
Data models

Data modeling is standard based approach to model configuration and operational data in networking devices.
Using data models, customers can automate and simplify network wide visibility and configuration.

• Data Models - Programmatic and Standards-based Configuration , on page 1
• YANG model, on page 1
• Supported YANG models, on page 4
• Introduction to NETCONF , on page 4
• gRPC, on page 7

DataModels-ProgrammaticandStandards-basedConfiguration
Cisco IOS XR software supports the automation of configuration of multiple routers across the network using
Data models. Configuring routers using data models overcomes drawbacks posed by traditional router
management techniques.

CLIs are widely used for configuring a router and for obtaining router statistics. Other actions on the router,
such as, switch-over, reload, process restart are also CLI-based. Although, CLIs are heavily used, they have
many restrictions.

Customer needs are fast evolving. Typically, a network center is a heterogenous mix of various devices at
multiple layers of the network. Bulk and automatic configurations need to be accomplished. CLI scraping is
not flexible and optimal. Re-writing scripts many times, even for small configuration changes is cumbersome.
Bulk configuration changes through CLIs are error-prone and may cause system issues. The solution lies in
using data models - a programmatic and standards-based way of writing configurations to any network device,
replacing the process of manual configuration. Data models are written in a standard, industry-defined language.
Although configurations using CLIs are easier (more human-friendly), automating the configuration using
data models results in scalability.

Cisco IOS XR supports the YANG data modeling language. YANG can be used with Network Configuration
Protocol (NETCONF) to provide the desired solution of automated and programmable network operations.

YANG model
YANG is a data modeling language used to describe configuration and operational data, remote procedure
calls and notifications for network devices. The salient features of YANG are:

• Human-readable format, easy to learn and represent

Data models
1

• Supports definition of operations

• Reusable types and groupings

• Data modularity through modules and submodules

• Supports the definition of operations (RPCs)

• Well-defined versioning rules

• Extensibility through augmentation

For more details of YANG, refer RFC 6020 and 6087.

NETCONF and gRPC (Google Remote Procedute Call) provide a mechanism to exchange configuration and
operational data between a client application and a router and the YANG models define a valid structure for
the data (that is being exchanged).

Encoding/ DecodingTransportProtocol

XMLSSHNETCONF

XML, JSONHTTP/2gRPC

Each feature has a defined YANGmodel. Cisco-specific YANGmodels are referred to as synthesized models.
Some of the standard bodies, such as IETF , IEEE and Open Config, are working on providing an industry-wide
standard YANG models that are referred to as common models.

Components of a YANG Model
A module defines a single data model. However, a module can reference definitions in other modules and
submodules by using the import statement to import external modules or the include statement to include
one or more submodules. A module can provide augmentations to another module by using the augment
statement to define the placement of the new nodes in the data model hierarchy and the when statement to
define the conditions under which the new nodes are valid. Prefix is used when referencing definitions in the
imported module.

YANGmodels are available for configuring a feature and to get operational state (similar to show commands)

This is the configuration YANG model for AAA (denoted by - cfg)
(snippet)
module Cisco-IOS-XR-aaa-locald-cfg {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-cfg";

prefix "aaa-locald-cfg";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

import Cisco-IOS-XR-aaa-lib-cfg { prefix "a1"; }

/*** META INFORMATION ***/

Data models
2

Data models
Components of a YANG Model

organization "Cisco Systems, Inc.";
.........................
......................... (truncated)

This is the operational YANG model for AAA (denoted by -oper)
(snippet)
module Cisco-IOS-XR-aaa-locald-oper {

/*** NAMESPACE / PREFIX DEFINITION ***/

namespace "http://cisco.com/ns/yang/Cisco-IOS-XR-aaa-locald-oper";

prefix "aaa-locald-oper";

/*** LINKAGE (IMPORTS / INCLUDES) ***/

import Cisco-IOS-XR-types { prefix "xr"; }

include Cisco-IOS-XR-aaa-locald-oper-sub1 {
revision-date 2015-01-07;

}

/*** META INFORMATION ***/

organization "Cisco Systems, Inc.";
........................
........................ (truncated)

A module may include any number of sub-modules, but each sub-module may belong to only one module.
The names of all standard modules and sub-modules must be unique.

Note

Structure of YANG models
YANG data models can be represented in a hierarchical, tree-based structure with nodes, which makes them
more easily understandable. YANG defines four nodes types. Each node has a name, and depending on the
node type, the node might either define a value or contain a set of child nodes. The nodes types (for data
modeling) are:

• leaf node - contains a single value of a specific type

• list node - contains a sequence of list entries, each of which is uniquely identified by one or more key
leafs

• leaf-list node - contains a sequence of leaf nodes

• container node - contains a grouping of related nodes containing only child nodes, which can be any of
the four node types

Data Types
YANG defines data types for leaf values. These data types help the user in understanding the relevant input
for a leaf.

Data models
3

Data models
Structure of YANG models

DescriptionName

Any binary databinary

A set of bits or flagsbits

"true" or "false"boolean

64-bit signed decimal numberdecimal64

A leaf that does not have any valueempty

Enumerated stringsenumeration

A reference to an abstract identityidentityref

References a data tree nodeinstance-identifier

8-bit, 16-bit, 32-bit, 64-bit signed integersint (integer-defined values)

A reference to a leaf instanceleafref

8-bit, 16-bit, 32-bit, 64-bit unsigned intergersuint

Human-readable stringstring

Choice of member typesunion

Supported YANG models
The complete list of the supported IOSXR YANG models are:
https://github.com/YangModels/yang/tree/master/vendor/cisco/xr

Introduction to NETCONF
NETCONF provides mechanisms to install, manipulate, and delete the configuration of network devices. It
uses an Extensible Markup Language (XML)-based data encoding for the configuration data as well as the
protocol messages. NETCONF uses a simple RPC-based (Remote Procedure Call) mechanism to facilitate
communication between a client and a server. The client can be a script or application typically running as
part of a network manager. The server is typically a network device (router).

For more NETCONF details, refer RFC 6241.

NETCONF sessions

A NETCONF session is the logical connection between a network administrator or network configuration
application and a network device. Global configuration attributes can be changed during any authorized
session, and the effects are visible in all sessions. NETCONF is connection-oriented, with SSH as the underlying
transport. NETCONF sessions are established with a hello message, where features and capabilities are
announced. Sessions are terminated using the close or kill messages.

NETCONF Layers

Data models
4

Data models
Supported YANG models

Figure 1: NETCONF Layers

NETCONF can be partitioned into four layers:

• Content layer - includes configuration and notification data

• Operations layer - defines a set of base protocol operations invoked as RPCmethods with XML-encoded
parameters

• Messages layer - provides a simple, transport-independent framing mechanism for encoding RPCs and
notifications

• Secure Transport layer- provides a communication path between the client and server

NETCONF Operations

NETCONF defines the existence of one or more configuration datastores and allows configuration operations
on them. A configuration datastore is defined as the complete set of configuration data that is required to get
a device from its initial default state into a desired operational state. The configuration datastore does not
include state data or executive commands.

IOS XR NETCONF supports the following operations:

• <get-config>—Retrieves all or part of a specified configuration from a named data store

• <get>—Retrieves running configuration and device state information

• <edit-config>—Loads all or part of a specified configuration to the specified target configuration

• <get-schema>—Retrieves the required schema from the router

NETCONF Operations: Example

This example shows how a NETCONF <get-config> request works.

Figure 2: <get-config> request

The send message request is to get the current configuration of CDP running on the router. The return message
includes the current CDP configuration.

Data models
5

Data models
Introduction to NETCONF

NETCONF reply (server to client)NETCONF request (client to server)

<?xml version="1.0"?>
<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:NETCONF:base:1.0">

<data>
<cdp

xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-cdp-cfg">

<timer>10</timer>
<enable>true</enable>
<log-adjacency></log-adjacency>
<hold-time>200</hold-time>
<advertise-v1-only></advertise-v1-only>
</cdp>
</data>
</rpc-reply>

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:NETCONF:base:1.0">

<get-config>
<source><running/></source>
<filter>
<cdp
xmlns="http://cisco.com/ns/yang/Cisco-IOS-XR-cdp-cfg"/>
</filter>
</get-config>
</rpc>

The RPC element is used to enclose a NETCONF request sent from the client to the server. The <rpc> element
has a mandatory attribute message-id, which is a string chosen by the sender of the RPC that will commonly
encode a monotonically increasing integer. The receiver of the RPC does not decode or interpret this string
but simply saves it to be used as a message-id attribute in any resulting <rpc-reply> message. The sender
MUST ensure that the message-id value is normalized. The RPC reply message contains the same message-id
when the client receives information from the server.

Subtree Filtering
XML subtree filtering is a mechanism that allows an application to select particular XML subtrees to include
in the <rpc-reply> for a <get> or <get-config> operation.

Subtree Filter Components
A subtree filter is comprised of XML elements and their XML attributes. Elements that can be present in a
subtree filter are:

• Namespace selection - A namespace is considered to match (for filter purposes) if the XML namespace
associated with a particular node within the filter element is the same as in the underlying data model.
A namespace selection cannot be used by itself; at least one element must be specified in the filter if any
elements are to be included in the filter output.
Example:

<filter type="subtree">
<top xmlns="http://example.com/schema/1.2/config"/>

</filter>

• Attribute match expressions -Filtering is done by matching a specified attribute value. This filtering with
the Match attribute can be specified only in Table classes.
Example:
ifName is the attribute match expression
<filter type="subtree">

<t:top xmlns:t="http://example.com/schema/1.2/config">
<t:interfaces>
<t:interface t:ifName="eth0"/>

</t:interfaces>
</t:top>

</filter>

Data models
6

Data models
Subtree Filtering

• Containment Nodes - Filtering is done by specifying nodes (classes) that have child nodes (classes). This
filtering is by specifying container classes.
Example: top is a containment node
<filter type="subtree">

<top xmlns="http://example.com/schema/1.2/config">
<users/>

</top>
</filter>

• Selection Nodes - Filtering is done by specifying leaf nodes. This filtering specifies leaf classes.
Example: users is a selection node (in the containment node - top)
<filter type="subtree">

<top xmlns="http://example.com/schema/1.2/config">
<users/>

</top>
</filter>

• Content Match Nodes - Filtering is done by exactly matching the content of a leaf node. This filtering is
done by specifying naming the class value for table classes.
Example: name is the content match node (in the containment node - top and the selection
node - user)
<filter type="subtree">

<top xmlns="http://example.com/schema/1.2/config">
<users>
<user>
<name>fred</name>

</user>
</users>

</top>
</filter>

gRPC
gRPC is a language-neutral, open source, RPC (Remote Procedute Call) system developed by Google. By
default, it uses protocol buffers as the binary serialization protocol. It can be used with other serialization
protocols as well such as JSON, XML etc. The user needs to define the structure by defining protocol buffer
message types in.proto files. Each protocol buffer message is a small logical record of information, containing
a series of name-value pairs.

gRPC encodes requests and responses in binary. Although Protobufs was the only format supported in the
initial release, gRPC is extensible to other content types. The Protobuf binary data object in gRPC is transported
using HTTP/2 (RFC 7540). HTTP/2 is a replacement for HTTP that has been optimized for high performance.
HTTP/2 provides many powerful capabilities including bidirectional streaming, flow control, header
compression and multi-plexing. gRPC builds on those features, adding libraries for application-layer
flow-control, load-balancing and call-cancellation.

gRPC supports distributed applications and services between a client and server. gRPC provides the
infrastructure to build a device management service to exchange configuration and operational data between
a client and a server in which the structure of the data is defined by YANG models.

Cisco gRPC IDL

The protocol buffers interface definition language (IDL) is used to define servicemethods, and define parameters
and return types as protocol buffer message types.

Data models
7

Data models
gRPC

gRPC requests can be encoded and sent across to the router using JSON. gRPC IDL also supports the exchange
of CLI.

For gRPC transport, gRPC IDL is defined in .proto format. Clients can invoke the RPC calls defined in the
IDL to programXR. The supported operations are - Get, Merge, Delete, Replace. The gRPC JSON arguments
are defined in the IDL.

syntax = "proto3";

package IOSXRExtensibleManagabilityService;

service gRPCConfigOper {

rpc GetConfig(ConfigGetArgs) returns(stream ConfigGetReply) {};

rpc MergeConfig(ConfigArgs) returns(ConfigReply) {};

rpc DeleteConfig(ConfigArgs) returns(ConfigReply) {};

rpc ReplaceConfig(ConfigArgs) returns(ConfigReply) {};

rpc CliConfig(CliConfigArgs) returns(CliConfigReply) {};

}

gRPC Operations

• oper get-config—Retrieves a configuration

• oper merge-config— Appends to an existing configuration

• oper delete-config—Deletes a configuration

• oper replace-config—Modifies a part of an existing configuration

• oper get-oper—Gets operational data using JSON

• oper cli-config—Performs a configuration

• oper showcmdtextoutput

Data models
8

Data models
gRPC

	Data models
	Data Models - Programmatic and Standards-based Configuration
	YANG model
	Components of a YANG Model
	Structure of YANG models
	Data Types

	Supported YANG models
	Introduction to NETCONF
	Subtree Filtering
	Subtree Filter Components

	gRPC

