Packet I/0 Functionality and Hosting
Applications

* Setting up Application Hosting Environment, on page 1

* Verify Reachability of IOS XR and Packet I/O Infrastructure, on page 1
* Programme Routes in the Kernel, on page 3

* Manage 10S XR Interfaces through Linux, on page 5

Setting up Application Hosting Environment

This section illustrates how, with the Packet I/O functionality, you can use Linux applications to manage
communication with the IOS XR interfaces. It describes how the OS environment must be set up to establish
packet I/O communication with hosted applications.

Verify Reachability of I0S XR and Packet I/0 Infrastructure

Interfaces configured on IOS XR are programmed into the Linux kernel. These interfaces allow Linux
applications to run as if they were running on a regular Linux system. This packet I/O capability ensures that
off-the-shelf Linux applications can be run alongside IOS XR, allowing operators to use their existing tools
and automate deployments with [0S XR.

The IP address on the Linux interfaces, MTU settings, MAC address are inherited from the corresponding
settings of the IOS XR interface. Accessing the global VRF network namespace ensures that when you issue
the bash command, the default or the global VRF in IOS XR is reflected in the kernel. This ensures default
reachability based on the routing capabilities of IOS XR and the packet I/O infrastructure.

You can run bash commands at the IOS XR router prompt to view the interfaces and IP addresses stored in
global VRF. When you access the Cisco IOS XR Linux shell, you directly enter the global VRF.

Procedure

Step 1 From your Linux box, access the IOS XR console through SSH, and log in.

Example:

Packet I/0 Functionality and Hosting Applications .

Packet I/0 Functionality and Hosting Applications |
. Verify Reachability of 10S XR and Packet I/0 Infrastructure

cisco@host:~$ ssh root@192.168.122.xxx
root@192.168.122.188"'s password:
RP/0/RPO/CPUO:ios#

Step 2 View the ethernet interfaces on IOS XR.

Example:
This command shows the ip-address and status of of NCS 1004 interfaces.
RP/0/RPO/CPUO:ios#show ip interface brief

This outsput displays the ip-address and the status of the active NCS 1004 interfaces.

Tue Oct 28 17:53:00.194 IST

Interface IP-Address Status Protocol Vrf-Name
Loopback?2 2.2.2.2 Up Up default
MgmtEth0/RP0/CPU0/0 10.127.60.173 Up Up default
MgmtEth0/RP0/CPU0O/1 4.25.0.68 Down Down default
MgmtEth0/RP0/CPU0/2 unassigned Shutdown Down default
Note

Use the ip addr show or ip link show commands to view all corresponding interfaces in Linux. The IOS XR interfaces
that are admin-down state also reflects a bown state in the Linux kernel.

Step 3 Check the IP and MAC addresses of the interface that is in Up state.

Example:

This command checks the details of the MgmtEth0/RP0O/CPU0/0 as it is in UP state.
RP/0/RP0O/CPUO:ios#show interfaces mgmtEth 0/RPO/CPU0/0

This output shows the configuration details of the MgmtEth0/RP0/CPUO/0 interface.

Tue Oct 28 17:54:36.066 IST
MgmtEthO/RPO/CPU0/0 is up, line protocol is up
Interface state transitions: 1
Hardware is Management Ethernet, address is b026.80ff.d778 (bia b026.80ff.d778)
Internet address is 10.127.60.173/24
MTU 1450 bytes, BW 1000000 Kbit (Max: 1000000 Kbit)
reliability 255/255, txload 0/255, rxload 0/255
Encapsulation ARPA,
Full-duplex, 1000Mb/s, CX, link type is autonegotiation
loopback not set,
Last link flapped 03:10:46
ARP type ARPA, ARP timeout 04:00:00
Last input 00:00:00, output 00:00:00
Last clearing of "show interface" counters never
5 minute input rate 4000 bits/sec, 6 packets/sec
5 minute output rate 306000 bits/sec, 39 packets/sec
747548 packets input, 857360447 bytes, 0 total input drops
0 drops for unrecognized upper-level protocol
Received 12247 broadcast packets, 48061 multicast packets
0 runts, 0 giants, 0 throttles, 0 parity
0 input errors, 0 CRC, O frame, O overrun, 0 ignored, 0 abort
547486 packets output, 489284750 bytes, 0 total output drops
Output 1 broadcast packets, 4 multicast packets
0 output errors, 0 underruns, 0 applique, 0 resets
0 output buffer failures, 0 output buffers swapped out
1 carrier transitions
RP/0/RP0/CPUO:ios#

. Packet I/0 Functionality and Hosting Applications

| Packet I/0 Functionality and Hosting Applications
Programme Routes in the Kernel .

Step 4 Verify that the bash command runs in global VRF to view the network interfaces.

Example:
This command displays the network interfaces in Linux.

RP/0/RP0/CPUO:ios#bash -c ifconfig

This output shows the active network interfaces in Linux.

Tue Oct 28 18:15:41.890 IST

Mg0 RPO CPUO 0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 10.127.60.173 netmask 255.255.255.0 broadcast 0.0.0.0
inet6 fe80::0226:80ff:feff:d778 prefixlen 64 scopeid 0x20<link>
inet6 2001:420:5446:2014::281:178 prefixlen 119 scopeid 0x0<global>
inet6 2001:420:5446:2014::281:378 prefixlen 119 scopeid 0x0<global>
ether b0:26:80:££:d7:78 txqueuelen 2000 (Ethernet)
RX packets 9179 Dbytes 1140006 (1.0 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 8 bytes 816 (816.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0O collisions O

lo: flags=73<UP, LOOPBACK, RUNNING> mtu 1400
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txgqueuelen 1000 (Local Loopback)
RX packets 508702 bytes 473586341 (451.6 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 508702 bytes 473586341 (451.6 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0O <collisions 0

to xr: flags=4305<UP, POINTOPOINT, RUNNING, NOARP, MULTICAST> mtu 1300
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 2000 (UNSPEC)
RX packets 257333 Dbytes 26930763 (25.6 MiB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 273099 bytes 46297306 (44.1 MiB)
TX errors 0 dropped 0 overruns 0 carrier 0O <collisions 0

The to_xr interface indicates access to the global VRF.

Step 5 Access the Linux shell.

Example:
RP/0/RP0O/CPUO:ios#bash
[ios:~]$

Step 6 (Optional) View the IP routes used by the to xr interfaces.

Example:

[ios:~]$ip route

default dev to xr proto static scope link src 10.127.60.173 metric 2048 mtu 1500 advmss 1460
10.127.59.46 via 10.127.60.1 dev Mg0 RPO CPUO O proto static metric 2048

10.127.60.0/24 dev Mg0 RPO CPUO 0 proto static scope link src 10.127.60.173

[ios:~]$

Programme Routes in the Kernel

The basic routes required to allow applications to send or receive traffic can be programmed into the kernel.
The Linux network stack that is part of the kernel is used by normal Linux applications to send/receive packets.

Packet I/0 Functionality and Hosting Applications .

. Programme Routes in the Kernel

Packet I/0 Functionality and Hosting Applications |

In an IOS XR stack, IOS XR acts as the network stack for the system. Therefore to allow the Linux network
stack to connect into and use the IOS XR network stack, basic routes must be programmed into the Linux

Kernel.

Procedure

Step 1 View the routes from the bash shell.
a) Enter the bash shell.

Example:

RP/0/RP0O/CPUO:NE_173#bash
Tue Oct 28 18:17:47.331 IST

b) In the bash shell, view the IP routes used by the to_xr interfaces

Example:

[ios:~]$ip route

default dev to xr proto static scope link src 10.127.60.173 metric 2048 mtu 1500 advmss 1460
10.127.59.46 via 10.127.60.1 dev Mg0 RPO CPUO O proto static metric 2048

10.127.60.0/24 dev Mg0 RPO CPUO 0 proto static scope link src 10.127.60.173

Step 2 Programme the routes in the kernel.

Two types of routes can be programmed in the kernel:

» Default Route: The default route sends traffic destined to unknown subnets out of the kernel using a special to_xr
interface. This interface sends packets to IOS XR for routing using the routing state in XR Routing Information
Base (RIB) or Forwarding Information Base (FIB). The to_xr interface does not have an associated IP address. In
Linux, most applications expect the outgoing packets to use the IP address of the outgoing interface as the source

IP address.

With the to_xr interface, because there is no IP address, a source hint is required. The source hint can be changed
to use the IP address another physical interface IP or loopback IP address. In this example, the source hint is set to
10.127.60.173, which is the IP address of the management interface. To use the Management port IP address, change

the source hint:

RP/0/RP0O/CPUO:
RP/0/RP0O/CPUO:
RP/0/RP0O/CPUO:
RP/0/RP0O/CPUO:
RP/0/RP0O/CPUO:

RP/0/RP0O/CPUO

)

RP/0/RP0O/CPUO:)
:ios(config-1lnx-af) #commit

RP/0/RPO/CPUO:)

RP/0/RP0O/CPUO

ios#configure

ios (config)#linux networking

ios (config-lnx-net) #vrf default

ios (config-lnx-vrf) #address-family ipv4
ios(config-lnx-af)# default-route software-forwarding

ios (config-lnx-af)# source-hint default-route interface MgmtEthO0/RP0/CPU0/0

(
(
(
:ios (config-lnx-af)# source-hint management-route interface MgmtEth0/RP0/CPU0/0
(
(
(

ios(config-lnx-af) #

This output shows the configurations for linx network.

RP/0/RP0O/CPUO:

ios#show running-config linux networking

linux networking

vrf default

address-family ipv4

default-route software-forwarding

source-hint management-route interface MgmtEth0/RP0/CPUO0/0
source-hint default-route interface MgmtEth0/RP0/CPUO0/0

. Packet I/0 Functionality and Hosting Applications

| Packet I/0 Functionality and Hosting Applications

|
|

Manage 10S XR Interfaces through Linux .

With this updated source hint, any default traffic exiting the system uses the Management port IP address as the
source IP address.

« Local

or Connected Routes: The routes are associated with the subnet configured on interfaces. For example, the

10.127.60.173 network is associated with the Mgo_RPO_cPUO interface.

Manage 10S XR Interfaces through Linux

The Linux system contains a number of individual network namespaces. Each namespace contains a set of
interfaces that map to a single interface in the XR control plane. These interfaces represent the exposed XR
interfaces (eXI). By default, all interfaces in IOS XR are managed through the IOS XR configuration (CLI
or YANG models), and the attributes of the interface (IP address, MTU, and state) are inherited from the
corresponding configuration and the state of the interface in XR.

With the new Packet I/O functionality, it is possible to have an IOS XR interface completely managed by
Linux. This also means that one or more of the interfaces can be configured to be managed by Linux, and
standard automation tools can be used on Linux servers can be used to manage interfaces in IOS XR.

Configure an Interface to be Linux-Managed

Step 1

Step 2

Procedure

This section shows how to configure an interface to be Linux-managed.

Before you begin

Enter the configuration mode using the config command.

Check the available exposed-interfaces in the system.

Example:

RRP/0/RP0O/CPUO:ios (config) #linux networking exposed-interfaces interface ?

GCCO
GCC1
GCC2

OTN GCCO interface(s) | short name is GO
OTN GCC1l interface(s) | short name is G1
OTN GCC2 interface(s) | short name is G2
Loopback Loopback interface(s) | short name is Lo
Ethernet/IEEE 802.3 interface(s) | short name is Mg

MgmtEth

Configure the interface to be managed by Linux.

Example:

This command configures a MgmtEth interface to be managed by Linux.

RP/0/RPO/CPUO:NE 229 (config) #linux networking exposed-interfaces interface mgmtEth 0/RP0/CPU0/2
linux-managed
Router (config-exi-if) #fcommit

Packet I/0 Functionality and Hosting Applications .

. Configure an Interface to be Linux-Managed

Step 3

Step 4

Step 5

View the interface details and the VRF.

Example:
The example shows the information for MgmtEth interface:

Packet I/0 Functionality and Hosting Applications |

RP/0/RP0O/CPUO:ios (config-exi-if) #show run interface mgmtEth 0/RP0/CPU0/2

interface MgmtEthO/RP0O/CPU0/2

shutdown
|

Verify the configuration in XR.

Example:
The example shows the configuration for MgmtEth interface.

RP/0/RP0O/CPUO:ios#show running-config linux networking
linux networking
vrf default
address-family ipv4
default-route software-forwarding
source-hint management-route interface MgmtEthO/RP0/CPU0/0
source-hint default-route interface MgmtEth0/RP0/CPUO0/0
protection
protocol tcp local-port 999 default-action deny
permit interface MgmtEthO/RPO/CPU0/0

Verify the configuration from Linux.

Example:

This example shows the configuration for external communication MgmtEth interface.

RP/0/RP0/CPUO: ios#bash

[ios:~]$$ ifconfig
Lo0O: flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 1500

inet 20.2.2.2 netmask 255.255.255.255 broadcast 0.0.0.0

ether 9a:91:5d:6d:ad:c8 txqueuelen 2000 (Ethernet)
RX packets 0 Dbytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0O collisions 0

MgOiRP07CPU070: flags=4163<UP, BROADCAST, RUNNING,MULTICAST> mtu 1500
inet 10.127.60.229 netmask 255.255.255.0 broadcast 0.0.0.0

ether 74:88:bb:ff:fe:c8 txqueuelen 2000 (Ethernet)
RX packets 38285 Dbytes 4008458 (3.8 MiB)

RX errors 0 dropped 0 overruns 0 frame 0O

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0O collisions O

lo: flags=73<UP,LOOPBACK, RUNNING> mtu 1400
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txgqueuelen 1000 (Local Loopback)
RX packets 0 Dbytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0O collisions 0

. Packet I/0 Functionality and Hosting Applications

| Packet I/0 Functionality and Hosting Applications
Configure an Interface to be Linux-Managed .

to xr: flags=4305<UP, POINTOPOINT, RUNNING, NOARP, MULTICAST> mtu 1300
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 2000 (UNSPEC)
RX packets 8 bytes 768 (768.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 5 bytes 288 (288.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

[ios:~]$ ifconfig -a
Lo0O: flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 1500
inet 20.2.2.2 netmask 255.255.255.255 broadcast 0.0.0.0
ether 9a:91:5d:6d:ad:c8 txqueuelen 2000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

MgO RPO_CPUO_0: flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 1500
inet 10.127.60.229 netmask 255.255.255.0 Dbroadcast 0.0.0.0
ether 74:88:bb:ff:fe:c8 txqueuelen 2000 (Ethernet)

RX packets 38289 bytes 4008898 (3.8 MiB)

RX errors 0 dropped 0 overruns 0 frame O

TX packets 0 bytes 0 (0.0 B)

TX errors 0O dropped 0 overruns 0 carrier 0 collisions O

MgO RPO_CPUO_1: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether 74:88:bb:ff:fe:ca txqueuelen 2000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

MgO RPO_CPUO_2: flags=4098<BROADCAST,MULTICAST> mtu 1500
ether 74:88:bb:ff:fe:c9 txqueuelen 2000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

lo: flags=73<UP, LOOPBACK, RUNNING> mtu 1400
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 0 bytes 0 (0.0 B)
TX errors 0O dropped 0 overruns 0 carrier 0 collisions O

sit0: flags=128<NOARP> mtu 1480
unspec 00-00-00-00-30-30-30-30-00-00-00-00-00-00-00-00 txqueuelen 1000 (UNSPEC)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

to xr: flags=4305<UP, POINTOPOINT, RUNNING, NOARP, MULTICAST> mtu 1300
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 2000 (UNSPEC)
RX packets 8 Dbytes 768 (768.0 B)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 5 bytes 288 (288.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

tunlO: flags=128<NOARP> mtu 1480
tunnel txqueuelen 1000 (IPIP Tunnel)

Packet I/0 Functionality and Hosting Applications .

Packet I/0 Functionality and Hosting Applications |

. Configure custom MTU setting

RX packets 0 bytes 0 (0.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

[NE 229:/misc/scratch]$

Configure custom MTU setting

This section shows how to bring up the interface and configure a custom MTU in a

Procedure

Step 1 Configure the MTU setting.

Example:
[ios:~]Sifconfig Mg0_RPO_CPUO_O0 up

[ios:~]SRouter:Aug 1 17:41:54.824 UTC: ifmgr([266]: %PKT_INFRA-LINK-3-UPDOWN
HundredGigE0/0/0/24, changed state to Down

Linux-managed interface.

Interface

Router:Aug 1 17:41:54.824 UTC: ifmgr([266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on

Interface HundredGigE0/0/0/24, changed state to Down

Router:Aug 1 17:41:56.448 UTC: xlncd[253]: $MGBL-CONFIG-6-DB COMMIT : Configuration committed by

user 'system'. Use 'show configuration commit changes 1000000022' to view the

changes.

Router:Aug 1 17:41:56.471 UTC: ifmgr([266]: %PKT INFRA-LINK-3-UPDOWN : Interface

HundredGigE0/0/0/24, changed state to Up

Router:Aug 1 17:41:56.484 UTC: ifmgr([266]: %PKT_INFRA-LINEPROTO-5-UPDOWN : Line protocol on

Interface HundredGigE0/0/0/24, changed state to Up

Router:Aug 1 17:41:58.493 UTC: xlncd[253]: $MGBL-CONFIG-6-DB COMMIT : Configuration committed by

user 'system'. Use 'show configuration commit changes 1000000023' to view the
[ios:~]$

[ios:~]$ip link set dev Mg0_RPO_CPUO_O0 mtu 1400

[ios:~1$

[ios:~]SRouter:Aug 1 17:42:46.830 UTC: xlncd[253]: %$MGBL-CONFIG-6-DB COMMIT
committed by user 'system'. Use 'show configuration commit changes 1000000024'

Step 2 Verify that the MTU setting has been updated in Linux.

Example:
This example highlights the MTU setting for all interfaces in Linux.

[ios:~]$ ifconfig
Lo0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 20.2.2.2 netmask 255.255.255.255 broadcast 0.0.0.0
ether 9a:91:5d:6d:ad:c8 txqueuelen 2000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 0 bytes 0 (0.0 B)
TX errors 0O dropped 0 overruns 0 carrier 0O <collisions O

MgO RPO_CPUO_0: flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 1400
inet 72.163.4.154 netmask 255.0.0.0 broadcast 72.255.255.255
ether 74:88:bb:ff:fe:c8 txgqueuelen 2000 (Ethernet)

RX packets 110019 bytes 11418001 (10.8 MiB)
RX errors 0 dropped 0 overruns 0 frame 0

. Packet I/0 Functionality and Hosting Applications

changes.

Configuration
to view the changes.

| Packet I/0 Functionality and Hosting Applications

Step 3

lo:

Synchronize Statistics Between 10S XR and Linux .

TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

flags=73<UP, LOOPBACK, RUNNING> mtu 1450
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 50 bytes 4200 (4.1 KiB)
RX errors 0 dropped 0 overruns 0 frame O
TX packets 50 bytes 4200 (4.1 KiB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

to xr: flags=4305<UP, POINTOPOINT, RUNNING, NOARP, MULTICAST> mtu 1300

unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 2000 (UNSPEC)
RX packets 9 Dbytes 864 (864.0 B)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 6 Dbytes 348 (348.0 B)

TX errors 0O dropped 0 overruns 0 carrier 0O collisions 0

Check the effect on the IOS XR configuration with the change in MTU setting on this interface.

a)

b)

Exit the bash terminal.

Example:

[ios:~]$ exit
logout

Verify the running configuration of the mgmtEth O/RPO/CPUO/* interfaces.

Example:
The exampe shows the MTU settings for the mgmtEth O/RPO/CPUO/* interfaces.

RP/0/RP0O/CPUO: ios#show running-config interface mgmtEth 0/RP0/CPUOQ/*
interface MgmtEthO0/RPO/CPU0O/0

mtu 1450!
interface MgmtEthO/RP0O/CPU0O/1

shutdown

|

interface MgmtEthO/RP0O/CPU0/2

shutdown
|

(Optional) Use the show ip interfacebrief | include M gmtEthO/RPO/CPUO/O to see the M gmtEthO/RPO/CPUO/O
interface only.

Example:
RP/0/RPO/CPUO:ios#show ip interface brief | include MgmtEthO0/RP0/CPU0/0
MgmtEth0/RP0/CPU0/0 10.127.60.229 Up Up default

RP/0/RPO/CPUO:ios#

The output indicates that the interface acts as a regular Linux interface, and IOS XR configuration receives inputs from
Linux.

Synchronize Statistics Between 10S XR and Linux

This example shows how the bundle-ether interface packet statistics are synchronized between IOS XR and
Linux. The packet and byte counters maintained by Linux for IOS XR interfaces display only the traffic

Packet I/0 Functionality and Hosting Applications .

Packet I/0 Functionality and Hosting Applications |
. Synchronize Statistics Between 10S XR and Linux

sourced in Linux. You can configure to periodically synchronize these counters with the IOS XR statistics
for the interfaces.

Before you begin

Enter the configuration mode using the configuration command.

Procedure

Step 1 Configure the statistics synchronization including the direction and synchronization interval.

Example:
The example shows statistics synchronization in global configuration:

RP/0/RP0/CPUO:io0s (config) #linux networking statistics-synchronization from-xr
every 30s

Example:
The example shows statistics synchronization in exposed-interface configuration:

RP/0/RP0/CPUO:i0s (config) #linux networking exposed-interfaces interface mgmtEth 0/RP0/CPU0/2
statistics-synchronization from-xr every 10s

where —

« from-xr: The direction indicating that the interface packet statistics will be pushed from IOS XR to the Linux kernel.

* every: Shows the frequency at which to synchronize statistics. The intervals supported for global configuration are
30s and 60s. The intervals supported for exposed interfaces are 5s, 10s, 30s or 60s. The interval s is in seconds.

Step 2 Verify that the statistics synchronization is applied successfully on IOS XR.

Example:
This example highlights the statistics synchronization that is applied on IOS XR interface.

RP/0/RP0/CPUO:ios (config) #show running-config linux networking
linux networking
vrf default

address-family ipv4

protection

protocol tcp local-port all default-action deny

permit interface bundle-ether 1
|

|
exposed-interfaces
interface bundle-ether 1 linux-managed

statistics-synchronization from-xr every 10s
|

For troubleshooting purposes, use the show tech-support linux networ king command to display debugging information.

. Packet I/0 Functionality and Hosting Applications

| Packet I/0 Functionality and Hosting Applications
Synchronize Routes Between 10S XR and Linux .

Synchronize Routes Between 10S XR and Linux

The NCS 1004 allows you to synchronoze routes between the IOS XR and linux interfaces. You can achieve
route synchronization in three methods.

* Sending traffic from Linux via a connected network.
* Sending traffic from Linux via a network requiring a route, where the route is present in XR.

* Sending traffic from Linux via a network requiring a route (no route present).

For each of the three scenarios, we will use the following back-to-back topology for illustration. All interfaces
are assumed to be configured with their IP addresses and up.

Figure 1: NCS 1004 back-to-back topology

R1
Lo1
20.17.0.1/24
MgmtEthO/R
BE100 PQ/CPUO/O DCN
100.0.0.1/24
MgmtEthO/R
PO/CPUO/1

526657

All the three methods consider the R1 node has the same configuration.

RP/0/RP0/CPUO:ios#bash
[ios:~]$ ifconfig
Lo0O: flags=4163<UP,BROADCAST, RUNNING,MULTICAST> mtu 1500
inet 20.2.2.2 netmask 255.255.255.255 broadcast 0.0.0.0
ether 9a:91:5d:6d:ad:c8 txqueuelen 2000 (Ethernet)
RX packets 0 bytes 0 (0.0 B)
RX errors O dropped 0 overruns 0 frame O
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 <collisions 0

Mg0 RPO_CPUO_0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 72.163.4.154 netmask 255.0.0.0 broadcast 72.255.255.255
ether 74:88:bb:ff:fe:c8 txqueuelen 2000 (Ethernet)

RX packets 69764 Dbytes 7270201 (6.9 MiB)

RX errors O dropped 0 overruns 0 frame O

TX packets 0 bytes 0 (0.0 B)

TX errors 0 dropped 0 overruns 0 carrier 0 <collisions 0

lo: flags=73<UP, LOOPBACK, RUNNING> mtu 1400
inet 127.0.0.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 1000 (Local Loopback)
RX packets 0 bytes 0 (0.0 B)
RX errors O dropped 0 overruns 0 frame O
TX packets 0 bytes 0 (0.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 <collisions 0

Packet I/0 Functionality and Hosting Applications .

Packet I/0 Functionality and Hosting Applications |

. Send traffic from Linux via a connected network

to xr: flags=4305<UP, POINTOPOINT, RUNNING, NOARP, MULTICAST> mtu 1300
unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 2000 (UNSPEC)
RX packets 8 Dbytes 768 (768.0 B)
RX errors 0O dropped 0 overruns 0 frame 0
TX packets 6 Dbytes 348 (348.0 B)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions O

Send traffic from Linux via a connected network

Step 1

Step 2

In this method, we are sending traffic to 12.0.0.2 or 100.0.0.2 from Linux on R1. No extra configuration is
required in Linux. XLNC syncs all of the relevant IP addresses and the kernel populates the routes.

Procedure

View the IP routes used by the to_xr interfaces.

Example:

RP/0/RP0O/CPUO:ios#bash

[ios:~]$ ip route

default via 10.127.60.1 dev Mg0 RPO_CPUO O

10.127.59.46 via 10.127.60.1 dev Mg0 RPO_CPUO 0

10.127.60.0/24 dev Mg0 RPO CPUO 0 scope link src 10.127.60.173

Verify connectivity with R2 node.

Example:
This output shows the details of network connectivity to R2 node IP 12.0.0.2.

[ios:~]$ping 10.127.60.173

PING 10.127.60.173 (10.127.60.173) 56(84) bytes of data.

64 bytes from 10.127.60.173: icmp seg=1 ttl=64 time=0.046 ms
64 bytes from 10.127.60.173: icmp seqg=2 ttl=64 time=0.039 ms
64 bytes from 10.127.60.173: icmp seqg=3 ttl=64 time=0.030 ms
64 bytes from 10.127.60.173: icmp seg=4 ttl=64 time=0.030 ms
64 bytes from 10.127.60.173: icmp seqg=5 ttl=64 time=0.030 ms
64 bytes from 10.127.60.173: icmp seqg=6 ttl=64 time=0.031 ms
64 bytes from 10.127.60.173: icmp seqg=7 ttl=64 time=0.038 ms
~C

--- 10.127.60.173 ping statistics ---

7 packets transmitted, 7 received, 0% packet loss, time 5999ms
rtt min/avg/max/mdev = 0.030/0.034/0.046/0.009 ms

Send traffic from Linux via a network using an XR route

This example shows how to the use the to_xr Linux interface. This interface uses Rx-inject to inject a packet
as though it had just been received by the router. This leads to the packet being routed as per routes installed
in the RIB.

The key piece of information required here is the source address which should be chosen. Linux has no way
of determining this without a route, but in typical deployments the XR features that rely on Linux Networking
(Model Driven Telemetry, and IOS-XR Install) need connectivity. To allow these to work, XR uses the IP of
the lowest-numbered Loopback (e.g. Loopback0) interface and sets it as the source hint for the default route.

. Packet I/0 Functionality and Hosting Applications

| Packet I/0 Functionality and Hosting Applications
Send traffic from Linux via a network using an XR route .

If connectivity is instead needed to a destination that cannot route to the lowest-numbered loopback, the user
must manually add a new route to Linux. (In future releases it will be possible to configure XR routes to be
added to Linux automatically, but manual intervention is needed in the first release.)

Procedure

Step 1 Check the route details for the NCS 1004 node R1.

Example:

RP/0/RPO/CPUO:NE 173#show route
Fri Oct 31 15:20:43.596 IST

Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1l - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, su - IS-IS summary null, * - candidate default

U - per-user static route, o - ODR, L - local, G - DAGR, 1 - LISP

A - access/subscriber, a - Application route

M - mobile route, r - RPL, t - Traffic Engineering, (!) - FRR Backup path

Gateway of last resort is 10.127.60.1 to network 0.0.0.0

S* 0.0.0.0/0 [1/0] via 10.127.60.1, 01:18:21

L 2.2.2.2/32 is directly connected, 01:18:22, Loopback?2

S 10.127.59.46/32 [1/0] via 10.127.60.1, 01:18:21

C 10.127.60.0/24 is directly connected, 01:18:21, MgmtEth0/RP0/CPU0/0

L 10.127.60.173/32 is directly connected, 01:18:21, MgmtEth0O/RP0/CPU0/0

Step 2 View the IP routes used by the to_xr interfaces.

Example:

RP/0/RPO/CPUO:ios#bash

Fri Oct 31 15:22:32.218 IST

[:~]$ ip route

default via 10.127.60.1 dev Mg0 RPO _CPUO O

10.127.59.46 via 10.127.60.1 dev Mg0_RPO_CPUO_O

10.127.60.0/24 dev Mg0_RPO_CPUO_0 scope link src 10.127.60.173
[:~]Sexit

Step 3 Add a rotue sync configuration in XR.

Example:

RP/0/RP0O/CPUO:ios#configure

RP/0/RP0O/CPUO:ios (config) #linux networking

RP/0/RP0O/CPUO:ios (config-lnx-net)# vrf default

RP/0/RP0O/CPUO:ios (config-lnx-vrf) # address-family ipv4

RP/0/RP0O/CPUO:ios (config-lnx-af)# default-route software-forwarding

RP/0/RP0O/CPUO:ios (config-lnx-af)# source-hint management-route interface MgmtEthO/RPO/CPU0/0
RP/0/RP0O/CPUO:ios (config-lnx-af)# source-hint default-route interface MgmtEth0/RP0/CPU0/0
RP/0/RP0O/CPUO:ios (config-lnx-af) #commit

RP/0/RP0O/CPUO:ios (config-lnx-af) #

Step 4 Verify the linux configuration in XR.

Example:

Packet I/0 Functionality and Hosting Applications .

Packet I/0 Functionality and Hosting Applications |

. Send traffic from Linux via a network without an XR route

Step 5

Step 6

RP/0/RP0O/CPUO:ios#show running-config linux networking
Tue Oct 28 16:39:44.951 IST
linux networking
vrf default
east-west Loopback2
address-family ipv4
source-hint default-route interface MgmtEth0/RP0/CPUO/0O
|

Add a route with source IP address in Linux

Example:

RP/0/RP0/CPUO:ios#bash
Fri Oct 31 15:22:32.218 IST
[:~]$#ip route add 10.127.60.0/24 dev to xr scope link src 10.127.60.173

Verify connectivity with R2 node.

Example:

[:~]1$# ping 10.127.60.1

PING 10.127.60.1 (10.127.60.1) 56(84) bytes of data.

64 bytes from 10.127.60 icmp seg=1 ttl=254 time=0.876 ms
64 bytes from 10.127.60 icmp seg=2 ttl=254 time=0.768 ms
64 bytes from 10.127.60 icmp seg=3 ttl=254 time=0.697 ms
64 bytes from 10.127.60 icmp seg=4 ttl=254 time=0.824 ms
~C

---10.127.60.1 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3000ms
rtt min/avg/max/mdev = 0.697/0.791/0.876/0.069 ms

[:~18

.1
.1z
.1
.1

Send traffic from Linux via a network without an XR route

Step 1

This method uses only the Linux networking stack to accomplish the same as scenario 2. Here the required
configuration is to set the route in Linux. You can omit the source IP, as this will be resolved via Linux.

Procedure

Check the route details for the NCS 1004 node R1.

Example:

RP/0/RPO/CPUO:ios#show route
Fri Oct 31 15:58:52.236 IST

Codes: C - connected, S - static, R - RIP, B - BGP, (>) - Diversion path
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
El - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - ISIS, L1 - IS-IS level-1, L2 - IS-IS level-2

ia - IS-IS inter area, su - IS-IS summary null, * - candidate default

U - per-user static route, o - ODR, L - local, G - DAGR, 1 - LISP

A - access/subscriber, a - Application route

M - mobile route, r - RPL, t - Traffic Engineering, (!) - FRR Backup path

. Packet I/0 Functionality and Hosting Applications

| Packet I/0 Functionality and Hosting Applications

Step 2

Step 3

Step 4

Send traffic from Linux via a network without an XR route .

Gateway of last resort is 10.127.60.1 to network 0.0.0.0

S* 0.0.0.0/0 [1/0] via 10.127.60.1, 01:56:30

L 2.2.2.2/32 is directly connected, 01:56:31, Loopback?2

S 10.127.59.46/32 [1/0] via 10.127.60.1, 01:56:30

C 10.127.60.0/24 is directly connected, 01:56:30, MgmtEth0/RP0/CPU0/0

L 10.127.60.173/32 is directly connected, 01:56:30, MgmtEth0O/RP0/CPU0/0

View the IP routes used by the to_xr interfaces.

Example:

RP/0/RP0O/CPUO:ios#bash

Fri Oct 31 15:59:14.656 IST

[ios:~]$ 1ip route

default via 10.127.60.1 dev Mg0 RPO CPUO O

10.127.59.46 via 10.127.60.1 dev Mg0 RPO CPUO O

10.127.60.0/24 dev Mg0_RPO_CPUO_O scope link src 10.127.60.173
[NE_173:~]$

Set the route in Linux.

Example:
This command sets the route in the linux interface.

[ios:~]$ ip route add 10.127.60.0/24 dev to xr scope link src 10.127.60.173

Verify connectivity with R2 node.

Example:

[:~]1$# ping 10.127.60.1

PING 10.127.60.1 (10.127.60.1) 56(84) bytes of data.

64 bytes from 10.127.60.1: icmp seg=1 ttl=254 time=0.876 ms
64 bytes from 10.127.60. icmp seqg=2 ttl=254 time=0.768 ms
64 bytes from 10.127.60. icmp seqg=3 ttl=254 time=0.697 ms
64 bytes from 10.127.60. icmp seqg=4 ttl=254 time=0.824 ms
~C

--- 10.127.60.1 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3000ms
rtt min/avg/max/mdev = 0.697/0.791/0.876/0.069 ms

[:~]18

R

Packet I/0 Functionality and Hosting Applications .

Packet I/0 Functionality and Hosting Applications |
. Send traffic from Linux via a network without an XR route

. Packet I/0 Functionality and Hosting Applications

	Packet I/O Functionality and Hosting Applications
	Setting up Application Hosting Environment
	Verify Reachability of IOS XR and Packet I/O Infrastructure
	Programme Routes in the Kernel
	Manage IOS XR Interfaces through Linux
	Configure an Interface to be Linux-Managed
	Configure custom MTU setting
	Synchronize Statistics Between IOS XR and Linux
	Synchronize Routes Between IOS XR and Linux
	Send traffic from Linux via a connected network
	Send traffic from Linux via a network using an XR route
	Send traffic from Linux via a network without an XR route

