)</td>
<td></td>
</tr>
<tr>
<td>c7600rps720_2r-pm2.srec (RSP720)</td>
<td>ROMmon software image for route processor (available only for RSP720 in 15.S)</td>
</tr>
<tr>
<td>c7600rps720_sp-pm2.srec (RSP720)</td>
<td>ROMmon software image for switch processor (available only for RSP720 in 15.S)</td>
</tr>
</tbody>
</table>

For information about the features in each image, see the Feature Navigator tool at:
Software Image Messages for Non-Compliant Platform

The Cisco IOS Release 15.S images are available only for the Cisco 7600 router. Previously, Cisco 7600 router images would also run on the Catalyst 6500 series switch. Now, however, one of the following error messages is displayed if you attempt to run a Cisco 7600 image on another platform.

- If you attempt to run the 15.S software image on a platform other than the Cisco 7600 router, the following message is displayed:

 `%C6K_PLATFORM-1- DETECTED_NON_C7600_CHASSIS: Software has detected an attempt to run a c7600 image on an incompatible chassis ([char]).`

 Explanation: You are loading a special 7600 12.2SR image on a Catalyst 6500 Series Switch.

 Recommended Action: You are loading a special Cisco 7600 Series Router image on a Catalyst 6500 Series Switch. Thank you for registering your chassis for approval to use this image. If you have not registered this chassis, please contact your Cisco account representative in order to gain approval for use of this image.

- If you attempt to run a Cisco 7600 image on another platform (such as the Catalyst 6500 switch), the following message is displayed:

 `%C6K_PLATFORM-1-DISABLE_NON_C7600_CHASSIS: Software has detected an attempt to run a c7600 image on an incompatible chassis ([char]). This image may not boot.`

 Explanation: Software detected an attempt to load a Cisco 7600 series router image on an incompatible chassis.

 Recommended Action: Verify that you are using a Cisco 7600 series chassis; if you are attempting to run this on a Catalyst 6500 series switch please contact your account representative about selecting an appropriate image for your platform.
Symbols

!Mini Protocol Analyzer 66-1

Numerics

4K VLANs (support for 4,096 VLANs) 14-2
802.10 SAID (default) 14-6
802.1Q
 encapsulation 10-3
 Layer 2 protocol tunneling
 See Layer 2 protocol tunneling
 mapping to ISL VLANs 14-14, 14-17
 trunks 10-2
 restrictions 10-5
 tunneling 17-1
 configuration guidelines 17-3
 configuring tunnel ports 17-6
802.1Q Ethertype, specifying custom 10-15
802.1X
 See port-based authentication
802.3ad
 See LACP
802.3X Flow Control 8-12

A

AAA 35-1, 36-1, 43-1
access control entries and lists 35-1, 36-1, 43-1
access-enable host timeout (not supported) 36-2
access interface (IP subscriber) 24-3
access lists, using with WCCP 60-10
access port, configuring 10-13

ACFs and ACLs 35-1, 36-1, 43-1
acronyms, list of A-1, B-1
addresses
 IP, see IP addresses
 MAC, see MAC addresses
advertisements, VTP 13-3
aggregate label 26-2, 26-4
aggregate policing
 see QoS policing
aging time
 IP MLS 56-20
 maximum
 for MSTP 20-47
 MSTP accelerated 20-46
 MSTP Maximum 20-47
alarms
 major 59-12
 minor 59-12
Allow DHCP Option 82 on Untrusted Port
 configuring 44-10
 understanding 44-3
any transport over MPLS (AToM) 26-18
 compatibility with previous releases of AToM 26-20
 Ethernet over MPLS 26-24
ARP spoofing 45-1
AToM 26-18
authentication
 See also port-based authentication
 Authentication, Authorization, and Accounting
 See AAA
 Authentication, Authorization, and Accounting (AAA) 43-1
authorized ports with 802.1X 52-4
auto-sync command 7-6

B

BackboneFast
 See STP BackboneFast
backup interfaces
 See Flex Links
bandwidth-remaining ratio (BRR), IP subscriber 24-5, 24-21, 24-23
binding database, DHCP snooping
 See DHCP snooping binding database
binding database, DHCP snooping
 See DHCP snooping binding database
blocking floods 47-1
blocking state, STP 20-7
boot bootldr command 2-19
boot command 2-16
boot config command 2-19
boot system command 2-15, 2-19
boot system flash command 2-16
BPDU, RSTP format 20-15
BPDU guard
 See STP BPDU guard
Bridge Domain 57-29
Bridged Routed Encapsulation within an Automatic
Protection Switching Group 14-8
bridge groups 22-2
bridge ID
 See STP bridge ID
bridge priority, STP 20-33
bridge protocol data units
 see BPDUs
bridging 22-1
broadcast storms
 see traffic-storm control

C

cache engine clusters 60-1
cache engines 60-1
cache farms
 See cache engine clusters
Call Home
 description 64-1
 message format options 64-1
 messages
 format options 64-1
call home 64-1
 alert groups 64-6
 configuring e-mail options 64-9
 contact information 64-3
 default settings 64-18
 destination profiles 64-4
 displaying information 64-14
 mail-server priority 64-10
 pattern matching 64-9
 periodic notification 64-8
 rate limit messages 64-9
 severity threshold 64-8
 smart call home feature 64-2
 SMTP server 64-9
 testing communications 64-10
call home alert groups
 configuring 64-6
 description 64-6
 subscribing 64-6
call home contacts
 assigning information 64-3
call home destination profiles
 attributes 64-4
 configuring 64-5
 description 64-4
 displaying 64-16
call home notifications
 full-txt format for syslog 64-28
XML format for syslog 64-29
cautions for passwords encrypting 2-11
TACACS+ 2-10
CEF
configuring
MSFC2 29-5
supervisor engine 29-4
examples 29-3
Layer 3 switching 29-2
packet rewrite 29-2
certificate authority (CA) 64-3
CGMP 33-8
channel-group group
command 12-9, 12-12
command example 12-9
checking running configuration 2-4
Cisco Cache Engines 60-2
Cisco Express Forwarding 26-3
Cisco Group Management Protocol
See CGMP
Cisco IOS Release 12.2SRB software images C-1
Cisco IOS Unicast Reverse Path Forwarding 35-2
CiscoView 1-2
CIST regional root
See MSTP
CIST root
See MSTP
class command 48-62
classification (QoS) 48-107
class-map command 48-54
class map configuration 48-59
class of service (CoS) 48-107
Committed Access Rate (CAR), not supported 48-2
community ports 15-3
community VLANs 15-2, 15-3
Concurrent routing and bridging (CRB) 22-1
CONFIG_FILE environment variable
configuration file, viewing 2-20
description 2-19
config-register command 2-16, 2-17
config terminal command 2-3
configuration
file, saving 2-5
register
changing settings 2-16 to 2-17
configuration 2-14 to 2-17
settings at startup 2-15
configuration example
EoMPLS port mode 26-25, 26-27
EoMPLS VLAN mode 26-25
configuration register boot field
listing value 2-17
modification tasks 2-16
configure command 2-3
configure terminal command 2-16, 8-2
configuring 48-61
global parameters
sample configuration 2-2
using configuration mode 2-3 to 2-4
Configuring GTP-SLB IPv6 Support 23-4
contact information
assigning for call home 64-3
control plane policing
See CoPP
control plane policing and protection (CoPP)
per-subscriber 24-4
CoPP
applying QoS service policy to control plane 43-31
configuring
ACLs to match traffic 43-31
enabling MLS QoS 43-31
packet classification criteria 43-31
service-policy map 43-31
control plane configuration mode, entering 43-31
displaying
dynamic information 43-33
number of conforming bytes and packets 43-33
rate information 43-33
entering control plane configuration mode 43-31
monitoring statistics 43-33
overview 43-29
packet classification guidelines 43-32
traffic classification
 defining 43-38
 guidelines 43-39
 overview 43-38
sample ACLs 43-39
sample classes 43-38
CoPP. See control plane policing and protection (CoPP)
copy running-config startup-config command 2-5
copy system
 running-config nvram
 startup-config command 2-19
CoS, override priority 16-7, 16-8

data gleaning 41-4
dCEF 29-4, 29-5
debug commands
 IP MMLS 31-25
debug fm private-hosts command 39-31
debug private-hosts command 39-32
DEC spanning-tree protocol 22-2
default configuration
 802.1X 52-6
dynamic ARP inspection 45-5
Flex Links 11-2
IP MMLS 31-7
LLDP 17-9
MSTP 20-37
supervisor engine 2-1
UDLD 55-3
voice VLAN 16-4
VTP 13-6
default NDE configuration 56-14
default VLAN 10-10
deficit weighted round robin 48-94
 denial of service protection
 See DoS protection
description command 8-14
destination-ip flow mask 56-3
destination-source-ip flow mask 56-3
device IDs
call home format 64-25
DHCP binding database
 See DHCP snooping binding database
DHCP binding table
 See DHCP snooping binding database
DHCP option 82
 circuit ID suboption 44-5
 overview 44-3
 packet format, suboption
 circuit ID 44-5
 remote ID 44-5
 remote ID suboption 44-5
DHCP option 82 allow on untrusted port 44-10
DHCP snooping
 binding database
 See DHCP snooping binding database
configuration guidelines 44-6
 configuring 44-8
default configuration 44-6
displaying binding tables 44-18
enabling 44-9, 44-10, 44-11, 44-13
enabling the database agent 44-14
message exchange process 44-4
option 82 data insertion 44-3
 overview 44-1
 Snooping database agent 44-5
DHCP snooping binding database
described 44-2
entries 44-2
DHCP snooping binding table
 See DHCP snooping binding database
DHCP Snooping Database Agent
- adding to the database (example) 44-17
- enabling (example) 44-15
- overview 44-5
- reading from a TFTP file (example) 44-16

DHCP snooping increased bindings limit 44-7, 44-15
differentiated services codepoint
- See QoS DSCP

Differentiated Services Code Point (DSCP) 48-107
DiffServ
- configuring short pipe mode 50-34
- configuring uniform mode 50-39
 - short pipe mode 50-31
 - uniform mode 50-32

DiffServ tunneling modes 50-4
Disabling PIM Snooping Designated Router Flooding 34-5
distributed Cisco Express Forwarding
- See dCEF
documentation, related 1-lxi
document organization 1-lxii
DoS protection
- monitoring packet drop statistics
 - using monitor session commands 43-24
 - using VACL capture 43-25

PFC configuration guidelines and restrictions 43-23
Supervisor Engine 720 43-10
- default configurations 43-22
 - egress ACL bridget packet rate limiters 43-16
 - FIB glean rate limiters 43-18
 - FIB receive rate limiters 43-18
 - ICMP redirect rate limiters 43-18
 - IGMP unreachable rate limiters 43-17
 - ingress ACL bridget packet rate limiters 43-16
 - IP errors rate limiters 43-20
 - IPv4 multicast rate limiters 43-20
 - IPv6 multicast rate limiters 43-21
 - Layer 2 PDU rate limiters 43-19
 - Layer 2 protocol tunneling rate limiters 43-19

MTU failure rate limiters 43-19
multicast directly connected rate limiters 43-20
multicast FIB miss rate limiters 43-20
multicast IGMP snooping rate limiters 43-19
network under SYN attack 43-13
QoS ACLs 43-12
security ACLs 43-11
TCP intercept 43-13
traffic storm control 43-13
TTL failure rate limiter 43-17
uRPF check 43-12
uRPF failure rate limiters 43-17
VACL log rate limiters 43-19
Supervisor Engine 720 Layer 3 security features rate limiters 43-18

DSCP
- See QoS DSCP
DSCP-based queue mapping 48-86
dual-priority queues
 - IP subscriber 24-5, 24-25
duplex command 8-7
duplex mode
 - configuring interface 8-5

DWRR 48-94
dynamic ARP inspection
 - ARP cache poisoning 45-2
 - ARP requests, described 45-1
 - ARP spoofing attack 45-2
 - clearing
 - log buffer 45-16
 - statistics 45-16
 - configuration guidelines 45-5
 - configuring
 - log buffer 45-13, 45-14
 - logging system messages 45-14
 - rate limit for incoming ARP packets 45-4, 45-9
 - default configuration 45-5
denial-of-service attacks, preventing 45-9
described 45-1
DHCP snooping binding database 45-3

displaying
 ARP ACLs 45-15
 configuration and operating state 45-15
 log buffer 45-16
 statistics 45-16
 trust state and rate limit 45-15

error-disabled state for exceeding rate limit 45-4

function of 45-2

interface trust states 45-3

log buffer
 clearing 45-16
 configuring 45-13, 45-14
 displaying 45-16

logging of dropped packets, described 45-4

logging system messages
 configuring 45-14

man-in-the-middle attack, described 45-2

network security issues and interface trust states 45-3

priority of ARP ACLs and DHCP snooping entries 45-4

rate limiting of ARP packets
 configuring 45-9
 described 45-4
 error-disabled state 45-4

statistics
 clearing 45-16
 displaying 45-16

validation checks, performing 45-11

Dynamic Host Configuration Protocol snooping
 See DHCP snooping

e-mail addresses
 assigning for call home 64-3

e-mail notifications
 Call Home 64-1

Embedded CiscoView 1-2

enable command 2-3, 2-16

enable sticky secure MAC address 54-8

enabling
 IP MMLS
 on router interfaces 31-11

encapsulation 10-3

encapsulation frame-relay ietf command 57-38

enhanced Fast Software Upgrade (eFSU)
 aborting (issu abortversion command) 6-19
 accepting the new software version 6-17
 committing the new software to standby RP (issu commitversion command) 6-17
 disabling compatibility matrix check 6-10
 displaying maximum outage time for line cards 6-14
 error handling 6-4
 forcing a switchover (issu runversion command) 6-14
 issu loadversion command 6-12
 loading new software onto standby RP 6-12
 memory reservation on line card 6-3
 memory reservation on line card, prohibiting 6-3
 OIR not supported 6-7
 operation 6-2
 outage times 6-3
 overview 6-1
 performing 6-8
 SSO, RPR, and RPR+ modes 6-7
 steps 6-8
 usage guidelines and limitations 6-7
 verifying redundancy mode 6-10
 enhanced interface range command 8-3

environmental monitoring
 LED indications 59-12
 SNMP traps 59-12

eFSU. See enhanced Fast Software Upgrade (eFSU)

Egress ACL support for remarked DSCP 48-12

egress ACL support for remarked DSCP 48-50

egress replication performance improvement 31-13
supervisor engine and switching modules 59-12
Syslog messages 59-12
using CLI commands 59-10
environment variables
 CONFIG_FILE 2-19
 controlling 2-19
 viewing 2-19
EoMPLS 26-18
 configuring 26-23
 configuring VLAN mode 26-24
 guidelines and restrictions 26-19
 port mode 26-24
 port mode configuration guidelines 26-27
 VLAN mode 26-24
erase startup-config command
 configuration files cleared with 2-6
ERSPAN 57-1
ERSPAN on EVC 57-29
EtherChannel
 channel-group group
 command 12-9, 12-12
 command example 12-9
 configuration guidelines 12-5
 configuring
 Layer 2 12-8
 configuring (tasks) 12-7
 interface port-channel
 command example 12-8
 interface port-channel (command) 12-8
 lacp system-priority
 command example 12-11
 Layer 2, configuring 12-8
 load balancing
 configuring 12-11
 understanding 12-5
 modes 12-2
 PAgP, understanding 12-3
 port-channel interfaces 12-5
 port-channel load-balance command 12-10, 12-11
 command example 12-11
 STP 12-5
 switchport trunk encapsulation dot1q 12-6
 understanding 12-1
EtherChannel Guard
 See STP EtherChannel Guard
EtherChannel Min-Links 12-12
Ethernet, setting port duplex 8-13
Ethernet over MPLS (EoMPLS) configuration
 EoMPLS port mode 26-27
 EoMPLS VLAN mode 26-24
EVC 57-29
 examples
 software configuration register 2-14 to 2-17
EXP mutation 50-4
extended range VLANs 14-2
 See VLANs
extended system ID, MSTP 20-40
Extensible Authentication Protocol over LAN 52-1
Extranet MVPN Architecture 28-1

F
fabric switching mode
 See switch fabric module
fabric switching-mode allow dCEF-only command on Supervisor Engine 720 5-2, 7-4
fall-back bridging 22-2
fiber-optic, detecting unidirectional links 55-1
FIB TCAM 26-3
filters, NDE
 destination host filter, specifying 56-28
 destination TCP/UDP port, specifying 56-27
 overview 56-7
 protocol 56-28
 source host and destination TCP/UDP port 56-27
Flash memory
 configuration process 2-18
configuring router to boot from 2-18
loading system image from 2-18
security precautions 2-18
write protection 2-18

Flex Links 11-1
configuration guidelines 11-2
configuring 11-3
default configuration 11-2
description 11-1
monitoring 11-3

flood blocking 47-1
flow control 8-12

flow masks
IP MLS

destination-ip 56-3
destination-source-ip 56-3
interface-destination-source-ip 56-3
ip-full 56-3
ip-interface-full 56-3
minimum 56-19
overview 56-3

flowmasks
NetFlow (Release 12.2SRA) 56-3
NetFlow (Release 12.2SRB) 56-3

flows
IP MMLS

completely and partially switched 31-3
forward-delay time
MSTP 20-46
forward-delay time, MSTP 20-46
forward-delay time, STP 20-35
frame distribution
See EtherChannel load balancing

G

global parameters, configuring 2-2
GTP-SLB Support for IPv6 23-1

H

hardware Layer 3 switching, guidelines 29-4
hello time, MSTP 20-45
hello time, STP 20-34
High Capacity Power Supply Support 59-4
host ports 15-3

http

I

ICMP unreachable messages 36-1
IDs
serial IDs 64-25
IEEE 802.10 SAID (default) 14-6
IEEE 802.1Q
See 802.1Q
IEEE 802.1Q Ethertype
specifying custom 10-15
IEEE 802.1w
See RSTP
IEEE 802.3ad
See LACP
IEEE 802.3X Flow Control 8-12
IEEE bridging protocol 22-2

IGMP
configuration guidelines 32-7, 33-7
enabling 33-10
Internet Group Management Protocol 33-1
join messages 33-2
leave processing
enabling 33-12
queries 33-3
query interval, configuring 33-11
snooping
fast leave 33-5
joining multicast group 33-2
leaving multicast group 33-4
understanding 33-2
snooping querier
enabling 33-9
understanding 33-2
IGMPv3 31-9
IGMP v3lite 31-9
In Service Software Upgrade (ISSU) 6-1
Integrated routing and bridging (IRB) 22-1
interface
command 2-3
Layer 2 modes 10-4
number 8-1
interface, access (IP subscriber) 24-3
interface access command 24-33
interface-destination-source-ip flow mask 56-3
interface port-channel
command example 12-8
interface port-channel (command) 12-8
interfaces
configuring 8-2
configuring, duplex mode 8-5
configuring, speed 8-5
configuring, overview 8-1
descriptive name, adding 8-14
naming 8-14
range of 8-3
interfaces command 8-2
interfaces range command 8-3
interfaces range macro command 8-4
Internet Group Management Protocol
See IGMP
IP accounting, IP MMLS and 31-8
IP addresses
assigned by BOOTP protocol 2-6
set to default 2-6
IP CEF, topology (figure) 29-3
IP flow-export destination command 56-24
IP flow-export source command 56-23, 56-25, 61-2, 61-3, 61-4
IP-full flow mask 56-3
ip http server 1-1
ip-interface-full flow mask 56-3
IP MLS
aging-time 56-20
flow masks
destination-ip 56-3
destination-source-ip 56-3
interface-destination-source-ip 56-3
ip-full 56-3
ip-interface-full 56-3
minimum 56-19
overview 56-3
NDE
See NDE
IP MMLS
cache, overview 31-2
collection guideline 31-7
debug commands 31-25
default configuration 31-7
enabling
on router interfaces 31-11
flows
completely and partially switched 31-3
Layer 3 MLS cache 31-2
overview 31-2
packet rewrite 31-3
router
displaying interface information 31-17
enabling globally 31-9
enabling on interfaces 31-11
multicast routing table, displaying 31-20
PIM, enabling 31-10
unsupported features 31-8
IP multicast
IGMP snooping and 33-9
MLDv2 snooping and overview 32-9
IP multicast MLS
 See IP MMLS
ip multicast-routing command
 enabling IP multicast 31-10
IP phone, configuring 16-5
ip pim command
 enabling IP PIM 31-10
IP precedence 48-108
IP static routes 2-5
IP subscriber awareness
 benefits 24-2
 configuration example 24-30
 configuration guidelines 24-27
 configuring 24-28, 24-29
control plane policing and protection (CoPP) 24-4
interface access command 24-33
IP subscriber interface 24-3
IP subscriber session 24-3
lawful intercept 24-4
overview 24-1
per-subscriber features 24-4
QoS 24-4
 bandwidth-remaining ratio (BRR) 24-5, 24-21, 24-23
 dual-priority queues 24-5, 24-25
 priority-rate propagation 24-5, 24-25, 24-26
QoS recommendations 24-20
Radius accounting 24-4
security ACLs 24-4
unsupported features 24-26
IP unnumbered 22-1
IPv4 Multicast over Point-to-Point GRE Tunnels 1-4
IPv4 Multicast VPN 27-1
IPv6 Multicast PFC3 and DFC3 Layer 3 Switching 30-1
IPv6 Prefix Guard 41-3
IPv6 Source Guard 41-2
ip wccp version command 60-8
ISL encapsulation 10-3
ISL trunks 10-2
isolated port 15-3
isolated VLANs 15-2, 15-3
ISSU, See In Service Software Upgrade (ISSU)

J
join messages, IGMP 33-2
jumbo frames 8-8

L
label edge router 26-2
label switched path 26-23
label switch router 26-2, 26-3
LACP
 system ID 12-4
LACP over EVC Port Channel
 Verification 23-13
LACP over EVC port channel
 configuration commands, configuration steps 18-6,
 23-5, 23-8, 68-6, 68-8, 68-9, 68-11
 Examples 23-12
lawful intercept, per-subscriber 24-4
Layer 2
 configuring interfaces 10-6
 access port 10-13
 trunk 10-7
defaults 10-5
interface modes 10-7, 10-12
switching 10-1
trunks 10-2
VLAN interface assignment 14-13
Layer 2 interfaces, configuring 10-1
Layer 2 protocol tunneling
 configuring Layer 2 tunnels 18-2
 overview 18-1
Layer 2 remarking 48-14
Layer 2 Traceroute 62-1
Layer 2 traceroute
and ARP 62-2
and CDP 62-1
described 62-1
IP addresses and subnets 62-2
MAC addresses and VLANs 62-2
multicast traffic 62-2
multiple devices on a port 62-2
unicast traffic 62-1
usage guidelines 62-1
Layer 3
IP MMLS and MLS cache 31-2
Layer 3 switched packet rewrite
CEF 29-2
Layer 3 switching
CEF 29-2
Layer 4 port operations (ACLs) 36-5
leave processing, IGMP
 enabling 33-12
leave processing, MLDv2
 enabling 32-12
LERs 50-2, 50-6, 50-7
link failure, detecting unidirectional 20-24
link negotiation 8-7
link redundancy
 See Flex Links
LLDP
 configuring
 default configuration 17-9
Load Balancing 26-8
Local Egress Replication 31-13
logical operation unit
 See LOU
loop guard
 See STP loop guard
LOU
 description 36-6
determining maximum number of 36-6
LSRs 50-2, 50-6

M
MAC address
 adding to BOOTP configuration file 2-6
MAC address-based blocking 35-1
MAC move (port security) 54-2
macro, interfaces range 8-4
main-cpu command 7-6
mapping 802.1Q VLANs to ISL VLANs 14-14, 14-17
mark down
 see QoS markdown
maximum aging time, MSTP 20-47
maximum aging time, STP 20-35
maximum hop count, MSTP 20-47
microflow policing rule
 see QoS policing
Min-Links 12-12
MLD report 32-4
MLD snooping
 query interval, configuring 32-11
MLDv2 32-1
 enabling 32-9
 leave processing
 enabling 32-12
 queries 32-4
 snooping
 fast leave 32-6
 joining multicast group 32-4
 leaving multicast group 32-6
 understanding 32-1
 snooping querier
 enabling 32-8
 understanding 32-1
MLDv2 Snooping 32-1
MLS
 configuring threshold 31-14
MSFC threshold 31-14
mls aging command configuring IP MLS 56-21
mls flow command configuring IP MLS 56-19, 56-20
mls ip multicast command enabling IP MMLS 31-11, 31-12, 31-14, 31-15, 31-16, 31-22, 31-23
mls nde flow command configuring a host and port filter 56-27 configuring a host flow filter 56-28 configuring a port filter 56-27 configuring a protocol flow filter 56-28
mls nde sender command 56-21
monitoring Flex Links 11-3 private VLANs 15-16
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>path cost</td>
<td>20-43</td>
</tr>
<tr>
<td>port priority</td>
<td>20-42</td>
</tr>
<tr>
<td>root switch</td>
<td>20-40</td>
</tr>
<tr>
<td>secondary root switch</td>
<td>20-41</td>
</tr>
<tr>
<td>switch priority</td>
<td>20-44</td>
</tr>
<tr>
<td>configuring hello time</td>
<td>20-45</td>
</tr>
<tr>
<td>CST</td>
<td></td>
</tr>
<tr>
<td>defined</td>
<td>20-19</td>
</tr>
<tr>
<td>operations between regions</td>
<td>20-20</td>
</tr>
<tr>
<td>default configuration</td>
<td></td>
</tr>
<tr>
<td>displaying status</td>
<td>20-37</td>
</tr>
<tr>
<td>enabling the mode</td>
<td>20-49</td>
</tr>
<tr>
<td>extended system ID</td>
<td></td>
</tr>
<tr>
<td>effects on root switch</td>
<td>20-40</td>
</tr>
<tr>
<td>effects on secondary root switch</td>
<td>20-41</td>
</tr>
<tr>
<td>unexpected behavior</td>
<td>20-40</td>
</tr>
<tr>
<td>IEEE 802.1s</td>
<td></td>
</tr>
<tr>
<td>implementation</td>
<td>20-23</td>
</tr>
<tr>
<td>port role naming change</td>
<td>20-23</td>
</tr>
<tr>
<td>terminology</td>
<td>20-21</td>
</tr>
<tr>
<td>interoperability with IEEE 802.1D</td>
<td></td>
</tr>
<tr>
<td>described</td>
<td>20-25</td>
</tr>
<tr>
<td>restarting migration process</td>
<td>20-49</td>
</tr>
<tr>
<td>IST</td>
<td></td>
</tr>
<tr>
<td>defined</td>
<td>20-19</td>
</tr>
<tr>
<td>master</td>
<td>20-20</td>
</tr>
<tr>
<td>operations within a region</td>
<td>20-20</td>
</tr>
<tr>
<td>mapping VLANs to MST instance</td>
<td>20-39</td>
</tr>
<tr>
<td>MST region</td>
<td></td>
</tr>
<tr>
<td>CIST</td>
<td>20-19</td>
</tr>
<tr>
<td>configuring</td>
<td>20-38</td>
</tr>
<tr>
<td>described</td>
<td>20-18</td>
</tr>
<tr>
<td>hop-count mechanism</td>
<td>20-22</td>
</tr>
<tr>
<td>IST</td>
<td>20-19</td>
</tr>
<tr>
<td>supported spanning-tree instances</td>
<td>20-19</td>
</tr>
<tr>
<td>overview</td>
<td>20-17</td>
</tr>
<tr>
<td>root switch</td>
<td></td>
</tr>
<tr>
<td>configuring</td>
<td>20-40</td>
</tr>
<tr>
<td>effects of extended system ID</td>
<td>20-40</td>
</tr>
<tr>
<td>unexpected behavior</td>
<td>20-40</td>
</tr>
<tr>
<td>status, displaying</td>
<td>20-49</td>
</tr>
<tr>
<td>MTU size (default)</td>
<td>14-6</td>
</tr>
<tr>
<td>multicast</td>
<td></td>
</tr>
<tr>
<td>IGMP snooping and</td>
<td>33-9</td>
</tr>
<tr>
<td>MLDv2 snooping and</td>
<td>32-9</td>
</tr>
<tr>
<td>NetFlow statistics</td>
<td>56-14</td>
</tr>
<tr>
<td>non-RPF</td>
<td>31-5</td>
</tr>
<tr>
<td>overview</td>
<td>33-1</td>
</tr>
<tr>
<td>PIM snooping</td>
<td>34-3</td>
</tr>
<tr>
<td>multicast, displaying routing table</td>
<td>31-20</td>
</tr>
<tr>
<td>Multicast enhancement - egress replication performance improvement</td>
<td>31-13</td>
</tr>
<tr>
<td>Multicast Enhancement - Replication Mode Detection</td>
<td>31-11</td>
</tr>
<tr>
<td>multicast flood blocking</td>
<td>47-1</td>
</tr>
<tr>
<td>multicast groups</td>
<td></td>
</tr>
<tr>
<td>joining</td>
<td>33-2</td>
</tr>
<tr>
<td>leaving</td>
<td>32-6, 33-4</td>
</tr>
<tr>
<td>multicast groups, IPv6</td>
<td></td>
</tr>
<tr>
<td>joining</td>
<td>32-4</td>
</tr>
<tr>
<td>Multicast Listener Discovery version 2</td>
<td>See MLDv2</td>
</tr>
<tr>
<td>Multicast Replication Mode Detection enhancement</td>
<td>31-11</td>
</tr>
<tr>
<td>multicast RPF</td>
<td>31-2</td>
</tr>
<tr>
<td>multicast storms</td>
<td></td>
</tr>
<tr>
<td>see traffic-storm control</td>
<td></td>
</tr>
<tr>
<td>Multicast VPN</td>
<td>28-1</td>
</tr>
<tr>
<td>multilayer switch feature card</td>
<td></td>
</tr>
<tr>
<td>see MSFC</td>
<td></td>
</tr>
<tr>
<td>multiple path RPF check</td>
<td>35-2</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>native VLAN</td>
<td>10-10</td>
</tr>
<tr>
<td>NBAR</td>
<td>48-1</td>
</tr>
</tbody>
</table>
NDE

configuration, displaying 56-29
displaying configuration 56-29
enabling 56-15
filters
destination host, specifying 56-28
destination TCP/UDP port, specifying 56-27
overview 56-7
protocol, specifying 56-28
source host and destination TCP/UDP port, specifying 56-27
multicast 56-14
overview 56-1
specifying
destination host filters 56-28
destination TCP/UDP port filters 56-27
protocol filters 56-28
NDE configuration, default 56-14
NDE version 8 56-10
NetFlow and NDE for Ingress Bridged IP Traffic 56-24
NetFlow Data Export
See NDE
Netflow Multiple Export Destinations 56-24
NetFlow version 9 56-3
Network-Based Application Recognition 48-1
nonaggregate label 26-2, 26-4
non-RPF multicast 31-5
Nonstop Forwarding
See NSF
nonvolatile random-access memory
See NVRAM
normal-range VLANs
See VLANs
NSF 5-1
NSF with SSO does not support IPv6 multicast traffic. 5-1
NVRAM
saving settings 2-5

O

OIR 8-14
online diagnostics
configuring 42-2
diagnostic sanity check 42-11
memory tests 42-10
overview 42-1
running tests 42-6
schedule switchover 42-10
test descriptions A-1
understanding 42-1
online diagnostic tests A-1
online insertion and removal
See OIR
operating system image
See system image
out of profile
see QoS out of profile

P

packet burst 43-16
packet capture 66-1
packet recirculation 48-12
packet rewrite
CEF 29-2
IP MMLS and 31-3
packets
multicast 38-3
PACLs. See private hosts feature
PAgP
understanding 12-3
passwords
configuring
enable password 2-9
enable secret 2-9
line password 2-9
static enable password 2-8
Index

TACACS+ 2-10
TACACS+ (caution) 2-10
encrypting 2-10
 (caution) 2-11
recovering lost enable passwords 2-13
path cost
MSTP 20-43
PBR 1-4, 22-4
PFC3BXL
 hardware features 26-4
 MPLS guidelines and restrictions 26-7
 MPLS label switching 26-1
 MPLS supported commands 26-7
 recirculation 26-4
 supported Cisco IOS features 26-5
 VPN supported commands 26-16
 VPN switching 26-14
PFC compatibility with RSP720 4-1
PIM, IP MMLS and 31-10
PIM snooping
 designated router flooding 34-5
 enabling globally 34-4
 enabling in a VLAN 34-5
 overview 34-3
police command 48-65
policing
 See QoS policing
policing, QoS (definition) 48-108
policy 48-54
policy-based routing
 See PBR
policy map 48-61
 attaching to an interface 48-68
policy-map command 48-54, 48-62
Port Aggregation Protocol
 see PAgP
port-based ACLs (PAACLs). See private hosts feature
port-based authentication
 authentication server
 defined 52-2
 RADIUS server 52-2
 client, defined 52-2
 configuration guidelines 52-7
 configuring
 initializing authentication of a client 52-12
 manual reauthentication of a client 52-11
 quiet period 52-12
 RADIUS server 52-10
 RADIUS server parameters on the switch 52-9
 switch-to-authentication-server retransmission time 52-14
 switch-to-client EAP-request frame retransmission time 52-14
 switch-to-client frame-retransmission number 52-15
 switch-to-client retransmission time 52-13
default configuration 52-6
described 52-1
device roles 52-2
displaying statistics 52-17
EAPOL-start frame 52-3
EAP-request/identity frame 52-3
EAP-response/identity frame 52-3
enabling
 802.1X authentication 52-8, 52-9
 periodic reauthentication 52-11
 encapsulation 52-2
 initiation and message exchange 52-3
 method lists 52-8
 ports
 authorization state and dot1x port-control command 52-4
 authorized and unauthorized 52-4
 resetting to default values 52-16
 switch
 as proxy 52-2
 RADIUS client 52-2
topologies, supported 52-5
port-based QoS features
see QoS
port channel
 switchport trunk encapsulation dot1q 12-6
port-channel
 see EtherChannel
port-channel load-balance
 command 12-10, 12-11
 command example 12-11
port cost, STP 20-32
port debounce timer 8-13
PortFast
 See STP PortFast
PortFast BPDU filtering
 See STP PortFast BPDU filtering
port mode 26-24
port negotiation 8-7
port priority
 MSTP 20-42
port priority, STP 20-30
ports
 setting the debounce timer 8-13
port security
 aging 54-9, 54-10
 configuring 54-4
 default configuration 54-3
 described 54-1
 displaying 54-11
 enable sticky secure MAC address 54-8
 violations 54-2
Port Security is supported on trunks 54-4, 54-7, 54-9
port security MAC move 54-2
port security on PVLAN ports 54-3
Port Security with Sticky Secure MAC Addresses 54-2
power management
 enabling/disabling redundancy 59-2
 overview 59-1
 powering modules up or down 59-3
 system power requirements, nine-slot chassis 59-5
primary links 11-1
primary VLANs 15-2
priority
 overriding CoS 16-7, 16-8
priority-rate propagation, IP subscriber 24-5, 24-25, 24-26
private-hosts command 39-14
private hosts feature
 command reference 39-13
 configuration guidelines 39-5, 39-6
 configuring (detailed steps) 39-10
 configuring (summary) 39-9
 debug fm private-hosts command 39-31
 debug private-hosts command 39-32
 isolating hosts in a VLAN 39-2
 multicast operation 39-9
 overview 39-1
 port ACLs (PACLs) 39-4
 port types 39-3
 private-hosts command 39-14
 private-hosts mac-list command 39-15
 private-hosts mode command 39-17
 private-hosts promiscuous command 39-19
 private-hosts vlan-list command 39-21
 protocol-independent MAC ACLs 39-1
 restricting traffic flow with PACLs 39-3
 show fm private-hosts command 39-23
 show private-hosts access-lists command 39-26
 show private-hosts configuration command 39-28
 show private-hosts interface configuration command 39-29
 show private-hosts mac-list command 39-30
 spoofing protection 39-9
 private-hosts mac-list command 39-15
 private-hosts mode command 39-17
 private-hosts promiscuous command 39-19
 private-hosts vlan-list command 39-21
private VLANs 15-1
 across multiple switches 15-5
 and SVIs 15-6
 benefits of 15-2
community VLANs 15-2, 15-3
configuration guidelines 15-7, 15-9, 15-11
configuring 15-11
host ports 15-14
promiscuous ports 15-15
routing secondary VLAN ingress traffic 15-13
secondary VLANs with primary VLANs 15-12
VLANs as private 15-11
end station access to 15-4
IP addressing 15-4
isolated VLANs 15-2, 15-3
monitoring 15-16
ports
 community 15-3
 configuration guidelines 15-9
 isolated 15-3
 promiscuous 15-3
primary VLANs 15-2
secondary VLANs 15-2
subdomains 15-2
traffic in 15-6
privileges
 changing default 2-12
 configuring
 multiple levels 2-11
 privilege level 2-11
 exiting 2-12
 logging in 2-12
procedures
 global parameters, configuring 2-2
 using configuration mode 2-3 to 2-4
promiscuous ports 15-3
protocol tunneling
 See Layer 2 protocol tunneling 18-1
pruning, VTP
 See VTP, pruning
PVLANs
 See private VLANs
PVRST
See Rapid-PVST 20-17

Q
QoS
class of service (CoS), definition 48-107
DSCP (definition) 48-107
IP precedence 48-108
marking 48-108
policing 48-108
Type of Service (ToS) 48-108
QoS, per-subscriber 24-4
QoS classification (definition)
 QoS classification 48-107
QoS congestion avoidance
 QoS congestion avoidance 48-107
QoS CoS
 and ToS final L3 Switching Engine values 48-11
 and ToS final values from L3 Switching Engine 48-11
 port value, configuring 48-79
QoS default configuration 48-97, 49-2
QoS DSCP
 definition 48-107
 internal values 48-9
 maps, configuring 48-74
QoS dual transmit queue
 thresholds
 configuring 48-79, 48-84
QoS enhancements, RSP720 4-4
QoS Ethernet egress port
 scheduling 48-97
 scheduling, congestion avoidance, and marking 48-11, 48-13
QoS Ethernet ingress port
 classification, marking, scheduling, and congestion avoidance 48-6
QoS final L3 Switching Engine CoS and ToS values 48-11
QoS internal DSCP values 48-9
QoS L3 Switching Engine classification, marking, and policing feature summary 48-9
QoS labels (definition) 48-108
QoS mapping
 CoS values to DSCP values 48-71, 48-74
 DSCP markdown values 48-27, 48-75, 50-16
 DSCP mutation 48-70, 50-29
 DSCP values to CoS values 48-77
 IP precedence values to DSCP values 48-75
QoS markdown 48-20
QoS marking
 definition 48-108
 trusted ports 48-14
 untrusted ports 48-14
QoS MSFC marking 48-17
QoS multilayer switch feature card 48-17
QoS OSM egress port feature summary 48-13
QoS out of profile 48-19
QoS policing
 definition 48-108
 microflow, enabling for nonrouted traffic 48-48
QoS policing rule
 aggregate 48-17
 creating 48-53
 microflow 48-17
QoS port trust state 48-77
QoS port-based or VLAN-based 48-49
QoS queues
 transmit, allocating bandwidth between 48-94
QoS receive queue 48-8, 48-90, 48-92
 drop thresholds 48-22
QoS scheduling (definition) 48-108
QoS statistics data export 49-1
 configuring 49-2
 configuring destination host 49-7
 configuring time interval 49-6, 49-9
QoS ToS
 and CoS final values from L3 Switching Engine 48-11
definition 48-108
QoS traffic flow through QoS features 48-4
QoS transmit queue size ratio 48-95, 48-96
QoS transmit queues 48-23, 48-87, 48-88, 48-91
QoS trust-cos
 port keyword 48-14, 48-15
QoS trust-dscp
 port keyword 48-14, 48-15
QoS trust-ipp
 port keyword 48-14, 48-15
QoS untrusted port keyword 48-14, 48-15
QoS VLAN-based or port-based queries, IGMP 33-3
 queries, MLDv2 32-4
 queues dual-priority (IP subscriber) 24-5, 24-25

R

Radius accounting, per-subscriber 24-4
rapid convergence 20-13
Rapid-PVST
 enabling 20-36
 overview 20-17
Rapid Spanning Tree
 See RSTP
Rapid Spanning Tree Protocol
 See RSTP
receive queues see QoS receive queues recirculation 26-4, 48-12
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduced MAC address</td>
<td>20-2</td>
</tr>
<tr>
<td>redundancy (NSF)</td>
<td>5-1</td>
</tr>
<tr>
<td>configuring BGP</td>
<td>5-13</td>
</tr>
<tr>
<td>configuring CEF</td>
<td>5-13</td>
</tr>
<tr>
<td>configuring EIGRP</td>
<td>5-18</td>
</tr>
<tr>
<td>configuring IS-IS</td>
<td>5-15</td>
</tr>
<tr>
<td>configuring OSPF</td>
<td>5-14</td>
</tr>
<tr>
<td>configuring multicast NSF with SSO</td>
<td>5-12</td>
</tr>
<tr>
<td>configuring supervisor engine</td>
<td>5-10</td>
</tr>
<tr>
<td>routing protocols</td>
<td>5-4</td>
</tr>
<tr>
<td>redundancy (RPR+)</td>
<td>7-1</td>
</tr>
<tr>
<td>configuring</td>
<td>7-6</td>
</tr>
<tr>
<td>configuring supervisor engine</td>
<td>7-5</td>
</tr>
<tr>
<td>displaying supervisor engine configuration</td>
<td>7-7</td>
</tr>
<tr>
<td>redundancy command</td>
<td>7-6</td>
</tr>
<tr>
<td>route processor redundancy plus</td>
<td>7-3</td>
</tr>
<tr>
<td>redundancy (SSO)</td>
<td>5-11</td>
</tr>
<tr>
<td>redundancy command</td>
<td>5-11</td>
</tr>
<tr>
<td>related documentation</td>
<td>1-lxi</td>
</tr>
<tr>
<td>reload command</td>
<td>2-16, 2-17</td>
</tr>
<tr>
<td>Remote source-route bridging (RSRB)</td>
<td>22-1</td>
</tr>
<tr>
<td>Replication Mode Detection</td>
<td>31-11</td>
</tr>
<tr>
<td>report, MLD</td>
<td>32-4</td>
</tr>
<tr>
<td>reserved-range VLANs</td>
<td></td>
</tr>
<tr>
<td>See VLANs</td>
<td></td>
</tr>
<tr>
<td>rewrite, packet</td>
<td></td>
</tr>
<tr>
<td>CEF</td>
<td>29-2</td>
</tr>
<tr>
<td>IP MMLS</td>
<td>31-3</td>
</tr>
<tr>
<td>RIF cache monitoring</td>
<td>8-15</td>
</tr>
<tr>
<td>rommon command</td>
<td>2-17</td>
</tr>
<tr>
<td>ROM monitor</td>
<td></td>
</tr>
<tr>
<td>boot process and</td>
<td>2-14</td>
</tr>
<tr>
<td>root bridge, STP</td>
<td>20-28</td>
</tr>
<tr>
<td>root guard</td>
<td></td>
</tr>
<tr>
<td>See STP root guard</td>
<td></td>
</tr>
<tr>
<td>root switch</td>
<td></td>
</tr>
<tr>
<td>MSTP</td>
<td>20-40</td>
</tr>
<tr>
<td>route processor redundancy</td>
<td></td>
</tr>
<tr>
<td>See redundancy (RPR+)</td>
<td></td>
</tr>
<tr>
<td>Route Switch Processor 720 (RSP720)</td>
<td></td>
</tr>
<tr>
<td>chassis support</td>
<td>4-1</td>
</tr>
<tr>
<td>feature support</td>
<td>4-2</td>
</tr>
<tr>
<td>flash memory</td>
<td>4-6</td>
</tr>
<tr>
<td>hardware components</td>
<td>4-2</td>
</tr>
<tr>
<td>high availability</td>
<td>4-3</td>
</tr>
<tr>
<td>IPv6 ACL enhancements</td>
<td>4-3</td>
</tr>
<tr>
<td>load balancing on GE bundles</td>
<td>4-4</td>
</tr>
<tr>
<td>overview</td>
<td>4-1</td>
</tr>
<tr>
<td>packet fragmentation over GRE tunnels</td>
<td>4-4</td>
</tr>
<tr>
<td>performance improvements</td>
<td>4-2</td>
</tr>
<tr>
<td>PFC compatibility</td>
<td>4-1</td>
</tr>
<tr>
<td>ports</td>
<td>4-6</td>
</tr>
<tr>
<td>QoS enhancements</td>
<td>4-4</td>
</tr>
<tr>
<td>rate-limiting of unknown unicast packets</td>
<td>4-3</td>
</tr>
<tr>
<td>scalability</td>
<td>4-3</td>
</tr>
<tr>
<td>switching modes</td>
<td>4-7</td>
</tr>
<tr>
<td>unsupported features</td>
<td>4-5</td>
</tr>
<tr>
<td>routing table, multicast</td>
<td>31-20</td>
</tr>
<tr>
<td>RPF</td>
<td></td>
</tr>
<tr>
<td>failure</td>
<td>31-5</td>
</tr>
<tr>
<td>multicast</td>
<td>31-2</td>
</tr>
<tr>
<td>non-RPF multicast</td>
<td>31-5</td>
</tr>
<tr>
<td>unicast</td>
<td>35-2</td>
</tr>
<tr>
<td>RPR+</td>
<td></td>
</tr>
<tr>
<td>See redundancy (RPR+)</td>
<td></td>
</tr>
<tr>
<td>RPR and RPR+ support IPv6 multicast traffic</td>
<td>7-1</td>
</tr>
<tr>
<td>RSTP</td>
<td></td>
</tr>
<tr>
<td>active topology</td>
<td>20-12</td>
</tr>
<tr>
<td>BPDU</td>
<td></td>
</tr>
<tr>
<td>format</td>
<td>20-15</td>
</tr>
<tr>
<td>processing</td>
<td>20-16</td>
</tr>
<tr>
<td>designated port, defined</td>
<td>20-12</td>
</tr>
<tr>
<td>designated switch, defined</td>
<td>20-12</td>
</tr>
<tr>
<td>interoperability with IEEE 802.1D</td>
<td></td>
</tr>
<tr>
<td>described</td>
<td>20-25</td>
</tr>
<tr>
<td>restarting migration process</td>
<td>20-49</td>
</tr>
<tr>
<td>topology changes</td>
<td>20-17</td>
</tr>
</tbody>
</table>
overview 20-12
port roles
 described 20-12
 synchronized 20-14
proposal-agreement handshake process 20-13
rapid convergence
 described 20-13
 edge ports and Port Fast 20-13
 point-to-point links 20-13, 20-47
 root ports 20-13
root port, defined 20-12
See also MSTP

S

SAID 14-6
sample configuration 2-4
Sampled NetFlow
 description 56-8
saving the configuration file 2-5
scheduling
 see QoS
secondary VLANs 15-2
Secure MAC Address Aging Type 54-10
security
 configuring 35-1, 36-1, 43-1
 security, port 54-1
 security ACLs, per-subscriber 24-4
 security precautions with Flash memory card 2-18
serial IDs
 description 64-25
server IDs
 description 64-26
service instance 57-30
service-policy command 48-54
service-policy input command 48-50, 48-68, 48-71, 48-73, 50-29
service-provider network, MSTP and RSTP 20-18
set power redundancy enable/disable command 59-2
short pipe mode, configuring 50-34
show boot command 2-19
show catalyst6000 chassis-mac-address command 20-3
show ciscoview package command 1-3
show ciscoview version command 1-3
show configuration command 8-14
show eobc command 8-15
show fm private-hosts command 39-23
show hardware command 8-2
show ibc command 8-15
show interfaces command 8-2, 8-11, 8-14, 8-15, 10-7, 10-12
 displaying, interface type numbers 8-2
 displaying, speed and duplex mode 8-8
show ip flow export command
 displaying NDE export flow IP address and UDP port 56-26
show ip interface command
 displaying IP MMLS interfaces 31-18
show ip mroute command
 displaying IP multicast routing table 31-20
show ip pim interface command
 displaying IP MMLS router configuration 31-18
show mls aging command 56-21
show mls entry command 29-5
show mls ip multicast group command
 displaying IP MMLS group 31-21, 31-24
show mls ip multicast interface command
 displaying IP MMLS interface 31-21, 31-24
show mls ip multicast source command
 displaying IP MMLS source 31-21, 31-24
show mls ip multicast statistics command
 displaying IP MMLS statistics 31-21, 31-24
show mls ip multicast summary
 displaying IP MMLS configuration 31-21, 31-24
show mls nde command 56-29
 displaying NDE flow IP address 56-26
show mls rp command
 displaying IP MLS configuration 56-20
show module command 7-7
show private-hosts access-lists command 39-26
show private-hosts configuration command 39-28
show private-hosts interface configuration command 39-29
show private-hosts mac-list command 39-30
show protocols command 8-15
show rif command 8-15
show running-config command 2-4, 8-14, 8-15
show startup-config command 2-5
show version command 2-3, 2-17, 8-15
slot number, description 8-1

smart call home 64-1
description 64-2
destination profile (note) 64-4
registration requirements 64-2
service contract requirements 64-3
Transport Gateway (TG) aggregation point 64-2

SMARTnet
smart call home registration 64-2

SNMP
support and documentation 1-1

snooping
See IGMP snooping
See MLDv2 snooping

software
upgrading router 6-8
software configuration register functions 2-14 to 2-17
software images, Release 12.2SRB C-1

source IDs
call home event format 64-25
source-only-ip flow mask 56-3

source specific multicast with IGMPv3, IGMP v3lite, and URD 31-9

SPAN
configuration guidelines 57-6
configuring 57-11
sources 57-15, 57-19, 57-25, 57-27
VLAN filtering 57-34
overview 57-1

SPAN Destination Port Permit Lists 57-14
spanning-tree backbonefast command 21-13
command example 21-13, 21-14
spanning-tree cost command 20-32
command example 20-32, 20-33
spanning-tree portfast command 21-8, 21-9
command example 21-8
spanning-tree portfast bpdu-guard
command 21-11

spanning-tree port-priority command 20-30, 20-31
spanning-tree protocol for bridging 22-2
spanning-tree uplinkfast command 21-12
command example 21-12
spanning-tree vlan command 20-27, 20-29, 21-14
command example 20-27, 20-29
spanning-tree vlan cost command 20-32
spanning-tree vlan forward-time command 20-35
command example 20-35
spanning-tree vlan hello-time command 20-34
command example 20-34
spanning-tree vlan max-age command 20-35
command example 20-36
spanning-tree vlan port-priority command 20-30
command example 20-31
spanning-tree vlan priority command 20-33
command example 20-34

speed
Index

configuring interface 8-5
speed command 3-2, 8-6
standby link 11-1
standby links 11-1
static route, configuring 2-5
statistics
 802.1X 52-17
Sticky ARP 43-41
sticky ARP 43-41
Sticky secure MAC addresses 54-8, 54-9
storm control
 see traffic-storm control

STP
 configuring 20-25
 bridge priority 20-33
 enabling 20-26, 20-28
 forward-delay time 20-35
 hello time 20-34
 maximum aging time 20-35
 port cost 20-32
 port priority 20-30
 root bridge 20-28
 secondary root switch 20-29
 defaults 20-26
EtherChannel 12-5
 understanding 20-1
 802.1Q Trunks 20-11
Blocking State 20-7
BPDUs 20-3
disabled state 20-10
forwarding state 20-9
learning state 20-8
listening state 20-7
 overview 20-2
port states 20-5
protocol timers 20-4
root bridge election 20-4
topology 20-4
STP BackboneFast
 configuring 21-13
 figure
 adding a switch 21-7
 spanning-tree backbonefast
 command 21-13
 command example 21-13, 21-14
 understanding 21-4
STP BPDU Guard
 configuring 21-11
 spanning-tree portfast bpdu-guard
 command 21-11
 understanding 21-2
STP bridge ID 20-2
STP EtherChannel guard 21-6
STP loop guard
 configuring 21-14
 overview 21-6
STP PortFast
 BPDU filter
 configuring 21-10
 BPDU filtering 21-2
 configuring 21-8
 spanning-tree portfast
 command 21-8, 21-9
 command example 21-8
 understanding 21-2
STP root guard 21-6, 21-14
STP UplinkFast
 configuring 21-12
 spanning-tree uplinkfast
 command 21-12
 command example 21-12
 understanding 21-3
subdomains, private VLAN 15-2
subscribers. See IP subscriber awareness
supervisor engine
 configuring 2-1
 default configuration 2-1
 environmental monitoring 59-10
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>redundancy</td>
<td>5-1, 7-1</td>
</tr>
<tr>
<td>ROM monitor</td>
<td>2-14</td>
</tr>
<tr>
<td>startup configuration</td>
<td>2-13</td>
</tr>
<tr>
<td>static routes</td>
<td>2-5</td>
</tr>
<tr>
<td>synchronizing configurations</td>
<td>5-19, 7-7</td>
</tr>
<tr>
<td>Supervisor Engine 2, no longer supported</td>
<td></td>
</tr>
<tr>
<td>Supervisor Engine 32</td>
<td>9-1</td>
</tr>
<tr>
<td>flash memory</td>
<td>9-1</td>
</tr>
<tr>
<td>ports</td>
<td>9-2</td>
</tr>
<tr>
<td>supported chassis</td>
<td>9-1</td>
</tr>
<tr>
<td>supervisor engine redundancy configuring</td>
<td>5-10, 7-5</td>
</tr>
<tr>
<td>supervisor engines</td>
<td></td>
</tr>
<tr>
<td>displaying redundancy configuration</td>
<td>7-7</td>
</tr>
<tr>
<td>Switched Port Analyzer</td>
<td></td>
</tr>
<tr>
<td>See SPAN</td>
<td></td>
</tr>
<tr>
<td>switch fabric functionality</td>
<td>3-2, 4-6</td>
</tr>
<tr>
<td>configuring</td>
<td>3-4, 4-8</td>
</tr>
<tr>
<td>monitoring</td>
<td>3-4, 4-9</td>
</tr>
<tr>
<td>switchport configuring</td>
<td>10-13</td>
</tr>
<tr>
<td>example</td>
<td>10-12</td>
</tr>
<tr>
<td>show interfaces</td>
<td>8-11, 10-7, 10-12</td>
</tr>
<tr>
<td>switchport access vlan</td>
<td>10-10, 10-13</td>
</tr>
<tr>
<td>example</td>
<td>10-14</td>
</tr>
<tr>
<td>switchport mode access</td>
<td>10-4, 10-13</td>
</tr>
<tr>
<td>example</td>
<td>10-14</td>
</tr>
<tr>
<td>switchport mode dynamic</td>
<td>10-9</td>
</tr>
<tr>
<td>switchport mode dynamic auto</td>
<td>10-4</td>
</tr>
<tr>
<td>switchport mode dynamic desirable</td>
<td>10-4</td>
</tr>
<tr>
<td>default</td>
<td>10-5</td>
</tr>
<tr>
<td>example</td>
<td>10-12</td>
</tr>
<tr>
<td>switchport mode trunk</td>
<td>10-4, 10-9</td>
</tr>
<tr>
<td>switchport nonegotiate</td>
<td>10-4</td>
</tr>
<tr>
<td>switchport trunk allowed vlan</td>
<td>10-11</td>
</tr>
<tr>
<td>switchport trunk encapsulation</td>
<td>10-8</td>
</tr>
<tr>
<td>switchport trunk encapsulation dot1q</td>
<td>10-3</td>
</tr>
<tr>
<td>example</td>
<td>10-12</td>
</tr>
<tr>
<td>switchport trunk encapsulation isl</td>
<td>10-3</td>
</tr>
<tr>
<td>switchport trunk encapsulation negotiate</td>
<td>10-3</td>
</tr>
<tr>
<td>default</td>
<td>10-5</td>
</tr>
<tr>
<td>switchport trunk native vlan</td>
<td>10-10</td>
</tr>
<tr>
<td>switchport trunk pruning vlan</td>
<td>10-11</td>
</tr>
<tr>
<td>switch priority</td>
<td></td>
</tr>
<tr>
<td>MSTP</td>
<td>20-44</td>
</tr>
<tr>
<td>switch TopN reports</td>
<td></td>
</tr>
<tr>
<td>foreground execution</td>
<td>61-2</td>
</tr>
<tr>
<td>overview</td>
<td>61-1</td>
</tr>
<tr>
<td>running</td>
<td>61-2</td>
</tr>
<tr>
<td>viewing</td>
<td>61-2</td>
</tr>
<tr>
<td>system</td>
<td></td>
</tr>
<tr>
<td>configuration register</td>
<td></td>
</tr>
<tr>
<td>configuration</td>
<td>2-14 to 2-17</td>
</tr>
<tr>
<td>settings at startup</td>
<td>2-15</td>
</tr>
<tr>
<td>configuring global parameters</td>
<td>2-2</td>
</tr>
<tr>
<td>System Hardware Capacity</td>
<td>59-5</td>
</tr>
<tr>
<td>system image</td>
<td></td>
</tr>
<tr>
<td>determining if and how to load</td>
<td>2-15</td>
</tr>
<tr>
<td>loading from Flash</td>
<td>2-18</td>
</tr>
</tbody>
</table>

T

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>TACACS+</td>
<td>35-1, 36-1, 43-1</td>
</tr>
<tr>
<td>TCP Intercept</td>
<td>35-2</td>
</tr>
<tr>
<td>TDR</td>
<td></td>
</tr>
<tr>
<td>checking cable connectivity</td>
<td>8-16</td>
</tr>
<tr>
<td>enabling and disabling test</td>
<td>8-16</td>
</tr>
<tr>
<td>guidelines</td>
<td>8-16</td>
</tr>
<tr>
<td>Time Domain Reflectometer</td>
<td></td>
</tr>
<tr>
<td>See TDR</td>
<td></td>
</tr>
<tr>
<td>TopN reports</td>
<td></td>
</tr>
<tr>
<td>See switch TopN reports</td>
<td></td>
</tr>
<tr>
<td>traceroute, Layer 2</td>
<td></td>
</tr>
<tr>
<td>and ARP</td>
<td>62-2</td>
</tr>
<tr>
<td>and CDP</td>
<td>62-1</td>
</tr>
<tr>
<td>described</td>
<td>62-1</td>
</tr>
<tr>
<td>IP addresses and subnets</td>
<td>62-2</td>
</tr>
<tr>
<td>MAC addresses and VLANs</td>
<td>62-2</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>multicast traffic</td>
<td>62-2</td>
</tr>
<tr>
<td>multiple devices on a port</td>
<td>62-2</td>
</tr>
<tr>
<td>unicast traffic</td>
<td>62-1</td>
</tr>
<tr>
<td>usage guidelines</td>
<td>62-1</td>
</tr>
<tr>
<td>traffic flood blocking</td>
<td>47-1</td>
</tr>
<tr>
<td>traffic-storm control</td>
<td></td>
</tr>
<tr>
<td>command</td>
<td></td>
</tr>
<tr>
<td>broadcast</td>
<td>46-4</td>
</tr>
<tr>
<td>described</td>
<td>46-1</td>
</tr>
<tr>
<td>monitoring</td>
<td>46-6</td>
</tr>
<tr>
<td>thresholds</td>
<td>46-1</td>
</tr>
<tr>
<td>traffic suppression</td>
<td></td>
</tr>
<tr>
<td>see traffic-storm control</td>
<td></td>
</tr>
<tr>
<td>translational bridge numbers (defaults)</td>
<td>14-6</td>
</tr>
<tr>
<td>transmit queues</td>
<td></td>
</tr>
<tr>
<td>see QoS transmit queues</td>
<td></td>
</tr>
<tr>
<td>trunks</td>
<td>10-2</td>
</tr>
<tr>
<td>802.1Q Restrictions</td>
<td>10-5</td>
</tr>
<tr>
<td>allowed VLANs</td>
<td>10-11</td>
</tr>
<tr>
<td>configuring</td>
<td>10-7</td>
</tr>
<tr>
<td>default interface configuration</td>
<td>10-7</td>
</tr>
<tr>
<td>default VLAN</td>
<td>10-10</td>
</tr>
<tr>
<td>different VTP domains</td>
<td>10-3</td>
</tr>
<tr>
<td>encapsulation</td>
<td>10-3</td>
</tr>
<tr>
<td>native VLAN</td>
<td>10-10</td>
</tr>
<tr>
<td>to non-DTP device</td>
<td>10-4</td>
</tr>
<tr>
<td>VLAN 1 minimization</td>
<td>10-11</td>
</tr>
<tr>
<td>trust-dscp</td>
<td></td>
</tr>
<tr>
<td>see QoS trust-dscp</td>
<td></td>
</tr>
<tr>
<td>trust-ipprec</td>
<td></td>
</tr>
<tr>
<td>see QoS trust-ipprec</td>
<td></td>
</tr>
<tr>
<td>trustpoint</td>
<td>64-3</td>
</tr>
<tr>
<td>tunneling</td>
<td>50-4, 50-31</td>
</tr>
<tr>
<td>tunneling, 802.1Q</td>
<td>17-1</td>
</tr>
<tr>
<td>See 802.1Q</td>
<td></td>
</tr>
<tr>
<td>Type of Service (ToS)</td>
<td>48-108</td>
</tr>
</tbody>
</table>

U

UDE 25-1
 configuration 25-3
 overview 25-2

UDE and UDLR 25-1

UDE on ES-20 Line cards
 restrictions 24-7, 69-2

UDLD
 default configuration 55-3
 enabling
 globally 55-3
 on ports 55-4
 overview 55-1

UDLR 25-1
 back channel 25-1
 configuration 25-6
 tunnel
 (example) 25-7
 ARP and NHRP 25-3

UDLR (unidirectional link routing)
 See UDLR

unauthorized ports with 802.1X 52-4

Unicast and Multicast Flood Blocking 47-1
 unicast flood blocking 47-1
 unicast RPF 35-2
 unicast storms
 see traffic-storm control

Unidirectional Ethernet
 see UDE
 unidirectional ethernet
 example of setting 25-5

UniDirectional Link Detection Protocol
 see UDLD

uniform mode
 configuring 50-39

untrusted
 see QoS trust-cos
 see QoS untrusted
upgrade guidelines 26-20
UplinkFast
 See STP UplinkFast
URD 31-9
User-Based Rate Limiting 48-19, 48-66

V

VACLs 38-1
 configuring 38-4
 examples 38-9
 Layer 3 VLAN interfaces 38-8
 Layer 4 port operations 36-5
 logging
 configuration example 38-11
 configuring 38-10
 restrictions 38-10
 MAC address based 38-4
 multicast packets 38-3
 overview 38-1
 SVIs 38-8
 WAN interfaces 38-1

version 8 (NDE) 56-10

virtual LAN
 See VLANs

vlan
 command 14-11, 14-13, 56-18, 57-19
 command example 14-12
 VLAN-based QoS filtering 48-56
 VLAN-bridge spanning-tree protocol 22-2

vlan database
 command 14-11, 14-13, 56-18, 57-19
 vlan mapping dot1q
 command 14-16, 14-17
 command example 14-18

VLAN mode 26-24
VLANs
 allowed on trunk 10-11
 configuration guidelines 14-8
 configuring 14-1
 configuring (tasks) 14-10
 defaults 14-6, 14-8
 extended range 14-2
 ID (default) 14-6
 interface assignment 14-13
 name (default) 14-6
 normal range 14-2
 private
 See private VLANs
 reserved range 14-2
 support for 4,096 VLANs 14-2
 token ring 14-3
 trunks
 understanding 10-2
 understanding 14-1
 VLAN 1 minimization 10-11
 VTP domain 14-2

VLAN translation
 command example 14-16, 14-17
VLAN Trunking Protocol
 See VTP

voice VLAN
 Cisco 7960 phone, port connections 16-1
 configuration guidelines 16-4
 configuring IP phone for data traffic
 override CoS of incoming frame 16-7, 16-8
 configuring ports for voice traffic in 802.1Q frames 16-5
 connecting to an IP phone 16-5
 default configuration 16-4
 overview 16-1

VPN
 configuration example 26-16
 guidelines and restrictions 26-15

VTP
 advertisements 13-3
 client, configuring 13-11
 configuration guidelines 13-6
default configuration 13-6
disabling 13-11
domains 13-2, 70-1
 VLANs 14-2
modes
 client 13-2
 server 13-2
 transparent 13-2
monitoring 13-13
overview 13-1, 70-1
pruning
 configuration 10-11
 configuring 13-9
 overview 13-5
server, configuring 13-11
statistics 13-13
transparent mode, configuring 13-11
version 2
 enabling 13-10
 overview 13-3

W

WCCP
 configuring on a router 60-2, 60-14
 service groups 60-8
 specifying protocol version 60-7
web browser interface 1-1
Web Cache Communication Protocol
 See WCCP
web caches
 See cache engines
web cache services
 description 60-5
web caching
 See web cache services
 See also WCCP
web scaling 60-1
weighted round robin 48-94

WRR 48-94

X

xconnect command 26-20

Y

Y.1731 Performance Monitoring 74-1

web browser interface 1-1
Web Cache Communication Protocol
 See WCCP
web caches
 See cache engines
web cache services
 description 60-5
web caching
 See web cache services
 See also WCCP
web scaling 60-1
weighted round robin 48-94