
Data Models

• Data Models - Programmatic and Standards-based Configuration, on page 1
• YANG model, on page 1
• gRPC, on page 4
• NETCONF Operations, on page 5

Data Models - Programmatic and Standards-based Configuration
Cisco IOS XR software supports the automation of configuration of multiple routers across the network using
Data models. Configuring routers using data models overcomes drawbacks posed by traditional router
management techniques.

CLIs are widely used for configuring a router and for obtaining router statistics. Other actions on the router,
such as, switch-over, reload, process restart are also CLI-based. Although, CLIs are heavily used, they have
many restrictions.

Customer needs are fast evolving. Typically, a network center is a heterogenous mix of various devices at
multiple layers of the network. Bulk and automatic configurations need to be accomplished. CLI scraping is
not flexible and optimal. Re-writing scripts many times, even for small configuration changes is cumbersome.
Bulk configuration changes through CLIs are error-prone and may cause system issues. The solution lies in
using data models - a programmatic and standards-based way of writing configurations to any network device,
replacing the process of manual configuration. Data models are written in a standard, industry-defined language.
Although configurations using CLIs are easier (more human-friendly), automating the configuration using
data models results in scalability.

Cisco IOS XR supports the YANG data modeling language. YANG can be used with Network Configuration
Protocol (NETCONF) to provide the desired solution of automated and programmable network operations.

YANG model
YANG is a data modeling language used to describe configuration and operational data, remote procedure
calls and notifications for network devices. The salient features of YANG are:

• Human-readable format, easy to learn and represent

• Supports definition of operations

• Reusable types and groupings

Data Models
1

• Data modularity through modules and submodules

• Supports the definition of operations (RPCs)

• Well-defined versioning rules

• Extensibility through augmentation

For more details of YANG, refer RFC 6020 and 6087.

NETCONF and gRPC (Google Remote Procedute Call) provide a mechanism to exchange configuration and
operational data between a client application and a router and the YANG models define a valid structure for
the data (that is being exchanged).

Encoding/ DecodingTransportProtocol

XMLSSHNETCONF

XML, JSONHTTP/2gRPC

Each feature has a defined YANGmodel. Cisco-specific YANGmodels are referred to as synthesized models.
Some of the standard bodies, such as IETF , IEEE and Open Config, are working on providing an industry-wide
standard YANG models that are referred to as common models.

Components of Yang model
A module defines a single data model. However, a module can reference definitions in other modules and
submodules by using the import statement to import external modules or the include statement to include
one or more submodules. A module can provide augmentations to another module by using the augment
statement to define the placement of the new nodes in the data model hierarchy and the when statement to
define the conditions under which the new nodes are valid. Prefix is used when referencing definitions in the
imported module.

YANGmodels are available for configuring a feature and to get operational state (similar to show commands)

This is the configuration YANG model for AAA (denoted by - cfg)
(snippet)
module Cisco-IOS-XR-aaa-locald-cfg {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-cfg";

prefix "aaa-locald-cfg";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

import Cisco-IOS-XR-aaa-lib-cfg { prefix "a1"; }

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";
.........................
......................... (truncated)

Data Models
2

Data Models
Components of Yang model

This is the operational YANG model for AAA (denoted by -oper)
(snippet)
module Cisco-IOS-XR-aaa-locald-oper {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-oper";

prefix "aaa-locald-oper";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

include Cisco-IOS-XR-aaa-locald-oper-sub1 {
revision-date 2015-01-07;

}

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";
........................
........................ (truncated)

A module may include any number of sub-modules, but each sub-module may belong to only one module.
The names of all standard modules and sub-modules must be unique.

Note

Data types
YANG defines data types for leaf values. These data types help the user in understanding the relevant input
for a leaf.

DescriptionName

Any binary databinary

A set of bits or flagsbits

"true" or "false"boolean

64-bit signed decimal numberdecimal64

A leaf that does not have any valueempty

Enumerated stringsenumeration

A reference to an abstract identityidentityref

References a data tree nodeinstance-identifier

8-bit, 16-bit, 32-bit, 64-bit signed integersint (integer-defined
values)

A reference to a leaf instanceleafref

8-bit, 16-bit, 32-bit, 64-bit unsigned intergersuint

Data Models
3

Data Models
Data types

DescriptionName

Human-readable stringstring

Choice of member typesunion

Data Model and CLI Comparison
Each feature has a defined YANG model that is synthesized from the schemas. A model in a tree format
includes:

• Top level nodes and their subtrees

• Subtrees that augment nodes in other yang models

• Custom RPCs

The options available using the CLI are defined as leaf-nodes in data models. The defined data types, indicated
corresponding to each leaf-node, help the user to understand the required inputs.

gRPC
gRPC is a language-neutral, open source, RPC (Remote Procedute Call) system developed by Google. By
default, it uses protocol buffers as the binary serialization protocol. It can be used with other serialization
protocols as well such as JSON, XML etc. The user needs to define the structure by defining protocol buffer
message types in.proto files. Each protocol buffer message is a small logical record of information, containing
a series of name-value pairs.

gRPC encodes requests and responses in binary. Although Protobufs was the only format supported in the
initial release, gRPC is extensible to other content types. The Protobuf binary data object in gRPC is transported
using HTTP/2 (RFC 7540). HTTP/2 is a replacement for HTTP that has been optimized for high performance.
HTTP/2 provides many powerful capabilities including bidirectional streaming, flow control, header
compression and multi-plexing. gRPC builds on those features, adding libraries for application-layer
flow-control, load-balancing and call-cancellation.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server in which the structure of the data is defined by YANG models.

Cisco gRPC IDL

The protocol buffers interface definition language (IDL) is used to define servicemethods, and define parameters
and return types as protocol buffer message types.

gRPC requests can be encoded and sent across to the router using JSON. gRPC IDL also supports the exchange
of CLI.

For gRPC transport, gRPC IDL is defined in .proto format. Clients can invoke the RPC calls defined in the
IDL to programXR. The supported operations are - Get, Merge, Delete, Replace. The gRPC JSON arguments
are defined in the IDL.

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

Data Models
4

Data Models
Data Model and CLI Comparison

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

}

gRPC Operations

• oper get-config—Retrieves a configuration

• oper merge-config— Appends to an existing configuration

• oper delete-config—Deletes a configuration

• oper replace-config—Modifies a part of an existing configuration

• oper get-oper—Gets operational data using JSON

• oper cli-config—Performs a configuration

• oper showcmdtextoutput

NETCONF Operations
NETCONF defines one or more configuration datastores and allows configuration operations on the datastores.
A configuration datastore is a complete set of configuration data that is required to get a device from its initial
default state into a desired operational state. The configuration datastore does not include state data or executive
commands.

The base protocol includes the following NETCONF operations:
| +--get-config
| +--edit-Config
| +--merge
| +--replace
| +--create
| +--delete
| +--remove
| +--default-operations
| +--merge
| +--get
| +--lock
| +--unLock
| +--close-session
| +--kill-session

These NETCONF operations are described in the following table:

Data Models
5

Data Models
NETCONF Operations

Table 1:

ExampleDescriptionDescriptionNETCONF
Operation

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="101">
<get-config>
<source>
<running/>

</source>
<filter>
<interface-configurations

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg">

<interface-configuration>
<active>act</active>

<interface-name>Ots0/0/0/0</interface-name>

</interface-configuration>
</interface-configurations>

</filter>
</get-config>

</rpc>

Retrieves specific
controller configuration
details from running
configuration using filter
option.

<get-config>

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="101">
<get>
<filter>
<ots-oper

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-controller-ots-oper"/>

</filter>
</get>

</rpc>

Retrieves all OTS
controllers state
information.

<get>

Data Models
6

Data Models
NETCONF Operations

ExampleDescriptionDescriptionNETCONF
Operation

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="101">
<edit-config>
<target>
<candidate/>

</target>
<config>
<interface-configurations

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-ifmgr-cfg">

<interface-configuration>
<active>act</active>
<interface-name>Ots0/0/0/0</interface-name>

<ots
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-controller-ots-cfg">

<ots-egress-amplifier-gain>132</ots-egress-amplifier-gain>

<ots-egress-amplifier-tilt>0</ots-egress-amplifier-tilt>

<ots-egress-amplifier-gain-range>normal</ots-egress-amplifier-gain-range>

</ots>
</interface-configuration>

</interface-configurations>
</config>

</edit-config>
</rpc>

Commit:
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
message-id="102">
<commit/>

</rpc>

Configure OTS controller
configurations using
Merge operation.

<edit-config>

Request:

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<lock>
<target>
<running/>
</target>
</lock>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Locks the running
configuration.

<lock>

Data Models
7

Data Models
NETCONF Operations

ExampleDescriptionDescriptionNETCONF
Operation

Request:
rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<unlock>
<target>
<running/>
</target>
</unlock>
</rpc>

Response
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Unlocks the running
configuration from the
same session:

<unlock>

Request:
<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<close-session/>
</rpc>

Response:
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<ok/>
</rpc-reply>

Closes a NETCONF
session.

<close session>

Data Models
8

Data Models
NETCONF Operations

	Data Models
	Data Models - Programmatic and Standards-based Configuration
	YANG model
	Components of Yang model
	Data types
	Data Model and CLI Comparison

	gRPC
	NETCONF Operations

