
Data models

Data modeling is standard based approach to model configuration and operational data in networking devices.
Using data models, customers can automate and simplify network wide visibility and configuration.

• Data Models - Programmatic and Standards-based Configuration , on page 1
• YANG model, on page 1
• Supported YANG Models in NCS 1004, on page 4
• Enabling Netconf, on page 5
• gRPC, on page 6

DataModels-ProgrammaticandStandards-basedConfiguration
Cisco IOS XR software supports the automation of configuration of multiple routers across the network using
Data models. Configuring routers using data models overcomes drawbacks posed by traditional router
management techniques.

CLIs are widely used for configuring a router and for obtaining router statistics. Other actions on the router,
such as, switch-over, reload, process restart are also CLI-based. Although, CLIs are heavily used, they have
many restrictions.

Customer needs are fast evolving. Typically, a network center is a heterogenous mix of various devices at
multiple layers of the network. Bulk and automatic configurations need to be accomplished. CLI scraping is
not flexible and optimal. Re-writing scripts many times, even for small configuration changes is cumbersome.
Bulk configuration changes through CLIs are error-prone and may cause system issues. The solution lies in
using data models - a programmatic and standards-based way of writing configurations to any network device,
replacing the process of manual configuration. Data models are written in a standard, industry-defined language.
Although configurations using CLIs are easier (more human-friendly), automating the configuration using
data models results in scalability.

Cisco IOS XR supports the YANG data modeling language. YANG can be used with Network Configuration
Protocol (NETCONF) to provide the desired solution of automated and programmable network operations.

YANG model
YANG is a data modeling language used to describe configuration and operational data, remote procedure
calls and notifications for network devices. The salient features of YANG are:

• Human-readable format, easy to learn and represent

Data models
1

• Supports definition of operations

• Reusable types and groupings

• Data modularity through modules and submodules

• Supports the definition of operations (RPCs)

• Well-defined versioning rules

• Extensibility through augmentation

For more details of YANG, refer RFC 6020 and 6087.

NETCONF and gRPC (Google Remote Procedute Call) provide a mechanism to exchange configuration and
operational data between a client application and a router and the YANG models define a valid structure for
the data (that is being exchanged).

Encoding/ DecodingTransportProtocol

XMLSSHNETCONF

XML, JSONHTTP/2gRPC

Each feature has a defined YANGmodel. Cisco-specific YANGmodels are referred to as synthesized models.
Some of the standard bodies, such as IETF , IEEE and Open Config, are working on providing an industry-wide
standard YANG models that are referred to as common models.

Components of a YANG Model
A module defines a single data model. However, a module can reference definitions in other modules and
submodules by using the import statement to import external modules or the include statement to include
one or more submodules. A module can provide augmentations to another module by using the augment
statement to define the placement of the new nodes in the data model hierarchy and the when statement to
define the conditions under which the new nodes are valid. Prefix is used when referencing definitions in the
imported module.

YANGmodels are available for configuring a feature and to get operational state (similar to show commands)

This is the configuration YANG model for AAA (denoted by - cfg)
(snippet)
module Cisco-IOS-XR-aaa-locald-cfg {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-cfg";

prefix "aaa-locald-cfg";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

import Cisco-IOS-XR-aaa-lib-cfg { prefix "a1"; }

/*** META INFORMATION ***/

Data models
2

Data models
Components of a YANG Model

organization "Cisco Systems, Inc.";
.........................
......................... (truncated)

This is the operational YANG model for AAA (denoted by -oper)
(snippet)
module Cisco-IOS-XR-aaa-locald-oper {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-oper";

prefix "aaa-locald-oper";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

include Cisco-IOS-XR-aaa-locald-oper-sub1 {
revision-date 2015-01-07;

}

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";
........................
........................ (truncated)

A module may include any number of sub-modules, but each sub-module may belong to only one module.
The names of all standard modules and sub-modules must be unique.

Note

Structure of YANG models
YANG data models can be represented in a hierarchical, tree-based structure with nodes, which makes them
more easily understandable. YANG defines four nodes types. Each node has a name, and depending on the
node type, the node might either define a value or contain a set of child nodes. The nodes types (for data
modeling) are:

• leaf node - contains a single value of a specific type

• list node - contains a sequence of list entries, each of which is uniquely identified by one or more key
leafs

• leaf-list node - contains a sequence of leaf nodes

• container node - contains a grouping of related nodes containing only child nodes, which can be any of
the four node types

Data Types
YANG defines data types for leaf values. These data types help the user in understanding the relevant input
for a leaf.

Data models
3

Data models
Structure of YANG models

DescriptionName

Any binary databinary

A set of bits or flagsbits

"true" or "false"boolean

64-bit signed decimal numberdecimal64

A leaf that does not have any valueempty

Enumerated stringsenumeration

A reference to an abstract identityidentityref

References a data tree nodeinstance-identifier

8-bit, 16-bit, 32-bit, 64-bit signed integersint (integer-defined values)

A reference to a leaf instanceleafref

8-bit, 16-bit, 32-bit, 64-bit unsigned intergersuint

Human-readable stringstring

Choice of member typesunion

Data Model and CLI Comparison
Each feature has a defined YANG model that is synthesized from the schemas. A model in a tree format
includes:

• Top level nodes and their subtrees

• Subtrees that augment nodes in other yang models

• Custom RPCs

The options available using the CLI are defined as leaf-nodes in data models. The defined data types, indicated
corresponding to each leaf-node, help the user to understand the required inputs.

Supported YANG Models in NCS 1004
The supported config and oper YANG models for NCS 1004 are listed below:

Oper Yang ModelsConfig Yang Models

Cisco-IOS-XR-osa-oper.yangCisco-IOS-XR-osa-cfg.yang

Cisco-IOS-XR-controller-optics-oper.yangCisco-IOS-XR-controller-optics-cfg.yang

Cisco-IOS-XR-pmengine-oper.yangCisco-IOS-XR-pmengine-cfg.yang

Data models
4

Data models
Data Model and CLI Comparison

Oper Yang ModelsConfig Yang Models

Cisco-IOS-XR-ethernet-lldp-oper.yangCisco-IOS-XR-ethernet-lldp-cfg.yang

Cisco-IOS-XR-telemetry-model-driven-oper.yangCisco-IOS-XR-ifmgr-cfg.yang

Cisco-IOS-XR-fpd-infra-oper.yangCisco-IOS-XR-telemetry-model-driven-cfg.yang

Cisco-IOS-XR-ikev2-oper.yangCisco-IOS-XR-fpd-infra-cfg.yang

Cisco-IOS-XR-otnsec-oper.yangCisco-IOS-XR-ikev2-cfg.yang

The supported versions of Open Config model are listed below:

• openconfig-platform.yang
• openconfig-platform-transceiver.yang
• openconfig-terminal-device.yang
• openconfig-interfaces.yang
• openconfig-system.yang

openconfig-platform-transceiver.yang model is the augmented model of openconfig-platform.yang model.Note

Enabling Netconf
This task enables Netconf over SSH.

Before you begin

• Install the required packages (k9sec and mgbl)

• Generate relevant crypto keys

Step 1 netconf-yang agent ssh

Enables the Netconf agent process.

Step 2 ssh server netconf

Enables Netconf.

Step 3 ssh server v2

Enables SSH on the device and enables Netconf on port 22 if the Netconf agent process is enabled.

What to do next

The netconf-yang agent session command enables the user to set session parameters.

Data models
5

Data models
Enabling Netconf

netconf-yang agent session {limit value | absolute-timeout value | idle-timeout value}

where,

• limit value- sets the maximum count for concurrent netconf-yang sessions. Range is 1 to 1024. The
default value is 50.

• absolute-timeout value- sets the absolute session lifetime. Range is 1 to 1440 (in minutes).

• idle-timeout value- sets the idle session lifetime. Range is 1 to 1440 (in minutes).

gRPC
gRPC is a language-neutral, open source, RPC (Remote Procedute Call) system developed by Google. By
default, it uses protocol buffers as the binary serialization protocol. It can be used with other serialization
protocols as well such as JSON, XML etc. The user needs to define the structure by defining protocol buffer
message types in.proto files. Each protocol buffer message is a small logical record of information, containing
a series of name-value pairs.

gRPC encodes requests and responses in binary. Although Protobufs was the only format supported in the
initial release, gRPC is extensible to other content types. The Protobuf binary data object in gRPC is transported
using HTTP/2 (RFC 7540). HTTP/2 is a replacement for HTTP that has been optimized for high performance.
HTTP/2 provides many powerful capabilities including bidirectional streaming, flow control, header
compression and multi-plexing. gRPC builds on those features, adding libraries for application-layer
flow-control, load-balancing and call-cancellation.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server in which the structure of the data is defined by YANG models.

Cisco gRPC IDL

The protocol buffers interface definition language (IDL) is used to define servicemethods, and define parameters
and return types as protocol buffer message types.

gRPC requests can be encoded and sent across to the router using JSON. gRPC IDL also supports the exchange
of CLI.

For gRPC transport, gRPC IDL is defined in .proto format. Clients can invoke the RPC calls defined in the
IDL to programXR. The supported operations are - Get, Merge, Delete, Replace. The gRPC JSON arguments
are defined in the IDL.

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

Data models
6

Data models
gRPC

}

gRPC Operations

• oper get-config—Retrieves a configuration

• oper merge-config— Appends to an existing configuration

• oper delete-config—Deletes a configuration

• oper replace-config—Modifies a part of an existing configuration

• oper get-oper—Gets operational data using JSON

• oper cli-config—Performs a configuration

• oper showcmdtextoutput

gNOI for BERT
Table 1: Feature History

DescriptionRelease InformationFeature Name

EMS gNOI supports Bit Error Rate
Testing (BERT) operations on NCS
1004 for the following remote
procedure calls (RPCs):

• StartBERT

• StopBERT

• GetBERTResults

gNOI for BERT is a vendor
agnostic open configurationmethod
of enabling and testing network
links through the Pseudo Random
Binary Sequence (PRBS) feature.

Cisco IOS XR Release 7.3.1gNOI for BERT

gRPC Network Operations Interface (gNOI) defines a set of gRPC-based microservices for executing
operational commands on network devices. Extensible Manageability Services (EMS) gNOI is the Cisco IOS
XR implementation of gNOI.

gNOI uses gRPC as the transport protocol and the configuration is same as that of gRPC.

From R7.3.1 onwards, EMS gNOI supports Bit Error Rate Testing (BERT) operations on NCS 1004 for the
following remote procedure calls (RPCs):

• StartBERT

• StopBERT

• GetBERTResults

Data models
7

Data models
gNOI for BERT

Start a New BERT Session
StartBERT

Starts a new BERT operation for a set of ports. Each BERT operation is uniquely identified by an ID, which
is given by the caller. The caller can then use this ID (as well as the list of the ports) either to stop the BERT
operation or get the BERT results, or can perform both BERT operations.
rpc StartBERT(StartBERTRequest) returns(StartBERTResponse) {}

Request and response messages

message StartBERTRequest {
// Per port BERT start requests.
message PerPortRequest {
// Path to the interface corresponding to the port.
types.Path interface = 1; // required
// The selected PRBS generating polynomial for BERT.
PrbsPolynomial prbs_polynomial = 2; // required
// BERT duration in seconds. Must be a positive number.
uint32 test_duration_in_secs = 3; // required

}
// Unique BERT operation ID specified by the client. Multiple BERTs run on
// different ports can have the same BERT operation ID. This ID will be used
// later to stop the operation and/or get its results.
// TODO: Investigate whether we can use numerical IDs instead.
string bert_operation_id = 1;
// All the per-port BERTs that are considered one BERT operation and have the
// same BERT operation ID.
repeated PerPortRequest per_port_requests = 2;

}

message StartBERTResponse {
// Per-port BERT start responses.
message PerPortResponse {
// Path to the interface corresponding to the port.
types.Path interface = 1;
// BERT start status for this port.
BertStatus status = 2;

}
// The same BERT operation ID given by the request.
string bert_operation_id = 1;
// Captures the results of starting BERT on a per-port basis.
repeated PerPortResponse per_port_responses = 2;

}

The supported values for prbs_polynomial on NCS1004 are PRBS7, PRBS13, PRBS23, and PRBS31.

• The StartBERT RPC can return an error status in any one of the following scenarios:

• When BERT operation is supported on none of the ports specified by the request.

• When BERT is already in progress on any port specified by the request.

• In case of any low-level hardware or software internal errors.

The RPC returns an OK status when there is no error situation encountered.

Data models
8

Data models
Start a New BERT Session

Stop and Delete an Existing BERT Session from the Device
Stops an already in-progress BERT operation on a set of ports. The caller uses the BERT operation ID it
previously used when starting the operation to stop it.

StopBERT

rpc StopBERT(StopBERTRequest) returns(StopBERTResponse) {}

Request and response messages

message StopBERTRequest {
// Per-port BERT stop requests.
message PerPortRequest {
// Path to the interface corresponding to the port.
types.Path interface = 1;

}
// The same BERT operation ID given when BERT operation was started.
string bert_operation_id = 1;
// All the per-port BERTs that need to be stopped. Must be part of the BERT
// operation specified by the `bert_operation_id` above.
repeated PerPortRequest per_port_requests = 2;

}

message StopBERTResponse {
// Per-port BERT stop responses.
message PerPortResponse {
// Path to the interface corresponding to the port.
types.Path interface = 1;
// BERT stop status for this port.
BertStatus status = 2;

}
// The same BERT operation ID given by the request.
string bert_operation_id = 1;
// Captures the results of stopping BERT on a per-port basis.
repeated PerPortResponse per_port_responses = 2;

}

When the PerPortRequest field is not configured, then the device stops and deletes BERT sessions on all
the ports associated with the BERT ID.

The RPC is expected to return an error status in any one of the following situations:

• When there is at least one BERT operation in progress on a port which cannot be stopped in the middle
of the operation (either due to lack of support or internal problems).

• When no BERT operation, which matches the given BERT operation ID, is in progress or completed on
any of the ports specified by the request.

The StopBERT RPC returns to an OK status when there is no error situation is encountered.

The BERT operation is considered completed if the device has a record or history of it. Also note that you
might receive a stop request for a port which has completed BERT, as long as the recorded BERT operation
ID matches the one specified by the request.

Note

Data models
9

Data models
Stop and Delete an Existing BERT Session from the Device

Get BERT Statistics for an Existing Session
Gets BERT results during the BERT operation or after the operation completes. The caller uses the BERT
operation ID that it previously used when starting the operation to query it. The device stores results for the
last BERT based on the required period of time.

GetBERTResults

rpc GetBERTResult(GetBERTResultRequest) returns(GetBERTResultResponse) {}

Request and response messages

message GetBERTResultRequest {
// Per-port BERT get result requests.
message PerPortRequest {
// Path to the interface corresponding to the port.
types.Path interface = 1;

}
// The same BERT operation ID given when BERT operation was started.
string bert_operation_id = 1;
// All the per-port BERTs result of which we want to query. Must be part of
// the BERT operation specified by the `bert_operation_id` above.
repeated PerPortRequest per_port_requests = 2;
// If set to true, the results for all the per-port BERTs will be returned.
// `bert_operation_id` and `per_port_requests` will be ignored will be
// ignored in that case.
bool result_from_all_ports = 3;

}

message GetBERTResultResponse {
// Per-port BERT results/status.
message PerPortResponse {
// Path to the interface corresponding to the port.
types.Path interface = 1;
// BERT result get status for this port. Only if the status is
// BERT_STATUS_OK are the rest of the fields meaningful.
BertStatus status = 2;
// The ID of the BERT operation running on this port. Since the caller
// can query the BERT results for all the ports, ID can potentially be
// different for different ports.
string bert_operation_id = 3;
// The selected PRBS generating polynomial for BERT on this port.
PrbsPolynomial prbs_polynomial = 4;
// The last time BERT started on this port.
uint64 last_bert_start_timestamp = 5;
// The last time BERT results were read for this port.
uint64 last_bert_get_result_timestamp = 6;
// Indicate whether BERT peer lock has was established. If false,
// `bert_lock_lost`, `error_count_per_minute`, and `total_errors` will not
// be meaningful.
bool peer_lock_established = 7;
// Indicate whether BERT peer lock was lost after being established
// once.
bool peer_lock_lost = 8;
// Sequence of bit errors per min since lock was established.
repeated uint32 error_count_per_minute = 9;
// Total number of bit errors accumulated since lock was established.
uint64 total_errors = 10;

}
// Captures the BERT results on a per-port basis.
repeated PerPortResponse per_port_responses = 1;

Data models
10

Data models
Get BERT Statistics for an Existing Session

}

When the per_port_requests is ignored, then the device returns results and status for all the ports associated
with the BERT ID.

The following table lists the descriptions of BERT results and status.

Table 2: BERT Results and Status

DescriptionField

Port in types.Path format representing a path in the
open configuration interface model.

interface

• BERT_STATUS_OK denotes that the BERT
session is active.

• BERT_STATUS_PORT_NOT_RUNNING_BERT
denotes that BERT is not running as the duration
has expired.

status

BERT operation ID that the port is associated with.bert_operation_id

The PRBS polynomial value that is configured.prbs_polynomial

Start operation timestamp in form of a 64-bit value
UNIX time, which is the number of seconds elapsed
since January 1, 1970 UTC.

last_bert_start_timestamp

Timestamp of the last GetBERTResults operation in
form of a 64-bit value UNIX time, which is the
number of seconds elapsed since January 1, 1970
UTC.

repeated last_bert_get_results_timestamp

Current status of peer lock. Note that there could be
a 10-second delay in updating this field.

peer_lock_established

Indicates if the peer lock is lost anytime after a peer
lock is established. This field is only meaningful if
peer_lock_established field is set.

peer_lock_lost

A list of one-minute historical PM buckets containing
bit error counts. Historical buckets are maintained
since the StartBERT operation started.

error_count_per_minute

Cumulative count of bit errors of the StartBERT
operation.

total_errors

The GetBERTResults RPC can return error status in any one of the following scenarios:

• When no BERT operation, which matches the given BERT operation ID, is in-progress or completed on
any of the ports specified by the request.

• When the BERT operation ID does not match the in progress or completed BERT operation on any of
the ports specified by the request.

Data models
11

Data models
Get BERT Statistics for an Existing Session

The RPC returns an OK status when none of these situations is encountered.

The BERT operation is considered as completed only when the device has a record of it.Note

Data models
12

Data models
Get BERT Statistics for an Existing Session

	Data models
	Data Models - Programmatic and Standards-based Configuration
	YANG model
	Components of a YANG Model
	Structure of YANG models
	Data Types
	Data Model and CLI Comparison

	Supported YANG Models in NCS 1004
	Enabling Netconf
	gRPC
	gNOI for BERT
	Start a New BERT Session
	Stop and Delete an Existing BERT Session from the Device
	Get BERT Statistics for an Existing Session

