
Data Models

• Data Models - Programmatic and Standards-based Configuration, on page 1
• YANG model, on page 1
• gRPC, on page 4

Data Models - Programmatic and Standards-based Configuration
Cisco IOS XR software supports the automation of configuration of multiple routers across the network using
Data models. Configuring routers using data models overcomes drawbacks posed by traditional router
management techniques.

CLIs are widely used for configuring a router and for obtaining router statistics. Other actions on the router,
such as, switch-over, reload, process restart are also CLI-based. Although, CLIs are heavily used, they have
many restrictions.

Customer needs are fast evolving. Typically, a network center is a heterogenous mix of various devices at
multiple layers of the network. Bulk and automatic configurations need to be accomplished. CLI scraping is
not flexible and optimal. Re-writing scripts many times, even for small configuration changes is cumbersome.
Bulk configuration changes through CLIs are error-prone and may cause system issues. The solution lies in
using data models - a programmatic and standards-based way of writing configurations to any network device,
replacing the process of manual configuration. Data models are written in a standard, industry-defined language.
Although configurations using CLIs are easier (more human-friendly), automating the configuration using
data models results in scalability.

Cisco IOS XR supports the YANG data modeling language. YANG can be used with Network Configuration
Protocol (NETCONF) to provide the desired solution of automated and programmable network operations.

YANG model
YANG is a data modeling language used to describe configuration and operational data, remote procedure
calls and notifications for network devices. The salient features of YANG are:

• Human-readable format, easy to learn and represent

• Supports definition of operations

• Reusable types and groupings

• Data modularity through modules and submodules

Data Models
1

• Supports the definition of operations (RPCs)

• Well-defined versioning rules

• Extensibility through augmentation

For more details of YANG, refer RFC 6020 and 6087.

NETCONF and gRPC (Google Remote Procedute Call) provide a mechanism to exchange configuration and
operational data between a client application and a router and the YANG models define a valid structure for
the data (that is being exchanged).

Encoding/ DecodingTransportProtocol

XMLSSHNETCONF

XML, JSONHTTP/2gRPC

Each feature has a defined YANGmodel. Cisco-specific YANGmodels are referred to as synthesized models.
Some of the standard bodies, such as IETF , IEEE and Open Config, are working on providing an industry-wide
standard YANG models that are referred to as common models.

Components of Yang model
A module defines a single data model. However, a module can reference definitions in other modules and
submodules by using the import statement to import external modules or the include statement to include
one or more submodules. A module can provide augmentations to another module by using the augment
statement to define the placement of the new nodes in the data model hierarchy and the when statement to
define the conditions under which the new nodes are valid. Prefix is used when referencing definitions in the
imported module.

YANGmodels are available for configuring a feature and to get operational state (similar to show commands)

This is the configuration YANG model for AAA (denoted by - cfg)
(snippet)
module Cisco-IOS-XR-aaa-locald-cfg {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-cfg";

prefix "aaa-locald-cfg";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

import Cisco-IOS-XR-aaa-lib-cfg { prefix "a1"; }

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";
.........................
......................... (truncated)

This is the operational YANG model for AAA (denoted by -oper)

Data Models
2

Data Models
Components of Yang model

(snippet)
module Cisco-IOS-XR-aaa-locald-oper {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-oper";

prefix "aaa-locald-oper";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

include Cisco-IOS-XR-aaa-locald-oper-sub1 {
revision-date 2015-01-07;

}

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";
........................
........................ (truncated)

A module may include any number of sub-modules, but each sub-module may belong to only one module.
The names of all standard modules and sub-modules must be unique.

Note

Structure of Yang models
YANG data models can be represented in a hierarchical, tree-based structure with nodes, which makes them
more easily understandable. YANG defines four nodes types. Each node has a name, and depending on the
node type, the node might either define a value or contain a set of child nodes. The nodes types (for data
modeling) are:

• leaf node - contains a single value of a specific type

• list node - contains a sequence of list entries, each of which is uniquely identified by one or more key
leafs

• leaf-list node - contains a sequence of leaf nodes

• container node - contains a grouping of related nodes containing only child nodes, which can be any of
the four node types

Data types
YANG defines data types for leaf values. These data types help the user in understanding the relevant input
for a leaf.

DescriptionName

Any binary databinary

A set of bits or flagsbits

Data Models
3

Data Models
Structure of Yang models

DescriptionName

"true" or "false"boolean

64-bit signed decimal numberdecimal64

A leaf that does not have any valueempty

Enumerated stringsenumeration

A reference to an abstract identityidentityref

References a data tree nodeinstance-identifier

8-bit, 16-bit, 32-bit, 64-bit signed integersint (integer-defined
values)

A reference to a leaf instanceleafref

8-bit, 16-bit, 32-bit, 64-bit unsigned intergersuint

Human-readable stringstring

Choice of member typesunion

Data Model and CLI Comparison
Each feature has a defined YANG model that is synthesized from the schemas. A model in a tree format
includes:

• Top level nodes and their subtrees

• Subtrees that augment nodes in other yang models

• Custom RPCs

The options available using the CLI are defined as leaf-nodes in data models. The defined data types, indicated
corresponding to each leaf-node, help the user to understand the required inputs.

gRPC
gRPC is a language-neutral, open source, RPC (Remote Procedute Call) system developed by Google. By
default, it uses protocol buffers as the binary serialization protocol. It can be used with other serialization
protocols as well such as JSON, XML etc. The user needs to define the structure by defining protocol buffer
message types in.proto files. Each protocol buffer message is a small logical record of information, containing
a series of name-value pairs.

gRPC encodes requests and responses in binary. Although Protobufs was the only format supported in the
initial release, gRPC is extensible to other content types. The Protobuf binary data object in gRPC is transported
using HTTP/2 (RFC 7540). HTTP/2 is a replacement for HTTP that has been optimized for high performance.
HTTP/2 provides many powerful capabilities including bidirectional streaming, flow control, header
compression and multi-plexing. gRPC builds on those features, adding libraries for application-layer
flow-control, load-balancing and call-cancellation.

Data Models
4

Data Models
Data Model and CLI Comparison

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server in which the structure of the data is defined by YANG models.

Cisco gRPC IDL

The protocol buffers interface definition language (IDL) is used to define servicemethods, and define parameters
and return types as protocol buffer message types.

gRPC requests can be encoded and sent across to the router using JSON. gRPC IDL also supports the exchange
of CLI.

For gRPC transport, gRPC IDL is defined in .proto format. Clients can invoke the RPC calls defined in the
IDL to programXR. The supported operations are - Get, Merge, Delete, Replace. The gRPC JSON arguments
are defined in the IDL.

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

}

gRPC Operations

• oper get-config—Retrieves a configuration

• oper merge-config— Appends to an existing configuration

• oper delete-config—Deletes a configuration

• oper replace-config—Modifies a part of an existing configuration

• oper get-oper—Gets operational data using JSON

• oper cli-config—Performs a configuration

• oper showcmdtextoutput

Data Models
5

Data Models
gRPC

gNOI for BERT
Table 1: Feature History

DescriptionRelease InformationFeature Name

Extensible Manageability Services
(EMS) gNOI supports Bit Error
Rate Testing (BERT) operations on
NCS 1014 for the following remote
procedure calls (RPCs):

• StartBERT

• StopBERT

• GetBERTResults

gNOI for BERT is a vendor
agnostic open configurationmethod
of enabling and testing network
links through the Pseudo Random
Binary Sequence (PRBS) feature.

Cisco IOS XR Release 24.4.1gNOI for BERT

gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. Extensible Manageability Services (EMS) gNOI is the Cisco IOS
XR implementation of gNOI.

gNOI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

From R24.4.10R24.4.1, EMS gNOI supports Bit Error Rate Testing (BERT) operations on NCS 1014 for the
following remote procedure calls (RPCs):

• StartBERT

• StopBERT

• GetBERTResults

Start a New BERT Session
StartBERT

Starts a new BERT operation for a set of ports. Each BERT operation is uniquely identified by an ID, which
is given by the caller. The caller can then use this ID (as well as the list of the ports) either to stop the BERT
operation or get the BERT results, or can perform both BERT operations.
rpc StartBERT(StartBERTRequest) returns(StartBERTResponse) {}

Request and response messages

RPC to 10.127.60.184:57400
RPC start time: 13:59:45.488759
RPC start time: 13:59:45.488777
per_port_request for startbert is
interface {

Data Models
6

Data Models
gNOI for BERT

elem {
name: "terminal-device"

}
elem {
name: "logical-channels"

}
elem {
name: "channel"
key {
key: "index"
value: "4014"

}
}

}
prbs_polynomial: PRBS_POLYNOMIAL_PRBS31
test_duration_in_secs: 360

Diag.StartBert Response
test_bert3
[interface {
elem {
name: "terminal-device"

}
elem {

name: "logical-channels"
}
elem {
name: "channel"
key {
key: "index"
value: "4014"

}
}

}
status: BERT_STATUS_OK
]
RPC end time: 13:59:45.816653
RPC end time: 2024-11-05 08:29:45.816739

The supported values for prbs_polynomial on NCS1014:

• Trunk Ports — PRBS7, PRBS13, PRBS23, and PRBS31

• Client Ports — PRBS23 and PRBS31

The StartBERT RPC can return an error status in any one of the following scenarios:

• When BERT operation is supported on none of the ports specified by the request.

• When BERT is already in progress on any port specified by the request.

• In case of any low-level hardware or software internal errors.

The RPC returns an OK status when there is no error situation encountered.

Stop and Delete an Existing BERT Session from the Device
Stops an already in-progress BERT operation on a set of ports. The caller uses the BERT operation ID it
previously used when starting the operation to stop it.

Data Models
7

Data Models
Stop and Delete an Existing BERT Session from the Device

StopBERT

rpc StopBERT(StopBERTRequest) returns(StopBERTResponse) {}

Request and response messages

message StopBERTRequest {
RPC to 10.127.60.184:57400
RPC start time: 13:59:27.642444
RPC start time: 13:59:27.642462
per_port_request for stopbert is
interface {
elem {
name: "terminal-device"

}
elem {
name: "logical-channels"

}
elem {
name: "channel"
key {
key: "index"
value: "4014"

}
}

}

bert_operation_id: "test_bert3"
per_port_requests {
interface {
elem {
name: "terminal-device"

}
elem {
name: "logical-channels"

}
elem {
name: "channel"
key {
key: "index"
value: "4014"

}
}

}
}

message StopBERTResponse {
bert_operation_id: "test_bert3"

per_port_responses {
interface {
origin: "openconfig-terminal-device"
elem {
name: "terminal-device"

}
elem {
name: "logical-channels"

}
elem {
name: "channel"
key {
key: "index"
value: "4014"

}

Data Models
8

Data Models
Stop and Delete an Existing BERT Session from the Device

}
}
status: BERT_STATUS_OK

}

Diag.StopBert Response

test_bert3
[interface {
origin: "openconfig-terminal-device"
elem {
name: "terminal-device"

}
elem {
name: "logical-channels"

}
elem {
name: "channel"
key {
key: "index"
value: "4014"

}
}

}
status: BERT_STATUS_OK
]
RPC end time: 13:59:27.726083
RPC end time: 2024-11-05 08:29:27.726099

}

When the PerPortRequest field is not configured, then the device stops and deletes BERT sessions on all
the ports associated with the BERT ID.

The RPC is expected to return an error status in any one of the following situations:

• When there is at least one BERT operation in progress on a port which cannot be stopped in the middle
of the operation (either due to lack of support or internal problems).

• When no BERT operation, which matches the given BERT operation ID, is in progress or completed on
any of the ports specified by the request.

The StopBERT RPC returns to an OK status when there is no error situation is encountered.

The BERT operation is considered completed if the device has a record or history of it. Also note that you
might receive a stop request for a port which has completed BERT, as long as the recorded BERT operation
ID matches the one specified by the request.

Note

Get BERT Statistics for an Existing Session
Gets BERT results during the BERT operation or after the operation completes. The caller uses the BERT
operation ID that it previously used when starting the operation to query it. The device stores results for the
last BERT based on the required period of time.

GetBERTResults

Data Models
9

Data Models
Get BERT Statistics for an Existing Session

rpc GetBERTResult(GetBERTResultRequest) returns(GetBERTResultResponse) {}

Request and response messages

message GetBERTResultRequest {
RPC to 10.127.60.184:57400

RPC start time: 14:00:01.623902
RPC start time: 14:00:01.623919
per_port_request for getbertresult is
interface {
elem {
name: "terminal-device"

}
elem {
name: "logical-channels"

}
elem {
name: "channel"
key {
key: "index"
value: "4014"

}
}

}

message GetBERTResultResponse {
test_bert3

[interface {
elem {
name: "terminal-device"

}
elem {
name: "logical-channels"

}
elem {
name: "channel"
key {
key: "index"
value: "4014"

}
}

}
status: BERT_STATUS_OK
]
RPC end time: 13:59:45.816653
RPC end time: 2024-11-05 08:29:45.816739

}

When the per_port_requests is ignored, then the device returns results and status for all the ports associated
with the BERT ID.

The following table lists the descriptions of BERT results and status.

Table 2: BERT Results and Status

DescriptionField

Port in types.Path format representing a path in the
open configuration interface model.

interface

Data Models
10

Data Models
Get BERT Statistics for an Existing Session

DescriptionField

• BERT_STATUS_OK denotes that the BERT
session is active.

• BERT_STATUS_PORT_NOT_RUNNING_BERT
denotes that BERT is not running as the duration
has expired.

• BERT_STATUS_NON_EXISTENT_PORTdenotes
that specified port is not found.

• BERT_STATUS_UNSUPPORTED_PRBS_POLYNOMIALdenotes
denotes that PRBS generating polynomial is not
supported by the target.

• BERT_STATUS_PORT_ALREADY_IN_BERT
denotes that there is already a BERT running on
the specified port. Returns when the StartBERT
RPC attempts to initiate BERT on a port that is
already in use.

• BERT_STATUS_OPERATION_ID_IN_USE
denotes that the specified BERT operation ID is
already in use. This occurs when the StartBERT
RPC attempts to use an ID that has already been
assigned to an existing BERT operation.

• BERT_STATUS_OPERATION_ID_NOT_FOUND
denotes that the specified BERT operation ID is
not recognized. This response is applicable for
both StopBERT and GetBERTResult RPCs.

status

BERT operation ID that the port is associated with.bert_operation_id

BERT duration in seconds.Must be a positive number.test_duration_in_secs

The PRBS polynomial value that is configured.prbs_polynomial

Start operation timestamp in form of a 64-bit value
UNIX time, which is the number of seconds elapsed
since January 1, 1970 UTC.

last_bert_start_timestamp

Timestamp of the last GetBERTResults operation in
form of a 64-bit value UNIX time, which is the
number of seconds elapsed since January 1, 1970
UTC.

repeated last_bert_get_results_timestamp

Current status of peer lock. Note that there could be
a 10-second delay in updating this field.

peer_lock_established

Indicates if the peer lock is lost anytime after a peer
lock is established. This field is only meaningful if
peer_lock_established field is set.

peer_lock_lost

Data Models
11

Data Models
Get BERT Statistics for an Existing Session

DescriptionField

A list of one-minute historical PM buckets containing
bit error counts. Historical buckets are maintained
since the StartBERT operation started.

error_count_per_minute

Cumulative count of bit errors of the StartBERT
operation.

total_errors

The GetBERTResults RPC can return error status in any one of the following scenarios:

• When no BERT operation, which matches the given BERT operation ID, is in-progress or completed on
any of the ports specified by the request.

• When the BERT operation ID does not match the in progress or completed BERT operation on any of
the ports specified by the request.

The RPC returns an OK status when none of these situations is encountered.

The BERT operation is considered as completed only when the device has a record of it.Note

gNOI Healthz service
Table 3: Feature History

Feature DescriptionRelease InformationFeature Name

The gNOI Healthz sub-functions
monitor and manage the state of a
device by leveraging telemetry
within the network. These
sub-functions help determine the
device's system state and facilitate
the collection of relevant debug
logs based on that state, using the
OpenConfig Healthz model.

Cisco IOS XR Release 25.2.1gNOI Healthz

The gNOI Healthz is a gRPC service that focuses on the health checks and monitoring of network devices.
It determines whether the nodes of a network are fully functional, degraded, or need to be replaced. The gNOI
Healthz process involves:

• Waiting for health status data from various subsystem components

• Inspecting and analyzing health status data to identify any unhealthy entities, and

• Collecting the debug logs of the corresponding unhealthy component

gNOI Healthz, in conjunction with gNMI telemetry, monitors the health of network components.

When a component becomes HEALTHY or UNHEALTHY, telemetry updates are sent for that health event. For more
details about the health event, see gNOI Healthz RPCs. When a system component changes its state to

Data Models
12

Data Models
gNOI Healthz service

https://github.com/openconfig/gnoi/tree/main/healthz

UNHEALTHY, the intended artifacts (debug logs, core file, and so on) are generated automatically at the time of
the health event.

XR health event dampening is enabled by default to manage and stabilize health-event behavior. It works by
suppressing excessive state changes or flapping events to ensure the system remains stable.

Supported components

Hardware:

• Rack 0

• 0/RP0/CPU0

• Line cards

See Healthz hardware events list, on page 14.

Device health status updates workflow
This section describes the workflow for monitoring andmanaging device component health status using gNOI
Healthz RPCs and telemetry.

1. The client subscribes to the component's OpenConfig path with an ON_CHANGE request and waits for
a health event to occur. When a health event is detected in the device for that component, the client receives
a notification. The client monitors these health parameters:

• status: HEALTHY, UNHEALTHY, or UNKNOWN

• last-unhealthy: Timetsamp of last known healthy state

• unhealthy-count: Number of times the particular component is reported unhealthy

2. When the device receives gNOI Healthz RPCs from gNOI client, it performs these actions and responds
to the gNOI client.

Table 4: gNOI Healthz RPCs

The device...When the gNOI client sends...

retrieves the latest set of health statuses that are
associated with a specific component and its
subcomponents.

Get RPC

returns all events that are associated with a device.List RPC

retrieves specific artifacts that are listed by the target
system in the List() or Get() RPC.

Artifact RPC

acknowledges a series of artifacts that are listed by
the Acknowledge() RPC.

Acknowledge RPC

performs intensive health checks that may impact
the service, ensuring they are done intentionally to
avoid disruptions.

Check RPC

Data Models
13

Data Models
Device health status updates workflow

Examples of heath status transmitted through EDT

When a system component becomes unhealthy, the system transmits health state information via telemetry,
indicating that the healthz/state/status of the component has transitioned toUNHEALTHY. An example EDT
notification received by the client is:
{
"source": "10.127.60.184:57400",
"subscription-name": "default-1748690348",
"timestamp": 1748690279018280149,
"time": "2025-05-31T16:47:59.018280149+05:30",
"prefix": "openconfig:",
"updates": [
{
"Path": "components/component[name=Rack 0]/healthz",
"values": {
"components/component/healthz": {
"state": {
"last-unhealthy": "1748690279018280149",
"status": "UNHEALTHY",
"unhealthy-count": "8"

}
}

}
}

]
}

An example of EDT notification received by the client, when a system component becomes healthy:
{
"source": "192.0.1.0:57400",
"subscription-name": "default-1748690348",
"timestamp": 1748690408752434448,
"time": "2025-05-31T16:50:08.752434448+05:30",
"prefix": "openconfig:",
"updates": [
{
"Path": "components/component[name=Rack 0]/healthz",
"values": {
"components/component/healthz": {
"state": {
"last-unhealthy": "1748690279018280149",
"status": "HEALTHY",
"unhealthy-count": "8"

}
}

}
}

]
}

Healthz hardware events list
This table lists the hardware events that can lead to an unhealthy health status.

Table 5: Healthz hardware events list

Health StatusOC_COMPAlarm Name

UnhealthyRack 0FAN-TRAY-ABSENT

Data Models
14

Data Models
Healthz hardware events list

Health StatusOC_COMPAlarm Name

UnhealthyRack 0CPU_NOT_SEATED_PROPERLY_FAILURE

UnhealthyRack 0CPU_PRESENCE_PIN_FAILURE

Unhealthy0/RP0/CPU0CPU-FPGA-PCIE-ERROR

Unhealthy0/RP0/CPU0PHY1-MDIO-ACCESS-ERROR

Unhealthy0/RP0/CPU0EITU-FPGA-PCIE-ERROR

UnhealthyLine card LocationFAM_FAULT_TAG_LC_METADX1_FAILURE0

FAM_FAULT_TAG_LC_METADX1_FAILURE1

UnhealthyLine card LocationFAM_FAULT_TAG_LC_RAM_FAILURE

UnhealthyLine card LocationFAM_FAULT_TAG_LC_FPGA_FAILURE

UnhealthyLine card LocationFAM_FAULT_TAG_LC_BOARD_IO_FAILURE

UnhealthyLine card LocationFAM_FAULT_TAG_LC_VIRTUAL_WIRE_FAILURE0

FAM_FAULT_TAG_LC_VIRTUAL_WIRE_FAILURE1

UnhealthyLine card LocationFAM_FAULT_TAG_LC_PLL_FAILURE

UnhealthyLine card LocationFAM_FAULT_TAG_LC_METADX2_FAILURE0

FAM_FAULT_TAG_LC_METADX2_FAILURE1

FAM_FAULT_TAG_LC_METADX2_FAILURE2

FAM_FAULT_TAG_LC_METADX2_FAILURE3

FAM_FAULT_TAG_LC_METADX2_FAILURE4

UnhealthyLine card LocationFAM_FAULT_TAG_LC_CPU_CORRUPTION

UnhealthyLine card LocationFAM_FAULT_TAG_LC_FPD_FAILURE

UnhealthyLine card LocationFAM_FAULT_TAG_CRYPTO_HW_FAILURE

UnhealthyLine card LocationFAM_FAULT_TAG_LC_BOARD_IO1_FAILURE

Verify device health using gNOI RPCs
Follow these steps to monitor health status telemetry of a device using gNOI healthz RPC.

Procedure

Step 1 Monitor health state of the device.

Example:

Data Models
15

Data Models
Verify device health using gNOI RPCs

RP/0/RP0/CPU0:ios#show health status
Wed Jul 24 10:03:29.811 UTC
SNo Component name Health status
----- -- --------------------
1 0_RP0_CPU0-appmgr healthy
2 0_RP0_CPU0-ownershipd healthy
RP/0/RP0/CPU0:ios#
RP/0/RP0/CPU0:ios#show health status 0_RP0_CPU0-appmgr
Wed Jul 24 10:03:46.859 UTC
Sno Event Id Timestamp Status Artifacts
----- ------------------- ------------------- ---------- ---------------------------------
1 1721815321290718105 Jul 24 10:02:01 UTC healthy []

2 1721815320614225976 Jul 24 10:02:00 UTC unhealthy ['/harddisk:/eem_ac_logs/xrhealth
/artifacts/procmgr_event_20240724
100205.tar.gz', '/misc/disk1/appm
gr_8921.by.11.20240724-100159.nod
e0_RP0_CPU0.09b9c.core.gz']

Step 2 Monitor device health with gNOI Get RPC.

Example:
ios#/auto/appmgr/xrhealth/bin/gnoic -a 192.0.2.184:57400 --insecure -u cisco -p cisco123 healthz
get --path "openconfig:/components/component[name=${OC_COMP}]"
WARN[0000] "192.0.2.184:57400" path : openconfig:components/component[name=Rack 0]
status : STATUS_UNHEALTHY
id : 1748850022419622614
acked : false
created : 2025-06-02 07:40:22.419622614 +0000 UTC
expires : 2025-06-09 07:40:22.041962261 +0000 UTC
artifict :
- id : Rack

0-1748850022419622614-704c7b084eb499ade4fb9c8636fd70fc34cb683b344625ee20e46f7b79b312ad
name : Rack_0_SYSTEM_HW_ERROR_FAM_FAULT_TAG_FAN_TRAY_ABSENT_20250602131022.tar
path :

/harddisk:/eem_ac_logs/xrhealth/artifacts/Rack_0_SYSTEM_HW_ERROR_FAM_FAULT_TAG_FAN_TRAY_ABSENT_20250602131022.tar
mimeType : application/x-tar
size : 30720
hash : SHA256(7cc93c4c829f5899552d8bb8449b5e4662f8ffdbd8d43636ef2446871349e613)

==

path : openconfig:components/component[name=Rack 0]
status : STATUS_HEALTHY
id : 1748698891342716588
acked : false
created : 2025-05-31 13:41:31.342716588 +0000 UTC
expires : 2025-06-07 13:41:31.003427167 +0000 UTC

Step 3 Monitor device health with gNOI Check RPC.

Example:
ios#/auto/appmgr/xrhealth/bin/gnoic -a 192.0.2.184:57400 --insecure -u cisco -p cisco123 healthz
check --path "openconfig:/components/component[name=${OC_COMP}]"
WARN[0000] "192.0.2.184:57400" could not lookup hostname: lookup 198.51.100.10.in-addr.arpa. on
64.104.128.236:53: no such host
target "192.0.2.184:57400":
+---------------------+---------------------+--+------------------+---+---+---------------+
| Target Name | ID | Path |
Status | Created At |
Artifact ID | Artifact Type |
+---------------------+---------------------+--+------------------+---+---+---------------+
| 192.0.2.184:57400 | 1748850219768107864 | openconfig:components/component[name=Rack 0] |

Data Models
16

Data Models
Verify device health using gNOI RPCs

STATUS_UNHEALTHY | 2025-06-02 07:43:39.769145114 +0000 UTC |
Rack 0-1748850219768107864-348a1a481f4b464d72c2f90648c85d2870525943f601aee745649c1e3fb8102c | file

|
+---------------------+---------------------+--+------------------+---+---+---------------+

On the NCS1014, the Check RPC collects the "show tech ncs10xx" file as an artifact. The artifact is stored in the system
directory: /harddisk:/eem_ac_logs/xrhealth/artifacts/.

The Check RPC request typically takes 15-20 minutes to complete.

A CheckRequest for a previous event_id does not overwrite artifacts collected during the event time.

Step 4 Monitor device health with gNOI List RPC.

Example:
ios#/auto/appmgr/xrhealth/bin/gnoic -a 192.0.2.184:57400 --insecure -u cisco -p cisco123 healthz
list --path "openconfig:/components/component[name=${OC_COMP}]"
WARN[0000] "192.0.2.184:57400" could not lookup hostname: lookup 198.51.100.10.in-addr.arpa. on
64.104.128.236:53: no such host
target "192.0.2.184:57400":
+---------------------+---------------------+--+------------------+---+---+
| Target Name | ID | Path |
Status | Created At |
Artifact ID |
+---------------------+---------------------+--+------------------+---+---+
| 192.0.2.184:57400 | 1748690279018280149 | openconfig:components/component[name=Rack 0] |
STATUS_UNHEALTHY | 2025-05-31 11:17:59.018280149 +0000 UTC | Rack 0-
1748690279018280149-12a0fa57b1624baae49f742a791d3017ecf219eeb32fb9187a3f9602d0856ba5 |
| 192.0.2.184:57400 | 1748690408752434448 | openconfig:components/component[name=Rack 0] |
STATUS_HEALTHY | 2025-05-31 11:20:08.752434448 +0000 UTC |

| 192.0.2.184:57400 | 1748850022419622614 | openconfig:components/component[name=Rack 0] |
STATUS_UNHEALTHY | 2025-06-02 07:40:22.419622614 +0000 UTC | Rack 0-
1748850022419622614-704c7b084eb499ade4fb9c8636fd70fc34cb683b344625ee20e46f7b79b312ad |
| 192.0.2.184:57400 | 1748850219768107864 | openconfig:components/component[name=Rack 0] |
STATUS_UNHEALTHY | 2025-06-02 07:43:39.769145114 +0000 UTC | Rack 0-
1748850219768107864-348a1a481f4b464d72c2f90648c85d2870525943f601aee745649c1e3fb8102c |
+---------------------+---------------------+--+------------------+---+-------------------------------------

ios#/auto/appmgr/xrhealth/bin/gnoic -a 192.0.2.184:57400 --insecure -u cisco -p cisco123 healthz
list --path "openconfig:/components/component[name=${OC_COMP}]" --acked
WARN[0000] "192.0.2.184:57400" could not lookup hostname: lookup 198.51.100.10.in-addr.arpa. on
64.104.128.236:53: no such host
target "192.0.2.184:57400":
+---------------------+---------------------+--+------------------+---+---+
| Target Name | ID | Path |
Status | Created At |
Artifact ID |
+---------------------+---------------------+--+------------------+---+---+
| 192.0.2.184:57400 | 1748350110127223712 | openconfig:components/component[name=Rack 0] |
STATUS_UNHEALTHY | 2025-05-27 12:48:30.127223712 +0000 UTC |
Rack 0-1748350110127223712-3c2027c2f3a0f3b86d7e75ffb394807aab9c87f5d47e153f9c40dc78f66b7227 |
| 192.0.2.184:57400 | 1748350110127223712 | openconfig:components/component[name=Rack 0] |
STATUS_UNHEALTHY | 2025-05-27 12:48:30.127223712 +0000 UTC |
Rack 0-1748350110127223712-067f9b0ef240f92a0b19905306d8dd53dc699574d3720452bde39e630942b8e7 |
| 192.0.2.184:57400 | 1748351569014046087 | openconfig:components/component[name=Rack 0] |
STATUS_HEALTHY | 2025-05-27 13:12:49.014046087 +0000 UTC |

|
| 192.0.2.184:57400 | 1748417625250765686 | openconfig:components/component[name=Rack 0] |
STATUS_UNHEALTHY | 2025-05-28 07:33:45.250765686 +0000 UTC |
Rack 0-1748417625250765686-799aebceab6827ec62fa65521ab927738fea2d75f0210d230026c3694831e781 |
| 192.0.2.184:57400 | 1748418605270788333 | openconfig:components/component[name=Rack 0] |

Data Models
17

Data Models
Verify device health using gNOI RPCs

STATUS_HEALTHY | 2025-05-28 07:50:05.270788333 +0000 UTC |
|

Step 5 Monitor device health with gNOI Artifact RPC.

Example:
ios#/auto/appmgr/xrhealth/bin/gnoic -a 192.0.2.184:57400 --insecure -u cisco -p cisco123 healthz
artifact --id "Rack
0-1748850219768107864-348a1a481f4b464d72c2f90648c85d2870525943f601aee745649c1e3fb8102c"
WARN[0000] "192.0.2.184:57400" could not lookup hostname: lookup 198.51.100.10.in-addr.arpa. on
64.104.128.236:53: no such host
INFO[0003] 192.0.2.184:57400: received file header for artifactID: Rack
0-1748850219768107864-348a1a481f4b464d72c2f90648c85d2870525943f601aee745649c1e3fb8102c
id: "Rack 0-1748850219768107864-348a1a481f4b464d72c2f90648c85d2870525943f601aee745649c1e3fb8102c"
file: {
name: "showtech-dt_healthz-ncs10xx-2025-Jun-02.131340.IST.tgz"
path:

"/harddisk:/eem_ac_logs/xrhealth/artifacts/showtech-dt_healthz-ncs10xx-2025-Jun-02.131340.IST.tgz"
mimetype: "application/octet-stream"
size: 138887423
hash: {
method: SHA256
hash: "vU5\x85l@\xd32\x1b\xe4\xd5w\xfbc\x07\x18w\x96= \xbc\xd1\x13Y\x94\xba\x1e-w\x1b\xda\xfc"

}
}

INFO[0003] received 65536 bytes for artifactID: Rack
0-1748850219768107864-348a1a481f4b464d72c2f90648c85d2870525943f601aee745649c1e3fb8102c
INFO[0007] received 16639 bytes for artifactID: Rack
0-1748850219768107864-348a1a481f4b464d72c2f90648c85d2870525943f601aee745649c1e3fb8102c
INFO[0007] 192.0.2.184:57400: received trailer for artifactID: Rack
0-1748850219768107864-348a1a481f4b464d72c2f90648c85d2870525943f601aee745649c1e3fb8102c
INFO[0007] 192.0.2.184:57400: received 138887423 bytes in total
INFO[0007] 192.0.2.184:57400: comparing file HASH
INFO[0007] 192.0.2.184:57400: HASH OK
ios$

Step 6 Monitor device health with gNOI Acknowledge RPC.

Example:
ios#/auto/appmgr/xrhealth/bin/gnoic -a 192.0.2.184:57400 --insecure -u cisco -p cisco123 healthz
ack --path "openconfig:/components/component[name=${OC_COMP}]" --id 1748853831199330797
WARN[0000] "192.0.2.184:57400" could not lookup hostname: lookup 198.51.100.10.in-addr.arpa. on
64.104.128.236:53: no such host

target "192.0.2.184:57400":
path : openconfig:components/component[name=Rack 0]
status : STATUS_UNHEALTHY
id : 1748853831199330797
acked : true
created : 2025-06-02 08:43:51.199330797 +0000 UTC
expires : 2025-06-09 08:43:51.019933079 +0000 UTC
artifict :
- id : Rack

0-1748853831199330797-74773059551bb85a0629a6ac8e00aacf3c65af1530033c9d74909194243a2c08
name : Rack_0_SYSTEM_HW_ERROR_FAM_FAULT_TAG_FAN_TRAY_ABSENT_20250602141351.tar
path :

/harddisk:/eem_ac_logs/xrhealth/artifacts/Rack_0_SYSTEM_HW_ERROR_FAM_FAULT_TAG_FAN_TRAY_ABSENT_20250602141351.tar
mimeType : application/x-tar
size : 30720
hash : SHA256(051c2d0325e11ec0efb18521e76a3d53d2f6153813f90f0d240d56769a6f511f)

Data Models
18

Data Models
Verify device health using gNOI RPCs

ios$

Data Models
19

Data Models
Verify device health using gNOI RPCs

Data Models
20

Data Models
Verify device health using gNOI RPCs

	Data Models
	Data Models - Programmatic and Standards-based Configuration
	YANG model
	Components of Yang model
	Structure of Yang models
	Data types
	Data Model and CLI Comparison

	gRPC
	gNOI for BERT
	Start a New BERT Session
	Stop and Delete an Existing BERT Session from the Device
	Get BERT Statistics for an Existing Session
	gNOI Healthz service
	Device health status updates workflow
	Healthz hardware events list
	Verify device health using gNOI RPCs

