

Routed Optical Networking Solution Components

This chapter describes the Routed Optical Networking solution components.

- Hardware Components, on page 1
- Network Planning Components, on page 8
- Automation Components, on page 9
- IOS-XR Software Components, on page 16

Hardware Components

The hardware components that enable Routed Optical Networking are:

- High Density Routers
 - Cisco 8000 Series Routers
 - Cisco 8200 Series Routers, on page 2
 - Cisco 8800 Series Routers, on page 3
 - Cisco 8800 Series Line Cards, on page 3
 - Cisco Network Convergence System 5500 Series
 - Cisco NCS-57B1 Series Fixed Port Routers, on page 3
 - Cisco NCS 5500 Modular Chassis, on page 4
 - NCS 5700 Series Line Cards, on page 4
- High Capacity Pluggable Optical Modules
 - 400G ZR/ZR+ Transceivers
- Optical Line Systems
 - Cisco Network Convergence System 2000 Series, on page 5
 - Cisco NCS 2006 Shelf, on page 5
 - Control Cards, on page 6

- ROADM Cards, on page 6
- Amplifier Cards, on page 6
 - EDFA Cards, on page 7
 - EDRA Cards, on page 7
 - Raman Amplifier Cards, on page 7
- Passive Multiplexer and Demultiplexer Module, on page 7
- Passive Patch Panel Modules, on page 8
 - MPO-16 to 16-LC Fan-Out Module, on page 8

Cisco 8000 Series Routers

The Cisco 8000 series routers utilize Cisco's Silicon One ASIC to deliver full routing functionality at higher capacities and a lower environmental footprint than any other routing silicon available. The Silicon One architecture supports large forwarding tables, deep buffers, flexible packet operations, and enhanced programmability.

The 8000 series are highly scalable, deep-bufferred, 100G/400G/800G optimized routers. They are also available with additional on-chip High Bandwidth Memory (HBM) to support additional resource scale. The Cisco 8000 series routers support both ZR and ZR+ modules.

Cisco 8200 Series Routers

The Cisco 8200 Series uses a single Cisco Silicon One ASIC to deliver full routing functionality. The Cisco 8200 Series is designed for relatively high-buffer and high-scale use cases. These fixed port, high-density routers provide 10.8 Tbps of network bandwidth with dramatically lower power consumption than contemporary 10 Tbps systems.

This table details the specifications of the routers.

Router	Capacity	Form factor	400G QSFP-DD Ports	100G QSFP28 Ports
Cisco 8201	10.8 Tbps	1 RU	24	12
Cisco 8202	10.8 Tbps	2 RU	12	60
Cisco 8201-32FH	12.8 Tbps	1 RU	32	_
Cisco 8202-32FH-M	12.8 Tbps	2 RU	32	_
Cisco 8201-24H8FH	5.6 Tbps	1 RU	8	24

Cisco 8800 Series Routers

The Cisco 8800 Series delivers density and efficiency with the extensive scale, buffering, and all feature capabilities that are common to Cisco 8000 Series routers. The 8800 series routers provide up to approximately 260 Tbps through 648 400 GbE ports. The 8800 series includes four chassis to meet a broad set of network and facility requirements.

This table details the specifications of the routers.

Router	Capacity	Form factor	400G QSFP-DD Ports
Cisco 8804	Up to 57.6 Tbps	4-slot/10 RU	Up to 144
Cisco 8808	Up to 115.2 Tbps	8-slot/16 RU	Up to 288
Cisco 8812	Up to 172.8 Tbps	12-slot/21 RU	Up to 432
Cisco 8818	Up to 259.2 Tbps	18-slot/33 RU	Up to 648

Cisco 8800 Series Line Cards

The Cisco 8800 Series modular platform supports 400 GbE line cards.

This table details the specifications of the line cards.

Line Cards	Bandwidth	400G QSFP-DD Ports
8800-LC-36FH	14.4 Tbps	36
88-LC0-36FH-M	14.4 Tbps	36
88-LC0-36FH	14.4 Tbps	36

For information on ZR/ZR+ port support, see 400G ZR/ZR+ Transceivers, on page 4.

For more information about Cisco 8000 Series Routers, see the Cisco 8000 Series Routers Data Sheet.

Cisco Network Convergence System 5500 Series

The Network Convergence System (NCS) 5500 platform offers high port density, high-performance forwarding, low jitter, and low power consumption.

Cisco NCS-57B1 Series Fixed Port Routers

The NCS-57B1-6D24-SYS and NCS-57B1-5DSE-SYS combine 4.8 Terabits of 400GE/100GE optimized forwarding capacity, QSFP-DD optics, deep packet buffering, full line-rate MACsec, Class C 1588 Precision Time Protocol (PTP), and Synchronous Ethernet (SyncE) in a power-efficient, 1-rack-unit package.

This table details the spe	ecifications of the routers.
----------------------------	------------------------------

Router	Capacity	Form factor	400G QSFP-DD Ports	100G QSFP28 Ports
NCS-57B1-6D24-SYS	Up to 4.8 Tbps	1 RU	6	24
NCS-57B1-5DSE-SYS	Up to 4.4 Tbps	1 RU	5	24

For more information about Cisco NCS-57B1 Series Fixed Port Routers, see the Cisco Network Convergence System 5700 Series: NCS-57B1 Fixed Chassis Data Sheet.

Cisco NCS 5500 Modular Chassis

The Cisco NCS 5500 modular chassis series is available in three system sizes: NCS 5504, NCS 5508, NCS 5516. All NCS systems are highly reliable and resilient platforms. They support a wide range of line card options. NCS 5500 modular router line cards and fabric modules directly attach to each other with connecting pins. In contrast, most traditional modular platform designs require a midplane.

This table details the specifications of the routers.

Platform	Capacity	Form factor	400G QSFP-DD Ports	100G QSFP28 Ports
NCS 5504	Up to 14.4 Tbps	4-Slot / 7 RU	Up to 96	Up to 144
NCS 5508	Up to 76.8 Tbps	8-Slot / 13 RU	Up to 192	Up to 288
NCS 5516	Up to 153.6 Tbps	16-Slot / 21 RU	Up to 384	Up to 576

For more information about Cisco Network Convergence System 5500 Series Modular Chassis, see the Cisco Network Convergence System 5500 Series Modular Chassis Data Sheet.

NCS 5700 Series Line Cards

NCS 5700 series line cards are 400G line cards for the NCS 5500 Series modular chassis. NCS 5700 series line cards consists of two versions of 400GE optimized line cards: the base version and the scale version. The two 400GE optimized line cards in the NCS5700 series are NC57-24DD and NC57-18DD-SE.

For information on ZR/ZR+ port support, see 400G ZR/ZR+ Transceivers, on page 4.

For more information about Cisco Network Convergence System 5700 Series 400GE, see the Cisco Network Convergence System 5700 Series: 400GE and 100GE Line Cards Data Sheet.

400G ZR/ZR+ Transceivers

The QDD-400G-ZR-S and QDD-400G-ZRP-S optical modules offload wavelength-division multiplexing (WDM) functionality to the router. The QDD-400G-ZR-S and QDD-400G-ZRP-S optical modules are DWDM C-band (196.1 to 191.3 THz with 100-MHz spacing) tunable optical modules. These optical modules enable high-bandwidth 400G links and support 400G Ethernet rate.

Parameter	QDD-400G-ZR-S	QDD-400G-ZRP-S
Client Speed	400G, 4x100G	400G, 4x100G, 3x100G, 2x100G, 1x100G
Trunk Speed	400G	400G, 300G, 200G, 100G
FEC	cFEC	oFEC, cFEC
Modulation	16-QAM	16-QAM, 8QAM, QPSK
Frequency	C-Band, 196.1 To 191.3 THz	C-Band, 196.1 To 191.3 THz

This table lists some specifications of the ZR/ZR+ pluggable modules.

The ZR/ZR+ pluggable optical modules are based on the QSFP-DD form factor. This form factor is a universal standard and ensures interoperability with other vendors.

For more information on Cisco 400G Digital Coherent Optics QSFP-DD Optical Modules, see the Cisco 400G Digital Coherent Optics QSFP-DD Optical Modules Data Sheet.

Device Supported Software

This table shows the IOS XR Software necessary on the routers.

Product	400G ZR	400G ZR+
Cisco 8000 Series	7.3.2	7.3.2
Cisco NCS 5500 Series	7.3.2	7.3.2
Cisco ASR 9000 Series	7.3.2	7.3.2
Cisco NCS 540 Series	7.4.1	7.4.1

This table shows the required IOS XR Software version on the routers to support specific breakout modes.

Cisco Network Convergence System 2000 Series

The Cisco Network Convergence System 2000 Series delivers agility, programmability, and massive scale across ultra-long haul, metro, and enterprise optical networks. Using the Cisco NCS 2000 Series, you can deploy a simple, yet intelligent dense wavelength-division multiplexing (DWDM) network that scales with operational ease. The NCS 2000 devices are managed by Shelf Virtualization Orchestrator (SVO).

Cisco NCS 2006 Shelf

The NCS 2006 shelf has eight horizontal cardslots. The Cisco NCS 2006 chassis is 6 RU and has six slots for service cards and two slots for controller cards. It supports multishelf management up of to 50 shelves.

For more information on Cisco Network Convergence System 2000 Series, see the Cisco Network Convergence System 2000 Series Data Sheet.

Shelf Virtualization Orchestrator

Cisco NCS 2000 Shelf Virtualization Orchestrator (SVO) introduces programmability of optical network elements and automation with NETCONF interface and YANG models. SVO enables end-to-end, software-defined automated networks that maximize revenue to customers and ease the network turn-up, operation, and maintenance.

SVO is available with a server on a blade encasing a high-speed processor with virtualized instances of multiple reconfigurable optical add/drop multiplexer (ROADM), optical line amplifier (OLA), and dynamic gain equalizer (DGE) sites of the network. An SVO line card along with the application software provides functionality-based licenses for alarm correlation, performance monitoring, connection verification, and optical time domain reflectometry (OTDR).

The Cisco NCS 2000 SVO helps to maintain and improve customers' profitability with the orchestration of network elements and their functionalities. SVO allows the network elements to do only forwarding functions. SVO maintains the configuration and monitoring of the same at the node level with a centralized controller.

For more information on Cisco NCS 2000 Shelf Virtualization Orchestrator, see the Cisco NCS 2000 Shelf Virtualization Orchestrator Data Sheet.

Control Cards

Cisco NCS 2000 Series Transport Node Controller 2 with Optical Time Domain Reflectometry (TNCS-2O) Card performs system initialization, provisioning, alarm reporting, maintenance, diagnostics, IP addressing, Data-Communications-Channel (DCC) termination, monitoring of system input voltage, system fault detection, and multishelf management connections. Optical Time Domain Reflectometry (OTDR) is used to provide information about the basic characteristics of the Optical fiber among Optical nodes, such as insertion loss, concentrate-point of reflection, fiber-to-fiber connection losses and reflectance.

For more information on Cisco Transport Node Controller and Transport Shelf Controller Cards, see the Cisco Transport Node Controller and Transport Shelf Controller Cards Data Sheet.

ROADM Cards

The 20-SMRFS card is tunable over 96 channels in the C-band, at 50-GHz spacing on the ITU-T grid. The card provides the flex spectrum capability, which gives the flexibility to allocate channel bandwidth and increase the network scalability. With flex capability, the channel bandwidth is not fixed, but can be defined arbitrarily, with a specified granularity and within a given range. The card makes the network flexible as it allows you to reconfigure the optical channels on the run.

The 20-SMRFS card is a single-slot card that integrates two cross-connect blocks (multiplexer and demultiplexer), a variable-gain EDFA preamplifier, and a variable-gain EDFA booster amplifier. The card supports up to 20 directions for each ROADM node. The EDFA preamplifier in this card has gain ranges of 0–17 and 12–24 dB with controlled tilt and extended gain ranges of 20 dB and 35 dB with uncontrolled tilt.

For more information on Cisco NCS 2000 Flex Spectrum Single Module ROADM Line Cards, see the Cisco NCS 2000 Flex Spectrum Single Module ROADM Line Cards Data Sheet.

Amplifier Cards

The Cisco NCS 2000 offers enhanced optical amplifier cards operating in the C-band region of the optical spectrum to extend the reach and capacity of a metro, regional, or long-haul network. The optical amplifier cards are part of the Cisco NCS 2000 intelligent DWDM architecture that is engineered to reduce DWDM complexity and speed the deployment of next-generation networking solutions.

EDFA Cards

The OPT-EDFA-17 and OPT-EDFA-35 cards are C-band DWDM EDFA amplifiers and preamplifiers. The cards are true variable gain amplifiers, offering an optimal equalization of the transmitted optical channels over a wide gain range. They support 96 channels at 50-GHz channel spacing in the C-band (that is, 1528.77 to 1566.72-nm wavelength range). The OPT-EDFA-17 card delivers 20-dBm output power. The OPT-EDFA-35 card delivers +23-dBm output power. These cards do not contain midstage access loss for a Dispersion Compensation Unit (DCU). The cards provide a noise-figure optimized version of the EDFA amplifiers to cope with new modulation formats like PM-DQPSK, which do not need dispersion compensation.

For more information on Enhanced C-Band 96-Channel EDFA Amplifiers for the Cisco ONS 15454 Multiservice Transport Platform (MSTP), see the Enhanced C-Band 96-Channel EDFA Amplifiers for the Cisco ONS 15454 MSTP Data Sheet.

EDRA Cards

The double-slot EDRA-2-26 card combines standard erbium-doped fiber amplifiers and a Raman amplifier to enable amplification on long unregenerated spans. These plug-in modules support an ultra-low noise figure that is critical for long-distance, high-bit-rate transmission. Supporting 96 channels in the C-band (wavelengths from 1528.77 to 1566.72 nm), they provide the reach and optical performance required to meet the most demanding distance requirements of service provider and enterprise DWDM networks. EDRA-2-26 includes an erbium-doped preamplifier, EDFA1, with a nominal gain of 14 dB and an erbium-doped booster amplifier, EDFA2. It supports a maximum span of 26 dB on standard single-mode fiber.

For more information on Cisco Network Convergence System 2000 Series Erbium Doped Raman Amplifiers, see the Cisco Network Convergence System 2000 Series Erbium-Doped Raman Amplifiers Data Sheet.

Raman Amplifier Cards

The Cisco® ONS 15454 Multiservice Transport Platform (MSTP) High-Power Counter-Propagating Raman Amplifiers operate in the C-band region of the optical spectrum to extend the reach and capacity of regional, long-haul, and ultra-long-haul optical.

Raman amplifiers use the intrinsic properties of silica fiber in such a way that the transmission fibers themselves become a medium for amplification. This approach allows the attenuation of data signals transmitted over the fiber to be mitigated within the fiber itself. An amplifier using this principle is commonly known as a distributed Raman amplifier or simply, a Raman amplifier. The high-power counterpropagating unit injects counterpropagating optical power to generate a Raman effect in the span fiber and thus amplifies the signals propagating in the same fiber.

The single-slot RAMAN-CTP card supports counter Raman amplification on long unregenerated spans. The cards manage up to 96 ITU-T 50 GHz spaced channels over the C-band of the optical spectrum (wavelengths from 1528.77 to 1566.72 nm).

For more information on High-Power Counter-Propagating and Co-Propagating Raman units for the Cisco ONS 15454 Multiservice Transport Platform, see High Power Counter-Propagating and Co-Propagating Raman units for the Cisco ONS 15454 Multiservice Transport Platform (MSTP).

Passive Multiplexer and Demultiplexer Module

NCS1K-MD-64-C is an optical passive optical multiplexer and demultiplexer module. The new optical module is based on Athermal Wave Guide (AWG) providing 64 channels at 75-GHz space covering the extended C-band of optical spectrum. The passive module allows you to transmit 400G ZR and 400G ZR+ wavelengths.

NCS1K-MD-64-C is a bidirectional unit that has the MUX and the DEMUX functions implemented as two different sections. The NCS1K-MD-64-C module supports bidirectional connection toward the Router/DCI that is equipped with QDD-400G-ZR-S and QDD-400G-ZRP-S.

For more information on Cisco NCS 1000 Mux/Demux 64-Channel Patch Panel module, see Cisco NCS 1000 Mux/Demux 64-Channel Patch Panel Data Sheet

Passive Patch Panel Modules

The passive optical modules are used to build the optical network system.

MPO-16 to 16-LC Fan-Out Module

The MPO-16 to 16-LC fan-out module is a double slot module with one MPO-16 connector (COM) and eight LC duplex connectors (Port-i-TX/RX). It contains 16 photodiodes to monitor the power of the channel input ports. The MPO-16 to 16-LC fan-out module provides fan-out of the MPO-16 connector to or from the LC connections and interconnects the optical modules having LC connectors (TXP) with modules having MPO-16 connectors (SMR20 FS).

For more information on Cisco Network Convergence System 2000 Series Passive Patch Panel Modules, see the Cisco Network Convergence System 2000 Series Passive Patch Panel Modules Data Sheet.

Network Planning Components

Use the following components to plan the network:

- Cisco WAN Automation Engine, on page 8
- Cisco Optical Network Planner, on page 8

Cisco WAN Automation Engine

The Cisco WAN Automation Engine (WAE) platform is an open, programmable framework that interconnects software modules, communicates with the network, and provides APIs to interface with external applications.

Cisco WAE provides the tools to create and maintain a model of the current network through the continual monitoring and analysis of the network and the traffic demands that are placed on it. At a given time, this network model contains all relevant information about a network, including topology, configuration, and traffic information. You can use this information as a basis for analyzing the impact on the network due to changes in traffic demands, paths, node and link failures, network optimizations, or other changes.

Cisco WAE is used for IP and optical network planning of multi-vendor networks.

Cisco Optical Network Planner

Cisco Optical Network Planner (Cisco ONP) is a tool that models and tests Optical Transport Networks and Dense Wavelength Division Multiplexing optical networks using a graphical environment. The primary purpose of Cisco ONP is to design and validate networks of the NCS 2000 series. Using the Cisco ONP tool, you create multiple instances of a network, modify different parameters at each instance, and compare the instances. Cisco ONP performs the following:

• Generates a rack view of all the sites in the network

- Shows the differences between the instances
- Provides a complete Bill of Materials (BOM) for the network

Cisco ONP models the optical network, generates the BOM, and provides detailed information about the network. This information includes connection reports, optical reports, and traffic matrix.

Note

Cisco ONP must be used to perform the final optical network feasibility analysis and generate production network designs.

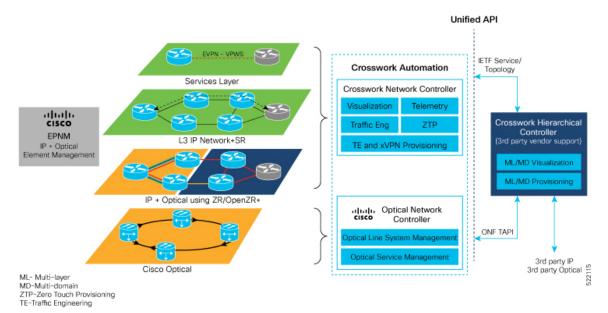
Automation Components

Automation of the Routed Optical Networking solution follows the IETF ACTN SDN controller framework. Cisco ONC is the Cisco optical domain PNC, Crosswork Network Controller (CNC) is the multi-vendor IP-domain PNC. Crosswork Hierarchical Controller unifies IP and optical information from Cisco ONC and CNC, providing multi-layer and multi-domain visualization, Routed Optical Networking service assurance, and Routed Optical Networking service management in the MDSC role.

Customer BSS/OSS Network Controller MDSC (Service) Multi-Domain Coordinator MDSC MDSC (Network) Provisioning Provisioning Network Controlle Network Controller PNC PNC Network Elements Network Elements

Figure 1: IETF ACTN - Open Automation Reference Framework

The automation stack consists of the following components:


- Cisco ONC helps in configuring Cisco optical network elements, monitors the topology (physical or virtual) of networks, performs optical path computation, and collects information about the topology.
- CNC simplifies and automates intent-based network service provisioning, monitoring, and path optimization in a IP multi-vendor network environment with a common GUI and API.

- EPNM is the unified EMS that performs deep inventory. It is an element management system for device lifecycle management for converged IP and optical networks. EPNM also collects fault and alarm information, and performs node-level performance measurement statistics collection.
- Crosswork Hierarchical Controller leverages the strengths of the multilayer and multivendor capabilities
 of Sedona Netfusion.

Routed Optical Networking Automation Solution Architecture

The following diagram provides a high-level illustration of how the solution's components work together.

Figure 2: Routed Optical Networking Automation Architecture

Cisco Crosswork Hierarchical Controller

Cisco Crosswork Hierarchical Controller provides an API and single pane of glass UI for Routed Optical Networking infrastructure and services. It manages your existing optical and packet domains with the same unified approach. Routed Optical Networking with Crosswork Hierarchical Controller dramatically simplifies the operation of multi-layer networks which before now were commonly managed by independent NMS/EMS products.

Key Capabilities

Cisco Crosswork Network Controller

Cisco Crosswork Network Controller (CNC) is a network automation solution for deploying and operating IP and Routed Optical Networking converged transport networks. CNC delivers increased service agility, cost efficiency, and optimization for faster time-to-customer value and lower operating costs. The solution combines intent-based network automation to deliver critical capabilities for service orchestration and fulfillment, network optimization, service path computation, device deployment and management, and anomaly detection and automatic remediation. Using telemetry gathering and automated responses, Cisco Crosswork

Network Controller delivers network optimization capabilities that are nearly impossible to replicate even with a highly skilled and dedicated staff operating the network.

The integrated solution combines core capabilities from multiple innovative, industry-leading products including Cisco Network Services Orchestrator (NSO), Cisco Segment Routing Path Computation Element (SR-PCE), and the Cisco Crosswork suite of applications. Its unified user interface allows real-time visualization of the network topology and services, as well as service and transport provisioning, through a single pane of glass.

The CNC features are:

- Active Topology: Active Topology's logical and geographical maps provide real-time visibility into the physical and logical network topology, service inventory, and SR-TE policies and RSVP-TE tunnels, all in a single pane of glass. They enable operators to see, at-a-glance, the status and health of the devices, services, and policies.
- Common UI and API: All Crosswork Network Controller functionality is provided within a single, common GUI. This common UI brings together the features of all components of Crosswork Network Controller, including common inventory, network topology and service visualization, service and transport provisioning, and system administration and management functions.
- All Crosswork Network Controller functionality is provided within a single, common GUI. This common UI brings together the features of all components of Crosswork Network Controller, including common inventory, network topology and service visualization, service and transport provisioning, and system administration and management functions.
- Platform Infrastructure and Shared Services: The Platform Infrastructure provides a resilient and scalable platform on which all Cisco Crosswork applications can be deployed. It is a microservices-based platform that brings together streaming telemetry and model-driven application programming interfaces (APIs) to redefine service provider network operations. It retrieves real-time information from the network, analyzes the data, and uses APIs to apply network changes. It employs a cluster architecture to be extensible, scalable, and highly available.

The essential components of CNC are:

- Cisco Crosswork Optimization Engine: Cisco Crosswork Optimization Engine provides real-time network optimization allowing operators to effectively maximize network capacity utilization and increase service velocity. Crosswork Optimization Engine enables closed loop tracking of the network state, reacting quickly to changes in network conditions to support a self-healing network.
- Cisco Crosswork Data Gateway: Cisco Crosswork Data Gateway (CDG) is a secure, common collection platform for gathering network data from multivendor devices. It is an on-premise application that is deployed close to network devices. CDG supports multiple data collection protocols including MDT, SNMP, CLI, standards-based gNMI (dial-in), and syslog. CDG can collect any type of data as long as the data can be delivered over one of the supported protocols.
- Cisco Segment Routing Path Computation Element: Cisco Segment Routing Path Computation Element (SR-PCE) is an IOS-XR multidomain stateful Path Computation Engine (PCE) supporting both segment routing (SR) and Resource Reservation Protocol (RSVP). Cisco SR-PCE builds on the native PCE abilities within IOS-XR devices, and provides the ability to collect topology and segment routing IDs through BGP-LS, calculates paths that adhere to service SLAs, and programs them into the source router as an ordered list of segments. A Path Computation Client (PCC) reports and delegates control of headend tunnels that are sourced from the PCC to a PCE peer. The PCC and PCE establish a Path Computation Element Communication Protocol (PCEP) connection that SR-PCE uses to push updates to the network and reoptimize paths where necessary.

- Cisco Network Services Orchestrator (NSO) Function Packs: Cisco Crosswork Network Controller is packaged with the following Cisco NSO function packs:
 - SR-TE core function pack (CFP)
 - Sample function packs for IETF-compliant L2VPN and L3VPN provisioning
 - Sample IETF-compliant RSVP-TE function pack

The optional components of CNC are:

- Cisco Crosswork Health Insights: Cisco Crosswork Health Insights is a network health application
 that performs real-time Key Performance Indicator (KPI) monitoring, alerting, and troubleshooting. Cisco
 Crosswork Health Insights enables programmable monitoring and analytics. It provides a platform for
 dynamically addressing changes to the network infrastructure.
- Cisco Crosswork Zero-Touch Provisioning: The Cisco Crosswork Zero-Touch Provisioning (ZTP) application is an integrated solution for onboarding and provisioning new IOS-XR devices automatically. ZTP results in faster deployment of new hardware at lower operating costs. Operators can quickly and easily bring up devices using a Cisco-certified software image and a day-zero software configuration. Once provisioned in this way, the new device is onboarded to the Crosswork device inventory where it can be monitored and managed like other devices.
- Cisco Service Health: Service Health substantially reduces the time required to detect and troubleshoot service quality issues. It monitors the health status of provisioned L2/L3 VPN services and enables operators to pinpoint why and where a service is degraded. It can also provide service-specific monitoring, troubleshooting, assurance, and proactive causality through a heuristic model that visualizes the:
 - Health status of subservices (device, tunnel) to a map when a single service is selected.
 - Service logical dependency tree and help the operator in troubleshooting in case of degradation by locating where the problem resides, an indication of possible symptoms, and impacting metrics in case of degradation.
 - Historical view of service health status up to 60 days
- Crosswork EMS Services: Element Management System (EMS) services are bundled with the Crosswork Network Controller Advantage pack. The EMS functions include inventory, fault, and Software Image Management (SWIM).
 - Inventory service integrates deep inventory collection with Cisco Crosswork's Device Lifecycle Management (DLM). It enriches the existing device onboarding workflow to gather more insights about the device. Built-in device packages enable deep inventory collection when the user manually attaches a device to the Crosswork Data Gateway. The collection is persisted in the database and monitored using the Inventory APIs.
 - Fault service is associated with alarm management. It provides API support for subscription, request, retrieval, and auto-clearing of alarms for Topology Visualization services. Monitored using the Fault APIs, the fault service improves the existing topology views by showing the alarm status for devices and links.
 - SWIM is integrated with Crosswork Change Automation and managed with SWIM APIs. It allows
 operators to view, import, and delete software images, as well as push software images to the devices
 in the network. SWIM improves compliance, accelerates upgrades, and improves the network
 engineer experience.

As it uses standards-based protocols, Cisco Crosswork Network Controller is multivendor capable for:

- Network service orchestration
- · Telemetry data collection
- Topology and transport discovery
- Transport path computation

For more information on Cisco Crosswork Network Controller, see the Cisco Crosswork Network Controller Data Sheet.

Cisco Optical Network Controller

Cisco Optical Network Controller (ONC) is an SDN Domain Controller for optical networks. ONC collects optical data and uses it to provide network information in an abstracted format to higher layer controllers. This abstraction enables centralized control of optical networks.

Cisco ONC serves as a domain controller for optical products and provides data to Hierarchical Controllers. ONC supports a standardized TAPI model, which enables it to abstract the device level details from a hierarchical controller. As a Provisioning Network Controller, ONC helps in configuring the network elements, monitors the topology (physical or virtual) of networks, and collects information about the topology. Cisco ONC improves hardware capability by supporting addition of optical applications to the controller. It centralizes some of the control loop functions that are critical for maintaining and programming the optical components in the hardware.

For more information on Cisco Optical Network Controller, see the Cisco Optical Network Controller Data Sheet.

Cisco Network Services Orchestrator

Cisco Network Services Orchestrator (NSO) is an orchestration platform that takes advantage of pluggable function packs to translate networkwide service intent into device-specific configuration. Cisco NSO provides flexible service orchestration and lifecycle management across physical network elements and cloud-based virtual network functions (VNFs), fulfilling the role of the Network Orchestrator within the ETSI architecture. It provides complete support for physical and virtual network elements, with a consistent operational model across both. It can orchestrate across multivendor environments and support multiple technology stacks, enabling extension of end-to-end automation to virtually any use case or device.

Cisco NSO has a rich set of APIs designed to allow developers to implement service applications. It provides the infrastructure for defining and executing the YANG data models necessary to realize customer services. NSO is also responsible for providing the overall lifecycle management at the network service level.

For more information on Cisco Network Services Orchestrator, see Cisco Network Services Orchestrator Data Sheet

Cisco NSO Routed Optical Networking Core Function Pack

The NSO Routed Optical Networking CFP uses NSO to automate the management of the devices in the Routed Optical Networking network and perform end-to-end service provisioning seamlessly across the IP layer and optical layers. The NSO Routed Optical Networking CFP uses the same NSO instance as CNC.

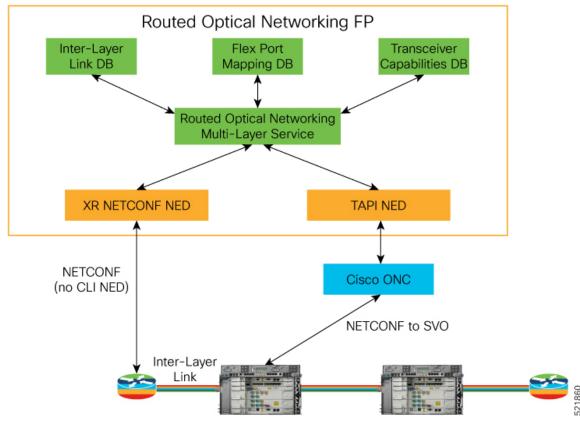


Figure 3: Routed Optical Networking ML Function Pack

This table describes the functions of different components of the Routed Optical Networking ML Function Pack.

Component	Function
Inter-layer link DB	Stores the IP to optical physical connections between the router and the optical line system
Flex-port mapping DB	Maintains chassis and line card PID database for ports that must be pre-provisioned before the ZR configuration. NCS57-18DD-SE and ASR 9000 multi-rate line cards must be preprovisioned
Transceiver capabilities DB	Map optics PID to capabilities. ZR = 400G, 4x100G, ZR+ = 100G, 2x100G, 3x100G, 4x100G, or 400G
Routed Optical Networking ML service	Performs IP and ZR router provisioning and optical provisioning
XR NETCONF NED	Used to provision router elements. Native YANG models used
TAPI NED	NETCONF-based NED to communicate with ONC via TAPI

Note

The inter-layer link services are user-defined. Flex-port mapping and transceiver capabilities are installed as part of the function pack, but can be modified by the user.

The Routed Optical Networking ML service connects two DWDM optical ports with a fixed bandwidth of either 100, 200, 300, or 400G between the routers. This service is characterized by a single DWDM wavelength.

The Routed Optical Networking ML service helps to:

- Provision line card modes to support 400G optics
- Create the optical circuit via the ONC
- Configure the optical parameters on the ZR or ZR+ optics
- Assign IP address to Ethernet interfaces or bundle interfaces
- Bundle discrete Ethernet interfaces

Routed Optical Networking CFP communicates with Cisco ONC by using the standardized Transport Application Program Interface (TAPI) models through the TAPI NED. After the Cisco ONC provisions the optical network, it sends notifications to NSO. NSO then provisions the router service to configure the ZR pluggable routers.

Cisco Evolved Programmable Network Manager

The Cisco Evolved Programmable Network Manager (EPNM) is an all-in-one management solution for today's converging packet and optical networks.

Cisco EPN Manager supports the Cisco Routed Optical Network architecture and delivers Cisco Optical and IP full device management and Cisco optical circuit network assurance. The Cisco EPN Manager discovers and represents the physical and logical configuration of managed devices.

Cisco EPN Manager provides full software image management and configuration management for the Cisco optical and IP devices.

A graphical chassis view with status indications gives network operators a live-live view of the device. EPNM differentiates itself from other network management systems with the ability to discover optical circuit from the network and maintain up-to-date representation of the optical circuit and the infrastructure dependency.

EPNM helps reduce the time to know about network or optical circuit-affecting conditions by correlating raw events and associating alarm conditions with affected managed network elements, network connectivity, and circuit. Contextual dashboards and 360-degree views (device and port levels) display the most relevant information for fast and efficient problem identification and remediation. To help reduce the time to restore and repair, EPNM guides the troubleshooting process using alarm correlation, identification of affected components or optical circuit, and connectivity. EPNM collects fault and alarm information, and performs node-level performance measurement statistics collection.

For more information on Cisco Evolved Programmable Network Manager, see the Cisco Evolved Programmable Network Manager Data Sheet.

Routed Optical Networking Components Software Versions

IOS-XR Software Components

Cisco IOS XR is a modern and flexible network operating system. XR improves operational efficiencies with management API integration to provide near real-time, actionable telemetry data. Two features of IOS XR that enable Routed Optical Networking are:

- YANG-modeled management layer APIs: To automate device provisioning and management. These models include native IOS XR YANG models and OpenConfig models.
- **Streaming telemetry capabilities**: For cadence-based or event-driven monitoring of data that is derived from YANG-modeled paths in the manageability layer over gRPC, TCP, or UDP.

Data models provide an alternate centralized way to configure devices instead of using the CLI or SNMP and to collect operational data from Cisco devices. Because the data models are standards-based, the same procedures are able to configure or collect data from non-Cisco devices as well. This ability makes them ideal for customers that support multiple vendors. You can use a centralized management platform to configure or collect data from multiple Cisco devices. The data model architecture allows for automating these procedures.

Network Configuration (NETCONF) Protocol

NETCONF is a standard-based and XML-encoded protocol. NETCONF provides the transport to communicate YANG formatted configuration or operational data requests from an application, which runs on a centralized management platform, to the Cisco device that you wish to configure or request operational data from. It provides transaction-based services, such as aborting the entire configuration request when a portion of that configuration request fails.

NETCONF uses a simple Remote Procedure Call based mechanism to facilitate communication between clients (centralized management platform script or application) and servers (Cisco switch or router). It uses SSH as the transport layer across network devices.

Yet Another Next Generation Data Modeling Language

YANG is a standards-based data modeling language. You can use YANG to create device configuration requests or requests for operational (**show** commands) data. It has a structured format similar to a computer program that is human-readable. Several applications that can run on a centralized management platform to create these configuration and operational data requests are available.

There are two types of YANG models:

- Standard (common) YANG data model that applies to all vendors. (For example, a request to disable or shut down an Ethernet interface is identical for both Cisco and non-Cisco devices.)
- Device (native, vendor-specific) data models that facilitate configuring or collecting operational data concerning proprietary vendor features.

This table lists Cisco native models, their Open Config equivalents used in the Routed Optical Networking solution and their functions.

Native Model	Open Config	Function
Cisco-IOS-XR-platform-oper	openconfig-platform	Retrieve line card information for flex-port mapping
Cisco-IOS-XR-optics-port-mode-cfg	No equivalent	Configure flex port modes
Cisco-IOS-XR-controller-optics-oper	openconfig-platform openconfig-platform-transceiver	Retrieve optics PID information
Cisco-IOS-XR-controller-optics-cfg	openconfig-terminal-device openconfig-platform-transceiver	Configure ZR optical parameters
Cisco-IOS-XR-um-if-bundle-cfg	openconfig-if-aggregate	Bundle configuration
Cisco-IOS-XR-um-interface-cfg	openconfig-interfaces	IPv4/IPv6 interface configuration
Controller-otu-oper	No equivalent	Coherent DSP operation data

Model Driven Telemetry

Telemetry is an automated communications process that you use to collect measurements and other data at remote or inaccessible points and transmit to receiving equipment for monitoring. Model-driven telemetry (MDT) provides a mechanism to stream YANG-modeled data to a data collector. Model-driven telemetry allows network devices to continuously stream real-time configuration and operating state information to subscribers.

Applications can subscribe to specific data items they need, by using standards-based YANG data models over NETCONF, RESTCONF, or gRPC Network Management Interface (gNMI) protocols. You can also create subscriptions by using CLIs if they are configured subscriptions. Devices publish structured data at a defined cadence, or on-change, based on the subscription criteria and data type. See Troubleshoot Provisioning Issues for information on telemetry sensor paths and corresponding data fields.

MDT leverages structured data models that the networking device supports. MDT provides critical data that is defined in those data models. Telemetry helps you to manage your multivendor network using a common network management system, a process, and applications. The data that is collected from the network are standards-based and are uniform across vendor implementations.

Model Driven Telemetry